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ABSTRACT 

Statistical Process Control of Stochastic Textured Surfaces 

Anh Tuan Bui 

This dissertation develops a new framework and algorithms for statistical process control of 

stochastic textured surface data that have no distinct features other than stochastic characteristics 

that vary randomly (e.g., image data of textiles or material microstructures and surface metrology 

data of metal parts). All methods are general and nonparametric in that they require no prior 

knowledge of the types of abnormalities that might occur nor the extraction of specific predefined 

features. The methods are applicable to a wide range of materials and address unsolved problems 

regarding monitoring and diagnosing quality-related issues that can lead to early damage, reduced 

lifetime, or compromised aesthetics of the manufactured materials. Specifically, the first problem 

is detecting defects on the surfaces (e.g., microstructure porosities); the second problem is 

detecting changes that affect the entire nature of the surface textures (e.g., microstructure 

morphology changes); and the third problem is characterizing previously unidentified sample-to-

sample variation in the surface textures, in a manner that is conducive to conveying an 

understanding of the physical nature of the variation. To solve these problems, we use supervised 

learning methods to model the stochastic behavior of the stochastic textured surface samples. For 

local defects, we propose two spatial moving statistics for detecting local aberrations in the 

textured surfaces, based on the residuals of the supervised learning model (fitted to an in-control 

sample) applied to new samples. For global changes, we develop a monitoring statistic using 

likelihood-ratio principles to detect changes in the surface nature, relative to the in-control one. 

For understanding surface variation, we derive dissimilarity measures between surface samples 

and use manifold learning on these dissimilarities to discover a low-dimensional parameterization 

of the surface variation patterns. Visualizing how the surfaces change as the manifold parameters 

are varied helps build an understanding of the physical characteristic of each variation pattern. 
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CHAPTER 1 

Introduction 

This dissertation is a collection of three papers (Bui and Apley 2018a, 2018b, 2019a) that 

develop a new framework and algorithms for statistical process control (SPC) of stochastic 

textured surface data. Such data do not have distinct features other than stochastic characteristics 

that vary randomly. Some examples include image data of textiles that show weave patterns or 

material microstructures. Point cloud surface roughness data of machined, cast, or formed metal 

parts, obtained from either a contact stylus trace or optical laser scanning, is another example of 

the stochastic textured surface data. However, throughout this dissertation, we illustrate the 

approaches with image data. Section 2.1 will explain this type of data and its challenges for SPC 

purposes in detail. All methods in this dissertation are general and nonparametric in that they 

require no prior knowledge of the types of abnormalities that might occur nor the extraction of 

specific predefined features. They are applicable to a wide range of materials and address unsolved 

problems regarding monitoring and diagnosing quality-related issues that can lead to damage, 

reduced lifetime, or compromising aesthetics of the manufactured materials. 

Specifically, in Chapter 2 (Bui and Apley 2018a) and Chapter 3 (Bui and Apley 2018b), we 

develop two general approaches that can detect general deviations from the normal in-control 

statistical behavior of the stochastic textured surfaces, where the normal in-control statistical 

behavior is modeled in a reasonably generic manner from the in-control training images. In both 

of these works, we do not assume any prior knowledge of the defects nor must defects be persistent 

across different images. In this regard, the approaches are analogous to the classic Shewhart control 

charting approach (Montomery 2009), which generically characterizes in-control behavior from a 

training sample (Phase I), and monitors future samples to detect general departures from the in-

control behavior (Phase II). 

The method in Chapter 2 is developed to monitor for local defects, which are essentially 
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deviations from the normal statistical behavior that occur only at some local areas of the stochastic 

textured surfaces. We use an off-the-shelf supervised learning algorithm to characterize the in-

control statistical behavior of the stochastic texture surfaces of interest in a generic manner. Our 

primary monitoring statistic is derived from some spatial moving statistic, computed from the 

residual errors of the supervised learning model. In addition to monitoring, our approach is 

designed to help users diagnose the cause of the deviations from the normal behavior via 

highlighting pixels with large spatial moving statistics. 

In Chapter 3, our objective is to monitor for another class of texture-related defects that 

involves changes in the nature of the entire stochastic textured surface as opposed to the local 

defects. We refer to this class of changes as global changes. Again, we use supervised learning to 

estimate the joint distribution that completely represents the statistical behavior of the stochastic 

texture surfaces. Because a global change would result in a change in the joint distribution, we 

develop a monitoring statistic based on the generalized likelihood-ratio test (GLRT) principle for 

detecting such a deviation. 

Unlike the problems in Chapters 2 and 3, which are mainly about monitoring for future 

deviations from the normal in-control behavior, the problem in Chapter 4 is completely different. 

In this work, we focus on a more exploratory diagnostic objective of understanding the nature of 

the variation across a set of stochastic textured surface data samples, given that their stochastic 

behavior is not stable and varies across the set. To this end, we derive two new pairwise 

dissimilarity measures for the stochastic textured surfaces based on a novel application of the 

Kullback-Leibler divergence. Then, we use a form of manifold learning applied to the pairwise 

dissimilarities of the given set of samples. The learned manifold coordinates provide a 

parameterization of the variation existing in the set of samples, which can then be visualized (as 

will be described later) to reveal the nature of the variation. This helps us understand the sources 

of these variations in the current manufacturing process, and aid the process improvement. Hence, 
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the approach in Chapter 4 is purely for diagnostic purposes. 

All the computer codes used in this dissertation have been released in the spc4sts R package. 

The help files, examples, and other documents accompanying this package are useful resources 

aimed at helping practitioners understand the technical details and effectively apply the 

approaches. See Bui and Apley (2019b) for an introduction of the spc4sts package. 
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CHAPTER 2 

Local Defect Monitoring and Diagnostics for Stochastic Textured Surfaces 

2.1 Introduction 

Image and other profile data are increasingly commonly collected for manufacturing quality 

control purposes. We consider a subcategory of such data that we refer to as stochastic textured 

surface data, which can be viewed as 2-D stochastic processes. For example, Figure 2.1(a) is an 

image of a textile material with enough magnification to show the weave patterns, which exhibit 

a great deal of stochastic behavior and are not deterministically positioned. Figure 2.1(b) is a 

greyscale image version of a simulated 2-D stochastic process sample that could represent surface 

roughness of a fabricated part. We consider both of these examples later. Other examples of the 

stochastic textured surface data include images of stone countertops (Liu and MacGregor 2006), 

ceramic capacitor surfaces (Lin 2007a), lumber surfaces (Bharati et al. 2003), and microscopy 

images of material microstructure samples (Torquato 2002, Liu and Shapiro 2015). Recall that 

point cloud surface roughness data of machined, cast, or formed metal parts is also an example of 

the stochastic textured surface data, but we illustrate the approach with image data throughout. 

 

 
Figure 2.1. Images of (a) a textile fabric sample, (b) a simulated 2-D stochastic process, (c) 

components on a circuit board, and (d) a golf ball. The first two are examples of stochastic textured 

surfaces to which the approach of this chapter applies. 

 

The stochastic textured surface data have a distinguishing characteristic that renders most of 
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the SPC literature for profile data largely inapplicable. Such profile SPC works include Woodall 

et al. (2004), Zou et al. (2007, 2008), Chicken et al. (2009), Jensen and Birch (2009), Chang and 

Yadama (2010), Qiu et al. (2010), Qiu and Zou (2010), Wells et al. (2012), Xu et al. (2012), Yu et 

al. (2012), Zou et al. (2012), Paynabar et al. (2013), Viveros-Aguilera et al. (2014), Grasso et al. 

(2016), and Paynabar et al. (2016). Profile monitoring works such as these are inapplicable to our 

stochastic textured surface problem, because they require images (i.e., 2-D profiles) for which 

there is some “gold standard” image comprised of distinct features that represent normal behavior 

of the process. Typically, the gold standard image would be closely related to the mean image, 

where the mean is across a sample of multiple images at the same location. For example, in 

detecting missing or miss-positioned components in a printed circuit assembly, the gold standard 

is an image of a complete assembly with all the components assembled correctly, as shown in 

Figure 2.1(c). In defect defection on smooth metallic surfaces, the gold standard is trivially a non-

textured surface of a constant intensity. In monitoring stamping press tonnage signatures (Jin and 

Shi 1999), the gold standard is the ideal tonnage signature over the course of one stamping cycle 

that results when the process is behaving normally. For monitoring surfaces that have 

deterministically repeated patterns under ideal behavior, such as the dimpled surface of the golf 

ball in Figure 2.1(d), the gold standard is an image of a golf ball from computer aided design 

representations or from normal process behavior, perhaps after properly registering and aligning 

(for image registration techniques, see Xing and Qiu 2011; Qiu and Xing 2013a, 2013b).  

In stark contrast, there is no such gold standard image for stochastic textured surfaces like those 

depicted in Figures 2.1(a) and (b), because the specific configuration of pixel greyscale values 

varies stochastically from image to image under normal process behavior. In other words, there 

are infinitely many stochastic textured surface images that have exactly the same normal stochastic 

behavior, but are all completely different images that do not match pixel-to-pixel. Moreover, they 

cannot be easily aligned, transformed or warped into a common gold standard image, because of 
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the stochastic nature of the surface. One might consider defining the gold standard image as the 

spatial mean function for the image (where the mean is taken across an ensemble of images of the 

same size). However, because of the stationary stochastic nature of the surfaces we consider, the 

spatial mean function for an image would have the same constant greyscale intensity value for 

every pixel in the entire image. In other words, the only possible gold standard image would have 

the same greyscale intensity for every pixel, and any comparison of the inspection images to this 

gold standard image would have little relevance for detecting defects. 

Standard parametric random field models such as Gaussian random fields (Rasmussen and 

Williams 2006) lack the flexibility to capture the complex dynamics of many stochastic textured 

surfaces. For example, the warps and wefts of the textile in Figure 2.1(a) have components that 

resemble spatial periodicity, but their distances and thicknesses are much too random to be 

modeled as periodic, and there are additional random components on top of this. If the spacing 

between the warps and wefts were more deterministically repeatable (like the deterministic spacing 

of the golf ball dimples in Figure 2.1(d)), then this periodic component might be modeled as a 

legitimate profile mean function and handled via existing profile monitoring methods. 

Nonetheless, the random nature of the spacing precludes this approach.  

Theoretically, the joint distribution of the collection of pixels in a stochastic textured surface 

sample provides a complete statistical representation, including capturing any stochastic spatial 

dynamics. Direct estimation of such a high-dimensional nonparametric distribution is obviously 

infeasible. However, under the stationary Markov random field assumptions of Section 2.2, the 

joint distribution can be implicitly and approximately characterized by the conditional distribution 

of individual element/pixel values in the image, given the values of a collection of neighboring 

pixels, with the conditional distribution estimated using supervised learning methods applied to an 

in-control training image sample(s). This technique was used in Bostanabad et al. (2016) to 

characterize and reconstruct binary material microstructure images. In this work, we use this 
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supervised learning approach to obtain an implicit representation of the in-control (i.e., normal) 

statistical behavior of a stochastic textured surface. Our objective is to develop a statistical 

monitoring approach for detecting local phenomena or defects in the manufactured stochastic 

textured surfaces that are statistically inconsistent with the in-control behavior, as represented by 

the implicit supervised learning characterization. 

There is a growing body of work on image monitoring (see, e.g., the review paper of Megahed 

et al. 2011). Some early works directly monitored the intensity levels of the pixels in the images 

(Jiang and Jiang 1998, Armingol et al. 2003). Most of later methods first extracted a small set of 

predefined feature characteristics from the images and then monitored directly those specific 

characteristics or the statistics obtained from them. Common characteristics include length, width, 

and area (Tan et al. 1996), shape (Liang and Chiou 2008), and diameter (Lyu and Chen 2009) of 

specific features identified in the image. Other work has monitored frequency domain 

characteristics based on wavelets (Liu and MacGregor 2006, Lin 2007a, Lin 2007b) and frequency 

spectrum features (Tunák et al. 2009), principle components (Bharati and MacGregor 1998, 

Bharati et al. 2003), and grey level co-occurrence matrix features (Tunák and Linka 2008). 

Recently, Megahed et al. (2012) monitor summary statistics comprised of the average intensity 

levels of predefined windows of various sizes across the images. 

Using predefined features is problem-specific, by definition, and requires that the users have a 

fairly specific idea of the nature of the defects that they would like to detect. Our goal is to develop 

a more general approach that can detect general local deviations from the normal in-control 

statistical behavior of stochastic textured surfaces, where the normal in-control statistical behavior 

is modeled in a reasonably generic manner from the in-control training images. In this regard, the 

approach is analogous to the classic Shewhart control charting approach (Montgomery 2009), 

which generically characterizes in-control behavior from a training sample (Phase I), and monitors 

future samples to detect general departures from the in-control behavior (Phase II). Our primary 
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monitoring statistic is derived from some appropriate spatial moving statistic (to be defined in 

Section 2.3), computed from the residual errors of the supervised learning model that characterizes 

the stochastic textured surface of interest. In addition to monitoring, our approach is designed to 

help users diagnose the cause of the deviations from normal behavior via highlighting pixels with 

large spatial moving statistics.  

To the best of our knowledge, most industrial machine vision algorithms are intended for 

situations in which there is a legitimate gold-standard image and/or there are distinct predefined 

features (e.g., edges, corners, circles, spectral peak frequencies/amplitudes, average intensity 

levels, etc.) that can be detected with standard image processing toolboxes. The types of stochastic 

textured surfaces to which this work applies have neither a gold standard image nor standard 

features that can be detected. The main contribution of this work is developing an approach that 

can be used for this general class of stochastic textured surface inspection images, for which there 

is currently a hole in the existing literature. 

It should be noted that, although our algorithm could be applied to monitoring surfaces with 

deterministically repeating patterns like the dimpled surface in Figure 2.1(d), we do not 

recommend it for that. A much more sensible approach would take into account the known, 

deterministic spacing and size of the dimples to either (i) compare inspection images to a gold 

standard dimpled surface representing the nominal geometry (after proper registration and 

alignment of the images) or (ii) extract relevant features related to the dimple size and spacing and 

monitor the features. 

The remainder of the chapter is organized as follows. Section 2.2 describes how supervised 

learning can be used to implicitly characterize the normal in-control spatial statistical behavior of 

the stochastic textured surfaces. Section 2.3 introduces two spatial moving statistics and the 

primary monitoring statistic. Section 2.4 elaborates details of our monitoring and diagnostic 

algorithm. Sections 2.5 and 2.6 illustrate and compare the approach with three other approaches in 
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a simulation study and in the textile example depicted in Figure 2.1(a), respectively. Section 2.7 

concludes this chapter. 

2.2 Modeling the Spatial Statistical Characteristics of the Stochastic Textured Surfaces via 

Supervised Learning 

Suppose an image is comprised of M pixels, and let 𝐘𝑗 = [𝑦𝑗,1, 𝑦𝑗,2, … , 𝑦𝑗,𝑀 ]
𝑇
 (j = 1, 2, . . ., 

N) denote the set of ordered pixels for the jth image in a sample of N images. We use the subscript 

j later for indexing images; however, we will often omit it for simplicity, unless necessary. Suppose 

the elements of Y are ordered in a row raster scan pixel sequence of left-to-right, moving from the 

top row to the bottom row of the image, as illustrated in Figure 2.2 Let 𝑓(𝐘) denote the joint 

distribution of Y, which theoretically provides the most complete characterization of the statistical 

behavior of the stochastic textured surface. However, it is clearly infeasible to estimate such high-

dimensional nonparametric distributions directly. In light of this, consider the factorization: 

 𝑓(𝐘) = 𝑓(𝑦𝑀|𝑦𝑀−1, 𝑦𝑀−2, … )𝑓(𝑦𝑀−1|𝑦𝑀−2, 𝑦𝑀−3, … )…𝑓(𝑦2|𝑦1)𝑓(𝑦1) = ∏ 𝑓(𝑦𝑖|𝐘
(𝑖))𝑀

𝑖=1 , 

where Y(i) = {yk: k = 1,…, i−1}. The notation is illustrated in Figure 2.2. 

Using this factorization, we can implicitly obtain the joint distribution f(Y) by learning each 

conditional distribution f(yi|Y
(i)) via fitting some appropriate supervised learning model to predict 

the "response" variable yi as a function of the set of "predictor" variables Y(i). Without further 

assumptions, this is unmanageable, in part because it would require learning M separate models, 

and many of them have an extremely high-dimensional predictor space (e.g., Y(M) is (M − 1)-

dimensional). To make the problem more manageable, we assume the following Markov random 

field (MRF) properties for the stochastic textured surfaces, which are generally quite reasonable 

and are often assumed in texture synthesis problems (Efros and Leung 1999, Levina and Bickel 

2006). The first MRF property is locality: there exists a neighborhood y(i) = {yk  Y(i): pixel k is 

within some neighborhood of pixel i} such that given y(i), yi is independent of all other pixels in 
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Y(i)\y(i), i.e., such that f(yi | Y
(i)) = f(yi | y

(i)). Figure 2.2 depicts this neighborhood y(i) as the shaded 

region. The second MRF property is stationarity: f(yi = y | y(i) = y), as a function of y and y, is 

independent of pixel location i. 

 

 

Figure 2.2. Illustration of the notation with a stylized pixelated image (each cell represents a pixel). 

The pixels inside the area with bold borderlines are the elements of Y(i), and the shaded pixels are 

the elements of y(i). Given y(i), yi is assumed independent of Y(i)\y(i). 

  

By the locality assumption,  

𝑓(𝐘) = ∏ 𝑓(𝑦𝑖|𝐘
(𝑖))𝑀

𝑖=1 ≈ ∏ 𝑓(𝑦𝑖|𝐲
(𝑖))𝑀

𝑖=1 .  (2.1) 

Thus, we can obtain f(Y) by learning f(yi|y
(i)), which is more computationally feasible since the 

size of y(i) is much smaller than that of Y(i). The stationarity assumption enables us to estimate 

f(yi|y
(i)) by fitting an appropriate supervised learning model to a set of training data constructed 

from the collection of pixels in some training image Y. The training data array consists of M rows 

with each row corresponding to one of the pixels in Y. The ith row of the training data set is 

comprised of {yi, y
(i)}, where yi and y(i) represent the response and predictor variables, respectively. 
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When fitting the supervised learning model, the first column is treated as the response column, and 

the remaining columns as the predictor columns. Henceforth, M denotes the number of pixels in 

the interior of the image, excluding a small boundary region just large enough that the first pixel 

y1 has a full-size neighborhood y(1).  

If the greyscale pixel values were coarsely discretized, then the conditional distribution of yi | 

y(i) would be multinomial, and any appropriate supervised learning classifier could be used to learn 

the multinomial probabilities as a function of the predictor variables y(i). For the case of binary 

images representing two-phase material microstructure samples, Bostanabad et al. (2016) used this 

supervised learning approach to learn the Bernoulli conditional probabilities of yi | y
(i). Their fitted 

supervised learning model provided an implicit characterization (via (2.1)) of the microstructure, 

which they used to reconstruct microstructure samples that were statistically equivalent to the 

original training sample. 

Because we are assuming finely discretized greyscale intensity levels, we treat them as 

continuous and consider a supervised learning model of the general form 

𝑦𝑖 = 𝑔(𝐲(𝑖)) + 𝜀𝑖,  (2.2) 

where 𝑔(𝐲(𝑖)) is the mean of the conditional distribution f(yi|y
(i)), and 𝜀𝑖 is a zero-mean error. 

Applying an off-the-shelf supervised learning algorithm to an in-control image, we obtain a model 

that represents the estimated conditional mean function 𝑔̂(𝐲(𝑖)). Although the conditional mean 

does not fully represent the conditional distribution, it does provide rich enough information to 

monitor for deviations from the in-control statistical behavior of the stochastic textured surfaces. 

As will be discussed in Section 2.3, we use the residuals of the supervised learning model for our 

monitoring and diagnostic purposes. 

It should be noted that other ways of ordering the pixels, such as the zigzag scanning method 

used in Megahed and Camelio (2012), could result in a different fitted supervised learning model, 

especially if the surface is not isotropic. If desired, one could use cross-validation (CV) to select 
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the best ordering as the one that minimizes the CV error sum of squares. In all of our examples, 

we only considered the raster scan order depicted in Figure 2.2. 

2.3 Choice of Monitoring Statistic 

In this section, we develop our monitoring statistics that are based on the residuals of the in-

control supervised learning model. Section 2.3.1 presents the monitoring approach in terms of a 

general spatial moving statistic (SMS) that appropriately aggregates the local residual behavior, 

and Sections 2.3.2 and 2.3.3 discusses two specific statistics to serve as the SMS. 

2.3.1 Monitoring based on local residual behaviors 

Henceforth, let 𝑔(𝐲(𝑖)) denote the conditional mean model fitted to a training image(s) that are 

known to represent in-control behavior. For a new inspection image, denote the residual for the ith 

pixel (i = 1, 2, . . ., M) by 

𝑟𝑖  =  𝑦𝑖  −  𝑔̂(𝐲
(𝑖)).  (2.3) 

Note that the residuals themselves constitute an image that corresponds pixel-wise to the image 

from which the residuals are computed (e.g., see Figure 2.3). If the new image also behaves as 

under the in-control conditions, then the residuals {𝑟𝑖: 𝑖 = 1, 2, . . . , 𝑀} should behave 

approximately as white noise, although departures from white noise are automatically adjusted for, 

via the way the control limits are determined in our approach (see Section 2.4.1). In contrast, if the 

new image has defects or other departures from the in-control stochastic behavior, then the 

residuals should behave differently than that when the image is in-control. Hence, our monitoring 

procedure is based on monitoring the residuals in a manner to be described shortly (see the online 

supplement of Bui and Apley (2018a) for further discussion on the types of defects that our 

algorithm can detect, which are reasonably general). 

