
NORTHWESTERN UNIVERSITY

Quasi-Monte Carlo Methods for Stochastic Programming

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Shane Sebastian Drew

EVANSTON, ILLINOIS

December 2007

2

c© Copyright by Shane Sebastian Drew 2007

All rights reserved

3

ABSTRACT

Quasi-Monte Carlo Methods for Stochastic Programming

Shane Sebastian Drew

In this thesis we discuss the issue of solving stochastic optimization problems using sam-

pling methods. Numerical results have shown that using variance reduction techniques from

statistics can result in significant improvements over Monte Carlo sampling in terms of the

number of samples needed for convergence of the optimal objective value and optimal solu-

tion to a stochastic optimization problem . Among these techniques are stratified sampling

and randomized Quasi-Monte Carlo sampling.

This thesis is split into three main sections:

• The first section discusses deviation probabilities for Latin Hypercube sampling (LHS),

which is a type of stratified sampling. A deviation probability is the probability that

the sample average differs from the true expectation by more than some quantity δ.

For Monte Carlo sampling, it is known that the deviation probability approaches zero

exponentially fast as the sample size grows to infinity. We show that under certain

conditions, that rate of convergence is even faster for Latin Hypercube sampling.

• The second section deals with a padded sampling scheme. For problems in high dimen-

sion, it may be computationally inefficient to calculate Quasi-Monte Carlo point sets

in the full dimension. Rather, we can identify which dimensions are most important to

the convergence and implement a sampling scheme where only those important dimen-

sions are sampled via Quasi-Monte Carlo sampling and the remaining dimensions are

“padded” with some other type of sampling. We show that a padded sampling scheme

4

where the padded variables are sampled with Latin Hypercube sampling (PLHS) sat-

isfies a normal central limit theorem.

• In the third section, we incorporate our padded sampling scheme (PLHS) into an al-

gorithm to solve two-stage stochastic optimization problems and show some numerical

results. Additionally we show that when padded sampling incorporated into single

replication and two-replication stopping procedures for our algorithm, the algorithm

will stop after a finite number of samples.

5

ACKNOWLEDGMENTS

Completing this dissertation has involved a long and interesting journey — one which I

could not have made without the help and support of many people along the way.

I would like to thank first my advisor Tito Homem-de-Mello for all of his guidance and

support. There were many instances over the past few years when I questioned whether this

dissertation would ever become a reality, but Tito was always there to bring me back on

course. I can truly say that without his persistence and understanding, this document would

never have been completed (or probably even started) and I would not be where I am today.

For that I am eternally grateful.

I would also like to thank the other members of my dissertation committee — Sanjay

Mehrotra, Barry Nelson, and Jeff Linderoth — for their input on this thesis. Taking classes

from Sanjay and Barry, along with Robert Fourer and John Birge, made me interested in

optimization and simulation and gave me much of the groundwork to complete the technical

work in this thesis. Jeff, along with Stephen Wright, provided me access to and technical

support for the code for sutil and ATR, which greatly helped in obtaining the numerical

results for this thesis.

Next, I would like to thank all of my friends and former officemates from room C229

— Peter, Zhen, Gigi, Fang, Taylan, Min, Leyla, Louis, Suzanne, Jisheng, Jeff, Jie, and

Michael — my giant, sometimes dysfunctional, grad school family. I greatly enjoyed all of

our conversations, both academic and non-academic, over the years. I learned so much from

all of you and look forward to keeping in touch. Thank you for always being there and

making my grad school experience much more fun!

Of course, I would also like to thank my real family — especially my father Richard,

mother Janice, and sister Whitney — for their love and support and for helping me become

6

the person I am today. They never once questioned why I would leave a nice lucrative

actuarial job to move halfway across the country to study something they had never even

heard of. Someday, I will successfully explain to them what this dissertation is about ¨̂ .

(My mother’s exact quote about this dissertation was “I don’t even know what any of the

words in the title mean!”). Additionally, I would like to mention two special people who

passed away during the course of this dissertation work but would have been very proud of

its result — my grandmother Gloria Costa (who would call me every couple of weeks to make

sure that I was eating correctly) and my grandfather Richard Drew (who when I would visit

would pull me aside to tell/ask me “I can’t wait to have a Dr. Drew in the family. When

are you finishing that damn paper?”).

Finally, I would like to thank my fiance Kate who has been my rock for the past 31
2

years.

She has always been there to celebrate with me on the good days, to cheer me up on the

bad days, and to make all the in-between days much nicer too. I’m not sure how she puts

up with all of my many quirks, but I am very glad that she does. Her unconditional love

and support have meant the world to me!

7

Contents

List of Tables 10

List of Figures 11

1 Introduction 12

2 An Overview of Sampling Methods 18

2.1 Introduction . 18

2.2 Latin Hypercube Sampling . 19

2.3 Quasi-Monte Carlo Sampling . 21

2.3.1 Randomized Quasi-Monte Carlo . 25

2.3.2 Effective Dimension . 27

3 Large Deviations for Latin Hypercube Sampling 31

3.1 Introduction . 31

3.2 Background . 37

3.2.1 Large Deviations . 37

3.2.2 Latin Hypercube Sampling . 43

3.2.3 Calculus Results . 46

3.3 The One-Dimensional Case . 48

8

3.4 The Multi-Dimensional Case . 57

3.4.1 Case 1: The Separable Function Case 58

3.4.2 Case 2: The Bounded Residual Case 62

3.4.3 Case 3: The Monotone Case . 65

3.5 Examples . 68

3.6 Connection to Stochastic Programming . 72

3.7 Conclusions . 74

4 A Central Limit Theorem for Padded Latin Hypercube Sampling 76

4.1 Introduction . 76

4.2 Latin Supercube Sampling . 78

4.3 A Central Limit Theorem for PLHS . 81

4.4 Conclusions . 85

5 A Padded Sampling Algorithm for Stochastic Programming 86

5.1 Introduction . 86

5.2 Sampling Methods in Stochastic Optimization 88

5.2.1 Methods . 88

5.2.2 Stopping Criteria . 90

5.3 Sensitivity Analysis . 95

5.3.1 Local Methods . 96

5.3.2 Screening Methods . 98

5.3.3 Sampling-Based Methods . 100

5.3.4 Variance-Based Methods . 102

5.4 Identifying the Set of Important Variables 104

5.4.1 Calculating Importance Measures . 106

9

5.4.2 Choosing the Number of Important Variables 108

5.4.3 Other Considerations . 108

5.5 The Algorithm . 110

5.6 A Stopping Criterion for the Algorithm . 113

5.7 Numerical Results . 118

5.7.1 Test Problems . 119

5.7.2 Numerical Results of the Algorithm 130

5.8 Conclusions . 131

6 Conclusion 133

Appendix A 143

10

List of Tables

5.1 Actual contribution to total variance (at optimal solution) - gbd 123

5.2 Estimating important variables - apl1p . 129

A.1 A comparison of sampling algorithms – gbd 144

A.2 A comparison of sampling algorithms – LandS 145

A.3 A comparison of sampling algorithms – apl1p 146

A.4 A comparison of sampling algorithms – 20term 147

11

List of Figures

2.1 Latin Hypercube Sampling, N = 4, s = 2 . 20

3.1 Examples 1 (left) and 2 (right). 69

3.2 Examples 3 (left) and 4 (right). 70

3.3 Example 5 (graphs labeled clockwise from the top left). 71

12

Chapter 1

Introduction

We live in a stochastic world. Random quantities and events such as customer demand, prices

of financial securities, machine failures, and the weather need to be accounted for to help

us make more informed decisions. One decision-making technique is optimization where

the decision-maker selects the alternative(s) that maximizes or minimizes some objective

function. The notion of optimization under uncertainty, or stochastic optimization, was first

developed in the 1950’s (Dantzig 1955, Beale 1955, Charnes and Cooper 1959, Robbins and

Monro 1951b). However, progress in the field was then relatively quiet until the 1980’s when

it finally became feasible to solve much larger optimization problems due to the proliferation

of computing power.

In this thesis, we consider stochastic optimization problems of the form:

min
x∈X

{g(x) := E[G(x, ξ)]} (1.1)

where X is a subset of Rn, ξ is a random vector in Rs, and G : Rn×Rs 7→ R is a real valued

function. We shall refer to (1.1) as the true optimization problem. We also assume that this

problem has a finite solution.

13

Often though, G(x, ξ) cannot be written in closed form or it cannot be easily calculated

due to a large sample space. In these cases, we can approximate the expectation with a

sample average:

ĝN(x) :=
1

N

n∑
j=1

G(x, ξj), (1.2)

where the ξj are random samples from the distribution of ξ.

From our family of estimators {ĝN(·)}, we can construct another stochastic program

min
x∈X

ĝN(x), (1.3)

which we shall refer to as the sampled optimization problem.

Let, v̂N denote the optimal objective value to the sampled optimization problem and x̂N

an optimal solution. Then v̂N and x̂N are approximations to the true optimal objective value

v∗ and some true optimal solution x∗.

When the samples ξ1, . . . , ξN are independent and identically distributed (i.i.d.), ĝN(x)

is referred to as a Monte Carlo estimator of g(x) and the approach of solving the sampled

optimization problem is usually referred to as the sample average approximation method or

sample path optimization. Approaches using Monte Carlo methods have been well-studied

in the context of stochastic optimization. If x∗ is the unique optimal solution to the true

optimization problem, then x̂N → x∗ and v̂N → v∗ under some general conditions (See, e.g.

Dupačová and Wets 1988, King and Rockafellar 1993, Robinson 1996, Shapiro 1991, Shapiro

1993). Another result of interest is the rate of convergence. Under suitable conditions,

for some fixed ε > 0, P(|g(x̂N) − g(x∗)| ≤ ε) and P(||x̂N − x∗|| ≤ ε) both converge to

one exponentially fast as the sample size N tends to infinity (Dai, Chen, and Birge 2000,

Kaniovski, King, and Wets 1995). Under further conditions, P(x̂N = x∗) converges to one

14

exponentially fast as the sample size N tends to infinity (Shapiro and Homem-de-Mello

(2000)). Finally, Shapiro (1991) has shown that the sequence of optimal objective values

{v̂N} satisfies a central limit theorem. Namely,

√
N(v̂N − v∗) ⇒ Normal(0, σ2

∗)

where “ ⇒ ” denotes convergence in distribution and σ2
∗ := V ar[G(x∗)]. Thus the conver-

gence of optimal objective values is of order 1√
N

.

