
NORTHWESTERN UNIVERSITY

Optimizing File System Techniques for Large-Scale Scientific Applications

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering and Computer Science

By

Avery Ching

EVANSTON, ILLINOIS

December 2007

2

c© Copyright by Avery Ching 2007

All Rights Reserved

3

ABSTRACT

Optimizing File System Techniques for Large-Scale Scientific Applications

Avery Ching

High-performance scientific computing in a modern age uses parallel techniques at a scale

of hundreds of thousands of processors. These large-scale applications have I/O system work-

loads that are primarily driven by small, sparse I/O operations. While parallel file systems

have provided application developers with scalable peak I/O bandwidth for large, contigu-

ous I/O operations, the noncontiguous I/O access patterns common to scientific applications

have remained a serious performance problem. Our work in this area has contributed sev-

eral solutions toward improving the gap in I/O performance and other system components

through new list I/O and datatype I/O methods. Detailed studies on basic I/O character-

istics and application-level I/O strategies have led to performance-oriented suggestions for

application programmers on how to best use these new I/O methods. In this paper, we

also discuss our optimized DLM and versioning approaches for implementing atomic non-

contiguous I/O operations that are the building blocks for handling challenging problems

in redundant storage, consistent distributed data layouts for parallel processing, and other

producer-consumer problems.

4

Acknowledgments

There are many people who helped me immensely through the doctoral process. My

advisor, Alok Choudhary, played a very large role in my academic development. When I

was contemplating my future near the end of my undergraduate career, he helped convince

me to pursue a doctoral degree and provided the time and financial support necessary for

me to work toward this endeavor. Professor Choudhary inspired me intellectually and also

kept my spirits up during the process. Dr. Rob Ross, my mentor for many years at Argonne

National Laboratory, helped me a lot with the technical details of our research collaboration

and has been a co-author on most of my doctoral work. Dr. Wei-keng Liao helped guide

my research, especially during my early doctoral years. I would also like to thank my

other committee members including Professor Gokhan Memik and Dr. Rajeev Thakur for

supporting me during my thesis defense. Additionally, I have been fortunate to have worked

with many other research collaborators at various institutions including Lee Ward, Dr. Neil

Pundit, Professor Wu-chun Feng, Dr. Chung-hsing Hsu, Dr. William Gropp, Seung Woo

Son, Professor Mahmut Kandemir, Dr. Kenin Coloma, Peter Aarestad, Professor George

Thiruvathukal, Dr. Jackie Chen, Dr. Ramanan Sankaran, Dr. Scott Klasky, Heshan Lin,

and Professor Xiaosong Ma.

My parents, Randall and Trudy Ching, are responsible for the love and support that gave

me a positive attitude in life. My brother, Bryce, and sister, Tiffany, kept me encouraged so

we could all be “doctors.” The wonderful peers in our research group including Dr. Joseph

5

Zambreno, Dr. Jayaprakash Pisharith, Dr. Ying Liu, Dr. Steve Chiu, Dr. Jianwei Li, Kenin

Coloma, Dan Honbo, Ramanathan Narayanan, Sanchit Mishra, Abhishek Das, and Arifa

Nisar have made “work,” a lot more fun and my friends outside of school provided me with

much needed joy and relaxation through sports, eating out, and other activities. I thank

God for the strength to persevere and for providing me with the resources I needed.

This work was supported in part by Sandia National Laboratories and DOE under Con-

tract 28264, DOE’s SciDAC program (Scientific Data Management Center) award number

DE-FC02-01ER25485, the NSF/DARPA ST-HEC program under grant CCF-0444405, and

the DOE HPCSF program.

6

Table of Contents

ABSTRACT 3

Acknowledgments 4

List of Tables 9

List of Figures 10

Chapter 1. Introduction 18

Chapter 2. High-Performance I/O Software Stack 23

2.1. Definitions and Noncontiguous I/O 23

2.2. Portable File Formats and Data Libraries 24

2.3. MPI-IO and ROMIO 32

2.4. Parallel File Systems 45

Chapter 3. List I/O 55

3.1. Interface 55

3.2. PVFS1 Implementation 57

3.3. ROMIO MPI-IO Implementation 59

3.4. Performance Evaluation 62

3.5. Summary 77

Chapter 4. Datatype I/O 79

7

4.1. Interface 79

4.2. Datatype I/O Implementation in PVFS1 and ROMIO 80

4.3. Noncontiguous I/O Methods Comparison 84

4.4. Performance Evaluation 87

4.5. Summary 92

Chapter 5. Performance Analysis of Access Pattern Characteristics 94

5.1. I/O Characteristics Discussion 94

5.2. PVFS2 and ROMIO Implementation 96

5.3. HPIO Benchmark 97

5.4. HPIO Results 98

5.5. I/O Guidelines 105

Chapter 6. Exploring I/O Strategies for Parallel Sequence-Search Tools 110

6.1. I/O Algorithms in Parallel Sequence-Search Tools 113

6.2. S3aSim 117

6.3. Performance Evaluation 123

6.4. Summary 137

Chapter 7. Noncontiguous Locking Techniques for Parallel File Systems 139

7.1. History & Our DLM Approach 142

7.2. New Locking Methods 144

7.3. Hybrid Lock Protocols 147

7.4. DLM Implementation 149

7.5. Performance Evaluation 155

7.6. Summary 168

8

Chapter 8. The Versioning Parallel File System 169

8.1. Fault-Tolerance, Strict Consistency, and Noncontiguous I/O 169

8.2. Atomicity For Parallel I/O 171

8.3. VPFS Protocol 172

8.4. VPFS Implementation 176

8.5. Performance Evaluation 178

8.6. VPFS Discussion 181

Chapter 9. Conclusion and Future Work 184

References 185

9

List of Tables

2.1 NetCDF library functions. 27

2.2 HDF5 interfaces. 31

2.3 Commonly used MPI datatype constructor functions. Internal offsets can be

described in terms of the base datatype or in bytes. 35

2.4 A comparison of HPC production file systems. 46

2.5 A comparison of HPC research file systems. 50

3.1 I/O characteristics of the tile reader benchmark. 69

3.2 I/O characteristics of the ROMIO three-dimensional block test. 72

3.3 I/O characteristics of the FLASH I/O simulation (n is the # of clients). 74

4.1 I/O characteristics comparison. 84

10

List of Figures

2.1 (a) Abstract I/O software stack for scientific computing. (b) Current components

of the commonly used I/O software stack. 23

2.2 Various I/O access cases. (a) refers to contiguous in memory and file (c-c).

(b) refers to noncontiguous in memory and contiguous in file (nc-c). (c) refers to

contiguous in memory and noncontiguous in file. (d) refers to noncontiguous in

memory and file (nc-nc). 24

2.3 Using data libraries in parallel applications: (a) using a serial API to access

single files through a single process; (b) using a serial API to access multiple

files concurrently and independently; (c) using a parallel API to access single files

cooperatively or collectively. 26

2.4 Design of PnetCDF on a parallel I/O architecture. PnetCDF runs as a library

between the user application and file system. It processes parallel netCDF requests

from user compute nodes and, after optimization, passes the parallel I/O requests

down to MPI-IO library. The I/O servers receive the MPI-IO requests and do I/O

over the back-end storage on behalf of the user. 28

2.5 File views illustrated: filetypes are built from etypes. The filetype access pattern

is implicitly iterated forward starting from the disp. An actual count for the filetype

is not required as it conceptually repeats forever, and the amount of I/O done is

dependent on the buffer datatype and count. 36

11

2.6 (a) Example POSIX I/O request. Using traditional POSIX interfaces for this

access pattern cost four I/O requests, one per contiguous region. (b) Example

two-phase I/O request. Interleaved file access patterns can be effectively accessed in

larger file I/O operations with the two-phase method. 39

2.7 (a) Probably data sieve: Data sieving reduces I/O requests by a factor of 4, but

almost doubles the I/O amount (b) Do not data sieve: Data sieving I/O requests

are reduced by half, but almost 4 (8 if write) times more data is accessed (c) Do

not data sieve: Data sieving increases I/O requests and only marginally reduces I/O

amount. (d) Do not data sieve (Pareto optimal):Data sieving doubles I/O requests,

but has no effect on I/O amount. (e) Probably data sieve: Data sieving reduced I/O

requests by a factor of 4, but almost doubles I/O. 40

2.8 Evaluating the file access pattern alone in this case does not paint the entire I/O

picture. The small noncontiguous memory pieces break up the large contiguous file

access pattern into many small I/O requests. Since these small I/O requests end up

next to each other, data sieving can reduce the number of I/O requests by a factor

of 4 without accessing any extraneous data, making data sieving Pareto optimal,

assuming it takes longer to read/write 1 unit of data 4 times than to copy 4 units of

data into or out of the buffer and to read/write 4 units of data. 42

2.9 The three main factors to consider in determining whether to use data sieving

are whether the user buffer is noncontiguous with small pieces, the size of the

noncontiguous file regions, and the distribution of the file accesses all with respect

to the data sieving buffer size. If both memory and file descriptions are contiguous,

do not use data sieving. 43

12

2.10 Typical parallel file system configuration. Clients have parallel access to

components within the metadata and data groups. 45

3.1 List I/O read prototype (list io write has the same parameters). 56

3.2 Example list I/O write. Since only contiguous regions can be described using the

POSIX read/write interfaces, four I/O calls would be required instead of one list

I/O write. 57

3.3 PVFS list I/O read prototype (pvfs write list has the same parameters. 58

3.4 Example MPI-IO C code. 59

3.5 File datatypes are replicated and read into memory until the read call has accessed

that correct amount of data. 60

3.6 Example flattening of a file datatype. File datatypes are converted into lists of file

offsets and lengths in order to generate the necessary parameters to use the list I/O

interface. 61

3.7 Example one-dimensional cyclic access. An entire file stores a two-dimensional

array and each processor is in charge of an equal amount of columns. The file view

is also flattened into one-dimension. 64

3.8 Example block-block access. An entire file stores a two-dimensional array of

blocks, and each processor is in charge of a single block. The file view has been

flattened into 1-dimension. 65

3.9 One-dimensional cyclic read results with various clients. These results are

obtained by using 8-32 clients reading data with the one-dimensional cyclic file

access pattern. 66

13

3.10 One-dimensional cyclic write results with various clients. These results are

obtained by using 8-32 clients writing data with the one-dimensional cyclic file

access pattern. 66

3.11 Block-block read results with various clients. These results are obtained by using

4-16 clients reading data with the block-block file access pattern. 67

3.12 Block-block write results with various clients. These results are obtained by using

4-16 clients reading data with the block-block file access pattern. 68

3.13 Tile reader file access pattern. Each processor is in charge of reading the data

from a display file into its own local display, also known as a tile. This results in a

noncontiguous file access pattern. 69

3.14 Tile reader benchmark results. 71

3.15 Three-dimensional block test access pattern. The access pattern for 8, 27, and 64

processors is shown in (a), (b), and (c), respectively. 71

3.16 Three-dimensional block test results. 72

3.17 FLASH memory datatype. Each computing processor contains 80 blocks, so as we

scale up the number of computing processors, we linearly increase the dataset size. 75

3.18 FLASH file datatype. This figure describes the hierarchy of the file datatype. At

the highest level of the hierarchy, variables are contiguous. Within every variable,

there are all the FLASH blocks from all the processors. 76

3.19 Results of the FLASH I/O benchmark with 2 - 64 processors. Collective I/O

performs exceptionally well due to the aggregate contiguous file access pattern. The

overhead of exchanging data is minimal compared to the I/O time. 76

14

4.1 Datatype I/O prototypes. 79

4.2 Example tile reader file access pattern conversion. (A) shows how we convert

a struct datatype into an indexed dataloop for performance optimization. This

conversion eliminates the need for the MPI LB and MPI UB dataloops, making the

dataloop representation smaller. (B) is an example of loop fusion in which we can

merge datatypes into a single dataloop. The contig and named dataloops can be

sufficiently described by the vector dataloop above them, eliminating the need for

them. 81

4.3 Example datatype I/O call. Since file datatype are broken into file offset-length

pairs at the I/O servers, the number of I/O requests is dramatically reduced for

regular access patterns. 83

4.4 Tile reader performance results. 89

4.5 Three-dimensional block read and write performance. 90

4.6 FLASH I/O performance. 92

5.1 An example of how an access pattern is created from the HPIO parameters. 95

5.2 HPIO results from testing various region counts. 99

5.3 HPIO results from testing various region sizes. 100

5.4 HPIO results from testing various region spacing. 103

5.5 Example code conversion from the POSIX interface to the MPI-IO interface. 105

5.6 (a) Original layout of variables in data cells. (b) Reorganization of data to

combine file regions during write operations increases I/O bandwidth. 106

15

5.7 Cost of collective I/O synchronization. Even if collective I/O (a) can reduce

the overall I/O times, individual I/O (b) outperforms it in this case because of no

implicit synchronization costs. 107

6.1 Database segmentation. 111

6.2 Results when scaling up the number of processors with no-sync/sync query

options. 124

6.3 Individual phase timing results when scaling up the number of processors with

no-sync/sync query options for MW. 125

6.4 Individual phase timing results when scaling up the number of processors with

no-sync/sync query options for WW-POSIX. 126

6.5 Individual phase timing results when scaling up the number of processors with

no-sync/sync query options for WW-List. 128

6.6 Individual phase timing results when scaling up the number of processors with

no-sync/sync query options for WW-Coll. 129

6.7 Results when scaling up the compute speed with no-sync/sync query options. 131

6.8 Individual phase timing results when scaling up the compute speed with

no-sync/sync query options for MW. 132

6.9 Individual phase timing results when scaling up the compute speed with

no-sync/sync query options for WW-POSIX. 133

6.10 Individual phase timing results when scaling up the compute speed with

no-sync/sync query options for WW-List. 134

16

6.11 Individual phase timing results when scaling up the compute speed with

no-sync/sync query options for WW-Coll. 135

7.1 The three lock methods described in this chapter: (a) POSIX locking, (b) list

locking, and (c) datatype locking. 142

7.2 Lock server architecture. 149

7.3 Lock tests without contention: (a) acquire and (b) unlock. Each client accesses

locks within an 8 MB range. 153

7.4 Lock tests without contention: (a) acquire and (b) unlock. Each client accesses

locks within a 512 MB range. 155

7.5 Lock tests with contention: (a) datatype, (b) list, and (c) POSIX. Each client

accesses locks within an 8 MB range. 157

7.6 Lock tests with contention: (a) datatype, (b) list, and (c) POSIX. Each client

accesses locks within a 512 MB range. 158

7.7 (a) Raw I/O bandwidth. (b) I/O bandwidth as a fraction of single writer I/O

time. 162

7.8 % of I/O bandwidth compared with no locking. 164

7.9 (a) S3aSim total execution time from 2 - 64 processes. (b) S3aSim I/O time from

2 - 64 processes. 165

7.10 (a) S3aSim I/O time as a % of total execution time from 2 - 64 processes. (b)

S3aSim % of I/O bandwidth compared to no locking from 2 - 64 processes. 166

8.1 Atomicity challenges for parallel file systems can occur even with contiguous I/O

operations. 171

17

8.2 Serialization using locking versus concurrent I/O using versioning. 173

8.3 HPIO results from testing various region counts and different atomicity methods. 179

8.4 HPIO results from testing various region spacings and different atomicity methods.180

18

CHAPTER 1

Introduction

Large-scale applications have begun to rely heavily on high-level I/O APIs such as

HDF5 [37] and parallel netCDF [47] for their storage needs. These APIs allow scientists

to describe their data in meaningful terms to them (as both structured and unstructured,

typed data) and to store and retrieve this data in a manner that is portable across various

high-performance computing platforms. Scientists have rich abstract languages they can use

to describe their data. It is more intuitive for application I/O as a whole to be described in

terms of the datatypes and organizations that the scientists are really using, rather than in

terms of independent reads or writes of bytes on many processors.

High-level I/O APIs also allow I/O experts to embed the knowledge of how to efficiently

access storage resources in a library that many applications can use portably across numerous

file systems. The result is a big win for both groups. High-level I/O library developers

use MPI-IO as their interface to storage resources. The MPI-IO interface maps higher-level

accesses to file system operations and provides a collection of key optimizations. MPI-IO also

understands structured data access, enabling high-level I/O API programmers to describe

noncontiguous accesses as single units, just as the scientist did, and to interface underlying

resources through a portable API.

Numerous studies have shown that I/O for large-scale applications is dominated by nu-

merous noncontiguous I/O requests [85, 62, 3]. Today’s parallel file systems do not, for

the most part, support structured or even noncontiguous access. Instead they tend to favor

19

the POSIX interface, allowing for only contiguous regions to be accessed and modified. This

approach severely limits the ability of the MPI-IO layer to succinctly and efficiently carry

out the requested I/O operations at the file system level.

A significant step in the direction of efficient unstructured data access is the list I/O

interface [93], implemented in the Parallel Virtual File System (PVFS) and supported un-

der MPI-IO [17, 16]. This new interface, when well supported by the parallel file system,

allows unstructured accesses to be succinctly described and serves as a solid building block

for a MPI-IO device driver implementation. This interface is general, easy to understand,

and could be implemented for most file systems. Emerging file systems will likely have such

an interface. However, because it does not retain any information on the regularity of ac-

cesses (such as stride information), the representation of structured accesses using a list I/O

interface can be very large. Building, transmitting, and processing this representation can

significantly limit performance when accesses consist of many small regions [100]. The next

logical step in efficient support for structured data access, datatype I/O, provides a mech-

anism for mapping MPI datatypes (passed to MPI-IO routines) into a type representation

understood by the file system. The new representation maintains the concise descriptions

possible with MPI type constructors such as MPI Type vector. This representation is passed

over the network where it is processed directly on the I/O servers to avoid the overhead of

building lists of I/O regions at the MPI-IO layer, passing these lists over the network as

part of the file system request, or processing these lists during I/O. While list I/O is still

well suited for unstructured I/O requests, datatype I/O will outperform list I/O for most

structured access patterns.

As our new I/O methods augmented the programmer’s repertoire, we conducted a study

on basic I/O characteristics to figure out when to best use each I/O method when given

20

an application-specific set of I/O parameters. We synthesized noncontiguous I/O access for

storing scientific data in a modern parallel file system and evaluated the effects of varying

three major I/O characteristics: region count, region size and region spacing. We created

the High-Performance I/O benchmark, HPIO, to help application designers optimize their

I/O algorithms. HPIO tests various I/O methods (POSIX I/O, list I/O, two-phase I/O,

and datatype I/O methods) in all I/O cases (c-c, nc-c, c-nc, nc-nc) with our chosen I/O

characteristics. The results of our testing provides guidelines that can help scientific appli-

cation developers understand how their design choices with respect to I/O algorithms can

significantly affect I/O performance between 1 to 3 orders of magnitude.

As a compliment to the bottom-up basic access pattern study, we examine application-

level I/O strategies from an important domain in computational science: parallel sequence-

search. Biologists are looking at BLAST, FASTA and other sequence-search heuristics to un-

derstand the mysteries of recently mapped DNA or amino-acid sequences. Parallel sequence-

search, in tools such as mpiBLAST and TurboBlast, are increasingly being used to reduce

application execution times. S3aSim, a sequence similarity search algorithm simulator, has

been developed as a tool for understanding the implications of various I/O strategies in this

class of applications. This case study shows that collective I/O strategies may not make

sense for this type of master/worker parallelization. Individual I/O strategies are better at

spreading the aggregate I/O utilization across the running time of the application and do

not incur unnecessary synchronization overheads.

New list I/O and datatype I/O methods provide an efficient implementation of noncon-

tiguous high-level I/O calls, however, lack an atomic mode. Adding atomicity to these I/O

calls is difficult, however, atomicity is an important building block for handling challenges

such as redundant storage, real-time visualization, and consistent data placement for parallel

21

computing. Furthermore, strong atomicity semantics are defined for many I/O APIs. In this

paper, we investigate two approaches for adding atomicity for noncontiguous I/O without a

significant performance overhead. First, we examine a true byte-range DLM approach where

servers hold locks on their own data. In this scheme, we apply the list I/O and datatype I/O

access pattern descriptions used in our I/O methods toward lock descriptions with a hybrid

lock protocol designed to optimized parallelization. In a range of application benchmarks,

lock overhead for noncontiguous I/O operations with list lock or datatype lock that uses a

form of the optimized lock protocol does not exceed 30% and is negligible in some cases.

Our second method at handing atomicity efficiently uses a versioning approach. Version-

ing has been used in many file systems to implement audit trails, provide security features,

undelete files, and to manage access to shared data. We have created a parallel versioning

protocol to efficiently implement atomic noncontiguous operations for parallel file systems.

Our prototype implementation shows a lot of promise for scientific applications since they

tend to be write-dominated. The initial versioned write results in our HPIO benchmark

have better I/O bandwidth when compared to their traditional I/O counterparts due to the

advantage of log structured on-disk storage.

This paper is organized as follows. Chapter 2 provides a brief background on the field

of parallel I/O. Chapter 3 describes the design and implementation of the list I/O interface

for improving unstructured I/O. Chapter 4 discuss an optimized structured I/O method

called datatype I/O. Chapter 5 analyzes the performance effect of changing various I/O

characteristics with different I/O methods and access patterns. Chapter 6 describes the

parallel sequence-search application domain from an I/O perspective through our S3aSim

benchmark. Chapter 7 explains the design and experimentation of our true byte-range gran-

ular DLM implementation. Chapter 8 details our version-based approach for implementing

22

atomic I/O operations in parallel file systems. Finally, Chapter 9 concludes this paper and

discusses our future work.

23

CHAPTER 2

High-Performance I/O Software Stack

High-performance I/O is an established field in computing engineering. This chapter

discusses how large-scale applications apply parallel I/O techniques through the commonly

used I/O software stack depicted in Figure 2.1. First, Section 2.1 discusses the common terms

in the I/O field and the concepts of noncontiguous I/O. Section 2.2 describes application

specific libraries. Next, Section 2.3 talks about the MPI-IO specification and optimizations

in ROMIO, a MPI-IO implementation from Argonne National Laboratory. Section 2.4 gives

a brief summary on current production and research parallel file systems.

2.1. Definitions and Noncontiguous I/O

I/O, or input/output, is a generalized term in computing, which refers to a large collection

of interfaces that send and receive information. Common I/O devices include keyboards,

mice, network cards, and disk drives. In this paper, I/O specifically refers a method that a

client uses to access data on a storage device. When a single client simultaneously accesses

Lustre PanFS GPFS PVFS2

MPI−IO

NetCDF/PnetCDFHDF5

FusionFS

High Level I/O Library

Application

I/O Middleware

Parallel File System

I/O Hardware

(a) (b)

Figure 2.1. (a) Abstract I/O software stack for scientific computing. (b) Cur-
rent components of the commonly used I/O software stack.

24

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

��
��
��
��

(c) (d)
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Memory

File

(a) (b)

Figure 2.2. Various I/O access cases. (a) refers to contiguous in memory and
file (c-c). (b) refers to noncontiguous in memory and contiguous in file (nc-c).
(c) refers to contiguous in memory and noncontiguous in file. (d) refers to
noncontiguous in memory and file (nc-nc).

multiple storage devices, it uses parallel I/O. A file system which has multiple storage devices

or nodes that can be accessed simultaneously is called a parallel file system. Most of the

time, parallel file systems are also considered to be distributed file systems, or file systems

that support sharing data across a network. However, distributed file systems such as the

early version of the network file system (NFS) [72], have typically been centralized, and are

considered to be distributed, however, not parallel.

All types of I/O access patterns, including both contiguous and noncontiguous cases, are

shown in Figure 2.2. For the contiguous in memory and contiguous in file case, the notation

c-c is used. The noncontiguous cases are referred to as nc-c for noncontiguous in memory

and contiguous in file, c-nc for contiguous in memory and noncontiguous in file, and nc-nc for

noncontiguous in memory and noncontiguous in file. The following sections describe various

higher-level views of these simplistic I/O access patterns.

2.2. Portable File Formats and Data Libraries

Low level I/O interfaces, like UNIX I/O, treat files as sequences of bytes. Scientific

applications manage data at a higher level of abstraction where users can directly read/write

data as complex structures instead of byte streams and have all type information and other

25

useful metadata automatically handled. Applications commonly run on multiple platforms

also require data portability so that the data generated from one platform can be used on

another without transformation. As most scientific applications are programmed to run in

parallel environments, parallel access to the data is desired. This section briefly describes

two popular scientific data libraries and their portable file formats: netCDF and HDF5.

2.2.1. File Access in Parallel Applications

Before presenting a detailed description of library design, general approaches for accessing

portable files in parallel applications (in a message-passing environment) are analyzed. The

first and most straightforward approach is described in the scenario of Figure 2.3a where one

process is in charge of collecting/distributing data and performing I/O to a single file using

a serial API. The I/O requests from other processes are carried out by shipping all the data

through this single process. The drawback of this approach is that collecting all I/O data

on a single process can easily create an I/O performance bottleneck and also overwhelm its

memory capacity.

In order to avoid unnecessary data shipping, an alternative approach has all processes

perform their I/O independently using the serial API, as shown in Figure 2.3b. In this way,

all I/O operations can proceed concurrently, but over separate files (one for each process).

Managing a dataset is more difficult, however, when it is spread across multiple files. This

approach undermines the library design goal of easy data integration and management.

A third approach introduces a parallel API with parallel access semantics and an opti-

mized parallel I/O implementation where all processes perform I/O operations to access a

26

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

Parallel
Application

P1 P2 P3P0 P1 P2 P3P0

(b)

Serial Data Library Serial Data Library

(a)

Single File

P1 P2 P3

(c)

Parallel Data Library

P0

Single File

File 0 File 1 File 2 File 3

Figure 2.3. Using data libraries in parallel applications: (a) using a serial API
to access single files through a single process; (b) using a serial API to access
multiple files concurrently and independently; (c) using a parallel API to access
single files cooperatively or collectively.

single file. This approach, as shown in Figure 2.3c, both frees the users from dealing with par-

allel I/O intricacies and provides more opportunities for various parallel I/O optimizations.

As a result, this design principle is prevalent among modern scientific data libraries.

2.2.2. NetCDF and Parallel NetCDF

NetCDF [76], developed at the Unidata Program Center, provides applications with a com-

mon data access method for the storage of structured datasets. Atmospheric science appli-

cations, for example, use netCDF to store a variety of data types that include single-point

27

Table 2.1. NetCDF library functions.

Function Type Description

Dataset Functions create/open/close a dataset, set the dataset to define/data
mode, and synchronize dataset

Define Mode Functions define dataset dimensions and variables
Attribute Functions manage adding, changing, and reading attributes of datasets
Inquiry Functions return dataset metadata: dim(id, name, len), var(name,

ndims, shape, id)
Data Access Functions provide the ability to read/write variable data in one of the

five access methods: single value, whole array, subarray, sub-
sampled array (strided subarray) and mapped strided subar-
ray

observations, time series, regularly spaced grids, and satellite or radar images. Many organi-

zations, such as much of the climate modeling community, rely on the netCDF data access

standard for data storage.

NetCDF stores data in an array-oriented dataset which contains dimensions, variables,

and attributes. Physically, the dataset file is divided into two parts: file header and array

data. The header contains all information (metadata) about dimensions, attributes, and

variables except for the variable data itself, while the data section contains arrays of variable

values (raw data). Fixed-sized arrays are stored contiguously starting from given file offsets,

while variable-sized arrays are stored at the end of the file as interleaved records that grow

together along a shared unlimited dimension.

The netCDF operations can be divided into the five categories as summarized in Table

2.1. A typical sequence of operations to write a new netCDF dataset is to create the dataset;

define the dimensions, variables, and attributes; write variable data; and close the dataset.

Reading an existing netCDF dataset involves first opening the dataset; inquiring about

28

Compute Node Compute Node Compute Node Compute Node

I/O Server I/O Server I/O Server

Parallel netCDF

MPI−IO

Communication Network

Figure 2.4. Design of PnetCDF on a parallel I/O architecture. PnetCDF runs
as a library between the user application and file system. It processes parallel
netCDF requests from user compute nodes and, after optimization, passes the
parallel I/O requests down to MPI-IO library. The I/O servers receive the
MPI-IO requests and do I/O over the back-end storage on behalf of the user.

dimensions, variables, and attributes; then reading variable data; and finally closing the

dataset.

The original netCDF API was designed for serial data access, lacking parallel semantics

and performance. Parallel netCDF (PnetCDF) [47], developed jointly between Northwest-

ern University and Argonne National Laboratory (ANL), provides a parallel API to access

netCDF files with significantly better performance. It is built on top of MPI-IO, allowing

users to benefit from several well-known optimizations already used in existing MPI-IO im-

plementations, namely the data sieving and two-phase I/O strategies in ROMIO. MPI-IO is

explained in further detail in Section 2.3. Figure 2.4 describes the overall architecture for

PnetCDF design.

In PnetCDF, a file is opened, operated, and closed by the participating processes in an

MPI communication group. Internally, the header is read/written only by a single process,

29

although a copy is cached in local memory on each process. The root process fetches the file

header, broadcasts it to all processes when opening a file, and writes the file header at the

end of the define mode if any modifications occur in the header. The define mode functions,

attribute functions, and inquiry functions all work on the local copy of the file header. All

define mode and attribute functions are made collectively and require all the processes to

provide the same arguments when adding, removing, or changing definitions so the local

copies of the file header are guaranteed to be the same across all processes from the time the

file is collectively opened until it is closed.

The parallelization of the data access functions is achieved with two subset APIs, the

high-level API and the flexible API. The high-level API closely follows the original netCDF

data access functions and serves as an easy path for original netCDF users to migrate to

the parallel interface. These calls take a single pointer for a contiguous region in memory,

just as the original netCDF calls did, and allow for the description of single elements (var1),

whole arrays (var), subarrays (vara), strided subarrays (vars), and multiple noncontiguous

regions (varm) in a file. The flexible API provides a more MPI-like style of access by providing

the user with the ability to describe noncontiguous regions in memory. These regions are

described using MPI datatypes. For application programmers that are already using MPI

for message passing, this approach should be natural. The file regions are still described

using the original parameters. For each of the five data access methods in the flexible data

access functions, the corresponding data access pattern is presented as an MPI file view (a

set of data visible and accessible from an open file) constructed from the variable metadata

(shape, size, offset, etc.) in the netCDF file header and user provided starts, counts, strides,

and MPI datatype arguments. For parallel access, each process has a different file view. All

processes can collectively make a single MPI-IO request to transfer large contiguous data as

30

a whole, thereby preserving useful semantic information that would otherwise be lost if the

transfer were expressed as per process noncontiguous requests.

2.2.3. HDF5

HDF (Hierarchical Data Format) is a portable file format and software, developed at the

National Center for Supercomputing Applications (NCSA). It is designed for storing, retriev-

ing, analyzing, visualizing, and converting scientific data. The current and most popular

version is HDF5 [37], which stores multi-dimensional arrays together with ancillary data in

a portable, self-describing file format. It uses a hierarchical structure that provides appli-

cation programmers with a host of options for organizing how data is stored in HDF5 files.

Parallel I/O is also supported.

HDF5 files are organized in a hierarchical structure, similar to a UNIX file system. Two

types of primary objects, groups and datasets, are stored in this structure, respectively

resembling directories and files in the UNIX file system. A group contains instances of

zero or more groups or datasets while a dataset stores a multi-dimensional array of data

elements. Both are accompanied by supporting metadata. Each group or dataset can have

an associated attribute list to provide extra information related to the object.

A dataset is physically stored in two parts: a header and a data array. The header

contains miscellaneous metadata describing the dataset as well as information that is needed

to interpret the array portion of the dataset. Essentially, it includes the name, datatype,

dataspace, and storage layout of the dataset. The name is a text string identifying the

dataset. The datatype describes the type of the data array elements and can be a basic

(atomic) type or a compound type (similar to a struct in C language). The dataspace

defines the dimensionality of the dataset, i.e., the size and shape of the multi-dimensional

31

Table 2.2. HDF5 interfaces.