Monitoring individual residuals may not be sensitive enough to detect milder defects, for the 

same reason that Shewhart individual charts are not sensitive enough to small mean shifts. 
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Consequently, we use moving window to aggregate the residuals in some manner over an 

appropriately sized spatial neighborhood of the image. To measure the degree of deviation from 

in-control behavior of the residuals within the moving window neighborhood, we use a SMS that 

is some statistic computed from the residuals within a spatial moving window that is scanned 

across the residual image. Let w denote the width (in number of pixels) of the square spatial moving 

window, which contains n = w2 residuals. For example, the window with the bold border in Figure 

2.3 depicts the moving window centered at the ith pixel. The SMS at the ith pixel of the jth image, 

denoted by SMSj,i, is defined as some function of the w2 residuals within the moving window 

surrounding the ith pixel of the jth image. In this chapter, we consider two such SMSs that are 

intuitively appealing and that we have found to result in good defect detection performance in our 

examples: (i) a one-sample Anderson–Darling (A-D) statistic and (ii) a Box–Pierce (B-P) type 

statistic, which we describe in Sections 2.3.2 and 2.3.3, respectively.  

 

 

Figure 2.3. An image of residuals illustrating the spatial moving windows: each cell corresponds 

to a pixel of the image from which the residuals are computed. The pixels {ri(1), ri(2), …, ri(n)} 

inside the bold lines are the elements of the square moving window of n = w2 residuals centered 

at the ith pixel, corresponding to residual 𝑟𝑖 ≡ 𝑟𝑖((𝑤
2 + 1) 2⁄ ). 
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Our algorithm is intended for monitoring and diagnosing individual images using a single 

aggregate summary statistic for each image. Moreover, the intent is that an alarm will be sounded 

if an individual image contains a defect, as opposed to requiring that defects persistently occur 

across a consecutive set of images. In this respect, our approach is akin to a Shewhart individual 

chart. We define our monitoring statistic for the jth image to be  

𝑆𝑗 = max
𝑖=1…𝑀

𝑆𝑀𝑆𝑗,𝑖  (2.4) 

If the defects do occur persistently across consecutive images, then our monitoring approach 

could be enhanced by using an EWMA-type or CUSUM-type accumulation of Sj, although we do 

not pursue this in this chapter. 

2.3.2 A-D Statistic  

As discussed in Section 2.3.1, we expect a local change in the distribution of the residuals in 

the defect region, relative to the in-control residual distribution. We represent the latter by a 

reference cumulative density function (cdf), denoted by 𝜑, of all the residuals R computed from a 

representative in-control image(s). As a statistic that measures the deviation (from 𝜑) of the 

residual distribution within some neighborhood of a pixel, we consider a one-sample A-D statistic 

(Anderson and Darling 1954), which compares the empirical cdf of the residuals within a spatial 

moving window versus 𝜑. We also considered a one sample Kolmogorov-Smirnov statistic, but 

do not pursue it here, because we found that the A-D statistic performed better. This perhaps was 

because the A-D statistic is more sensitive to changes in the tails of the distribution, which 

correspond to large-magnitude residuals. 

Let the residuals {ri(1), ri(2), …, ri(n)} within the moving window around the ith pixel be 

ordered from smallest to largest. The one-sample A-D SMS at the ith pixel is defined as: 

𝐴𝑖
2 = −𝑛 − ∑

2𝑘−1

𝑛

𝑛
𝑘=1 ln {𝜑(𝑟𝑖(𝑘))[1 − 𝜑(𝑟𝑖(𝑛 + 1 − 𝑘))]}  (2.5) 

Since the sample size for the training image is quite large, one might consider using the 
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empirical cdf of the residuals R (denoted by F, for which a corresponding histogram is shown in 

Figure 2.4) for the training image as 𝜑 in (2.5). However, this causes a potential problem, because 

the one-sample A-D statistic is infinite/undefined if any of the n elements within the moving 

window are beyond the support of 𝜑. To illustrate, Figure 2.4 shows a histogram of approximately 

0.25 million residuals from a training image in one of our examples, the support of which extends 

from [−2.45, 2.84]. Thus, if a new image contains a residual that falls outside the interval [−2.45, 

2.84], which happened frequently in our example (even with the process was in-control), the 

statistic in (2.5) is infinite for any moving window containing that residual. 

 

 
Figure 2.4. Approximating the upper and lower tails of the residual empirical cdf with an 

exponentially decaying distribution. The sample size is approximately 0.25 million pixels. 

 

To avoid this problem, instead of using 𝜑 = 𝐹 directly, we replace its upper and lower tails 

with an exponentially decaying tail approximation. The upper tail approximation for 𝑟 > 2.38 is 

illustrated in Figure 2.4. More specifically, let 𝑟𝑞𝑙 and 𝑟1−𝑞𝑢 denote the lower 𝑞𝑙 quantile and upper 

𝑞𝑢 quantile of 𝐹 for some small probabilities 𝑞𝑙 and 𝑞𝑢 such that 𝐹(𝑟𝑞𝑙) = 𝑞𝑙 and 𝐹(𝑟1−𝑞𝑢) = 1 −

𝑞𝑢. The probabilities 𝑞𝑙 and 𝑞𝑢 should be large enough to have enough tail observations to get a 

good estimate of the exponential rate parameters for the tail approximation, but otherwise as small 

as possible. For our examples we have used values 𝑞𝑙 ≈ 𝑞𝑢 ≈ 1.6 × 10
−3, which, because of the 
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large number of pixels in typical images, translate to around 400 observations in each tail. To 

estimate the rate parameters, we fit the observations corresponding to the lower and upper tails of 

𝐹 with the exponential probability density functions (pdfs): 

𝑓(𝑟) = {

𝑞𝑙

𝜆𝑙
𝑒𝑥𝑝 {

𝑟−𝑟𝑞𝑙

𝜆𝑙
}          ∶           𝑟 ≤ 𝑟𝑞𝑙

𝑞𝑢

𝜆𝑢
𝑒𝑥𝑝 {−

𝑟−𝑟1−𝑞𝑢

𝜆𝑢
} :      𝑟 ≥ 𝑟1−𝑞𝑢

   

The maximum likelihood estimators of the lower and upper exponential rate parameters are 

𝜆𝑙 = 𝑟𝑞𝑙 − 𝑎𝑣𝑒{𝑟𝑖:  𝑟𝑖 ≤ 𝑟𝑞𝑙}, and 𝜆𝑢 = 𝑎𝑣𝑒{𝑟𝑖:  𝑟𝑖 ≥ 𝑟1−𝑞𝑢} − 𝑟1−𝑞𝑢. We then choose a very small 

probability 𝑝 (𝑝 = 5/𝑀 in the example in Figure 2.4) and replace 𝐹(𝑟) by its exponential tail 

approximation for  𝑟 < 𝑟𝑝 and 𝑟 > 𝑟1−𝑝, where 𝑟𝑝 and 𝑟1−𝑝 are the lower and upper 𝑝 quantiles of 

𝐹. That is, for 𝜑 in (2.5) we use  

𝜑(𝑟) =

{
 
 

 
 𝑝 × 𝑒𝑥𝑝 {

𝑟−𝑟𝑝

𝜆𝑙
} ∶                          𝑟 ≤ 𝑟𝑝

𝐹(𝑟) ∶                               𝑟𝑝 < 𝑟 < 𝑟1−𝑝

1 − 𝑝 × 𝑒𝑥𝑝 {−
𝑟−𝑟1−𝑝

𝜆𝑢
} :        𝑟 ≥ 𝑟1−𝑝

  

2.3.3 B-P Type Statistic 

A B-P (aka portmanteau) test (Box and Pierce 1970) is widely used for testing the existence of 

autocorrelations in time series. Likewise, a B-P type statistic can be used to detect spatial 

correlations in our stochastic textured surface images. Because local defects in the stochastic 

textured surfaces are likely to result in local spatial correlations in the residuals, the B-P type 

statistic is intuitively appealing for our objective. We define the B-P type SMS for the ith pixel as 

𝑇𝑖 = ∑ 𝐶𝑜𝑣̂𝑖,𝑘
2𝑛

𝑘=1   (2.6) 

where 𝐶𝑜𝑣̂𝑖,𝑘
2  is some local estimate of the covariance between the residual 𝑟𝑖 at the ith pixel and 

another residual 𝑟𝑘 within the moving window of n pixels surrounding the ith pixel (e.g., the moving 

window in Figure 2.3). Note that 𝐶𝑜𝑣̂𝑖,𝑖
2  is included in 𝑇𝑖 in (2.6). To estimate 𝐶𝑜𝑣̂𝑖,𝑘, we use a 



32 

 

kernel weighted window centered at the ith pixel. For ease of illustration, let 𝑖1 and 𝑖2 be the row 

and column indices of the ith pixel, and let 𝑘1 and 𝑘2 be the row and column indices of the kth pixel. 

Then, 

𝐶𝑜𝑣̂𝑖,𝑘 =
∑ ∑ 𝐾(ℎ,𝑚)𝑟𝑖1−ℎ,𝑖2−𝑚𝑟𝑘1−ℎ,𝑘2−𝑚

∞
𝑚=−∞

∞
ℎ=−∞

∑ ∑ 𝐾(ℎ,𝑚)∞
𝑚=−∞

∞
ℎ=−∞

                    

where 𝐾(ℎ,𝑚) is the Epanechnikov quadratic kernel: 

𝐾(ℎ,𝑚) = {
3

4
(1 −

ℎ2+𝑚2

(
𝑤+1

2
)
2) ∶  ℎ

2 +𝑚2 ≤ (
𝑤+1

2
)
2

0                      ∶      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.7)   

2.4 Stochastic Textured Surface Monitoring and Diagnostic Algorithm 

Our approach involves two stages: monitoring and diagnosis. The monitoring stage has two 

phases. The first is an offline training phase (Phase I) that constructs a control limit based on the 

empirical distribution of the monitoring statistic computed for a set of in-control images. As 

defined in (2.4), the monitoring statistic for the jth image is the maximum of the SMS values across 

all pixels in that image, where our SMS for pixel i in image j is either 𝐴𝑖
2 or 𝑇𝑖 for image j. The 

SMS values are calculated from the residuals of the supervised learning model that characterizes 

the stochastic textured surface to be monitored. The second phase is an online monitoring phase 

(Phase II) that computes a monitoring statistic for each new image similarly to that in Phase I. If 

the monitoring statistic is beyond a control limit, an alarm is sounded, and the diagnostic stage is 

invoked. The diagnostic stage constructs a binary image that corresponds pixel-to-pixel with the 

original image and highlights the pixels with SMS values larger than some threshold. We refer to 

these as diagnostic images. We provide details of Phase I of the monitoring stage in Section 2.4.1. 

Phase II of the monitoring stage, as well as the diagnostic stage, are discussed in Section 2.4.2. 

2.4.1 Phase I of the Monitoring Stage:  Fitting the Supervised Learning Model and 

Establishing the Control Limits 
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Phase I of the monitoring stage begins with choosing a region from an image (or images) that 

is known to be in-control, from which to construct the training data set for fitting the supervised 

learning model as described in Section 2.2. The neighborhood structure must also be chosen. This 

can be flexible, but to simplify the discussion, we define the neighborhood by a single parameter 

l, which is the number of pixels to the right/left and above the response pixel, corresponding to our 

raster scan method. Figure 2.2 illustrates such a neighborhood with l = 2. The value of l should be 

large enough to include all important predictor variables (such that the MRF locality property 

holds), but not so large as to incur unnecessary computational expense. We recommend choosing 

l via CV during the process of fitting the supervised learning model to minimize some measure of 

CV error. Readers are referred to Bostanabad et al. (2016) for further details of the model fitting 

procedure. 

After fitting the supervised learning model, we apply it to a new image j (that is believed to be 

in-control) to calculate the predictions {𝑔̂(𝐲𝑗
(𝑖)): 𝑖 = 1, 2, . . . } and the corresponding residual 

errors {𝑟𝑗,𝑖: 𝑖 = 1, 2, . . . } via (2.3). After that, the SMS values {𝑆𝑀𝑆𝑗,𝑖: 𝑖 = 1, 2, . . . } are calculated 

as described in Section 2.3. Finally, the monitoring statistic Sj for the jth image is computed via 

(2.4). This process is repeated for a set of N in-control images (i.e., for j = 1, 2, . . ., N) to give a 

sample {Sj: j = 1, 2, . . ., N} of monitoring statistics that represent the in-control state. Given the 

complexity of the supervised learning model and the image texture characteristics, it is not possible 

to derive some exact (or even reasonably approximate) theoretical distribution of the residuals and 

the resulting theoretical distribution of the monitoring statistic S in order to set the control limits. 

Thus, we set the control limits based on the empirical distribution of {Sj: j = 1, 2, . . ., N} from the 

set of in-control Phase I images, which is often available in practice.  

Figure 2.5 shows histograms of {Sj: j = 1, 2, . . ., N} for the N = 1,000 Phase I images for the 

example in Section 2.5 based on A-D (Figure 2.5(a)) and B-P type (Figure 2.5(b)) SMSs, 

respectively. The theoretical support of the distribution of S in either case is [0, ∞), and a larger Sj 
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indicates a higher likelihood that image j contains a defect. Thus, there is only an upper control 

limit. Letting 𝛼 (e.g. 𝛼 = 0.003) denote the desired Type I error for an individual jth image, we set 

the control limit as the (1 − 𝛼) quantile of the empirical distribution of {Sj: j = 1, 2, . . ., N}.  

 

 
Figure 2.5. Histograms of Phase I {Sj: j = 1, 2, . . ., N} in log scale based on (a) the A-D statistic 

and (b) the B-P type statistic, computed from N = 1,000 in-control images for the example in 

Section 2.5 with w = 25. The dashed lines are the control limits corresponding to 𝛼 = 0.003. 

2.4.2 Phase II of the Monitoring Stage and the Diagnostic Stage 

Phase II of the monitoring stage, which involves many of the same calculations as Phase I, and 

the diagnostic stage are relatively straightforward. First, a data array is constructed from each new 

image as described in Section 2.2, and the supervised learning model fitted in Phase I is applied to 

generate the predictions 𝑔̂(𝐲(𝑖))  and the corresponding residuals for the new image. The SMS 

values at each pixel of the new image are computed from these residuals, and the monitoring 

statistic S is computed via (2.4), after which it is compared to the control limit calculated in Phase 

I. 

If an alarm is sounded for an image, the algorithm invokes the diagnostic stage, which 

compares the SMS values at all pixels in that image with a diagnostic threshold. A binary 

diagnostic image is then constructed by plotting every pixel with SMS value larger than the 

diagnostic threshold as a black pixel, and the remaining pixels in the image as white pixels. The 

diagnostic threshold has no connection to the control limit, as the former applies to the SMS values, 
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whereas the latter applies to the S values. Moreover, while the control limit is chosen to control 

the Type I error, the diagnostic threshold is chosen purely to facilitate visualization of the nature 

of the defect. Our recommended strategy for selecting the diagnostic threshold is so that it results 

in a small but acceptable level of noise (i.e., black pixels that are not associated with actual defects) 

in the diagnostic image. We accomplish this by setting the diagnostic threshold at the 

(1 − 𝑛𝐷 𝑀𝑆𝑀𝑆⁄ ) quantile of the empirical distribution of all SMS values computed for all Phase I 

images, where 𝑀𝑆𝑀𝑆 is the number of SMS values computed for each Phase I image, and 𝑛𝐷 is the 

desired average number of black (noise) pixels in a diagnostic image of an in-control image. The 

choice of 𝑛𝐷 depends on the image size in general. We have used 𝑛𝐷 ~ 5—10 for an image size of 

250250 pixels in our examples. Alternatively, instead of selecting a single 𝑛𝐷, users could vary 

𝑛𝐷 as the diagnostic image is dynamically changed to better facilitate visualization of the defect. 

2.5 Simulation Study 

In this section, we demonstrate and evaluate our approach with simulated images of the 2-D 

stochastic process depicted in Figure 2.1(b). We also compare its performance with three 

alternative methods. The images were generated via the spatial autoregressive model 𝑦(𝑖, 𝑘) =

𝜙1𝑦(𝑖 − 1, 𝑘) + 𝜙2𝑦(𝑖, 𝑘 − 1) + 𝜀(𝑖, 𝑘), where y(i, k) denotes the image greyscale level at pixel 

location (i, k) with i and k the row and column indices, respectively. We used 𝜙1 = 0.6, 𝜙2 =

0.35, and ε a zero-mean Gaussian white noise. After generating the process, we translated/rescaled 

it to the interval [0, 255] to obtain the corresponding greyscale image for plotting purposes. For 

applying our algorithm, all images were subsequently standardized by subtracting from each pixel 

the average greyscale value for all pixels in that image and then dividing by the greyscale standard 

deviation for all pixels in the image. For real examples, this is helpful if the lighting conditions 

vary from image to image, although ideally the lighting should be controlled. Note that the MRF 

assumptions hold for the images in this example, by construction. 

2.5.1 Monitoring Stage 
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We evaluated the monitoring performance of our algorithm with 10 replicates of the following 

experiment. On each replicate we first generated an image of size 500×500 pixels, similar to the 

one in Figure 2.1(b), for model fitting (discussed in Section 2.4.1). Then, we used a regression tree 

as the supervised learning model (any appropriate supervised learner could be used) because it is 

more computationally reasonable to fit for large training data sets. The neighborhood size l was 

obtained during the tree fitting process as the one that minimized the CV sum-of-squares error. 

This resulted in l = 1, which agrees with the lag-one autoregressive model used to generate the 

data. For real examples, like the textile application in Section 2.6, the CV procedure will typically 

select a much larger value of l.  

To construct the control limit, we generated a Phase I set of N = 1000 in-control images, each 

of size 250×250 pixels, in the same manner as the training image used for model fitting. Using the 

fitted regression tree from the training image, for each image j in the Phase I set, we computed the 

SMS values for every pixel and then the monitoring statistic Sj in (2.4), as described in Section 

2.4.1. We considered both the A-D and B-P type SMSs, each with several spatial moving window 

sizes (w = 5, 15, and 25), for comparison purposes. For the A-D statistic, we chose 𝑞𝑙 ≈ 𝑞𝑢 ≈

1.6 × 10−3 in order to give around 400 observations in each tail for estimating the exponential tail 

parameters. We also chose 𝑝 ≈ 2 × 10−5, for which 𝑟𝑝 = −2.16 and 𝑟1−𝑝 = 2.38, and we 

replaced F(r) by its exponential tail approximation for 𝑟 ∉ (𝑟𝑝, 𝑟1−𝑝). From the empirical 

distribution of {Sj: j = 1, 2, . . ., 1000} (the histograms for which are shown in Figure 2.5 for w = 

25) and with a desired Type I error rate of 𝛼 = 0.003, we selected the control limit, which 

depended on the choice of w.   

For monitoring performance evaluation, we generated 400 Phase II images, all containing 

defects, by first generating an in-control image of size 250×250 pixels from the same spatial 

autoregressive model and then creating a defect and superimposing on the image. We considered 

"white noise defects" that were Gaussian white noise process (i.e., the spatial autoregressive 
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process with 𝜙1 = 𝜙2 = 0) with the same mean and standard deviation as the white noise 𝜀 in the 

in-control process. The defect regions that we superimposed were ellipsoidal shaped and of sizes 

5×5, 5×21, 9×21, and 15×21 (the sizes refer to the lengths of the major and minor axes of the 

ellipses, which were aligned with the horizontal and vertical axes of the images). Randomly 

positioned defects of each these sizes were added to 100 images each (one defect added to each 

image) to generate the Phase II out-of-control images. The first row of Figure 2.6 shows some 

examples of these Phase II images, the defects of which are difficult to spot visually.  

 
Figure 2.6. Phase II images in the simulation example containing white noise defects (top row) 

and their diagnostic images using the A-D-based statistic (middle row) and the B-P-type statistic 

(bottom row). The defects in the images in the top panels have different sizes: (1st column) 5×5, 

(2nd column) 5×21, (3rd column) 9×21, and (4th column) 15×21. 
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Table 2.1 reports the average power across 10 replicates for our approach (with different 

combinations of the SMS statistic and w) for all four defect sizes mentioned above. Notice that the 

algorithm generally detects defects with higher power when w is approximately the same size as 

the defects (we have also observed this phenomenon in other examples). This is intuitively 

reasonable, because the SMS (either A-D or B-P type) is larger when its window contains more 

pixels in the defect region and fewer pixels in the normal region. However, this is not an 

implementable guideline for choosing w, because defect sizes may not be known in advance. 

Regarding choice of w, we have observed that for the A-D-based statistic, the performance suffers 

more when w is larger than the defects than it does when w is smaller than the defects. This can be 

observed by comparing the three columns for the A-D-based statistic in Table 2.1. Consequently, 

for the A-D-based statistic, we recommend choosing w to be approximately the same as the 

smallest defect size of interest. 

 

Table 2.1. Average powers in 10 replicates of our approach at 𝛼 = 0.003 

Defect 

sizes 

 A-D  B-P 

 w = 5 w = 15 w = 25  w = 5 w = 15 w = 25 

5×5  0.205 0.004 0.003  0.955 0.884 0.858 

5×21  0.785 0.791 0.247  0.997 1.000 1.000 

9×21  0.964 1.000 0.987  1.000 1.000 1.000 

15×21  0.990 1.000 1.000  1.000 1.000 1.000 

 

For the B-P-type statistic, the monitoring performance for all but the smallest defects was 

almost perfect even when w is larger than the defect size, as can be seen from the three columns 

for the B-P-type statistic in Table 2.1. To demonstrate the extent to which the monitoring statistics 

in these cases exceed the control limits, Figure 2.7(a) shows boxplots of 

(𝑆𝑤̅ − 𝐶𝐿𝑤) (𝑈𝐶𝐿𝑤 − 𝐶𝐿𝑤)⁄  across the 10 replicates, where 𝑆𝑤̅ is the average B-P-type 

monitoring statistic using an SMS size of w for all Phase II images containing defects of size 521. 

Figures 2.6(b) and 7(c) show similar boxplots, but for defect sizes 921 and 1521, respectively. 

By comparing the boxplots in each panel of Figure 2.7 we see that as w increases, the monitoring 
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statistic tends to exceed the control limit by larger amounts, i.e., the monitoring performance of 

the B-P-type statistic improves with larger w.  