Often though, either the sample size N required to guarantee a small error is extremely

large or it is computationally expensive to evaluate the function G(x, ξ) at fixed values of

ξ. A natural next step is to consider variance reduction techniques from the simulation and

statistics literature and apply them to the stochastic optimization problem. This research

is still in the relatively early stages (Bailey, Jensen, and Morton 1999, Dantzig and Glynn

1990, Emsermann and Simon 2000, Higle 1998, Infanger 1994, Shapiro and Homem-de-Mello

1998). Among these variance reduction techniques are antithetic variates, control variates,

and importance sampling (see Law and Kelton (2000)).

We focus on two other variance reduction techniques: stratified sampling and randomized

Quasi-Monte Carlo sampling. The main idea of stratified sampling is to split the sample

space into strata and to sample within each stratum roughly proportionally to that stratum’s

probability. This is done to reduce the likelihood that the random samples are clustered in

one general area of the sample space. In Quasi-Monte Carlo sampling (QMC), we take

the idea of stratification one step further. Rather than randomly sampling points within

each stratum, we choose them deterministically while obeying some constraints regarding

the distance between any two sample points. Since the variance of a deterministic sampling

scheme is identically zero, some uniform shuffling scheme may be employed on the determin-

istic QMC points to make them random. Such methods are called Randomized Quasi-Monte

15

Carlo (RQMC) methods. The goal of QMC and RQMC is for the point set to have a uniform

dispersion across the sample space. The primary issue however with these sampling schemes

is that the samples are no longer independent or identically distributed and thus many of

the results from classical probability no longer hold.

There are a wide variety of Quasi-Monte Carlo methods (which we will discuss in Chap-

ter 2). Some of these methods have been shown to have errors on the order of (log N)s

N
when

computing the sample average, which is asymptotically superior to the error for Monte Carlo

sampling. Quasi-Monte Carlo sampling does have its drawbacks though. For one, it can be

computationally expensive to generate QMC point sets for high dimensions. Also, while the

(log N)s

N
rate of convergence is asymptotically superior to the Monte Carlo rate of 1√

N
, it is

dependent on the dimension and often does not become superior to Monte Carlo until N is

extremely large. This is impractical for a sampling algorithm. However, QMC in practice

often outperforms its theoretical rate of convergence. This suggests that the sample spaces

of these problems are really in some lower dimension— i.e., that some random variables are

considerably more important to the problem than others. This leads to the notion of hybrid

or padded sampling schemes where the most important variables are sampled using Quasi-

Monte Carlo and the remaining variables are sampled using a computationally less expensive

scheme such as Monte Carlo or some form of stratified sampling. We will specifically look

at padding with Monte Carlo sampling (PMC) and padding with Latin Hypercube sampling

(PLHS).

This dissertation will cover three projects. First, we look at deviation probabilities of

sample averages from Latin Hypercube sampling. While large deviations results for i.i.d.

sampling have been well-studied (see Section 3.2.1) and general formulas for non-i.i.d. sam-

pling have been derived, there were previously no specific results for deviations probabilities

under Latin Hypercube sampling. We will examine these probabilities and show that under

16

certain assumptions the rate of convergence of the deviation probability of a sample average

(not in the context of stochastic optimization) is indeed faster for Latin Hypercube than

the exponential rate of convergence from standard Monte Carlo sampling. Homem-de Mello

(2006) has since extended these results to optimal objective values of stochastic optimization

problems.

Second, we examine a padded sampling scheme where the padded variables are sampled

with Latin Hypercube sampling (PLHS). Ökten, Tuffin, and Burago (2006) have already

shown that a padded sampling scheme where the padded variables are sampled with Monte

Carlo sampling (PMC) satisfies a normal central limit theorem for bounded functions and

that the asymptotic variance of this distribution is no worse than the asymptotic variance

from pure Monte Carlo sampling. Owen (1992) and Stein (1987) have shown the same results

for pure LHS versus Monte Carlo sampling. We will show that a central limit theorem for

bounded functions also holds for PLHS and that its asymptotic variance is no worse than

Monte Carlo, LHS, or PMC.

Third, we implement PLHS and PMC into sampling algorithms to solve stochastic pro-

gram (1.3). To date, we have found no other papers using padded sampling schemes to solve

stochastic programs. We also incorporate padded sampling into the stopping criteria for

these algorithms and show that these stopping criteria are asymptotically valid. The lower

variance provided by padded sampling schemes should provide tighter confidence intervals

in the stopping criteria than their Monte Carlo counterparts.

The structure of this dissertation is as follows. In Chapter 2 we give an overview of

sampling methods with a focus on Latin Hypercube sampling (a type of stratified sampling

proposed by McKay, Beckman, and Conover (1979)) and Quasi-Monte Carlo sampling. In

Chapter 3 we show our large deviations results for Latin Hypercube sampling. In Chapter 4,

we show that a padded sampling scheme where the padded variables are sampled with

17

Latin Hypercube sampling (PLHS) satisfies a normal central limit theorem provided that

the function of interest is bounded (again not in the context of stochastic optimization). In

Chapter 5 we present an algorithm which uses padded sampling to solve two-stage stochastic

linear programs and illustrate some numerical results. We also show that the use of padded

sampling in stopping criteria for stochastic programs yields asymptotically valid confidence

intervals before offering some final remarks and comments in Chapter 6.

18

Chapter 2

An Overview of Sampling Methods

2.1 Introduction

Suppose that X is a random variable in Rs with all of its arguments mutually independent,

g : Rs 7→ R is a measurable function, and we wish to estimate I = E[g(X)]. One way to

do this is via numerical integration. We choose a point set {ξ1, . . . , ξN} from the sample

space and then calculate the sample average Î = 1
N

∑N
j=1 g(ξj) from that point set. When

the elements of the point set are independent and identically distributed (i.e., each point is

sampled randomly from the entire sample space), the numerical integration method is called

a Monte Carlo method. It is well known from statistics that if the function g(X) has a finite

second moment then the error of the sample average approximation ÎMC is of order 1√
N

.

However, with Monte Carlo sampling, there is always the chance that the random samples

are clustered in one region of the sample space. One way to rectify this is stratified sampling

— where the sample space is split into strata and the point set contains a specified number of

random samples from each strata. We will concentrate specifically on one type of stratified

sampling called Latin Hypercube sampling. A second method that deals with the clustering

problem is Quasi-Monte Carlo sampling, where the point sets are entirely deterministic.

19

2.2 Latin Hypercube Sampling

Latin Hypercube sampling was first proposed by McKay et al. (1979). The algorithm works

as follows when the random variable X is uniformly distributed on [0, 1]s and the dimensions

j = 1, . . . , s are all mutually independent of each other:

Algorithm LHS: For each dimension j = 1, . . . , s:

1. Generate

Y 1
j ∼ U

(
0,

1

N

)
, Y 2

j ∼ U

(
1

N
,

2

N

)
, . . . , Y N

j ∼ U

(
N − 1

N
, 1

)
;

2. Let ξi
j := Y

π(i)
j where π is a random permutation of 1, . . . , N . ¥

The ith sampled point is then just the s-tuple ξi = (ξi
1, . . . , ξ

i
s). The result is that

each stratum from each dimension is sampled exactly once. See Figure 2.1 for the case

where dimension s = 2 and sample size N = 4. In the case that the arguments are not

of uniform distribution, the algorithm can be modified by drawing the samples from the

uniform distribution and then applying the inverse transform method to obtain the desired

distribution. We then can evaluate g(·) at the sampled points and calculate the sample

average. If we altered step 1 of Algorithm LHS so that Y i
j = i−0.5

N
(the midpoint of the

interval rather than a random point), then the sampling scheme is called Centered Latin

Hypercube sampling (CLHS).

McKay et al. (1979) show that both Latin Hypercube sampling and Centered Latin

Hypercube sampling give an unbiased estimate of the mean. Further, if the function g is

monotone in each argument when all of the other arguments are held fixed, then the sample

variance of the estimator under Latin Hypercube sampling is no worse than the sample

variance under Monte Carlo sampling. Hoshino and Takemura (2000) extend this to the

20

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
Latin Hypercube Sampling, N=4

ξ1

ξ 2

Figure 2.1: Latin Hypercube Sampling, N = 4, s = 2

case where g(·) is monotone in all but one of its arguments. Owen (1997b) generalizes

the relationship between Monte Carlo and LHS variance for all measurable functions and

shows that V arLHS ≤ N
N−1

V arMC , where V arLHS and V arMC are the variances under Latin

Hypercube and crude Monte Carlo sampling respectively. Thus the variance under Latin

Hypercube sampling is no worse than Monte Carlo sampling asymptotically, but could be

for general N .

Stein (1987) splits the function g(·) into a constant component µ plus first order terms

plus a residual component (this is called the ANOVA decomposition of g), i.e.,

g(X) = µ + g1(X
1) + · · ·+ gs(X

s) + gresid(X). (2.1)

Stein (1987) also shows that, asymptotically, the sample variance from Latin Hypercube

sampling is equal to the variance of the residual term in the ANOVA decomposition. As

a result of this Latin Hypercube sampling performs particularly well on functions that are

21

separable or nearly separable. Loh (1996) extends this result to the multivariate case where

g : Rs 7→ Rm. Finally, Owen (1992) shows that Latin Hypercube sampling satisfies a Central

Limit Theorem with the variance equal to the variance of the residual term.

2.3 Quasi-Monte Carlo Sampling

One of the problems with Monte Carlo sampling or any other random sampling scheme is

that it only gives a probabilistic error bound, i.e., on average a sample of size N will give an

error of order 1√
N

for any function. One could instead deterministically choose a point set

of size N that outperforms the average error for most functions. Such methods are called

Quasi-Monte Carlo (QMC) methods. Comprehensive reviews of Quasi-Monte Carlo methods

can be found in Niederreiter (1992) and L’Ecuyer and Lemieux (2002).

In Quasi-Monte Carlo sampling, we wish to select points ξ1, . . . , ξN that are approxi-

mately uniformly spaced avoiding large gaps or clusters. More formally, if the sample space

is Ω, then for any measurable subset J of Ω, we would like

∑N
j=1 χJ(ξj)

N
≈ λs(J)

λs(Ω)

where λs(·) is the s-dimensional Lebesgue measure and χJ(·) is the characteristic function

of J (equal to 1 if ξj ∈ J and 0 if not). Without loss of generality we will assume that

Ω = [0, 1)s (which has Lebesgue measure one) as we can use the inverse transform on

uniform random variables to obtain other distributions. The difference between the empirical

distribution of the Quasi-Monte Carlo point set and the uniform distribution is quantified by

the discrepancy. There are various notions of discrepancy. We will use the star discrepancy

22

which is defined as

D∗
N(ξ1, . . . , ξN) = sup

J∈J∗

∣∣∣∣∣

∑N
j=1 χJ(ξj)

N
− λs(J)

∣∣∣∣∣ , (2.2)

where J∗ is the family of all subintervals of [0, 1)s of the form
∏s

i=1[0, ui). The star-

discrepancy will always be between zero and one.

