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ABSTRACT

Essays on Empirical Microeconomics

Yuta Toyama

My dissertation consists of two chapters that empirically study policy-related questions

in applied microeconomics by using structural econometric modeling developed in industrial

organization. In the first chapter, I study the welfare effects of a cap-and-trade program.

I develop an equilibrium framework that incorporates forward-looking behavior and trans-

action costs. In the presence of transaction costs in permit trading, investment patterns

may depart from the first best outcome. Storable emissions permits allow firms to smooth

costs over time, and abatement investment introduces dynamic incentives into compliance

decisions. I apply the framework to study the first nine years (1995-2003) of the US Acid

Rain Program. Using data on permit transactions and electricity production, I estimate the

model and show that variable transaction costs are substantial. I use the estimated model

to quantify the effect of a cap-and-trade program in comparison to a uniform standard,

given a fixed level of aggregate emissions. I find that the total costs of reducing emissions

under cap-and-trade are 16.6% lower. Although health and environmental damages from

SO2 emissions increase due to the change in the geographic distribution of emissions, the net

benefit of the cap-and-trade is positive. I also examine the potential gains from trade in the
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absence of transaction costs. I find more dispersed patterns of investment and less banking

of permits, both of which result in cost savings.

In the second chapter, a joint work with Kei Kawai and Yasutora Watanabe, we study

how voter turnout affects the aggregation of preferences in elections. Under voluntary voting,

election outcomes disproportionately aggregate the preferences of voters with low voting cost

and high preference intensity. We show identification of the correlation structure among

preferences, costs, and perceptions of voting efficacy, and explore how the correlation affects

preference aggregation. Using 2004 U.S. presidential election data, we find that young, low-

income, less-educated, and minority voters are underrepresented. All of these groups tend

to prefer Democrats, except for the less-educated. Democrats would have won the majority

of the electoral votes if all eligible voters had turned out.
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CHAPTER 1

Investment Incentives, Storable Permits, and Transaction Costs in

the Intertemporal Cap-and-Trade Program

1.1. Introduction

How to achieve environmental sustainability without compromising economic efficiency

is a central question in policy debates and the economics literature. A traditional approach

to pollution regulation is imposing a uniform standard on emissions intensity, although this

approach may not be a cost-effective solution. Pollution abatement often requires costly

investments in clean technology, and firms are heterogeneous in their costs of reducing pollu-

tion. Instead, economists have advocated market-based solutions to give firms an incentive

to internalize negative externalities. One example is a cap-and-trade program where firms

trade emissions permits to achieve a target level of aggregate emissions. When assessing

the welfare effects of a cap-and-trade system, two critical elements exist: transaction costs

and dynamic regulatory environment. Transaction costs associated with permit trading may

prevent the first best reallocation of emissions permits, violating the Coase theorem. Dynam-

ics influence how firms make investment decisions in the costly compliance technology. In

this paper, I develop an empirical framework for a cap-and-trade program that incorporates

firms’ forward-looking behavior and transaction costs. I apply this framework to evaluate

the welfare effects of the US Acid Rain Program, a federal cap-and-trade program designed

to reduce sulfur dioxide emissions.
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In a cap-and-trade program, firms face two key dynamic decisions: whether to invest in

clean technology, and whether to store (bank) emissions permits. Investments in clean, but

costly, technology are an important margin for reducing emissions. A cap-and-trade program

typically spans a long time horizon, and the allocation of emissions permits changes over time.

Firms, therefore, must take into account the change in the regulatory environment in their

investment decisions. Moreover, firms can store (bank) emissions permits across periods.

The storability of emissions permits under a permit banking system allows firms to smooth

their costs over time. Although these dynamic factors are key elements of cap-and-trade

programs, modeling these factors and estimating such a dynamic model is a challenging task.

To deal with these complications, previous studies focused on a static decision problem on

the steady state (See, e.g., Carlson et al. 2000, Fowlie 2010b, and Chan 2015). An innovation

of my paper is to model explicitly dynamic aspects of a cap-and-trade program and bring it

to the data, which allows me to evaluate comprehensively the evolution of a cap-and-trade

program.

Another important focus of my paper is the role of transaction costs in the permit mar-

ket. Transaction costs discourage firms from relying on the permit trading as a compliance

strategy. Previous studies documented that many firms tend not to trade emissions permits,

and instead comply with the regulation using their allocated permits (see, e.g., Jaraitė-

Kažukauskė and Kažukauskas, 2015, for the EU Emissions Trading Scheme). In the absence

of transaction costs, the Coase (1960) theorem implies that investment in abatement (i.e.,

reduction of emissions) should be efficient under cap-and-trade programs. In practice, trans-

action costs distort investment incentives, leading to the efficiency loss. My paper quantifies

transaction costs in the permit market and their impacts on investment patterns and abate-

ment costs.
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I construct a dynamic equilibrium model of investment and a cap-and-trade program that

captures these complex interactions in an equilibrium framework. The novelty of my model

is that it includes dynamic investment decisions, permit banking, and transaction costs, each

of which was studied separately in the previous literature, in a unified framework.1 In my

model, firms are price takers for emissions permits. They face various tradeoffs in their

compliance decisions. Firms can comply with the regulation either by reducing emissions,

which can be achieved by decreasing production or investing in clean technology, or by buying

emissions permits. However, firms incur two type of transaction costs in the permit market:

(1) a sunk cost associated with participation in the permit market and (2) variable costs

that depend on the trading volume. These costs discourage firms from permit trading and

affect investment patterns. The sequence of permit prices is determined by market clearing

conditions, resulting in a dynamic competitive equilibrium.

I apply this framework to study the first nine years (1995-2003) of the US Acid Rain

Program, a cap-and-trade program for sulfur dioxide (SO2) emissions that targets the US

electricity industry.2 The goal of the Acid Rain Program is to reduce aggregate SO2 emissions

from generation facilities to half of their 1980 levels. The regulator distributed emissions

permits to the existing generation facilities, and these facilities were required to hold sufficient

permits to offset their emissions each year.3 Regulated sources could choose how to comply

1The previous literature that studies various models of a cap-and-trade program includes a static trading
model with transaction costs (Stavins, 1995), a theoretical model of permit banking (Rubin, 1996; Schennach,
2000), and a model of long-run abatement investment (Fowlie, 2010b).
2I choose 2003 as a terminal period of my analysis because of the announcement of the Clean Air Interstate
Rule in December 2003, which had a major impact on the regulatory environment regarding SO2 emissions.
See section 1.2.2 for details.
3Emissions permits are called emissions “allowances” in the Acid Rain Program because the term “per-
mit” has another meaning in US environmental law. Because “permit” is the standard terminology in the
economics literature, I use the term “permit” in this paper.
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with the regulation. For example, they could switch to a cleaner fuel, invest in abatement

equipment, or obtain additional permits from the market.

An appealing feature of the Acid Rain Program is the availability of data. Various

information is publicly available, including production data for power plants and trading

data for emissions permits by electric utilities. Combining these two data sets allows me to

identify the key parameters of my model, including transaction costs of permit trading and

investment costs. My focus on the Acid Rain Program is also motivated by previous findings

that the gains from permit trading might not have been fully realized (Carlson et al. 2000

and Keohane 2006 on Phase I, and Chan 2015 on Phase II). I revisit their findings by taking

into account transaction costs of permit trading as a source of inefficiency.

I combined data on permit transactions and production information between 1990 and

2003. Identification of my model relies on optimality conditions regarding firms’ decisions

and detailed information on production and permit transactions. I use production data

before and after the introduction of the cap-and-trade program to estimate the firm-level

profit function from electricity production. The profit function implies the marginal profit

from emissions across firms. Absent variable transaction costs, marginal profits should be

equalized across firms, and equal to the permit price. Variable transaction costs are identified

from how marginal profits vary with the trading volume. Firm-level participation in permit

trading is employed to identify sunk costs of participation. Finally, I use the first-order-

condition for investment to identify the marginal costs of investment.

I estimate the model parameters by simulated nonlinear least squares. The estimates

imply that sunk participation costs are quite small, but variable transaction costs from

permit trading are substantial. The median marginal transaction cost is estimated to be 98

USD, while permit prices range between 100 and 200 USD in my sample period.
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I conduct a series of counterfactual simulations using the model estimates. First, I exam-

ine the impact of a cap-and-trade program in comparison to a uniform standard regulation

under which all firms are required to have the same emissions rate. I find that the investment

pattern under cap-and-trade differs significantly from the pattern under a uniform standard

regulation, for a given aggregate level of emissions. Rather than following the uniform emis-

sions rate imposed by the regulator, firms can optimally choose their levels of investment

based on the costs and returns under a cap-and-trade program. The aggregate costs of

abatement are 16.6% lower than under a uniform standard regulation.

I also discuss the implications for health and environmental damages. A potential concern

of a cap-and-trade program is that it could lead to higher health and environmental damages

in comparison to uniform standard regulations. Even though the aggregate level of emissions

is fixed, the geographic distribution of emissions might differ from that under a uniform

standard. Damages from SO2 emissions depend on the location of emissions sources. health

and environmental damages, therefore, can differ across regulatory regimes (see, e.g., Muller

and Mendelsohn 2009, Fowlie et al. 2012, Fowlie and Muller 2013, and Chan et al. 2015).

I use the data from Muller and Mendelsohn (2009) to calculate the damages under both a

cap-and-trade program and a uniform standard. I find that the health and environmental

damage does increase under a cap-and-trade program. But the net benefit of the cap-and-

trade, calculated by the sum of abatement costs and health and environmental damages, is

positive.

In a second counterfactual simulation, I examine potential gains from trade. I find

that shutting down transaction costs, as might happen if there was a centralized trading

platform, would lead to a more dispersed distribution of emissions and investment levels,
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reflecting more active trading of emissions permits. There is less permit banking in the ab-

sence of transaction costs. Transaction costs discourage firms from selling emissions permits,

and firms prefer to accumulate these permits, lowering the allocative efficiency of emissions

permits. In the absence of transaction costs, the total abatement costs decrease by around

37%, enough to offset increases in health and environmental damages. Thus, “unrealized”

gains from trade are significant in my sample period.

My empirical framework can be applied to other market-based environmental policies,

including water trading systems, the current Corporate Average Fuel Economy (CAFE)

regulation, and the Renewable Portfolio Standard. A key feature of these regulations is the

interaction between investment in clean technology and trading of environmental credits.

For example, the recent CAFE standard regulation allows firms to trade CAFE credits with

other firms for their compliance. This trading scheme is an alternative to improving fuel

efficiencies for a manufacturers’ fleet by making a costly investment. Under the Renewable

Portfolio Standard, electricity utilities can either invest in renewable technologies or obtain

the Renewable Energy Certificates from the market to comply with the regulation.

1.1.1. Related Literature

My paper is related to three strands of literature: (i) the empirical literature on dynamic

investment behavior, (ii) the empirical literature on cap-and-trade regulations, and (iii) the

evaluation of the Acid Rain Program.

Understanding firms’ investment behavior and its welfare consequences is a central theme

in the industrial organization literature. Previous work includes Ericson and Pakes (1995),

Bajari et al. (2007), Ryan (2012), Collard-Wexler (2013), and Kalouptsidi (2014) in an
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oligopolistic setting, and Rust (1987), Aguirregabiria and Mira (2002), and Kellogg (2014)

in a competitive setting.

A novel feature of my paper is that investment in technology is substitutable with trading

of emissions permits. To comply with the cap-and-trade regulation, a firm can either make

an investment and reduce emissions, or purchase emissions permits from the permit market,

where a firm faces transaction costs. Investment decisions also interact with storability of

inputs, namely banking of emissions permits in my model. For example, if tighter future

regulatory intensity is announced at the inception of the regulation, permit banking induces

investment in early periods. A similar market structure can be found in other settings, in-

cluding the CAFE credit trading program and the green certificate trading in the Renewable

Portfolio Standard.

My paper also contributes to the empirical literature on cap-and-trade programs. Much

of the literature test qualitative predictions of models of permit trading. A few recent papers

take a structural approach to measure the welfare implications of permit trading.4 In the

context of NOx regulation, Fowlie (2010b) constructs a model of abatement choice to study

the effect of rate-of-return regulation on permit trading. Fowlie et al. (2014) construct and

estimate a model of dynamic investment and entry/exit game to discuss the implications of

hypothetical market-based environmental policies in the US cement industry.5 Abito (2014)

quantifies the impact of rate-of-return regulation on the efficiency of SO2 emissions regulation

by estimating a multi-product cost function, though he does not explicitly consider permit

trading.

4The literature has examined the independence of outcomes from the initial allocation (Reguant and Eller-
man, 2008 and Fowlie and Perloff, 2013) and the internalization of emissions costs (Kolstad and Wolak, 2008,
Fowlie, 2010a, and Fabra and Reguant, 2014).
5Dardati (2014) also studies how an allocation scheme for closing plants affects entry/exit decisions, using
the calibrated model of industry dynamics in the context of the Acid Rain Program.



18

A distinctive feature of my paper is to model trading behavior in the permit market and

banking of emissions permits.6 The previous papers all assume frictionless permit markets

in which cap-and-trade is equivalent to imposing a Pigouvian tax. My model captures

emissions permit trading when permits may be banked and transaction costs exist. It can

quantify transaction costs and their impact. My framework can also be used to study how the

regulatory design of permit trading, such as the availability of permit banking and alternative

allocation rules for emissions permits, affects firms’ abatement decisions.

Finally, my paper provides new insights for the evaluation of the Acid Rain Program.

One approach in the literature is to calculate cost saving due to permit trading by estimating

a cost function and a discrete choice model for abatement choice (see, e.g., Ellerman et al.,

2000, Carlson et al., 2000, Keohane, 2006, and Chan, 2015). Researchers found that adopting

a permit trading program led to significant cost savings compared to traditional command-

and-control approaches, though the actual cost did not reach the least-cost solution. Another

approach is to focus on aggregate variables to discuss the efficiency of the permit market

(Joskow et al. 1998, Ellerman and Montero 2007, and Helfand et al. 2006).7

My paper complements this literature by providing an empirical model that incorpo-

rates firms’ decisions on abatement, permit trading, and permit banking in an equilibrium

framework. My model allows me to evaluate the role of permit banking and transaction

costs. I decompose the effects of the Acid Rain Program into the effects of permit trading

and permit banking. Previous studies often note the importance of permit banking as a

6Cantillon and Slechten (2015) might be the closest to my paper. They study participation decisions and
price formation for CO2 emissions permits using trading data in the EU-ETS scheme.
7Joskow et al. (1998) finds that prices in the spot market and the EPA auction are close and concludes that
“a relatively efficient private market” had developed by mid-1994. Ellerman and Montero (2007) argues
for the efficient market of permits by comparing the actual and theoretically predicted volume of aggregate
banking. Helfand et al. (2006) uses the monthly permit prices during 1994 to 2003 to test whether the price
path follows the Hotelling r-percent rule for intertemporal arbitrage. They reject the Hotelling rule, which
is a suggestive evidence of inefficiency of the market.
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source of cost efficiency. My paper is the first to quantify the gains. Moreover, I quantify

the potential gains from trade which could be achieved in the absence of transaction costs.

These simulation analyses require an equilibrium model of the cap-and-trade program. I also

use transaction data for emissions permits to estimate the model, in contrast to most of the

literature.

1.2. Empirical Setting and Descriptive Analysis

1.2.1. The Acid Rain Program

Fossil-fuel electricity plants, especially coal plants, produce sulfur dioxide (SO2) emissions

as a byproduct of electricity generation. SO2 is known to have detrimental effects on human

health and the environment. Although the federal government introduced command-and-

control-type regulations with the Clean Air Act Amendments of 1970, such regulations have

not been effective in reducing SO2 emissions.8 The failure of the previous regulations led to

the introduction of the Acid Rain Program (ARP), a cap-and-trade program, in 1995.

The target of the regulation is electricity generating units (EGUs) that use fossil fuels

and have an output capacity greater than 25 megawatts. The regulation was implemented

in two phases. In Phase I (1995-1999), a subset of eligible EGUs are under the regulation.

These units include 263 EGUs named the “Table 1” group, which were especially dirty

and old before the regulation, and an additional 182 EGUs from the Non-Table 1 group

as substitution or compensating units. In Phase II (begun in 2000), all eligible EGUs are

mandated to comply with the regulation.

The ARP aims to reduce SO2 emissions from generation facilities to half of their 1980

levels, which determines the total number of emissions permits for each year. Most of the

8Ellerman et al. (2000) provide a brief history of the regulation on SO2 emissions.
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emissions permits are allocated for free to incumbent units. The EPA adopts the rule that

determines the unit-level allocation of emissions permits based on the characteristics of a

unit.9 The allocation is primarily determined by the product of average heat inputs during

1985-1987 and the target emissions rate for each Phase (2.5 pounds per 1 million British

thermal unit (lb/MMbtu) in Phase I and 1.2 lb/MMBtu in Phase II). Some units also obtain

additional allocation of permits based on technical and political considerations (Joskow and

Schmalensee, 1998).

SO2 permits are tradable goods. Firms can sell or buy permits with other firms, including

financial companies or brokers that do not own any generating units and thus are not required

to comply with the regulation. Although the EPA also holds an annual auction to distribute

around 2.7% of the yearly allocation, a centralized trading exchange does not exist. Bilateral

trading, which is often mediated by brokers, is the primary way to trade emissions permits

with other participants.

Operation of each regulated unit, especially emissions levels of SO2, is recorded through

the Continuous Emissions Monitoring System.10 At the end of the calendar year, the annual

level of SO2 emissions is finalized, and each regulated unit is required to surrender emissions

permits within a grace period of 60 days. The remaining permits are carried over to the next

year, which is called banking of emissions permits.11 As I discuss in section 1.2.3, regulated

9See U.S. Environmental Protection Agency (1993a,b) for the details.
10There should be no concern about manipulating the measurement of emissions because the operators
are required to perform periodic performance evaluations of the monitoring system. These evaluations
include daily calibration error tests, daily interference tests for flow monitors, and semi-annual (or annual)
relative accuracy test audit and bias tests. See https://web.archive.org/web/20090211082920/http:

//epa.gov/airmarkets/emissions/continuous-factsheet.html for the details.
11If an affected unit does not hold sufficient permits to offset the emissions at the end of the compliance
deadline, unit operators are required to pay the penalty of $2000 per SO2 ton. However, compliance was
nearly 100% during the period of my analysis.

https://web.archive.org/web/20090211082920/http://epa.gov/airmarkets/emissions/continuous-factsheet.html
https://web.archive.org/web/20090211082920/http://epa.gov/airmarkets/emissions/continuous-factsheet.html
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firms had a significant amount of banked permits in Phase I when the annual allocation was

more generous than in Phase II.

Although emissions permits were allocated to the existing units for free, most of them

still needed to decrease their emissions from their business-as-usual level to comply with the

regulation. The regulated units were able to reduce emissions by either lowering utilization

(output) or emissions per output (emissions rate). The latter option of reducing emissions

rates was the primary channel of abatement, which I will explain in section 1.2.3 in detail.

1.2.2. Data

In this paper, I focus on the period from 1995 to 2003. Although the ARP continued after

2004, the proposal of the Clean Air Interstate Rule, announced in December 2003, had a

large impact on the regulated firms’ expectation over the future regulatory environment.

The proposed regulation aimed to strengthen the stringency of the SO2 regulation from 2010

in the framework of the ARP. After the announcement, the permit price started to rise

dramatically, primarily because the value of emissions permits issued before 2010 would be

higher than those issued after 2010 in the proposed regulation. Firms also started to invest

in scrubbers in anticipation of more strict intensity of the proposed regulation.12 Thus, I

do not include the data after 2004 and rather focus on the periods when the regulatory

environment regarding SO2 emissions was stable.

The data I use are a combination of transaction data for emissions permits and various

data on electricity production. The data on permit transactions are from the Allowance

Tracking System (ATS) operated by the EPA. The latter data are a compilation of various

12See Schmalensee and Stavins (2013) for a detailed review on how the regulatory environment regarding
SO2 emissions has been changing since 2004.
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databases from the EPA and the US Energy Information Administration (EIA). I explain

these two type of data in turn.

First, the EPA uses the ATS to manage permit allocation and track private transactions

and surrender of permits for compliance, and makes the data public. Each transaction record

in the tracking system contains the account name of a transferor, a transferee, vintage of

permits, quantity of transferred permits, and the confirmation date of the transaction.13 I

constructed the transaction data at the firm and year level from the database. Specifically, I

aggregated the account-level information into the firm-level information by using ownership

information constructed from various sources including EGrid database and EIA-860. The

final data set includes (1) permit holding at the beginning of the year, (2) annual allocation,

(3) volume of permit transaction (net purchase of emissions permits), and (4) banking vol-

ume. Note that I only used information on transactions of permits whose vintage is current

or old.

The ATS does not collect any information on transaction prices. I instead collected the

market-price index of SO2 permits provided by Cantor Fitzgerald, one of the biggest brokers

in SO2 permit markets. The frequency of the price data is monthly. I explain the details of

the price data in section 1.2.3.5.

The second piece of my data set is production information of electricity companies.

I combined multiple databases to construct the data set. These databases include EPA

data as well as EIA survey data. First, the EPA makes public unit-level operation data

of generating units collected by the Continuous Emissions Monitoring System (hereafter

CEMS). The CEMS data include gross generation (in MWh), heat inputs (in MMBtu), and

13The confirmation date must lag behind the actual transaction date to some extent, although the prompt
recording of private trading was considered the rule rather than the exception according to the EPA staff
and industry experts. See Joskow et al. (1998) for details.
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SO2 emissions. In addition, the EIA conducts various surveys on operation of power plants.

Specifically, the Form EIA-767 “Steam-Electric Plant Operation and Design Report” gives

me information on fuel usage (sulfur content, ash content, heat inputs), net generation, and

generation capacity at the unit and month level. Also, the Form FERC No. 423 (EIA-

423) “Monthly Report of Cost and Quality of Fuels for Electric Plants” provides plant-

and month-level information on fuel procurement, including fuel type, sulfur contents, heat

contents, and purchase costs.

1.2.3. Descriptive Analysis

I now provide a descriptive analysis on the data set I constructed. I focus on various aspects

of the ARP including banking of emissions permits, abatement decisions of regulated sources,

and market of emissions permits. These descriptive findings motivate the modeling approach

I introduce in section 1.3.

1.2.3.1. Banking of Emissions Permits. Figure 1.1 shows the aggregate SO2 emissions

level and emissions caps under the ARP from 1990 to 2003. The bars show emissions levels

each year, and the dashed lines show the emissions cap. As I mentioned in section 1.2,

the timing of the regulation was different across electricity generating units. I denote those

units that are regulated beginning 1995 as group I units and those regulated since 2000 as

Group II units. The blue bar in the figure corresponds to emissions from Group I units,

and the orange bar corresponds to those from group II units. The blue dashed line shows

the allocation for Group I units, and the black dashed line from 2000 shows the total cap of

emissions including both Group I and II units.

The figure shows that Group I units reduced their emissions almost by half compared

to their 1980 level once Phase I started in 1995. While both Group I and II units reduced
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Figure 1.1. Aggregate Volume of SO2 Emissions and Caps (1990 - 2003)
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Notes: The blue (orange) bar corresponds to emissions from Group I (Group II) sources.
The blue dashed line shows permit allocation for Group I units, and the black dashed line
from 2000 shows the total cap including allocation for both Group I and II units.

emissions further in 2000, the first year of Phase II, Group I units did not reduce emissions

as much as in 1995. Emissions before 1999 were significantly lower than the emissions cap,

though the aggregate emissions exceed the allocation of emissions permits after 2000. These

observations imply that Group I units saved their permits in Phase I and then started to

use them after 2000 for the purpose of compliance.

1.2.3.2. Abatement Strategy for Coal units. Emissions from electricity generation can

be reduced either by (1) reducing the emissions rate (i.e., emissions per output) or (2)

reducing output (lower utilization of generating units). In this subsection, I explain the

former abatement strategy for generating units whose primary fuel type is coal. Although

the target of the ARP includes all types of fossil fuel units (coal, gas, and oil), SO2 emissions
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from gas and oil units are relatively small and no room remains for lowering the emissions

rate of these units.

Two common options are available to reduce the emissions rate of coal units. The first

option is called fuel switching. An operator of coal units can switch the type of coal from

dirty (e.g., high-sulfur bituminous coal) to cleaner (e.g., subbituminous coal or low-sulfur

bituminous coal). The fuel costs of cleaner coals are higher than the fuel costs of dirty coals.

Also, switching fuel types requires retrofitting the boiler to make it compatible with the

new type of coal, which incurs fixed costs. Another abatement option is installing flue-gas

desulfurization equipment (a scrubber). This equipment is installed at the stack of generation

units and eliminates more than 80% of SO2 emissions. This option, however, incurs large

investment costs as well as a long lead time (2 to 3 years on average).

