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Abstract

Elasticity of Heterogeneous Gels

Shuangping Liu

Gels are three-dimensional polymer networks capable of absorbing a large amount of solvent

molecules subject to various external stimuli (pH, temperature, light, etc.). They exhibit a rich me-

chanical behavior and prominent nonlinearity owing to their high flexibility, stimuli-responsiveness

and superabsorbency. More compelling are the intriguing morphologies and novel functionalities

achieved by introducing mechanical heterogeneities to an otherwise homogeneous gel. The misfit

between heterogeneous components can cause mechanical instabilities that generate complex shapes

such as creases, wrinkles, folds and helices. These buckling structures have broad engineering

applications, and are also important model systems to understand the shape generation in biological

bodies. Additionally, microstructural heterogeneities incorporated into the original gel networks

can endow the gel with strong mechanical anisotropy, high toughness and high modulus. Such

composite gels are particularly attractive as novel biomaterials due to their structural similarities to

many biological systems in nature.

To understand the large deformation behavior and mechanical instabilities of gels with het-

erogeneities, we employ a finite element approach to investigate three systems with different

architectures. The first system regards to a complex contact deformation of an elastomeric pyramid
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array which is widely adopted in advanced nanopatterning techniques. Simple scaling laws of the

deformation are established and compared with existing experiments. We further show that the

distinct deformed shape of the pyramid plays a decisive role in producing the previously unexplained

photoresist patterns. In the second system, the mechanical instability in a simple heterogeneous

structure is considered. In a bistrip gel with different prestrains in each strip, perversions and helices

can emerge when the ends of the bistrip approach with each other. Perversions serve as as generic

domain walls that connect states of opposite chirality. Here we focus on numerical analysis of the

intrinsic properties of perversions, including the strain energy condensation over perversions, the

repulsive nature of the perversion-perversion interaction and the coalescence of perversions. These

findings have implications to the understanding of relevant biological motifs. Finally, we explore the

anisotropic contraction of hydrogels reinforced by aligned fibrous heterogeneities, inspired by the

recent experimental work of Chin et. al. Several strategies are proposed to improve the contraction

anisotropy based on Flory-Rehner theory and finite element simulations. The numerical analysis

indicates an increasing of contraction anisotropy when the hydrogel is prestretched along the fiber

direction. Simulations further show that the contraction anisotropy can be maximized by tuning the

structure parameters of the embedded fibers.
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(top), two intermediate states(middle) and final state (bottom) are shown. For

each state, the growing factors of the top layer (left) and bottom layer (right) are

illustrated. Adapted from [8]. Copyright 2017 National Academy of Sciences,

U.S.A. 97
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CHAPTER 1

Introduction

1.1. Background and Motivation

1.1.1. Motivation

Gels are three-dimensional polymer networks permeated by solvent molecules [9]. Composed by

physically or chemically crosslinked polymer chains, they behave as elastic solids macroscopically,

while possessing liquid-like structures in atomic scale [10]. When immersed in an appropriate

solvent, they can undergo reversible, dramatic volumetric swelling by absorbing large amount of

solvent molecules. The high mechanical flexibility and the superabsorbency of gels lead to rich

and unique mechanical behaviors, notably creases [11, 12] and wrinkles [13]. As such, gels have

drawn significant interest in understanding the mechanics of complex soft matter in the past decades.

Even more compelling is the fact that gels can swell in response to various external stimuli such

as temperature, light, pH values and electric field [14, 15]. These environmentally sensitive gels,

also known as “smart gels”, are promising materials in drug delivery [16], tissue engineering [17],

bioseparation [18], biomimetics [19], biosensors [20], microfluidics [21], among many more.

By introducing mechanical heterogeneities into an otherwise homogeneous gel, more sophisti-

cated morphologies and novel functionalities can be achieved. The misfit strain between heteroge-

neous components can lead to mechanical instabilities that generate richer two- or three-dimensional

shapes such as ripples [2], folds [3], ridges [3], helices and perversions [22, 23] (Fig. 1.1). Owing to

the flexible nature of gels, it is possible to repeatedly switch between the normal and buckled states,

therefore allowing a variety of applications of these buckling structures in designing actuators [24],
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b c d

e

a

Figure 1.1. Mechanical instabilities of gels with heterogeneities. (a) Creases and wrinkles present
in the simulation of the gyrification of human brain using bilayered structure. Reprinted with
permission from Macmillan Publishers Ltd: Nature Physics [1], copyright 2016. (b) Ripple patterns
formed in a swelling gel with radial gradient of monomer concentrations [2]. Reprinted with
permission from AAAS. (c) and (d) Formation of folds and ridges on a bilayered gel with misfit
prestrains between the two layers [3]. Copyright 2015, with permission from Elsevier. (e) Helices
and a perversion formed in a bistrip with a misfit prestrain.

microrobotics [25], sensors [26] and flexible electronic devices [27]. These buckling structures

also serve as important model systems to understand the growth and morphology evolution of

many living organisms in mechanical perspective [28, 29, 1]. Studies on mechanics of gel swelling

involving misfit heterogeneities have raised many intriguing questions that prompt interest in both

fundamental science and practical applications.

Moreover, the mechanical response of gels can be substantially modified by massively incor-

porating micro- or nano-sized heterogeneities as fillers into the gel networks. During the past

decades, successful efforts have been made to fabricate gels with strong mechanical anisotropy
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by introducing various types of oriented fillers [30, 31, 32]. Such anisotropic gels are particularly

appealing as novel biomaterials due to their striking structural similarities to many biological tissues

like cornea [33], cartilages [34] and muscles [35]. Additionally, stiff micro- and nanofibers have

been extensively used as mechanical reinforcement to amplify the mechanical performance of

gels [30, 35, 36, 37], which is being actively explored for applications in soft robotics [38] and

synthetic tissues [36]. Therefore, a better understanding of the mechanics of these gel composites

allows researchers to design novel functional gels for more advanced applications by tuning the

morphologies, arrangements and mechanical properties of the embedded heterogeneities.

1.1.2. Swelling of Gels

For neutral gels, the swelling is driven by the free energy of mixing of the polymer and solvent [10].

In contrast to a regular polymer solution, the cross-linked polymer chains in a gel do not dissolve

when immersed in a good solvent. Instead, the polymer network expands by absorbing solvent

molecules and eventually reaches an equilibrium state determined by the elasticity of the polymer

chains which counteracts the volume expansion. This competition between the free energy of

mixing and elasticity has been the starting point in the pioneering work of Flory and Rehner [39]

to describe the swelling of gels. In their formulation, the free energy of mixing is given by the

Flory-Huggins polymer solution theory [9], and the elastic energy is derived from rubber-like

elasticity. The equilibrated volume of the gel network is therefore obtained by minimizing the total

free energy, where the osmotic equilibrium of the gel must be achieved.

The classical Flory-Rehner theory can be generalized to more types of gels by including the free

energy from other physical or chemical processes involved in the gel swelling. For polyelectrolyte

gels, the electrostatic effects are often introduced as the entropic contribution of ions [14]. There

are also efforts to incorporate the free energy of dielectric polarization [40] and the free energy
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of dissociation of acidic groups for certain specific systems [41]. Other examples include the

energetic contribution of photo-chemical reactions for photo-thermal gel [42], and the energy of

magnetization for magnetic-sensitive ferrogels [43].

The most commonly adopted formulation of the elastic energy, first proposed by Wall and

Flory [44], is derived based on Gaussian statistical mechanics of the polymer chains, and it possesses

the similar form to the neo-Hookean hyperelastic model [45]. It is still widely used to model the

stretch of gel networks and has achieved considerable success in the qualitative predictions of gel

swelling. However, the Wall-Flory model does not account for the limited extensibility of polymer

chains. Thus, alternative hyperelastic models should be considered when the network stretches

are excessively large. For example, Deng and Pence have adopted the Mooney-Rivlin model to

study the chemo-mechanical behavior of hydrogels [46]; Westbrook and Qi have incorporated the

Arruda-Boyce model to simulate the responsive deformations of hydrogels [47]; Chester and Anand

have followed a non-Gaussian statistical mechanical approach to capture the effect of limited chain

extensibility in gel swelling [48].

Last but not least, the Flory-Rehner theory only describes the thermodynamic equilibrium of

gel swelling. In reality, however, the swelling process involves both the evolution of the polymer

network and the solvent migration. It takes significant time for the network and solvent molecules

to reorganize upon sudden changes of the environment. A classical example, considered by Tanaka

and Fillmore in 1979 [49], is the swelling of spherical gels moved from a bad solvent to a good one.

It has been revealed that the characteristic time to equilibrate the spherical gel in a good solvent

scales with the square of the sphere radius. Transient surface buckling may even occur during the

swelling process if the volumetric variation is large enough [11]. In the present thesis, however, the

main focus is on the thermodynamic equilibrium attained in a long time limit without considering

the complicated swelling kinetics.
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Figure 1.2. Schematic of the buckling of a bilayered film with different prestrains. (a) Schematic
of the bilayered structure. (b) Bending instability with inner radius R. (c) Wrinkling instability
with amplitude A and wavelength λ. Reprinted with permission from [4], copyright 2009 by the
American Physical Society.

1.1.3. Mechanical Instabilities of Heterogeneous Gels

Gels can undergo very large deformations when being stretched, compressed or twisted, which has

long been explored since the early stages of polymer science. For example, recently developed

hydrogels with high stretchability can be stretched to 10-20 times of their original lengths without

rupture [50]. They also possess high resilience that enables them to quickly recover to their original

shape upon release. Such capabilities allow them to conform with complex surface morphologies in

a reversible fashion, which has drawn tremendous interest in novel technologies including molecular

printing [51, 52], stretchable electronics [27], microfluidics [21] and beyond.

The high flexibility of gels, coupled with their swelling ability, can generate large stress and

strain leading to mechanical instabilities, notably at the presence of heterogeneities. Significant

researches have been devoted to the spontaneous buckling of bilayered gels, as they are simple and

ubiquitous heterogeneous systems in both nature and engineering applications. For a bilayered

gel composed by two attached flexible thin layers with different prestrains, if fixed at one end and

free the other one (Fig. 1.2), either wrinkling or bending can occur depending on the prestrain

difference [4]. The wrinkling instability has also been experimentally observed by introducing an
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incompatible swelling instead of a prestrain difference between the gel layers [53]. In contrast, for

a bilayered “ribbon” (also known as bistrip) consisting of a prestreched ribbon and a stress-free

ribbon (see Fig. 1.2e), helices and perversions can be produced by moving the ends of the bistrip

close enough with each other [22]. The shape evolution of this bistrip sheds light on the curling of

growing plant tendrils [23]. Shape transitions between helices, twisted ribbons and helicoid are also

numerically observed by tuning the geometric parameters and the prestrains [54, 55]. Moreover, by

programming the geometry, prestrains, intrinsic curvatures, anisotropy, and swelling or shrinkage of

bilayered gels [56, 57, 58, 59, 60], researchers are able to transform 2D patterns into complex 3D

structures under diverse stimuli to mimic the shapes of flowers, leaves, and animal organs.

Theoretical methods to analyze the mechanical instabilities are based on minimization of the

total strain energy based on linear elasticity. Linear stability analysis with equilibrium equations

also serves as an important tool to obtain possible buckling modes and the critical parameters that

destabilize the system. Nevertheless, the scope of these theoretical approaches is limited as the

nonlinear mechanical responses of gels are usually not taken into account, and they are lacking in

predicting post-buckling behaviors where large deformations are expected. Numerical methods

such as finite element approach are required to overcome these limitations.

1.1.4. Anisotropic Swelling of Composite Hydrogels

Hydrogels are gels capable of absorbing large amount of water [9]. They possess high biocompati-

bility and structural similarities to natural biological tissues, making them particularly attractive

in biomedical applications. Inspired by the anisotropic architectures of many biological tissues in

plants [61, 62] and human being [33, 34, 35], heterogeneous fillers with high aspect ratio are often

embedded into hydrogel matrices to realize anisotropic mechanical responses. The most widely

used strategy to achieve this goal is to introduce mechanical reinforcement via oriented stiff fibers.
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Due to the high stiffness of fibers and the bonding between fibers and polymer chains, the fiber-

reinforced hydrogels have stronger resistance against swelling/shrinking and external mechanical

loadings along the fiber direction. Another approach, recently developed by Kim et. al. [63], takes

advantage of the electrostatic repulsion between cofacially aligned layers assembled by charged

titania nanosheets embedded in hydrogels, which hinders the composite hydrogels from shrinking

along the normal direction of the layers. Other types of fillers that impart anisotropy to hydrogels

are also reported in previous studies, including 2D nanoplates [58], lamellar structures [31], porous

structures [32], to name a few.

Although there is a voluminous literature on constitutive models for composite elastomers,

notably fiber-reinforced elastomers [64, 65, 66], theoretical and numerical studies on the anisotropic

swelling of composite hydrogels remain limited. Phenomenological constitutive models within the

framework of the Flory-Rehner theory have been proposed recently [67, 68], which characterize

the effect of heterogeneous fillers as an extra free energy. The size, shape and distributions of

fillers and the hydrogel-filler interactions are not explicitly included in these models. Therefore,

there are new opportunities to explore the impact of the microscopic-level information of fillers

on the swelling behavior, which is important for designing composite hydrogels with the desired

anisotropic response.

1.2. Finite Element Approach

The mechanical equilibrium of gels is formulated as boundary value problems of partial differen-

tial equations (PDEs). Due to the complex deformations and non-linear response of heterogeneous

gels, analytical solutions of these PDEs are difficult to obtain in many situations. As such, the finite

element method (FEM) is employed in the present thesis to numerically compute the approximate

solutions. The basic idea of FEM is to discretize the problem domain into a collections of smaller
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domains with simpler structures, and transform the PDEs and boundary conditions into a system of

equations that can be solved via efficient and robust numerical techniques [69]. The mechanical

simulations presented in this thesis are performed in the commercial software ABAQUS, which

has strong capability of handling nonlinear and dynamic analysis, and provides great flexibility

to customize the constitutive behavior of materials in depth. The general methodology of FEM is

briefly reviewed in the following sections.

1.2.1. Variational Formulation

The force equilibrium of a deformable body is usually written in differential form:

(1.1)
∂σ

∂x
+ f = 0

where σ is the Cauchy stress tensor as a function of the displacements u, x denote the spatial

coordinates of the deformed configuration, and f is the body force per unit volume. To obtain an

approximate solution of u for Eq. 1.1 by discretizing the problem domain, Eq. 1.1 is rewritten as an

integral equation which is given by

(1.2)
∫
V

σ : δDdV =

∫
S

tT · δvdS +

∫
V

fT · δvdV

where V is the volumetric domain, S is the surface bounding the domain, t = n · σ, δv is an

arbitrary velocity field and δD is the virtual strain rate (the rate of deformation). Indeed, Eq. 1.2 is

nothing more than the principle of virtual work: for an arbitrary virtual velocity field, the rate of

work done by the body forces and surface tractions equals the rate of strain energy generated by the

internal stresses. In the context of FEM, Eq. 1.2 is termed as the variational formulation, or “weak

form”, of Eq. 1.1, as it imposes less restrictions to the continuity of u and its derivatives. Since the

stress tensor σ is usually related to the first derivative of u, the accurate solution of Eq. 1.1 requires
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the second derivative of u to be continuous within the problem domain, which may not be satisfied

when the problem domain is discretized. In contrast, such discontinuity is allowed in the variational

formulation since it does not invalidate the integration procedure.