The Koksma-Hlawka inequality shows that the error from the estimate ÎQMC = 1
N

∑N
j=1 g(ξj)

is bounded above by the product of the star-discrepancy and the total Hardy-Krause varia-

tion (Hardy, 1905) of the function g(·) (denoted V (g)):

|ÎQMC − I| ≤ D∗
N(ξ1, . . . , ξN)V (g). (2.3)

As a result, most of the research on Quasi-Monte Carlo methods has focused on finding

low-discrepancy sequences.

One of the first Quasi-Monte Carlo sequences was the one-dimensional van der Corput

sequence which is based upon the radical inverse sequence. Let b ≥ 2 be an arbitrary integer

called the base. Every integer i ≥ 0 has a unique digit expansion in base b:

i =
∞∑

j=0

dj(i)b
j. (2.4)

The radical inverse function is

φb(i) =
∞∑

j=0

dj(i)

bj+1
(2.5)

and the van der Corput sequence in base b is then the sequence ξ0, ξ1, ξ2, . . . with ξi = φb(i).

In base 2 this is 1
2
, 1

4
, 3

4
, 1

8
, 5

8
, 3

8
, 7

8
, The discrepancy of the van der Corput sequence is

O
(

log(N)
N

)
.

The Halton sequence extends the van der Corput sequence to multiple dimensions by

23

using base bj for dimension j where bj is the jth smallest prime number (with b1 = 2). Thus

the Halton sequence in s dimensions is ξ0, ξ1, ξ2, . . . with ξi = (φb1(i), . . . , φbs(i)). The first

N terms of the Halton sequence has discrepancy O
(

(log(N))s

N

)
.

If we know the number of sample points N in advance, we can improve the discrepancy of

the Halton sequence by using a Hammersley point set (Hammersley, 1960). In a Hammersley

point set of dimension s, the first dimension consists of equally spaced points while the

remaining s − 1 dimensions are a Halton sequence of length N where the bases are the

smallest s− 1 prime numbers:

ξi =

(
i

N
, φb1(i), . . . , φbs−1(i)

)
, i = 1 . . . N

The discrepancy of a Hammersley point set is O
(

(log(N))s−1

N

)
.

There are two problems with the sequences and point sets above. First, we would like

to use the same base for each dimension. Second, as the dimension s goes to infinity, the

coefficient on the leading term of the discrepancy grows superexponentially. We would like

that coefficient to go to zero. Both of these problems are solved with a (t, s)-sequence.

Before we define a (t, s)-sequence, we need a couple of definitions. An elementary interval

of base b in dimension s is a subinterval E of the form

E =
s∏

j=1

[
aj

bdj
,
aj + 1

bdj

)

for nonnegative integers {aj} and {dj} with aj < bdj for all j. E then has volume b−
∑

j dj .

Let m be a nonnegative integer. Then a finite sequence of N = bm points is called a

(0,m, s)-net in base b if every elementary interval in base b of volume 1
bm contains exactly

one point of the sequence. Latin Hypercube sampling is a special case of this with each

realization being a (0, 1, s)-net in base b = N .

24

This is easily extended to any integer t with 0 ≤ t ≤ m. A finite sequence of N = bm

points is called a (t,m, s)-net in base b if every elementary interval in base b of volume 1
bm−t

contains exactly bt points of the sequence. Note, that any (t,m, s)-net is also a (u,m, s)-net

for any integer u ∈ [t,m]. Thus smaller values of t are more desirable. The discrepancy of

a (t,m, s)-net in base b is O
(

(log(N))s−1

N

)
– the same as a Hammersley point set except that

the coefficient of the leading term now goes to zero as the number of sample points N goes

to infinity.

A digital (t,m, s)-net in base b ≥ 2 (prime) is a (t, m, s)-net generated by digit expansion.

Let d(i) = [d1(i) d2(i) · · ·]T be defined from the base b expansion of positive integer i in E

quation (2.4) and let C1, . . . Cs be (m×m)-matrices over the finite field Fb. For each sample

point i = 1, . . . , N and each dimension j = 1, . . . , s, calculate [yj1(i) . . . yj∞(i)]T =

Cjd(i)T . Then the point set is comprised of ξ1, . . . , ξN where

ξi =

(∞∑

k=1

y1k(i)

bk
, . . . ,

∞∑

k=1

ysk(i)

bk

)
.

A sequence of points ξ0, ξ1, ξ2, . . . is called a (t, s)-sequence in base b if for all integers

k ≥ 0 and m > t, the set of ξi with kbm ≤ i ≤ (k + 1)bm is a (t,m, s)-net in base b. One

special case is the van der Corput sequence which is just a (0, 1)-sequence in base b. Like the

(t,m, s)-net, any (t, s)-sequence in base b is also a (u, s) sequence in base b for all integers

u ≥ t. The first N ≥ 2 terms of a (t, s)-sequence in base b has discrepancy O
(

(log(N))s

N

)
.

While these Quasi-Monte Carlo methods compare favorably to Monte Carlo sampling

methods, there are still two major disadvantages:

• It is often difficult to compute the quantities in the upper bound of the Koksma-Hlawka

inequality. Also, we do not know how tight that bound is. Thus computing an accurate

error bound for Quasi-Monte Carlo integration can be problematic.

25

• While the Quasi-Monte Carlo error bound of (log(N))s

N
is asymptotically superior to the

Monte Carlo error bound of 1√
N

, it is not advantageous until N is very large, unless

the dimension s is small. Even for s = 5, we must have N ≥ 3.4× 1015 for QMC to be

theoretically advantageous.

We usually deal with the first problem by employing randomization into the Quasi-Monte

Carlo point set. We remedy the latter by looking at the effective dimension of the sample

space rather than the given dimension.

2.3.1 Randomized Quasi-Monte Carlo

In the previously discussed Quasi-Monte Carlo methods, the point set is entirely deterministic

and thus the estimator Î = 1
N

∑N
j=1 g(ξj) has zero variance. This makes it difficult to

calculate the integration error |ÎQMC − I|. In a Randomized Quasi-Monte Carlo method,

each individual sample point is now uniformly distributed over the sample space, but the

point set as a whole still preserves the low-discrepancy property. Randomized QMC methods

are discussed in detail in Fox (2000) and Owen (2000). Since the point set is now random,

errors can be estimated using standard methods such as multiple independent replications.

Cranley and Patterson (1976) proposed a rotation modulo one for a QMC method called

an integration lattice. If the original Quasi-Monte Carlo sequence is {ai}, then the terms of

the randomized QMC sequence are

ξi = (ai + U) mod 1

where U is uniformly distributed on [0, 1)s and the addition and modulo are performed

componentwise. Tuffin (1996) applied such rotations to digital nets but found that while the

sample points exhibit properties of uniformity, they are no longer nets.

26

Owen (1995) proposed the scrambled digital net. To begin, each dimension is split

into b elementary intervals of the form
[

k
b
, k+1

b

)
. Then one dimension at a time, random

permutations are generated to reorder the elementary intervals. In the second pass, the b

intervals in each dimension are each subdivided into b subintervals. For each interval, a

random permutation is generated to reorder the subintervals. This process continues.

More formally, let {Ai} be a (t,m, s)-net or (t, s)-sequence in base b with Ai = (Ai
1, . . . , A

i
s).

Then each Ai
j can be expanded as a radical inverse sequence in base b:

Ai
j =

∞∑

k=1

djk(i)

bk

where 0 ≤ djk(i) < b for all i, j, k. To scramble the net, we generate independent permuta-

tions πj·(·) of {0,b− 1} for each digit k given the values of the first k − 1 digits:

ξi
j1 = πj(dj1(i))

ξi
j2 = πjdj1(i)(dj2(i))

ξi
j3 = πjdj1(i)dj2(i)(dj3(i))

...

ξi
jk = πjdj1(i)dj2(i)···djk−1(i)(djk(i)).

The randomized sequence then comes from computing the radical inverse function using the

permuted digits. The ith term is ξi = (ξi
1, . . . , ξ

i
s) with

ξi
j =

∞∑

k=1

ξi
jk

bk
.

One nice property of scrambled nets is that any scrambled (t,m, s)-net in base b is also a

(t,m, s)-net with probability one (similarly any scrambled (t, s)-sequence in base b is also

27

a (t, s)-sequence in base b with probability one) (Owen 1995). Thus all of the properties

of the (t,m, s)-nets and (t, s)-sequences can also be applied to the scrambled nets and se-

quences. Another important property is that the point set from a scrambled net is uniformly

distributed over the unit hypercube. This is a consequence of the scrambling and is in-

dependent of whether or not the pre-scrambled point set was a (t,m, s)-net. As a result,

the integration error can be calculated by taking multiple independent replications of the

scrambled net (from the same original net). While in general, the integration error from

a (t,m, s)-net is O
(

(log N)s−1

N

)
, Owen (1997b) shows that for smooth functions, scrambled

(t,m, s)-nets give an integration error of O

(
(log N)

s−1
2

N
3
2

)
, which is an improvement on both

the Monte Carlo and general Quasi-Monte Carlo integration errors.

2.3.2 Effective Dimension

A second problem with Quasi-Monte Carlo sampling is that the integration error is dependent

on the number of dimensions of the sample space while Monte Carlo sampling is independent

of the dimension. So while asymptotically the Quasi-Monte Carlo rate is superior to Monte

Carlo, for problems in large dimension it does not theoretically become so until the number

of sample points is extremely large. Yet for many problems, numerical results show that

Quasi-Monte Carlo methods have a much lower integration error, even for reasonable sample

sizes. This suggests that either the upper bound from the Koksma-Hlawka inequality is not

tight or that the problem is in some lower dimension.

If the function g(·) is square-integrable, then g(·) can be written

g(ξ) =
∑

A⊆{1,...,s}
gA(ξ) (2.6)

where gA(ξ) depends only on the components ξj with j ∈ A. Also, gA(ξ) satisfies the

28

properties:

1.
∫ 1

0
gA(ξ)dξj =





0, if j ∈ A

gA(ξ), if j /∈ A.

2.
∫
[0,1)s gu(ξ)gv(ξ)dξ = 0, if u 6= v.