Interface Function Name Prefix and Functionality
Library Functions H5: General HDF5 library management
Attribute Interface H5A: Read/write attributes
Dataset Interface H5D: Create/open/close and read/write datasets
Error Interface H5E: Handle HDF5 errors
File Interface H5F: Control HDF5 file access
Group Interface H5G: Manage the hierarchical group information
Identifier Interface H5I: Work with object identifiers
Property List Interface H5P: Manipulate various object properties
Reference Interface H5R: Create references to objects or data regions
Dataspace Interface H5S: Defining dataset dataspace
Datatype Interface H5T: Manage type information for dataset elements
Filters & Compression Interface H5Z: Inline data filters and data compression

array. The dimensions of a dataset can be either fixed or unlimited (extensible). Unlike

netCDF, HDF5 supports more than one unlimited dimension in a dataspace. The storage

layout specifies how the data arrays are arranged in the file.

The data array contains the values of the array elements and can be either stored together

in contiguous file space or split into smaller chunks stored at any allocated location. Chunks

are defined as equally-sized multi-dimensional subarrays (blocks) of the whole data array and

each chunk is stored in a separate contiguous file space. The chunked layout is intended to

allow performance optimizations for certain access patterns, as well as for storage flexibility.

Using the chunked layout requires complicated metadata management to keep track of how

the chunks fit together to form the whole array. Extensible datasets whose dimensions can

grow are required to be stored in chunks. One dimension is increased by allocating new

chunks at the end of the file to cover the extension.

The HDF5 library provides several interfaces that are categorized according to the type

of information or operation the interface manages. Table 2.2 summarizes these interfaces.

32

To write a new HDF5 file, one needs to first create the file, adding groups if needed;

create and define the datasets (including their datatypes, dataspaces, and lists of properties

like the storage layout) under the desired groups; write the data along with attributes; and

finally close the file. The general steps in reading an existing HDF5 file include opening the

file; opening the dataset under certain groups; querying the dimensions to allocate enough

memory to a read buffer; reading the data and attributes; and closing the file.

HDF5 also supports access to portions (or selections) of a dataset by hyperslabs, their

unions, and lists of independent points. Basically, a hyperslab is a subarray or strided

subarray of the multi-dimensional dataset. The selection is performed in the file dataspace

for the dataset. Similar selections can be done in the memory dataspace so that data in one

file pattern can be mapped to memory in another pattern as long as the total number of

data elements is equal.

HDF5 supports both sequential and parallel I/O. Parallel access, supported in the MPI

programming environment, is enabled by setting the file access property to use MPI-IO

when the file is created or opened. The file and datasets are collectively created/opened

by all participating processes. Each process accesses part of a dataset by defining its own

file dataspace for that dataset. When accessing data, the data transfer property specifies

whether each process will perform independent I/O or all processes will perform collective

I/O.

2.3. MPI-IO and ROMIO

Before the message passing interface (MPI) [55], there were proprietary message passing

libraries available on several computing platforms. Portability was a major issue for applica-

tion designers and thus more than 80 people from 40 organizations representing universities,

33

parallel system vendors, and both industrial and national research laboratories formed the

Message Passing Interface (MPI) Forum. MPI-1 was established by the forum in 1994.

A number of important topics (including parallel I/O) had been intentionally left out of

the MPI-1 specification and were to be addressed by the MPI Forum in the coming years.

In 1997, the MPI-2 standard was released by the MPI Forum which included support for

parallel I/O among a number of other useful new features for portable parallel computing

(remote memory operations and dynamic process management). The I/O goals of the MPI-2

standard were to provide developers with a portable parallel I/O interface that could richly

describe even the most complex of access patterns. ROMIO [77] is the reference implemen-

tation distributed with ANL’s MPICH library. ROMIO is included in other distributions

and is often the basis for other MPI-IO implementations. Frequently, higher level libraries

are built on top of MPI-IO, which leverage its portability across different I/O systems while

providing features specific to a particular user community. Examples such as netCDF and

HDF5 were discussed in Section 2.2.

2.3.1. MPI-IO Interface

The MPI-IO interface is very powerful and complex. A high learning curve is often a major

obstacle to developers using MPI-IO directly, and also one of the reasons most developers

subsequently end up indirectly using MPI-IO through higher level interfaces like netCDF

and HDF5. A very simple execution order of the functions described in this section is as

follows:

(1) MPI Info create/MPI Info set (optional)

(2) datatype creation (optional)

(3) MPI File open

34

(4) MPI File set view (optional)

(5) MPI File read/MPI File write

(6) MPI File sync (optional)

(7) MPI File close

(8) datatype deletion (optional)

(9) MPI Info free (optional)

2.3.1.1. Open, Close, and Hints.

MPI_File_open(comm, filename, amode, info, fh)

MPI_File_close(fh)

MPI_Info_create(info)

MPI_Info_set(info, key, value)

MPI_Info_free(info)

The MPI File open call, not only opens the file, but is also the typical point at which

to pass optimization information to an MPI-IO implementation. MPI Info create should

be used to instantiate and initialize an MPI Info object, and then MPI Info set is used

to set specific hints (key) in the info object. The info object should then be passed to

MPI File open and later freed with MPI Info free after the file is closed. If an info object

is not needed, MPI INFO NULL can be passed to open. The hints in the info object are

used to either control optimizations directly in an MPI-IO implementation or to provide

additional access information to the MPI-IO implementation so it can make better decisions

on optimizations. Some specific hints are described in 2.3.2.

2.3.1.2. Derived Datatypes. Before delving into the rest of the I/O interface and capabil-

ities of MPI-IO, it is essential to have a sound understanding of derived datatypes. Datatypes

35

Table 2.3. Commonly used MPI datatype constructor functions. Internal off-
sets can be described in terms of the base datatype or in bytes.

function internal offsets base types
MPI Type contiguous none single
MPI Type vector regular (old types) single
MPI Type hvector regular (bytes) single
MPI Type indexed arbitrary (old types) single
MPI Type hindexed arbitrary (bytes) single
MPI Type struct arbitrary (old types) mixed

are what distinguish the MPI-IO interface from the more familiar standard POSIX I/O in-

terface.

One of the most powerful features of the MPI specification is user defined derived

datatypes. MPI’s derived datatypes allow a user to describe an arbitrary pattern in a

memory space. This access pattern, possibly noncontiguous, can then be logically iterated

over the memory space. Users may define derived datatypes based on elementary MPI pre-

defined datatypes (MPI INT, MPI CHAR, etc.) as well as previously defined derived datatypes.

A common and simple use of derived datatypes is to single out values for a specific subset

of variables in multi-dimensional arrays.

After using one or more of the basic datatype creation functions in table 2.3, MPI Type commit

is used to finalize the datatype and must be called before use in any MPI-IO calls. After the

file is closed, the datatype can then be freed with MPI Type free.

Seeing as a derived datatype simply maps an access pattern in a logical space, while the

discussion above has focused on memory space, it could also apply to file space.

2.3.1.3. File Views.

MPI_File_set_view(fh, disp, etype, filetype, datarep, info)

36

file view

etype

MPI_File_set_view (fh, disp, etype, filetype, datarep, info)

filetype

disp = 2 (in etypes)

Figure 2.5. File views illustrated: filetypes are built from etypes. The filetype
access pattern is implicitly iterated forward starting from the disp. An actual
count for the filetype is not required as it conceptually repeats forever, and
the amount of I/O done is dependent on the buffer datatype and count.

File views specify accessible file regions using derived datatypes. This function should

be called after the file is opened, if at all. Not setting a file view allows the entire file to be

accessed. The defining datatype is referred to as the filetype, and the etype is a datatype

used as an elementary unit for positioning. Figure 2.5 illustrates how the parameters in

MPI File set view are used to describe a “window” revealing only certain bytes in the file.

The displacement (disp) dictates the start location of the initial filetype in terms of etypes.

The file view is defined by both the displacement and filetype together. While this function

is collective, it is important each process defines its own individual file view. All processes in

the same communicator must use the same etype. The datarep argument is typically set to

“native,” and has to do with file interoperability. If compatibility between MPI environments

is needed or the environment is heterogeneous, then “external32” or “internal” should be

used. File views allow an MPI-IO read or write to access complex noncontiguous regions in

37

a single call. This is the first major departure from the POSIX I/O interface, and one of the

most important features of MPI-IO.

2.3.1.4. Read and Write.

MPI_File_read(fh, buf, count, datatype, status)

MPI_File_write(fh, buf, count, datatype, status)

MPI_File_read_at(fh, offset, buf, count, datatype, status)

MPI_File_write_at(fh, offset, buf, count, datatype, status)

MPI_File_sync(fh)

In addition to the typical MPI specific arguments like the MPI communicator, the datatype

argument in these calls is the second important distinction of MPI-IO. Just as the file

view allows one MPI-IO call to access multiple noncontiguous regions in file, the datatype

argument allows a single MPI-IO call to access multiple memory regions in the user buffer

with a single call. The count is the number of datatypes in memory being used.

The functions MPI File read and MPI File write use MPI File seek to set the position

of the file pointer in terms of etypes. It is important to note that the file pointer position

respects the file view, skipping over inaccessible regions in the file. Setting the file view

resets the individual file pointer back to the first accessible byte.

The MPI File read at and MPI File write at, “ at” variations of the read and write

functions, explicitly set out a starting position in the additional offset argument. Just as in

the seek function, the offset is in terms of etypes and respects the file view.

Similar to MPI non-blocking communication, non-blocking versions of the I/O functions

exist and simply prefix read and write with “i” so the calls look like MPI File iread. The

38

I/O need not be completed before these functions return. Completion can be checked just

as in non-blocking communication with completion functions like MPI Wait.

The MPI File sync function is a collective operation used to ensure written data is

pushed all the way to the storage device. Open and close also implicitly guarantee data for

the associated file handle is on the storage device.

2.3.1.5. Collective Read and Write.

MPI_File_read_all(fh, buf, count, datatype, status)

MPI_File_write_all(fh, buf, count, datatype, status)

The collective I/O functions are prototyped the same as the independent MPI File read

and MPI File write functions and have “ at” equivalents as well. The difference is that the

collective I/O functions must be called collectively among all the processes in the communi-

cator associated with the particular file at open time. This explicit synchronization allows

processes to actively communicate and coordinate their I/O efforts for the call. One major

optimization for collective I/O is disk-directed I/O [44, 57]. Disk-directed I/O allows I/O

servers to optimize the order in which local blocks are accessed. Another optimization for

collective I/O is the two-phase method that is detailed in the next section.

2.3.2. Significant Optimizations in ROMIO

The ROMIO implementation of MPI-IO contains several optimizations based on the POSIX

I/O interface, making them portable across many file systems. It is possible, however, to

implement a ROMIO driver with optimizations specific to a given file system. In fact, the

current version of ROMIO already includes optimizations for PVFS2 [95], GPFS [82], and

39

Partitioned to

Processor 0

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Partitioned to

Processor 1

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Buffer for

Processor 1

Memory for

Processor 1

Phase 1:

Memory for

Processor 0

���
���
���

���
���
���

���
���
���

���
���
���

Data for Processor 0

Data for Processor 1

File

Buffer for

Processor 0

Phase 2:

(b)

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Memory

File

(a)

Figure 2.6. (a) Example POSIX I/O request. Using traditional POSIX inter-
faces for this access pattern cost four I/O requests, one per contiguous region.
(b) Example two-phase I/O request. Interleaved file access patterns can be
effectively accessed in larger file I/O operations with the two-phase method.

many other file systems. The most convenient means for controlling these optimizations is

through the MPI-IO hints infrastructure mentioned briefly above.

2.3.2.1. POSIX I/O. All parallel file systems support what is called the POSIX I/O

interface, which relies on an offset and a length in both memory and file to service an I/O

request. This method can service noncontiguous I/O access patterns by dividing them up

into contiguous regions and then individually accessing these regions with corresponding

POSIX I/O operations. While such use of POSIX I/O can fulfill any noncontiguous I/O

request with this technique, it does incur several expensive overheads. The division of the

I/O access pattern into smaller contiguous regions significantly increases the number of

I/O requests processed by the underlying file system as shown in Figure 2.6a. The serious

40

POSIX I/O:data sieving

data sieve buffer size

24:6

6:3

4:6

2:4

8:2

24:42

6:21

40:39

28:28

8:14

I/O requests I/O amounts
File Access Patterns

a)

b)

c)

d)

e)

Data Sieving vs POSIX I/O Example Cases

Figure 2.7. (a) Probably data sieve: Data sieving reduces I/O requests by a
factor of 4, but almost doubles the I/O amount (b) Do not data sieve: Data
sieving I/O requests are reduced by half, but almost 4 (8 if write) times more
data is accessed (c) Do not data sieve: Data sieving increases I/O requests
and only marginally reduces I/O amount. (d) Do not data sieve (Pareto opti-
mal):Data sieving doubles I/O requests, but has no effect on I/O amount. (e)
Probably data sieve: Data sieving reduced I/O requests by a factor of 4, but
almost doubles I/O.

overhead sustained from servicing so many individual I/O requests limits performance for

noncontiguous I/O when using the POSIX interface. Fortunately for users which have access

to file systems supporting only the POSIX interface, two important optimizations exist to

more efficiently perform noncontiguous I/O while using only the POSIX I/O interface: data

sieving I/O and two-phase I/O.

2.3.2.2. Data Sieving. Since hard disk drives are inherently better at accessing large

amounts of sequential data, the data sieving technique [92] tries to satisfy multiple small

I/O requests with a larger contiguous I/O access and later “sifting” the requested data in

or out of a temporary buffer. In the read case, a large contiguous region of file data is first

read into a temporary data sieving buffer and then the requested data is copied out of the

41

temporary buffer into the user buffer. For practical reasons, ROMIO uses a maximum data

sieving buffer size so multiple data sieving I/O requests may be required to service an access

patterns. ROMIO will always try to fill the entire data sieving buffer each time in order to

maximize the number of file regions encompassed. In the write case, file data must first be

read into the data sieving buffer unless the user define regions in that contiguous file region

cover the entire data sieving region. User data can then be copied into the data sieving

buffer and then the entire data sieving buffer is written to the file in a single I/O call. Data

sieving writes require some concurrency control since data that one process does not intend

to modify is still read and then written back with the potential of overwriting changes made

by other processes.

Data sieving performance benefits come from reducing the number of head seeks on the

disk, the cut in the accrued overhead of individual I/O requests, and large I/O accesses.

Figure 2.7a and Figure 2.7e illustrate specific cases where data sieving may do well. Data

sieving is less efficient when data is either sparsely distributed or the access pattern consists

of contiguous regions much larger than the data sieving buffer size (end case would be a

completely contiguous access pattern). In the sparse case, as in Figure 2.7b and 2.7d, the

large data sieving I/O request may only satisfy a few user requests, and in even worse, may

be accessing much more data than will actually be used (Figure 2.7b). The number of I/O

accesses may not be reduced by much, and the extra time spent accessing useless data may

be more than the time taken to make more small I/O requests. In the case where the user’s

access pattern is made up of contiguous regions nearly the size of or greater than the data

sieving buffer size, shown in Figure 2.7c and 2.7d, the number of I/O requests generated may

actually be greater than the number of I/O requests generated had the user’s I/O requests

been passed directly to the file system. Additionally, data sieving will have been double

42

data sieving buffer

data sieving buffer

Small Noncontiguous Memory Factor in Data Sieving

Memory Buffer

File View (contiguous)

Data Sieving Buffer Size

data sieving

Generated I/O requests

8.

7.

6.

5.

4.

3.

2.

1.

POSIX I/O

Figure 2.8. Evaluating the file access pattern alone in this case does not paint
the entire I/O picture. The small noncontiguous memory pieces break up
the large contiguous file access pattern into many small I/O requests. Since
these small I/O requests end up next to each other, data sieving can reduce the
number of I/O requests by a factor of 4 without accessing any extraneous data,
making data sieving Pareto optimal, assuming it takes longer to read/write 1
unit of data 4 times than to copy 4 units of data into or out of the buffer and
to read/write 4 units of data.

buffering, and paid an extra memory copy penalty for each time the data sieve buffer was

filled and emptied.

One factor not yet considered is the user memory buffer. If the user memory buffer is

noncontiguous with small regions (relative to the data sieving buffer), it will have the effect

43

vs POSIX I/O

n
o
n
co

n
ti

g
 f

il
e

re
g
io

n
s

densesparse

yessmall no

large no no

n
o
n
co

n
ti

g
 f

il
e

re
g
io

n
s

Other memory regions and sizes

Small noncontig memory regions

densesparse

yes

yesyes

small no

large

noncontig file region distribution

General Guide to Using Data Sieving

Figure 2.9. The three main factors to consider in determining whether to use
data sieving are whether the user buffer is noncontiguous with small pieces,
the size of the noncontiguous file regions, and the distribution of the file ac-
cesses all with respect to the data sieving buffer size. If both memory and file
descriptions are contiguous, do not use data sieving.

of breaking up, but not separating what might have been large contiguous regions in file,

thus creating an numerous I/O requests for POSIX I/O. This effect is illustrated in Figure

2.8, and presents an ideal opportunity for data sieving to reduce the overall number of I/O

calls, as well as making efficient use of the data sieving buffer. Even if the original filetype

consisted of large sparsely distributed regions, data sieving would still likely prove to be very

beneficial.

So while data sieving could conceivably result in worse performance (the point at which

would be sooner in the case of read-modify-write data sieving writes), some simple consider-

ations can be kept in mind to determine whether data sieving will be a benefit or detriment.

Assuming data is fairly uniformly spaced (no locally dense, overall sparse distributions), and

44

the user access pattern is indeed noncontiguous, Figure 2.9 provides generalizations for de-

termining when data sieving is most appropriate. Small, big, sparse, and dense metrics are

all relative to the data sieving buffer size. An MPI-IO implementation ought to preprocess

the user’s access pattern at least to some degree to determine the appropriateness of data

sieving on its own. As mentioned earlier, however, less uniform access patterns may require

some user intervention as an automated runtime determination may not catch certain cases.

In the previous example (Figure 2.7e), an access pattern which consists of clusters of densely

packed data will likely benefit from data sieving. Using only the data sieving technique for

I/O will be referred to as data sieving I/O.

2.3.2.3. Two-Phase I/O. Figure 2.6b illustrates the two-phase method for collective I/O

[93], which uses both POSIX I/O and data sieving. This method is referred to as two-phase

I/O throughout this chapter. The two-phase method identifies a subset of the application

processes that will actually do I/O; these processes are called aggregators. Each aggregator

is responsible for I/O to a specific and disjoint portion of the file.

In an effort to heuristically balance I/O load on each aggregator, ROMIO calculates

these file realms dynamically based on the aggregate size and location of the accesses in the

collective operation. When performing a read operation, aggregators first read a contiguous

region containing desired data from storage and put this data in a local temporary buffer.

Next, data is redistributed from these temporary buffers to the final destination processes.

Write operations are performed in a similar manner. First, data is gathered from all processes

into temporary buffers on aggregators. Aggregators read data from storage to fill in the holes

in the temporary buffers to make contiguous data regions. Next, this temporary buffer is

written back to storage using POSIX I/O operations. An approach similar to data sieving is

used to optimize this write back to storage when there are still gaps in the data. As mentioned

45

Clients:

Group:
Metadata Data

Group:

���
���
���

���
���
���

Network:

Figure 2.10. Typical parallel file system configuration. Clients have parallel
access to components within the metadata and data groups.

earlier, data sieving is also used in the read case. Alternatively, other noncontiguous access

methods, such as the ones described in this paper, can be leveraged for further optimization.

The big advantage of two-phase I/O is the consolidation by aggregators of the noncon-

tiguous file accesses from all processes into only a few large I/O operations. One significant

disadvantage of two-phase I/O is that all processes must synchronize on the open, set view,

read, and write calls. Synchronizing across large numbers of processes with different sized

workloads can be a large overhead. Two-phase I/O performance relies heavily on the par-

ticular MPI implementation’s data movement performance. If the MPI implementation is

not significantly faster than the aggregate I/O bandwidth in the system, the overhead of

the additional data movement in two-phase I/O will likely prevent two-phase I/O from out-

performing direct access optimizations such as list I/O and datatype I/O (discussed later in

this paper). Research with techniques such as persistent file realm partitioning [22], aligned

file realms [21] and caching [23, 49, 48] has shown much promise in improving collective

I/O performance in many cases.

2.4. Parallel File Systems

As the gap between processor and hard disk technologies continues to widen, I/O becomes

an increasingly severe performance bottleneck. Parallel file systems, as shown in Figure 2.10,

46

Table 2.4. A comparison of HPC production file systems.

Category Lustre Panasas GPFS
Dedicated Servers Yes Yes Yes
Consistency POSIX POSIX POSIX
Semantics
Consistency DLM MDS DLM
Enforcement
Caching Client memory Client memory Client memory

Block-level Block-level Block-level
Fault Tolerance Fail-over servers OSD-level RAID Log-based & disk-level RAID
Replication MDS OSD-level RAID Two copies & RAID
Security Capability Capability OpenSSL

help to narrow that gap by scaling up the number of hard disks to increase aggregate I/O

bandwidth.

The HPC file system domain can be divided into production file systems and research file

systems. Production file systems are typically stable commercial products used in production

machines. Some examples of production file systems include Lustre [52], Panasas [59], GPFS

[82], SGI’s CXFS, IBRIX FusionFS [38], and GFS [33]. Research file systems are primarily

used for trying out new ideas that may one day make it into production if appropriate.

There have been a number of research file systems including PVFS [11, 95], Clusterfile [41],

Ceph [97], LWFS [66], Galley [61], Sorrento [90], xFS [2], Zebra [36], Armada [65] and

many more. The discussion in this section focus on the three most used HPC production

file systems (Table 2.4, Lustre, Panasas, and GPFS, in Sections 2.4.1, 2.4.2, and 2.4.3,

respectively. Three prominent HPC research file systems (PVFS, LWFS, and Ceph) are

described in Sections 2.4.4, 2.4.5, and 2.4.6, respectively (Table 2.5).

47

2.4.1. Lustre

Lustre [52], from Cluster File Systems, gets its name from an amalgam of the terms “Linux”

and “cluster.” As of the June 2006 TOP500 list, over 70 of the 500 supercomputers use

Lustre technology including the number one computer (Lawrence Livermore National Lab-

oratory’s BlueGene/L machine). The Lustre architecture is made up of clients, metadata

servers (MDSs), and object-storage targets (OSTs). MDSs maintain a transactional record

of high-level file system changes, such as the location of related objects and stripe sizes.

They are protected from failure through MDS replication and failover techniques. OSTs

are responsible for actual file data and locking. Clients make requests to objects on the

OSTs, where an object is simply a container of data that may have attributes associated

with it. In the future, object-based disks (OBDs) may be able to offload the work necessary

to translate file system requests into physical storage requests. Currently, Lustre uses OBD

device drivers to implement OBD functionality on top of ext3 or other Linux file systems.

Failure of an OST is handled by failover techniques. If a failover OST is unavailable, clients

will get errors when trying to access the failed OST and new file create operations will avoid

the failed OST.

Lustre uses a distributed lock manager (DLM) to ensure POSIX compliance. The DLM

helps Lustre maintain its globally coherent collaborative cache. While locks for an arbitrary

byte-range may be requested, OSTs round the granted locks to file system block boundaries.

Metadata operations use “intent based” locks (lock requests combined with data requests) for

efficient atomic operations that do not require lock revocations. Additionally, Lustre provides

snapshots, rollback, and copy-on-write semantics. Lustre uses secure network attached disk

(NASD) features for authentication, authorization, and encryption. A preliminary Lustre

48

driver for the ROMIO MPI-IO implementation has not yet been integrated into the ROMIO

distribution.

2.4.2. Panasas

Panasas [59, 69] is used on many of the TOP500 supercomputers and was chosen to be de-

ployed on the Los Alamos National Laboratory’s new Roadrunner petascale supercomputer.

Many application domains, including energy research, high energy physics, atmospheric sci-

ence and weather predication, seismic data analysis, automotive design and simulation as

well as many others, have chosen Panasas as their storage solution. Panasas’s main product

is the ActiveScale Storage cluster, which uses the Panasas ActiveScale File System (PanFS).

The core PanFS architecture is based on the decoupling of the datapath from the control

path and the object abstraction of file data, similar to Lustre. The PanFS client module

accepts POSIX file system commands from the operating system and addresses and stripes

the objects across multiple object based storage devices (OSDs). The OSD component in

PanFS manages data storage, handles storage-side caching and prefetching, and contains the

metadata associated with its objects. Using OSDs instead of the typical block-based storage

interface shifts some of the burden of fine-grain layout information to the OSDs. The PanFS

metadata server (MDS) coordinates the layout of a file across OSDs, helps maintain RAID

integrity, manages file and directory access, and keeps client caches coherent with file locks.

PanFS uses client-side data caching in the Linux buffer/page caches to complement the

caching done by the OSDs. It aggregates writes on the client for more efficient I/O opera-

tion and also supports prefetching. The MDS handles client cache coherency with a single

writer/shared readers protocol with invalidation and flushing. PanFS allows files to individ-

ually use different RAID levels across objects. In order to limit incast behavior, too many

49

senders overflowing the network buffers, a two level striping layout is used where most si-

multaneous accesses are limited to the number of OSDs in a parity stripe. Therefore, files

are striped across all the OSDs for maximum bandwidth and the OSDs are broken up into

RAID parity groups whenever appropriate (with a maximum of 13 objects per parity group).

Panasas OSDs each have two SATA disk drives, a processor, RAM, and a Gigabit Ethernet

network interface. An OSD battery-backed RAM cache allows data to be committed even if

a power failure occurs.

2.4.3. GPFS

IBM has designed many of the world’s top supercomputers, including the recent BlueGene/L

architecture. Its flagship file system, the general parallel file system (GPFS) [82], is avail-

able for its AIX and Linux clusters, and most recently on the BlueGene/L architecture as

of December 2005. While GPFS is primarily designed for high-performance computing, it is

also used in industries such as media and entertainment, ISPs, finance, telecommunications,

electronics, and retail. GPFS uses a shared-disk architecture, where file system nodes have

access to all disks through the network fabric. The disks are assumed to use the conven-

tional block I/O interface (as opposed to the object based interfaces used by Lustre and

Panasas). GPFS clients communicate directly with file system nodes, which perform I/O

on their behalf. GPFS guarantees single-node equivalent POSIX semantics for file system

operations across all nodes through the use of distributed locking. The only exception to

POSIX compliance is that access time updates are not immediately visible on all nodes. The

metanodes that handle metadata in GPFS are allocated dynamically with the help of the

global lock manager.

50

Table 2.5. A comparison of HPC research file systems.

Category PVFS LWFS Ceph
Dedicated Servers Yes Yes Yes
Consistency Semantics MPI-IO N/A POSIX
Consistency Enforcement Servers Library OSD locks
Caching Server memory Library Client memory

Block-level Block-level
Fault Tolerance Fail-over servers Library RADOS
Replication Server RAID Library RADOS
Security In progress Capability Capability

The GPFS DLM is composed of a centralized global lock manager and the local lock

managers on each file system node. Lock tokens are passed out by the global lock manager

to the local lock managers which grant locks. A lock token is revoked only when another

node requests conflicting lock operations to the same object. As with Lustre and Panasas,

lock tokens play a large role in maintaining cache consistency between nodes. Locks are

acquired with byte-range granularity in GPFS and rounded to block boundaries. The first

node to write a file will receive a byte-range lock from zero to infinity. When the second

node begins writing to the same file, the first node will relinquish part of its byte-range

lock token until the offset of the second node’s write. As more nodes write to the file, the

byte-range lock tokens are further divided. In this way, GPFS attempts to keep locks as

large as possible to avoid the increasing overhead of a plethora of locks.

2.4.4. The Parallel Virtual File System

The Parallel Virtual File System (PVFS) is a parallel file system for commodity Linux

clusters [11]. It provides both a clusterwide consistent name space and user-defined file

striping. PVFS is a client-server system consisting of clients, a metadata server, and I/O

servers. Clients retrieve a list of the I/O servers that contain the file data from the metadata

51

server at file open time. Subsequent reading or writing is processed directly by the I/O

servers without manager interaction.

The approach that PVFS version 1 (PVFS1) uses for processing requests is detailed

in [50]. In short, PVFS1 builds a data structure called a job on each client and server

for every client/server pair involved in an I/O operation. This structure points to a list

of accesses, which are contiguous regions in memory (on a client) or in file (on a server)

that must be moved across the network. This is essentially the flattened representation of

the datatype being used to move data. While this is not ideal from a processing overhead

standpoint, we will retain this representation in our tests; it would be time consuming to

reimplement this core component of PVFS1.

PVFS version 2 (PVFS2) [95] is a parallel file system for commodity Linux clusters that

is a complete redesign of PVFS1 [11], which incorporates lessons learned from the original

PVFS file system [4] and also introduces a highly modular infrastructure. PVFS2 uses a

client/server architecture, with both the server daemon and client side libraries residing

fully in user space. There may be any number of servers, and each server may provide

either metadata, file data, or both. Metadata refers to attributes such as timestamps and

permissions as well as file system specific parameters. File data refers to the actual data

stored in the system. This data is distributed according to rules that are selectable by the

user. The default scheme is to stripe data evenly in a similar manner to that of a RAID array.

Metadata may also be distributed, though at the granularity level of one server per individual

file or directory. Note that there is no need for a shared storage infrastructure; each server

manages its own local resources. There is no communication between servers or between

clients. Clients communicate exclusively with the servers responsible for the resources that

they wish to access. The lowest level network abstraction is provided by a component known

52

as the Buffered Message Interface. The counterpart disk abstraction, which provides both

stream and key/value style access to local storage resources on each server, is called Trove.

These two components are coordinated by Flows, which handle buffering, scheduling, and

datatype processing between network and disk for bulk transfers. All of these components

(along with other peripheral components beyond the scope of this chapter) are coordinated by

the Job interface, which manages threading and provides a consistent interface for testing of

completion of any pending low-level I/O operation, regardless of which underlying component

is ultimately responsible for it. Both the servers and client libraries are implemented through

the use of concurrent state machines which operate on top of the Job interface.

2.4.5. LWFS

Catamount, a lightweight operating system for Red Storm (currently number two in the

TOP500 as of November 2006) at Sandia National Laboratories (SNL), implements only the

required underlying services while avoiding functionality that could compromise application

scalability. In the same spirit, the Lightweight File System (LWFS) [66] project is a joint

collaboration between SNL and the University of New Mexico for investigating the viability

of a “lightweight” approach to I/O. The LWFS core only implements a thin layer of software

above the hardware, including infrastructure to provide controlled access to distributed data

across multiple storage severs, expose the parallelism of multiple storage servers, and allow

the client implementation to create additional functionality. Since there are many more

compute nodes than I/O nodes, LWFS servers determine when to move data. LWFS clients

make asynchronous RPCs and servers either “pull” data for writes or “push” data for reads

[67]. All data movement is done over the Portals message passing interface which supports

one-sided operations.

53

In accordance with U.S. Department of Energy security requirements, LWFS provide

scalable mechanisms for authentication, authorization, and “immediate” revocation of ac-

cess permissions when policies change. LWFS has coarse-grain access control to containers

of objects, where every object belongs to a single container. All objects in the same con-

tainer are subject to the same access control policy. Higher-level libraries are responsible

for organizing objects in containers as LWFS does not manage the relationship of objects

in a container. To enable scalable security, LWFS uses fully transferable credentials and

capabilities. In order to support “immediate” revocation, LWFS invalidates cached entries

on each of the storage servers.