 

 
Figure 2.7. Boxplots of (𝑆̅ − 𝐶𝐿) (𝑈𝐶𝐿 − 𝐶𝐿)⁄  across 10 replicates, where 𝑆̅ is the average B-P-

type monitoring statistic for all Phase II images containing defects of sizes: (a) 521, (b) 921, 

and (c) 1521. Three window sizes w = 5, 15, and 25 were considered. 

 

However, using a larger w for the B-P-type statistic has two potential drawbacks. First, a larger 

w requires more computational expense, because the number of covariance terms to be computed 

in each moving window increases quadratically in w, and the kernel window is also larger. Second, 

and perhaps more seriously, using larger w means that more boundary pixels (≈ w/2 pixels at each 

image edge) cannot be monitored, because full windows are required for computing the SMS. This 

is the reason why the monitoring performance of the B-P-based approach in Table 2.1 mildly 

degrades as w increases for the smallest defects, which are more likely to occur at the boundary as 

w increases. Therefore, for the B-P-based approach, we recommend that users choose w as large 

as possible while balancing the above drawbacks. 

We also compared our algorithm with three alternative methods. The first uses the 

Epanechnikov quadratic kernel in (2.7) to compute the weighted average of pixel intensities within 

a moving window, and this is used as the SMS. Specifically, the SMS of the ith pixel in an image 

is:  

𝑆𝑀𝑆𝑖 =
∑ ∑ 𝐾(ℎ,𝑚)𝑦𝑖1−ℎ,𝑖2−𝑚

∞
𝑚=−∞

∞
ℎ=−∞

∑ ∑ 𝐾(ℎ,𝑚)∞
𝑚=−∞

∞
ℎ=−∞

,  



40 

 

where, as in Section 2.3.3, 𝑖1 and 𝑖2 are the row and column indices of the ith pixel. Similar to our 

approach, the monitoring statistic for each image for this approach is the maximum 𝑆𝑀𝑆𝑖 in (2.4) 

over all pixels in the image. We refer to this as the EPWMA approach. The second method, which 

we refer to as the EPWMV approach, is the same except that the SMS statistic is. 

𝑆𝑀𝑆𝑖 =
∑ ∑ 𝐾(ℎ,𝑚)(𝑦𝑖1−ℎ,𝑖2−𝑚−𝑦̅𝑖)

2∞
𝑚=−∞

∞
ℎ=−∞

∑ ∑ 𝐾(ℎ,𝑚)∞
𝑚=−∞

∞
ℎ=−∞

, 

where 𝑦̅𝑖 is unweighted mean of all pixel intensities in the window centered at pixel i. 

The third method is the Haar-wavelet-based algorithm of Lin (2007a). Their algorithm divides 

a given image into many subimages and computes a monitoring statistic for each subimage, based 

on the 2-D Haar wavelet transform applied to these subimages. This is an example of the 

predefined-feature-based algorithms, where the features are defined by the 2-D Haar wavelet 

characteristics obtained from the subimages. The Lin (2007a) algorithm is not a standard control 

charting algorithm as defined in Megahed et al. (2011), because Lin (2007a) applies a spatial 

control chart within each image, as opposed to having a single charting statistic associated with 

each image. Thus, to have a common basis for comparison, we modify the Lin (2007a) approach 

as follows. The charted statistic for each image is taken to be the maximum of all of the Lin (2007a) 

statistics computed for all subimages of the image.  

Analogous to Table 2.1, Table 2.2 reports the average power at a Type I error rate of 𝛼 =

0.003 (the same 𝛼 used for our approach) across 10 replicates, but for the EPWMA and EPWMV 

approaches (with w = 5, 15, and 25) and the modified version of Lin (2007a). For each method, 

the control limits are chosen to control the Type I error based on a set of in-control images, 

analogous to how the control limit is selected for our algorithm. None of these approaches 

successfully detects the defects in this example. 

2.5.2 Diagnostic Stage 

If the monitoring stage signals an alarm, the algorithm invokes the diagnostic stage, which uses 
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the SMS values computed from Phase II of the monitoring stage and compares them with the 

diagnostic threshold(s) as discussed in Section 2.4.2. For illustration, in the second and third rows 

of Figure 2.6, we plotted the diagnostic images for the four defect-containing images in the top 

row of Figure 2.6, using A-D-based and B-P-type statistics, respectively, both with w = 5 (see the 

online supplement of Bui and Apley (2018a) for analogous results for w = 15 and 25). To set the 

diagnostic threshold, we used 𝑛𝐷 = 10 (equivalent to having an average of 10 noise-related black 

pixels in the in-control diagnostic images) and the empirical distribution of the SMS statistics 

computed for all pixels in all 1000 Phase I images. 

 

Table 2.2. Average power across 10 replicates for the EPWMA, EPWMV, and Lin (2007a) 

methods for the same example depicted in Table 2.1. 

Defect 

sizes 

 EPWMA   EPWMV   Lin 

(2007a)  w = 5 w = 15 w = 25  w = 5 w = 15 w = 25  

5×5  0.005 0.004 0.006  0.137 0.006 0.007  0.005 

5×21  0.004 0.005 0.002  0.123 0.005 0.003  0.006 

9×21  0.007 0.004 0.003  0.110 0.002 0.004  0.007 

15×21  0.005 0.005 0.006  0.078 0.008 0.002  0.012 

2.6 Textile Application 

Next, we apply our approach to a set of real image data for a textile material, an example image 

of which is shown in Figure 2.1(a). Note that the fabric pattern is quite complex (as a stochastic 

process) with random thicknesses of and distances between fiber strands. Figure 2.8 displays six 

images containing defects that were created by physically scuffing, tearing, or otherwise 

deforming the fibers locally to represent a variety of defect types. All images were also 

standardized as a preprocessing step in this example. All the image data in this example are 

available in the R data package textile (Bui and Apley 2017a). 

Regarding the validity of the MRF assumptions for this data set, the locality or "Markov" part 

virtually always holds if we select a large enough neighborhood size l. We use CV within the 

supervised learning model fitting procedure to determine how large the neighborhood should be. 
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The value of l that minimizes the CV error corresponds to the neighborhood size that includes all 

neighboring pixels that serve as useful predictor variables. In this respect, CV identifies the 

neighborhood size that is required to make the stochastic surface Markov, which follows trivially 

by definition of the Markov property. In addition, the in-control images in this example passed the 

stationarity test for textured images of Taylor, Eckley, and Nunes (2014). 

 

 

 
Figure 2.8. Defect-containing textile images corresponding to the in-control image in Figure 

2.1(a), but with defects: (a) scratch, (b) fiber direction change, (c) tear, (d) hole, and (e—f) runs. 

The circled blurry region in panel (c) is an artifact of our imaging system and not a created defect, 

but it is more severe than the typical imaging blurs.  
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2.6.1 Monitoring Stage 

We used a regression tree as the supervised learning model in this example, and we used the 

image of size 500×500 pixels shown in Figure 2.1(a) to fit the regression tree. The neighborhood 

size l of 15 was chosen by CV. From the fitted regression tree, we computed the SMS values and 

the monitoring statistic S in (2.4) for N = 94 Phase I images, for both the A-D-based and B-P-based 

SMSs, using w = 5, 15, and 25. For the A-D-based statistic, we chose 𝑞𝑙 ≈ 𝑞𝑢 ≈ 1.8 × 10
−3 

(corresponding to 400 observations in each tail), and 𝑝 ≈ 2.2 × 10−5 (corresponding to 𝑟𝑝 =

−3.03 and 𝑟1−𝑝 = 3.16). 

For this example, we also compare our algorithm with the EPWMA and EPWMV approaches 

and the modified version of Lin (2007a) described in Section 2.5. For all methods, we set the 

control limits based on the empirical distribution of their monitoring statistics, computed from the 

set of N = 94 Phase I images, such that one of the 94 image statistics fell outside the control limits. 

For the EPWMA method, the control limits (LCL, UCL) were taken to be symmetric about the 

center line (CL), and likewise for the square root of the EPMVA statistic.  

Table 2.3 reports the values of the CLs, LCLs, and UCLs and the monitoring statistics 

computed for the 6 defect-containing images in Figure 2.8 (which represent Phase II images) for 

all methods. The statistics that are beyond the control limits are in bold font. As was the case for 

the simulation example in Table 2.1, the monitoring performance of our algorithm when using the 

B-P-based statistic is slightly better than that when using the A-D-based statistic in this example. 

Nevertheless, with either monitoring statistic, the monitoring performance of our algorithm is 

clearly better than the performance of the other algorithms. As can be seen in Table 2.3, the 

EPWMA approach does not sound an alarm for any of the six defect-containing images in Figure 

2.8. The Lin (2007a) algorithm only sounds an alarm for the most extreme defect in the image in 

Figure 2.8(d), whereas the EPWMV approach sounds an additional alarm for the image in Figure 

2.8(f). In contrast, for most window sizes, our algorithm sounds an alarm for all six defect-
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containing images, and the signals often exceed the control limit by a large margin. 

 

Table 2.3. Comparison of monitoring results in the textile example for our approach, and the 

EPWMA, EPWMV, and Lin (2007a) approaches for 𝛼 = 1/94. The last six columns show the 

monitoring statistics computed for the six defect-containing images in Figure 2.8. Bold numbers 

indicate alarmed cases. 

Methods  LCL CL UCL   (a) (b) (c) (d) (e) (f) 

A-D 

w = 5  −∞ 16.0 26.0  36.7 37.1 49.1 167 28.1 26.1 

w = 15  −∞ 18.8 29.1  37.0 56.1 56.2 453 34.5 34.4 

w = 25  −∞ 23.3 40.3  45.0 103.1 70.1 376 36.5 40.2 

B-P 

w = 5  −∞ 9.38 21.2  19.7 64.0 51.9 1346 27.4 29.7 

w = 15  −∞ 1.46 2.7  4.72 33.2 12.2 1730 5.87 7.17 

w = 25  −∞ 1.03 1.8  2.52 25.7 6.63 935 3.95 4.25 

EPWMA 

w = 5  0.29 0.33 0.37  0.33 0.34 0.32 0.31 0.34 0.33 

w = 15  0.06 0.12 0.18  0.13 0.11 0.13 0.10 0.10 0.10 

w = 25  0.04 0.08 0.12  0.09 0.08 0.11 0.07 0.07 0.07 

EPWMV 

w = 5  2.93 3.52 4.17  3.62 3.51 4.19 3.38 3.20 3.77 

w = 15  1.72 2.08 2.48  2.22 2.28 2.27 2.43 2.29 2.40 

w = 25  1.44 1.77 2.13  1.89 1.78 1.92 2.60 1.89 2.15 

Lin (2007a)  −∞ 30.9 43.8  28.3 28.2 29.7 60.7 32.9 38.3 

2.6.2 Diagnostic Stage 

In the following, we discuss the diagnostic results of our approach for the example in Section 

2.6.1. As in the simulation example in Section 2.5, we used 𝑛𝐷 = 10 to set the diagnostic threshold 

for all cases. The diagnostic images for the defect-containing images in Figures 2.7(a—e) are 

shown in Figure 2.9. The defect and diagnostic results for Figure 2.8(f) are similar to those for 

Figure 2.8(e), so we omit it here. The first and second rows of Figure 2.9 show the diagnostic 

images of our algorithm using the A-D-based statistic with w = 5 and 25, respectively. Similarly, 

the third and fourth rows of Figure 2.9 show the diagnostic images of our algorithm using the B-

P-type statistic with w = 5 and 25, respectively. The results with w = 15 for both statistics, which 

are somewhat in between the results with w = 5 and w = 25, can be found in the online supplement 

of Bui and Apley (2018a). The diagnostic images for the EPWMV approach with w = 25 (the w 

value that provided the best monitoring performance for EPWMV) and for the algorithm in Lin 
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(2007a), constructed in the same manner as ours (using the same diagnostic threshold method 

described in Section 2.4.2), are also in the online supplement of Bui and Apley (2018a). In each 

row of Figure 2.9, the first—last columns are diagnostic images for Figures 2.7(a—e), 

respectively. 

 

 

 

 
 

Figure 2.9. Diagnostic images of our algorithm for the defect-containing images in Figure 2.8 

using: (1st row) A-D-based statistic with w = 5, (2nd row) A-D-based statistic with w = 25, (3rd row) 

B-P-type statistic with w = 5, and (4th row) B-P-type statistic with w = 25. In each row, the first—

last columns correspond to Figures 2.7(a—e), respectively. The circled region is not a defect that 

we deliberately created, but it may indicate moderately abnormal local behavior in the fabric. 

 

In general, our algorithm has correctly highlighted all the defects that we created, much more 
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effectively than the EPWMV approach and the Lin (2007a) algorithm have. This is consistent with 

the comparison of the monitoring performances in Section 2.6.1. For our algorithm, both the A-D-

based and B-P-based statistics worked quite well for diagnostic purposes, although B-P-based 

statistic may provide more pronounced highlights of the defects than the A-D-based statistic does.  

There are some highlighted regions in the diagnostic images that do not correspond to the 

defects that we created, e.g., the circled regions in Figure 2.9. It is important to note that these are 

not false alarms in the conventional sense, because the purpose of the diagnostic stage is not to 

sound alarms. None of the highlighted regions that are not associated with the defects we created 

would have resulted in alarms in the monitoring stage for the control limits that were used for 

monitoring in Table 2.3, with the exception of the circled regions in Figure 2.9. Although we did 

not create these as defects, it appears that they are associated with moderately abnormal local 

behavior of the textile. The region circled in the diagnostic image in the bottom left corner of 

Figure 2.9 appears to have a relatively loose weave in Figure 2.8(a), and the circled region in the 

diagnostic image in the middle of the second row of Figure 2.9 is a blurry spot (also circled in 

Figure 2.8(c)) that is an artifact of our imaging system (which was not an industrial quality system) 

but that is larger and more pronounced than the typical blurs. 

2.7 Conclusions 

Stochastic textured surface data have a unique property that precludes the use of the existing 

SPC methods developed for profile data. Namely, existing profile SPC methods require a gold 

standard profile or at least a well-defined profile mean with meaningful features. On the other 

hand, most existing SPC methods applicable to stochastic textured surfaces seek to identify 

predefined features, which lack generality and are problem-specific by definition, requiring users’ 

knowledge of the defects that are likely to occur. In contrast, we have developed a more general 

approach that is intended to detect any arbitrary local deviation from the normal in-control 

statistical behavior of the stochastic textured surfaces. 
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Our approach uses any appropriate off-the-shelf supervised learning algorithm to characterize 

the normal in-control statistical behavior of the stochastic textured surfaces. Based on the residuals 

of the fitted supervised learning model, we proposed two SMSs (A-D-based and B-P-based 

statistics) to quantify the local behavior of the residuals. We then use the max of the SMSs 

computed for all pixels in an image as the individual monitoring statistic for that image. We have 

illustrated the approach with examples of simulated stochastic textured surfaces and real textile 

fabric images. Both the A-D-based and the B-P-based statistics quite successfully detected and 

revealed (via the diagnostic images) the existence of defects of various natures. We have observed 

that the B-P-based statistic provided somewhat better performance than the A-D-based statistic in 

most of the examples. 

There are a number of potential avenues to improve the performance of our approach. First, if 

the defects occur persistently across multiple images, the monitoring performance could likely be 

improved by accumulating our individual monitoring statistic Sj using an EWMA or CUSUM type 

statistic, as mentioned in Section 2.3.1. Combining multiple charts, each with a different value of 

w, may also be useful to detect a wider range of defect sizes. Furthermore, for the B-P-based 

statistic, it may be useful to use a large value of w over the interior part of the image (larger w 

typically improves the monitoring performance of the B-P-based chart) and a smaller value of w 

around the boundary of the images (because smaller w allows the SMSs to be calculated closer to 

the boundary). Alternative choices of SMS and monitoring statistic, e. g., treating each 

neighborhood of residuals as a vector and then using some multivariate monitoring statistic on the 

residual vector as the SMS, could also potentially improve the performance. Likewise, more 

complex supervised learning models (e.g., boosted trees, random forests, deep neural networks, 

etc.) may also improve the performance, albeit at the cost of an increase in computational expense. 

In fact, we have tried boosted trees and neural networks, in addition to regression trees, but were 

able to achieve only moderate improvement (in terms of CV error of the supervised learning 
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model) in our examples. This may be because our computational limitations forced us to work 

with smaller size images and/or terminate the model fitting optimization algorithm early. Finally, 

the methods in Qiu and Yandell (1997) and Qiu (1998) might be useful for removing noise-related 

black pixels in the diagnostic images. We leave these for future studies. 
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CHAPTER 3 

Global Change Monitoring for Stochastic Textured Surfaces 

3.1 Introduction 

As discussed in the Chapter 2, existing profile monitoring literature is not applicable to 

stochastic textured surfaces because they do not have a gold standard nor a well-defined, 

meaningful profile mean function. For illustration, Figures 3.1(a)—(c) show images of a textile 

material at the scales that show weave patterns. Figures 3.1(d)—(f) plot grayscale image 

realizations of the 2-D stochastic processes in Section 3.6, which resemble the surface roughness 

data. As can be seen in Figure 3.1, even if two stochastic textured surface samples have exactly 

the same nature, their images are completely different on a pixel-by-pixel basis and cannot be 

matched pixel-wise. Said another way, there are an infinite number of images that are completely 

different pixel-wise, but that share exactly the same stochastic nature. There is no meaningful gold 

standard profile for the stochastic textured surfaces in Figure 3.1, nor can one be obtained by 

alignment, transformation, or warping the image, partly because there are no well-defined features 

to align. One might naively consider taking the gold standard profile for this type of stochastic 

textured surface to be the spatial mean function averaged across a collection of images of the same 

size, but this would be an uninteresting constant function (by the stationarity property, discussed 

later) and not particularly useful for process control purposes. This distinct property of stochastic 

textured surfaces requires a different monitoring approach that is not based on the notion of a gold 

standard profile.  

Whereas the method in Chapter 2 only detects local defects, many texture-related changes are 

global in the sense that they affect the nature of the entire textured surface, although not as severely 

as the local defects considered in Chapter 2. Examples of such global changes include changes in 

the volume fraction or in the nearest neighbor dispersion of particle inclusions in material 

microstructure images, changes in orientation or thickness (or more generally, in the pattern) of 
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the textile fibers, etc. To illustrate, Figure 3.1(c) shows an image that was digitally contracted in 

the horizontal direction by 10%, relative to in-control images of the same textile material as the 

ones in Figures 3.1(a) and (b). The contracted images constitute a global change in the stochastic 

nature of the surface, by which the horizontal spacing between the fibers in the weave become 

smaller on average.  

 

 
 

Figure 3.1. Textile and simulated image samples illustrating stochastic textured surfaces and 

global changes in their nature. Panels (a) and (b) are images of two different locations on a textile 

swatch under normal and stable manufacturing conditions. Their fibers vary stochastically over 

space with no distinct geometric features other than the stochastic nature of the fiber patterns. 

Panel (c) is an image of the same textile material as in panels (a) and (b), but with the weave pattern 

contracted by 10%, which represents a global change in the stochastic nature of the surface. 

Similarly, Panels (d) and (e) are images of two realizations of the 2-D stochastic process in Section 

3.6 that resemble surface roughness data under normal behavior. Panel (f) is an image realization 

of a similar 2-D stochastic process but with parameters slightly changed from the normal ones, 

representing a global change in the surface nature. 

 

Similarly, Figure 3.1(f) shows a simulated realization (as a grayscale image) of a 2-D stochastic 

process with parameters changed slightly from those of the 2-D stochastic process that was used 
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to simulate the realizations in Figures 3.1(d) and (e). The change is manifested as a change in the 

strength and the orientation of the spatial autocorrelation. The details of these processes and their 

parameters are provided in Section 3.6. Supposing the stochastic process realizations Figures 

3.1(d) and (e) represent in-control behavior, the realization in Figure 3.1(f) is the result of a global 

change in the stochastic nature of the surface. 

In this chapter, our goal is to develop a control charting approach that monitors for general 

global changes in the nature of stochastic textured surface data. We do not assume any prior 

knowledge of the changes, nor must the changes be persistent across different images (because our 

approach is akin to a Shewhart individual chart with one charted statistic per image). As in Chapter 

2, we use a supervised learning model to implicitly characterize the joint distribution of the pixel 

values in the image, which provides an implicit characterization of the nature of the stochastic 

textured surface. Although the underlying supervised learning-based approach for characterizing 

the stochastic nature of the surface is the same, we focus on detecting a fundamentally different 

type of change than what Chapter 2 considered. The work in this chapter applies to detecting quite 

general changes that affect the entire nature of the stochastic textured surfaces but that are very 

mild in any small local region (e.g., a slight change in the weave pattern of a textile). In contrast, 

the method in Chapter 2 applies to detecting a very different type of change that is spatially-

localized, severe anomalies or defects (e.g., a small hole or tear in the fabric). The distinction 

between small but severe localized anomalies versus mild global changes in the stochastic nature 

is not just a minor distinction that requires only minor modifications in the approach. Beyond the 

common ingredient of representing the surface by a supervised learning model, the approaches for 

local versus global change detection are completely different. One major difference is that in this 

chapter we represent each surface (in both Phase I and Phase II) by its own fitted model (to 

represent the stochastic nature of each surface sample, which could change from sample to 

sample). Our approach is based on the recognition that a global change in the nature of the surface 
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corresponds to a change in the joint distribution of the pixels of the image that represents the 

surface. Because of the high-dimensionality of the problem (images have a large number of pixels), 

detecting general global changes is a challenging problem. Taking advantage of the compact 

supervised-learning-based representation of the joint distribution, we develop a monitoring 

statistic based on generalized likelihood ratio testing (GLRT) principles that measures the extent 

of the differences in the stochastic nature of the surfaces, based on the differences in their fitted 

supervised learning models. In contrast, Chapter 2 used a single model to represent the stochastic 

nature of every surface (since the stochastic nature was assumed the same for each image, aside 

from possible localized defects), and they monitored the residuals of this single model to detect 

small local defects. We view the work in this chapter and Chapter 2 as complementary tools that 

can be used in conjunction with each other, as they are designed to detect completely different 

types of changes. 