Figure 1.2 shows the distribution of unit-level SO2 emissions rates (measured in pounds

per MMBtu) for each group in selected years. The left panel shows the distribution for

group I sources. The emissions rates of these sources decreased between 1990 and 1995,

the beginning of Phase I. The emissions rates stayed almost constant within Phase I, and

it decreased further in 1999, which anticipates the beginning of Phase II. For generating

units in group II, their emissions rates did not change until 1999, and then decreased in

2000, the first year of the cap-and-trade program for these units. These observations imply

that firms adjusted their emissions rates at the beginning of each phase, but emissions rates

remain almost constant within the phase. This observation motivates my model of abatement

investment in the structural model I introduce in section 1.3.
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Figure 1.2. Distribution of Unit-level SO2 Emissions Rate
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Note: The box shows the interquartile range of the distribution. The two lines correspond

to the upper and lower adjacent values of the distribution.

1.2.3.3. Effects of a cap-and-trade on Output. I now examine whether firms reduced

outputs in response to the regulation, which is another margin of emissions abatement.

Here, I focus on the intensive margin of operation and treat entry/exit as given. Although

retirement of coal units could be a potential option for emissions abatement, the data shows

that this margin is small. Among the 263 EGUs in the “Table 1” group, only seven units

retired before 1995, and two additional units retired before 2003. Regarding other coal units,

around 6% of EGUs retired between 1990 and 2003.
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Figure 1.3. Trend of Capacity Factor of Group I and Group II units
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To estimate the effects of the ARP on production output, I exploit the variation of the

timing of the regulation across units in a difference-in-differences (DID) framework. Figure

1.3 shows the trend of the capacity factor, defined by the ratio of net generation (output)

to generation capacity, over time. I calculate the mean of the monthly level capacity factor

in each year for two groups: those that are regulated from 1995 (Group I units) and those

that are regulated from 2000 (Group II units). The figure shows that these two groups have

a similar trend in their capacity factor from 1990 to 1994, which supports the parallel-trend

assumption in the DID framework.

The regression equation I estimate is given by

cfjm = α1GroupIj · 1{t ≥ 1995}t + α2GroupIIj · 1{t ≥ 2000}t + γXjm + uj + um + ujm,

where cfjm is capacity factor of unit j in month m. The capacity factor is defined by

cfjm = qjm/kj, where qj is net-generation and kj is nameplate capacity. GroupI and GroupII
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are the dummy variables for each group. Xjm includes control variables such as fuel costs.

Unit and time fixed effects are captured by uj and um.

Regression results are shown in Table 1.1. I find that the introduction of the ARP

decreased the capacity factor by 1 to 2.5 percentage points, which is statistically significant.

This finding is consistent with the idea that introducing a cap-and-trade program increases

marginal costs of production, because firms are facing opportunity costs of emissions under a

cap-and-trade program. The increase in marginal costs thus decreases outputs of generating

units under a cap-and-trade regulation. Although the effects are statistically significant, the

economic significance of the effects seems to be limited. Because the mean of the capacity

factor is within the range of 40-60 percentage points in my sample, electricity generation

decreased by around 2%-6% due to the introduction of a cap-and-trade program. This

magnitude is not as much as the decrease in emissions over time, as shown in section 1.2.3.1.

Combined with the findings from the previous subsections, this regression analysis indicates

that the abatement of SO2 emissions was achieved primarily through the adjustment of

emissions rates.



29

Table 1.1. Reduced-Form Model of Capacity Factor

Dependent variable:

Capacity factor in pct-point

(1) (2) (3) (4)

Treatment (Group I units) −0.656 −2.115∗∗∗ −1.141∗∗ −2.517∗∗∗

(0.575) (0.668) (0.562) (0.693)

Treatment (Group II units) −4.002∗∗∗ −2.615∗∗∗ −2.363∗∗∗ −1.082∗

(0.548) (0.592) (0.564) (0.619)

log(fuel costs) −11.214∗∗∗ −11.168∗∗∗

(0.479) (0.479)

log(electricity demand) 40.937∗∗∗ 40.986∗∗∗ 42.479∗∗∗ 42.494∗∗∗

(1.194) (1.195) (1.229) (1.231)

Group-trend No Yes No Yes

Observations 306,727 306,727 252,223 252,223

Adjusted R2 0.635 0.635 0.600 0.600

Notes: Unit-level dummies, year dummies, and month-of-year dummies are included.

Standard errors are clustered at the unit level. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01



30

1.2.3.4. Firm-level Trading Information. I now explain how firms behaved in the mar-

ket of emissions permits. Figure 1.4 shows the correlation between trading decisions and

firm size, measured by the sum of nameplate capacity of units under the ARP. The left

panel shows the unconditional probability of market transaction at the firm-year level, and

the right panel shows trading experience in the sample period at the firm level.

The left panel shows that firms did not necessarily trade every year. The unconditional

probability of conducting permit trading was 72%. The trading probability was positively

correlated with firm size. This observation is also found in the context of the EU-ETS

scheme (see, e.g., Jaraitė-Kažukauskė and Kažukauskas, 2015). Although this finding can be

interpreted as suggestive evidence for the presence of fixed costs of transaction, firms do not

need to conduct a transaction in every period, due to the storability of emissions permits.

In the right panel, I show firm-level experience of market trading during the sample period.

86% of firms had at least one experience of trading with other firms in the sample period,

although some firms, most of which are small, did not trade at all.



31

Figure 1.4. Trading Pattern at Firm Level
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1.2.3.5. Price Data from a Broker. As I discussed in section 1.2.1, there is no centralized

trading exchange for emissions permits under the Acid Rain Program. Although regulated

firms need to have bilateral trades with other firms, brokers act as an intermediary for those

transactions. Brokers also provide information about permit prices. Figure 1.5 shows price

information provided by Cantor Fitzgerald, a broker in this market. I use the monthly SO2

price index as a price measure in this paper. Cantor Fitzgerald constructs this index based

on various trading information including the allowance bids (to buy), the allowance offers

(to sell), and the actual trade prices. The company also posts this price information on the

website in every month. I aggregate the monthly price index by taking the median for each

year. Note that the price is also normalized to the level of 2000 by the Producer Price Index.
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The price at the beginning was around 150 USD, and fell below 100 USD in 1996 and

1997. It increased to 200 USD in 1999, and fluctuated in the range of 120-200 USD after

2000. The figure suggests that the market price reflects the availability of banking. In the

absence of permit banking, I would expect to see a spike in the permit price between Phase

I and II, because the target emissions rate in Phase II is much stricter than in Phase I.

Instead, the permit price has been gradually increasing over time, though it is volatile to

some extent. 14

Figure 1.5. Price of Emissions Permits by a Broker
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Note: Price is normalized to January 2000 by the Producer Price Index.

14A key theoretical prediction regarding permit prices is the Hotelling rule: permit prices should increase
with the risk-free interest rate if the market is efficient and there are no transaction costs. Helfand et al.
(2006) test the Hotelling rule by using the monthly prices of emissions permits in the same period, and reject
the rule after controlling for structural changes and market shocks.
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1.3. Model of Cap-and-Trade Program

1.3.1. Overview of the Model

This section introduces a structural model of the cap-and-trade program. My model is a

discrete- and finite-horizon model indexed by t = 1995, . . . , 2003(≡ T ), and each discrete

decision period corresponds to one compliance year. Firms have the common discount factor

of β.

The overview of the model is summarized in Figure 1.6. The model has two building

blocks: (i) investment in abatement options at the beginning of each phase (1995 and 2000),

and (ii) decisions on production, trading, and banking in each year. At the beginning of

each phase (1995 and 2000), firms make an investment decision on the abatement option

and determine the emissions rate (R1
i , R

2
i ). The emissions rates are assumed to be fixed

within each phase. This assumption reflects the observation from section 1.2.3 that the

emissions rate changes at the beginning of each phase and stays constant within the phase.

Given the emissions rate, a firm makes decisions on production, permit trading, and

banking. The timeline of each period is as follows:

(1) Firm i holds permits that are carried over from the previous period, denoted by hit.

A firm also receives annual allocation of permits denoted by ait.

(2) Participation decision: Denote firm i’s experience of market trading by Iit; i.e.,

Iit = 1 if a firm has experience in market trading, and 0 otherwise. If Iit = 0, a firm

can pay the one-time sunk cost Fit to participate.

(3) A firm chooses (i) production quantity of each generating unit {qjt}j, (2) net volume

of trading bit if a firm already participated in the market, and (3) banking of permits

hi,t+1.
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Figure 1.6. Model Overview
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(4) A firm obtains profits from electricity generation and pays the costs of permits (or

obtains the revenue from selling permits).

(5) Move to the next period with the holding hi,t+1.

I now turn to explain each component of the structural model.

1.3.2. Electricity Production and SO2 Emissions

Firms are earning profits from electricity production in a competitive electricity market.

Firm i holds Jit units of the regulated sources and chooses the production quantity qjt for



35

each generating unit j. The profit is given by

πit ({qjt}j) =
∑
j∈Jit

{
(τ elecst − c

fuel
jt ) · qjt − g(qjt, kj)

}
,

where τ elecst is the electricity price in state s where unit j is located, and cfueljt is the unit-specific

fuel costs of production. Fuel costs account for around 75% of total operating expenses (see

EIA, 2012). g(qjt, kj) is the convex cost of production. This term captures the increasing

costs of operation near the capacity constraint (see, e.g, Ryan, 2012).

Electricity production is associated with SO2 emissions. Firm-level emissions are given

by

(1.3.1) eit ({qjt, ρjt}j) =
∑
j∈Jit

ρjtqjt,

where ρjt is the unit-level SO2 emissions rate per production. I assume that ρjt is given by

ρjt =



HRj ·R1
i if j = coal & t ∈ [1995, 1999]

HRj ·R2
i if j = coal & t ∈ [2000, 2003]

HRj ·Rgas
j,t if j = gas or oil.

,

The unit-specific heat rate HRj is an inverse of the production efficiency measure. HRj

represents how much fuel (in MMBtu) is needed to produce 1 MWh of electricity. R1
i and

R2
i are the firm- and phase-specific SO2 emissions rate, the emissions level per 1 MMBtu units

of fuel. These emissions rates are endogeneously determined by the investment decisions at

the beginning of each phase. I treat gas and oil units separately from coal units because

these units have already low SO2 emissions rates.
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Note that the profit πit(·) does not include the costs associated with emissions. Firms

should take into account the cost of using emissions permits in their production decisions. As

I show in section 1.3.4, the optimal decision on production quantity reflects emissions costs

as well as the output price τ elecst and the fuel cost cfueljt . The profit function π(·) is interpreted

as the gross profit from electricity production that excludes costs associated with the permit

trading.

1.3.3. Structure of Permit Trading and Transaction Costs

The role of cap-and-trade regulation is to penalize emissions from production activity and

incentivize firms to reduce emissions. This subsection introduces the regulation into my

model.

Each firm is allocated the annual allocation of permits ait in each period. Because the

allocation plan was announced before the regulation, the sequence of {ait}t is exogenous in

the model. The firm also holds the emissions permits that are carried over from the previous

period, denoted by hit. A firm decides emissions level eit, which is determined by production

quantity {qjt} as given by equation (1.3.1), net purchase volume bit, and banking volume

hi,t+1. bit is positive (or negative) if firm i is a buyer (or a seller), implying that she is buying

(or selling) |bit| units of permits.

The transition of permit holding is given by

eit + hi,t+1 = ait + hit + bit,(1.3.2)

hi,t+1 ≥ 0.(1.3.3)
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Note that equation (1.3.3) is the non-negativity constraint of banking and excludes the

possibility of borrowing of permits from future allocation of permits. I assume that firms

achieve perfect compliance in my model. This is based on the fact that the compliance rate

under this regulation is nearly perfect.

I model the permit market as a competitive market with transaction costs. The Acid

Rain Program was a federal-wide program where many electric utilities, as well as financial

companies, were participating. Exercising market power in the permit market was lim-

ited. 15 The presence of transaction costs reflects the fact that the vast majority of permit

transactions were bilateral because there was virtually no centralized exchange for emissions

permits. Incorporating bilateral trading of emissions permits into my model, however, is

quite difficult because emissions permits are divisible objects and my model also features

dynamic investment in clean technology and permit banking. I thus capture the nature of

permit market by introducing transaction costs in a reduced form way.

Firms are price-takers in the permit market and face the market price Pt. In addition,

they have to pay two types of transaction costs (see, e.g., Stavins, 1995). First, when a

firm trades for the first time, it has to pay a sunk cost of participation Fit. This cost is

motivated by the observation that some firms did not participate in the permit trading.

An interpretation of Fit includes the costs associated with setting up a trading desk at the

company and hiring a financial-trading expert. I specify Fit as the sum of a fixed cost F and

an idiosyncratic cost εit given by

Fit = F + εit, εit ∼ G(·;σF ),

15Liski and Montero (2011) examined how the four biggest electric utilities (in terms of initial allocation)
trades in the permit market. They found that their behavior is not consistent with the model of market
power in a storable commodity market.
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where G(·;σF ) is the cumulative distribution function of type I extreme value distribution.

Second, firms have to pay variable transaction costs associated with net purchase of

permits bit. This cost is given by

TC(|bit|),

where TC(·) is a differentiable and strictly convex function. Variable transaction costs

include brokerage commissions and bid-ask spreads. The convex nature of the cost function

also captures the difficulty of large-scale transactions of emissions permits. Suppose that

a firm wants to buy a certain amount of permits, but its trading partner cannot meet the

demand. In such a case, a firm has to find another trading partner to buy more permits,

and hence incurs a costly search process in a bilateral market. Convex transaction costs

are employed in the theoretical literature in finance (e.g., Gârleanu and Pedersen, 2013, and

Dávila and Parlatore, 2017) and also motivated by empirical findings (see, e.g., Breen et al.,

2002, Lillo et al., 2003, and Robert et al., 2012).

In summary, the compliance costs (or revenue) from trading bit units of permits is given

by

Ptbit + TC(|bit|).

Introducing Fringe Firms. The sample I use does not cover all firms participating in

permit trading. For example, financial companies or brokers do not have any generation

facilities, thus I do not include them. Also some electricity companies are excluded from

the sample in the process of data cleaning. I call them fringe firms in permit trading. To

deal with the presence of fringe firms, I introduce the demand function of firms outside

my sample. I denote the total net purchase from fringe firms by B̄fringe
t (Pt). I explain a

specification and estimation approach of the fringe demand function in section 1.4.3.
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1.3.4. Optimal choices on production, trading, and banking

I now consider the optimization problems in year t. A firm makes both discrete (partici-

pation) and continuous decisions on production, trading, and banking. I first explain the

decision problems conditional on the status of trading participation. These problems char-

acterize the values from participation and non-participation, which determines the optimal

participation decision.

Let V 1
it and V 0

it be the optimal values when a firm participates in trading (“trader”) and

does not (“non-trader”). The Bellman equation for the “trader” is given by

V 1
it (hit, Rit) = max

{qjt}j∈Ji
,bit,hi,t+1

πit ({qjt}j)− (Ptbit + TC(bit)) + βEVi,t+1(hi,t+1, 1, Ri,t+1)(1.3.4)

s.t. eit ({qjt, ρjt}j) + hi,t+1 = ait + hit + bit,

hi,t+1 ≥ 0.

EVit(hit, Iit, Rit) denotes the ex-ante value function for firm i in period t when the firm

holds hit units of emissions permits, the trading experience is Iit, and the emissions rate is

Rit. Recall that Iit = 1 if firm i already participated in the market trading by paying the

participation cost.

When a firm is a non-trader, it does not choose the trading volume bit by definition. The

Bellman equation in this case is

V 0
it (hit, Rit) = max

{qjt}j∈Ji
,hi,t+1

πit ({qjt}j) + βEVi,t+1(hi,t+1, 0, Ri,t+1)(1.3.5)

s.t. eit ({qjt, ρjt}j) + hi,t+1 = ait + hit,

hi,t+1 ≥ 0.
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Note that the value functions {V 0
it (·), V 1

it (·)} are indexed by t, which is meant to include

all state variables except for hit, Iit, Rit, and εit. I assume perfect foresight over the state

variable in the next period except for the shock to the participation cost εit.

The optimality conditions for the traders are given by

τ elecst − c
fuel
jt − g′(qjt)− λitρjt = 0(1.3.6)

λit = Pt + TC ′(bit)(1.3.7)

λit = β
dEVi,t+1(hi,t+1, Ii,t+1, Ri,t+1)

dhi,t+1

+ µit,(1.3.8)

µit ≥ 0 ⊥ hi,t+1 ≥ 0,(1.3.9)

where λit denotes the Lagrange multiplier on the transition of permit holding (1.3.2) and

µit denotes the Lagrange multiplier on the non-borrowing constraint (1.3.3). Note that λit

is interpreted as the shadow price of emissions permits for firm i.

Equation (1.3.6) determines the optimal production decision given the shadow costs

of emissions permits. The left-hand-side is the marginal profit that accounts for the cost

associated with emissions λitρjt. This condition can be also written as

τ elecst − c
fuel
jt − g′(qjt)
ρjt

= λit,

implying that the marginal profit from additional emissions should be equal to the shadow

costs of emissions permits λit.

Equations (1.3.7) and (1.3.9) determine the shadow costs λit and µit from the trading

and banking decisions. Equation (1.3.7) says that the shadow price is equal to the sum of

the market price and the marginal trading costs TC ′(bit). Equations (1.3.8) and (1.3.9) show
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that the shadow value of an emissions permit today is equal to the sum of the discounted

marginal value of holding an additional permit tomorrow and the shadow value of borrowing

(when it is binding). These conditions along with the transition equation of permit holdings

determine the optimal choices for production {qjt}j, trading bit, and the banking hi,t+1.

The optimality conditions for the non-trader are the same as above except we do not

have equation (1.3.7), and bit = 0. These conditions implies that the shadow value of an

emissions permit is not directly related to today’s permit price in this case. Rather, the

shadow value is given by the discounted marginal value from equation (1.3.8).

Next, I consider the participation decision. If a firm has no prior trading experience (i.e.,

Iit = 0), it can choose whether to participate in the market by paying Fit(= F + εit). The

optimal participation decision is given by

Dit = 1
{
V 1
it (hit, Rit)− (F + εit) > V 0

it (hit, Rit)
}
,

and the participation probability is

Pit(hit, Rit) =

∫
1
{
V 1
it (hit, Rit)− (F + εit) > V 0

it (hit, Rit)
}
dG(εit).

If a firm already participated in trading (i.e., Iit = 1), it does not have to pay the participation

costs.

Based on the optimal choices for traders and non-traders, I now provide the value func-

tion. Let Vit(hit, Iit, Rit, εit) be the value function after observing the random draw of the
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participation costs. The value function is given by

Vit(hit, Iit, Rit, εit) =


max {V 0

it (hit, Rit), V
1
it (hit, Rit)− (F + εit)} if Iit = 0

V 1
it (hit, Rit) if Iit = 1.

Also, the ex-ante value functions (before observing εit) are

EVit(hit, Iit, Rit) =


∫

max {V 0
it (hit, Rit), V

1
it (hit, Rit)− (F + ε)} dG(ε) if It = 0

V 1
it (hit, Rit) if It = 1.

By applying the Williams-Daly-Zachary theorem and the envelope theorem (see Appendix

A.3.1 for the derivation), the derivative of the expected value function with respect to the

state variable hit can be expressed as follows:

dEVt(hit, 0, Rit)

dhit
= Pit(hit, Rit)λ

1
it + (1− Pt(hit, Rit))λ

0
it.(1.3.10)

dEVt(hit, 1, Rit)

dhit
= λ1

it,(1.3.11)

where λ1
it and λ0

it are the Lagrange multipliers on the transition constraint in the optimization

problems (1.3.4) and (1.3.5), respectively.

Continuation Value at the Terminal Period. My model has a finite time period, and the

terminal period T corresponds to the year 2003, which is the last period of my sample.

However, the cap-and-trade program continued after 2003, and the banking at the end of

2003 was still substantial in the data. To deal with this issue, I introduce the reduced-form

continuation value function CVT+1(hi,T+1, R
2
i ) in the model. This term captures the banking

incentive at the terminal period T (= 2003). In section 1.4.2, I provide the functional form

of CVT+1(hi,T+1, R
2
i ) and and estimate it along with the other parameters.
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1.3.5. Investment Decisions on Emissions Rate

I now introduce the investment decision on abatement options. In my model, a firm deter-

mines phase-specific emissions rates at the beginning of each phase:

Rit =


R1
i t = 1995, · · · , 1999

R2
i t = 2000, · · · , 2003

.

The lower the emissions rate, the higher the level of investment in my model. I also assume

that the emissions rate is a continuous choice variable. I denote the cost function of invest-

ment by Γ(R̄−R), where R is the emissions-rate level a firm chooses and R̄ is the emissions

rate before the investment.

The investment problem for Phase I is given by

max
Ri,P1

EVi,1995(0, 0, R1
i )− Γ(R0

i −R1
i )(1.3.12)

s.t. R1
i ≤ R0

i ,

where R0
i is the emissions rate in 1990, that is, before the regulation. I incorporate the

adjustment costs and the irreversibility of investment by allowing R0
i to affect both the

investment cost and the choice set of emissions rate R1
i . Note that hi,1995 = 0, Ii,1995 = 0 by

definition.

The problem for Phase II is similarly defined as

max
Ri,P2

EVi,2000(hi,2000, Ii,2000, R
2
i )− Γ(R1

i −R2
i ).(1.3.13)

s.t. R2
i ≤ R1

i
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The investment cost now depends on R1
i , which is endogenously determined in Phase I.16

1.3.6. Dynamic Competitive Equilibrium with Perfect Foresight

I now define an equilibrium for the permit market. I assume that firms have perfect foresight

over the future environment and the only stochastic shock is the participation cost εit.
17

Definition 1. In a finite-period competitive equilibrium with perfect foresight, a se-

quence of permit prices {Pt}2003
t=1995 is determined such that

(1) [Optimization] Each firm i optimally chooses {{q∗jt}j, b∗it, h∗i,t+1}2003
t=1995 and {R1∗

i , R
2∗
i }

given a sequence of permit prices, and

(2) [Market Clearing]
∑

i b
∗
it + B̄fringe

t (Pt) = 0 for t = 1995, · · · , 2003.

I plan to provide a formal argument for the existence of a dynamic competitive equilib-

rium. My model is close to models of a dynamic competitive market as in Jovanovic (1982),

Hopenhayn (1990), Hopenhayn (1992), and Cullen and Reynolds (2017). They show the ex-

istence of an equilibrium by providing a correspondence between the social planner’s solution

and a competitive equilibrium. Regarding uniqueness of equilibrium, I try different initial

prices of emissions permits when I numerically solve a dynamic competitive equilibrium and

16Four types of firms exist: (1) those that own coal units in only the Phase I group, (2) those that own coal
units in Phase I and II groups, (3) those that own coal units in only the Phase II group, and (4) those that
only own gas or oil units. Equations (1.3.12) and (1.3.13) are the problems for the first type of firms. For

the second type of firms, the pre-investment emissions level in Phase II is given by ωR1
i + (1− ω)R0,Phase2

i ,

where R0,Phase2
i is the emissions rate of Phase II units in 1990 and ω is the share of Phase I units in firm i

in terms of generation capacity. In the case of the third type of firm, the pre-investment emissions level in

Phase II is R0,Phase2
i . The last type of firms does not choose the emissions rate in the model.

17Incorporating aggregate uncertainty (i.e., allowing aggregate state variables such as fuel price to stochas-
tically evolve) is a challenging task. Under this setting, the permit price Pt also becomes a random variable,
and firms have to form an expectation over future price. Specifying a form of expectation is a major chal-
lenge because the permit price itself is an equilibrium object in my model. This setting is close to Krusell
and Smith (1998) on a heterogeneous macro model, Cullen (2015) on a dynamic competitive equilibrium
in electricity competition, Lee and Wolpin (2006) on structural estimation of a general equilibrium labor
model, and Richards-Shubik (2015) on structural estimation of a peer-effect model.
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find that these initial values converge to the same equilibrium prices. I leave a formal proof

of equilibrium uniqueness to future revisions.

1.3.7. Discussions of Model

Output price τst. I assume that output price τst is given as exogenous throughout the

analysis. Since the main target of the Acid Rain Program is coal units which are typically

infra-marginal units, the program will not affect the electricity price in the wholesale market

(See Fowlie, 2010b).

Interpretation of Continuation Value Function CVT+1(). The continuation value function

CVT+1(hT+1) captures the incentive to bank emissions permit at the terminal period in my

model, namely 2003. To be more precise, I assume that CVT+1(·) captures firms’ incentive

to bank under the expectation that the Acid Rain Program continues after 2004 without any

additional regulations. This is a reasonable assumption given that the CAIR was announced

in the last month of 2003 (i.e., December 2003), implying that, in 2003, firms were expecting

that the same regulatory environment would continue.18

1.3.8. Model Implications

I discuss several implications from my structural model.

1.3.8.1. Role of Transaction Costs. I discuss three implications of transaction costs

TC(·) and F that I introduced in the model: (i) the efficiency property of a cap-and-trade

program, (ii) the independence property, and (iii) dynamic implications.

