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Abstract

Thermoelectric devices convert between temperature gradients and electricity, implying numerous

applications, such as powering exploratory space vehicles, industrial waste-heat recovery, and solid-

state refrigeration. Thermoelectric devices consist of doped p-type and n-type semiconductor legs,

and the overall device efficiency depends on the transport properties of these semiconductor materi-

als. High-performing thermoelectric materials require a high Seebeck coefficient and high electrical

conductivity, but these can be conflicting requirements—increasing the doping level increases the

electrical conductivity but decreases the Seebeck coefficient. However, electronic band engineering

in k-space, or reciprocal space, can partially decouple these properties and yield materials that

have a high Seebeck coefficient and electrical conductivity. Specifically, it is beneficial to engineer

bands that have complex Fermi surfaces, characterized by high valley (band) degeneracy, carrier

pocket anisotropy, and/or low-dimensional transport. The goal of this dissertation is to understand

the chemical origins of complex Fermi surfaces by studying the k-dependence of atomic-orbital in-

teractions in various thermoelectric semiconductors. The motivation behind this work is to use

this understanding of complex electronic structures to predict chemical trends in band structure

behavior, and therefore, predict alloying design strategies for engineering better thermoelectric ma-

terials. In this thesis, the tight-binding method, also known as the Linear Combination of Atomic

Orbitals, is used in conjunction with density-functional theory, to gain chemical insights into the

origins of complex electronic structures in a variety of technologically-relevant thermoelectric mate-

rial systems, including IV-VI semiconductors, transition-metal-based half-Heusler semiconductors,

and Zintl-phase Mg3Sb2.
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Notation Conventions and Abbreviations

Physical Constants

• Boltzmann constant: kB = 1.38× 10−23 J/K

• Planck’s constant: h = 6.63× 10−34 J·s

• Reduced Planck’s constant: ℏ = 1.05× 10−34 J·s

• Electron rest mass: me = 9.11× 10−31 kg

• Electron charge: e = 1.60× 10−19 C

List of Symbols

• T : Absolute Temperature

• ZT : Thermoelectric Figure-of-Merit (device)

• zT : Thermoelectric Figure-of-Merit (material)

• B: Thermoelectric Quality Factor

• σ: Electrical conductivity

• κ : Thermal conductivity (lattice: κL, electronic: κe)

• L: Lorenz number

• EF : Electron chemical potential (Fermi level) or Fermi energy1

• η: Reduced electron chemical potential

• α: Seebeck coefficient

• m∗ : Effective mass (inertial: m∗
I , density-of-states: m∗

DOS , band: m∗
b , conductivity: m∗

c ,
Seebeck: m∗

S)

• NV : Valley (band) degeneracy

• n (or p for holes): Carrier concentration

• µ: Mobility (weighted: µw, parameter: µ0)
1In this dissertation, we distinguish between the Fermi level and the Fermi energy, though both are denoted by

EF . The Fermi level is the electron chemical potential (also denoted µ), which is the energy at which the probability
of electron occupation is 1/2. In an intrinsic (undoped) semiconductor, the Fermi level lies in the middle of the band
gap. The Fermi energy is only defined for zero Kelvin, and refers to the energy of the highest filled electron state. In
an intrinsic semiconductor, the Fermi energy is located at the valence band maximum.
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• τ : Carrier relaxation time

• f : Fermi-Dirac distribution function

• Fj : Fermi integral of jth order

Frequently Used Abbreviations

• Tight-binding (TB)

• Linear Combination of Atomic Orbitals (LCAO)

• Density-of-states (DOS)

• half-Heusler (hH)

• Density Functional Theory (DFT)

• Crystal orbital Hamilton population (COHP)

• Perdew–Burke-Ernzerhof (PBE)

• Spin-orbit coupling (SOC)

• Valence band (VB)

• Conduction band (CB)

• Valence band maximum (VBM)

• Conduction band minimum (CBM)

• Brillouin zone (BZ)
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Vppπ,Te = −Vppσ,Te/8 eV (see Table 3.1). . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 k-dependent strength of the cation-s–anion-p tight-binding (TB) hopping integral
(based on the diatomic molecule model) (|Vsp|) corresponding to the highest valence
band along the (a) Λ (ΓL)-line, (b) Σ (ΓK)-line, and (c) ∆ (ΓX)-line of the FCC
Brillouin zone for the IV-VI rock salt TB model. The values are shown in terms of
the cation-s–anion-p hopping parameter, Vspσ. . . . . . . . . . . . . . . . . . . . . . 73

3.7 k-dependent strength of the cation-p–anion-p tight-binding (TB) hopping integral
(based on a diatomic molecule model), |Vpp|, for the highest valence band along the
(a) Λ (ΓL)-line, (b) Σ (ΓK)-line, and (c) ∆ (ΓX)-line of the FCC Brillouin zone for
the IV-VI rock salt TB model. The values are shown in terms of the cation-s–anion-
p hopping parameter, Vppσ. The fainter lines in (a)-(c) represent the case where
Vppπ = 0, and the darker lines represent the cases where Vppπ = −(1/8)Vppσ. . . . . . 75
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3.8 Sketches of molecular-orbital-like diagrams showing the nearest-neighbor bonding
interactions in IV-VI rock salt semiconductors at the Γ-point and at the L-point. (a)
At the Γ-point, interactions between the cation-s and anion-s orbitals and between
the cation-p and anion-p orbitals are present. The valence band (VB) edge at Γ comes
from the cation-p–anion-p bonding states and the conduction band (CB) edge comes
from the cation-p–anion-p antibonding states. (b) At the L-point, cation-s–anion-p
and cation-p–anion-s interactions are present, and the valence band maximum (VBM)
and conduction band minimum (CBM) come from cation-s–anion-p and cation-p–
anion-s anti-bonding states, respectively. The final energies of the molecular orbitals
in (b) are modified due to next-nearest-neighbor interactions (e.g., cation-p–cation-
p and anion-p–anion-p next-nearest-neighbor interactions push the nearest-neighbor
s-p anti-bonding states in (b) down in energy and the non-bonding p-states up in
energy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Sketch of linear (1D) representations of the crystal orbital units and corresponding
Bloch functions at Γ and L in the highest valence band in PbTe. (a) The Te-p/Pb-s
crystal orbital unit is described by a Te-p orbital and Pb-s orbital in an anti-bonding
(AB) configuration. The Γ-point Bloch function for this unit is non-bonding (NB),
as the nearest neighbor bonds alternate between being anti-bonding and bonding,
cancelling out to give zero net-bonding. The L-point Bloch function is entirely anti-
bonding (AB). (b) The Te-p/Pb-p crystal orbital unit is described by a Pb-p–Te-
p bonding interaction. The Γ-point Bloch function is bonding, while the L-point
Bloch function is non-bonding (NB). Dark versus light shading is used to represent
the orbital phases (positive or negative), such that overlaps between orbitals of the
same phase are bonding (σ) and overlaps between orbitals of opposite phases are
anti-bonding (σ∗). Note that the size of the orbitals does not represent the orbital
contributions/characters. The orbitals are all shown using the same size, such that
only the symmetry of the phase is represented by these sketches. The 1D L-point
representation also corresponds to the 1D representations of the W-point, Σ′-point,
and ∆′-point VB edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 3D sketches of the tight-binding wavefunctions in the highest valence band of PbTe at
the L-point, Σ′-point, and ∆′-point. At the L-point, the Te-p orbital is aligned along
the [111] direction, at Σ′ = π

a (0, 1, 1) it is aligned along the [011] direction, and at
∆′ = π

a (0, 0, 1) it is aligned along [001]. The overall s-p interaction strength (hopping
integral), given by Vsp(k), decreases from L to Σ′ to ∆′. The shading indicates the
orbital phases (positive or negative), and the relative phases of the Pb-s orbitals were
assigned using the 3D Bloch functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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4.1 Low-dimensional Fermi surfaces in bulk 3D materials have density of states (DOS)
with energy (ε) dependencies that correspond to those in true low-dimensional ma-
terials, such as thin-films and nanowires. The top row depicts sketches of true 3D,
2D, and 1D materials. The middle row contains sketches of the corresponding DOS
for these materials, assuming parabolic bands in the dispersive direction(s). The
bottom row shows sketches of Fermi surfaces in cubic bulk 3D materials that have
DOSs with energy dependencies corresponding to 3D-type transport (DOS ∝

√
ε),

2D transport (DOS independent of energy), and 1D transport (DOS ∝ 1/
√
ε). In

the DOS sketches, εb denotes the band edge. . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 DFT-calculated (using the PBE functional without spin-orbit coupling) electronic
structure of PbTe, showing the valence band edge. The energy of the L, Σ, and ∆
valence band extrema are shown using the magenta, cyan, and coral dotted lines,
respectively. The energy differences between the L and Σ bands (ELΣ) and L and ∆
bands (EL∆) are labeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Tight-binding (TB)-calculated band convergence between L, Σ, and ∆ valence bands
with respect to (a) the cation-s–anion-p interaction strength (Vspσ), (b) the anion-
p-anion-p interaction strength (Vppσ,Te) and (c) the energy separation between the
cation-s and anion-p orbitals (2Asp). The solid lines are calculated using the ana-
lytical approximations given in Equations 4.1-4.2, and the circles represent values
calculated numerically using the TB model. The values of the TB parameters when
they are held constant are Vspσ = 0.8 eV, Vppσ,Te = 0.15 eV, 2Asp = 5 eV, Vppσ = 1
eV, and Vppπ = −1/8 eV. Vppπ,Te is constrained, such that Vppπ,Te = −1

8Vppσ,Te (see
Table 3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Comparison of DFT-calculated (no SOC) valence band (VB) offsets and k-resolved,
band-resolved projected density of states (pDOS) values for the cation-s orbitals as
a function of lattice constant between GeTe and PbTe. (a) Difference in energy
between L and Σ VBs (circles) and between L and ∆ VBs (inverted triangles) for
GeTe (red) and PbTe (blue). Lines of best fit are shown with solid lines (L−Σ) or
dashed lines (L−∆). (b) Difference in the (normalized) pDOS of cation-s between L
and Σ VBs and between L and ∆ VBs for GeTe and PbTe (same label key as (a)).
(c) Normalized cation-s pDOS in the L-point VBM as a function of lattice constant
for GeTe and PbTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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4.5 Numerical tight-binding (TB) values of valence band (VB) offsets between the L and
Σ VBs (ELΣ) and between the L and ∆ VBs (EL∆) as a function of x inM1xM21−xX,
where M1 is a cation that introduces unfilled s0 states above the VB edge (Na, Mn,
Mg, Cd, Hg, etc.), M2 is a group-IV cation (Ge, Sn, Pb), and X is a group-VI anion
(S, Se, Te). The darker lines represent values calculated with the M1-s0–X-p and
M2-s2–X-p interactions included, while the fainter lines represent values calculated
where only the M2-s2–X-p interaction is considered (s0-cation (M1) acts as a cation
vacancy). The same s-p hopping parameter, Vspσ, is used for both s-p interactions,
and the on-site energy of M1-s0 is set to be 2.5 eV above the X-p on-site energy. The
other TB parameters are the same as those used to calculate Figure 4.3 (see Table
3.1). The M2-p–X-p interaction is also included in all calculations. Note that only
the effects of the cation-s-orbital contents are being considered in this model— we
do not regard the effects of introducing other M1 orbitals. . . . . . . . . . . . . . . . 98

4.6 Valence band (VB) Fermi surface evolution from tight-binding (TB) band structures
of a toy IV-VI rock salt semiconductor, where the cation-s–anion-p hopping param-
eter, Vspσ, is varied. The top panel shows TB Fermi surfaces when the Fermi energy
is set to be 0.05 eV below the VBM, and the bottom panel shows Fermi surfaces
with the same Vspσ values for a Fermi energy 0.075 eV below the VBM. All the TB
parameters aside from Vspσ are given by the values listed in Table 3.1. . . . . . . . . 99

4.7 Idealized IV-VI rock salt valence band (VB) Fermi surfaces types. Each type of Fermi
surface is distinguished by the energy dependence of its density of states (DOS), and
the dimensionality of transport that coincides with this DOS. The 3D-type Fermi
surface (left) consists of four spheres (eight half-spheres), with radius |k3D|. The 2D-
like Fermi surface (center) consists of twelve cylinders with radius |k2D| and length
2π
a , where a is the unit cell lattice constant. The 1D-like Fermi surface (right) can be

approximated as six intersecting sheets (neglecting the overlapping areas) with side
lengths 2

√
2π
a and thickness 2|k1D|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Seebeck coefficient (α), power factor (α2σ), and zT as a function of hole concentration
(p) at 300K for different scattering assumptions (based on acoustic-phonon scattering)
for the 3D- (green), 2D- (blue), and 1D-like (red) Fermi surfaces in IV-VI rock salt
compounds. (a) The Seebeck coefficient is highest in the 1D Fermi surface, followed
by the 2D then 3D Fermi surface geometries. (b) Power factor and (c) zT as a
function of carrier concentration, assuming that the scattering rate is proportional
to the density of states of a single sphere, cylinder, or sheet. (d) Power factor and
(e) zT , assuming that the scattering rate is proportional to the density of states
corresponding to one of the four L-points (1/4 of the total DOS for 4 spheres, 12
cylinders, or 6 sheets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 (a) Seebeck coefficient (α), (b) power factor (α2σ), and (c) zT as a function of hole
concentration (p) at 300K calculated using the constant scattering time approxima-
tion for the 3D- (green), 2D- (blue), and 1D-like (red) Fermi surfaces in IV-VI rock
salt compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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4.10 Comparison of Seebeck effective mass and Fermi surface complexity factors for ide-
alized IV-VI rock salt Fermi surfaces with 3D- (green), 2D- (blue), and 1D-like (red)
transport—described by spheres, cylinders, and sheets, respectively. (a) Seebeck ef-
fective mass (m∗

S) versus carrier concentration (p) relationships calculated using an
acoustic-phonon scattering assumption with the Seebeck versus carrier concentration
data in Figure 4.8a. (b) Fermi surface complexity factor, N∗

VK
∗, for each type of

Fermi surface using conductivity effective masses (m∗
c) of 0.2me, 0.4me, and 0.6me,

for the 3D-, 2D-, and 1D-type Fermi surfaces, respectively. All calculations were done
at T = 300K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Primitive unit cell of GeTe in the cubic rock salt phase and rhombohedral phase,
where Te is located at (0, 0, 0) in both cases. (a) In the cubic phase, Ge (blue) is
located at (0.5, 0.5, 0.5), and the primitive cell interaxial angle (γ) is 60◦. (b) In the
rhombohedral phase, the Ge is displaced from the center of the Te (red) octahedron
at (0.5± δ, 0.5± δ, 0.5± δ), where δ ∼ 0.03, and the interaxial angle is 58◦. . . . . . 114

5.2 Labelled first Brillouin zones (BZs) of the (a) cubic rock salt and (b) rhombohedral
phases of GeTe. DFT electronic band structures of (c) c-GeTe and (d) r-GeTe,
calculated using the PBE functional with SOC. . . . . . . . . . . . . . . . . . . . . . 116

5.3 (a) Schematic of the valence band (VB) edge energies (L, Z, Σ, η, and ∆ ) with
respect to the L-point CBM (black) as a function of interaxial angle (γ) when the
Ge-offset, δ = 0 (top) and δ = 0.03 (bottom). The energies (shown with dashed
lines) are calculated from DFT with spin-orbital coupling (SOC). (b)-(c) Qualitative
sketches of just the L, Z, and Σ, band energies as a function of γ for δ = 0 and 0.03.
Increasing the offset from δ = 0 to 0.03 pushes the Z and L bands down in energy
relative to the Σ band (for all γ). The values in parentheses are the degeneracies for
each specified k-point or line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 2D heat maps showing the nominal valley degeneracy (NV ) of the valence band using
a Fermi energy (EF ) of EV BM − EF = 0.03 eV, (b) EV BM − EF = 0.05 eV, (c)
EV BM − EF = 0.07 eV, and (d) EV BM − EF = 0.10 eV. EV BM is the energy of the
VBM. The values of nominal NV are labeled in each region. . . . . . . . . . . . . . 120

5.5 Evolution of GeTe valence band Fermi surface upon increase in symmetry from the
rhombohedral to cubic structure. (a)-(c) Fermi surfaces calculated 0.05 eV below
the VBM for the (a) relaxed r-GeTe, (b) less distorted r-GeTe with δ = 0.01 and
γ = 59.7◦, and (c) relaxed c-GeTe. (d)-(f) Fermi surfaces calculated 0.10 eV below
the VBM for the (d) relaxed r-GeTe, (e) less distorted r-GeTe with δ = 0.01 and
γ = 59.7◦, and (f) relaxed c-GeTe. The nominal values of NV are given below each
Fermi surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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5.6 (a) Offset (δ) versus interaxial angle (γ) values determined experimentally (magenta
circles and black triangles) [1,2] and from DFT (red inverted triangles). (b) Valence
band energies (EV B) of the Σ, L, Z, η and ∆ bands along the interpolated DFT γ
vs. δ line. The energies are shown relative to the energy of the CBM at the L-point
(ECBM (L)). (c) Nominal valley degeneracy (NV ) along the DFT γ vs. δ line for a
Fermi energy 0.05 eV below the VBM. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Visualizations of simplified tight-binding (TB) wavefunctions at local VBMs in c-
GeTe (γ = 60◦) and r-GeTe (γ < 60◦), assuming that only the interaxial angle (γ)
varies, while the offset is constant at γ = 0. (a) For c-GeTe, at the L-point, the Te-p
orbital is oriented such that it is anti-bonding with all six neighbors, and the angle
between the Te-p orbital and the Ge-s orbitals (ϕcL) is such that cosϕcL = 1/

√
3.

At the Σ maximum, the Te-p orbital is anti-bonding with 4 Ge-s neighbors and
non-bonding with 2 Ge-s neighbors. The bonding angle between the Te-p orbital
and the 4 anti-bonding Ge-s orbitals (ϕcΣ) is given by cosϕcΣ = 1/

√
2. (b) TB

wavefunctions after c-GeTe are distorted through a reduction in γ. The Z-point
VBM wavefunction is characterized by a bonding angle (ϕrZ) that is less than ϕcL.
The L-point wavefunction is defined by two different bonding angles, a bonding angle
ϕr1L (2/6 of bonds), where that ϕr1L > ϕcL, and an angle, ϕr2L (4/6 of bonds), where
that ϕr2L > ϕcL . The cubic Σ VBM splits into the rhombohedral Σ and η bands,
where ϕrΣ < ϕcΣ and ϕrη > ϕcΣ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Ge-s–Te-p bonding angles ϕ and effective s-p interaction strength, Vsp/Vspσ (from
Equation 5.2), as a function of interaxial angle (γ) and atomic offset (δ). For L
and Z, all 6 neighbors are considered, and for Σ and η, the 4 strongly anti-bonding
neighbors are considered. (a) ϕ vs. γ for L, Z, η, and Σ. At L, there are two distinct
s-p bonding angles (shown in dashed lines), so the average is shown using the red
“-o” line. At the L VBM, the average value of ϕ increases with decreasing γ, while at
Z, ϕ decreases. At the η VBM, ϕ increases with decreasing γ, while at the Σ VBM,
ϕ decreases. (b) Thus, the Z and Σ VBs becomes more anti-bonding as γ decreases,
while the L and η bands becomes less anti-bonding. . . . . . . . . . . . . . . . . . . 127

5.9 k-resolved, band-resolved projected crystal orbital Hamilton population (pCOHP)
values versus interaxial angle (γ) in the Z (magenta), L (red), Σ (blue), η (turquoise),
and ∆ (green) VBMs in GeTe. COHP of Ge-s–Te-p interaction when (a) δ = 0 and
(b) δ = 0.03. COHP of Ge-p–Te-p interaction when (c) δ = 0 and (d) δ = 0.03. Sum
of Ge-s–Te-p and Ge-p–Te-p COHP values when (e) δ = 0 and (f) δ = 0.03. . . . . . 129
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5.10 Molecular-orbital-like bonding diagrams representing the GeTe valence band (VB)
edges, illustrating the reduction in energy of the anti-bonding VB edge and the emer-
gence of the Σ VBM over the Z (or L) VBM when the Ge offset (δ) is greater than
zero (inversion symmetry broken). The states near the VB edge are characterized by
cation-s–anion-p anti-bonding character. In the rock salt structure (δ = 0), interac-
tions between the anti-bonding VBM and the cation-p states are symmetry forbidden.
When inversion symmetry is broken, the s-p anti-bonding strength decreases and the
cation-p (Ge-p) states can interact with these anti-bonding states, which lowers their
energies. Moreover, the bonding interaction with the Ge-p states is stronger in the
Z VB than in the Σ VB, which pushes the energy of the Z VB down more, favoring
the Σ VBM in r-GeTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 TB electronic structure for a toy model of GeTe (interaxial angle set to γ = 58◦)
illustrating the origin of the Z-VBM offset from the Z-point and its decrease in energy
upon increasing δ. Band structures when (a) Vppσ = 4 eV, Vppπ = −0.5 eV, Vspσ = 1.5
eV, and δ varies from 0 to 0.03, (b) δ = 0.03, Vspσ = 1.5 eV and Vppσ varies from
0 to 6 eV (Vppπ = −Vppσ/8), (c) Vppσ = 4 eV, Vppπ = −0.5 eV, Vspσ = 0 eV and δ
varies from 0 to 0.03, and (d) δ = 0.03 Vspσ = 0 eV and Vppσ varies from 0 to 6 eV
(Vppπ = −Vppσ/8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.12 Tight-binding (TB) band offsets (calculated without SOC) between the Σ and L
bands (EΣL, red lines) and between the Σ and Z bands (EΣZ , blue lines) as a function
of cation offset for the cases where (a) the interaxial angle is given by γ = 60◦, and (b)
γ = 55◦. The darker red and blue lines are from calculations that do not include Te-p–
Te-p bonding interactions, and the fainter lines are from calculations that include the
Te-p–Te-p interactions (Vppσ,Te = 0.275 eV). The black arrows point to the upward
shift in the EΣL and EΣZ lines when the anion-p–anion-p interactions are included.
The remaining TB hopping parameters are given by Vspσ = 1.5 eV, Vppσ = 4.0 eV,
Vppπ = −0.5 eV (see Table 5.1). The cation offset is set to δ = 0.03 for all calculations.
Note that These TB offsets just give a qualitative description of GeTe and do not
give the actual values of the band offsets. For instance, in r-GeTe, the VBM is along
ΓP (Σ), not Z or L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.13 Tight-binding (TB) band structure, showing the top of the valence band (VB), in
a toy model of r-GeTe (δ = 0.03, γ = 58◦) with (a) varying spin-orbit coupling
(SOC) strength and constant Vppσ = 4.0 eV, and (b) constant SOC = 0.5 eV with
varying values of Vppσ. The other TB parameters are set such that Vppπ = −Vppσ/8,
EGe−p − ETe−p = 3.5, Vspσ = 1.5 eV, and Vppσ,Te = Vppπ,Te = 0. These TB band
structures only give a qualitative description of r-GeTe and do not give the actual
values of the band offsets. For instance, in r-GeTe, the VBM is along ΓP (Σ), not
(slightly off) Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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6.1 The half-Heusler crystal structure (space group #216) is comprised of three crystal-
lographic sites, each forming an FCC sublattice. The X (blue) and Z (green) sites
form the octahedrally coordinated rock salt structure with X at the (0, 0, 0) position
and Z at the (1/2, 1/2, 1/2) position. The Y -sites (red) at (1/4, 1/4, 1/4) fill half of
the rock salt tetrahedral sites, while the other half of the tetrahedral sites are unfilled. 140

6.2 Simplified sketch of two bands (each doubly degenerate, yielding four bands total)
along the Λ-line in a half-Heusler compound before and after interacting and inducing
an avoided crossing. (a) When the bands are non-interacting, one of the bands
decreases energy from Γ to L and has orbital character that transitions from being
mainly Y -d–X-d at Γ to being mostly Y -d at L. The second band increases in energy
from Γ to L and contains mostly X-d character. (b) When the bands interact, an
avoided crossing occurs, and the lower band transitions from having X-d character
at Γ to Y -d character at L. There are two local VBM, one at Γ with X-d character
and one at L with Y -d character. The relative energies of these VBMs can be tuned
via substitutions on the X- and Y -sites. The dashed horizontal line in (a) and (b)
represents the Fermi energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 DFT-calculated electronic band structure calculations of half-Heusler compounds,
ZrNiSn and NbFeSb, showing (a)-(b) the relative contribution of each atomic species
(X,Y, Z) and (c)-(d) the relative contribution of each orbital type (s, p, d). The
symmetry representations for select bands at the X-, Γ-, and L- points and along the
∆- and Λ-lines are shown. The dashed line indicates the Fermi energy. . . . . . . . . 146

6.4 Schematic depiction of a normal crossing and three cases of avoided crossings (top)
with corresponding sketches of the tight-binding hopping integral, V (bottom). (a)
Normal crossing with an interaction of V = 0. (b) Avoided crossing when the hopping
integral, V , is constant along the entire k-path. (c) Avoided crossing where the
hopping integral varies sinusoidally, such that V = 0 at the far right and left and
reaches a maximum at the center of the k-path where the bands would have crossed.
(d) Avoided crossing when V varies, such that V = 0 at the far left and is at a
maximum at the far right of the plot. Red and blue coloring is used to depict the
character of the bands, and in (b)-(d) top, the dashed lines indicate the behavior of
the bands when V = 0. In (b)-(d) bottom, the blue horizontal dashed lines are shown
at V = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 k-resolved, band-resolved crystal orbital Hamilton (COHP) values in the ∆3,4 (a) va-
lence band (VB) of ZrNiSn, (b) VB of NbFeSb, (c) conduction band (CB) of ZrNiSn,
and (d) CB of NbFeSb. In the VB, the green curve represents X-d–Y -p interactions,
the red curve represents X-d–Z-p interactions, the purple curve represents X-d–Y -d
interactions, and the blue curve represents Y -p–Z-p interactions. In the CB COHP
plots, the red curve represents X-d–Z-p interactions, the green curve represents Y -
d–Z-p interactions, and the blue curve represents X-d–Y -d interactions. . . . . . . . 151

6.6 Magnitude of X-d-Z-p tight-binding hopping integral in the ∆3,4 bands in a generic
half-Heusler compound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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6.7 Heat maps representing the normalized band-resolved projected density of states
(pDOS) of (a) the Γ15 valence band (VB), (b) the Γ15 conduction band (CB), (c) the
X5 VB, and (d) the X5 CB in ZrNiSn and of (e) the Γ15 VB, (f) the Γ15 CB, (g) the
X5 VB, and (h) the X5 CB in NbFeSb. For the Γ15 bands, the pDOS shown is the
average of the three triply degenerate bands comprising that state, and for the X5

bands it is the average of the two doubly degenerate bands. The orbital projections
are normalized, such that the sum of the orbital projection for each band at each
k-point is equal to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.8 Qualitative sketches of the molecular orbital diagrams at the Γ-point representing
(a,c) the formation of the [Y Z]n− polyanion and (b,d) the formation of the XY Z
half-Heusler (hH) structure from [Y Z]n− and Xn+. The diagrams in (a)-(b) more
closely resemble the bonding in ZrNiSn, and those in (c)-(d) most closely resemble
NbFeSb. The symmetry representations of the molecular orbitals with respect to the
Td point group are shown, with the corresponding band symmetry labels shown in
parentheses. The VB edge at Γ can be described as a bonding state between the triply
degenerate X-d orbitals and a Z-p–Y -p anti-bonding state. The relative energies of
the atomic and molecular orbitals will vary as the chemistry of the compound changes.
Note that the energy scales in each of the four MO sketches are arbitrary. . . . . . . 156

6.9 Electronic band structures calculated via DFT showing the normalized d-orbital con-
tributions of each band at each k-point. The thickness of the line represents the con-
tribution from the designated orbitals, and the dashed horizontal line represents the
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Introduction

1.1 Thermoelectric Devices

Thermoelectric devices are solid-state heat engines that possess the unique ability to directly convert

between temperature gradients and electricity through the flow of charge carriers (electrons and

holes), implying important applications in sustainable power generation and solid-state cooling [7].

Thermoelectric devices are comprised of a number of thermoelectric modules that contain p-type

and n-type semiconductor legs that are electrically in series and thermally in parallel [8]. In the

power-generation mode, a temperature gradient is applied across the devices, which generates a

voltage and induces the flow of charge carriers from the cool side to the hot side, producing an

electric current. Conversely, when an external voltage is applied to the device, the flow of charge

carriers, and hence heat, is directed such that one side of the device is cooled [7, 8].

NASA has been successfully employing Radioisotope Thermoelectric Generators (RTGs) to

power deep-space missions since the middle of the 20th century [9], and RTGs have been used to

power the Voyager, Cassini, Curiosity Rover, and Perseverance Rover missions [10]. However, with

the current climate crisis, there is a growing need to develop technology that can reduce greenhouse

gas emissions, pushing the field of thermoelectrics to focus more attention on terrestrial applications.

One potential application is industrial-scale waste-heat recovery. According to one analysis [11], 80%

of industrial waste heat is released as heated gas (373–573 K). Using thermoelectrics to convert this

waste heat into electricity can improve overall energy efficiencies and mitigate the deleterious en-
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vironmental impacts of alternative waste-heat management strategies [12]. Similarly, waste-heat

recovery in automobiles could be a potential route to improving fuel-efficiency, and hence, reducing

harmful carbon emissions. Automotive internal combustion engines typically have efficiencies rang-

ing between 25% and 40%, and much of the unused energy is rejected as waste-heat, which could

be captured and used by thermoelectric generators [13,14].

Additionally, thermoelectric cooling provides a means to reduce the environmental impact of

carbon emissions and harmful refrigerants [15]. Over 25% of the electricity consumed in the United

States is used for heating, ventilation, and air-conditioning (HVAC). Much of this energy is wasted

because most HVAC systems are designed to heat or cool entire buildings or cars. Thermoelectric

coolers and heat pumps can provide the technology required for distributed HVAC, which provides

heating and cooling locally, where necessary, and has the potential to greatly reduce HVAC energy

requirements [15].

The performance of a thermoelectric device for both power generation and cooling is determined

by its dimensionless figure-of-merit ZT . For power generation, the relationship between the device

ZT and efficiency, η, is given in Equation 1.1, where Tc and Th are the absolute temperatures of

the cold side and hot side, respectively, of the device, and T̄ is the average temperature across the

device. The term (Th − Tc)/Th is the Carnot efficiency, or the thermodynamic efficiency limit. As

ZT approaches infinity, the device efficiency approaches this Carnot limit.

η =
Th − Tc
Th

( √
1 + ZT̄ − 1√
1 + ZT̄ + Tc

Th

)
(1.1)

For thermoelectric refrigerators, the coefficient of performance (COP), denoted ϕ, also depends

on ZT and the temperature gradient (Equation 1.2). The COP is defined as the heat removed

divided by the electrical power consumed, and the term, Tc/(Th−Tc) is the Carnot COP (thermody-

namic limit) [16]. For thermoelectric coolers/heat pumps to be competitive with vapor-compression

cooling systems, ZT > 2 is required, while ZT > 6 is would be required to cool to cryogenic temper-

atures [16]. However, the best thermoelectric cooling systems to-date are yet to reliably reach values
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of ZT = 1, indicating the need for better mid- to low-temperature thermoelectric materials [17].

ϕ =
Tc

Th − Tc

(√
1 + ZT̄ − Th/Tc√

1 + ZT̄ + 1

)
(1.2)

1.2 Optimizing Thermoelectric Performance

In the previous section, we described the device figure-of-merit, ZT , as a means to determine the

efficiency of a thermoelectric device for power generation or cooling. However, the focus of this

dissertation is on engineering the materials that comprise the n-type and p-type legs themselves, so

we require a means to quantify the performance of thermoelectric materials. To describe the perfor-

mance of a thermoelectric material, we employ the material figure-of-merit zT , given by Equation

1.3, where T is the absolute temperature, σ is the electrical conductivity, α is the Seebeck coeffi-

cient, κe is the electronic contribution to the thermal conductivity, and κL is the lattice (phonon)

contribution to the thermal conductivity [8, 18]. The term α2σ term in the numerator is referred

to as the power factor. The electronic contribution to the thermal conductivity can be written as

κe = LσT , where L is the Lorenz number, so κL = κ− LσT .

zT =
α2σT

κe + κL
(1.3)

Thus, designing high-performing thermoelectric materials is a complex optimization problem

that requires increasing the Seebeck coefficient and electrical conductivity, while minimizing the

thermal conductivity. Unfortunately, these properties have competing behaviors, as increasing the

electrical conductivity often reduces the Seebeck coefficient and increases the electronic contribution

to the thermal conductivity. Therefore, the thermoelectric quality factor, B, is introduced as a means

to decouple competing effects and elucidate strategies to optimize thermoelectric performance.
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1.2.1 Thermoelectric Quality Factor

The material properties that comprise zT are functions of the reduced Fermi level, η (also called

the reduced chemical potential) (Figure 1.1a). The reduced Fermi level is given by η = EF /kBT ,

where EF is the Fermi level (electron chemical potential), and the reduced Fermi level depends on

the doping level (i.e., carrier concentration), such that η increases monotonically with increasing

carrier concentration. The exact relationship between η and carrier concentration (n or p) depends

on the nature (shape) of the band structure. The Seebeck coefficient (magnitude) decreases with

increasing η, while the total thermal conductivity and the electrical conductivity both increase with

η. Because of these competing effects, the zT reaches a maximum value at an optimal carrier

concentration, or reduced Fermi level. The maximum zT that a thermoelectric material can achieve

when it is optimally doped is determined by its dimensionless thermoelectric quality factor, B,

which is independent of doping (Equation 1.4). As B increases, the peak zT that can be achieved

when the material is optimally doped also increases (Figure 1.1b) [18,19].

B ∝ NV

m∗
IκL

(1.4)

The quality factor, which is derived in Chapter 2, is proportional to the valley (band) degeneracy

(NV ) and inversely related to the lattice thermal conductivity (κL) and to the inertial effective mass

(m∗
I). While a reduction in the lattice thermal conductivity is crucial for optimizing thermoelectric

performance [20–27], this dissertation centers on optimizing the electronic transport properties of

thermoelectrics, namely by increasing NV and decreasing m∗
I . The valley degeneracy describes

the number of carrier pockets (Fermi surface pockets) contributing to transport at a given Fermi

level, while the inertial effective mass determines the velocity, and hence, mobility of the charge

carrier and is inversely related to the curvature of the electronic dispersion near the band edge

(valence band edge for holes and conduction band edge for electrons). Low inertial effective masses

are beneficial because they lead to higher electrical conductivity, σ, and high valley degeneracy is
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Figure 1.1: (a) The thermoelectric figure-of-merit, zT , depends on the Seebeck coefficient, α, the electrical
conductivity, σ, and the (total) thermal conductivity, κ, which all have different dependencies on the reduced
Fermi level, η, such that the zT reaches a peak value at an optimal value of η, which is a function of doping
level. (b) The thermoelectric quality factor, B, determines the maximum zT that can be achieved in a
material as a function of doping level (or η). As B increases, the maximum zT increases. κL is the lattice
thermal conductivity, and EF is the Fermi level. Figure reproduced with permission from M. K. Brod, S.
Guo, Y. Zhang and G. J. Snyder. MRS Bulletin, 47, 573–583 (2022). Copyright 2022 by the Author(s),
under exclusive License to the Materials Research Society.
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beneficial because of the trade-off between electrical conductivity and the Seebeck coefficient with

respect to the reduced chemical potential, η, and hence, carrier concentration (see Figure 1.1).

The electrical conductivity increases with η specifically because of the associated increase in carrier

concentration (σ ∝ n), while the relationship between α and η is not actually related to the carrier

concentration itself (its dependence on the carrier concentration is a consequence of its dependence

on η). Thus, high valley degeneracy partially resolves the trade-off between α and σ with respect

to η, in that it allows for higher carrier concentrations (increased σ) without increasing η (α is not

reduced).

1.2.2 Electronic Band Engineering

Electronic band engineering in reciprocal-space (k-space) is a popular and highly effective approach

for enhancing the electronic components (i.e., NV and m∗
I) of the thermoelectric quality factor,

B [8, 28–35]. Specifically, it is desirable to engineer bands that have high curvature (low inertial

effective mass) and multiple carrier pockets near the band edge (high valley degeneracy), assuming

minimal inter-valley scattering [36].

A large portion of this dissertation focuses on achieving high valley degeneracy, which can

be achieved in two ways. The first is to have band extrema (valence band maximums (VBMs) or

conduction band minimums (CBMs)) at lower symmetry points in the Brillouin zone (BZ) of higher-

symmetry crystals. In other words, it is better to have band extrema at k-vectors that are located

on as few symmetry operators (e.g., mirror planes, glide planes, rotation axes, inversion centers,

etc.) as possible. When a point is located on a symmetry operator, that symmetry operation maps

the point back onto itself, so no additional copies of that point are generated. However, if a point

is located off that symmetry operator, the symmetry operation generates copies of that point. For

instance, a four-fold rotation axis would create three additional copies (four total) and a mirror

plane would create one additional copy (see Figure 1.2). Therefore, when a point in the BZ has

lower symmetry (located on fewer symmetry operators) and the crystal itself has higher symmetry,
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there are more symmetrically equivalent copies of this point inside the BZ. The Γ-point (k = 0)

is the highest-symmetry point, located at the center of the BZ, and it always has a degeneracy of

NV = 1 associated with it. Thus, it is generally desirable to have band extrema located off the

Γ-point.

The second way to increase valley degeneracy is to have multiple VBMs (p-type) or CBMs

(n-type) converged in energy at the same or different k-point. Due to inter-band scattering, it is

generally more beneficial to have bands converged at distant k-points, rather than the same k-

points [36]. Band convergence can be achieved through numerous routes, such as alloying, strain,

temperature, and symmetry distortions, and it has proven effective in numerous thermoelectric

systems, such as IV-VI semiconductors [29, 37–39], half-Heuslers [31, 40], Bi3Te2 [41], Mg2(Si, Ge,

Sn) [42,43], and CoSb3 skutterudites [44].

In addition to high valley degeneracy, Fermi surfaces characterized by carrier pocket anisotropy,

non-parabolicity, and low-dimensional-like transport (in bulk 3D crystals) are also predicted to be

beneficial for thermoelectric performance [34, 45, 46]. Band structures with these types of non-

ellipsoidal carrier pockets behave like bands that have very high valley degeneracy in that higher

carrier concentrations can be achieved at given η, yielding higher power factor [34,47]. Fermi surfaces

characterized by high valley degeneracy and non-parabolic, anisotropic, and/or low-dimensional

carrier pockets can be generalized as complex Fermi surfaces. The degree of high valley degeneracy,

and/or carrier pocket anisotropy can be described by a single value known as the Fermi surface

complexity factor, N∗
VK

∗, where N∗
V is the effective valley degeneracy and K∗ describes the effective

anisotropy of the carrier pockets [34]. In general, we want to engineer complex Fermi surfaces, for

optimal thermoelectric performance.

1.3 Dissertation Overview

The primary objective of this dissertation is to explore the chemistry behind high valley degeneracy

and, more generally, complex Fermi surfaces in an array of thermoelectric materials in order to
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Mirror plane

4-fold 
rotation

Figure 1.2: Illustration of how the symmetry of a point influences its degeneracy, using a mirror plane and
four-fold rotation axis as examples. When the point is located on top of a symmetry operator, no additional
copies of that point are made. However, when the point is located off the symmetry operator, then copies
of that point are made in accordance with the symmetry operation.
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understand and predict chemical trends in thermoelectric performance. This dissertation aims to

explore not only how to modify band structures in k-space, but also why band structures behave

and change the way they do. We employ the tight-binding (TB) method, or Linear Combination of

Atomic Orbitals (LCAO), as the overarching orbital-chemistry framework for understanding the be-

havior of complex electronic structures. Additional methods include DFT, crystal orbital Hamilton

population (COHP) calculations, and group theory. The DFT calculations are performed using the

Vienna ab intio Simulation Package (VASP) [48–50] using the Perdew-Burke-Ernzerhof (PBE) [51]

exchange-correlation functional. All of the DFT-based COHP calculations were performed us-

ing the Local-Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER) soft-

ware [52–54]. The first part of Chapter 2 gives an introduction to thermoelectric transport and a

derivation of the thermoelectric quality factor. In the second part of Chapter 2, an overview of the

TB method as a means to interpret and engineer electronic band structures is provided.

In Chapter 3, we develop a TB framework that describes the valence band (VB) structure of IV-

VI rock salt semiconductor materials like PbTe. Then, we use this framework to explain the chemical

origins of high valley degeneracy in PbTe, one of the best-performing thermoelectric materials, by

analyzing the symmetry of the VB crystal orbitals and deriving analytical expressions that describe

the VB energy throughout reciprocal space. Next, in Chapter 4, we extend the TB model developed

in Chapter 4 to understand how the complexity of the VB Fermi surface in PbTe (and other IV-

VI rock salt compounds) can be further enhanced by converging the energies of the VB edge at

multiple different k-points. We then identify three basic types of Fermi surface geometries that

may arise in this materials system with different levels of convergence, and we introduce and discuss

transport models for these different types of Fermi surfaces to evaluate the their relative predicted

performances. Chapters 3 and 4 are based on work published in Chemistry of Materials 32, 22,

9771–9779 (2020) [55] and Journal of Materials Chemistry A, 9, 12119-12139 (2021) [47].

In Chapter 5, we return to the IV-VI semiconductor framework introduced in Chapters 3-4,

but this time applied to GeTe, which undergoes a cubic to rhombohedral transformation at lower
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temperature. The change in crystal structure in accompanied by a change in the electronic structure,

which affects the valley degeneracy and Fermi surface complexity. Thus, in this chapter, we go

beyond the cubic (rock salt) system in order to better understand how and why the rhombohedral

distortion influences the electronic structure, specifically the valence band degeneracy. Here, we

show that a simple atomic-orbital framework based on the TB model can explain changes to the

band structure upon the cubic to rhombohedral transformation.

Chapter 6 explores chemical trends in the band structures of transition-metal based half-Heusler

(hH) semiconductors to explain how to engineer high valley degeneracy for both n-type and p-

type hH compounds. We show that the techniques to achieve high NV are quite similar between

the n-type and p-type versions because similar atomic orbitals dictate the behavior of both the

valence and conduction band edges. Furthermore, we identify and explain how different orbital

interactions influence the band energies using COHP calculations, group theory, and TB. We show

that recognizing avoided crossings (also known as anti-crossings) is crucial for fully understanding

the chemistry of the band edges in hH compounds.

Finally, in 7, we explore the origins of the low-symmetry, highly degenerate CBM in Mg3Sb2,

a high-performing mid-to-low temperature n-type thermoelectric material. The chemical origins of

this low-symmetry CBM are important for understanding alloying strategies that tune the electron

mobility and carrier pocket anisotropy. While prior studies focused on Mg–Mg interactions, we show

that Mg–Sb interactions can explain the low-symmetry CBM in addition to changes in electronic

properties upon alloying. The importance of Mg–Sb interactions are shown using DFT, COHP, and

TB calculations.
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Theoretical Background

2.1 Derivation of Quality Factor

In this section we derive the thermoelectric quality factor, B, for a band structure characterized

by parabolic bands, acoustic-phonon scattering (deformation potential scattering), and minimal

intervalley scattering [18, 19, 36, 56–60]. We employ the reduced variables, ε = E/kBT and η =

EF /kBT , where E is the energy below (p-type) or above (n-type) the band edge (transport edge)

and η is the reduced Fermi level (EF ).

To derive the thermoelectric quality factor, B, we use the effective mass (m∗) model, also known

as the single parabolic band (SPB) model, to describe thermoelectric transport properties [18,56–58].

For this derivation, we assume that the electrons are free-electron-like and form spherical, parabolic

bands (E = ℏ2|k|2
2m∗ ), with a density of states (DOS), g, given below. Note that the effective mass

that is used to define the DOS is given the label, m∗
DOS .

g(E) =

√
2(m∗

DOS)
3/2

π2ℏ3
E1/2 (2.1)

We define an energy-dependent transport function, σE(E), given by Equation 2.2. We assume

that the particles move with an average squared velocity, ⟨v2⟩, and that on average each particle

encounters a scattering event after a characteristic relaxation time, τ .
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σE(E) = e2⟨v(E)2⟩τ(E)g(E) (2.2)

Because the group velocity, vg, of the carriers is given by the slope of the electronic dispersion

(vg = ∂E/∂k), the velocity is simply v(E) =
√

2E/m∗ for a spherical band. Moreover, because we

assume isotropy, we can replaced ⟨v2⟩ with v2/3. We can also use the assumption that scattering

time is inversely related to the DOS (from Fermi’s golden rule), which is is proportional to E1/2

(Equation 2.1). Therefore, we assume that τ is of the form τ = τ0ε
−1/2. Then, we can write the

scattering constant as τ0 = m∗µ0/e (Drude model), where µ0 is the carrier mobility parameter.