The remainder of this chapter is organized as follows. In Section 3.2, we describe how the joint 

distribution representing the spatial statistical behavior of the stochastic textured surfaces can be 

approximated via supervised learning, and we give the basic rationale behind our proposed 

approach. We develop our monitoring statistic and the procedure for constructing the control limit 

in Section 3.3. Section 3.4 illustrates and evaluates the approach with images of a real textile 

material. We compare our generic global change detection approach with feature-based 

approaches for detecting specific changes in Section 3.5. We study the change detection power of 

our approach with a simulation study in Section 3.6. Section 3.7 concludes the chapter. 

3.2 Representing the Joint Distribution and Rationale behind the Approach 

As in Section 2.1, suppose we have a sample of N greyscale images, each of which has M 

pixels. Let 𝐘𝑗 = [𝑦𝑗,1, 𝑦𝑗,2, … , 𝑦𝑗,𝑀 ]
𝑇
 (j = 1, 2, . . ., N) denote the set of ordered pixel intensities 

(following a sequence of left-to-right raster scan, moving from the top row to the bottom row of 

the image Yj) for the jth image in the sample. Dropping the image index subscript j, let 𝑓(𝐘) denote 
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the joint distribution of 𝐘, which in theory represents the complete statistical behavior of the 

surface images. Chapter 2 uses the supervised-learning-based technique to characterize the normal, 

in-control behavior of stochastic textured surface greyscale images for local defect detection in an 

SPC context. In this chapter, we also use this method to learn the joint distribution 𝑓(𝐘) of the 

image Y via the general regression model in (2.2). In addition, throughout in this chapter, we treat 

𝜀𝑖 as if it follows an independent Gaussian distribution, denoted 𝑁𝐼𝐷(0, 𝜎2), in which case 

𝑓(𝑦𝑖|𝐲
(𝑖)) is the 𝑁(𝑔(𝐲(𝑖)), 𝜎2) distribution. From this and (2.1), the joint distribution 𝑓(𝐘) of 𝐘 

is  

𝑓(𝐘) ≈ ∏ 𝑓(𝑦𝑖|𝐲
(𝑖))𝑀

𝑖=1 = ∏
1

√2𝜋𝜎
exp {−

(𝑦𝑖−𝑔(𝐲
(𝑖)))

2

2𝜎2
}𝑀

𝑖=1   

=
1

(2𝜋)𝑀/2𝜎𝑀
exp {−

∑ (𝑦𝑖−𝑔(𝐲
(𝑖)))

2
𝑀
𝑖=1

2𝜎2
}.  (3.1) 

From (3.1), we can view the joint distribution of 𝐘 as characterized by two quantities: (i) the 

model 𝑔(∙) for predicting a pixel value as a function of its neighborhood pixel values and (ii) the 

prediction error variance 𝜎2. Both quantities can be estimated by fitting a supervised learning 

model to the image 𝐘. To accomplish this, we first construct a training data set as mentioned briefly 

above: The ith row of this data set consists of the response variable yi (in the first column) and the 

predictor variables 𝐲(𝑖) (in the remaining columns), corresponding to a particular response pixel i 

in the image. Similar to Chapter 2, we define the neighborhood by a parameter l, which is the 

number of pixels to the right of, to the left of, and above the response pixel, corresponding to the 

left-right then up-down raster scan order. As an example, a neighborhood with l = 2 is shown in 

Figure 2.2. The value of l should be chosen large enough to include all important predictor 

variables, i.e., so that the MRF locality assumption holds, which can be accomplished via CV. It 

should be noted that some pixels near the boundary of the image (e.g., the pixels in the first row 

of the image in Figure 2.2) will have missing values for 𝐲(𝑖). We exclude any such pixels with 
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incomplete neighborhoods from the training data. Hereafter let M denote the number of training 

rows, i.e., the number of pixels i in the image having complete neighborhoods 𝐲(𝑖).  

The rationale behind our approach for detecting global changes in the nature of the stochastic 

textured surfaces is as follow. Based on the preceding arguments, changes in the nature of the 

surfaces are equivalent to changes in the joint distribution 𝑓(𝐘), which in turn is equivalent to 

changes in the pair {𝑔(∙), 𝜎2} that represents the joint distribution. Consequently, we fit a 

supervised learning model to an in-control image (or a set of in-control images) to obtain 

{𝑔0(∙), 𝜎0
2}, where the subscript 0 indicates that the supervised learning model and error variance 

characterize the in-control nature. If 𝐘𝑗 denotes the jth newly manufactured stochastic textured 

surface sample (i.e., the jth "on-line" image) to be monitored, we fit a supervised learning model 

to 𝐘𝑗 to obtain {𝑔̂𝑗(∙), 𝜎̂𝑗
2}. Then, in a manner to be developed and explained shortly, we compare 

the joint distribution implicitly represented by {𝑔̂𝑗(∙), 𝜎̂𝑗
2} to the corresponding in-control 

distribution represented by {𝑔0(∙), 𝜎0
2}. If the resulting difference between the distributions is large 

enough, this is an indication that the stochastic nature of image 𝐘𝑗 has changed from its in-control 

state. How to compare the implicitly represented joint distributions and quantitatively measure 

their differences, to serve as a control chart monitoring statistic, is nontrivial. Section 3.3 describes 

our proposed approach for accomplishing this. 

Remark 1: A pixel will generally still be dependent on the pixels after it, even conditioned on 

the pixels before it. This is analogous to what happens in ARMA time series modeling, in which 

one predicts an observation yi given the observations before it. This is done even though yi is not 

conditionally independent of the observations after it, given the observations before it. In fact, 

including the observations after yi will further improve its prediction (although it would no longer 

be a future prediction). In the supervised learning model for predicting yi, we could have included 

the pixels after yi as additional predictors, in addition to the pixels before it. We tried this approach 

but found that the overall monitoring performance of the current approach was better, even though 
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including predictors after yi gave smaller prediction errors. We suspect that it may have to do with 

the residual spatial correlation being smaller when the neighborhood of predictor pixels are the 

pixels before, but not after, yi. Going back to the ARMA time series analogy, if we predict yi given 

the observations before it (and use the correct ARMA model), then the residuals are temporally 

uncorrelated. However, if we predict yi given the observations both before and after it, then the 

residuals are no longer temporally uncorrelated, even though they have smaller variance than when 

only using the observations before yi. In addition, the current approach is more conceptually 

consistent with the factorization in Section 2.2. There is no analogous factorization when the 

conditional distributions are conditioned on all other pixels both before and after yi, although there 

is a type of Gibbs sampling interpretation. 

3.3 Control Chart Construction 

In this section, we propose a control chart for monitoring for general global changes in the 

nature of stochastic textured surfaces. In Section 3.1.1, we develop the monitoring statistic to 

measure deviations between the implicitly characterized joint distributions for each on-line image 

𝐘𝑗 versus for in-control images, based on GLRT principles. In Section 3.1.2, we discuss the 

procedure for selecting the control limit, which is based on the monitoring statistics computed for 

a set of in-control Phase I images. 

3.3.1 A GLRT-based Monitoring Statistic 

Recall that the underlying joint distribution for normal, in-control stochastic textured surfaces 

can be represented by {𝑔0(∙), 𝜎0
2} based on (3.1). Similarly, the joint distribution for Yj can be 

represented by the analogous quantity {𝑔𝑗(∙), 𝜎𝑗
2} for the jth image, an estimate of which is the 

model {𝑔̂𝑗(∙), 𝜎̂𝑗
2} fitted to Yj. Note that, by definition, a global change causes a deviation of 

{𝑔𝑗(∙), 𝜎𝑗
2} from {𝑔0(∙), 𝜎0

2}. Thus, we can think of the monitoring goal as testing the following 

hypotheses for each on-line image j (j = 1, 2, ...): 
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H0:  𝑔𝑗(∙) = 𝑔0(∙) and 𝜎𝑗 = 𝜎0 

H1:  𝑔𝑗(∙) ≠ 𝑔0(∙) or 𝜎𝑗 ≠ 𝜎0  (3.2) 

Throughout, to simplify the development, we treat the in-control distribution (i.e., {𝑔0(∙), 𝜎0
2}) 

as known, although it is estimated/fitted to an in-control training image(s). Treating the in-control 

distribution as known is common in other control charting contexts and may be reasonable if the 

size of the in-control image sample(s) to which the supervised learning model 𝑔0(∙) is fitted is 

large. Regardless, based on how the control limit is calculated empirically in Section 3.1.2, any 

uncertainty in 𝑔0(∙) is automatically and appropriately reflected in the control limit. By virtue of 

this, users should make sure that the in-control training image(s) is representative of the surface 

under normal and stable manufacturing conditions. Note that the training sample can be as large 

or as small as desired, and can be comprised of pixels from a number of different images. 

From (3.1), for a given {𝑔(∙), 𝜎2}, the log-likelihood for 𝐘𝑗 is 

𝑙(𝐘𝑗; 𝑔(∙), 𝜎
2) = −

𝑀𝑗

2
log(2π) −

𝑀𝑗

2
log 𝜎2 −

∑ (𝑦𝑗,𝑖−𝑔(𝐲𝑗
(𝑖)
))
2𝑀𝑗

𝑖=1

2𝜎2
, (3.3) 

where Mj is the number of pixels in 𝐘𝑗 having a full neighborhood. In (3.3) we have included the 

image index subscript j, so that 𝑦𝑗,𝑖 and 𝐲𝑗
(𝑖)

 denote the ith pixel of image 𝐘𝑗 and the set of 

neighborhood pixels for 𝑦𝑗,𝑖, respectively, and 𝑔(𝐲𝑗
(𝑖)
) denotes the predicted value for 𝑦𝑗,𝑖 using 

the supervised learning model 𝑔(∙). Thus, the log-likelihood for 𝐘𝑗 under H0 is 

𝑙(𝐘𝑗; 𝑔0(∙), 𝜎0
2) = −

𝑀𝑗

2
log(2π) −

𝑀𝑗

2
log 𝜎0

2 −
∑ (𝑦𝑗,𝑖−𝑔0(𝐲𝑗

(𝑖)
))
2𝑀𝑗

𝑖=1

2𝜎0
2 . (3.4) 

Assuming the model fitting criterion for the supervised learner is nonlinear least squares (with 

some complexity or regularization penalties), we can view 𝑔̂𝑗(∙) as the value of 𝑔(∙) that 

maximizes the log-likelihood (3.3) for 𝐘𝑗 under H1. Define the error sums of squares for 𝑔0(∙) and 

for 𝑔̂𝑗(∙) applied to 𝐘𝑗 as 𝑆𝑆𝐸0,𝑗 = ∑ [𝑦𝑗,𝑖 − 𝑔0(𝐲𝑗
(𝑖))]

2𝑀𝑗

𝑖=1
 and 𝑆𝑆𝐸𝑗,𝑗 = ∑ [𝑦𝑗,𝑖 − 𝑔̂𝑗(𝐲𝑗

(𝑖))]
2𝑀𝑗

𝑖=1
, 
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respectively. In (3.3), if we set 𝑔(∙) = 𝑔̂𝑗(∙) and set 𝜎2 as its MLE  

𝜎̂𝑗
2 =

𝑆𝑆𝐸𝑗,𝑗

𝑀𝑗
  (3.5) 

under H1, then the maximized log-likelihood under H1 is  

𝑙(𝐘𝑗; 𝑔̂𝑗(∙), 𝜎̂𝑗
2) = −

𝑀𝑗

2
log(2π) −

𝑀𝑗

2
log 𝜎̂𝑗

2 −
∑ (𝑦𝑗,𝑖−𝑔̂𝑗(𝐲𝑗

(𝑖)
))
2𝑀𝑗

𝑖=1

2𝜎̂𝑗
2 . (3.6) 

Using (3.4) and (3.6), our proposed GLRT-based monitoring statistic is 

𝐿𝑗 = −
2

𝑀𝑗
(𝑙(𝐘𝑗; 𝑔0(∙), 𝜎0

2) − 𝑙(𝐘𝑗; 𝑔̂𝑗(∙), 𝜎̂𝑗
2)) 

 = log 𝜎0
2 +

𝑆𝑆𝐸0,𝑗

𝑀𝑗𝜎0
2 − log 𝜎̂𝑗

2 −
𝑆𝑆𝐸𝑗,𝑗

𝑀𝑗𝜎̂𝑗
2   

 = log
𝜎0
2

𝜎̂𝑗
2 +

𝜎̂0,𝑗
2

𝜎0
2 − 1, (3.7) 

where we have denoted 𝜎̂0,𝑗
2 = 𝑀𝑗

−1𝑆𝑆𝐸0,𝑗 in analogy with (3.5).  

We refer to (3.7) as the GLRT monitoring statistic. By the nature of GLRTs, the control chart 

is one-sided and sounds an alarm that the nature of the surface has changed if 𝐿𝑗 exceeds some 

(upper) control limit. 

Remark 2: If the nature of the jth image has not changed from the in-control state, then we 

would expect 𝜎̂𝑗
2 ≈ 𝜎̂0,𝑗

2 ≈ 𝜎0
2, so that 𝐿𝑗 ≈ 0. Conversely, if the nature of the jth image does 

change from the in-control state, then we expect a larger 𝐿𝑗. This is easier to see if we take a first-

order Taylor approximation of the first term in (3.7) about 𝜎̂𝑗
2 ≈ 𝜎0

2, which gives  

𝐿𝑗 = log
𝜎0
2

𝜎̂𝑗
2 +

𝜎̂0,𝑗
2

𝜎0
2 − 1 ≈ −(

𝜎̂𝑗
2−𝜎0

2

𝜎0
2 ) +

𝜎̂0,𝑗
2

𝜎0
2 − 1 =

𝜎̂0,𝑗
2 −𝜎̂𝑗

2

𝜎0
2 .  (3.8) 

If the nature of the image 𝐘𝑗 changes from the in-control state, then we would expect the new 

model 𝑔̂𝑗(∙) to fit 𝐘𝑗 better than the in-control model 𝑔0(∙). By definition, this means that 𝜎̂0,𝑗
2 >

𝜎̂𝑗
2, in which case (3.8) implies that 𝐿𝑗 will increase. 
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Remark 3: In deriving the GLRT monitoring statistic (3.7), we have represented the joint 

distribution by the pair {𝑔(∙), 𝜎2 }, and the GLRT is implicitly designed to detect changes in 𝑔(∙) 

and/or 𝜎2. If, instead, we wanted to test only for changes in 𝑔(∙), assuming that 𝜎2 does not change, 

it is straightforward to derive the resulting GLRT statistic as 𝜎0
−2(𝜎̂0,𝑗

2 − 𝜎̂𝑗
2), which is the same as 

the Taylor approximation (3.8) of 𝐿𝑗. We prefer the 𝐿𝑗 GLRT statistic of (3.7) because it is more 

general in that it also detects changes in 𝜎2 that are not associated with a change in 𝑔(∙). This 

includes both increases and decreases in 𝜎2. To see this, suppose 𝜎2 changes but 𝑔(∙) does not. 

Because 𝑔(∙) does not change, we would expect 𝜎̂𝑗
2 ≈ 𝜎̂0,𝑗

2 ≈ 𝜎2 for sufficiently large Mj, in which 

case (3.7) becomes 𝐿𝑗 ≈ log
𝜎0
2

𝜎2
+
𝜎2

𝜎0
2 − 1. For a fixed 𝜎0

2, this achieves its minimum when 𝜎2 = 𝜎0
2 

and monotonically increases as |𝜎2 − 𝜎0
2| increases. 

Remark 4: The assumption of normal iid residuals will often (perhaps usually) be violated, 

but we view this assumption as only a convenient means to an end. Namely, the GLRT monitoring 

statistic (3.7) derived under the normal iid assumption has a conceptually appealing interpretation 

involving a comparison of the prediction error variances for the different models being compared. 

The conceptual appeal of the statistic holds even if the residuals are not normal or iid. This view 

is prevalent in the many other contexts across the vast literature in which GLRTs are derived under 

the normality and/or iid assumptions. Specifically, it often results in a test statistic whose form is 

appealing even if the normal iid assumption is violated. As will be demonstrated shortly with a 

real textile example, our monitoring approach based on the normal iid assumption still performed 

quite well even though this assumption did not strictly hold. Again, we think the reason is partly 

because the monitoring statistic (3.7) is intuitively appealing even if the residuals are not normal 

and iid; and partly because the control limits are calculated empirically as described in the next 

section, as opposed to being derived theoretically based on the normal iid assumption. 

3.3.2 Establishing the (Upper) Control Limit for the GLRT 

To establish the control limit for our monitoring statistic (3.7), we need its distribution. By 
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Wilks's theorem, a GLRT statistic under the null hypothesis generally has an asymptotic chi-

squared distribution under certain assumptions and as the number of observations goes to infinity. 

However, our GLRT statistic (3.7) is based on approximations of the joint distributions via some 

nonparametric supervised learning model, which is also approximately learned from the data, in 

addition to being based on the normal iid assumption. Attempting to derive some theoretical 

distribution for the GLRT statistic to set the control limits would be highly problematic, because 

the control limits could be far off when the assumptions are violated. To illustrate how the 

assumptions are likely to be violated, Figure 3.2(a) shows a histogram of residuals from the textile 

example in Section 3.4. The residual distribution is clearly far from the normal distribution 

indicated by the dashed curve. Likewise, Figure 3.2(b) plots a 2D image of these residuals, which 

clearly shows spatial correlation between the residuals. Because of issues like these and the 

complexity underlying our GLRT statistic, it is doubtful that any useful analytical approximations 

to its distribution could be derived.  

 

 

Figure 3.2. (a) Histogram of and (b) image of the residuals for a sample in the textile example of 

Section 3.4. The dashed curve in Panel (a) is the normal probability density function with mean 

and standard deviation the same as for the residuals. 

 

In light of this, we recommend establishing the control limits for 𝐿𝑗 based on its empirical 
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distribution over a set of Phase I images. One would first fit the supervised learning model 

{𝑔0(∙), 𝜎0
2} to a sufficiently large training image or a set of training images that are known to be 

in-control. Then, for a set of additional Phase I images {𝐘𝑗: 𝑗 = 1, 2, . . . , 𝑁} that are believed to be 

in control, the statistics {𝐿𝑗: 𝑗 = 1, 2, . . . , 𝑁} are calculated via (3.7), which requires fitting the 

supervised learning model {𝑔̂𝑗(∙), 𝜎̂𝑗
2} for each of the N images.  

Let α denote the desired false alarm rate of the chart. If the Phase I sample size N is large 

enough, then one can simply use the upper α quantile of the empirical distribution of 

{𝐿𝑗: 𝑗 = 1, 2, . . . , 𝑁} as the control limit. However, if the Phase I N is too small (e.g., 𝑁 < 𝛼−1), 

then we recommend the following parametric approximation to the empirical distribution of 

{𝐿𝑗: 𝑗 = 1, 2, . . . , 𝑁}. The approximation assumes that 𝐿 = 𝑎 + 𝑏𝜒𝑘
2, where 𝜒𝑘

2 denotes a chi-square 

random variable with k d.f., and a and b are constants. The constants a and b and the d.f. k are 

estimated by equating the first three sample moments of {𝐿𝑗: 𝑗 = 1, 2, . . . , 𝑁} with the theoretical 

moments of 𝑎 + 𝑏𝜒𝑘
2.  

Let 𝜅1 = 𝑎 + 𝑏𝑘, 𝜅2 = 2𝑏
2𝑘, and 𝜅3 = 8𝑏3𝑘 denote the first three central moments of 𝑎 +

𝑏𝜒𝑘
2, and let 𝜅̂1 = 𝑁

−1∑ 𝐿𝑗
𝑁
𝑗=1 , 𝜅̂2 = 𝑁−1∑ (𝐿𝑗 − 𝜅̂1)

2𝑁
𝑗=1 , and 𝜅̂3 = 𝑁

−1∑ (𝐿𝑗 − 𝜅̂1)
3𝑁

𝑗=1  denote 

the corresponding empirical moments of {𝐿𝑗: 𝑗 = 1, 2, . . . , 𝑁}. Equating the moments gives 

{
 
 

 
 𝑎 = 𝜅̂1 −

2𝜅̂2
2

𝜅̂3
⁄

𝑏 =
𝜅̂3

4𝜅̂2
⁄           

𝑘 =
8𝜅̂2

3

𝜅̂3
2⁄           

  (3.9) 

If this approximation is used, the control limit can be set at 𝑎 + 𝑏𝜒𝑘,𝛼
2 , where 𝜒𝑘,𝛼

2  denotes the 

upper 𝛼 quantile of the chi-squared distribution with 𝑘 d.f. 

3.4 Examples in a Textile Application 

3.4.1 Data description and fitting the in-control model 

Our Phase I data in this example is a set of 350 real textile fabric images, each of which is 
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500500 pixels, taken from non-overlapping areas on the same fabric roll to reduce the possibility 

of unknown global change being present in the sample. These images passed the test of stationarity 

for textured images provided in the LS2Wstat R package (Taylor and Nunes 2014). For details of 

this test, see Taylor et al. (2014). We have released this data set in the R data package textile2 (Bui 

and Apley 2017b). The texture of this fabric is quite complex with random thicknesses of and 

distances between fiber strands, as shown in the images in Figures 3.1(a) and (b). Because the 

lighting conditions in our laboratory setup may have varied slightly from image to image, to 

diminish these effects we standardize all images by subtracting from each pixel the average 

greyscale value for all pixels in that image, and then dividing by the greyscale standard deviation 

for all pixels in the image.  