18Alternatively, I could model the terminal period as a stationary and infinite-period dynamic programming
problem by assuming that the same regulatory environment continues afterwords and the CAIR would not
be introduced. This approach allows me to avoid specifying a parametric form of the continuation value
function.
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To discuss these implications, I first provide optimality conditions whereby no transaction

costs exist, namely, T (·) = 0 and Fit + εit = 0. In this case, equation (1.3.7) imply that

λit = Pt holds for all i, meaning all the firms have the same shadow price, which is given

by the market price. Also, equation (1.3.8), along with envelope conditions (1.3.10) and

(1.3.11), implies that
dEVi,t+1(hi,t+1,Ii,t+1)

dhi,t+1
= Pt+1 . Summarizing these optimality conditions ,

we have

τ elect − cfueljt −
∂g(qjt,kj)

∂qjt

ρjt
= Pt.(1.3.14)

Pt = βPt+1 + µit(1.3.15)

µit ≥ 0 ⊥ hi,t+1 ≥ 0.

I now explain the three implications in turn.

Efficiency Property. One of the virtues of cap-and-trade regulation is that the allocation

of emissions, given the emissions cap, is efficient in the absence of transaction costs. This

assertion is confirmed by equation (1.3.14)’s implication that the marginal profit from pro-

ducing one unit of emissions is equalized across firms at the level of permit price Pt. The

key mechanism is that all firms are facing the same shadow value given by the market price

Pt.

I now examine how the trading behavior affects the shadow costs of emissions permits

and thus creates an inefficient allocation of emissions in the presence of transaction costs.

Consider the case in which three firms exist: one is a buyer (i.e., bbuyer,t > 0), the other is a
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seller (i.e., bseller,t < 0), and the last one is a non-trader. Equation (1.3.6) implies that

λbuyer,t = Pt + TC ′(bbuyer,t) > Pt

λseller,t = Pt + TC ′(bseller,t) < Pt,

λnontrader,t = β
∂EVt+1(hnontrader,t+1, Inontrader,t+1 = 0)

∂hnontrader,t+1

+ µnontrader,t.

The inequalities in the first two lines hold because TC ′(b) > 0 for b > 0 and TC ′(b) < 0 for

b < 0. Intuitively, in the presence of variable transaction cost, buyers have to pay additional

costs to purchase emissions permits. By contrast, the revenue from selling a unit of emissions

permits is the market price minus the marginal transaction costs. Thus, the marginal profit

of emissions for the buyer is strictly higher than that for the seller. In other words, buyers

produce less and sellers produce more than the efficient level at which the marginal profits of

two firms are equalized. When a firm does not trade, the shadow cost of emissions permits

is given by the discounted marginal value of permits tomorrow.

Independence Property. Another important property of a cap-and-trade program without

any frictions (e.g., transaction costs) is that how the regulator allocates emissions permits

has no effect on the pattern of emissions in an equilibrium. In equation (1.3.14), the initial

allocation of permits ait and permit holding hit has no role in determining the production qjt.

This property is called the independence property of initial allocation of emission permits,

which is an implication of the Coase theorem.

Once I introduce transaction costs, the independence property no longer holds: regardless

of whether a firm participates in trading, hit increases eit and hit+1 and decreases bit when a

firm participates in trade. 19 Consider first the case in which a firm does not trade. When

19Note that both ait and hit have the same implication on the endogenous variables {eit, bit, hi,t+1} in period
t.
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the permit holding hit increases marginally, the volume of banking hi,t+1 also increases, which

lowers the discounted marginal value of permit holding in the next period. Because a firm

now has a lower shadow cost of emissions, it has an incentive to produce more emissions.

Next, consider the case in which a firm participates in the permit market. An increase in

permit holding decreases the volume of net purchase bit. Because the variable transaction

cost TC(bit) is convex in bit, the decrease in bit lowers the marginal transaction costs a firm

faces at the margin. Thus, the emission level eit increases. 20 I discuss the detailed derivation

in Appendix A.3.2.

Dynamic Implications. Dynamic implications are also different once I introduce trans-

action costs. I first explain the case without any transaction costs as a benchmark case.

Equation (1.3.15) implies that the equilibrium permit prices Pt should increase at the rate

of β−1 over time as long as banking volume is positive and no transaction costs exist. This

property is known as the Hotelling r−percent rule, in which the price of exhaustible re-

sources should increase at the rate of the inverse of the interest rate (see, e.g., Rubin, 1996).

Another important implication is that the model does not pin down the individual optimal

behavior for trading bit and banking hi,t+1 in the absence of the transaction costs, because

the discounted marginal value from banking is constant and given by βPt+1, which is equal

to the current shadow value Pt in an equilibrium. Thus, marginal values of net purchase bit

and banking hi,t+1 are always the same, and any choices are equivalent for individual firms

as long as a firm can produce the level of emissions given by the optimality condition on

production quantity.

20Stavins (1995) discusses the effect of at on emissions level et in other functional forms of the transaction
cost function in a static model of emissions trading.
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I now consider the case when transaction costs are present. Combining optimality con-

ditions 1.3.7 and 1.3.8 and using envelope condition 1.3.11, I obtain the following condition:

Pt + TC ′(bit) = β {Pt+1 + TC ′(bit+1)}+ µit,

which implies that the permit price does not necessarily increase at the rate of β−1.

More importantly, the marginal values of net purchase bit and banking hi,t+1 are no

longer constant in this setting. The marginal cost from net purchase is increasing due

to the convex transaction costs TC(bit). Intuitively, buying more permits becomes more

difficult. The discounted marginal value from banking is decreasing because it is given by

β{Pt+1+TC ′(bit+1)}, and bi,t+1 decreases in hi,t+1. In other words, the value of permit holding

in the next period is not constant, because firms have to pay the transaction costs so that

their marginal revenue from selling is decreasing as they try to sell more. These observations

imply that the model now pins down the optimal decisions on both net purchase bitand

banking volume hi,t+1.

1.3.8.2. Incentives to Invest. I now examine how the incentive to invest is determined

in my model. Using the envelope theorem, I calculate the marginal returns from reducing

emissions rate RP1 as follows:

−∂EV1995

∂R1
=

1999∑
t=1995

βt−1995

(
λit ·

∑
j

HRjtq
∗
jt

)
+

1999∑
t=1995

βt−1995

(∑
j

∂cjt
∂R1

q∗jt

)

+ β2000−1995 ∂

∂R1
Γ(R1 −R2).
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The first component is the returns from reducing emissions evaluated at the shadow value

λit. The second component is the additional costs of using a cleaner fuel. Note that
∂cjt
∂R1 < 0

because fuel costs are higher for low-sulfur coals. The last component is the saving of

investment costs in Phase II by investment in Phase I.

The primary component in the returns from investment is the first term. By reducing

the emissions rate, the firm can marginally reduce emissions by
∑

j HRjtq
∗
jt. This marginal

abatement is evaluated at the shadow value of λit. The returns from investment is thus given

by the discounted sum of the returns from marginal abatement. The path of shadow values

λit is key for investment incentives. As I discussed above, λit and equilibrium permit price

Pt are affected by both banking and transaction costs.

First, the path of the shadow prices will be smoothed over the periods when banking is

allowed, due to the optimality conditions on banking (1.3.8) that the current shadow value

of emissions is the discounted shadow value in the future period. The smoother path of {λit}

implies that firms would invest more in the periods with generous emissions caps (Phase I)

and then invest less later (Phase II) when banking is available.

Second, as I have shown above, the shadow value of emissions permits for buyers is higher

than for sellers:

λbuyer > Pt > λseller.

Thus, buyers have a higher incentive to invest, whereas sellers have a lower incentive. Intu-

itively, under the presence of transaction costs, buyers face higher shadow costs of emissions

permits, making them prefer investing in technology rather than buying permits. Sellers, on

the other hand, obtain lower revenue due to the transaction costs, which gives them lower

incentives to invest.
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1.4. Estimation Strategy

This section introduces the estimation strategy for the structural model. I conduct

estimation in three steps. First, I estimate a reduced-form model for the capacity factor

based on the optimality condition for production quantity qjt. Using the estimated reduced-

form model, I next estimate the variable transaction costs, TC(b), the distribution of the

fixed transaction costs, Fit, the continuation value at the terminal period, CVT+1(hi,T+1, R
2
i ),

and costs of abatement investment, Γ(R̄−R). Note that I fix the annual discount factor at

β = 0.95 throughout the paper. Finally, I estimate the fringe demand.

1.4.1. Step 1: Reduced-Form Model for the Capacity Factor

Recall that the FOC for unit-level production quantity qjt is

τ elect − cfueljt −
∂g(qjt,kj)

∂qjt

ρjt
= λit,

which can be written as

∂g(qjt, kj)

∂qjt
= τ elect − cfueljt − λitρjt.

I consider the following reduced-form model for the optimal choice of qjt

qjt =
exp(γ(τ elect − cfueljt − λitρjt))

1 + exp(γ(τ elect − cfueljt − λitρjt))
· kj.

The first component of the right-hand side is the capacity factor as a function of the markup

of electricity production, τ elect − cfueljt − λitρjt. 21

By transforming the above model, we have

21The reduced-form model can be derived from the following functional form: g(q, k) =
1
γ (q log(q) + (k − q) log(k − q)) .
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log
cfjt

1− cfjt
= γ

(
τ elect − cfueljt − λitρjt

)
,

where cfjt ≡ qjt/kj is the capacity factor.

In empirical implementation, I use month-level observations instead of year-level observa-

tions. Also, the sample includes generation units that are not affected by the SO2 regulation,

because I include the data before 1995 (before the ARP started) as well as data for units that

were not affected at that point (e.g., data of Phase II units before 2000). To accommodate

these observations, I consider the following form of the regression equation indexed by month

m:

(1.4.1) log
cfjm

1− cfjm
= γ

(
τ elecm − cfueljm − 1{SO2reg}jt · λitρjt

)
+ uj + um + ujm,

where uj is a unit fixed effect, um is time fixed effects, and ujm is an error term. The dummy

variable 1{SO2reg}jt takes the value of 1 if unit j is under the ARP in year t.

In equation (1.4.1), I observe output price τ elecjm , fuel costs cjt, and emissions rate per

production ρjt in the right-hand-side . However, I cannot directly observe the firm-level

shadow costs λit, which are endogenously determined in the structural model. I thus proxy

λit by using the optimality condition from the model. Equation (1.3.7) implies that if a firm

i already participated in permit trading (i.e., Iit = 1 or Dit = 1), λit is given by

λit = Pt + TC ′(bit).

Here I consider a quadratic specification of TC(bit) and specify TC ′(bit) as a linear

function: θ0bit+θisizeibit, where sizei is the firm size measured by the sum of the generation

capacity of firm i. Then, λit is written as λit = Pt + θ0bit + θ1sizeibit. Putting this equation
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into equation (1.4.1), I obtain

log
cfjm

1− cfjm
= θ̃1(τ elecm − cfueljm ) + θ̃21{SO2reg}jtPtρjt

+θ̃31{SO2reg}jtbitρjt + θ̃41{SO2reg}jt · sizeibitρjt

+uj + um + ujm,

where θ̃1 = γ, θ̃2 = −γ, θ̃3 = −γθ0, and θ̃4 = −γθ1.

The remaining concern is the endogeneity of ρjt and bit, both of which are choice variables

in the structural model. I use the pre-regulation SO2 emissions rate ρ1990
j ≡ HRj · Rj,1990

as an instrument for ρjt, where Rj,1990 is the emissions rate in 1990. Another instrument is

the sum of initial permit allocation for other units within the same firm,
∑

k∈Ji,k 6=j akt. I

exclude the initial allocation of unit j because the unit-level allocation might depend on the

unobserved characteristics of that unit. I use two-stage least squares to estimate the above

parameters.

1.4.2. Step 2: Estimation of Remaining Parameters

Estimation in step 1 gives me the profit function πit ({qjt}j) . The next step is to estimate

the remaining parameters including transaction costs, the continuation value, and investment

costs. I first provide specifications for these primitives.

My model contains two type of transaction costs: variable costs and participation costs.

The variable transaction cost function TC(|b|) is specified as follows:where sizei denotes

firm i’s size measured by the sum of the generation capacity of firm i. Participation cost Fit

is specified as Fit = F + εit where εit follows i.i.d. type 1 extreme value distribution with

standard deviation σF .
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I consider the following parameterization of the continuation value in the terminal period:

CV (hi,T+1, R
2
i ) = exp

(
α0 + α1 log(sizei) + α2R

2
i

)
hα3
i,T+1.

The coefficient depends on the firm size, sizei, and the emissions rate in Phase II, R2
i . These

variables capture the heterogeneity in the incentives to bank in the terminal period.

The specification for the investment cost Γ(·) is given by

Γ(R̄−R) =
exp(ζ0 + ζ1 log(Ki,τ ))

2
(R̄−R)2,

where Ki,τ is the generation capacity of units regulated in Phase τ ∈ {I, II}. The parameters

I estimate in this step are summarized by θ = (η0, η1, F, σF , α0, α1, α2, α3, ζ0, ζ1).

I use simulated nonlinear least squares to estimate the model parameters. For a given

candidate of parameter θ, I solve the model to obtain the prediction of choice variables and

match the prediction with the data. However, solving a dynamic competitive equilibrium

for each candidate of parameters is computationally infeasible. Instead, I use the observed

prices of emissions permits as an equilibrium price and solve only the single-agent dynamic

problems to get the model predictions of individual behavior.

This estimation approach builds on the literature of estimation of dynamic structural

models in industrial organization and labor economics.22 My structural model of a cap-and-

trade regulation belongs to the class of dynamic competitive equilibrium models. Unlike

Lee and Wolpin (2006), however, I can avoid solving for a dynamic competitive equilibrium

in estimation, because I can use the observed prices of emissions permits as a sequence of

22Examples are Rust (1987), Hotz and Miller (1993), and Aguirregabiria and Mira (2002) for a single-agent
dynamic discrete choice model, Lee and Wolpin (2006) for a dynamic competitive equilibrium model, and
Aguirregabiria and Mira (2007) and Bajari et al. (2007) for dynamic Markov games. See Aguirregabiria and
Mira (2010) for a survey of this literature.
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equilibrium prices. The observed prices are fed into solving the single-agent optimization

problems, which are much easier to solve than the dynamic competitive equilibrium, to

construct the objective function in estimation. 23

The procedure of obtaining the model prediction is as follows.

(1) Fix a candidate of parameter θ and the observed permit prices {Pt}2003
t=1995.

(2) For each firm i , solve the optimization problem by backward induction and obtain

the policy functions for emissions eit(hit, Iit, Rit), trading bit(hit, Iit, Rit), and bank-

ing hit+1(hit, Iit, Rit), the participation probability Pit(hit, Rit), and the investment

decisions R1
i (hi1995, Ii1995), R2

i (hi,2000, Ii,2000, R
1
i ).

(3) Using the policy functions, simulate the optimal decisions for each pattern of partici-

pation in permit trading. I denote the year of participation by s ∈ {∅, 1995, · · · , 2003},

where s = ∅ means that a firm does not trade at all in the period. Denote the op-

timal decision for pattern s by x̂it(s).

(4) Calculate the probability that each pattern of participation timing is realized. De-

note this probability by Probenterit (s).

(5) The prediction for firm i in year t is then given as

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s).(1.4.2)

Using the simulated choices, I construct the following objective function given by

J(θ) = J1(θ) + J2(θ).

23This empirical strategy is similar in spirit to that in the two-step estimation of a dynamic game, in which
the equilibrium objects are directly recovered from the observed data. For example, Aguirregabiria and Mira
(2007) estimates players’ beliefs over other players’ policies from the observed data and solve the optimal
response of a player given the estimated beliefs to construct the pseudo-likelihood function.
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The first component J1(θ) is minimizing the distance between the prediction and the data

at the firm-and-year level

J1(θ) =
N∑
i=1

(
xdatai − x̂i(θ)

)′
Ωi

(
xdatai − x̂i(θ)

)
,

where

xdatai = (ei,ti1 , · · · , ei,2003, bi,ti1 · · · , bi,2003, hi,ti1+1 · · · , hi,2004, Di,∅, Di,ti1 · · · , Di,2003)

and x̂i(θ) is the corresponding vector for the model prediction given parameter θ. ti1 is the

first year of observations for firm i; that is ti1 = 1995 if firm i owns Group I units (those that

are under the ARP from 1995), and ti1 = 2000 if firm i owns only Group II units (those that

are under the ARP from 2000). Di,s is a dummy variable that indicates the timing of firm

i’s participation; Di,s = 1 if firm i enters in year s, and, otherwise, 0; and Di,∅ = 1 if firm i

does not trade at all in the sample period. The weighting matrix Ωi is a diagonal matrix to

adjust for differences in scaling.24

The second component J2(θ) incorporates the market clearing conditions, and is given

by

J2(θ) =
1

T

2003∑
t=1995

(∑
i

b̂it −
∑
i

bdatait

)2

.

24The weighting matrix is set as

Ωi ≡ diag

V̂(e), · · · , V̂(e)︸ ︷︷ ︸
Ti

, V̂(b), · · · , V̂(b)︸ ︷︷ ︸
Ti

, V̂(h), · · · , V̂(h)︸ ︷︷ ︸
Ti

, V̂(D), · · · , V̂(D))︸ ︷︷ ︸
Ti+1

 ,

where V̂(e), V̂(b),V̂(h), and V̂(D) are sample variances of emissions, net purchase, banking, and participa-
tion in the sample, respectively.



57

This component of the objective function requires that the estimated parameters are such

that the observed prices are close to clearing the market in each period. Note that the sum

of net purchases in the data
∑

i b
data
it may not necessarily be equal to zero, since the sample

does not cover all the firms participating in the permit trading.

Standard errors are calculated by bootstrap at the firm-history level. I randomly draw

samples of 85 firms with replacement and construct 40 bootstrap samples.

1.4.3. Step 3: Estimation of Fringe Demand

I now estimate the fringe-demand function. I consider the following specification with con-

stant elasticity:

B̄fringe
t = −αtP ε

t

⇐⇒ log
(
−B̄fringe

t

)
= ε logPt + log(αt).

One of the difficulties in estimating the fringe function is the paucity of data points. I

have only 9 data points, because the sample is between 1995 to 2003, as shown in Figure 1.7,

where I plot permit prices against the fringe demand for each year. I estimate the model by

OLS and IV. I use the sum of initial allocations for firms in my sample as an instrument for

Pt. I plan to provide a robustness check by using different levels of price elasticity and using

different specifications for the fringe function (including a linear specification and a semi-log

specification).
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Figure 1.7. Plot of Permit Prices Pt and Fringe Demand B̄fringe
t
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1.5. Estimation Results

1.5.1. Parameter Estimates

Table 1.2 presents the parameter estimates of the structural model. The model incorporates

two types of transaction costs: participation and variable costs. Regarding the variable

transaction costs, the coefficient on the firm size is negative but small. This estimate implies

that although bigger firms tend to have lower transaction costs, heterogeneity across firms

is negligible. Based on the parameter estimates, I calculate the marginal transaction cost,

given by exp(η0 + η1 log(sizei))|bit|. The mean of the costs is $193 and the median is $98.

Considering that the range of the permit prices is within $100 to $200 , these numbers are

substantial. The mean of the fixed costs of participation is around $38,000, which is quite

small. The parameters in the continuation value function at the terminal period have signs

that are intuitively reasonable. Bigger and dirtier firms obtain a higher value from banking.

Estimates of the investment cost also have the reasonable sign. The bigger the capacity, the

higher the investment costs.
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Table 1.2. Parameter Estimates

Parameter Description Estimate Standard Errors

Production Parameters: γ Curvature 4.333e-03 1.149e-03
g(q, k) = 1

γ
(q log(q) + (k − q) log(k − q))

Variable Costs: TC(b) = η0 Constant -3.516 0.343
1
2
exp(η0 + η1log(size))|b|2 η1 Firm size -0.011 0.011

Participation Costs: Fit F mean (1 USD) 38,379 148,846
logit(F, σF ) σF SD (1 USD) 1,259 12,405,130

Continuation Value:CV (hi,T+1, R
2
i ) α0 Constant 4.165 2.267

exp(α0 + α1 log(sizei) + α2R
2
i )h

α3
i,T+1 α1 Firm Size 0.898 0.197

α2 Emissions Rate 0.036 0.183
α3 Curvature 0.314 0.053

Investment Costs:Γ(Ri,τ , R̄i,τ ) ζ0 Constant 11.725 1.137
1
2
exp(ζ0 + ζ1 log(Ki,τ ))(R̄i,τ −Ri,τ )

2 ζ1 Capacity 0.697 0.251

Table 1.3. Parameter Estimates on Fringe Demand

[1] [2] [3] [4]
log-log log-log linear linear

Price 2.72 (0.52) 2.39 (0.77) 4386.5 (1184.91) 5106.0 (1275.42)
Phase II dummy 0.34 (0.33) 0.40 (0.43) 83197.5 (108217) 68423.0 (108363)
Constant -0.99 (2.58) 0.57 (3.54) -297448.9 (150911) -389813.9 (170423)

Method OLS IV OLS IV

Note: Standard errors are shown in the brackets.

Table 1.3 shows the estimates of the fringe elasticity. In OLS, the elasticity is estimated

to be 2.72, while the estimate in the IV specification is 2.39. In the counterfactual analysis, I

use 2.39 as a benchmark parameter. I plan to provide a robustness check on this parameter.
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Figure 1.8. Model Fit of Equilibrium Permit Prices
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1.5.2. Model Fit

This subsection discusses the model fit under the estimated parameters. I first solve a dy-

namic competitive equilibrium under the estimated parameters and obtain model predictions

on permit prices and individual behavior. Appendix A.1 explains the algorithm for solving

a competitive equilibrium in detail.

Figure 1.8 shows the predicted and observed prices in the data. The blue dashed line

corresponds to the data and the orange real line to the model prediction. Although the

path of the predicted equilibrium prices deviates from the observed one in several years,

1996, 1997, and 1999, my model predicts the price quite well in Phase II (2000-2003). One

potential reason for the worse model fit in the early periods is the lack of experiences in

permit trading. Once firms accumulate sufficient experiences, the market price of emissions

permits in Phase II becomes close to the prices predicted by my equilibrium model.

Table 1.4 and Figure 1.9 show the model fit in terms of individual behavior under the

predicted equilibrium prices. The predictions on emissions eit and banking hit+1 are quite
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Table 1.4. Model Fit

Emissions eit Net Purchase bit Banking hi,t+1

Data Prediction Data Prediction Data Prediction

Min 849 0 -335,072 -55,375 7 0
1st quantile 18,685 20,232 -3,916 -1,440 7,652 6,751
Median 47,283 48,222 0 2,131 30,283 24,487
Mean 89,596 85,116 5,764 5,411 75,251 83,183
3rd quantile 109,114 104,339 12,652 11,470 79,356 84,081
Max 727,040 910,781 351,702 46,039 1,204,817 1,711,434

Figure 1.9. Histogram of the Model Prediction and the Data
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close to the observed distribution. Although both lower and upper tails of the distribution

of net-purchase are different between the prediction and the data, my model predicts the

median and mean net purchase quite well.

In the counterfactual simulations in section 1.6, I refer to the equilibrium outcome I

solved here as a baseline outcome.
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1.6. Counterfactual Experiments

This section discusses a series of counterfactual exercises using the model with the es-

timated parameters from section 1.5. In section 1.6.1, I first examine the effect of the

cap-and-trade program and decompose it into permit trading and permit banking. I then

quantify potential gains from trade by simulating the market outcome in the absence of

transaction costs in section 1.6.2.

In counterfactual simulations, I fix model primitives at the estimated values. This as-

sumption could be problematic for the continuation value at the terminal period CVT+1(·).

The continuation value captures the incentive of permit banking at the terminal period,

which could change in the counterfactual situations. An alternative approach would be to

fix the volume of permit banking at the terminal period, instead of the continuation value

function. I will work on this approach in the future revision as a robustness check.25

The supply function from fringe firms B̄fringe
t (·) could potentially change in the counter-

factual scenarios as well. In the simulation below, I fix the level of the fringe supply, instead

of the function itself, in each year at the level under the equilibrium I solved in section 1.5.2.

Under this assumption, I fix the total number of emissions permits available for firms in my

sample, including their initial allocation and the fringe supply.

1.6.1. Experiment 1: Effects of a Cap-and-Trade Program and its Decomposition

I simulate the outcomes in the following two situations. First, I simulate the case in which all

firms are required to achieve the uniformly determined level of emissions rate in each phase.

25Another approach is to model the terminal period as a stationary and infinite-period dynamic programming
problem. This approach allows me to avoid specifying a parametric form of the continuation value. However,
this approach is computationally more demanding because I have to solve the value function by a contraction
mapping for each firm. I plan to take these approaches in the future revision as a robustness check.
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The target emissions rates are defined as the rates under which the aggregate emissions are

equal to the level of the baseline outcome, which I calculated in section 1.5.2. This simulation

outcome corresponds to the one under uniform standard regulation. The difference between

this outcome and the baseline outcome quantifies the effects of a cap-and-trade program.

Second, I simulate a market outcome whereby permit banking is completely banned. This

simulation allows me to decompose the effects of a cap-and-trade program into the effects of

permit trading and the effects of permit banking. Appendix A.2 explains how to simulate

the equilibrium outcome in each case.