Substituting in our energy-dependent expressions for v2, τ , and g, we can obtain an analytical

form of our transport function, σE , which is proportional to the energy from the transport edge.

σE(E) =
eµ0(2m

∗
DOS)

3/2(kBT )
1/2

3π2ℏ3
E (2.3)

All three electronic components of the zT (α, σ, and κe) equations can be written as convolutions

of the electronic transport function and various selection functions, which are related to the Fermi-

Dirac distribution, f , and the Fermi level, EF .

σ =

ˆ
σE(E)

−∂f
∂E

dE (2.4)

α =
1

σe

ˆ
σE(E)

(
E − EF

T

)
−∂f
∂E

dE (2.5)

κe =
1

e2

ˆ
σE(E)

(
(E − EF )

2

T

)
−∂f
∂E

dE − α2σT (2.6)

In order to simply the above expressions, we employ Fermi integrals of the form, Fj(η).
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Fj(η) =

ˆ ∞

0

εjdε

1 + eε−η
(2.7)

By substituting Equation 2.3 into Equation 2.4, substituting εkBT for E, and making use of the

integral, In, defined in below (derived using integration by parts) [61], we can rewrite the energy-

dependent expression of σ for a parabolic band, assuming scattering inversely related to the DOS

(n = 1 in Equation 2.8).

In = −
ˆ ∞

0
xn
∂f

∂x
dx = nFn−1(η) (2.8)

σ =
eµ0(2m

∗
DOSkBT )

3/2

3π2ℏ3
F0(η) (2.9)

We condense the pre-factor (energy-independent terms) of Equation 2.9 into the term σE0 , such

that σ = σE0F0(η). This gives us the following expression for σE0 .

σE0 =
eµ0(2m

∗
DOSkBT )

3/2

3π2ℏ3

=
e(2mekBT )

3/2

3π2ℏ3
µ0

(
m∗

DOS

me

)3/2

=
e(2mekBT )

3/2

3π2ℏ3
µw

(2.10)

Here, we define the weighted mobility, µw = µ0(m
∗
DOS/me)

3/2, where m∗
DOS can be related

to the valley (or band) degeneracy, NV , such that, m∗
DOS = m∗

bN
2/3
V . The parameter, m∗

b , is

the DOS effective mass of a single band, and is referred to as the band effective mass. While

we began this derivation assuming spherical bands, we can extend it to general ellipsoidal bands

(E(k) = ℏ2k2x
2m∗

x
+

ℏ2k2y
2m∗

y
+ ℏ2k2z

2m∗
z
, where m∗

x, m∗
y, and m∗

z are the inertial effective masses along the

Cartesian axes), by defining the band effective mass, such that m∗
b = (m∗

xm
∗
ym

∗
z)

1/3.

Next, we can obtain an expression for the Seebeck coefficient and show that it is only a function
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of η, given that the shape of the dispersion is known (in this case spherical).

α(η) =
kB
e

(
2F1(η)

F0(η)
− η

)
(2.11)

Then, using Equations 2.6, 2.9, 2.11, and the relationship, κe = LσT , we can obtain an expres-

sion for the Lorenz number, L, using Fermi integrals.

L(η) =
k2B
e2

(
3F0(η)F2(η)− F 2

1 (η)

F 2
0 (η)

)
(2.12)

Like α, L is a function of only the reduced chemical potential, η. Finally, we can re-express

the zT equation such that all of the η-independent terms are condensed into a single dimensionless,

doping-independent parameter, the thermoelectric quality factor, B [18].

zT =
α2σT

κL + κe
=

α2

κL
σT + L

=
α2(η)

κL
TσE0

F0(η)
+ L(η)

=
α2(η)

(kB/e)2

BF0(η)
+ L(η)

(2.13)

B =

(
kB
e

)2 σE0

κL
T (2.14)

Clearly, the quality factor is proportional to the electronic transport function coefficient, σE0 ,

and inversely related to the lattice thermal conductivity. By comparing Equations 2.10 and 2.14, it

can be seen that the quality factor is proportional to the weighted mobility.

Furthermore, an expression for the carrier mobility parameter, µ0, can be derived—assuming

that acoustic-phonon scattering is the dominant scattering mechanism—using the deformation po-

tential model [59,60]. The mobility parameter for acoustic-phonon scattering is derived from Fermi’s

Golden Rule (Equation 2.15), which states that the scattering rate (1/τ) of an electron with energy,

E, and occupying state k to a state k′, is related to the density of states and the relevant matrix
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element (Mk′,k) for the perturbation Hamiltonian, Ĥ ′.

1

τ(k)
=

2π

ℏ
g(E)|Mk′,k|2 (2.15)

Then, assuming |Mk′,k|2, which is related to the deformation potential and elastic constants, is

independent of k, it can be shown [59] that the mobility parameter for the SPB model is given by

µ0 =
πeℏ4Cl√

2m∗
I(m

∗
bkBT )

3/2Ξ2
. (2.16)

In the above equation, Ξ is the deformation potential, Cl is the longitudinal elastic constant,

and m∗
I is the inertial effective mass, which is related to the band curvature. In the expression

for the weighted mobility, the 1/(m∗
b)

3/2 term in the denominator (from Equation 2.16) cancels

with the (m∗
b)

3/2 term in the numerator. Thus, the weighted mobility, and hence, quality factor is

proportional to the valley degeneracy and inversely related to the inertial effective mass (Equation

1.4).

While this derivation of quality factor is based on the assumption that we are dealing with

spherical—or more generally, ellipsoidal—parabolic bands, this quality-factor analysis can be ex-

tended to describe transport in more complex, non-ellipsoidal bands (using the Fermi surface com-

plexity factor, N∗
VK

∗, for example) [34].

2.2 Tight-Binding Model

The tight-binding (TB) method is a computationally inexpensive approach to approximate the

electronic structures of molecules and crystalline solids using a basis set consisting of recognizable

atomic orbitals (s, p, d, etc.). The TB method is often referred to as the Linear Combination of

Atomic Orbitals (LCAO) because it asserts that electronic states in molecules or crystalline mate-

rials come from molecular or crystal wavefunctions that are linear superpositions of atomic-orbital
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wavefunctions. This approximation is based upon the assumption that the electrons are “tightly

bound” by the nucleus, so it is generally most effective in reproducing valence band structures, and

more limited in reproducing bands deeper higher into the conduction band. That being said, even

in cases where the TB model is limited in its ability to reproduce the conduction band structure,

it can still be helpful in understanding the bonding and symmetry of the conduction band states,

especially near the conduction band edge.

In this section, we first describe the TB method for determining the molecular orbital energy

levels in a diatomic molecule. Then, we describe how to use the TB method to determine the

electronic dispersion relationship for a crystalline material. In both the molecular and crystalline

cases, the procedure involves determining the form of the molecular or crystalline wavefunctions

and Hamiltonian operators and subsequently using Schrodinger’s equation to solve for the energy

levels. Finally, we explain how the TB method can be used predict and explain band behavior using

simple atomic orbital pictures. Details on the TB model and methods used in this section can be

found in Refs. 62, 63, 64, 6, and 65.

2.2.1 Tight-Binding Model of a Diatomic Molecule

In this section, we derive the energy levels of a diatomic molecule, based on the steps outlined in

Refs. 6 and 63. First, we must write the molecular wavefunction for the diatomic molecule (ψm) as

a linear combination, or superposition, of the two atomic orbital wavefunctions (ϕ1 and ϕ2),

ψm(r) = c1ϕ1(r) + c2ϕ2(r) (2.17)

where c1 and c2 are coefficients. The coefficients relate to how much each type of orbital con-

tributes to the wavefunction, and we often refer to these contributions as describing the “character”

of the energy state. For instance, if |c1|2 > |c2|2 for a given state, we would say that it has more

orbital 1 character than orbital 2 character. We assume that the atomic-orbital wavefunctions are
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orthonormal, such that

⟨ϕi|ϕj⟩ =


1, if i = j

0, otherwise.
(2.18)

The energy levels (εn) and molecular orbital wavefunctions (ψm,n) are the eigenvalues and eigen-

vectors (of index n), respectively, given by the time-independent Schrodinger equation,

Ĥψm,n(r) = εnψm,n(r), (2.19)

where Ĥ is the Hamiltonian operator, which is an Hermitian operator defined by matrix elements

of the form Hij , such that

Hij = ⟨ϕi| Ĥ |ϕj⟩ . (2.20)

The Hamiltonian for a generic diatomic molecule is given by

Ĥ =

 E1 H12

H21 E2

 =

E1 V

V E2

 , (2.21)

where H12 = H21 = V , and V is the hopping integral, which describes the interaction strength

between the two orbitals and depends largely on the interatomic separation and the amount of

orbital overlap. E1 and E2 are the atomic-orbital energies, or on-site energies.

A schematic of a molecular orbital diagram for a diatomic molecule is given in Figure 2.1, showing

the on-site energies, bonding and anti-bonding molecular orbital states (ε− and ε+), and bond energy

b, which is defined later. From Equation 2.19, the energy levels (ε±) and the coefficients (c1, c2)± of

the molecular wavefunctions (ψm,±) can be found by solving for the eigenvalues and eigenvectors,

respectively, of the Hamiltonian matrix, Ĥ.
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E1

E2

Energy
ε+

ε-

b

b

Figure 2.1: Molecular orbital bonding diagram for a diatomic molecule formed from the interaction between
orbital 1 (shown with magenta coloring), with on-site energy E1, and orbital 2 (shown with blue coloring),
with on-site energy E2. The bonding molecular orbital has an energy ε− and the anti-bonding molecular
orbital has an energy ε+. The bond energy is given by b, and the colors (magenta and blue) are used
to qualitatively represent the relative contribution of each atomic orbital to each molecular orbital. The
bonding molecular orbital has more blue coloring to indicate that it has more orbital 2 character, and the
anti-bonding molecular orbital has more magenta coloring to indicate that it has more orbital 1 character.
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ε± =
E1 + E2

2
± 1

2

√
(E1 − E2)2 + 4V 2 (2.22)

(c1, c2)± = CN

(
E1 − E2 ±

√
(E1 − E2)2 + 4V 2

2V
, 1

)
(2.23)

Here, we use a plus sign (+) to denote the anti-bonding (higher energy) state and a minus sign

(−) to denote the bonding (lower energy) state. CN is a normalization coefficient that ensures the

modulus of each eigenvector is equal to one. We can simplify the expression for the energy levels and

wavefunction coefficients by defining a parameter, A, which describes half of the energy separation

between the atomic orbitals (A = 1
2(E1 − E2)) and a parameter, Ē, which describes the average

on-site energy (Ē = 1
2(E1 + E2)). Note that here we are assuming that E1 ≥ E2.

ε± = Ē ±
√
A2 + V 2 (2.24)

(c1, c2)± = CN

(
A±

√
A2 + V 2

V
, 1

)
(2.25)

From Equation 2.25, it can be shown that if E1 = E2 (A = 0), the coefficients will be given by

(c1, c2)+ = 1√
2
(|V |/V, 1) and (c1, c2)− = 1√

2
(−|V |/V, 1), which simplifies to (c1, c2)± = 1√

2
(±1, 1)

if V > 0, and (c1, c2)± = 1√
2
(∓1, 1), if V < 0. This means that for the case of a homopolar

diatomic molecule, the bonding and anti-bonding states both have an equal contribution from each

atomic orbital. Also, when V < 0, the orbitals are bonding when c1 and c2 have the same sign

and anti-bonding when they have opposite signs (and vice-versa for V > 0). When A > 0, it

can be shown that |c1|2 < |c2|2 for the bonding (−) molecular orbital and that |c1|2 > |c2|2 for

the anti-bonding (+) molecular orbital. This means that the contribution from the higher-energy

atomic orbital (orbital 1) is greater than the contribution of the lower-energy atomic orbital (orbital

2) in the anti-bonding molecular orbital state, and the contribution from the lower-energy atomic
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orbital is greater in the bonding molecular orbital. Moreover, if |V | decreases and/or A increases,

the asymmetry in the atomic-orbital contributions to each molecular-orbital state increases, such

that the anti-bonding state will have even more orbital 1 character, and the bonding state will

have even more orbital 2 character. In the limit where |V | approaches zero, the coefficients for the

higher-energy state are given by (c1, c2) = (1, 0) and the coefficients for the lower-energy state are

(c1, c2) = (0, 1), with the corresponding energies being E1 and E2, respectively.

We can also define a bond energy, b, which describes the energy difference between the on-site

energies and the molecular orbital energies (b = ε+ − E1 = E2 − ε−), as shown in Figure 2.1 [66].

It can be shown that the bond energy is given by

b =
√
V 2 +A2 −A. (2.26)

Thus, the bond energy increases with |V | and decreases with A, which indicates that the bonding

strength in the diatomic molecule increases with stronger orbital interactions and smaller energy

separations between the interacting orbitals. For the case of a homopolar diatomic molecule (E1 =

E2), the energy levels are simply given by ε± = E1 ± V , and the bond energy is simply b = |V |.

2.2.2 Tight-Binding Model of a Crystalline Solid

To move from molecular-orbital energy levels in isolated molecules to electronic dispersions in

crystalline solids, we must the TB method to approximate electronic wavefunctions in periodic,

crystalline materials. Any electron wavefunction in a periodic crystal must obey Bloch’s theorem

(Equation 2.27), which states that the wavefunction at a location r + R, where R is any lattice

translation vector (in real space), must be equal to the wavefunction at r times a Bloch phase factor

of the form e−ik·R [67].

ψ(r +R) = e−ik·Rψ(r) (2.27)
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Functions that satisfy Bloch’s theorem must be linear combinations of Bloch functions, defined

as

ψ(r) = e−ik·ru(r), (2.28)

where u(r) obeys the periodicity of the lattice, such that u(r +R) = u(r).

Now, using the LCAO approach, we can write out the expression for the crystal wavefunction

(ψc), which is a function of k and r, as a linear combination of atomic-orbitals wavefunctions in

their Bloch form (ϕα), where α denotes a specific atomic orbital. The number of electronic bands

will be equal to the number of elements in 2.29 (i.e., the number of cα coefficients).

ψc(k, r) =
∑
α

cα(k)ϕα(k, r) (2.29)

ϕα(k, r) =
1√
N

N∑
j

e−ik·Rjaα(r −Rj) (2.30)

In the above equation, N represents the number of lattice sites in the crystal, aα(r) is the

function (constrained by the periodicity of the lattice) associated with the atomic orbital labelled

α, and Rj are lattice translations. The proof that Equation 2.30 obeys Bloch’s theorem is as follows

(from Ref. 67):

ϕα(k, r +R) =
1√
N

N∑
j

e−ik·Rjaα(r −Rj +R)

=
1√
N
e−ik·R

N∑
j

e−ik·(Rj−R)aα(r − (Rj −R))

=
1√
N
e−ik·R

N∑
l

e−ik·Rlaα(Rl)

= e−ik·Rϕα(k, r)

(2.31)
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s-orbital Bloch wavefunction, 𝜙s(r)

𝑎
phase of 𝜙!(𝑟)

𝜙s(r) > 0

𝜙s(r) < 0

Bonding

Anti-bonding

Non-bonding

Figure 2.2: Schematic representation of 1D s-orbital Bloch functions (at position, r) for different values of k
in a periodic 1D lattice (defined by a lattice constant, a) comprised of one s-orbital per unit cell. The blue
dashed line represents the real-part of the wavefunction phase, while the wavefunction itself is represented
using the green circles, which represent the spherically symmetric s-orbitals. The shading of the s-orbitals
(dark green versus light green) represents the sign of the phase (positive versus negative), while the size of
the circles represents the amplitude. Interactions between neighboring orbitals that have phases with the
same sign are bonding, while interactions between neighboring orbitals that have opposite-signed phases are
anti-bonding.

Again, we assume that the atomic-orbital basis is orthonormal, and must therefore satisfy the

following expression:

⟨ϕi(r)|ϕj(r +R)⟩ =


1, if i = j and R = 0

0, otherwise.
(2.32)

A real-space visualization of a 1D s-orbital Bloch wavefunction for different values of k is shown

in Figure 2.2. In this example, all of the lattice vectors Rj are of the form nja, where nj is an

integer, and a is the lattice constant of the infinite 1D chain of s-orbitals.

To determine the energy levels (εn) and wavefunctions (ψc,n) of the crystal at a certain k-point,
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we must solve Schrodinger’s equation (Equation 2.33) at that k-point.

Ĥ(k)ψc,n(k) = εn(k)ψc,n(k). (2.33)

This means finding the eigenvalues and eigenvectors of the Hamiltonian operator, Ĥ, given by

the matrix elements,

Hαβ(k) = ⟨ϕα(k)| Ĥ(k) |ϕβ(k)⟩ , (2.34)

where α and β label two different atomic orbital types belonging to the atomic-orbital basis set.

As shown in Ref. 63, these Hamiltonian matrix elements can be constructed by summing over all

of the terms, V (j)
α,βe

−ik·r(α→β)
j , where V (j)

α,β is a Slater-Koster matrix element [65] between orbitals α

(located at a position j1) and β (located at a position j2), and r
(α→β)
j are the real-space vectors

between each α-β neighbor pair, such that r
(α→β)
j = rj2 − rj1 .

Hαβ(k) =
∑
j

V
(j)
α,βe

−ik·r(α→β)
j (2.35)

V
(j)
α,β = ⟨aα(rj1)| Ĥ |aβ(rj2)⟩ (2.36)

The matrix elements defined in Equation 2.36 can be parameterized using the methods outlined

in Ref. 65 and are known as Slater-Koster matrix elements. We construct these parameterized

matrix elements using a set of fundamental hopping parameters of the form Vll′m, where l and l′

describe basic atomic orbital types (s, p, d, etc.), and m represents the bonding type (σ, π, δ, etc.).

Illustrations of these fundamental interaction types are given in Figure 2.3. Interaction types that

are in-phase, or bonding, are described by values of Vll′m that are less than zero, while interaction

types that are out-of-phase, or anti-bonding, are characterized by values of Vll′m that are greater

than zero. In this dissertation, we assert that Vssσ < 0, Vspσ > 0, Vppσ > 0, and Vppπ < 0. Moreover,
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Vssσ < 0 Vspσ > 0

+ + ++ −

+− +−

Vppσ > 0 +

−

+

−

Vppπ < 0

(a) (b)

(c) (d)

Figure 2.3: Sketch of fundamental interaction parameters between s and p orbitals, such the shading (versus
no shading) represents the phase (+ or −) of the atomic orbitals. In-phase interactions are bonding, while
out-of-phase interactions are anti-bonding. The convention of the interaction parameters (Vll′m) is such that
(a) Vssσ < 0, (b)Vspσ > 0, (c) Vppσ > 0, and (d) Vppπ < 0.

the magnitude of Vll′m describes the strength of the interaction and depends mainly on interatomic

distance and the amount of overlap between the orbitals.

Examples of the Slater-Koster matrix elements between s and p orbitals are given in Table

2.1 [6, 65].

Table 2.1: Expressions for Slater-Koster matrix elements, where l, m, and n, are the direction cosines of the
vector between the atomic-orbital states described.

Matrix element Expression
Vs,s Vssσ
Vs,px lVspσ
Vs,py mVspσ
Vs,pz nVspσ
Vpx,px l2Vppσ + (1− l2)Vppπ
Vpy ,py m2Vppσ + (1−m2)Vppπ
Vpz ,pz n2Vppσ + (1− n2)Vppπ
Vpx,py lmVppσ − lmVppπ
Vpx,pz lnVppσ − lnVppπ
Vpy ,pz mnVppσ −mnVppπ
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Finally, when α = β and j1 = j2 (i.e., the same orbital on the same lattice site), Vαα = Eα,

where Eα is the on-site energy of the α atomic orbital.

2.2.3 Crystal Orbital Hamilton Population from Tight-Binding

In this section, we show a brief derivation of the crystal orbital Hamilton population (COHP) [52]

using the TB, or LCAO, framework. The derivation follows from that provided in Ref. 68.

Assuming that our crystal wavefunction (ψc) is given by a superposition of atomic-orbital Bloch

wavefunctions (Equation 2.29), the energy levels at each k-point (εn(k)) are given by

εn(k) = ⟨ψc,n(k)| Ĥ(k) |ψc,n(k)⟩

=
∑
α,β

cn∗α (k)cnβ(k)Hαβ(k)

=
∑
α

|cnα(k)|2Hαα(k) + 2
∑
α<β

Re(cn∗α (k)cnβ(k)Hαβ(k))

(2.37)

where ψc,n are the eigenfunctions (wavefunctions) for the nth band at a given k-point, and cn∗α

is the complex conjugate of cnα. The final expression from Equation 2.37 can be divided into two

terms, the local term (first term) and the non-local term (second term). If we assume that only

nearest-neighbor interactions are important (which is not always the case), then we can make the

approximation Hαα ≃ Eα. Thus, the local term simply yields the on-site energies weighted by their

relative contributions to the nth band at a specific k-point.

The second term is defined as the COHP (Equation 2.38) for a given band at a given k-point

(band-resolved, k-resolved COHP), and it describes the interactions between atomic orbitals on

different lattice sites. In order to obtain the partial COHP (pCOHP) between two orbitals, we

simply only sum over the relevant terms to describe that interaction.

COHPn(k) = 2
∑
α<β

Re(cn∗α (k)cnβ(k)Hαβ(k)) (2.38)
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2.2.4 Understanding Band Behavior from Tight-Binding

Tight-binding is a powerful tool for understanding band behavior in terms of simple atomic orbital

pictures [62, 66]. This section contains a brief introduction into how tight-binding can help us

understand the behavior of electronic bands, such as location of the band extrema and the band

widths.

One-Band Model

Consider an infinite 1D chain of a single atomic orbital type with a lattice constant, a. If we

consider only nearest-neighbor interactions, the 1D crystal orbital wavefunction is given by ψc = ϕα

(see equation 2.30), and we can show that our Hamiltonian is given by H = Eat+V (e−ika+ eiak) =

Eat+2V cos (ka), where Eat is the on-site energy and V is the Slater-Koster matrix element for the

interaction. It is trivial to see that the eigenvalue of this solution ε = Eat + 2V cos (ka).

Here, we focus on two features of this simple band structure: how the band “runs" from k = 0

(Γ) and the band width. The direction that the band runs from k = 0 depends on the sign of V ,

and the band width depends on the magnitude of V . If V < 0, the band will reach a minimum of

−2|V | at Γ and a maximum of 2|V | at k = ±π
a , the 1D Brillouin zone edge. Conversely, if V > 0,

the band will reach the maximum at Γ and a minimum at the Brillouin zone edge. The band width,

W , is defined as the difference in energy between the highest and lowest energy in the band, and it

is trivial to see that, in this TB framework, the band width is given by W = 4|V |. Thus, increasing

the interaction strength between the orbitals increases the band width.

This simple one-band model can guide us in predicting the difference between a band derived

from s versus p orbitals. The bonding between s-orbitals is given by a negative-valued matrix

element, Vssσ, while σ-bonding between p-orbitals is given by a positive-valued matrix element,

Vppσ. Therefore, the band dispersion for the s-band is given by, εs = Es − 2|Vssσ| cos (ka), and

the dispersion for the p-band is given by εp = Ep + 2|Vppσ| cos (ka). Therefore, the s-orbital band
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runs up in energy from k = 0, or Γ, and the σ-bonding p-orbital band runs down in energy from

Γ (Figure 2.4). Also, while a 1D chain of σ-bonding p-orbitals runs down in energy from Γ, a

chain of π-bonding p-orbitals runs up in energy because Vppπ < 0 (Figure 2.3). However, because

p–p σ-bonding interactions are much stronger than the π-bonding interactions [6], we expect p-

orbital bands to run down in energy from Γ, when both types of interactions are present. Moreover,

as shown in Figure 2.4, when the strength of the interaction increases, the band width increases

regardless of the orbital type.

This s- and p-orbital behavior can also be understood visually with simple atomic orbital sketches

of the s- and p-orbital phases at different values of k (see Figure 2.4). The magnitude of the wave-

vector, |k|, describes the spatial frequency, so it represents how frequently in real-space the phases

of the orbitals change sign. Essentially, we can say that the sign of the orbital flips when r satisfies

e−ikr = −1 or kr = nπ (n = ±1,±3,±5, etc.).1 For instance, when k = 0, the phases of the orbitals

never change (kr = 0) sign so all of the s-orbitals are in-phase (bonding) with both of their nearest-

neighbors, while the p-orbitals are out-of-phase (anti-bonding) with both of their nearest-neighbors.

At k = ± π
2a , the phases change sign with a frequency of once for every two lattice translations

(2a). Therefore, each orbital is bonding with one of its neighbors but anti-bonding with its other

neighbor, making it a net non-bonding state. Finally, at the 1D Brillouin zone edge (k = π
a ), the

phase changes with a frequency of one time for every one lattice translation, so now every s-orbital

is out-of-phase (anti-bonding) and every p-orbital is in-phase (bonding).

Clearly, the signs of the fundamental interaction parameters (Vll′m) are not arbitrary or trivial,

as they have a profound influence on the band dispersion. The sign of the parameter is directly to

related to whether the orbitals are in-phase (V < 0) or out-of-phase (V > 0) at Γ. We can show that

orbitals that are symmetric along the bonding axis (e.g., s-orbitals and π-bonding p-orbitals) must

always be in-phase at k = 0 and that orbitals that are anti-symmetric (e.g., σ-bonding p-orbitals)

along the bonding axis must always be out-of-phase at Γ. The atomic orbital Bloch functions (ϕα)

at the Γ-point are of the form, ϕα(r, k = 0) = 1√
N

∑N
j aα(r + nja) (nj = −1,−2, 0, 1, 2, etc),

1In higher dimensions (i.e., 2D or 3D) this condition generalizes to e−ik·r = −1 or k · r = nπ.
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k = 0

k = ±
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π
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(b)

2Vssσ
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2Vppσ

Vppσ
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Figure 2.4: Tight-binding band structure and corresponding wavefunction (ψc(k)) sketches (periodic bound-
ary conditions) for 1D chains of (a) s-orbitals and (b) σ-bonding p-orbitals. The dashed-line band structures
are calculated for the case where the interaction parameters are 2Vssσ or 2Vppσ, which are twice the mag-
nitude of that used to calculate the solid-line bands (Vssσ or Vppσ) . The s-orbital chain is in an entirely
bonding configuration at k = 0, while it in a completely antibonding (AB) configuration at k = ±π/a.
Conversely, the σ-bonding p-orbital chain is completely antibonding (AB) at k = 0 and completely bonding
at k = ±π/a. Both are non-bonding (NB) at k = ±π/2a. The shading in the orbital sketches represents the
phase, such that in-phase overlaps are bonding and out-of-phase interactions are antibonding.
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where aα(r + nja) = aα(r) for all nj . Thus, at the Γ-point, all of the orbitals separated by any

lattice spacing nja must have identical phases to each other, which means that atomic orbitals

with symmetric phases are in-phase with both their nearest-neighbors, while atomic-orbitals that

are anti-symmetric are out-of-phase with both nearest-neighbors. To generalize, a band from a

1D chain of atomic orbitals (with one atomic orbital per unit cell) runs up in energy from Γ when

the orbital is symmetric about the bonding axis, and it runs down in energy when the orbital is

anti-symmetric about the bonding axis.

Two-Band Model

Now, consider an infinite 1D lattice with a two-orbital basis, {α, β}. The orbitals of the same type

(α or β) are separated by distance, na (n = ±1,±2,±3, etc.), and the α and β orbitals are separated

by a distance of na
2 (n = ±1,±3,±5, etc.). The 1D crystal wavefunction for this system is given

by, ψc = cαϕα + cβϕβ , and, assuming that interactions beyond nearest-neighbors are negligible, the

Hamiltonian operator for this system is given by

Ĥ =

⟨ϕα| Ĥ |ϕα⟩ ⟨ϕα| Ĥ |ϕβ⟩

⟨ϕβ| Ĥ |ϕα⟩ ⟨ϕβ| Ĥ |ϕβ⟩

 =

Eα Vαβ

V ∗
αβ Eβ

 . (2.39)

Then, it can be shown that the energy of the energy levels (eigenvalues) as a function of k are

given by the following expression (notice the form is analogous to Equation 2.22):

ε±(k) =
1

2
(Eα + Eβ)±

1

2

√
(Eα − Eβ)2 + 4|Vαβ(k)|2 (2.40)

Consider, for example, a 1D lattice where α is an M -s orbital and β is an X-s orbital, and

EM−s > EX−s. It can be shown that the hopping integral Vαβ is given by Vαβ(k) = 2Vssσ cos (ka/2).

The band structure and wavefunctions for each band is shown in Figure 2.5. The lower-energy band

runs up in energy from Γ (k = 0), while the higher-energy band runs down in energy from Γ. At
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Figure 2.5: Tight-binding band structure and wavefunction (ψc(k)) sketches (with periodic boundaries) of a
1D chain of M -s and X-s orbitals. The dashed-line band structure is calculated for an interaction parameter
2Vssσ, while solid-line band structure is calculated using Vssσ. The wavefunction for the top band is entirely
anti-bonding (AB) at Γ and becomes non-bonding (NB) at k = ±π/a. The wavefunction of the lower-band
is entirely bonding at Γ and non-bonding (NB) at k = ±π/a. The shading of the orbitals represents the
phase (±), and the different colors (red versus blue) represent different atoms (M or X). Note that the
size of the orbitals does not represent the relative magnitude of the atomic-orbital wavefunctions—all the
orbitals are made to be the same size such that they only represent the symmetry of the phases (±).

first this may seem counter-intuitive based on the previous section because a single s-orbital band

runs up in energy from Γ. However, when considering a lattice with two or more atomic sites in the

basis, it is necessary to look at the symmetry of the crystal orbital units, rather than of the atomic

orbitals alone [69].

Each band stems from a different crystal orbital unit (ac(r)), which is one unit cell of the crystal

orbital wavefunction at the Γ-point. Then, when k ̸= 0, the wavefunction for that band is given by

the linear combination of these crystal orbital functions (ac(r−nja)) multiplied by the Bloch phase

factors (e−iknja), where nja is an integer number of lattice translations. Therefore, a band with a

symmetric crystal orbital (along the bonding axis) will behave like the s-band (as described in the

previous) section and increase in energy away from Γ. In this case, the lower-energy band comes
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from a crystal orbital described by M -s and X-s orbitals that are the same phase (bonding), such

that the phase (sign) of this crystal orbital unit is symmetric. Therefore, the lower energy band

runs up in energy from Γ to the Brillouin zone edge. On the other hand, the higher-energy band

comes from a crystal orbital described by the two out-of-phase (anti-bonding) s-orbitals. Thus, the

crystal orbital phase is anti-symmetric with respect to the bonding axis, so this band behaves like a

p-orbital band despite coming from s-orbitals. As a result, the band-gap for this two-band system

is at ±π/a. Moreover, increasing the s-s interaction strength increases the band width of each band

(Figure 2.5).

The location of the bandgap in the 1D two-band model depends on the nature of the two orbitals.

As we just showed, two s-orbitals leads to a bandgap at the Brillouin zone edge. For different orbital

interactions, we can predict how the bands will run and the location of the bandgap, based on the

symmetry of the bonding and anti-bonding crystal orbital units (Figure 2.6). Like the infinite 1D

chain of two different atomic s-orbitals, a chain of two different σ-bonding p-orbitals gives a lower

band with a symmetric crystal orbital and higher band with an anti-symmetric crystal orbital, so

the bands should behave in an analogous manner to those in Figure 2.5. The same will be true for

π-bonding p-orbitals. On the other hand, when the lattice contains one s- and one p-orbital, the

bonding band (lower band) has an anti-symmetric crystal orbital and runs down in energy, while

the anti-bonding band has a symmetric crystal orbital and runs up in energy from Γ. Hence, the

bandgap for the sp system is at Γ rather than the Brillouin zone edge.

If we were to consider the next-nearest-neighbor interactions in these simple 1D systems, the

behavior of the bands would change because the interactions of the orbitals with their periodic

images would become important. Interactions of atomic-orbitals with their periodic images favors

the band behavior predicted from the single-orbital lattices discussed in the previous section. That

is, interactions between s-orbital periodic images would give the band more of a tendency to run

up in energy from Γ, and interactions between p-orbital periodic images would have the opposite

effect of favoring a decrease in energy form Γ.
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Figure 2.6: Sketches of the Γ-point crystal orbital units for 1D crystals with two-atomic-orbital bases. When
the orbitals are both s-orbitals or both p-orbitals, the crystal orbital of the lower band is symmetric and its
band runs up in energy from k = 0, and the crystal orbital of the higher band is anti-symmetric and its band
runs down in energy from k = 0. When one orbital is a p-orbital and the other is an s-orbital, the lower
band has an anti-symmetric crystal orbital and runs down in energy, while higher band has a symmetric
crystal orbital and runs up in energy.
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The relative importance of nearest-neighbor and next-nearest-neighbor interactions depends on

the energy separation of the nearest-neighbor orbitals. If the energy difference between the two

different orbitals in a unit cell is sufficiently large, the nearest-neighbor interaction will be very

weak relative to the interaction between the periodic images of the same orbital (which have the

same energy), despite the smaller interatomic separation (see Equation 2.26). This would cause the

bands to behave more like the bands from a lattice that contains only that orbital. For instance,

in our 1D s-p example, if Es >> Ep, such that the s-p interactions is negligible compared to the

s-s and p-p interactions. As a result, the higher-energy band would behave like a s-orbital band

and run up from Γ, and the lower-energy band would behave like an p-orbital band and run down

in energy from Γ. However, if Es > Ep, but the s-p interactions are not negligible, then the higher

band—which would have more s than p character—would be favored to run down from both the

s-p nearest-neighbor and s-s next-nearest neighbor interactions. Moreover, the lower band—which

would have more p character—would be favored to run down in energy by both the s-p and next-

nearest neighbor p-p interactions. Therefore, the curvature/bandwidth of both bands would be

higher with the nearest neighbor and next-nearest neighbor interactions than from only nearest-

neighbor interactions (Figure 2.7).

While the band structures in real 3D materials are far more complicated and need more scrutiny

to fully understand, the 1D examples given in this section can be used as starting points help

decipher and understand the chemical origins of complex electronic structures. In Chapter 3, we

will employ a very similar framework to that described in this section to understand the valence

band structure of PbTe and IV-VI semiconductors in general.
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NNs only

NNs + next NNs

Figure 2.7: Tight-binding band structure corresponding to a 1D lattice consisting of an M -s and X-p orbital
separated by a distance of a/2, where a is the lattice constant. The solid lines represent the bandstructure
when only nearest-neighbor (NN) interactions (s-p interactions) are included, while the dashed line represents
the band structure when NN and next NN interactions (s-s and p-p) are included.
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Chemical Origins of High Valley Degeneracy in p-Type

PbTe

3.1 Introduction

Rock salt PbTe (Figure 3.1) has long been considered one of the highest performing thermoelectric

materials, reaching zT > 1 when optimally doped [29,70–73]. PbTe and the similar SnTe and GeTe

based alloys have been employed as a power source for NASA space missions since the 1960’s [28,74].

Much of the exceptional thermoelectric performance of PbTe can be attributed to its favorable

electronic band structure, particularly the high valley degeneracy of the conduction band (CB) and

valence band (VB) edges. In this chapter, we focus specifically on the VB structure of PbTe, but

this work can be applied directly to the other lead chalcogenide or IV-VI semiconductor (PbS, PbSe,

SnTe, GeTe, etc.) VB structures.

The high VB degeneracy in PbTe stems from the fact that its VBM is located at the L-point in the

face-centered cubic (FCC) Bravais lattice Brillouin zone (BZ),1 which has a degeneracy of NV = 4

[29, 35, 72, 73, 75, 76], and inter-valley scattering is symmetry-forbidden at the L-point [36, 77, 78].

There are also lower-energy VB maxima located along the ΓK (Σ) line (NV = 12), the ΓX (∆) line

(NV = 6), and at the W-point (NV = 6), which lead to promise for even higher valley degeneracy

if and when these band extrema are converged (Figure 3.2). The second valence band along the Σ

symmetry line (NV = 12) is found ∼0.1-0.2 eV below the L band at low temperature [28,29,75,77,
1See Table A.1 in Appendix A for description of the Brillouin zone of the FCC lattice type.
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Pb
Te

Figure 3.1: Crystal structure of rock salt PbTe, showing the conventional cubic unit cell. The Te atoms
are octahedrally coordinated by Pb atoms (coordination octahedron shown in blue), and the Pb atoms are
octahedrally coordinated by Te atoms.

79–81]. It is known that as temperature increases, the energy of the L band decreases relative to

that of the Σ band, causing the bands to approach each other in energy (when the L maximum is

higher) [29, 35, 80–82]. The two bands converge at T ∼ 700 K, resulting in an exceptionally high

(nominal) valley degeneracy of NV ∼ 16 and significantly enhanced thermoelectric performance.

[29,35,35,71–73,83].

Based on the band-structure orbital projections shown in Figure 3.2, we can broadly break down

the PbTe band structure into the Te-s, Pb-s, Te-p, and Pb-p bands, or groups of bands (see Figure

3.3 for corresponding density of states sketch), to better understand the chemical origins of the band

structure. The s-bands are the two singly degenerate bands deep inside the VB, with the Te-s band

below the Pb-s band. The next group of three bands closest to the VB edge (triply degenerate at

Γ) are mainly Te-p states, while the next set of triply degenerate (at Γ) bands, which comprise the

conduction band edge, come from the Pb-p orbitals. Of course, there is hybridization between all

of these orbitals, which causes mixing of orbital character throughout the BZ. In this Chapter, we
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Figure 3.2: Electronic band structure of PbTe with the normalized band-resolved projected density of states
(pDOS) for the (a) Te-s, (b) Pb-s, (c) Te-p and (d) Pb-p orbitals. Band structure calculated using DFT
with the PBE functional without spin-orbit coupling.
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Figure 3.3: Sketch of the projected density of states (pDOS) in a IV-VI rock salt compound like PbTe. Red
coloring represents the anion, while blue coloring represents the cation.

are mainly interested the highest VB, which comes from primarily Te-p, with a smaller contribution

from the Pb-s states near the top of the band. Typically, VBs that are dominated by p-orbital-like

states have a VBM at the high-symmetry Γ-point (NV = 1) because p-orbitals tend to be most

anti-bonding with their periodic images at Γ and become more less anti-bonding (or more bonding)

away from Γ [62, 66, 84] (see Figure 2.4). However, because the highest VB in PbTe runs up in

energy from Γ it must have s-orbital-like symmetry despite containing largely p-orbital character.

In prior work, the filled Pb-s orbitals have been pointed to as the primary reason for the VBM of

PbTe being located at the L-point [66,85,86]. Ref. 66 claims that the lone-pair s-orbitals from the

Pb make the highest VB behave like an s-orbital band. While these lone-pair s-orbitals certainly
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contribute significantly to the behavior of the VB states, these explanations overlook the importance

of the p-orbitals in dictating the shape of the VB edge. In this chapter, we employ the tight-binding

(TB) method to describe a more complete VB picture that explains the L VBM— in addition to

the Σ, ∆, and W VBMs— that includes the bonding between the nearest and next-nearest neighbor

p-orbitals. We show that the TB wavefunction that describes the VB edge has s-like symmetry and

that this s-like symmetry does not even require (but may include) the presence of atomic-s states.

In fact, the s-orbitals are not requisite for the VB to increase in energy from Γ to L (and to the Σ,

∆ and W VBMs), though it is required for the L VBM to exceed the energy of the Σ, ∆, and W

VBMs.

3.2 Tight-Binding Band Structure

We build a simple TB model for a toy IV-VI rock salt compounds in order to understand the chemical

origins of the VB behavior in PbTe. Details on how to construct the PbTe TB Hamiltonian are

given in Appendix B, and this Hamiltonian construction can be directly generalized to describe the

other IV-VI rock salt semiconductor compounds.

One important advantage of the TB method for calculating (approximate) band structures is

the flexibility in constructing toy models. In this section, we perform TB computational thought

experiments that would not be tractable using more sophisticated electronic structure calculation

methods like DFT. These thought experiments involve adding/removing and varying certain inter-

actions in order to rapidly visualize which interactions lead to which (qualitative) features in the

band structure. The TB hopping (interaction) parameters for the toy IV-VI rock salt system used

in both this chapter and Chapter 4, unless specified otherwise, are summarized in Table 3.1. These

parameters give the values for the cases where their respective interactions are completely “turned

on”. Here, we use Pb as the cation and Te as the anion for the sake of discussion, but these can be

replaced with any other group-IV cation and group-VI anion, respectively. In this chapter and in

Chapter 4, the hopping parameters for the Pb–s–Te-p (cation-s–anion-p) interaction is denoted by
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Table 3.1: Tight-binding hopping parameters for a toy IV-VI rock salt semiconductor. All interactions
mentioned describe the shortest-distance interactions of that type, so cation–anion interactions are nearest-
neighbor interactions (6 nearest-neighbors) and anion–anion interactions are next-nearest-neighbor interac-
tions (12 next-nearest-neighbors).

Matrix element Description Value (eV)
Vspσ cation-s–anion-p σ-bonding 0.8
Vppσ cation-p–anion-p σ-bonding 1.0
Vppπ cation-p–anion-p π-bonding -(1/8)Vppσ
Vppσ,an anion-p–anion-p σ-bonding 0.15
Vppπ,an anion-p–anion-p π-bonding -(1/8)Vppσ,an

Ean−p − Ecat−s cation-s–anion-p on-site energy separation 5
Ecat−p − Ean−p cation-p–anion-p on-site energy separation 2

Vspσ, and the hopping parameters for the Pb–p–Te-p (cation-p–anion-p) σ- and π-interactions are

denoted by Vppσ and Vppπ, respectively. The next-nearest neighbor anion-p–anion-p interactions are

denoted by Vppσ,an and Vppπ,an (Vppσ,Te and Vppπ,Te for the PbTe case).

First, we calculate TB band structures that include (1) the Pb-s–Te-p and Pb–p–Te-p interac-

tions, (2) only Pb-s–Te-p interactions, and (3) only Pb-p–Te-p band structures (Figure 3.4). The

TB model with both cation-s–anion-p and cation-p–anion-p interactions (Figure 3.4a) yields the L-

point VBM, and the Σ, ∆ and W VB pockets are lower in energy with the Σ band higher in energy

than the ∆ and W bands (∆ and W are nearly equal). When only cation-s–anion-p interactions

are included (Figure 3.4b), we only get dispersion in one band, the band that corresponds to the

highest VB (when all important interactions are included). This band reaches a maximum at L,

with secondary maxima at W and along Σ and ∆, and the energy at the Σ maximum is higher than

the ∆ and W maxima. Finally, if only cation-p–anion-p interactions are included, the VB edge still

runs up from Γ to L, but the energy of the L, W, ∆, and Σ VBMs are all equal (Figure 3.4c).

The thought experiment depicted in Figure 3.4, shows that the Pb-s orbitals are not necessary

for the VB edge to run up in energy from Γ to L, but they are necessary for the L VBM to exceed

the energies of the other competing VBMs at W and along Σ and ∆. Because the highest VB

still increases in energy from Γ to L without the lone-pair s-orbitals, the hypothesis presented in
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(a)

(b) (c)

Figure 3.4: Tight-binding (TB) band structures for PbTe toy models calculated using (a) Pb-s–Te-p and
Pb–p–Te-p interactions, (b) only Pb-s–Te-p interactions, and (c) only Pb–p–Te-p interactions. The magenta,
cyan, and orange horizontal lines are visual guides that show the energy of the L, Σ, and ∆ VBMs, respec-
tively. The TB hopping parameters are given by Vspσ = 0.8 eV, Vppσ = 1 eV, and Vppπ = −1/8 eV (see Table
3.1).
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(a) (b)Without Te-p-Te-p With Te-p-Te-p

Figure 3.5: Tight-binding (TB) band structures for PbTe toy models calculated using (a) Pb-s–Te-p and Pb–
p–Te-p interactions and (b) using Pb-s–Te-p, Pb–p–Te-p, and Te-p–Te-p interactions. The magenta, cyan,
and orange horizontal lines are visual guides that show the energy of the L, Σ, and ∆ VBMs, respectively.
The TB hopping parameters are given by Vspσ = 0.8 eV, Vppσ = 1 eV, Vppπ = −1/8 eV, Vppσ,Te = 0.15eV ,
and Vppπ,Te = −Vppσ,Te/8 eV (see Table 3.1).

Ref. 66 claiming that the s-orbitals give the VB the symmetry needed to run up from Γ is not

entirely correct. The symmetry needed for the band to run up in energy is satisfied from both the

hybridization between the cation-p and anion-p orbitals and the hybridization between the cation-s

and anion-p orbitals.

While the nearest-neighbor interactions between the Te-p orbitals that dominate the VB edge

and the Pb-s and Pb-p orbitals qualitatively reproduce the shape of the VB edge, the next-nearest

neighbor Te-p–Te-p interactions provide some further insight into the VB structure in PbTe and

similar IV-VI rock salt semiconductors. Numerically, we can investigate the effect of these next-

nearest neighbor anion-p interactions by comparing the TB electronic structure of the toy IV-VI

rock salt model with and without these interactions (Figure 3.5). Including the anion-p–anion-p

interactions decreases the difference in energy between the L, Σ, ∆, and W VBMs and increases

the bandgap energy.