For each subset A, gA(ξ) is determined by looking at the portion of g that is not determined

by subsets of A and then averaging over all of the components not in A

gA(x) =

∫

[0,1)Ac

(
g(ξ)−

∑
v⊂A

gv(ξ)

)
dξAc

. (2.7)

The goal of any sampling method is to estimate ḡ :=
∫
[0,1)s g(ξ)dξ (equivalent to letting

A be the empty set in (2.7)). From the properties above, the variance of g, defined as

σ2 :=
∫

(g(ξ)− ḡ)2dξ, satisfies

σ2 =
∑

A⊆{1,...,s}
σ2

A (2.8)

where σ2
A :=

∫
gA(ξ)2dξ. Hence, this is called the ANOVA (analysis of variance) decomposi-

tion of g. One can then define the effective dimension of the problem based on the terms of

the ANOVA decomposition that contribute most toward the overall variance. Caflisch, Mo-

rokoff, and Owen (1997) define two notions of effective dimension: the truncation dimension

and the superposition dimension.

The effective dimension of g in the truncation sense is the smallest integer sT such that

∑

A⊂{1,2,...,sT }
σ2

A ≥ (1− ε)σ2. (2.9)

Typically, ε is chosen to be 0.01. Note that the value of sT is dependent on the order in

which the input variables are indexed. This definition implies that only a small number

29

of the input variables are important to the problem, thus there is little need for variance

reduction techniques on the remaining variables. This leads to the concept of padding where

the important variables are integrated using a QMC or randomized QMC point set and the

remaining variables are integrated using something computationally less expensive such as

the midpoint of the interval, a Monte Carlo sample (Spanier 1995), or a Latin Hypercube

sample (Owen 1998). Example of this technique will be described in Chapters 4 and 5.

The effective dimension of g in the superposition sense is the smallest integer sS such

that
∑

|A|≤sS

σ2
A ≥ (1− ε)σ2. (2.10)

It can be shown that 0 ≤ sT ≤ sS ≤ s. One way to interpret the effective dimension in the

superposition sense is that g(ξ) can be replaced by a function of dimension sS which would

explain (1−ε)% of its variance. Thus the Quasi-Monte Carlo integration error should depend

on something closer to the effective dimension rather than the true dimension. Owen (2002)

has shown that low effective dimension in the superposition sense is necessary for scrambled

(0,m,s)-nets to beat Monte Carlo methods by a wide margin for high dimensions and modest

sample sizes.

Owen (2003) proposes the concept of dimension distribution in the superposition sense.

He defines a random variable D with range {1, . . . , s} such that P(D = k) = 1
σ2

∑
A:|A|=k σ2

A

(i.e., the percentage of the variance attributed to terms of order k). Since it is difficult to

compute the full distribution of D, Liu and Owen (2003) propose calculating moments of D,

which turns out to be a far simpler task. For example, the mean of D is E[D] = 1
σ2

∑s
j=1 τ̄{j}

where τ̄{j} is given by

τ̄{j} =
1

2
E

[
(g(U1, . . . , Us)− g(U1, . . . , Uj−1, Vj, Uj+1, . . . , Us))

2
]

(2.11)

30

and (U1, . . . , Us) and (V1, . . . , Vs) are random sequences such that each pair {Uj, Vj} is i.i.d.

Higher moments of D can be computed accordingly.

31

Chapter 3

Large Deviations for Latin Hypercube

Sampling

3.1 Introduction

Suppose we wish to calculate E[g(X)] where X = [X1, . . . , Xd] is a random vector in Rd and

g(·) : Rd 7→ R is a measurable function. Further, suppose that the expected value is finite

and cannot be written in closed form or be easily calculated, but that g(X) can be easily

computed for a given value of X. Let E[g(X)] = µ ∈ (−∞,∞). To estimate the expected

value, we can use the sample average approximation:

1

n
Sn =

1

n

n∑
i=1

g(Xi(ω)) (3.1)

where the Xi(ω) are random samples of X. When the Xi(ω) are i.i.d. (i.e., Monte Carlo

sampling), by the law of large numbers the sample average approximation should approach

the true mean µ (with probability one) as the number of samples n becomes large. Large

deviations theory ensures that the probability that the sample average approximation devi-

32

ates from µ by a fixed amount δ > 0 approaches zero exponentially fast as n goes to infinity.

Formally, this is expressed as

lim
n→∞

1

n
logP

(∣∣∣∣
1

n
Sn − µ

∣∣∣∣ > δ

)
= −βδ,

where βδ is a positive constant.

The description above, of course, is a small fraction of a much more general theory, but

conveys a basic concept — that one obtains exponential convergence of estimators under

certain conditions. This idea has found applications in numerous areas, from simulation to

telecommunications to physics; we refer to classical books in the area such as Dembo and

Zeitouni (1998) and Bucklew (2004) for further discussions.

Despite the exponential convergence results mentioned above, it is well known that Monte

Carlo methods have some drawbacks, particularly when one wants to calculate the errors

corresponding to given estimates. Although the theory behind such calculations — notably

the Central Limit Theorem — is solid, in practice the error may be large even for large

sample sizes. That has led to the development of many variance reduction techniques as well

as alternative sampling methods (see, e.g., Law and Kelton 2000 for a general discussion of

this topic).

One alternative approach for sampling the Xi(ω) is called Latin Hypercube sampling

(LHS, for short), introduced by McKay et al. (1979) . Broadly speaking, the method calls

for splitting each dimension into n strata (yielding nd hypercubes) and, for every dimension,

sampling all n strata exactly once. This technique has been extensively used in practice, not

only because of simplicity of implementation but also because of its nice properties. Indeed,

McKay et al. (1979) show that if g(X) is monotone in each of its arguments, then the

variance of the estimator obtained with LHS (call it VarLHS) is no larger than the variance

from Monte Carlo sampling (VarMC). Hoshino and Takemura (2000) extend this result to

33

the case where g(·) is monotone in all but one of its arguments. Stein (1987) writes the

ANOVA decomposition of g, i.e.,

g(X) = µ + g1(X
1) + · · ·+ gd(X

d) + gresid(X) (3.2)

and shows that, asymptotically, the sample variance from Latin Hypercube sampling is just

equal to the variance of the residual term and is no worse than the variance from Monte

Carlo sampling. Loh (1996) extends this result to the multivariate case where g : Rd 7→ Rm.

Owen (1997a) shows that for any n and any function g, VarLHS ≤ n
n−1

VarMC . Also, Owen

(1992) shows that LHS satisfies a Central Limit Theorem with the variance equal to the

variance of the residual term. For further details on LHS, we refer the reader to Section 2.2

of this thesis.

The discussion above shows that the LHS method has been well studied and possesses

many nice properties. However, to the best of our knowledge there have been no studies on

the exponential convergence of estimators obtained with LHS. Thus, it is of interest to know

whether large deviations results hold under Latin Hypercube sampling. This is by no means

a trivial question — since the Xi(ω) are no longer i.i.d. under LHS, Cramér’s Theorem

(which is the basic pillar of the results for i.i.d. sampling) can no longer be applied.

In this chapter, we study the problem above. We derive conditions under which large

deviations results hold under Latin Hypercube sampling. More specifically, our results ap-

ply when the integrand function is of one of the following types: one-dimensional; multi-

dimensional but separable (i.e., functions with no residual term); multi-dimensional with a

bounded residual term; and multi-dimensional functions that are monotone in each compo-

nent. In the case of functions with a bounded residual term, our results hold provided that

the deviation we are measuring is large enough. Further, in all the situations above, we show

that the upper bound for the large deviations probability is lower under LHS than under

34

Monte Carlo sampling. Jin, Fu, and Xiong (2003) show this property holds when negatively

dependent sampling is used to estimate a probability quantile of continuous distributions,

whereas we prove it for the situations mentioned above.

The particular application that motivates our work arises in the context of stochastic

optimization. For completeness, we briefly review the main concepts here. Consider a model

of the form

min
y∈Y

{h(y) := E[H(y, X)]} , (3.3)

where Y is a subset of Rn, X is a random vector in Rd and H : Rn × Rd ½ R is a real

valued function. We refer to the problem above as the “true” optimization problem. Let y∗

denote the optimal solution of (3.3) (assume for simplicity this solution is unique), and let

ν∗ denote the optimal value of (3.3).

Consider now a family {ĥN(·)} of random approximations of the function h(·), each ĥN(·)
being defined as

ĥN(y) :=
1

N

N∑
j=1

H(y, Xj), (3.4)

where X1, . . . , XN are independent and identically distributed samples from the distribution

of X. Then, one can construct the corresponding approximating program

min
y∈Y

ĥN(y). (3.5)

An optimal solution ŷN of (3.5) provides an approximation (an estimator) of the optimal

solution y∗ of the true problem (3.3). Similarly, the optimal value ν̂N of (3.5) provides an

approximation of the optimal value ν∗ of (3.3).

Many results describing the convergence properties of {ŷN} and {ν̂N} exist; see, for in-

stance, Shapiro (1991, 1993), King and Rockafellar (1993), Kaniovski et al. (1995), Robinson

(1996), Dai et al. (2000). Broadly speaking, these results ensure that, under mild conditions,

35

ŷN converges to y∗ and ν̂N converges to ν∗. In case the function H(·, x) is convex and piece-

wise linear for all x — which is setting in stochastic linear programs — and the distribution

of X has finite support, a stronger property holds; namely, the probability that ŷN coincides

with y∗ goes to one exponentially fast, i.e.,

lim
N→∞

1

N
log [P(ŷN 6= y∗)] = −β (3.6)

for some β > 0 — see Shapiro and Homem-de-Mello (2000), Shapiro, Homem-de-Mello,

and Kim (2002). A similar property holds in case the feasibility set Y is finite (Kleywegt,

Shapiro, and Homem-de-Mello, 2001) . The importance of results of this type lies in that

they allow for an estimation of a sample size that is large enough to ensure that one obtains

an ε-optimal solution with a given probability; for example, in the case of finite feasibility

set mentioned above, it is possible to show that if one takes

N ≥ C

ε2
log

(|Y |
α

)

— where C is a constant that depends on the variances of the random variables H(y, X)

— then the probability that |h(ŷN) − h(y∗)| < ε is at least 1 − α (Kleywegt et al., 2001).

Besides its practical appeal, this conclusion has implications on the complexity of solving

stochastic optimization problems; we refer to Shapiro and Nemirovski (2004) for details.

The results described above, although very helpful, require that the estimators in (3.4)

be constructed from i.i.d. samples. However, it is natural to consider what happens in case

those estimators are constructed from samples generated by other methods such as LHS.

Numerical experiments reported in the literature invariably show that convergence of {ŷN}
and {ν̂N} improves when LHS is used, but no formal results have been established. In

particular, a standing question is: do exponential convergence results such as (3.6) still hold

36

under LHS?