Effects of a Cap-and-Trade in Comparison to Uniform Standards. Table 1.5 presents the

results of counterfactual experiments. The numbers shown in the table are the totals in my

sample period. The upper panel shows the aggregate levels of emissions, left-over permits,

and banking at the terminal period. In the absence of a permit banking system, emissions

permits that firms have at the end of the period would expire. I call these permit left-over

permits. The lower panel shows the welfare measures including abatement costs and health

and environmental damages. I explain the definition of health and environmental damages

below.

I first discuss the effects of the cap-and-trade program in comparison to the uniform

standard. The simulation results show that the cap-and-trade decreases the total costs of

abatement, including investment costs and loss of profit from electricity generation, by 3.1

billion USD in total, or by 16.6%. The cost saving is allowed by a more flexible pattern of

investment as shown in Figure 1.10. In the case of uniform standard, there is a mass of firms

at 2.26 lbs/MMBtu in Phase I and 1.31 lbs/MMbtu in Phase II. These numbers are the

emissions rates that achieve the same aggregate emissions as the baseline in Phase I and II,
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Table 1.5. Effects of a cap-and-trade and its Decomposition

Baseline Uniform Standard No Banking

Emissions (in 1 million ton) 45.54 45.54 41.60
Left-over permits 0.00 n.a. 9.15
Banking at the terminal period 5.21 n.a. 0.00

Firm costs Investment Costs 15,179 18,648 15,934
(in million USD) Loss of Electricity Profit 380 0 869

Total costs 15,559 18,648 16,803
change from baseline 3,090 1,245

Health and environmental damages Total 54,787 54,592 50,692
(in million USD) change from baseline -195 -4,095

Total Costs Total costs 70,346 73,241 67,495
(in million USD) change from baseline 2,895 -2,850

Firm costs / abatement (in USD) 376 450 371
Health and environmental damage / emissions (in USD) 1,203 1,199 1,219

Note: The numbers are the total from 1995 to 2003. The unit of emissions, left-over
permits, and banking at the terminal period is 1 million SO2 tons. The unit of costs are 1

million USD in 2000.

respectively.26 Introduction of the cap-and-trade program allows firms to optimally decide

their emissions rate based on the returns and costs from investment, which depend on the

characteristics of firms, permit prices, and transaction costs in the permit trading. Their

optimal decisions lead to a more heterogeneous distribution of emissions rates and significant

cost saving, compared to the uniform standard.

Implications for Health and Environmental Damages. A potential concern of a cap-and-

trade program is the implication for health and environmental damages. Even though the

aggregate level of emissions is fixed, the distribution of emissions under a cap-and-trade

might be different from the one under a uniform standard regulation (See, e.g., Muller

26Some firms have the lower emissions rate than the uniform rate in the figure. This is because those firms
already had satisfied the uniform standard before the regulation.
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Figure 1.10. Distribution of Emissions Rate in the baseline and uniform stan-
dard
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and Mendelsohn 2009, Fowlie et al. 2012, Fowlie and Muller 2013, and Chan et al. 2015).

In particular, SO2 emissions are non-uniformly mixed pollution; health and environmental

damages depend on the location of the emissions’ source. To the extent that the damage from

a particular location is positively correlated with abatement costs of power plants in that

location, a cap-and-trade program would increase damages from emissions in comparison to

a uniform standard.

To discuss the net benefit of a cap-and-trade program, I calculate health and environ-

mental damages in each case in Table 1.5 using the data from Muller and Mendelsohn (2009).

They use the AP2 model, an integrated assessment model, to calculate marginal damages
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from SO2 emissions at the county level.2728 Following Muller and Mendelsohn (2009), I as-

sume that damages are linear in SO2 emissions. The emissions damage from a particular

county is given by the product of the marginal damage and the total SO2 emissions from

electricity plants that locate in the county.29

I find that a cap-and-trade program increases damages from SO2 emissions slightly by

195 million USD (or 0.3%) in comparison to the uniform standard. This percentage increase

of 0.3% is within the range of findings in Chan et al. 2015.30 Overall, the savings of firm

costs are large enough to offset the increase in damages, and thus the cap-and-trade program

improves the overall welfare.

Effects of Permit Banking. The third column in Table 1.5 shows the outcome in the

absence of a permit banking system. The aggregate emissions are different from the baseline

due to the presence of left-over permits. Around 18% of permits would expire if a permit

banking system is not available. Note that emissions permits might expire in the following

two cases. If a firm does not participate in the permit trading, they cannot sell permits

and thus the remaining permits must expire. Even though they participate, the marginal

revenue from selling permits could be lower than zero due to transaction costs. In such a

case, firms do not sell all of the remaining permits.

27I use the marginal damages from point sources with effective height less than 250 meters.
28The AP2 model is used in various papers, including Fowlie and Muller (2013), Chan et al. (2015), and
Holland et al. (2016), for calculating health and environmental damages of air pollutants.
29One important limitation of the marginal damage data from Muller and Mendelsohn (2009) is that in-
formation about which location is hurt by emissions from a particular county is not available. To obtain
this information, I need to run the AP2 model to simulate the flow of SO2 emissions damages from one
county to another county. This additional data would allow me to discuss distributional implications of a
cap-and-trade program. I leave this analysis to future work.
30Chan et al. 2015 focus on 2002 to evaluate the net benefit of the Acid Rain Program. They find that
the effect of a cap-and-trade program on health and environmental damages is within the range -0.4% to
1.8%, depending on the model specifications and the counterfactual policy in the absence of a cap-and-trade
program.
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The total abatement costs are estimated to be 16.8 billion USD in the absence of permit

banking. Using this estimate, I decompose the savings of abatement costs into permit trading

and permit banking. I find that permit banking decreases the abatement costs by 1.25 billion

USD, accounting for around 26% of the effect of cap-and-trade. However, I need to take into

account the difference in the aggregate emissions. To do so, I calculate the average abatement

costs in each case. I find that the average abatement cost in the absence of transaction cost

is 1.3% lower than the baseline case.

To see this, I calculate the firm-and-year level outcomes in the baseline and no-banking

case in Table 1.6. The table shows that the trading volume (i.e., the absolute value of the

net purchase, |bit|) is higher by 29% in the absence of permit banking than in the baseline,

implying that permit trading is more active without the banking. When banking is not

allowed, firms have a higher incentive to trade. Because firms cannot rely on their banked

permits for compliance, they have to buy permits from other firms. In the case of sellers,

they have to discard emissions permits unless they participate in permit trading to sell.

Overall, more active trading of emissions permits leads to efficient allocation of emissions

permits. The difference in trading patterns is a potential reason why the average abatement

costs are not higher than the baseline case, even though permit banking is not allowed.

1.6.2. Experiment 2: The Potential Gains from Trade

I now examine the implications of transaction costs. As I discussed in section 1.3.8.1, transac-

tion costs are a source of inefficiency in a cap-and-trade program. Estimates of my structural

model suggest that although the transaction costs in the form of participation cost are small,

the variable transaction costs are substantial.
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Table 1.6. Simulation outcomes at the Firm-and-year Level

Baseline
Mean Std. Dev Median

Emissions eit 85,116.1 111,237.8 48,221.6
Net purchase bit 5,410.8 9,326.0 2,131.3
Trading volume |bit| 7,229.0 7,996.9 3,657.0

No Banking
Mean Std. Dev Median

Emissions eit 77,753.9 90,146.3 50,683.4
Net purchase bit 5,000.6 12,353.0 0.0
Trading volume |bit| 9,300.0 9,539.2 5,215.0
Left-over permits 16,698.7 57,228.5 0.0

In this simulation, I shut down both participation and variable transaction costs (while

allowing permit banking) and solve a market equilibrium. This simulation quantifies the

potential gains from trade in the absence of transaction costs. This simulation outcome

is also interpreted as an outcome when the regulator introduces a centralized exchange for

emissions permits and runs an auction to allocate all the emissions permits.

Table 1.7 shows the counterfactual result along with the baseline result. The upper

panel shows that the level of permit banking at the terminal period is lower in the absence

of transaction costs than in the baseline. This pattern can be found in other years, as shown

in figure 1.12. Under the presence of transaction costs, firms are less active in permit trading

and thus they rather save emissions permits.

Regarding the abatement costs for firms, the table shows that the costs would be lower

by 5.8 billion USD in total, or by 37%. Although this partially reflects the higher emissions

level in the absence of transaction costs, the average cost of abatement is also lower by 119
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USD per SO2 tons, or by 31.6%. This finding indicates that the “potential” gains from trade,

which could be achieved in the absence of transaction costs are significant.

Where does this additional cost saving come from? Figure 1.11 plots the distributions of

emissions rates in the case without transaction costs and the baseline case. The distribution

is more dispersed in the absence of transaction costs than in the baseline. Shutting trans-

action costs down makes firms trade more actively, so that firms are more flexible in their

compliance. Some firms that are costly to reduce emissions by themselves are more likely

to purchase emissions permits, whereas other firms invest more because their revenues from

selling permits become higher once transaction costs are removed.

Another source of cost saving is due to the lower level of permit banking. Figure 1.12

shows that the level of banking is higher in the baseline than in the absence of transaction

costs. When the transaction costs exist, firms prefer to save emissions permits, instead

of selling them in the market. Once transaction costs are shut down, firms have a higher

incentive to trade permits with other firms, improving the allocative efficiency of emissions

permits.

Health and environmental damages increase by 4.5 billion USD in the absence of trans-

action costs. This increase reflects both the increase in the aggregate level of SO2 emissions,

as well as the increase in the average health damages. In particular, the average health

damages increase by 0.7%, indicating that more active trading of emissions permits leads

to more emissions in the region where the health damage is higher. In sum, the total costs

including firms’ costs of abatement and health damages decreased by 1.3 billion USD (1.8%)

in the absence of transaction costs.
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Table 1.7. The Potential Gains from Trade

Baseline No Transaction Costs

Emissions (in 1 million ton) 45.54 48.99
Dumped permits 0.00 0.00
Banking at the terminal period 5.21 1.76

Firm costs Investment Costs 15,179 9,740
(in million USD) Loss of Electricity Profit 380 25

Total costs 15,559 9,765
change from baseline -5,794

Health and environmental damages Total 54,787 59,321
(in million USD) change from baseline 4,534

Total Costs Total costs 70,346 69,086
(in million USD) change from baseline -1,259

Firm costs / abatement (in USD) 376 257
Health and environmental damage / emissions (in USD) 1,203 1,211

Note: The numbers are the total from 1995 to 2003. The unit of emissions and banking at
the terminal period is 1 million SO2 tons. The unit of costs are 1 million USD in 2000.

1.7. Conclusion and Further Directions

I study the welfare effects of a cap-and-trade program on air pollutants in the context of

the SO2 emissions regulation in the US electricity industry. I construct a dynamic equilibrium

model of a cap-and-trade program in which firms makes decisions on abatement investment,

permit trading, and permit banking. By applying the model to the data from the US Acid

Rain Program, I find that variable transaction costs associated with permit trading are

substantial.

I use the estimated model to quantify the effects of a cap-and-trade program in com-

parison to the uniform standard on emissions rate as a counterfactual command-and-control

type policy. I find that the cap-and-trade program decreased the aggregate costs of reducing
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Figure 1.11. Distribution of Emissions Rate in the Absence of Transaction Costs
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Figure 1.12. Permit Banking in the Absence of Transaction Costs
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emissions by 340 million USD per year, or 16.6%. Although the damages from SO2 emis-

sions increased as a result of permit trading, the cost saving is sufficiently high to offset the

negative effects on health.
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I also simulate the counterfactual outcome in the absence of transaction costs and find

that the aggregate costs could be saved further by 643 million USD per year, or by 26%.

This additional cost saving is achieved by a more efficient allocation of investment. My

findings indicate that the full potential of a cap-and-trade program has not been realized in

my sample period.

Several extensions and applications remain for future work. First, it would be interesting

to study the implications of policies regarding permit prices in a cap-and-trade program.

Recently, the volatile and low permit prices observed in cap-and-trade programs concern

policymakers, which leads to the proposal of various measures to stabilize permit prices,

including a price floor/ceiling and the Market Stability Reserve. By extending my empiri-

cal framework, I could evaluate the effectiveness of these proposed policies and its welfare

consequences.

In addition, my framework can be applied beyond a cap-and-trade program on air pollu-

tants. The governments now use a market-based policy in various settings, including credit

trading in the CAFE regulation and Renewable Energy Certificates in Renewable Portfolio

Standard. Under these policies, firms face a similar problem to the one I study in this paper:

a firm can either trade these credits, or invest in technologies (i.e., improving fuel efficiency

in the CAFE credit trading, and building renewable generators in the RPS program). My

empirical framework can be used to study the effectiveness of these market-based policies

and the implications of alternative regulatory designs. I leave these topics for future work.
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CHAPTER 2

Voter Turnout and Preference Aggregation

2.1. Introduction

Democracies rely on elections to aggregate the preferences of their citizens. Elections,

however, aggregate the preferences of only those that participate. The importance of partic-

ipation for preference aggregation is documented by studies of suffrage expansion in various

contexts, such as the abolition of apartheid in South Africa (Kroth et al., 2013), the passage

of the Voting Rights Act of 1965 (Husted and Kenny, 1997; Cascio and Washington, 2013),

and the passage of women’s suffrage laws (Miller, 2008). Less dramatic measures that have

reduced the voting costs of certain groups of voters have also been found to affect policy in

important ways (Fujiwara, 2015).

While most democracies now enjoy universal suffrage, participation in elections is far

from perfect, given the voluntary nature of voting. To the extent that the preferences of

those that turn out are systematically different from those that do not, election outcomes

may poorly aggregate the preferences of all citizens. Thus, how well elections aggregate the

preferences of citizens and whose preferences are underrepresented are open questions, even

in mature democracies.

The issues of preference aggregation and underrepresentation are also relevant from a

policy perspective. The concern that the preferences of certain groups of voters are under-

represented has led some to argue for compulsory voting (see, e.g., Lijphart, 1997). More
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moderate policy proposals, such as introducing Internet voting, relaxing registration require-

ments, and making election day a holiday, are motivated by similar concerns. Understanding

how voter turnout affects preference aggregation can provide a basis for more informed dis-

cussions of these policy proposals.

Preference aggregation is also central to the policy debate on partisan redistricting, or

gerrymandering. Gerrymandering can be considered as an intentional attempt by one party

to aggregate preferences disproportionately in its favor through redistricting. Much of the

recent discussion on gerrymandering focuses on how well actual votes are translated into seat

shares, but ignores how preferences map to seat shares. Given that turnout is endogenous,

it is possible for sophisticated planners to design redistricting plans that map vote shares

to seat shares well, but map preferences to seat shares poorly.1 Studying how underlying

preferences, rather than votes, are aggregated into election outcomes provides a coherent

alternative even when turnout is endogenous.

In this study, we explore the extent to which preferences are aggregated in elections, which

hinges on how the preferences, voting costs, and perceptions of voting efficacy are correlated.

We show identification of the joint distribution of these three terms, and estimate it using

county-level voting data from the 2004 U.S. presidential election. We find that young, low-

income, less-educated, and minority voters have a high cost of voting and that all of these

groups tend to prefer the Democrats, except for the less-educated. We then simulate the

counterfactual election outcome when all voters vote. The difference between the simulated

and actual outcomes allows us to quantify the degree to which preferences are aggregated.

In our counterfactual, the two-party vote share of the Democrats increases by about 3.7%,

and the Democrats win the plurality of the electoral votes. In our second counterfactual,

1In Table 2.5, we illustrate this point using a numerical example.
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we compute the election outcome when we eliminate endogeneity in turnout that is state-

specific. This allows us to gauge the sensitivity of the efficiency gap, an influential measure

of gerrymandering, to endogeneity of turnout.

The key challenge in studying the effect of turnout on preference aggregation is to identify

the correlation between preferences and voting costs in the population. In particular, we

need to identify how voter characteristics such as race and income simultaneously determine

preferences and costs. However, this is not a straightforward task because high preference

intensity and high voting cost may predict a similar voting pattern as low preference intensity

and low voting cost.

To illustrate, consider a plurality rule election in which voters have private values and

choose to vote for candidate A or candidate B or not to turn out. Applying a discrete

choice framework to the voter’s decision, let uA(x) and uB(x) denote the utility of voting for

candidates A and B, respectively, and c(x) denote the cost of voting (relative to not voting),

where x is a vector of voter characteristics. Then, the voter’s mean utilities are as follows:

VA(x) = uA(x)− c(x),

VB(x) = uB(x)− c(x), and

V0(x) = 0,

where V0 represents the mean utility of not turning out. While one can identify VA(x) =

uA(x) − c(x) and VB(x) = uB(x) − c(x) by using vote share and turnout data (see Berry,

1994; Hotz and Miller, 1993), uA(·), uB(·), and c(·) are not separately identified without

further restrictions. This is because making a voter care more about the election outcome

(say, by adding an arbitrary function, g(x), to both uA(x) and uB(x)) is observationally
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equivalent to lowering the voting cost (by subtracting g(x) from c(x)). Even if there are

exogenous cost shifters z (e.g., rainfall), they do not help separately identify uA(·), uB(·),

and c(·).2 Thus, most existing studies impose ad-hoc exclusion restrictions on the way that x

enters uA(·), uB(·), and c(·), assuming that x is excluded from either uk(·) or c(·). Imposing

such exclusion restrictions assumes away the correlation structure among these terms and

precludes the possibility that the preferences of those with high voting costs are different

from those with low voting costs. Note that this identification challenge exists regardless of

whether the data are available at the individual level or at the aggregate level.

In this paper, we uncover the correlation structure between preferences and costs in a

setting in which x is allowed to enter both uk(·) and c(·). Our identification is based on

the simple observation that, unlike consumer choice problems in which choosing not to buy

results in the outcome of not obtaining the good, choosing not to turn out still results

in either A or B winning the election. This observation implies that the voter’s choice is

determined by the utility difference between the two election outcomes rather than by the

levels of utility associated with each outcome.3 Barkume (1976) first used this observation to

separately identify uk(·) and c(·) in the context of property tax referenda for school districts.

To see how this observation leads to the identification of uk(·) and c(·), consider the

calculus of voting models of Downs (1957) and Riker and Ordeshook (1968). In these models,

the utility of voting for candidate k can be expressed as uk = pbk, where p is the voter’s

beliefs that she is pivotal; bA is the utility difference between having candidate A in office

2Suppose that the cost function is separated into two parts as c = cx(x) + cz(z), where z is a vector of
cost shifters that is excluded from uA(·) and uB(·). Then, uA(·) − cx(·), uB(·) − cx(·) and cz(·) are all
separately identified. However, uA(·), uB(·) and cx(·) are not separately identified. See the subsection titled
“Exogenous Cost Shifters” towards the end of Section 4 for details.
3This implication holds as long as voters care about the ultimate outcome of the election. However, it may
not hold for models in which voters gain utility from the act of voting for a candidate, such as models of
expressive voting.
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and candidate B in office; and bB is defined similarly.4 Hence, we have bA = −bB. The mean

utilities can now be expressed as

VA(x) = pbA(x)− c(x),

VB(x) = −pbA(x)− c(x), and

V0(x) = 0.

The property bA = −bB allows us to separately identify preferences and costs. By adding the

first two expressions above, we have VA(x)+ VB(x) = −2c(x) because pbA(x) cancels out.

Given that VA(x) and VB(x) are both identified from the vote share and turnout data, c(·) is

identified. Similarly, we can identify pbA(·) because we have VA(x)− VB(x) = 2pbA(x), and

VA(x)− VB(x) is identified. As we discuss below, VA(x)− VB(x) is identified primarily by

the vote share margin and VA(x)+ VB(x) is identified primarily by voter turnout. Intuitively,

changes in preference intensity in this model necessarily changes the vote share margin, while

changes in costs have a similar effect on the vote shares of the two parties. This implies that

changes in bA cannot be undone by changes in c.5

In this paper, we retain the basic structure of the calculus of voting model but do not

place additional restrictions on p, such as rational expectations, in which p equals the actual

pivot probability. In our model, we interpret p more broadly as the voter’s perception of

voting efficacy, which is allowed to differ across individuals and to be correlated with the

true pivot probability in a general manner. In particular, we let p be a function of individual

4More precisely, the utility of voting for candidate k relative to not turning out can be expressed as uk = pbk,
by normalizing the utility of not turning out to be zero. See Appendix A for details.
5See Merlo and de Paula (2016) for identification of voter preferences in a spatial voting model with full
turnout.
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characteristics and the state in which the voter lives, as p = ps × p̃(x), where ps is a state-

specific coefficient and p̃(·) is a function of voter characteristics, x. By letting p depend on

each state, we can take into account the nature of the electoral college system.6 We show that

the ratios of the state-specific components of efficacy, ps/ps′ (∀s, s′), are identified directly

from the data. Moreover, we show that p̃(·), bA(·) and c(·) are identified up to a scalar

normalization.7 Our identification discussion does not depend on equilibrium restrictions

on p, such as rational expectations. Therefore, our identification and estimation results are

agnostic about how voters formulate p.

Given the debate over how to model voter turnout, we briefly review the literature on

turnout to situate our model.8 The model that we estimate in this paper is based on the

decision theoretic model of voter turnout introduced by Downs (1957) and Riker and Or-

deshook (1968). In their models, a voter turns out and votes for the preferred candidate if

pb − c + d > 0, where p is the voter’s beliefs over the pivot probability; b is the utility dif-

ference from having one’s preferred candidate in office relative to the other; c is the physical

and psychological costs of voting; and d is the benefit from fulfilling one’s civic duty to vote.

While the original studies do not endogenize any of these terms, the decision theoretic model

has provided a basic conceptual framework for much of the subsequent work on voting and

turnout.

6Under the electoral college system, perceptions of voting efficacy may differ significantly across states. For
example, electoral outcomes in battleground states such as Ohio were predicted to be much closer than
outcomes in party strongholds such as Texas. Hence, we allow for the possibility that p is higher for voters
in Ohio than for voters in Texas.
7More precisely, we can identify p(·)bA(·) state by state given that we have many counties within each state.
Assuming that p̃(·) and bA(·) are common across states, we can identify ps/ps′ . We also show that p̃(·) and
bA(·) are separately identified up to a scalar multiple in our full specification with county-level shocks to
preferences and costs.
8For a survey of the literature, see, e.g., Dhillon and Peralta (2002), Feddersen (2004), and Merlo (2006).
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Studies subsequent to Riker and Ordeshook (1968) endogenize or micro-found each of

the terms in the calculus of voting model in various ways. Ledyard (1984) and Palfrey and

Rosenthal (1983, 1985) introduce the pivotal voter model, in which the pivot probability

p is endogenized in a rational expectations equilibrium. They show that there exists an

equilibrium with positive turnout in which voters have consistent beliefs about the pivot

probability. Coate et al. (2008), however, point out that the rational expectations pivotal

voter model has difficulties matching the data on either the level of turnout or the winning

margin.9 Moreover, using laboratory experiments, Duffy and Tavits (2008) find that voters’

subjective pivot probabilities are much higher than the actual pivot probability, which is at

odds with the rational expectations assumption.

More recently, there have been attempts at endogenizing p in ways other than rational

expectations. For example, Minozzi (2013) proposes a model based on cognitive dissonance in

the spirit of Akerlof and Dickens (1982) and Brunnermeier and Parker (2005). In his model,

voters jointly choose p and whether or not to turn out in order to maximize subjective

expected utility. Kanazawa (1998) introduces a model of reinforcement learning in which

boundedly rational voters, who cannot compute the equilibrium pivot probabilities, form

expectations about p from the correlation between their own past voting behavior and past

election outcomes (see, also, Bendor et al., 2003; Esponda and Pouzo, 2016, for similar

approaches). While these models are based on the basic calculus of voting model, the p term

in them no longer carries the interpretation of the actual pivot probability.

9Note, however, that with aggregate uncertainty, Myatt (2012) shows that the level of turnout can still be
high with rational expectations. Levine and Palfrey (2007) also show that combining the quantal response
equilibrium with the pivotal voter model can generate high turnout and finds that the results of laboratory
experiments are consistent with the model prediction.
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Another strand of the literature endogenizes the c and d terms. Harsanyi (1980) and

Feddersen and Sandroni (2006) endogenize the d term by proposing a rule-utilitarian model

in which voters receive a warm-glow payoff from voting ethically. Based on their approach,

Coate and Conlin (2004) estimate a group-utilitarian model of turnout. Shachar and Nalebuff

(1999) also endogenize the d term by considering a follow-the-leader model in which elites

persuade voters to turn out. In a paper studying split-ticket voting and selective abstention

in multiple elections, Degan and Merlo (2011) consider a model that endogenizes c to reflect

the voter’s psychological cost of making mistakes.

In our paper, we bring the calculus of voting model to the data without taking a particular

stance on how the p, b, c, or d terms are endogenized. Specifically, our identification and

estimation do not use the restriction that p is equal to the actual pivot probability, as in

the rational expectations model. The p term that we recover can be broadly interpreted

as the voter’s perception of voting efficacy. We purposely aim to be agnostic about the

different ways of modeling voter turnout so that our estimates of voter preferences and costs

are robust to the specific way in which the p, b, c, or d terms are endogenized. Instead

of imposing equilibrium restrictions of a particular model a priori, we let the data directly

identify the p, b, and c− d terms.