1.2.2. Discretization of Problem Domains

In principle, the solution of Eq. 1.2 belongs to a infinite-dimensional function spaceH, known as

Hilbert space, thus it is infeasible to find the solution by verifying an infinite number of candidate

functions inH. Instead, by discretizing the problem domains into smaller elements, we are able to

search for the solution of Eq. 1.2 in a finite-dimensional function subspace ofH. The approximate

solution can therefore be expressed as a linear combination of basis functions Nn, i.e., any value

within the element can be interpolated using the basis functions:

(1.3) u = Nnu
n

Here the summation convention is adopted for the index n. Similar to Eq. 1.3, the virtual velocity

field δv can be expressed as

(1.4) δv = Nnδv
n

Since Eq. 1.2 must hold for any δvn, we therefore obtained a system of equilibrium equations that

is able to be solved numerically. Assuming a linear elasticity and infinitesimal deformations, these

equations can be written as a matrix equation:

(1.5) Kmnu
m = Fn
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where Kmn is determined by the basis functions, which is also known as the stiffness matrix, and

Fn stems from the external mechanical loadings.

The most commonly used basis functions are Galerkin Basis functions. For a one-dimensional

problem defined in a evenly discretized interval, they are given by

(1.6) Nn(x) =



(x− xn−1)/d xn−1 6 x < xn

(xn+1 − x)/d xn 6 x 6 xn+1

0 otherwise

where d is the distance between adjacent points. For 2D and 3D problems, Nn is usually determined

by the type of element used for discretization, and it can possess more sophisticated form than a

simple generalization of Eq. 1.6 to higher dimensional spaces.

1.2.3. Nonlinear Effects in the FEM

Soft materials like gels exhibit highly nonlinear behaviors when undergoing significant deformations.

In particular, the assumption of infinitesimal strain is invalid if there are remarkable differences

between the original and deformed shapes. Let X and x be the coordinates of undeformed and de-

formed body respectively, and u denotes the displacement field. The finite strain tensor (Lagrangian

strain tensor) can be written in terms of the displacement gradient tensor

(1.7) E =
1

2

[(
∂u

∂x

)T
+
∂u

∂x
+

(
∂u

∂x

)T (
∂u

∂x

)]

In linear elasticity, the last quadratic term of Eq. 1.7 is neglected in the limit of infinitesimal

deformation. It is more fundamental to express E in terms of the deformation gradient tensor
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F = ∂x/∂X:

(1.8) E =
1

2
(C− I)

where C = FTF is known as the right Cauchy-Green tensor, and correspondingly the left Cauchy-

Green tensor is defined as B = FFT . C and B have the same eigenvalues (λ2
1, λ

2
2, λ

2
3) which are

the square of the principal stretches [70]. Therefore, the strain invariants (I1, I2, I3) of C and B are

also identical,

(1.9)

I1 = trB = λ2
1 + λ2

2 + λ2
3

I2 =
1

2

[
(trB)2 − trB2

]
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

I3 = detB = λ2
1λ

2
2λ

2
3

Because the deformations of many isotropic soft materials are path-independent, i.e., these materials

can recover to their original shape upon release of the external loadings, their constitutive behavior

can be described using a strain energy density that only depends on the strain invariants (I1, I2, I3).

Such materials are termed as hyperelastic materials [70], as aforementioned in section 1.1.2.

In the present thesis, the neo-Hookean hyperelastic model is mostly employed to characterize

the constitutive behavior of gels. The strain energy density of an incompressible neo-Hookean solid

is given by [70]

(1.10) U =
1

2
G(I1 − 3)

For consistency with linear elasticity, the constant G represents the “initial” shear modulus, i.e., the

shear modulus at infinitesimal deformation (I1 → 3). The Cauchy stress of neo-Hookean model can
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be derived by differentiating the strain energy density [70]:

(1.11) σ = −pI + 2G

[
1

2
(B− I)

]

where p is the hydrostatic pressure determined by the external loading. In contrast, considering an

incompressible linear elastic solid with the shear modulus µ, its Cauchy stress is written as [71]

(1.12) σ = −pI + 2µε

where ε is the infinitesimal strain tensor. The comparison between Eq. 1.11 and 1.12 indicates

that the incompressible neo-Hookean model essentially generalizes Hooke’s law by replacing

the infinitesimal strain tensor with finite strain tensor, therefore introducing nonlinearity in the

constitutive behavior.

The nonlinear mechanical behavior of gels result in a huge system of nonlinear equilibrium

equations after discretizing Eq. 1.2, rather than the simple form of Eq. 1.5. As such, solving the

mechanical equilibrium states of soft materials generally requires algorithms with iterative solution

procedures. In many commercial FEM packages, Newton-Raphson method and its variants are

adopted due to their high efficiency and robustness. Details of the Newton-Raphson method can be

found to Ref. [72].

1.2.4. Buckling Analysis in the FEM

The general procedure of buckling analysis in the FEM is illustrated in Fig. 1.3 To investigate the

mechanical instabilities of gels, the first step is to perform a linear pre-buckling analysis to determine

the critical buckling load and initial buckling modes which can be rescaled as small imperfections

in the postbuckling analysis to destabilize the system. By applying a small perturbation load, we

assume a linear response from the inspected system such that the governing equations for the
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Figure 1.3. Flow chart for buckling analysis in the FEM.

buckling in the context of finite element discretization take the from of the eigenvalue problem:

(1.13) (Kmn + λK∆
mn)vm = 0

Here Kmn is the stiffness matrix at the base state, and K∆
mn is the differential stiffness due to the

perturbation. The eigenvector vm of Eq. 1.13 is the buckling mode associated with the eigenvalue λ.

In general, the lowest values of λ are of the most interest as they correspond to the most probable

buckling modes that may emerge. The linear combination of these buckling modes can therefore be

rescaled and added to the base state as a geometric imperfection. The critical buckling load is given

by P = Pn + λQn where Pn and Qn denote the preload and perturbation load respectively.

Once the geometric imperfections are introduced to the system, the postbuckling analysis can

then be performed to obtain the nonlinear solutions. However, the Newton-Raphson algorithm often

has poor performance for postbuckling problems, because the stiffness matrix becomes singular

at the load maximum point as shown in Fig. 1.4. The modified Riks method has been proposed

to overcome this difficulty [72]. It traces the loading curve along an arc (or a spherical plane

in multi-dimension space) so that it can produce a smooth solution of the buckling (Fig. ). For
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Figure 1.4. Algorithms employed in postbuckling analysis. (a) Newton-Raphson algorithm. The
searching efficiency is limited at the maximum point of the loading-displacement curve. (b) Modified
Riks method.

certain problems with dramatically large deformations, it is more effective to carry out a quasi-static

analysis, which is essentially a dynamic analysis with a slow enough loading rate to minimize

inertial effects and therefore delivers equilibrated solutions in the long time limit.

1.3. Outline of Research

The objective of my research is to understand the large deformation behavior and mechanical

instabilities of soft matter systems, with special emphasis on the mechanics of heterogeneous

gels and elastomers. The motivation and big picture of this thesis have been reviewed in the

previous two sections of this chapter. The original work begins in Chapter 2 by investigating the

large contact deformations of an elastomeric pyramid array, a soft periodic structure with broad

applications in unconventional nanopatterning techniques. The distinct deformed shape of these

pyramids is presented, and its pivotal role in generating the unusual features reported in the previous

experimental study is validated using electromagnetic simulations. Chapter 3 explores the intrinsic

properties of perversions that emerge from the helical instability of a heterogeneous bistrip gel.

Rich physics of perversions is unveiled and analyzed through both simulations and experiments,

including the strain energy condensation, perversion-perversion repulsion, hierarchical buckling
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and coalescence of perversions. Chapter 4 proceeds to inspect the anisotropic contraction of fiber-

reinforced hydrogels, inspired by the experimental work by Chin et. al. [73]. The approaches to

optimizing the contraction anisotropy of the hybrid hydrogels are proposed and discussed. In the

end, Chapter 5 concludes the thesis and recommended directions for future research.
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CHAPTER 2

Deformation of Elastomeric Pyramid Pen Arrays in Cantilever-free

Scanning Probe Lithography

2.1. Introduction

Nanopattern fabrication in a high resolution, massively multiplexed and inexpensive manner is in

great demand for a variety of biological, chemical synthesis and micro-electronics applications [74].

Cantilever-free scanning probe lithography (SPL) has recently been developed to address such

challenges. It not only inherits the high resolution and precise controllability of SPL, but also makes

a breakthrough toward a high-throughput nanopatterning approach [75, 76]. The cantilever-free

architecture essentially replaces the expensive and delicate cantilevers in SPL with a low cost

nano- or micro-scale pen array resting on an elastomeric film that adheres to a hard backing,

allowing millions of pens to simultaneously write arbitrary patterns on the substrate. Based on

this concept, different types of cantilever-free SPL techniques, including polymer pen lithography

(PPL) [52], beam pen lithography (BPL) [77] and hard-tip soft-spring lithography (HSL) [78],

have successively emerged as potent and versatile tools for nanopatterning applications in diverse

fields [79, 80, 81, 82].

The morphology and material of the pen array undoubtedly play a decisive role in the perfor-

mance of the cantilever-free architecture. Microscale elastomeric pyramid arrays, the first adopted

pen structure in the development of cantilever-free SPL, have been extensively employed in previous

work [52, 77, 6, 83] owing to their unique structural and mechanical properties. They can be easily

fabricated using soft-lithography techniques in a well-controlled manner [84]. By anchoring the
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base of the pyramid array to a hard backing, the co-planarity between the pyramids and the substrate

is readily ensured for high precision lithographic operations. More importantly, due to the extremely

small radius of curvature of the pyramid apex, the deformation scale of a microscale pyramid can

vary from as small as sub-100 nanometers [52] to micrometers depending on the compressive

force. In addition, the pyramidal structure naturally possesses better mechanical stability com-

pared with the other structures where unexpected buckling behaviors are widely reported in former

research [85].

Besides cantilever-free SPL, many other applications have also taken advantage of the distinct

properties of elastomeric pyramid arrays to realize a variety of functions, notably by coupling

the controllable deformations with other physics. In microcontact printing, a well-known soft

lithography technique for micro- and nanofabrication, pyramidal polydimethylsiloxane (PDMS)

stamps have long been adopted to obtain a more stable and reliable molecular printing process [51,

86, 87]. The recent development of highly sensitive resistive pressure sensors has demonstrated that

a PDMS pyramid array coated with a conductive flexible layer can serve as a deformable electrode

whose electrical resistance changes sensitively with the change of pressure [88, 89, 90]. For

triboelectric nanogenerators, which harvest the mechanical energy through the triboelectrification

between two contacting dissimilar materials, remarkable improvements of the performance can be

achieved by using a deformable pyramid array as the interfacial microstructure [91, 92].

Analytical and numerical studies on the deformation of a single elastomeric pyramid have been

conducted in previous research. The most intuitive and broadly used approach treats the deformed

shape as a truncated pyramid [5, 93]. With this approximation, relationships between the width of

the contact surface and the loading conditions can be readily established based on simple geometric

analysis. In addition, Kim, et. al. have modeled the PDMS pyramids with cones to investigate the

variation of the adhesive contact area under compression, assuming a small deformation that only
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occurs at the apex of the pyramid [94]. Although these simplified analytical models are easy to

understand and convenient to use, they do not fully capture the mechanical behavior and the irregular

shape of the deformed pyramid. In order to improve our understanding, Jin, et. al. numerically

explored the frictionless adhesive contact between a deformed PDMS pyramid and a glass substrate

with different adhesion models [95]. Moreover, finite element simulations of a few specific systems

involving deformed pyramid arrays have been performed to compare with the experimental data

[86, 89, 96]. However, to the best of our knowledge, systematic studies on the deformation of an

elastomeric pyramid array, especially the effect of the inter-pyramid interactions and the unique

shape of the contact surface, are lacking.

In this paper, we develop a comprehensive numerical study on the compression of an elastomeric

pyramid array in a non-adhesive and frictionless contact with a rigid substrate. For a single pyramid,

the scaling laws of the width of the contact surface are established with respect to the compression

displacement and force, and are compared with the available modeling and experimental results.

By reducing the inter-pyramid distance and the thickness of the elastomeric base, we also inspect

the deviation from these scaling laws for a pyramid array. Furthermore, the unique shape of the

contact surface is investigated and employed in electromagnetic simulations to explain the unusual

inhomogeneous BPL features reported in the previous study. Our findings bring insight into the fine

control of the feature shape and patterning resolution in the common cantilever-free SPL techniques

such as PPL, BPL and their variants, and may also potentially facilitate the design of other functional

devices involving compressed elastomeric pyramid array.

2.2. Model

In present work, we use the following generic model to describe the compression of the

pyramidal pen array in a typical lithographic operation of cantilever-free SPL. As illustrated in
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Figure 2.1. Schematics of our model for an elastomeric pyramid array. (a) Schematic structure of
the pyramid pen array adopted in cantilever-free SPL. (b) Illustration of the loading procedure in
our simulations: a rigid substrate is compressed against an elastomeric pyramid array. (c) Schematic
geometry of a single pyramid contained in a unit cell with periodic boundary conditions.

Fig. 2.1a, we consider an elastomeric base patterned with a periodic array of pyramids that is

anchored on a rigid backing and placed parallel to another rigid flat substrate. By externally

controlling the distance between the base and the substrate, the pyramids deform responsively upon

a conformal contact with the rigid substrate (see Fig. 2.1b). We represent the pyramid array as

a two-dimensional square lattice of unit cells. Within each unit cell, an elastomeric pyramid is

associated with a square base (Fig. 2.1c); both the pyramid and the base are made of the same

material.

The geometry of a pyramid is defined by the width of the square bottom plane (l) and the

semi-apex angle (θ), as depicted in Fig. 2.1c. In the present study, we set θ ≡ arctan(1/
√

2), thus

all the edges of the pyramid must possess equal length l, and the height of the pyramid H = l/
√

2.

This value of θ results from the particular shape of the square pyramidal pits in a silicon 〈100〉 wafer

used as the replica mold to fabricate the elastomeric pyramid array; such pyramidal pits are often
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produced by anisotropically etching the wafer along the 〈111〉 directions [97, 84]. Therefore, the

semi-apex angle of the pyramid is well-defined by the angle between 〈100〉 and 〈111〉 directions.

By definition, the area of the contact surface, denoted by Ac, can be numerically estimated

by accumulating the area with non-zero contact stresses. Experimentally, however, it is often

convenient to characterize the contact area with the width of the contact surface (denoted by lc).

For simplicity, we assume a frictionless and non-adhesive contact between the pyramid and the

rigid substrate in our generic model. It is observed in our simulations that the friction has negligible

effect on the force-displacement relationship of the pyramid: the overall difference between the

frictionless contact and the contact with a large friction coefficient is less than 1%. On the other

hand, using an adhesive contact may notably impact the mechanical behavior of the pyramid [95].

However, since the adhesion highly depends on the nature of the specific materials involved in the

contact, we herein do not incorporate it into our model.

Considering the potentially large deformations of the pyramids, we employ the incompressible

neo-Hookean model, which is the simplest hyperelastic model that can capture the elasticity of

various elastomeric materials used for fabricating pyramid pens. Eq. 1.10 gives the strain energy

density function of an incompressible neo-Hookean solid.