We illustrate this point with a very simple example. Suppose that X is discrete uniform

on {−2,−1, 0, 1, 2}. The median of X (which in this case is evidently equal to zero) can

be expressed as the solution of the problem miny∈R E|X − y|. Note that this is a stochastic

optimization problem of the form (3.3), with H(y, X) = |X−y|— which is a convex piecewise

linear function. As before, let X1, . . . , XN be i.i.d. samples of X. Clearly, the approximating

solution ŷN is the median of X1, . . . , XN . Note that, when N is odd, ŷN is nonzero if and

only if at least half of the sampled numbers are bigger than zero (or less than zero). That

is, by defining a random variable Z with binomial distribution B(N, 2/5) we have

P(Z ≥ N/2) ≤ P (ŷN 6= 0) ≤ 2P(Z ≥ N/2)

and thus

1

N
logP (ŷN 6= 0) ≈ −I(1/2),

where I(·) is the rate function of the Bernoulli distribution (see Section 3.2.1 for a precise

definition).

Suppose now that the samples X1, . . . , XN are generated using LHS. It is easy to see that

there are at least b2N
5
c and at most b2N

5
c + 1 numbers in {1, 2} (similarly for {−2,−1}).

Thus, we have that ŷN 6= 0 only if

b2N
5
c+ 1 ≥ N/2.

Clearly, this is impossible for N ≥ 9, so P(ŷN 6= 0) = 0 for N large enough. That is,

the asymptotic rate of convergence of {ŷN} to the true value is infinite, as opposed to the

exponential rate with positive constant obtained with Monte Carlo. A natural question that

arises is, does such result hold in more general settings?

37

The main tool underlying the derivation of (3.6) is the theory of large deviations, partic-

ularly Cramér’s Theorem for multi-dimensional spaces. Thus, in order to address the issue

of whether (3.6) holds when the estimators are constructed using LHS, it is necessary to

establish first some large deviations results for LHS. This is the goal of this paper.

The remainder of the paper is organized as follows. In Section 3.2, we give some back-

ground on large deviations theory. We also state some of the calculus results needed later in

the paper. In Section 3.3, we show our results for functions in one-dimension. In Section 3.4,

we extend the one-dimensional results to separable functions with multi-dimensional domain,

multi-dimensional functions with bounded residual term, and multi-dimensional functions

that are monotone in each argument. In Section 3.5 we show some examples of our results.

In Section 3.6 we discuss some of the work that Homem-de Mello (2006) has done since

the original paper (Drew and Homem-de-Mello, 2005) was written. This work extends our

large deviations results to stochastic optimization, and in Section 3.7 we present concluding

remarks.

3.2 Background

3.2.1 Large Deviations

We begin with a brief overview of some of the basic results from large deviations theory. For

more comprehensive discussions, we refer to books such as Dembo and Zeitouni (1998) or

den Hollander (2000).

Suppose Y is a real-valued variable with mean µ = E[Y] (possibly infinite) and let

1
n
Sn = 1

n

∑n
i=1 Yi be an unbiased estimator of E[Y], where Y1, . . . , Yn are not necessarily i.i.d.

38

of Y . Define the extended real-valued function

φn(θ) :=
1

n
logE[exp(θSn)]. (3.7)

It is easy to check that φn(·) is convex with φn(0) = 0.

Let (a, b) be an interval on the real line containing µ. We wish to calculate the probability

that the estimator Sn/n deviates from µ, i.e.

P
(

1

n
Sn /∈ (a, b)

)
= P

(
1

n
Sn ≤ a

)
+ P

(
1

n
Sn ≥ b

)
.

For all θ > 0, it holds that P(1
n
Sn ≥ b) = P(Sn ≥ bn) = P(exp(θSn) ≥ exp(θbn)). By apply-

ing Chebyshev’s inequality to the latter term we obtain P(1
n
Sn ≥ b) ≤ exp(−θbn)E[exp(θSn)]

and thus

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ −

(
θb− 1

n
logE[exp(θSn)]

)
= −[θb− φn(θ)].

Note that this inequality holds regardless of any independence assumptions on the Yis. More-

over, since the above inequality is true for all θ ≥ 0 it follows that

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ inf

θ≥0
−[θb− φn(θ)] = − sup

θ≥0
[θb− φn(θ)]. (3.8)

By Jensen’s inequality, we have E[exp(θSn)] ≥ exp(θE[Sn]) = exp(θnµ) for any θ ∈ R and

hence

φn(θ) ≥ θµ for all θ ∈ R. (3.9)

It follows that θb− φn(θ) ≤ θ(b− µ). Since b > µ, we can take the supremum in (3.8) over

θ ∈ R.

39

Similarly, for all θ < 0 it holds that P(1
n
Sn ≤ a) = P(Sn ≤ an) = P(exp(θSn) ≥

exp(θan)). By repeating the argument in the paragraphs above we conclude that

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ −I(n, b) (3.10a)

1

n
log

[
P

(
1

n
Sn ≤ a

)]
≤ −I(n, a), (3.10b)

where the function I(n, z) is defined as

I(n, z) := sup
θ∈R

[θz − φn(θ)]. (3.11)

Note that (3.10) holds for all n ≥ 1. Also, I(n, z) ≥ 0 for all n and all z. We would like,

however, to establish that I(n, z) > 0 for z 6= µ and all n, in which case the deviation

probabilities in (3.10) yield an exponential decay (note that, since θz − φn(θ) ≤ θ(z − µ)

for all θ and z, it follows that I(n, µ) = 0 for all n — a natural conclusion since we cannot

expect to have an exponential decay for the probability P(Sn/n ≥ µ)).

We proceed now in that direction. Suppose that the functions {φn(·)} are bounded above

by a common function φ∗(·). Then, by defining I∗(z) := supθ∈R [θz − φ∗(θ)] we have that

(3.10) holds with I∗(a) and I∗(b) in place of respectively I(n, a) and I(n, b). Since those

quantities do not depend on n, it follows that P(Sn/n ≤ a) and P(Sn/n ≥ b) converge to

zero at least as fast as the exponential functions exp(−nI∗(a)) and exp(−nI∗(b)), i.e.,

P
(

1

n
Sn ≥ b

)
≤ exp(−nI∗(b)), P

(
1

n
Sn ≤ a

)
≤ exp(−nI∗(a)). (3.12)

The proposition below establishes further conditions on φ∗ in order for I∗ to have some

desired properties. In particular, under those conditions I∗ is a rate function (in the sense

of Dembo and Zeitouni 1998) that satisfies I∗(z) > 0 for all z 6= µ.

40

Proposition 3.1. Consider the functions {φn(·)} defined in (3.7). Suppose that there exists

an extended real-valued function φ∗(·) such that φn(·) ≤ φ∗(·) for all n, with φ∗ satisfying

the following properties: (i) φ∗(0) = 0; (ii) φ∗(·) is continuously differentiable and strictly

convex on a neighborhood of zero; and (iii) (φ∗)′(0) = µ.

Then, the function I∗(z) := supθ∈R [θz − φ∗(θ)] is lower semi-continuous, convex ev-

erywhere and strictly convex on a neighborhood of µ. Moreover, I∗(·) is non-negative and

I∗(µ) = 0.

Proof. From (3.9), we have φn(θ) ≥ θµ for all θ ∈ R and hence φ∗(θ) ≥ θµ for all θ ∈ R. It

follows from Theorem X.1.1.2 in Hiriart-Urruty and Lemarechal (1993) that I∗ (the conjugate

function of φ∗) is convex and lower semi-continuous.

Next, condition (ii) implies that (φ∗)′(·) is continuous and strictly increasing on a neigh-

borhood of zero. Since (φ∗)′(0) = µ by condition (iii), there exists some ε > 0 such that,

given any z0 ∈ [µ−ε, µ+ε], there exists θ0 satisfying (φ∗)′(θ0) = z0. It follows from Theorem

X.4.1.3 in Hiriart-Urruty and Lemarechal (1993) that I∗ is strictly convex on [µ− ε, µ + ε].

Non-negativity of I∗(·) follow immediately from φ∗(0) = 0. Finally, since θµ− φ∗(θ) ≤ 0

for all θ ∈ R, it follows from the definition of I∗ that I∗(µ) = 0.

A simple setting where the conditions of Proposition 3.1 are satisfied is when the functions

φn are bounded by the log-moment generating function of some random variable W (i.e.,

φ∗(θ) = logE[exp(θW)]) such that E[W] = µ. Clearly, condition (i) holds in that case.

Moreover, if there exists a neighborhood N of zero such that φ∗(·) is finite on N , then it is

well known that φ∗ is infinitely differentiable on N and (iii) holds. In that case, Proposition 1

in Shapiro et al. (2002) ensures that φ∗ is strictly convex on N .

The developments above are valid regardless of any i.i.d. assumption on the samples

41

{Yi}. When such an assumption is imposed, we have

φn(θ) =
1

n
log(E[exp(θSn)]) =

1

n
log({E[exp(θY1)]}n) = log(E[exp(θY1)]) = log MY1(θ),

(3.13)

where MY1(θ) is the moment generating function of Y1 evaluated at θ. In that case, of course,

we have φn(θ) = φ∗(θ) for all n, and the resulting function I∗ is the rate function associated

with Y1. The inequalities in (3.12) then yield the well-known Chernoff upper bounds on the

deviation probabilities.

Inequalities such as (3.12), while useful in their own, do not fully characterize the devi-

ation probabilities since they only provide an upper bound on the decay. One of the main

contributions of large deviations theory is the verification that, in many cases, the decay

rate given by those inequalities is asymptotically exact, in the sense that (3.10) holds with

equality as n goes to infinity. One such case is when {Yi} is i.i.d.; that, of course, is the

conclusion of the well-known Cramér’s Theorem.

In general, the idea of an asymptotically exact decay rate is formalized as follows. The

estimator 1
n
Sn — calculated from possibly non-i.i.d. random variables — is said to satisfy a

large deviation principle (LDP) with rate function I(·) if the following conditions hold:

1. I(·) is lower semi-continuous, i.e., it has closed level sets;

2. For every closed subset F ∈ R,

lim sup
n→∞

1

n
logP

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I(x)

3. For every open subset G ∈ R,

lim inf
n→∞

1

n
logP

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
I(x).

42

I(·) is said to be a good rate function if it has compact level sets. Note that this implies that

there exists some point x such that I(x) = 0.

As mentioned above, in the i.i.d. case an LDP holds with I∗ — the rate function of Y1

— in place of I. The main tool for the general case is the Gartner-Ellis Theorem, which we

describe next. Let φn be as defined in (3.7), and define

φ(θ) := lim
n→∞

φn(θ) when the limit exists. (3.14)

Roughly speaking, the theorem asserts that, under proper conditions, a large deviation

principle holds for the estimator 1
n
Sn, with the rate defined in terms of the limiting φ(θ)

defined in (3.14).