2.4.6. Ceph

Ceph [97] is a research-oriented file system from the University of California at Santa Cruz. It

has three major components: clients that export a near-POSIX file system interface; a cluster

of OSDs that collectively store all metadata and data; and a metadata cluster responsible

for managing the namespace and coordinating security, consistency, and coherence. As with

the other object-based file systems, Ceph separates file metadata management from data

storage. Ceph uses its reliable autonomic distributed object store (RADOS) to protect

against OSD failures. Primary OSDs forward updates to their replicas in an asynchronous

manner for better performance and reads are only serviced by the primary OSD to reduce

synchronization costs.

In the metadata cluster, Ceph employs dynamic distributed metadata management that

is based on dynamic subtree partitioning. In essence, dynamic distributed metadata maps

subtrees of the directory hierarchy to metadata servers based on their workload. Individual

directories are hashed across multiple nodes only if they become hot spots.

54

For data distribution, Ceph uses the Controlled Replication Under Scalable Hashing

(CRUSH) algorithm [98]. CRUSH relies heavily on a suitably strong multi-input integer

hash function. Using the hash function, CRUSH can locate any object with a placement

group and an OSD cluster map. Placement rules help CRUSH map the placement groups

onto OSDs based on the desired level of replication as well as other constraints. CRUSH

also helps Ceph adapt to the addition and removal of storage devices with low overhead.

55

CHAPTER 3

List I/O

As mentioned in Chapter 2, traditional methods of noncontiguous data access include the

use of multiple contiguous I/O calls as well as data sieving techniques. Multiple contiguous

I/O builds on traditional POSIX I/O calls (read/write) to perform noncontiguous access.

Data sieving is the I/O optimization of reading a large contiguous amount of data from file

into a memory buffer, again building on the POSIX API, and performing all noncontiguous

data movement using the memory buffer. Alternatively, our research has found that list

I/O is a promising solution for unstructured noncontiguous I/O. This chapter begins with

Section 3.1 describing the new list I/O interface. Section 3.2 and Section 3.3 describe our

implementations in both PVFS1 and ROMIO, respectively. Section 3.4 evaluates list I/O

performance with both file system direct access and MPI-IO interface results. Section 3.5

summarizes the chapter and discusses future work.

3.1. Interface

The list I/O interface proposed in [93] by Thakur et al. is an I/O interface for describing

noncontiguous data in memory and in file. It is a simple interface that can describe complex

noncontiguous data access in a single function call. We present a visual example of the list

I/O interface in Figure 3.2. The list I/O interface proposed is shown in Figure 3.1.

• mem list count is the total number of contiguous memory regions involved in the

data access, which is also the length of the arrays mem offsets[] and mem lengths[].

56

list_io_read(int mem_list_count,

char *mem_offsets[],

char mem_lengths[],

int file_list_count,

int file_offsets[],

int file_lengths[])

Figure 3.1. List I/O read prototype (list io write has the same parameters).

• mem offsets[] is an array of pointers that each point to the beginning of a contiguous

memory region.

• mem lengths[] is an array of lengths that match every start of a contiguous memory

region with a corresponding memory length.

• file list count has the same functionality for a file as mem list count does for mem-

ory. It is the total number of contiguous file regions as well as the length of the

arrays file offsets[] and file lengths[].

• file offsets[] is an array of offsets that each point to the beginning of a contiguous

file region.

• file lengths[] is the lengths of the file regions that correspond to the file offsets. The

sum of the mem lengths[] and file lengths[] must be equivalent.

A naive implementation of list I/O could use the POSIX read/write calls and would

provide no performance advantage over those calls. However, building support directly into

the parallel file system to handle such a call provides the file system with much needed

noncontiguous I/O capabilities.

Using list I/O for noncontiguous data access offers several advantages over traditional

methods. Multiple contiguous I/O calls have a large overhead with respect to the number

of I/O calls that must be issued to the underlying file system when describing complex

noncontiguous I/O access patterns. List I/O can perform a noncontiguous I/O data access

57

Figure 3.2. Example list I/O write. Since only contiguous regions can be de-
scribed using the POSIX read/write interfaces, four I/O calls would be required
instead of one list I/O write.

with fewer I/O calls with an optimized implementation. Data sieving requires a read-modify-

write set of operations and file synchronization (which often has prohibitive overhead) in

noncontiguous writes. Some file systems do not provide synchronization and therefore cannot

support data sieving in the noncontiguous write case. Also, unlike other noncontiguous

methods, data sieving requires memory for the data sieving buffer. List I/O provides a

simple interface that can provide high performance I/O for reading and writing data in

scientific workloads.

3.2. PVFS1 Implementation

PVFS1 has traditionally supported only contiguous requests for data. To address the

performance problems inherent in the access patterns of scientific applications, we have added

support for noncontiguous requests in PVFS1. We desired a noncontiguous implementation

that would reduce I/O accesses independent of the actual location in file. Based on the

interface proposed our implementation of noncontiguous data access, list I/O, would need

58

pvfs_read_list(int mem_list_count,

char *mem_offsets[],

char mem_lengths[],

int file_list_count,

int64_t file_offsets[],

int32_t file_lengths[])

Figure 3.3. PVFS list I/O read prototype (pvfs write list has the same parameters.

support to describe any noncontiguous I/O pattern. The I/O servers would require support

to process this request appropriately. The user would view the list I/O interface as follows

in Figure 3.3.

Mem list count holds the total number of contiguous memory locations involved in the

noncontiguous access. Similarly, file list count is the corresponding number of contiguous

file locations. Mem offsets is an array that references the beginning of each memory region,

and the mem lengths array matches each of these references with the corresponding memory

lengths. File offsets and file lengths do the same for file regions.

PVFS1 clients make I/O requests through the PVFS1 library. These I/O requests contain

information pertaining to a file (metadata, striping parameters) and can ask the I/O servers

to perform operations such as read, write, open and close. In order for the I/O request to

convey the description of noncontiguous data, we added another field to the I/O request

structure to let the I/O servers know that a variable sized trailing data would follow the I/O

request. This trailing data contains the file offsets and file lengths of the noncontiguous I/O

request.

We modified the I/O server code to correctly process this routine by adding support to

receive the trailing data and complete the I/O accesses. We have chosen to allow up to 64

contiguous file regions to be described in trailing data before another I/O request must be

issued. Therefore, I/O requests that contain more file regions than the trailing data limit are

59

MPI_File_open(MPI_COMM_WORLD,

‘‘/pvfs/test.txt’’,

MPI_MODE_RDWR,

MPI_INFO_NULL, &fh);

etype = MPI_INT;

MPI_Type_vector(2, 2, 3,

MPI_INT,

&filetype);

MPI_Type_commit(&filetype);

MPI_File_set_view(fh, 0, etype,

filetype, datarep,

MPI_INFO_NULL);

MPI_File_read(fh, buf, 8,

MPI_INT, status,

ierror);

MPI_File_close(&fh);

Figure 3.4. Example MPI-IO C code.

broken up into several list I/O requests. This limit was chosen to allow the I/O request and

trailing data to travel through the network in a single Ethernet packet (1500 bytes). This is

a conservative limit that allows us to see how this approach might be used in a real system.

3.3. ROMIO MPI-IO Implementation

This example MPI-IO C code in Figure 3.4 (graphically depicted in Figure 3.5) performs

a collective open of a file with MPI File open. MPI Type calls are used to create both the

memory datatype and the file datatype. Performing the read puts the first two integers

from file into the memory buffer, then puts the fourth and fifth integers from file into the

memory buffer, continuing the vector pattern of the file datatype until eight MPI INTS are

contiguously located in the buffer buf.

To take advantage of PVFS1’s list I/O in the ROMIO MPI-IO implementation, we imple-

mented the new ADIO read and write functions using pvfs read list and pvfs write list.

60

Figure 3.5. File datatypes are replicated and read into memory until the read
call has accessed that correct amount of data.

PVFS1 list I/O, requires several parameters, including offset-length pairs for memory loca-

tions, offset-length pairs for file locations, and their respective counts. Our new ADIO calls

convert MPI types into their respective contiguous regions and create the arrays to pass to

the list I/O calls. This conversion process, or flattening, is accomplished by decoding the

types using the MPI calls MPI Type get envelope and MPI Type get contents. Figure 3.6

gives an example of this process. The implementation for generating list I/O calls in ROMIO

breaks up the file regions into collections of 128 to match the maximum size allowable by the

PVFS1 list I/O implementation. Given a large number of noncontiguous accesses, ROMIO

will fill the offset-length arrays, perform the required I/O and repeat the sequence until all

the noncontiguous regions have been satisfied.

3.3.1. ROMIO Implementation and I/O Methods Discussion

ROMIO list I/O is most effective of the four methods for access patterns that have numerous

small noncontiguous file regions that are sparse. In the read case when many small file

regions are separated by large holes, data sieving in ROMIO data sieving I/O and ROMIO

collective I/O unfortunately accesses the useless data in the file holes. ROMIO POSIX I/O

61

Figure 3.6. Example flattening of a file datatype. File datatypes are converted
into lists of file offsets and lengths in order to generate the necessary parameters
to use the list I/O interface.

would read only the necessary data, but would potentially generate many I/O request calls

to the file system due to the limitation of only being able to describe contiguous data access.

In the write case, ROMIO POSIX I/O would also require at least one POSIX write call

per file region (more are possible if the memory regions do not align with the file regions),

which would be less efficient than using ROMIO list I/O. Collective ROMIO I/O would also

be inefficient in the write case for such an access pattern since it also maps into POSIX

write calls and may be slower than ROMIO data sieving I/O in some cases since data has

to be transferred twice (once to the I/O processors and then again to the processors that

requested the data). If file locking was available in the file system, in the write case both

ROMIO default I/O and ROMIO collective I/O would have to perform a read-modify-write

because of data sieving along with the synchronization overhead.

For access patterns that have numerous small noncontiguous file regions that are very

dense, ROMIO data sieving I/O and ROMIO collective I/O will perform very well in the

read case because very little unwanted data would be read. Since ROMIO list I/O is split

when a maximum number of file regions is reached, if the number of small noncontiguous file

62

regions is extremely large, ROMIO list I/O will be forced to make many ROMIO list I/O

calls, while ROMIO data sieving I/O and ROMIO collective I/O can sieve those I/O calls

into a single I/O call if all the file regions fit into the data sieving buffer. ROMIO POSIX I/O

would do several orders of magnitude worse than ROMIO list I/O since it always generates

more I/O requests than list I/O in noncontiguous access patterns. When writing with a

dense access pattern in PVFS1, however, we expect ROMIO list I/O to perform best since

the other methods cannot use data sieving when writing. 1

In the case of an access pattern that is sparse from a processor view but dense in an

aggregate view, ROMIO collective I/O will perform best of the four methods when reading

data because it can use data sieving very effectively in this scenario. If the number of

noncontiguous regions is small, ROMIO list I/O may also be able to perform well. However,

if there are many noncontiguous regions, most likely ROMIO list I/O will not perform as

well as a ROMIO collective I/O read, again because of the reduced number of I/O calls in

the ROMIO collective I/O read. In the write case for PVFS1, list I/O should outperform

the other methods because it is more effective than a collection of POSIX write operations.

3.4. Performance Evaluation

To show the effect of the list I/O optimization, we ran a series of tests that access non-

contiguous data. Section 3.4.1 discusses our test setup. Our tests were run directly through

the file system interface as well through the MPI-IO interface. The file system interface

test results are in Section 3.4.2 (Synthetic Tests). The MPI-IO interface test results are in

Section 3.4.3 (tiled reader benchmark), Section 3.4.4 (a three-dimensional block benchmark

1In other file systems, it is still unclear which implementation method will perform best because while data
sieving can reduce I/O calls, the write case involves a read-modify-write and file locking, both of which may
present substantial overhead.

63

from the ROMIO testing suite) and Section 3.4.5 (a simulation of the I/O portion of the

FLASH code). In each of the MPI-IO tests, we provide a table summarizing the I/O char-

acteristics of the application for each access method. This information helps in explaining

the performance of the methods. The values for data accessed per client and resent data per

client are average values across processes.

3.4.1. Machine Configuration

We ran all of our tests on the Chiba City cluster at Argonne National Laboratory [15]. The

cluster had the following configuration at test time. There are 256 nodes each with dual

Pentium III 500 MHz processors, 512 MBytes of RAM, a 9 GByte Quantum Atlas IV SCSI

disk, a 100 Mbits/sec Intel EtherExpress Pro fast Ethernet card operating in full-duplex

mode, and a 64-bit Myrinet card. We conducted all experiments using fast Ethernet due to

some Myrinet instability at the time of experimentation. The nodes are currently using Red

Hat 7.1 with kernel 2.4.9 compiled for SMP use. Our I/O configuration included 8 PVFS1

I/O servers with one I/O server doubling as both a manager and an I/O server. PVFS1

files were striped with a stripe size of 16 KBytes. MPICH 1.2.4 was used in all our testing

using hints for list I/O, data sieving and collective operations. ROMIO was compiled with

PVFS version 1.5.6-pre1. All ROMIO data sieving operations and collective operations were

performed using a 4 MByte buffer. All results are the average of three runs.

3.4.2. Synthetic Tests

We created an artificial benchmark in order to test the noncontiguous performance of parallel

reads and writes. We set the aggregate data access at 1 GByte in order to access a meaningful

amount of data and also to have a baseline comparison. We also kept the I/O nodes constant

64

 Proc 2Proc 1Proc 0 Proc 3

Memory

File

Access Access Access

Two-Dimensional

File View

(Row Major)

= Proc 0 Data

= Proc 1 Data

= Proc 2 Data

= Proc 3 Data

Figure 3.7. Example one-dimensional cyclic access. An entire file stores a
two-dimensional array and each processor is in charge of an equal amount of
columns. The file view is also flattened into one-dimension.

at 8, with one doubling as both a manager and an I/O daemon. The benchmark varies the

number of clients, the number of accesses, and the data access pattern. The data access

patterns used in the benchmark are the one-dimensional cyclic and the two-dimensional

block-block as shown in Figure 7 and Figure 8, respectively. Increasing the number of

accesses further fragments the data access, making it more noncontiguous while preserving

the aggregate data size. Changing the number of clients also determines the fragmentation

of data. Increasing the number of clients accessing the same amount of data further increases

the noncontiguity. The parallel reads and writes were conducted three times, and the I/O

request time was averaged over the three runs. Because of the large execution time of

multiple I/O in the write cases, however, we ran those tests only once. We decided not to

use data sieving I/O with the parallel writes since data sieving requires a read-modify-write

and therefore requires synchronization in which only one processor can write at a time in

order to ensure the written data will not encounter any race conditions.

3.4.2.1. One-Dimensional Cyclic. This access pattern is a variable-grained, interleaved

access, where we merge data from many processes into a single file in a cycling manner. An

65

 Proc 2Proc 1Proc 0 Proc 3

Memory

File

Accesses

= Proc 0 Data

= Proc 1 Data

= Proc 2 Data

= Proc 3 Data

Two-Dimensional

File View

(Row Major)

Figure 3.8. Example block-block access. An entire file stores a two-dimensional
array of blocks, and each processor is in charge of a single block. The file view
has been flattened into 1-dimension.

example of an application that would use this type of access pattern is one in which there

is a global two-dimensional array and each processor operates on a region of columns of the

array, as shown in Figure 3.7. In these tests we vary the block size while maintaining a

constant file size. Thus, a decrease in the block size increases the number of I/O requests

for using multiple I/O. List I/O performance is expected to decrease as the accesses increase

because of the need for additional requests, but not as rapidly as multiple I/O. Since the

actual amount of data read is the same regardless of the number of accesses, we expect data

sieving I/O to perform in a near constant time throughout the range of accesses. Note that

as we increase the number of clients, data sieving I/O will be reading more and more useless

data because the fraction of desired data in the accessed region decreases.

3.4.2.2. Block-Block. This type of access has a data distribution where a two-dimensional

global array is partitioned by creating a block for every processor and organizing the blocks

as shown in Figure 8. The tile application described later in section 4.4.1 uses an access

pattern similar to this one.

66

 One-Dimensional Cyclic Read - 8 clients

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

 One-Dimensional Cyclic Read - 16 clients

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

 One-Dimensional Cyclic Read - 32 nodes

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

Figure 3.9. One-dimensional cyclic read results with various clients. These
results are obtained by using 8-32 clients reading data with the one-dimensional
cyclic file access pattern.

 One-Dimensional Cyclic Write - 8 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

 One-Dimensional Cyclic Write - 16 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

 One-Dimensional Cyclic Write - 32 nodes

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

Figure 3.10. One-dimensional cyclic write results with various clients. These
results are obtained by using 8-32 clients writing data with the one-dimensional
cyclic file access pattern.

3.4.2.3. Experimental Results. For the one-dimensional cyclic access pattern, we expect

linear results from both multiple I/O and list I/O since the number of I/O requests will

increase linearly with the number of accesses. Data sieving should perform slightly better

using the block-block access pattern due to the fact that the useful data is closer, which

means accessing less impertinent data.

Figure 3.9 shows that multiple I/O and list I/O scale linearly with the number of accesses.

As we increase the number of accesses, the number of contiguous regions also increases, but

the size of each contiguous region becomes smaller. Multiple I/O has to increase the number

of I/O requests for a larger number of accesses. List I/O must also increase the number of

I/O requests for a larger number of accesses, but at a slower rate than multiple I/O. Since

67

 Block-Block Read - 4 clients

0

100

200

300

400

500

600

700

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

 Block-Block Read - 9 clients

0

100

200

300

400

500

600

700

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

 Block-Block Read - 16 clients

0

100

200

300

400

500

600

700

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O Data Sieving I/O List I/O

Figure 3.11. Block-block read results with various clients. These results are
obtained by using 4-16 clients reading data with the block-block file access
pattern.

list I/O can describe 64 file offsets and lengths in a single I/O request, list I/O will not be

as affected as multiple I/O by a larger number of accesses. We also notice that data sieving

I/O stays fairly constant among any number of accesses for a fixed number of clients. This

is because data sieving is moving the same amount of data in all of those cases. Also as

expected, the time nearly doubles with data sieving I/O when the clients double due to the

doubling of impertinent data read by each client (since each client now only has half as much

relevant data in the same overall file region).

The write performance illustrated in Figure 3.10 for the one-dimensional cyclic access

pattern is very poor for multiple I/O. In most of the figures we can see that list I/O and

multiple I/O have a performance gap of nearly two orders of magnitude. Both list I/O and

multiple I/O lose performance as the number of accesses increase but still maintain their

two orders of magnitude performance difference.

The results described in Figure 3.11 in the block-block read tests showed the trend

expected for multiple I/O and data sieving I/O. Multiple I/O increases at a linear rate with

the number of accesses while data sieving I/O remains nearly constant among the range

of accesses. List I/O performs unusually in the evaluation of 9 and 16 client block-block

reads. When using 4 clients to read a file in a block-block distribution, list I/O scales up

68

 Block-Block Write - 4 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

 Block-Block Write - 9 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

 Block-Block Write - 16 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

T
im

e
 (

s
e

c
o

n
d

s
)

Multiple I/O List I/O

Figure 3.12. Block-block write results with various clients. These results are
obtained by using 4-16 clients reading data with the block-block file access
pattern.

linearly with the number of accesses. However, we note that in Figure 3.11 for 9 and 16

clients, the list I/O curve sharply turns upward at some number of accesses. For 9 clients,

each access is of size (1024*1024*1024 bytes)/(9 clients)/(800,000 accesses) = approximately

149 bytes/access at the turning point. Due to the block-block access pattern, each client

heavily uses only a fraction of all the I/O servers, unlike the one-dimensional cyclic access

pattern, which distributes a compute nodes I/O load over all the I/O servers. Increasing the

number of accesses for the block-block access pattern does not spread out the load as in the

one-dimensional cyclic case. We observed the greater increase of list I/O with the number

of accesses in the block-block access pattern at about 150 bytes/access for both the 9 client

and 16 client cases.

A comparison between the 16 node cases in Figure 3.9 and Figure 3.10 show that the

data sieving I/O times are reduced. The reason is that the data sieving I/O accesses less

irrelevant data using the block-block access pattern. Figure 3.12 shows that the block-block

write results are similar to the one-dimensional cyclic write results for multiple I/O and list

I/O. As the number of accesses increases, multiple I/O and list I/O run times increase while

maintaining the two orders of magnitude difference. The trend follows the results of the

writes of the one-dimensional cyclic case.

69

Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O 2.25 MB 2.25 MB 768 — 3 KB
Data Sieving I/O 2.25 MB 5.56 MB 2 — 4 MB
Two-Phase I/O 2.25 MB 1.70 MB 1 1.50 MB 1.70 MB
List I/O 2.25 MB 2.25 MB 12 — 3 KB
Datatype I/O 2.25 MB 2.25 MB 1 — 3 KB

Table 3.1. I/O characteristics of the tile reader benchmark.

Figure 3.13. Tile reader file access pattern. Each processor is in charge of
reading the data from a display file into its own local display, also known as a
tile. This results in a noncontiguous file access pattern.

3.4.3. Tile Reader Benchmark

Tiled visualization code is used to study the effectiveness of commodity based graphics

systems in creating parallel and distributed visualization tools. The amount of detail in

current visualization methods requires more than a single desktop monitor can resolve. Using

two-dimensional displays to visualize large datasets or real-time simulation is important for

high performance applications. Our version of the tiled visualization code, the tile reader

benchmark, uses multiple compute nodes, with each compute node taking high-resolution

display frames and reading only the visualization data necessary for its own display. We

use six compute nodes for our testing, which mimics the display size of the full application.

70

The six compute nodes are arranged in the 3 x 2 display shown in Figure 3.13, each with

a resolution of 1024 x 768 with 24-bit color. In order to hide the merging of display edges,

there is a 270-pixel horizontal overlap and a 128-pixel vertical overlap. Each frame has a file

size of about 10.2 MBytes. A set of 100 frames is read for a total of 1.02 GBytes.

Table 3.1 provides a summary of the I/O characteristics of this benchmark for each

method of access. We expect ROMIO list I/O to perform best with this access pattern

because the noncontiguous file regions are large and there are only 768 noncontiguous file

regions. This means that 768 / 128 = 6 I/O requests per processor, which is not too

burdensome. ROMIO POSIX I/O will have to make all 768 I/O requests per processor.

The data layout is sparse enough to lessen the performance improvements of data sieving in

ROMIO data sieving I/O or ROMIO collective I/O. Data sieving ROMIO I/O will perform

marginally since only 2.25 MBytes of 5.56 MBytes of the data accessed per processor is

useful. Collective ROMIO I/O will be able to use data sieving effectively since no data will

be wasted. However the overhead of the second phase of redistribution will make it slower

than ROMIO data sieving I/O since it must pass 4.5 MBytes of data to other processors.

We can see in Figure 3.14 that ROMIO list I/O outperforms the other ROMIO I/O

methods in both the uncached and cached read cases. All of the methods perform better

in the cached case due to getting data from memory on the I/O servers instead of the disk.

While ROMIO collective I/O views the file access pattern as contiguous from an aggregate

standpoint, the file regions are too large to enable it to overcome the overhead of reading data

once from file and then sending the data to the requesting nodes. In fact, the overhead of file

redistribution causes it to fall behind ROMIO data sieving I/O. The overhead of 768 I/O calls

to the file system caused ROMIO POSIX I/O to lag far behind the other implementations.

Other noncontiguous reading benchmarks perform with similar higher performance trends in

71

Figure 3.14. Tile reader benchmark results.

Figure 3.15. Three-dimensional block test access pattern. The access pattern
for 8, 27, and 64 processors is shown in (a), (b), and (c), respectively.

cached read cases versus uncached read cases, so we only focus on uncached noncontiguous

read performance in the other noncontiguous read tests.

3.4.4. ROMIO Three-Dimensional Block Test

The ROMIO test suite consists of a number of correctness and performance tests. We chose

the coll perf.c test from this suite to compare our methods of noncontiguous data access.

The coll perf.c test measures the I/O bandwidth for both reading and writing to a file with

a file access pattern of a three-dimensional block-distributed array. The three-dimensional

array, shown graphically in Figure 3.15, has dimensions 600 x 600 x 600 with an element size

of an integer (4 bytes).

72

Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

8 Clients

POSIX I/O 103 MB 103 MB 90,000 — 1200 B
Data Sieving I/O 103 MB 412 MB 103 — 4 MB
Two-Phase I/O 103 MB 103 MB 26 77.2 MB 4 MB
List I/O 103 MB 103 MB 1408 — 1200 B
Datatype I/O 103 MB 103 MB 1 — 1200 B

27 Clients

POSIX I/O 30.5 MB 30.5 MB 40,000 — 800 B
Data Sieving I/O 30.5 MB 274.7 MB 69 — 4 MB
Two-Phase I/O 30.5 MB 30.5 MB 8 27.1 MB 4 MB
List I/O 30.5 MB 30.5 MB 626 — 800 B
Datatype I/O 30.5 MB 30.5 MB 1 — 800 B

64 Clients

POSIX I/O 12.9 MB 12.9 MB 22,500 — 300 B
Data Sieving I/O 12.9 MB 206.0 MB 52 — 4 MB
Two-Phase I/O 12.9 MB 12.9 MB 4 12.1 MB 4 MB
List I/O 12.9 MB 12.9 MB 352 — 300 B
Datatype I/O 12.9 MB 12.9 MB 1 — 300 B

Table 3.2. I/O characteristics of the ROMIO three-dimensional block test.

Figure 3.16. Three-dimensional block test results.

Table 3.2 summarizes the I/O characteristics of this test for the four I/O methods and

three numbers of processes. Due to the three-dimensional block access pattern, we expected

that increasing the number of processors would have a large effect on the performance.

73

For example when we used 8 processors, data sieving operations would waste 3/4 of the

data accessed, roughly 309 MBytes. When we used 64 processors, data sieving operations

would waste 15/16 of the data accessed, roughly 193.1 MBytes. When considering ROMIO

collective I/O, no file data would be wasted, but the redistribution size in both the read and

write cases would be the same as the wasted file data in ROMIO data sieving I/O. When

using 8 or 64 processors, 3/4 or 15/16, respectively, of the data accessed by I/O processors

would be redistributed to other processors. ROMIO POSIX I/O will have to face 90,000

accesses per processor with 8 processors, 40,000 access per processor with 27 processors, and

22,500 access with 64 processors. ROMIO list I/O faces a reduced number of accesses versus

ROMIO POSIX I/O, but must contend with many more I/O operations per client versus

data sieving methods.

Figure 3.16 shows the results of the three-dimensional block test. In the write case, we

see ROMIO list I/O take a big lead over the other methods and then drop significantly with

27 processors and 64 processes. We can attribute this slowdown to a smaller contiguous

file region size and an increased number of system-wide I/O requests to the I/O servers.

ROMIO POSIX I/O performs very poorly due to even more I/O requests than ROMIO list

I/O in all cases. ROMIO collective I/O sees some gains in this test with more processors

since it performs large contiguous writes with the assigned I/O processors instead of small

noncontiguous writes like the other methods. In the read case, ROMIO list I/O results

improve from 8 to 27 processors due to having more clients outweighing the effect of having

smaller accesses. However, at 64 processors, the overhead of increased I/O requests and

smaller file regions has lessened performance. ROMIO POSIX I/O performs worse with an

increased number of processors due to 128 times more I/O requests than ROMIO list I/O.

ROMIO data sieving I/O also performs worse with more processors since it accesses 206

74

Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O 7.50 MB 7.50 MB 983,040 — 8 B
Data Sieving I/O — — — — —

Two-Phase I/O 7.50 MB 7.50 MB 2 7.5 MB * n−1
n

4 MB
List I/O 7.50 MB 7.50 MB 15,360 — 4 KB
Datatype I/O 7.50 MB 7.50 MB 1 — 4 KB

Table 3.3. I/O characteristics of the FLASH I/O simulation (n is the # of clients).

MBytes per client while using only 12.9 MBytes. ROMIO collective I/O suffers from the

heavy redistribution cost.

3.4.5. FLASH I/O Simulation

The FLASH code is an adaptive mesh refinement (AMR [64] application that solves fully

compressible, reactive hydrodynamic equations, developed mainly for the study of nuclear

flashes on neutron stars and white dwarfs [31]. The I/O performance for FLASH determines

how often checkpointing may be performed, so I/O performance is critical. The actual

FLASH code uses HDF5 for writing checkpoints, but the organization of variables in the

file is the same in our simulation. The element data in every block on every processor is

written to file by using noncontiguous MPI Datatypes. The access pattern of the FLASH

code is noncontiguous both in memory and in file, making it a challenging application for

parallel I/O systems. The FLASH memory datatype, viewable in Figure 3.17, consists of

80 FLASH three-dimensional blocks, or cells in the refined mesh, on each processor. Every

block contains an inner data block surrounded by guard cells. Each of these data elements

has 24 variables associated with it. Every processor writes these blocks to a file in a manner

such that the file appears as the data for variable 0, then the data for variable 1, all the

way up to variable 23 as shown in Figure 3.18. Within each variable in file, there exist 80

75

Figure 3.17. FLASH memory datatype. Each computing processor contains
80 blocks, so as we scale up the number of computing processors, we linearly
increase the dataset size.

blocks, each of these blocks containing all the FLASH blocks from every processor. Since

every processor writes 80 FLASH blocks to file, as we increase the number of clients, the

dataset size increases linearly as well. Every processor adds 7 MBytes to the file, so the

dataset ranges between 14 MBytes (2 clients) to 448 MBytes (64 clients).

Table 3.3 summarizes the I/O characteristics of this benchmark for the access methods

tested, with n referring to the number of compute processors (or clients). Note that because

this is a write benchmark and PVFS1 does not have file locking, the data sieving method

was not tested. In our testing we vary the number of clients from 2 to 64. Each contiguous

memory region is the size of a double (8 bytes). In file, however, the contiguous regions are

(8 x-elements)*(8 y-elements)*(8 z-elements)*(sizeofdouble) = 4096 bytes. The FLASH I/O

code is worst for the ROMIO POSIX I/O approach since the noncontiguous file region access

pattern is sparse. The number of I/O requests for ROMIO default I/O = (80 blocks)*(8

x-elements)*(8 y-elements)*(8 z-elements)*(24 variables) = 983,040 I/O calls per processor.

Our implementation of ROMIO list I/O can do a little better since ROMIO list I/O can

76

Figure 3.18. FLASH file datatype. This figure describes the hierarchy of the
file datatype. At the highest level of the hierarchy, variables are contiguous.
Within every variable, there are all the FLASH blocks from all the processors.

Figure 3.19. Results of the FLASH I/O benchmark with 2 - 64 processors.
Collective I/O performs exceptionally well due to the aggregate contiguous
file access pattern. The overhead of exchanging data is minimal compared to
the I/O time.

describe noncontiguous file regions in a single I/O calls. However, since our maximum limit

of file regions was set at 128 for this test, 983,040 / 128 = 7,680 I/O calls per processor

are still required. The FLASH I/O benchmark presents a good opportunity to use ROMIO

77

collective I/O since the aggregate view of the file is actually a contiguous region of file.

ROMIO collective I/O only needs to perform I/O calls = (Aggregate data size)/((number

of processors)*(Buffer size)) = (7 MBytes * N procs)/(N procs)*(4 MBytes) = 7/4 rounded

up to 2 I/O calls per processor. While, n−1
n

of the data must be redistributed, the savings in

I/O calls is significant enough to overcome the redistribution overhead. We expect ROMIO

collective I/O to perform best in this benchmark.