2.3. Implementation of the Finite Element Model

2.3.1. Geometry and mesh

We resort to finite element analysis using the commercial code ABAQUS to track the deformations of

the pyramid array. Non-linear static analyses are performed in a quarter of the unit cell considering

the four-fold symmetry of the geometry. As illustrated in Fig. 2.2a, the geometry built in the FEM

consists of a tetrahedron and a rectangular block, and the substrate is modeled as a rigid analytical

surface which has an initial contact with the apex of the tetrahedron. In particular, the tetrahedron
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Figure 2.2. The geometry and mesh of the finite element model for an elastomeric pyramid array.
(a) The geometry of a quarter of the unit cell. The loading and boundary conditions are listed in
Table 2.1. (b) The partition method of the texahedron. (c) The hexahedral mesh of the texahedron.
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Table 2.1. Parameters for finite element modeling of the compression of the elastomeric pyramid
array. The notation of the geometrical parameters follows the same as Fig. 2.1. The vertices of the
geometry in Fig. 2.2 are used to represent the faces for the boundary conditions.

Geometry (µm) Element
L 8.0

C3D8R with enhanced hourglass controlH L/
√

2
W 64 (For a single pyramid)
t 32 (For a single pyramid)

Materials Boundary conditions
G Vary form 0.25 ∼ 3.0MPa SABC Encastred

(mdb.model[name].EncastreBC)
SOEF and the substrate Nonadhesive and frictionless contact
SOACDE Symmetric face

(mdb.model[name].YsymmBC)
SOABGF Symmetric face

(mdb.model[name].XsymmBC)
SBCDG Displacement uξ = 0
The substrate Displacement at the point O:

u1 = u2 = 0, u3 is non-zero.
Rotations are not allowed.

must be carefully meshed to ensure the precision and convergence of the simulations when the

contact deformation becomes substantially large. Although it is natural to use tetrahedral elements

to mesh the tetrahedron, the required mesh size has to be extremely small (millions of elements

in total), which significantly raises the computational cost. A better choice is to construct the

mesh with hexahedral elements which are expected to produce more accurate stress field with

much less elements. However, the tetrahedron cannot be directly meshed with hexahedral elements,

as ill-shaped elements are unavoidable in this situation, and convergence difficulties may occur.

Indeed, the tetrahedron needs to be appropriately partitioned into hexahedrons which can be easily

meshed using hexahedral elements. In Fig. 2.2b, six internal faces are introduced to partition

the tetrahedron: each of these faces is determined by the geometric center of the tetrahedron

and its vertical projections on two of the tetrahedron surfaces. A high quality hexahedral mesh

is therefore achieved in Fig. 2.2c. This partitioning strategy can be implemented in ABAQUS
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by directly connecting the vertices and crossing points following Fig. 2.2b, and constructing the

faces and volumes accordingly. In the present study, the tetrahedron and the base are meshed

using linear hexahedron structural elements (C3D8RH, the hybrid formulation is used due to the

incompressibility of the material), and the mesh density is validated through convergence tests.

2.3.2. Loading and boundary conditions

The loadings and boundary conditions are illustrated in Fig. 2.2a and listed in Table 2.1. Periodic

boundary conditions are imposed according to the geometric symmetry: the face SBCDG will

not undergo out-of-plane deformations. Indeed, all the nodes in SBCDG should have the zero

displacement along ξ direction (see the inset of Fig. 2.2a), as the SABC is anchored to a rigid back

(encastred). In ABAQUS, this can be achieved by specifying a local coordinate system with x-axis

pointing along ξ direction such that the displacement along the local x-axis can be manually set to

zero. Additionally, it is worth mentioning that the discretization method for the contact surfaces x

and the rigid substrate should be node-to-surface, which is suitable for the contact problem between

a sharp point and a surface. Overall, by specifying the displacement of the rigid substrate toward the

base, and meanwhile fixing the bottom of the base, the deformation of the system can be simulated

to obtain the desired information of contact and the compression force on the substrate.

2.4. Results and Discussion

We start by investigating the deformation of a pyramid array with negligible boundary effects,

i.e., both the width of each unit cell and the thickness of the base are much larger than the size of the

pyramid. As shown in the snapshots of Fig. 2.3a, the pyramid is gradually pressed into the base due

to the increasing compression displacement denoted by d (i.e. the displacement of the substrate),

and meanwhile a concave deformation occurs on the associated base of the pyramid. In particular,
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Figure 2.3. The simulated deformation of an elastomeric pyramid under compression. (a) The
snapshots of the deformation process with the increasing compression displacement (normalized by
H). (ii) – (v) demonstrate the distributions of von Mises stress in the cross-section illustrated in
(i). The elastomeric base is not displayed in (i) and (vi). (b) The normalized width of the contact
surface (l̃c) as a function of the normalized compression displacement (d̃). The fitting parameters
are shown in the upper right corner. All the simulations in (a) and (b) are performed with L = 8 µm
and G = 1.0 MPa.

the growing contact area between the deformed pyramid and the substrate is observed; Fig. 2.3b

shows that the normalized width of the contact surface (l̃c = lc/L) increases linearly as a function

of the normalized compression displacement (d̃ = d/H), thus

(2.1) l̃c ∝ d̃
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Exactly the same contact behavior is also found in simulations for pyramids of various sizes

(8µm ≤ L ≤ 32µm), thus Eq. 2.1 is size independent. The linear fitting in Fig. 2.3b gives

l̃c/d̃ ≈ 0.86, while a simple truncated pyramid geometry assumes l̃c/d̃ = 1 > 0.86, which therefore

overestimates the width of the contact surface for a specified d̃.

Our simulations further show that the normalized width of the contact surface increases in

proportion to the square root of the compression force against the pyramid (see Fig. 2.4a) for

different values of the initial shear modulus, that is,

(2.2) l̃c ∝ f 1/2

To validate the simulation results, Eq. 2.2 is fitted to the reported experimental data measured from

the features fabricated by PPL [5]. A fairly good agreement is obtained, as shown in Fig. 2.4b. The

discrepancies may arise partly from the fact that the feature size in PPL monotonically increases

with the dwell time between the pyramid pen and the substrate [5]. For different values of dwell

time and compression force, the feature size can deviate significantly from the real contact area.

Besides, the absence of the adhesion between the pyramid and the substrate in our model may also

contribute to the discrepancies. It has been demonstrated that enhancing the adhesion of the contact

surface can lead to a substantial increase of l̃c for a specified f [95]. It is worth noting that, in

the previous study [5], the experimental data in Fig. 2.4b have been explained with an empirical

model assuming a two-stage linear dependence of lc on f based on the analysis of a simple elastic

truncated pyramid. The discontinuous transition of the mechanical properties between the two

stages has been attributed to the nonlinear constitutive response of the elastomeric material. In our

simulations, however, the same scaling behavior of Eq. 2.2 is also observed when employing other

constitutive models such as linear elastic and Mooney-Rivlin model. Therefore, we conclude that
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Figure 2.4. The scaling behaviors of the normalized width of the contact surface l̃c in terms of the
compression force f . (a) l̃c as a function of f 1/2 for different initial shear moduli of the elastomeric
material. Linear fittings are performed for all of the five data sets and shown as straight lines;
all R2 > 0.999. L = 8 µm in all the simulations. (b) The linear fitting of the experimental data
(redrawn from Ref. [5]) to the scaling lc ∼ f 1/2.

the scaling law of Eq. 2.2 is independent of the specific constitutive response of the elastomeric

material composing the pyramid.
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Figure 2.5. (a) The normalized width of the contact surface l̃c as a function of the normalized
compression displacement d̃ for different inter-pyramid distances W . The bottom right inset shows
the linear relationship between l̃c and the square root of the compression force (f 1/2) for all the
inspected W . (b) The cross-sectional view of the deformed pyramid with W = 1.5L (left) and
W = 8.0L (right). d̃ = 0.71 in both cases. The position of the inspected cross-section is the same
as in Fig. 2.1a. The dashed contours depict the undeformed shape of the pyramid. The arrows
indicate the separation between the deformed free surface of the base and the substrate. All the
simulations in (a) and (b) are performed with L = 8 µm and G = 1.0 MPa

We further explore the deviations of the established scaling laws by varying the size of the

unit cell (the inter-pyramid distance W ). Simulations show that l̃c ∝ f 1/2 still holds for different

values of W (see the inset of Fig. 2.5a), while the relationship between l̃c and d̃ presents substantial

deviations from Eq. 2.1: when d̃ is less than ∼ 0.3, the deformation of the pyramid is mostly

localized near the tip apex, thus l̃c ∝ d̃ is still observed for all the inspected W (Fig. 2.5a). In
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𝑡

Figure 2.6. The normalized width of the contact surface l̃c as a function of the normalized
compression displacement d̃ for different thicknesses (t) of the base. The bottom right inset shows
the linear relationship between l̃c and the square root of the compression force (f 1/2) for all the
inspected t. L = 8 µm, G = 1.0 MPa.

the contrast, when d̃ > 0.3, l̃c becomes significantly larger than predicted by Eq. 2.1, especially

for smaller W . Such deviations arise from the deformation of the elastomeric base induced by

the compression of the pyramid. The free surface of the base must at least partially move toward

the substrate to compensate the lessened volume of the compressed pyramid; for smaller W , such

responsive deformation becomes much more notable as can be identified in Fig. 2.5b, and it indeed

propels the pyramid against the substrate, which promotes the compression of the pyramid and

therefore enlarges the contact area. Consequently, we conclude that by decreasing the inter-pyramid

distance, the width of the contact surface deviates toward larger values from the established scaling

behavior l̃c ∝ d̃, notably at a large compression displacement.
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Interestingly, similar deviations from the l̃c ∼ d̃ scaling are also observed when varying the

thickness of the base denoted by t, as shown in Fig. 2.6. However, the underlying mechanism is

essentially different from above. For a specified compression displacement, a thinner base undergoes

a larger strain on average near its connection with the pyramid, which in turn impedes the further

compression of the pyramid; as such, it becomes more favorable for the deformation of the pyramid

to develop along the lateral directions, hence leading to a larger contact area.

We note that the contact surface possesses a unique shape, which has also been reported in

previous studies [93, 87, 95]. As shown in Fig. 2.7a, the edges of the contact surface are concave

due to the recessed deformations of the lateral faces of the pyramid. Therefore, the total area of the

contact surface (Ac) must be less than l2c ; a rough estimation based on the discretized contact surface

indicates that Ac/l2c ≈ 0.7. Such unique shape may lead to unexpected outcomes in the experiments

sensitive to the shape of the contact surface. For example, the apertureless BPL technique, which

generates photoresist patterns by directly delivering light through transparent, compressed pyramid

arrays, sometimes produces inhomogeneous features with a rounded square hole in each of the

feature center [6]. The simplified model with a truncated pyramid cannot fully explain this unusual

phenomenon.

To address the cause of the these puzzling lithographic features, we perform finite-difference

time-domain (FDTD) simulations with a commercial code (Lumerical FDTD solutions v.8.7.0) for

both the compressed pyramids obtained from our FEA simulations and simple truncated pyramids.

Specifically, a polarized plane wave pulse in time domain with wavelength ranging from 300 ∼

500 nm is incident normally from the elastomeric media to the pyramidal surface and the underlying

photoresist layer (see Fig. 2.7b). The electric fields are monitored at the top, middle and bottom

plane of the photoresist layer, and then fourier-transformed to frequency domain to generate intensity

profiles for a specific wavelength (here a wavelength of 405 nm is inspected according to Ref. [6]).
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Figure 2.7. (a) The shape of the contact surface determined by the contact pressure. d̃ = 0.8,
L = 8 µm, G = 1.0 MPa. (b) Lateral view of the FDTD simulation layout to model the patterning
process of the apertureless BPL technique. The annotated red lines in the photoresist layer represent
the three two-dimensional monitors to record the light intensity. (c) Left: the experimental photore-
sist patterns generated by the apertureless BPL technique. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permission from Ref. [6]. Feature sizes are 3.40 µm, 2.58 µm and
1.26 µm from top to bottom. Scale bar: 2 µm. Right: near-field intensity profiles generated by
FDTD simulations using the irregular shapes of the compressed pyramids. From top to bottom:
lc = 3.66 µm, 2.44 µm, and 1.22 µm respectively. From left to right: the intensity profiles recorded
by the top, middle and bottom monitors in the FDTD simulations. Scale bar: 2 µm.

We superimpose the intensity profiles generated by two orthogonally polarized light sources to

simulate an unpolarized incident light source for comparison with the experiments.

Simulations with the compressed pyramids show excellent agreement with the experimental

results, as illustrated in Fig. 2.7c. The light intensities are mostly concentrated on the corners
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𝑙𝐶

Figure 2.8. The lateral view of the near-field intensity profiles of the photoresist layer generated by
FDTD simulations using the shapes of the compressed pyramids. The inspected plane is a symmetric
plane of the pyramid parallel to one of its bottom edges. From top to bottom: lc = 4.24 µm, 2.83 µm,
and 1.41 µm respectively. Scale bar: 0.5 µm.

Middle BottomTop

Figure 2.9. Near-field intensity profiles generated by FDTD simulations using the shapes of
truncated pyramids. From top to bottom: lc = 4.24 µm, 2.83 µm, and 1.41 µm respectively. From
left to right: the intensity profiles recorded by the top, middle and bottom monitors in the FDTD
simulations. Scale bar: 2 µm.
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and edges of the contact surfaces, and relatively low intensities are found around the central

area, therefore giving rise to the rounded square holes revealed in the experiments. Moreover, in

consistency with the experimental findings, four “arms” of intensity are observed to extend from the

corners of the square feature.

We note two major distinctions between the numerical and the experimental results: the

presence of the coherent patterns, and the relatively weaker intensity of these “arms” observed in

our simulations. These differences stem from the fact that Fig. 2.7c has not fully demonstrated the

3D intensity information recorded in the photoresist layer. The 2D photoresist patterns observed in

experiments are essentially projected from the 3D intensity profile. As such, we further construct a

lateral view of the 3D intensity profile of the photoresist layer as shown in Fig. 2.8. The inspected

plane is a symmetric plane of the pyramid parallel to one of its bottom edges. It can be identified

that the coherent patterns are divergent instead of parallel to the incident direction of the light.

Therefore, the projected 2D photoresist patterns should possess a larger area than the real contact

area, and exhibit less coherent features than those shown in Fig. 2.7c.

In contrast to the above agreement, simulations with a simple truncated pyramid fail to reproduce

these unique characteristics of the experimental features, as evidenced by Fig. 2.9. Therefore, the

distinct shape of the compressed pyramid plays a crucial role in developing these unusual BPL

features, and may potentially be important in the applications of other cantilever-free SPL techniques

using deformable pyramid pen arrays.