Relatedly, our study does not impose a priori restrictions on how the covariates enter the

p, b, or c−d terms, allowing, instead, the same set of covariates to affect all three terms. This

is important because the way in which covariates enter the p, b, and c− d terms determines

the correlation structure among them, which, in turn, determines how well preferences are

aggregated. In most existing studies, the sets of covariates that enter the p, b and c−d terms

are disjoint, precluding the possibility that preferences and costs are correlated. For example,

Coate and Conlin (2004) and Coate et al. (2008) include demographic characteristics only in
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the b term,10 while Shachar and Nalebuff (1999) include them in the c− d term. In contrast,

we let each demographic characteristic enter all three terms, allowing us to study the effects

of turnout on preference aggregation.11

We use county-level data on voting outcomes from the 2004 U.S. presidential election to

estimate the model.12 A benefit of using actual voting data over survey data is that we can

avoid serious misreporting issues often associated with survey data, such as the overreport-

ing of turnout and reporting bias in vote choice (see, e.g., Atkeson, 1999; DellaVigna et al.,

2015).13 Our data on turnout and vote share incorporate the number of non-citizens and

felons to account for the difference between the voting-eligible population and the voting-age

population (McDonald and Popkin, 2001). We construct the joint distribution of demo-

graphic characteristics within each county from the 5% Public Use Microdata Sample of the

Census.

We find that young, less-educated, low-income, and religious voters have high voting

costs, as do African Americans, Hispanics, and other minorities. Moreover, young voters

have low perception of voting efficacy, which further depresses turnout among this group.

Overall, young, less-educated, and low-income voters are particularly underrepresented. In

terms of preferences, minority, young, highly educated, low-income, and non-religious voters

are more likely to prefer Democrats.

10To be more precise, Coate and Conlin (2004) and Coate et al. (2008) use demographic characteristics as
covariates for the fraction of the population supporting one side.
11One possible exception is Degan and Merlo (2011). They consider a model based on the theories of regret in
which the cost term is endogenized in a way that captures voters’ preferences over candidates. They include
the same set of covariates in the c and d terms. In one of their counterfactual analyses, they consider the
effect of increasing voter turnout, focusing on split-ticket voting and selective abstention across presidential
and congressional elections.
12Although we use aggregate data, we account for the issue of ecological fallacy by computing the behavior
of individual voters and aggregating them at the county level.
13There is a set of survey-based studies that investigate the differences in preferences between voters and
non-voters (see, e.g., Citrin et al., 2003; Brunell and DiNardo, 2004; Martinez and Gill, 2005; Leighley and
Nagler, 2013).
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Our results show that, overall, there is a positive correlation between voting cost and pref-

erence for Democrats that can be accounted for through observable characteristics. Except

for two voter characteristics–years of schooling and being religious–we find that demographic

characteristics that are associated with a higher cost of voting are also associated with pre-

ferring Democrats. We also find that unobservable cost shocks are positively correlated with

unobservable preference shocks for Democrats. These correlations result in fewer Democratic

votes relative to the preferences of the underlying population. Our estimate of turnout is

significantly lower among the electorate who prefer Democrats to Republicans, at 55.7%,

compared with turnout among those who prefer Republicans to Democrats, at 64.5%.14

Moreover, we find that voters who have a strong preference for one of the parties are more

likely to turn out, suggesting that preference intensity affects preference aggregation (see

Campbell, 1999; Casella, 2005; Lalley and Weyl, 2015).

Regarding our results on the perception of voting efficacy, we find substantial across-state

variation in our estimates of ps, the state-specific coefficient in p. Furthermore, the estimates

are correlated with the ex-post closeness of the election: Battleground states such as Ohio

and Wisconsin tend to have high estimates of ps, while party strongholds such as New Jersey

and California have low estimates, which is consistent with the comparative statics of the

pivotal voter model with rational expectations. However, the magnitude of the estimated

ratio of ps is, at most, three for any pair of states. This is in contrast to a much larger

variation in the ratio implied by the pivotal voter model.15 Our results are more consistent

14See DeNardo (1980) and Tucker and DeNardo (1986) for studies that report negative correlation between
turnout and the Democratic vote share using aggregate data. For more recent work, see Hansford and Gomez
(2010) who use rainfall as an instrument for turnout.
15The pivotal voter model with rational expectations predicts high variation in the ratio of pivot probabilities
across states, given the winner-take-all nature of the electoral college system. Voters in only a handful of
swing states have a reasonable probability of being pivotal (see, e.g., Shachar and Nalebuff, 1999).
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with models of turnout in which voters’ perception of efficacy is only weakly correlated with

the actual pivot probabilities.

In our first counterfactual experiment, we simulate the voting outcome when all voters

vote. We find that the vote share of the Democrats increases in all states. Overall, the

increase in the Democrats’ two-party vote share is about 3.7%. We also find that the increase

in the Democratic vote share would overturn the election results in nine states, including

key states such as Florida and Ohio, resulting in the Democrats winning a plurality of the

electoral votes.

In our second counterfactual experiment, we compare the actual election outcome with

the counterfactual outcome when we equalize the state-specific component of efficacy across

states (set ps = ps′). Equalizing ps across states can be interpreted as eliminating endogeneity

in turnout that is driven by how state boundaries are drawn. This counterfactual is motivated

by the recent development in measuring gerrymandering, in particular, the use of a metric

called the ”efficiency gap” (Stephanopoulos and McGhee, 2015) for determining the legality

of districting plans. By eliminating state-specific endogeneity in turnout, we gauge the

robustness of the efficiency gap to endogenous turnout.16

We find that equalizing ps across states while keeping turnout at the actual levels changes

the efficiency gap by 2.2 percentage points. We also find that the efficiency gap changes

substantially when we vary the value of ps that we use. For example, a change in the level

of ps corresponding to a change in turnout from 50% to 80% increases the efficiency gap

by 14.1 percentage points. To put these numbers in perspective, 2.2 percentage points is

comparable to about half of the increase in the efficiency gap for the Republican party over

16The literature on districting focuses on the mapping from vote share to seat share, and little attention is
paid to the fact that turnout is endogenous. See, e.g., Coate and Knight (2007), and Friedman and Holden
(2008). For a survey, see Nagle (2015).
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the past 30 years in the U.S. state legislative elections. A change in the efficiency gap of 14.1

percentage points is larger than the proposed threshold value of 8 percentage points above

which Stephanopoulos and McGhee (2015) argue that districting plans should be deemed

presumptively unlawful. These results suggest that the efficiency gap is quite sensitive to

endogenizing turnout. One natural alternative to comparing actual votes and seat shares,

which is what the efficiency gap does as well as other measures such as partisan symmetry

(e.g., Grofman and King, 2007), is to compare underlying voter preferences and seat shares.

If we think about elections as a way to aggregate preferences into outcomes, evaluating the

electoral system in terms of its ability to aggregate preferences seems most coherent.

2.2. Model

Anticipating the empirical application of the paper, we tailor our model to the U.S.

presidential election. Let s ∈ {1, ..., S} denote a U.S. state and m ∈ {1, ...,Ms} denote a

county in state s.

Preference of Voters. We consider a model of voting with two candidates, D and R. Each

voter chooses to vote for one of the two candidates or not to vote. We let bnk denote voter

n’s utility from having candidate k ∈ {D,R} in office, pn (pn > 0) denote her perception

of voting efficacy, and cn denote her cost of voting. Given that there are only two possible

outcomes (either D wins or R wins the election), the utility of voting for candidate k, Unk

depends only on bnD − bnR rather than on bnD and bnR individually:

UnD = pn(bnD − bnR)− cn,(2.2.1)

UnR = pn(bnR − bnD)− cn,(2.2.2)

Un0 = 0,
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where Un0 is the utility of not turning out, which we normalize to zero (see Appendix A for

a derivation).17 When pn is the actual pivot probability, the behavior of the voters under

our model is the same as the equilibrium play of the voters under the pivotal voter model

of Palfrey and Rosenthal (1983, 1985). However, we interpret pn broadly as the voter’s

subjective perception of voting efficacy, as we discuss below. The cost of voting, cn, includes

both physical and psychological costs, as well as possible benefits of fulfilling one’s civic

duty. Hence, cn can be either positive or negative. When cn is negative, the voter turns out

regardless of the value of pn and bnD − bnR.

We let the preferences of voter n in county m of state s depend on her demographic

characteristics, xn, as follows:

bnk = bk(xn) + λsk + ξmk + εnk, for k ∈ {D,R},

where λsk is a state-specific preference intercept that captures state-level heterogeneity in

voter preferences. ξmk and εnk are unobserved random preference shocks at the county level

and at the individual level, respectively. ξmk captures the unobserved factors that affect

preferences at the county level, such as the benefits that the voters in county m receive

from policies supported by candidate k. Then, the expression for the utility difference is as

follows:

bnR − bnD = b(xn) + λs + ξm + εn,

where b(xn) ≡ bR(xn)− bD(xn), λs ≡ λsR − λsD, ξm ≡ ξmR − ξmD, and εn ≡ εnR − εnD. We

assume that εn follows the standard normal distribution.

17Note that expressions (2.2.1) and (2.2.2) take the familiar form of pb− c.
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We also let voting cost cn be a function of voter n’s characteristics as

cn = cs(xn) + ηm,

where cs(xn) is the cost function and ηm is a county-level shock on the cost of voting. The

cost function, cs(·), is allowed to depend on s. Given that previous studies (e.g., Smith, 2001)

find that neither the presence nor the closeness of congressional elections affect turnout in

presidential elections, we do not incorporate other elections as a cost shifter in our model.

We assume that ξm and ηm are both independent of xn, but we allow ξm and ηm to be

correlated with each other.

We let the voting efficacy term, pn, depend on both the demographic characteristics of

voter n and the state in which she votes as follows:

pn = ps(xn) = ps × p̃(xn),

where ps is a state specific coefficient that we estimate. It is important to let pn depend on

the state in which the voter votes because of the winner-take-all nature of the electoral votes

in each state.18 For example, in the 2004 presidential election, a vote in key states such as

Ohio was predicted to matter considerably more than a vote elsewhere. Our specification

also allows for the possibility that pn depends on voters’ characteristics, xn. Previous work

has shown that voters’ social and economic status affects her general sense of political efficacy

(see, e.g., Karp and Banducci, 2008).

18In U.S. presidential elections, the winner is determined by the Electoral College. Each U.S. state is
allocated a number of electoral votes, roughly in proportion to the state’s population. The electoral votes
of each state are awarded on a winner-takes-all basis in all states, except for Maine and Nebraska. The
Presidential candidate who wins the plurality of electoral votes becomes the winner of the election.
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Note that the behavior of the voters under our model is the same as the equilibrium play

of the voters under the pivotal voter model if we set ps equal to the actual pivot probability

in state s and set p̃(xn) equal to 1. In this sense, our specification nests the pivotal voter

model as a special case. However, instead of imposing the pivotal voter model (and, hence,

placing equilibrium restrictions on pn), we estimate ps and p̃(·) directly from the data. This

approach allows us to interpret pn consistently with models of turnout that endogenize pn

in various ways.

Substituting the expressions for bnR − bnD, cn, and pn into equations (2.2.1) and (2.2.2),

the utility from choosing each of the alternatives can be expressed as follows:

UnD(xn) = ps(xn) [−bs(xn)− ξm − εn]− cs(xn)− ηm,

UnR(xn) = ps(xn) [bs(xn) + ξm + εn]− cs(xn)− ηm,

Un0(xn) = 0,

where bs(xn) denotes b(xn) + λs.

A Voter’s Decision. Voter n’s problem is to choose the alternative k ∈ {D,R, 0} that provides

her with the highest utility:

(2.2.3) k = arg max
κ∈{D,R,0}

Unκ(xn).
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We can write the probability that voter n votes for candidate R as

Pr
(
R = arg maxκ∈{D,R,0} Unκ

)
= Pr (UnR > UnD and UnR > 0)

= Pr

(
εn > −bs(xn)− ξm and εn > −bs(xn)− ξm +

cs(xn) + ηm
ps(xn)

)
= 1− Φ

(
max

{
−bs(xn)− ξm,−bs(xn)− ξm +

cs(xn) + ηm
ps(xn)

})
,

where Φ is the CDF of the standard normal. We can derive a similar expression for candidate

D.

Figure 1 depicts the behavior of a voter as a function of εn. There are two cases to

consider: one in which the cost of voting is positive (Case 1) and the other in which the cost

of voting is negative (Case 2). In Case 1, a voter with a strong preference for one of the

candidates (which corresponds to a large positive realization or a large negative realization

of εn) votes for her preferred candidate, while a voter who is relatively indifferent between

the two candidates does not turn out. That is, a voter with high preference intensity relative

to cost turns out, while a voter with low preference intensity does not. In Case 2, a voter

always votes, regardless of her preference intensity, as the cost of voting is negative.

Vote Share and Voter Turnout. We can express the vote share for candidate k in county m,

vk,m, and the fraction of voters who do not turn out, v0,m, as follows:

vR,m ≡
∫

1− Φ

(
max

{
–bs(xn)− ξm, –bs(xn)− ξm +

cs(xn) + ηm
ps(xn)

})
dFx,m(xn),(2.2.4)

vD,m ≡
∫

Φ

(
min

{
–bs(xn)− ξm, –bs(xn)− ξm −

cs(xn) + ηm
ps(xn)

})
dFx,m(xn),(2.2.5)

v0,m ≡1− vD,m − vR,m(2.2.6)
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Figure 2.1. Voter’s Decision as a Function of εn.

Note: The top panel corresponds to the case in which a voter has positive costs of voting.
The bottom panel corresponds to the case in which a voter has negative costs of voting.

where Fx,m denotes the distribution of x in county m. Denoting the number of eligible voters

in county m by Nm and the number of counties in state s as Ms, the vote share for candidate

k in state s can be expressed as
∑Ms

m=1Nmvk,m

/∑Ms

m=1Nm . The candidate with the highest

vote share in state s is allocated all of the electors of that state.19 The candidate who wins

the plurality of the electors becomes the overall winner of the presidential election.

Advertising and Campaign Visits. An important feature of presidential elections not explic-

itly modeled thus far is the campaign activities of candidates. Candidates target key states

with advertisements and campaign visits during the election. These campaign activities

19Maine and Nebraska use a different allocation method. Hence, we drop these two states from our sample.
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are endogenous and depend on the expected closeness of the race in each state (see, e.g.,

Strömberg, 2008; Gordon and Hartmann, 2013).

While we do not have a specific model of political campaigns, the model accounts for the

effect of campaigns on voters through the state-specific preference intercept λs. Because we

treat λs as parameters to be estimated, λs may be arbitrarily correlated with the charac-

teristics of the state, the closeness of the race in the state, etc. Hence, our estimates of the

primitives of the model are consistent even in the presence of campaign activities. We note,

however, that the results of our counterfactual experiments take the level of campaigning as

given.

Discussion on Voter’s Information. Another factor that we do not specifically model is voter’s

information. One way to explicitly model information is by endogenizing the voters’ infor-

mation acquisition (see, e.g., Matsusaka, 1995; Degan and Merlo, 2011). In these models,

the voters decide on the amount of information to acquire about the candidates by paying

the cost of information acquisition. Our specification of voter preference and costs can be

thought of as the indirect utility of these models to the extent that information acquisition

costs are functions of voter demographics. In fact, in our estimation results, we find that

income and education are associated with low voting costs, which suggests that the informa-

tion acquisition cost may comprise an important part of the voting cost (as the opportunity

cost for these voters tend to be higher).

Another way to model information is to consider a common value environment in which

voters obtain signals about the quality of the candidates (see, e.g., Feddersen and Pesendor-

fer, 1996, 1997). In these models, voters’ utility consists partly of the expected quality of

the candidates, which is computed by conditioning on the event that the voter is pivotal. To
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the extent that the prior beliefs over candidate quality and the signal distribution depend

on the voter’s demographic characteristics, the common value component is also a function

of these characteristics. Hence, our specification of the utility can also be interpreted as a

reduced-form of model with a common value component.

Discussion on p. The modeling in our paper is purposely agnostic about how p is endog-

enized: We do not impose a particular model of p, such as rational expectations (Palfrey

and Rosenthal, 1983, 1985), overconfidence (Duffy and Tavits, 2008), or cognitive dissonance

(Minozzi, 2013). Similarly, our estimation approach avoids using restrictions specific to a

particular way of modeling voter beliefs. The important point for our purpose is that there

exists an equilibrium p that corresponds to the data-generating process regardless of the

way in which p is endogenized. Our approach is to identify and estimate both the model

primitives and the equilibrium p directly from the data with as little structure as possible.

This empirical strategy is similar in spirit to that in the estimation of incomplete models,

in which some primitives are estimated from the data without fully specifying a model. For

example, Haile and Tamer (2003) recovers bidder values without fully specifying a model of

the English auction, using only the restriction that the winning bid lies between the valua-

tions of the losers and the winner. Given that their estimation procedure also avoids using

restrictions specific to a particular model of the English auction, the estimates are consistent

under a variety of models.

In Section ??, we show that the key primitives of the model are identified without fully

specifying how voters form p. We show that the equilibrium p is also identified directly

from the data.20 The strength of our approach is that we impose few restrictions on beliefs,

20More precisely, ps/ps′ is identified for any states s and s′, and p̃(·) is identified up to a scalar normalization.
See Section 4 for details.
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and, thus, our estimates of preferences and costs are consistent under a variety of behavioral

assumptions regarding how p is formed. On the other hand, this approach limits the types of

counterfactual experiments that we can conduct since we do not specify a particular model

regarding p.

2.3. Data

In this section, we describe our data and provide summary statistics. We combine county-

level voting data and demographics data.The county-level voting data is obtained from David

Leip’s Atlas of U.S. Presidential Elections. This dataset is a compilation of election data

from official sources such as state boards of elections. The demographics data is obtained

from the U.S. Census Bureau. We construct the data on eligible voters for each county

by combining the population estimates from the 2004 Annual Estimates of the Resident

Population and age and citizenship information from the 2000 Census. We then adjust for

the number of felons at the state level using the data from McDonald (2016). Hence, our data

account for the difference between the voting age population and voting eligible population

(see McDonald and Popkin, 2001).

We construct the joint distribution of voters’ demographic characteristics and citizenship

at the county level from the 2000 Census by combining the county-level marginal distribution

of each demographic variable and the 5% Public Use Microdata Sample (see Appendix B for

details). We augment the Census data with county-level information on religion using the

Religious Congregations and Membership Study 2000. In particular, we define the variable

Religious using adherence to either “Evangelical Denominations” or “Church of Jesus Christ

of Latter-day Saints.”
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Our data consist of a total of 2,909 counties from forty states. Because we need a large

number of counties within each state to identify the state-specific parameters, ps and λs,

we drop states that have fewer than 15 counties. These states are Alaska, Connecticut,

District of Columbia, Delaware, Hawaii, Massachusetts, New Hampshire, Rhode Island, and

Vermont. In addition, we drop Maine and Nebraska because these two states do not adopt

the winner-takes-all rule to allocate electors. We also drop counties with a population below

1,000 because their vote shares and turnout rates can be extreme due to small population

size.21 Table 2.1 presents the summary statistics of the county-level vote share, turnout, and

demographic characteristics. Note that a Hispanic person may be of any race according to

the definition used in the Census.

In order to illustrate the degree to which turnout and expected closeness are related,

Figure 2.2 plots the relationship between the (ex-post) winning margin and voter turnout

at the state level. The two variables are negatively correlated, although the fitted line is

relatively flat. The slope of the fitted line implies that a decrease in the (ex-post) winning

margin of ten percentage points is associated with an increase in turnout of only about 1.6

percentage points. While the negative correlation may be capturing some of the forces of

the rational-expectations pivotal voter model, the flatness of the slope suggests that turnout

is unlikely to be fully accounted for by the pivotal voter model.

2.4. Identification

In this section, we discuss the identification of our model as the number of counties within

each state becomes large (Ms →∞). Given that we have state-specific parameters for ps(·)

and bs(·), we require the number of observations in each state to be large. Our discussion

21In addition, we drop one county, Chattahoochee, GA, as the turnout rate is extremely low (18.8%) relative
to all other counties. The turnout rate for the next lowest county is 33%.
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Table 2.1. Summary Statistics of Voting Outcome and Demographic Charac-
teristics of Eligible Voters.

Obs Mean Std. Dev. Min Max
Vote Share: Democrat 2,909 0.24 0.08 0.04 0.57
Vote Share: Republican 2,909 0.37 0.09 0.07 0.70
1  Turnout Rate 2,909 0.40 0.09 0.12 0.67

Obs Mean Std. Dev. Min Max
% Hispanic 2,909 0.05 0.12 0.00 0.97
% Black/African American 2,909 0.09 0.15 0.00 0.87
% Neither Black nor White 2,909 0.05 0.08 0.00 0.95
Mean Age 2,909 46.75 2.64 35.94 56.07
Mean Income (USD 1,000) 2,909 42.71 9.23 23.33 93.40
Mean Years of Schooling 2,909 12.86 0.60 10.84 15.18
% Religious 2,909 0.26 0.17 0.00 1.00

Voting Data

County Demographics

Note: For Age, Income, and Years of Schooling, the table reports the mean, standard
deviation, minimum, and maximum of the county mean. “% Religious” is the share of the

population with adherence to either “Evangelical Denomination” or “Church of Jesus
Christ of Latter-day Saints.”

in this section builds on the idea initially proposed by Barkume (1976) in the context of

property tax referenda for school districts.

Recall that the observed vote shares are expressed as:

vR,m ≡
∫

1− Φ

(
max

{
-bs(xn)− ξm, -bs(xn)− ξm +

cs(xn) + ηm
ps(xn)

})
dFx,m(xn),

vD,m ≡
∫

Φ

(
min

{
-bs(xn)− ξm, -bs(xn)− ξm −

cs(xn) + ηm
ps(xn)

})
dFx,m(xn),

v0,m ≡ 1− vD,m − vR,m.
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Figure 2.2. Relationship between the Ex-Post Winning Margin and Voter Turnout.
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Note: The slope coefficient is −0.16 and not statistically significant.

For exposition, consider the simple case in which there is no heterogeneity in voters’ ob-

servable characteristics, so that xn = xm for all n in county m.22 In this case, the above

expressions simplify as follows:

vR,m ≡ 1− Φ

(
max

{
−bs(xm)− ξm,−bs(xm)− ξm +

cs(xm) + ηm
ps(xm)

})
,(2.4.1)

vD,m ≡ Φ

(
min

{
−bs(xm)− ξm,−bs(xm)− ξm −

cs(xm) + ηm
ps(xm)

})
,(2.4.2)

v0,m ≡ 1− vD,m − vR,m.(2.4.3)

22Note that we are well aware of the issues of ecological fallacy. In what follows, we consider a simplified
setup with xn = xm for all n in county m, just for expositional purposes. In our empirical exercise, we
fully address the fact that each county has a distribution of x by integrating the vote share for each x with
respect to Fx,m(·).
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We now show that the primitives of the model are identified from expressions (2.4.1), (2.4.2),

and (2.4.3).

Using the fact that Φ is a strictly increasing function, we can rewrite expressions (2.4.1)

and (2.4.2) as follows:

Φ−1 (1− vR,m) = max

{
−bs(xm)− ξm, − bs(xm)− ξm +

cs(xm) + ηm
ps(xm)

}
,

Φ−1 (vD,m) = min

{
−bs(xm)− ξm, − bs(xm)− ξm −

cs(xm) + ηm
ps(xm)

}
.

Rearranging these two equations, we obtain the following expressions:

Φ−1 (1− vR,m) + Φ−1 (vD,m)

−2
= bs(xm) + ξm, and(2.4.4)

Φ−1 (1− vR,m)− Φ−1 (vD,m)

2
= max

{
0,
cs(xm)

ps(xm)
+

ηm
ps(xm)

}
.(2.4.5)

Note that the left hand side of (2.4.4) closely reflects the difference in vote share, and the left

hand side of (2.4.5) reflects the turnout rate. This is because, if we ignore the nonlinearity of

Φ−1(·) and the denominator, the left hand side of (2.4.4) reduces to 1− vR,m + vD,m and the

left hand side of (2.4.5) to 1 − vR,m − vD,m. The former is one minus the difference in vote

share, and the latter is one minus voter turnout. The left hand side of expressions (2.4.4)

and (2.4.5) can be directly computed using data on vote shares, vD,m and vR,m.

We first consider the identification of bs(·) and the distribution of ξ, Fξ(·). Taking the

expectation of (2.4.4) conditional on xm, we have

(2.4.6) E

[
Φ−1 (1− vR,m) + Φ−1 (vD,m)

−2

∣∣∣∣xm] = bs(xm),
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because E [ξm|xm] = 0. As the left hand side of the above expression is identified, bs(·) is

(nonparametrically) identified for each s (note that the asymptotics is with respect to the

number of counties within each state). Given that bs(·) is the utility difference between

Republicans and Democrats, it is intuitive that bs(·) is identified by the difference in vote

share. In this model, changes in bs(·) is reflected in the vote share margin which cannot be

undone by changes in cs(·).