3.3 Analytical Tight-Binding Solutions

Analytical solutions for our toy IV-VI rock salt TB model can be determined by setting up and

solving for the eigenvalues of Hamiltonian matrices that that describe the interactions between
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certain pairs of orbitals.

3.3.1 Cation-s–Anion-p Interaction

First, we write out the Hamiltonian that describes only the Pb-s–Te-p interactions (the Hamiltonian

and its constituent hopping integrals are a function of k).

H̄Pb−s,Te−p =



EPb−s HPb−s,Te−px HPb−s,Te−py HPb−s,Te−pz

H∗
Pb−s,Te−px

EPb−p 0 0

H∗
Pb−s,Te−py

0 EPb−p 0

H∗
Pb−s,Te−pz

0 0 EPb−p


(3.1)

The hopping integrals as a function of k in Equation 3.1 can be simplified by choosing specific

paths along the FCC Brillouin zone. Here, we will give the solutions along ΓL (Λ), ΓK (Σ), and

ΓX (∆). Along Λ = π
a (l, l, l), the hopping integrals are given by HPb−s,Te−px = HPb−s,Te−py =

HPb−s,Te−pz = −2iVspσ sin (lπ/2), where l varies from 0 at Γ to 1 at L. This shows that the Pb-

s–Te-p interaction is zero at Γ, which can also be shown using group theory [4]. Along Σ =

3π
2a (0, s, s), the hopping integrals are given by HPb−s,Te−px = 0, and HPb−s,Te−py = HPb−s,Te−pz =

−2iVspσ sin (3sπ/4), where s varies from 0 at Γ to 1 at K. Finally, along ∆ = 2π
a (0, 0, d), we have

HPb−s,Te−px = HPb−s,Te−py = 0 and HPb−s,Te−pz = −2iVspσ sin (dπ), where d varies from 0 at Γ to

1 at X.

If we solve for the eigenvalues along these three BZ paths, we obtain solutions for the VB energy

of the form,

EV B,sp =
1

2
(EPb−s + ETe−p) +

1

2

√
(ETe−p − EPb−s)2 + 4(xVspσ)2. (3.2)

Notice that Equation 3.2 has the same form as the anti-bonding TB eigenvalue solutions for the

diatomic molecule described by Equation 2.22 in Chapter 2, where Vsp = xVspσ is like the diatomic
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Figure 3.6: k-dependent strength of the cation-s–anion-p tight-binding (TB) hopping integral (based on the
diatomic molecule model) (|Vsp|) corresponding to the highest valence band along the (a) Λ (ΓL)-line, (b) Σ
(ΓK)-line, and (c) ∆ (ΓX)-line of the FCC Brillouin zone for the IV-VI rock salt TB model. The values are
shown in terms of the cation-s–anion-p hopping parameter, Vspσ.

hopping parameter, V . For the Λ, Σ, and ∆ paths, the value of x is given by x = (6/
√
3) sin (lπ/2),

x = (4/
√
2) sin (3sπ/4), and x = 2 sin (dπ), respectively. The corresponding k-dependent values of

|Vsp|, which represents the k-dependent hopping strength, are plotted in Figure 3.6. The value of

x, and hence |Vsp|, reaches a maximum along Λ at l = 1, a maximum along Σ at s = 2/3, and a

maximum along ∆ at d = 1/2. In this chapter we define the points at s = 2/3 and d = 1/2 as Σ′

and ∆′, respectively. That is Σ′ = π
a (0, 1, 1) and ∆′ = π

a (0, 0, 1). Then, we can write the values of

Vsp = xVspσ for the local maxima along Λ, Σ and ∆, as Vsp(L) = 6Vspσ/
√
3, Vsp(Σ′) = 4Vspσ/

√
2,

and Vsp(∆
′) = 2Vspσ. Also, it can be shown that Vsp(W ) = Vsp(∆

′). Clearly, based on Equation

3.2, and the values of |Vsp| for each local VB, the cation-s–anion-p antibonding strength is strongest

at L, followed by Σ′ then ∆′ and W, which is evident in both Figures 3.4b and 3.6.

The bonding analogues of Equation 3.2 (plus sign in front of the square-root term is replaced

with a minus sign) describes the s-p bonding states that are found in the (predominantly) cation-s

band deeper into the VB (see Figures 3.2 and 3.3).
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Table 3.2: TB Hamiltonian matrix elements for nearest-neighbor Pb-p–Te-p interactions along Λ, Σ, and ∆
lines in FCC Brillouin zone. We use Hx,x as shorthand for HPb−px,Te−px

, etc.

Hij Λ Σ ∆

Hx,x (2Vppσ + 4Vppπ) cos (lπ/2) 2Vppσ + 4Vppπ cos (3sπ/4) 2Vppσ + Vppπ[2 + 2 cos (dπ)]

Hy,y (2Vppσ + 4Vppπ) cos (lπ/2) 2(Vppσ + Vppπ) cos (3sπ/4) + 2Vppπ 2Vppσ + Vppπ[2 + 2 cos (dπ)]

Hz,z (2Vppσ + 4Vppπ) cos (lπ/2) 2(Vppσ + Vppπ) cos (3sπ/4) + 2Vppπ 2Vppσ cos (dπ) + 4Vppπ

3.3.2 Cation-p–Anion-p Interaction

Next, we look at the effect of the cation-p–anion-p interactions. The Hamiltonian describing these

interactions is given as follows:

H̄Pb−p,Te−p =



EPb−p 0 0 HPb−px,T e−px 0 0

· EPb−p 0 0 HPb−py ,T e−py 0

· · EPb−p 0 0 HPb−pz ,T e−pz

· · · ETe−p 0 0

· · · · ETe−p 0

· · · · · ETe−p


. (3.3)

We only give the upper diagonal elements, but we can use the fact that the Hamiltonian is

Hermitian (Hij = H∗
ji) to fill in the lower diagonal elements. Along the Λ, Σ, and ∆ direction, the

Hamiltonian elements are give in Table 3.2.

When we solve for the eigenvalues to Equation 3.3, the highest VB is triply degenerate along

Λ, doubly degenerate along Σ, and singly degenerate along ∆ (see Figure 3.4c). Note that when

the cation-s–anion-p interaction is included, the highest VB is singly degenerate. The energy the

highest VB(s) along the Λ, Σ, and ∆ paths based on only the Pb-p–Te-p interactions can also be

written in a form similar to Equation 2.22, where V = Vpp (see Equation 3.4). The k-dependent

values of Vpp are listed below, and E1 and E2 (from Equation 2.22) are given by EPb−p and ETe−p,

respectively.
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Figure 3.7: k-dependent strength of the cation-p–anion-p tight-binding (TB) hopping integral (based on a
diatomic molecule model), |Vpp|, for the highest valence band along the (a) Λ (ΓL)-line, (b) Σ (ΓK)-line,
and (c) ∆ (ΓX)-line of the FCC Brillouin zone for the IV-VI rock salt TB model. The values are shown in
terms of the cation-s–anion-p hopping parameter, Vppσ. The fainter lines in (a)-(c) represent the case where
Vppπ = 0, and the darker lines represent the cases where Vppπ = −(1/8)Vppσ.

• Λ: Vpp(l) = (2Vppσ + 4Vppπ) cos (lπ/2)

• Σ: Vpp(s) = 2(Vppσ + Vppπ) cos (3sπ/4) + 2Vppπ

• ∆: Vpp(d) = 2Vppσ cos (dπ) + 4Vppπ

The strength of the cation-p–anion-p interaction parameter, |Vpp| along each path is plotted in

Figure 3.7.

When considering the cation-p–anion-p interactions, the VB edge is the bonding (lower-energy)

solution of Equation 2.22.

EV B,pp =
1

2
(EPb−p + ETe−p)−

1

2

√
(EPb−p − ETe−p)2 + 4(Vpp)2. (3.4)

At Γ, the cation-p–anion-p hopping parameter is given by Vpp(Γ) = 2Vppσ + 4Vppπ. Recall, that

Vppσ > 0, while Vppπ < 0, so given that the p-orbitals are σ-bonding at Γ, then they must be π-anti-

bonding at Γ. Because we can assume that the σ-bonding interaction is at least two times as strong
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as the π-bonding interaction [63], p-orbitals must be in a net-bonding state at Γ. Along the Λ-line,

the magnitude of the interaction decreases from Γ to L, such that it is zero at the L-point. This

explains why the highest VB (and the two other anion-p VBs below that) runs up in energy from Γ

to L when only the cation-p–anion-p interactions are considered. It can also be shown that at the

W-point, the highest VB is singly degenerate and the cation-p–anion-p hopping parameter at this

point equals zero. As seen in Figures 3.4c and 3.7b-c, there are also points along Σ and ∆ where

the net interaction between the Pb-p and Te-p orbitals is zero, leading to additional VBMs that

are equal in energy to the VBM at L (when only Pb-p–Te-p interactions are present). In contrast

to the case where only Pb-s–Te-p interactions are present, the maxima along Σ and ∆ for the case

where Pb-p–Te-p interactions are considered are not necessarily at the exact ∆′ and Σ′ points. The

exact location of the maxima depends on the ratio of Vppσ to Vppπ (see Figure 3.7b-c). Along ∆,

the maximum occurs at the value of d that satisfies, dπ = arccos(−2Vppπ/Vppσ), and along Σ, the

maximum occurs at the value of s that satisfies sπ = (4/3) arccos (−Vppπ/(Vppσ + Vppπ)). In the toy

model we use to create Figure 3.4 and 3.5, we assume that Vppπ = −(1/8)Vppσ. This assumption

gives a value of d = 0.42, and s = 0.61. However, if we were to set Vppπ = 0, then d = 1/2 and

s = 2/3.

The antibonding analogues to the VB cation-p–anion-p bonding states are found in the CB,

which is why the shape of the CB edge somewhat mirrors that of the VB edge.

3.3.3 Anion-p–Anion-p Interaction

We can think of the Te-p–Te-p interactions as adjusting the effective on-site energy of the Te-

p orbitals when estimating the energies of the local VBMs using Equation 3.2. Note that this

effective on-site energy does not apply to all of the Te-p VBs and should only be applied to the

highest (singly degenerate) VB at the specified k-points. We denote this effective on-site energy as

E′
Te−p. We skip the details of the derivation here, but by setting up a 3× 3 Hamiltonian that only

describes the Te-p–Te-p interactions (see Te-p–Te-p matrix elements in Appendix B), we can show



77

that the adjusted on-site energies at L, W, ∆′, and Σ′ are as follows:

E′
Te−p(L) = ETe−p + 4Vppπ,Te − 4Vppσ,Te (3.5)

E′
Te−p(Σ

′) = ETe−p + 2Vppπ,Te − 2Vppσ,Te (3.6)

E′
Te−p(∆

′) = ETe−p + 4Vppπ,Te (3.7)

E′
Te−p(W ) = ETe−p − 4Vppπ,Te (3.8)

Because Vppσ,Te > 0 and Vppσ,Te < 0, the anion-p–anion-p interaction lowers the energy of the

highest VB at L, Σ′ and ∆′, and slightly increases the energy at W.

Using these adjusted, or effective, on-site anion-p energies, the VB edges at the different VB

pockets (L, Σ, ∆, and W) can be approximated using these effective on-site energies substituted

into ETe−p in Equation 3.2.

3.3.4 Summary of Interactions

In summary, the L, W, Σ, and ∆ VBMs are all Pb-s–Te-p antibonding states and Pb-p–Te-p non-

bonding (or nearly non-bonding for the ∆ and Σ VBMs) states. Away from these VBMs, the band

becomes less Pb-s–Te-p anti-bonding and more Pb-p–Te-p bonding, which results in these VBMs

or local VBMs. The Pb-s–Te-p anti-bonding strength is greatest at the L point, followed by Σ′,

then ∆′ and W. The weaker next-nearest neighbor Te-p-Te-p interactions are also relevant when

studying the VB behavior of PbTe. These interactions push down the VB edge in the L, Σ, and ∆

VBMs, with the interaction being strongest at L, followed by Σ′ then ∆′. This interaction is slightly
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anti-bonding at W.

3.4 Atomic-Orbital Pictures

The results of the numerical and analytical results can be explained using simple molecular-orbital-

like bonding diagrams (at specific k-points) and atomic-orbital sketches that represent the TB

wavefunctions that describe the various VB edges. As discussed in the previous section, at different

k-points, different orbital interactions are present, and the strengths of these interactions vary with

k. For instance, at the Γ-point, the cation-p–anion-p and cation-s–anion-s interactions are present

but the nearest-neighbor s–p interactions are not present, while at the L point, the converse is true

(Figure 3.8). The VBM and CBM at the L-point are described by cation-s–anion-p and cation-p–

anion-s anti-bonding states, respectively (Figure 3.8b).

3.4.1 Crystal Orbitals with s-Like-Symmetry

In Chapter 2, we showed that bands that have s-like-symmetry run up in energy from Γ to the BZ

edge, while bands that have p-like-symmetry (and σ-bonding dominates) run down in energy from Γ

to the BZ edge. Therefore, it may initially seem counter-intuitive for the VBM in PbTe and in other

IV-VI rock salt semiconductors to be located at the L-point, as the VB edge comes primarily from

anion-p states. Ref. 66 offers the explanation that the filled Pb-s states, which are also present in

the VB edge, themselves make the highest VB behave like an s-band—simply because s-orbitals are

present. While the Pb-s orbitals are important, this explanation has two pitfalls. The first is that

the percentage of Te-p character in the highest VB is greater than the percent Pb-s character, even

at L (Figure 3.2). Therefore, there is no reason that the Pb-s-orbital interactions should be more

important than the Te-p-orbital interactions. Second, our toy TB model shows that the highest

VB runs up in energy from Γ to the BZ zone edge with only the Pb-p–Te-p interactions (no Pb-s

orbitals).
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Figure 3.8: Sketches of molecular-orbital-like diagrams showing the nearest-neighbor bonding interactions in
IV-VI rock salt semiconductors at the Γ-point and at the L-point. (a) At the Γ-point, interactions between
the cation-s and anion-s orbitals and between the cation-p and anion-p orbitals are present. The valence band
(VB) edge at Γ comes from the cation-p–anion-p bonding states and the conduction band (CB) edge comes
from the cation-p–anion-p antibonding states. (b) At the L-point, cation-s–anion-p and cation-p–anion-s
interactions are present, and the valence band maximum (VBM) and conduction band minimum (CBM)
come from cation-s–anion-p and cation-p–anion-s anti-bonding states, respectively. The final energies of the
molecular orbitals in (b) are modified due to next-nearest-neighbor interactions (e.g., cation-p–cation-p and
anion-p–anion-p next-nearest-neighbor interactions push the nearest-neighbor s-p anti-bonding states in (b)
down in energy and the non-bonding p-states up in energy).
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Here, we show that the highest VB state can be described by Pb-s–Te-p and Pb-p-Te-p crystal

orbitals [69] that have s-like symmetry. The crystal orbitals describe superpositions of the atomic

orbitals within a single repeat unit (primitive unit cell) of the crystal. Like atomic orbitals, we

can construct Bloch functions from these crystal orbital units in order to understand band behavior

(Figure 3.9). For simplicity, we show 1D linear interpretations of the Bloch wavefunctions, such that

they can be easily compared to Figures 2.4 and 2.5 in Chapter 2. Note that these sketches are only

intended to show the symmetry and phases of the orbitals, not the relative orbital contributions.

In fact, the Te-p orbitals have the greatest contribution to the VB edge, but the contribution varies

in k-space. The Pb-s/Te-p crystal orbital unit representing the highest VB is constructed from

a Te-p orbital in an anti-bonding configuration with a near-neighbor Pb-s orbital (Figure 3.9a).

The overall symmetry of the phase (shown using dark versus light shading for negative of positive

phase) of this unit is symmetric with respect to the σ-bonding axis, giving it s-like-symmetry.

Therefore, at the Γ-point, where all of these crystal orbitals are aligned with no phase change, the

interactions between the crystal orbital units are all bonding. However, because the interaction

within the crystal orbital units is always anti-bonding, the bonding and anti-bonding interactions

cancel out from symmetry making this state at Γ net non-bonding. On the other hand, at L, each

crystal orbital unit is out-of-phase with its neighboring crystal orbital unit, so the crystal orbital

wavefunction at L is completely anti-bonding.

The Pb-p/Te-p crystal orbital unit that describes the highest VB is constructed from an in-phase

(bonding) Pb-p–Te-p interaction that also has s-like (symmetric) phase symmetry with respect to

the σ-bonding axis (Figure 3.9b). Thus, at Γ the interaction between the crystal orbital units is

bonding, and at L the interaction between the units is anti-bonding. Because the interaction within

the unit is bonding, the Γ-point Bloch function is an entirely bonding state, while the L-point Bloch

function is non-bonding. Overall, the TB crystal orbital transitions from being a Pb-p–Te-p bonding

state at Γ to a Pb-s–Te-p anti-bonding state at L, resulting in a band that runs up in energy from

Γ. Moreover, the 1D interpretation of the L-point in Figure 3.9 can be generalized to represent

the Bloch function corresponding to the VB pockets at Σ′, ∆′, and W. The difference in bonding
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Figure 3.9: Sketch of linear (1D) representations of the crystal orbital units and corresponding Bloch func-
tions at Γ and L in the highest valence band in PbTe. (a) The Te-p/Pb-s crystal orbital unit is described
by a Te-p orbital and Pb-s orbital in an anti-bonding (AB) configuration. The Γ-point Bloch function for
this unit is non-bonding (NB), as the nearest neighbor bonds alternate between being anti-bonding and
bonding, cancelling out to give zero net-bonding. The L-point Bloch function is entirely anti-bonding (AB).
(b) The Te-p/Pb-p crystal orbital unit is described by a Pb-p–Te-p bonding interaction. The Γ-point Bloch
function is bonding, while the L-point Bloch function is non-bonding (NB). Dark versus light shading is
used to represent the orbital phases (positive or negative), such that overlaps between orbitals of the same
phase are bonding (σ) and overlaps between orbitals of opposite phases are anti-bonding (σ∗). Note that the
size of the orbitals does not represent the orbital contributions/characters. The orbitals are all shown using
the same size, such that only the symmetry of the phase is represented by these sketches. The 1D L-point
representation also corresponds to the 1D representations of the W-point, Σ′-point, and ∆′-point VB edges.
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Figure 3.10: 3D sketches of the tight-binding wavefunctions in the highest valence band of PbTe at the
L-point, Σ′-point, and ∆′-point. At the L-point, the Te-p orbital is aligned along the [111] direction, at
Σ′ = π

a (0, 1, 1) it is aligned along the [011] direction, and at ∆′ = π
a (0, 0, 1) it is aligned along [001]. The

overall s-p interaction strength (hopping integral), given by Vsp(k), decreases from L to Σ′ to ∆′. The
shading indicates the orbital phases (positive or negative), and the relative phases of the Pb-s orbitals were
assigned using the 3D Bloch functions.

(anti-bonding) between the competing VBMs is elucidated by considering the 3D atomic-orbital

interpretation of the VB wavefunctions.

3.4.2 3D Valence Band s-p Anti-bonding Pictures

While simple 1D sketches of the Bloch functions are sufficient to understand why the highest VB

increases in energy from Γ to L, W, the Σ maximum, and the ∆ maximum, to understand the

relative energies of the four different local VBMs (L, Σ, ∆, and W), 3D sketches are needed. For

these sketches, we show a single Te-p orbital octahedrally coordinated by its six nearest-neighbor

Pb-s orbitals (see Figure 3.1), whose phases are given by the 3D Bloch functions for each k-point

(Figure 3.10). The vector describing the direction of the p-orbital is determined by the k-point. At

the L-point, the Te-p orbital is oriented along a <111> direction, along Σ, it is oriented along a

<011> direction, and along ∆, it is oriented along a <001> direction.

These simple VB eigenfunction sketches can be used to obtain the same analytical solutions

for the VBM (from s-p interactions) given in the prior section. Specifically, we can reproduce the
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values of Vsp(k) (found by analytically solving part of the TB Hamiltonian) for L, Σ′, and ∆′ using

the geometry and symmetry of the sketches in Figure 3.10. As given in Table 2.1 of Chapter 2, the

Slater-Koster matrix element for an s-p interaction is lVspσ, where l is the direction cosine (projected

along the direction of the p-orbital) of the vector between the p-orbital and s-orbital sites. We can

use a similar formalism to describe the anti-bonding nature of the VB edge states, but instead of

using the Cartesian basis of p-orbitals (px, py, and pz), we use the p-orbital that describes the VB

eigenstates at the various local VBMs. Formally, we can write the s-p anti-bonding strength for

the L, Σ′, and ∆′ VBMs using Equation 3.9, where i sums over each nearest-neighbor and ϕi is the

angle between the p-orbital direction and the vector between the neighbor pairs (see Figure 3.10).

Vsp(k) = Vspσ

6∑
i

cos(ϕi(k)) (3.9)

It is important to note that this equation can only be used at k-points where the s-orbitals

are in a phase that is completely (maximally) bonding, anti-bonding, or non-bonding with the

p-orbital. If we apply Equation 3.9 at the L-point, we get Vsp(L) = 6Vspσ × 1/
√
3. At the Σ′-

point, we get Vsp(Σ′) = 4Vspσ × 1/
√
2 + 2Vspσ × 0 = 4Vspσ/

√
2. Finally, at ∆′, we get Vspσ(∆′) =

2Vspσ × 1 + 4Vspσ × 0 = 2Vspσ.

This atomic-orbital picture framework is not limited to understanding cubic IV-VI semicon-

ductors. We use the same equation and similar eigenstate sketches to understand how the band

structure in GeTe changes with respect to its cubic (rock salt) to rhombohedral phase transition in

Chapter 5.

3.5 Computational Methods

The first-principles DFT calculations to obtain the PbTe band structure (and corresponding or-

bital characters) were performed using the Vienna ab initio Simulation Package (VASP), employing

projector augmented wave (PAW) pseudopotentials and the PBE functional, derived from the gen-
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eralized gradient approximation (GGA). [48–51, 87, 88]. A plane-wave cutoff energy of 450 eV was

used for each calculation. The structural degrees of freedom were relaxed—until the forces on atoms

were less than 0.01 eV/nm—using a Γ-centered [89] k-point mesh of size 13×13×13. The electronic

structure calculations were performed using a Γ-centered k-point mesh of size 20× 20× 20.

3.6 Conclusion

The high valley degeneracy in the VBs of PbTe is partially due to its four-fold-degenerate L-point

VBM, and it can be increased further when the L band is converged with the twelve-fold-degenerate

Σ band. Theoretically, band convergence can be enhanced even more if the ∆ and W VB pockets

are also converged at the VB edge, though this type of convergence is not as well documented in the

literature. In this chapter, we have developed a simple and intuitive orbital-chemistry framework

to aid in the understanding of high band degeneracy in PbTe and IV-VI rock salt semiconductors.

First, we use a toy TB model to show that the highest VB increases in energy from Γ to the

VB edges (L, W, Σ, and ∆) with cation-s–anion-p and/or cation-p–anion-p interactions included

in the model. Simple 1D orbital sketches show that a crystal orbitals unit constructed from cation-

s-anion-p anti-bonding interactions and from cation-p–anion-p bonding interactions have the s-like

symmetry expected from a wavefunction that describes a band that increases in energy away from

the Γ-point. The highest VB has cation-p–anion-p bonding character at Γ, but the cation-p–anion-p

bonding strength decreases away from Γ, such that it is non-bonding at L. The VBM at L is a cation-

s–anion-p anti-bonding state, while this cation-s–anion-p interaction is forbidden at Γ. The other

local VBMs at W and along Σ and ∆ can also be described as largely cation-s–anion-p anti-bonding

states and cation-p–anion-p non-bonding (or nearly non-bonding) states. The s-p interaction is

strongest at L, followed by Σ, then ∆ and W. The difference in s-p anti-bonding strength can be

understood using 3D sketches of the s-p wavefunctions describing these VBMs. Anion-p–anion-p

next-nearest neighbor interactions also influence the shape of the VB. These interactions (in the

highest VB) are bonding in nature at L, Σ, and ∆, with the bonding interaction being stronger at L,
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followed by Σ, then ∆. At the W-point, the anion-p–anion-p interactions are slightly anti-bonding.

In addition to providing insight into band engineering of PbTe, the framework described in

this chapter has been used to understand the chemical origins of band inversion in the crystalline

topological insulator, SnTe [90]. In the next chapter, we build upon this framework to understand

and develop strategies for achieving high band convergence and complex Fermi surface topologies.
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Band Convergence and Low-Dimensional Band Topology

in IV-VI Rock Salt Semiconductors

4.1 Introduction

In Chapter 3, we developed a tight-binding (TB) framework of the valence band (VB) structure in

IV-VI rock salt semiconductors. In this chapter, we extent upon this framework to yield insights for

designing complex Fermi surfaces for better thermoelectric performance in PbTe and other IV-VI

semiconductors.

Convergence of the VB extrema, specifically between L and Σ has been shown to improve

the thermoelectric performance of p-type PbTe and other IV-VI semiconductor materials [29, 30,

35, 38, 72, 73, 75, 91–95]. At low temperature, the Σ VB (NV = 12) is found below the L band

(NV = 4) [28, 29, 75, 79–81, 96], but as temperature increases, the energy of the L band decreases

relative to that of the Σ band, causing the bands to approach each other until the Σ band overtakes

the L band at ∼ 700K [29,35,80–82]. Through experiment, alloying is well-known to be an effective

method for tuning the relative energies of the L and Σ bands [97]. For instance, alloying PbTe

with PbSe, decreases the energy of the secondary VBM along Σ relative to the primary VBM at

L [29]. By contrast, cation-site alloying with impurities, such as Cd, Mg, Sr, Mn, Na, and Hg—all

of which introduce s0 states above the VB edge—decreases the energy of the L-band relative to the

Σ band [28,71,73,75,85,95,97–100].

In this chapter, we use the TB framework from the previous chapter to elucidate the chemi-
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cal origins of band convergence in order to explain these alloying strategies. Additionally, while

discussion of band convergence has typically been limited to the L and Σ bands, in this chapter,

we discuss convergence with the ∆ and W bands, which can further improve band degeneracy and

Fermi surface complexity [34]. Higher convergence of band edge extrema may lead to interesting

variations (beyond simply increasing the nominal valley degeneracy) in the Fermi surface, leading

to unique low-dimensional-like transport in 3D bulk materials. In general, increasing the band con-

vergence favors lower-dimensional Fermi surfaces in IV-VI semiconductors, and reducing the band

dimensionality in thermoelectric materials may improve performance [45,101,102].

Traditionally, low-dimensional behavior is achieved by designing nano-scale materials that con-

fine electronic transport in at least one dimension [103–105]. While low-dimensional materials were

initially thought to enhance thermoelectric performance [103,104], when multiple bands contribute

to transport, quantum confinement from low-dimensionality can actually reduce thermoelectric per-

formance by breaking degeneracy [106,107]. However, low-dimensional transport has been reported

in 3D materials that have lower dimensional Fermi surfaces, and associated gains in thermoelectric

performance are predicted [45,69,101,108]. Thus, engineering low-dimensional bands in 3D materials

provides a novel pathway to achieve the efficiency gains associated with low-dimensionality without

the challenges and costs associated with synthesizing nano-scale material or the loss in thermo-

electric power from degeneracy-breaking quantum confinement effects seen in true low-dimensional

materials [45,101].

While transport in these materials does occur in all three dimensions (as dictated by the sym-

metry of the bulk crystal), the density of states (DOS) has the same energy dependence as true

low-dimensional materials, such as nano-wires and nano-scale thin-films (see Figure 4.1). Fermi

surfaces that yield 3D-type transport are ellipsoidal and expand in all three dimensions with an

increase Fermi energy, so the DOS is proportional to the square-root of energy. Fermi surfaces with

2D-type transport are cylindrical, and therefore, only expand in two dimensions with increasing

Fermi energy. The corresponding DOS is independent of energy. Finally, Fermi surfaces with 1D-
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Figure 4.1: Low-dimensional Fermi surfaces in bulk 3D materials have density of states (DOS) with energy (ε)
dependencies that correspond to those in true low-dimensional materials, such as thin-films and nanowires.
The top row depicts sketches of true 3D, 2D, and 1D materials. The middle row contains sketches of the
corresponding DOS for these materials, assuming parabolic bands in the dispersive direction(s). The bottom
row shows sketches of Fermi surfaces in cubic bulk 3D materials that have DOSs with energy dependencies
corresponding to 3D-type transport (DOS ∝

√
ε), 2D transport (DOS independent of energy), and 1D

transport (DOS ∝ 1/
√
ε). In the DOS sketches, εb denotes the band edge.

type transport resemble sheets and expand in one dimension as the Fermi energy moves deeper into

the band. The DOS for these bands is inversely related to the square-root of energy.

In Ref. 45, first-principles calculations show that PbTe, PbSe, PbS, and SnTe with sufficient

carrier concentrations exhibit a 2D VB Fermi surface topology consisting of 12 tubes, or “threads”,

connecting the L-points and intersecting the 12 Σ VB pockets. Higher power factors are predicted

for the tubes than the ellipsoids [45]. Here, we use the toy IV-VI rock salt TB model to show that the

lower-dimensional Fermi surfaces could emerge closer to the band edge (accessible at lower carrier
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concentrations/electron chemical potentials) if the various VB pockets are more converged. We

also describe the chemical origins of this transition from the 3D ellipsoidal Fermi surface to the 2D

topology (tubes/threads), along with an additional theoretical transition to a topology characteristic

of 1D transport. By varying the relative convergence of the VB extrema using “chemical knobs”

within the TB model, we see a topological evolution in the Fermi surface from 3D, to 2D, to 1D.

Using an effective mass model, we show that the lower-dimensional Fermi surfaces have higher Fermi

surface complexity factors (quantification of Fermi surface complexity [34]) and may lead to higher

Seebeck coefficients and power factors, although the extent of the benefits depend on the scattering

assumption.

4.2 Identifying Chemical Knobs for Tuning Convergence

4.2.1 Insights from Tight-Binding Model

The first step to developing an orbital-chemistry framework for band convergence is to write out

analytical TB expressions that describe the energy difference between the L and Σ VB extrema

(ELΣ) and between the L and ∆ VB extrema (EL∆) (see Figure 4.2). The notation for the TB

parameters adopted in this chapter is the same as that used in Chapter 3. For the most part, we

neglect spin-orbit coupling (SOC) effects, in order to understand the effects of the simple atomic-

orbital interactions themselves. Discussion on the potential influences of SOC can be round in Ref.

47. The overall chemical trends in VB are not significantly impacted by SOC, though SOC does

have a significant impact on the bandgap energy, and this effect becomes less important as Pb and

Te are replaced with lighter elements [109,110].

Using Equation 3.2 for the L, Σ, and ∆ VB extrema, in addition to Equations 3.5-3.7, we

can write out analytical expressions that approximate the values of ELΣ and EL∆, where we let

Asp = 1
2(ETe−p − EPb−s). We plot these solutions alongside the numerical solutions to the TB

model (see Chapter 3 for parameters) with respect to Vspσ, Vppσ,Te (Vppπ,Te = −1
8Vppσ,Te), and Asp
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Figure 4.2: DFT-calculated (using the PBE functional without spin-orbit coupling) electronic structure of
PbTe, showing the valence band edge. The energy of the L, Σ, and ∆ valence band extrema are shown using
the magenta, cyan, and coral dotted lines, respectively. The energy differences between the L and Σ bands
(ELΣ) and L and ∆ bands (EL∆) are labeled.



91

(Figure 4.3).1 The analytical solutions are determined assuming that the Σ and ∆ VBMs occur

exactly at the points, ∆′ = π
a (0, 0, 1) and Σ′ = π

a (0, 1, 1) while the numerical TB solutions use the

true locations of these maximums, which deviate from these values. Clearly, both ELΣ and EL∆

increase as Vspσ increases and as Vppσ,Te and Asp decrease. Additionally, when convergence between

L and Σ and between L and ∆ increase, Σ and ∆ also converge.

ELΣ ≈ Vppπ,Te − Vppσ,Te +
1

2

√
(2Asp + 4Vppπ,Te − 4Vppσ,Te)2 + 48V 2

spσ

− 1

2

√
(2Asp + 2Vppπ,Te − 2Vppσ,Te)2 + 32V 2

spσ (4.1)

EL∆ ≈ −2Vppσ,Te +
1

2

√
(2Asp + 4Vppπ,Te − 4Vppσ,Te)2 + 48V 2

spσ

− 1

2

√
(2Asp + 4Vppπ,Te)2 + 16V 2

spσ (4.2)

The trends with respect to Vspσ and Asp are directly related to the fact that the different VB

extrema have differing dependencies on the cation-s–anion-p interaction. As discussed in Chapter 3,

the local VB maximums in PbTe and similar IV-VI rock salt semiconductors are primarily cation-s–

anion-p anti-bonding states. Because the s–p interaction is strongest at L, followed by Σ, then ∆ and

W, the VBM is located at L, while the other VB maximums are lower in energy. Therefore, when

this interaction is weakened, either by reducing the interaction parameter (Vspσ) or by increasing

the energy separation between the orbitals (2Asp) [66], it reduces the difference in energy between

the different anti-bonding states at different k-points (Figure 4.3a,c). Moreover, the next-nearest-

neighbor anion-p–anion-p interactions have an influence on the energy of the VBMs. In the L, Σ,

and ∆ VBMs, this interaction is bonding in nature, and lowers the energy of these bands, while in
1Like in Chapter 3, we use Pb as the cation and Te as the anion for the sake of discussion, but Pb can be

generalized to a group-IV cation (Ge, Sn Pb), and Te can be generalized to any group-VI anion (S, Se, Te).
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Figure 4.3: Tight-binding (TB)-calculated band convergence between L, Σ, and ∆ valence bands with
respect to (a) the cation-s–anion-p interaction strength (Vspσ), (b) the anion-p-anion-p interaction strength
(Vppσ,Te) and (c) the energy separation between the cation-s and anion-p orbitals (2Asp). The solid lines are
calculated using the analytical approximations given in Equations 4.1-4.2, and the circles represent values
calculated numerically using the TB model. The values of the TB parameters when they are held constant
are Vspσ = 0.8 eV, Vppσ,Te = 0.15 eV, 2Asp = 5 eV, Vppσ = 1 eV, and Vppπ = −1/8 eV. Vppπ,Te is constrained,
such that Vppπ,Te = − 1

8Vppσ,Te (see Table 3.1).

the W VBM, it is slightly anti-bonding. Because the bonding interaction is stronger in the L band,

followed by Σ, then ∆, increasing the interaction strength causes the L band to decrease relative

to the Σ, ∆ and W bands, while the Σ band decreases relative to the ∆ band, and the ∆ band

decreases relative to the W band, enhancing the overall band convergence (Figure 4.3b).

4.2.2 Design Strategies for Valence Band Convergence

The theoretical insights from the TB model can be used to inform and explain real design strate-

gies for achieving band convergence in PbTe and other IV-VI rock salt materials. As discussed

in the previous section, the TB routes for achieving convergence involve tuning the values that

influence the cation-s–anion-p nearest-neighbor and anion-p–anion-p next-nearest-neighbor interac-

tions.2 Because the cation-s–anion-p interaction dominates over the next-nearest neighbor anion-p
2While the cation-p–anion-p interactions do not play a significant role in controlling band convergence—the

VB maxima are non-bonding or nearly non-bonding with respect to this interaction—these s–p interactions should
influence the curvature of the VB (and CB) edges. Increasing the strength of this interaction (i.e., decreasing the
energy separation between the p-orbitals or increasing the hopping parameter between the orbitals) should increase the
curvature. The increase in curvature should then yield a lower inertial effective mass and higher carrier mobility [111].
While we do not investigate this relationship in detail, it is an interesting topic for study.
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interactions, we focus on strategies that target the strength of the s-p coupling at the VB edges. The

s-p interaction strength depends on both Vspσ and Asp, so methods to enhance convergence should

target, or effectively target, one or both of these parameters. Note that when we describe strategies

to enhance convergence, we are assuming that the VBM is at L, rather than along Σ. However,

at higher temperatures or certain compositions, Σ may overtake L and become the VBM [29], and

in those cases, the opposite strategies should be employed to enhance convergence. We are also

assuming that there is no change to the crystal structure—these effects are discussed in Chapter 5.

The value of Vspσ can be directly reduced by increasing the lattice constant, as the magni-

tude of any interaction (hopping) parameter decrease with interatomic distance [63, 64]. This can

be achieved through an increase in temperature (thermal expansion) [112], decreasing hydrostatic

pressure, or tuning alloying concentrations to increase the lattice constant. Because temperature

and pressure do not change the composition of the compounds, they have been shown to consis-

tently tune band convergence in the predicted direction based on the change in lattice constant and

corresponding change in Vspσ [29,86,109]. This trend in Vspσ and convergence with respect to lattice

constant is evident in Figure 4.4, which shows that the convergence between the L, Σ, and ∆ bands

increases with lattice constant—up until the point where the Σ and ∆ overtake the L band—and

that both the contribution of the cation-s orbital at L and the difference between the contribution

at L and in the Σ and ∆ bands decreases with lattice constant. The percent contribution of the

cation-s orbital in the VB edges acts as a proxy for the strength of the s-p coupling [113], so these

trends show that the s-p coupling (described by Vspσ), and hence differences in s-p coupling be-

tween the different VB pockets, decreases with increasing lattice constant. Clearly, increasing the

lattice constant decreases the energy separation between the L VBM and the other local VBMs, and

this trend can be directly linked to a decrease in cation-s–anion-p coupling with increasing lattice

constant.

When chemical substitutions that change the composition alter the lattice constant, the trend

with respect to s-p interaction strength and subsequent change in convergence is less straightforward.
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For instance, substitutions on the anion-site with a more electronegative species (e.g., substituting

Te with Se or S or substituting Se with S) [6] decreases the lattice constant [86, 112] but also

decreases the on-site energy of the anion-p orbitals, which reduces the values of Asp [64]. Because

the decrease in lattice constant and decrease in s-p energy splitting both increase the strength of

the s–p coupling, there is a consistent trend indicating that substituting Te or Se with a more

electronegative chalcogen decreases VB convergence [29,86,109,112]. Furthermore, when replacing

Pb with Sn, both the decrease in Asp (Sn is more electropositive than Pb [3]) and the decrease in

lattice constant should lead to a decrease in convergence, which is in fact the case [114–116].3 On the

other hand, when the cation-site is replaced with a more electropositive cation species that increases

the lattice constant (e.g., substituting Ge with Sn) [6], we would expect a decrease in convergence

due to a decrease in Asp,4, but an increase in convergence from the larger unit-cell volume. That is,

replacing Ge with Sn should lead to a decrease in convergence from Sn being more electropositive

than Ge (smaller Asp), but should lead to an increase in convergence from the lattice constant of

SnTe being larger than that of GeTe [116]. In this case, the effect of reducing the s-p energy splitting

evidently wins out, as it is known from first-principles calculations that the convergence between

band edges at low temperature is greater in GeTe than in SnTe [38,91,119–122].

It is worthwhile to point out that SnTe exhibits band inversion at the L-point (when SOC is

considered), making it a topological crystalline insulator, so the cation-s–anion-p anti-bonding state

actually constitutes the CBM at L, while the cation-p-anion-s anti-bonding state constitutes the

L-point VBM [90, 114, 115, 119]. Therefore, in SnTe with band inversion, Equation 4.1 and 4.2 do

not hold. In pure SnTe with band inversion, the differences in band-edge energy are even greater
3The PBE electronic band structures of rock salt GeTe, PbTe, and SnTe, in addition to other IV-VI semiconductors

without SOC can be found on the Materials Project database: https://materialsproject.org/materials. The interactive
band structure plots allow users to see the relative energy of the different VB pockets relative to the VBM at the
L-point.

4While the electronegativity generally decreases down a group on the periodic table, Pb represents an exception in
the chalcogen series, as it is more electronegative than both Sn and Ge. This somewhat anomalous electronegativity
trend is attributed to relativistic effects—which decrease the energy of the valence electrons by contracting the s and
p electron shells—from the large size of Pb [116–118]. This electronegativity trend actually contradicts the atomic
on-site energies given in Ref. 63, which indicates that the Pb-s and Pb-p energies are higher than those of Sn and
Ge.
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than the differences that would be calculated using the actual VBM energies, because the L-point

cation-s–anion p anti-bonding state is higher in energy than the L-point VBM (a cation-p–anion-s

anti-bonding state). That being said, when we consider alloying SnTe with IV-VI rock salt materials

that do not exhibit band inversion (and the alloy also does not exhibit band inversion), then the

differences between the cation-s–anion-p anti-bonding states at L, Σ, ∆, and W are the relevant

factors in determining trends in band convergence with respect to alloying.

The difference in the VB offsets between PbTe and (cubic) GeTe are more difficult to explain

using Vspσ and Asp. Based on both electronegativity and equilibrium lattice constants (aGeTe = 6.02

Å, aPeTe = 6.56 Å), we would expect GeTe to have a less converged VB structure because it has

a smaller lattice constant and should have a smaller value of Asp. However, cubic GeTe is more

converged than PbTe, showing that this intuition is not sufficient. As seen in Figure 4.4a, the

difference in energy between the L VBM and ∆ and Σ VBs is larger in PbTe than in GeTe when

the lattice constants are equal.5 Additionally, at the equilibrium lattice constants, GeTe is more

converged than PbTe, despite GeTe having a smaller lattice constant. The fact that the L–Σ and

L–∆ offsets are greater in PbTe than GeTe for the same lattice constant indicates that chemically,

GeTe intrinsically favors having smaller offsets, independent of lattice constant effects.

Based on Figure 4.4b-c, the s-p coupling does not decisively explain these differences in VB

offsets. The difference in cation-s contribution between the L and Σ bands and L and ∆ bands are

very similar between the two materials (Figure 4.4b). Based only on the cation-s contributions in

the L-point VBM, PbTe exhibits greater s-p coupling than GeTe, given that they have the same

lattice constant, but equilibrium GeTe exhibits greater s–p coupling than equilibrium PbTe (Figure

4.4c). The former observation is not consistent with Pb being more electronegative than Ge and the

latter is inconsistent with the band offsets being larger in PbTe than GeTe. The first contradiction

may be from the Ge-s orbitals being lower in energy than Pb-s orbitals, despite what the Pauling

electronegativity values [3] would suggest. In fact, according to Ref. 63, this is the case, and Ge-s
5The methods used to calculate the DFT energy levels are the same as those described in Chapter 4. For the

strain calculations, the lattice constants are set manually and not by structural relaxations.
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Figure 4.4: Comparison of DFT-calculated (no SOC) valence band (VB) offsets and k-resolved, band-resolved
projected density of states (pDOS) values for the cation-s orbitals as a function of lattice constant between
GeTe and PbTe. (a) Difference in energy between L and Σ VBs (circles) and between L and ∆ VBs (inverted
triangles) for GeTe (red) and PbTe (blue). Lines of best fit are shown with solid lines (L−Σ) or dashed lines
(L−∆). (b) Difference in the (normalized) pDOS of cation-s between L and Σ VBs and between L and ∆
VBs for GeTe and PbTe (same label key as (a)). (c) Normalized cation-s pDOS in the L-point VBM as a
function of lattice constant for GeTe and PbTe.

orbitals are lower in energy than Pb-s orbitals. The second contradiction may be due to relatively

stronger Te-p–Te-p interactions in GeTe than in PbTe, which would lower the energy of the L VBM

relative to the Σ and ∆ bands. However, this hypothesis still needs to be confirmed, and other

unexplored explanations may be possible.

Finally, one of the most popular and effective strategies for enhancing band convergence in the

IV-VI rock salt thermoelectrics, alloying/doping on the cation-site with elements that introduce

unfilled s0-orbitals above the VBM, can be explained as effectively decreasing the s-p coupling

strength. These unfilled cation-s0-orbitals interact with the anion-p states in the VB with the same

relative strength (between different VB pockets) as the filled cation-s2–anion-p interactions, but

because these unfilled cation-s orbitals are above the VB edge, they push the VB edges down in

energy. That is, the VB edges contain unfilled cation-s0–anion-p bonding states, analogous to the

filled cation-s2–anion-p anti-bonding states. This interaction directly counteracts the filled cation-

s2–anion-p anti-bonding interaction in the VB edges, and it is strongest in the L VB, followed by

Σ VB, then ∆ and W VBs, so it leads to an effective decrease in Vspσ, and therefore, increase

in convergence. Additionally, increasing the content of the s0-cations decreases the content of the
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s2-cations, which simply reduces the number of s2-orbitals that can interact with the anion-p VB

states.

The impact of cation-s0 states on the VB structure can be qualitatively modeled using the TB

method in conjunction with the virtual crystal approximation (VCA). The VCA is a computationally

inexpensive method to model alloy systems that is simple to implement. Within the VCA, the

alloying site is treated as a weighted average of the its constituents. If we consider the alloy,

A1−xBxC, the VCA potential describing the electronic structure of the alloy can be written as a

linear combination, or weighted average, of the potential of the compounds, AC and BC [123–126].