2.5. Conclusions

In summary, we numerically examine the compression of an elastomeric pyramid array that

is widely employed as the pen structure in cantilever-free SPL, assuming a non-adhesive and

frictionless contact with the rigid substrate. Our results reveal simple scaling laws for the width
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of the contact surface with respect to the compression displacement and force. A reasonably good

agreement is achieved between the existing experimental data and the scaling law Eq. 2.2 which is

based on a more solid foundation than the previous empirical model. By reducing the inter-pyramid

distances or the thickness of the elastomeric base, the width of the contact surface increases notably

faster than the established scaling law at high compression displacement. We further inspect the

unique contact surface shape that has yet been explicitly investigated in previous research. Using

FDTD simulations, we successfully prove that the unusual features fabricated by the apertureless

BPL techniques stem from the distinct shape of the compressed pyramid pen. As such, we believe

that these results contribute to a better understanding of the deformation of the elastomeric pyramid

pen array, which paves the way for a more precise control of the feature size and shape in the

particular cantilever-free SPL techniques. Our findings may also be useful for designing novel

functional devices where compressed elastomeric pyramid arrays play an important role, including

highly sensitive pressure sensors, triboelectric nanogenerators, and beyond.
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CHAPTER 3

Emergent Perversions in the Buckling of Heterogeneous Elastic Strips

Portions of this chapter were first published in Proc. Natl. Acad. Sci.: 113, 7100-7105 (2016)

3.1. Introduction

Spontaneous symmetry breaking provides a unifying conceptual understanding of emergent

ordered structures arising in various condensed matters [98]. In an elastic medium, which is

one of the simplest organizations of matter, symmetry-breaking instabilities via buckling can

lead to extraordinarily rich patterns and generate a wealth of shapes at multiple length scales

that can be exploited in many scientific disciplines [99]. A prototype of elastic buckling is the

Euler instability of an homogeneous elastic rod under uniaxial compression at the ends that finally

breaks the rotational symmetry [100]. Introduction of extra structures in an elastic medium like

mechanical heterogeneities [22], non-linearity of materials [99], geometric asymmetry [101] or

intrinsic curvature [102] provides new dimensions that can produce even richer buckling modes,

including helices and perversions [102, 103], wavy structures [104], regular networks of ridges [105],

and even self-similar fractal patterns [99, 106]. Of these emergent symmetry broken structures,

the helical shapes are of particular interest due to their ubiquitousness in nature and the strong

connection with biological motifs, as noticed by Darwin in his 1875 book describing the curl of plant

tendrils [107]. Remarkably, biological helical structures permeate over several length scales from

the developed helical valve on opening seed pods [62], to the regular chiral structures in the flagella

of bacteria [108], the spiral ramps of rough endoplasmic reticulum [109], and the chromosome of E.

coli [110, 111].
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The proliferation of perversions in an otherwise uniform helical structure can further break the

helical symmetry (Fig. 3.1a shows a typical perversion in the helix) [102, 112, 22]. Here a perversion

refers to a kink that connects two helices with opposite chiralities. Therefore, perversions belong to

a large class of fundamental defects in systems with discrete symmetry which have the names of

domain walls, solitons, or kinks depending on the particular context [98]. In contrast to domain walls

in prototype spin systems, perversions embedded in both natural [102, 112] and artificial [22] helical

systems have the unique freedom to wind around themselves in response to mechanical or geometric

constraints. This salient feature of perversions accounts for several important observations, including

the generation of more helices by a self-winding single perversion [102] and formation of the ripple

patterns extensively found in animal guts and leaf edges through multiple perversions [29, 113].

Recent studies have further revealed that the perversion in the cucumber tendril, with its variable

local stiffness, can unexpectedly overwind under tension rather than unwinding [23]. Previous

theoretical studies using an ideal rod model with intrinsic curvature have qualitatively characterized

the perversions [114, 115], yet cannot fully capture the postbuckling deformation or the interactions

between perversions. These studies inspire us to have a closer look at the nature of perversions in

helical structures, including perversions driven helical symmetry breaking and interactions between

perversions.

The bistrip hyperelastic system provides an ideal model for studying the helical symmetry

breaking and the physics of the resulting emergent perversions. The model hyperelastic system

consists of two clamped strips with rectangular cross sections (see Fig. 3.1b); the shorter strip (strip

A) is stretched and then attached to the longer one (strip B). With reduction of the strip length,

we numerically observe the hierarchical buckling in the sequence of the development of helical

shapes and then the spontaneous formation of perversions therein. Systematic simulations using

different mesh sizes and initial perturbations show that the bistrip system can be easily trapped in
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Figure 3.1. The illustration of the bistrip model. (a) shows a typical perversion arising in an
otherwise uniform helix (the upper figure) by controlling the boundary condition. (b) illustrates the
bistrip model we used in the simulation. Strip A has the same cross section as strip B but shorter
length in the initial state. Strip A is stretched and glued to strip B; both strips have the same length.
One end of the bistrip system is fixed while the other end is allowed to translate but forbidden to
rotate. (c) shows the first 5 buckling modes from eigenvalue buckling analysis.

metastable states; it is not guaranteed that the lowest energy conformation found by optimizing

the simulation parameters are the true ground state. We therefore focus on the intrinsic features of

perversions that are independent of specific shapes. Our study reveals the remarkable condensation

of strain energy over perversions during their formation and the repulsive nature of the perversion-

perversion interaction. These intrinsic properties of perversions may be exploited in the design of

micro-muscles [116] and soft robotics [117].

3.2. Model

In the bistrip hyperelastic model, the strips have the same rectangular cross section but different

lengths in their free states (see Fig. 3.1b). The upper shorter strip is firstly longitudinally stretched

to the same length as the lower longer one, and then they are “glued” together such that both mutual

slide and delamination are forbidden. In simulations, we carefully control the slow approach of the
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anchored ends of the bistrip whose orientations are fixed. The geometric and mechanical incompat-

ibility of the strips is numerically observed to drive the out-of-plane deformations, including the

helical shapes and perversions. The strips are made of the same material. Considering the involved

large elastic deformations, we employ the compressible Neo-Hookean model which accounts for

the volumetric vairation compared with Eq. 1.10. Herein the stress and strain are related via the

following form of the strain energy density U [45]:

(3.1) U =
G

2

(
I1 − 3

)
+
K

2
(J − 1)2

where K characterize the resistance of the material to compression. J = λ1λ2λ3 representing the

elastic volume ratio of the solid. I1 = J−2/3(λ2
1 + λ2

2 + λ2
3). In our simulations, we employ a

large K so that the material is treated as nearly incompressible, which is required for a quasi-static

analysis introduced in the later texts. It seems that the appearance of perversions in the buckled

helical system does not rely on the hyperelastic nature of materials; in soft elastic materials former

finite element simulations have also revealed the existence of perversion structures [22].

In contrast with Euler’s rod, the rectangular cross section in the pre-stretched bistrip system

is crucial for the appearance of nontrivial regular structures like the initially developed periodic

helical shape and the scattered perversions therein with the reduction of the strip length. We first

perform qualitative geometric analysis of helices and perversions in an originally flat strip whose

ends are clamped without allowing any movement and rotation (see Fig. 3.2). A perversion can be

produced by grabbing a point on the strip and rotating the strip (Fig. 3.2b). This generated perversion

connects two helices with opposite chiralities. Further rotation from Fig. 3.2b to 3.2c leads to a

reduction of the pitch and an increase of the number of helices in the paper strip. More perversions

can be produced by grabbing other points and rotating in the region of helices. Therefore, the

strip-like geometry does not impose a constraint on the allowed number of perversions. Multiple
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Figure 3.2. Paper experiments to illustrate that the number of perversions on the helical system is
not geometrically constrained. By grabbing and rotating a point on the initially straight paper band
(a), a perversion can be manually produced as shown in (b). Further rotation of the perversion in (c)
can generate more helices.

perversions have been found in animal guts [29] and in the bistrip model [22]. The specific number

of perversions in a helical strip is determined by several factors, such as the materials property and

the external constraints [22, 118].

3.3. Implementation of the Finite Element Model

We resort to finite element analysis to track the shape evolution of the heterogeneous bistrip.

The modeling parameters and boundary conditions are listed in Table 3.1 unless otherwise noted.

As elaborated in 1.2.4, we first perform an eigenvalue buckling analysis to examine the stability

of the bistrip under the constraints in Fig. 3.1b. The eigenvalue buckling analysis is performed

using the Buckle Module in ABAQUS/Standard using the 3D linear reduced integration elements



57

Table 3.1. Parameters for finite element modeling of the postbuckling of a bistrip. The bistrip is
assumed to be longitudinally oriented to z-axis. The notation of the geometrical parameters follows
the same as Fig. 3.1.

Geometry (cm) Element
w Vary from 0.5 ∼ 0.9

C3D8R (Explicit) with enhanced hourglass controlh 0.3
L 30
L′ L/3.5

Materials Boundary conditions
G 1.5 MPa Fixed end of the bistrip (z = 0), Encastred
K 40 MPa Moving end of the bistrip (z = L) u1 = u2 = 0, u3 < 0

Connected surfaces of the bistrip Tie constraint applied
(mdb.model[name].Tie
in Python script)

(b)

(a)

Fixed end

Fixed end

Stops

Continue moving

Figure 3.3. The effect of the displacement loading rate on the buckling shape of the bistrip. The
original lengths of the bistrip in (a) and (b) are both 30.0 cm. (a) shows the buckling shape when
the moving end stops at 23.3 cm. (b) shows the buckling shape at 23.3 cm while the end-to-end
distance will continue shrinking to 9.0 cm.

(C3D8R). The eigenmodes of the bistrip include two types of perturbation shapes depending on the

shape symmetry. Among the 5 modes listed in Fig. 3.1c, modes 1, 3 and 5 have mirror symmetry,

while the others do not have apparent symmetry. Further simulations show that the postbuckling

shapes of the bistrip do not appear dependent on the type of these eigenmodes.
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The obtained eigenmodes are used as initial perturbations for the explicit dynamical finite

element analysis performed in ABAQUS/Explicit using C3D8R elements (*Imperfection in the

.inp file). A Python code snippet for seeding imperfections to the geometry is shown below:

1 def GetKeywordPosition(model, prefix, maxTimes = 1):
2 keywordPos = 0
3 found = 0
4
5 if prefix == "":
6 return len(model.keywordBlock.sieBlocks) - 1
7
8 for block in model.keywordBlock.sieBlocks:
9 if block[0 : len(prefix)].lower() == prefix.lower():

10 found = found + 1
11 if found >= maxTimes:
12 return keywordPos
13 keywordPos = keywordPos + 1
14
15 return 1
16
17 modelBistrip.keywordBlock.synchVersions()
18 keywordPos = GetKeywordPosition(modelBistrip, '*Boundary\n_M8, ENCASTRE')
19 modelBistrip.keywordBlock.insert(position = keywordPos,
20 text = '*Imperfection, file=Buckling_Analysis_Job, step=1\n1, 1e-3'
21 )
22 modBistrip.keywordBlock.synchVersions()

The initial stress of the prestretched strip can be imported using mdb.model[name].Stress in

Python script.

In our simulations, the quasi-static equilibrium is enforced by carefully controlling the displace-

ment loading rate of the moving end such that the kinetic energy of the system (ALLKE in the history

output of ABAQUS) is negligible compared with strain energy (ALLSE in the history output of

ABAQUS). A smoothing amplitude (mdb.model[name].SmoothStepAmplitude) is applied to

the displacement loading for stabilizing the early response of the bistrip. The shape evolution of the

bistrip system will be perturbed by this displacement loading rate, so changing the total loading

time and distance can result in different buckling states of the bistrip even at the same end-to-end

distance. For instance, both the bistrip shapes shown in Fig. 3.3a and 3.3b are obtained by reducing
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the end-to-end distance from 30 cm to 23.3 cm. However, the moving end in Fig. 3.3a will stop

exactly at 23.3 cm, while in Fig. 3.3b the end will continue moving until the end-to-end distance

reduces to 9.0 cm. Consequently, different numbers of perversions emerge in Fig. 3.3a and 3.3b.

A careful mesh refinement study is performed to determine the best mesh size and fineness

for the simulations, meanwhile ensuring that the total strain energy is converged. However, our

results also indicate that the bistrip system can reach multiple metastable states by varying the mesh

densities. These states have very close strain energy but different numbers of perversions. Since we

are only concerned with the intrinsic properties of perversions, the presence of these metastable

states does not influence our major conclusions.

3.4. Results and Discussion

In the simulations, the ends of the bistrip are carefully controlled to approach each other without

allowing any rotation. This constraint ensures that the helices formed near the ends have opposite

chiralities and guarantees the appearance of a perversion. Figure 3.4a demonstrates the growing of

the initially slight out-of-plane deformation and the subsequent development of the single perversion

in the helical state (For convenience of visulization, the end-to-end distances of the buckled bistrip

are normalized in Fig. 3.4a; the buckling process with unnormalized end-to-end distances is shown

in Fig. 3.5). The emergent perversion is located at the center of the strip, breaking the helical

symmetry while preserving the mirror symmetry. The perversion is observed to wind around itself

to generate more helices and meanwhile suppressing its own size. It has been observed that climbing

tendrils also conform to the same winding scheme while growing longer [102]. In our case, the

winding perversion plays the opposite role; it winds to reduce the pitch of helices in response to the

reduction of the end-to-end distance of the bistrip.
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Figure 3.4. The energy condensation in the perversion of the bistrip system. (a) The formation
and evolution of one perversion with the reduction of the strip length L, w = 5 mm, h = 3 mm,
L = 30 cm and L′ = L/3.5 following the notation labeled in Figure 3.1b. The stress state of the
bistrip is characterized by the distribution of the scalar von Mises stress which is originally proposed
to analyze the yielding of materials [7]. (b) The scaled strain energy profile of the strips in (a).
Ẽ (n) = E (n) /min{n}{E (n)} − 1, where n labels the slab of elements as shown in the inset, and
E (n) is the total strain energy of all these elements in the n-th slab. (c-f) The designed bistrip
system made of polyethylene and pre-stretched rubber strip to confirm the numerically observed
energy condensation over the perversions. (c) and (d) show the shape of the bistrip before and after
buckling. The inset in (c) shows the featureless birefringence pattern of the initial bistrip. The
dashed red lines in (e) and (f) indicate the interface of the two strips. The different birefringence
patterns in the perversion (e) and the helical (f) regions reflect the distinct strain energy distributions.

Simulations show that as the perversion is winding, the strain energy is concentrating. Fig-

ure 3.4b shows the energy distribution along the strip with the conformations in Fig. 3.4b. The

energy is obtained by dividing the bistrip into n slabs and summing the strain energy across the

cross sectional area of the slab. This quantity is then re-scaled to capture the relative energy changes

in the perversions and in the helices. The energy condensation in the perversion region is clearly

seen in Fig. 3.4b. The winding of the perversion provides the specific mechanism to focus energy

locally in the perversion region. The amount of energy condensation will eventually saturate
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Moving end Fixed end

Figure 3.5. The buckling process of the bistrip in Fig. 3.4a without normalizing the end-to-end
distances.

if the two ends of the bistrip are sufficiently close, since the perversion and helices under high

compression will have contact with each other, and the whole structure may collapse at the position

of the perversion. The spontaneous focusing of energy is a rich concept that permeates in fields

as diverse as fluid mechanics, electrostatics, and elasticity of 2D materials [105]. Similar energy

condensation phenomena occur on ridges in two-dimensional elastic medium where the stress is

focused [105]. Here the revealed strain energy concentration is the demonstration of the energy

focusing in three-dimensional elastic medium. The perversions as energy-absorbing singularity

structures in helical systems may find applications in the design of micro-muscles [116] and soft

robotics [117].

To check the reliability of numerical simulations and to exclude the possibility that the nu-

merically observed energy focusing phenomenon is due to any hidden artifacts in simulations,
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Figure 3.6. Analysis of the strain energy distribution over the cross section at different sites
demonstrates distinct energy transfer modes in the perversion and helical regions. The images below
show the distribution of strain energy density (εs) at sites 1, 2 and 3 in the above image, respectively.
The cross sections of strip A and B share different scale bars for the different energy density ranges.
The middle inset in the circle depicts the region over the cross section where we inspect.

we perform experiments to substantiate that the perversion structure is indeed energetically dis-

tinguishable from helices. The bistrip system is created by carefully casting melt polyethylene

onto a pre-stretched rubber strip; the melt polyethylene becomes an initially stress-free elastic strip

once it cooled. Figure 3.4c-f show the shapes of the bistrip with the controlled shrinking as in

Fig. 3.4a. The differentials in the energy distribution over the strip is characterized by analyzing

the birefringence of the elastic medium. No birefringence occurs in the initially straight strip (see

the inset in Figure 3.4c). Birefringence patterns start to emerge at both the perversion (Fig. 3.4e)

and the helical regions (Fig. 3.4f). Closer examinations show that in the perversion region the

colored pattern only spreads around the edge of the pre-stretched strip, while at the helical region,

the pattern distributes smoothly across the strip. To conclude, the distinct optical responses in the

perversion and helical regions reflect the energetically distinguishable local states.