Note that the textile images in this example are not isotropic, because the stochastic behaviors 

along the horizontal, vertical, and diagonal directions are all different. Hence, the images should 

be aligned/registered as best as they can by a rotation as a first step. Otherwise, the stochastic 

nature of the two misaligned samples will be different even if properly aligned versions share the 

same nature. Failing to align the images via a rotation would result in either an overly wide control 

limit (if Phase I images differ from sample-to-sample because of alignment variation) or excessive 

nuisance alarms (if only Phase II images are misaligned). Alignment for the textile samples can be 

accomplished approximately, because the threads are approximately horizontally and vertically 

oriented, and this was done as a pre-processing step. It should be noted that, because of their 

stochastic nature with no clear and distinct features, the image samples cannot be precisely aligned 

and can only be aligned in an approximate sense. 

We used one of the 350 images, the one shown Figure 3.1(a), as the training image to which 

we fit 𝑔0(∙). The error variance 𝜎0
2 was taken to be its MLE. We use regression trees as the 

supervised learning model in this chapter because it is relatively fast to fit (note that we need to fit 

a new 𝑔̂𝑗(∙) for each image j). The neighborhood size l = 15 was selected via CV. The best values 
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for any complexity parameters of 𝑔0 (which for trees influences the number of nodes in the fitted 

trees) were also chosen by CV. In the following, Section 3.4.2 describes the Phase I analysis to 

find the control limit, and Section 3.4.3 implements the GLRT control charts using this control 

limit on image samples containing three types of global changes. 

3.4.2 Phase I Control Limit Estimation 

We performed a Phase I analysis to estimate the control limit using the remaining N = 349 

images. For every image, we fit a regression tree 𝑔̂𝑗(∙) to the data set constructed from the image 

with the same neighborhood size l = 15 that was chosen by CV when fitting 𝑔̂0(∙) in Section 3.4.1. 

To avoid performing CV for every image, which is computational expensive we fixed all 

complexity parameters for each 𝑔̂𝑗(∙) to be the same as for 𝑔̂0(∙). In other words, we only grew 

the regression trees 𝑔̂𝑗(∙) until they reached the complexity level of 𝑔̂0(∙). After fitting 𝑔̂𝑗(∙), the 

GLRT statistic for each image was computed via (3.7). After obtaining the GLRT statistics for all 

349 Phase I images, for demonstration, we used the transformed chi-square approximation 

described in Section 3.1.2 to approximate the sampling distribution of {𝐿𝑗: 𝑗 = 1, 2, . . . , 349}. The 

parameters via (3.9) were 𝑎 = 0.0529, 𝑏 = 0.0035, and 𝑘 = 15.58 (non-integer d.f. are allowed 

in our software) which resulted in a trial control limit of 0.1762 using a false alarm rate α = 0.0027. 

Figure 3.3 shows the Phase I control chart for the 349 L-statistics using this trial control limit. 

The trial control chart signals two observations (circled in Figure 3.3). To investigate these 

alarms, Figure 3.4 plots the images corresponding to these two signals (Figures 3.3(a) and (b)) 

together with four other representative images that did not signal (Figures 3.3(c)—(f)). The images 

in Figures 3.3(a) and (b) correspond to observation #268, which has the largest GLRT statistic, 

and observation #44, which has the second largest statistic, respectively. The fiber strands in Figure 

3.4(a) appear to be much curvier than those of the images that did not signal in Figures 3.3(c)—

(f). The same is true in Figure 3.4(b) but to a lesser extent. In fact, these two images were physically 

adjacent on the same fabric swatch, and this part of the swatch was distorted during the course of 
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our image acquisition. Hence, we removed these images from the set of Phase I images when 

recalculating the control limit. 

 
 

Figure 3.3. Phase I analysis for the textile example using the GLRT monitoring statistic. The 

vertical axis is the GLRT statistic (3.7) computed for the 349 Phase I images, and the horizontal 

axis is the image index j. The trial control limit (dashed line) was constructed using the transformed 

chi-square approximation with α = 0.0027. Observations #44 and #268 (circled) fell above the trial 

control limit. 

 

After removing the two images that signaled in Figure 3.3, the remaining 347 Phase I images 

were used to find the final control limit. For this, we used the empirical distribution 

{𝐿𝑗: 𝑗 = 1, 2, . . . , 347} without the chi-square approximation. The reason we did not use the chi-

square approximation is to allow a more common basis for the comparisons in Section 3.5, by 

using the nonparametric empirical distributions to select the control limits for both algorithms. The 

final GLRT control limit that we will use in Phase II monitoring in the next section is 0.1573. 

3.4.3 Phase II monitoring 

In this section, we monitor three sets of Phase II images containing three different types of 

global changes. We created the changes by digitally modifying a number of images that were 

originally in-control, coming from the same textile material that was used in Phase I. In the first 

and second sets, the changes in the Phase II images were created by digitally contracting in-control 

images in the vertical and horizontal directions, respectively. For each direction, we used four 

levels of contraction (5%, 10%, 15%, and 20%) and created 25 out-of-control images for each 
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level. Figure 3.1(c) shows an image with a horizontal contraction level of 10%, which is quite 

difficult to visually distinguish from the in-control images in Figures 3.1(a) and (b). 

 

 

Figure 3.4. Investigating the two signals in the trial control chart of Figure 3.3: (a) image #268, 

which has the largest GLRT statistic, (b) image #44, which has the second largest statistic, and 

(c—f) four representative images whose statistics fell below the control limit. The fiber strands in 

panel (a), and to a lesser extent in panel (b) are curvier than in panels (c—f), which was the cause 

of the signals. 

 

We refer to the global change that we created in the third set as "matchbox" change, for which 

Figure 3.5 provides a stylized illustration. If the original image is depicted in Figure 3.5(a), Figure 

3.5(b) depicts (an exaggerated version of) the image after the matchbox transformation. After 
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matchboxing, the vertical lines remain vertical, whereas the horizontal lines are rotated (as how an 

empty matchbox collapses). We digitally created 143 out-of-control Phase II images having such 

a matchbox change, and all 143 images were given the same level of matchboxing. Figures 3.5(a) 

and (b) show an in-control image and its matchboxed version, respectively. Only a small level of 

matchboxing was introduced, so that the change is virtually indistinguishable by the naked eye 

(see Figure 3.6). 

 

Figure 3.5. Stylized illustration of the matchbox change created for the third set of out-of-control 

images (the four cells represent four pixels): (a) original in-control image, and (b) image after the 

matchbox change.  

 

 
 

Figure 3.6. Illustration of the matchbox change in Figure 3.5 applied to an image, which is small 

enough to be virtually visually unrecognizable: (a) original in-control image, and (b) the same 

image in panel (a) but after adding the matchbox change. 

 

The top left and middle left panels of Figure 3.7 show the monitoring results of our algorithm 

for the 100 Phase II images containing the vertical and horizontal contraction changes, 

respectively. For reference, they also show the GLRT statistics for some of the Phase I images, 

which are the points to the left of the vertical line at index j = 1. For 𝑗 ≥ 1, the Phase II images are 

ordered in terms of decreasing level of contraction, and the amount of contraction (20%, 15%, 
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10%, and 5%) is indicated on the figure. For both the horizontal and vertical contractions, our 

algorithm consistently signaled individual observations with contraction levels of about 15% or 

greater. For lower contraction levels, even though the GLRT statistics often fall below the control 

limit, they mostly lie above the center line of the control chart (indicated by the horizontal solid 

line). Hence, if such changes were persistent across fabric samples (e.g., caused by a persistent 

production fault), an EWMA- or CUSUM-type chart on the GLRT statistic could likely 

accumulate the information across the image samples and detect the changes. The bottom left panel 

of Figure 3.7 shows the monitoring results of our algorithm for the matchbox change example, 

which is quite remarkable. Almost every Phase II image containing the matchbox changes caused 

an alarm. Overall, our algorithm performance is quite impressive considering that it does not 

incorporate any prior knowledge of the nature of the changes. 

3.5 Generic versus Pattern-Specific Monitoring 

As previously discussed and demonstrated in the examples in Section 3.4, our approach is 

completely generic in that it can detect general changes in the nature of the stochastic textured 

surfaces, and does not require any prior knowledge of the nature of the changes in order to detect 

them. To illustrate the benefits of being able to detect general changes without advance knowledge 

of what the changes are, this section compares our approach with a feature-based monitoring 

algorithm that is designed to detect a specific pattern of change but that fails to detect changes that 

are not what the algorithm was designed to detect. We use the same textile example as in Section 

3.4. 
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Figure 3.7. Monitoring results for our algorithm (left panels) and for comparison the FFT feature-

based algorithm (right panels) for textile examples containing: (top panels) vertical contraction 

changes, (middle panels) horizontal contraction changes, and (bottom panels) matchbox changes. 

The vertical line in each panel at index j = 1 separates the Phase II images (𝑗 ≥ 1) from some Phase 

I images 𝑗 < 1 for comparison. The other vertical lines (at indices j = 25, 50, 75, and 100) in the 

top and middle panels group the Phase II images having the same level of contraction, which is 

indicated by the percentage number in each group. In all panels, the control limit(s) are the 

horizontal dashed lines, and the center line is the horizontal solid line. 
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Suppose that we knew in advance that the vertical contraction changes might occur and wanted 

to design a feature-based algorithm to detect this specific change. For this, we considered the 

following monitoring algorithm based on a 1-D fast Fourier transforms (FFT) algorithm, which 

we subsequently refer to as the FFT algorithm. We first perform a 1-D FFT for each column of an 

image, resulting in an FFT matrix. In the FFT matrix, each row corresponds to a frequency, and 

the values in that row represent the magnitudes of the corresponding frequency component for 

each column. We then take the row averages of the FFT matrix, which represent the average 

magnitudes of the different frequency components in the vertical direction. Finally, as our feature-

based FFT monitoring statistic, we use the frequency corresponding to the first peak. We denote 

this statistic for image j by 𝑉𝑗. Figure 3.8 plots 𝑉𝑗 for an in-control image of size 500x500 in the 

example in Section 3.4. Because of the semi-periodic nature of the fibers, the frequency location 

for the first peak is closely related to the fiber spacing in the vertical direction, and the subsequent 

peaks are the higher harmonics. Consequently, monitoring 𝑉𝑗 should allow the vertical contractions 

of the images to be detected. 

 

 
Figure 3.8. Vertical frequency spectrum for an in-control image of size 500x500 illustrating the 

rationale behind the feature-based FFT algorithm.  The vertical axis is the average magnitude 

(averaged horizontally across the image) of the corresponding frequency component in the vertical 

direction. The feature-based monitoring statistic is the frequency corresponding to the first peak 

with positive frequency. 
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We computed the feature-based FFT monitoring statistic 𝑉𝑗 for the 349 Phase I images in 

Section 3.4.1. The values of 𝑉𝑗 for the two Phase I images that were out-of-control for the GLRT 

statistic in Section 3.4.2 were quite close to the center line for the 𝑉𝑗 chart and did not signal. Thus, 

the feature-based 𝑉𝑗 chart failed to detect the abnormal behavior of these two images in the Phase 

I sample, as this particular abnormal behavior (see Figure 3.4 and the surrounding discussion) 

differed from the specific vertical contraction changes that the feature-based method was designed 

to detect.  

The results are similar for Phase II monitoring. Based on the empirical distributions of the 𝑉𝑗 

statistic from the Phase I images, we set the control limits for the 𝑉𝑗 chart at the upper and lower 

α/2 quantiles of its empirical distributions with the same α that we used for the GLRT chart in the 

examples in Section 3.4. The right panels of Figure 3.7 show the monitoring results of the 𝑉𝑗 chart 

for the same three sets of Phase II images that we considered in Section 3.4.3. In the top panel, for 

which the image contraction changes are in the vertical direction, the 𝑉𝑗 chart detects the changes 

very well and somewhat better than the GLRT chart, although the GLRT chart still detected the 

vertical contractions quite effectively. This is understandable, because the feature-based 𝑉𝑗 chart 

was specifically designed to detect vertical contractions, whereas the GLRT chart was designed to 

detect very general changes.  

However, the results are completely different in the middle and bottom panels of Figure 3.7, 

for which the image changes were not the specific changes that the 𝑉𝑗 chart was designed to detect. 

The 𝑉𝑗 chart completely fails to detect these changes, for both the horizontal contractions (middle 

panel) and the matchbox changes (bottom panel). These examples demonstrate the drawback of 

using a feature-based monitoring algorithm designed to detect only a specific type of change. In 

contrast, our GLRT algorithm can detect very general changes in the stochastic nature of the 

textured surfaces without requiring any prior knowledge of the changes. 
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3.6 Simulation Study 

This section studies the monitoring power of our approach via a Monte Carlo simulation 

example. Let y(i, k) denote the image pixel intensity at pixel location (i, k) where i and k the row 

and column indices, respectively. Each pixel in the simulated images was generated via the spatial 

autoregressive model  

𝑦(𝑖, 𝑘) = 𝜙1𝑦(𝑖 − 1, 𝑘) + 𝜙2𝑦(𝑖, 𝑘 − 1) + 𝜀(𝑖, 𝑘) (3.10) 

where ε is a zero-mean Gaussian white noise. Note that the values of 𝜙1 and 𝜙2 determine the 

nature of the simulated images. For plotting purposes, all generated processes were 

translated/rescaled to the interval [0, 255] to acquire the respective greyscale images. Although 

not required, all simulated images have the same size of 250×250 pixels. We also subsequently 

standardized all the images as explained in Section 3.4 before applying our algorithm.   

For each Monte Carlo replicate, we conducted the following tasks. First, we generated an in-

control training image for fitting 𝑔̂0(∙) and another N = 1000 in-control images to establish the 

control limit. We used 𝜙1 = 0.6 and 𝜙2 = 0.35 for the in-control process. For example, Figures 

3.1(d) and (e) show two image realizations of this in-control process. Out-of-control processes 

were represented by using parameter values other than these. To study the monitoring power of 

our approach, we used two mildly out-of-control processes for generating Phase II images. For the 

first out-of-control process, 𝜙1 and 𝜙2 were reduced by 2% from the in-control values, i.e., 𝜙1 =

0.6 × 0.98 = 0.588 and 𝜙2 = 0.35 × 0.98 = 0.343. Figure 3.1(f) shows an image realization of 

this out-of-control process, which looks quite similar to the in-control images in Figures 3.1(d) 

and (e). Similarly, for the second out-of-control process, 𝜙1 and 𝜙2 were reduced by 5% from the 

in-control values. We generated 100 Phase II image samples for each out-of-control process. 

Similar to Section 3.4, we used a regression tree as the supervised learning model for faster model 

fitting. It is interesting to note that a neighborhood size of l = 1 was obtained via CV, and this 

value corresponds to the correct value according to Eq. (3.10). 
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Table 3.1 reports the average power across 10 Monte Carlo replicates for our approach. We 

used a small number of replicates because each replicate was time-consuming and because the 

detection power was large enough that 10 replicates were sufficient to draw the below conclusions, 

considering that there were 100 Phase II images in each replicate. Here we used the empirical 

distribution of the GLRT statistics computed for the 1000 Phase I images to establish the control 

limit corresponding to a false alarm rate of 0.003. That is, we set the control limit so that three out 

of 1000 Phase I images had a GLRT statistic beyond it. Remarkably, Table 3.1 shows that our 

algorithm correctly signaled almost all out-of-control Phase II images, even the ones with the very 

mild 2% change in the parameters.  

 

Table 3.1. Average detection power for the simulation example using 𝛼 = 0.003 

𝜙1 and 𝜙2 being reduced by  Power 

2%   0.997  

5%   1.000  

 

To give an alternative picture of the detection power, Figure 3.9 shows boxplots of 

{𝐿𝑟,𝑗 𝑈𝐶𝐿𝑟⁄ : 𝑟 = 1, 2, … ,10; 𝑗 = 1, 2, … ,100}, where 𝐿𝑟,𝑗 is the GLRT statistic of the jth Phase II 

image in the rth replicate, and UCLr is the upper control limit in the rth replicate. Note that 

𝐿𝑟,𝑗 𝑈𝐶𝐿𝑟⁄ = 2.0 (for example) means that the GLRT statistic of the jth Phase II image in the rth 

replicate exceeded the upper limit in that replicate by a factor of 2.0. Table 3.1 and Figure 3.9 

demonstrate that our algorithm can detect the relatively small changes in this example with high 

probability. 

3.7 Conclusions 

Stochastic textured surface data do not have gold standards, which renders existing profile SPC 

algorithms largely inapplicable. The existing image monitoring techniques that could be applied 

to textured surface monitoring are highly feature-based and problem-specific. Chapter 2 developed 

a more general stochastic textured surface monitoring approach that does not require prior 
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knowledge of the types of defects to be detected; however, this method is specifically designed for 

monitoring local defects that constitute changes in some spatially localized area of the stochastic 

textured surfaces. In this chapter, we develop a very generic monitoring approach for detecting 

general global changes in the stochastic nature of the textured surfaces. We used supervised 

learning to implicitly estimate and characterize the joint distributions that represent the statistical 

behavior of the stochastic textured surfaces. Based on this characterization of the joint distribution, 

we developed a monitoring statistic based on GLRT principles to detect general changes in the 

joint distribution, which is equivalent to detecting general changes in the nature of the stochastic 

textured surfaces.  

 

 

Figure 3.9. Boxplots of {𝐿𝑟,𝑗 𝑈𝐶𝐿𝑟⁄ : 𝑟 = 1, 2, … ,10; 𝑗 = 1, 2, … ,100}, where 𝐿𝑟,𝑗 is the GLRT 

statistic of the jth Phase II image in the rth replicate, and UCLr is the upper control limit in the rth 

replicate. 

 

We demonstrate the effectiveness of the method using a set of real textile fabric images and a 

set of simulated images, for which our algorithm successfully detected the global changes without 

any advance knowledge of the nature of the changes. We also compared our approach to a feature-

based algorithm designed to detect specific changes (vertical contractions) in the images for the 

real textile example, and we showed that our general approach is far superior at detecting changes 

that differ from the specific ones that the feature-based method was designed to detect. Moreover, 
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for the specific changes for which the feature-based algorithm was designed, the detection 

performance of our algorithm was not too far below that of the feature-based algorithm, which we 

view as remarkable considering that our algorithm can detect general global changes and was not 

designed for any specific changes. Finally, our approach does not require the global changes to be 

persistent, because our monitoring statistic 𝐿𝑗 is associated with each individual image j, in the 

spirit of Shewhart individual control charts. However, for situations in which the changes are 

persistent, we expect that the monitoring performance could be improved by accumulating 

information across multiple images using EWMA- or CUSUM-type concepts. 

We have focused on sounding an alarm (change detection), as opposed to diagnosing the nature 

of the change. Diagnosing which image(s) experienced a change is quite straightforward: Since 

our algorithm has one statistic for each image, we can simply look at which images had statistics 

that exceeded or were close to the control limit. For example, the left panel of Figure 3.7 shows 

that the contraction change occurred abruptly and then gradually decreased in magnitude, and the 

matchbox change occurred abruptly and then maintained its magnitude across the set of Phase II 

samples. Diagnosing the nature of the global change in the stochastic behavior (e.g., that the textile 

fiber spacing is larger than normal in the horizontal direction) is more challenging than diagnosing 

the temporal evolution of the change. This would be very useful, however, as understanding the 

nature of the change would help in identifying the root cause of the change. As future work, we 

are currently investigating methods to facilitate visualizing the nature of the change. One simple, 

immediate solution is to plot side-by-side some images before and after the change to allow users 

to visually discern its nature. 

The computational expense of our approach may be prohibitive in some applications. Using a 

regression tree without CV as the supervised learner (which is not required for the on-line images, 

because the complexity parameters for each 𝑔̂𝑗(∙) can be chosen the same as for 𝑔̂0(∙)), the current 

algorithm is relatively fast. For example, it took 0.36 seconds on average to compute the 
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monitoring statistic for an image in the simulation example in Section 3.6, using an Intel Core i7-

2600 CPU with 3.40-GHz processing speed on Windows 7 Professional. However, if using more 

computationally expensive supervised learning models such as neural networks, boosted trees, 

random forests, etc., the computational expense may be prohibitively expensive, depending on 

many factors, including whether the model fitting procedure is stopped early. 
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CHAPTER 4 

Understanding Variation in Stochastic Textured Surfaces 

4.1 Introduction 

In this chapter, we again focus on stochastic textured surface data that have a stochastic nature. 

Unlike typical profile or multivariate data whose discretized points or elements correspond one-

to-one across observations, image samples of this nature do not match pixel-by-pixel even when 

the process is operating normally under ideal conditions (i.e., in control conditions using control 

charting terminology). Hence, we cannot simply subtract one stochastic textured surface image 

sample from another (or from a transformed or warped version, to match features) to meaningfully 

represent their difference, and it is not straightforward how to quantify the difference between the 

pair of surface samples. Hereafter, the term "surface" will refer to a stochastic textured surface, 

and "image sample" will refer to a sample of such a surface. 

The stochastic nature across a set of image samples can vary as a result of manufacturing or 

other condition changes. To illustrate, Figure 4.1 shows various image samples for the simulated 

2-D stochastic process considered in Section 4.4, in which the surface nature is different for each 

sample. Specifically, each sample was generated from a stochastic process model but with different 

values of two underlying model parameters (as will be described in more detail later, the two 

parameters control the rate of decay and the orientation angle of the spatial autocorrelation). The 

result is that the 16 image samples in Figure 4.1 are not 16 statistically equivalent realizations of 

the same stochastic process; rather, they are realizations of different stochastic processes and hence 

have stochastic nature that varies across the set of image samples. The differences across the set 

of image samples could represent surface roughness behavior that varies across a set of 

manufactured metal parts or material microstructure characteristics that vary across a set of 

microstructure samples, due to unstable processing conditions that vary over time. Throughout, 

we use the term "variation" to refer to such systematic differences in the stochastic nature of the 



76 

 

surfaces across a set of image samples. 

 

 

Figure 4.1. A set of 16 image samples, each simulated from the 2-D stochastic process considered 

in Section 4.4, but with process parameters varying across the set. The varying parameters 

constitute two systematic variation patterns that represent a changing spatial decay level and a 

changing orientation angle for the spatial autocorrelation. 