This VCA methodology can be translated to understanding cation-site substitutions (with differ-

ent on-site energies) by adding an an additional TB basis element for the cation-s0 state. Consider

the alloy, M1xM21−xX, where M1 is a cation that introduces unfilled s0 states above the VB edge

(Na, Mn, Mg, Cd, Hg, etc.), M2 is a group-IV cation (Ge, Sn, Pb), and X is a group-VI anion (S,

Se, Te). To implement the VCA in this case, we simply modify the Hamiltonian such that we weight

the hopping parameter for the M1-s0–X-p interaction by x and weight the hopping parameter for

the M2-s2–X-p interaction by 1− x. Additionally, we weight the M2-p–X-p interactions by 1− x,

and we assume that the M1 atom only introduces s0 states and no other orbital states. Results

for this model are depicted in Figure 4.5. Clearly, increasing the M1 content within this TB model

causes both ELΣ and EL∆ to decrease such that the VB structure is more converged. Moreover,

this effect is still present when we do not consider the M1-s2–X-p interactions at all but still weight

the M1–X interactions by 1− x (treating M1 as a vacancy), but the effect is weaker, especially at

larger x.

4.3 Low-Dimensional Fermi Surface Topology

When more and more VB pockets are converged in energy near the band edge in PbTe (and similar

IV-VI compounds), the result is not merely an increase in the nominal number of carrier pockets

to increase NV . Rather, the result is a more fundamental change to the nature of the Fermi surface



98

Figure 4.5: Numerical tight-binding (TB) values of valence band (VB) offsets between the L and Σ VBs
(ELΣ) and between the L and ∆ VBs (EL∆) as a function of x in M1xM21−xX, where M1 is a cation that
introduces unfilled s0 states above the VB edge (Na, Mn, Mg, Cd, Hg, etc.), M2 is a group-IV cation (Ge,
Sn, Pb), and X is a group-VI anion (S, Se, Te). The darker lines represent values calculated with the M1-
s0–X-p and M2-s2–X-p interactions included, while the fainter lines represent values calculated where only
the M2-s2–X-p interaction is considered (s0-cation (M1) acts as a cation vacancy). The same s-p hopping
parameter, Vspσ, is used for both s-p interactions, and the on-site energy of M1-s0 is set to be 2.5 eV above
the X-p on-site energy. The other TB parameters are the same as those used to calculate Figure 4.3 (see
Table 3.1). The M2-p–X-p interaction is also included in all calculations. Note that only the effects of the
cation-s-orbital contents are being considered in this model— we do not regard the effects of introducing
other M1 orbitals.
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Vspσ = 0.8 eV Vspσ = 0.755 eV Vspσ = 0.745 eV Vspσ = 0.74 eV Vspσ = 0.725 eV

E
VBM

 − E
F
 = 0.075 eV

E
VBM

 − E
F
	= 0.05 eV

Figure 4.6: Valence band (VB) Fermi surface evolution from tight-binding (TB) band structures of a toy
IV-VI rock salt semiconductor, where the cation-s–anion-p hopping parameter, Vspσ, is varied. The top
panel shows TB Fermi surfaces when the Fermi energy is set to be 0.05 eV below the VBM, and the bottom
panel shows Fermi surfaces with the same Vspσ values for a Fermi energy 0.075 eV below the VBM. All the
TB parameters aside from Vspσ are given by the values listed in Table 3.1.

topology, such that complex and non-ellipsoidal Fermi surface geometries emerge, leading to low-

dimensional-like (1D-like or 2D-like) transport in 3D materials.

4.3.1 Description of Fermi Surfaces

The VB Fermi surfaces calculated using the TB model for the toy IV-VI rock salt system provide a

picture of a theoretical evolution of Fermi surface geometries as certain parameters are varied. Here,

we present an evolution based on varying the cation-s–anion-p hopping parameter, Vspσ (Figure 4.6).

However, a similar type of evolution would be expected from increasing the strength of the anion-p–

anion-p interactions or increasing the energy separation between the cation-s and anion-p orbitals.
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At higher values of Vspσ the Fermi surface near the band edge is characterized by four ellipsoidal

pockets that start to form “prongs” slightly deeper into the VB edge.6 Then, as Vspσ is reduced,

the twelve Σ pockets emerge, and if Vspσ is reduced further or the Fermi energy is moved deeper

below the VBM, the Fermi surface extends continuously between the L-points, through the twelve

Σ pockets, such that the Fermi surface is characterized by twelve tubes that roughly outline a cube

(like the IV-VI rock salt Fermi surfaces depicted in Ref. 45). Additionally, at slightly lower values

of Vspσ or (Fermi energies), pockets at the W-points begin to emerge and eventually connect to the

tubes. Finally, at even lower values of Vspσ the ∆ pockets begin to form and coalesce with the tubes,

such that Fermi surface “sheets” are formed. While the exact nature of the evolution depends on the

other TB parameters, the Fermi surfaces depicted in Figure 4.6 give an general sense of the types

of Fermi surface geometries that can be (theoretically) achieved in IV-VI rock salt semiconductors.

We can simplify the features of these Fermi surfaces into three types of idealized shapes: ellipsoids

spheres, cylinders, and sheets (Figure 4.7). Specifically, the Fermi surface types include four spheres

(radius |k3D|), twelve cylinders (radius |k2D|, length 2π/a), and six intersecting sheets (thickness

2|k1D|, side length 2
√
2π/a). We distinguish these three different Fermi surface based on the energy-

dependence of their DOS expressions, as described in Figure 4.1. The spherical Fermi surface has a

3D-like DOS, the cylindrical Fermi surface has a 2D-like DOS, and the sheet-like Fermi surface has a

1D-like DOS. Using these simplified Fermi surfaces geometries, we can develop transport models to

describe them, following a similar approach to that used in Chapter 2 to derive the thermoelectric

quality factor, B.

4.3.2 Thermoelectric Transport Predictions

To develop transport models for the three Fermi surface types described in the previous section, we

start with the generic electronic dispersion for a free-electron-like band (Equation 4.3), following

the assumptions in the single parabolic band (SPB) model [18,56]. We also assume acoustic-phonon
6This pronged, or corrugated, type of Fermi surface is very similar to that described in Ref. 46 to describe the

GeTe and SnTe Fermi surfaces.
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Idealized IV-VI rock salt Fermi surface types

1D2D3D

Spheres Cylinders
(tubes)

Sheets

Figure 4.7: Idealized IV-VI rock salt valence band (VB) Fermi surfaces types. Each type of Fermi surface is
distinguished by the energy dependence of its density of states (DOS), and the dimensionality of transport
that coincides with this DOS. The 3D-type Fermi surface (left) consists of four spheres (eight half-spheres),
with radius |k3D|. The 2D-like Fermi surface (center) consists of twelve cylinders with radius |k2D| and
length 2π

a , where a is the unit cell lattice constant. The 1D-like Fermi surface (right) can be approximated
as six intersecting sheets (neglecting the overlapping areas) with side lengths 2

√
2π
a and thickness 2|k1D|.
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scattering, which means that the scattering rate should be approximately proportional to the DOS

(from Fermi’s Golden Rule).

E(k) =
ℏ2k2x
2m∗

x

+
ℏ2k2y
2m∗

y

+
ℏ2k2z
2m∗

z

(4.3)

In the above equation, kx, ky, and kz are the Cartesian components of the k-vector, and m∗
x,

m∗
y, and m∗

z are the inertial effective masses along the three Cartesian directions. For a spherical

Fermi surface pocket, the inertial effective mass will be isotropic (m∗
x = m∗

y = m∗
z), so the dispersion

can be simplified (Equation 4.4).

E(k) =
ℏ2(k2x + k2y + k2z)

2m∗
I

=
ℏ2|k3D|2

2m∗
I

(4.4)

For a (perfectly) cylindrical Fermi surface pocket, the curvature is zero (i.e., the band is flat),

in one of the three directions. The inertial effective mass is inversely related to the curvature, so

the effective mass for this direction would approach infinity, making the term, ℏ2k2i
2m∗

i
—where i is the

direction with zero curvature— approach zero. Therefore, the cylindrical dispersion is given by the

expression in Equation 4.5, where we assume (arbitrarily) that the cylinder is oriented along the

z-axis.

E(k) =
ℏ2(k2x + k2y)

2m∗
I

=
ℏ2|k2D|2

2m∗
I

(4.5)

Finally, for the sheet-like Fermi surface, the bands have zero curvature in two of the three

directions, giving the following electronic dispersion, assuming (arbitrarily) that the sheet is oriented

in the y-z plane:

E(k) =
ℏ2k2x
2m∗

I

=
ℏ2|k1D|2

2m∗
I

. (4.6)
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The velocity of the charge carrier in a given direction is related to the partial derivative of the

dispersion relationship [67,69].

vi(k) =
1

ℏ
∂E(k)
∂ki

=
ℏki
mi

(4.7)

In Equation 4.7, vi is the carrier velocity along the i–direction, where i = x, y, or z. The

velocity in a given direction is inversely proportional to the respective effective mass. Therefore,

when there is virtually zero dispersion in a given direction (flat band), then the effective mass

in that direction approaches infinity, and the velocity approaches zero. Consequently, the carrier

transport is effectively zero in that direction and limited to the other direction(s). That is, in the

3D-like Fermi surface (spheres) transport occurs in all three dimensions from each Fermi surface

pocket, while for the 2D-like (cylindrical) Fermi surface, each cylinder will contribute to transport

in only two dimension, as the dispersion is flat in the third direction. Moreover, for the 1D-like

Fermi surface (sheets), each sheet only contributes to transport in one of the three directions. Even

though each individual cylinder (or sheet) only contribute to transport in two (or one) directions,

the overall transport is still isotropic for this cubic system because the contributions of each cylinder

(or sheet) can be added, and there are three cylinders (two sheets) in each direction [69]. Thus, the

contributions to transport are equal in all three directions.

The expressions for the scattering time, τ , Seebeck coefficient, α, quality factor, B, Lorenz

number L, figure of merit, zT , and DOS, g, for 1D-, 2D-, and 3D-type bands are given in Appendix

D.13 (see Chapter 2 for background on thermoelectric transport). Because we assume acoustic-

phonon scattering (τ ∝ 1/g) the expression for α, L, and zT are identical for 1D, 2D, and 3D in

terms of B and the reduced Fermi Level (this is not the case for all scattering assumptions), η,

where η = EF /kBT , and EF is the Fermi energy. They are given in Equations 4.8-4.10.

α(η) =

(
kB
e

)[
2F1(η)

F0(η)
− η

]
(4.8)
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L(η) =

(
kB
e

)2 [3F2(η)F0(η)− 4F 2
1 (η)

F 2
0 (η)

]
(4.9)

zT (η,B) =
α2(η)

(kB/e)2

BF0(η)
+ L(η)

(4.10)

Fj(η) is the Fermi-Dirac integral, which is defined in Equation 2.7.

Although α is the same for all three dimensions for a given value of η, the reduced chemical

potential is a function of the hole concentration, p, which is given by p =
´∞
0 g(E)f(E)dE, where

f is the Fermi-Dirac distribution. Because the DOS is different for each dimension, the relationship

between p and η changes with dimensionality, as seen in Equations 4.11-4.13. Here, p1D, p2D, p3D

represent the number of holes per unit volume of the material corresponding to the idealized 1D, 2D,

and 3D Fermi surface types, respectively, and m∗
b is the band effective mass (or the DOS effective

mass for a single band).

p1D =
12(2m∗

bkBT )
1/2

a2πℏ
F− 1

2
(η) (4.11)

p2D =
12m∗

bkBT

aπℏ2
F0(η) (4.12)

p3D =
2(2m∗

bkBT )
3/2

π2ℏ3
F 1

2
(η) (4.13)

Using Equations 4.11-4.13 and Equation 4.8, we can calculate the Pisarenko relationship at

300K (α versus p) for each dimension as seen in Figure 4.8a. The lattice parameter is taken to be

a = 6.46 Å, and the band effective mass is taken to be m∗
b = 0.2me [45]. For a given p, the Seebeck

coefficient increases as the dimensionality of the bands is reduced, and this increase in thermopower

is due to the higher hole concentration for a given value of η. Moreover, using the expressions for
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the electrical conductivity, σ, and Lorenz number, L derived in Appendix C for the three Fermi

surface geometries, we plot estimates for the power factor (α2σ) and zT for each type of Fermi

surface. Here, we assume (solely for the sake of comparison between Fermi surface types) that the

lattice thermal conductivity is given by κL = 5 W/mK.

Furthermore, because the scattering time, and hence, mobility should be inversely related to

the DOS of a given carrier pocket (from acoustic-phonon scattering assumption based on Fermi’s

golden rule) [59, 60, 127], we scale the value of the carrier mobility parameter, µ0, by the DOS of

each type of carrier pocket, such that the mobility is decreased when the DOS is larger. To start,

we try a mobility approximation that uses the DOS of a single sphere, cylinder, or sheet, and does

not include the degeneracy of each type of carrier pocket (Equations 4.14-4.16]). We introduce a

variable, ε, which is the reduced energy (ε = E/kBT ).

gsphere(E) =

√
2(m∗

b)
3/2

π2ℏ3
E1/2 =

√
2(m∗

b)
3/2

π2ℏ3
(kBT )

1/2ε1/2 (4.14)

gcylinder(E) =
m∗

b

aπℏ2
(4.15)

gsheet(E) =
2(2m∗

b)
1/2

a2πℏ
E−1/2 =

2(2m∗
b)

1/2

a2πℏ
(kBT )

−1/2ε−1/2 (4.16)

Thus, if we assume that µ0 = µ03D for the spherical Fermi surface pockets, then the mobil-

ity parameter for the cylindrical Fermi surface pockets can be roughly estimated to be µ02D =

µ03D
√
2a(m∗

bkBT )
1/2/(πℏ), and the mobility parameter for the sheet-like Fermi surface pockets

can be approximated as µ01D = µ03Da
2(m∗

bkBT )/(2πℏ2). Thus, µ02D ∼ (1/10)µ03D and µ01D ∼

(1/200)µ03D . For this example, we take the mobility of the spherical pockets to be µ03D = 1000

cm2V/s. The energy-dependence of the DOS is already taken care of in the derivation of α, σ, and

L as a function of carrier concentration (see Appendix C for more details).
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Using these scattering-rate assumptions, we predict an improvement to the peak power factor

(Figure 4.8b) and zT (Figure 4.8c) as the Fermi surface evolves from the 3D-like geometry (spheres)

to the 2D-like geometry (cylinders), and from the spheres to the 1D-like Fermi surface (sheets), but a

decrease in peak power factor and zT from the cylinders to the sheets. The predicted improvement

in the 2D and 1D cases (from the 3D case) is the result of higher carrier concentrations closer

to the band edge (lower η), allowing for the Seebeck coefficient and electrical conductivity to be

simultaneously enhanced. However, in the 1D case, the increased carrier concentration near the

band edge is counteracted by the higher scattering rate, such that the overall power factor and zT

is reduced relative to the 2D case. Additionally, the power factor and zT peak at higher carrier

concentrations as the Fermi surface evolves from the 3D to the 2D to the 1D case (9× 1018 cm−3,

2× 1020 cm−3, and 4× 1021 cm−3, respectively).

In the last, assumption, we assume that scattering occurs at equal rates on the entire surface

of a cylinder or sheet but not between cylinders and sheets. Another assumption we can try, is to

assert that there is complete scattering between the states closest to one of the four L-points, and

no scattering between states that are closest to different L-points. That is, we use the DOS that

corresponds to 1/4 of the total DOS for the four spheres, twelve cylinders, or six sheets. The mobility

parameters for the 1D and 2D bands (relative to that for the 3D bands) for this assumption are

µ01D = µ03Da
2(m∗

bkBT )/(3πℏ2) and µ02D = µ03D
√
2a(m∗

bkBT )
1/2/(3πℏ). This assumptions leads to

equivalent maximum values of power factor (Figure 4.8d) and zT (Figure 4.8d) for all three cases

(the Seebeck coefficient is still highest in the 1D case and lowest in the 3D case for a given η).

These results indicate that all the benefits of having a higher hole concentration are completely

cancelled out by the increase in electron-phonon scattering from the higher DOS. The optimal

carrier concentrations for this assumption are 9× 1018 cm−3, 3× 1020 cm−3, and 5× 1021 cm−3 for

the 3D, 2D, and 1D cases, respectively.

The scattering assumptions based on the simple scaling of the mobility by the DOS for each

Fermi surface type assumes that the electron-phonon scattering rate is independent on the initial
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Figure 4.8: Seebeck coefficient (α), power factor (α2σ), and zT as a function of hole concentration (p) at
300K for different scattering assumptions (based on acoustic-phonon scattering) for the 3D- (green), 2D-
(blue), and 1D-like (red) Fermi surfaces in IV-VI rock salt compounds. (a) The Seebeck coefficient is highest
in the 1D Fermi surface, followed by the 2D then 3D Fermi surface geometries. (b) Power factor and (c)
zT as a function of carrier concentration, assuming that the scattering rate is proportional to the density of
states of a single sphere, cylinder, or sheet. (d) Power factor and (e) zT , assuming that the scattering rate
is proportional to the density of states corresponding to one of the four L-points (1/4 of the total DOS for
4 spheres, 12 cylinders, or 6 sheets).
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and final k-vectors and the distance between the k-vectors on the iso-energy Fermi surface. However,

in general, electron-phonon scattering between k-points is less likely in more distant k-points [36].

Also, this simplified DOS scaling of the scattering time is not entirely consistent with real behavior

seen in in IV-VI compounds because it would mean that there would be no benefit from having

Σ-pockets contributing to the transport in PbTe, as the benefits from the extra carriers introduced

by the Σ pockets would be completely cancelled out by an increase in electron-phonon scattering.

The Σ-pockets do, in fact, enhance the performance of PbTe [29, 78], so this DOS scaling likely

presents an over-correction to the mobility.

Therefore, it is beneficial to look at the other extreme: the constant scattering time approxi-

mation. This assumption asserts that the scattering time τ is independent of energy and has no

dependence on the DOS [57, 128]. The Pisarenko relationship, power factor, and zT following this

assumption are shown in Figure 4.9. We assume µ0 = 1000 cm2V/s fall all three Fermi surface

geometries. Clearly, the constant scattering time approximation predicts a dramatic increase in the

power factor and zT upon a reduction in the transport dimensionality, in accordance with Ref. 45.

Again, the enhancement is due to the large increase in charge carriers for a given value of η. While

the constant scattering time approximation is not a good model for thermoelectric transport, as it

completely neglects the DOS dependence electron-phonon scattering, it provides a kind of upper

limit on the potential for performance gains in low-dimensional bands in bulk 3D materials. Thus,

if the DOS-scaling is an over-correction, and the constant τ approximation is an under-correction,

then the real effects of low-dimensional-type transport may lie in between, suggesting the possibility

of more modest gains in thermoelectric performance from the 2D- and 1D-type Fermi surfaces. To

more accurately understand the effects of Fermi surface geometry and dimensionality, numerical cal-

culations of the k-dependent scattering matrix elements (see Equation 2.15) would need to carried

out [78].

Another metric that can be used to compare the potential performance of the different Fermi

surface types—but is less (directly) dependent on scattering time approximations—is the Fermi
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Figure 4.9: (a) Seebeck coefficient (α), (b) power factor (α2σ), and (c) zT as a function of hole concentration
(p) at 300K calculated using the constant scattering time approximation for the 3D- (green), 2D- (blue),
and 1D-like (red) Fermi surfaces in IV-VI rock salt compounds.

surface complexity factor, N∗
VK

∗, which quantifies how complex a Fermi surface is based on its

effective degeneracy (N∗
V ) and effective anisotropy factor (K∗) [34]. Note that the anisotropy

factor refers to the anisotropy of the Fermi surface pocket(s), and not the overall conductivity.

In the cubic rock salt materials, the conductivity tensor is isotropic, even with anisotropic carrier

pockets. Higher complexity factors strongly correlate with maximum power factors (α2σ) and better

performing thermoelectric materials. The complexity factor depends on both the the conductivity

effective mass (m∗
c) and the Seebeck effective mass (m∗

S) which is simply the DOS effective mass

that is extracted from Seebeck versus carrier concentration data using Equation 4.8.

N∗
VK

∗ =

(
m∗

S

m∗
c

)3/2

(4.17)

The conductivity effective mass can be determined from the inertial effective masses, using the

following relationship: m∗
c = 3/( 1

m∗
x
+ 1

m∗
y
+ 1

m∗
z
). It is not difficult to show that the conductivity

effective mass values are , m∗
c = m∗

b , m
∗
c = 2m∗

b , and m∗
c = 3m∗

b (m∗
b as used in Equations 4.11-4.16)

for the 3D-, 2D- and 1D-type Fermi surfaces, respectively. Recall that in this example, we assume

that m∗
b is constant at a value of 0.2me. The Seebeck versus carrier concentration values used to

determine the Seebeck effective mass are those given in Figure 4.8a, which is calculated assuming

electron-phonon scattering. The values of the Seebeck effective mass, m∗
S , and complexity factor,
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2D
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Figure 4.10: Comparison of Seebeck effective mass and Fermi surface complexity factors for idealized IV-VI
rock salt Fermi surfaces with 3D- (green), 2D- (blue), and 1D-like (red) transport—described by spheres,
cylinders, and sheets, respectively. (a) Seebeck effective mass (m∗

S) versus carrier concentration (p) rela-
tionships calculated using an acoustic-phonon scattering assumption with the Seebeck versus carrier con-
centration data in Figure 4.8a. (b) Fermi surface complexity factor, N∗

VK
∗, for each type of Fermi surface

using conductivity effective masses (m∗
c) of 0.2me, 0.4me, and 0.6me, for the 3D-, 2D-, and 1D-type Fermi

surfaces, respectively. All calculations were done at T = 300K.

N∗
VK

∗, are shown in Figure 4.10.

Clearly, the Fermi surface complexity factor is increases substantially as the bands become

more converged and the Fermi surface geometries evolve from spheres to cylinders to sheets. The

complexity factor for the 3D case (spheres) is constant at N∗
VK

∗ = 4. The complexity factors for

the 2D (cylinders) and 1D (sheets) cases are not constant with hole concentration, p, but they

peak (and plateau before decreasing) at values of N∗
VK

∗ ∼ 60 and N∗
VK

∗ ∼ 500. Based on this

metric alone, we would expect significant improvement in a material that has a Fermi surface more

closely resembling the 1D-like sheets and more modest improvement in a Fermi surface resembling

the cylinders, relative to the ellipsoidal or spherical Fermi surface. However, the complexity factor

does not capture the scattering effects on the conductivity, so more detailed analysis of scattering

rates must still be performed to truly understand the benefits, or lack thereof, associated with low-

dimensional Fermi surfaces in 3D bulk materials. In fact, in Ref. 108, a computational analysis
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of various types of band structures is performed using a more detailed treatment of deformation-

potential scattering, polar-optical scattering, and ionized impurity scattering, and it was found

that, regardless of the scattering assumption, that 1D-type bidirectional bands (sheets) are the

ideal Fermi surface geometry [108]. 7

4.4 Conclusion

Using a TB model of a toy IV-VI rock salt semiconductor, we identify “chemical knobs” that can

be used to tune the level of convergence in the PbTe VB structure to engineer more complex Fermi

surfaces. Because all of the VB pockets (L, Σ, ∆, and W) are largely cation-s–anion-p anti-bonding

states with varying strengths, the convergence of these bands is primarily dictated by the strength

of this s-p coupling. The s-p coupling is influenced by the s-p energy separation and by the hopping

parameter describing the interaction, Vspσ. Decreasing the strength of the s-p coupling by either

increasing the energy separation of decreasing the magnitude of Vspσ favors convergence (in cases

where the VBM is at L). In real materials, Vspσ can be reduced, or effectively reduced, by increasing

the lattice constant (e.g., through temperature, pressure, or alloying), increasing the s-p splitting

through chemical substitutions on the anion or cation site, or introducing chemical substitutions

that replace the cation with a cation that introduces unfilled cation-s0 orbitals at the expense of

the filled cation-s2 orbitals. A secondary approach to tuning convergence in the TB model is to

tune the anion-p–anion-p interaction strength, where increasing the interaction strength generally

increases convergence (assuming an L VBM).
7Note that the transport and zT estimates presented in this chapter are simply meant to provide a qualitative

comparison of potential transport in theoretical Fermi surfaces that act as perfect spheres, cylinders, or sheets. The
goal here is simply to motivate the study of these lower-dimensional Fermi surfaces in 3D materials, particularly the
IV-VI semiconductor family. More nuanced numerical calculations must be carried out to more accurately estimate
the scattering rate of the charge carriers in each type of geometry. Additionally, we assume here that the type of
Fermi surface geometry stays constant with increasing carrier concentration, but this is not necessarily the case.
If the carrier concentration is increased in a IV-VI compound that has less converged bands (the Fermi surface is
spherical/ellipsoidal near the band edge), the Fermi surface will begin to form into tubes, and eventually sheets at
higher carrier concentrations. That being, said, these predictions provide a good starting point for understanding how
band convergence may influence the thermoelectric transport properties, especially at lower doping concentrations.
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Moreover, we calculate TB Fermi surfaces and find that increasing band convergence does not

simply introduce additional carrier pockets (increasing NV ), but it leads to more substantial changes

to the nature of the Fermi surface. For instance, when the L and Σ pockets are sufficiently con-

verged, the Fermi surface forms twelve interconnected tubes, and when the ∆ and W bands are also

sufficiently converged, the Fermi surface starts to resemble sheets. The complexity of the Fermi sur-

face increases upon the transition from the 3D to 2D to 1D type Fermi surfaces. This Fermi surface

evolution marks a change in the nature of transport, such that the tubes (simplified as cylinders)

should have a 2D-like DOS and the sheets should have a 1D-like DOS. We model the thermoelectric

transport arising from the different classes of Fermi surfaces using different scattering-time assump-

tions, and find that the 2D-like (tubes) and 1D-like (sheets) Fermi surface may lead to power factor

and zT enhancements over the 3D-like (L-point ellipsoids) Fermi surface if the electron-phonon

scattering between points on the tubes and sheets does not completely negate the benefits from the

increased Seebeck coefficient and carrier concentration.
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GeTe Band Structure Evolution upon Cubic to Rhombo-

hedral Transition

5.1 Introduction

Group-IV chalcogenide semiconductors, particularly PbTe, have been extensively studied as high-

performing, mid-temperature thermoelectric materials [28,29,35,38,73,75,91,121,129,130]. Excel-

lent p-type thermoelectric performance in these IV-VI semiconductors—when they are in the cubic

rock-salt phase—occurs largely as the result of high valley degeneracy (NV ) from the convergence

of the L (NV = 4) and Σ (NV = 12) valence band (VB) pockets at high temperature and/or when

strategically alloyed to achieve convergence [28, 29, 35, 38, 91, 92, 131, 132]. While PbTe has histor-

ically attracted the most attention of the IV-VI chalcogenide thermoelectrics due to its excellent

performance as an n- and p-type thermoelectric, GeTe has gained increasing attention as a Pb-free

alternative, and as a result, has seen significant improvements in its performance throughout the

past few decades [131].

Among the traditional IV-VI thermoelectric semiconductors, GeTe is unique in that it undergoes

a transition from a low-temperature rhombohedral phase (R3m) to a high temperature cubic phase

(Fm3̄m) at ∼ 700K [1,2]. The primitive unit cells (2 atoms/cell) of both the cubic and rhombohedral

phases of GeTe are shown in Figure 5.1. In the cubic rock salt phase (c-GeTe), the Ge atom is located

at the center of the Te coordination octahedron. The transition from the cubic to rhombohedral

phase (r-GeTe) is the result of the displacement of the Ge atoms from the center of the octahedron,
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Figure 5.1: Primitive unit cell of GeTe in the cubic rock salt phase and rhombohedral phase, where Te is
located at (0, 0, 0) in both cases. (a) In the cubic phase, Ge (blue) is located at (0.5, 0.5, 0.5), and the
primitive cell interaxial angle (γ) is 60◦. (b) In the rhombohedral phase, the Ge is displaced from the center
of the Te (red) octahedron at (0.5± δ, 0.5± δ, 0.5± δ), where δ ∼ 0.03, and the interaxial angle is 58◦.

moving from the (0.5, 0.5, 0.5) position to (0.5± δ, 0.5± δ, 0.5± δ) position (in the primitive lattice

basis), where δ ∼ 0.03. It is also marked by a reduction in the primitive unit cell interaxial angle,

γ, from γ = 60◦ to γ ∼ 58◦ (see Figure 5.1a-b) [92,129,131–134]. The rhombohedral phase can also

be regarded as a distortion of the conventional cubic unit cell along the [111] direction.

Upon the cubic to rhombohedral phase transformation, the electronic structure of GeTe is sig-

nificantly altered (see Figure 5.2). The Brillouin zones (BZs) for the rhombohedral and cubic unit

cells are shown in Figure 5.2.1 In the c-GeTe, the VBM is located at the L-point (NV = 4), with

a secondary VBM located along the Σ line (ΓK; NV = 12) that is ∼ 0.06 eV below the L VBM

(Figure 5.2c). There is an additional VB pocket along the ∆ (ΓX) direction with NV = 6 that is

∼ 0.3 eV below the L VBM and could become important to transport at high doping level and/or

when the bands are highly converged [122,135,136]. When the GeTe unit cells distorts from c-GeTe

to r-GeTe, the L point in c-GeTe (NV = 4) splits into two different k-points in r-GeTe, L (NV = 3)
1The coordinates of the special points in both the FCC and rhombohedral Bravais lattices are given in Appendix

A.
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and Z (NV = 1) (Figure 5.2a-b). Moreover, the Σ line in c-GeTe (NV = 12), splits into two distinct

directions that each have NV = 6, Σ (ΓP) and η (ΓX), in r-GeTe. The ∆ line from c-GeTe maintains

its six-fold degeneracy upon the transition to r-GeTe, but the naming convention changes such that

it is labeled as the ΓF line in r-GeTe [137]. In contrast to c-GeTe, the VBM of r-GeTe is along the

Σ direction, and the next highest VB pockets are the L and Z bands, which are both 0.2 eV below

the Σ VBM, with Z being slightly higher (Figure 5.2d).

The differing location of the VBMs in c-GeTe and r-GeTe introduces a new degree-of-freedom

for electronic band engineering in GeTe and its alloys: the extent of rhombohedral distortion [94,

129, 131, 133]. Increasing the extent of the rhombohedral distortion increases the Σ VBM relative

to the L/Z VBM, but breaks the degeneracy of the (cubic) Σ and L bands. While it is typically

believed that any reduction in symmetry from the cubic to rhombohedral phase necessarily reduces

NV because the degeneracy of the both L and Σ bands is broken [39, 92, 130, 138, 139], there may

actually be opportunities to achieve higher NV through slight reductions in the symmetry due to

better convergence between the L, Z and Σ bands [129,131,133,140]. Additionally, r-GeTe has lower

lattice thermal conductivity due to its larger distribution of bond lengths [131], offering a different

source of improved performance in r-GeTe relative to c-GeTe.

Alloying can tune the shape of the GeTe unit cell, and hence, be used for band engineering, by

controlling the stereochemical activity of the cation-s lone pair electrons. Because the rhombohedral

distortion at low temperature is due to the stereochemical expression of the Ge-s lone pairs [66],

the phase transition temperature or the level of distortion (from cubic) at a given temperature can

be decreased by alloying on the cation site with a cation that suppresses this lone-pair expression,

such as Li, Mn, Cd, Na, Cu, Sb, Bi, Pb, and Sn [39,92,93,122,130,131,133,135,136,141–146,146].

It is important to note that these substitutions also alter the nature of the chemical interactions

in the material, so changes to the band structure with respect to both symmetry and chemistry

need to be considered. That being said, cation-site alloying to tune the shape (γ and δ) of GeTe

has been shown to successfully enhance thermoelectric performance in several studies by promoting
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Figure 5.2: Labelled first Brillouin zones (BZs) of the (a) cubic rock salt and (b) rhombohedral phases of
GeTe. DFT electronic band structures of (c) c-GeTe and (d) r-GeTe, calculated using the PBE functional
with SOC.
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band convergence [39,135,136,140,143,146].

While differences between the band structures in c-GeTe and r-GeTe are already well-understood

[94], the chemical origins of these variations have not been thoroughly explored. Density functional

theory (DFT) calculations show that the offset, δ, rather than the interaxial angle, γ, is responsible

for the emergence of the Σ VBM in r-GeTe [94]. However, the reduction in γ has a significant impact

on the relative energies and convergence of the various local VBMs. Here, we aim to elucidate the

chemical origins of changes to the electronic band structure upon the transition from r-GeTe to

c-GeTe using a linear combination of atomic orbitals (LCAO), or tight-binding (TB) framework

[62,66]–in addition to crystal orbital Hamilton population (COHP) calculations—isolating the effects

of modifying γ and δ.

5.2 Trends from Density Functional Theory

Using DFT electronic band structure calculations, we obtain a detailed picture of how both γ and

δ influence the L, Z, Σ, η, and ∆ bands in GeTe. First, we look at how the band structure (band

edges) evolves upon varying γ and δ, as seen in Figure 5.3 (calculated with SOC). From these band

structure calculations, it is clear that increasing δ favors the Σ VBM over the Z VBM because

it lowers the energy of the Z and L bands relative to the Σ band. On the other hand reducing γ

disfavors the Σ VBM over the Z VBM but increases the L VBM relative to the Σ VBM. The relative

energies of the VB edges with respect to to δ for γ = 60◦ and γ = 58◦ can be seen in Figure F.1 in

Appendix F.

To gain a better sense of how the shape of the unit cell influences the (nominal) value of NV ,

heat maps are calculated to show the valley degeneracy for all combinations of γ and δ, such that

0 < δ < 0.03 and 57.5◦ < γ < 60◦. These NV maps were constructed by taking a linear interpolation

of a 6 by 7 “grid” of band structure calculations and simply counting the number of VB pockets

under a given threshold for EV BM − EF using the degeneracies of L, Z, Σ, and η given in Figure

5.2. Even though the Z-VBM is actually offset from the true Z-point (when δ ̸= 0), we still consider
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(a)
(b)

(c)

Figure 5.3: (a) Schematic of the valence band (VB) edge energies (L, Z, Σ, η, and ∆ ) with respect to
the L-point CBM (black) as a function of interaxial angle (γ) when the Ge-offset, δ = 0 (top) and δ = 0.03
(bottom). The energies (shown with dashed lines) are calculated from DFT with spin-orbital coupling (SOC).
(b)-(c) Qualitative sketches of just the L, Z, and Σ, band energies as a function of γ for δ = 0 and 0.03.
Increasing the offset from δ = 0 to 0.03 pushes the Z and L bands down in energy relative to the Σ band
(for all γ). The values in parentheses are the degeneracies for each specified k-point or line.
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it to add NV = 1 to the total degeneracy, because it only emerges near the band edge when δ is

very close to zero, and the Z-point offset is negligible when δ is nearly zero (see Figure F.2). Based

on the NV heat maps, if we consider the cases where the Fermi energy 0.03 eV or 0.05 eV below

the VBM (Figure 5.4), the optimal crystal structure for achieving high NV is a slightly distorted

rhombohedral phase (γ ∼ 59.7◦ − 59.9◦ and δ ∼ 0.005 − 0.01). This slightly distorted structure

gives a nominal NV = 10 due to convergence between the Σ (6), L (3), and Z (1) bands. In the

cubic structure, NV = 4 because only the L band is within the energy threshold. If the shape of the

crystal can be tuned such that δ is increased but the deviation of γ from 60◦ remains small, then

a relatively high NV of 9 can be achieved. In this case, Σ and L are converged, but the increase

in δ breaks the convergence of the Z band, which is pushed down in energy with increasing δ. On

the other hand, if γ is decreased to less than ∼ 59.7◦, but δ remains very close to 0, then only the

Z band will be within the threshold of the VBM, giving a low band degeneracy of NV = 1. This

shows that, if feasible, it is better to only increase δ than to only decrease γ.

If we increase the energy threshold for determining NV (i.e., higher temperature or doping

concentration) such that EV BM − EF ∼ 0.07-0.1 eV, then having a cubic or slightly distorted

rhombohedral structure is adequate for achieving a high NV = 16 because the L, Z, Σ and η

pockets would fall within the threshold (Figure 5.4c-d). VB Fermi surfaces for different degrees

of rhombohedral distortion and Fermi energies are shown in Figure 5.5. These Fermi surfaces

provide insights into Fermi surface complexity beyond the nominal band degeneracy. For instance,

while the nominal values of valley degeneracy are the same for the slightly distorted and cubic

geometries for a Fermi energy 0.1 eV below the VBM, the Σ pockets are more elongated for the

slightly distorted geometry. This elongation may lead to better thermoelectric quality factor due

to low-dimensional (2D) type transport and higher carrier pocket anisotropy (higher Fermi surface

complexity factor) [34,45].

Because we cannot necessarily choose any arbitrary combination of γ and δ (γ results from

δ [66]), we put the NV maps from Figure 5.4 in context by considering the “natural" relationship
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Figure 5.4: 2D heat maps showing the nominal valley degeneracy (NV ) of the valence band using a Fermi
energy (EF ) of EV BM − EF = 0.03 eV, (b) EV BM − EF = 0.05 eV, (c) EV BM − EF = 0.07 eV, and (d)
EV BM − EF = 0.10 eV. EV BM is the energy of the VBM. The values of nominal NV are labeled in each
region.
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Figure 5.5: Evolution of GeTe valence band Fermi surface upon increase in symmetry from the rhombohedral
to cubic structure. (a)-(c) Fermi surfaces calculated 0.05 eV below the VBM for the (a) relaxed r-GeTe, (b)
less distorted r-GeTe with δ = 0.01 and γ = 59.7◦, and (c) relaxed c-GeTe. (d)-(f) Fermi surfaces calculated
0.10 eV below the VBM for the (d) relaxed r-GeTe, (e) less distorted r-GeTe with δ = 0.01 and γ = 59.7◦,
and (f) relaxed c-GeTe. The nominal values of NV are given below each Fermi surface.
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Figure 5.6: (a) Offset (δ) versus interaxial angle (γ) values determined experimentally (magenta circles and
black triangles) [1, 2] and from DFT (red inverted triangles). (b) Valence band energies (EV B) of the Σ, L,
Z, η and ∆ bands along the interpolated DFT γ vs. δ line. The energies are shown relative to the energy of
the CBM at the L-point (ECBM (L)). (c) Nominal valley degeneracy (NV ) along the DFT γ vs. δ line for a
Fermi energy 0.05 eV below the VBM.

between γ and δ. In Figure 5.6a, the values of γ and δ from Refs. 1 and 2 are shown. Additionally,

the DFT δ vs. γ path was found by setting an offset value δ and relaxing the unit cell shape to get

the corresponding γ and unit cell volume. The DFT relationship between γ and δ is in relatively

good agreement with the experimental values. By interpolating along the DFT γ vs. δ line, we

calculated the relative VB energies (Σ, L, Z, η, and ∆) and the nominal values of NV along this

natural structure pathway (Figure 5.6b). Clearly, when following this δ vs. γ path, it is possible to

access the NV = 10 region at very small rhombohedral distortions, before the distortion becomes

large enough to result in the lower NV = 6 type Fermi surface (Figure 5.6c).
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5.3 Orbital Chemistry Interpretation

The aim of this section is to explain why the VB structure varies the way it does with varying

interaxial angle and cation offset using an orbital chemistry framework. Specifically, we use the

LCAO, or TB, method to approximate the GeTe wavefunctions as a superposition of atomic-orbital

wavefunctions.

5.3.1 Atomic-Orbital Pictures

To understand how the energy of the competing VBMs varies with the primitive cell interaxial

angle (γ), we consider the atomic-orbital wavefunction consisting of Ge-s and Te-p orbitals. As

discussed in Chapter 3, in cubic rock salt IV-VI semiconductors, the VBMs at L, Σ, ∆, and W can

be approximated as cation-s–anion-p anti-bonding wavefunctions, where the s-p bonding strength is

greatest at L followed by Σ then ∆ and W (which are the same in terms of s-p anti-bonding). We use

the s-p VB orbital picture from Chapter 3 to visualize the VB edge atomic-orbital wavefunctions in

GeTe. That is, we consider an eigenstate described by a Te-p atomic orbital octahedrally coordinated

by six Ge-s atomic orbitals in a net anti-bonding configuration. The angle between the direction

of the p-orbital and the vector between the Te-p and Ge-s orbital for a neighbor pair is given by ϕ.

The cation-s and anion-p orbitals are in the most anti-bonding configuration when ϕ = 0◦ and in

a non-bonding configuration when ϕ = 90◦. When 180◦ ≥ ϕ > 90, the s-p interaction is bonding.

We solve for the VB wavefunction pictures (i.e., determine ϕ) by setting up a TB Hamiltonian

based on only cation-s–anion-p interactions and solving for the eigenvectors corresponding to the

different VBMs. We then define the s-p hopping integral, or interaction strength, at a given k-

point, Vsp, using Equation 5.1 (rewritten below from Chapter 4). Here, Vspσ is the k-independent

s-p interaction strength that depends on the interatomic distance between the orbitals and the

chemistry (i.e., more orbital overlap leads to greater Vspσ) [6,65]. The index, i, iterates over the six

closest neighbors.
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Vsp(k) = Vspσ

6∑
i

cos (ϕi(k)) (5.1)

Recall from Chapters 3 and 4 that the values of Vsp(k) at L, Σ, ∆, and W for the IV-VI rock salt

compounds are Vsp(L) = 2
√
3Vspσ, Vsp(Σ) = 2

√
2Vspσ, and Vsp(∆) = Vsp(W) = 2Vspσ [47]. Here,

the hopping parameters for Σ and ∆ are calculated at the points, Σ = π
a (0, 1, 1) and ∆ = π

a (0, 0, 1),

respectively, where a is the lattice constant for the cubic cell. While these are not the true locations

of the VB edges (the locations vary with chemistry and composition), these are the exact locations

of the Σ and ∆ VBMs when there are only nearest-neighbor s-p and p-p σ-bonding interactions

in a TB model. That is, they are the locations where the s-p bonding strength is greatest (along

those lines) and the p-p σ-bonding strength is exactly zero. The energy of the VB edge in this s-p

atomic-orbital framework, EV B, would then be given by Equation 5.2.

EV B(k) =
1

2
(Es + Ep) +

1

2

√
(Ep − Es)2 + 4Vsp(k)2 (5.2)

The same s-p framework used to understand band convergence in IV-VI rock salt materials can

be used to explain changes to the band edges with respect to the interaxial angle (when δ = 0).

When the primitive cell interaxial angle, γ, is reduced from 60◦, the s-p bonding angles, ϕ, change

which changes the overall anti-bonding strength. Atomic orbital sketches of the L and Σ VBM

atomic-orbital wavefunctions (eigenstates) can be seen in Figure 5.7a. At L, the Te-p orbital is

anti-bonding with all six Ge-s nearest neighbors, and cos (ϕcL) = 1/
√
3 for all these neighbors. Near

the Σ VBM, the Te-p orbital is anti-bonding with four nearest-neighbors (non-bonding with two),

and cos (ϕΣc ) = 1/
√
2. When γ < 60◦, each of these eigenstates splits into two distinct eigenstates

with different s-p bonding angles (Figure 5.7b). In the rhombohedral phase (γ < 60), the s-p angle

for the Z-point (ϕrZ) decreases as γ decreases, and as a result, the anti-bonding strength increases

at Z (Figure 5.8). On the other hand, at (rhombohedral) L, the s-p bonding angle for two of

the neighbors (ϕr1L) increases, while it slightly decreases for the other four neighbors (ϕr2L). The
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average s-p bonding angle for L slightly increases, which leads to a slight decrease in the anti-

bonding strength as γ decreases (Figure 5.8). As a result, the energy of Z increases relative to L as

γ decreases. The splitting of Σ into Σ and η with changing γ can be explained in a similar manner.

As γ decreases from 60◦, the s-p bonding angle in the Σ eigenstate decreases, while the s-p bonding

angle in the η eigenstate increases. Consequently, the Σ VBM becomes more anti-bonding relative

to the η VBM, and the Σ VBM increases in energy relative to the L VBM. Both of these trends are

consistent with DFT calculations for δ = 0 and δ = 0.03 (Figure 5.3 and F.2).

5.3.2 Crystal Orbital Hamilton Population Calculations

To confirm the anti-bonding behavior of the L, Z, Σ and η bands upon decreasing γ and to under-

stand the changes in bonding upon increasing δ, we analyze k-resolved COHP, or projected COHP

(pCOHP) values in the highest VB. The k-resolved COHP reflects how bonding or anti-bonding the

interactions are in a given band at a given k-point. Positive COHP values indicate anti-bonding in-

teractions, negative values indicate bonding interactions, and the magnitude indicates the strength

of the interaction.