We resort to numerical simulations to perform quantitative analysis of the strain energy distribu-

tion over the strip, as the optical patterns in experiments can only reveal limited information. The
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distinct birefringence patterns in Fig. 3.4e and 3.4f imply different modes of transferring strain

energy over the cross section from the high energy pre-stretched strip to the other one in contact.

Fig. 3.6 illustrates the energy distributions over the cross sections at typical sites at the bistrip. In

the helical region labeled 1 in Fig. 3.6, the strain energy is evenly distributed along the interface.

At the edge of the perversion labeled 2, the distribution of the energy over the cross section at the

side of the strip B is similar to that in the helical region, while in the cross section of strip A the

strain energy mostly concentrates at the lower-left corner attached to strip B. This trend is more

pronounced over the cross section at the center of the perversion labeled 3; the strain energy in

strip A is focused on the left side, while at the side of the strip B the strain energy is concentrated

at the upper right corner where the strip B is highly squeezed. To conclude, the strain energy is

transferred highly unevenly within the perversion from strip A to strip B compared with that in

the helical region. In other words, in the perversion region the transferred energy distribution in

strip B is obviously uneven. The obvious discontinuity in the strain energy distribution over the

thickness of the bistrip system in Fig.3.6 suggests that the basic features in the deformation of the

bistrip system cannot be fully captured by a two-dimensional elastic model.

We study the case of multiple perversions on a single bistrip. These can be introduced by

adjusting the geometric parameters of the strip and the loading rate. Figure 3.7a shows that

the mirror symmetry of the system is broken while the three perversions are winding around

themselves (see the last two conformations). Specifically, the broken mirror symmetry results from

asynchronous rotation of the two perversions at the sides of the central perversion. As in the case of

single perversion, all three perversions are observed to wind around themselves to shrink the strip

length to fit the boundary condition and to reduce the energy of the system. The longitudinal energy

distribution in Fig. 3.7b reveals the repulsive nature of the perversion-perversion interaction; the

elevated energy profile between the perversions 1 and 2 in Fig. 3.7b is an indicator of repulsive
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Figure 3.7. The formation and evolution of three perversions in a single bistrip. (a) and (b) show
the conformations and the corresponding strain energy distribution. (a) shows that the symmetric
bucklings of the perversions are broken by the winding of the rightmost perversion where the
strip length is reduced by 35%. In (b), the energy peaks labeled as 1, 2 and 3 correspond to the
perversions formed in the buckling. The green arrow in the last figure indicates energy elevation and
therefore repulsion between perversions. The geometric parameters of the strips are: w = 9 mm,
h = 3 mm, L = 30 cm and L′ = L/3.5 following the notation labeled in Fig. 3.1.

interaction. Although the exact energy-distance relation is difficult to define in this system, the

repulsion is expected to be short-ranged since we can only observe the energy elevation when the

perversions are closer enough with each other. The shape evolution under quasi-static loading

demonstrates the repulsion of perversions: the rightmost perversion rotates approximately 360◦

more than the other two while the end-to-end distance of the bistrip is reduced from 23.3 cm to

13.9 cm. This process pushes the central perversion to move towards the leftmost perversion. The

energy focusing phenomenon is also observed in the multi-perversion systems. The condensation of

the strain energy over all the perversions suggests that the energy focusing feature is an intrinsic

property of the perversion structure. The geometric conformation of the central perversion is

different from the other two perversions as shown in Fig. 3.7a. Consequently, the energy peak 1 in

the energy profile of Fig. 3.7b corresponding to the central perversion is more focused and much

higher than the other perversions.
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Figure 3.8. The formation and evolution of the perversions in a bistrip where one of the strips is pre-
compressed. (a) shows that eighteen perversions emerges when two ends of the bistrip approaches.
(b) In the right half of this bistrip, the two perversions in the red dashed boxes annihilate and
coalesce into the nearby perversion. (c) shows the ordered perversion line structure (labeled in
the black dashed box) eventually formed when the moving end is close enough with the other one.
The geometric parameters of the strip are: w = 3 mm, h = 3 mm, L = 30 cm and L′ = 75 cm
following the notation labeled in Fig. 3.1.

We also explore a distinct routine to introduce the mechanical incompatibility over the bistrip

system and observe new behaviors of emergent perversions not found in the pre-stretched bistrips

described above. Specifically, we use a pre-compressed strip to replace the pre-stretched one in

the bistrip. We find that further compression of the pre-compressed bistrip introduces perversions;

around 20 perversions form when the bistrip length shrinks by only a tiny amount (∼ 1%) as can

be seen in Fig. 3.8a. During the controlled shrinking of such a bistrip system, we numerically

observe the merge of neighboring perversions and the development of an ordered helical section

(see Fig. 3.8b). Remarkably, through this perversion annihilation mechanism, combined with the

aforementioned winding behavior, perversions over a single bistrip can self-assemble to form some

highly ordered linear structure, dubbed perversion lines as shown in Fig. 3.8c.

Perversions are the emergent defects in the helical pre-stressed bistrip. The spontaneous

formation of the perversion line from individual perversions (as shown in Fig. 3.8c), which are

defects themselves in an otherwise uniform helical structure, is strongly analogous to the self-

organization of individual disclinations to form ordered compound defects like scars and pleats
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Figure 3.9. The evolution of the multiple perversions over a pre-compressed bistrip under stretching.
The red dashed boxes in (a)-(c) is tracking a typical coalescence and annihilation of perversions.
The total number of perversions consequently decreases as shown in (c)&(d). The length of the
bistrip is becoming longer from (a) to (d). The geometric parameters of the strips are: w = 9 mm,
h = 3 mm, L = 30 cm and L′ = L/3.5 following the notation labeled in Fig. 3.1.

over curved crystals [119, 120, 121]. Note that the coalescence of perversions is not observed when

their separation exceeds about two helical periods in the surveys of typical bistrip systems. In

contrast, by uniformly stretching the pre-compressed bistrip, we numerically observe a series of

dynamical events: the initial reduction of the amplitude of the out-of-plane deformation patterns

(see Fig. 3.9a-b), the coalescence and annihilation of neighboring perversions (see Fig. 3.9a-c),

and the reduction of the number of resulting helical periods (see Fig. 3.9d). Obviously, external

stretching significantly facilitates the unknotting of perversions. To conclude, the examination of

the pre-compressed bistrip system reveals new physics of perversions not found in the pre-stretched

bistrips, including the coalescence of neighboring perversions that is crucial for the formation of

ordered perversion lines.

We further investigate the essential material features that are crucial for producing the helical

and perversion structures to break the symmetry. It is obvious that the pre-stretching in one of the

strips in the bistrip system provides the driving force for the deformation of the entire system due to

the elastic instability. Further simulations show that the geometries of the strips’ cross sections can

also critically control the resulting deformation patterns. In the preceding discussions, we focus on

the bistrip system where the two strips in their relaxed states have an identical cross section profile.
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Figure 3.10. The cross section profiles of the strips inspected. The orange color of the strips indicate
pre-stretching state; blue strips are stress-free in the initial state. As indicated by the ticks and
crosses at the lowerright corner of each figure, (a)-(c) can produce helices and perversions, while
(d)-(e) only deform to V-like shape. The geometric parameters of the strips are: w0 = 9 mm, w is
the width after pre-stretching, w′ can vary from 5.4 ∼ 6.3 mm, h = 3 mmïijŇh′ = 0.2 mm.

The cross section of the pre-stretched strip shrinks as schematically shown in Fig. 3.1b due to the

small volume compressibility of the material, leading to the geometric asymmetry. In addition,

the pre-stretched strip breaks the up-down symmetry in the stress state of the bistrip system. It is

natural to ask if these pre-existent asymmetries are responsible for the out-of-plane deformation of

the entire bistrip and the emergence of the helical structure.

To address this question, we first prepare a bistrip system as illustrated in Fig. 3.10b. In contrast

to Fig. 3.10a, the upper strip, in its pre-stretched state, has the same cross section profile as the lower

one. We numerically observe the formation of helical structure over such a bistrip with the reduction

of the end-to-end length. Therefore, the asymmetry of the cross section width in the bistrip system

can be excluded to be responsible for the formation of helical structures. Furthermore, we prepare

tristrip systems that preserve the up-down symmetry in the initial state (see Fig. 3.10d and 3.10e).

In both systems, the tristrips are numerically observed to buckle and form a V-like shape with the

reduction of their lengths; no helical shapes are numerically observed. When the thickness of an

outer strip in the tristrip system is reduced to be sufficiently small (see Fig. 3.10c; Fig. 3.10b can be

regarded as the case where an outer strip is of zero thickness), helical structures appear again over

such a tristrip system with the broken up-down symmetry.
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These numerical results are still not sufficient to conclude that the asymmetry of the cross

section thickness controls the formation of helical structures. It is well known that the bending of

elastic plates or shells strongly depends on the thickness. To clarify whether it is the total thickness

of the tristrip system or the differences between the two outer strips that determines the helical

deformation, we simulate the system in Fig. 3.10f with the up-down symmetry but much thinner

outer strips compared with the one in Fig. 3.10c. Similar to the case of Fig. 3.10d and 3.10e, no

perversions are observed. The strips only buckle to a V-like shape with slight twisting around the

center. Therefore, we can conclude that the up-down asymmetry in the strip thickness is more

crucial to the emergence of the helices and perversions than the total thickness of the strip system.

3.5. Conclusions

This study uncovers several intrinsic properties of perversions that naturally occur to release

stress in designed heterogeneous elastic bistrips. Besides playing a fundamental role as a generic

domain wall that connects states of distinct symmetries, perversions exhibit richer physics in

the three-dimensional elastic system. Specifically, we numerically observe the strain energy

condensation over perversions during their formation, which is well confirmed in our designed

experiments. We further identify distinct modes of energy transfer from a stretched strip to an

initially unstretched one, and the repulsive nature of perversion-perversion interaction. Examination

of the pre-compressed bistrip system reveals the coalescence of neighboring perversions which is

crucial for their self-assembly into a highly ordered linear defect structure; it is in strong analogy

with the formation of scars and pleats out of the elementary crystallographic defects in curved

crystals. These intrinsic properties of perversions may be applicable to understanding and designing

micro-muscles and soft robotics where perversions can be introduced in relevant helical structures

to realize desired functions. Perversions as defects in the helical state may also share the common
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attributes of defects in generic ordered phases, so there is much room for further exploration, notably

regarding their possible coalescence, annihilation and intriguing interactions in response to various

external constraints.
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CHAPTER 4

Anisotropic Contraction of Fiber-Reinforced Hydrogels

4.1. Introduction

Hydrogels, which can undergo dramatic volumetric changes in response to diverse stimuli such

as temperature, pH, light and electric field [14, 15], have emerged in a broad range of applications

in tissue engineering [17], soft robotics [122, 38], drug delivery [16], intelligent biosensors [20],

and 3D printing [59]. In particular, great attention is being focused on developing hydrogels with

anisotropic mechanical properties that can be utilized to mimic a variety of biological tissues

with anisotropic morphologies, including cornea [33], skins [30], striated muscles[34, 123] and

articular cartilages [35, 124]. Anisotropic hydrogels are also exploited for the fabrication of soft

robotic actuators to trigger unidirectional motion [63]; in 3D printing, the anisotropic swelling of

the hydrogel-based ink is critical to transform 2D patterns into the desired 3D shapes [59]. Thus

designing hydrogels with ordered microstructures that impart controllable anisotropic mechanical

properties is of both theoretical and experimental interest.

Previous research shows the diverse morphologies of the underlying microstructures that endow

the isotropic hydrogels with anisotropic mechanical behaviors. For example, carbon nanotubes

have been aligned in an otherwise isotropic hydrogel matrix using dielectrophoresis to generate

both mechanical and electrical anisotropy [125]. Charged titania nanosheets can be cofacially

oriented as layered structures which resist the hydrogels to shrink along the orthogonal direction

to the sheets [63]. More types of morphologies including lamellar [31], porous [32] and liquid

crystalline structures [126] are also reported in previous studies. In particular, hydrogels with
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fibrous microstructures have been extensively explored and commonly adopted in biomimetics

to simulate many soft tissues [30, 123, 127, 35, 128]. More importantly, remarkable anisotropic

swelling and contraction of fiber-reinforced hydrogels have been reported in recent studies. Chin, et.

al. have fabricated the thermo-responsive tubular polymer hydrogel from a scaffold consisting of

aligned self-assembled peptide amphiphile (PA) nanofibers; with specified temperature changes, the

contraction strain perpendicular to the PA nanofibers is observed to be ∼ 100% higher than that

along the PA nanofibers [73]. Similar anisotropy is also found in the swelling of the 3D printing ink

based on hydrogels filled with aligned cellulose fibrils [59].

The anisotropic swelling and contraction of fiber-reinforced hydrogels stem from the directional

constraints enforced by the oriented fibers. In the homogenization-based constitutive models for

anisotropic hydrogels [129], these constraints are incorporated as an energetic contribution with

extra parameters defined to characterize the strength of the fiber reinforcement. Previous studies

following this paradigm have investigated the anisotropic swelling of fiber-reinforced hydrogels in

various geometries such as thin sheets [67] and cylindrical tubes [68]. However, fiber properties,

such as their dimensions and distributions, are not available in these phenomenological models;

such morphological information is necessary for experiments to fabricate hydrogels with desired

anisotropy. In fact, it still remains poorly understood how to maximize the swelling and contraction

anisotropy of hydrogels by tuning the underlying microstructures.

In this contribution, we aim to achieve an in-depth understanding of the mechanisms maximizing

the anisotropic contraction of fiber-reinforced hydrogels. Based on the Flory-Rehner theory, we

firstly inspect the contraction anisotropy of a uniaxially constrained hydrogel, a simplified model

which retains the directional constraint of the fibers. An upper bound of the contraction anisotropy

determined by the prescribed isotropic contraction ratio is discovered when the hydrogel is initially

strain-free. We further investigate potential improvements of this upper bound by applying prestrains
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to the hydrogel. Our study reveals a remarkable enhancement of the contraction anisotropy when

the uniaxially constrained hydrogel is prestretched along the constrained direction.

To examine the anisotropic contraction under the impact of the finite dimensions of fibers, we

perform finite element simulations with periodic boundary conditions incorporated. By releasing

the longitudinal restrictions of the fibers, maximum contraction anisotropies are identified when

varying the transverse fiber-fiber distance. More approaches to improve the maximum anisotropy

are noticed and explained, such as reducing the longitudinal fiber-fiber distance and increasing

the fiber length. Our study provides new perspectives to control the anisotropic contraction of

fiber-reinforced hydrogels, thus suggesting potential utilizations in designing novel anisotropic

hydrogels for soft robotics, tissue engineering and biomedical devices.