Figure 3.19 shows that ROMIO collective I/O works more efficiently than the other

ROMIO I/O methods for numerous noncontiguous file regions that appear contiguous from

a global standpoint. ROMIO POSIX I/O suffers from the immense overhead of 983,040 I/O

calls per processor while list I/O does roughly two magnitudes better due to only having

7,680 I/O calls per processor. As we increase the number of processors, the dataset size

increases. We see that both ROMIO POSIX I/O and ROMIO list I/O increase bandwidth

with more processors, but ROMIO collective I/O starts to fall with larger dataset sizes

between 16 to 32 nodes. For the two processor case of 14 MBytes, in ROMIO collective I/O,

4 contiguous writes could cover the entire file, but at 448 MBytes, 112 contiguous writes are

necessary. Even though it is only 2 contiguous writes per processor in all cases, redistribution

becomes more and more expensive as we increase the aggregate data size. For example, with

64 processors, only 1/64 of the data read from the file system is used by the processor doing

I/O, the other 63/64, 12.1 MBytes is sent to other processors.

3.5. Summary

List I/O is an efficient interface for noncontiguous data access both through MPI-IO and

directly through the system interface. We have seen performance improvements in both the

78

tile reader benchmark as well as the noncontiguous ROMIO benchmark. In many noncon-

tiguous cases, ROMIO list I/O can outperform current ROMIO methods, but there are cases,

such as the FLASH I/O benchmark in Section 3.4.5 where the number of noncontiguous file

regions grows too large for ROMIO list I/O to reduce linearly.

While the list I/O interface is a major step in support for efficient noncontiguous I/O

access, it is not optimal. Particularly in the case of MPI-IO, noncontiguous accesses often

have regular patterns in the file, and these patterns are described concisely in the datatypes

passed to the MPI I/O call. The list I/O interface, as described here, loses these regular

patterns, instead flattening them into potentially large lists of contiguous regions. The next

chapter shows how these descriptions of regular patterns can be retained and passed directly

to the parallel file system. This capability can have a significant impact on the size of the

I/O request, which is extremely important in cases where many small noncontiguous regions

are being accessed.

79

CHAPTER 4

Datatype I/O

Datatype I/O is an effort to address the deficiencies seen in the list I/O interface when

faced with accesses that are made up of many small regions, particularly ones that exhibit

some degree of regularity. Datatype I/O borrows from the datatype concept that has proven

invaluable for both message passing and I/O in MPI applications. The constructors used

in MPI datatypes allow for concise descriptions of the regular, noncontiguous data patterns

seen in many scientific applications, such as extracting a row from a two-dimensional dataset.

This chapter describes the datatype I/O interface in Section 4.1. Section 4.2 details our

implementation of datatype I/O in PVFS1 and ROMIO. Section 4.3 analytically compares

the performance of each of the noncontiguous methods. Section 4.4 shows the results of the

datatype I/O method several application benchmarks. Section 4.5 summarizes the work in

this chapter.

4.1. Interface

The datatype I/O interface, shown in Figure 4.1, replaces the lists of I/O regions seen in

the list I/O interface with an address, count, and datatype for memory and a displacement,

int dtype_read(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,

int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

int dtype_write(int fd, void *mem_addr, int mem_dtype_count, dtype *mem_dtype,

int file_dtype_disp, int offset_into_dtype, dtype *file_dtype)

Figure 4.1. Datatype I/O prototypes.

80

datatype, and offset into the datatype for file. These correspond directly to the address,

count, datatype, and offset into the file view passed into an MPI-IO call and the displacement

and file view datatype previously defined for the file. The datatype I/O interface is not meant

to be used by application programmers; it is an interface specifically for use by I/O library

developers. Helper routines are used to convert MPI datatypes into the format used by the

datatype I/O functions. A full-featured implementation of datatype I/O would

• maintain a concise datatype representation locally and avoid datatype flattening,

• use this concise datatype representation when describing accesses, and

• service accesses using a system that processes this representation directly.

Our prototype implementation of datatype I/O was written as an extension to PVFS1. The

ROMIO MPI-IO implementation was likewise modified to use datatype I/O calls for PVFS1

file system operations.

We emphasize that while we present this work in the context of MPI-IO and MPI

datatypes, nothing precludes our using the same approach to directly describe datatypes

from other APIs, such as HDF5 hyperslabs; in fact, because HDF5 uses MPI-IO it can

benefit from this improvement without code changes.

4.2. Datatype I/O Implementation in PVFS1 and ROMIO

Our datatype I/O prototype builds on the datatype processing component in MPICH2 [78].

Three key characteristics of this implementation make it ideal for reuse in this role:

• Simplified type representation (over MPI datatypes)

• Support for partial processing of datatypes

• Separation of type parsing from action to perform on data

81

MPI_create_vector(3, 4, 12 MPI_BYTE, filetype)

MPI_File_read(fd, buf, 12, MPI_BYTE, status)

MPI_File_set_view(fh, 0, MPI_BYTE, filetype, "native", info)

read(fd, buf, 4)

lseek(fd, 8, SEEK_CUR)

read(fd, buf, 4)

lseek(fd, 8, SEEK_CUR)

read(fd, buf, 4)

Figure 4.2. Example tile reader file access pattern conversion. (A) shows how
we convert a struct datatype into an indexed dataloop for performance opti-
mization. This conversion eliminates the need for the MPI LB and MPI UB
dataloops, making the dataloop representation smaller. (B) is an example of
loop fusion in which we can merge datatypes into a single dataloop. The con-
tig and named dataloops can be sufficiently described by the vector dataloop
above them, eliminating the need for them.

Types are described by combining a concise set of descriptors called dataloops. Dataloops

can be of five types: contig, vector, blockindexed, indexed, and struct [35]. These five types

capture the maximum amount of regularity possible, keeping the representation concise. At

the same time these are sufficient to describe the entire range of MPI datatypes. Simplifying

the set of descriptors aids greatly in implementing support for fast datatype processing

because it reduces the number of cases that the processing code must handle. The type

extent is retained in this representation (a general concept) while the MPI-specific LB and

UB values are eliminated. This simplification has the added benefit of allowing resized type

processing with no additional overhead in our representation. We use dataloops as the native

representation of types in our PVFS1 implementation.

The MPICH2 datatype component provides the functions necessary to process dataloop

representations [78]. We provide functions to convert MPI datatypes into dataloops and

functions that are called during processing to create the offset-length pairs we need to

build the PVFS1 job and access structures. Additionally we provide functionality for ship-

ping dataloops as part of I/O requests. In our prototype, MPI datatypes are converted to

dataloops by a recursive process built by using the functions MPI Type get envelope and

82

MPI Type get contents. By using these MPI functions, we can ensure the portability of

our datatype I/O method across different MPI implementations.

An optimization our conversion process employs is the reduction of the size of the access

pattern representation. By using loop fusion as well as a struct-to-indexed datatype con-

version, we can reduce the amount of data transferred over the network. Loop fusion is the

conversion of excessively created dataloops into more concise dataloops, reducing the size of

the overall dataloop structure while maintaining the desired access pattern. The struct-to-

indexed datatype conversion we employ converts a struct dataloop (which may have multiple

underlying dataloops) into an indexed dataloop, which has only one underlying dataloop),

generally resulting in a smaller access pattern representation. Both of these optimizations

are visualized in an example file access pattern conversion from the tile reader test in Section

3.4.3 in Figure 4.2. The resulting dataloop representation is passed into the datatype I/O

calls and from there sent to the relevant I/O servers. The dataloops are converted into the

job and access structures on servers and clients side to create the traditional PVFS1 job and

access structures. Figure 4.3 outlines this process. PVFS1-specific functions for creating

these offset-length pairs are passed to the dataloop processing component. These functions

are written to efficiently convert contiguous, vector, and indexed dataloops into offset-length

pairs, and they include optimizations to coalesce adjacent regions. The partial processing

capabilities of the datatype processing component are used to limit the overhead of storing

the intermediate offset-length pairs that are created through dataloop processing.

This is only a partial implementation of the datatype I/O approach; a complete approach

would avoid creating of lists of regions on server and client. However, we will show that even

without this final capability, our prototype exhibits clear performance benefits over the other

approaches.

83

offset−length pairs

datatype into file

Convert PVFS file

File Lengths

File Offsets 0

2 2 2

3 5

PVFS file datatype

Send I/O Request with

to PVFS Datatypes

Convert MPI Datatypes

Memory File

oldtype = MPI_CHAR

newtype = type_vec

stride = 3

blocklength = 2

count = 3

MPI_Type_vector

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

File Datatype = type_vec

PVFS I/O ServersPVFS Client

Data Exchange

Datatype I/O Example Execution

Figure 4.3. Example datatype I/O call. Since file datatype are broken into file
offset-length pairs at the I/O servers, the number of I/O requests is dramati-
cally reduced for regular access patterns.

Because the MPI datatypes are converted into dataloops at every MPI I/O operation, we

expect there to be slightly higher overhead in the local portion of servicing these operations

in comparison with list I/O. On the other hand, because we are concisely describing these

types, we expect to see significantly less time spent moving the I/O description across the

network. Future optimizations could cache these dataloop representations on clients and

servers to ameliorate this overhead.

84

Desired Data Data Accessed # of I/O Ops Resent Data File Region
per Client per Client per Client per Client Size Accessed

POSIX I/O n n ≥fr count — ≤fr size

Data Sieving I/O n file ext ⌈ file ext
ds buffer

⌉ — ≤ds buffer

Two-Phase I/O n
agg file ext

of I/O aggs
⌈ agg file ext
of I/O aggs ∗ tp buffer

⌉ ap depend ≤tp buffer

List I/O n n ⌈ fr count
fr per access

⌉ — fr size

Datatype I/O n n 1 — fr size

Table 4.1. I/O characteristics comparison.

4.3. Noncontiguous I/O Methods Comparison

The noncontiguous I/O methods described in the previous section have several important

performance characteristics that will be discussed in this section. We will focus on the

characteristics that have the greatest performance impact. In Table 4.1 we show how the

major I/O characteristics compare.

We used the following variables to define this comparison: n = number of bytes, file ext

= the extent of the noncontiguous file regions (from first byte of the first file region to the last

byte of the last file region) for a single client, agg file ext = the extent of the noncontiguous

file regions (from first byte of the first file region to the last byte of the last file region) for the

aggregate I/O access pattern, ds buffer = the size of the data sieving I/O buffer, tp buffer =

the size of the two-phase I/O buffer, fr count = number of file regions, fr per access = the

maximum number of file regions a list I/O operation can support before breaking up into

multiple list I/O operations. # of I/O aggs = the number of I/O aggregators ap depend =

access pattern dependent, and fr size = the size of a file regions (we assume same size file

regions for simplicity).

We note that in the performance characteristics of the data sieving I/O and the two-phase

I/O there a small approximation is made with respect to the filing of the intermediary buffer.

The data sieving I/O buffer is the client’s memory region used to do the initial access of

85

data from the I/O system. The two-phase I/O buffer is the memory of the I/O aggregators

that access data from the I/O system. Any holes between noncontiguous file regions that

are past the last file region in the buffer can be ignored when refilling the buffer in the next

iteration. The frequency of this hole being removed from being accessed decreases as the

buffer is larger. Therefore, to simplify our calculations, we are essentially approximating an

infinitely large intermediary buffer.

4.3.1. Desired Data per Client

Each client needs a certain amount of data before it can return completion of its I/O oper-

ation. The desired data per client is this final data size. The desired data per client will be

the same for each of the noncontiguous I/O methods for a given I/O access pattern.

4.3.2. Data Accessed per Client

The client must acquire data from the I/O storage system in order to service its request. For

POSIX I/O, list I/O, and datatype I/O, the data accessed per client is equal to the desired

data per client. For data sieving I/O, the data accessed per client is the sum of the desired

data per client and the holes between the file regions. For two-phase I/O, the data accessed

per client is the amount of data that is actually exchanged between I/O aggregators (all

compute nodes in our tests) and the I/O servers; it does not include the cost of the data

that is resent between I/O aggregators and compute nodes. The implementation of two-

phase I/O leads to the actual amount of data accessed per client being based on agg file ext

divided by the number of I/O aggregators.

86

4.3.3. I/O Operations per Client

For POSIX I/O, the number of I/O operations per client depends on the number of noncon-

tiguous file regions. For every file region, POSIX I/O requires at least one I/O operation. A

mismatch between memory regions and file regions can cause multiple contiguous I/O oper-

ations to service a single file region. Therefore, in POSIX I/O, the number of I/O operations

per client is greater than or equal to the number of file regions in the access pattern. For

data sieving I/O, the number of I/O operations is approximately the ceiling of the file ext

divided by size of the data sieving buffer. For two-phase I/O, the number of I/O operations

per I/O aggregator is equal to the ceiling of the data accessed per client divided by the

size of the two-phase buffer. For list I/O, because the implementation of list I/O limits the

number of file offset-length pairs that can be passed with a single I/O operation, the number

of I/O operations per client is equal to the total number of file regions divided by the number

of file offset-length pairs allowed per I/O operation. For datatype I/O, the number of I/O

operations is always one per MPI-IO operation because the datatype I/O request includes a

derived datatype that can correspond to any MPI-IO datatype.

4.3.4. Resent Data per Client

Only two-phase I/O actually resends data between clients. These transfers are not as costly

as the data accessed per client because they are from the memory of the I/O aggregator to

the memory of the client; hence it is a memory-memory network transfer instead of a disk-

memory network transfer. Clients using data sieving I/O access regions of the data sieving

buffer in the same manner, but this is done locally on the same processor, so we do not include

this overhead in this section. We also do not define a formula for this variable because it

87

is highly dependent on the access pattern. For example, if each aggregator is accessing

data in its own aggregator file region, then there no data is resent. If each aggregator is

accessing data in another aggregators file region, then all the data that is accessed is resent.

The amount of resent data per client is best calculated based on the access pattern. In

Section 4.4, we will determine the resent data size of the I/O access patterns from each of

the benchmarks.

4.3.5. File Region Size Accessed

For list I/O and datatype I/O, the file region size is the same as specified in the access

pattern. For POSIX I/O, the file region size is also the same as specified in the access

pattern except when the memory regions and file regions do not align. If the regions do not

align, the I/O operations can be for smaller sizes than the access pattern file region. For

data sieving I/O, the file region size is equal to the minimum of the data sieving buffer size

or the extent of the remaining file regions. For two-phase I/O, the file region size is equal to

the minimum of the two-phase I/O buffer or the extent of the remaining aggregator region

extent. When we use this I/O characteristic in Section 4.4, for simplicity we fill in the most

commonly used file region size accessed.

4.4. Performance Evaluation

To evaluate the performance of the datatype I/O optimization against the other noncon-

tiguous I/O methods, we ran a series of noncontiguous MPI-IO tests, including a tile reader

benchmark, a three-dimensional block access test, and the FLASH I/O simulation. For each

test we provide a table summarizing the I/O characteristics of the access pattern using the

metrics from Section 4.3 for each of the noncontiguous I/O methods.

88

4.4.1. Benchmark Configuration

Our results were gathered on Chiba City at Argonne National Laboratory [15]. Chiba City

has 256 nodes available with dual Pentium III processors, 512 MBytes of RAM, a single

9 GByte Quantum Atlas IV SCSI drive, and a 100 Bits/sec Intel EtherExpress Pro fast-

Ethernet card operating in full-duplex mode. Each node uses Red Hat 7.3 with kernel

2.4.21-rc1 compiled for SMP use. Our PVFS1 server configuration for all test cases included

16 I/O servers (one also doubled as a metadata server). PVFS1 files were created with a

64 KByte strip size (1 MByte stripes across all servers). In the tile reader tests we allocate

one process per node because so few nodes are involved. In the other two cases we allocate

two processes per node.

Our prototype was built using the ROMIO version 1.2.4 and PVFS version 1.5.5. All

data sieving I/O and two-phase I/O operations were conducted with a 4 MByte buffer size

(ROMIO default size). Our results are the average of three test runs. All write test times

include the time for the MPI File sync() command to complete besides the normal write I/O

time. All read tests are uncached. We added these constraints to our testing environment to

avoid simply testing network bandwidth. Instead, we want to examine the performance of

our file system optimizations in conjunction with the storage system hard drive performance.

All read benchmarks are conducted with POSIX I/O, data sieving I/O, two-phase I/O,

list I/O, and datatype I/O. All write benchmarks are conducted with POSIX I/O, two-phase

I/O, list I/O, and datatype I/O. ROMIO can support write operations with data sieving

I/O only if file locking is supported by the underlying file system. Since PVFS1 does not

support file locking, we cannot perform data sieving writes on PVFS1. We note, however,

that for file systems that do allow file locking, data sieving performance for writes will have

89

0

5

10

15

20

25

30

35

40

45

A
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

POSIX
Data Sieving

Two-Phase
List

Datatype

Figure 4.4. Tile reader performance results.

worse performance than data sieving reads for the same access pattern. Data sieving writes

perform the same data movement from file system into the data sieving buffer at the client

and then data movement from data sieving buffer to memory buffer, but they also have to

write this data back, thereby doubling the network data transfer of a data sieving read. Also,

locking the modified regions can cause serialization of I/O requests for overlapping requests,

another serious overhead. On the other hand, the MPI-IO consistency semantics do allow

us to perform a read-modify-write during collective I/O. Thus, an approach similar to data

sieving is used in the two-phase I/O write case.

4.4.2. Tile Reader Benchmark

We used the same tile reader benchmark as described in Section 3.4.3 for our tests. We

can see in Figure 4.4 that datatype I/O is the clear winner in terms of performance for

this benchmark, 37% faster than list I/O. The characteristics of the resulting reads using

the optimizations tested are shown in Table 3.1. The datatype I/O result is due to the

combination of a single, concise I/O operation, no extra file data being transferred, and no

90

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

A
g
g
re

g
a
te

 r
e
a
d
 b

a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Compute processes (2 per node)

Datatype
List

Two-Phase
Data Sieving

POSIX

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

A
g
g
re

g
a
te

 w
ri
te

 b
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Compute processes (2 per node)

Datatype
List

Two-Phase
POSIX

Figure 4.5. Three-dimensional block read and write performance.

data passing over the network more than once. In contrast, POSIX I/O requires 768 read

operations, data sieving requires more than twice as much data to be read as is desired,

two-phase I/O requires resending about 88% of the data read, and list I/O sends a list of

768 offset-length pairs as part of the requests (9 KBytes of total data in I/O requests from

each client).

4.4.3. ROMIO Three-Dimensional Block Test

This benchmark, already described in Section 3.4.4, produced the data in Figure 4.5. Again,

datatype I/O is the clear performance winner; peak performance is more than double that

91

of the next-best approach. Of note is the unusual drop in performance in the read case

as number of processes increases. We believe that this is due to the increased overhead of

offset-length list processing on the server side. Because the servers are the source of data, and

clients are operating on a contiguous region of memory, any delays caused by list processing

will directly impact performance. On the other hand, in the write case the servers are data

sinks. Buffering in the TCP stack helps hide this inefficiency, although it might appear at

larger numbers of processes. This overhead is not visible in the list I/O results because the

number of I/O operations and the size of the I/O requests obscure this effect. A full-featured

datatype I/O implementation that operated directly on the dataloop representation would

likely not exhibit this behavior.

4.4.4. FLASH I/O Simulation

The FLASH benchmark is the same as the one found in Section 3.4.5. Since every processor

writes 80 FLASH blocks to file, as we increase the number of clients, the dataset size increases

linearly as well. Every processor adds 7 MBytes to the file, so the dataset ranges between

14 MBytes (at 2 clients) to 896 MBytes (at 128 clients).

Table 3.3 provides the I/O characteristics of the test using the available optimizations.

Figure 4.6 shows the results of these tests. This is the first test in which the memory

datatype is noncontiguous; thus it is the first time that the overhead of list processing might

affect the clients. We see this in both the list I/O and datatype I/O cases; both perform

poorly at small numbers of clients. As the number of clients increases, the clients are

eventually able to feed the servers adequately. At 96 processes, datatype I/O performance

rises to nearly 40 MBytes/sec, 37% faster than two-phase. This trend continues at higher

numbers of processes. We would expect that a datatype I/O system that operated directly

92

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

A
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
M

b
y
te

s
/s

e
c
)

Compute processes (2 per node)

Datatype
List

Two-Phase
POSIX

Figure 4.6. FLASH I/O performance.

on the dataloop representation would allow clients to more effectively push data to servers,

resulting in improved performance at smaller numbers of clients. List I/O, because of the

size and number of I/O requests, is not able to overtake two-phase for the tested numbers

of processes. POSIX I/O is nearly unusable in this benchmark because it has to address

983,040 I/O operations of 8 bytes each to service this access pattern.

This case shows that two-phase I/O still has a place as an I/O optimization. Because data

is not wasted and I/O accesses are large, two-phase I/O is able to provide good performance

despite moving the majority of the data over the network twice.

4.5. Summary

In conclusion, datatype I/O provides the opportunity for extremely efficient processing of

structured, independent I/O requests. Our tests show that this approach outperforms both

list I/O and data sieving I/O in virtually all situations. Further, it supplants two-phase I/O

as the preferred optimization in many cases as well. Datatype I/O in conjunction with the

two-phase collective I/O optimization makes a strong MPI-IO optimization suite. We note

93

that in almost every case POSIX I/O alone would result in a nearly unusable system from

the performance perspective; these optimizations are a necessary part of scientific parallel

I/O.

Further optimization of the approach can be provided in ROMIO as well. Caching the

dataloop representations of types locally would be one way to improve datatype I/O. Also,

leveraging datatype I/O as the internal I/O method underneath two-phase I/O would likely

boost performance of the collective operations further.

94

CHAPTER 5

Performance Analysis of Access Pattern Characteristics

The previous chapters have described traditional noncontiguous I/O methods as well as

our new list I/O and datatype I/O methods. While application I/O benchmarks show prac-

tical performance improvements in today’s environment, it is also useful to study basic access

pattern parameters to understand how and why the various noncontiguous I/O methods have

different performance characteristics. In this chapter, Section 5.1 discusses the basic access

pattern characteristics. Section 5.2 details our reimplementation of list I/O and datatype

I/O in PVFS2. Section 5.3 describes the HPIO benchmark that we use for our study of

I/O characteristics. Section 5.4 provides the results of our study on I/O characteristics and

Section 5.5 concludes this chapter with a collection of I/O performance guidelines.

5.1. I/O Characteristics Discussion

There are three major I/O access pattern characteristics that seriously affect noncon-

tiguous I/O performance:

• Region Count - For some methods, this can cause an increase in the amount of

data sent from the clients to the I/O system over the network. When using POSIX

I/O, for example, increasing the region count increases the number of I/O requests

necessary to service a noncontiguous I/O call. However, some other methods such

as datatype I/O are generally expected to be unaffected by this parameter since

95

0 1 1 2 2

1 2

Region Size = 1

Region Size = 2

0

0

Vary Region Size

0 1 2 0 1

Region Count = 1

Region Count = 2

Vary Region Count

210

2

Region Spacing = 1

Region Spacing = 2

Vary Region Spacing

0

0

2

21

1

Figure 5.1. An example of how an access pattern is created from the HPIO parameters.

increasing the region count does not change the size of the access pattern represen-

tation for that method in structured data access.

• Region Size - Due to the mechanical nature of hard drives, a larger region size

will achieve better bandwidth for methods that read/write only the necessary data.

two-phase I/O is not likely to improve as much as the individual I/O methods when

increasing region sizes since it uses the data sieving optimization. Since memory

does not exhibit the same properties as disk, we do no expect any performance

change due to larger region sizes in memory.

• Region Spacing - If the distance between file regions is small, two-phase I/O will

improve performance due to internal data sieving. If the distance is small enough,

we expect file system block operations may help with caching. We note that spacing

between regions is usually different in memory and in file due to the interleaved data

operation that is commonly seen in scientific datasets that are accessed by multiple

processes. For example, in the FLASH code, the memory structure of the block is

different that the file structure, since the file structure takes into account multiple

processes.

These characteristics, illustrated in Figure 5.1, have a different effect on performance

when regarding memory access descriptions or file access descriptions.

96

5.2. PVFS2 and ROMIO Implementation

PVFS2 [95] is a parallel file system for commodity Linux clusters that is a complete

redesign of PVFS1 [11]. It provides both a cluster-wide consistent name space and user-

defined file striping found in PVFS1, but also adds functionality to provide better scalability

and performance. Section 2.4.4 provides a detailed description of PVFS1 and PVFS2. Most

relevant to this chapter is the native support for noncontiguous data access. PVFS2 provides

a client API for handling derived datatypes and internally contains specific functionality for

processing them efficiently. Rather than use the aging PVFS1 for our testing, we opted for

PVFS2 due to its optimized datatype processing engine.

In order to test the various noncontiguous I/O methods in PVFS2, we had to imple-

ment them in the PVFS2 driver of ROMIO. In essence, the entire read/write section of the

PVFS2 driver was completed overhauled. To allow the basic POSIX I/O test scenario, the

“contig” section of the driver was rewritten to share a single code path. Instead of using the

complicated list I/O implementation of the PVFS1 driver, we started the list I/O PVFS2

implementation from scratch. The MPI-IO datatypes are still flattened and processed in the

same manner as in Section 3.3. However, the code paths from read and write were combined

and much of the code was simplified by making general purpose code that performs as well

as the old case-specific code.

Finally, support for datatype I/O was added by breaking down MPI datatypes into

PVFS2 datatypes to produce native PVFS2 I/O datatype requests. We also added support

for subarray and darray datatypes, which have been traditionally difficult to support. We

changes the ADIO PVFS2 hints to select different I/O methods with the MPI Info set()

97

call. Our modified PVFS2 driver has been sent to ROMIO developers and is expected to be

released soon with a new version of ROMIO.

As PVFS2 was new at this time, we also worked with PVFS2 developers to improve

noncontiguous I/O support in PVFS2. A number of bugs popped up at various levels in the

datatype processing and flow control. With the help of the PVFS2 team, we were able to

fix many of these bugs and improve the correctness of the code.

We rewrote the I/O portion of the PVFS2 server trove component to use read(), write()

and lseek() calls instead of lio listio(). We found this optimization improved performance

over an order of magnitude in some noncontiguous I/O cases.

5.3. HPIO Benchmark

We have designed an I/O benchmark, High-Performance I/O Test (HPIO), for studying

I/O performance using various I/O methods, I/O characteristics, and noncontiguous I/O

cases. We test all three I/O characteristics (region size, region count, and region spacing)

against four I/O methods (POSIX I/O, list I/O, two-phase I/O, and datatype I/O) in all

four of the I/O access cases (c-c, nc-c, c-nc, and nc-nc).

We chose to call MPI File sync() after every I/O operation. This enables us to include

the time to move the data to the hard drive and not simply test network bandwidth. When

using two-phase I/O, an optimization in the PVFS2 driver of ROMIO forces only one of the

processes to actually call MPI File sync(), instead of all 64 processes calling MPI File sync()

when using individual I/O methods. Test runs that did not synchronize the data to disk

showed I/O bandwidth as high as 1.59 GBytes / sec. Our best synchronized results will

barely reach 24% of that (roughly 389 MBytes / sec). However, when checkpointing and

doing other persistent data storage operations, file synchronization to hard disk is not just

98

advised, it is essential to ensure that the data is available when the application is restarted or

visualized. All tests used 64 compute processes on 32 dual CPU computers and 16 computers

each running a single PVFS2 server process. I/O tests have a lot of variance, so for each

data point for we averaged 6 repetitions without the high and the low. We also inserted a

one second delay between test runs to try to minimize effects from previous runs.

In order to observe the individual effect of varying each of the I/O characteristics, we hold

all other characteristics constant during our experiments. We chose a default region size of 8

bytes to match the size of a double on most computing platforms. This makes the test as I/O

intensive as possible and provides a worst case scenario for scientific computing. We used a

default spacing of 128 bytes since this maps well to applications that use 16 variables per cell

(similar to 17 in IPARS and 24 in the ASC FLASH code). We chose a default region count

of 4096 to represent 4096 cells, a mid-size grid. We note that whenever memory and/or file

descriptions are contiguous, we used a contiguous MPI datatype for data representation. We

used a vector MPI datatype for noncontiguous data representation. While many scientific

applications store data in multi-dimensional datasets, which can be represented by vector of

vector MPI datatype, we chose to use a single MPI vector datatype to keep consistent region

spacing. Our results can be extrapolated to approximately determine multi-dimensional

region spacing performance.

5.4. HPIO Results

All tests were run on the Feynman cluster at Sandia National Laboratories. Feynman,

composed of Europa nodes, Ganymede nodes, and I/O nodes, has a total of 371 computers.

In order to keep our testing as homogeneous as possible, we only used the Europa nodes.

The Europa nodes are dual 2.0 GHz Pentium-4 Xeon CPUs with 1 GB RDRAM. They are

99

Region Count - Write (C to C)

0

50

100

150

200

250

300

350

400

2048
4096

8192
16384

32768

65536

131072

262144

524288

1048576

Region Count

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Count - Write (NC to C)

0

20

40

60

80

100

120

140

160

2048
4096

8192
16384

32768

65536

131072

262144

524288

1048576

Region Count

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Count - Write (C to NC)

0

2

4

6

8

10

12

14

16

2048
4096

8192
16384

32768

65536

131072

262144

524288

1048576

Region Count

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Count - Write (NC to NC)

0

2

4

6

8

10

12

14

16

2048
4096

8192
16384

32768

65536

131072

262144

524288

1048576

Region Count

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Figure 5.2. HPIO results from testing various region counts.

connected with a Myrinet-2000 network and use the Red Hat Linux Enterprise operating

system. Since each computer has dual CPUs, we used 2 compute processes per node.

We used 16 computers for our PVFS2 file system. All 16 computers ran the PVFS2

server with one computer additionally handling metadata server responsibilities. All PVFS2

files were created with the default 64 KByte strip size, totaling to a 1 MByte stripe across

all I/O servers. Figure 5.2 shows our results when varying the region count. Figure 5.3

shows our results when varying the region size. Figure 5.4 shows our results when varying

the region spacing.

100

Region Size - Write (C to C)

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128 256 512 1024 2048 4096

Region Size (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Size - Write (NC to C)

0

50

100

150

200

250

300

350

400

8 16 32 64 128 256 512 1024 2048 4096

Region Size (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Size - Write (C to NC)

0

20

40

60

80

100

120

140

8 16 32 64 128 256 512 1024 2048 4096

Region Size (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Size - Write (NC to NC)

0

20

40

60

80

100

120

140

8 16 32 64 128 256 512 1024 2048 4096

Region Size (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Figure 5.3. HPIO results from testing various region sizes.

5.4.1. HPIO - Vary Region Count Results

In the c-c case, increasing the region count increases overall bandwidth. The data sizes per

process range from 16 KBytes at the low end (region count = 2048) to 8 MBytes at the high

end (region count = 1048576). The overhead of a double network transfer makes two-phase

I/O much less efficient than the other methods.

In the nc-c case, two-phase I/O and datatype I/O perform fairly well as the impact

of varying the region count with noncontiguous memory access isn’t as good as c-c, but

still scales up some. List I/O performance immediately drops since only 64 offset-length

pairs are transferred per request. List I/O must process 1048576 / 64 = 16384 requests per

101

process, where each request is only 64 * 8 = 512 bytes. Such a small size is not suited for

a hard disk. Datatype I/O drops significantly as well due to the PVFS2 server side storage

implementation. The PVFS2 flow component can only handle processing 1024 offset-length

pairs at a time on the server side. Therefore, datatype I/O can only write 8 KByte regions

at a time, which is better than the 512 byte regions in list I/O but still not large enough to

achieve high disk bandwidth.