 

The objective of this work is as follows. Suppose one has collected a set of image samples of 

surfaces, produced from some manufacturing process (the 16 samples in Figure 4.1 can be viewed 

as a subset of one such set). Further suppose that one suspects the process may not be stable, so 

that the stochastic nature of the surfaces systematically varies across the set of samples. That is, 
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the samples may not be a set of statistically equivalent realizations of the same underlying 

stochastic process. The goal is to characterize how the stochastic nature of the surfaces varies 

across the set of image samples, in a manner that is conducive to conveying an understanding of 

the physical nature of the variation. For example, the variation depicted in Figure 4.1 consists of 

two systematic variation patterns that represent a varying rate of spatial decay of the 

autocorrelation and a varying angle of orientation of the autocorrelation. Note that the two 

variation patterns occur simultaneously, that is, from image sample to image sample both the 

spatial decay level and orientation of the autocorrelation change concurrently. This makes it more 

difficult to recognize the physical meaning of each variation pattern, especially when the number 

of variation patterns increases. In this example, based only on the image samples and with no prior 

knowledge of the nature of the variation, we would like to empirically identify a two-dimensional 

manifold in which the two manifold coordinates represent a parameterization of the two systematic 

variation patterns. As an illustration, the coordinates of such a manifold parameterization, along 

with a visualization of how the parameters influence the stochastic nature of the surfaces, are 

shown in Figure 4.2 (we revisit this example in more detail in Section 4.4). Visualizing how the 

surfaces change as the manifold parameters are varied helps reveal the physical characteristic of 

each individual variation pattern, making it easier to identify the root cause problems for process 

improvement. 

In the literature, there are several exploratory analysis methods to discover the nature of 

previously unidentified systematic variation. For example, Apley and Shi (2001), Apley and Lee 

(2003), Lee and Apley (2004) and Shan and Apley (2008) focused on linear variation patterns, 

whereas Apley and Zhang (2007) and Shi et al. (2016) focused on nonlinear variation patterns. 

However, all these methods are inapplicable for stochastic textured surface data due to their 

aforementioned stochastic nature. Chapters 2 and 3 developed monitoring approaches for 

stochastic textured surface data that seek to detect when some characteristic of their stochastic 



78 

 

behavior changes. In contrast, this work focuses on a more exploratory diagnostic objective of 

understanding the nature of the variation across a set of image samples, given that their stochastic 

behavior is not stable and varies across the set. This exploratory work can be viewed as a Phase I 

method, using the common Phase I versus Phase II distinction in the SPC literature (Human et al. 

2010). In contrast, the works in Chapters 2 and 3 are Phase II methods, which focus on monitoring, 

as opposed to exploratory diagnostics. In this work, we derive two new pairwise dissimilarity 

measures for the image samples based on a novel application of the Kullback-Leibler divergence. 

Then, we use a form of manifold learning applied to the pairwise dissimilarities of the given set of 

samples. The learned manifold coordinates provide a parameterization of the variation existing in 

the set of samples, which can then be visualized as will be described later, akin to Figure 4.2. 

This work also has broader applicability. In the context related to this work, which is 

understanding variation, our approach is applicable to a wide range of materials. This includes 

random heterogeneous materials, which are ubiquitous in science, engineering, and nature 

(Torquato 2002). Second, the derived dissimilarity measures can be used in other applications 

involving stochastic textured surface data in which some form of follow-up classification or 

clustering analysis is desired. Some examples include powder materials micrograph 

characterization (DeCost and Holm 2017), medical microscopy image classification (Jiang et al. 

2015, Song et al. 2017), cancer tissue image clustering (Xu et al. 2014), and outlying mammalian 

cell image detection (Lou et al. 2012). 

The remainder of this chapter is organized as follows. In Section 4.2, we derive and investigate 

the two new pairwise dissimilarity measures between image samples, which is a critical element 

of the approach. Section 4.3 describes how a form of manifold learning that takes pairwise 

dissimilarities as the input can be used for understanding the variation patterns existing in the 

image samples. Sections 4.4 and 4.5 demonstrate the approach and compare the different 

dissimilarity measures with a simulation example and a real textile example, respectively. Section 
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4.6 provides some further discussions on visualization for understanding variation, choice of 

parameters when computing the image sample dissimilarities, and choice of dissimilarity measures 

and manifold learning algorithms. Section 4.7 concludes the chapter. 

 

 

Figure 4.2. An illustrative manifold learning parameterization (u1, u2) of the variation across the 

image samples for the example depicted in Figure 4.1, along with superimposed image samples 

with stochastic nature corresponding to the specific value of (u1, u2) at the center of the image. As 

the learned parameter u1 changes, the orientation angle changes. Likewise, as u2 changes, the rate 

of decay of the spatial autocorrelation changes. 

 

u1 

u2 
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4.2 Deriving Pairwise Dissimilarity Measures for Stochastic Textured Surface Data 

As discussed in Section 4.1, it is challenging to obtain pairwise dissimilarities between 

stochastic textured surface image samples due to their stochastic nature. In this section, we derive 

new dissimilarity measures for them based on Kullback-Leibler (KL) divergence principles. For 

univariate probability density functions (pdfs), the KL divergence is defined as follows. Let 𝑝(𝑥) 

and 𝑞(𝑥) be two univariate pdfs with 𝑥 ∈ ℝ. The KL divergence of 𝑞(𝑥) from 𝑝(𝑥) measures the 

extent to which 𝑞(𝑥) differs from (or diverges from) 𝑝(𝑥) and is defined as: 

𝐷[𝑝(𝑥)||𝑞(𝑥)] = 𝐸𝑝 [log
𝑝(𝑥)

𝑞(𝑥)
], 

where 𝐸𝑝 denotes the expectation with respect to the distribution 𝑝(∙). Similarly, for the 

multivariate case, let 𝑝(𝐱) and 𝑞(𝐱) be two multivariate joint pdfs, where the vector 𝐱 =

[𝑥1, 𝑥2, … , 𝑥𝑛 ]
𝑇 ∈ ℝ𝑛. With a slight abuse of notation, we have used the same 𝑝(∙) and 𝑞(∙) to 

denote both the univariate and joint multivariate pdfs, since their distinction should be clear from 

their scalar or vector arguments. In this case, the KL divergence of 𝑞(𝐱) from 𝑝(𝐱) is defined as: 

𝐷[𝑝(𝐱)||𝑞(𝐱)] = 𝐸𝑝 [log
𝑝(𝐱)

𝑞(𝐱)
]. 

Our proposed approach for measuring dissimilarities between image samples is based on the 

KL divergence concept derived using a particularly convenient representation of the joint pdfs of 

the image samples. Specifically, let 𝐘𝑘 = [𝑦𝑘,1, 𝑦𝑘,2, … , 𝑦𝑘,𝑀𝑘
 ]
𝑇
 denote the vector of Mk pixel 

intensities in the 𝑘th image sample for 𝑘 = 1, 2, … ,𝑁 (it is assumed we have a set of 𝑁 image 

samples, and the intermediate goal is to determine the dissimilarities between all pairs of image 

samples), stacked according to some raster scan order. In this chapter, we use a left-to-right and 

top-to-bottom raster scan order. Let 𝑓𝑘(𝐘𝑘) and 𝑓ℎ(𝐘ℎ) be the joint pdfs of data vectors Yk and Yh, 

for image samples 𝑘 and ℎ, respectively, to be characterized as described below. Because a 

dissimilarity measure should be symmetric, we define the KL pairwise dissimilarity between the 

kth and hth image samples as  
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𝑑KL(𝑘, ℎ) = √
1

𝑀𝑘
𝐷[𝑓𝑘(𝐘𝑘)||𝑓ℎ(𝐘𝑘)] +

1

𝑀ℎ
𝐷[𝑓ℎ(𝐘ℎ)||𝑓𝑘(𝐘ℎ)],  (4.1) 

where we have added the weights 1/Mk and 1/Mh to account for 𝐘𝑘 and 𝐘ℎ possibly having different 

lengths. Multiplying, instead of summing, the two terms in (4.1) would also symmetrize the 

dissimilarity measure; however, we do not pursue this direction because later it will be clear that 

summing the two terms simplifies the derivation of the dissimilarity measure and its final form. 

We include the square root in (4.1) because it better mimics a 2-norm, considering the form 

(derived later) of the terms inside the radical sign. Also, including the square root improved the 

results in our experience. 

 

The derivation of our KL dissimilarity measure is facilitated by the fact that the KL divergence 

of joint pdfs can be factored in terms of the KL divergence for univariate component distributions 

by the familiar chain rule (see Cover and Thomas 2006, for a more detailed derivation) 

𝐷[𝑝(𝐱)||𝑞(𝐱)] = 𝐸𝑝 [log
𝑝(𝐱)

𝑞(𝐱)
] = 𝐸𝑝log [

𝑝(𝑥1)𝑝(𝑥2|𝑥1)…𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)
𝑞(𝑥1)𝑞(𝑥2|𝑥1)…𝑞(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)

]  

= 𝐸𝑝 [log
𝑝(𝑥1)

𝑞(𝑥1)
+ log

𝑝(𝑥2|𝑥1)
𝑞(𝑥2|𝑥1)

+⋯+ log
𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)
𝑞(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)

]  

= 𝐸𝑝 [log
𝑝(𝑥1)

𝑞(𝑥1)
] + 𝐸𝑝 [log

𝑝(𝑥2|𝑥1)
𝑞(𝑥2|𝑥1)

] + ⋯+ 𝐸𝑝 [log
𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)
𝑞(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)

]  

= 𝐷[𝑝(𝑥1)||𝑞(𝑥1)] + 𝐷[𝑝(𝑥2|𝑥1)||𝑞(𝑥2|𝑥1)] + ⋯  

+𝐷[𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)||𝑞(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1)]. 

Using the chain rule, we have: 

𝐷[𝑓𝑘(𝐘𝑘)||𝑓ℎ(𝐘𝑘)] = 𝐷[𝑓𝑘(𝑦𝑘,1)||𝑓ℎ(𝑦𝑘,1)] + 𝐷[𝑓𝑘(𝑦𝑘,2|𝑦𝑘,1)||𝑓ℎ(𝑦𝑘,2|𝑦𝑘,1)] + ⋯  

+𝐷[𝑓𝑘(𝑦𝑘,𝑛|𝑦𝑘,𝑛−1, 𝑦𝑘,𝑛−2, … , 𝑦𝑘,1)||𝑓ℎ(𝑦𝑘,𝑛|𝑦𝑘,𝑛−1, 𝑦𝑘,𝑛−2, … , 𝑦𝑘,1)]  

= ∑ 𝐷 [𝑓𝑘(𝑦𝑘,𝑖|𝐘𝑘
(𝑖)
)||𝑓ℎ(𝑦𝑘,𝑖|𝐘𝑘

(𝑖)
)]

𝑀𝑘
𝑖=1 ,  (4.2) 
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where we have defined 𝐘𝑘
(𝑖)
= {𝑦𝑘,𝑚: 𝑚 < 𝑖} to be the set of pixel intensities prior to pixel 𝑖 in 

image 𝑘. Again, with some abuse of notation, we have denoted the joint distribution and univariate 

conditional distributions for image 𝑘 by the same quantity 𝑓𝑘(∙), since it should be clear from their 

arguments which it represents. Also notice that we did not add a second, pixel subscript 𝑖 to the 

conditional distributions 𝑓𝑘(𝑦𝑘,𝑖|𝐘𝑘
(𝑖)
) in (4.2), because of the stationarity assumption discussed 

below.  

From (4.2), it follows that 

𝐷[𝑓ℎ(𝐘ℎ)||𝑓𝑘(𝐘ℎ)] = ∑ 𝐷 [𝑓ℎ(𝑦ℎ,𝑖|𝐘ℎ
(𝑖)
)||𝑓𝑘(𝑦ℎ,𝑖|𝐘ℎ

(𝑖)
)]

𝑀ℎ
𝑖=1 .   (4.3) 

Plugging (4.2) and (4.3) to (4.1), we have:  

𝑑KL(𝑘, ℎ) =
√
∑ 𝐷[𝑓𝑘(𝑦𝑘,𝑖|𝐘𝑘

(𝑖)
)||𝑓ℎ(𝑦𝑘,𝑖|𝐘𝑘

(𝑖)
)]

𝑀𝑘
𝑖=1

𝑀𝑘
+
∑ 𝐷[𝑓ℎ(𝑦ℎ,𝑖|𝐘ℎ

(𝑖)
)||𝑓𝑘(𝑦ℎ,𝑖|𝐘ℎ

(𝑖)
)]

𝑀ℎ
𝑖=1

𝑀ℎ
.       (4.4) 

Using (4.4), computing the KL dissimilarity between the kth and hth image samples boils down to 

estimating the conditional distributions 𝑓𝑗(𝑦𝑗,𝑖|𝐘𝑗
(𝑖)
) for each pixel i in the image samples 𝑗 = 𝑘, ℎ. 

Below, we describe how these conditional distributions can be approximated and estimated quite 

tractably using two Markov random field assumptions. 

In texture synthesis problems (e.g., see Efros and Leung 1999, Levina and Bickel 2006), it is 

often assumed that there exists some moving window neighborhood 𝐲𝑗
(𝑖)
⊆ 𝐘𝑗

(𝑖)
 of fixed size such 

that the Markov locality property 𝑓𝑗(𝑦𝑗,𝑖|𝐘𝑗
(𝑖)
) ≈ 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗

(𝑖)
) holds. In addition, 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗

(𝑖)
) is 

assumed to be stationary, i.e., 𝑓𝑗(𝑦𝑗,𝑖 = 𝑦|𝐲𝑗
(𝑖)
= 𝐲), as a function of y and y, is independent of the 

pixel location i. For each pixel, we use a rectangular neighborhood of the form shown as the black 

regions in Figure 4.3(a) for pixels 𝑖 = 103 and 𝑖 = 248, extending to the right, left, and above 

pixel 𝑖. Let l denote the size of the Markov neighborhood in an image, i.e., the number of pixels to 

the left of, right of, and above pixel i. For 𝑙 = 2, the neighborhoods corresponding to pixels y103 

and y248 for the 5050 image in Figure 4.3 are 𝐲(103) = {𝑦1, … , 𝑦5, 𝑦51, … , 𝑦55, 𝑦101, 𝑦102} and 
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𝐲(248) = {𝑦146, … , 𝑦150, 𝑦196, … , 𝑦200, 𝑦246, 𝑦247}, respectively, as shown on the right side of 

Figure 4.3(a). If l = 2 is large enough for the Markov locality assumption to hold, we have that 

𝑓(𝑦103|𝐘
(103)

) ≈ 𝑓(𝑦103|𝐲
(103)) and 𝑓(𝑦248|𝐘

(248)
) ≈ 𝑓(𝑦248|𝐲

(248)). If in addition the 

stationarity assumption holds, then 𝑓(𝑦103 = 𝑦|𝐲
(103) = 𝐲) = 𝑓(𝑦248 = 𝑦|𝐲

(248) = 𝐲). 

In this chapter, we also assume that these two Markov random field assumptions hold, and 

hence from (4.4): 

𝑑KL(𝑘, ℎ) ≈
√
∑ 𝐷[𝑓𝑘(𝑦𝑘,𝑖|𝐲𝑘

(𝑖)
)||𝑓ℎ(𝑦𝑘,𝑖|𝐲𝑘

(𝑖)
)]

𝑀𝑘
𝑖=1

𝑀𝑘
+
∑ 𝐷[𝑓ℎ(𝑦ℎ,𝑖|𝐲ℎ

(𝑖)
)||𝑓𝑘(𝑦ℎ,𝑖|𝐲ℎ

(𝑖)
)]

𝑀ℎ
𝑖=1

𝑀ℎ
  

(by the locality assumption) 

= √𝐸𝑓𝑘 [log
𝑓𝑘(𝑦𝑘,𝑖|𝐲𝑘

(𝑖)
)

𝑓ℎ(𝑦𝑘,𝑖|𝐲𝑘
(𝑖)
)
] + 𝐸𝑓ℎ [log

𝑓ℎ(𝑦ℎ,𝑖|𝐲ℎ
(𝑖)
)

𝑓𝑘(𝑦ℎ,𝑖|𝐲ℎ
(𝑖)
)
]  (4.5) 

(by the stationarity assumption and definition of the KL divergence). 

Although there are four conditional distribution terms in (4.5), there are really only two distinct 

conditional distribution functions 𝑓𝑗(∙ | ∙), 𝑗 = 𝑘, ℎ. Therefore, calculating the KL dissimilarity 

between the kth and hth image samples simplifies to estimating two stationary conditional 

distribution functions 𝑓𝑗(∙ | ∙), 𝑗 = 𝑘, ℎ, which is accomplished as follows. 

For online monitoring of greyscale image samples that are finely discretized (enough to be 

treated as continuous), based on the stationarity assumption, Chapter 2 adapted the approach of 

Bostanabad et al. (2016) to learn 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗
(𝑖)) via fitting the following supervised learning (aka 

nonlinear regression) model1 to a set of training data constructed from image sample j such that 

the ith row in this data set consists of {𝑦𝑗,𝑖, 𝐲𝑗
(𝑖)}, 𝑖 = 1, 2, … ,𝑀𝑗: 

𝑦𝑗,𝑖 = 𝑔𝑗(𝐲𝑗
(𝑖)) + 𝜀𝑗,𝑖, (4.6) 

                                                 
1 The method of Bostanabad et al. (2016) is for (two-phase) binary microstructure image characterization and 

reconstruction. In their context, the conditional distribution is categorical, and a classifier is used instead of a nonlinear 

regression model to learn it. 
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where 𝑔𝑗(𝐲𝑗
(𝑖)) is the mean of the conditional distribution 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗

(𝑖)), and 𝜀𝑗,𝑖 is a zero-mean 

random error that is independent of 𝐲𝑗
(𝑖)

. The function 𝑔𝑗(∙) is essentially the supervised learning 

model for predicting a pixel value 𝑦𝑗,𝑖, given its neighboring pixel values 𝐲𝑗
(𝑖)

. More specifically, 

in the ith row of the training data, the first element contains the intensity yj,i of the ith pixel and the 

other elements contain the intensities 𝐲𝑗
(𝑖)

 of the neighbors of the ith pixel (see Figure 4.3(b) for 

an illustrative example). Chapter 2 used regression trees as the supervised learning model to 

estimate 𝑔̂𝑗(∙) from the training data.  

 

 

 

yi 𝐲(𝑖) 

…
 

            

y103 y1 y2 y3 y4 y5 y51 y52 y53 y54 y55 y101 y102 

…
 

            

y248 y146 y147 y148 y149 y150 y196 y197 y198 y199 y200 y246 y247 

…
 

            

 

Figure 4.3. (a) Illustration of neighborhoods of size l = 2 in an image of size 5050 pixels, using 

the left-to-right and top-to-bottom raster scan order (i.e., the intensities of the top left, top right, 

and bottom right pixels are 𝑦1, 𝑦50, and 𝑦2500, respectively). The two black regions on the image 

highlight pixels y103 and y248 and their corresponding neighborhoods. (b) Illustration of the 103rd 

and 248th rows of the training data corresponding to the image in Panel (a). 

 

For tractability, we assume additionally that 𝜀𝑗,𝑖 follows an independent normal distribution 

l 

l 

l 

y1 y2 y3 y4 y5 

y51 y52 y53 y54 y55 

y101 y102 y103   

y146 y147 y148 y149 y150 

y196 y197 y198 y199 y200 

y246 y247 y248   

248th row 

103rd row 

(a) 

(b) 
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with variance 𝜎𝑗
2, then 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗

(𝑖)) ≡ 𝑁(𝑔𝑗(𝐲𝑗
(𝑖)), 𝜎𝑗

2), i.e., the normal pdf with mean 𝑔𝑗(𝐲𝑗
(𝑖)) 

and variance 𝜎𝑗
2. In Remark 4, we discuss why the normal distribution is still an appealing choice 

even if 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗
(𝑖)) is not normal. Note that 𝜎𝑗

2 can be estimated by 

𝜎̂𝑗
2 =

∑ [𝑦𝑗,𝑖−𝑔̂𝑗(𝐲𝑗
(𝑖)
)]
2𝑀𝑗

𝑖=1

𝑀𝑗
. (4.7) 

From the preceding, the quantities involved in (4.5) become 

𝐸𝑓𝑘 [log
𝑓𝑘(𝑦𝑘,𝑖|𝐲𝑘

(𝑖)
)

𝑓ℎ(𝑦𝑘,𝑖|𝐲𝑘
(𝑖)
)
] ≈ 𝐸𝑓𝑘

[
 
 
 
 
 
 

log

1

√2𝜋𝜎𝑘
exp

{
 
 

 
 

−
(𝑦𝑘,𝑖−𝑔𝑘(𝐲𝑘

(𝑖)
))

2

2𝜎𝑘
2

}
 
 

 
 

1

√2𝜋𝜎ℎ
exp

{
 
 

 
 

−
(𝑦𝑘,𝑖−𝑔ℎ(𝐲𝑘

(𝑖)
))

2

2𝜎ℎ
2

}
 
 

 
 

]
 
 
 
 
 
 

  

= 𝐸𝑓𝑘 [log
𝜎ℎ

𝜎𝑘
−
(𝑦𝑘,𝑖−𝑔𝑘(𝐲𝑘

(𝑖)
))
2

2𝜎𝑘
2 +

(𝑦𝑘,𝑖−𝑔ℎ(𝐲𝑘
(𝑖)
))
2

2𝜎ℎ
2 ] = log

𝜎ℎ

𝜎𝑘
−
1

2
+
𝐸𝑓𝑘[(𝑦𝑘,𝑖−𝑔ℎ(𝐲𝑘

(𝑖)
))
2

]

2𝜎ℎ
2   

= log
𝜎ℎ

𝜎𝑘
−
1

2
+
𝐸𝑓𝑘[(𝑦𝑘,𝑖−𝑔𝑘(𝐲𝑘

(𝑖)
)+𝑔𝑘(𝐲𝑘

(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
))
2

]

2𝜎ℎ
2   

= log
𝜎ℎ

𝜎𝑘
−
1

2
+
𝐸𝑓𝑘[(𝑦𝑘,𝑖−𝑔𝑘(𝐲𝑘

(𝑖)
))
2

]+2𝐸𝑓𝑘[(𝑦𝑘,𝑖−𝑔𝑘(𝐲𝑘
(𝑖)
))(𝑔𝑘(𝐲𝑘

(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
))]+𝐸𝑓𝑘[(𝑔𝑘(𝐲𝑘

(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
))
2

]

2𝜎ℎ
2   

= log
𝜎ℎ

𝜎𝑘
−
1

2
+

𝜎𝑘
2

2𝜎ℎ
2 +

𝐸𝑓𝑘[(𝑔𝑘(𝐲𝑘
(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
))
2

]

2𝜎ℎ
2   

≈ log
𝜎ℎ

𝜎𝑘
−
1

2
+

𝜎𝑘
2

2𝜎ℎ
2 +

∑ [𝑔𝑘(𝐲𝑘
(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
)]
2𝑀𝑘

𝑖=1

2𝑀𝑘𝜎ℎ
2 .  (4.8) 

Similarly, we have: 

𝐸𝑓ℎ [log
𝑓ℎ(𝑦ℎ,𝑖|𝐲ℎ

(𝑖)
)

𝑓𝑘(𝑦ℎ,𝑖|𝐲ℎ
(𝑖)
)
] ≈ log

𝜎𝑘

𝜎ℎ
−
1

2
+

𝜎ℎ
2

2𝜎𝑘
2 +

∑ [𝑔ℎ(𝐲ℎ
(𝑖)
)−𝑔𝑘(𝐲ℎ

(𝑖)
)]
2𝑀ℎ

𝑖=1

2𝑀ℎ𝜎𝑘
2 .  (4.9) 

Plugging (4.8) and (4.9) in (4.5), the KL dissimilarity between the kth and hth image samples is: 
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𝑑KL(𝑘, ℎ) ≈ √−1 +
1

2
(
𝜎𝑘
2

𝜎ℎ
2 +

𝜎ℎ
2

𝜎𝑘
2) +

∑ [𝑔𝑘(𝐲𝑘
(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
)]
2𝑀𝑘

𝑖=1

2𝑀𝑘𝜎ℎ
2 +

∑ [𝑔ℎ(𝐲ℎ
(𝑖)
)−𝑔𝑘(𝐲ℎ

(𝑖)
)]
2𝑀ℎ

𝑖=1

2𝑀ℎ𝜎𝑘
2 ,       (4.10) 

where {𝑔𝑘(∙), 𝜎𝑘
2} and {𝑔ℎ(∙), 𝜎ℎ

2} are estimated using the supervised learning approach. 