4.2. Flory-Rehner theory

We describe the deformation and contraction of the hydrogel using the classical Flory-Rehner

theory [130]. The free energy of a hydrogel consists of the elastic energy of the polymer network

and the polymer-solvent mixing energy:

(4.1) F = Fel + Fmix

Various forms of elastic energy have been proposed in former research to characterize the reduction

of entropy by stretching the cross-linked polymer network [44, 131, 132]. In the present work, Fel

follows the simplest form derived by Wall and Flory based on the Gaussian statistics [44]:

(4.2) Fel(λ1, λ2, λ3, T ) =
1

2
NkT

[
λ2

1 + λ2
2 + λ2

3 − 3− ln(λ1λ2λ3)
]

where N is the number of polymer chain segments between the crosslinking junctions and λ1, λ2,

λ3 are the stretch ratios along the three principal axes in reference to the molten state of the polymer.
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The polymer-solvent mixing energy Fmix is given by the Flory-Huggins theory [9]

(4.3) Fmix(φ, T ) = kT
V

ν
[(1− φ) ln(1− φ) + χφ(1− φ)]

where V is the volume of the whole hydrogel, ν is the volume of each solvent molecule, φ is

the volume fraction of the monomers and χ is the Flory-Huggins interaction parameter between

polymer chains and the solvent molecules. Let Vm be the volume of the polymer chains in the

molten state, the volume fraction of the monomers is defined as

(4.4) φ =
Vm
V

= (λ1λ2λ3)−1

Next, we apply the above material model to two simple cases, a free-swelling and a uniaxi-

ally constrained hydrogel, which will be employed to model the fiber-reinforced hydrogel in the

subsequent discussions.

4.2.1. Free-shrinking hydrogel

For an isotropic free-shrinking hydrogel, λ1 = λ2 = λ3 = φ−1/3, thus the total free energy given by

Eq. 4.1, 4.2 and 4.3 can be rewritten in terms of φ and T :

(4.5)
F (φ, T ) =

1

2
NkT

(
3

φ2/3
− 3 + lnφ

)
+ kT

Vm
ν

[(
1

φ
− 1

)
ln(1− φ) + χ(1− φ)

]
When the free swelling gel is in equilibrium with the external solvent, its osmotic pressure Π must

be zero, i.e.,

(4.6) Π = −
(
∂F

∂V

)
T

=
φ2

Vm

(
∂F

∂φ

)
T

= 0
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For simplicity we assume that χ is independent of φ and only varies in response to the external

stimuli. Substituting Eq. 4.5 in 4.6, we obtain that

(4.7) χ =
1

2

Nν

Vm

(
1

φ
− 2

φ5/3

)
− 1

φ2
ln(1− φ)− 1

φ

As a result, the volume fraction of the monomers φ must follow Eq. 4.7 at the thermodynamic

equilibrium, which drives the hydrogel to swell or shrink through the diffusion of the solvent

molecules under external stimuli. It is noteworthy that χ may depend on φ in some polymer

solutions [133], which will be separately addressed later on in this paper; for now we just consider

a φ-independent χ.

4.2.2. Uniaxially constrained hydrogel

We proceed to study the contraction of a hydrogel subject to a uniaxial stress along the longitudinal

direction. Without loss of generality, let λ1 = λ2 = λ⊥ be the transverse stretch ratio, and λ3 = λ‖

is the longitudinal stretch ratio, hence φ = (λ2
⊥λ‖)

−1. Following Eq. 4.1, 4.2 and 4.3, the free

energy of a hydrogel under a uniaxial constraint is written as

(4.8)

F (λ, λc, T ) =
1

2
NkT

(
2

φλ‖
+ λ2

‖ − 3 + lnφ

)
+ kT

Vm
ν

[(
1

φ
− 1

)
ln(1− φ) + χ(1− φ)

]
The principal stress σ1 and σ2 along the transverse directions should vanish when the hydrogel is at

thermodynamic equilibrium:

(4.9) σ1 = σ2 =
1

Vmλ⊥λ‖

(
∂F

∂λ⊥

)
T,λ‖

= 0
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Therefore, the Flory-Huggins parameter χ and the volume fraction φ for a uniaxially constrained

hydrogel must satisfy Eq. 4.8 and 4.9 at equilibrium, which delivers

(4.10) χ =
1

2

Nν

Vm

(
1

φ
− 2

φ2λ‖

)
− 1

φ2
ln(1− φ)− 1

φ

The principal stress in the longitudinal direction σ3 is written as

(4.11) σ3 =
1

Vmλ2
⊥

(
∂F

∂λ‖

)
T,λ⊥

=
NkT

Vm

φ

λ‖

(
1

φc
− 1

φ

)

where φc = λ−3
‖ and Eq. 4.10 is used to eliminate χ. Eq. 4.11 suggests that give a fixed value of λ‖,

σ3 > 0 when φ > φc, hence the hydrogel is in stretching state along the longitudinal direction. On

the contrary, if φ < φc, σ3 < 0 such that the hydrogel is compressed under the constraint. At φ = φc,

σ3 = 0, indicating that the hydrogel stays in a free swelling state because the longitudinal stress

vanishes. Herein, we introduce the longitudinal strain ε‖ to describe the longitudinal deformation of

the hydrogel; at a specified χ, ε‖ can be defined as:

(4.12) ε‖ =
λ‖ − λ
λ

where λ is the equilibrated stretch ratio of a free-shrinking hydrogel at the same χ.

4.3. Anisotropic contraction of a uniaxially constrained hydrogel

Based on the Flory-Rehner theory, we formulate a simplified model of fiber-reinforced hydro-

gels to explore the potential mechanisms enhancing the contraction anisotropy. Specifically, the

anisotropic contraction of the aforementioned uniaxially constrained hydrogel is investigated in

the absence of the oriented fibers (see Fig. 4.1a): in the longitudinal direction (parallel to the fiber

direction) the contraction of the hydrogel is restricted, whereas in the transverse directions the

hydrogel can shrink freely. Herein we essentially preserve the directional constraint from the fibers
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Figure 4.1. Schematic plots of hydrogel contractions in response to increasing χ. (a) A fiber-
reinforced hydrogel is simplified as a uniform hydrogel subject to a uniaxial constraint along the
fiber direction. (b) The contraction of a free-shrinking hydrogel (blue curve) and a uniaxially
constrained hydrogel (red curve) with a fixed λ‖ (α‖ = 1). Both of the contractions start at the
intersection point φi = φ′i = φc = λ−3

‖ . The arrows represent the direction of contractions along the
φ axis.

which apparently plays a critical role in the anisotropic contraction, and meanwhile eliminate the

complex local deformations introduced by the fibers for simplicity.

In experiments, the anisotropic contraction of a hydrogel with non-trivial microstructures is

often investigated and evaluated by comparing with the isotropic contraction of an unmodified

hydrogel [73, 59, 63]. Following this paradigm, we firstly imagine that a free hydrogel undergoes

an isotropic contraction in response to an external stimulus which increases its Flory-Huggins

parameter from χi to χf , as depicted in Fig.4.1b. The stretch ratio of the hydrogel along each

dimension is reduced from λi to λf , and correspondingly the volume fractions of the monomers
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increases from φi to φf according to Eq. 4.4. The contraction ratio along each principal axis,

denoted by α0, can be defined as

(4.13) α0 =
λf
λi

=

(
φi
φf

)1/3

In the following analysis, we assume that α0 is prescribed by the external stimulus, allowing us to

use α0 as a benchmark to analyze the anisotropic contraction of a uniaxially constrained hydrogel.

For a hydrogel uniaxially constrained along the longitudinal direction, it shrinks anisotropically

if its χ increases from χi to χf . The contraction ratio along the longitudinal and transverse directions

are denoted by α‖ and α⊥ respectively. We can likewise define the contraction ratio α‖ and α⊥ as

(4.14) α‖ =
λ‖,f
λ‖,i

α⊥ =
λ⊥,f
λ⊥,i

where λ‖ is the longitudinal stretch ratio and λ⊥ is the transverse stretch ratio. The subscripts i and

f represent the initial and shrunken state respectively. We define the contraction anisotropy A as

(4.15) A =
α‖
α⊥

=
λ‖,f
λ‖,i

λ⊥,i
λ⊥,f

Therefore, the larger A, the stronger the contraction anisotropy of the hydrogel.

For common hydrogels with positive Poisson’s ratios, the longitudinal stretch ratio must decrease

during contraction even though it is restricted externally, which indicates ∆λ‖ = λ‖,f−λ‖,i ≤ 0. Let

φ′i and φ′f be the volume fractions of the monomers before and after the contraction; the contraction

anisotropy A is bounded by the following inequality:

(4.16) A =
λ‖,f
λ‖,i

λ⊥,i
λ⊥,f

=

(
φ′f
φ′i

)1/2(
λ‖,f
λ‖,i

)3/2

≤
(
φ′f
φ′i

)1/2
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Eq.4.16 takes equality when α‖ = 1 and α⊥ = (φ′i/φ
′
f )

1/2, indicating that the anisotropy of the

contraction is maximized when the hydrogel is not allowed to shrink along the longitudinal direction

(i.e., λ‖ is constant). Using Eq. 4.7 and Eq. 4.10 with a fixed λ‖, we can compare φ′f/φ
′
i with φf/φi

given a specified increment of χ, and therefore explore the possibilities to reduce the upper bound

of A.

4.3.1. Stress-free initial state

If the uniaxially constrained hydrogel starts to shrink from the stress-free state (φ′i = φi = φc,

ε‖ = 0), we find that the maximum contraction anisotropy (Amax) must be smaller than α−3/2
0 . As

illustrated in Fig. 4.1b, if φ′i = φi = φc, φ′f < φf for any χf > χi, i.e., the volumetric change of the

uniaxially constrained hydrogel is always smaller than that of a free hydrogel, thus

(4.17) Amax =

(
φ′f
φ′i

)1/2

<

(
φf
φi

)1/2

= α
−3/2
0

Eq. 4.17 can also be analytically proved by comparing Eq. 4.7 with 4.10. We firstly show that

the χ value of the uniaxially constrained hydrogel is always larger than that of the free hydrogel

at the same φ when φ > φc. Let χ and χ′ denote the Flory parameter for the free hydrogel and

the uniaxially constrained hydrogel respectively; χ and χ′ intersect at φc as shown in Fig. 4.1b.

According to Eq. 4.7 and 4.10, χ and χ′ differ by

(4.18) χ− χ′ = Nν

Vmφ2

(
1

λ‖
− φ1/3

)

which suggests that χ < χ′ for arbitrary φ > φc and vice versa. If the initial state of the contraction

has no prestrain, i.e., φ′i = φi = φc, φ′f and φf must be larger than φc. Thus

(4.19) χ′(φf ) > χ(φf ) = χ′(φ′f ).
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Since χ′ is monotonic as a function of φ, we obtain φf > φ′f which leads to (φ′f/φ
′
i)

1/2 <

(φf/φi)
1/2 = α

−3/2
0 . Consequently, Amax is upper bounded by α−3/2

0 if there is no prestrain involved

in the initial state of the shrinking process.

Contraction experiments of fiber-reinforced hydrogels satisfying Eq. 4.17 have been reported

in previous research. For example, in Chin et al.’s work [73], the tubular polymer gel shrunk

isotropically to 77% of its original size when the temperature ramped up from room temperature to

∼ 70◦C, i.e., α0 = 0.77. If the gel was reinforced with circumferentially aligned peptide amphiphile

nanofibers, the height and diameter of the tube shrank respectively to 62% and 80% of the original

dimensions upon the same variation of temperature; the contraction anisotropy A = 1.29 is smaller

than α−3/2
0 ≈ 1.48 within the margin of error (|∆A| ≈ 0.1), which agrees with Eq. 4.17.

4.3.2. Prestrained initial state

If the uniaxially constrained hydrogel is prestrained before contraction (φi, φ′i 6= φc, ε‖ 6= 0), the

upper bound suggested by Eq. 4.17 may not hold. As illustrated in Fig. 4.2a, for example, if φ′i > φc,

φ′i and φi at the same χi no longer coincide with each other; it can be identified that at certain χi

and χf , φ′f/φ
′
i > φf/φi so that Amax > α

−3/2
0 .

Indeed, our further analysis uncovers that Amax can be significantly greater than α−3/2
0 if the

hydrogel is longitudinally prestretched before contraction. Specifically, for an arbitrary φi, a

prestrain within the range from −0.5 to 1.0 is applied to the free-swelling hydrogel so that φ′i can

be determined by equating Eq. 4.7 to Eq. 4.10 and meanwhile incorporating Eq. 4.12. By setting

α0 = 0.8, we numerically calculate Amax for different Nν/Vm. Results (see Fig. 4.2b) clearly reveal

that Amax can be larger than α−3/2
0 ≈ 1.40 only when ε > 0. For example, for Nν/Vm = 0.01,

Amax can be as large as 1.54 when ε‖ = 1.0. The value of Amax becomes larger as a whole when ε

increases, and eventually converges to (φ′i)
−1/2 when the hydrogel volume V approaches Vm. In
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Figure 4.2. Contraction of uniaxially constrained hydrogels with prestrain ε‖ 6= 0. (a) Schematic
χ ∼ φ plot of a uniaxially constrained hydrogel (red curve) undergoing a stronger volumetric
contraction (φ′f/φ

′
i > φf/φi) than a free-shrinking hydrogel (blue curve) with ε‖ > 0. The arrows

represent the direction of the contractions along the φ axis. (b) The upper bound of the contraction
anisotropy (Amax) as a function of φi and ε‖ for different Nν/Vm. α0 = 0.8 in all subfigures. The
longitudinally prestretched (ε‖ > 0) and precompressed (ε‖ < 0) states are separated by the dashed
lines. φi is limited within the range 0 ∼ 0.5 because the final volume fractions φf and φ′f must be
less than 1 due to the specified α0.

addition, the distribution patterns of Amax in Fig. 4.2b demonstrate a significant shift when Nν/Vm

reduces. Since Nν/Vm is only associated with the elastic terms in Eq. 4.2, our observation implies

that initially more swollen states are favored to produce stronger contraction anisotropy when the

hydrogel is less rigid. In conclusion, the contraction anisotropy of a uniaxially constrained hydrogel

can be substantially stronger if the hydrogel is longitudinally prestretched.

For a practical fiber-reinforced hydrogel, the prestretching condition may be potentially realized

in several approaches. The simplest approach is to apply an external control to the hydrogel along

the fiber direction. Prestretching may also be introduced if the fiber-reinforced hydrogel is already

in the shrunken state before performing the contraction experiments. Additionally, incorporating

the fibers into the hydrogel matrix may lead to intrinsic prestretching due to the interaction between

the fibers and the polymer chains.
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a b

Figure 4.3. Contraction of PEO hydrogels upon increasing temperature. (a) The contraction
of a free-shrinking (blue curve) and a uniaxially constrained (red curve) PEO hydrogel as the
temperature increases from Ti to Tf . (b) The upper bound of the contraction anisotropy (Amax) as a
function of φi and ε‖ for a PEO hydrogel (left) and a generic hydrogel with φ-independent χ (right).
Nν/Vm = 0.002 and α0 = 0.8 in all subfigures.