In the c-nc case, we note that I/O bandwidth is less than 5% of the maximum bandwidth

we saw in c-c. Noncontiguous data access in file is really hard on the individual I/O methods

(POSIX I/O, list I/O, and datatype I/O). Performance of datatype I/O drops off at about

16384 regions. This is mostly likely caused by the fact that datatype I/O requests block the

PVFS2 server until they completely finish. Fsync() calls immediately come after the datatype

I/O requests and block the PVFS2 server from doing other client I/O requests. Since the

fsync() calls arrive at intervals after each datatype I/O request is completed the aggregate

write I/O pattern will have 64 I/O requests interrupted with intermittent fsync() calls. List

I/O performance isn’t as affected by this fsync() problem because it breaks down into I/O

requests of 64 file offset-length pairs. Therefore, the list I/O requests all finish about the

same time (most likely around when the other list I/O requests are around their last 64 file

offset-lengths pairs) and then the fsync() calls occur, making it less costly to fsync() versus

the datatype I/O case. The MPI File sync() time for the list I/O test in the c-nc case never

exceeds 18 seconds when region count = 1048576. The datatype I/O MPI File sync() time

for the c-nc case reaches as high 2061 seconds. POSIX I/O is so slow that with the region

count = 1048576, it took 11014.66 second (0.047 MBytes / sec) to complete a repetition.

In fact, two-phase I/O is performing quite well in comparison because it only does a single

102

fsync() call between all the processes. This allows it to scale up much better than the other

methods.

In the nc-nc case, performance is nearly identical to the c-nc case. If the file description

is noncontiguous then making the memory description noncontiguous has little impact.

5.4.2. HPIO - Vary Region Size Results

In the c-c case, we see the same trends as the c-c case of the region count test. Increasing the

total data size from 32 KBytes (region size = 8) to 16 MBytes (region size = 4096) / process

scales up the I/O bandwidth. Since we have 16 I/O servers, each server only receives about

1 MByte per compute process at the maximum size. With larger sizes we could certainly

achieve higher I/O bandwidth. Two-phase I/O tails off here again due to its double network

transfer.

In the nc-c case, datatype I/O performs almost equivalent to the c-c case. Since the

default region count = 4096, and there are 16 I/O servers, the flow component isn’t a

bottleneck for datatype I/O. Two-phase I/O performance is nearly identical to its nc-c case

of the region count test. List I/O actually does fairly well here as well since it isn’t as limited

by its 64 offset-length pair maximum as it was in the nc-c case of the region count test.

In the c-nc case, datatype I/O peaks rapidly and then falls due to the fsync() issue

discussed in the c-c case of the region count test. If the fsync() calls happened after all

the writes from all the processes finished we would expect the scaling to continue. All I/O

methods benefit from the increased region sizes. Even two-phase I/O can benefit quite a

bit from the larger region sizes since it doesn’t have to pass around such a large amount of

offset-length pairs to each of the aggregators and its percentage of useful data acquired while

using the data sieving method is improving.

103

Region Spacing - Write (C to C)

0

5

10

15

20

25

30

35

Region Spacing (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Spacing - Write (NC to C)

0

5

10

15

20

25

30

35

40

45

8 16 32 64 128 256 512 1024 2048 4096

Region Spacing (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Spacing - Write (C to NC)

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512 1024 2048 4096

Region Spacing (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Region Spacing - Write (NC to NC)

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512 1024 2048 4096

Region Spacing (Bytes)

M
B

y
te

s
 /

 s
e
c datatype

 list

 two phase

 posix

Figure 5.4. HPIO results from testing various region spacing.

In the nc-nc case, the trends of match the c-nc case, again showing that if the file descrip-

tion is noncontiguous, then it makes little performance difference if the memory description

is contiguous or noncontiguous.

5.4.3. HPIO - Vary Region Spacing Results

In the c-c case, we only have a single bar since varying region spacing has no effect on a

contiguous memory or file description. One interesting thing is that two-phase I/O performs

slightly better than the other methods. This is also evident in the c-c cases for the other

tests when each process is writing 32 KBytes. This is a case where the MPI File sync() costs

104

are cheaper for two-phase I/O (due to the two-phase MPI File sync() optimization). The

average MPI File sync() cost for the two-phase I/O runs was 0.0391 seconds versus 0.0705

seconds for the normal case, which allows two-phase I/O a win at this small write case.

In the nc-c case, datatype I/O and two-phase I/O fluctuate (even with the average policy

we used with 6 repetitions and eliminating the high and the low). The main cause of the

fluctuation is that the writes are only 32 KBytes per process and can only fill half a strip on

the I/O servers. If we average out the datatype I/O numbers, the result is 23.83 MBytes /

sec (23.65 MBytes / sec on the c-c case). If we average out the two-phase I/O numbers, the

result is 30.832 MBytes / sec (32.017 MBytes / sec in the c-c case). When going from the c-c

case to the nc-c case, datatype I/O and two-phase I/O retain their performance. However,

list I/O takes a large drop due to only processing 64 offset-length pairs at a time. Therefore,

each process calling list I/O must do a series of small writes (64 * 8 = 512 bytes) to finish

the access pattern. POSIX I/O is making 4096 writes of size = 8 bytes, which leads to an

aggregate bandwidth of no more than 0.145 MBytes / sec.

In the c-nc case, performance drops for all I/O methods quite significantly. The individual

I/O methods are all suffering from disk seek penalties. Writing 8 bytes and then skipping up

to 4096 bytes makes performance drop rapidly. two-phase I/O surpasses the other methods

due to its internal data sieving implementation making larger I/O operations until about 1

KByte spacing, where it appears that the penalty of data sieving large holes overwhelms the

benefits of larger I/O operations and allows datatype I/O to surpass it.

The nc-nc case shows a similar trend to the c-nc case. Again we note that moving from

c-nc to nc-nc makes only a small performance difference.

105

MPI_create_vector(3, 4, 12 MPI_BYTE, filetype)

MPI_File_read(fd, buf, 12, MPI_BYTE, status)

MPI_File_set_view(fh, 0, MPI_BYTE, filetype, "native", info)

read(fd, buf, 4)

lseek(fd, 8, SEEK_CUR)

read(fd, buf, 4)

lseek(fd, 8, SEEK_CUR)

read(fd, buf, 4)

Figure 5.5. Example code conversion from the POSIX interface to the MPI-IO
interface.

5.5. I/O Guidelines

• All large-scale scientific applications should use the MPI-IO interface

(either natively or through higher level I/O libraries). MPI-IO is a portable

parallel I/O interface that provides more performance and functionality over the

POSIX I/O interface. Whether using MPI-IO directly or through a higher level

I/O library which uses MPI-IO (such as PnetCDF or HDF5), applications can use

numerous I/O optimizations such as collective I/O and data sieving I/O. MPI-IO

provides a rich interface to build descriptive access patterns for noncontiguous I/O

access. Most programmers will benefit from the relaxed semantics in MPI-IO when

compared to the POSIX I/O interface. If a programmer chooses to use a particular

file system’s custom I/O interface (i.e. not POSIX or MPI-IO), portability will

suffer.

• Group individual I/O access to make large MPI-IO calls. Even if an appli-

cation programmer uses the MPI-IO interface, they need to group their read/write

accesses together into larger MPI datatypes and then do a single MPI-IO read/write.

Larger MPI-IO calls allow the file system to use optimizations such as data sieving

106

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Data Cell 1 Data Cell 2

File

Memory

(a)

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Data Cell 1 Data Cell 2

File

Memory

(b)

���
���
���

���
���
���

= Variable 2

��
��
��

��
��
��

= Variable 1

��
��
��

��
��
��

= Other variables in data cell

Figure 5.6. (a) Original layout of variables in data cells. (b) Reorganization of
data to combine file regions during write operations increases I/O bandwidth.

I/O, list I/O and datatype I/O. It also provides the file system with more infor-

mation about what the application is trying to do, allowing it to take advantage of

data locality on the server side. A simple code conversion example in Figure 5.5

changes 3 POSIX read() calls into a single MPI File read() call, allowing it to use

data sieving I/O, list I/O, or datatype I/O to improve performance.

• Whenever possible, increase the file region size in an I/O access pattern.

After creating large MPI-IO calls which service noncontiguous I/O access patterns,

try to manipulate the I/O access pattern such that the file regions are larger. One

way to do this is data reorganization. Figure 5.6 shows how moving variables around

in a data cell combined file regions for better performance. While not always possi-

ble, if a noncontiguous file access pattern can be made fully contiguous, performance

107

���������
���������
���������

���������
���������
���������

�����
�����
�����
�����
���
���
���

���
���
���

����
����
����
����
���������
���������
���������

���������
���������
���������

Process 1

��
��
��

��
��
��

�����
�����
�����
�����
����������
����������
����������

����������
����������
����������

����
����
����
����
��
��
��

��
��
��

Process 2

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
��������
��������
��������

��������
��������
��������

����
����
����
����
�������
�������
�������

�������
�������
�������

Process 3

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Aggregate collective I/O time

Aggregate implicit sync time

(a)

���������
���������
���������

���������
���������
���������

����
����
����
����

���
���
���

���
���
���

�����
�����
�����
�����

����������
����������
����������

����������
����������
����������

Process 1

��
��
��

��
��
��

����
����
����
����

����������
����������
����������

����������
����������
����������

����
����
����
����

���
���
���

���
���
���

Process 2

�����
�����
�����

�����
�����
�����

���
���
���
���
��������
��������
��������

��������
��������
��������

���
���
���
���
��������
��������
��������

��������
��������
��������

Process 3

�����
�����
�����
�����

���
���
���
���
�����
�����
�����
�����

����
����
����
����

��
��
��
��

����
����
����
����

Aggregate individual I/O time

(b)

����
����
����
����

���
���
���
���

���
���
���

���
���
���

= compute time

= collective I/O time

= individual I/O time

Application using collective I/O

Application using individual I/O

Figure 5.7. Cost of collective I/O synchronization. Even if collective I/O (a)
can reduce the overall I/O times, individual I/O (b) outperforms it in this case
because of no implicit synchronization costs.

can improve by up to 2 orders of magnitude [20]. When storing data cells, some

programmers write one variable at a time. Making a complex memory datatype to

write this data contiguously in file in a single MPI-IO I/O call will be worth the

effort.

• Reduce the file region spacing in an I/O access pattern. When using data

sieving I/O and two-phase I/O, this will improve buffered I/O performance by ac-

cessing less unused data. POSIX I/O, list I/O, and datatype I/O will suffer less

disk seek penalties. Again, a couple of easy ways to do this is to reorganize the data

layout or combine multiple I/O calls to make fewer, but larger I/O calls.

108

• Consider individual versus collective (two-phase I/O). Two-phase I/O pro-

vides good performance over the other I/O methods when the file regions are small

(bytes or tens of bytes) and nearby since it can make large I/O calls, while the

individual I/O methods (excluding data sieving I/O) have to make numerous small

I/O accesses and disk seeks. The advantages of larger I/O calls outweigh the cost

of passing network data around in that case. Similarly, the file system can process

accesses in increasing order across all the clients with two-phase I/O. If the clients

are using individual I/O methods, the file system must process the interleaved I/O

requests one at a time, which might require a lot of disk seeking. However, in many

other cases, list I/O and datatype I/O outperform two-phase I/O [20]. More im-

portantly, two-phase I/O has an implicit synchronization cost. All processes must

synchronize before any I/O can be done. Depending on the application, this syn-

chronization cost can be minimal or dominant. For instance, if the application is

doing a checkpoint, since the processes will likely synchronize after the checkpoint is

written, the synchronization cost is minimal. However, if the application is continu-

ally processing and writing results in an embarrassingly parallel manner, the implicit

synchronization costs of two-phase I/O can dominate the overall application running

time as shown in Figure 5.7.

• When using individual I/O methods, choose datatype I/O. In nearly all

cases datatype I/O exceeds the performance of the other individual I/O methods.

The biggest advantage of datatype I/O is it can compress the regularity of an I/O

access pattern into datatypes, keeping a one-to-one mapping from MPI-IO calls to

file system calls. In the worst case (unstructured I/O), datatype I/O breaks down

to list I/O which is still much better than POSIX I/O.

109

• Do not use data sieving I/O for interleaved writes. Interleaved writes will

have to be processed one at a time by the file system because the read-modify-write

behavior in the write case requires concurrency control. Using data sieving I/O

for writes is only supported by file systems which have concurrency control. Data

sieving I/O is much more competitive with the other I/O methods when performing

reads, but should still be used in limited cases.

• Generally, there is no need to reorganize the noncontiguous memory

description if file description is noncontiguous. Some programmers might be

tempted to copy noncontiguous memory data into a contiguous buffer before doing

I/O, but our results suggest that it will not make any difference in performance.

It would most likely just incur additional programming complexity and memory

overhead.

110

CHAPTER 6

Exploring I/O Strategies for Parallel Sequence-Search Tools

Our last chapter studied the performance effects of I/O characteristics from a system

perspective. In this chapter we examine performance from an application’s view of I/O

strategies in the popular domain of sequence-search.

Sequence-search is one of the fundamental tasks routinely performed in computational

biology. Sequence-search is typically used to find similarities between newly discovered DNA

or amino-acid sequences and those in known nucleotide or protein databases. The results of

sequence-search can be used to predict the structures and functions of new sequences. They

also allow people to estimate the evolution distance in phylogeny reconstruction and perform

gnome alignments. With the introduction of advanced sequencing technologies, sequence

databases are rapidly growing. For example, GenBank [4] (a widely used DNA sequence

database maintained by the National Center for Biotechnology Information) increased in

size by over five orders of magnitude from 1982 to 2004 [60]. Parallel sequence-search tools

are necessary for sequence analysis of modern and future sequence databases.

Query segmentation and database segmentation are the popular design choices for parallel

sequence-search tools on general-purpose parallel machines. Many existing parallel sequence-

search tools are based on query segmentation [10, 14, 8, 83, 34]. In this approach, the

entire sequence database is replicated to all processors and a set of query sequences are

segmented into fractions. Each processor searches a fraction of query sequences against

the entire sequence database. When the sequence database does not fit into the processor

111

>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>Perilla Frutescens CDS 0001
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Queries

Worker nodes

Figure 6.1. Database segmentation.

memory, query segmentation suffers repeated I/O introduced by loading sequence data back

and forth between the file system and the main memory. In database segmentation, the entire

set of query sequences is replicated to all processors and the sequence database is partitioned

(as shown in Figure 6.1. Each processor searches whole query sequences against a fraction

of the sequence database. Super-linear speedup is possible when the sequence database is

larger than the processor memory by fitting the large database into the aggregate memory

of all processors [28]. Parallel sequence-search tools that use database segmentation include

mpiBLAST [28], pioBLAST [51], TurboBlast [6] and parallel BLAST [54].

Database segmentation is expected to be the inevitable trend of future parallel sequence-

search tools for following reasons. First, the rapid growth of sequence databases prohibits a

sequence database from fitting into the memory of a single processor. Second, as sequence

databases increase in size, searching a query against the whole database will take substantial

time and result in resource under-utilization when the number of sequences is relatively

small compared to the number of processors. Database segmentation offers better resource

utilization on large-scale machines regardless of number of input query sequences.

112

Although current I/O costs in parallel sequence-search tools (such as mpiBLAST) are

relatively small in proportion to overall execution time, we believe future I/O performance

will be increasingly important to sequence-search throughput because of following reasons.

First, the performance gap between processor speed and I/O speed continues to widen,

making I/O much more significant in overall execution time. Search times are shrinking

as we use advanced computational hardware such as multicore-chip architectures. Solu-

tions based on field programmable gate arrays (FPGAs) or application-specific integrated

circuits (ASICs), such as BioScan [99], Parcel’s GeneMatcher [70], Compugen’s Biocceler-

ator [24] and TimeLogic’s DeCypher [40], have proven to be very efficient and can deliver

orders-of-magnitude performance improvements in comparing large sequences. Second, the

development of smarter heuristic algorithms (such as SSAHA [63], PatternHunter [53], and

BLAT [42]) greatly reduces the sequence-search costs.

Our past experience with parallel sequence-search tools has led us to believe that an

individual worker-writing I/O strategy would significantly improve overall execution times.

In this chapter, we compare such an I/O strategy against other I/O strategies for parallel

sequence-search tools using database segmentation. We have developed S3aSim, a sequence

similarity search algorithm simulator, to get a detailed understanding of I/O strategies in

parallel sequence-search tools.

In Section 6.1, we describe and compare the various I/O strategies for parallel sequence-

search tools. In Section 6.2, we introduce S3aSim, our simulation tool for understanding I/O

in parallel sequence-search tools. In Section 6.3, we present our S3aSim results with respect

to increased processors and increased computational ability. In Section 6.4, we conclude

with our contributions in this chapter and discuss possibilities for future work.

113

6.1. I/O Algorithms in Parallel Sequence-Search Tools

Although parallel sequence-search tools employ different sequence-alignment algorithms,

they have much in common when using the database segmentation approach, as proposed

by [28]. First, each processor searches a fraction of the database. These searches on different

processors are embarrassingly parallel. Second, the output results in query sequence match

database similarities ordered by statistics representing the alignment qualities. Finally, local

outputs in different processors need to be merged and sorted according to the search statistics

(usually a similarity score) in order to produce the final output. Most parallel sequence-

search tools will use the message passing interface (MPI) and its associated I/O chapter

(MPI-IO) for code portability. In the rest of the chapter, we will refer to some example

parallel database-search tools such as mpiBLAST and pioBLAST.

Older versions of mpiBLAST would store all the results on master/worker nodes until

the end of program execution. Since this can result in exceeding memory limits in large

application runs, the current design path (for example mpiBLAST 1.4) has headed towards

writing the results out immediately after a query is processed or after every n queries have

been processed, where n is a fraction of the overall input query set. More frequently writing

out the results also allows users to resume a failed application run at the appropriate input

query. Workers always send their results back to the master ordered by score. As the master

receives the ordered results, it can easily merge them together with its list of ordered results.

Basically, the sorting costs are offloaded as much as possible to the workers so the master

can focus on its primary job of distributing tasks to the workers.

We note that parallel sequence-search algorithms have a unique set of I/O characteristics

when writing out results.

114

• Non-uniform result size - The size of each result is relative to the minimum

searching threshold and up to three times the maximum of the input query and the

matching database sequence (for BLAST output).

• Result count - This is completely data dependent and can range from no results to

hundreds of thousands of results depending on the input queries and the database

size.

• Unstructured data - When the workers write to the output file, the resulting data

is noncontiguous and unstructured (i.e., no regularity). When the master writes to

the output file, the resulting I/O calls are large and contiguous.

In the upcoming subsections, we describe possible I/O strategies for writing a results file.

6.1.1. Master-Writing

After each worker completes its queries, it sends its ordered results to the master. This

involves sending over its scores and actual result data. The master merges the ordered

results with its ordered results. If all the fragments for an input query have been processed,

it writes the ordered results to a file in one contiguous I/O call. We will refer to this master-

writing strategy as the MW strategy in the rest of the chapter.

The MW strategy resembles the I/O strategy used in mpiBLAST 1.2. A large difference,

however, is that mpiBLAST 1.2 did not write out results after each query. In mpiBLAST

1.2, the master wrote all its results at the end of the application run. This limited the size of

input queries and the target database used. It also provided little opportunity for resuming

an application run after failure.

The main advantage of the MW strategy is that it writes the output data contiguously.

Contiguous I/O is much more efficient that noncontiguous I/O [19]. The MW strategy is

115

also easy to implement and debug. However, one disadvantage of the MW strategy is that

the master is a centralized point of contention where the full result data is sent. Only a single

process is gathering all the results and doing the writing on behalf of all the workers. Also,

while the master is writing, it cannot assign new tasks to the workers (causing potentially

long wait times before a worker can begin a new task). While nonblocking I/O could reduce

this overhead, blocking I/O is commonly used in a MW strategy to avoid overloading the

memory of the master process. As we scale up the number of workers, the MW strategy will

likely not scale as well as the other I/O strategies.

6.1.2. Worker-Writing: Collective I/O

An application designer can choose to have the workers write the results themselves in order

to help the master focus on assigning work. After each worker finishes processing its input

query against its database fragment, it sends over only its scores of the ordered results to

the master. The master merges in these ordered scores with the previously received ordered

scores from other workers. If all the fragments for an input query have been processed, it

sends the workers the location of where to write each result in the aggregate output file.

This location information consists of a list of 64-bit offsets sent to each worker with results.

All of the workers then synchronize to write their results collectively to the correct locations

in the output file. Since results are written to mutually exclusive locations in the file, the

data is interleaved but not overlapping. We will refer to this worker-writing strategy with

collective I/O as the WW-Coll strategy. We refer to the more general class of worker-writing

strategies as WW strategies.

The WW-Coll strategy, proposed by pioBLAST [51], uses MPI-IO collective writes to

instruct workers to simultaneously write all of their results at the end of program execution.

116

When compared to the MW strategy, collective worker-writing allows the I/O bandwidth to

scale up with the number of workers. In most cases, having more clients writing simultane-

ously provides better I/O throughput to a high-performance file system. However, as noted

earlier, a disadvantage of the WW strategies is that the workers must use noncontiguous

I/O methods. Furthermore, with the WW-Coll strategy, all the workers must synchronize

with each other to write. This synchronization cost is at least the time from when the first

worker receives its result list to when the last worker receives its result list (before collective

I/O begins). On the other hand, since the worker only sends the scores and not the actual

results to the master, the amount of data exchanged with the master is reduced from the

MW strategy (even including the overhead of the location list data passed from the master

to the workers).

6.1.3. Worker-Writing: Individual I/O

We propose to modify the WW-Coll strategy to use individual I/O in parallel sequence-search

tools. Instead of using collective I/O, we let the workers write results after completing an

input query (or a group of input queries) using individual noncontiguous I/O methods. Our

modified WW strategy begins with the master issuing input queries to the workers. The

workers are responsible for processing the queries, generating the sorted results, and sending

the ordered scores to the master. The master returns the location list to the workers and

each worker writes the result data to the output file on its own (not collectively) when it

notices it has received the location list from the master. While workers wait for the location

list from the master, they can process additional queries, unlike the WW-Coll strategy.

117

Since collective I/O requires all involved processes to block until synchronized, the WW-

Coll strategy cannot allow worker processes to begin upcoming queries until after the I/O

operation.

That is, we try to eliminate the synchronization time inherent in collective I/O and relieve

pressure on the file system by writing when a worker is ready instead of forcing all workers to

simultaneously write. Eliminating the synchronization time should have a significant impact

on overall application performance and balance out the load on the file system. We used two

different noncontiguous I/O methods (POSIX I/O and list I/O). The POSIX I/O method

is the MPI Write() call without optimization. The list I/O method, described in [17], is an

optimization for high-performance file systems. We call our modified WW strategies with

POSIX I/O and list I/O, the WW-POSIX strategy and WW-List strategy, respectively.

6.2. S3aSim

Each of the aforementioned I/O strategies would be difficult to compare in a single ap-

plication (such as mpiBLAST or pioBLAST). The main difficulties are implementation time

and complexity. Each I/O strategy requires substantial changes to the overall parallel search

algorithm. They could also require changes in network protocol and intricacies of the actual

search algorithms (for example, modifying NCBI [60] BLAST code). We do not wish to

compare mpiBLAST 1.2, pioBLAST, and our individual worker-writing strategy in another

parallel sequence-search tool to compare I/O strategies. At this time, no benchmarks for par-

allel I/O in bioinformatics exist. In order to create a fair comparison of I/O strategies that

provides flexibility in altering input parameters (such as computational time, input query

size, I/O strategies), we created S3aSim: a sequence similarity search algorithm simulator.

118

Algorithm 1 Master Process

1: Distribute input variables to the workers and setup internal data structures.
2: while {1} do
3: MPI Recv() a request for work.
4: if All queries have been scheduled then
5: Notify worker all queries have been scheduled.
6: else
7: MPI Send worker (query #, fragment #).
8: Post MPI Irecv() for worker scores (and results if MW).
9: end if

10: Check MPI Irecv() to see if any workers have finished sending results for their (query
#, fragment #).

11: if All queries have been scheduled then
12: Continue {Inform other workers that all queries have been scheduled before pro-

ceeding}
13: end if
14: if Use Parallel I/O then
15: MPI Isend() offset list to workers for any completed queries.
16: Check to see which MPI Isend() calls completed.
17: else
18: Write finished results to output file for completed queries.
19: end if
20: if All queries scheduled, processed, and results written to output file then
21: Exit()
22: end if
23: end while

S3aSim provides many benefits for our I/O strategy comparison including simple imple-

mentation, variability of many input parameters, and integration with the multi-processing

environment (MPE) and Jumpshot [101] for easy debugging. It is a tool to understand how

computation and I/O interact together in a typical parallel sequence-search tool. It uses

both MPI and MPI-IO calls for portability on many large-scale machines. S3aSim allows

the user to customize the total number of fragments of the database, total number of in-

put queries, a box histogram of input query sizes, a box histogram of database sequence

sizes, a min/max count of results per input query, a minimum result size per query, variable

119

simulated compute speeds, MPI-IO hints, parallel I/O, write all data at the end (similar to

mpiBLAST 1.2 and pioBLAST), and many others.

The primary disadvantage of S3aSim is that the modeling of the computational time is

inexact. Compute time is modeled as a constant startup cost + linear time based on the

size of the result (anywhere from the minimum input size to three times the maximum of

the input query and the matching database sequence). We use three times the maximum

of the input query and the matching database sequence as the S3aSim result size since the

actual BLAST output is generally formatted with the input sequence, database sequence,

and the matches between them. This formula can be modified to more accurately model

various search algorithms for future work.

Algorithm 2 Worker Process

1: Receive input variables from the master and setup internal data structures.
2: while {1} do
3: MPI Send() the master a request for work.
4: MPI Recv() response from the master.
5: if (query #, fragment #) then
6: Compute search algorithm on (query #, fragment #).
7: if Use Parallel I/O then
8: Merge current results with previous results for this query.
9: end if

10: MPI Isend() scores (and results if MW) to the master.
11: if Use Parallel I/O then
12: Post MPI Irecv() offset list from the master.
13: end if
14: end if
15: Check all pending MPI Isend() for completion.
16: if Use Parallel I/O then
17: Check all pending MPI Irecv() for completion.
18: For all offset lists received, write results to output file.
19: end if
20: if All queries scheduled, processed, and results written to output file then
21: Exit()
22: end if
23: end while

120

The basic master algorithm is outlined in Algorithm 1 and the basic worker algorithm

is outlined in Algorithm 2. In order to maximize the amount of time spent on distributing

work, the master uses the blocking MPI Recv() call when handling worker requests. We used

MPI Isend()/MPI Irecv() calls for all other communication (receiving results and sending

offset lists). When we used parallel I/O (either individual or collective worker writing),

the workers only sent the scores of their results to be sorted by the master. If the master

was writing, both the scores and the results of a search on a (query #, fragment #) were

sent to the master. We note that whenever a process (master or worker) is checking on

a nonblocking communication call, it will only test for completion (MPI Test()) instead of

blocking on completion (MPI Wait()) to allow the process to continue to make progress if

the test fails. It will only call MPI Wait() if the process cannot proceed further until the

completion of this particular nonblocking communication call.

S3aSim timing is broken up into different timing phases. We will describe each timing

phase with respect to the overall program execution for both the master and the worker.

• Setup Time - For the master, this time includes sending out input variable infor-

mation to the workers (step 1 in Algorithm 1). For the worker, this time includes

receiving the input variable information from the master (step 1).

• Data Distribution - For the master, this time includes waiting for the next worker

request and sending the worker a response (steps 3, 5, and 7). For the worker, this

time includes sending the work request and receiving a response (steps 3 and 4).

• Compute - For the master, this time is always 0 since the master never does any

searching. For the worker, this time includes the search algorithm time (step 6).

• Merge Results - For the master, this time is 0. For the worker, this time includes

the time to merge results together if we are using parallel I/O (step 8).

121

• Gather Results - For the master, this time includes posting MPI Irecv() operations

for scores (and possibly results) from the worker as well as checking on the associated

MPI Irecv() operations (steps 8 and 10). For the worker, this time includes sending

off the scores (and possibly results) as well as checking on the associated MPI Isend()

operations (steps 10 and 15).

• I/O - For the master, this time includes all write operations to the output file (step

18). For the worker, this time includes all write operations to the output file (step

18).

• Sync - For the master, this time includes waiting for all the processes to synchronize

at the end of the application (not shown in the algorithm). For the worker, this time

includes waiting for all the processes to synchronize at the end of the application

(not shown in the algorithm). When the query sync mode is on, this time includes

the time for all processes to synchronize after writing out the results for an input

query.

• Other - For the master and the worker, this phase includes all remaining time.

6.2.1. Test Environment

All tests were run on the Feynman cluster at Sandia National Laboratories. Feynman, com-

posed of Europa nodes, Ganymede nodes, and I/O nodes, has a total of 371 computers with

dual processors. In order to keep our testing as homogeneous as possible, we only used the

Europa nodes that were dual 2.0-GHz Pentium-4 Xeon CPUs with 1-GByte RDRAM. They

were connected with a Myrinet-2000 network and used the Red Hat Linux Enterprise oper-

ating system. Since each of compute nodes had dual CPUs, we ran two compute processes

per node.

122

We also used 16 computers in our PVFS2 file system. All 16 computers ran the PVFS2

server with one computer additionally handling metadata server responsibilities. All PVFS2

files created use the default 64-KByte strip size, which totals to a 1-MByte stripe across all

I/O servers. Our version of PVFS2 was tuned for better noncontiguous I/O by adjusting

default system parameters.

6.2.2. Test Setup

With so many input variables, there are numerous tests we could run with S3aSim. In

this chapter, we chose to focus on testing the scalability of the I/O strategies with respect

to processor count and compute speed. In order to get the characteristics of an NCBI

database, we chose the NT database (nt.gz from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/)

as our example database. The NT database has a minimum sequence length of 6 bytes, a

maximum sequence length of slightly over 43 MBytes, and mean sequence length of 4401

bytes. We used the same histogram to represent our input query set of 20 queries (roughly

maps to approximately 86 KBytes of input queries). We chose 128 fragments and a result

count from 1000 to 2000 per query (over the entire database). Results were written to the

output file after each query. MPI File sync() was always called immediately after every

MPI File write() or MPI File write all(). Although we use different numbers of processors,

the results are always identical since they are pseudo-randomly generated. Each data point

we present generated roughly 208 MBytes of output data and was averaged over 3 test runs.

Our tests were designed for comparing the performance of the various I/O strategies with

respect to an increase in processes or reduced computational time (custom search hardware

and/or better algorithms). One suite of tests used 2 to 96 processors. The second suite of

123

tests used compute speeds from 0.1 to 25.6. The breakdown of the application into phases

is crucial to understanding why certain I/O strategies work better than others.

Another goal of our testing was to examine whether the inherent I/O synchronization of

collective I/O would be very costly and how it might be improved. Collective I/O, in nearly

all noncontiguous I/O cases, outperforms POSIX I/O and, in some noncontiguous I/O cases,

outperforms list I/O in pure I/O tests. It is rare (if ever) when an I/O comparison takes into

account interaction with an application when doing performance evaluations. It is very hard

to directly examine the effect of inherent I/O synchronization in collective I/O. In order to

expose this effect, our tests used the “query sync” option. Basically, if the query sync option

is on, S3aSim will force all worker nodes to synchronize after doing any I/O. When looking at

the performance changes from individual I/O methods with query sync off to with the query

sync on, we can gain a better understanding of how the inherent synchronization in collective

I/O hurts overall performance and whether using individual noncontiguous I/O methods in a

collective I/O implementation might actually improve performance. For example, a collective

I/O method could be implemented using list I/O with a forced synchronization at the end

of the I/O operation (similar to our WW-List tests with query sync on). In our upcoming

performance evaluation and discussion we refer to not using and using the query sync option

as “no-sync” and “sync”, respectively.