The assumptions of the theorem are the following:

Assumption 3.2. For each θ ∈ R, the function φ(θ) defined in (3.14) exists as an extended

real number.

Assumption 3.3. 0 belongs to the interior of Dφ where Dφ = {θ ∈ R : φ(θ) < ∞}.

Assumption 3.4. φ(θ) is essentially smooth, i.e. the following three conditions hold:

i) The interior of Dφ is nonempty

ii) φ(θ) is differentiable on the interior of Dφ

iii) Either Dφ = R or φ(θ) is steep, i.e. for θ ∈ Dφ as θ approaches the boundary of Dφ,

|φ′(θ)| = ∞ (where φ′(θ) is the derivative of φ with respect to θ).

Assumption 3.5. φ(θ) is lower semi-continuous.

Theorem 3.6. (Gartner-Ellis Theorem) Suppose that Assumption 3.2 holds, and define the

function I(x) := supθ∈R [θx− φ(θ)].

43

1. If Assumption 3.3 also holds, then for every closed subset F of R,

lim sup
n→∞

1

n
logP

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I(x).

2. If Assumption 3.4 holds (in addition to Assumptions 3.2-3.3), then for every open

subset G of R,

lim inf
n→∞

1

n
logP

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
I(x)

3. If Assumption 3.5 holds (in addition to Assumptions 3.2-3.4), then a large deviation

principle holds with the good rate function I(·).

Proof. See Dembo and Zeitouni (1998) or den Hollander (2000). ¤

Our main goal is to derive conditions under which the results above can be applied under

Latin Hypercube sampling. In sections 3.3 and 3.4 we will show that, under those conditions,

the upper bound (3.12) holds with the same function I∗ as the standard Monte Carlo (which

suggests that LHS can do no worse than i.i.d. sampling). In some cases, we will be able

to apply the Gartner-Ellis Theorem to show that a large deviation principle holds. Before

stating those results, we review in detail the basic ideas of LHS.

3.2.2 Latin Hypercube Sampling

Let X = [X1, X2, . . . , Xd] be the vector of the d input variables of a simulation and let

Y = g(X) = g(X1, X2, . . . , Xd) be the output of the simulation. Assume that all of the

dimensions are independent. Let Fj(·) be the marginal cumulative distribution function for

Xj. Suppose the quantity of interest is E[Y].

One possible sampling method to estimate E[Y] is to randomly sample n points in the

sample space (Monte Carlo sampling). For each replication i from 1 to n, Uniform(0,1) ran-

44

dom numbers Ui = [U1
i , . . . , Ud

i] are generated (one per dimension) which, assuming we can

use the inverse transform method, yield the input random vector Xi = [F−1
1 (U1

i), . . . , F−1
d (Ud

i)]

and the output Yi = g(Xi).

One problem with Monte Carlo sampling is that there is no guarantee that all sections of

the sample space will be equally represented; input points could be clustered in one particular

region. This is, of course, a well-known issue, and a considerable body of literature —

notably on quasi-Monte Carlo methods — exists dealing with that topic. Latin Hypercube

sampling, first proposed by McKay et al. (1979), falls into that category. The method splits

each dimension of the sample space into n sections (or strata) each with probability 1
n
, and

samples one observation from each stratum. The algorithm is comprised of three steps — it

generates some uniform random numbers, then some random permutations and finally these

elements are put together to yield the samples. The detailed algorithm is the following:

1. Generate uniform random numbers:

(a) Generate a n×d matrix U of Uniform(0,1) random numbers. Let U j
i be the (i, j)th

entry of this matrix.

(b) Create another n× d matrix V (U) with (i, j)th entry V j
i (U) =

i−1+Uj
i

n
. Thus each

V j
i (U) is uniform on the interval [i−1

n
, i

n
].

2. Generate random permutations:

(a) Let P (n) be the set of column vectors of permutations of the numbers (1, 2, . . . , n).

There are n! possible permutations, each equally likely. Let P be the set of

n × d matrices where each column (representing an input variable) is a random

permutation in P (n) with all columns mutually independent. There are (n!)d

elements in P , each equally likely. Index these with k = 1, . . . , (n!)d and let K be

a random index.

45

(b) Randomly select Π(K) ∈ P (i.e. the Kth element of P). Let πj
i (K) be the (i, j)th

entry of this matrix. Note that the permutation matrix Π(K) is independent of

the random number matrix V (U).

(c) In Latin Hypercube sampling, only n of the nd strata are sampled. The rows

of the Π(K) matrix determine which hypercubes get sampled. Let πi(K) =

[π1
i (K), . . . , πd

i (K)] be the ith row of Π(K). This corresponds to the hypercube

that covers the π1
i (K)th stratum of X1, the π2

i (K)th stratum of X2, . . ., and the

πd
i (K)th stratum of Xd.

3. Determine the randomly sampled point within each hypercube.

(a) Create matrix Z(ω) = Z(V, K) with (i, j)th entry Zj
i (ω) = V j

πj
i (K)

(U). In other

words, the (i, j)th entry of Z(ω) corresponds to the (πj
i (K), j)th entry of V (U)

based on the permutation matrix. Thus the jth column V j(U) of the random

number matrix V (U) is permuted according to the jth column of the permutation

matrix Π(K).

(b) Let Xj
i (ω) = F−1

j [Zj
i (ω)]. Then Xi(ω) = [X1

i (ω), . . . , Xd
i (ω)] and Yi(ω) = g(Xi(ω)).

The algorithm above generates n random vectors Zi(ω) = [Z1
i (ω), . . . , Zd

i (ω)], each of

which is uniformly distributed on [0, 1]d. Unlike standard Monte Carlo, of course, the vectors

Z1, . . . , Zn are not independent. These vectors are mapped via inverse transform into vectors

X1, . . . , Xn, which then are used to generate the samples Y1, . . . , Yn. It is well known that

each Yi generated by the LHS method is an unbiased estimate of E[Y] (see, e.g., the appendix

in McKay et al. 1979).

More formally, let f : [0, 1]d 7→ Rd be the function that converts the uniform random

vector Zi(ω) into the random vector Xi(ω), and let h := g ◦ f . Then we have Yi(ω) =

46

g(Xi(ω)) = g(f(Zi(ω))) = h(Zi(ω)). Thus, without loss of generality we will assume that

the outputs Yi are functions of random vectors that are uniformly distributed on [0, 1]d.

3.2.3 Calculus Results

For the remaining sections of this paper, we will need to define some notation and recall

some results from analysis. These results are known but we state them for later reference.

The discussion below follows mostly Bartle (1987) and Royden (1988).

Let P := {z0, z1, . . . , zn} be a partition of the interval [a, b] with a = z0 < z1 <

· · · < zn−1 < zn = b and let |P | denote the norm of that partition (the maximum dis-

tance between any two consecutive points of the partition). Let h : [a, b] 7→ R be a

bounded function. A Riemann sum of h corresponding to P is a real number of the form

R(P, h) =
∑n

i=1 h(ξi)(zi − zi−1), where ξi ∈ [zi−1, zi], i = 1, . . . , n. Particular cases of Rie-

mann sums are the lower and upper Riemann sums, defined by setting ξi respectively to

argminz∈[zi−1,zi]
h(z) and argmaxz∈[zi−1,zi]

h(z). We will denote the lower and upper Riemann

sums respectively by L(P, h) and U(P, h).

The following is an alternative definition of Riemann integrability. It is called Cauchy

criterion for integrability (see, e.g., Bartle 1987, Theorem 29.4).

Definition 3.7. Let h : [a, b] 7→ R be a bounded function. The function h is Riemann

integrable if, given ε > 0, there exists η > 0 such that, for any two partitions P,Q with

|P | < η, |Q| < η and any corresponding Riemann sums R(P, h) and R(Q, h), we have that

|R(P, h)−R(Q, h)| < ε.

Clearly, if h is Riemann integrable then the true integral
∫ b

a
h(z)dz lies between the upper

and lower Riemann sums, as does any other Riemann sum R(P, h). Moreover, Riemann

integrability ensures that U(P, h) − L(P, h) < ε if |P | < η, which in turn implies that

|R(P, h) − ∫ b

a
h(z)dz| < ε for any other Riemann sum R(P, h) such that |P | < η. At this

47

point it is worthwhile recalling that a bounded function h is Riemann integrable if and only

if the set of points at which h is discontinuous has Lebesgue measure zero (Royden, 1988, p.

85).

In our setting we will often deal with functions that are not bounded. In that case, we

say that h : [a, b] 7→ R is integrable if h is Lebesgue integrable. Of course, when h is bounded

and Riemann integrable both the Lebesgue and the Riemann integrals coincide.

The next lemma shows that for every integrable function h : [a, b] 7→ R and any point

s ∈ (a, b), we can find a small interval around s such that the integral of h on that interval

is arbitrarily small.

Lemma 3.8. Suppose h : [a, b] 7→ R is integrable. Then for every ε > 0 there exists δ > 0

such that
∣∣∣
∫ s+δ

s−δ
h(z)dz

∣∣∣ < ε for all s ∈ (a, b). Also,
∣∣∣
∫ a+δ

a
h(z)dz

∣∣∣ < ε and
∣∣∣
∫ b

b−δ
h(z)dz

∣∣∣ < ε.

Proof. Let h+ and h− denote respectively the positive and negative parts of h (so h+ ≥ 0,

h− ≥ 0, and h = h+ − h−). Since h is integrable, so are h+ and h−. Fix now ε > 0. Then,

by Proposition 4.14 in Royden (1988) there exists δ+ > 0 such that
∫

A
h+(z)dz < ε/2 for all

sets A ⊂ [a, b] whose Lebesgue measure is less than δ+. Similarly, there exists δ− > 0 such

that
∫

A
h−(z)dz < ε/2 for all sets A ⊂ [a, b] whose Lebesgue measure is less than δ−. Take

now δ with 0 < δ < min{δ+, δ−}/2. Then, for any s ∈ [a, b] we have that

∣∣∣∣
∫ s+δ

s−δ

h(z)dz

∣∣∣∣ ≤
∣∣∣∣
∫ s+δ

s−δ

h+(z)dz

∣∣∣∣ +

∣∣∣∣
∫ s+δ

s−δ

h−(z)dz

∣∣∣∣ < ε/2 + ε/2 = ε.

Similarly, we obtain
∣∣∣
∫ a+δ

a
h(z)dz

∣∣∣ < ε and
∣∣∣
∫ b

b−δ
h(z)dz

∣∣∣ < ε. ¤

48

3.3 The One-Dimensional Case

We study now large deviations properties of the estimators generated by LHS. In order to

facilitate the analysis, we start by considering the one-dimensional case.