4.3.3. φ-dependent χ

If χ varies as a function of φ, an explicit dependence of χ on both the stimulus intensity (denoted

by T ) and φ is required to analyze the contraction of hydrogels through the above approach. In

previous discussions, we have assumed that χ is independent of φ, therefore the external stimulus

and the deformation are naturally decoupled in Eq. 4.7 and 4.10, which allows us to investigate the

contraction behaviors without knowing the specific form of χ(T ). In contrast, if χ also depends on

φ, we need to replace χ with χ in Eq. 4.7 and 4.10:

(4.20) χ = χ− φ∂χ
∂φ

With the knowledge of the function χ(T, φ), the relation between T and φ at equilibrium can be

obtained and exploited to investigate the contraction behaviors.
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To exemplify the above procedure for handling the φ-dependent χ, we analyze the contraction

behaviors of a crosslinked poly(ethlyene oxide) (PEO) hydrogel, a widely used thermoresponsive

polymer with both upper and lower critical solution temperature phase behaviors [134]. The free

energy of PEO in aqueous solutions can be formulated using the Dormidontova’s model [135],

which incorporates the free energy of both the PEO-water and water-water hydrogen bondings to

successfully explain the unique phase behaviors of PEO/water solutions. Based on χ(T, φ) derived

from the Dormidontova’s model (see Appendix A; here T represents temperature), we numerically

calculate the T ∼ φ relation for both the free-shrinking and uniaxially constrained condition, as

shown in Fig. 4.3a. Given a stimulus of temperature Ti → Tf , we imagine that a free-shrinking

PEO hydrogel undergoes an isotropic contraction from φi to φf with a contraction ratio of α0

along each dimension, while a uniaxially constrained PEO hydrogel with a longitudinal prestrain ε‖

shrinks from φ′i to φ′f . In a similar way as Fig. 4.2b, we calculate Amax for −0.5 ≤ ε‖ ≤ 1.0 and

0.050 ≤ φi ≤ 0.275 at a specified α0 (see Fig. 4.3b). Using the same set of parameters, a similar

diagram for a generic hydrogel with φ-independent χ is also constructed within the same range of

ε‖ and φi for comparison purposes.

Results in Fig. 4.3b clearly indicate that the φ-dependent χ of PEO hydrogel alters the anisotropic

contraction behavior by shifting the maximum of Amax within the inspected range of φ and ε‖.

However, the prestretching mechanism to enhance the contraction anisotropy still works for PEO

hydrogel: Amax can be smaller than α−3/2
0 only when ε‖ > 0.

4.4. Anisotropic contraction of fiber-reinforced hydrogels: finite element simulations

The finite dimensions of the fibers, which are absent in previous discussions, can introduce more

complexity to the anisotropic contraction of hydrogels. Besides the inhomogeneous strain field

around the fibers, compact packing of the oriented stiff fibers within a hydrogel may also dampen the
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Figure 4.4. Schematics of the model geometry and periodic boundary conditions in the finite
element simulations. Top right: The unit cell in rectangular solid shape with one rigid fiber
embedded. Top left: The smoothed end of the fiber using a semi-sphere with the same radius as the
fiber’s. The bottom illustration shows the correspondence between points on the opposite faces of a
unit cell.

overall contractions along the transverse directions. Meanwhile, the finite length of the fibers allows

the hydrogel to shrink along the longitudinal direction instead of being completely constrained. As

a result, the anisotropic behavior of the hydrogel significantly deviates from a uniaxially constrained

hydrogel when the fibers have finite dimensions. Unfortunately, analytical solutions are difficult

to obtain when the fibers are included in the model. Various approaches have been proposed in

former research for numerical simulations of hydrogels [136, 41, 48, 137, 138]. In particular, the

finite element method is well suited for understanding swelling hydrogels in complex geometries

such as wrinkling, creasing, and other intriguing buckled structures [139, 140, 141, 142]. Therefore,

we resort to the finite element method to explore the anisotropic contraction of a fiber-reinforced

hydrogel in the following sections.
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4.4.1. Model geometry and boundary conditions

In our simulations, each fiber is modeled as a rigid cylinder with diameter d and length l attaching

to the surrounding hydrogel matrix without allowing any relative sliding (see Fig. 4.4, top left). The

ends of each fiber are smoothed with semi-spherical cups to avoid singular stress concentration at

sharp corners. We arrange the fibers periodically within the hydrogel so that periodic boundary

conditions can be applied to the model. Specifically, the periodic array of fibers and their surrounding

hydrogel are described as identical unit cells spanned by a set of lattice vectors (a,b, c). Let S

and S ′ be the opposite faces along the direction of c (see Fig. 4.4, bottom), u(r) represent the

displacement of an arbitrary point located at r on S (thus u(r+ c) lies on S ′), and (a′,b′, c′) denote

the lattice vectors after deformation; the periodic boundary conditions require

(4.21) u(r + c)− u(r) = c′ − c

which connects the local displacement vector of the unit cell with the global deformation of

the lattice. In finite element simulations, the right-hand side of Eq. 4.21 is replaced with the

displacement of a dummy node which is defined as

(4.22) uc = c′ − c

In our model, uc is not prescribed a priori but determined by the contraction behavior of the

fiber-reinforced hydrogel. Therefore, constraints among the two opposite faces and the dummy

node are enforced in our simulations to solve uc according to Eq. 4.21 and 4.22. Similar constraints

can also be derived for the other two pairs of opposite faces. In ABAQUS, these constraints are

implemented using mdb.models[name].Equation in Python script; an example code snippet is

shown below:
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1 dim = {'X': 1, 'Y': 2, 'Z': 3}
2 for C in ['X', 'Y', 'Z']:
3 mdb.models[name].Equation(
4 name = 'PBC-' + C + '-' + str(dim[C]),
5 terms = (
6 (1.0, 'RIGHT_FACE', dim[C]),
7 (-1.0, 'LEFT_FACE', dim[C]),
8 (-1.0, 'DUMMY', dim[C]),
9 )

10 )

The periodic boundary conditions provide a simple and intuitive approach to investigate the

anisotropic behavior of the hydrogel induced by the distributed fibers. However, it is worth

mentioning that although previous experiments have verified the orientational long range order

of the fibers, no periodicity is found in the positions of the fibers. Therefore, it is apparently an

idealization to use the periodic boundary conditions in our simulations.

The unit cell in our simulations is modeled using a rectangular solid with |a| = |b| = D and

|c| = L, as illustrated in the Fig. 4.4 (topright). Here we assume that the unit cell has identical

periodicity in the directions of a and b. Within each unit cell, a cylindrical fiber is symmetrically

placed in the center and oriented to the direction of c; thus L represents the longitudinal fiber-fiber

distance, and the corresponding contraction ratio is α‖. LikewiseD should be equal to the transverse

fiber-fiber distance; α⊥ is the transverse contraction ratio as previously defined.

4.4.2. Constitutive model of hydrogel

We proceed to derive the constitutive model of the hydrogel within the context of finite element

method. The thermodynamic equilibrium is achieved when the external work done on the hydrogel

is equal to the change in the free energy:

(4.23) δF =

∫
V

δFdV =

∫
V

BiδuidV +

∫
S

TiδuidS
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where F is the nominal free energy density of the hydrogel, Bi is the external body force, Ti is

the surface traction, and δui are arbitrary perturbation displacements. When the hydrogel reaches

equilibrium, its chemical potential µ = µexternal = 0; thus in Eq. 4.23 we neglect the work done by

the external chemical potential of the water.

Eq. 4.23 possesses the same form as a hyperelastic solid, which enables us to implement a finite

element method for a hydrogel. In the context of continuum mechanics, it is traditional to formulate

the free energy density F in terms of the strain invariants:

(4.24) I1 = λ2
1 + λ2

2 + λ2
3 and J = λ1λ2λ3 = φ−1

Substituting Eq. 4.24 to 4.2 and 4.3 gives

(4.25)
F (I1, J, T ) =

1

2

N

Vm
kT (I1 − 3− ln J)

+
kT

ν

[
(J − 1) ln

(
1− 1

J

)
+ χ

(
1− 1

J

)]
Eq. 4.25 is singular at the molten state of the hydrogel (J = 1), which may lead to numerical

problems if the molten state is involved in the calculations. To overcome this difficulty, we use

an isotropic free swollen state with J > 1 as the reference state inspired by the study of Hong et

al [136]. At this reference state, the hydrogel has isotropic stretching ratio λ0 relative to the molten

state. The volume fraction of the polymer is denoted by φ0 = λ−3
0 . Because the volume of the

polymer Vm is assumed to be conserved, φ and φ0 can be connected via

(4.26) V φ = V0φ0 = Vm

where V0 is the volume of the hydrogel at the reference state. The nominal free energy density F

and the strain invariants I1, J are converted correspondingly to F ′, I ′1, J ′ with respect to the new
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reference state:

(4.27)
F (I1, J, T )Vm = F ′(I ′1, J

′, T )V0

I1 = φ
−2/3
0 I ′1 and J = φ−1

0 J ′

Substituting Eq. 4.26 and 4.27 to 4.25, we obtain that

(4.28)
F ′(I ′1, J

′, T ) =
kT

ν

[
1

2

Nν

Vm
φ0

(
φ
−2/3
0 I ′1 − 3− ln

J ′

φ0

)
+ (J ′ − φ0) ln

(
1− φ0

J ′

)
+ χφ0

(
1− φ0

J ′

)]
We implement the above constitutive model of the hydrogel by developing a user-defined sub-

routine for a hyperelastic material (UHYPER) in the commercial code ABAQUS (see Appendix B).

The temperature is exploited as a uniform field parameter to control the contraction of the hydrogel

in the following steps:

(1) Calculate χi and χf Eq. 4.7 with the input values of φi, Nν/Vm and α0.

(2) Assuming a linear dependence of χ on temperature: χ = A+BT , calculate the value of A

and B using (χi, Ti) and (χf , Tf ); Ti and Tf are initial and final temperature respectively,

and they are preset parameters in the simulations.

(3) Use (Nν/Vm, A,B, φi) as the parameters for the UHYPER subroutine.

(4) Set the initial temperature as Ti (mdb.models[name].Temperature in Python script).

(5) Set the final temperature as Tf (mdb.models[name].predefinedFields

[fieldName].setValuesInStep in Python script).

Due to the change of the temperature, a nontrivial stress field emerges such that the hydrogel needs

to contract to reach the osmotic equilibrium.
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Table 4.1. Parameters for finite element modeling of the fiber-reinforced hydrogel. The notation of
the geometrical parameters follows the same as Fig. 4.4.

Geometry (nm) Element
d 10

C3D8R, Enhanced hourglass controll Vary from 25 ∼ 500
L Vary from 200 ∼ 800
D Vary from 20 ∼ 67.5

Materials Boundary conditions
Nν/Vm 10−4

φi 0.125 Fiber surfaces Encastred
α0 0.80 Unit cell surfaces Periodic boundary conditions

Predefined field (K)
Ti 298
Tf 363

a b

Figure 4.5. Verification of the implementation of the finite element user-defined subroutine. (a)
χ ∼ φ plot of a free swelling hydrogel. (b) The stress σ3 along the constrained direction for a
uniaxially constrained hydrogel. At φ = φc, the stress vanished as expected. The inset illustrate the
corresponding χ ∼ φ curve of the uniaxially constrained hydrogel.

The simulation parameters are listed in Table 4.1 unless otherwise noted. No prestretching is

involved in our simulations (φi = φ′i = φc), as we are focusing on the effects of the fiber dimensions;

prestretching may also induce excessive deformations which lead to convergence difficulties.

To verify our implementation, we numerically calculate the χ ∼ φ relations for both an isotropic

swelling hydrogel and a uniaxially constrained hydrogel. (see Fig. 4.5) The results show perfect
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𝑑

Figure 4.6. The transverse contraction ratio of the fiber-reinforced hydrogel as a function of the
transverse fiber-fiber distance at L/l = 1. The fiber is modeled as a regular cylindrical rod
throughout the hydrogel matrix rather than a smoothed one to avoid possible numerical difficulties.
The simulations are performed with d = 10 nm and L = l = 30 nm. The lower limit is calculated
from the contraction of a uniaxially constrained hydrogel illustrated in Fig. 4.1a with the same set
of parameters as used in the finite element simulations.

agreement with Eq.4.7 and 4.10. In addition, the calculated uniaxial stress σ3 for the uniaxially

constrained hydrogel also coincides with Eq. 4.11 (see Fig. 4.5b).

4.4.3. Results and discussions

We firstly perform simulations for a limiting case where the fiber length is identical to the longi-

tudinal length of the unit cell (L/l = 1), as shown in Fig. 4.6 (top). The hydrogel is therefore

completely constrained along the orientation of the fibers (α‖ ≡ 1). Simulations show that the

transverse contraction ratio α⊥ decreases when increasing the transverse fiber-fiber distance (see

Fig. 4.6 bottom). At small D/d, the transverse contraction of the hydrogel is highly restricted by

the rigid cross-sections of the tightly packed fibers. This restriction become less significant as
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Figure 4.7. The anisotropic contraction of the fiber-reinforced hydrogel at L/l > 1.0. (a) Schematic
of the geometry to model the anisotropic contraction when L > l. (b-d) The transverse contraction
ratio (b), the longitudinal contraction ratio (c) and the contraction anisotropy (d) as functions of
the reduced transverse fiber-fiber distance (D/d). The data for L/l = 1 in (b) (dashed curves) are
identical to Fig. 4.6 as α‖ ≡ 1. The arrows in both (b) and (d) indicate the shifts of the minimum
α⊥ and the maximum A. The legend in (b) is also shared by (c) and (d). All the simulations are
performed with d = 10 nm and l = 200 nm.

D/d increases, hence leading to stronger transverse contraction and decreasing α⊥. Eventually, the

transverse dimensions of the fibers is negligible so that the hydrogel behaves as if it were uniaxially

constrained without fibers embedded. Thus, α⊥ converges to a lower limit that can be predicted

from the uniaxially constrained hydrogel model discussed in previous sections. We also conduct

similar simulations for a prestretching fiber-reinforced hydrogel; same behaviors of α⊥ are found.
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Figure 4.8. The von Mises stress distribution at (a) D/d = 2.5 and (b) D/d = 6.0. Only one-eighth
of unit cell is shown in the figure due the symmetry of the model.

Intuitively, however, an infinitely large hydrogel with few fibers embedded (i.e., D � d)

should shrink almost isotropically upon external stimuli, which can never be captured in the

above simulations by assuming L/l = 1 and α‖ ≡ 1. Therefore, we proceed to investigate the

anisotropic contraction at L/l > 1 which allows the hydrogel to shrink longitudinally (see Fig. 4.7a).

Figure 4.7b shows that the transverse contraction ratio α⊥ has a minimum for each L/l, whereas α‖

exhibits the opposite behavior (Fig. 4.7c). These results can be understood as follows. At small

D/d, the transverse contraction can be significantly amplified by releasing the aforementioned

restrictions from the rigid cross-sections of the fibers. In contrast, the longitudinal contraction is

energetically disfavored due to the induced stress concentration near the ends of the fibers (see

Fig. 4.8); meanwhile it is also restricted by the rigid length of the fibers. Consequently, α⊥ exhibits

rapid decrease at small D/d where increasing α‖ is observed. When D/d becomes noticeably larger,

both α⊥ and α‖ vary in the opposite way compared to the previous case. Stronger longitudinal

contraction is instead preferred at large D/d when the fibers are more sparsely distributed: the bulky
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Figure 4.9. The contraction anisotropy at different Nν/Vm. L/l = 1.25.

hydrogel far from the fibers can undergo less longitudinal strain, thus mediating the local stress

concentration near the fibers.