Now, consider the identification of Fξ(·). Given that bs(·) is identified and the left hand

side of (2.4.4) is observable, each realization of ξm can be recovered from (2.4.4). Hence,

Fξ(·) is also identified. Note that if bs(·) is linear in xm (i.e., bs(xm) = βxm), one can simply

regress the left hand side of expression (2.4.4) on xm by OLS to obtain β as coefficients and

ξm as residuals.

We now discuss the identification of ps(·), cs(·), and Fη(·). For simplicity, consider the

case in which the second term inside the max operator of expression (2.4.5) is positive with

probability 1;

(2.4.7)
Φ−1 (1− vR,m)− Φ−1 (vD,m)

2
=
cs(xm)

ps(xm)
+

ηm
ps(xm)

.

This corresponds to the case in which the turnout rate is always less than 100%. We show

in Appendix C that ps(·), cs(·), and Fη(·) are identified without this assumption.

Taking the conditional moments of (2.4.7), we have

E

[
Φ−1 (1− vR,m)− Φ−1 (vD,m)

2

∣∣∣∣xm] =
cs(xm)

ps(xm)
, and(2.4.8)

Var

[
Φ−1 (1− vR,m)− Φ−1 (vD,m)

2

∣∣∣∣xm] =
σ2
η

(ps(xm))2
,(2.4.9)
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where σ2
η is the variance of ηm. Using (2.4.9), ps(·) is identified up to a scalar constant (i.e.,

up to σ2
η) because the left hand side of (2.4.9) is identified. This implies that cs(xm) is also

identified up to σ2
η using (2.4.8). Given that ps(·) and cs(·) are identified, we can recover

the realization of ηm from (2.4.7), implying that Fη(·) is also identified up to σ2
η. Intuitively,

the left hand side of (2.4.8) and (2.4.9) closely reflect the mean and variance of the rate of

abstention. Hence, the average cost of voting normalized by ps (i.e., cs(·)/ps(·)) is identified

from (2.4.8).

Importantly, while ps(·) is identified only up to a scalar constant, the ratio ps′/ps′′ for

any states s′ and s′′ is identified given our specification of ps(·) as ps(·) = ps × p̃(·). To see

this, note that the ratio of (2.4.9) for two counties with the same demographics in states s′

and s′′ directly identify ps′/ps′′ .

The discussion has, thus far, been based on the simplified case in which all voters in

county m have the same demographic characteristics–i.e., xn = xm for all n in m. As long

as there is sufficient variation in Fx,m(x), we can recover the vote shares conditional on each

x and apply the identification discussion above.

Correlation between Unobserved Cost and Preference Shocks. Our identification makes no

assumptions regarding the correlation between the unobservables ξm and ηm. As ξm and

ηm enter separately in (2.4.4) and (2.4.5), ξm⊥xm and ηm⊥xm are sufficient to identify the

unknown primitives on the right hand side in each equation. Hence, we do not require

any restrictions on the joint distribution of ξm and ηm. In fact, we can nonparametrically

identify the joint distribution of ξm and ηm from the joint distribution of the residuals in each

equation. In our estimation, we specify the joint distribution of ξm and ηm as a bivariate

Normal with correlation coefficient ρ.
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Exogenous Cost Shifters. Lastly, we discuss identification when there exist instruments (e.g.,

rainfall) that shift the cost of voting but not the preferences of the voters. The point we wish

to make is that the existence of exogenous cost shifters are neither necessary nor sufficient

for identification.

To illustrate this point, consider the following discrete choice setup with instruments zn,

VA = uA(xn)− cx(xn)− cz(zn),

VB = uB(xn)− cx(xn)− cz(zn),

V0 = 0,

where Vk denotes the mean utility of choosing k ∈ {A,B, 0}. Here, uA(xn) is not necessarily

equal to −uB(xn), and the cost function is separated into two components, cx(xn) and cz(zn),

where zn is a vector of cost shifters excluded from uk(xn). For any arbitrary function g(xn),

consider an alternative model with ũk(xn) = uk(xn) + g(xn) (k ∈ {A,B}) and c̃x(xn) =

cx(xn) + g(xn), as follows:

VA = ũA(xn)− c̃x(xn)− cz(zn),

VB = ũB(xn)− c̃x(xn)− cz(zn),

V0 = 0.

Because ũk(xn)− c̃x(xn) = uk(xn)− cx(xn), the two models are observationally equivalent,

and thus, uk(·) and cx(·) are not separately identified. In this model, one cannot differentiate

between the case in which voters have intense preferences and large voting costs and one in
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which voters have weak preferences and small costs. However, in the model we take to the

data, intense preferences for one of the parties get reflected in the vote share margin, which

cannot be offset by increasing the voting cost. It is not the availability of instruments, but

rather the observation that we can express uA(xn) = −uB(xn) that identifies the primitives

of the model.

2.5. Specification and Estimation

2.5.1. Specification

We now specify bs(·), cs(·), ps(·) and the joint distribution of ξm and ηm for our estimation.

We specify bs(·), which is the utility difference from having candidates R and D in office,

as a function of a state-level preference intercept, λs, and demographic characteristics, xn,

consisting of age, race, income, religion, and years of schooling:

bs(xn) = λs + β′bxn.

The intercept, λs, is a parameter that we estimate for each state. It captures the state-level

net preference shock for the Republicans that demographic characteristics do not account

for. Note that the linear specification for the utility difference can be derived from a spatial

voting model in which a voter has quadratic loss and her bliss point is linear in xn.23

Voting cost, c(·), is also specified as a linear function of xn as

c(xn) = βc[1,x
′
n]′.

23To illustrate this point, consider a unidimensional spatial voting model in which candidate D’s ideological
position is 0; candidate R’s position is 1; and a voter’s bliss point is αn = βblissxn. Under the quadratic
loss function, the utility from electing candidates D and R are −α2

n and −(1 − αn)2, respectively, and the
utility difference, bs(xn), is written as −(1−αn)2 +α2

n = 2βblissxn − 1. Thus, bs(xn) is linear in xn in such
a model.
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We do not specifically model the presence of other elections, such as gubernatorial and

congressional elections, because previous studies (e.g., Smith, 2001) find that neither the

presence nor the closeness of other elections affects turnout in presidential elections. We also

do not include weather-related variables in c(·) because there was insufficient variation in

precipitation and temperature on the day of the 2004 presidential election to have affected

turnout significantly.24 Although c(·) is allowed to be state specific in the identification, we

opt for a simpler specification to keep the number of parameters manageable.25

We specify the voter’s perception of efficacy as ps× p̃(xn), where p̃(·) is a function of her

age, income, and years of schooling, as follows:26

p̃(xn) = exp(β′pxn).

We normalize ps = 1 for Alabama and normalize p̃(·) such that p̃(x̄) = 1, where x̄ is the

national average of xn.27

24We included weather variables in the simple model that assumes xn = xm (i.e., the demographic charac-
teristics of voters in each county are assumed to be the same within county) and found the coefficients on
the weather variables to be small and insignificant.
25If we include a state-specific cost intercept, this increases the number of parameters by the number of
states. Given that some states have only a moderate number of counties, we found it hard to include a
state-specific cost term in addition to λs and ps.
26The set of variables included in ps(xn) is a subset of xn that takes continuous values. Here, we do not
include dummy variables such as race, and religion. The reason is as follows. The variation in c(·) changes
the utility level additively, while the variation in ps(·) changes it multiplicatively as ps × bs. As dummy
variables take only 0 and 1, it is difficult, in practice, to distinguish whether the effects of those variables
are additive or multiplicative. Thus, estimating the model with dummy variables in both cost and efficacy
is difficult, and we include only continuous variables in ps(·).
27Note that we need two normalizations. Because we express ps(xn) as ps× p̃(xn), we need a scalar normal-
ization on either ps or p̃(xn). We normalize ps = 1 for Alabama. We also need an additional normalization
because ps(·) is identified only up to the variance of η– i.e., the level of ps is not identified in our model.
Assuming that p̃(x̄) = 1 eliminates this degree of freedom.
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We specify the joint distribution of county-level preference shock ξ and cost shock η as a

bivariate normal, N(0,Σ), where Σ is the variance-covariance matrix with diagonal elements

equal to σ2
ξ , σ

2
η and off-diagonal elements ρσξση.

2.5.2. Estimation

We use the method of moments to estimate the model parameters.28 Recall that the vote

shares (as a fraction of eligible voters) and turnout in county m are given by expressions

(2.2.4), (2.2.5) and (2.2.6), where Fx,m is the distribution of xn in countym. For a fixed vector

of the model parameters, θ =(βb,{λs},βc,{ps},βp,σξ,ση,ρ), we can compute the moments of

expressions (2.2.4), (2.2.5) and (2.2.6) by integrating over ξ and η. Our estimation is based

on matching the moments generated by the model with the corresponding sample moments.

Specifically, we define the first and second order moments implied by the model as follows:

v̂k,m(θ) = Eξ,η[vk,m(ξ, η; θ)], ∀k ∈ {D,R},

v̂squaredk,m (θ) = Eξ,η[vk,m(ξ, η; θ)2], ∀k ∈ {D,R},

v̂crossm (θ) = Eξ,η[vD,m(ξ, η; θ)vR,m(ξ, η; θ)],

where vk,m(ξ, η; θ) is the vote share of candidate k given a realization of (ξ, η) and parameter

θ.29,30 Denoting the observed vote share of candidate k in county m as vk,m, our objective

28In contrast to maximum likelihood estimation, which requires us to solve for (ξ, η) that rationalizes the
observed vote share for each parameter value, the method of moments only requires integration with respect
to ξ and η by simulation. The latter is substantially less costly in terms of computation.
29Computing v̂k,m(θ), v̂squaredk,m (θ), and v̂crossm (θ) requires integration over (ξ,η). For integration, we use a

quadrature with [5× 5] nodes and pruning (see Jäckel, 2005) with a total of 21 nodes.
30Note that we do not need to know the value of ρ for computing vk,m(ξ, η; θ). Thus, for each θ\{ρ} (i.e.,
the parameters except for ρ), we can compute vk,m(ξ, η; θ) and solve for the implied realizations (ξm, ηm)
that give the observed vote shares in county m. Berry (1994) guarantees that there exists a unique pair
of (ξm, ηm) that equates vk,m(ξ, η; θ) to the observed shares. By computing the correlation between the
implied realizations of ξm and ηm, we can obtain the value of ρ that is consistent with the observed data.
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function, J(θ), is given by

J(θ) =
∑

k={D,R}

(
J1,k(θ)

V̂ar(vk,m)
+

J2,k(θ)

V̂ar(v2
k,m)

)
+

J3(θ)

V̂ar(vD,mvR,m)
,

where

J1,k(θ) =
1

M

S∑
s=1

Ms∑
m=1

(v̂k,m(θ)− vk,m)2, ∀k ∈ {D,R},

J2,k(θ) =
1

M

S∑
s=1

Ms∑
m=1

(v̂squaredk,m (θ)− v2
k,m)2, ∀k ∈ {D,R},

J3(θ) =
1

M

S∑
s=1

Ms∑
m=1

(v̂crossm (θ)− vD,mvR,m)2 .

J1,k is the sum of the squared differences between the expectation of the predicted vote share

(v̂k,m(θ)) and the actual vote share (vk,m). J2,k is the sum of the squared differences between

v̂squaredk,m (θ) and the squared vote share, v2
k,m. J3 is the sum of the squared differences between

the predicted and actual cross terms. M is the total number of counties across all states,∑S
s=1 Ms, and V̂ar(z) denotes the sample variance of z.

The construction of our objective function follows our identification argument closely.

The first moment, J1,k, matches the conditional expectation of the vote shares from the

model with that from the data. Intuitively, J1,k corresponds to (2.4.6) and (2.4.8), and

pins down βb, {λs}, βc/ps, βc/βp and ps/ps′ . The second and third moments, J2,k and J3,

correspond to (2.4.9). These moments pin down βp,σξ,ση and ρ.

We then impose this value of ρ to compute v̂k,m(θ), v̂squaredk,m (θ), and v̂crossm (θ). Our estimation procedure can

be thought of as minimizing the objective function with respect to θ\{ρ}, and the estimate of ρ is obtained
by computing the correlation between the implied realizations of ξm and ηm given the estimate of θ\{ρ}.
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2.6. Results

The set of parameters that we estimate include those that are common across all states

(βb,σξ, βc,ση,βp,ρ) and those that are specific to each state ({λs},{ps}). Table 2.2 reports

the estimates of the former set, while Figures 2.4 and 2.5 plot the parameter estimates of

the latter set.

Estimates of βb, σξ, βc, ση, βp, and ρ. The first column of Table 2.2 reports the estimates of

the preference parameters. We find that Age and Income enter the utility difference, bR−bD,

positively, implying that old and high-income voters are more likely to prefer Republicans.

Years of Schooling enters the utility difference negatively, thus more-educated voters are

more likely to prefer Democrats. We also find that Hispanics, African Americans, and Other

Races prefer Democrats. The Religion variable carries a positive coefficient, implying that

religious voters prefer Republicans. The estimate of the constant term corresponds to the

preference of the voter who has xn equal to the national average and has λs equal to that of

Alabama.

In the second column of Table 2.2, we report the estimates of the cost parameters. The

estimated costs are inclusive of any benefits from fulfilling civic duty. Moreover, our cost

estimates include not only physical and opportunity costs but also psychological costs, such

as information acquisition costs. We find that Age, Years of Schooling, and Income enter

voting cost negatively. This implies that older, more-educated, and higher-income voters

have a lower cost of voting.31 Hispanics, African Americans, and Other Races have a higher

cost of voting relative to non-Hispanics and Whites. Religious voters also have a higher cost

31Given that high-income and more-educated voters tend to have high opportunity cost, the negative coef-
ficients on income and education might suggest that information acquisition cost can be an important part
of the voting cost.
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Table 2.2. Parameter Estimates

Estimate SE Estimate SE Estimate SE
Age 0.0185 (0.0036) 0.0086 (0.0091) 0.0648 (0.0157)
Years of Schooling 0.0788 (0.0160) 0.2470 (0.0655) 0.1694 (0.0623)
log(income) 0.3747 (0.0496) 0.1996 (0.0825) 0.0534 (0.1728)
Hispanic 0.2474 (0.0843) 0.0750 (0.0726)
African American 1.3392 (0.0592) 0.2799 (0.0807)
Other Races 0.7380 (0.0745) 0.2502 (0.0859)
Religious 0.6616 (0.0577) 0.1442 (0.0440)
Constant 0.1034 (0.0374) 0.4778 (0.0341)
Sigma 0.1978 (0.0086) 0.0097 (0.9045)

Rho

EfficacyPreference Cost

0.0840 (0.0521)

Note: The table reports the parameter estimates of voters’ preferences, costs, and
perception of voting efficacy. The estimate of the constant terms in the first and second
columns corresponds to the preference and costs of the voter who has xn equal to the

national average and has λs equal to that of Alabama. The variable log(income) is the log
of income divided by 1000. Excluded categories are non-Hispanic, White, and

non-Religious. Standard errors are computed by analytically deriving the asymptotic
variance covariance matrix. The standard errors are reported in parentheses.

of voting compared to non-religious voters.The estimate of the constant term in the second

column corresponds to the cost of a voter whose characteristics are set to the national mean.

The third column of Table 2.2 reports the estimates of the efficacy parameters. We find

that Age enters the perception of efficacy positively, while Years of Schooling and Income

enter negatively. This implies that older, less-educated, and lower-income citizens tend to

have a higher perception of efficacy. Given that older voters have lower voting costs as well,

they are more likely to be overrepresented than young voters. Regarding Years of Schooling

and Income, the overall effect on participation depends on the relative magnitudes of the

cost and efficacy coefficients. We discuss the net effect in the next subsection.
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The last row of Table 2.2 reports the estimate of ρ, which is the correlation between

unobservable shocks ξ and η. The estimate is negative (–0.084), implying that the correlation

in the unobservable shocks tends to suppress turnout among voters who prefer Democrats.

Representation and Preference Aggregation. To better understand what our estimates im-

ply about representation across demographic groups and their preferences, Figure 3 plots

the estimated share of voters who prefer Democrats over Republicans (right axis) and an

estimated measure of voter representation (left axis) by demographic groups. The share of

voters who prefer Democrats over Republicans is simply the two-party vote share of the

Democrats unconditional on turnout, computed using the preference estimates. The repre-

sentation measure that we use is based on Wolfinger and Rosenstone (1980), and it is defined

as follows:

WR(x) =
share of group x among those who turn out

share of group x among the overall electorate
,

where x is a demographic group. Overrepresented demographic groups have representation

measures larger than one, while underrepresented groups have measures less than one.

Figure 2.3 shows that there are significant differences in the representation and preference

measures among demographic groups. For example, panel (a) shows that the representation

measure of 75-year-old voters is 1.65, while that of 25-year-old voters is 0.37. The fraction of

75-year-old voters who prefer Democrats is 36.4%, while that of 25-year-old voters is 59.9%.

Figure 2.3 also illustrates how demographic characteristics are related to preference ag-

gregation. In particular, if the two curves in each panel have the same (opposite) slope, the

voters who prefer Republicans (Democrats) are underrepresented. For example, in panels

(a), (c), and (d), the overrepresented groups tend to prefer Republicans, while the under-

represented groups tend to prefer Democrats.
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Figure 2.3. Representation and Preference by Demographic Characteristics.
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.2
.3

.4
.5

.6
.7

.8
.9

P
re

fe
re

nc
e 

M
ea

su
re

.3
.5

.7
.9

1.
1

1.
3

1.
5

1.
7

R
ep

re
se

nt
at

io
n 

m
ea

su
re

NonHispanic Hispanic

(d) Hispanic

.2
.3

.4
.5

.6
.7

.8
.9

P
re

fe
re

nc
e 

M
ea

su
re

.3
.5

.7
.9

1.
1

1.
3

1.
5

1.
7

R
ep

re
se

nt
at

io
n 

m
ea

su
re

White Black Others

(e) Race

.2
.3

.4
.5

.6
.7

.8
.9

P
re

fe
re

nc
e 

M
ea

su
re

.3
.5

.7
.9

1.
1

1.
3

1.
5

1.
7

R
ep

re
se

nt
at

io
n 

m
ea

su
re

Nonreligious Religious

(f) Religion

Representation Measure Preference Measure

Note: The horizontal axis corresponds to the level/category of the demographic variable.
The left vertical axis corresponds to the representation measure, and the right vertical axis
corresponds to preference of the group in terms of the two-party vote share. The horizontal

axis in Panel (c) is income in units of 1,000 USD.

Panel (a) of Figure 2.3 shows that old voters are overrepresented and prefer Republi-

cans, while young voters are underrepresented and tend to prefer Democrats. Similarly,

low-income voters and those who are Hispanic, African American, and of Other Races are

underrepresented and tend to prefer Democrats. On the other hand, panel (f) shows that

religious voters are underrepresented and prefer Republicans. These results show that there

is a systematic selection in the preferences of those who turn out.
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Figure 2.4. Estimates of the State-level Preference Intercept, λs

Note: λAlabama is normalized to zero.

Estimates of State-Specific Effects, λs and ps. Figure 2.4 plots our estimates of the state

specific intercepts in the voter’s utility relative to that of Alabama, which is normalized to

0 (Table B.1 in the Online Appendix reports the point estimates and the standard errors).
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Figure 2.5. Estimates of the State-level Efficacy Coefficient, ps.

Note: Our estimates of ps are relative to pAlabama where pAlabama is normalized to 1.

Larger values of λs imply that the voters in the corresponding state prefer Republicans, net of

the effect of demographic characteristics. These state fixed effects may include the inherent

preferences of voters and/or the effect of campaign activities by candidates. The figure

show that states such as Wyoming, Kansas, and Louisiana have the strongest preference for

Republicans, while states such as Arkansas, Tennessee, and Wisconsin have the strongest

preference for Democrats. Overall, Democratic strongholds such as New York and California

tend to have low estimated values of λs, while Republican strongholds such as Georgia and

Texas tend to have high estimates.

Figure 2.5 plots the estimates of the state-specific component of the perception of voting

efficacy, ps, with normalization pAlabama = 1 (Table B.2 in the Online Appendix reports the

point estimates and standard errors). High values of ps correspond to high perception of

voting efficacy, after controlling for demographics. The perception of voting efficacy varies

across states, which may partly reflect the fact that the electors are determined at the state
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level. We find that battleground states such as Minnesota, Wisconsin, Ohio and Iowa have

some of the highest estimated values of voting efficacy. We also find that states considered

party strongholds, such as California and Texas, have low estimated values. These results

suggest a positive relationship between perception of voting efficacy and pivot probability.

While some of the forces of the pivotal voter model seem to be at play, the estimated

values of ps suggest that the rational expectations pivotal voter model is unlikely to explain

the overall voting pattern very well. Models of voting based on rational expectations would

require ps in battleground states to be orders of magnitude greater than those in party

strongholds (see, e.g., Shachar and Nalebuff, 1999). However, our estimates of ps fall within

a narrow range: the ratio of the estimated state-level efficacy parameters, ps/ps′ , is, at

most, three. Our results highlight the importance of relaxing the assumption of rational

expectations on the pivot probability.

Fit. To assess the fit of our model, Figure 2.6 plots the county-level vote share, voter turnout,

and vote share margin predicted from the model against the data. The predicted vote share,

turnout, and vote share margin are computed by evaluating expressions (2.2.4), (2.2.5), and

(2.2.6) at the estimated parameter and integrating out ξ and η. The plots line up around

the 45-degree line, which suggests that the model fits the data well. In Online Appendix B,

we provide further discussion of fit.

In previous work, Coate et al. (2008) discusses the difficulty of fitting the winning margin

using the rational expectations pivotal voter model. In our paper, we do not impose the

rational expectations assumption, and the model fits the winning margin in the data well.

Turnout and Preference Intensity. We now discuss how preference intensity is related to

turnout and how this affects preference aggregation. Our discussion is closely related to the

theoretical work of Campbell (1999) that shows that minorities with intense preferences can
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Figure 2.6. Fit
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Note: The figure plots the predicted vote share, turnout, and vote share margin against the
data for each county.

win elections with costly voting (see, also, Casella, 2005; Lalley and Weyl, 2015). Note that

our discussion of intensity in this subsection depends on the distributional assumption of

idiosyncratic preference error εn.

Figure 2.7 plots the histogram of b(xn) ≡ bs(xn) + εn for all eligible voters in the forty

states included in our sample (top panel), and the proportion of those who turn out for

given levels of b(xn) (bottom panel). The top panel shows that the distribution of the utility

difference is roughly centered around zero, and has a slightly fatter tail on the Democrats’

side. The bottom panel shows that turnout is higher among Republican supporters than

Democratic supporters at the same level of preference intensity. For example, voters with

preferences in the bin [–2.5, –2) turns out with 70.3%, while voters with preference in the bin
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[2, 2.5) turns out with 87.6%. Overall, we estimate that turnout is significantly lower among

the electorate who prefer Democrats over Republicans, at 55.7%, than turnout among those

who prefer Republicans over Democrats, at 64.5%.

The panel also shows that there is high turnout among voters with high preference

intensity for either party. For example, voters with preferences in the bin [–2.5, –2) are almost

twice as likely to turn out as those with preferences in the bin [–0.5, 0) (70.3% compared to

36.5%). This implies that voters with intense preferences effectively have “more votes” than

those who are indifferent, as pointed out by Campbell (1999).

2.7. Counterfactual Experiments

We conduct two counterfactual experiments to quantify the degree to which the correla-

tion among preferences, voting cost, and efficacy affects preference aggregation.

2.7.1. Preference Aggregation under Compulsory Voting

In our first counterfactual experiment, we consider what the election outcome would be

if the preferences of all eligible voters were aggregated. The counterfactual result can be

thought of as the election outcome under compulsory voting. The election outcome under

this counterfactual can be computed by setting voting cost to zero. That is, individuals vote

for Democrats or Republicans depending on the sign of b̂s(xn) + ξ̂m + εn, where b̂s(·) and ξ̂m

are the estimates of the net utility difference and county-level preference shock.32 Hence, we

32Note that there is a unique value of (ξ̂m, η̂m) that rationalizes the actual vote outcome given our estimates

of preference, cost and perception of efficacy, as discussed in footnote 30. We use these values of (ξ̂m, η̂m) to
compute our counterfactual outcome.
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Figure 2.7. Histogram of Preference Intensity and Turnout Rate by Preference Intensity

Note: The top panel plots the histogram of the utility difference, b(xn). The bottom panel
plots the proportion of those who turn out for given levels of preference intensity.

can express the counterfactual county-level vote shares, ṽD,m and ṽR,m, as

ṽD,m =

∫
Φ
(
−b̂s(xn)− ξ̂m

)
dFx,m(xn),

ṽR,m = 1− ṽD,m.
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Table 2.3. Counterfactual Outcome Under Full Turnout

Democrats Republicans Turnout Rate Democrats Republicans
Actual 48.2% 51.8% 60.1% 208 278

Counterfactual 51.9% 48.1% 100.0% 310 176
(1.1%) (1.1%) n.a. (30.5) (30.5)

TwoParty Vote Share # of Electors

Note: The table compares the actual outcome with the counterfactual outcome in which all
voters turn out. The reported outcomes do not include the results for the eleven states

that we drop from the sample. Standard errors are reported in parentheses.