Let h : [0, 1] 7→ R be a real-valued function in one variable, and suppose we want to

estimate E[h(Z)], where Z has Uniform(0,1) distribution. In standard Monte Carlo sampling,

the samples Zi(ω) are all independent Uniform(0,1) random variables. In that case, we have

from (3.13) that

φMC(θ) := φMC
n (θ) = log(E[exp(θh(Z1))]) = log

[∫ 1

0

exp(θh(z))dz

]
,

which is independent of n.

In LHS, when the interval [0, 1] is split into n strata of equal probability 1
n
, the intervals

are all of the form [j−1
n

, j
n
] and each random variable Zi(ω) is now uniform on some interval

of length 1
n
. Further, independence no longer holds.

We make the following assumptions about the function h(z) : [0, 1] 7→ R:

Assumption 3.9.

(a) h(·) is an integrable function (i.e., | ∫ 1

0
h(z)dz| < ∞).

(b) h(·) has at most a finite number of singularities.

(c) h(·) has a finite moment generating function (i.e.
∫ 1

0
exp(θh(z))dz < ∞ for all θ ∈ R).

(d) The set of points at which h(·) is discontinuous has Lebesgue measure zero.

A simple situation where the assumptions above are satisfied is when h(·) is a bounded

function with at most countably many discontinuities; however, we do allow h(·) to be

49

unbounded. Also, it can be shown that the third part of this assumption is equivalent to

assuming that Dφ = R.

To show that LHS satisfies a large deviation principle, we will show that it satisfies the

assumptions of the Gartner-Ellis Theorem. In what follows, Z1, . . . , Zn are samples of a

Uniform(0,1) random variable, generated by the Latin Hypercube sampling algorithm, and

φLHS
n is defined as in (3.7), with Yi = h(Zi).

Our main result in this section is Theorem 3.13 below. Before stating that result, we

introduce some auxiliary results.

Lemma 3.10. Suppose Assumption 3.9 holds. Then,

φLHS
n (θ) = θ

1

n

n∑
i=1

ci(n), (3.15)

where ci(n) is defined as

ci(n) :=
1

θ
log

(
n

∫ i
n

i−1
n

exp(θh(z))dz

)
. (3.16)

Proof. Following the notation defined in the LHS algorithm described above, let us denote

the LH samples by Z1(V, K), . . . , Zn(V, K). Let EV [·] denote the expectation with respect to

the random number matrix V = V (U), and E[·] with no subscripts denote the expectation

with respect to both V and K. We have

exp(nφLHS
n (θ)) = E [exp(θSn)] = E

[
exp

(
θ

n∑
i=1

h(Zi(V, K))

)]

=
n!∑

k=1

EV

[
exp

(
θ

n∑
i=1

h(Zi(V, K))

)∣∣∣∣∣K = k

]
P(K = k).

50

Since each permutation is equally likely, P(K = k) = 1
n!

for all permutations k. For

each permutation k, one of the Zi(V, k) is uniform on stratum [0, 1
n
], another is uniform

on stratum [1
n
, 2

n
], etc., and every interval [i−1

n
, i

n
] is sampled exactly once. It is easy to

see then that the random variables Z1(V,K), . . . , Zn(V,K) are exchangeable and thus the

conditional distribution of
∑n

i=1 h(Zi(V,K)) on K = k is the same for all k. Further, once

the permutation has been fixed, the samples in each stratum are independent. It follows

that

exp(nφLHS
n (θ)) =

1

n!

n!∑

k=1

EV

[
exp

(
θ

n∑
i=1

h(Zi(V, K))

)∣∣∣∣∣ K = k

]

= EV

[
n∏

i=1

exp(θh(Zi(V,K)))

∣∣∣∣∣ K = 1

]

=
n∏

i=1

EV [exp(θh(Zi(V,K)))|K = 1]

=
n∏

i=1

∫ i
n

i−1
n

exp(θh(z)) n dz. (3.17)

To get the latter equation, we have assumed (without loss of generality) that the permu-

tation k = 1 is (1, 2, . . . , n). Also, we have used the fact that the density function of a

Uniform(i−1
n

, i
n
) random variable Zi is n dz.

By the finiteness of the moment generating function, exp(θh(·)) has some finite average

value on the interval [i−1
n

, i
n
], which is given by 1/(1/n)

∫ i/n

(i−1)/n
exp(θh(z))dz. This average

value is equal to exp(θci(n)), where ci(n) is defined in (3.16). Substituting the expression

51

above back into (3.17) we obtain

exp(nφLHS
n (θ)) =

n∏
i=1

n

∫ i
n

i−1
n

exp(θh(z))dz =
n∏

i=1

exp(θci(n)) = exp

(
θ

n∑
i=1

ci(n)

)

(3.18)

and hence

φLHS
n (θ) = θ

1

n

n∑
i=1

ci(n). ¤

Lemma 3.11. For any θ ∈ R, the quantities ci(n) defined in Lemma 3.10 satisfy

θ

∫ i
n

i−1
n

h(z)dz ≤ θ
1

n
ci(n) ≤

∫ i
n

i−1
n

exp(θh(z))dz. (3.19)

Proof. Using Jensen’s inequality, we have, for each i = 1, . . . , n,

θ
1

n
ci(n) =

1

n
log

(∫ i
n

i−1
n

exp(θh(z)) n dz

)
≥ 1

n

∫ i
n

i−1
n

log (exp(θh(z))) n dz = θ

∫ i
n

i−1
n

h(z)dz.

On the other hand, since x ≤ exp(x) for any x, we have

1

n
θci(n) ≤ 1

n
exp(θci(n)) =

1

n

∫ i
n

i−1
n

n exp(θh(z))dz =

∫ i
n

i−1
n

exp(θh(z))dz. ¤

The proposition below provides a key result. It shows that {φn(θ}} converges to a linear

function in θ.

Proposition 3.12. Suppose Assumption 3.9 holds. Then,

lim
n→∞

φLHS
n (θ) = θ

∫ 1

0

h(z)dz. (3.20)

Proof. Fix θ ∈ R. Our goal is to show that the limit (as n → ∞) of the expression on

52

the right-hand side of (3.15) exists and is equal to θ
∫ 1

0
h(z)dz. Although we do not assume

that either h(z) or exp(θh(z)) is bounded, by assuming a finite number of singularities

(cf. Assumption 3.9b) we can decompose the function into regions that are bounded plus

neighborhoods around the singularity points.

Without loss of generality, let us assume that the function h(z) has just one singularity

at z = s with s ∈ (0, 1). The case with more than one singularity — but finitely many ones

— is a straightforward extension of the one-singularity case. Also, if s = 0 the argument

presented in the next paragraphs can be readily adapted by splitting the domain into two

pieces, namely [0, δ) and [δ, 1] (similarly, if s = 1 we split the domain into [0, 1 − δ] and

(1− δ, 1]).

Fix an arbitrary ε > 0. From Lemma 3.8, we can find a δ > 0 so that both | ∫ s+δ

s−δ
h(z)dz| ≤

ε and | ∫ s+δ

s−δ
exp(θh(z))dz| ≤ ε. We can then split the domain into three pieces: [0, s−δ], (s−

δ, s + δ), and [s + δ, 1]. Let P (n) be the partition of the interval [0, 1] into equal subintervals

of length 1
n
. |P (n)| is just 1

n
. Denote by P̃ (n) = {0, 1

n
, 2

n
, . . . , `1

n
, s−δ}⋃{s+δ, `2

n
, `2+1

n
, . . . , 1}

the corresponding partition of [0, s − δ]
⋃

[s + δ, 1] with `1 = max{` ∈ N : `
n

< s − δ} and

`2 = min{` ∈ N : `
n

> s + δ}. Note that both `1 and `2 depend on n, but we omit the

dependence to ease the notation. The partition P̃ (n) also has norm 1
n
.

The function is bounded on both [0, s−δ] and [s+δ, 1]. Since exp(θh(z)) is also bounded

on these regions, it follows that for any
[

i−1
n

, i
n

] ∈ [0, s − δ] (or in [s + δ, 1]) there exist

mi(n) ∈ [
i−1
n

, i
n

]
and Mi(n) ∈ [

i−1
n

, i
n

]
such that

exp(θmi(n)) = min
z∈[i−1

n
, i
n

]
exp(θh(z))

exp(θMi(n)) = max
z∈[i−1

n
, i
n

]
exp(θh(z)).

Then, exp(θmi(n)) ≤ exp(θci(n)) ≤ exp(θMi(n)).

53

Also, without loss of generality we can assume θ > 0. Then exp(θh(z)) is a strictly

increasing function in h(z), and mi(n) and Mi(n) are also respectively the minimum and

maximum of h(z) on the interval [i−1
n

, i
n
], so mi(n) ≤ ci(n) ≤ Mi(n). (If θ < 0, exp(θh(z))

is a strictly decreasing function in h(z) and mi(n) and Mi(n) are reversed.)

Further, define

c̃`1+1(n) :=
1

θ
log

(
1

(s− δ)− `1
n

∫ s−δ

`1
n

exp(θh(z))dz

)

and

c̃`2(n) :=
1

θ
log

(
1

`2
n
− (s + δ)

∫ `2
n

s+δ

exp(θh(z))dz

)
,

so that exp(θc̃`1+1(n)) and exp(θc̃`2(n)) are equal to the average value of exp(θh(·)) on the

intervals [`1
n
, s− δ] and [s + δ, `2

n
] respectively. Define now the sum

R(n) :=
1

n

[
`1∑

i=1

ci(n) +
n∑

i=`2+1

ci(n)

]
+

(
(s− δ)− `1

n

)
c̃`1+1(n) +

(
`2

n
− (s + δ)

)
c̃`2(n).