6.3. Performance Evaluation

Our first test suite examines process scalability in S3aSim. Figure 6.2 shows the overall

S3aSim execution times on a logarithmic scale to emphasize the performance variation in the

different I/O strategies. As expected, all no-sync I/O strategies perform as good as or better

than their sync counterparts. The individual WW strategies outperform both the WW-Coll

124

Overall Execution Time - No-sync

0

50

100

150

200

250

300

350

400

450

500

1 10 100

Processes

T
im

e
 (

s
e
c
) Master writing

Worker - POSIX I/O

Worker - List I/O

Worker - Collective I/O

Overall Execution Time - Sync

0

50

100

150

200

250

300

350

400

450

500

1 10 100

Processes

T
im

e
 (

s
e

c
) Master writing

Worker - POSIX I/O

Worker - List I/O

Worker - Collective I/O

Figure 6.2. Results when scaling up the number of processors with no-
sync/sync query options.

and MW in the no-sync cases. WW-Coll performance is about the same with or without the

sync option. It is expected that WW-Coll would have roughly the same performance with or

125

Master Writing - No-sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Master Writing - Sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.3. Individual phase timing results when scaling up the number of
processors with no-sync/sync query options for MW.

without sync since the inherent synchronization in collective I/O means that synchronizing

after all workers do I/O is negligible in our test cases. With the query sync option, WW-Coll

126

Worker Writing - POSIX I/O, no-sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - POSIX I/O, sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.4. Individual phase timing results when scaling up the number of
processors with no-sync/sync query options for WW-POSIX.

(45.54 secs) gets closer to WW-List (40.24 secs) at 96 processors. In overall execution time

127

at 96 processors, WW-List outperforms the other I/O strategies by 364% (MW), 33% (WW-

POSIX), and 75% (WW-Coll) in the no-sync cases and 182% (MW), 37% (WW-POSIX), and

13% (WW-Coll) in the sync cases. Noticeable performance gains due to adding more workers

slowed considerably at about 32 processes. Generally, at this point the I/O phase time was

dominant and even increased slightly with more processes due to the increased frequency of

I/O requests (from shorter query processing times). A larger file system configuration with

more I/O bandwidth may have provided more scalable I/O performance.

Figures 6.3, 6.4, 6.5, and 6.6 show the overall breakdown of each run with respect to

the different timing phases and different I/O strategies. We present both the no-sync and

sync results from the workers to illustrate how each I/O strategy is affected by adding a

forced synchronization component. The effect of forced synchronization to MW makes a

negligible performance difference (a maximum of 5% in overall execution time mostly due

to test variance). Since the workers all wait until the master does I/O before beginning the

next query, the forced synchronization is cheap.

WW-POSIX is largely affected by synchronization (up to 69% in overall execution time).

The sync phase time increases due to the forced synchronization (from 1.01 secs to 12 secs

at 96 processors), which also increases the data distribution phase time (from 3.21 secs to

19.04 secs at 96 processors). The WW-POSIX I/O phase time actually decreases steadily

from no-sync to sync since each worker is writing data at a slower rate and handing out less

I/O ops/s (up to 17% I/O phase time decrease at 96 processors). This slower rate of I/O

ops/s allows PVFS2 to improve pure I/O performance slightly.

WW-List is moderately affected by synchronization. Since its overall I/O costs are always

less than WW-POSIX, the sync phase time increase from no-sync to sync is less than WW-

POSIX (from 0.41 secs to 5.87 secs at 96 processors). Similar to WW-POSIX, the sync phase

128

Worker Writing - List I/O, no-sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - List I/O, sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.5. Individual phase timing results when scaling up the number of
processors with no-sync/sync query options for WW-List.

time increase causes the data distribution time to rise (from 4.47 secs to 18.47 secs at 96

129

Worker Writing - Collective I/O, no-sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - Collective I/O, sync, worker process

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 48 64 96

Processes

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.6. Individual phase timing results when scaling up the number of
processors with no-sync/sync query options for WW-Coll.

processors). WW-List also shows an I/O phase time reduction of 34% at 96 processors due

to less stress on the file system.

130

WW-Coll is at most affected by 6% in moving from no-sync to sync cases. Since its own

inherent sync bears most of the forced synchronization costs, adding an additional synchro-

nization after I/O is quick and negligible in overall execution time. While collective I/O

methods generally outperform POSIX I/O methods [19], we note that WW-Coll loses to

WW-POSIX in the no-sync case. As we described in Section 6.1.3, the inherent synchro-

nization of WW-Coll is more costly than the gains in I/O performance alone over POSIX

I/O. While workers are waiting to do collective I/O after processing their portion of the

query, they are wasting time, which shows up in the data distribution time.

Our second suite of tests held the number of processors constant at 64 and examined

how improving the compute time would affect each I/O strategy. As mentioned in at the

beginning of the chapter, improving the compute time could be accomplished in hardware

(new processors, custom search hardware) or software (improved search algorithms).

Our first suite of tests in Figure 6.2 used compute speed = 1, (which we refer to as

the base compute speed). This test suite (Figure 6.7 varied the compute speed parameter

from 0.1 to 25.6. First of all, we note that increasing the compute speed up to 25.6 times

faster than the base compute speed made less than a 2% difference in overall execution

time for both the no-sync and sync cases for MW. Clearly, the application phases besides

the compute phase are the bottleneck here. The other strategies faired much better than

MW. The individual WW strategies (WW-List and WW-POSIX) both surpassed WW-Coll

and MW significantly in the no-sync cases, indicating that individual WW strategies will

strongly benefit from hardware or software improvements on the compute phase. In overall

execution time with compute speed = 25.6, WW-List outperformed the other I/O strategies

by 592% (MW), 32% (WW-POSIX), and 98% (WW-Coll) in the no-sync cases and by 444%

(MW), 65% (WW-POSIX), and 58% (WW-Coll) in the sync cases. Similar to the first suite

131

Overall Execution Time - No-sync

0

20

40

60

80

100

120

140

160

180

200

0.1 1 10 100

Compute Speed

T
im

e
 (

s
e
c
) Master writing

Worker - POSIX I/O

Worker - List I/O

Worker - Collective I/O

Overall Execution Time - Sync

0

50

100

150

200

250

0.1 1 10 100

Compute Speed

T
im

e
 (

s
e
c
) Master writing

Worker - POSIX I/O

Worker - List I/O

Worker - Collective I/O

Figure 6.7. Results when scaling up the compute speed with no-sync/sync
query options.

of tests, I/O times generally start slightly increasing as we improve the compute speed due

to more I/O ops/s.

132

Master Writing - No-sync, worker process

0

50

100

150

200

250

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Master Writing - Sync, worker process

0

50

100

150

200

250

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.8. Individual phase timing results when scaling up the compute speed
with no-sync/sync query options for MW.

Figures 6.8, 6.9, 6.10, and 6.11 show the overall breakdown of each run with respect to

the different timing phases and different I/O strategies. As the compute speed increases,

133

Worker Writing - POSIX I/O, no-sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - POSIX I/O, sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.9. Individual phase timing results when scaling up the compute speed
with no-sync/sync query options for WW-POSIX.

we note that the effect of the compute speed on the overall execution time is reduced. At

compute speed = 0.1, workers spend close to an average of 54 secs in the compute phase

134

Worker Writing - List I/O, no-sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - List I/O, sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.10. Individual phase timing results when scaling up the compute
speed with no-sync/sync query options for WW-List.

in both the no-sync and sync cases. At compute speed = 25.6, workers spend slightly more

than 0.8 secs in the compute phase in both the no-sync and sync cases. The large variance

135

Worker Writing - Collective I/O, no-sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Worker Writing - Collective I/O, sync, worker process

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Compute Speed

T
im

e
 (

s
e
c
)

Other

Sync

I/O

Gather Results

Merge Results

Compute

Data Distribution

Setup

Figure 6.11. Individual phase timing results when scaling up the compute
speed with no-sync/sync query options for WW-Coll.

in long compute phase times among workers leads to a large wait time when workers are

synchronizing.

136

At slow compute speeds (0.1 to 0.4) with MW, forced synchronization adds some overhead

(48% when compute speed = 0.1). The data distribution phase is mostly to blame as it causes

72.50 secs of the 75.47 secs difference at compute speed = 0.1. Since the absolute compute

time variance among workers is high at compute speed = 0.1, the data distribution time

is significantly affected. From compute speed = 0.8 to 25.6, synchronization makes little

difference with MW (at most 2%).

WW-POSIX is substantially affected by the forced synchronization (at most 162% when

compute speed = 0.1) from the high compute time variance. From compute speed = 1.6 to

compute speed = 25.6, the overhead of forced synchronization is slightly above 50%. Since

the compute time variances are less significant at this point (compute times are less than

4 secs when compute speed = 1.6 and 0.85 secs when compute speed = 25.6), most of the

change in execution time is due to the synchronization overhead and the increased data

distribution phase time. When compute speed = 25.6, sync phase time increases from 1.09

secs to 7.758 secs and data distribution time increase from 2.30 secs to 9.14 secs when going

from no-sync to sync.

Similar to WW-POSIX, WW-List is strongly affected by the large compute time variance

at low compute speeds. However, due to its optimized noncontiguous list I/O method, it

incurs smaller overhead as sync phase time and data distribution phase time increase (when

compute speed = 25.4, sync phase time increases from 0.35 secs to 1.36 secs and data

distribution phase time increases from 3.96 secs to 9.36 secs) from no-sync to sync. The

benefits of list I/O over POSIX I/O allow WW-List to provide improvements that show up

in I/O phase time, sync phase time, and data distribution phase time.

WW-Coll is hardly affected when going from no-sync to sync (at most 4%). Again, since

the inherent synchronization in collective I/O pays for the variance in compute times among

137

workers, the trend of seeing relatively higher data distribution times as in the other I/O

strategies is not present in the sync cases. In general, when compute time variance is large,

WW-Coll always pays a high synchronization cost unlike individual WW strategies. Two-

phase I/O in ROMIO was not as efficient as list I/O with synchronization in almost all of

our test cases. A collective I/O implementation based on list I/O might be appropriate for

access patterns similar to parallel sequence-search.

6.4. Summary

In summary, this chapter provides several contributions in understanding I/O strategies

for parallel sequence-search tools. While these results are based on search applications similar

to mpiBLAST and pioBLAST, the performance trends we observed can be extrapolated to

other parallel sequence-search applications.

• Proposed individual worker-writing I/O strategies for parallel sequence-

search tools - The individual WW strategies outperformed the other I/O algo-

rithms in all no-sync test cases. WW-List beat all I/O methods in both no-sync

and sync test cases.

• Developed S3aSim for understanding phase interaction of parallel search

algorithms - S3aSim is a flexible tool for understanding how various I/O strategies

perform when using database segmentation.

• Detailed the possible cost of synchronization with collective I/O in a full

application simulation - To date, most I/O studies compared I/O methods in

I/O-only benchmarks, which does not expose the I/O synchronization penalty in

collective I/O. Our study also suggests that in some cases, a collective I/O method

138

implemented with list I/O and forced synchronization may be a more efficient col-

lective I/O method than the default two phase I/O method in ROMIO.

In the future, we would like to pursue further research on I/O strategies with S3aSim.

There are many other input variables that can significantly affect overall application per-

formance such as different I/O characteristics (different query sizes, databases, amount of

results), hybrid query segmentation/database segmentation strategies, new I/O algorithms,

as well as many others. We hope that our work will aid in the development of future parallel

database search tools in conjunction with modern parallel file systems.

139

CHAPTER 7

Noncontiguous Locking Techniques for Parallel File Systems

Researchers in fusion (GTC [43]), combustion (S3D [79]), molecular dynamics (NAMD

[74], Desmond [7], and Blue Matter [30]), astrophysics (FLASH [31]) and many other fields

are achieving scientific breakthroughs by using large-scale computing systems to simulate

experiments which are difficult to pursue in the physical world. CPU, memory, and network

components have made great performance leaps that have enabled new problems to be

tackled on these resources. Storage systems, however, have lagged significantly. Because

of this disparity, scientists find themselves hamstrung by the I/O system in their ability

to store simulation results. Once these results are stored, the relatively slow I/O systems

further limit the rate at which results can be analyzed. The addition of computational power

and memory means that simulations may be performed at a higher data resolution or with

more time steps, which compounds an already difficult situation for the storage system.

I/O system software and middleware is used to mitigate this situation. Parallel file sys-

tems provide a way for I/O bandwidth to scale on par with their computational counterparts.

One area of progress in I/O has been the addition of the MPI-IO interface in 1997 [56], which

provides the same portability and rich access pattern descriptions for parallel I/O as MPI

did for parallel computing. Additionally, high-level I/O libraries built on top of the MPI-IO

interface, such as HDF5 [37] and parallel netCDF [47], provide programmers with high-level

I/O APIs and portable file formats. When scientists can use high-level descriptions for the

access pattern of their application, optimizations such as datatype I/O [18] and collective

140

I/O [29] can be applied to significantly improve performance. One implementation of col-

lective I/O, two-phase I/O [93] (unrelated to the two-phase lock protocol), provides good

performance in many cases and can help solve the atomicity problem. Two-phase I/O, how-

ever, requires that all processes coordinate their I/O and is not suitable for individual I/O

and/or unbalanced workloads. Our work can be applied to collective I/O techniques, such

as two-phase I/O, although in this chapter we target individual I/O operations.

One area of significant difficulty for the I/O library developers is to support atomicity

for these high-level I/O APIs. Atomic high-level I/O operations are useful when regions of

data in a file are shared by multiple processes, such as in HDF5 where internal metadata in

a file is used by all processes to place application data in a consistent manner. The MPI-IO

atomic mode consistency semantics guarantee sequential consistency for all I/O operations

among processes which opened up a file collectively. This mode may be used to implement

the type of sharing described above.

Atomicity is even an issue for contiguous I/O operations. For example, one process P0

may write a contiguous region of data which spans two I/O servers I0 and I1. Another

process P1 may read the same regions of data. If P0 writes to I0 first and I1 second and

P1 reads from I1 first and I0 second, then P1 may see only part of P0 ’s write, violating

atomicity.

The most common technique for implementing atomicity is to use file locking, and most

file locking implementations are limited in their ability to describe noncontiguous regions.

Unfortunately, noncontiguous access patterns are common in scientific applications [3, 27].

Because file locking implementations perform so poorly for these patterns, the MPI-IO atomic

mode is rarely used. The lack of an efficient atomicity implementation for high-level I/O

APIs, such as MPI-IO, has led many parallel application designers to simply have each

141

process write to its own file and manage this collection of files with scripts and custom post-

processing tools. This is a very inefficient solution, and it lowers the scientist’s productivity.

Efficient atomic noncontiguous I/O operations could be used for many producer-consumer

problems, including real-time visualization of data, and are critical for in-place data manipu-

lation techniques. In addition to giving support to high-level APIs, efficient atomic noncon-

tiguous I/O operations are an important building block in software-level RAID techniques

and file system journaling, both of which are growing in importance as we build file systems

from ever-larger collections of storage devices.

Several solutions have been proposed to provide atomic I/O for the file system. Most of

them use some form of locking for handling atomicity. Solutions in ROMIO [77], the most

popular implementation of MPI-IO, include the use of byte-range locking across the entire

access pattern and file locking with MPI one-sided communication [45, 94]. While these

approaches offer some important benefits, they are only useful within the context of MPI-IO

accesses and rely on MPI-2 calls that are not available on many large systems. More general

solutions approach the problem at the file system level. Atomicity at the file system level

typically uses some fixed size granularity that is a multiple of the file system block size.

In this chapter, we propose using a scalable distributed lock manager (DLM) architecture

which has true byte-range granularity for handling atomicity within shared files. We present

list and datatype locking methods that leverage high-level noncontiguous access pattern

information and hybrid two-phase lock protocols that make the best use of our new locking

methods. We provide synthetic performance evaluations which test the scalability of our

lock methods in non-overlapping and overlapping situations. We also test our ideas against

two scientific I/O benchmarks, the S3D I/O benchmark and S3aSim, which show our DLM

can achieve near lock-less I/O performance. Additionally, we compare our DLM architecture

142

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���Memory

File

(a) (b) (c)

(0,3), (4,2)

(0,1), (2,1), (4,1), (6,1), (8, 1)

File offset−lengh pairs ct=5

Memory datatype ct=1

File datatype ct=5

vector(ct=5, size=1, skip=2)

indexed(ct=2, offsets=(0, 4), lens=(3,2))

Memory offset−length pairs ct=2

Figure 7.1. The three lock methods described in this chapter: (a) POSIX
locking, (b) list locking, and (c) datatype locking.

against a block-based cache and locking Lustre implementation to show how false sharing

negatively impacts shared file I/O performance.

Our chapter is organized as follows. In Section 7.1, we discuss previous work for imple-

menting atomic I/O in detail and the basic ideas of our research. In Section 7.2, we describe

how we leverage high-level I/O access pattern information to create efficient lock interfaces.

In Section 7.3, we explain how we combined the ordered, rigorous two-phase lock protocol

with an optimistic lock protocol to improve overall lock performance. In Section 7.4, we

discuss the implementation of our DLM at both the client and the server. Additionally, we

describe how we translate MPI-IO operations into client lock requests. In Section 7.5, we

present the results of our lock tests, S3D I/O benchmark, and S3aSim in a detailed perfor-

mance analysis. In Section 7.6, we summarize this chapter and discuss possibilities for future

work with our DLM.

7.1. History & Our DLM Approach

Most file systems today follow the POSIX standard for I/O [39], which states that a

read operation, that can be proven to occur after a write, must return the new data (the

143

entire write should be visible). Further, I/O operations should be “atomic,” where they are

only seen in their entirety, or not at all. The MPI-IO atomic mode is similar: it guarantees

sequential consistency of writes and reads to a group of processes which have collectively

opened a file. The POSIX I/O API limits atomicity to contiguous regions of the file. MPI-IO,

however, also supports atomic noncontiguous I/O operations.

Parallel file systems today do not have an optimized approach for handling efficient

atomic noncontiguous I/O access. IBM’s GPFS [82], which is POSIX compliant, has an

optimized MPI-IO implementation [75] for improving collective I/O access. It has a global

lock manager which hands out “lock tokens” to clients, which helps with optimizing client-

side caching. GPFS also employs a special lock division algorithm for acquiring locks on a

file which splits the file contiguously among processes. While this may work well for certain

cases, it is not generally well suited for interleaved access. For interleaved access, GPFS

relies on its data shipping mode for the best performance. Additionally, while GPFS allows

byte-range locks, it rounds them to the file system block size, which causes false sharing

when writes are not aligned.

Lustre [52] also follows the POSIX standard (except with regard to atime updates and

flock()/lockf() system calls) and has a DLM incorporated into its object storage servers

(OSSs). The OSSs are responsible for locks on the data they manage. The lock granularity

on Lustre is the file system page size, where client conflicts are resolved by sending a message

to the lock owner to release the page. All cache pages must be flushed before a lock is

released. Panasas [59], while supporting file locking, does not appear to have any special

support for atomic MPI-IO operations. The Chubby lock service [9], used by Google’s

Bigtable [12], is a coarse-grain whole-file lock service with a design emphasis on availability

and reliability. The Google file system [32] relaxes most file system consistency semantics

144

and implements a special “atomic append” operation. The Frangipani file system [96] has a

single-writer/shared-reader whole-file lock service that interacts with its Petal servers [46].

NFS version 3 [88] introduced support for file locking, while NFS version 4 [89] also added

simple byte-range locking. UNIX provides whole-file locking via the file locking function

flock() and byte-range locking via the function fcntl(), as specified in the POSIX standard

[68].

False sharing, which causes serialized I/O operations, occurs when write sizes do not

align with the file system lock granularity. In addition to the overhead of serialized I/O

operations, file systems that use their lock systems for caching must also flush cache pages

before transferring locks among clients. Deadlock avoidance in file systems has been primarily

based on the two-phase lock protocol. Our scalable DLM approach seeks to provide efficient

noncontiguous lock operations that do not incur any false sharing through true byte-range

granular locks. We use high-level access pattern information to create efficient lock APIs

for our lock service. Additionally, we have modified the ordered, rigorous two-phase lock

protocol to increase performance, while avoiding deadlock (when there are no failures).

7.2. New Locking Methods

Application developers commonly use rich abstractions to describe their data access. In

particular, they use high-level I/O libraries such as HDF5 or parallel netCDF, which addi-

tionally offer portable file formats. Many high-level I/O libraries, such as those previously

mentioned, are built on top of MPI-IO, which is a portable, parallel I/O API. However, some

scientific applications are written to directly use MPI-IO. In either case, high-level APIs for

I/O can provide opportunities for significant performance improvement. In [18], MPI de-

rived datatype abstractions were efficiently supported by the file system and showed up to

145

several magnitudes of performance improvement over basic POSIX I/O file system opera-

tions. We aim to apply these same datatype abstractions to support efficient noncontiguous

atomic operations. In following subsections, we describe three different lock methods for

implementing atomic noncontiguous I/O.

7.2.1. POSIX Locking

File systems typically present programmers with the POSIX I/O API. POSIX read and write

operations use a pointer to a contiguous region of memory, the current file pointer location,

and a count, to access data. We denote the locking counterpart of this interface, which locks

a contiguous region of bytes, as POSIX lock. The POSIX lock interface can be used to make

a noncontiguous access pattern atomic by acquiring all locks to the necessary file regions

before doing any I/O as shown in Figure 7.1a. While POSIX locking can provide atomicity

guarantees for noncontiguous I/O access patterns, it has several important drawbacks. The

number of lock requests to the lock servers is at least equal to the number of noncontiguous

file regions, which creates a significant request processing overhead. When lock regions span

multiple lock servers, the number of lock requests increases further due to “splitting” the

locks on lock server boundaries.

7.2.2. List Locking

Using list-based descriptions is a technique that has been used for I/O [17] and in a prototype

single lock server [1]. The concept of list I/O (illustrated in Figure 7.1b) extends the POSIX

I/O API to specify multiple noncontiguous regions in both memory and file. Using this

technique for locking provides a way to take advantage of the high-level I/O information

available from MPI derived datatypes (i.e. we can enumerate the regions).

146

Some I/O access patterns may have a large number of noncontiguous file regions. We

split up list lock requests to the lock servers at every 64 noncontiguous regions since requests

should not be arbitrarily large. When application programmers perform unstructured atomic

data access, lists of offsets and lengths are a concise way to describe the access patterns to

the lock servers. However, offset and length pairs do not concisely capture structured access

patterns. When noncontiguous regions have less than 16 bytes, the list locking description

with offsets and lengths exceeds the actual data amount being locked.

7.2.3. Datatype Locking

Many simulation applications use multi-dimensional arrays to model scientific events, such

as protein folding, combustion, or fusion. It is common that the I/O accesses in these data

sets, for instance writing one variable for every cell, is regular and structured. Structured

data access can be concisely described with a derived datatype. When structured data access

requires atomicity, we can use the derived datatype concept with our DLM. The datatype

access pattern, shown in Figure 7.1c, consists of a tree of datatypes as opposed to the offset

and length pairs used in list locking. When moving the access pattern description across a

network, datatype locking reduces network traffic and the number of lock requests to the

lock servers. The lock servers unravel the derived datatypes to determine which locks they

are responsible for. If the lock servers were to lack significant processing capabilities, this

discovery process could outweigh the benefit of reduced lock requests and network traffic.

Additionally, when presented with access patterns containing no regularity, datatype locking

breaks down into list locking.

147

7.3. Hybrid Lock Protocols

Deadlock is always a potential problem when multiple locks are acquired and then re-

leased. A variant of the well known two-phase lock protocol [5], rigorous two-phase locking,

serializes the order in which operations complete while allowing parallelism on nonconflicting

regions. Adding order to the locks acquired in the rigorous two-phase lock protocol elim-

inates the possibility of deadlock when there are no failures by lock system participants.

An ordered, rigorous two-phase lock approach is a good match for noncontiguous file sys-

tem operations since an order can be imposed based on file offsets. The ordered, rigorous

two-phase lock protocol separates the operations into two phases: a growing phase and a

shrinking phase. During the growing phase, locks must be acquired in a monotonically in-

creasing order. After doing the necessary work on the locked regions, the client enters the

shrinking phase to release all the locks it is holding. During the growing phase, no locks

that have been acquired in-order can be released. Similarly, during the shrinking phase,

no locks can be acquired. If there are several clients all waiting on various locks, once the

“highest” one in the ordering is released, another client will be able to make progress. This

client will possibly acquire more locks (assuming all other clients are waiting on other locks)

and then release its locks, which allows another client to proceed. This strategy eliminates

the possibility of deadlock assuming that clients and lock servers do not fail. For brevity,

in the rest of the chapter, we refer to the ordered, rigorous two-phase lock protocol as sim-

ply the two-phase lock protocol. To improve upon the performance of the two-phase lock

protocol, we propose using an optimization that will significantly enhance I/O performance

based on the knowledge that it is atypical for a programmer will overwrite their own data.

Our optimization is an optimistic lock protocol where clients try to acquire their locks from

148

all lock servers and then release locks that are out-of-order. A simple example would be

that client A wants to acquire locks on offset-length pairs (0, 2), (4, 2), (6, 2), and (8, 2).

Offset-length pairs (0, 2) and (4, 2), are on lock server 0. Offset-length pairs (6, 2) and (8, 2)

are on lock server 1. Client A optimistically tries to acquire all locks from both lock servers

simultaneously. Client A waits for the responses from both lock servers and then revokes

locks which are out-of-order. If client A has received locks with the offset-length pair (0, 2)

from lock server 0 and offset-length pairs (6, 2), (8, 2) from lock server 1, it must release

(6, 2) and (8, 2) before deciding whether to retry the optimistic lock protocol or use the

two-phase lock protocol.

Incorporating the partial use of an optimistic lock protocol is very important to achieving

maximum performance from our optimized lock methods. If a client must in-order acquire

every lock through all its noncontiguous file regions, the communication and processing

overhead would be tremendous, as is demonstrated in Section 7.5 with POSIX locking.

Below we discuss two combinations of the two-phase and optimistic lock protocols, which

helps us to achieve better locking performance in nearly all I/O access patterns.

7.3.1. One-try Lock Protocol

Using only the optimistic lock protocol to acquire locks might cause a set of clients to end

up in a state of livelock, where no locking progress is made. In our one-try lock protocol,

a client first tries the optimistic lock protocol to acquire locks. If it does not acquire all its

locks, it releases the out-of-order locks and then reverts to the two-phase lock protocol of

acquiring locks in-order. Most I/O access patterns are not overlapping and therefore benefit

from the ability to acquire locks from all servers simultaneously.

149

fh = 286

(S,E,M)

0,2,2

rq=0

rq=1

rq=2

rq=3

rq=4

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

(S,E,M)

5,6,8

3,4,4 7,8,8

9,10,10

12,14,18

14,20,25

16,25,25

13,18,18

Write Interval Tree Read Interval TreeAll Request Queue

fh = 171

fh = 142

Granted Request Queue

Waiting Request Queue

Figure 7.2. Lock server architecture.

7.3.2. Alt-try Lock Protocol

While there are an endless number of ways to combine optimistic and two-phase lock proto-

cols, we felt that alternating protocols would ensure that progress is made while providing

ample opportunity for optimistically acquiring locks. The alt-try lock protocol first opti-

mistically tries to acquire all locks, releasing those which are out-of-order. Then it uses the

two-phase lock protocol to get its next lock. Upon successfully acquiring its next lock, it

again tries to optimistically acquire all locks, releasing those which are out-of-order. This

alternating strategy repeats until all locks have been acquired.

7.4. DLM Implementation

Our DLM implementation has two major components: clients and lock servers. Both

components are integrated into the file system. We chose to implement our DLM into

150

PVFS2 although the ideas could certainly be ported to other parallel file systems or written

into a stand-alone DLM package. This design choice was made for a variety of reasons. As

other distributed file systems with atomic capabilities have noted [52], separating the DLM

from the file system makes handling failure significantly more difficult. The I/O servers

and lock servers may lose communication. If clients lose communication with either the

lock server or the I/O server, coordination issues could cause non-atomic behavior. Another

reason for the integration is that lock requests can use the same server mapping as I/O

requests. Both lock and I/O bandwidths scale as the number of servers a file stripes across is

increased. From now on, we refer to I/O servers and lock servers as simply “servers,” since

they are integrated as one component. PVFS2 was chosen since it has derived datatype

support, which provided a starting point for implementing datatype locking. When PVFS2

clients access the file system through the MPI-IO interface, they directly interact with the

PVFS2 servers (bypassing the Linux buffer cache on the client). PVFS2 clients can request

byte-granular regions of data from the PVFS2 servers. Similarly, client lock requests can

access actual byte ranges and are not rounded to a sector or file system block size as in other

file systems. Therefore, no false sharing is possible with our lock system. Although other

file systems may align locks requests to system block sizes which may cause false sharing,

they can still benefit from high-level access pattern information and use our lock methods

and lock protocols to reduce the number of overall lock requests to the lock system. Section

7.4.1 and Section 7.4.2, respectively, describe the client and the server components in detail.

In order to be able to make our DLM implementation usable for MPI-IO applications

or other I/O libraries built on top of MPI-IO, we implemented the necessary procedures to

convert MPI-IO calls into the appropriate lock calls. This work is described briefly in Section

7.4.3.

151

7.4.1. Client

Our client component is a state machine in PVFS2. It begins a lock request by calculating

which servers to access, then uses a lock protocol which is chosen at runtime. It supports all

three lock protocols (two-phase, one-try and alt-try). All lock protocols are implemented with

the two basic lock rounds: optimistic and two-phase. A heap which contains last abs offset

and next abs offset from each server is used to figure out which servers need to revoke locks

and which server has the next in-order lock.

The optimistic round begins when the client attempts to get all locks at once by sending

all its lock requests to all the servers involved. It waits for all the replies, which include

the last absolute offset locked (last abs offset) and the absolute offset of the next lock it

is waiting on (next abs offset), and puts this data into the heap. Then the client retrieves

the min(next abs offset) from the heap. If any server has a last abs offset greater than the

min(next abs offset), the client must make a request to the relevant servers to revoke locks

up to the min(next abs offset). At this point, the round is complete.

The two-phase round begins when a client makes a single lock request to the server

which has min(next abs offset) of the heap. The lock request will try to get the locks from

min(next abs offset) to the next min(next abs offset) of the heap. At this point the server will

only reply when it has acquired the necessary locks requested (the client is blocking during

this time). Once the client receives the server’s reply with last abs offset and next abs offset,

the client updates the heap and the two-phase round is complete.

The client implements the two-phase, one-try, and alt-try lock protocols described in

Section 7.3 using a combination of these two basic lock rounds. The two-phase lock protocol

continually uses the two-phase round. The one-try lock protocol begins with an optimistic

152

round followed by two-phase rounds (if necessary) to fulfill the rest of the lock operation.

The alt-try lock protocol begins with an optimistic round, followed by a two-phase round,

and continues to alternate lock rounds until the lock operation is satisfied.

Every lock request stores a lock request number for each server involved in the operation.

A release request is implemented by sending every server involved in the lock operation the

relevant lock request number.

7.4.2. Server

Servers are not aware of the client lock protocols; they only process acquire (nonblocking or

blocking) and release (full or partial) requests. The server uses a variety of data structures

for fast lock operations as shown in Figure 7.2. Files which have any locks are in a hash table

in each server for fast lookup. Each file has two interval trees associated with it: a write

tree and a read tree. The interval trees provide O(lg(n)) algorithmic inserts and deletes,

allows easy lookups for conflicting locks, and are balanced. Each file also has a queue which

contains all requests (all req queue), a queue of waiting requests (wait req queue), and a

red-black tree of granted requests (granted req queue). The wait req queue may have lock

requests that are blocking or nonblocking. When the server tries to add locks for lock requests

in the wait req queue, it will ignore the lock requests with nonblocking tags.