Note that our counterfactual results are robust to equilibrium adjustments to voters’ percep-

tion of efficacy because a voter’s decision depends only on the sign of the utility difference

irrespective of the perception of efficacy.

Table 2.3 compares the actual outcomes with the counterfactual outcomes for the forty

states in our sample. The first row of Table 2.3 reports the actual vote share, turnout rate,

and the number of electors for the two parties. We report our counterfactual results in the

second row. We find that the Democratic two-party vote share increases from 48.2% to

51.9% in the counterfactual, reflecting our earlier finding that the preference for Democrats

and voting costs are positively correlated.

In terms of electoral votes, we find that the Democrats increase the number of electoral

votes by 102, from 208 to 310. Although ten states and the District of Columbia (D.C.)

are not included in our sample, 310 electoral votes is larger than the threshold needed to

win the election (270) even if the 10 excluded states and D.C. all vote for the Republican

electors.33 Hence, our estimates suggest that the Democrats would likely have won the 2004

presidential election if the preferences of all voters had been aggregated. The standard errors

33There are a total of 538 electoral votes, including the states that are excluded from our sample. A candidate
needs 270 electoral votes to win.
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Table 2.4. State-level Simulation Results under Full Turnout

Turnout
Rate

Actual Actual Actual
Alabama 37.1% 43.0% (1.2%) 56.9% 0 0 (0.0) 0.0%
Arizona 44.7% 50.0% (1.4%) 54.1% 0 10 (5.0) 48.8%
Arkansas 45.1% 50.2% (1.4%) 53.0% 0 6 (3.0) 52.9%
California 55.0% 58.1% (1.4%) 55.7% 55 55 (0.0) 100.0%
Colorado 47.6% 50.5% (0.9%) 65.8% 0 9 (4.3) 65.3%
Florida 47.5% 51.2% (1.1%) 63.0% 0 27 (8.6) 88.6%
Georgia 41.6% 46.7% (1.2%) 55.9% 0 0 (0.9) 0.3%
Idaho 30.7% 36.1% (1.2%) 63.4% 0 0 (0.0) 0.0%
Illinois 55.2% 57.9% (1.2%) 60.7% 21 21 (0.0) 100.0%
Indiana 39.6% 45.5% (1.3%) 54.3% 0 0 (0.0) 0.0%
Iowa 49.7% 51.9% (0.9%) 69.7% 0 7 (0.4) 99.7%
Kansas 37.1% 42.5% (1.2%) 61.0% 0 0 (0.0) 0.0%
Kentucky 40.0% 44.9% (1.2%) 58.6% 0 0 (0.0) 0.0%
Louisiana 42.7% 47.3% (1.0%) 60.9% 0 0 (0.9) 1.0%
Maryland 56.6% 59.7% (1.1%) 61.5% 10 10 (0.0) 100.0%
Michigan 51.7% 54.4% (1.0%) 66.7% 17 17 (0.0) 100.0%
Minnesota 51.8% 52.8% (0.7%) 77.9% 10 10 (0.0) 100.0%
Mississippi 40.1% 45.9% (1.2%) 55.5% 0 0 (0.0) 0.0%
Missouri 46.4% 49.5% (0.9%) 65.3% 0 0 (4.7) 24.2%
Montana 39.7% 44.2% (1.0%) 64.4% 0 0 (0.0) 0.0%
Nevada 48.7% 53.2% (1.3%) 54.7% 0 5 (0.3) 99.7%
New Jersey 53.4% 56.5% (1.2%) 61.6% 15 15 (0.0) 100.0%
New Mexico 49.6% 53.2% (1.2%) 58.4% 0 5 (0.3) 99.7%
New York 59.3% 62.5% (1.3%) 56.9% 31 31 (0.0) 100.0%
North Carolina 43.8% 48.3% (1.2%) 57.1% 0 0 (3.8) 6.7%
North Dakota 36.1% 41.0% (1.0%) 65.6% 0 0 (0.0) 0.0%
Ohio 48.9% 51.5% (0.9%) 67.6% 0 20 (3.4) 97.0%
Oklahoma 34.4% 40.6% (1.3%) 58.4% 0 0 (0.0) 0.0%
Oregon 52.1% 53.6% (0.8%) 71.3% 7 7 (0.0) 100.0%
Pennsylvania 51.3% 54.0% (1.1%) 62.4% 21 21 (0.0) 100.0%
South Carolina 41.4% 47.2% (1.3%) 52.6% 0 0 (0.8) 1.0%
South Dakota 39.2% 43.1% (0.8%) 68.9% 0 0 (0.0) 0.0%
Tennessee 42.8% 47.7% (1.2%) 56.2% 0 0 (1.8) 2.7%
Texas 38.5% 45.1% (1.5%) 52.1% 0 0 (0.0) 0.0%
Utah 26.7% 32.6% (1.5%) 59.1% 0 0 (0.0) 0.0%
Virginia 45.9% 50.1% (1.1%) 60.1% 0 13 (6.5) 48.5%
Washington 53.6% 55.6% (1.0%) 66.4% 11 11 (0.0) 100.0%
West Virginia 43.5% 49.2% (1.4%) 53.8% 0 0 (2.2) 25.3%
Wisconsin 50.2% 51.7% (0.7%) 75.2% 10 10 (0.0) 100.0%
Wyoming 29.7% 35.2% (1.1%) 65.3% 0 0 (0.0) 0.0%

Counterfactual

TwoParty Vote Share
of Democrats

# of Electors for Democrats

Counterfactual

Prob(Democrats win in
counterfactual)

Note: The shaded rows correspond to the states in which the winning party in the
counterfactual differs from that in the actual data. The total number of electors is 538 and
the number of electors for the states included in our data is 486. 270 electors are needed to

win the election. Standard errors are reported in parenthesis.

in our parameter estimates translate to an 87.7% confidence level that the number of electors

for the Democrats exceeds 270. Note that this number is a lower bound on the confidence

level that the Democrats win the election because it assumes that all states excluded from

our sample vote for the Republicans. If we assume, instead, that all states excluded from
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our sample vote in the same way as they did in the actual election, the confidence level that

the Democrats win is 96.0%.

Table 2.4 presents the state-level breakdown of the counterfactual results for the forty

states in our sample. We find that the two-party vote share of the Democrats increases in the

counterfactual in all states, and that the results are overturned in nine states (shaded in the

table) in the counterfactual. The table also shows that there is considerable heterogeneity in

the magnitude of the change across states. For example, in Texas, we find that the change in

the two-party vote share for the Democrats is more than 5 percentage points (from 38.5% to

45.1%), while, in Minnesota, the change is only 1.0 percentage point. An important variable

that explains the heterogeneity is the actual turnout. Figure 2.8 plots the state-level change

in the two-party vote share against turnout, and shows that the change tends to be small in

states with high voter turnout, while it tends to be large in states with low voter turnout.
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Figure 2.8. Changes in the Democrat’s Vote Share by State
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Note: The figure plots the changes in the Democrat’s two-party vote share between the
actual and the counterfactual against the level of actual turnout rate.
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2.7.2. Efficiency Gap and Endogenous Turnout

In our second counterfactual experiment, we study the implications of endogenous turnout

for using the efficiency gap as a measure of gerrymandering. Our counterfactual is motivated

by a recent U.S. Supreme Court case involving districting for Wisconsin’s state legislature

(Gill v. Whitford) in which the plaintiffs introduces a metric called the “efficiency gap” to

measure the extent of gerrymandering.

The efficiency gap, proposed by Stephanopoulos and McGhee (2015) is a measure of how

well vote shares map into seat shares, and it is defined as the difference in the wasted votes

between the parties divided by the total votes. The top half of Table 2.5 is a numerical

example from Stephanopoulos and McGhee (2015) that illustrates how the efficiency gap is

computed. The wasted vote for party k in district d is either vkd − (1/2)(vkd + v−kd) or vkd,

depending on whether vkd is greater than v−kd, where vkd is the votes obtained by party k

in district d and v−kd is the votes obtained by the other party. The efficiency gap is simply

the sum of the difference in the wasted votes across districts, divided by the total votes.

Stephanopoulos and McGhee (2015) argue that an efficiency gap exceeding 8% should be

presumptively unlawful. Table 2.5 is an example of a districting plan that favors party A

(party A wins districts 1 through 8 with a state-wide vote share of 55%), and indeed, this is

captured by the fact that this has a high efficiency gap of 20%.

While the efficiency gap captures the imbalance in the way votes are translated to seat

shares, the validity of the efficiency gap as a measure of gerrymandering requires that turnout

is exogenous. To see this, consider again the example in Table 2.5, but suppose now that

half of the voters are low cost types, who always vote, and the other half are high cost types,

who vote only when the partisanship of the district is relatively balanced. The bottom part
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of Table 2.5 illustrates a redistricting plan in which the shares of A and B supporters are

kept the same as in the original Stephanopoulos and McGhee (2015)’s example, but voters

now have heterogeneous costs. Suppose that the high cost voters turn out only in districts

4 to 8, which are the districts with a balanced partisanship. This would lower the efficiency

gap from 20% to 4.87% while keeping the seat shares unchanged (i.e., party A wins districts

1 through 8).

Table 2.5. Calculation of the Efficiency Gap

District 1 2 3 4 5 6 7 8 9 10 Total

Total Population 100 100 100 100 100 100 100 100 100 100 1000
A Supporter 70 70 70 54 54 54 54 54 35 35 550
B Supporter 30 30 30 46 46 46 46 46 65 65 450
A Wasted Vote 20 20 20 4 4 4 4 4 35 35 150 Efficiency Gap
B Wasted Vote 30 30 30 46 46 46 46 46 15 15 350 20.00%

Low Cost A Supporter 70 70 70 0 0 0 0 0 33 32 275
High Cost A Supporter 0 0 0 54 54 54 54 54 2 3 275
Low Cost B Supproter 0 0 0 46 43 23 23 23 34 33 225
High Cost B Supporter 30 30 30 0 3 23 23 23 31 32 225
A Vote 70 70 70 54 54 54 54 54 33 32 545
B Vote 0 0 0 46 46 46 46 46 34 33 297
Turnout 70 70 70 100 100 100 100 100 67 65 842
A Wasted Vote 35 35 35 4 4 4 4 4 33 32 190 Efficiency Gap
B Wasted Vote 0 0 0 46 46 46 46 46 0.5 0.5 231 4.87%

Endogenous Turnout

 Stephanopolous and McGhee (2015)'s example

Note: This example is taken from Figure 1 of Stephanopolus and McGhee (2015). The top
half is the original example. The bottom half is our modification with two cost types and

endogenous turnout.

This example illustrates the potential issue with using the efficiency gap as a measure

of gerrymandering. The original example of Stephanopoulos and McGhee (2015) and the

modified example are just as biased for party A in terms of mapping the overall preferences

of the voters to seat shares, and yet they result in very different efficiency gap measures.

Moreover, districting planners can take advantage of the heterogeneity in voting costs to
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draw plans that give one party a disproportionate advantage while keeping the efficiency

gap low. Whether the efficiency gap is a good measure of gerrymandering depends on the

extent to which turnout levels can be manipulated through districting plans.

In order to empirically evaluate the robustness of the efficiency gap to endogenous

turnout, we compute the efficiency gap for the 2004 U.S. Presidential election when we

equalize the state-specific component of efficacy across states (set ps = ps′). To the extent

that variation in ps across states reflects how state boundaries affect turnout, equalizing ps

across states can be interpreted as eliminating endogeneity in turnout that is state specific.

Although the intended use of the efficiency gap measure is mainly for Congressional and state

legislative elections, it is possible to compute the efficiency gap for presidential elections as

well. In our context, we compute the wasted vote in each state for the two parties and then

sum the difference across all of the states.

Table 2.6 reports the results. The first row corresponds to the efficiency gap computed

using the actual data. Rows 2 through 7 corresponds to the results when we equalize p

across states. We consider six different levels of p to target aggregate turnout levels between

40% and 80% in 10% increments and the actual aggregate turnout level (60.1%). Comparing

the first row to the 5th row (60.1%), we find that the efficiency gap changes by 2.2%. This

implies that equalizing ps across states in a way that does not change the overall turnout

affects the efficiency gap by 2.2%. The table also shows that the efficiency gap changes by

about 14% when turnout is exogenously increased from 50% to 80%. These changes in the

efficiency measure seem significant especially in light of the fact that Stephanopoulos and

McGhee (2015) argue that districting plans exceeding the threshold value of 8% should be

deemed presumptively unlawful.
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Table 2.6. Election Outcomes and Efficiency Gap when ps is Equalized across States

D R D R
Actual 60.1% 29.0% 31.1% 48.2% 11 29 0.47%

Counterfactual 40% 18.1% 21.9% 45.3% 6 34 9.35%
50% 23.4% 26.6% 46.8% 7 33 7.21%
60% 28.9% 31.1% 48.2% 10 30 2.61%

60.1% 29.0% 31.1% 48.2% 10 30 2.64%
70% 34.9% 35.1% 49.8% 13 27 3.38%
80% 40.9% 39.1% 51.1% 16 24 6.89%

# of Winning States
Efficiency Gap

Vote Share
Turnout

Twoparty Vote Share
for D

Note: Efficiency gap is defined for Democrat candidate. Positive (negative) efficiency gap
means that the districting plan gives Democrats (Republicans) an advantage.

The sensitivity of the efficiency gap to endogeneity of turnout points to a more general

problem with comparing actual votes and seat shares as a measure of gerrymandering. While

our discussion has so far focused on the efficiency gap, any measure based on a comparison

between actual votes and seat shares is subject to the same concerns. This includes the con-

cept of partisan symmetry, which a majority of the Supreme court justices expressed support

in the case League of United Latin American Citizens v Perry. The extant arguments seem

to take turnout as fixed and exogenous. Our results illustrate the importance of considering

the implications of endogenous turnout when thinking about how to measure gerrymander-

ing. One natural alternative is to compare the difference between the actual underlying voter

preferences and seat shares. If we think about elections as a way to aggregate preferences

into outcomes, evaluating the electoral system in terms of its ability to aggregate preferences

seems most coherent. The methods developed in this paper can be used for that purpose.



122

References

Abito, Jose Miguel, “Agency Costs in Environmental Regulation: Evidence from Regu-

lated Electric Utilities,” Working Paper, 2014.

Aguirregabiria, Victor and Pedro Mira, “Swapping the nested fixed point algorithm:

A class of estimators for discrete Markov decision models,” Econometrica, 2002, 70 (4),

1519–1543.

and , “Sequential estimation of dynamic discrete games,” Econometrica,

2007, 75 (1), 1–53.

and , “Dynamic discrete choice structural models: A survey,” Journal of

Econometrics, 2010, 156 (1), 38–67.

Akerlof, George A and William T Dickens, “The Economic Consequences of Cognitive

Dissonance,” American Economic Review, 1982, pp. 307–319.

Atkeson, Lonna Rae, “”Sure, I Voted for the Winner!” Overreport of the Primary Vote

for the Party Nominee in the National Election Studies,” Political Behavior, 1999, 21 (3),

197–215.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin, “Estimating Dynamic Mod-

els of Imperfect Competition,” Econometrica, 2007, 75 (5), 1331–1370.

Barkume, Anthony J, “Identification of Preference for Election Outcomes from Aggregate

Voting Data,” Public Choice, 1976, 27 (1), 41–58.

Bendor, Jonathan, Daniel Diermeier, and Michael Ting, “A Behavioral Model of



123

Turnout,” American Political Science Review, 2003, 97 (02), 261–280.

Berry, Steven T, “Estimating Discrete-Choice Models of Product Differentiation,” RAND

Journal of Economics, 1994, 25 (2), 242–262.

Breen, William J, Laurie Simon Hodrick, and Robert A Korajczyk, “Predicting

equity liquidity,” Management Science, 2002, 48 (4), 470–483.

Brunell, Thomas L and John DiNardo, “A Propensity Score Reweighting Approach

to Estimating the Partisan Effects of Full Turnout in American Presidential Elections,”

Political Analysis, 2004, 12 (1), 28–45.

Brunnermeier, Markus K and Jonathan A Parker, “Optimal Expectations,” Ameri-

can Economic Review, 2005, 95 (4).

Campbell, Colin M, “Large Electorates and Decisive Minorities,” Journal of Political

Economy, 1999, 107 (6), 1199–1217.

Cantillon, Estelle and Aurelie Slechten, “Price formation in the European carbon

market: the role of firm participation and market structure,” Working Paper, 2015.

Carlson, Curtis, Dallas Burtraw, Maureen Cropper, and Karen L Palmer, “Sulfur

dioxide control by electric utilities: What are the gains from trade?,” Journal of political

Economy, 2000, 108 (6), 1292–1326.

Cascio, Elizabeth U and Ebonya Washington, “Valuing the Vote: The Redistribution

of Voting Rights and State Funds Following the Voting Rights Act of 1965,” Quarterly

Journal of Economics, 2013.

Casella, Alessandra, “Storable Votes,” Games and Economic Behavior, 2005, 51 (2), 391–

419.

Chan, H Ron, B Andrew Chupp, Maureen L Cropper, and Nicholas Z Muller,

“The Impact of Trading on the Costs and Benefits of the Acid Rain Program,” Technical



124

Report, National Bureau of Economic Research 2015.

Chan, Ron, “How Large are the Cost Savings from Emissions Trading? An Evaluation of

the U.S. Acid Rain Program,” Working Paper, 2015.

Citrin, Jack, Eric Schickler, and John Sides, “What if Everyone Voted? Simulating the

Impact of Increased Turnout in Senate Elections,” American Journal of Political Science,

2003, 47 (1), 75–90.

Coase, Ronald H, The problem of social cost, Springer, 1960.

Coate, Stephen and Brian Knight, “Socially optimal districting: a theoretical and

empirical exploration,” The Quarterly Journal of Economics, 2007, 122 (4), 1409–1471.

and Michael Conlin, “A Group Rule-Utilitarian Approach to Voter Turnout:

Theory and Evidence,” American Economic Review, 2004, pp. 1476–1504.

, , and Andrea Moro, “The Performance of Pivotal-Voter Models in

Small-Scale Elections: Evidence from Texas Liquor Referenda,” Journal of Public Eco-

nomics, 2008, 92 (3), 582–596.

Collard-Wexler, Allan, “Demand Fluctuations in the Ready-Mix Concrete Industry,”

Econometrica, 2013, 81 (3), 1003–1037.

Cullen, Joseph A, “Dynamic response to environmental regulation in the electricity in-

dustry,” Working Paper, 2015.

and Stanley S Reynolds, “Market Dynamics and Investment in the Electricity

Sector,” 2017.

Dardati, Evangelina, “Pollution Permit Systems and Firm Dynamics: How does the Al-

location Scheme Matter?,” Working Paper, 2014.

Dávila, Eduardo and Cecilia Parlatore, “Trading Cost and Informational Efficiency,”

2017.



125

Degan, Arianna and Antonio Merlo, “A Structural Model of Turnout and Voting in

Multiple Elections,” Journal of the European Economic Association, 2011, 9 (2), 209–245.

DellaVigna, Stefano, John A List, Ulrike Malmendier, and Gautam Rao, “Voting

to Tell Others,” Working Paper, 2015.

DeNardo, James, “Turnout and the Vote: The Joke’s on the Democrats,” American

Political Science Review, 1980, 74 (02), 406–420.

Dhillon, Amrita and Susana Peralta, “Economic Theories of Voter Turnout,” Economic

Journal, 2002, 112 (480), 332–352.

Downs, Anthony, An Economic Theory of Democracy, New York, 1957.

Duffy, John and Margit Tavits, “Beliefs and Voting Decisions: A Test of the Pivotal

Voter Model,” American Journal of Political Science, 2008, 52 (3), 603–618.

EIA, “Electric Power Annual 2012,” Technical Report 2012.

Ellerman, A Denny and Juan-Pablo Montero, “The efficiency and robustness of al-

lowance banking in the US Acid Rain Program,” The Energy Journal, 2007, pp. 47–71.

, Paul L Joskow, Richard Schmalensee, Juan-Pablo Montero, and Eliza-

beth M Bailey, Markets for clean air: The US Acid Rain Program, Cambridge University

Press, 2000.

Ericson, Richard and Ariel Pakes, “Markov-perfect industry dynamics: A framework

for empirical work,” The Review of Economic Studies, 1995, 62 (1), 53–82.

Esponda, Ignacio and Demian Pouzo, “Conditional Retrospective Voting in Large Elec-

tions,” American Economic Journal: Microeconomics, Forthcoming, 2016.

Fabra, Natalia and Mar Reguant, “Pass-Through of Emissions Costs in Electricity

Markets,” American Economic Review, 2014, 104 (9), 2872–99.

Feddersen, Timothy, “Rational Choice Theory and the Paradox of Not Voting,” Journal



126

of Economic Perspectives, 2004, pp. 99–112.

and Alvaro Sandroni, “A Theory of Participation in Elections,” American Eco-

nomic Review, 2006, pp. 1271–1282.

and Wolfgang Pesendorfer, “Voting behavior and information aggregation in

elections with private information,” Econometrica, 1997, pp. 1029–1058.

Feddersen, Timothy J and Wolfgang Pesendorfer, “The swing voter’s curse,” Amer-

ican economic review, 1996, pp. 408–424.

Fowlie, Meredith, “Allocating emissions permits in cap-and-trade programs: Theory and

evidence,” Working Paper, 2010.

, “Emissions trading, electricity restructing, and investment in pollution abatement,”

The American Economic Review, 2010, pp. 837–869.

and Jeffrey M Perloff, “Distributing pollution rights in cap-and-trade programs:

are outcomes independent of allocation?,” Review of Economics and Statistics, 2013, 95

(5), 1640–1652.

and Nicholas Muller, “Market-based emissions regulation when damages vary

across sources: What are the gains from differentiation?,” Technical Report, Working

Paper 2013.

, Mar Reguant, and Stephen P Ryan, “Market-based emissions regulation and

industry dynamics,” forthcoming in Journal of Political Economy, 2014.

, Stephen P Holland, and Erin T Mansur, “What do emissions markets deliver

and to whom? Evidence from Southern California’s NOx trading program,” The American

economic review, 2012, 102 (2), 965–993.

Friedman, John N and Richard T Holden, “Optimal gerrymandering: sometimes pack,

but never crack,” American Economic Review, 2008, 98 (1), 113–44.



127

Fujiwara, Thomas, “Voting Technology, Political Responsiveness, and Infant Health: Ev-

idence from Brazil,” Econometrica, 2015, 83 (2), 423–464.
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APPENDIX A

Appendix for Chapter 1

A.1. Computational Details on Solving the Structural Model

Appendix A.1 explains the details on the computational procedure of solving the struc-

tural model.

A.1.1. Individual Optimization

I first explain the computational procedure for solving an individual problem. For notational

simplicity, I omit the script i for a particular firm. Because the model has a finite period, it

can be solved by backward induction.

(1) Phase II (2003 to 2000): I solve the optimization problem from 2003 to 2000. Note

that I use CVT+1(hT+1, R
2) as a continuation value in the terminal period 2003. By

solving in a backward way, I obtain the policy function x̂t(ht, It, R
2) for emissions

et, net purchase bt, and banking ht+1, and the expected value function in 2000

EV2000(h2000, I2000, R
2).

(2) Investment decision for Phase II: I define the continuation value at the timing of

making the investment decision for Phase II by W2000(h2000, I2000, R
2). The decision

problem is given by

W2000(h2000, I2000, R
1) ≡ maxR2 EV2000(h2000, I2000, R

2)− Γ(R2, R1).

s.t. R2 ≤ R1
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By solving this problem, I obtain the investment policy function R2∗(h2000, I2000, R
1).

(3) Phase I (1999 to 1995): I repeat the same procedure as step 1. Note that the

continuation value in the problem at t = 1999 is given by W2000(h2000, I2000, R
1).

(4) Investment for Phase I: The problem is given by

max
R1

EV1995(0, 0, RP1)− Γ(R1, R0).

s.t.R1 ≤ R0

Note that h1995 = 0 and I1995 = 0 in 1995.

A.1.2. Computation of a Dynamic Competitive Equilibrium

The computational procedure for finding an equilibrium is parallel to the estimation proce-

dure that I introduced in section 1.5.

(1) Fix a candidate of permit prices P = {Pt}2003
t=1995.

(2) Solve the individual problem by backward induction and obtain the policy func-

tion x̂it(hit, Iit, Rit) for emissions et, net purchase bt, and banking ht+1, participa-

tion probability Pit(hit, Rit), and the investment decisions R1
i (hi1995, Ii1995) and ,

R2
i (hi,2000, Ii,2000, R

1
i ) .

(3) Consider the timing of market participation. Denote the year of participation by

s ∈ {∅, 1995, · · · , 2003}. s = ∅ means that a firm does not trade at all in the period.

(4) For each path of participation timing, I simulate the optimal decisions using the

policy functions.

(5) Calculate the probability that each path of participation timing is realized.
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(6) The simulated optimal decisions are given as

x̂it =
∑

s∈{∅,1995,··· ,2003}

Probenteri (s)x̂it(s).