Figure 5.9 shows the Ge-s–Te-p and Ge-p–Te-p pCOHPs for the L, Z, Σ, η, and ∆ VBMs as a

function of γ. When δ = 0, there Ge-p–Te-p interactions are zero or nearly zero at all γ. Consistent

with the predictions from the Ge-s–Te-p atomic-orbital model described earlier, the Z and Σ VBMs

become more anti-bonding as γ decreases, with Z being more anti-bonding than Σ, while L and

η become slightly less anti-bonding when γ decreases, with L being more anti-bonding. The Ge-

s–Te-p anti-bonding strength of the ∆ VBM, however, is virtually constant for all γ, and is the

least anti-bonding of the five VBMs shown in Figure 5.9. This is because the s-p bonding angle

in the ∆ VBM eigenstate is ϕ = 0◦ (Figure 3.10), and changing γ does not alter it. When δ is

increased to δ = 0.03, breaking the inversion symmetry (Figure 5.9b), the same trends in Ge-s–Te-p

anti-bonding strength are seen: the strength in L and η bands decreases, the strength in Z and Σ

bands increases, and the strength in the ∆ band is constant with decreasing γ. When δ increases
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Figure 5.7: Visualizations of simplified tight-binding (TB) wavefunctions at local VBMs in c-GeTe (γ = 60◦)
and r-GeTe (γ < 60◦), assuming that only the interaxial angle (γ) varies, while the offset is constant at
γ = 0. (a) For c-GeTe, at the L-point, the Te-p orbital is oriented such that it is anti-bonding with all six
neighbors, and the angle between the Te-p orbital and the Ge-s orbitals (ϕcL) is such that cosϕcL = 1/

√
3.

At the Σ maximum, the Te-p orbital is anti-bonding with 4 Ge-s neighbors and non-bonding with 2 Ge-s
neighbors. The bonding angle between the Te-p orbital and the 4 anti-bonding Ge-s orbitals (ϕcΣ) is given
by cosϕcΣ = 1/

√
2. (b) TB wavefunctions after c-GeTe are distorted through a reduction in γ. The Z-point

VBM wavefunction is characterized by a bonding angle (ϕrZ) that is less than ϕcL. The L-point wavefunction
is defined by two different bonding angles, a bonding angle ϕr1L (2/6 of bonds), where that ϕr1L > ϕcL, and
an angle, ϕr2L (4/6 of bonds), where that ϕr2L > ϕcL . The cubic Σ VBM splits into the rhombohedral Σ and
η bands, where ϕrΣ < ϕcΣ and ϕrη > ϕcΣ.
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Figure 5.8: Ge-s–Te-p bonding angles ϕ and effective s-p interaction strength, Vsp/Vspσ (from Equation 5.2),
as a function of interaxial angle (γ) and atomic offset (δ). For L and Z, all 6 neighbors are considered, and
for Σ and η, the 4 strongly anti-bonding neighbors are considered. (a) ϕ vs. γ for L, Z, η, and Σ. At L,
there are two distinct s-p bonding angles (shown in dashed lines), so the average is shown using the red “-o”
line. At the L VBM, the average value of ϕ increases with decreasing γ, while at Z, ϕ decreases. At the η
VBM, ϕ increases with decreasing γ, while at the Σ VBM, ϕ decreases. (b) Thus, the Z and Σ VBs becomes
more anti-bonding as γ decreases, while the L and η bands becomes less anti-bonding.
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and γ is constant, the Ge-s–Te-p anti-bonding character of all five VB pockets decreases at all values

of γ, and they decrease such that the Z band has less Ge-s–Te-p anti-bonding character than the L

and Σ VB pockets.

Furthermore, breaking the inversion symmetry also allows for the Ge-p–Te-p bonding interaction

to emerge in the VBMs (Figure 5.9d) [147]. Because this interaction pushes down the energy of the

s-p anti-bonding states that comprise the VB edge, it has been described as effectively lowering the

energy of the s2 lone pair, which is the driving force for the rhombohedral distortion GeTe [66,147].

According to the COHP values, The Ge-p–Te-p bonding interaction is strongest in the η VB pocket,

followed by the ∆, Z , L and Σ VB pockets. The weaker strength of Ge-p–Te-p bonding in the Σ

VB pocket relative to the Z and L VB pockets explains the emergence of the Σ VBM in r-GeTe, as

illustrated in Figure 5.10. After adding the Ge-s–Te-p and Ge-p–Te-p COHP contributions of the

various VBMs when δ = 0.03, (Figure 5.9f), it can be seen that the Ge–Te interactions are most

anti-bonding in the L VBM, followed by Σ, Z, η, and ∆.

The Ge-p–Te-p bonding interactions in the VB edge when δ ̸= 0 also give insight into why the

Z VBM is offset from the “true" Z-point when inversion symmetry is broken. Regardless of γ, the

offset of the Z VBM from the true Z-point emerges when δ reaches a large enough value (see Figure

F.2). The offset from the Z-point is due to the emergence of, and increase in Ge-p–Te-p interaction

at the Z-point with increasing δ. Figure F.3 (Appendix F) shows the COHP values for the true Z

point when δ = 0.03, and it is less net anti-bonding than that in the Z VBM (offset from the true

Z-point), which pushes the maximum off the actual Z-point to where the net anti-bonding strength

is higher.

The Ge–Te (cation–anion) interactions alone do not fully explain the relative energies of the

competing VBMs. For instance, the Ge–Te COHP suggests that the L VBM is the most (net)

anti-bonding in r-GeTe, but the VBM is located along Σ rather than at L. The discrepancy between

the cation–anion COHP and the actual relative band energies can be accounted for in the Te-p–Te-p

next- or second-next-nearest neighbor interactions. The L (Z) and Σ (η) VBMs both have Te-p–Te-
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Figure 5.9: k-resolved, band-resolved projected crystal orbital Hamilton population (pCOHP) values versus
interaxial angle (γ) in the Z (magenta), L (red), Σ (blue), η (turquoise), and ∆ (green) VBMs in GeTe.
COHP of Ge-s–Te-p interaction when (a) δ = 0 and (b) δ = 0.03. COHP of Ge-p–Te-p interaction when (c)
δ = 0 and (d) δ = 0.03. Sum of Ge-s–Te-p and Ge-p–Te-p COHP values when (e) δ = 0 and (f) δ = 0.03.
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Figure 5.10: Molecular-orbital-like bonding diagrams representing the GeTe valence band (VB) edges, illus-
trating the reduction in energy of the anti-bonding VB edge and the emergence of the Σ VBM over the Z
(or L) VBM when the Ge offset (δ) is greater than zero (inversion symmetry broken). The states near the
VB edge are characterized by cation-s–anion-p anti-bonding character. In the rock salt structure (δ = 0),
interactions between the anti-bonding VBM and the cation-p states are symmetry forbidden. When inver-
sion symmetry is broken, the s-p anti-bonding strength decreases and the cation-p (Ge-p) states can interact
with these anti-bonding states, which lowers their energies. Moreover, the bonding interaction with the Ge-p
states is stronger in the Z VB than in the Σ VB, which pushes the energy of the Z VB down more, favoring
the Σ VBM in r-GeTe.
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p bonding character, but this bonding character is stronger in the L (Z) bands than in the Σ (η)

bands (refer to Chapters 3 and 4 for details) [47]. As a result, the L VB is pushed below the Σ VB

despite the Ge–Te anti-bonding interactions being stronger in the L band [47].

5.3.3 Tight-Binding Thought Experiments

To gain more insight into how atomic-orbital interactions influence the electronic structure with

respect to the unit cell shape, we perform TB thought experiments, where we employ a toy model

of GeTe and vary geometry (i.e., δ and γ), the Ge–Te interaction parameters, and SOC strength.2

The TB parameters for this toy model (unless specified otherwise) are described in Table 5.1. Using

this TB approach, we can better understand why increasing δ reduces the energy of the Z VB edge

below that of the Σ VBM to ultimately yield a Σ VBM and why the Z VBM is slightly offset from

the true Z point. For simplicity, in this section, we start by using a TB model that only includes the

Ge–Te interactions. Note that because the Te-p–Te-p interactions are not included, the VBM will

not be at Σ, even with larger δ, as the Te-p–Te-p interactions lower the energy of the Σ (and η) bands

relative to the L (and Z) bands. Also, the Vppσ and Vspσ values given represent the interactions

that correspond to the average Ge–Te distance for the six shortest Ge–Te neighbor pairs. Then the

actual values of Vppσ and Vspσ for the three nearest and three next-nearest neighbors (six nearest

neighbors when δ = 0) are set by requiring that V (d) = V (d0) × (d0/d)
2, where d is the neighbor

distance d0 is the average interatomic distance for the six shortest Ge-Te neighbor pairs. The same

type of method is used to define the Vppσ,Te parameters when γ ̸= 60◦, but using the twelve shortest

Te-Te neighbor pairs.

Modifying Geometry and Atomic-Orbital Interactions

The TB model can explain the offsetting of the Z VBM from the true Z point in addition to the

decrease in the energy of the Z VB relative to the Σ VB upon an increase in δ. As seen in Figure
2Note that this model is not fit to the GeTe band structure from DFT of experiments. It is simply a toy model

that qualitatively reproduces the valence band structures and trends in its behavior.
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Table 5.1: Tight-binding parameters for a toy model of GeTe. The hopping parameters, Vspσ and Vppσ,
are defined for the case where δ = 0, and there are six (equivalent) nearest-neighbors. When δ ̸= 0, and
the six nearest-neighbors split into three nearest-neighbors and three next-nearest neighbors, the hopping
parameters are adjusted such that V (d) = V (d0)× (d0/d)

2, where d0 is the average interatomic distance for
the six shortest Ge-Te neighbor pairs. The same type of adjustment is made for the Te-p–Te-p interactions
when γ is modified.

Parameter Description Value (eV)
Vspσ Ge-s–Te-p σ-bonding 1.5
Vppσ Ge-p–Te-p σ-bonding 4.0
Vppπ Ge-p–Te-p π-bonding -(1/8)Vppσ
Vppσ,Te Te-p–Te-p σ-bonding 0.275
Vppπ,Te Te-p–Te-p π-bonding 0

ETe−p − EGe−s Ge-s–Te-p on-site energy separation 10.0
EGe−p − ETe−p Ge-p–Te-p on-site energy separation 3.0

5.11a, which shows the TB band structure (with Ge-s–Te-p and Ge-p–Te-p interactions) around Z

and Σ, there is no offset when δ = 0, but as δ increases, the Z VBM moves farther away from Z and

it decreases in energy (Figure 5.11a). Notice that the energy of the VB edge at the true Z-point also

decreases. By contrast, the Σ VBM shows a minimal decrease in energy when δ increases. The TB

model also shows that the Ge-p–Te-p interactions are responsible for the offsetting behavior and the

decreases in energy of the Z band. There is no offset when Vppσ = 0, and the offset from the true

Z-point increases as Vppσ increases (Figure 5.11b). Additionally, the energy of the Z VBM (and the

energy of the VB edge at the true Z-point) decreases relative to the Σ VBM as Vppσ increases.

Moreover, a TB model with Ge-p–Te-p interactions but without Ge-s–Te-p interactions empha-

sizes the role that the Ge-p–Te-p interactions alone play. When there are no Ge-s–Te-p interactions,

the Z VBM moves farther away from the true Z-point as δ increases, but the energy of this Z VBM

remains constant (Figure 5.11c). That being said, the energy of the band at the true Z-point still

decreases with increasing δ. Moreover, when δ is constant and Vppσ (and Vppπ) increases in strength,

the location and energy of the Z VBM remain unchanged, but the energy of the VB edge at the

true Z-point decreases with increasing Vppσ. Thus, the band maximum between B and Z that re-

sults from only the Ge-p–Te-p interactions is non-bonding (its energy is constant with Vppσ), while
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(a) (b)

(c) (d)

Constant 𝛿Constant 𝑉!!"

Figure 5.11: TB electronic structure for a toy model of GeTe (interaxial angle set to γ = 58◦) illustrating the
origin of the Z-VBM offset from the Z-point and its decrease in energy upon increasing δ. Band structures
when (a) Vppσ = 4 eV, Vppπ = −0.5 eV, Vspσ = 1.5 eV, and δ varies from 0 to 0.03, (b) δ = 0.03, Vspσ = 1.5
eV and Vppσ varies from 0 to 6 eV (Vppπ = −Vppσ/8), (c) Vppσ = 4 eV, Vppπ = −0.5 eV, Vspσ = 0 eV and δ
varies from 0 to 0.03, and (d) δ = 0.03 Vspσ = 0 eV and Vppσ varies from 0 to 6 eV (Vppπ = −Vppσ/8).

the band becomes more bonding away from that point (toward both B and Z). In terms of basic

atomic-orbital interactions, the location and energy of the Z VBM results from a trade-off between

the Ge-s–Te-p anti-bonding interaction, which favors the VBM at the true Z-point (it reaches a lo-

cal maximum in strength at Z), and the Ge-p–Te-p bonding interaction, which favors a VBM offset

from the Z-point, as it pushes the energy of the highest VB down in energy at Z (and between the

true Z-point and the offset Z-VBM). Consequently, the Z-VBM is located between the true Z-point

and the point (between B and Z) where it would be located if there were no Ge-s–Te-p interactions

and only Ge-p–Te-p interactions.

As seen in Figure 5.11, the energy of the Σ VB pocket remains virtually constant with respect

to changes in δ and Ge-s–Te-p interaction strength. This indicates that the energy of the Σ VB is

nearly independent of the Ge-p–Te-p interactions, and hence, more weakly dependent on δ. Thus,



134

Te-p-Te-p

Figure 5.12: Tight-binding (TB) band offsets (calculated without SOC) between the Σ and L bands (EΣL,
red lines) and between the Σ and Z bands (EΣZ , blue lines) as a function of cation offset for the cases where
(a) the interaxial angle is given by γ = 60◦, and (b) γ = 55◦. The darker red and blue lines are from
calculations that do not include Te-p–Te-p bonding interactions, and the fainter lines are from calculations
that include the Te-p–Te-p interactions (Vppσ,Te = 0.275 eV). The black arrows point to the upward shift
in the EΣL and EΣZ lines when the anion-p–anion-p interactions are included. The remaining TB hopping
parameters are given by Vspσ = 1.5 eV, Vppσ = 4.0 eV, Vppπ = −0.5 eV (see Table 5.1). The cation offset is
set to δ = 0.03 for all calculations. Note that These TB offsets just give a qualitative description of GeTe
and do not give the actual values of the band offsets. For instance, in r-GeTe, the VBM is along ΓP (Σ),
not Z or L.

when the inversion symmetry is broken, the Σ band is lowered to a much smaller extent than the Z

or L bands are (see Figure 5.10). These offset (δ) effects—in addition to effects from the interaxial

angle and anion-p–anion-p interactions— in the TB model are depicted more clearly in Figure 5.12.

Both the energy difference between the Σ and Z bands (EΣZ) and between the Σ and L bands (EΣL)

increases with increasing δ. Furthermore, when Te-p–Te-p interactions are incorporated, both the

EΣZ and EΣL curves shift upwards, which is consistent with these anion-p interactions pushing the

energy of the L and Z bands down more so than the Σ band (see Chapters 3 and 4). Finally, when

the primitive cell interaxial angle, γ, is reduced from 60◦ (Figure 5.12a) to 55◦ (Figure 5.12b), the

EΣZ curves shift down while the EΣL curves shift upward. This behavior is consistent with the Z

band becoming more s-p anti-bonding and the L band becoming less s-p anti-bonding relative to

the Σ band as γ is reduced.3

3Note that Figure 5.12 does not reproduce the DFT or experimentally calculated values of the band offsets.
Rather, it is intended to depict trends with respect to structural parameters and chemical interactions.



135

Effect of Spin-Orbital Coupling

Simple atomic-orbital interactions alone are not sufficient to fully explain the behavior of the VB

edges when inversion symmetry is broken, as SOC also plays a role through the Rashba spin-splitting

effect [134, 148, 149]. The Rashba effect causes the spin-splitting of single-electron (spin) bands in

k-space, and in GeTe, it has a particularly pronounced effect around the Z-point. Moreover, it has

been shown that increasing the strength of the Rashba effect by alloying Ge with Sn promotes the

convergence of the Z and Σ VB edges in r-GeTe, which leads to better thermoelectric performance

[134]. Using another toy model of GeTe, we can investigate the effect of SOC on Rashba splitting.

From Figure 5.13a, it is clear that while the Z offset exists without SOC, increasing the strength

of the SOC makes the offset more pronounced—the energy difference between the band at Z and

the maximum off Z increases, and the VBM moves farther away from the Z-point. Not only does

the enhanced offsetting from SOC increase NV by converging the Z and Σ VBs, but because the

Z VB pocket is not actually on the high-symmetry Z-point, it actually has higher NV than the

degeneracy of the Z-point and leads to a more complex Fermi surface (when converged near the Σ

VB in r-GeTe). From Figure 5.13b, it is evident that the anion-p–cation-p interactions are needed

for this dramatic offsetting effect to occur. That is, when there are no p-p interactions, we see the

typical spin-splitting of the band at Z—the bands shift in different directions in k-space [134]—

but we do not get the sharp peak off of Z that is observed in the real (DFT) band structure (with

and without SOC). This sharp peak only emerges when the p-p interaction is introduced, and it

becomes sharper when the strength of the p-p interaction increases.

5.4 Computational Methods

The first-principles DFT calculations to obtain the cubic and rhombohedral GeTe band structure

(and corresponding orbital characters) were performed using the Vienna ab initio Simulation Pack-

age (VASP), employing projector augmented wave (PAW) pseudopotentials and the PBE exchange-
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(a) (b)Constant 𝑉!!" Constant SOC

Figure 5.13: Tight-binding (TB) band structure, showing the top of the valence band (VB), in a toy model
of r-GeTe (δ = 0.03, γ = 58◦) with (a) varying spin-orbit coupling (SOC) strength and constant Vppσ = 4.0
eV, and (b) constant SOC = 0.5 eV with varying values of Vppσ. The other TB parameters are set such
that Vppπ = −Vppσ/8, EGe−p − ETe−p = 3.5, Vspσ = 1.5 eV, and Vppσ,Te = Vppπ,Te = 0. These TB band
structures only give a qualitative description of r-GeTe and do not give the actual values of the band offsets.
For instance, in r-GeTe, the VBM is along ΓP (Σ), not (slightly off) Z.

correlation functional, derived from the generalized-gradient approximation (GGA). [48–51,87,88].

A plane-wave energy cutoff of 450 eV was used for each calculation. The structural degrees of free-

dom were relaxed (without including SOC), until the forces on atoms were less than 0.01 eV/nm,

using a Γ-centered [89] k-point mesh of size 13× 13× 13. After relaxation, the self-consistent elec-

tronic structure calculations were performed using a Γ-centered k-point mesh of size 20× 20× 20.

To find the δ vs γ relationship, the offset (δ) was set manually, and the interaxial angle (γ) was

determined by relaxing the unit cell with respect to the unit cell shape, while constraining the

atomic positions. The k-vector resolved crystal orbital Hamilton population (COHP) calculations

were performed using the version 4.0.0 of the LOBSTER software with the pbeVASPFit2015 basis

set [52–54,150].

5.5 Conclusion

The rhombohedral distortion GeTe, marked by a reduction in the primitive lattice interaxial angle

(γ) and by the offset (δ) of Ge from the center of the Te-octahedron, creates new degrees-of-freedom

for band engineering. While the VBM in c-GeTe is located at the L-point, with the Σ VB less than

0.1 eV below, r-GeTe has a VBM along the Σ symmetry line, with the next lowest VB 0.2 eV lower.
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While reducing the symmetry from the cubic to rhombohedral phase is often thought to reduce the

valley degeneracy, there may be some cases, particularly when the Fermi energy is closer to the

VBM, where a slight rhombohedral distortion is beneficial because it brings the Σ band closer to

the L band.

Detailed analysis of DFT band structures over a range of γ and δ values shows that δ, the cation

offset, is responsible for the emergence of the Σ VBM in r-GeTe. On the other hand, the decrease in

γ actually leads to an increase in the Z VB relative to the Σ and L VBs, while the relative energy of

the L VB decreases relative to the Σ band. Using an atomic-orbital TB framework and k-resolved

COHP calculations, we show that changes to the band structure with respect to γ can be explained

through changes to the Ge-s–Te-p anti-bonding character in each of the VB pockets. Specifically,

the strength of this interaction increases at Z and Σ (more so at Z) and slightly decreases at L and

η. Moreover, we show that the emergence of the Σ VBM over the L and Z VBs with increasing δ

is due to the presence of Ge-p–Te-p bonding interactions in the various VBM states when inversion

symmetry is broken. These bonding interactions remain minimal in the Σ VBM state and are

stronger in the L and Z bands.

Finally, we show using COHP and a toy TB model that the offset of the Z VBM from the true

Z-point when the inversion symmetry is broken (δ ̸= 0) is from a trade-off between the Ge-p–Te-

p bonding interactions and Ge-s–Te-p anti-bonding interactions at the Z-point. Moreover, using

another toy GeTe model with SOC, we show that SOC enhances this Z-point offsetting effect and

increases the energy of the Z VBM relative to the Σ VBM, which explains another technique for

enhancing Σ-Z convergence in r-GeTe, where the Σ band is higher in energy than the Z band:

enhancing the Rashba effect through stronger SOC.

Future work in this area should focus on better understanding how variations in the Fermi

surface (i.e., valley degeneracy and carrier pocket anisotropy) influence the electronic transport at

different doping levels using software packages like BoltzTrap2 or AMSET [151, 152]. Moreover,

because alloying/doping is typically required to control the geometry, it is necessary to study the
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combined effect of changing the chemistry and geometry of the material in tandem. Many of the

alloying species, such as Mn, Li, Cd, Na, etc., are known to converge the VB pockets in IV-VI

semiconductors, so these effects may dominate over or change the nature of the effects of geometry

alone.
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Engineering Band Degeneracy in Half-Heusler Thermo-

electrics

Portions of this chapter are reproduced with permission from M. K. Brod, S. Anand, and G. J.

Snyder. Advanced Electronic Materials, 8(4), 2101367 (2022) [153]. Copyright 2022 by Wiley-VCH

GmbH.

6.1 Introduction

As discussed in Chapter 1, high valley degeneracy can be achieved by having a valence band maxi-

mum (VBM) or conduction band minimum (CBM) at a low symmetry point in the Brillouin zone

(BZ) of a high symmetry crystal and/or by having multiple band extrema converged within a few

kBT in energy at the same point or different points in the BZ [29,36]. In this chapter, we distinguish

between degeneracy imposed by the crystal symmetry, NVk
, and that due to number of degenerate

bands at a given k-point, the orbital degeneracy (NVo), such that the total valley degeneracy (for

a specified k-point) is given by NV = NVk
×NVo . For example, there is only one Γ-point (k = 0)

located at the center of the BZ, so if a VBM or CBM were located at the Γ-point, the symmetry-

imposed valley degeneracy would be NVk
= 1. If this Γ-point VBM or CBM were doubly degenerate,

then we would have NVo = 2, giving NV = 1 × 2 = 2 for the Γ-point contribution. On the other

hand, in the BZ of a face centered cubic (FCC) material, there are three symmetrically equivalent

X-points (half of an X-point on each of the six square faces), so a VBM or CBM at the X-point
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Figure 6.1: The half-Heusler crystal structure (space group #216) is comprised of three crystallographic
sites, each forming an FCC sublattice. The X (blue) and Z (green) sites form the octahedrally coordinated
rock salt structure with X at the (0, 0, 0) position and Z at the (1/2, 1/2, 1/2) position. The Y -sites (red)
at (1/4, 1/4, 1/4) fill half of the rock salt tetrahedral sites, while the other half of the tetrahedral sites are
unfilled.

would yield NVk
= 3. Recall that convergence of multiple bands at a single k-point may not be as

beneficial as convergence between band extrema that are farther apart in the BZ [36].

Semiconducting half-Heusler (hH) compounds comprise an important class of thermoelectric

materials. [154–160] They exhibit high chemical, mechanical, and temperature stability and are

relatively simple to synthesize [157,158,161–164]. The typical hH crystal structure (shown in Figure

6.1) has composition XY Z and belongs to the F 4̄3m space group (#216). The X-site is typically

occupied by the most electropositive species, the Y -site contains a transition metal element, and

the Z-site is occupied by a main group element (Sb, Sn, Bi, etc). The Y and Z sites form a

polyanionic zinc blende sublattice, [Y Z]n−, while the X and Z sites form the rock salt lattice (with

Y filling half of the rock salt tetrahedral sites) [157,161,165–167]. While the Wyckoff positions of X



141

and Z are interchangeable with no effect on the properties, interchanging Y with one of the other

sites alters the electronic structure [167–169]. Stable, semiconducting compositions form when the

valence electron count is balanced using Zintl chemistry [155,161,170–173].

All three atomic sites can be alloyed to improve both the electronic and thermal properties of

hH thermoelectrics. The valence imbalance from an aliovalent substitution leads to doping, while

isoelectronic alloying can lead to altering the band masses and energies as well as scattering [158,

159, 174–181]. Although some 60+ XY Z combinations of transition-metal-based hH compounds

are known, their electronic structures can be classified broadly based on the nature of their band

extrema (VBMs or CBMs). For example, Dylla et. al describe three basic types that can be

mapped according to the location of their VBMs in the BZ, which can be at Γ (NVk
= 1; NVo = 3),

L (NVk
= 4 ; NVo = 2) or W (NVk

= 6 ; NVo = 1). The valence band (VB) edge at Γ is dominated

by mainly the X-d orbitals, while the VB edge at L consists of mostly Y -d character. The W-point

VB edge also contains mostly Y -d character but has more Z-p contribution than the L-point VB

edge in most cases. Thus, there is a natural strategy to alter the energy of the VB edge at L or Γ

where one simply changes the group number of the X or Y element: increasing the group number

difference between X and Y favors the Γ-point VBM, while the converse favors the L-point and

W-point VBMs. Moreover, near the transition between the Γ-point and L-point VBM, the W-point

(NVk
= 6; NVo = 1) VBM emerges [182]. Here, we discuss the chemical origins of the W-point

VBM and show that the energy of the Z-p orbitals plays an important role in the emergence of

the W-pocket, such that all three sites must be strategically chosen to engineer this class of hH

thermoelectrics.

We see a similar picture for conduction band convergence. For typical transition-metal-based

hH thermoelectrics, the CBM is located at the X-point (NVk
= 3), and there are two symmetrically

distinct bands that could be the CBM depending on the compound, one that is anti-bonding with

mostly Y -d character, and one that is non-bonding with predominantly X-d character [68].1 In
1There are exceptions to this X-point CBM and its orbital description in valence-balanced hH semiconductors.

Specifically, there are compounds that have low-lying s-orbital states near the CB edge, resulting in a CBM at the
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typical hH thermoelectrics, the anti-bonding (Y -d) and non-bonding (X-d) CBMs belong to the

X3 and X2 symmetry representation of the Td point group, respectively. Higher CB degeneracy of

NV ∼ 6 can be achieved by converging these two CBMs, such that NVo = 2. Guo et. al report trends

dictating CB convergence that are nearly identical to those describing VB convergence (between Γ

and L). That is, decreasing the group number difference betweenX and Y increases the energy of the

X3 CBM relative to the X2 CBM [188]. Thus, tuning the VBs and CBs is chemically quite simple:

adjust the group number of the X and Y elements, with secondary effects from the electronegativity.

Generally, compounds with a VBM at Γ tend to have the X3 CBM, and those with the L VBM

tend to have the X2 CBM, though there are exceptions to this. MNiSn (M = Ti, Zr, Hf) hH alloys,

which are common n-type candidates [175,189–193] comprise the Γ VBM, X3 CBM class, [182,188]

while high performing p-type compounds, such as the (V,Nb,Ta)FeSb alloys [31,194–197], comprise

the L VBM, X2 CBM type [188]. The better p-type performance seen in the latter category can be

directly attributed to the higher VB degeneracy from having a VBM located at the L-point rather

than at the Γ-point [31, 40, 154, 182, 189, 197, 198]. In this chapter, we use ZrNiSn and NbFeSb as

the model systems for the hH compounds with a Γ-point VBM and X3 CBM and those with an

L-point VBM and X2 CBM, respectively. While we only provide a detailed analysis of ZrNiSn and

NbFeSb, the differences in their electronic structures and bonding can be broadly generalized, as

NbFeSb better represents compounds with a smaller group number difference between X and Y ,

and ZrNiSn better represents compounds that have a larger group number difference between X

and Y .

While the community understands the VBM and CBM classifications, the orbital character of

the band edges is not understood well enough. For instance, there is not a clear understanding of

why the orbital character at the Γ-point VB edge differs greatly from the VB edge at the L-point

and why the Γ-point CB edge character (mostly X-d) differs significantly from the X3 CB orbital

Γ-point rather than the X-point (e.g., ScPbSb, ScPtBi, LuPtBi, YPdBi, CePdBi, ScNiBi, LuAuSn, etc.). In this class
of hH compound, the CB and VB edges may cross at the Γ-point, closing the bandgap (the s-orbitals and d-orbitals
do not hybridize at Γ, which allows the bands to cross). These hH compounds may have applications as topological
insulators [183–187].
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character (mostly Y -d). Additionally, while simple bonding pictures might predict the CB edge to

be dominated by the orbitals of the more electropositive X species and the VB edge by the more

electronegative Y species [161], this is not the case at each k-point. By gaining insight into the

chemistry behind the orbital classifications identified in Refs. 182 and 188, we can better understand

and develop strategies to engineering more highly converged hH electronic structures with greater

thermoelectric performance.

Here, we aim to explain how the VB and CB edges can so dramatically change character as they

traverse from Γ to L or from Γ to X. The essential mechanism at play is the avoided crossing, some-

times called a band (or level) anti-crossing [4,169]. Band anti-crossings occur when two interacting

bands that would normally cross each other if they were non-interacting are forbidden to cross.

The result is two distinct bands characterized by an admixture of the original (non-interacting)

bands [4]. The Γ and L VBMs are the result of an avoided crossing between a band that decreases

in energy from Γ to L, with primarily Y -d character at L, and a band with mostly X-d character

that increases in energy from Γ to L. A simplified sketch of this avoided crossing along the Γ−Λ−L

path is depicted in Figure 6.2. The result is a valence band edge with local maxima at Γ and L that

are dominated by X-d and Y -d character, respectively.

In general, increasing the energy of the X-d orbitals increases the energy of the blue band in

Figure 6.2, and increasing the energy of the Y -d orbitals increases the energy of the red band (more

so near L). Therefore, in materials with a greater energy (group number) difference between X and

Y (ZrNiSn), the Γ VB pocket is higher compared to the L VB pocket. Conversely, in materials with

a smaller group number difference (NbFeSb), the L VB pocket is higher relative to that at Γ. In

terms of doping/alloying, these changes to the anti-crossing bands could be accomplished by tuning

the weighted average of the group number (or electronegativity) difference between X and Y based

on the end-member compounds.
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VBM at Γ
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Figure 6.2: Simplified sketch of two bands (each doubly degenerate, yielding four bands total) along the
Λ-line in a half-Heusler compound before and after interacting and inducing an avoided crossing. (a) When
the bands are non-interacting, one of the bands decreases energy from Γ to L and has orbital character that
transitions from being mainly Y -d–X-d at Γ to being mostly Y -d at L. The second band increases in energy
from Γ to L and contains mostly X-d character. (b) When the bands interact, an avoided crossing occurs,
and the lower band transitions from having X-d character at Γ to Y -d character at L. There are two local
VBM, one at Γ with X-d character and one at L with Y -d character. The relative energies of these VBMs
can be tuned via substitutions on the X- and Y -sites. The dashed horizontal line in (a) and (b) represents
the Fermi energy.
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6.2 Avoided Crossings in the Half-Heusler Electronic Structure

The symmetry properties of electronic bands are crucial for understanding band behavior and in-

teractions. Using a group theory, [4, 5, 199] the electronic bands at various k-points/paths can

be classified based on the irreducible symmetry representations of their corresponding wavefunc-

tions [68], where we can describe the electronic wavefuctions using the linear combination of atomic

orbitals (LCAO) approach [63–65, 84]. Bands (or orbitals) that belong to the same symmetry rep-

resentation at a given point in the BZ can interact, whereas interactions between bands belonging

to different representations are forbidden [4,5]. The first-principles electronic band structures with

band symmetry labels and orbital projections along the X-∆-Γ-Λ-L path for ZrNiSn and NbFeSb

can be seen in Figure 6.3 (the orbital character at the band edges is in agreement with that reported

in Ref. 182). All the density-functional theory (DFT) calculations presented here are carried out

using the Perdew-Burke-Ernzerhof (PBE) [51] functional without including spin-orbital coupling

(SOC) effects. The bands labeled as Γ15 are triply degenerate states, those labeled as Γ12, X5, L3,

∆3,4, or Λ3 are doubly degenerate states, and those labeled as X1, X2, X3, X4, L1, ∆1, ∆2, or Λ1

are singlet states (see Appendix D for more information on group theory band notation).

Often, the bandgap is attributed to Y -d–X-d bonding, leading to band edges dominated by

the transition metal d-orbitals. [157,161,165,168,200–203]. Based on this bonding description, one

might expect states near the CB edge to have more X-d character and states near the VB edge to

exhibit mostly Y -d orbital character because X is more electropositive. However, a closer look at

k-point dependence of the atomic orbital compositions (Fig. 6.3) suggests that this simple bonding

description does not adequately capture the important features of the band structure, particularly

those needed to understand band convergence and degeneracy. For example, it fails to explain why

X-d states dominate the VB edge at the Γ-point and why the X3 CBM exhibits predominantly Y -d

character. Therefore, we must take a more nuanced approach to looking at the bonding at different

k-points in the BZ by considering the role of avoided crossings in the hH band structure [169].
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Figure 6.3: DFT-calculated electronic band structure calculations of half-Heusler compounds, ZrNiSn and
NbFeSb, showing (a)-(b) the relative contribution of each atomic species (X,Y, Z) and (c)-(d) the relative
contribution of each orbital type (s, p, d). The symmetry representations for select bands at the X-, Γ-, and
L- points and along the ∆- and Λ-lines are shown. The dashed line indicates the Fermi energy.
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6.2.1 Tight-Binding Model of Avoided Crossings

Avoided crossings in band structures occur because the eigenvalues (energies) of two interacting

eigenstates (wavefunctions) cannot be equal to each other. When bands belonging to different

symmetry representations approach each other in energy, they are able to cross normally, such that

there is a k−point where the energy of the two bands are equal. On the other hand, bands that

belong to the same symmetry representation will interact, and therefore, are forbidden to cross,

resulting in two distinct bands that are an admixture of the original wavefunctions. An avoided

crossing may result in a band having different orbital character at different k−points. Moreover, it

can lead to a certain orbital being found in one band at a given k−points but in another band at

a different k−points, rather than belonging to a continuous band.

We employ the tight-binding (TB), or LCAO, [63–66, 84, 204] framework to better understand

different ways that avoided crossings can appear in a band structure. As mentioned in Chapter 2,

the TB solution for the energy levels in a diatomic molecule can be a useful tool for understanding

complex electronic structures [47]. Consider the interaction between two orbitals (1 and 2) that

are members of the same symmetry representation. The expressions for the resulting bonding (ε−)

and anti-bonding (ε+) energy levels are given in Equation 6.1. E1 and E2 represent the on-site

energies of the atomic orbitals prior to interacting, and V is the tight-binding hopping integral

that describes the strength of the interaction between the two orbitals. In order to extend this

simple diatomic molecule model to complex crystal structures, we can adjust the on-site energies

and hopping (interaction) parameters so that they are effective on-site energies ((E1(k) and (E2(k))

and interaction parameters, or hopping integrals (V (k)), which are a function of the k-vector. [47]

That is, we can write Equation 6.1, as a function of k, as shown in Equation 6.2, in order to describe

more complex electronic dispersions with a simple diatomic molecule TB model.

ε± =
1

2
(E1 + E2)±

1

2

√
(E1 − E2)2 + 4V 2 (6.1)



148

ε±(k) =
1

2
(E1(k) + E2(k))±

1

2

√
(E1(k)− E2(k))2 + 4V 2(k) (6.2)

Simply understanding how the effective hopping integrals varies as a function of k provides

insight into how electronic bands behave. For instance, regardless of whether or not avoided crossings

are present, k-dependent hopping integrals that are strongest at Γ result in bonding bands that run

up in energy (increase in energy, becoming less bonding) from Γ and in anti-bonding bands that

run down in energy from Γ. Conversely, interactions that are weakest at Γ result in bonding bands

that run down in energy from Γ and in anti-bonding bands that run up in energy from Γ [84].

A schematic of a normal band crossing and three illustrative cases of avoided crossings can be

seen in Figure 6.4, where the red and blue coloring represent the orbital character of each interacting

orbital. In all four cases, the effective on-site energy of the red state is decreasing, and the effective

on-site energy of the blue state is increasing. The increase/decrease of effective on-site energies

is due to secondary interactions that are not captured in the V (k) term, such as interactions of

the orbitals with themselves (their periodic images). Figure 6.4a depicts two non-interacting bands

that cross trivially with no change in the character of the bands upon crossing, consistent with a

TB hopping integral of V = 0. Figure 6.4b represents the case where the TB hopping integral is

constant across the k-path. Figure 6.4c illustrates an avoided crossing where V is a function of the

k-vector. In this case, V varies sinusoidally, and is at a maximum at the center of the path where

the bands would have crossed. The resulting anti-crossing bands bow outward from each other.

Figure 6.4d also represents a case where V varies, but in this example, V increases from left to

right. Note that only cases where V ≥ 0 are shown, but V can be negative as well (the magnitude

is what is important in this example).

6.2.2 Avoided Crossings along Γ−∆−X

The presence of avoided crossings in hH compounds along the ∆ symmetry line was introduced by

Ogut et. al in 1995 in order to explain the formation of the bandgap in these compounds [169].
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(c)(a) (b) (d)

Figure 6.4: Schematic depiction of a normal crossing and three cases of avoided crossings (top) with corre-
sponding sketches of the tight-binding hopping integral, V (bottom). (a) Normal crossing with an interaction
of V = 0. (b) Avoided crossing when the hopping integral, V , is constant along the entire k-path. (c) Avoided
crossing where the hopping integral varies sinusoidally, such that V = 0 at the far right and left and reaches
a maximum at the center of the k-path where the bands would have crossed. (d) Avoided crossing when V
varies, such that V = 0 at the far left and is at a maximum at the far right of the plot. Red and blue coloring
is used to depict the character of the bands, and in (b)-(d) top, the dashed lines indicate the behavior of the
bands when V = 0. In (b)-(d) bottom, the blue horizontal dashed lines are shown at V = 0.
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Ogut et al. identify an avoided crossing between the highest ∆3,4 VB and the lowest energy ∆3,4

CB in ZrNiSn. We can see the signature of this avoided crossing in the complementary character of

the two anticrossing ∆3,4 bands (see Figure 6.3a and c). [169] That is, the lower band has mostly

Zr-d character at Γ and Sn-p character at X, and the upper band has mostly Sn-p character at Γ

and predominantly Zr-d character at X.

We can think of these bands as being the result of an avoided crossing between a “Zr-d band”

and a “Sn-p band”. That is, if there were no interactions between the two bands, there would

simply be an X-d band that increases in energy from Γ to X crossing a Sn-p band that decreases

in energy from Γ to X like Figure 6.4a. In fact, we can use k-point-resolved, band-resolved crystal

orbital Hamilton populations (COHPs) [52, 205] to explain this behavior. While multiple orbital

interactions (including interactions between atoms and their periodic images) are needed to fully

explain the complex hH electronic structure, we focus on a few important interactions as examples.

The COHPs of the ∆3,4 VB and CB for ZrNiSn can be seen in Figure 6.5a,c where positive values

of the COHP indicate an anti-bonding interaction, negative values of the COHP indicate a bonding

interaction, and the magnitude represents the strength of the interaction. The COHP values show

that the “Zr-d band” would run up in energy from Γ to X because of the Zr-d–Ni-p interaction

(bonding in the ∆3,4 VB) that is strongest at Γ and decreases to almost zero at X. In other words,

this Zr-d–Ni-p interaction pushes the Zr-d states down in energy, such that they are found in the

VB edge where the interaction is strongest (at Γ) and in the CB where the interaction is weakest

(at X). Additionally, there is an interaction between the Ni-p and Sn-p orbitals (bonding in the

VB) that increases in strength from Γ to X. This interaction explains why the Sn-p state would run

down in energy from Γ to X. That is, the Sn-p states are pushed down in energy by the Ni-p states

at X more so than at Γ, such that the Sn-p states are found in the VB at X but in the CB at Γ.

COHP also explains why the ∆3,4 bands bow out from each other like the avoided crossing

depicted in Figure 6.4c. As shown in Figure 6.4c, this type of avoided crossing is the result of a

strong interaction between the two states that reaches a peak strength about halfway along the path
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Figure 6.5: k-resolved, band-resolved crystal orbital Hamilton (COHP) values in the ∆3,4 (a) valence band
(VB) of ZrNiSn, (b) VB of NbFeSb, (c) conduction band (CB) of ZrNiSn, and (d) CB of NbFeSb. In the VB,
the green curve represents X-d–Y -p interactions, the red curve represents X-d–Z-p interactions, the purple
curve represents X-d–Y -d interactions, and the blue curve represents Y -p–Z-p interactions. In the CB COHP
plots, the red curve represents X-d–Z-p interactions, the green curve represents Y -d–Z-p interactions, and
the blue curve represents X-d–Y -d interactions.



152

X
-line

0

1

2

|V
| (

|V
pd

|)

3, 4 X-d Y-p

Figure 6.6: Magnitude of X-d-Z-p tight-binding hopping integral in the ∆3,4 bands in a generic half-Heusler
compound.

of the avoided crossing [169]. Based on the ∆3,4 VB and CB COHP values (Figure 6.5), the Zr-

d–Sn-p and Nb-d–Sb-p interactions both satisfy this condition. This X-d–Z-p interaction is nearly

zero at Γ and at X, and it reaches a peak in strength halfway along the Γ−∆−X line (bonding in

the VB and anti-bonding in the CB). The shape of the X-d-Z-p interaction can also be reproduced

using an analytical TB model describing a generic hH compound. The k-dependent interaction

strength, Vpd, for this interaction (quantified by the magnitude of the k-dependent hopping integral

coupling these two orbitals) in the ∆3,4 band is given by the Equation, |Vpd| = 2|Vpdπ sin (πd)| (see

Figure 6.6), where d varies from 0 at Γ to 1 at X, and Vpdπ is the π-bonding interaction between

the d and p orbitals (see Appendix D for details on derivation).

While the avoided crossing between the ∆3,4 bands in ZrNiSn is between a predominantly X-d

state that increases in energy from Γ to X and a predominantly Z-p state that decreases in energy

from Γ to X, the explanation in NbFeSb is slightly different. In NbFeSb this avoided crossing is

better described as one between the X-d state and a Y -d state. As seen in Figure 6.7, the Γ15 CB

state in NbFeSb is comprised of mostly Fe-d states with a smaller contribution from the Sb-p states.

This is the inverse of the case in ZrNiSn, where the Γ15 CB contains mostly Sn-p character with

some Ni-d character. Moreover, while the highest X5 VB state in ZrNiSn is described by mostly



153
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Figure 6.7: Heat maps representing the normalized band-resolved projected density of states (pDOS) of (a)
the Γ15 valence band (VB), (b) the Γ15 conduction band (CB), (c) the X5 VB, and (d) the X5 CB in ZrNiSn
and of (e) the Γ15 VB, (f) the Γ15 CB, (g) the X5 VB, and (h) the X5 CB in NbFeSb. For the Γ15 bands,
the pDOS shown is the average of the three triply degenerate bands comprising that state, and for the X5

bands it is the average of the two doubly degenerate bands. The orbital projections are normalized, such
that the sum of the orbital projection for each band at each k-point is equal to one.

Sn-p character with some Ni-p character, in NbFeSb, this state contains mostly Fe-d character with

a smaller contribution of Nb-d orbitals (and even less Sb-p and Fe-p). This difference in orbital

character is also reflected in the COHP values. The X-d–Y -d bonding interaction in the VB and

the Y -d–Z-p and X-d–Y -d interactions in the CB are more dominant in NbFeSb than in ZrNiSn

(Figure 6.5).

Therefore, the behavior of the ∆3,4 VB in NbFeSb can be better understood by studying the

strength of the Nb-d–Fe-d interaction (Figure 6.5b). At the Γ point, this interaction is very weakly
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anti-bonding and becomes more strongly bonding toward X. Overall, the strength increases from Γ

toward X, but there is a peak in the strength about midway from Γ to X (closer to X). The bonding

interaction decreases the energy of the Fe-d orbitals, so the fact that it is stronger at X than at

Γ is consistent with Fe-d orbitals being found below the bandgap at X (Figure 6.7b) and above

the bandgap at Γ (Figure 6.7g). We note that the bonding interaction between the Nb-d and Fe-p

states is also present in the Γ15 VB edge, which further pushes the energy of the Nb-d states at Γ

down relative to their energy at X. While the X-d–Y -d interaction is less dominant in ZrNiSn, the

Zr-d–Ni-d interaction is also important for understanding the distribution of Zr-d states in ZrNiSn,

as the increase in strength of this interaction from Γ to X further (in addition to the Zr-d–Ni-p

interaction) explains the presence of Zr-d states in the CBs at X and in the VB edge at Γ. Finally,

in contrast to ZrNiSn, the Y -d–Z-p interaction in NbFeSb increases the energy of the Y -d, rather

than the Z-p, orbitals at Γ in NbFeSb. Therefore, the increasing strength of this interaction from

X to Γ (Figure 6.5d) further explains the presence of Fe-d orbitals in the CB at Γ15 (Figure 6.7f)

and in the VB at X5 (Figure 6.7g).