For a nonblocking acquire request, the server tries to grant as many locks as possible

before it overlaps another lock. If the lock request is a read operation, the server checks

the write tree and inserts the lock in the read tree if no conflicts are found. If the lock

request is a write operation, the server checks the write tree and the read tree for conflicts

before inserting locks in the write tree. This implementation provides byte-granular single-

writer/shared-reader lock semantics. All locks for a lock request are also chained in a linked

153

Acquire Lock No Contention - 64 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 10 20 30

Processes / Lock Servers

(a)

L
o

c
k

s
 /

 s
e

c datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

POSIX-one-try

POSIX-two-phase

Unlock No Contention - 64 Byte Offsets

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25 30

Processes / Lock Servers

(b)

L
o

c
k

s
 /

 s
e

c

datatype

list

POSIX

Figure 7.3. Lock tests without contention: (a) acquire and (b) unlock. Each
client accesses locks within an 8 MB range.

list for fast removal. If the lock request has been granted, it is added to the granted req queue,

otherwise it is added to the wait req queue with a nonblocking tag. Then the server returns

last abs offset and next abs offset to the client immediately. For a blocking acquire request

with a specified final offset, the server again tries to grant as many locks as possible before

it overlaps another lock. If the lock request reaches the desired offset, the server returns

last abs offset and next abs offset to the client. If the lock request is completely finished

is added to the granted req queue. Otherwise, it is added to the wait req queue with a

nonblocking tag. If the lock request does not reach the desired offset, the request is also

154

entered into the wait req queue, but with a blocking tag. The nonblocking requests in the

wait req queue either add locks or remove locks as specified by later lock requests. The

blocking requests in the wait req queue are checked to see if any locks can be added when

locks from other lock requests are released.

Release requests may be full or partial. When the optimistic round is used by a client,

partial release requests only remove locks up to a particular absolute offset. A full release

typically occurs only after a client has completed all I/O operations protected by its locks.

The lock server releases locks by looking up the lock request number in the wait req queue

or granted req queue and removes the relevant locks using the linked list chain while keeping

the interval tree balanced. After the locks are freed, the server returns completion to the

client and immediately examines the wait req queue for lock requests with the blocking tag

for servicing. If any of the lock requests in wait req queue completes, the server notifies the

relevant clients.

7.4.3. MPI-IO Implementation

In order to leverage our scalable DLM implementation for MPI-IO and high-level I/O APIs,

we modified the PVFS2 device driver in ROMIO, which was developed at Argonne National

Laboratories. ROMIO supports many parallel file systems through its abstract device inter-

face for I/O (ADIO). Each file system has its own ADIO device driver. In the PVFS2 device

driver we convert MPI file types into PVFS2 derived datatypes for datatype locking, offset

and length pairs for list locking, and contiguous regions for POSIX locking. Additionally, we

added several new hints to ROMIO for enabling the various lock methods and lock protocols

at runtime.

155

Acquire Lock No Contention - 4096 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 10 20 30

Processes / Lock Servers

(a)

L
o

c
k

s
 /

 s
e

c datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

POSIX-one-try

POSIX-two-phase

Unlock No Contention - 4096 Byte Offsets

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25 30

Processes / Lock Servers

(b)

L
o

c
k

s
 /

 s
e

c

datatype

list

POSIX

Figure 7.4. Lock tests without contention: (a) acquire and (b) unlock. Each
client accesses locks within a 512 MB range.

7.5. Performance Evaluation

We evaluated the performance of our DLM implementation on the Feynman cluster at

Sandia National Laboratories. Feynman, composed of Europa nodes, Ganymede nodes, and

I/O nodes, has a total of 371 computers with about 160 nodes available at the time of testing.

In order to keep our testing as homogeneous as possible, we only used the Ganymede nodes.

The Ganymede nodes are dual 2.4 GHz Pentium-4 Xeon CPUs with 2 GBytes RDRAM and

15 GByte Serial ATA hard drives. They are connected with a Myrinet-2000 network, have

access to a production Lustre volume, and use the Red Hat Linux Enterprise 2.6.9 operating

156

system. Since each computer has dual CPUs, we used 2 compute processes per node in all

our tests.

We configured our PVFS 2.5.1 file system on up to 32 computers as servers, with one

computer also handling metadata responsibilities. On tests where we compare against Lustre,

we used 16 servers. We kept the default 64 KByte strip size and other default parameters.

Compute nodes access the servers through IP over Myrinet. Our Lustre 1.4.7 test directory

was configured to use 16 OSTs with a 64 KByte stripe size to match the PVFS2 configuration.

The Lustre lock granularity is aligned to the file system block size for caching reasons and

cannot be changed. The Lustre storage nodes (OSSs) are on Infiniband interconnect and

connect to the compute nodes via Myrinet to Infiniband routers.

As our DLM uses true byte-range locking, it is not prone to false sharing. In order to

understand how this elimination of false sharing would affect performance, we compared

our approach to the block-based locking implementation on the Lustre file system on some

real-world benchmarks including S3D, a combustion code from Sandia National Laborato-

ries, and S3aSim, a parallel sequence-search algorithm simulator developed at Northwestern

University. While, the two systems are not directly compared since they use different hard-

ware, we tried to compare overall trends of how false sharing affects performance. While

Lustre has excellent performance in the file-per-process model, shared file performance has

been shown to be inefficient due to locking and cache swapping overheads [48]. Lustre does

not support atomicity at the MPI-IO level; it is supporting the weaker POSIX consistency

semantic which only guarantees atomicity for POSIX I/O operations. Although this is a

weaker consistency semantic, the overheads of false sharing are still apparent in our bench-

marks. Our initial tests runs with Lustre revealed extremely poor performance (less than 1

MByte / sec) from the MPI-IO data sieving optimization [93] (most likely due to the locking

157

Lock Contention - 64 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 50 100

% of Lock Contention

(a)

L
o

c
k
s

 /
 s

e
c

datatype-alt-try

datatype-one-try

datatype-two-phase

Lock Contention - 64 Byte Offsets

500000

700000

900000

1100000

0 50 100

% of Lock Contention

(b)

L
o

c
k
s

 /
 s

e
c

list-alt-try

list-one-try

list-two-phase

Lock Contention - 64 Byte Offsets

0

20000

40000

60000

0 50 100

% of Lock Contention

(c)

L
o

c
k
s

 /
 s

e
c

POSIX-alt-try

POSIX-one-try

POSIX-two-phase

Figure 7.5. Lock tests with contention: (a) datatype, (b) list, and (c) POSIX.
Each client accesses locks within an 8 MB range.

and caching overheads). We set hints in ROMIO to turn off data sieving for noncontiguous

data access, which improved performance by an order of magnitude in most cases.

We begin our performance evaluation with a series of lock tests to demonstrate the

scalability of our DLM and how it efficiently deals with lock contention in Section 7.5.1. We

continue our analysis with two application based I/O benchmarks. In Section 7.5.2, we test

our DLM in structured data access with the S3D combustion I/O benchmark. In Section

7.5.3, we demonstrate the performance of our DLM in unstructured data access. Each data

point was averaged over 3 runs.

We use numerous lock methods in our benchmarks and define them as follows. Lustre

refers to the Lustre file system and its block-based caching and locking. no-lock refers to

the PVFS2 file system only doing I/O. POSIX-two-phase refers to using the POSIX locking

158

Lock Contention - 4096 Byte Offsets

0

500000

1000000

1500000

2000000

2500000

0 50 100

% of Lock Contention

(a)

L
o

c
k

s
 /

 s
e

c

datatype-alt-try

datatype-one-try

datatype-two-phase

Lock Contention - 4096 Byte Offsets

500000

700000

900000

1100000

0 50 100

% of Lock Contention

(b)

L
o

c
k
s
 /

 s
e
c

list-alt-try

list-one-try

list-two-phase

Lock Contention - 4096 Byte Offsets

0
10000
20000
30000
40000
50000
60000

0 50 100

% of Lock Contention

(c)

L
o

c
k
s
 /

 s
e
c

POSIX-alt-try

POSIX-one-try

POSIX-two-phase

Figure 7.6. Lock tests with contention: (a) datatype, (b) list, and (c) POSIX.
Each client accesses locks within a 512 MB range.

method with the two-phase lock protocol. POSIX-one-try refers to using the POSIX locking

method with the one-try lock protocol. POSIX-alt-try refers to the using the POSIX locking

method with the alt-try lock protocol. Similar references are made to list-two-phase, list-

one-try, list-alt-try, datatype-two-phase, datatype-one-try, and datatype-alt-try, respectively.

7.5.1. Lock Tests

Our lock tests study the locking performance of our DLM directly. We first increased our

clients and servers in a 1:1 ratio to see how lock performance scales when given a simple

noncontiguous access pattern. Each client attempts to acquire and release 128K locks that

are 1 byte long and offset by 64 bytes in Figure 7.3, and 4096 bytes in Figure 7.4, respectively.

The benchmark begins with measuring the aggregate acquire time (time for all processes to

159

acquire all locks), barriers, and then measures the aggregate release time (time for all process

to release all locks). The one-try and alt-try lock protocols have identical performance when

the locks are non-overlapping and are represented by the one-try lock protocol in this test.

Since we scale up the number of processes with the number of servers in this test, a server

has at most 128K locks in its interval tree since locks are equally divided among the servers.

In Figure 7.3a, acquiring locks increases very rapidly and then stagnates for all methods.

Using the two-phase lock protocol is worse for all lock methods due to the communication

overhead associated with contacting each server in-order 4 times at 32 processes and servers

(the client access pattern spans 8 MBytes compared to a 2 MByte aggregate stripe size with

32 servers). POSIX-one-try is very slow due to the significant number of 128K lock requests

to the lock servers. Datatype-one-try reaches a maximum of 2,059,165 locks / sec, a 51 times

improvement over POSIX-one-try (40,532 locks / sec), and a 1.8 times improvement over list-

one-try (1,123,928 locks / sec). Lock acquiring cannot increase completely linearly in this test

case due to datatype processing. In our implementation, all servers which have some locks

locally receive the same access pattern description. They must process this access pattern

to figure out which locks they are responsible for. As the number of servers is increased,

the processing overhead increases since the access pattern processing engine examines each

region to sees if it is the owner. While increasing the number of servers reduces the number of

locks per server in a given lock request (assuming uniform distribution), the computational

processing overhead is not reduced, and therefore limits scalability.

In Figure 7.3b, we find that unlocking is almost linearly scalable. We only show the

unlock bandwidth from each of the three basic lock methods since unlocking is not affected

by the acquire lock protocol. In a release request, the server simply finds the matching lock

request and removes all locks in a linked list. Since the locks are in an interval tree, keeping

160

the tree balanced is bounded by O(lg(n)). However, in most cases the balancing process

is O(1), which provides very good performance for unlocking. At its peak, the datatype

method unlocks 55,721,183 locks / sec with 32 clients and servers, which is 20 times faster

than list locking and almost 3,000 times faster than POSIX locking. The list and POSIX

methods are slower since they keep track of more lock requests. Each client using the list

method or POSIX method makes 8K unlock requests or 128K unlock requests, respectively.

In comparison, clients using the datatype method make a single unlock request.

In Figures 7.4a and 7.4b, we increase the range of the noncontiguous access pattern

by a factor of 64, which increases the overhead for lock methods using the two-phase lock

protocol. Since the two-phase lock protocol requires that locks are acquired in-order, each

process acquires 16 locks from a server then must ask the next server for next 16 locks.

When the lock offset was 64 bytes, the two-phase lock protocol could acquire 1024 locks

from a server, before moving to the next server. In Figure 7.4a, all lock methods using the

two-phase lock protocol fare poorly in comparison to using the one-try lock protocol. Again,

since unlocking is not affected by the lock protocol or the lock offset, the results in Figure

7.4b are nearly identical to Figure 7.3b.

True lock contention is very rare in scientific applications. As previously mentioned, most

lock contention arises from false sharing in other lock systems. Taking this into account, we

wanted to test true lock contention to understand how it affected the various lock protocols.

In Figures 7.5 and 7.6, we kept the locks offset by 64 bytes and 4096 bytes, respectively,

and used 32 clients and 32 servers. The locks began with no contention (lined up one after

the other) and then overlap each other at 25%, 50%, 75%, and 100% (full overlap) intervals.

Each of the graphs has a different scale for clarity. Datatype-alt-try outperforms the other

methods with up to 2,062,079 locks / sec in Figure 7.6a. Using the alt-try lock protocol

161

enables close to full locking bandwidth at all levels of contention. Datatype-one-try and

datatype-two-phase significantly drop in lock bandwidth as lock contention reaches 100%,

since they must contact the servers multiple times using the slower two-phase protocol. The

difference is more pronounced in Figure 7.6a since the two-phase lock protocol has increased

the number of server rounds due to the larger lock offset. List locking is fairly effective in

both list-alt-try and list-one-try. List-two-phase does not fair as well, at about a constant 1
3

drop in performance. POSIX-based lock methods react poorly to increasing lock contention

in both the 64 byte and 4096 byte offset cases.

In summary, these lock tests demonstrate how our hybrid lock protocols with list locking

and datatype locking provide a large performance increase over a naive POSIX-two-phase

method in both overlapping and nonoverlapping cases. In particular, the alt-try lock protocol

with the datatype lock method improves performance by an order to two orders of magnitude

over the naive locking method.

7.5.2. S3D I/O Benchmark

S3D is a parallel direct numerical simulation (DNS) solver designed at Sandia National

Laboratories [79]. S3D solves the full compressible Navier-Stokes, total energy, species

and mass continuity equations coupled with detailed chemistry and is based on a high-

order accurate, non-dissipative numerical scheme. S3D writes checkpoint files at periodic

intervals which also are used for post-processing in the analysis phase. The three-dimensional

Cartesian mesh points of solved variables constitute most of the checkpoint data, which is

also in a three-dimensional array. A majority of the checkpoint data is useful during the

analysis phase. Since data analysis is an iterative process, the checkpoints are likely to be

revisited periodically. Each aggregate checkpoint stores four global arrays, which represent

162

S3D I/O Benchmark

0

20

40

60

80

100

120

140

0 20 40 60

Processes

(a)

I/
O

 B
a

n
d

w
id

th
datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix -two-phase

no-lock

Lustre

S3D I/O Benchmark

0

20

40

60

80

100

120

0 20 40 60

Processes

(b)

I/
O

 %
 o

f
S

in
g

le
 W

ri
te

r

datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

Figure 7.7. (a) Raw I/O bandwidth. (b) I/O bandwidth as a fraction of single
writer I/O time.

mass, velocity, pressure, and temperature, respectively. The mass and velocity arrays are

four-dimensional and the pressure and temperature arrays are three-dimensional. All four

arrays have the same dimensionality for the lowest three spatial dimensions X, Y, and Z. The

XYZ dimensions of all arrays are partitioned in the same block-block-block fashion among

the MPI processes. The fourth dimension sizes of the mass and velocity data are 11 and

3, respectively, and are not partitioned. The S3D benchmark only performs the checkpoint

writes of the S3D code. When a single process is used for checkpointing, its writes are

contiguous. As we increase the number of processes for checkpointing, the aggregate data

163

size of approximately 1.19 GBytes remains constant, which makes the access pattern more

noncontiguous and reduces the size of each individual write. Smaller writes are a challenging

problem for file systems since hard drives prefer large I/O sizes.

The original S3D application uses Fortran I/O, where each process writes its own sub-

arrays to an individual file during each checkpoint. While this is typically very fast due to

large contiguous I/O calls to non-shared files, it creates a file management problem with

an increased number of processes. Additional problems include the requirements that post-

processing techniques must access all the individual files and restarts must use the same

number of processes. We added an I/O implementation using the MPI-IO API to write

the arrays to a shared file in their canonical order. With this change, there is only one file

created per checkpoint, no matter how many MPI processes are used, reducing the data

management problem. In this test, we try all our lock methods as well as a no-lock method

for understanding lock overhead costs. We also compare our single writer normalized results

against the Lustre file system to look at false sharing costs (these writes are not aligned to

the file system block size). Since the writes are not overlapping, we represent the one-try

and alt-try lock protocols with one-try in these tests.

In Figure 7.7a, we show the overall I/O bandwidth with varying numbers of processes.

As expected, as the number of processes increases, overall I/O bandwidth decreases for all

methods. Lustre performance begins well with one client since the writes are contiguous and

not shared. Then, since the writes are not aligned to the block size, caching and locking

overheads reduce performance significantly as the number of processes increases. The POSIX

locking method fairs poorly as well due to the large number of lock requests to the server.

The list and datatype locking methods fair better with their reduced locking overheads.

164

S3D I/O Benchmark

0

20

40

60

80

100

120

0 20 40 60

Processes

%
 o

f
M

a
x

im
u

m
 I

/O
 (

n
o

-l
o

c
k

)

datatype-one-try

datatype-two-phase

list-one-try

list-two-phase

posix-one-try

posix-two-phase

Figure 7.8. % of I/O bandwidth compared with no locking.

In order to make a trend comparison of the Lustre block-based caching and locking

methods to our byte-ranged based locking, we normalized the I/O bandwidth as a % of the

single write performance in Figure 7.7b. Most of the lock methods increase slightly from

8 to 16 processes, but fall slightly after that due to the noncontiguous file regions getting

smaller and less efficient for the file system. The optimistic locking round in the one-try lock

protocol makes a noticeable performance improvement over the two-phase lock protocol.

The performance trend for Lustre is a large drop due to its false sharing and associated

overheads.

Our final chart in Figure 7.8 examines the lock overhead of our DLM compared to the

I/O bandwidth. POSIX-one-try can, at best, achieve approximately 35% of the no-lock

bandwidth due to a large number of lock requests. From 8 to 64 processes, datatype-one-try

maintains between 76% to 100% of the maximum I/O bandwidth. List-one-try also keeps

I/O bandwidth between 73% to 100% from 8 to 64 processes.

165

S3aSim

0

50

100

150

200

250

0 20 40 60

Processes

(a)

T
o

ta
l

T
im

e
 (

s
e

c
s

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

S3aSim

0

5

10

15

20

25

30

0 20 40 60

Processes

(b)

I/
O

 T
im

e
 (

s
e

c
s

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no-lock

Lustre

Figure 7.9. (a) S3aSim total execution time from 2 - 64 processes. (b) S3aSim
I/O time from 2 - 64 processes.

7.5.3. S3aSim

We also used the S3aSim benchmark described in Chapter 6. Our tests were configured based

on the NT database characteristics from NCBI [60] with a minimum sequence length of 6

bytes, a maximum sequence length of slightly over 43 MBytes, and a mean sequence length

of 4401 bytes. We simulated the search of 20 input queries against 128 database fragments,

all with the NT database characteristics. Anywhere between 1000 to 2000 results were

pseudo-randomly generated per query and written to file (after the entire query had been

completely searched) with MPI File write() and then forced to disk with MPI File sync().

166

S3aSim

0

10

20

30

40

50

60

70

0 20 40 60

Processes

(a)

I/
O

 %
 o

f
T

o
ta

l
T

im
e

list-one-try

list-two-phase

posix-one-try

posix-two-phase

no lock

Lustre

S3aSim

20

40

60

80

100

120

0 20 40 60

Processes

(b)

%
 o

f
M

a
x

im
u

m
 I

/O
 (

n
o

-l
o

c
k

)

list-one-try

list-two-phase

posix-one-try

posix-two-phase

Figure 7.10. (a) S3aSim I/O time as a % of total execution time from 2 - 64
processes. (b) S3aSim % of I/O bandwidth compared to no locking from 2 -
64 processes.

The results generated are consistent and are not dependent on the number of worker nodes.

Each test run produced an aggregate 208 MBytes of output data. We used between 2 - 64

processes in our tests. With only 2 processes, there is a master process and a single worker

process, therefore, the worker is writing contiguous data to file. When there are more worker

processes writing, the data is noncontiguous and unstructured with varying result sizes and

counts. Since the data is unstructured, we do not use the datatype locking method as it

167

breaks down to list locking. Additionally, since the data access is nonoverlapping, the one-

try lock protocol and alt-try lock protocol have identical performance, hence we represent

both lock protocols with the one-try lock protocol.

In Figure 7.9a, we look at the scalability of total execution time. The total execution time

falls as the number of processes is increased due to the embarrassingly parallel computation.

As the number of processes reaches 32, however, the curve flattens out and Lustre starts to

increase due to its increasing I/O burden. The Lustre block-based caching and locking has

increased false sharing as more processes share file access. The isolated I/O times are shown

in Figure 7.9b.

In Figure 7.10a, we examine I/O time as a percentage of total execution time. Lustre

begins at about 3% when a single worker process is writing to the file. However, as the

number of processes increases, the Lustre I/O % increases sharply up to 4 processes and

rises up to 68% at 64 processes. The lock methods implemented in our DLM all stay below

11%, rising much slower than Lustre.

In Figure 7.10b, we check the locking overhead of our atomic operations with respect to

I/O times. When there is only a single worker, the lock overhead is practically negligible

since it is a single contiguous lock and a large amount of I/O. However, as the number

of processes increases, the amount of I/O per worker decreases rapidly and becomes more

noncontiguous. For instance, results that may have been contiguous on one worker are now

split into two. Therefore, the overall I/O time increases due to smaller I/O requests, which

causes the locking overhead to be a smaller % of overall I/O time. In the best case (excluding

one worker), list-one-try stays between 70 % to 87% of peak I/O performance, a reasonable

overhead for atomicity.

168

7.6. Summary

In this chapter, we have presented a novel DLM approach with true byte-range locking

using hybrid lock protocols in combination with highly descriptive lock methods to improve

atomic noncontiguous I/O performance. We have shown that this fusion of techniques can

improve locking throughput up to between one to two orders of magnitude in performance

and maintain a low overhead in achieving atomicity for noncontiguous I/O operations. Addi-

tionally, we have shown the benefits of eliminating false sharing with our byte-range granular

approach in a comparison with a block-based locking system. Our application benchmarks

showed that the list or datatype lock methods in conjunction with hybrid lock protocols

would not seriously degrade I/O performance.

There are many areas where we would like to further explore this work. First of all, an

open problem is how to handle failure on clients or servers. While timeout solutions have

been proposed to handle client failures, server failures remain an issue. We are investigating

the persistent storage of locks as a possible method for resolving this problem. Another

area for study is how to best use these lock techniques for supporting the atomic mode for

nonblocking, noncontiguous I/O operations efficiently. At present, we are not aware of any

support for an atomic mode for nonblocking, noncontiguous I/O operations even though

they are part of the MPI-IO specification.

169

CHAPTER 8

The Versioning Parallel File System

As previously mentioned, the growing use of parallel file systems to sustain scalable

I/O performance for scientific applications has led to emerging performance problems in

fault-tolerance, strict consistency semantics, and noncontiguous I/O access for large-scale

computing. In this chapter, we discuss a new parallel file system architecture for large-scale

scientific applications to address the above issues. In Section 8.1, we begin by discussing the

challenges of future parallel file systems and how atomic noncontiguous I/O plays a large role

in handling these problems. In Section 8.2, we describe atomicity implementation difficulties

in the file system. In Section 8.3, we describe a protocol for implementing “versioning” in

a parallel file system. In Section 8.4 and 8.5 we detail our prototype implementation and

experimental results, respectively. Finally in Section 8.6, we explain the advantages and

disadvantages of VPFS when compared to traditional methods.

8.1. Fault-Tolerance, Strict Consistency, and Noncontiguous I/O

Future high-performance storage platforms must address the trends in scientific comput-

ing. First as discussed previously in Chapter 2, scientific datasets are rapidly growing in

size. In particular, noncontiguous I/O methods must scale to larger data access sizes. Sys-

tem snapshots generated for visualizing and/or checkpointing are I/O intensive and become

more challenging as data resolution increases. In order to handle large I/O access patterns,

storage systems must also scale up in size for both capacity and performance reasons. While

170

increasing the parallelism of storage systems can provide additional performance capabili-

ties, it also makes the overall storage system more prone to component failure. RAID parity

techniques such as those described in [71, 13, 25, 84] are often used to provide varying

degrees of fault-tolerance and will help storage systems to scale reliably.

RAID parity techniques use both data blocks and parity blocks, where parity blocks

contain some redundant information for reconstruction of a lost data block. Data blocks

and parity blocks must be consistent with each other to be useful. Atomic I/O operations

that update both data blocks and parity blocks simultaneously are required to keep data

and parity consistent with each other. An atomic I/O operation is defined as either an

I/O operation which fully completes or does not complete at all. In other words, a read

operation will never see the effects of a partially completed write. Both atomic contiguous

I/O operations and atomic noncontiguous I/O operations must be supported by the file

system to keep parity data consistent.

Even if the file system is not using atomicity for parity based fault-tolerance, programmers

may require the use of strict atomicity semantics. For example, the MPI-IO API has an

atomic mode. If the file system does not provide any atomicity guarantees, MPI-IO must

provide atomicity through an external method. Programmers may use a producer-consumer

model to visualize or post-process data as the application is running. For example, one

application will produce checkpoint or post-processing snapshots and another may post-

process and visualize this data in real-time to provide immediate feedback for scientists

during an application run.

In summary, file systems that intend to provide fault-tolerant large-scale I/O efficiently

for scientific computing must provide atomic high-performance I/O methods.

171

I/O Server 1 I/O Server 2

to I/O Server 2
(incomplete)

I/O Request

(finished)
to I/O Server 1
I/O Request

(finished)
to I/O Server 0
I/O Request

I/O Server 0

Process 0 (writing)

Process 1 (reading)

Process 1 sees an incomplete write from Process 0!

Figure 8.1. Atomicity challenges for parallel file systems can occur even with
contiguous I/O operations.

8.2. Atomicity For Parallel I/O

Ensuring atomicity for I/O operations is difficult for several reasons. First, noncontiguous

I/O operations may be broken up by higher level libraries into multiple POSIX I/O opera-

tions as we discussed in Chapter 2. Secondly, since contiguous I/O operations are divided

into multiple I/O operations across multiple I/O servers as shown in Figure 8.1, interleaved

read and write operations that are logically contiguous can produce non-atomic results. We

begin our discussion on implementing atomicity through the traditional methods.

In many file systems, weak semantics, like those used in AFS [81] and Gfarm [91] (updates

are only visible on close), have been used for performance reasons. A traditional hardware

RAID controller serializes I/O requests in order to ensure that they are not interleaved.

Such a serialized solution is not practical for cluster computing as it would greatly degrade

performance when scaling to hundreds or thousands of devices. In the past, locking has been

the popular solution for ensuring atomicity in parallel file systems.

172

A typical lock-based synchronization solution forces processes to acquire either read or

write locks on a file region before an I/O operation. Read locks are shared, which means

that multiple processes may be simultaneously granted read locks as long as no write lock

regions intersect the read locked region. Write locks are exclusive. Only a single process may

have a lock on a file region if it is a write lock. Locks provide synchronization capabilities to

implement atomic I/O since I/O operations are automatically serialized when an I/O access

pattern overlap occurs.

While a true byte range lock-based synchronization solution can allow concurrent I/O for

non-overlapped I/O as demonstrated in Chapter 7, overlapping I/O will always be at least

partially serialized if any of the overlapping I/O operations is a write. Another problem

with locking is that locks that are held by clients who fail must eventually be reclaimed.

However, while the lock is held by a dead client, access to the locked regions is limited or, in

many cases, impossible. Some lock solutions may require alignment boundaries, which leads

to false sharing. For instance, the GPFS lock token granularity can be no smaller than one

system block [82]. Finally lock-based synchronization typically can only provide atomic I/O

access when a client does not fail. If a client fails during the middle of a write and the lock

for that region is recalled, another client may later see the effects of a partial write, which

violates atomicity. In order to provide atomicity guarantees while allowing for client failure,

I/O writes must use data journaling or related techniques to undo the effects of the partially

completed write.

8.3. VPFS Protocol

In order to efficiently provide high-performance atomic noncontiguous I/O access for sci-

entific computing, we introduce the Versioning Parallel File System, or VPFS. As described

173

= Lock acquire time

= Lock release time

Lock Based Atomicity

= Version number acquire time (Reads only)

= Version number release time

Version Based Atomicity

P0/P1 ReadP0 WriteP0 Write

P1 WriteP1 Read

P0 Read

P1 Write

P0 Read/Write V P1 Read/Write V m n

File

Time

Figure 8.2. Serialization using locking versus concurrent I/O using versioning.

in Section 8.2, locking techniques serialize I/O access in many cases and also create sig-

nificant overhead. Instead of locking, VPFS uses a technique called versioning to handle

performance issues for atomic noncontiguous I/O access.

Versioning in the file system is not a new technique. It has been used in various projects

[80, 58, 86, 26] to allow the file system to see multiple states of a file. The most common

use of versioning in file systems is to provide users with the ability to recover deleted files

as well as collaborate on large projects. Additionally, several projects have focused on using

versioning for implementing security features and audit trails [87, 73]. We have applied

the versioning technique toward implementing I/O operations in parallel file systems. This

combination has tremendous potential beyond simply undoing and merging file changes.

Every I/O operation which modifies data in the file system will create a “version”, which

is a tuple of information consisting of {operation type, datatype description, and version

number}. The operation type is the operation that this version represents (for example

write, truncate, checkpoint, etc). The datatype description is the access pattern of the

modify operation. Each version tuple on an I/O server is labeled with a modify number Vm,

which specifies a global order of completion.

174

VPFS has three major components: clients, version servers, and I/O servers. Clients are

processes accessing files in VPFS. Version servers keep track of version information per file.

For simplicity, file metadata is also stored on the version server (although a metadata server

could also exist as a stand alone server for performance reasons). I/O servers are responsible

for storing actual file data and version tuples. The data is distributed among them in a

method described by the metadata on the version servers (for example, striped in a round

robin manner). We describe the duties of each of the three major components in detail in

the following paragraphs.

Clients, or C, are required to obtain an ID# before performing any I/O. When a client

is about to perform I/O, it increments a counter IO# associated with the ID# it obtained.

ID# and IO# are concatenated to create a unique temporary version number T that can

be used for a data modify operation. This temporary version number T will be used as a

temporary identification number for modify operations that are still in the process of being

completed. They will later be assigned a modify version number Vm, which can be used to

determine the global ordering of the file operations. Data retrieve operations first contact the

version server to obtain snapshot information of the file associated with a retrieve operation

Vr, which includes a list of the other retrieve operations in progress, tuples to map from

temporary version numbers to final modify version numbers, and the smallest Vr in progress

(Vr min).

A version server, or Vs, keeps track of a file’s current version number (V). The entire

group of version servers are VS. V is used to label I/O operations in the order in which they

complete for modify operations (for example, write) and the order in which they began for

retrieve operations (for example, read). The version servers keep track of the Vr numbers

used for retrieve operations that have not yet completed in a list called Vr list. The minimum

175

of Vr list is Vr min, the oldest retrieve operation still in progress. Version servers also give

out ID# to clients when requested, incrementing ID# on each request to give each client

a unique ID#. Modify operations are given file version numbers when they have fully

completed. These mappings from temporary version numbers T created on the clients to file

version numbers Vm are kept in Vmap. The Vs keeps track of Vmap as a list of tuples {T,

Vm, B}. B is the bit array that keeps track of every I/O server involved in the operation.

Versioning information is maintained for each file on VS.

An I/O server, or Is, maintains the version tuples and a list of the versions in use

(Vuse list). The entire group of I/O servers is called IS. They also execute version merging,

which is a process where version tuples that are committed and are not waiting on any prior

read operations are read and merged into the final data version to increase free disk space

and reduce version complexity.

We describe the basic VPFS processes of open, merge, read and write. The sync and

close operations do not require any special consideration. At this time, we begin a “merge”

when either sync or close is called. Further details are included in our implementation and

the performance results below.

• Open - C requests an ID# from the proper Vs for file F. The Vs increments the

ID# for the file F and returns the previous value of ID# to C. We note that the

client’s acquisition of ID# can happen at any time before a retrieve or modify I/O

operation. For simplicity, we define this process as part of the file open.

• Merge - C requests to begin a merge operation from the proper Vs for file F.

Vs figures out Bor (OR all B for all Vmap tuples up to Vr min) and returns

Vr min, Bor, and the relevant Vmap up to Vr min to C. C uses Bor to figure out

the necessary Is involved in the merge and sends Vmap to each of them. The Is

176

updates all temporary versions in Vmap to their final version number and adds

them to Vuse list.