Remark 1: The argument within the square root in (4.10) can be easily shown to be non-

negative using the Cauchy inequality, and hence the KL dissimilarity is always real. 

Remark 2: If we assume a common error variance 𝜎𝑘
2 = 𝜎2 for each image 𝑘 = 1, 2, … ,𝑁, 

then (4.10) reduces to: 

𝑑KL(𝑘, ℎ) = √∑ [𝑔𝑘(𝐲𝑘
(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
)]
2𝑀𝑘

𝑖=1

2𝑀𝑘𝜎
2 +

∑ [𝑔ℎ(𝐲ℎ
(𝑖)
)−𝑔𝑘(𝐲ℎ

(𝑖)
)]
2𝑀ℎ

𝑖=1

2𝑀ℎ𝜎
2 . 

Under the common error variance assumption, and omitting the common factor 2𝜎2, we define 

the approximate KL (AKL) dissimilarity between the kth and hth image samples as: 

𝑑AKL(𝑘, ℎ) = √
∑ [𝑔𝑘(𝐲𝑘

(𝑖)
)−𝑔ℎ(𝐲𝑘

(𝑖)
)]
2𝑀𝑘

𝑖=1

𝑀𝑘
+
∑ [𝑔ℎ(𝐲ℎ

(𝑖)
)−𝑔𝑘(𝐲ℎ

(𝑖)
)]
2𝑀ℎ

𝑖=1

𝑀ℎ
.   (4.11) 

Remark 3: Notice that when Mk = Mh, the AKL dissimilarity is equivalent to the Euclidean 

distance between the vectors of predictions from the two supervised learning models applied to 

the kth and hth image samples, i.e. the vectors [𝑔̂𝑘(𝐲𝑘
(1))… 𝑔̂𝑘 (𝐲𝑘

(𝑀𝑘)) , 𝑔̂𝑘(𝐲ℎ
(1))… 𝑔̂𝑘 (𝐲ℎ

(𝑀ℎ))]
𝑇

 

and [𝑔̂ℎ(𝐲𝑘
(1))… 𝑔̂ℎ (𝐲𝑘

(𝑀𝑘)) , 𝑔̂ℎ(𝐲ℎ
(1))… 𝑔̂ℎ (𝐲ℎ

(𝑀ℎ))]
𝑇

. 

Remark 4: Even if the prediction errors 𝜀𝑗,𝑖 are not truly iid and normally distributed, the iid 

normality assumption for 𝑓𝑗(𝑦𝑗,𝑖|𝐲𝑗
(𝑖)
) can be viewed as a convenient means to an attractive end. 

That is, even if the errors are not normal, the final form of the KL dissimilarity in (4.10) under the 

normal assumption is conceptually appealing. When the kth and hth image samples are similar, we 

expect 𝑔𝑘(∙) ≈ 𝑔ℎ(∙) and 𝜎𝑘 ≈ 𝜎ℎ, in which case 𝑑KL(𝑘, ℎ) ≈ 0. In contrast, when the kth and hth 

image samples are different, we expect 𝑔𝑘(∙) ≠ 𝑔ℎ(∙) and/or 𝜎𝑘 ≠ 𝜎ℎ, in which case 𝑑KL(𝑘, ℎ) >

0 regardless of the true error distribution. The same argument applies to the AKL dissimilarity. 
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4.3 Identifying and Visualizing the Nature of Variation in Stochastic Textured Surface Data 

Given a set of N image samples, the overarching goal of this work is to discover the nature of 

systematic variation in the stochastic nature of the images across the set of image samples, in a 

manner that helps understand the physical meaning of individual variation patterns. This in turn 

may help identify the root causes of the variation more easily. In this section, we present our 

approach and algorithm for accomplishing this, based on the dissimilarity measures developed in 

Section 4.2. In particular, we use a form of manifold learning with dissimilarity data to identify 

and parameterize the variation patterns, followed by a graphical visualization of the identified 

manifold learning parameters. In the following paragraphs, we first briefly review certain manifold 

learning concepts before describing our approach. 

Consider a set of N data points 𝐳𝑗 = [𝑧𝑗,1, 𝑧𝑗,2, … , 𝑧𝑗,𝑛]
𝑇
∈ ℝ𝑛, 𝑗 =  1, 2, … , 𝑁 that lies on an 

unknown r-dimensional manifold embedded in the n-dimensional space, where r < n. For 

illustration, Figure 4.4(a) shows data points in a space of dimension n = 3 that lie on a manifold of 

dimension r = 2 embedded in the 3-dimensional space. Given only {𝐳𝑗: 𝑗 = 1, 2, … ,𝑁}, manifold 

learning aims to estimate the low r-dimensional manifold coordinates of {𝐳𝑗: 𝑗 = 1, 2, … , 𝑁}. In 

other words, manifold learning techniques find the manifold coordinates 𝐮𝑗 =

[𝑢𝑗,1, 𝑢𝑗,2, … , 𝑢𝑗,𝑟]
𝑇
∈ ℝ𝑟 such that 𝐳𝑗 ≈ 𝐡(𝐮𝑗) =  [ℎ1(𝐮𝑗), ℎ2(𝐮𝑗), … , ℎ𝑛(𝐮𝑗) ]

𝑇
 for 𝑗 =

 1, 2, … ,𝑁 and for some implicit mapping 𝐡(∙): ℝ𝑟 → ℝ𝑛. Figure 4.4(b) illustrates this by plotting 

the two-dimensional manifold coordinates 𝐮𝑗 ∈ ℝ
2 of the data points in Figure 4.4(a). The two-

dimensional manifold coordinates can be viewed as an unfolded version of the nonlinear manifold 

embedded in the original n-dimensional space, and the goal of the manifold learning algorithm is 

to estimate the manifold coordinates. Note that manifold learning only produces the manifold 

coordinates and does not produce the implicit function 𝐡(∙). 

If the n-dimensional data points {𝐳𝑗: 𝑗 = 1, 2, … , 𝑁} are not available, and only their pairwise 

dissimilarities {𝑑(𝑘, ℎ): 1 ≤ 𝑘 < ℎ ≤ 𝑁} are available, many standard manifold learning methods 
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cannot be used. Instead, a form of manifold learning such as the multidimensional scaling method 

(MDS) of Torgerson (1952) or the isometric feature mapping method (ISOMAP) of Tenenbaum 

et al. (2000), which can work with only the dissimilarity data, can be used to estimate the manifold 

coordinates. For example, MDS finds manifold coordinates uk and uh such that the Euclidean 

distance between uk and uh is approximately 𝑑(𝑘, ℎ) for all 1 ≤ 𝑘 < ℎ ≤ 𝑁 via an eigen-

decomposition of a doubly centered 𝑁 ×𝑁 dissimilarity matrix. ISOMAP also solves an eigen-

problem to produce the manifold coordinates; however, instead of preserving the global structure 

of the manifold as in MDS, ISOMAP preserves the neighborhood structure on the manifold. As 

such, ISOMAP can unfold highly nonlinear manifold better than MDS. Readers are referred to 

Izenman (2013) for details of these algorithms. 

 

 
Figure 4.4. Illustration of general manifold learning: Panel (a) plots a set of 3-dimensional data 

points lying on a two-dimensional manifold embedded in the 3-dimensional space. Manifold 

learning unfolds the manifold and obtains the two-dimensional manifold coordinates of the data 

points in Panel (a). 

 

As discussed in Section 4.1, the image samples in our problem cannot be compared pixel-by-

pixel (nor can they be transformed for such purposes), and thus, we cannot treat each image sample 

as an input vector z to be used in manifold learning algorithms that require the original data. 

However, using our pairwise dissimilarity measures that we developed in Section 4.2, we can apply 

one of the forms of manifold learning that only require dissimilarities.  

u•,1 

u•,2 

z•,1 

z•,2 

z•,3 

(a) (b) 
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As mentioned earlier, our goal is to understand the physical meaning of any variation in the 

stochastic nature of the images across the set of image samples. Simply inspecting the original 

image samples may not reveal the nature of the patterns, especially when multiple patterns are 

mixed together and buried in high noise levels. This is the motivation for learning the manifold 

coordinates of the image samples, because they provide a low-dimensional parameterization of the 

set of systematic variation patterns present in the data, in a manner that inherently filters out noise. 

By inspecting the image samples along some particular lines or curves in the learned manifold 

coordinate space, the individual variation patterns can be revealed. We discuss and illustrate this 

step with the examples in Sections 4.4 and 4.5.  

The steps of the entire procedure for identifying and visualizing the variation patterns are 

summarized as follows, with certain details deferred until Sections 4.4 and 4.5: 

Step 1: Compute the NN symmetric dissimilarity matrix 𝐃 = {𝑑(𝑘, ℎ): 1 ≤ 𝑘, ℎ ≤ 𝑁} for the 

given set of N image samples by performing the following steps: 

• Step 1(a): Fit the regression model (4.6) for each image sample to obtain {𝑔̂𝑗(∙) ∶ 𝑗 =

1, 2, … ,𝑁}. Section 4.6.2 will discuss how to choose the parameters needed in this step via CV. 

• Step 1(b): Compute {𝜎̂𝑗
2 ∶ 𝑗 = 1, 2, … ,𝑁} using (4.7). 

• Step 1(c): Compute the KL or AKL dissimilarities {𝑑(𝑘, ℎ): 1 ≤ 𝑘 < ℎ ≤ 𝑁}, using 

{𝑔̂𝑗(∙), 𝜎̂𝑗
2 ∶ 𝑗 = 1, 2, … ,𝑁} obtained in Steps 1(a, b) and the KL or AKL dissimilarity 

measures. Section 4.6.3 discusses the choice of dissimilarity measure. 

Step 2: Find the manifold coordinates of the N image samples by applying a manifold learning 

algorithm that takes pairwise dissimilarities as the input (e.g., MDS or ISOMAP) to D. When using 

an eigen-decomposition-based algorithm such as MDS or ISOMAP, we recommend using the 

number of dominant eigenvalues as the manifold dimension (if the manifold dimension is 

unknown). Note that the dimension of the manifold is the number of distinct variation patterns that 

are present. Section 4.6.3 discusses the choice of the manifold learning algorithm. 
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Step 3: Visualize the nature of the variation patterns existing in the given set of N image samples 

by inspecting the image samples along some particular lines or curves in the learned manifold 

coordinate space, as illustrated in the examples that follow (see also Section 4.6.1 for further 

discussion of this step). 

4.4 Simulation Example 

We first illustrate our approach using simulated image samples for which we know what the 

true nature of the variation patterns is. The next section illustrates with a real data example. The 

pixel intensities of the image samples in the simulation example were generated from the spatial 

autoregressive model 

𝑦(𝑖1, 𝑖2) = 𝜙1𝑦(𝑖1 − 1, 𝑖2) + 𝜙2𝑦(𝑖1, 𝑖2 − 1) + 𝜀(𝑖1, 𝑖2),   (4.12) 

where 𝑦(𝑖1, 𝑖2) denotes the image intensity at pixel location (𝑖1, 𝑖2) with 𝑖1 and 𝑖2 the horizontal 

and vertical indices, respectively, and ε is a zero-mean Gaussian white noise process over the two-

dimensional image. In this model, the transformed parameters 𝐴 = 𝜙1 + 𝜙2 and 𝛾 =

tan−1(𝜙2/𝜙1) represent the spatial decay level and the orientation angle of the autocorrelation in 

the image samples, respectively. To create variation in the stochastic nature of the images across 

a set of image samples, we generate a different value of 𝐴 and 𝛾 for each image. Hence, the rate 

of decay of the spatial autocorrelation in the simulated image samples varies as 𝐴 varies from 

image to image. Likewise, the orientation angle of the spatial autocorrelation in the simulated 

image samples varies as 𝛾 varies from image to image. See Song and Kang (2018) for analogous 

changes in the parameters of ARMA-GARCH models for univariate time-series data. 

We used Latin hypercube sampling (LHS) to generate N = 200 stratified random values of 𝐴 ∈

[0.5, 0.8] and 𝛾 ∈ [𝜋 8⁄ , 3𝜋 8⁄ ], and then computed the corresponding {𝜙1, 𝜙2} to simulate 200 

image samples using (4.12). Figure 4.5(a) and Figure 4.5(b) plot the true values of {𝐴, 𝛾} and the 

corresponding {𝜙1, 𝜙2} for these 200 image samples, respectively. The numbers in both Figure 
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4.5(a) and Figure 4.5(b) represent the image indices. All the simulated image samples have the 

same size of 250250 pixels. Note that the MRF assumptions hold for the image samples in this 

example, by construction. In practice, with real images obtained by imaging methods in which 

lighting conditions vary from image to image, it is helpful to standardize all image samples by 

subtracting from each pixel the average intensity for all pixels in that image and then dividing by 

the intensity standard deviation for all pixels in the image. 

Step 1 of the algorithm computes the dissimilarity matrix for the simulated set of image 

samples. First, in Step 1(a), we fitted a regression model for each simulated image sample 𝑗 =

1, 2, … ,𝑁. Although (4.12) is a linear model, we treated this knowledge as unknown and used 

regression trees to estimate {𝑔̂𝑗(∙): 𝑗 = 1, 2, … ,𝑁} because they can model general regression 

functions and are relatively fast to fit. We used the rpart R package (Therneau and Atkinson 2018) 

to fit the regression trees, and this package requires specification of a complexity parameter 

(denoted by cp) that determines the size of the fitted tree. Here, we used the same cp = 0.0005 

value for the trees fitted to each image (this value was chosen using the CV procedure described 

in Section 6.2). We also used CV to select the neighborhood size l when constructing the training 

data to fit {𝑔̂𝑗(∙): 𝑗 = 1, 2, … ,𝑁} (see also Section 6.2 for details of the CV procedure to choose l). 

In this example, the chosen value was l = 1, which agreed with the true lag-1 model of Eq. (4.12). 

In Step 1(b), the AKL dissimilarity was computed for each pair of image samples using the fitted 

{𝑔̂𝑗(∙): 𝑗 = 1, 2, … ,𝑁} in Step 1(a). 

The outcome of Step 1 is a dissimilarity matrix, and we used it as the input for the MDS 

manifold learning algorithm in Step 2 to estimate the manifold coordinates of the N = 200 image 

samples. To select the number of dimensions to retain in the estimated manifold, we inspected the 

eigenvalues obtained when applying MDS to the dissimilarity matrix. The solid curve marked with 

"*" symbols in Figure 4.6 shows the ten largest eigenvalues, indicating there are two dominant 

eigenvalues in this example. This correctly indicated that there were two major systematic 
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variation patterns existing in the image samples (represented by image-to-image variation in the 

two parameters 𝐴 and 𝛾). 

 

   

 

  

 

Figure 4.5. Some results in the simulation example: (a) Generated parameters {𝐴, 𝛾} for the 200 

image samples which represent two underlying variation patterns in the stochastic nature of the 

image samples and (b) their corresponding parameters {𝜙1, 𝜙2}; (c) the estimated manifold 

coordinates from MDS applied to the AKL dissimilarity for the image samples generated by these 

parameters. The numbers in each panel are the image indices. 

(c) 

u1 

u2 

(a) 

𝛾 

𝐴 

(b) 

𝜙2 

𝜙1 
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Remark 5: The dashed curve marked with circles in Figure 4.6 shows the ten largest 

eigenvalues of a simulation example without any systematic variation pattern, i.e., all images are 

simulated using the same values of {𝜙1, 𝜙2}. In this case, the curve is relatively smooth with no 

obvious dominant eigenvalues, as opposed to the case with two systematic variation patterns. 

 

 

Figure 4.6. Scree plot of the 10 largest eigenvalues obtained from MDS applied to the AKL 

dissimilarity matrix for the simulation example, which is used to estimate the number (two) of 

variation patterns. For comparison, the curve marked with open circles shows the 10 largest 

eigenvalues for an example in which all images were generated using the same model, so that there 

were truly no variation patterns.  

 

Figure 4.5(c) shows the actual estimated coordinates in Step 2, which interestingly resembles 

quite well the ground-truths of {𝐴, 𝛾} (imagine Figure 4.5(a) being flipped such that the top left 

corner goes to the bottom right corner) and {𝜙1, 𝜙2} (imagine Figure 4.5(b) being rotated 

clockwise by 45 degrees and scaled). We will show quantitative measures for these resemblances 

below. The fact that MDS accurately estimated the ground-truth of the parameters used to generate 

the image samples means that the AKL dissimilarity captured very well the dissimilarities between 

the image samples. We emphasize that these results were obtained without incorporating any prior 

knowledge of the nature of the variation occurring in the samples. 

In Step 3, we visualized the individual variation patterns existing in the image samples by 
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taking advantage of the low-dimensional parameterization of these variation patterns via the 

estimated manifold coordinates, as follows. First, we investigated the image samples that fell close 

to a trajectory of points on each of the six arrows on the plot of the estimated manifold coordinates 

of the image samples shown in Figure 4.5(c). Each arrow represents a path (linear, in this case) in 

the manifold coordinate space, and inspection of a set of image samples that fall close to the 

trajectory of points along the arrow shows how the stochastic nature of the image samples varies 

as the manifold coordinate parameters vary along that path. The directions of the arrows indicate 

the ordering of the image samples along the arrows that we investigated.  

Due to space limit, Figure 4.7 shows only nine image samples that correspond to the 

intersections of the six arrows. To improve visibility, these image samples are magnified and 

cropped versions of the original ones (which were of the size shown in Figure 4.1 and Figure 4.2). 

The relative positions of these nine image samples in Figure 4.7 match those of their manifold 

coordinates in Figure 4.5(c); that is, each row of Figure 4.7 corresponds to each nearly-horizontal 

arrow in Figure 4.5(c), and each column corresponds to each vertical arrow in Figure 4.5(c). From 

left to right in each row of Figure 4.7, i.e., following each nearly-horizontal arrow in Figure 4.5(c), 

the variation in the nature of the corresponding image samples is clearly seen to be changes in the 

spatial decay level of the autocorrelation. Thus, one of the discovered variation patterns represents 

the variation in the spatial decay level of the autocorrelation (which corresponds to variation in 𝐴). 

Similarly, inspecting image samples from top to bottom in each column of Figure 4.7, i.e., 

following each vertical arrow in Figure 4.5(c), the variation in the nature of the image samples is 

clearly seen to be changes in the orientation angle of the autocorrelation. Thus, the other discovered 

variation pattern represents the variation in the orientation angle of the autocorrelation (which 

corresponds to variation in 𝛾). 
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Figure 4.7. Visualization of the two variation patterns identified in the simulation example. The 

nine image samples have estimated manifold coordinates that lie at the intersections of the six 

arrows in Figure 4.5(c). The number on each image is its image index, for comparison with Fig 5. 

From left to right of each row, the systematic variation is variation in the spatial decay level of the 

autocorrelation. From top to bottom of each column, the systematic variation is variation in the 

orientation angle of the autocorrelation. 

 

As discussed in Section 4.3, multiple variation patterns existing in the image samples make it 

difficult to recognize the physical meaning of each variation pattern by simply inspecting the 

original image samples without any ordering. Our approach provides a means of more clearly 
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discerning each variation pattern based on inspecting the image samples in an ordering that 

corresponds to particular paths in the learned manifold coordinate space. This helps identify the 

nature of the variation and, in a context such as the textile quality control example in the subsequent 

section, the underlying root-causes of the variation for process improvement. Similarly, in the 

present simulation example, the image samples could represent surfaces roughness image samples 

for fabricated metal parts, and variation in the autocorrelation orientation angle and decay rate 

could represent undesirable sources of variation introduced by faulty tooling or other root causes 

that could be identified and eliminated.  