This discrepancy between the orbital character of the highest X5 VB between the two compounds

is consistent with the energy of the Fe-d orbitals being greater than that of the Sb-p orbitals, while

the Ni-d orbitals are lower relative to the Sn-p orbitals in ZrNiSn. This might be expected from the

greater group number difference between Y and Z in NbFeSb compared to ZrNiSn. Consequently,

the Sb-p states at X are located deeper into the VBs, and do not appear heavily in the highest

X5 VB, while the Fe-d states dominate instead. Furthermore, because Γ15 is an anti-bonding state

between the Y -d and Z-p orbitals, it will have character most closely resembling the higher energy

state, which is Sn-p in ZrNiSn and Fe-d in NbFeSb. In general, increasing the energy of the Y -d

orbitals (decreasing the group number of Y ) will favor the behavior seen in NbFeSb, while decreasing

the energy of the Y -d orbitals (increasing group number of Y ) would favor the behavior seen in

ZrNiSn.

Qualitative bonding pictures at the Γ-point in ZrNiSn and NbFeSb are depicted in Figure 6.8
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to illustrate some of their differences. We show the relevant bonding interactions in two steps: (1)

the formation of the zinc blende [Y Z]n− polyanion, and (2) the subsequent interactions between

[Y Z]n− and Xn+ to form the hH XY Z structure. In both compounds the VB edge is depicted as

a bonding state between the X-d state and a hybridized Y -p anti-bonding state. Moreover, we can

see that because the relative energy of the Y -d orbitals is greater in NbFeSb, the t∗2 (Γ15) CB state

has more Y -d than Z-p character in NbFeSb but more Z-p than Y -d character than ZrNiSn.

6.2.3 Avoided Crossings along Γ− Λ−L

The band gaps of hH thermoelectric compounds are established by avoided crossings that result in

an 18-electron (valence-balanced) valence band. Therefore, in order to understand the origin and

orbital character of the VB edges at Γ and L and whether the VBM is at Γ or L, we must study the

avoided crossings along the Γ–L path. The symmetry labels for the relevant Γ, Λ, and L bands are

given in Figure 6.9. Because the highest energy VB belongs to the Λ3 symmetry representation, we

look at how the states in this Λ3 VB interact with other Λ3 bands, specifically the Λ3 CB and a

lower Λ3 VB (the second-highest Λ3 VB). While there are multiple Λ3 avoided crossings, we simplify

the analysis to focus on the avoided crossing that directly yields the bandgap. In both ZrNiSn and

NbFeSb, the Γ-point VB edge is dominated by the X-dt2 orbitals (Figures 6.9a and c). As seen in

Figure 6.9a and c, this X-dt2 character can also be found at the L-point of the Λ3 CB (in the L3

band). Therefore, the X-dt2 orbitals in Γ-point VB edge come from an “X-dt2 band” that would

run up in energy from Γ to L, like shown in Figure 6.2a (blue curve), if it were not for an avoided

crossing. The k-resolved, band-resolved COHP (Figure 6.10) explains why this “X-dt2 band” would

run up in energy from Γ to L. As seen in Figure 6.10b, in the highest Λ3 VB (VB upper), there

is a Zr-dt2–Ni-p bonding interaction that is strongest at Γ and decreases toward L. Moreover, as

seen in Figure 6.10c, in the Λ3 CB, there is Zr-dt2–Ni-dt2 anti-bonding character that increases

from Γ (where it is 0 because there is no dt2-orbital character in Γ12) to L. The former interaction

pushes the Zr-dt2 orbitals down in energy at Γ, such that they are found in the VB, while the latter
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Figure 6.8: Qualitative sketches of the molecular orbital diagrams at the Γ-point representing (a,c) the
formation of the [Y Z]n− polyanion and (b,d) the formation of the XY Z half-Heusler (hH) structure from
[Y Z]n− and Xn+. The diagrams in (a)-(b) more closely resemble the bonding in ZrNiSn, and those in (c)-(d)
most closely resemble NbFeSb. The symmetry representations of the molecular orbitals with respect to the
Td point group are shown, with the corresponding band symmetry labels shown in parentheses. The VB
edge at Γ can be described as a bonding state between the triply degenerate X-d orbitals and a Z-p–Y -p
anti-bonding state. The relative energies of the atomic and molecular orbitals will vary as the chemistry of
the compound changes. Note that the energy scales in each of the four MO sketches are arbitrary.
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Figure 6.9: Electronic band structures calculated via DFT showing the normalized d-orbital contributions of
each band at each k-point. The thickness of the line represents the contribution from the designated orbitals,
and the dashed horizontal line represents the Fermi energy and is at the VB edge for both compounds. We
show the contributions of (a) the Zr-dt2 orbitals in ZrNiSn, (b) the Ni-de orbitals in ZrNiSn, (c) the Nb-
dt2 orbitals in NbFeSb, and (d) the Fe-de orbitals in NbFeSb. Symmetry representation labels for various
Γ− Λ−L bands are shown in (a) and (c) for reference.
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Figure 6.10: k-point-resolved, band-resolved projected COHP values for various interactions in ZrNiSn in
(a) the second-highest Λ3 VB (VB lower), (b) the highest Λ3 VB (VB upper), and (c) the Λ3 CB. Negative
COHP values correspond to bonding character, while positive COHP values indicate anti-bonding character.

interaction pushes the Zr-dt2 orbitals up in energy at L such that they are found in the CB.

Therefore, in order for there to be a bandgap along the Λ path, there must be an avoided crossing

between this “X-dt2 band” and another band that would run down in energy from Γ to L if there

were no avoided crossing (red curve in Figure 6.2a). In this case, we can consider an “X-de–Y -de

band” that would run down in energy from Γ to L, starting in the Λ3 CB. This band would run

down from Γ toward L because of X-de–Y -de anti-bonding interactions that are strongest at Γ and

decrease in strength toward L (see Figures 6.10b,c). Because the “X-dt2 band” and “X-de–Y -de

band” belong to the same symmetry representation, Λ3, they will interact (via X-dt2–X-de, X-dt2–

Y -de, etc. interactions) and undergo an avoided crossing like that shown in Figure 6.2b to open up

the bandgap.

In both ZrNiSn and NbFeSb, the L-point VBM is dominated by Y -de character, which cannot be

explained directly from the avoided crossing depicted in Figure 6.2. As seen in Figures 6.9b-d, the

Y -de orbitals dominate at the Γ-point of the lower Λ3 VB (the second-highest Λ3 VB). Therefore,

the origin of the Y -de states at the L-point VB edge can be explained by a Y -de state that would run

up in energy from Γ to L if there were no avoided crossings. Again, the k-resolved, band-resolved
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COHP explains why this Y -de state increases in energy from Γ and ends at the L-point VB edge.

As seen in Figure 6.10a, there is a strong Zr-de–Ni-de bonding interaction in the lower Λ3 VB that

pushes the energy of the Ni-de orbitals down in energy. This interaction is strongest at Γ, which is

why the energy of this state is lowest at Γ. Clearly, this Y -de state does not form a continuous VB

in the actual band structure, so there is an avoided crossing between this “Y -de band” (that would

exist if there were no avoided crossing) and another Λ3 state that would run down in energy from

Γ to L.

6.3 Chemical Origins of X-Point Conduction Bands

For high-performing n-type hH thermoelectrics, it may be beneficial to engineer high valley degen-

eracy in the CB edge by converging the two competing CBMs at the X-point, such that NVo = 2.

The X-point in hH compounds has D2d point group symmetry, and the two competing CBMs in

typical hH thermoelectrics have distinct symmetry representations within this point group, either

X2 (NbFeSb) or X3 (ZrNiSn) [68]. Similar CB behavior is observed in Mg2Si-Mg2Sn solid solutions,

which also have two competing CBMs at the X-point, and it is found that peak thermoelectric

performance is obtained in the solid solution where the two CBs are converged [42, 43]. In the

thermoelectric hH compounds studied here, the X2 band contains entirely X-d character, while the

X3 band has predominantly Y -d character hybridized with X-d and some Z-p character (see Figures

6.3 and 6.112) Furthermore, as discussed in Ref. 68 the X2 state is expected to be non-bonding,

as there are no other available X2 states from the Y - or Z-species (see Table D.15). On the other

hand, X-dxy, Y -dz2 , and Z-pz all transform like the X3 representation of the D2d point group,

and therefore interact with each other, such that the X3 CBM is predicted to have anti-bonding

character [68].
2Note that the heat map in Figure 6.11 is from DFT calculations that define X to be at X = 2π(0, 1, 0), while

the group symmetry analysis is conducted assuming that X = 2π(0, 0, 1). As a result, the orbital basis must simply
rotated, such that z → y when going from the group theory analysis to the DFT heat map plots. However, the de
orbitals always map back onto de orbitals and dt2 orbitals always back mack onto other dt2 orbitals.
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(a) (b)

(c) (d)

Figure 6.11: Heat maps showing normalized projected density of states (p-DOS) for the X2 CB in (a) ZrNiSn
and (b) NbFeSb and for the X3 CBs in (c) ZrNiSn and in (d) NbFeSb.
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Figure 6.12: k-resolved, band-resolved COHP values for the X-d–Y -d interactions in the Γ12 −∆1−X3 and
Γ12 − ∆2−X2 bands in ZrNiSn and NbFeSb. The red lines correspond to the Nb-d–Fe-d interaction in
NbFeSb, and the blue lines correspond to the Zr-d–Ni-d interactions in ZrNiSn. The filled circles denote the
∆2 band, while the plus (+) symbols represent the ∆1 band. At Γ, both of the Γ12 states are anti-bonding,
and at X, the X3 state is anti-bonding, while the X2 state is non-bonding.

The COHP values for the Γ12−∆2−X2 and the Γ12−∆1−X3 bands (Figure 6.12) are consistent

with these group theoretical predictions of the bonding character of the competing CBMs, and they

also give insight into why the CBM is located at the X-point rather than at the Γ-point. In the ∆2

band the X-d–Y -d interaction is anti-bonding in the Γ12 band and decreases in magnitude along

the ∆2 band to zero in the X2 band. As a result, the X2 CB is completely non-bonding, and the ∆2

CB decreases in energy from Γ to X. Moreover, the COHP values show that the ∆1 CB is an X-d–

Y -d anti-bonding state along the entire band, including the X-point (X3 band). The anti-bonding

character in the ∆1 CB is stronger at Γ than at X, leading to the ∆1 CB running down from Γ to

X.

The analytical TB model of the generic hH compound can also explain the COHP behavior,

and hence, band behavior of the low-lying conduction bands from Γ to X (see Appendix D for more

details). In both the ∆1 and ∆2 bands, X-de–Y -de interactions are present, and in the TB model, the

strength of the hopping integral in both bands is given by the expression |Vdd| = 8
3 |Vppπ cos (πd/2)|
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Figure 6.13: Magnitude of tight-binding (TB) hopping integrals |V | for (a) the X-de–Y -de interactions in
the ∆1 and ∆2 bands and (b) the X-dt2–Y -de interaction in the ∆1 band.

(Figure 6.13a). Thus, according to TB, this de-de interaction, which is anti-bonding in the low-lying

CBs, reaches a maximum strength at Γ and decreases to zero strength at X. Moreover, in the ∆1

band, but not the ∆2 band, there is a de–dt2 interaction, which is anti-bonding in the ∆1 CB, given

by the TB hopping integral, |Vdd| = 8
√
3

9 |Vddπ sin (πd/2)| (Figure 6.13b). Therefore, the strength

of this interaction reaches a maximum at X and decreases to zero at Γ, but because the maximum

strength of this interaction is weaker than the maximum strength of the de-de interaction, the overall

interaction strength decrease from Γ to X in the ∆1 band. However, unlike the ∆2 band, the ∆1

band does not become non-bonding at X.

While looking at only the X-d–Y -d interactions is sufficient to understand why the CBM is at

X, in order to understand the orbital character and relative energies of the competing CBMs, a

more detailed approach is required. That is, these interactions do not explain the discontinuity of

character between Γ12 and X3 (connected by ∆1), the dominance of Y -d (Y -dz2) over X-d (X-dxy)

orbitals in X3, or why, as an anti-bonding state between X-d and Y -d, the X3 band is not always

higher in energy than the non-bonding X2 band. The discontinuity in the ∆1 CB is due to avoided
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Table 6.1: COHP values (k-point and band resolved) for select bands at the X-point in ZrNiSn and NbFeSb.
Positive values of COHP indicate anti-bonding interactions, and negative COHP values indicate bonding
interactions.

Interaction Band ZrNiSn COHP (eV) NbFeSb COHP (eV)
Y -dz2–Z-pz XCB

3 0.34 0.36
X-dxy–Y -dz2 XCB

3 0.42 0.54
X-dxy–Y -s XVB

3 -0.83 -0.73

crossings with other ∆1 states. Again, we use k-resolved, band-resolved COHP calculations (see

Table 6.1) to formulate a qualitative molecular orbital picture (see Figure 6.14) that is consistent

with observations in the CB structures. For instance, in addition to the X3 CB (denoted XCB
3 in

Table 6.1) having Y -dz2–X-dxy anti-bonding character, it also exhibits Y -dz2–Z-pz anti-bonding

character (Figure 6.14a). The Y -dz2–Z-pz interaction explains why the Y -dz2 states are pushed

up to be near the CB edge rather than in the VB. Additionally, there is a bonding interaction

between the X-dxy and Y -s states that pushes the X-dxy states lower into the VB (found in XVB
3 ,

the X3 band that is located between −2 eV and −3 eV below the VB edge) rather than near the

CB edge (Figure 6.14b-c). This bonding character is apparent in the strongly negative COHP value

corresponding to this interaction in the XVB
3 band (Table 6.1). Note that all of the interactions

listed in Table 6.1 for the X-point are symmetry-forbidden at the Γ-point. The TB hopping integrals

corresponding to these interactions along the ∆ path are described in Appendix D for interested

readers (see Table D.19).

The qualitative molecular orbital sketch depicted in Figure 6.14 also explains why compounds

like NbFeSb have the X2 CBM and why compounds like ZrNiSn have the X3 CBM. When the relative

energy difference between the X-d and Y -d orbitals is greater (e.g. ZrNiSn), the anti-bonding b∗2

(X3) state from Figure 6.14a is lower in energy than the non-bonding X-dx2−y2 (X2) state, resulting

in the X3 CBM (Figure 6.14b). On the other hand, when the energy difference between X-d and

Y -d is smaller (e.g. NbFeSb), the anti-bonding X3 from Figure 6.14a is greater in energy than the

non-bonding X2 state, yielding the X2, X-d dominated CBM (Figure 6.14c). It is then evident

how tuning the relative energies of the X-d and Y -d orbitals is an effective method to converge
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Figure 6.14: Qualitative sketch of molecular orbital diagrams at the X-point that explain the character and
relative energies of the competing X2 and X3 CBMs. (a) The Y -dz2 orbitals interact with the Z-pz orbitals
to form a bonding and anti-bonding state, while the Y -dx2−y2 orbitals are non-bonding. (b)-(c) The X-dxy
orbitals interact with the Y -s orbitals to form a bonding and anti-bonding state below and above the two
competing CBMs, respectively. (b) When there is a greater difference between the relative energies of the
X-d and Y -d orbitals, the anti-bonding X3 state from (a) is the CBM. (c) When there is a smaller difference
(NbFeSb) between the relative energies of the X-d and Y -d orbitals, the non-bonding X-dx2−y2 state (X2)
is the CBM. (d) The X3 anti-bonding state (from Y -d–Z-p interaction) in (a) interacts with the X3 bonding
states (from X-d–Y -d interaction) from (b) and (c), such that the X3 CBM has X-d–Y -d anti-bonding
character.
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the two competing CBMs. Increasing the difference in the energies of the X-d and Y -d orbitals

(assuming that the hopping integral/parameter, V , for the X-d–Y -d and Y -d–Z-p interactions is

not substantially altered) results in the energy of the X2 (non-bonding) CB increasing relative to

the X3 (anti-bonding) CB, which leads to an X3 CBM.

6.4 Chemical Origins of W-Point VBM

Because the W-point has a high valley degeneracy of NVk
= 6, understanding how to engineer hH

compounds and alloys with contributions from the W-point VBM can allow for the discovery of even

better p-type hH thermoelectrics [203]. Although Dylla et al. identify only one material that has

a distinct (not effectively converged) global VBM at the W-point (NbRhSn), six other compounds

where the W-point and L-point are converged within 100 meV are identified. All seven of these

W-pocket materials have a group-IV element (Ge, Sn, Pb) occupying the Z-site and a group IX

element (Co, Rh, Ir) occupying the Y -site. [182]. As discussed in Ref. 182, the orbital composition

of the W-point VBM is typically characterized by a larger Z-p contribution relative to the L- and Γ-

point VBMs. That is, as seen in Figure 6.15, while the L- and W- points of the highest VB are both

comprised of largely Y -de orbital character, there is greater contribution from the Z-p orbitals at

W. This suggests that Y -d–Z-p interactions are important for understanding convergence between

the L- and W- point VB pockets.

We compare the orbital contributions and COHP values of two W-pocket materials (NbRhSn and

NbCoSn) with NbFeSb and ZrNiSn to better understand the origin of the W-pocket. In NbCoSn, the

L and W VBMs are effectively converged, while in NbRhSn, the W-point VBM is more prominent.

The importance of the Y -d–Z-p interaction is highlighted in the convergence trends plotted in

Figure 6.16a-b. As seen in Figure 6.16a, there is a clear correlation between the difference in

energy of the W- and L-point VB pockets and the difference in Z-p orbital character between the

W- and L-points – as the difference in % Z-p character increases, the relative energy of the W-

point VBM increases relative to the L-point VBM. Furthermore, as seen in Figure 6.16b, there is
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Table 6.2: COHP values corresponding to the Y -d–Z-p interaction at the L and W VBMs and the energy
difference between the L and W VBMs for four different hH compounds.

Compound COHP (eV) at W COHP (eV) at L COHP (eV) (W-L) EV BM (L)− EV BM (W) (eV)
ZrNiSn 0.52 0.34 0.18 0.08
NbFeSb 0.43 0.24 0.19 0.37
NbRhSn 0.68 0.29 0.39 -0.15
NbCoSn 0.58 0.25 0.33 -0.02

a trend between the difference in the Pauling electronegativity [3,6] of the Z- and Y - sites and the

difference in energy between the two VBMs. As the electronegativity difference increases, the energy

of the L-point VBM increases relative to the W-point VBM. NbRhSn represents an extreme case

where the Pauling electronegativity of the Z-site species is less than the that of the Y -site species,

which explains why it has a distinct W-point VBM. The COHP values describing to the Y -d–Z-p

interaction also highlight the importance of this interaction in the emergence of the W-point VBM

(see Table 6.2). The compounds that contain W-point VB pockets near the Fermi energy (NbCoSn

and NbRhSn) both have stronger relative COHP values at the W-point.

The W- and L-point VBMs begin emerging concurrently (with respect to the Γ-point VBM)

because they are both dominated by Y -de orbital character. That is, when the energy of the Y -d

states relative to the X-d states is high enough for the L VBM to approach and exceed the energy

of the Γ VBM, the energy of the W-point VB pocket can also begin to approach the VB edge.

In fact, based on the sixteen hH DFT calculations presented in this work, the trend relating the

group number difference between the Y - and X- sites and the energy offset between the Γ- and

W-point VBMs closely resembles the trend describing the offsets between the Γ and L VB pockets

(see Figure 6.16c). Both the L- and W-point VB pockets begin emerging when the Y − X group

number difference is four or five.

Thus, we can also explain why all of the W-pocket compounds identified in Ref. 182 contain

both a Y -site species from group IX and a Z-site species from group IV. Because a group number

difference (Y -X) of four to five marks the point at which the L- and W-point VBMs emerge with
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(a) (b)

(c) (d)

Figure 6.15: Electronic band structures calculated via DFT for two hH compounds, NbRhSn and NbCoSn,
with VBMs at the W-point. The color and line thickness represents the normalized contribution of the (a)
Sn-p orbitals in NbCoSn, (b) Co-de orbitals in NbCoSn, (c) Sn-p orbitals in NhRhSn, and (d) Rh-de orbitals
in NbRhSn.
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Figure 6.16: (a) Scatter plot showing how the energy difference between the L and W VBMs (EV BM (L)−
EV BM (W)) varies with the difference in the normalized Z-p orbital contribution between the L and W
valence band edges. (b) Plot showing EV BM (L)−EV BM (W) versus the Pauling electronegativity difference
between the Y - and Z-site species [3]. (c) Plot of EV BM (W ) − EV BM (Γ) versus the difference in group
number between Y and X. The blue points correspond to compounds that have a VBM at the Γ-point, and
the red points correspond to compounds that have a VBM at the L- or W-points.

respect to the Γ-point VB edge [182], when the group number difference is five or higher, the Γ-

point VBM is favored, and when the group number difference is four or less, the L and W VBMs

are favored. Given that hH semiconductors must have a valence electron count of 18, the restriction

of having a group number difference between X and Y of three or four effectively limits the hH

candidates to those containing Y -site elements from groups VIII (Fe, Ru, Os) or IX (Co, Rh, Ir)

and Z-site elements from group IV (Ge, Sn, Pb) or group V (As, Sb, Bi). Of these possible Y/Z

combinations, the one that favors the lowest electronegativity difference between the Y - and Z-sites

(to increase the energy W-point VB pocket relative to that of the L-point VB pocket) is a group-IX

Y -site and group-IV Z-site.

6.5 Tuning Band Edge Energies via Alloying

Assuming that the electronic band structures of substitutional alloys can be approximated as linear

interpolations of the end-member band structures, [32, 33, 42, 182, 188, 206, 207] the chemistry and

electronic structures of the end-member cases can be used as starting points to develop and un-

derstand alloying strategies for high valley degeneracy. In fact, Guo et. al show that this concept



169

works in hH compounds [188]. Therefore, understanding the trends in the band-edge energies of

end-member compounds can help us understand/predict alloy behavior in terms of band degeneracy.

The origin of the VB convergence trends of end-member compounds (non-alloys) outlined in

Ref. 182 and of the CB convergence trends discussed in Ref. 188 can be understood through the

simple TB model of a diatomic molecule. It can be shown that increasing the on-site energy of either

atomic orbital state (E1 or E2) will result in the increase of both the bonding and anti-bonding

energy levels determined by Equation 6.1. Furthermore, it can be shown that the increase is greater

for the molecular orbital state that is closer in energy to the on-site energy that was changed [153].

That is, modifying the on-site energy of the higher-energy atomic orbital has a greater impact on the

anti-bonding state, and moving the on-site energy of the lower-energy atomic orbital has a greater

impact on the bonding state. Therefore, the Γ-point VBM and X2 CBM, which have mostly X-d

character are most sensitive to the on-site energy of the X-d orbitals, and the L-point VBM and

X3 CBM which have mostly Y -d character, are most sensitive to the energy of the Y -d orbitals.

In general, as the group number of the X/Y species increases, the on-site energy decreases [63], so

increasing the group number difference between X and Y increases the relative energy of the X-d

orbitals relative to the Y -d orbitals, which raises the relative energy of the Γ-point VB edge relative

to the L-point VB edge and the energy of the X2 CB relative to that of the X3 CB. There is also

a secondary effect from Pauling electronegativity [182, 188], as the electronegativity of an element

correlates to the on-site energy of its orbitals (and the group number).

It is important to note that the aforementioned relationship between the orbital energies and

molecular orbital energies assumes that the strength of the hopping parameter/integral, V , is not

altered (upon the chemical substitution) in such a way that it counteracts the effect of the atomic

orbital energy changes. The magnitude of the hopping parameter (interatomic matrix element)

depends on the interatomic distance, which can be be tuned through physical and chemical manip-

ulations. The strength of V scales inversely with the interatomic distance which can be modified

via strain, temperature or alloying. Moreover, the interatomic matrix elements for d-orbitals in
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transition-metal-based compounds (describing the interactions between two d-orbitals or between

d-orbitals and s- or p- orbitals) increases with a value known as the d-state radius [63]. Because

substitutions that alter the atomic energies generally have at least some affect on the strength of

the interatomic matrix element, we may see cases where behavior deviates from what is expected

based only tuning the on-site energy terms.

Aliovalent alloying (substitutions) on the X- and Y - sites that change the average group number

difference can be used to consistently tune the convergence of the L and Γ VB edges [182] and of

the competing X2 and X3 CBMs [188], but the predicted effect of isovalent substitutions on the

X and Y sites (based on end-member compounds) is generally less straightforward with regards

to the energy of the X-d and Y -d atomic orbitals. Based solely on the atomic orbital energies, we

would expect isoelectronic substitutions that increase the electronegativity of X or decrease the

electronegativity of Y to increase the energy of the L VB edge relative to that of the Γ VB edge

and to increase the energy of the X3 CB relative to the energy of the X2 CB. However, there are

instances where these trends do not hold, possibly because of changes in the hopping parameters

(interatomic matrix elements), V , that counteract the expected modifications in the band structure.

In fact, this is a possible reason why the group number is a stronger predictor than the Pauling

electronegativity [182,188,208].

Specifically, there are cases where isoelectronic substitutions on the Y -site with more electroneg-

ative species increase the energy of the X3 band relative to the X2 band and where isoelectronic

substitutions on the X-site with more electronegative species increase the energy of the Γ VB rela-

tive to the L VB. For instance, the value of E(X3)−E(X2) is greater in NbRhSn than in NbCoSn,

despite the Pauling electronegativity of Rh being greater than that of Co. This behavior may be

attributed to the fact that the d-state radius in Rh is greater than in Co [63], so the anti-bonding

Y -d–Z-p and X-d–Y -d interactions, which increase the energy of the X3 band, are stronger. Ad-

ditionally, the value of EV BM (L) − EV BM (Γ) is greater in NbCoSn than in VCoSn, which is the

opposite of what is expected based on the electronegativity of X. A possible explanation is greater
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overlap between the Nb-d orbitals and the Co-p orbitals compared to the overlap between the V-d

and Co-p orbitals (Nb-d has a greater d-state radius), which pushes the energy of the Γ VB down in

energy more in NbCoSn than in VCoSn. That being said, despite some exceptions, the overall trend

still holds that as the electronegativity difference between X and Y increases, the Γ VB increases

relative to the L VB and the X2 CB increases relative to the X3 CB [135,182,208].

Because the strategies for CB and VB convergence require similar chemical manipulations, es-

pecially in terms of the group number differences, we expect the relative energies of the com-

peting VBMs (at Γ and L) and competing CBMs to be correlated. In fact, as seen in Figure

6.17, EV BM (Γ) − EV BM (L) decreases with increasing E(X3) − E(X2) based on a sample of six-

teen DFT calculations of hH electronic structures.3 We observe that hH compounds with EV BM (L)

< EV BM (Γ) tend to possess the X3 (Y -d) CBM, while compounds with EV BM (L) > EV BM (Γ) tend

to have the X2 (X-d) CBM. We also note that the W-pocket materials appear when E(X3)−E(X2)

is greater than -0.5 eV, suggesting that compounds where the CBMs are near convergence or where

the X2 CB is lower are more likely to have the W-pocket bear the VB edge (e.g., NbCoSn).

The strategy for enhancing VB degeneracy through the introduction of W-pockets near the band

edge requires tuning the chemistry of all three sites. The strategy for achieving convergence between

the W and Γ VBMs is analogous to that for achieving convergence between the L and Γ VBMs due

to the similar chemistry of the VB edge at L and W (both dominated by Y -d orbitals). That is, the

energy of the W-pocket relative to that of the Γ-pocket can be increased by reducing the difference

in group number (or electronegativity) between the X- and Y -sites, which then concurrently raises

energy of the L-pocket relative to the Γ-pocket. However, because the W-point has a stronger

dependence on Y -d–Z-p bonding than the L-point does, it is necessary to tune the electronegativity

difference between the Y and Z sites to converge the L- and W- pockets. Increasing the energy

of the Z-p orbitals relative to that of the Y -d orbitals would increase the energy of the W VBM

relative to that of the L VBM. In practice, this can be achieved via substitutions on the Y - and/or

Z-sites that reduce the electronegativity difference between Y and Z. We note that it may also be
3This same trend is reported in a larger sample size in Ref. 208.
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Figure 6.17: Plot of EV BM (Γ) − EV BM (L) versus E(X3) − E(X2) (calculated from DFT-PBE) for sixteen
different half-Heusler compounds. Four different quadrants are defined according to the EV BM (Γ)−EV BM (L)
= 0 and E(X3) − E(X2) = 0. EV BM (Γ) − EV BM (L) generally decreases with E(X3) − E(X2). The blue
region is comprised of compounds where the X-d orbitals dominate the higher energy VB (Γ) and the higher
energy CB (X2), and the red region is comprised of compounds where the Y -d orbitals dominate the higher
energy VB (L) and the higher energy CB (X3). Materials with W-pockets at or near (within 100 meV of)
the VB edge are denoted with green triangles.
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important to consider how the hopping parameter, V , may change upon substitutions.

6.6 Computational Methods

The first-principles DFT calculations were performed using the Vienna ab initio Simulation Package

(VASP) and employing projector augmented wave (PAW) pseudopotentials and the PBE exchange-

correlation functional. [48–51,87,88]. Spin-orbit coupling effects were not included in the electronic

structure calculations. A plane-wave cutoff energy of 500 eV was used for each calculation. The

structural degrees of freedom were relaxed using a Γ-centered [89] k-point mesh of size 11×11×11,

until the forces on the atoms was less than 0.01 eV/nm. The electronic structure calculations were

performed using a Γ-centered k-point mesh of size 15 × 15 × 15. The k-vector resolved COHP

calculations were performed using the version 4.0.0 of the LOBSTER software. [52–54,150,209]

6.7 Conclusions

Band engineering to achieve high valley degeneracy is a promising method for achieving high ther-

moelectric performance in both n-type and p-type half-Heusler thermoelectrics. Though there are

dozens of hH thermoelectric candidates, they can be classified into three categories based on the

location of the VBM (L, Γ, and W) and two categories based on the nature of the X-point CBM

(X2 or X3). Consequently, there are routes to improve the performance of both the n- and p-type

compounds by increasing NV . For the p-type materials, this can be accomplished by engineering

materials with low symmetry VBMs (W or L) and/or by converging multiple VB pockets. Likewise,

the CB degeneracy, and hence, n-type performance, can be enhanced by converging the competing

X-d-dominated and Y -d-dominated CBs at the X-point.

In prior studies, high-throughput DFT studies have shown that the competing VBMs (at L and

Γ) and competing CBMs can be converged by simply adjusting the chemistry of the X- and Y -

sites. The key to understanding the origin of these chemical trends is observing that the Γ15 VB



174

edge and the X2 CB consists of mostly X-d character, while the L3 VB edge and X3 CB have mostly

Y -d orbital character. Therefore, substitutions on the X- and Y -sites that decrease the (average)

difference in group number between X and Y increase the energy of the L VBM relative to the Γ

VBM and increase the energy of the X3 CB relative to the X2 CB, giving the basis for potential

alloying strategies. While previous bonding descriptions have failed to explain the origin of these

trends, in this work, we use avoided crossings and molecular orbital pictures informed by group

theory and COHP calculations to explain the origin, orbital character, and relative energy of these

transport edges, using ZrNiSn and NbFeSb as example cases.

Finally, we investigate the origin of the W-point VB edge and describe techniques to move this

high degeneracy pocket higher in energy toward the VB edge. The W-point VBM can be described

as a Y -d–Z-p anti-bonding state, and in general, increasing the energy contribution of Z-p orbitals

in the VB edge increases the energy of the W-point VBM relative to that of the L-point VBM.

Moreover, the strategy for converging the W- and Γ-pockets is the same as that for converging the

L- and Γ- pockets. Not only do these findings explain why hH compounds with Y -site elements from

group IX and Z-site elements from group IV exhibit W-pocket VBs, but it also suggests another

alloying strategy that can further enhance VB convergence: tuning the relative electronegativity of

the Y - and Z- sites or tuning the strength of the Y -d–Z-p interaction.

Broadly speaking, the work presented in this Chapter shows that recognizing various types of

avoided crossings is crucial to understanding and engineering complex electronic structures for a

variety of semiconductor-based applications. Future work in this area should focus on validating

these alloying strategies via experimental data and first-principles calculations of disordered alloy

systems containing aliovalent and isovalent substitutions.
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Importance of Mg-Sb Interactions in Achieving High Con-

duction Band Degeneracy in Mg3Sb2

This chapter is largely reproduced with permission from M. K. Brod, S. Anand, and G. J. Snyder.

Materials Today Physics, 31, 100959 (2023) [113]. Copyright 2022 by Elsevier Ldt.

7.1 Introduction

Recently, Mg3Sb2 has gained significant attention as a highly promising new n-type thermoelec-

tric material for low- and moderate-temperature applications, competitive with state-of-the-art

Bi2Te3 [210–213]. Zintl-phase Mg3Sb2 is a low-cost, non-toxic thermoelectric material comprised of

Earth-abundant materials [210,212,214,215]. It crystallizes in the layered CaAl2Si2-type structure

(space group: #164; P 3̄m1) (see Figure 7.1), and it contains two unique types of Mg-sites, Mg(1)

and Mg(2), distinguished by their coordination environment [213,216]. Mg(1) is octahedrally coor-

dinated by Sb atoms, while the Mg(2) is tetrahedrally coordinated by Sb atoms (Figure 7.1b,c) [217].

The competitive n-type performance of Mg3Sb2-based thermoelectrics is largely attributed to its

relatively high conduction band (CB) degeneracy and low lattice thermal conductivity, κL. The

high valley degeneracy is due to the conduction band minimum (CBM) being located at a low-

symmetry point (U∗) inside the ΓALM plane of the BZ (see Table A.3 in Appendix A), which

exhibits six-fold degeneracy (NV = 6) [205, 212, 218]. The relatively low lattice thermal conduc-

tivity in Mg3(Bi,Sb)2 is the result of high anharmonicity caused by weak interlayer bonding and
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Figure 7.1: (a) Crystal structure of Mg3Sb2. The blue and turquoise atoms represent Mg and the orange
atoms represent Sb. (b) The Mg(1) site (dark blue) is octahedrally coordinated by Sb, while (c) Mg(2)
(turquoise) is tetrahedrally coordinated by Sb.

asymmetric anion lone-pair electrons [219,220].

By contrast, p-type Mg3Sb2 exhibits poorer thermoelectric performance than its n-type coun-

terpart because the valence band maximum (VBM) is located at the high-symmetry Γ-point, giving

it lower valley degeneracy (NV = 1) [210, 212, 215, 221–223]. The VB edge is dominated by Sb-p

states (with Sb-s states deeper into the VB) [206,218,224,225], so the high-symmetry Γ-point VBM

in Mg3Sb2 is the result of Sb-p–Sb-p interactions, which are most anti-bonding at Γ and become

less anti-bonding (or more bonding) away from Γ. In fact, this Γ-point VBM is quite typical in

semiconductors that have VB states that are dominated by p-orbital-like states [62, 66]. Because

the anion-p rather than cation-states dominate the behavior of the VBs in CaAl2Si2-type Zintl com-

pounds, the Γ-point VBM is consistently present in this class of layered compounds, regardless of

the CBM location [206,218]. However, the chemistry of the CBM, which is the focus of the present

work, is less straightforward.
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It is known that alloying Mg3Sb2 with Mg3Bi2 can enhance n-type transport by increasing

the electron mobility (lowering m∗
I) [32, 131, 210, 211, 226]. The change in electron mobility upon

Bi substitution can be attributed to an increase curvature around the electron transport edge at

U∗ [32, 131]. Increasing the Bi content also decreases the band gap energy, which reduces the

optimal thermoelectric operating temperature [32, 227]. On the other hand, substituting Sb with

As increases the band gap energy but is detrimental to the electron mobility [23,225].

In order to better understand the low-symmetry CBM and the effects of alloying on electronic

transport, it is helpful to look at the chemical origins of the U∗ CBM. The states near the CB edge

exhibit mostly Mg-s character (with Mg-p contributions higher in the CB) [205,210,224,225,228,229].

Thus, the behavior of the CB edge should be largely influenced by the Mg-s orbitals and their

interactions with neighboring orbitals. In prior works, the high-degeneracy U∗ CBM has been

attributed to Mg(1)-s–Mg(2)-s bonding interactions in the CB [205, 224]. However, as discussed

later in this chapter, trends in the electronic structures of Mg3X2 (X = Bi, Sb, As) cannot entirely

be explained through Mg(1)-s–Mg(2)-s interactions alone (though these interactions may explain

carrier pocket anisotropy).

Here, we aim to elucidate the chemical origins of the low-symmetry U∗ CBM by considering

Mg–Sb interactions. We show that the Mg-s–Sb-p interactions play a critical role in the presence

of the low-symmetry CBM and are consistent with observed trends in the CB structure upon

anion-site substitutions. We show that the states surrounding the CB edge have Mg-s–Sb-p anti-

bonding character that reaches a minimum near U∗ (Figure 7.2). Increasing the strength of this

interaction increase the curvature around the CB edge, which should lead to an increase in electron

mobility. Prior studies overlooked the importance of the Mg-s–Sb-p interactions because the orbital

and bonding contributions from Sb-p at the U∗–point are minimal [205, 224] (Figure 7.2). That

being said, the importance of Mg-s–Sb-p anti-bonding is evident through trends in the electronic

structures (e.g., the increase in mobility when Sb is replaced with Bi), in the k-dependent orbital

contributions, and k-resolved crystal orbital Hamilton population (COHP) calculations [52,53,230].
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Figure 7.2: Illustration of how Mg-s–Sb-p anti-bonding interactions yield the low-symmetry CBM at U∗ in
Mg3Sb2. In this sketch, the relative size of the Sb-p orbitals qualitatively represents the relative contribution
of the Sb-p orbitals relative to the Mg-s orbitals and corresponds to the strength of the Mg-s–Sb-p anti-
bonding interactions. Mg-s–Sb-p anti-bonding interactions are weaker near U∗ and becomes stronger away
from U∗, leading to a minimum (or local minimum) at U∗.

Cation substitutions also influence n-type transport behavior. For instance, when Mg(1) is

replaced with a more electropositive species (Ca, Yb, Sr, Ba, etc.) the CB Fermi surface becomes

more anisotropic, while substitution with a more electronegative species (Be) decreases anisotropy

[205]. Higher Fermi surface anisotropy may be beneficial to thermoelectric performance, though it

could also have the detrimental effect of reducing carrier mobility [34,46,224,231]. In this chapter,

we explain how these changes in the CB edge upon cation substitution are due to changes or

disruptions in cation-s–anion-p interactions.

7.2 Background: Orbital Chemistry Framework

Here, we describe a chemical framework based on the tight-binding (TB) model that can be used to

interpret density functional theory (DFT) results and understand how different orbital interactions

influence the location of the CBM, the electron mobility, and the band gap energy in Mg3X2 (X =Bi,

Sb, As). In this section, we use TB band structures of toy models for crystalline semiconductors

to explain (1) how to determine the orbital interactions responsible for a given VBM or CBM and
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(2) how the shape of band edge can be modified using chemical manipulations. Details on the TB

model can be found Chapter 2.

7.2.1 Two-Orbital, Two-Band Model

As an example, consider a toy model of a binary FCC rock salt compound, MX, where only

nearest-neighbor M -s–X-s interactions are relevant. The energies of the M -s and X-s orbital

before interacting, the on-site energies, are given by EM−s and EX−s. The interaction strength

between the two s-orbitals is given by the magnitude of the hopping integral which is a function

of k for a periodic crystal. For this system, the interaction strength reaches a maximum at the Γ-

point and a minimum at the L-point. Along the Γ-L path, the interaction is given by the expression,

VMX(l) = 6Vssσ cos (πl/2), where l varies from 0 at Γ to 1 at L. The k-dependent cos (πl/2) term is

derived using the methods in Ref. 65, and Vssσ is a constant that describes the interaction strength

between two s-orbitals that are in their most bonding state (i.e., two completely in-phase s-orbitals).

Analogous constants of the form Vll′m exist for different types of orbital interactions (see Chapter

2 for more detail).

As discussed in Chapter 2, the electronic structure for this toy system, shown in Figure 7.3a,

can be calculated using Equation 2.24, and the band energies depend on both a local and non-local

term. The local term is related to the on-site energies of the orbitals weighted by their contributions,

and the non-local term is determined by the strength of the interactions between the orbitals. The

orbital character/contribution of a given orbital to a given band is given by |cnα|2, where α labels the

orbital and n is the band index (see Equation 2.29). These values are shown in Figure 7.3b-c for the

toy model. The |cnα|2 values describe the k-resolved, band-resolved partial density of states (pDOS)

for atomic orbital α. The non-local term is described by the crystal orbital Hamilton population

(COHP) [52], where positive COHP values indicate anti-bonding character, while negative COHP

values indicate bonding character. Here, we consider k-resolved COHP values [230], which describe

the interaction strength at a specific k-point in a specific band. The magnitude of the COHP values
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Figure 7.3: Electronic bands, orbital compositions, and crystal orbital Hamilton population (COHP) values
for a two-orbital tight-binding (TB) model serve as guides to interpret orbital contributions and COHP
values calculated from DFT. (a) TB band structure where the color of the bands represents the relative
contributions from the M -s (blue) and X-s (red) orbitals. (b) TB orbital contributions of M -s (blue)
and X-s orbital (red) to the lower band. (c) Orbital contributions in the upper band. (d) The non-local
term (COHP) reaches a maximum in magnitude at Γ and is zero at L. These plots are based on a TB
model of an FCC rock salt structure comprising M -s and X-s orbitals with an hopping parameter given by
VMX(l) = 6Vssσ cos (πl/2), where l = 0 at Γ and l = 1 at L and Vssσ = −1/2. The on-site energies are
defined such that (EM−s + EX−s)/2 = 0 and EM−s − EX−s = 1.

corresponds to (but is not necessarily equal to) the magnitude of VMX(k) and reaches a maximum

at Γ and a minimum at L (Figure 7.3d).

The k-resolved orbital contributions (pDOS) and COHP values from the toy model described

here (Figure 7.3) can be used as an initial reference for interpreting the chemical origins of a CBM

(or VBM) from first-principles DFT calculations. In this simple two-band model, the higher-energy

band would correspond to the CB edge near U∗ in Mg3Sb2. Therefore, in order to show that the Mg-

s–Sb-p anti-bonding interactions are responsible for the U∗ CBM within this two-band framework,

we must show that the Mg-s contribution reaches a local maximum, and the Sb-p contribution

reaches a local minimum at U∗. Moreover, we must show that the Mg-s–Sb-p COHP values are

positive (anti-bonding) and reach a local minimum around U∗.
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Figure 7.4: The two-band tight-binding (TB) electronic band structure for a toy FCC crystal consisting
of M -s and X-s orbitals shows that both increasing the s-orbital interaction strength and decreasing the
energy difference between orbitals decrease the effective mass of the carriers. (a) Bands calculated with
A = 1

2 (EM,s−EX,s) = 3.0 eV and Vssσ = -0.5 eV (magenta), -1.25 eV (green), and -2.0 eV (blue). (b) Bands
calculated with Vssσ = −2.0 eV and A =1.0 eV (magenta), 5.5 eV (green), and 10.0 eV (blue).

7.2.2 Tuning Band Edge Curvature

After identifying the orbital interactions responsible for the CBM or VBM in a material, the TB

model can also be used to identify strategies to tune the shape of the band edge and optimize

transport properties (e.g., decrease the inertial effective mass). Here, we focus specifically on how

the band curvature and carrier mobility can be increased by tuning atomic orbital energies and

orbital overlap (interaction) strengths.

Consider the same MX toy model described in the previous section. We define a parameter A,

given by A = 1
2(EM−s −EX−s), to describe the energy separation between the two atomic orbitals.

Band structures for this toy model are calculated with various values for Vssσ (constant A) and

various values of A (constant Vssσ), as seen in Figure 7.4. The band width and curvature increases

with increasing s–s interaction strength, described by Vssσ, and with decreasing A, resulting in a

lower m∗
I [66].

The results of this simple example can be generalized to explain some chemical trends in more
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complex electronic structures. When describing bands that result largely from an interaction be-

tween two orbitals, increasing the (k-independent) strength of the orbital interaction (i.e., the

magnitude of Vssσ, Vspσ, Vppσ, Vppπ, etc.) and decreasing A increase the curvature around the band

edge and reduce the band effective mass. Thus, if the goal is to increase band curvature (and carrier

mobility) it is beneficial to reduce the energy difference between the interacting orbitals through

substitutions/alloying and increase the magnitude of the k-independent portion of hopping parame-

ter, V . Note that reducing the on-site energy difference can also decrease the band gap energy which

may be detrimental to thermoelectric performance by inducing bipolar effects if not optimized for

temperature.