• Write - C increments IO# and concatenates its ID# with the old IO# to form T.

C sends T along with its write data to each relevant Is. The Is saves the version

tuple with its temporary version number T. When C has completed writing all of

its version tuples, it sends T and B to the proper Vs. The Vs increments V and

uses the old V (as Vm) to form a tuple {T, Vm, B} that is added to Vmap.

• Read - C requests to begin a read operation from the proper Vs for file F. Vs

increments V for C and figures out Bor (OR all B for all Vmap tuples up to Vr)

and returns V (as Vr), Vr min, Bor, and Vmap to C. Vs adds the returned Vr to

the Vr list. C uses Bor to figure out the necessary Is involved in the read and sends

Vr, Vr min, and Vmap to each of them. The Is updates all temporary versions in

Vmap (up to Vr min) to their final version number and adds them to Vuse list. The

Is uses all the versions up to Vr to satisfy the read request. Then the Is returns

the requested read data to C. When it completes, C sends back Vr, Vr min, and

Bor to Vs. Vs removes the Vr from Vr list and removes Vmap entries that are less

than Vr min and match Bor.

8.4. VPFS Implementation

VPFS was implemented using PVFS2 as a base parallel file system. While it would be

ideal to build a completely new file system based around the concepts of versioning, we

decided to evaluate the concepts in an established parallel file system to identify where a

ground-up implementation could make significant improvements in both performance and

code simplicity. Unfortunately, adding versioning to PVFS2 required us to modify many of

177

the client and server system call implementations. On-disk data storage had to be changed

and many data structures were added in both the client and server. Additionally, ROMIO,

our MPI-IO implementation, required changes to support PVFS2-based versioning.

The system call client code in PVFS2 is implemented using state machines. We added a

new nested version state machine and version system call for handling all VS communication

and operations. It supports getting ID# for one or more clients with a count parameter.

The nested version state machine can get a snapshot, remove a snapshot, and commit a

modify operation. This functionality is implemented using a nested state machine so that

any client system call can add versioning support. A version-client-table on each client maps

every metadata handle to a {ID#, IO#} tuple so that temporary version numbers can be

generated. One difficulty was the changing the handle interface in PVFS2. All files are

mapped to one or more handles that store metadata and data. We added additional handles

to store version-metadata and version-data on the server. System calls that involved create,

remove, I/O, and other relevant operations had to be manipulated accordingly.

The PVFS2 servers required a corresponding version state machine as well to support Vs

operations. A version-metadata table keeps version numbers and version tuples in memory.

Any versioning changes are recorded to a log file prior to the server response so that they

are not lost during a server crash. The I/O state machine on the servers was modified to

support version-data log files. These log files store a tuple of version information (modify

operation, offset to next tuple, datatype size, data size, datatype, and data) which is either

incomplete or committed but cannot be merged due to incomplete earlier reads. They will

wrap around at the desired maximum log size or can be compressed. The tuple of version

information is applied to the actual data file when snapshot information is received either

from the client or a version server. Reads are handled by unfolding the datatypes of the

178

committed operations that cannot be merged into a offset-length tree. To find the necessary

read data, the server first looks for matching offset-length pairs in the tree and then figures

out if it needs to look in the log file or the data file for its requested data.

In order to use our VPFS implementation with ROMIO, we added the version system

call to MPI File open() to get as many ID# as the number of processes in the MPI commu-

nication group which opened the file. Each process receives its ID# from the root process

through a MPI Bcast() call. A user-specified hint decides at open time whether the file will

be versioned. One a file is created, it cannot change its versioned attribute.

8.5. Performance Evaluation

We have acquired some preliminary write results using our VPFS implementation. All

tests were conducted on the Blackrose cluster at Sandia National Laboratories as the Feyn-

man cluster has been retired. Blackrose has 78 HP XW9400 nodes in operation. Each node

has 2 dual-core 2.8 GHz AMD Opteron CPUs with 8 GBytes of RAM and runs the Red

Hat Linux Enterprise operating system. They nodes are connected with both Gigabit Eth-

ernet and Infiniband, however, we were only able to use the Gigabit Ethernet interface with

MPICH2.

Our preliminary results used 8 computers for our PVFS2 file system with a default 64

KByte strip size, totaling to a 512 KByte stripe across all I/O servers. Our initial tests used

the HPIO benchmark, described in Chapter 5. We tested a datatype I/O-only method versus

both our atomic methods (lock server and versioning techniques). Figures 8.3 and 8.4 show

our experimental results when varying the region count and region spacing, respectively.

179

0

10

20

30

40

50

60

M
B

y
te

s
 /
 s

e
c

Region Count

Region Count - Write (C to C)

datatype

datatype-
lock

datatype-
version

0

10

20

30

40

50

60

70

M
B

y
te

s
 /
 s

e
c

Region Count

Region Count - Write (NC to C)

datatype

datatype-
lock

datatype-
version

0

5

10

15

20

25

30

35

M
B

y
te

s
 /
 s

e
c

Region Count

Region Count - Write (C to NC)

datatype

datatype-
lock

datatype-
version

0

5

10

15

20

25

30

35

40
M

B
y
te

s
 /
 s

e
c

Region Count

Region Count - Write (NC to NC)

datatype

datatype-
lock

datatype-
version

Figure 8.3. HPIO results from testing various region counts and different atom-
icity methods.

8.5.1. HPIO - Vary Region Count Results

In the c-c case, all methods scale up in I/O bandwidth due to the increasing write sizes that

are efficient for today’s hard disk technology. We note that the locking overhead is quite

small for our atomic methods since they cannot falsely share locks. In the nc-c case, the

results are very similar to the c-c case due to the efficiency of the datatype representation

for I/O as well as atomicity for datatype-lock. In the c-nc case, both the datatype and

datatype-lock methods fall dramatically in performance due to the slow I/O performance

of writing small and sparse 8 byte regions. While the datatype-version results are quite

180

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

M
B

y
te

s
 /
 s

e
c

Region Spacing (Bytes)

Region Spacing - Write (C to C)

datatype

datatype-lock

datatype-
version

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024 2048 4096

M
B

y
te

s
 /
 s

e
c

Region Spacing (Bytes)

Region Spacing - Write (NC to C)

datatype

datatype-
lock

datatype-
version

0

2

4

6

8

10

12

14

16

18

20

8 16 32 64 128 256 512 1024 2048 4096

M
B

y
te

s
 /
 s

e
c

Region Spacing (Bytes)

Region Spacing - Write (C to NC)

datatype

datatype-
lock

datatype-
version

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024 2048 4096

M
B

y
te

s
 /
 s

e
c

Region Spacing (Bytes)

Region Spacing - Write (NC to NC)

datatype

datatype-
lock

datatype-
version

Figure 8.4. HPIO results from testing various region spacings and different
atomicity methods.

sporadic due to the volatility of a small aggregate I/O size, it averages more than triple the

performance of the other methods due to combining noncontiguous writes into contiguous

writes. When moving from c-nc to nc-nc, the performance numbers are roughly the same,

again showing the large advantage of datatype-version in reducing disk seeks.

8.5.2. HPIO - Vary Region Spacing Results

Our results in this test are very volatile, most likely due to the extremely small data size.

Each process only write 32 KBytes of data, which is 512 KBytes of aggregate data. The

region spacing test is designed to show the declining performance efficiency of hard disks

181

when presented with larger and large gaps between I/O accesses. c-c and nc-c results are

very similar for all methods, demonstrating the low overhead of the atomic methods. c-nc

performance trails off for both datatype and datatype-lock due to more disk seeking. The

locking overhead for datatype-version remains fairly low throughout this test. datatype-

version averages more than twice the performance of the other methods since it is not affected

by the region spacing. The nc-nc case shows a more consistent picture of this pattern, where

datatype-version is not affected by changing the region spacing.

8.6. VPFS Discussion

Using such a protocol will enforce the atomicity of I/O operations. Since write operations

are not given a Vm until they have fully completed, no read can possibly see a partially

completed write. Writes become visible in the order in which they complete due to the

Vm assignment only after all parts of the (possibly noncontiguous) write have finished. If

a client dies during the middle of a write operation, the write will never be assigned a final

Vm and therefore will never be visible to any client. Cleanup operations issued by system

administrators or automatically by the file system can remove these partially completed

operations at a convenient time.

Another strong advantage of the use of versions over locks is I/O operation concurrency.

All reads and writes may continue in parallel even when they access overlapping regions.

As we discussed in Section 8.2, lock-based systems can only allow concurrent access to

overlapping regions if both processes are reading. VPFS allows atomic concurrent access to

overlapping regions for any combination of reads and writes without any serializing penalties

as shown in Figure 8.2. Also discussed earlier, efficient atomicity of I/O operations is a strong

requirement for parity based RAID techniques in parallel file systems. For RAID 5, parity is

182

maintained on a per stripe basis to ensure that any one I/O node may be lost while preserving

all data and operating in a degraded mode until the failed node is replaced. In hardware

RAID, parity is computed on every write operation by the hardware RAID controller. This

method is not scalable or practical for parallel file systems. Since our versioning parallel

file system can provide efficient atomic I/O operations, we can also perform atomic data

and parity updates in parallel, even if writes are overlapping the same parity block. This

is a large improvement over lock-based methods, since they always force serialization when

writes have overlapping I/O parity access.

The nature of our datatype-based versions provides us with a solution to the noncon-

tiguous I/O problem of small I/O operations. Since we can provide a description of the

object along with file write data, we can describe the format of the data as well as write out

the actual file data in a contiguous I/O operation. In this manner we no longer incur the

performance penalty of writing small noncontiguous file regions to disk for noncontiguous

access patterns. This performance optimization should greatly improve noncontiguous I/O

operations over the current datatype I/O method. We still can use the datatype I/O access

pattern description over the network for bandwidth savings, but additionally reap perfor-

mance benefits from writing noncontiguous data contiguously in file. Another important

performance optimization for noncontiguous I/O would be that we have a constant version-

ing overhead for any noncontiguous I/O operation. In comparison, list lock and datatype

lock require n locks to service a noncontiguous I/O access pattern with n file regions. In

other words, our versioning techniques in VPFS allow us to eliminate the much of the over-

head associated with locking all the regions of the file access pattern while providing even

greater I/O concurrency.

183

System snapshots are often dumped at intervals between scientific computational stages.

This is done so that if a part of the system fails, the application can be restarted without

losing all progress. System snapshots are also used for post-processing and/or visualization.

Snapshots are I/O intensive and slow on traditional parallel file systems. In fact, the snapshot

frequency is often determined by the time it takes to write a snapshot. If snapshots are cheap

and fast, they can be written often without significantly affecting system performance. Our

versioning of files natively creates such snapshots. In fact, by simply tagging the version

of the last write that we would like to include in the system snapshot, we can ensure that

system snapshots remain in our I/O system without significant I/O penalties. Such an

optimization for system snapshots would provide a great tool for scientific computing (for

example, reducing the cost of making a checkpoint in the ASC FLASH code). We also note

that within the MPI-IO interface, we can perform several optimizations with VPFS. We

would like to experiment on how to use versioning and calculate write parity on collective I/O

operations. We expect that there are important optimizations when using a single version

versus using multiple versions when collective I/O is scaled up to thousands of processes.

Some obvious drawbacks for VPFS include possible new read overheads. Since a read

operation must examine version tuples on each I/O server involved, we expect that overall

read performance will slight worsen, while write speeds will increase. Also, since we make

version tuples for every modify operation, this can, in certain cases, significantly increase

overall storage. We expect to further examine these potential problems as we continue to

develop our implementation.

184

CHAPTER 9

Conclusion and Future Work

As computational resources continue to outpace storage devices, high-performance I/O

will be an even greater challenge in the future. While parallel file systems alleviate some

of the performance gap, many scientific applications use noncontiguous I/O access patterns

that reduce the effectiveness of I/O parallelization. We have presented list I/O and datatype

I/O techniques which improve independent I/O through a significant reduction in the num-

ber of I/O requests to the file system. Additionally, we demonstrated how noncontiguous

methods are affected by basic access pattern parameters and have investigated the applica-

bility of these results toward a case study for examining various high-level I/O strategies in

bioinformatics.

Our work has transitioned to efficient I/O atomicity for supporting various I/O APIs and

enabling new application-level techniques such as real-time data visualization and consistent

data layout for cooperating processes. Our DLM work has shown that atomicity approaches

based on list lock and datatype lock coupled with hybrid optimistic lock protocols can be

very effective for non-overlapping data access. Furthermore, we have prototyped a versioning

parallel file system as a new architecture for solving next generation I/O challenges.

In the future, we intend to implement fault-tolerant storage using these atomic I/O

building blocks we have designed in the parallel file system. In particular, we would like to

begin our effort with implementing client-based RAID 0+1 and RAID 5 solutions using both

our DLM and versioning approaches.

185

References

[1] Peter Aarestad, Avery Ching, George Thiruvathukal, and Alok Choudhary. Scalable
approaches for supporting MPI-IO atomicity. In Proceedings of the IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, Singapore, May 2006. IEEE
Computer Society Press.

[2] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Y. Wang. Serverless network file systems. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pages
109–126. ACM Press, December 1995.

[3] Sandra Johnson Baylor and C. Eric Wu. Parallel I/O workload characteristics using
Vesta. In Proceedings of the IPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 16–29, Santa Barbara, CA, April 1995. IEEE Computer
Society Press.

[4] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and David L.
Wheeler. Genbank. Nucleic Acids Res., 35:21–25, 2007.

[5] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[6] Robert Bjornson, Andrew Sherman, Stephen Weston, Nathan Willard, and James
Wing. TurboBLAST(r): A parallel implementation of BLAST built on the TurboHub.
In Proceedings of the International Parallel and Distributed Processing Symposium,
2002.

[7] Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P. Eastwood,
Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary, Mark A. Moraes, Federico D.
Sacerdoti, John K. Salmon, Yibing Shan, and David E. Shaw. Molecular dynamics—
scalable algorithms for molecular dynamics simulations on commodity clusters. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 84, New
York, NY, USA, 2006. ACM Press.

186

[8] R. C. Braun, Kevin T. Pedretti, Thomas L. Casavant, Todd. E. Scheetz, Clayton L.
Birkett, and Chad A. Roberts. Parallelization of local blast service on workstation
clusters. Future Gener. Comput. Syst., 17(6):745–754, 2001.

[9] Mike Burrows. Chubby distributed lock service. In Proceedings of the 7th Symposium
on Operating System Design and Implementation, OSDI’06, Seattle, WA, November
2006.

[10] Nick Camp, Haruna Cofer, and Roberto Gomperts. High-throughput BLAST.
Whitepaper - http://www.sgi.com.

[11] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A
parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux Showcase
and Conference, pages 317–327, Atlanta, GA, October 2000. USENIX Association.

[12] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings of the 7th Symposium
on Operating System Design and Implementation, OSDI’06, pages 205–218, Seattle,
WA, November 2006.

[13] Peter M. Chen and David A. Patterson. Maximizing performance in a striped disk
array. In Proceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, pages 322–331, 1990.

[14] Ed Chi, Elizabeth Shoop, John Carlis, Ernest Retzel, and John Riedl. Efficiency of
shared-memory multiprocessors for a genetic sequence similarity search algorithm.
Technical Report TR97-005, University of Minnesota, Computer Science Department,
1997.

[15] Chiba City, the Argonne scalable cluster. http://www.mcs.anl.gov/chiba/.

[16] Avery Ching, Alok Choudhary, Kenin Coloma, Wei Keng Liao, Robert Ross,
and William Gropp. Noncontiguous access through MPI-IO. In Proceedings of the
IEEE/ACM International Symposium on Cluster Computing and the Grid, Tokyo,
Japan, May 2003. IEEE Computer Society Press.

[17] Avery Ching, Alok Choudhary, Wei Keng Liao, Robert Ross, and William Gropp. Non-
contiguous I/O through PVFS. In Proceedings of the IEEE International Conference
on Cluster Computing, Chicago, IL, September 2002. IEEE Computer Society Press.

187

[18] Avery Ching, Alok Choudhary, Wei Keng Liao, Robert Ross, and William Gropp.
Efficient structured access in parallel file systems. In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, Hong Kong, December 2003. IEEE Computer
Society Press.

[19] Avery Ching, Alok Choudhary, Wei Keng Liao, Robert Ross, and William Gropp.
Evaluating structured I/O methods for parallel file systems. In International Journal
of High Performance Computing and Networking, volume 2, pages 133–145, 2004.

[20] Avery Ching, Alok Choudhary, Wei Keng Liao, Lee Ward, and Neil Pundit. Evaluating
I/O characteristics and methods for storing structured scientific data. In Proceedings of
the International Parallel & Distributed Processing Symposium, Rhodes Island, Greece,
April 2006. IEEE Computer Society Press.

[21] Kenin Coloma, Avery Ching, Alok Choudhary, Wei Keng Liao, Rob Ross, Rajeev
Thakur, and Lee Ward. A new flexible MPI collective I/O implementation. In Proceed-
ings of the IEEE Conference on Cluster Computing, September 2006.

[22] Kenin Coloma, Alok Choudhary, Wei Keng Liao, Lee Ward, Eric Russell, and Neil
Pundit. Scalable high-level caching for parallel I/O. In Proceedings of the IEEE In-
ternational Parallel & Distributed Processing Symposium, Sante Fe, NM, April 2004.
IEEE Computer Society Press.

[23] Kenin Coloma, Alok Choudhary, Wei Keng Liao, Lee Ward, and Sonja Tideman.
DAChe: Direct access cache system for parallel I/O. In Proceedings of the International
Supercomputer Conference, Heidelberg, June 2005. Prometeus GmbH.

[24] Compugen, Ltd. Bioccerator. http://eta.embl-heidelberg.de:8000/, 1994.

[25] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James
Leong, and Sunitha Sankar. Row-diagonal parity for double disk failure correction. In
FAST ’04: Proceedings of the 3rd USENIX Conference on File and Storage Technolo-
gies, pages 1–14, Berkeley, CA, USA, 2004. USENIX Association.

[26] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. Wayback: a user-level
versioning file system for linux. In ATEC’04: Proceedings of the USENIX Annual
Technical Conference 2004 on USENIX Annual Technical Conference, pages 27–27,
Berkeley, CA, USA, 2004. USENIX Association.

[27] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. In-
put/output characteristics of scalable parallel applications. In Proceedings of Super-
computing ’95, San Diego, CA, December 1995. IEEE Computer Society Press.

188

[28] Aaron Darling, Lucas Carey, and Wu chun Feng. The design, implementation, and
evaluation of mpiBLAST. In Proceedings of the 4th International Conference on Linux
Clusters: The HPC Revolution, 2003.

[29] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In Proceedings of the IPPS ’93 Workshop
on Input/Output in Parallel Computer Systems, pages 56–70, Newport Beach, CA,
1993. Also published in Computer Architecture News 21(5), December 1993, pages
31–38.

[30] Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T. J. Christopher Ward,
Mark Giampapa, Michael C. Pitman, and Robert S. Germain. Molecular dynamics—
blue matter: approaching the limits of concurrency for classical molecular dynamics. In
SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 87,
New York, NY, USA, 2006. ACM Press.

[31] Bruce Fryxell, Kevin Olson, Paul Ricker, Frank Timmes, Michael Zingale, Donald
Lamb, Peter MacNeice, Robert Rosner, and Henry Tufo. FLASH: An adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophysical
Journal Suppliment, 131:273, 2000.

[32] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
SOSP, Lake George, NY, October 2003.

[33] Global file system. http://www.redhat.com/software/rha/gfs/.

[34] Jeffrey D. Grant, Roland L. Dunbrack, Frank J. Manion, and Michael F. Ochs. Beo-
Blast: distributed BLAST and PSI-BLAST on a Beowulf cluster. Bioinformatics,
18:765–766, 2002.

[35] William Gropp, Ewing Lusk, and Debbie Swider. Improving the performance of MPI
derived datatypes. In Anthony Skjellum, Purushotham V. Bangalore, and Yoginder S.
Dandass, editors, Proceedings of the Third MPI Developer’s and User’s Conference,
pages 25–30. MPI Software Technology Press, 1999.

[36] John H. Hartman and John K. Ousterhout. The Zebra striped network file system.
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,
pages 29–43, Ashville, NC, 1993. ACM Press.

[37] HDF5 home page. http://hdf.ncsa.uiuc.edu/HDF5/.

[38] IBRIX FusionFS. http://www.ibrix.com/.

189

[39] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)–part 1: System
application program interface (API) [C language], 1996 edition.

[40] TimeLogic Inc. Decypher. http://www.timelogic.com, 1996.

[41] Florin Isaila and Walter Tichy. Clusterfile: A flexible physical layout parallel file sys-
tem. In Proceedings of the IEEE International Conference on Cluster Computing, New-
port Beach, CA, October 2001. IEEE Computer Society Press.

[42] W. James Kent. BLAT - the BLAST-like alignment tool. Genome Research, 12(4),
2002.

[43] Scott Alan Klasky, Stephane Ethier, Zhihong Lin, Kevin Martins, Doug McCune, and
Ravi Samtaney. Grid-based parallel data streaming implemented for the gyrokinetic
toroidal code. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on Super-
computing, page 24, Phoenix, AZ, 2003. IEEE Computer Society.

[44] David Kotz. Disk-directed I/O for MIMD multiprocessors. ACM Transactions on Com-
puter Systems, 15(1):41–74, February 1997.

[45] Robert Latham, William Gropp, Robert Ross, Rajeev Thakur, and Brian Toonen.
Implementing MPI-IO atomic mode without file system support. In Proceedings of the
IEEE Conference on Cluster Computing Conference, Boston, MA, September 2005.
IEEE Computer Society Press.

[46] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual disks. In
Proceedings of the Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 84–92, Cambridge, MA, October
1996.

[47] Jianwei Li, Wei Keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William
Gropp, Rob Latham, Andrew Sigel, Brad Gallagher, and Michael Zingale. Parallel
netcdf: A high-performance scientific I/O interface. In Proceedings of Supercomputing,
Phoenix, AZ, November 2003. ACM Press.

[48] Wei Keng Liao, Avery Ching, Kenin Coloma, Alok Choudhary, and Lee Ward. An
implementation and evaluation of client-side file caching for MPI-IO. In Proceedings of
the International Parallel & Distributed Processing Symposium, March 2007.

[49] Wei Keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward, Eric Russell, and Sonja
Tideman. Collective caching: Application-aware client-side file caching. In Proceedings
of the 14th IEEE International Symposium on High Performance Distributed Comput-
ing, Research Triangle Park, NC, July 2005. IEEE Computer Society Press.

190

[50] Walter B. Ligon III and Robert B. Ross. Implementation and performance of a parallel
file system for high performance distributed applications. In Proceedings of the Fifth
IEEE International Symposium on High Performance Distributed Computing, pages
471–480. IEEE Computer Society Press, August 1996.

[51] Heshan Lin, Xiaosong Ma, Praveen Chandramohan, Al Geist, and Nagiza Samatova.
Efficient data access for parallel blast. In Proceedings of 19th International Parallel
and Distributed Processing Symposium, 2005.

[52] Lustre. http://www.lustre.org.

[53] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

[54] David R. Mathog. Parallel BLAST on split databases . Bioinformatics, 19:1865–1866,
2003.

[55] Message passing interface forum. http://www.mpi-forum.org.

[56] Message Passing Interface Forum. MPI-2: Extensions to the message-passing interface,
July 1997. http://www.mpi-forum.org/docs/docs.html.

[57] Jason A. Moore and Michael J. Quinn. Enhancing disk-directed I/O for fine-grained
redistribution of file data. Parallel Computing, 23(4):477–499, June 1997.

[58] Kiran-Kumar Muniswamy-Reddy, Charles Wright, Andrew Himmer, and Erez Zadok.
A versatile and user-oriented versioning file system. In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, April 2004.

[59] David Nagle, Denis Serenyi, and Abbie Matthews. The Panasas ActiveScale stor-
age cluster - delivering scalable high bandwidth storage. In Proceedings of the 2004
ACM/IEEE Supercomputing Conference, November 2004.

[60] NCBI. National center for biotechnology information. http://www.ncbi.nlm.nih.gov/.

[61] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Technical Report
PCS-TR96-286, Dept. of Computer Science, Dartmouth College, May 1996.

[62] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and
Michael Best. File-access characteristics of parallel scientific workloads. IEEE Trans-
actions on Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[63] Zemin Ning, Anthony Cox, and James C. Mullikin. SSAHA: A Fast Search Method
for Large DNA Databases. Genome Res., 11(10):1725–1729, October 2001.

191

[64] Michael L. Norman, John Shalf, Stuart Levy, and Greg Daues. Diving deep: Data-
management and visualization strategies for adaptive mesh refinement simulations.
Computing in Science and Engg., 1(4):36–47, 1999.

[65] Ron Oldfield and David Kotz. Armada: A parallel file system for computational grids.
In Proceedings of the 1st IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 194–201, Brisbane, Australia, May 2001.

[66] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf
Riesen, Lee Ward, and Patrick Widener. Lightweight i/o for scientific applications.
In Proceedings of the 2006 IEEE International Conference on Cluster Computing,
Barcelona, Spain, September 2006.

[67] Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee Ward, and Todd Korden-
brock. Efficient data-movement for lightweight i/o. In Workshop on high-performance
I/O techniques and deployment of Very-Large Scale I/O Systems, Barcelona, Spain,
September 2006.

[68] The Open Group, http://www.unix.org/. The Single UNIX Specification Version 3,
2004 Edition, 2004.

[69] Panasas. http://www.panasas.com.

[70] Paracel, Inc. Fast data finder (fdf) and genematcher. http://www.paracel.com.

[71] David Patterson, Garth Gibson, and Randy Katz. A case for redundant arrays of inex-
pensive disks (RAID). In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 109–116, Chicago, IL, June 1988. ACM Press.

[72] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave
Hitz. NFS version 3: Design and implementation. In USENIX Summer, pages 137–152,
1994.

[73] Zachary N. J. Peterson, Randal Burns, Giuseppe Ateniese, and Stephen Bono. Design
and implementation of verifiable audit trails for a versioning file system. In FAST’07:
Proceedings of the 5th conference on USENIX Conference on File and Storage Tech-
nologies, pages 20–20, Berkeley, CA, USA, 2007. USENIX Association.

[74] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. NAMD:
biomolecular simulation on thousands of processors. In SC ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–18, 2002.

192

[75] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice Koniges.
MPI-IO/GPFS, an Optimized Implementation of MPI-IO on top of GPFS. In Proceed-
ings of Supercomputing, Denver, CO, November 2001. ACM Press.

[76] Russ Rew and Glenn Davis. The unidata netcdf: Software for scientific data access. In
Proceedings of the 6th International Conference on Interactive Information and Pro-
cessing Systems for Meterology, Oceanography and Hydrology, Anaheim, CA, February
1990. American Meteorology Society.

[77] ROMIO: A high-performance, portable MPI-IO implementation.
http://www.mcs.anl.gov/romio.

[78] Robert Ross, Neill Miller, and William Gropp. Implementing fast and reusable
datatype processing. In Proceedings of the 10th EuroPVM/MPI Conference, September
2003.

[79] Ramanan Sankaran, Evatt R Hawkes, Jacqueline H Chen, Tianfeng Lu, and Chung K
Law. Direct numerical simulations of turbulent lean premixed combustion. Journal of
Physics: Conference Series, 46:38–42, 2006.

[80] Douglas Santry, Michael Feeley, Norman Hutchinson, Alistair Veitch, Ross Carton,
and Jacob Ofir. Deciding when to forget in the elephant file system. In Proceedings of
the 17th ACM Symposium on Operating System Principles, December 1999.

[81] Mahadev Satyanarayanan. Integrating security in a large distributed system. ACM
Trans. Comput. Syst., 7(3):247–280, 1989.

[82] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large computing
clusters. In Proceedings of the Conference on File and Storage Technologies, Monterey,
CA, January 2002.

[83] Ilya Sharapov. Computational applications for life sciences on sun platforms: Perfor-
mance overview. Whitepaper, 2001.

[84] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Improving storage system availability with d-graid. ACM Transac-
tions on Storage, 1(2):133–170, 2005.

[85] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. I/O require-
ments of scientific applications: An evolutionary view. In Proceedings of the Fifth IEEE
International Symposium on High Performance Distributed Computing, pages 49–59,
Syracuse, NY, 1996. IEEE Computer Society Press.

193

[86] Craig Soules, Garth Goodson, John Strunk, and Gregory Ganger. Metadata efficiency
in a comprehensive versioning file system. In Proceedings of the 2nd USENIX Confer-
ence on File and Storage Technologies, May 2002.

[87] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and
Gregory R. Ganger. Self-securing storage: protecting data in compromised system. In
OSDI’00: Proceedings of the 4th conference on Symposium on Operating System Design
& Implementation, pages 12–12, Berkeley, CA, USA, 2000. USENIX Association.

[88] Sun Microsystems, http://www.faqs.org/rfcs/rfc1813.html. RFC 1813 - NFS Version
3 Protocol Specification, 1995.

[89] Sun Microsystems and Network Appliance, http://www.faqs.org/rfcs/rfc3530.html.
RFC 3530 - NFS Version 4 Protocol Specification, 2003.

[90] Hong Tang, Aziz Gulbeden, Jingyu Zhou, William Strathearn, Tao Yang, and Lingkun
Chu. A self-organizing storage cluster for parallel data-intensive applications. In Pro-
ceedings of ACM Supercomputing Conference, November 2004.

[91] Osamu Tatebe, Satoshi Sekiguchi, Youhei Morita, Noriyuki Soda, and Satoshi Mat-
suoka. Gfarm v2: A grid file system that supports high-performance distributed and
parallel data computing. In Proceedings of the 2004 Computing in High Energy and
Nuclear Physics, September 2004.

[92] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O
in ROMIO. In Proceedings of the Seventh Symposium on the Frontiers of Massively
Parallel Computation, pages 182–189, Annapolis, MD, February 1999. IEEE Computer
Society Press.

[93] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably
and with high performance. In Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems, pages 23–32, Atlanta, GA, May 1999. ACM Press.

[94] Rajeev Thakur, Robert Ross, and Robert Latham. Implementing byte-range locks
using mpi one-sided communication. Lecture Notes in Computer Science, September
2005.

[95] The parallel virtual file system 2 (PVFS2). http://www.pvfs.org/pvfs2/.

[96] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: a
scalable distributed file system. In SOSP ’97: Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, pages 224–237, New York, NY, USA, 1997.
ACM Press.

194

[97] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th
Conference on Operating Systems Design and Implementation (OSDI ’06), November
2006.

[98] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Crush: con-
trolled, scalable, decentralized placement of replicated data. In SC ’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, page 122, New York, NY, USA,
2006. ACM Press.

[99] C. Thomas White, Raj K. Singh, Peter B. Reintjes, Jordan Lampe, Bruce W. Erick-
son, Wayne D. Dettloff, Vernon L. Chi, and Stephen F. Altschul. Bioscan: A vlsi-based
system for biosequence analysis. In ICCD ’91: Proceedings of the 1991 IEEE Inter-
national Conference on Computer Design on VLSI in Computer & Processors, pages
504–509, Washington, DC, USA, 1991. IEEE Computer Society.

[100] Joachim Worringen, Jesper Larson Traff, and Hubert Ritzdorf. Improving generic non-
contiguous file access for MPI-IO. In Proceedings of the 10th EuroPVM/MPI Confer-
ence, September 2003.

[101] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable per-
formance visualization with Jumpshot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

195

This dissertation was typeset with LATEX2ε
1 by the author.

1The macros used in formatting this dissertation are based on those written by Miguel A. Lerma, (Mathe-
matics, Northwestern University) which have been further modified by Debjit Sinha (EECS, Northwestern
University) to accommodate electronic dissertation formatting guidelines.