In our approach, one can use any manifold learning method that takes pairwise dissimilarities 

as the input. Moreover, we have derived two different dissimilarity measures (KL and AKL) for 

image samples. In the following, we compare the performance of our method in this simulation 

example using two different manifold learning methods (MDS and ISOMAP) and using KL and 

AKL. To serve as a reference point for the comparisons, we also include results using a random 

ordering approach, which generates (instead of learns) manifold coordinates of image samples 

using a uniform distribution to generate the coordinates. As a performance measure, we focus on 

comparing how well the estimated manifold coordinates match the coordinates of the parameters 

that we used to generate the image samples. For this purpose, we used the Procrustes statistic 

(Goodall 1991), which lies in the interval [0, 1]. A small Procrustes statistic indicates a good match 

between the estimated coordinates and the ground-truth, allowing translation, rotation, and/or 

isometric scaling. We used a Monte Carlo simulation, where on each replicate we generated a 

different set of 𝑁 image samples as described earlier in this section. For each set of 𝑁 image 

samples, we performed Steps 1 and 2 of our algorithm to obtain the learned manifold coordinates 

in the same manner as above, except that here we computed both KL and AKL dissimilarities in 

Step 1 and used both MDS and ISOMAP in Step 2, for comparison. 

The first four columns of Table 4.1 show the average (across 10 Monte Carlo replicates) of the 
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Procrustes statistics computed for the learned manifold coordinates with respect to the parameters 

{𝐴, 𝛾} and {𝜙1, 𝜙2} used to generate the image samples. It can be seen from these columns that in 

every case, the average Procrustes statistics were quite small (near 0 in some cases), indicating 

that the estimated manifold coordinates (using either MDS or ISOMAP) are quite accurately 

matched with the ground-truths of both {𝐴, 𝛾} and {𝜙1, 𝜙2}. On the other hand, the average 

Procrustes statistics of the random ordering approach in the last column of Table 4.1 are close to 

the maximum value of the Procrustes statistic of 1. This means that the coordinates generated by 

the random ordering approach have no relationship with the ground-truths of either {𝐴, 𝛾} or 

{𝜙1, 𝜙2}. Overall, MDS was slightly better than ISOMAP. The performance of the AKL 

dissimilarity was almost perfect in this example when using MDS. Note that the simulated image 

samples in this example truly had the same size level of prediction noise, and hence satisfied the 

assumptions of the AKL dissimilarity measure as discussed in Remark 2. 

 

Table 4.1. Average Procrustes statistics of the estimated manifold coordinates across the Monte 

Carlo replicates for the simulation example for various versions of our approach (using MDS and 

ISOMAP with the KL and AKL dissimilarities) and the random ordering approach. The Procrustes 

statistic compares the estimated manifold coordinates with the ground-truth for both 

parameterization types {𝐴, 𝛾} and {𝜙1, 𝜙2}.  
 

Parameterization  KL-MDS  AKL-MDS  KL-ISOMAP  AKL-ISOMAP  Random 

{𝐴, 𝛾}  0.120  0.046  0.091  0.054  0.992 

{𝜙1, 𝜙2}  0.035  0.005  0.027  0.023  0.992 

4.5 Textile Example  

In this section, we test our approach on an example involving a set of N = 100 image samples 

with two variation patterns that we created from real textile image samples similarly to the ones in 

Figure 4.1(a, b). The two variation patterns were obtained by digitally contracting the original 

image samples by anywhere between 0% and 50% in the horizontal and vertical directions. Note 

that the horizontal (vertical) contraction makes the fiber strand and gap thickness in the horizontal 

(vertical) direction decrease while those in the vertical (horizontal) direction stay the same. The 
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amounts of the horizontal (h) and vertical (v) contraction for each image in this set of 100 image 

samples were also generated as a stratified random sample using LHS. The generated values of h 

and v are shown in Figure 4.8(a), in which the numbers represent the image indices. We have 

released this data set in the textile3 R data package (Bui and Apley 2019c). Figure 4.9 shows 18 

image samples randomly selected from the set of 100 image samples. 

 

             
 

Figure 4.8. Some results for the textile example: (a) Generated amounts of contractions {h, v} for 

the 100 image samples and (b) An ICA version of the estimated coordinates for our approach using 

MDS and the KL dissimilarity. The numbers in each panel are the image indices. Comparing the 

image index numbers in (a) and (b) shows that MDS with the KL dissimilarity estimated the true 

{h, v} quite well. 

 

We applied our algorithm to this set of textile image samples, as follows. In Step 1 of our 

algorithm, to construct the training data when fitting the models for all image samples, we again 

chose l = 5 using the CV procedure for selecting l in Section 6.2. The same as for the simulation 

example in Section 4.4, we used regression trees as the fitted supervised learning models 

{𝑔̂𝑗(∙): 𝑗 = 1, 2, … ,𝑁} in this example.  The value cp = 0.0001 was also chosen by the CV 

procedure for selecting cp in Section 6.2 and used to fit the regression tree for each image. After 

u1 

u2 

h 

v 

(a) (b) 
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that, the dissimilarity matrix was computed using the KL dissimilarity.  

 

 
 

Figure 4.9. A set of 18 textile image samples randomly selected from the set of 100 image samples 

in the textile example. 

In Step 2 of our algorithm, we applied MDS to the dissimilarity matrix obtained in Step 1 to 

estimate the two-dimensional manifold coordinates for the image samples. The manifold 

dimension of two was again chosen based on the number of dominant eigenvalues. Figure 4.8(b) 

plots the estimated two-dimensional coordinates of the image samples after being rotated using 

independent component analysis (ICA) for visualization purposes. As can be seen in Figure 4.8(b), 

our approach is able to quite accurately rank the image samples according to the true contraction 

amounts that were used to generate the image samples.  

In Step 3, we visualized the individual effects of the variation patterns present in the image 

samples based on the estimated manifold coordinates in Figure 4.8(b). Similar to the simulation 

example in Section 4.4, we inspected the image samples falling closely to each of the six arrows 

in Figure 4.8(b). Due to limited space, Figure 4.10 shows only nine image samples (again 

magnified and cropped, to improve visibility) that have the estimated manifold coordinates close 
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to the values represented by the intersections of the six arrows in Figure 4.8(b). From left to right 

in each row of Figure 4.10, i.e., following each horizontal arrow in Figure 4.8(b), the thickness of 

the vertical fiber strands and gaps clearly decreases, while those in the horizontal direction remain 

approximately the same. 

Similarly, from bottom to top in each column of Figure 4.10, i.e., following each vertical arrow 

in Figure 4.8(b), the thickness of the horizontal fiber strands and gaps in the image samples clearly 

decreases, while those in the other direction remain roughly unchanged. In this way, the individual 

physical nature of the two discovered variation patterns can be revealed, and this understanding 

can aid the users to identify root causes of these variation patterns. We emphasize again that no 

prior knowledge of the true nature of the variation patterns was incorporated into the algorithm.  

As in Section 4.4, we numerically compared (via the Procrustes statistic) the manifold learning 

results using the KL and AKL dissimilarities and using the random approach. In addition, we 

compared them with what we call the “FFT-oracle” approach, because it uses advanced knowledge 

of the nature of the changes to define specific FFT features (described below) that are known to 

relate to the specific changes in the surfaces. For this reason, this and other feature-based methods 

are "blind" to general changes that are not changes in the specific features that are monitored. In 

contrast, our approach does not incorporate any such prior knowledge of the variation patterns, 

because the goal is to discover new features that govern the (previously unidentified) variation 

patterns. 

The FFT-oracle approach performs the following three steps for each image sample. First, this 

approach computes the 1D fast Fourier transform (FFT) for each row and column of the image 

sample and produces a horizontal FFT matrix and a vertical FFT matrix, respectively. In other 

words, each row in the horizontal FFT matrix is the 1D FFT of the corresponding row in the image 

sample. Then, the approach computes the average 1D frequency spectrums of the horizontal and 

vertical FFT matrices over their rows and columns, respectively. Finally, the first-peak frequencies 
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of the two average 1D FFT spectrums are used as the 2-D coordinates (the first peak frequencies 

were chosen based on prior knowledge of the nature of the variation patterns, because they 

correspond to the spacing between textile fibers). 

 

 

Figure 4.10. Visualization of the two variation patterns identified in the textile example. The nine 

image samples shown have estimated manifold coordinates that lie at the intersections of the six 

arrows in Figure 4.8(b). The number on each image is its index. Moving left/right within rows 

represents systematic variation in the thickness of the vertical fiber strands and gaps, and moving 

up/down within columns represents systematic variation in the thickness of the horizontal fiber 

strands and gaps. 
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As the first-peak frequencies of the two spectrums are almost perfectly correlated with the 

contraction variation patterns that we created for the textile image samples, this approach can 

recover the true amounts of contraction almost perfectly. Because our approach is general and does 

not use specific features based on prior knowledge of the nature of the changes, it is of course not 

fair to compare FFT-oracle approach with our approach. Rather, we include it because it gives 

what can be viewed as a performance benchmark for this example. 

Table 4.2 shows the comparison using the Procrustes statistic, from which it can be seen that 

the KL dissimilarity performed better than the AKL dissimilarity when using both manifold 

learning algorithms (MDS and ISOMAP). The AKL dissimilarity did not work as well as in the 

simulation example, perhaps because the constant-variance assumption (see Remark 2) did not 

hold in this example. MDS provided slightly better results than ISOMAP. As in the simulation 

example in Section 4.4, the Procrustes statistic for the random ordering approach was close to 1 

(see Column “Random” in Table 4.2). Interestingly, our approach performed comparably with the 

hypothetical benchmark FFT-oracle approach, which uses prior knowledge of the nature of the 

variation. 

 

Table 4.2. Procrustes statistics of the estimated coordinates (in comparison with the ground-truth) 

for the textile example for various versions of our approach (using MDS and ISOMAP with the 

KL and AKL dissimilarities), the random ordering approach, and the FFT-oracle approach (which 

serves only as a hypothetical benchmark, since it uses prior knowledge of the variation patterns). 

 

KL-

MDS 
 
AKL-

MDS 
 

KL-

ISOMAP 
 

AKL-

ISOMAP 

 
Random 

 FFT-

oracle 

0.038  0.066  0.054  0.075  0.997  0.051 

4.6 Further Discussions 

4.6.1 Visualization and the role of sorting and decoupling 

This section further discusses the visualization step for understanding the nature of individual 

variation patterns present in the image samples, which is challenging when multiple variation 
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patterns are concurrently present with their effects mixed together. We also discuss how the 

manifold learning at its most elemental level can be viewed simply as sorting the image samples 

according to the level of the pattern(s) and decoupling the effects of multiple patterns, and how 

this substantially facilitates visualization of the patterns. 

Automatic image interpolation methods (and other related techniques such as image blending 

and morphing) have potential to help visualize the variation patterns by interpolating image 

samples that fall closely along some path on the learned manifold and potentially could be used to 

enhance our approach. For example, we have implemented (for brevity, the results are not shown 

here) the image interpolation method of Darabi et al. (2012) for this purpose. Although it did 

provide effective visualization of the autocorrelation orientation angle change in the simulation 

example (by successfully generating fictitious image samples that have autocorrelation orientation 

angle that changes smoothly), it was unable to provide useful visualization for our textile example. 

As of yet, we have not been able to get an image interpolation method to work robustly for 

visualizing the variation. We do think that developing automatic image interpolation, morphing, 

and blending methods that are applicable to stochastic texture surface (current methods are 

intended for use with images containing distinct objects that change position, shape, etc.) is a 

fruitful area for research and would strengthen our approach. However, we leave this for future 

research for two reasons. The first reason is that it is a challenging problem that will require 

substantial investigation.  

The second reason is that the "sorting" and "decoupling" that are inherent to our current 

approach, even though it sounds rather mundane on the surface, is actually very helpful in 

visualizing the nature of the variation (relative to just looking at the image samples in random 

order). By "sorting" and "decoupling", we mean the following. If we stop our algorithm at Step 2 

(i.e., after the manifold learning step), the outcome of our algorithm is the manifold coordinates of 

the image samples. This can be viewed as sorting (based on distances) the high-dimensional image 
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samples in a much lower dimensional space (the dimension of which is the number of patterns 

present in the image samples) according to the level of each pattern. For example, the arrows in 

Figure 4.8(b), which shows the manifold learning results of the textile example, represent different 

instances of the sorting process for the textile image samples. As shown in Figure 4.10 and 

explained in the surrounding discussion in Section 4.5, each horizontal arrow corresponds to a 

continuous change in the width of the vertical fiber strands and gaps while the width in the 

horizontal direction is roughly held fixed; each vertical arrow corresponds to a continuous change 

in the width of the horizontal fiber strands and gaps while the width in the vertical direction is 

roughly held fixed. Because the sorting of each pattern takes place along a one-dimensional path 

associated with one manifold coordinate, while the levels of other patterns corresponding to the 

other manifold coordinates are roughly held fixed, the sorting process also decouples the variation 

patterns into individual one. For instance, the changes in the thickness of the fiber strands and gaps 

in both horizontal and vertical directions in the textile image samples in Section 4.5 are decoupled 

into a change in just the vertical direction or the horizontal direction, after sorting. 

The simple act of sorting the image samples according to the level of the pattern (especially in 

conjunction with decoupling of the patterns, when multiple patterns are present) is very useful in 

visualization for the following reasons. After sorting, the image samples are ordered according to 

an individual pattern, from one extreme to the other extreme. If there are multiple patterns present, 

as described in the previous paragraph the patterns are decoupled in the sense that we are able to 

roughly fix the levels of the other patterns, so that the individual pattern in question can be isolated 

with the image samples sorted according to it. This is the basis for Step 3 of our algorithm and 

what is being done in Figure 4.8 and Figure 4.10, when we visualize a series of image samples that 

correspond to moving along one of the arrows in Figure 4.8(b). The human brain is much better 

able to recognize a pattern when (i) it is varied continuously, in order, over its full range; and (ii) 

the effects of the individual pattern are isolated/decoupled from the effects of any other patterns 
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by holding the levels of the other patterns roughly fixed. Sorting can also help to visually identify 

clusters of similar image samples and/or outlying image samples. If the image variation represents 

manufacturing variation, then identifying clusters/outliers can help in discovering abnormal 

behavior in the manufacturing process.  

Moreover, the sorting and decoupling inherent to manifold learning is even more important in 

high dimension (e.g., when there are three or more variation patterns present). This is because the 

manifold learning finds a parameterization for the set of variation patterns, and then, allows one to 

individually inspect each variation pattern one-by-one in the parameterization space. The higher 

the dimension, the more difficult it is for manual inspection (i.e., without using our sorting and 

decoupling approach). 

4.6.2 Choice of Neighborhood Size and Complexity Parameter 

This section discusses how the neighborhood size l and complexity parameter cp of the 

regression trees can be chosen using CV (the complexity parameters of other supervised learning 

models can be chosen using the same principle). We demonstrate with the textile example in 

Section 4.5. To investigate how the results would change as l and cp are varied, we also compare 

the manifold learning results (based on the Procrustes statistic) for different combination of l and 

cp values. 

To select the neighborhood size l, we recommend the following procedure based on CV. First, 

we randomly select a small set of image samples and fit supervised learning models for each of 

them using a range of l values. Then, we plot the CV R2 of the fitted models against l and select 

the smallest l value at which the CV R2 stabilizes for all samples. For example, Figure 4.11 shows 

such a plot for three image samples (each of which corresponds to a curve in Figure 4.11) that 

were randomly selected from the textile image samples in Section 4.5. It can be seen from Figure 

4.11 that l = 5 is roughly the smallest value after which the CV R2 plateaus in each curve, and thus, 

this value was chosen for our example in Section 4.5. Choosing the smallest l value after which 
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CV R2 roughly plateaus results in somewhat less complex models than if one attempted to 

maximize CV R2, and less complex models have computational (and perhaps robustness) 

advantages. Note that in other cases, users may need to inspect the CV R2 plots for more than the 

three image samples shown in Figure 4.11. 

A similar CV procedure can be used to select the common complexity parameter cp for the 

regression trees. Based on plots of CV R2 against cp of some models fitted to a small set of image 

samples, we select the smallest cp value after which the CV R2 plateaus (a smaller cp will result in 

a more complex tree). For instance, Figure 4.12 plots the CV R2against cp (cp decreases from left 

to right in the plot) for a model fitted to one of the three image samples selected for the analysis in 

Figure 4.11,  and shows that the CV R2 plateaus around cp = 0.0001; such plots for the other two 

image samples selected for the analysis in Figure 4.11 demonstrate similar behavior, and hence, 

are not shown here. Therefore, we selected cp = 0.0001 for our textile example in Section 4.5. 

 

 
 

 

Figure 4.11. CV R2 versus neighborhood size l for the models fitted to three textile image samples 

(each of which corresponds to a curve in the plot) randomly selected from the image samples in 

Section 4.5. 

 

Remark 6: We have found that choosing a common cp parameter (i.e., the same cp value is 

used for the tree fitted to each image sample) generally works a little better than choosing separate 

cp parameters for each image; at least, this was the case in all of our examples (in terms of the 

CV R2 

Neighborhood size l 
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Procrustes statistic performance measure). We suspect this is because the former is a little more 

robust than the latter to selecting a poor cp due to random chance and image-to-image variation, 

and while there is variation in the nature of the image samples, the variation is not so large that it 

warrants using a different cp for different image samples. Hence, we used the former approach in 

this chapter, and also suggest it for choosing the complexity parameters of other supervised 

learning algorithms (if something other than a regression tree is used). 

 

 
 

Figure 4.12. CV R2 versus complexity parameter cp for one of the models fitted to three textile 

image samples randomly selected from the image samples in Section 4.5. 

 

To see how the manifold learning results vary with different choices of l and cp, we compare 

the Procrustes statistics for the textile example in Section 4.5 using MDS with the KL and AKL 

dissimilarity measures for different combinations of l and cp in Table 4.3. It can be seen from 

Table 4.3 that our above strategy for choosing l and cp (chosen values are indicated by cells with 

bold font in Table 4.3) provided good manifold learning results that are comparable to those of the 

FFT-oracle approach in Section 4.5. 

  

Complexity parameter cp 

CV R2 
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Table 4.3. Procrustes statistics of the estimated coordinates (in comparison with the ground-truth) 

for the textile example using MDS with the KL and AKL dissimilarities for different combinations 

of the neighborhood size l and the tree complexity parameter cp. The numbers in bold indicate the 

selected values of l and cp using our CV procedure. 

 

cp 
 Dissimilarity  Neighborhood size l 

 Measure  1  2  3  4  5  10  15 

0.0001 
 KL  0.049  0.041  0.044  0.040  0.038  0.044  0.056 

 AKL  0.519  0.090  0.086  0.072  0.066  0.077  0.110 

0.001 
 KL  0.056  0.055  0.056  0.051  0.049  0.056  0.077 

 AKL  0.198  0.118  0.112  0.096  0.086  0.102  0.154 

4.6.3 Choice of Dissimilarity Measures and Manifold Learning Algorithm 

We have derived the KL and AKL dissimilarity measures and tried different manifold learning 

algorithms (MDS and ISOMAP) in the previous examples. This section discusses how to choose 

the best combination of the dissimilarity measure and manifold learning algorithm for the 

visualization step. 

In our previous examples, the KL dissimilarity measure consistently worked well (near the 

top) across all examples, and it worked better for the real example. Hence, it is our recommended 

measure. However, the AKL dissimilarity measure is still useful for the following two reasons. 

First, it did perform better than the KL dissimilarity measure when its constant-variance 

assumption was met (in the simulation example in Section 4.4). Second, the KL and AKL 

dissimilarities can be computed at the same time with little extra computational effort. Computing 

both measures allows users to conduct the visualization step for both measures and then select the 

measure that provides more interpretable results as explained below. 

As with dissimilarity measures, users can also try different manifold learning algorithms, and 

then select the algorithm that provides the most interpretable results. It may be reasonable to start 

with MDS, because it worked better in our examples. In general, we recommend that users begin 

the visualization step with KL and MDS. If the results are not very interpretable or the user wants 

to run the analysis in a different way to see if the results are different (e.g., if the true manifold is 

highly nonlinear, then ISOMAP should be more effective than MDS as the manifold learning 
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method; or if the constant-variance assumption of the AKL measure is satisfied, the AKL measure 

may yield better results than the KL measure), they can always try other combinations to see if the 

results are more interpretable. This is similar to the standard practice in factor analysis, in which 

users try various methods like regular PCA, varimax rotation, equimax rotation, promax rotation, 

etc., to see if one of the methods produces more interpretable results (for details of these methods, 

e.g., see Johnson and Wichern 2007). 

4.7 Summary and Concluding Remarks 

In this chapter, we develop an exploratory analysis approach to identify and understand 

previously unknown systematic variation patterns in the stochastic nature across a set of stochastic 

textured surface samples. Such data occur commonly in practice, although the problem has not 

previously been addressed in the literature. We formulate and derive two new pairwise 

dissimilarity measures (KL and AKL) between the stochastic textured surface image samples. To 

these new pairwise dissimilarity measures for stochastic textured surface samples, we apply a form 

of manifold learning that takes dissimilarities as the input to help discover a low-dimensional 

parameterization of the surface variation present in the given samples. Varying the manifold 

parameters and visualizing how the surfaces change accordingly helps build an understanding of 

the physical nature of each systematic variation pattern. 

We illustrate the approach with simulation and textile examples. In both examples, our 

approach was able to accurately identify the manifold parameterization of the variation without 

incorporating any prior knowledge of the variation. Visualization based on the discovered 

manifold coordinates allows the physical nature of each individual variation pattern to be better 

understood. Although we have derived and investigated the KL and AKL dissimilarity measures 

as the basis for identifying the nature of variation in stochastic textured surface data, they can also 

be used in other contexts such as classification, characterization, clustering, and outlier detection 

that involve stochastic textured surface data. 
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