7.3 First-Principles DFT Calculations

7.3.1 Conduction Band Location and Curvature

To evaluate the relative importance of the various bonding interactions in the CB structure of

Mg3Sb2, we study the shape of the U∗ band in the three Mg3X2 (X = As, Sb, Bi) compounds

in the P 3̄m1 space group using first-principles DFT calculations with the Perdew-Burke-Ernzerhof

(PBE) functional. [51]. We focus on the CB structure in the ΓALM plane because it captures the

critical points for understanding n-type transport (Figure 7.5). The 2D band energy heat maps

in the ΓALM plane for the three compounds are shown in Figure 7.5a-c. In all three compounds,

there is a CB minimum in the ΓALM plane a six-fold degenerate U∗ point, where the exact location

of U∗ varies slightly based on the compound and composition (coordinates given in Appendix E).

In Mg3As2 and Mg3Bi2, the additional CB pocket at Γ emerges, implying a potential increase

NV when Mg3Sb2 is alloyed with these compounds from the convergence between the U∗ and Γ

bands [23,205,227].

Additionally, we plot the CBs along the LM, L∗M∗ and A∗U paths (see Figure 7.5d) and estimate

the inertial effective masses [18,56] along the latter two directions to better visualize the curvature of
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Figure 7.5: 2D heat maps of the of the conduction bands (CBs) in the ΓALM plane for an energy window
of 0 eV to 0.4 eV above the CBM for (a) Mg3Bi2, (b) Mg3Sb2, and (c) Mg3As2. (d) Diagram of the first BZ
for the hexagonal Bravais lattice with special points in the ΓALM plane labeled.
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the CB edge around U∗ (see Figure 7.6). We include the band structures of Mg3SbBi and Mg3AsSb

to better understand the potential effects of alloying. That is, these compounds represent cases

where we have 50% alloying on the anion-site. Recall that the exact coordinates of L∗, M∗, A∗ and

U vary slightly with composition, and the length along each of the three paths shown follows the

trend Mg3As2 > Mg3AsSb > Mg3Sb2 >Mg3SbBi > Mg3Bi2.1 The CB effective mass along each of

the two specified directions was calculated using the expression in Equation 7.1, [67] where the term,

∂2E
∂k2

, was determined numerically by fitting a parabolic function around the U∗ point (see Table

E.1 in Appendix E). The effective mass along each of the two directions is greatest for Mg3As2 and

smallest for Mg3Bi2, showing that the curvature of the CB edge around U∗ in Mg3X2 increases as

X moves down the Pnictogen group from As to Sb to Bi. This increase in curvature coincides with

an increase in the Γ →U∗ band gap energy. Moreover, the curvatures for Mg3SbBi and Mg3AsSb

are intermediate between those of the end-member cases, validating that we can approximate the

properties of alloy systems as interpolations of their end-member compounds. Note that the PBE-

GGA functional significantly underestimates the band gap energy (the band gap energy of Mg3Sb2

is ∼0.6 eV [210, 227]) but is acceptable for simply comparing the shape of the CB edge [211], and

the higher CB edge curvature in Mg3Bi2 is consistent with previous reports that find that alloying

Mg3Sb2 with Mg3Bi2 lowers the (inertial) effective mass of the CB edge [32,212,227]. Additionally,

the band curvatures for Mg3SbBi and Mg3AsSb falls between that of their end-member compounds.

m∗ = ℏ2
(
∂2E

∂k2

)−1

(7.1)

Because carrier pocket anisotropy may be beneficial to thermoelectric performance [34], it is

worth noting that the chemistry of the anion-site can change the level of carrier pocket anisotropy

in the CB Fermi surface. If the Fermi energy is close enough to the band edge that only parabolic
1Note that this trend in BZ path-lengths actually favors higher curvature in Mg3Bi2 and lower curvature in

Mg3As2 when all other parameters (A- and V -type parameters from the TB framework) are held constant. Therefore,
in order to ensure that the composition/chemistry of the compounds, and not the path lengths, are responsible for
the curvature, the curvature was calculated assuming constant path lengths across compounds, and the same trends
in curvature were found, indicating that the chemistry and not the unit cell size alone is responsible for the curvature
trends.
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Figure 7.6: DFT-calculated conduction bands along the LM, L∗M∗ and A∗U paths for (a) Mg3Bi2, (b)
Mg3Sb2, (c) Mg3As2, (d) Mg3SbBi, and (e) Mg3AsSb. The inertial effective masses (calculated from band
curvature) for the L∗M∗ and A∗U directions are given. The lowest CB is marked with a thicker line width.
The horizontal dashed line represents the energy of the VBM at Γ.
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effects are relevant (i.e., the Fermi surface is approximately ellipsoidal), then the level of anisotropy

could be compared via the ratios of the intertial effective masses along the ΓA (m∗
L∗M∗) to those

along ΓM (m∗
A∗U ) directions. Based on the intertial effective masses, Mg3As2 would be the most

isotropic and Mg3Bi2 would be the most anisotropic [131]. However, it is not sufficient to assume

that the bands always behave parabolically. In AeMg2X2-based compounds that possess the U∗

CB pocket, anisotropy from non-parabolic effects arises when the M and U∗ bands align, causing

the U∗ pocket to stretch toward M in a non-parabolic manner [205,223]. As seen in Figure 7.5, the

Fermi surface in Mg3As2 stretches toward M more so than Mg3Sb2, while in Mg3Bi2 it stretches less

toward M, suggesting that alloying on the Sb-site with As may be more beneficial for promoting

carrier pocket anisotropy, while substituting with Bi may be detrimental. More detailed transport

calculations should be conducted to better understand the trade-off between anisotropy and inertial

effective mass.

These trends in the curvature and effective mass near the U∗ band edge are not consistent

with the hypothesis claiming that the Mg(1)–Mg(2) interactions are mainly responsible for the

U∗ CBM. In general, we expect the interaction strength between two orbitals to decrease as the

interatomic spacing between the atoms increases and as the difference in the on-site energies of the

atomic orbitals increases [6, 63, 64, 226]. Because the Mg(1)-Mg(2) interatomic spacing increases

as we move down the Pnictogen group from As to Bi [23, 213, 223, 225], we expect the strength of

the Mg(1)-s–Mg(2)-s interactions to be weakest in Mg3Bi2 and strongest in Mg3Sb2. Therefore, if

the Mg(1)–Mg(2) interactions were the primary source of the U∗ CBM, then the dispersion would

be greatest (m∗
I lowest) in Mg3As2 and smallest (m∗

I highest) in Mg3Bi2. However, the opposite

trend is observed, motivating the study of additional interactions as possible sources of the low-

symmetry CBM. In a previous study, it was shown that as the Mg(1)–Mg(2) distance increases and

interaction strength decreases with increasing Bi content, the band curvature and carrier mobility

increase [226]. It was also shown that increasing the Mg(1)–Mg(2) distance through strain (without

substitution Sb with Bi) slightly increases carrier mobility but that adding Bi significantly enhances

this effect [226]. This study not only suggests that Mg(1)–Mg(2) interactions are not consistent
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with trends in the CB curvature, but it also suggests that the anion-orbitals play an important role

in the shape of the U∗ CB pocket.

The Mg–Sb interactions may explain the trends in curvature and mobility, and we expect the

CB to contain Mg–Sb anti-bonding states because the Mg states that dominate the CB edge are

higher in energy than the Sb orbitals. Based on the atomic orbital on-site energies, we expect the

Mg–X interactions to be strongest in Mg3Bi2 and weakest in Mg3As2 because the energy of the

X-site orbitals increases relative to those of the Mg atoms as we move down the Pnictogen group

from As to Bi [63, 226]. Therefore, we investigate the Mg-s–X-p interactions as a potential source

of the low-symmetry U∗ CBM using k-resolved pDOS and COHP calculations.

7.3.2 Orbital Character and COHP Values

We examine components of both the local and non-local contributions to the energy eigenvalues (see

Equation 2.37 and Figure 7.3) around the U∗ CBM to study the importance of the Mg–Mg versus

Mg–Sb interactions. Computationally, the contribution of different orbitals to the local term can be

determined by the relative orbital contributions (Figures 7.7-7.8), and the non-local, or interaction,

term can be calculated via COHP (Figure 7.9) [52–54,150,205].

The normalized relative orbital contributions (pDOS) along the LM, L∗M∗ and A∗U paths (see

Figure 7.7) are consistent with Mg-s–X-p anti-bonding interactions leading to the U∗ CBM. Note

that the sharp minimum and maximum in Figures 7.7b and c, respectively, along A∗U are due

to a band crossing that occurs at that point and are not bonding features. The greatest orbital

contribution to the U∗ band comes from the Mg-s orbitals with more contribution from Mg(1) than

Mg(2), and the total Mg contribution reaches a maximum near U∗ (Figure 7.7a-b). Additionally, the

X-p contribution reaches a minimum near U∗ (Figure 7.7c). These orbital characters are consistent

with the orbital characters of the toy model depicted in Figure 7.3c, where the red curve corresponds

to X-p and the blue curve corresponds to Mg(1)-s. Moreover, the relative contribution of the X-

p orbitals is greatest in Mg3Bi2 and smallest in Mg3As2, which is corresponds to the Mg-s–X-p
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interactions being strongest in Mg3Bi2.

In light of Figure 7.3, which is based on a two-band (two orbital) model, we also look at the ratios

between the Mg(1)-s and X-p contributions and between the Mg(1)-s and Mg(2)-s contributions

as a proxies for the bond strength around the CB edge (Figure 7.8). Based on the two-band TB

model, as the bond strength between two orbitals increases, the ratio of the orbitals to the total

contribution of those two orbitals approaches 1/2, and as the interaction becomes weaker, the ratio

of the dominating orbital to the total approaches one (Figure 7.3b-c). Given this framework and

the orbital ratios depicted in Figure 7.8, the strength of the Mg(1)-s–X-p anti-bonding interaction

is weakest around U∗, and the overall strength of this interaction is greatest in Mg3Bi2 and weakest

in Mg3As2. Furthermore, the orbital ratios suggest that the strength of the Mg(1)-s–Mg(2)-s

interaction generally increases from L to M and from L∗ to M∗ while reaching a smaller peak near

U∗.

Moreover, we employ k-resolved, band-resolved (values for the lowest CB) projected COHP

(pCOHP) calculations in order to verify the nature of the orbital interactions (Figure 7.9). Here,

we focus mainly on the interactions involving the Mg(1)-s orbitals, as they provide the greatest

contribution to the CB edge character (Figure 7.7a). Again, the sharp peaks along the A∗U path

(closer to A∗) are due to a band crossing and are not bonding features. The Mg(1)-s–Mg(2)-s

interactions in the lowest CB are bonding (COHP < 0), while the Mg(1)-s–Sb-p interactions are

anti-bonding (COHP > 0). While there are small peaks in the strength of the Mg(1)-s–Mg(2)-s

interactions of Mg3Sb2 and Mg3Bi2 near U∗ along the L∗M∗ path, this peak is not seen in Mg3As2.

The Mg(1)-Mg(2) interaction generally increases in strength from L∗ to M∗ and from L to M, and

there is not a clear peak near U along the LM path for any of the compounds. The general increase

in the strength of the Mg(1)-s–Mg(2)-s bonding interaction from L/L∗ to M/M∗ (which is partially

counteracted by a general increase in Mg(1)-s–Sb-p anti-bonding strength) may also explain why

the anisotropy from the CB carrier pocket stretching (non-parabolically) toward M is largest in

Mg3As2 and smallest in Mg3Bi2. The Mg(1)-s–Mg(2)-s interaction, which is strongest in Mg3As2
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Figure 7.7: Normalized values of DFT orbital contributions, or projected density of states (pDOS), to the
lowest conduction band (CB) of the (a) octahedrally coordinated Mg(1)-s, (b) tetrahedrally coordinated
Mg(2)-s, (c) and X-p orbitals for the three Mg3X2 (X = Bi, Sb, As) compounds. The green dashed vertical
lines represent the location of the CB energy minimums for Mg3Sb2 along each path. Red, green, and blue
curves correspond to Mg3Bi2, Mg3Sb2, and Mg3As2, respectively.
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Figure 7.8: (a)-(c) Ratios of the Mg(1)-s andX-p orbital contributions, or projected density of states (pDOS),
in the lowest conduction band (CB) to the sum of the Mg(1)-s and X-p contributions in the lowest CB for
Mg3Bi2, Mg3Sb2, and Mg3As2. (d)-(f) Ratios of the Mg(1)-s and Mg(2)-s orbital contributions to the sum
of the Mg(1)-s and Mg(2)-s contributions for Mg3Bi2, Mg3Sb2, and Mg3As2.
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Figure 7.9: k-resolved, band-resolved crystal orbital Hamilton population (COHP) values for the lowest
conduction band (CB) corresponding to the (a) Mg(1)-s–Mg(2)-s and (b) Mg(1)-s–X-p interactions in Mg3X2

(X = Bi, Sb, As). Red, green, and blue lines correspond to Mg3Bi2, Mg3Sb2, and Mg3As2, respectively.
The green dashed vertical lines represent the location of the minimums of the CB edge along each path for
Mg3Sb2.

and weakest in Mg3Bi2 (due to the interatomic distances), pushes the energy of the M-point CB

pocket down, which promotes band alignment between the U∗ and M bands, and hence, anisotropy.

In contrast to the Mg(1)-s–Mg(2)-s interactions, the shape of the Mg(1)-s–X-p COHP coincides

well with the shape of the CB near the U∗ for all three compounds along all three k-paths shown.

The COHP values indicate that there is a local minimum in anti-bonding strength near U∗, which

results in the CB energy increasing away from the U∗-point and a minimum at U∗. While the higher

values the Mg-s orbital character and Mg(1)-s–Mg(2)-s COHP strength and lower values of the Sb-p

orbital character and Mg-s–Sb-p COHP are signatures of Mg-s–Sb-p interactions contributing to the

U∗ CBM, they are also the reason that these interactions have been overlooked in the past [205,224].

Thus, in general, when trying to understand the chemical origins of a band extrema at a specific

point, it is often important to examine how the orbital character and interactions vary around that

point and not only examine that specific point.

Similar results are observed when we replace Mg(1) with Be [113]. In the three BeMg2X2 (X =

Bi, Sb, As) compounds, there is an analogous minimum in the ΓALM plane at a low-symmetry U∗

point. The lowest CB is dominated by Be-s and Mg-s orbitals, with a greater contribution from the

Be-s orbitals. The DFT and COHP calculations are consistent Be-s–X-p interactions (analogous
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Table 7.1: Tight-binding (TB) hopping parameters for a toy compound based on Mg3Sb2. .

Parameter Bond Type Number Value (eV)
of Neighbors

Mg(1)-s-Sb-p σ 6 1.4
Mg(2)-s–Sb-p (short) σ 3 2.0
Mg(2)-s–Sb-p (long) σ 1 1.8

Mg(1)-s–Sb-s σ 6 -0.8
Mg(2)-s–Sb-s (short) σ 3 -1.3
Mg(2)-s–Sb-s (long) σ 1 -1.0

X-p–Sb-p σ 3 1.0
X-p–Sb-p π 3 -0.1

EMg−s − ESb−p N/A N/A 3.0
EMg−s − ESb−s N/A N/A 10.0

to the Mg(1)-s–X-p interactions) being largely responsible for the low-symmetry CBM.

7.4 Tight-Binding Conduction Band Structure

Using a simple TB model based on the Mg3X2 structure, we can show that Mg-s–X-p interactions

are sufficient to explain the local minimum at U∗, and we can qualitatively reproduce the trends in

band curvature seen in Mg3X2 compounds. The TB model used here describes a toy compound that

is based on the Mg3X2 structure, where the TB parameters (Table 7.1) are approximated based on

the parameters outlined in Ref. 63 (then adjusted to achieve a more realistic CB shape). The TB

results presented here are intended for the sake of qualitatively understanding the shape of the CB

edge and chemical trends in its behavior and are not meant to reproduce the full band structure of

Mg3Sb2.

The 2D energy heat map for the CB edge in the ΓALM plane (calculated using a TB model with

only Mg-s–X-p, X-p–X-p, and Mg-s–X-s interactions) can be seen in Figure 7.10a. This TB model

predicts a CBM at U∗. The corresponding Mg-s–Sb-p COHP values for the lowest CB in the ΓALM

plane, calculated using Equation 2.38, are given in Figure 7.10b. Based on these TB COHP values,

the Mg-s–X-p interactions are anti-bonding and reach a local minimum near U∗. If only Mg-s–X-p
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Figure 7.10: Tight-binding (TB) conduction band (CB) structure and (projected) crystal orbital Hamilton
population (COHP) values between Mg(1)-s and Sb-p. (a) 2D CB energy heat map (energy variations over
a range of 0.0-3.0 eV above the CBM are shown) and (b) TB Mg(1)-s–X-p COHP values of the lowest CB in
the ΓALM plane (positive COHP values indicate anti-bonding interactions), calculated using a Mg3X2-based
TB model that considers only Mg-s–X-p, X-p–X-p, and Mg-s–X-s interactions. (c) 2D CB energy heat map
and (d) Mg(1)-s–X-p pCOHP heat map calculated using only Mg-s–X-p interactions.

interactions are considered, there is still a local CBM at U∗—corresponding to a local minimum

in Mg-s–X-p anti-bonding character—but the minimum along LM is at the L-point (rather than

U), and there is a large CB pocket that emerges along the ΓA line (7.10c-d). Despite the fact that

the model with only s-p interactions reproduces the CB edge less accurately, it shows that these

interactions are crucial in obtaining the U∗ minimum, as this general feature is maintained when

only these interactions are present.

Using this TB model, we can also reproduce the trend in band curvature observed when X

changes from As to Bi in Mg3X2. This change is modeled by simply changing the energy difference

between the Mg-s orbitals and the X-p orbitals in our toy TB model based on Mg3X2. As mentioned

before, the difference between these on-site energies is greatest in Mg3As2 and smallest in Mg3Bi2
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Figure 7.11: Tight-binding (TB) electronic band structure of the lowest-energy conduction band (CB) in a
toy compound based on Mg3X2 upon varying the difference on on-site energies between the Mg-s and X-p
orbitals (2A). The effective mass describing the CB edge increases (curvature decreases) as the on-site energy
difference increases from 3 eV to 5 eV, which qualitatively reflects how the value of A = 1

2 (EMg−s − EX−p)
increases from Bi to As when moving up the Pnictogen group.

[63]. As seen in Figure 7.11, as the on-site energy difference increases from 3.0 eV (the value used

to produce Figure 7.10) to 5.0 eV, the dispersion and curvature of the bands near the U∗ CBM

decreases, resulting in increasing values of effective mass along each of the two directions shown.

Note that for this thought experiment, we keep the TB hopping parameters constant, but in reality

these values would change with chemistry.

7.5 Influence of Cation on Conduction Band Behavior

Because the CBM edge in the Mg3X2 compounds is comprised of mainly Mg-s orbitals, cation

substitutions can greatly influence the behavior of the U∗ CB pocket, and changes to the CB

structure with respect to cation substitutions can be explained by considering disruptions to the

Mg-s–Sb-p anti-bonding interaction. In AeMg2Sb2 compounds (Ae = Be, Mg, Ca, Sr, Ba, Yb)

where the Ae site is fully occupied by a more electropositive species (Ca, Sr, Ba, Yb), the CBM is

located at the M-point (NV = 3) rather than at the U∗ point. [205,218,228,232] Sun et al. find that

the Fermi surface pockets of Mg3Sb2 alloyed with Ca, Yb, Sr, and Ba on the Mg(1)-site exhibits

greater anisotropy, while the electron Fermi surface of Mg3Sb2 alloyed with Be is less anisotropic.
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As mentioned earlier, the anisotropy of the electron Fermi surface is due to the carrier pocket

stretching (non-parabolically) toward the M-point [205, 223]. Thus, assuming that the electronic

structure of a solid-solution mixture can be approximated via an interpolation of the electronic

structures of its end-members, [32,33,42,182,206,207] this trend in anisotropy is expected based on

the M-point CBMs in AeMg2Sb2 (Ae = Ca, Sr, Ba, Yb). That is, we can imagine the interpolation

between a CB with a minimum at U∗ and a minimum at M as a band that stretches between U∗

and M, and the more of the M-CBM compound present, the more that the CB pocket will stretch

toward M, and vice-versa. Moreover, Wood et al. show experimentally that substituting Yb on the

Mg(1) site is detrimental to thermoelectric performance because it decreases the electron weighted

mobility [224]. Similarly, Imasato et al. report that La-doping on the cation site also decreases the

electron mobility [231].

Substitutions on the Mg(1)-site modify the orbital character of the band edge which alters

the Mg(1)-s–Sb-p interactions that contribute to the U∗ CBM. To better understand the influence

of these substitutions, we study the CB behavior and corresponding orbital contributions of the

end-member compounds for two representative cases: BeMg2Sb2 and CaMg2Sb2 (see Figure 7.12).

Because BeMg2Sb2 exhibits the U∗ CB pocket and CaMg2Sb2 does not (it has an M-point CBM)

(Figure 7.12a-b) [205,218], the interactions near the CB edge in BeMg2Sb2 should be more similar

to those in Mg3Sb2 than the interactions near the CB edge of CaMg2Sb2. The level of similarity (or

dissimilarity) between band structures is reflected in the orbital composition of the lowest CB near

the band edge. The lowest CB in BeMg2Sb2 is dominated by Be-s and Mg-s orbitals, with a greater

contribution from the Be-s orbitals (see Figure 7.12c). There is also a substantial contribution from

the Sb-p orbitals, which reaches a minimum near U∗. On the other hand, as seen in Figure 7.12d,

the lowest CB in CaMg2Sb2 is dominated by states more closely resembling Ca-d with some Mg-s

character and very little Ca-s and Sb-p character. Similar Ae-d dominated orbital character is seen

in the lowest CB of SrMg2Sb2 and BaMg2Sb2, which have the same M-point CBM [113]. Clearly,

the orbital character of the CB edge in BeMg2Sb2, dominated by Ae-s and Sb-p character, is more

similar to that in Mg3Sb2 than CaMg2Sb2 is. Cation-site substitutions that remove the s-orbitals
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Figure 7.12: 2D energy heat maps of the lowest conduction band (CB) in (a) BeMg2Sb2 and (b) CaMg2Sb2

in the ΓALM plane showing an energy window of 0 eV to 0.4 eV above the conduction band minimum. (c)
Energy (top) and orbital contributions (bottom) of the U∗ band from the Be-s, Mg-s, and Sb-p orbitals
in BeMg2Sb2. (d) Energy (top) and orbital contributions (bottom) of the lowest CB from the Ca-s, Mg-s,
Ca-d, and Sb-p orbitals in CaMg2Sb2. In the top panels of (c) and (d), the dashed horizontal lines denote
the Fermi energy.

near the CB edge disrupt the cation-s–anion-p interactions, and therefore, stretch the CB Fermi

surface toward M. On the other hand, cation-site substitutions that retain the Ae-s character are less

disruptive and (as in BeMg2Sb2) may disfavor the stretching of the carrier pocket toward M [205].

The lower anisotropy upon Be-alloying may be due to a lower energy separation between the Be-s

states and Sb-p states than between the Mg-s and Sb-p states, leading to stronger anti-bonding

near M/M∗, which disfavors U∗–M band alignment.

7.6 Computational Methods

The first-principles DFT calculations were performed with the Vienna ab initio Simulation Package

(VASP) and employing projector augmented wave (PAW) pseudopotentials and the PBE functional

derived from a gradient-generalized approximation (GGA). [48–51, 87, 88] without including spin-
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orbit coupling effects. All calculations were performed using a plane-wave energy cutoff of 500

eV. The structural degrees of freedom were relaxed until the forces on the atoms were less than

0.01 eV/nm using a Γ-centered k-point mesh [89] with KPPRA∼ 4000 (KPPRA = K-Point Per

Reciprocal Atom). The electronic structure calculations were performed using a Γ-centered k-point

with KPPRA∼ 8000. The k-resolved pDOS values (Figure 7.7) were normalized such that at each

k-point, in each band, the sum of all the atomic-orbital contributions (from VASP) are equal to one.

The k-vector resolved COHP calculations were performed using the version 4.0.0 of the LOBSTER

software, using the pbeVASPFit2015 basis set [52–54,150,230].

7.7 Conclusion

The excellent n-type performance of Mg3Sb2 is due to the fact that the CBM is located at the

low-symmetry U∗ point in the BZ, which has a high valley degeneracy of NV = 6 and relatively

light m∗
I . In this chapter, we explore the chemical origins of the low-symmetry CBM in light of

changes to the CB edge structure upon substitutions on the anion (and cation) site. While previous

studies attribute the U∗ CBM to bonding interactions between the Mg(1) and Mg(2) orbitals, these

interactions cannot fully explain the increase in mobility when Mg3Sb2 is alloyed with Bi on the

Sb-site.

We show that that Mg-s–Sb-p anti-bonding interactions are consistent with the U∗ CBM and

can explain mobility trends with respect to alloying on the Sb-site (with Bi or As). Based on

DFT and COHP calculations, there is Mg-s–Sb-p anti-bonding character near the CB edge, which

reaches a minimum in strength at U∗. Increasing the strength of this interaction (e.g., substituting

Sb with Bi) leads to an increase in band curvature around the CBM. Additionally, a TB model

based on Mg3Sb2 qualitatively reproduces the U∗ CBM and highlights the importance of the Mg-s–

Sb-p interactions. Furthermore, substitutions on the octahedrally coordinated Mg(1) site alter the

behavior of the CB edge due to changes or disruptions to the Mg-s–Sb-p anti-bonding interactions.

When Mg(1) is replaced by Be, the Ae-s–Sb-p (Ae = Be, Mg) interactions are still present near
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the CB edge, so the U∗ CBM is maintained. On the other hand, when Mg(1) is replaced with

more electropositive, isovalent species, such as Ca, Ba, or Sr, Ae-s states near the U∗ CB edge are

replaced with states more closely resembling Ae-d orbitals, so the CBM moves toward the M-point.
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Conclusion and Future Perspectives

Because the transport properties of thermoelectric materials depend greatly on their electronic band

dispersions, band engineering in k-space has proven highly effective in optimizing thermoelectric

performance across a wide range of thermoelectric materials. Specifically, it is considered beneficial

to have thermoelectric materials with complex Fermi surfaces, characterized by high valley degen-

eracy and carrier-pocket anisotropy. In this thesis, we investigated the orbital chemistry of and

chemical trends in the complex electronic structures of a variety of thermoelectric semiconductors

in order to better understand and predict band engineering strategies. A number of methods were

employed to elucidate the chemistry of electronic structures, such as tight-binding (TB), density

functional theory (DFT), crystal orbital Hamilton populations (COHP), and group theory.

We first explored the orbital chemistry of the valence bands in IV-VI semiconductors, like rock-

salt PbTe. We developed a TB framework—including numerical, analytical, and visual descriptions—

to understand important features in the valence bands of PbTe and applied this framework to explain

the origins of high valley degeneracy and band convergence in PbTe. The TB model shows that the

strength of cation-s–anion-p interactions are the primary determinants of Fermi surface complexity,

with anion-p–anion-p interactions being of secondary importance, as the valence band maxima are

primarily cation-s–anion-p anti-bonding states with mostly anion-p character. The anion-p–cation-p

interactions are not particularly important in predicting trends in convergence—the valence band

edges are non-bonding or nearly non-bonding with respect to these interactions—but they are im-

portant in explaining the locations of the different valence band pockets. Furthermore, we showed

using TB that higher convergence in PbTe (and IV-VI rock salt semiconductors in generally) may
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lead to changes to the Fermi surface complexity beyond a nominal increase in valley degeneracy.

It may also lead to more fundamental changes to the nature of the Fermi surface, specifically the

dimensionality of transport.

We then extended this IV-VI semiconductor framework to understand the chemical origins of

changes in the valence band structure of GeTe upon the cubic to rhombohedral transformation,

marked by a reduction in the primitive-cell interaxial angle and the offset of the Ge-atom from

the center of the Te-octahedron. As GeTe transforms from its cubic to rhombohedral phase, the

VBM goes from being located at the L-point (with the Σ band slightly lower) to being along the

Σ-line. DFT calculations over a range of interaxial angles and offsets show that Fermi surface

complexity is greatest when GeTe is in its cubic phase or slightly distorted. Also, using DFT, it

is shown that the Ge-offset is primarily responsible for the Σ VBM in the rhombohedral phase,

though the interaxial angle influences the relative energies of other valence band pockets. Using

TB and COHP calculations, it is shown that changes with respect to the interaxial angle can be

explained through changes to the s-p anti-bonding character at the various VBMs, while changes

with respect to Ge-offset are largely due to the emergence of cation-p–anion-p bonding character

(in tandem with a reduction in cation-s–anion-p anti-bonding character) in the valence band edges

when inversion symmetry is broken.

Next, we investigated the chemistry of both the conduction and valence band edges in transition-

metal-based half-Heusler thermoelectrics. There are three possible locations where the VBM can

be located and two competing (potential) CBMs at the same k-point, providing possible routes to

enhance band convergence and achieve higher valley degeneracy for both n-type and p-type ver-

sions of these compounds. While the chemical trends dictating band convergence in half-Heuslers

were fairly well-understood, the origins of these trends were not as well-understood because there

is significant variation in the orbital character along the band edges. The discontinuity in orbital

character renders simple molecular-orbital-like diagrams (representing only the Γ-point) insufficient

for fully understanding the chemical make-up of the band edges. We explained the chemical ori-
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gins of the band edges using k-dependent bonding diagrams and showed that recognizing avoided

crossings across the band gap are crucial for understanding the k-dependent chemical contributions

of the band edges. We employed band-resolved, k-resolved COHP calculations in conjunction with

group-theory and TB analysis to explain these avoided crossings and their implications for alloying

strategies.

Finally, we explored the chemical origins of high conduction band degeneracy in Zintl-phase

Mg3Sb2. Mg3(Sb, Bi)2 alloys are very high-performing mid-low temperature thermoelectrics due to

the CBM being located at a low-symmetry, six-fold degenerate point in the Brillouin zone. While

prior studies have suggested that Mg-s–Mg-s interactions are responsible for the low-symmetry

CBM, we showed that this explanation cannot fully explain trends in electron mobility with respect

to alloying. We proposed an alternative explanation that focuses on the importance of the cation-

s–anion-p interactions. We show using DFT, COHP, and TB that these interactions can, in fact,

explain the existence of the highly-degenerate CBM, in addition to explaining mobility trends with

respect to alloying.

There are numerous possible topics for future investigation related to this dissertation. While

this thesis focused primarily on Fermi surface complexity and high valley degeneracy, the orbital-

chemistry approach to understanding electronic dispersions can be applied to a variety of different

band structure features and associated properties, such as band gap energy, band inversion, carrier

mobility, and deformation potential (see Equation 2.16) [68]. Additionally, applying codes that

numerically (rather than analytically) predict transport properties, such as BoltzTrap2 [151] or

AMSET [152], to TB band structures could provide new and unique types of insight into how

different orbital interactions influence transport properties. Finally, predictions of how alloying will

influence the band structure Fermi surface for all the material families discussed in this thesis can

be explored using super-cell DFT calculations (e.g., special quasi-random structures).
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Brillouin Zone Special Points

Here, special points in the first Brillouin zones (BZs) of face-centered cubic (FCC), rhombohedral,
and hexagonal Bravais lattices are given in terms of the primitive lattice basis vectors. The con-
ventions for the labels BZ labels follow those described in Ref. 137.1 When using these points to
calculate Bloch phase factors of the form, eik·r, the k-points must first be multiplied by a factor of
2π.

In general, the real-space lattice vectors are given by a, b, and c, and the reciprocal-space lattice
vectors are denoted by a∗, b∗, and c∗.

A.1 Face-Centered Cubic

Given that the FCC lattice constant is given by a, the conventional lattice vectors for the FCC
lattice are given by:

• a = (a, 0, 0)

• b = (0, a, 0)

• c = (0, 0, a).

The primitive lattice vectors for the FCC lattice are given by:

• a = (0, a/2, a/2)

• b = (a/2, 0, a/2)

• c = (a/2, a/2, 0).

1See Ref. 137 for labeled Brillouin zone diagrams.
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Table A.1: Special points in the face-centered cubic Bravais lattice first Brillouin zone in reciprocal lattice
coordinates.

Label ×a∗ ×b∗ ×c∗

Γ 0 0 0
K 3/8 3/8 3/4
L 1/2 1/2 1/2
U 5/8 1/4 5/8
W 1/2 1/4 3/4
X 1/2 0 1/2

A.2 Rhombohedral

Given that the lattice constants for the rhombohedral lattice are given by a and γ, where γ is the
primitive-cell interaxial angle (see Chapter 5), the lattice vectors are as follows:

• a = (a cos (γ/2),−a sin (γ/2), 0)

• b = (a cos (γ/2), a sin (γ/2), 0)

• c = (a cos (γ)/ cos (γ/2), 0, a
√
1− cos2 (γ)/ cos2 (γ/2).

Table A.2: Special points in the first Brillouin zone of the rhombohedral Bravais lattice in reciprocal lattice
coordinates, where η = (1 + 4 cos γ)/(2 + 4 cos γ), and ν = 3/4− η/2.

Label ×a∗ ×b∗ ×c∗

Γ 0 0 0
B η 1/2 1 - η
B1 1/2 1 - η η − 1

F 1/2 1/2 0
L 1/2 0 0
P η ν ν

X ν 0 −ν
Z 1/2 1/2 1/2

A.3 Hexagonal

The lattice vectors for the hexagonal lattice are given as follows:

• a = (a/2,−a
√
3/2, 0)
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• b = (a/2, a
√
3/2, 0)

• c = (0, 0, c).

Table A.3: Special points in the hexagonal Bravais lattice first Brillouin zone in reciprocal lattice coordinates.

Label ×a∗ ×b∗ ×c∗

Γ 0 0 0
A 0 0 1/2
H 1/3 1/3 1/2
K 1/3 1/3 0
L 1/2 0 1/2
M 1/2 0 0
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PbTe Hamiltonian

This appendix is largely reproduced with permission from M. K. Brod and G. J. Snyder. Journal
of Materials Chemistry A, 9, 12119-12139 (2021) [47]. Copyright 2021 by the Royal Society of
Chemistry.

The analytical tight-binding solutions for rock salt PbTe without spin-orbit coupling were de-
termined by solving for the eigenvalues of the Hamiltonian given in Equation B.1, using the Slater-
Koster matrix elements [65]. The Hamiltonian, Ĥ, is an Hermitian matrix, so Hij = H̄ji, where
H̄ji is the complex-conjugate of Hji. The 8-dimensional TB basis is Pb-6s, Pb-6px, Pb-6py, Pb-6pz,
Te-5s, Te-5px, Te-5py, Te-5pz. This Hamiltonian can be generalized for any IV-VI rock salt com-
pound, where Pb represents the anion and Te represents the cation. The k-point must be in their
Cartesian form to use the following equations.

Ĥ =


H11 H12 · · · H18

H21 H22 · · · H28
...

...
. . .

...
H81 H82 · · · H88

 (B.1)

We do not provide the expressions for every Hamiltonian element, but representative examples
of Hamiltonian elements are given below in Equations B.2-B.9. Eb−a represents the on-site energy
terms, where a denotes the orbital (s or p) and b denotes the element (Pb or Te). The overlap
parameters of the form, Vαβm, where α and β represent the two orbitals (s or p) and m represents
the type of bonding (σ or π). When there is an element label in the subscript, the overlap parameter
represents the interaction between the next-nearest neighbors for that element (Pb or Te). When
there is no element referenced in the subscript, then the parameter represents a nearest neighbor
interaction between Pb and Te. However, Vspσ1 and Vspσ2 are used here to distinguish between the
two different nearest neighbor s–p interactions. Vspσ1 denotes the interaction between the Pb-s and
Te-p orbitals, and Vspσ2 denotes the interaction parameter between the Te-s and Pb-p orbitals.

H11 = EPb−s + 2Vssσ,Pb[cos (kxa/2 + ky/2) + cos (kxa/2− kya/2)+

cos (kya/2 + kza/2) + cos (kya/2− kza/2)+

cos (kxa/2 + kza/2) + cos (kxa/2− kza/2)] (B.2)
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H12 = − 2i√
2
Vspσ,Pb[sin (kxa/2 + kya/2) + sin (kxa/2− kya/2)+

sin (kxa/2 + kza/2) + sin (kxa/2− kza/2)] (B.3)

H23 = (Vppσ,Pb − Vppπ,Pb)[cos (kxa/2 + kya/2)− cos (kxa/2− kya/2)] (B.4)

H15 = 2Vssσ[cos (kxa/2) + cos (kya/2) + cos (kza/2)] (B.5)

H16 = −2iVspσ1 sin (kxa/2) (B.6)

H25 = −2iVspσ2 sin (kxa/2) (B.7)

H26 = 2Vppσ cos (kxa/2) + 2Vppπ[cos (kya/2) + cos (kza/2)] (B.8)

H77 = ETe−p + (Vppσ,Te + Vppπ,Te)[cos (kxa/2 + kya/2) + cos (kxa/2− kya/2)+

cos (kya/2 + kza/2) + cos (kya/2− kza/2)]+

2Vppπ,Te[cos (kxa/2 + kza/2) + cos (kxa/2− kza/2)] (B.9)
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1D-, 2D-, and 3D-Like Transport in IV-VI Rock Salt Semi-
conductors

This appendix is largely reproduced with permission from M. K. Brod and G. J. Snyder. Journal
of Materials Chemistry A, 9, 12119-12139 (2021) [47]. Copyright 2021 by the Royal Society of
Chemistry.

Here, we consider a transport model developed using the Boltzmann transport equation (BTE)
[56, 58, 67, 128, 233–236] to model thermoelectric transport IV-VI semiconductors—like PbTe— to
understand how it changes as the valence bands become more highly converged. The spherical 3D
Fermi surface pockets have a degeneracy of 4, and the Fermi-surface cylinders for the 2D case have
a degeneracy of 12 , radius |k|, and length l2D = 2π/a, where a is the lattice parameter. For a
cylinder oriented along the z-axis, k2 = k2x + k2y, with analogous expressions for all three directions.
In PbTe, the 1D Fermi surface can be described as sheets with thickness 2|k|, a square cross-section
characterized by a side length of l1D = 2

√
2π/a, and degeneracy of 6. For a sheet aligned in the

x-y plane, |k| = |kz|, with analogues in all three directions.

C.1 Density of States

The expressions for the DOS in each type of Fermi surface (distinguished by the dimensionality of
transport), gmD(ε) (m = 1, 2, 3), where ε = E/kBT , and E is the energy below the VBM, are given
in Equations C.1-C.3. These DOS expressions account for all 4 spheres, 12 cylinders, and 6 sheets.

g1D(ε) =
12(2m∗

b)
1/2

a2πℏ
(kBT )

−1/2ε−1/2 (C.1)

g2D(ε) =
12m∗

b

aπℏ2
(C.2)

g3D(ε) =
2(2m∗

b)
3/2

π2ℏ3
(kBT )

1/2ε1/2 (C.3)

The above expressions for the DOS can be used to give the hole concentrations per unit cell in
each dimension, as given in Equations 4.11-4.13.
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C.2 Electrical Conductivity

In general, the electrical conductivity is given in Equation C.4 [45,58,67]

σ(T ) =

ˆ
e2

3
τ(E)v2(E)g(E)

(
− df

dE

)
dE, (C.4)

where v(E) is the carrier velocity at a given energy and can be broken down into its directional
tensor components. For instance, the x-component of the velocity, can be found by taking the
partial derivative of energy with respect kx.

vx =
1

ℏ
∂E

∂kx
=

ℏkx
m∗2 (C.5)

In the 1D topology case v2x(E) = 2E/m∗
I , in 2D v2x(E) = E/m∗

I , and in 3D v2x(E) = 2E/3m∗
I ,

where vx(E) is the velocity component along the x-direction. For a cubic material, vx = vy = vz.
The expression for v(E) is the same regardless of the type of geometry because for the 1D case,
v2(E) = v2x(E), in 2D v2(E) = 2v2x(E), and in 3D v2(E) = 3v2x(E), yielding v2(E) = 2E/m∗

I for all
three geometries [58].

In this model, we assume a DOS dependent scattering rate which would come from an energy-
independent matrix element in Fermi’s golden rule as used in analytic theories of deformation
potential or acoustic phonon scattering [58]. The DOS dependence gives an energy-dependent
scattering time, τ , given by τ = τ0ε

r, where r depends on the assumptions made in the scattering-
time model used. τ0 is a constant that is given by τ0 =

µ0m∗
I

e , where m∗
I is the intertial effective

mass [18]. For the constant scattering time approximation (τ independent of energy), the scattering
exponent is given as r = 0. If we assume acoustic-phonon scattering, the value of r is −1/2, 0, or 1/2
for the 3D, 2D, and 1D cases, respectively. The value of r for acoustic-phonon scattering is chosen
such that the energy dependence of τ is inversely related to the energy dependence of g (τ ∝ 1/g).
If a constant scattering time approximation is used, r = 0 for all Fermi surface geometries.

The term e2

3 τ(E)v2(E)g(E) in Equation C.4 can be combined to the single term σE(E), which is
the electrical conductivity transport function [58]. That is, we can write the electrical conductivity
as σ =

´
σE(E)

(
− df

dE

)
dE. Furthermore, σE(E) can be written in terms of a transport coefficient,

σE0 , through the expression, σE(E) = σE0ε
s, where s = 1/2 + r, 1 + r, or 3/2 + r for the 1D, 2D,

and 3D cases, respectively, and the form of σE0 varies with the dimensionality of the band, as seen
in the following set of equations.

σE0,1D =
8e (2mekBT )

1/2

a2πℏ
µ0

(
m∗

b

me

)1/2

(C.6)

σE0,2D =
8emekBT

πaℏ2
µ0

(
m∗

b

me

)
(C.7)
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σE0,3D =
4e (2mekBT )

3/2

3π2ℏ3
µ0

(
m∗

b

me

)3/2

(C.8)

Because we assume NV = 4 for the 3D pockets at L in PbTe, we can rewrite equation C.8 in
terms of m∗

DOS , where m∗
DOS = m∗

b4
2/3.

σE0,3D =
e (2mekBT )

3/2

3π2ℏ3
µ0

(
m∗

DOS

me

)3/2

(C.9)

In Equation C.9, the term, µ0
(
m∗

DOS
me

)3/2
, is the weighted mobility, µw, for the 3D effective mass

model. [18, 58,128] Therefore, we can rewrite σE0,3D in terms of µw.

σE0,3D =
e (2mekBT )

3/2

3π2ℏ3
µw (C.10)

It is instructive to rewrite Equations C.6-C.8 in terms of the hole concentration (see Equations
4.11-4.13 in Chapter 4). The reduced Fermi level (EF ), or reduced chemical potential (µ), is given
by η = EF /kBT .

σE0,1D =
2

3

p1Deµ0
F− 1

2
(η)

(C.11)

σE0,2D =
2

3

p2Deµ0
F0(η)

(C.12)

σE0,3D =
2

3

p3Deµ0
F 1

2
(η)

(C.13)

Using Equation C.4 along with Equations C.11-C.13, the electrical conductivity for each case
can be expressed as follows.

σ1D =
2p1Deµ0

3

(
r +

1

2

) Fr− 1
2
(η)

F− 1
2
(η)

(C.14)

σ2D =
2p2Deµ0

3
(r + 1)

Fr(η)

F0(η)
(C.15)

σ3D =
2p3Deµ0

3

(
r +

3

2

) Fr+ 1
2
(η)

F 1
2
(η)

(C.16)

If we use the acoustic-phonon approximation for scattering time, these equations can be simpli-
fied, as shown below.
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σ1D =
2p1Deµ0

3

F0(η)

F− 1
2
(η)

(C.17)

σ2D =
2p2Deµ0

3
(C.18)

σ3D =
2p3Deµ0

3

F0(η)

F 1
2
(η)

(C.19)

Using the constant scattering time approximation (r = 0), it is evident from the conductivity
expressions that, only 1/3 of the charge carriers contribute to the electrical conductivity for the
1D-like bands, 2/3 contribute to the conductivity in the 2D-like bands, and all of the charge carriers
contribute to the conductivity in the 3D-like bands. That is, we can write the electrical conductivity
for these three cases as σ1D = (1/3)p1Deµ0, σ2D = (2/3)p2Deµ0, and σ3D = p3Deµ0.

C.3 Seebeck Coefficient

The general expression for the Seebeck coefficient, α, is expressed in Equation C.20.

α(T ) =

(
kB
e

) ´ σ(ε)(− df
dε

)
(ε− η)dε

´
σ(ε)

(
− df

dε

)
dε

(C.20)

This expression can be reduced to Equations C.21-C.23 for the 1D-3D bands.