The anisotropy of the hydrogel contraction (A ≡ α‖/α⊥) can be evaluated from Fig. 4.7b

and 4.7c. As shown in Fig. 4.7d, A presents a maximum for each L/l, just as expected based

on the behavior of α‖ in Fig. 4.7c. A shift of the maxima toward higher D/d with decreasing

L/l is observed in both Fig. 4.7b and Fig. 4.7d. Indeed, the stronger constraint from the fibers

at lower L/l need to be balanced out with larger longitudinal contraction induced by increasing

D/d, thus the optimum D/d increases when reducing L/l. Besides, we have also inspected the

contraction anisotropies at different Nν/Vm, a dimensionless parameter characterizing the rigidity

of the hydrogel; the maxima therein do not show any shift along the D/d axis (see Fig. 4.9).

Additionally, A is observed to be enhanced at lower L/l in Fig. 4.7d. This increasing anisotropy

stems from the dampening of the longitudinal contraction when decreasing L/l; the longitudinal

separation of the fibers is reduced such that the hydrogel has less freedom to shrink along the

longitudinal direction. Overall, we conclude that the contraction anisotropy can be maximized by
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Figure 4.10. The contraction anisotropy of the fiber-reinforced hydrogel as a function of the shape
aspect ratio of the fiber (l/d). L/l = 2.0. The corresponding transverse contraction ratio (α⊥, green
line) and longitudinal contraction ratio (α‖, red line) are depicted in the inset. The simulations are
performed with d = 10 nm and D = 40 nm.

adjusting the transverse fiber-fiber distance D/d, and this maximum value can be further elevated

by reducing the longitudinal fiber-fiber distance L/l.

Our simulations also reveal that fibers with larger aspect ratio (l/d) can lead to stronger

anisotropy of the hydrogel contractions. Note that L/l is kept as a constant for different l/d

such that same portion of the hydrogel is restricted by the rigid fibers. Figure 4.10 clearly shows that

A decreases with increasing l/d. More particularly, as depicted in the inset of Fig. 4.10, α‖ exhibits

a significant increase: at l/d = 5, it is only slightly larger than α0 = 0.8, whereas it reaches ∼ 0.96

when l/d increases to 50. The substantial increase of α‖ at constant L/l implies that longer fibers

can enforce much stronger longitudinal constraints on the hydrogel, thus facilitating the anisotropic

contraction. This observation has been validated in former experiments [59, 73] where fibers with a

high aspect ratio (l/d > 100) are indeed adopted to achieve high anisotropy.
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4.5. Conclusions

This study focuses on the mechanisms controlling the anisotropic contraction of a fiber-

reinforced hydrogel. By idealizing the reinforcement of the fibers as a uniaxial constraint, and

assuming χ is independent of φ, we discover that the contraction anisotropy has an upper bound

determined by the prescribed isotropic contraction. Numerical analysis of the χ ∼ φ relations

further reveals that it is possible to exceed this limit by introducing longitudinal prestretching into

the hydrogel; such mechanism also applies for certain practical systems with φ-dependent χ such as

PEO hydrogels. Assuming the fibers are rigid and periodically distributed, finite element simula-

tions show that the contraction anisotropy can be maximized by varying the transverse fiber-fiber

distance; this maximum value can be further improved by reducing the longitudinal fiber-fiber

distance or increasing the fiber length, both of which essentially strengthen the longitudinal con-

straint of the fibers. These findings provide insights into designing fiber-reinforced hydrogels with

desired anisotropic behavior under various stimuli, which can be applicable in soft robotics, tissue

engineering and so on. Future studies are needed to elucidate the potential impact of other important

factors on the anisotropic contraction, including deformable fibers, different fiber arrangements and

interactions between fibers and the hydrogel matrix.
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CHAPTER 5

Summary and Future Work

5.1. Summary

The aim of my research is to model, understand, control and ultimately harness the nonlinear,

complex deformations of gels to facilitate the design of bio-inspired materials with improved

performance and novel functionalities, and to provide an in-depth knowledge on biological growth

and development. To achieve this goal, three homogeneous or heterogeneous systems with different

architectures and broad applications are considered. We start by investigating the complicated defor-

mation of a homogeneous elastomeric structure that is widely adopted in advanced nanopatterning

techniques: a periodic pyramid array in contact with a rigid substrate. Simulations clearly prove

that the unexplained photoresist patterns in previous experiments stem from the distinct morphology

of the deformed pyramid, which perfectly exemplify the significant role of large deformation in ap-

plications of soft materials. The scaling laws of such controllable deformations are also established

and compared with experiments, which can be useful for designing bio-inspired devices, notably

artificial skins with high pressure sensitivity.

Next we inspect the mechanical instability of a simple heterogeneous system: a bistrip gel

with different prestrains in each strip. Perversions and helices proliferate as a result of the helical

symmetry breaking induced by the misfit of the two strips. It is numerically observed that, during the

formation of perversions, the strain energy concentrates over each perversion, and distinct modes of

energy transfer between the strips are identified. The repulsive nature of the perversion-perversion

interaction and the coalescence of perversions are also presented and discussed. These findings
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provide a fundamental understanding of the biological motifs present in growing tendrils [23] and

animal guts [29].

Finally, we proceed to examine the anisotropic contraction of fiber-reinforced hydrogels, where

the aligned fibrous heterogeneities are massively incorporated into gel networks. The theoretical

and numerical analysis indicates that the contraction anisotropy can be enhanced by prestretching

the hydrogels along the fiber direction; it can be further maximized by tuning the parameters of the

fibrous microstructures such as the fiber radius, fiber length, and fiber-fiber distances. These results

offer possible strategies for controlling the contraction anisotropy of fiber-reinforced hydrogels,

therefore paving the way for creating artificial muscles and soft actuators with desired performance.

5.2. Recommended Future Work

5.2.1. Inverse Design Problem of Soft Structures

As an extended work of the bistrip buckling introduced in Chapter 3, a more general problem is how

to design a demanded soft structure by prescribing strains, growth rates, intrinsic curvatures and

misfit heterogeneities in a homogeneous object. Solutions to this problem have broad engineering

applications, particularly in advanced 3D printing techniques [59, 60, 143]. Combined with the

stimuli-responsiveness of gels, it is also possible to construct versatile and active soft materials

with tunable morphologies [144]. In addition, this problem has strong connections to biological

growth and development. The recent work by van Rees et. al. [8] has demonstrated that with

orthotropically growing thin bilayers, any target shape of surface can be attained from an isotropic

flat state, as shown in Fig. 5.1. Therefore, there are great opportunities to conduct research on

various inverse design problems of soft structures using analytical and numerical methods. For

example, simulations can be performed to design the growing patterns of bilayers with significant

thicknesses, and the nonlinear constitutive behavior of gels can also be considered.
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Figure 5.1. Inverse design of surfaces using bilayers with orthotropic growing directions. Three
columns from left to right: the growing process of a snapdragon, a human face and a river horseshoe
respectively. Within each column, the initial state (top), two intermediate states(middle) and final
state (bottom) are shown. For each state, the growing factors of the top layer (left) and bottom layer
(right) are illustrated. Adapted from [8]. Copyright 2017 National Academy of Sciences, U.S.A.

5.2.2. Double-Network Hydrogels with High Toughness

Besides the anisotropic response of hydrogels described in Chapter 4, another highly demanded

feature in biomedical applications of hydrogels is high toughness (resistance to fracture). Most of

the conventional synthetic hydrogels are mechanically weak and brittle to be used as substitutes

for load-bearing soft tissues such as cartilage, ligaments and tendons [145]. The recently emerging

double-network hydrogels (DN gels) are promising synthetic soft materials to achieve very high

toughness (fracture energy of 102 ∼ 103 J/m2) as well as mechanical strength (fracture tensile

stress of 1 ∼ 10 MPa) which are comparable with cartilages [145, 146]. As the name suggests,
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DN gels possess a heterogeneous structure with two contrasting polymer networks: the first one

is rigid and brittle, usually a swollen polyelectrolyte network, and the second network is soft and

loosely crosslinked. The high toughness of DN gels is therefore partially attributed to the effective

energy dissipation by breaking bonds in the first network while keeping the second network intact.

Extensive experimental works on DN gels have been performed in recent years, while the relative

theoretical and computational works are limited. There are still open questions in producing novel

DN gels: what is the effect of the second network structure and properties on the mechanical

performance of the gels? How to increase the fatigue resistance of the gels to make it “self-heal”

or “self-recover”? Multiscale computational models may shed some light on these questions by

establishing the connections between the macroscopic mechanical properties of DN gels with

the characteristics of the molecular-level architectures. For example, in atomic scale, molecular

dynamics and Monte Carlo simulations can be carried out to investigate the structural and energetic

information of the gel networks and intra-/inter-network interactions; in the macroscopic level, the

finite element method can be employed to examine the energy dissipation and the fracture process

of DN gels.
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APPENDIX A

The Flory-Huggins Parameter of Poly(ethlyene oxide) (PEO) in Aqueous

Solutions

We describe the PEO behavior in aqueous solutions with the Dormidontova’s model [135] which

is briefly introduced as follows. The free energy of PEO/water solutions is essentially formulated

within the framework of Flory-Huggins theory. Each PEO chain has N monomers of volume vp,

and each water molecule is represented as a monomer of volume v, which is used as the reference

volume for the free energy. The translational entropy contribution of the PEO solutions follows the

same form as the Flory-Huggins theory:

(A.1)
Ftrans

kT
=

v

Nvp
φ lnφ+ (1− φ) ln(1− φ)

The interaction energy between PEO monomers and water without the hydrogen bondings involved

is given by

(A.2)
Fint

kT
= χφ(1− φ)

Here χ possesses the standard form A+B/T . According to the Dormidontova’s model, the free

energy due to the hydrogen bondings is presented in the form:

FHB

kT
= 2φ

v

vp

[
p ln p+ (1− p) ln(1− p)− p∆fp

kT

]
(A.3)

+ 2(1− φ)

[
q ln q + (1− q) ln(1− q)− q∆fw

kT

]
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+ 2(1− φ)

(
1− q − p φ

1− φ
v

vp

)
ln

(
1− q − p φ

1− φ
v

vp

)
− 2(1− φ)

(
q + p

φ

1− φ
v

vp

)
ln

2(1− φ)

e

− 2(1− φ)

[
q0 ln q0 − q0

∆fw
kT

+

2(1− q0) ln(1− q0)− q0 ln
2

e

]

where p represent the average fraction of hydrogen bonds between PEO and water, and q is the

average fraction of association in water; q0 is the value of q at φ = 0, i.e., the average fraction of

association in pure water. ∆fp is the free energy of the formation of each PEO-water hydrogen bond,

and ∆fw is the free energy of the formation of each water-water hydrogen bond. It is noteworthy

that Eq. A.3 is obtained by subtracting the free energy of pure PEO (φ = 1) and water (φ = 0) from

the mixed state. The detailed derivation of Eq. A.3 can be referred to Ref. [135, 147]. The total free

energy per lattice site is therefore the sum of Eq. A.1, A.2 and A.3:

(A.4) F = Ftrans + Fint + FHB

p and q must satisfy ∂F/∂p = 0 and ∂F/∂q = 0 to minimize the total free energy, which delivers

p

2(1− p)
[
(1− φ)(1− q)− pφ v

vp

] = exp

(
∆fp
kT

)
(A.5)

q

2(1− q)
[
(1− φ)(1− q)− pφ v

vp

] = exp

(
∆fw
kT

)
(A.6)
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The φ-dependent χ of PEO in aqueous solutions can be obtained by comparing Eq. A.1-A.3 with

Eq. 4.3, and subsequently χ can be derived as:

(A.7) χ = χ+
2

φ

(
p
v

vp
− q
)

+
2

φ2

[
q − q0 + ln

q

q0(1− φ)

]

Eq. A.7 exhibits a non-trivial dependence of χ on φ which is in good agreement with experi-

ments [147]. Using Eq. 4.20 to replace χ in Eq. 4.7 and 4.10, and incorporating Eq. A.5-A.6, we

are able to solve the T ∼ φ relations for PEO hydrogels as shown in Fig. 4.3a. All the parameters

for our calculations are obtained from Ref. [135].
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APPENDIX B

UHYPER Subroutine for Hydrogels

1 SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,
2 1 CMNAME,INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV,FIELDV,
3 2 FIELDVINC,NUMPROPS,PROPS)
4 !===============================================================
5 ! UHYPER Subroutine for Abaqus/Standard
6 ! by Shuangping Liu, Oct 13, 2016
7 !
8 ! Swelling gel with Flory-Rehner free-energy. The Flory
9 ! interaction parameter χ is given by

10 ! χ = Chi_A + Chi_B * T
11 ! to get shrinking behavior at increasing temperature
12 !---------------------------------------------------------------
13 ! Material properties:
14 ! PROPS(1) - Nv
15 ! PROPS(2) - Chi_A
16 ! PROPS(3) - Chi_B
17 ! PROPS(4) - phi0 - The volume fraction of the ref state
18 ! PROPS(5) - scale - Scale of the length
19 ! State variable:
20 ! TEMP: Temperature
21 ! Output:
22 ! Free-energy function (U_1, J) and its derivatives
23 !===============================================================
24 !
25 INCLUDE 'ABA_PARAM.INC'
26
27 CHARACTER*80 CMNAME
28 DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*),
29 1 FIELDVINC(*),PROPS(*)
30
31 REAL(8) Nv, kT_v, chi, chiA, chiB, phi0, scale
32
33 Nv = PROPS(1)
34 chiA = PROPS(2)
35 chiB = PROPS(3)
36 phi0 = PROPS(4)
37 scale = PROPS(5)
38 chi = chiA + chiB * TEMP
39 kT_v = 1.38064852E-23 / 2.99E-29 * TEMP * scale
40



123

41 U(1) = kT_v * (Nv / 2.0 * phi0 * (phi0**(-2.0/3.0) * BI1
42 & * AJ**(2.0 / 3.0) - 3.0 - LOG(AJ / phi0))
43 & - (AJ - phi0) * LOG(AJ / (AJ - phi0))
44 & + chi * phi0 * (1.0 - phi0 / AJ))
45 U(2) = 0
46
47 UI1(1) = kT_v * Nv / 2.0 * phi0**(1.0 / 3.0) * AJ**(2.0 / 3.0)
48 UI1(2) = 0
49 UI1(3) = kT_v * (Nv / 3.0 * BI1 * phi0**(1.0 / 3.0)
50 & * AJ**(-1.0 / 3.0) + (1 - Nv / 2.0) * phi0 / AJ
51 & - LOG(AJ / (AJ - phi0)) + chi * phi0**2 / AJ**2)
52
53 IF (AJ <= phi0) THEN
54 U(1) = 1E30
55 UI1(3) = -1
56 END IF
57
58 UI2 = 0
59 UI2(3) = kT_v * (-Nv / 9.0 * BI1 * phi0**(1.0 / 3.0)
60 & * AJ**(-4.0 / 3.0) - (1 - Nv / 2.0) * phi0 / AJ**2
61 & + phi0 / AJ / (AJ - phi0) - 2.0 * chi * phi0** 2 / AJ**3)
62 UI2(5) = kT_v * Nv / 3.0 * phi0**(1.0 / 3.0) * AJ**(-1.0 / 3.0)
63
64 UI3 = 0
65 UI3(4) = -kT_v * Nv / 9.0 * phi0**(1.0 / 3.0) * AJ**(-4.0 / 3.0)
66 UI3(6) = kT_v * (4.0 * Nv / 27.0 * BI1 * phi0**(1.0 / 3.0)
67 & * AJ**(-7.0 / 3.0) + (2.0 - Nv) * phi0 / AJ**3
68 & - phi0 * (2 * AJ - phi0) / (AJ * (AJ - phi0))**2
69 & + 6 * chi * phi0**2 / AJ**4)
70
71 RETURN
72 END
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