(7) Check the market clearing condition as

∑
i

b̂it(P) + B̄t
fringe

(Pt) = 0 ∀t = 1995, · · · , 2003.

(8) Repeat steps 1-7 until the market clearing conditions are satisfied.

In practice, I stop the iteration when the following condition is satisfied:

max
t=1995,··· ,2003

∣∣∣∣∣∑
i

b̂it(P) + B̄t
fringe

(Pt)

∣∣∣∣∣ < 1000.

This criterion is sufficiently tight so that the absolute value of the price change is in the

order of magnitude of 1e-1.

To update the price in the above procedure, I construct the following rule that exploits

the market clearing conditions and the optimality conditions. Denote a current candidate

of an equilibrium price by Pl = {P l
t}2003
t=1995. The next candidate of price P l+1

t is given by

solving the equation

∑
i

∑
s

Pi,enter(s) · TC ′(−1)
(
λ̂it(P

l, s)− P l+1
t

)
+ B̄t

fringe
(P l+1

t ) = 0,

where λ̂it(P
l, s) is the prediction of the shadow values under the current candidate of prices

Pl.
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A.2. Special Cases of Structural Model

Appendix A.2 introduces the special cases of the structural model I introduced in the

paper. Those cases are used in counterfactual simulations.

A.2.1. Case without Permit Banking and with Transaction Costs

I explain the case in which firms are not allowed to bank emissions permits. Once I shut

down permit banking, permit holding hit is no longer a state variable in the model. However,

the dynamic consideration still plays a role due to abatement investment and participation

decisions.

I first consider individual optimization problems. Consider the case in which a firm is a

trader. The problem is given by

V 1
it (Iit, Rit) = max

{qjt}j ,bt
πit ({qjt}j)− (Ptbit + TC(bit)) + βVi,t+1(1, Ri,t+1)

s.t. eit ({qjt, ρjt}j) = ait + bit.

Note that the choice of {qjt}j and bt does not affect the continuation value. The optimality

conditions of the problem are given by equation (1.3.6) and (1.3.7).

Next, consider the case in which a firm is a non-trader:

V 0
it (Iit, Rit) = max

{qjt}j ,bt
πit ({qjt}j) + βVi,t+1(0, Ri,t+1)

s.t. eit ({qjt, ρjt}j) ≤ ait.
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In this case, a firm may not use all the permits, due to the capacity constraints of production.

The emissions level is given by

e∗it = min {ait, emaxit } ,

where emaxit is the emissions level when a firm is facing zero shadow costs of permits.

Other components, including the participation and the investment decisions are the same

as in the baseline case (i.e., the case that includes both permit banking and transaction costs).

A.2.2. Shutting Down Transaction Costs without Permit Banking

This section explains the case in which I shut down both transaction costs and permit

banking. In this case, I do not need to consider the participation decision.

Given an emissions rate Rit, the individual problem in period t is given by

Πit(Rit) = max
{qjt}j∈Jit

,bit
πit ({qjt}j)− Ptbit

s.t. eit ({qjt, ρjt}j) ≤ ait + bit.

The FOC is by ∂πit/∂qjt = Pt ∀j . This gives the optimal choice for eit(Rit, Pt) and

bit(Rit, Pt).

The investment decision for Phase II is then given as

Wi,2000(R1
i ) = maxR2

i

2003∑
t=2000

βt−2000Πit(R
1
i )− Γ(R2

i , R
1
i )

s.t. R2
i ≤ R1

i
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and the problem for Phase I is

max
R1

i

1999∑
t=1995

βt−1995Πit(R
1
i ) + β2000−1995Wi,2000(R1

i )− Γ(R1
i , R

0
i ).

s.t. R1
i ≤ R0

i .

To close the model, consider an equilibrium of the permit market. The permit price

should satisfy the market clearing conditions:

∑
i

b∗it(R
∗
it(P ), Pt) + B̄fringe

t (Pt) = 0 ∀t = 1995, · · · , 2003.

A.2.3. Shutting Down Transaction Costs with Permit Banking

I now consider the case with permit banking. In the absence of transaction costs, Rubin

(1996) has shown that the equilibrium path of permit prices grows at the rate of β−1 as long

as the aggregate banking is positive, which implies that

Pt+1 = β−1Pt.

⇐⇒ Pt =β−(t−1)P1995.

The optimal decision on emissions, given the emissions rate, is determined by ∂πit/∂qjt =

Pt ∀j, which is the same as the one in appendix A.2.2. As I discussed in section 1.3.8.1,

individual decisions on net purchase and banking are not determined from the model, because

the current shadow value λt = Pt is equal to the discounted marginal value of banking

βλt+1 = βPt+1 = Pt. In other words, banking and trading decisions are arbitrary as long as

a firm can produce the level of emissions determined by the optimality condition.
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Now I consider investment decisions. The continuation value at the beginning of Phase

II is given by

Vi,2000(hi,2000, R
2
i ) =

2003∑
t=2000

βt−2000
[
πit
(
{qjt}j, R2

i

)
− Ptbit

]
+ β2003−2000CV (hi,T+1)

=
2003∑
t=2000

βt−2000
[
πit
(
{qjt}j, R2

i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}

+
2003∑
t=2000

βt−2000Pthit +
2002∑
t=2000

βt−2000Pthit+1

=
2003∑
t=2000

βt−2000
[
πit
(
{qjt}j, R2

i

)
− Pt · (eit − ait)

]
+β2003−2000 {CV (hi,T+1)− PThi,T+1}+ P2000hi,2000,

where the last equality uses the equilibrium relationship βPt+1 = Pt. The investment problem

is

Wi,2000(hi,2000, R
1
i ) = maxR2

i
V2000(hi,2000, R

2
i )− Γ(R2

i , R
1).

s.t. R2
i ≤ R1

i .

Note that hi,2000 does not affect the optimal investment level of R2
i .

The continuation value at the beginning of Phase I is given as
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V1995(hi,1995, R
1
i ) =

1999∑
t=1995

βt−1995
[
πit
(
{qjt}j, R1

i

)
− Pt(eit − ait)

]
+β1999−1995

(
βW2000(hi,2000, R

1
i )− P1999hi,2000

)
.

The investment problem is similar to the one in Phase II.

Finally, I consider the market clearing condition. By aggregating the transition equation

of permit holding (1.3.2) over individual firms and time, we have

(A.2.1)
2003∑
t=1995

Et(Pt) +HT+1 =
2003∑
t=1995

At +
2003∑
t=1995

Bt,

where Et =
∑

i eit(Pt), and other uppercase variables are similarly defined. The market

clearing condition in each period is

Bt + B̄fringe
t (Pt) = 0.

By putting this condition into equation (A.2.1), we have

2003∑
t=1995

Et
(
β−(t−1)P1995

)
+HT+1(β−(T−1)P1995) =

2003∑
t=1995

At +
2003∑
t=1995

−B̄fringe
t

(
β−(t−1)P1995

)
.

The equilibrium price P1 is determined by this equation, and thus the whole path of the

equilibrium price.
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A.3. Derivations and Proof

A.3.1. Derivation of ∂EVt(ht, It)/∂ht

I omit an index i for a particular firm for expositional purposes. I focus on the derivation of

∂EVt(ht,0)
∂ht

. Recall that

EVt(ht, 0) =

∫
max

{
V 0
t (ht), V

1
t (ht)− Ft − ε

}
dG(ε).

By the chain rule, we have

dEVt(ht, 0)

dht
=
∂EVt
∂V 0

t

dV 0
t

dht
+
∂EVt
∂V 1

t

dV 1
t

dht
.

First, we derive ∂EVt
∂V k

t
for k = 0, 1. This is an application of the Williams-Daly-Zachary

theorem (see Theorem 3.1 in Rust, 1994):

∂EVt(ht)

∂ht
= P(ht)

{
Pt + T ′(btradet )

}
+ (1− P(ht))π

′(enott ).

By using the interchange of integration and differentiation, we have the following (I omit ht

for expositional purposes in the following derivation):

∂EVt
∂V 1

t

=
∂

∂V 1
t

∫
max

{
V 1
t − Ft − ε, V 0

t

}
dG(ε)

=
∂

∂V 1
t

∫
Υ1

(V 1
t − Ft − ε)dG(ε) +

∂

∂V 1
t

∫
Υ0

V 0
t dG(ε)

=

∫
Υ1

∂

∂V 1
t

(V trade
t − Ft − ε)dG(ε) +

∫
Υ0

∂

∂V 1
t

V 0
t dG(ε)

=

∫
Υ1

dG(ε)

= Pt(ht),
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where Υ1 is the set of ε such that a firm chooses to participate, i.e., Υ1 ≡ {ε : V 1
t −Ft− ε >

V 0
t }, and Υ0 is similarly defined. Note that we can apply the similar derivation to obtain

∂EVt
∂V 0

t
= 1− P(ht).

Next, we calculate
∂V k

t

∂ht
for k = 0, 1. The derivation is a direct application of the envelope

theorem (or the Benveniste-Scheinkman formula):

∂V k
t

∂ht
= λkt ,

where λkit is the Lagrange multipliers in the corresponding optimization problems. Thus, we

obtain

dEVt(ht, 0)

dht
= Pt(ht)λ1

t + (1− Pt(ht))λ0
t .

A.3.2. Proof of Comparative Statics

This subsection shows the comparative statics in section 1.3.8. I omit an index of firm i for

expositional purposes. I also re-write the profit from the electricity market as a function of

emissions volume eit for the purpose of exposition. The optimization problem for the trader

is now given by

max
et,bt,ht+1

πt (et)− (Ptbt + TC(bt)) + βEVt+1(ht+1, 1)

s.t. et + ht+1 = at + ht + bt,

ht+1 ≥ 0,
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and the problem for the non-trader is similarly defined. For simplicity, I assume that the

non-borrowing constraint is not binding: µt = 0 throughout the proof.

First, I focus on the case in which a firm does not participate in trading. I show that et

and ht+1 are increasing in ht. The optimality condition in this case is given by

π′t(et) = β
∂EVt+1(

=ht+1︷ ︸︸ ︷
at + ht − et, 0)

∂ht+1

.

Using an implicit function theorem, we have

det
dht

= −
−βEV ′′t+1(at + ht − et, 0)

π′′(et) + βEV ′′t+1(at + ht − et, 0)

=
βEV ′′t+1(at + ht − et, 0)

π′′(et) + βEV ′′t+1(at + ht − et, 0)

∈ (0, 1),

where EV ′′t+1(·, 0) = ∂2EVt+1(ht+1, 0)/∂h2
t+1. Note that both EVt+1(·) and π(·) are concave

functions, so that their second derivatives are non-positive. Because ht+1 = (at + ht)− et,

∂ht+1

∂ht
= 1− ∂et

∂ht
> 0.

Next, I consider the case in which a firm participates in trading. The optimality condi-

tions, given by equations (1.3.6) and (1.3.8), are

π′(et)− Pt − TC ′(et + ht+1 − at − ht) = 0

π′(et)− βEV ′t+1(ht+1, 1) = 0.
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Taking the total derivative of these equations with respect to ht, we have

(π′′ − TC ′′)∂et
∂ht

+ (−TC ′′)∂ht+1

∂ht
+ TC ′′ = 0

π′′
∂et
∂ht
− βEV ′′t+1

∂ht+1

∂ht
= 0.

Solving these equations gives me

∂et
∂ht

=
−TC ′′

π′′ − TC ′′ − TC ′′ π′′

βEV ′′
t+1

> 0

∂ht+1

∂ht
=

π′′

βEV ′′t+1

∂et
∂ht

> 0.

Thus, ht increases both et and ht+1. Finally, ht decreases bt because

∂bt
∂ht

=
∂et
∂ht

+
∂ht+1

∂ht
− 1

=
−TC ′′

π′′ − TC ′′ − TC ′′ π′′

βEV ′′
t+1

+
−TC ′′ π′′

βEV ′′
t+1

π′′ − TC ′′ − TC ′′ π′′

βEV ′′
t+1

− 1

=
−TC ′′ − TC ′′ π′′

βEV ′′
t+1

π′′ − TC ′′ − TC ′′ π′′

βEV ′′
t+1

− 1

=
−π′′

π′′ − TC ′′ − TC ′′ π′′

βEV ′′
t+1

< 0.
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APPENDIX B

Appendix for Chapter 2

B.1. Derivation of the Calculus of Voting Model

In this Appendix, we follow Riker and Ordeshook (1968) and present a derivation of

expressions (1) and (2). We classify the situation of a voter into the following five mutually

exclusive events:

E0: votes for D and R are tied without her vote;

ED1: D has exactly one more vote than R without her vote;

ER1: R has exactly one more vote than D without her vote;

ED2: D has two or more votes than R without her vote;

ER2: R has two or more votes than D without her vote.

Let ql denote the probability of El for l ∈ {0, D1, R1, D2, R2}. Let π be the probability

that D wins the election in case of a tie. Then, the utility of the voter for voting for

candidates D and R, as well as not voting, are written as

UD = q0bD + qD1bD + qR1(πbD + (1− π)bR) + qD2bD + qR2bR − c,

UR = q0bR + qD1(πbD + (1− π)bR) + qR1bR + qD2bD + qR2bR − c,

U0 = q0(πbD + (1− π)bR) + (qD1 + qD2)bD + (qR1 + qR2)bR.
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By taking the difference between voting for D and not voting, we have

UD − U0 = q0bD + qD1bD + qR1(πbD + (1− π)bR) + qD2bD + qR2bR − c

−q0(πbD + (1− π)bR)− (qD1 + qD2)bD − (qR1 + qR2)bR

= (q0(1− π) + qR1π) bD − (q0(1− π) + qR1π) bR − c

= (q0(1− π) + qR1π) (bD − bR)− c.

Similarly, we have

UR − U0 = q0bR + qR1bR + qD1(πbD + (1− π)bR) + qR2bR + qD2bD − c

−q0(πbD + (1− π)bR)− (qR1 + qR2)bR − (qD1 + qD2)bD

= (qD1(1− π) + q0π) bR + (−qD1(1− π)− q0π) bD

= (qD1(1− π) + q0π) (bR − bD)− c.

Assuming that q0 = qD1 = qR1 ≡ p in a large election (see page 103 of Myerson and

Weber, 1993, for a justification), we can rewrite UD, UR, and U0 as

UD = p(bD − bR)− c

UR = p(bR − bD)− c

U0 = 0.

B.2. Data Construction

In this Appendix, we explain how we construct the joint distribution of demographic

characteristics and citizenship status at the county level. We first use the 5% Public Use
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Microdata Sample of the 2000 U.S. Census (hereafter PUMS), which is an individual-level

dataset, to estimate the covariance matrix between the demographic variables and citizenship

information within each public use microdata area (PUMA). In particular, we estimate the

joint distribution of the discrete demographic characteristics (Race, Hispanic, Citizenship)

by counting the frequency of occurrence. We then estimate a covariance matrix for the

continuous demographic variables (Age, Income, Years of Schooling) for each bin. Because

the PUMA and counties do not necessarily coincide, we estimate covariance matrices for

each PUMA and then use the correspondence chart provided in the PUMS website to obtain

estimates at the county level.

In the second step, we construct the joint distribution of demographic characteristics by

combining the covariance matrix estimated in the first step and the marginal distributions of

each of the demographic variables at the county level obtained from Census Summary File

1 through File 3. We discretize continuous variables into coarse bins. We discretize age into

three bins: (1)18-34 years old; (2) 35-59 years old; and (3) above 60 years old; income into

6 bins: (1) $0-$25,000; (2) $25,000-$50,000; (3) $50,000-$75,000; (4) $75,000-$100,000; (5)

$100,000-$150,000; and (6) above $150,000; and years of schooling into 5 bins: (1) Less than

9th grade; (2) 9th-12th grade with no diploma; (3) high school graduate; (4) some college

with no degree or associate degree; and (5) bachelor’s degree or higher. Thus, there are 540

bins in total. The joint distribution of demographic characteristics that we create gives us a

probability mass over each of the 540 bins for each county.

Finally, we augment the census data with religion data obtained from Religious Congre-

gations and Membership Study 2000. These data contain information on the share of the

population with adherence to either “Evangelical Denominations” or “Church of Jesus Christ

of Latter-day Saints” at the county level. Because the Census does not collect information
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on religion, we do not know the correlation between the religion variable and the demo-

graphic characteristics in the Census. Thus, we assume independence of the religion variable

and other demographic variables. As a result, there are 1,080 bins in our demographics

distribution.

B.3. Identification of c(·), p(·), and Fη in the general case

In this Appendix, we show that c(·), p(·), and Fη are identified even when the max

operator in equation (2.4.5) binds with positive probability. Note that our argument in the

main text considered only the case in which the max operator never binds. Recall that

(B.3.1)
Φ−1 (1− vR,m)− Φ−1 (vD,m)

2︸ ︷︷ ︸
≡Ym

= max

{
0,
c(x̄m)

p(x̄m)
+

ηm
p(x̄m)

}
, ηm ⊥ x̄m.

In this Appendix, we work with the normalization that the value of p(·) at some x̄m = x0

as p(x0) = 1. This amounts to a particular normalization of variance of η. Note that the

distribution of Ym (the left hand side of equation (B.3.1)) conditional on x̄m = x0 is a

truncated distribution with mass at zero. Figure B.1 illustrates this when the mass at zero

is less than 50%, and Fη is symmetric and single-peaked at zero.

First, we present our identification discussion for the case that Fη is symmetric and

single-peaked at zero. As Figure B.1 illustrates, the median of Ym conditional on x̄m = x0

directly identifies c(x0) under these assumptions. Also, the density of η, fη, is identified

above the point of truncation. Formally, fη(F
−1
η (t)) is identified for any t > t(x0), where

t(x0) = Pr (Ym = 0|x0) .

Hence, fη(0) is identified from the height of the density of Ym at the median.
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Figure B.1. The distribution of Ym conditional on x = x0 and x = x1.

Note: The distribution of Ym conditional on x = x0 and x = x1 is the one when the
distribution of η is symmetric and single-peaked, and t(x0), t(x1) < 0.5, where t(x) is the
probability that Ym is equal to zero conditional on x. The distribution of Ym is truncated
at zero. The conditional median of Ym identifies c(x0) and c(x1)/p(x1), and the height of

the density at the conditional median identifies fη(0) and p(x1)fη(0).

Now, consider x1 6= x0. Assume, again, that t(x1) < 0.5. Then, c(x1)/p(x1) is identified

from the conditional median of Ym, and p(x1)fη(0) is identified by the height of the condi-

tional density of Ym at the median. Given that fη(0) is identified, c(x1) and p(x1) are both

identified. Moreover, Fη is identified over its full support if there exists sufficient variation

in x, i.e., infx t(x) = 0.

We now consider the case in which Fη is not restricted to being symmetric and single-

peaked and t(x0) may be less than 0.5. The distribution of Ym is identified above t(x0),

as before. Now, consider x1 6= x0. Similar to before, we identify p(x1)fη(F
−1
η (τ)) for τ
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above t(x1).1 If we let τ be any number larger than max{t(x0), t(x1)}, both fη(F
−1
η (τ)) and

p(x1)fη(F
−1
η (τ)) are identified. Hence, p(x1) is identified. Similarly, p(·) is identified for all

x.

We now consider identification of c(·). We present two alternative assumptions on Fη

and show that c(·) can be identified under either assumption. First, assume that the median

of η is zero, Med(η) = 0, and that there exists x = x2 such that t(x2) < 1/2. The latter

assumption means that more than half of the counties have turnout less than 100% when

x = x2. Then, the median of Ym conditional on x2 identifies c(x2)/p(x2). Now, consider

any x1 6= x2 and let τ be any number larger than max{t(x2), t(x1)}. Let z1 and z2 be the τ

quantile of Ym conditional on x1 and x2, respectively. z1 and z2 are clearly identified. Then,

p(x1)
[
F−1
η/p(x1)(τ)− F−1

η/p(x1)(1/2)
]

= p(x2)
[
F−1
η/p(x2)(τ)− F−1

η/p(x2)(1/2)
]

⇔ p(x1)

[
z1 −

c(x1)

p(x1)

]
= p(x2)

[
z2 −

c(x2)

p(x2)

]
⇔ c(x1)

p(x1)
= z1 −

p(x1)

p(x2)

(
z2 −

c(x2)

p(x2)

)
.(B.3.2)

Given that all of the terms on the right hand side of (B.3.2) are identified, c(x1)/p(x1) is

identified.

Alternatively, assume that E(η) = 0 and infx t(x) = 0. We now show that c(·) is

identified under these alternative assumptions. Intuitively, this latter assumption means

that there exist values of x for which the max operator is never binding. In this case,

we can fully recover the distribution of Fη(·). Then, we can identify the distribution of

c(x)/p(x) + ηm/p(x) for any x. Hence, we identify c(·)/p(·).

1Note that we identify fη/p(x1)

(
F−1η/p(x1)

(t)
)

, where fη/p(x1)(·) and F−1η/p(x1)
(·) are the density of η/p(x1) and

the inverse distribution of η/p(x1), respectively. Note that fη/p(x1)

(
F−1η/p(x1)

(t)
)

= p(x1)fη(F−1η (t)).
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Table B.1. Estimates of State Preference Fixed Effects Relative to λAlabama

Estimate SE Estimate SE
Alabama Nevada 0.009 (0.059)
Arizona 0.132 (0.050) New Jersey 0.247 (0.041)
Arkansas 0.363 (0.034) New Mexico 0.055 (0.069)
California 0.236 (0.060) New York 0.239 (0.036)
Colorado 0.057 (0.055) North Carolina 0.088 (0.033)
Florida 0.101 (0.039) North Dakota 0.006 (0.040)
Georgia 0.107 (0.028) Ohio 0.166 (0.035)
Idaho 0.129 (0.044) Oklahoma 0.057 (0.041)
Illinois 0.243 (0.030) Oregon 0.130 (0.054)
Indiana 0.099 (0.031) Pennsylvania 0.190 (0.037)
Iowa 0.300 (0.032) South Carolina 0.030 (0.031)
Kansas 0.194 (0.038) South Dakota 0.000 (0.039)
Kentucky 0.251 (0.032) Tennessee 0.345 (0.034)
Louisiana 0.163 (0.030) Texas 0.127 (0.034)
Maryland 0.107 (0.053) Utah 0.079 (0.062)
Michigan 0.246 (0.031) Virginia 0.114 (0.035)
Minnesota 0.297 (0.032) Washington 0.223 (0.055)
Mississippi 0.128 (0.033) West Virginia 0.216 (0.037)
Missouri 0.217 (0.029) Wisconsin 0.335 (0.033)
Montana 0.098 (0.044) Wyoming 0.230 (0.057)

0 (Normalized)

Note: Standard errors are reported in parentheses. Higher values imply a stronger
preference for Democrats.

B.4. Additional Tables

We report the estimates of state-specific effects on preference and efficacy in Tables B.1

and B.2, which we use to plot Figures 2.4 and 2.5.

B.5. Fit

In this Appendix, we report further on the fit of the model. Figure B.2 plots the distri-

bution of Democratic and Republican vote shares in the data and in the model prediction.
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Table B.2. Estimates of State-level Fixed Effects of Voting Efficacy

Estimate SE Estimate SE
Alabama Nevada 0.854 (0.075)
Arizona 0.660 (0.109) New Jersey 0.725 (0.054)
Arkansas 0.739 (0.043) New Mexico 0.976 (0.083)
California 0.751 (0.053) New York 0.795 (0.052)
Colorado 1.165 (0.073) North Carolina 0.787 (0.040)
Florida 0.975 (0.054) North Dakota 1.062 (0.056)
Georgia 0.842 (0.039) Ohio 1.323 (0.057)
Idaho 1.274 (0.081) Oklahoma 0.919 (0.041)
Illinois 1.067 (0.041) Oregon 1.441 (0.086)
Indiana 0.814 (0.042) Pennsylvania 0.838 (0.046)
Iowa 1.319 (0.055) South Carolina 0.751 (0.045)
Kansas 0.877 (0.043) South Dakota 1.680 (0.105)
Kentucky 1.052 (0.037) Tennessee 0.867 (0.041)
Louisiana 1.316 (0.079) Texas 0.769 (0.041)
Maryland 0.767 (0.050) Utah 1.229 (0.087)
Michigan 1.180 (0.048) Virginia 0.754 (0.043)
Minnesota 1.765 (0.103) Washington 1.080 (0.051)
Mississippi 1.193 (0.067) West Virginia 0.814 (0.043)
Missouri 1.159 (0.040) Wisconsin 1.762 (0.108)
Montana 1.066 (0.054) Wyoming 1.151 (0.060)

1 (Normalized)

Note: Standard errors are reported in parentheses. Alabama is set to 1 for normalization.

The figure shows that the model fits the data well for all ranges of the Democratic and Re-

publican vote shares. Lastly, we compute the χ2 statistic for the goodness-of-fit test. The χ2

test statistics for Democratic and Republican vote shares are 14.07 and 45.29, respectively.

The former do not reject the null that these two distributions are the same at 5% level, while

the latter rejects it.
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Figure B.2. Model Fit

Note: The top panel plots the distributions of Democratic vote share in the data and in the
model prediction. The bottom panel plots the distributions for the Republican vote share.
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