α1D =

(
kB
e

)[(r + 3
2

)
Fr+ 1

2
(η)(

r + 1
2

)
Fr− 1

2
(η)

− η

]
(C.21)

α2D =

(
kB
e

)[
(r + 2)Fr+1(η)

(r + 1)Fr(η)
− η

]
(C.22)

α3D =

(
kB
e

)[(r + 5
2

)
Fr+ 3

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)

− η

]
(C.23)

When the acoustic-phonon scattering approximation is used, these expressions reduce to that
found in in Equation 4.8 for all three dimensionalities.
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C.4 Lorenz number

The electronic component of the lattice thermal conductivity can be expressed as κe = LσT , where
L is the Lorenz number, given in by L = κ0

σT − α2. The expression for κ0 is given in Equation
C.24. [235,237]

κ0(T ) = T

(
kB
e

)2 ˆ
(ε− η)2σ(ε)

(
−df
dε

)
dε (C.24)

Therefore, the Lorentz factor can be written in the forms shown in Equation C.25-C.27.

L1D =

(
kB
e

)2
(
r + 5

2

) (
r + 1

2

)
Fr+ 3

2
(η)Fr− 1

2
(η)−

(
r + 3

2

)2
F 2
r+ 1

2

(η)(
r + 1

2

)2
F 2
r− 1

2

(η)
(C.25)

L2D =

(
kB
e

)2 (r + 3) (r + 1)Fr+2(η)Fr(η)− (r + 2)2 F 2
r+1(η)

(r + 1)2 F 2
r (η)

(C.26)

L3D =

(
kB
e

)2
(
r + 7

2

) (
r + 3

2

)
Fr+ 5

2
(η)Fr+ 1

2
(η)−

(
r + 5

2

)2
F 2
r+ 3

2

(η)(
r + 3

2

)2
F 2
r+ 1

2

(η)
(C.27)

If we use the acoustic-phonon scattering approximation, all three of the above expressions reduce
to the equation for L given in Equation 4.9.

C.5 Quality Factor and Figure of Merit

In general, the zT for this effective-mass model in all three cases can be calculated using Equations
C.28-C.30.

zT1D(η,B) =
α2(η)

(kB/e)2

(r+1/2)B1DF
r− 1

2
(η) + L(η)

(C.28)

zT2D(η,B) =
α2(η)

(kB/e)2

(r+1)B2DFr(η)
+ L(η)

(C.29)

zT3D(η,B) =
α2(η)

(kB/e)2

(r+3/2)B3DF
r+1

2
(η) + L(η)

(C.30)
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The quality factor, B, is defined in terms of σE0 in Equation C.31 [18, 58]. For each topology,
the quality factory is calculated from the corresponding σE0 .

B =

(
kB
e

)2 σE0T

κL
(C.31)

For the acoustic-phonon scattering assumption used in here and in Chapter 4, the expressions
for zT as a function of η are identical for the 1D-, 2D-, and 3D-type bands, and given in Equation
4.10.
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Additional Half-Heusler Data and Analysis

D.1 Group Theory Analysis in Half-Heusler Compounds

The content in this section is reproduced with permission from the Supporting Information in M.
K. Brod, S. Anand, and G. J. Snyder. Advanced Electronic Materials, 8(4), 2101367 (2022) [153].
Copyright 2022 by Wiley-VCH GmbH.

D.1.1 Introduction: Group Theory Description of Crystal Orbitals

Group theory is a powerful tool for understanding the orbital interactions responsible for the elec-
tronic structure of half-Heusler (hH) compounds. In this section, we use the methods outlined in
Refs. 4 and 5 to analyze and characterize the hH electronic structure using group theory. Zhou et
al. have also described the hH electronic structure using similar group theory approaches in order
to understand bonding at the L-, X- and Γ-points [68]. By classifying orbitals at various k-points
or along high-symmetry lines in the Brillouin zone (BZ) by their symmetry representations, we can
determine which orbital interactions are allowed or forbidden by symmetry and which bands may
undergo avoided crossings with each other. When determining the symmetry representations of
atomic orbitals in a crystal, it is necessary to determine both the symmetry representation of the
atomic orbitals themselves and the representation of the sub-lattice sites they occupy. Thus, in
general, we can express the total representation (Γtot) of an atomic orbital on a certain crystallo-
graphic site as the direct product of the representation of the single atomic orbitals (Γorb) and of
the atomic site (Γa.s.): Γtot = Γorb ⊗ Γa.s [4, 5]. In order to determine the symmetry representation
of atomic orbitals, it is useful to represent them as polynomials that exhibit the same symmetry
transformation properties. These equivalencies for s, p, and d orbitals are given as follows:

• s→ x2 + y2 + z2

• px → x; py → y; pz → z

• dxy → xy; dxz → xz; dyz → yz

• dx2−y2 → x2 − y2; dz2 → 2z2 − x2 − y2
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Here, we look at the symmetry representations at the Γ-point, X-point, and L-point and along
the ∆ and Λ symmetry lines. The point group symmetries of the Γ-point, X-point, and L-point
in the half-Heusler structure (space group #216) are Td (4̄3m), D2d (4̄2m), and C3v (3m), re-
spectively. The point group symmetries of the ∆ and Λ symmetry lines are C2v (mm2) and C3v,
respectively. [68] The character tables for these point groups are given in Tables D.1-D.5 [4,5]. The
first column contains the labels for the irreducible representations with the corresponding band
label(s) in parentheses. The naming convention for the irreducible representations is such that A
and B represent the one-dimensional representations, E corresponds to a two-dimensional represen-
tations, and T denotes three-dimensional representations. The dimensionality of the representation
corresponds to the degeneracy of the molecular orbitals or bands belonging to that representation.
The A1 representation is always the identity representation, so the direct product of the A1 repre-
sentation with another representation, Γ, yields Γ. Note that we use Γ to denote a generic symmetry
representation (not to be confused with the zone center k−point, which is also denoted as Γ).

The character tables are useful tools for categorizing different atomic orbitals and bands by their
symmetry representation in different parts of the BZ. The first row contains the symmetry classes
and number of symmetry elements contained in the class, and the last two columns contain the
linear and quadratic polynomial basis functions for each irreducible representation [4, 68]. These
basis functions correspond to the atomic orbitals that belong to that representation and are derived
assuming that the orbital is located at the origin of the point group. The entries in the table are
the characters, χ, of each symmetry class for each representation [4, 5].

Table D.1: Character table for the Td point group. [4, 5]

E 8C3 3C2 6S4 6σd Linear Quadratic
A1 (Γ1) 1 1 1 1 1 x2 + y2 + z2

A2 (Γ2) 1 1 1 -1 -1
E (Γ12) 2 -1 2 0 0 x2 − y2, 2z2 − x2 − y2

T1 (Γ25) 3 0 -1 1 -1
T2 (Γ15) 3 0 -1 -1 1 x, y, z xy, xz, yz

Table D.2: Character table for the D2d point group. [4, 5]

E 2S4 C2(z) 2C ′
2 2σd Linear Quadratic

A1 (X1) 1 1 1 1 1 x2 + y2, z2

A2 (X4) 1 1 1 -1 -1
B1 (X2) 1 -1 1 1 -1 x2 − y2

B2 (X3) 1 -1 1 -1 1 z xy

E (X5) 2 0 -2 0 0 x, y xz, yz
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Table D.3: Character table for the C3v point group in the standard setting (axis of 3-fold rotation parallel
to the z-axis). [4, 5]

E 2C3(z) 3σv Linear Quadratic
A1 1 1 1 z x2 + y2, z2

A2 1 1 -1
E 2 -1 0 x, y x2 − y2, xy, xz, yz

Table D.4: Character table for the C2v point group in the standard setting (vertical mirrors in the xz and
yz planes). [4, 5]

E C2(z) σv(xz) σv(yz) Linear Quadratic
A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 xy

B1 1 -1 1 -1 x xz

B2 1 -1 -1 1 y yz

Because the group operations in standard setting of the C2v and C3v point groups do not
coincide with point group settings required to describe the ∆-line and Λ-line (including the L-point),
respectively, in the BZ for space group #216, we re-derive the basis functions for the character tables
of the C2v and C3v so that they are compatible with the symmetry of the X- and L-points of the
hH crystal structure (Tables D.5 and D.6). That is, for the ∆-line, k∆ = (0, 0, 2dπ/a), where d
varies from 0 at Γ to 1 at X, the mirrors should coincide with the (110) and (11̄0) (x+ y and x− y)
planes, and the axis of the 4-fold rotoreflection (or rotoinversion) should be parallel to the z-axis.
Furthermore, for the Λ-line, kΛ = (πl/a, πl/a, πl/a), where l varies from 0 at Γ to 1 at L, the 3-fold
rotation axis is parallel to the [111] direction and the mirrors coincide with the (11̄0), (101̄), and
(011̄) planes (they go through the cube edges). Note that when we use the appropriate setting
for the C2v point group, we must combine the B1 and B2 (∆3 and ∆4) representations into a 2D
representation, B1,2 (∆3,4), in order to represent the symmetry properties of the x, y, xz, and yz
basis functions.

Table D.5: Character table for the C2v point group describing the kX = (0, 0, 2π/a) point in the BZ for the
hH crystal structure.

E C2(z) σd(x+ y) σd(x− y) Linear Quadratic
A1 (∆1) 1 1 1 1 z x2 + y2, z2, xy
A2 (∆2) 1 1 -1 -1 x2 − y2

B1,2 (∆3,4) 2 -2 0 0 x, y xz, yz
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Table D.6: Character table for the C3v point group describing the kL = (π/a, π/a, π/a) point and kΛ =
(πl/a, πl/a, πl/a) line in the BZ for the hH crystal structure.

E 2C3(z) 3σv Linear Quadratic
A1 (L1, Λ1) 1 1 1 x+ y + z x2 + y2 + z2,

xy + xz + yz

A2 (L2, Λ2) 1 1 -1
E (L3, Λ3) 2 -1 0 2z − x− y, x− y 2z2 − x2 − y2, x2 − y2,

2xy − xz − yz, xz − yz

D.1.2 Finding Basis Functions using the Projection Operator

The linear and quadratic basis functions (given in the character tables), and hence, atomic orbitals
belonging to each representation can be determined using the projection operator, [4, 5] P̂n, where
n labels the irreducible representation. The projection operator for an irreducible representation, n,
is given by Equation D.1. In this expression, ln, is the dimension of the irreducible representation,
R is the symmetry operation, h is the number of symmetry elements in the point group (also known
as the order of the group), χn(R) is the character of the symmetry operation for the irreducible
representation, n, and R̂ is the symmetry operator. If we apply P̂n to some arbitrary vector or
trial function, it will either return zero or a vector/function (either the same as or different from
the trial function) that transforms like the irreducible representation denoted by n [4, 5]. The
resulting non-zero vector is a basis function of that irreducible representation. Moreover, any linear
combination of basis functions yields another valid function that transforms like that representation.
To determine the linear basis terms, we use the trial functions, x, y, and z, and to determine the
quadratic basis terms, we use the trial functions, xy, xz, yz, x2, y2, and z2. In order to aid in the
mathematical analysis, we can define three separate vector spaces with bases, {x, y, z}, {x2, y2, z2},
and {xy, xz, yz}, defined in Equations D.2–D.4. Additionally, we can make use of the fact that
P̂n |ϕ1 + ϕ2⟩ = P̂n |ϕ1⟩+ P̂n |ϕ2⟩, for arbitrary functions ϕ1 and ϕ2.

P̂n =
ln
h

∑
R

χn(R) ∗ R̂ (D.1)

|x⟩ =

10
0

 ; |y⟩ =

01
0

 ; |z⟩ =

00
1

 (D.2)

∣∣x2〉 =
10
0

 ;
∣∣y2〉 =

01
0

 ; |zz⟩ =

00
1

 (D.3)

|xy⟩ =

10
0

 ; |xz⟩ =

01
0

 ; |yz⟩ =

00
1

 (D.4)
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As an example, we look at the projection operator for the B2 representation of the D2d point
group. First, we apply the eight symmetry operations of the D2d point group to our trial functions.
The results of these transformations on the individual linear and quadratic trial functions are sum-
marized in Table D.7. Next, we multiply the result of each transformation by the character of its
respective group elements within the B2 representation of the D2d point group and take the sum
of all the resulting functions. The outcomes of this procedure are given in Table D.8. Note, that
we assume that the axis of rotation of the S4 operations is parallel to the z-axis. Additionally, the
C2(x) and C2(y) operations belong to the C ′

2 class referred to in the D2d character table (Table D.2).
For each of the different three X-points, the point group basis vectors must be rotated accordingly.
For example, for kX = (0, 2π/a, 0), the axis of rotation is parallel to the y-axis.

Table D.7: Transformations of linear and quadratic functions under D2d point group operations.

E S4(−π/2) S4(+π/2) C2(x) C2(y) C2(z) σd(x+ y) σd(x− y)

x x −y y x −x −x −y y

y y x −x −y y −y −x x

z z −z −z −z −z z z z

xy xy −xy −xy −xy −xy xy xy xy

xz xz yz −yz −xz xz −xz −yz yz

yz yz −xz xz yz −yz −yz −xz xz

x2 x2 y2 y2 x2 x2 x2 y2 y2

y2 y2 x2 x2 y2 y2 y2 x2 x2

z2 z2 z2 z2 z2 z2 z2 z2 z2

Table D.8: Transformations of linear and quadratic functions under D2d point group operations multiplied
by the characters of the group element within the B2 irreducible representation of the D2d point group with
the sum/h (h = 8) given in the last column.

E S4(−π/2) S4(+π/2) C2(x) C2(y) C2(z) σd(x+ y) σd(x− y) Sum/h
x x y −y −x x −x −y y 0
y y −x x y −y −y −x x 0
z z z z z z z z z z

xy xy xy xy xy xy xy xy xy xy

xz xz −yz yz xz −xz −xz −yz yz 0
yz yz xz −xz −yz yz −yz −xz xz 0
x2 x2 −y2 −y2 −x2 −x2 x2 y2 y2 0
y2 y2 −x2 −x2 −y2 −y2 y2 x2 x2 0
z2 z2 −z2 −z2 −z2 −z2 z2 z2 z2 0

Thus, it can be shown that the only linear term that is returned after applying the projection
operation to each of the linear trial functions is z and that the only quadratic term returned after
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applying the projection operation to each of the quadratic trial functions is xy. That is, P̂n |z⟩ = z,
and P̂n |xy⟩ = xy. Therefore, the linear and quadratic basis functions for the B2 irreducible
representation of the D2d point group are z and xy, respectively, and hence, the orbitals (at the
point group origin) belonging to this irreducible representation are the pz and dxy orbitals.

As another example, we repeat the same procedure for the B1 representation. The transfor-
mations multiplied by the corresponding characters of the B1 irreducible representation of the D2d

point group along with the sums for each trial function are given in Table D.9. The only non-
zero result of the projection operator on our nine trial functions are P̂n

∣∣x2〉 = 1
2(x

2 − y2) and
P̂n
∣∣y2〉 = 1

2(y
2 − x2). If we choose the trial function x2 − y2, we get P̂n

∣∣x2 − y2
〉
= x2 − y2.

Therefore, we have shown that x2−y2 is a basis function for the B1 representation of the D2d point
group and that the dx2−y2 orbital belongs to this representation. Additionally, because all of the
characters corresponding to the A1 representation are one, it is simple to show (sum over the rows
of Table D.7) that the basis functions for the A1 (X1) representation are x2 + y2 and z2. Linear
combinations of these basis functions include x2 + y2 + z2 and 2z2 − x2 − y2, showing that s and
dz2 belong to this representation (if centered at the origin of the point group).

Table D.9: Transformations of linear and quadratic trial functions under D2d point group operations multi-
plied by the characters of the group element within the B1 irreducible representation of the D2d point group
with the sum/h (h = 8) given in the last column.

E S4(−π/2) S4(+π/2) C2(x) C2(y) C2(z) σd(x+ y) σd(x− y) Sum/h
x x y −y x −x −x y −y 0
y y −x x y −y y x −x 0
z z z z −z −z z −z −z 0
xy xy xy xy −xy −xy xy −xy −xy 0
xz xz −yz yz −xz xz −xz yz −yz 0
yz yz xz −xz yz −yz −yz xz −xz 0
x2 x2 −y2 −y2 x2 x2 x2 −y2 −y2 1

2(x
2 − y2)

y2 y2 −x2 −x2 y2 y2 y2 −x2 −x2 1
2(y

2 − x2)

z2 z2 −z2 −z2 z2 z2 z2 −z2 −z2 0

An analogous procedure is used to determine the basis functions for the C3v point group, repre-
senting the symmetry of the Λ–line and L–point. Here, we use the point group operations describing
the little group along Λ = π

a (l, l, l) and at L = π
a (1, 1, 1). The results of each symmetry operation in

the C3v point group on the linear and quadratic trial functions are summarized in Table D.10. By
simply summing over the rows in Table D.10, it is straightforward to see that the basis functions
for the A1 (Λ1, L1) representation are x+ y+ z, x2 + y2 + z2, x+ y+ z, and xy+ xz+ yz, as given
in Table D.6.
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Table D.10: Transformations of linear and quadratic trial functions under C3v point group operations.

E C1
3 C2

3 σv(x) σv(y) σv(z)

x x y z x z y

y y z x z y x

z z x y y x z

xy xy yz xz xz yz xy

xz xz xy yz xy xz yz

yz yz xz xy yz xy xz

x2 x2 y2 z2 x2 z2 y2

y2 y2 z2 x2 z2 y2 x2

z2 z2 x2 y2 y2 x2 z2

Following the same procedure as before, the basis functions (orbitals) for the A2 (L2, Λ2) and E
(L3, Λ3) can be determined by multiplying the results of the group operators on each trial function
(Table D.10) by the corresponding characters (Table D.6), as described by Equation D.1. The results
of this procedure are summarized in Tables D.11 and D.12. Note than for the E representation,
ln = 2 in Equation D.1 because it is a 2D irreducible representation.

Table D.11: Transformations of linear and quadratic trial functions under C3v point group operations mul-
tiplied by the character of the group element within the A2 irreducible representation.

E C1
3 C2

3 σv(x) σv(y) σv(z) sum/h
x x y z −x −z −y 0
y y z x −z −y −x 0
z z x y −y −x −z 0
xy xy yz xz −xz −yz −xy 0
xz xz xy yz −xy −xz −yz 0
yz yz xz xy −yz −xy −xz 0
x2 x2 y2 z2 −x2 −z2 −y2 0
y2 y2 z2 x2 −z2 −y2 −x2 0
z2 z2 x2 y2 −y2 −x2 −z2 0
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Table D.12: Transformations of linear and quadratic trial functions under C3v point group operations mul-
tiplied by the character of the group element within the E irreducible representation.

E C1
3 C2

3 σv(x) σv(y) σv(z) 2×(sum/h)
x 2x −y −z 0 0 0 1

3(2x− y − z)

y 2y −z −x 0 0 0 1
3(2y − z − x)

z 2z −x −y 0 0 0 1
3(2z − x− y)

xy 2xy −yz −xz 0 0 0 1
3(2xy − xz − yz)

xz 2xz −xy −yz 0 0 0 1
3(2xz − xy − yz)

yz 2yz −xz −xy 0 0 0 1
3(2yz − xy − xz)

x2 2x2 −y2 −z2 0 0 0 1
3(2x

2 − y2 − z2)

y2 2y2 −z2 −x2 0 0 0 1
3(2y

2 − x2 − z2)

z2 2z2 −x2 −y2 0 0 0 1
3(2z

2 − x2 − y2)

Clearly, there are no valid linear or quadratic basis functions corresponding to s, p, or d orbitals
that belong to the A2 representation of the C3v point group, while there are multiple choices of basis
sets for the E representation. There is no unique choice for the linear and quadratic basis functions
of the E representation, so we only seek two linearly independent basis functions for each of the
three vector spaces (Equations D.2)–D.4). For example, looking at the {x, y, z} space, the results
of the operations performed in Table D.12 are v1 = 2 |x⟩ − |y⟩ − |z⟩, v2 = 2 |y⟩ − |x⟩ − |z⟩, and
v3 = 2 |z⟩−|x⟩−|y⟩. These three vectors are not linearly independent. For instance, v1+v2 = −v3.
If we take v3 to be one basis function, the second one can be found by simply adding 2v1 to v3,
which gives 3 |x⟩−3 |y⟩ ∼ |x⟩−|y⟩. Therefore, (2z−x−y, x−y) is a suitable linear basis set for the
E representation of the C3v point group along Λ and at L. By performing an analogous procedure
for the functions in the {x2, y2, z2} and {xy, xz, yz} spaces, it can be shown that (2xy − xz − yz,
xz − yz) and (2z2 − x2 − y2, x2 − y2) are suitable choices for the quadratic basis functions.

D.1.3 Sub-lattice Symmetry Representations

After the irreducible representations of the atomic orbitals centered at the point group origin are
determined, the representations of the unique sub-lattice sites, X (0, 0, 0), Y (1/4, 1/4, 1/4), and Z
(1/2, 1/2, 1/2), must also be derived to determine the full representation of each orbital occupying
each sublattice. [4,68] Consider an element at position, i, in the unit cell with coordinates ri. If we
apply an arbitrary point group operation, R̂, to ri, we obtain R̂ ·ri = rj,t, where rj,t = rj+t. The
index, j, denotes a sub-lattice site within initial unit cell, and the vector, t defines the translation
vector between the new position and rj . The character for a given lattice site for a point group
operation, R̂, is given by χi

k(R) = δR,ri,rjP
i
k, where δR,ri,rj = 1 if the group operation, R̂, maps the

coordinates of site i onto an equivalent lattice site in the same or neighboring unit cell (i.e. a site that
is an integer number of lattice translations away from the initial site) and δR,ri,ri = 0 otherwise. [4]
P i
k is the phase factor, defined as P i

k = eik·t. That is, for a given k-point, if i = j, the character of
the lattice is simply given by the phase factor corresponding to the translation (at the Γ-point, all
values of P i

Γ are equal to one). However, because each site in the hH compounds is occupied by a
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different element, we can take the simpler approach, as it can be shown that δR,ri,rj = 1 for every
point group operation R̂. Therefore, for the hH crystal structure, χi

k(R) = P i
k = eik·t.

We will illustrate this procedure by determining the representation of the Y -site at the X-point
in the BZ. Using the Cartesian basis for the direct and reciprocal lattice vectors, we define the
Y -site as rY = (a4 ,

a
4 ,

a
4 ) and the X-point with kX = (0, 0, 2π/a), where a is the lattice constant.

The lattice vectors for an fcc lattice given in a Cartesian basis are a1 = (a2 ,
a
2 , 0), a2 = (a2 , 0,

a
2 ),

and a3 = (0, a2 ,
a
2 ). Because the point group symmetry of the X-point is D2d, we apply each group

operation of this point group to rY and determine the corresponding translation vector, t and
translation phase factor, P Y

X . The results of this analysis are summarized in Table D.13. For this
example, we only give the result of a representative group element for each class.

Table D.13: Transformations of Y -site Cartesian coordinates for representative group elements of each class
in the D2d point group along with the corresponding translation vectors and phase factors.

E S4(−π/2) C2(x) C2(z) σd(x+ y)

rj,t (a4 ,
a
4 ,

a
4 ) (−a

4 ,
a
4 ,−

a
4 ) (a4 ,−

a
4 ,−

a
4 ) (−a

4 ,−
a
4 ,

a
4 ) (−a

4 ,−
a
4 ,

a
4 )

t (0, 0, 0) (−a
2 , 0,−

a
2 ) (0,−a

2 ,−
a
2 ) (−a

2 ,−
a
2 , 0) (−a

2 ,−
a
2 , 0)

kX · t 0 −π −π 0 0
P Y

X 1 -1 -1 1 1

Comparing the phase factor of each symmetry class to the character table for the D2d point
group (Table D.2), it is clear that the Y -site in the hH structure belongs to the B2 representation at
the X-point (also shown in Ref. 68). It can be shown that for the Γ-point (Td), L-point (C3v), ∆-line
(C2v) and Λ-line (C3v), all three sites (X, Y , and Z) all belong to the A1, or identity, representation.
Furthermore, the X- and Z-sites at the X-point also belong to the A1 representation. Therefore,
the Y -site at the X-point is the only sub-lattice/k-point combination (considered here) where the
atomic orbitals on that site do not belong to the symmetry representation of the atomic orbitals
themselves. In order to determine the symmetry representation of each orbital on the Y -site at the
X-point, we take the direct product of the atomic orbital representation and the site representation.
A simple way to determine the direct product of two representations is to simply take the product
of the characters. That is, the character of the total representation for an orbital on a lattice site,
corresponding to a point group element, R, is given by χtotal(R) = χorb(R)×χa.s.(R). For instance,
if we want to determine the representation of the dx2−y2 orbitals on the Y -site at X, we multiply
the characters of the B1 representation and the B2 representation, as shown in Table D.14.
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Table D.14: Multiplication of characters from the B1 and B2 representations of the D2d point group.

E 2S4 C2(z) 2C ′
2 2σd

B1 (X2) 1 -1 1 1 -1
B2 (X3) 1 -1 1 -1 1
B1 ⊗B2 1 1 1 -1 -1

Comparing the last row of Table D.14 to the rows of Table D.2, we can see that the direct
product of the B1 and B2 representations is the A2 representation. Repeating this analysis for the
remaining orbitals, we can determine remaining representations. The representations for all three
crystallographic sites at the X-point are given in Table D.14. These results are in agreement with
those given in Ref. 68

Table D.15: Symmetry representations of atomic orbitals at the X-Point (D2d).

Site s px py pz dxy dyz dxz dz2 dx2−y2

X A1 E E B2 B2 E E A1 B1

Y B2 E E A1 A1 E E B2 A2

Z A1 E E B2 B2 E E A1 B1

D.2 Electronic Structure Calculations

Contents of this section are reproduced with permission from the Supporting Information in M.
K. Brod, S. Anand, and G. J. Snyder. Advanced Electronic Materials, 8(4), 2101367 (2022) [153].
Copyright 2022 by Wiley-VCH GmbH.

The values given in Tables D.16-D.18, have been calculated using DFT+PBE without spin-orbit
coupling.
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Table D.16: Energy offset of the L and W VBMs, the difference in normalized Z-p orbital character between
the W and L points, and the Pauling electronegativity difference between the Y - and Z-species [3, 6].

Compound EV BM (L)− EV BM (W) Z-p Character Elec. Neg. Diff.
(eV) (W - L) (Z-Y )

NbCoSb 0.26 0.08 0.17
NbCoSn -0.02 0.13 0.08
NbFeSb 0.37 0.08 0.22
NbFeSn 0.07 0.13 0.13
NbRhSn -0.15 0.20 -0.32
ScNiBi 0.42 -0.04 0.11
ScNiSb 0.40 -0.03 0.14
TaCoSn 0.06 0.10 0.08
TaFeSb 0.36 0.07 0.22
TiCoSb 0.28 0.03 0.17
TiNiSn 0.29 0.05 0.05
VCoSn 0.03 0.10 0.08
VFeSb 0.24 0.06 0.22
YNiSb 0.26 0.01 0.14
ZrCoSb 0.28 0.06 0.17
ZrNiSn 0.08 0.07 0.05
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Table D.17: Energy offset of the W and Γ VBMs and the group number (GN) difference between the X and
Y sites.

Compound GN Diff. EV BM (Γ)− EV BM (W)
(Y −X) (eV)

NbCoSb 4 -0.25
NbCoSn 4 -0.34
NbFeSb 3 -0.51
NbFeSn 3 -0.50
NbRhSn 4 -0.20
ScNiBi 7 1.29
ScNiSb 7 1.25
TaCoSn 4 -0.16
TaFeSb 3 -0.42
TiCoSb 5 0.34
TiNiSn 6 0.72
VCoSn 4 -0.11
VFeSb 3 -0.27
YNiSb 7 1.01
ZrCoSb 5 0.12
ZrNiSn 6 0.51
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Table D.18: Group number (GN) and Pauling electronegativity difference between the Y and X species and
the energy offset of the Γ and L VBMs and of the X3 and X2 CBMs.

Compound GN Diff. Elec. Neg. Diff. EV BM (Γ)− EV BM (L) E(X3)− E(X2)
(Y −X) (Y −X) (eV) (eV)

NbCoSb 4 0.28 -0.51 0.09
NbCoSn 4 0.28 -0.32 -0.04
NbFeSb 3 0.23 -0.88 0.64
NbFeSn 3 0.23 -0.57 0.36
NbRhSn 4 0.68 -0.06 0.53
ScNiBi 7 0.55 0.88 -1.35
ScNiSb 7 0.55 0.85 -1.40
TaCoSn 4 0.38 -0.22 -0.37
TaFeSb 3 0.33 -0.78 0.38
TiCoSb 5 0.34 0.06 -0.14
TiNiSn 6 0.37 0.43 -0.66
VCoSn 4 0.25 -0.14 0.30
VFeSb 3 0.20 -0.51 0.82
YNiSb 7 0.69 0.74 -2.17
ZrCoSb 5 0.55 -0.16 -0.69
ZrNiSn 6 0.58 0.43 -1.36

D.3 Half-Heusler Tight-Binding Interactions

In this section, we derive some of the k-dependent tight-binding (TB) hopping integrals—as defined
by the TB solution for the energy levels in a diatomic molecule (Equation 2.22)— in transition-
metal based half-Heusler (hH) compounds. For all of the d–d-type orbital interactions, we assume
Vddδ ∼ 0, and therefore only consider the ddπ and ddσ interactions [63, 169]. The values of the
Vsdσ, Vpdσ, Vpdπ, Vddσ, and Vddπ, interaction parameters can be approximated using the values in
Harrison’s solid state table for ZrNiSn [63]. For the Γ −∆−X path in the first Brillouin zone, we
define the parameter, d, to describe the distance along the path at a point k∆ = (0, 0, 2πd). At Γ,
d = 0, and at the X-point, d = 1.

D.3.1 X-d–Z-p Interaction along ∆3,4 Bands

The TB interaction strength between the X-d and Z-p orbitals along the Γ15−∆3,4−X5 bands can
be determined by finding the TB matrix element between the X-dxz and Z-px orbitals, defined as
Hxz,x. It can be shown that the matrix elements Hyz,x and Hxz,y are always equal to zero and
that Hxz,x = Hyz,y. Moreover, assuming that k∆ is parallel to the z-axis, it can be shown that
Hxy,y = Hxy,x = Hxy,z = 0.
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Using the approach outlined by Slater and Koster [65], the matrix elements, Hxz,x and Hyz,y

can be written as follows:

Hxz,x = Hyz,y = −2iVpdπ,XZ [sin (kxa/2) + sin (kya/2) + sin (kza/2)]. (D.5)

In Equation D.5, Vpdπ,XZ denotes the hopping integral between the X-d and Z-p orbitals, and
a is the lattice constant of the compound. However, we can simplify this matrix element along the
∆ = 2π(0, 0, d) direction to Hxz,x = Hyz,y = −2iVpdπ,XZ sin (dπ). Therefore, using the reduced
TB basis set, {X-dxz, X-dyz, Z-px, Z-py}, we can write the Hamiltonian, ĤXd,Zp , describing the
X-d–Z-p interaction along Γ15 −∆3,4 −X5 as follows (Equation D.6):

ĤXd,Zp =


EX−d 0 Hxz,x 0
0 EX−d 0 Hxz,x

H∗
xz,x 0 EZ−p 0

0 H∗
xz,x 0 EZ−p

 (D.6)

In the above equation, H∗
xz,x and H∗

yz,y denote the complex conjugate of Hxz,x and Hyz,y, re-
spectively. The eigenvalues of the Hamiltonian defined in Equation D.6 are given below in Equation
D.7. Both the positive (+) and minus (-) solutions are doubly degenerate, giving a total of four
eigenvalues.

EXd,Zp =
1

2
(EX−d + EZ−p)±

1

2

√
(EX−d − EZ−p)2 + 16V 2

pdπ,XZ sin2 (dπ) (D.7)

Comparing Equation D.7 to Equation 2.22, we can define the effective diatomic hopping integral
as

V (d) = 2Vpdπ,XZ sin (dπ). (D.8)

D.3.2 X-d–Y -d Interaction along ∆1 and ∆2 Bands

In order to understand the behavior of the ∆1 CB, we must consider the interactions between the
X-dz2 and the Y -dz2 orbitals and the interactions between the X-dxy and the Y -dz2 orbitals along
the ∆ path, as both of these interactions are allowed by symmetry (see Table D.5). Along the ∆2

path, we need only consider the interaction between the X-dx2−y2 and Y -dx2−y2 orbitals.

The Hamiltonian matrix element describing the interaction between theX-dz2 and Y -dz2 orbitals
or between the X-dx2−y2 and Y -dx2−y2 orbitals is given by the expression,

Hz2,z2 =
2

3
Vddπ,XY (e

−ia(kx+ky+kz)/4 + e−ia(−kx−ky+kz)/4+

e−ia(kx−ky−kz)/4 + e−ia(−kx+ky−kz)/4). (D.9)
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Therefore, the Hamiltonian describing either the X-dz2–Y -dz2 interactions or the X-dx2−y2–Y -
dx2−y2 interactions along ∆ is given in Equation D.10.

ĤXde ,Yde
=

[
EX−d

8
3Vddπ,XY cos (πd/2)

8
3Vddπ,XY cos (πd/2) EY−d

]
(D.10)

The eigenvalues of this Hamiltonian are given in Equation D.11.

EXde ,Yde
=

1

2
(EX−d + EY−d)±

1

2

√
(EX−d − EY−d)2 + 4[(8/3)Vddπ,XY cos (πd/2)]2 (D.11)

Therefore, the effective hopping integral between the X-dx2−y2 and Y-dx2−y2 orbitals (∆2) and
between the X-dz22 and Y-dz2 orbitals (∆1) is

V (d) =
8

3
Vddπ,XY cos (πd/2). (D.12)

The Hamiltonian describing the interaction between the Y -dz2 and the X-dxy orbitals, is given
by Equation D.13.

ĤXdxy ,Yd
z2

=

[
EX−d −8

√
3

9 iVddπ,XY sin (πd/2)
8
√
3

9 iVddπ,XY sin (πd/2) EY−d

]
(D.13)

The Hamiltonian describing the Y -dxy–X-dz2 interaction is analogous to that given in Equation
D.13, withX replaced by Y and Y replaced byX. It is straightforward to see that the corresponding
eigenvalues for both cases are given by Equation D.23.

EXdxy ,Yd
z2

=
1

2
(EX−d + EY−d)±

1

2

√
(EX−d − EY−d)2 + 4[

8
√
3

9
Vddπ,XY sin (πd/2)]2 (D.14)

Thus, the effective hopping integral for the X-dxy–Y -dz2 (and X-dz2–Y -dxy) interactions along
∆ is

V (d) =
8
√
3

9
Vddπ,XY sin (πd/2). (D.15)

D.3.3 X-dz2–Z-s Interaction along ∆1 Bands

The Hamiltonian element describing the interaction between the X-dz2 and Z-s orbitals along
∆1 is given by the two-center integral, Hz2,s = 2Vsdσ,XZ(cos (πd) − 1). Thus, the corresponding
Hamiltonian is given by Equation D.16 below.
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ĤXdz2,Zs =

[
EX−d 2Vsdσ,XZ(cos (πd)− 1)

2Vsdσ,XZ(cos (πd)− 1) EZ−s

]
(D.16)

The two eigenvalues of this Hamiltonian are given below.

EXdz2
,Zs =

1

2
(EX−d + EZ−s)±

1

2

√
(EX−d − EZ−s)2 + 4[2Vsdσ,XZ(cos (πd)− 1)]2 (D.17)

Hence, the effective TB hopping integral describing the ∆1 X-dz2–Z-s interaction can be ex-
pressed by Equation D.18.

V (d) = 2Vsdσ,XZ(cos (πd)− 1) (D.18)

D.3.4 X-dxy–Y -s Interaction along ∆1 Bands

The Hamiltonian element describing the interaction between the X-dxy and Y -s orbital along ∆ is
Hxy,s = −4i

√
3

3 Vsdσ,XY sin (πd/2), and hence, the Hamiltonian can be written as follows:

ĤXdxy,Ys =

[
EX−d −4i

√
3

3 Vsdσ,XY sin (πd/2)
4i
√
3

3 Vsdσ,XY sin (πd/2) EY−s

]
(D.19)

The two eigenvalues of Equation D.19 are

EXdxy ,Ys =
1

2
(EX−d + EY−s)±

1

2

√
(EX−d − EY−s)2 + 4[

4
√
3

3
Vsdσ,XY sin (πd/2)]2. (D.20)

Therefore, we can write the effective TB hopping integral for the X-dxy–Y -s interaction.

V (d) =
4
√
3

3
Vsdσ,XY sin (πd/2) (D.21)

D.3.5 Y -dz2–Z-pz Interaction along ∆1 Bands

Next, we look at the Y -dz2–Z-pz interactions that contribute to the ∆1 bands. The Hamiltonian
element describing this interaction is given by Hz2,z = −8i

3 Vpdπ,Y Z sin (πd/2). We can then write
the corresponding Hamiltonian.

ĤYd
z2

,Zpz
=

[
EY−d −8i

3 Vpdπ,Y Z sin (πd/2)
8i
3 Vpdπ,Y Z sin (πd/2) EZ−p

]
(D.22)
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The associated eigenvalues are given as follows:

EYd
z2

,Zpz
=

1

2
(EY−d + EZ−p)±

1

2

√
(EY−d − EZ−p)2 + 4[

8

3
Vpdπ,Y Z sin (πd/2)]2. (D.23)

Hence, the effective hopping integral for the Y -dz2–Z-pz interaction contributing to the ∆1 bands
can be written as

V (d) =
8

3
Vpdπ,Y Z sin (πd/2). (D.24)
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D.3.6 Summary of Interactions

Table D.19: Summary of effective k-dependent tight-binding hopping integrals V (d).

Band Symmetry Interaction Equation Trend in Strength
∆3,4 X-d–Z-p D.8 0 at Γ and X, maximum halfway between Γ and X

∆1/∆2 X-de–Y -de D.12 Decreases from Γ to X
∆1 X-dxy–Y -dz2 D.15 Increases from Γ to X
∆1 X-dz2–Y -dxy D.15 Increases from Γ to X
∆1 X-dz2–Z-s D.18 Increases from Γ to X
∆1 X-dxy–Y -s D.21 Increases from Γ to X
∆1 Y -dz2–Y -pz D.24 Increases from Γ to X
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Additional Information for Mg3Sb2 Analysis

The contents of this appendix are reproduced with permission from M. K. Brod, S. Anand, and G.
J. Snyder. Materials Today Physics, 31, 100959 (2023) [113]. Copyright 2022 by Elsevier Ldt.

E.1 Calculating Effective Mass from Band Curvature

This appendix provides supplemental information to Chapter 7, which discusses the importance of
Mg–Sb interactions in high conduction band degeneracy in Mg3Sb2.

The second derivative of energy with respect to k is determined by finding the value of 2a for
the parabolic fits (E − EV BM = ak2l + bkl + c) for each material along the L∗M∗ and A∗U paths.
These values are given in Table E.1. We use kl to denote the distance in k-space along the specified
path.

Table E.1: Value of 2a (∂2E/∂k2) for the parabolic fits (E −EF = ak2l + bkl + c) along the L∗M∗ path and
A∗U path.

L∗M∗ Path A∗U Path
Compound ∂2E/∂k2 (eV·Å2) ∂2E/∂k2 (eV·Å2)

Mg3Bi2 70 21
Mg3Sb2 48 17
Mg3As2 37 13
Mg3SbBi 58 19
Mg3AsSb 40 14
BeMg2Bi2 92 19
BeMg2Sb2 62 14
BeMg2As2 34 11
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Figure E.1: Parabolic fit (solid black curve) of the U∗ conduction band edge (colored dots) used to calculate
the effective mass along the L∗M∗ direction and the A∗U directions for (a) Mg3Bi2, (b) Mg3Sb2, (c) Mg3As2.
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Figure E.2: Parabolic fit (solid black curve) of the U∗ conduction band edge (colored dots) used to calculate
the effective mass along the L∗M∗ direction and the A∗U directions for (a) Mg3SbBi and (b) Mg3AsSb.
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Figure E.3: Parabolic fit (solid black curve) of the U∗ conduction band edge (colored dots) used to calculate
the effective mass along the L∗M∗ direction and the A∗U directions for (a) BeMg2Bi2, (b) BeMg2Sb2, (c)
BeMg2As2.

E.2 Location of U∗ for AeMg2X2 (Ae = Mg, Be; X = Bi, Sb, As)

The locations of the local conduction band minimums inside the ΓALM plane (at the U∗-point)
are listed below (rounded to two decimal places), where the coordinates are given in the reciprocal
lattice basis.

• Mg3Bi2: (0, 0.41, 0.33)

• Mg3Sb2: (0, 0.42, 0.34)

• Mg3As2: (0, 0.44, 0.33)

• Mg3AsSb: (0, 0.43, 0.33)

• Mg3SbBi: (0, 0.41, 0.34)

• BeMg2Bi2: (0, 0.42, 0.32)

• BeMg2Sb2: (0, 0.43, 0.33)

• BeMg2As2: (0, 0.45, 0.30)
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E.3 Density Functional Theory Structural Parameters

Table E.2: Lattice constants for AeMg2X2 (Ae =Be, Mg; X =As, Sb, Bi) calculated using DFT-PBE (no
SOC).

Compound a (Å) c (Å)
BeMg2As2 4.15 6.45
BeMg2Sb2 4.41 7.04
BeMg2Bi2 4.52 7.28
Mg3As2 4.29 6.76
Mg3Sb2 4.60 7.28
Mg3Bi2 4.71 7.46

Mg3AsSb 4.45 7.03
Mg3SbBi 4.65 7.38

Table E.3: Bond lengths in Mg3X2 calculated using DFT-PBE (no SOC).

Bond Bond length (Å)
Mg3Bi2

Bond length (Å)
Mg3Sb2

Bond length (Å)
Mg3As2

Mg(1)–X 3.18 3.12 2.93
Mg(2)–X (short) 2.95 2.85 2.63
Mg(2)–X (long) 3.04 2.96 2.78
Mg(1)–Mg(2) 3.90 3.77 3.47
Mg(2)–Mg(2) 3.31 3.28 3.13

Table E.4: Bond lengths in Mg3SbBi and Mg3AsSb calculated using DFT-PBE (no SOC).

Bond Bond length (Å)
Mg3SbBi

Bond length (Å)
Mg3AsSb

Mg(1)–X 3.16 (Bi), 3.13 (Sb) 3.03 (Sb), 3.03 (As)
Mg(2)–X (short) 2.91 (Bi), 2.88 (Sb) 2.80 (Sb), 2.67 (As)
Mg(2)–X (long) 3.05 (Bi), 2.95 (Sb) 3.04 (Sb), 2.71 (As)
Mg(1)–Mg(2) 3.78, 3.89 3.51, 3.74
Mg(2)–Mg(2) 3.29 3.21



255

Table E.5: Bond lengths in BeMg2X2 calculated using DFT-PBE (no SOC).

Bond Bond length (Å)
BeMg2Bi2

Bond length (Å)
BeMg2Sb2

Bond length (Å)
BeMg2As2

Be–X 2.95 2.90 2.73
Mg–X (short) 2.95 2.83 2.58
Mg–X (long) 3.13 3.03 2.86

Be–Mg 3.80 3.65 3.31
Mg–Mg 3.14 3.12 3.05
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Supplemental GeTe Data

The plots in this Appendix provide supplemental data to Chapter 5, which describes the chemical
origins of the valence band structure in GeTe in the rhombohedral and cubic phases.
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Figure F.1: Schematic of the valence band (VB) edge energies (L, Z, Σ, η, and ∆ ) with respect to the
L-point CBM (shown in black) as a function of the Ge offset, δ, when the primitive-cell interaxial angle is
constant at γ = 58◦ (top) and γ = 60◦ (bottom). The band edge energies (shown with dashed lines) are
calculated from density functional theory (DFT) using the Perdew–Burke-Ernzerhof (PBE) functional and
spin-orbital coupling (SOC).
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Figure F.2: DFT-calculated electronic band structure of GeTe (no SOC) with varying values of atomic offset,
δ, and interaxial angle, γ. (a) GeTe band structure calculated with γ = 58◦ and varying δ, (b) γ = 60◦ and
varying δ, (c) δ = 0.0 and varying γ, and (d) δ = 0.03 with varying γ. The energy is set such that the Σ
VBM is at 0 eV.
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Figure F.3: k-resolved, band-resolved projected crystal orbital Hamilton population (pCOHP) values vs.
interaxial angle γ in the Z (magenta), L (red), Σ (blue), and η (turquoise) VBMs in GeTe. For the Z band,
the COHP values are always calculated at the true Z-point, even when it is not where the maximum near
(or on) Z occurs. COHP of Ge-s–Te-p interaction when (a) δ = 0 and (b) δ = 0.03. COHP of Ge-p–Te-p
interaction when (c) δ = 0 and (d) δ = 0.03.
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