Assumption 3.9d, together with boundedness of h on [0, s− δ]
⋃

[s + δ, 1], implies Riemann

integrability of h on that region. Definition 3.7, together with the construction of ci(n) and

c̃j(n), then ensures that we can find some n > 0 such that

∣∣∣∣R(n)−
(∫ s−δ

0

h(z)dz +

∫ 1

s+δ

h(z)dz

)∣∣∣∣ ≤ U(Qn, h)− L(Qn, h) < ε (3.21)

54

for any partition Qn of [0, s− δ]
⋃

[s + δ, 1] such that |Qn| < 1/n. Thus,

∣∣∣∣∣
1

n

n∑
i=1

ci(n)−
∫ 1

0

h(z)dz

∣∣∣∣∣

=

∣∣∣∣∣R(n)−
[∫ s−δ

0

h(z)dz +

∫ 1

s+δ

h(z)dz

]
+

[
1

n
c`1+1(n)−

(
(s− δ)− `1

n

)
c̃`1+1(n)

]

+

[
1

n
c`2(n)−

(
`2

n
− (s + δ)

)
c̃`2(n)

]
+

[
1

n

`2−1∑

i=`1+2

ci(n)−
∫ s+δ

s−δ

h(z)dz

]∣∣∣∣∣

≤
∣∣∣∣R(n)−

(∫ s−δ

0

h(z)dz +

∫ 1

s+δ

h(z)dz

)∣∣∣∣ +

∣∣∣∣
1

n
c`1+1(n)

∣∣∣∣

+

∣∣∣∣
(

(s− δ)− `1

n

)
c̃`1+1(n)

∣∣∣∣ +

∣∣∣∣
1

n
c`2(n)

∣∣∣∣ +

∣∣∣∣
(

`2

n
− (s + δ)

)
c̃`2(n))

∣∣∣∣

+

∣∣∣∣∣
1

n

`2−1∑

i=`1+2

ci(n)

∣∣∣∣∣ +

∣∣∣∣
∫ s+δ

s−δ

h(z)dz

∣∣∣∣

The first term on the right-hand side of the inequality above is less than ε for n large

enough (cf. (3.21)). Moreover, Lemma 3.11, together with Assumption 3.9 and Lemma 3.8,

shows that, for each i, we have that −ε ≤ 1
n
ci(n) ≤ ε/θ for n large enough, that is, | 1

n
ci(n)| ≤

ε/ min{θ, 1}. A similar argument holds for the c̃j(n) terms. Also, Lemma 3.11 ensures that

1

n

`2−1∑

i=`1+2

ci(n) ≤ 1

θ

`2−1∑

i=`1+2

∫ i
n

i−1
n

exp(θh(z)) dz =
1

θ

∫ `2−1
n

`1+1
n

exp(θh(z)) dz (3.22)

and

1

n

`2−1∑

i=`1+2

ci(n) ≥
`2−1∑

i=`1+2

∫ i
n

i−1
n

h(z) dz =

∫ `2−1
n

`1+1
n

h(z) dz. (3.23)

By construction of `1 and `2, we have that
[

`1+1
n

, `2−1
n

] ⊆ [s − δ, s + δ] for any n. Hence,

inequalities (3.22) and (3.23), combined with Assumption 3.9 and Lemma 3.8, imply that

| 1
n

∑`2−1
i=`1+2 ci(n)| ≤ ε/ min{θ, 1} for any n.

Finally, recall that δ was chosen so that | ∫ s+δ

s−δ
h(z)dz| ≤ ε and | ∫ s+δ

s−δ
exp(θh(z))dz| ≤ ε.

55

It follows from the above developments that for n large enough we have

∣∣∣∣∣
1

n

n∑
i=1

ci(n)−
∫ 1

0

h(z)dz

∣∣∣∣∣ ≤ 2ε + 5ε/ min{θ, 1}.

When θ < 0, the same argument laid out above can be used, replacing min{θ, 1} with

min{−θ, 1} (when θ = 0 (3.20) holds trivially). Since ε was chosen arbitrarily, it follows that

θ 1
n

∑n
i=1 ci(n) → θ

∫ 1

0
h(z)dz as we wanted to show. ¤

The main result of this section is the following:

Theorem 3.13. Let h(z) : [0, 1] 7→ R and suppose that Assumption 3.9 holds. Let Z be

a Uniform(0,1) random variable and define µ1 := E[h(Z)] =
∫ 1

0
h(z)dz. Then, the LHS

estimator of µ1 satisfies a large deviation principle with good rate function

ILHS(x) =





∞, if x 6= µ1

0, if x = µ1.

Proof. Proposition 3.12 ensures that Assumption 3.2 holds. Let φ(θ) denote the linear

function θ
∫ 1

0
h(z)dz = θµ1. By Assumption 3.9(a), h(z) is integrable, so µ1 is finite and

Dφ = R. Thus the interior of Dφ is also R, meaning that Assumption 3.3 holds. Also,

since φ(θ) is a linear function of θ, it is differentiable everywhere and continuous. Thus,

Assumptions 3.4 and 3.5 also hold and the Gartner-Ellis Theorem (Theorem 3.6) can be

fully applied. The resulting rate function is

ILHS(x) = sup
θ

[θx− φ(θ)] = sup
θ

[θ(x− µ1)] =





∞, if x 6= µ1

0, if x = µ1

which is a good rate function since {x : ILHS(x) ≤ α} = {0} for any α ≥ 0. ¤

56

Theorem 3.13 implies that, for any closed subset F of R, as long as µ1 /∈ F we have that

lim sup
n→∞

1

n
logP

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
ILHS(x) = −∞.

That is, we have an infinite decay rate, as opposed to the exponential rate obtained with

standard Monte Carlo. This shows that, asymptotically, LHS is much more precise than

Monte Carlo.

The next result suggests that superiority of LHS (in the context of deviation probabilities)

in fact holds for any finite n.

Proposition 3.14. Consider the setting of Theorem 3.13. Let IMC(x) and ILHS(n, x) denote

the (non-asymptotic) functions defined in (3.11) respectively for Monte Carlo and for LHS.

Then, for any sample size n and all x we have that ILHS(n, x) ≥ IMC(x).

Proof. For LHS we have, from Lemma 3.10,

φLHS
n (θ) = θ

1

n

n∑
i=1

ci(n) =
1

n

n∑
i=1

log

(
n

∫ i
n

i−1
n

exp(θh(z)) dz

)

≤ log

[
1

n

n∑
i=1

n

∫ i
n

i−1
n

exp(θh(z))dz

]
= log

[∫ 1

0

exp(θh(z))dz

]
= φMC(θ),

where the inequality follows from Jensen’s inequality. Thus, φLHS
n (θ) ≤ φMC(θ) for all n and

θ. Equivalently, ILHS(n, x) ≥ IMC(x) for all x. ¤

Note that the result above fits the framework of the discussion around (3.12), i.e., the up-

per bound for the probability of a large deviation is smaller under Latin Hypercube sampling

than under Monte Carlo sampling for any sample size n. Although in general a comparison

of upper bounds is not particularly useful, the importance of Proposition 3.14 lies in the fact

that the Monte Carlo upper bound is tight asymptotically. This suggests that even for small

57

sample sizes the deviation probabilities under LHS may be smaller than under Monte Carlo

— a fact that is corroborated in the examples of Section 3.5.

3.4 The Multi-Dimensional Case

We consider now the multi-dimensional case h : [0, 1]d 7→ R. That is, we want to estimate

E[h(Z)], where Z = (Z1, . . . , Zd) is uniformly distributed on [0, 1]d. We assume that the

components of Z are mutually independent. As before, let Z1, . . . , Zn denote samples from

the vector Z, so that Zi(ω) = [Z1
i (ω), . . . , Zd

i (ω)].

For Monte Carlo sampling, a large deviation principle holds, and we can show using a

similar calculation to the one-dimensional case that the function φn defined in (3.7) is equal

to

φMC(θ) = log

[∫

[0,1]d
exp(θh(z))dz

]
. (3.24)

Again, we would like to show that a large deviation principle holds for Latin Hypercube

sampling in the multi-dimensional case and that the upper bound for the probability of

a large deviation under LHS is lower than it is for Monte Carlo sampling. While these

assertions may not be true in general for multidimensional functions, we will focus on three

special cases: (1) h(·) is a separable function, (2) h(·) has a bounded residual term in its

ANOVA decomposition, and (3) h(·) is a multi-dimensional function which is monotone in

each component.

In the multi-dimensional case, each Latin Hypercube permutation is equally likely with

probability P(K = k) = 1
(n!)d (recall that the permutation matrices are indexed by k, and

that K is a random index). As in the one-dimensional case, given a particular permutation

Π(k), the point sampled from each strata is independent of the point sampled from any

58

other strata, so the product and the expectation can be switched. Thus, we can write

exp(nφLHS
n (θ)) = E

[
n∏

i=1

exp(θh(Zi(V, K)))

]

=

(n!)d∑

k=1

E

[
n∏

i=1

exp(θh(Zi(V, K)))

∣∣∣∣∣ K = k

]
P(K = k)

=
1

(n!)d

(n!)d∑

k=1

n∏
i=1

E [exp(θh(Zi(V, K)))|K = k] . (3.25)

Also, given a particular permutation index k, for each sample i we have that

Zi(V, k) ∈
[
π1

i (k)− 1

n
,
π1

i (k)

n

]
× · · · ×

[
πd

i (k)− 1

n
,
πd

i (k)

n

]
,

where the πj
i (k) indicate which strata are sampled, as defined in Section 3.2.2.

For notational convenience, define aj
i (k) :=

πj
i (k)−1

n
and bj

i (k) :=
πj

i (k)

n
. Also, let z :=

(z1, . . . , zd) and dz := dz1 · · · dzd. Note that Zj
i (V, k) is uniformly distributed on the interval

(aj
i (k), bj

i (k)). Then, (3.25) becomes

exp(nφLHS
n (θ)) =

1

(n!)d

(n!)d∑

k=1

n∏
i=1

nd

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

exp(θh(z))dz. (3.26)

We now specialize the calculations for the three cases mentioned above.

3.4.1 Case 1: The Separable Function Case

We shall consider initially the case where the function h is separable, i.e., there exist one-

dimensional functions h1, . . . , hd such that h(z1, . . . , zd) = h1(z1) + . . . + hd(zd). Note that

this is equivalent to saying that the ANOVA decomposition of h (cf. (3.2)) has residual part

59

equal to zero. Clearly, when h is separable we have

∫

[0,1]d
h(z)dz =

∫ 1

0

h1(z1)dz1 + · · ·+
∫ 1

0

hd(zd)dzd.

Since a separable multidimensional function can be decomposed into a sum of one dimen-

sional functions, it is intuitive that our results from the one-dimensional case can be extended

to this case. The theorem below states precisely that:

Theorem 3.15. Suppose h(z) : [0, 1]d 7→ R is a separable function and that each component

hj of h satisfies Assumption 3.9. Let Z be a random vector with independent components

uniformly distributed on [0, 1]d, and define µd := E[h(Z)] =
∫

[0,1]d
h(z)dz. Then, the LHS

estimator of µd satisfies a large deviation principle with good rate function

ILHS(x) =





∞, if x 6= µd

0, if x = µd.

Proof. As in the proof of Theorem 3.13, the basic idea is to show that the functions

{φLHS
n (θ)} converge to the linear function φLHS(θ) := θµd.

Using the special property of Latin Hypercube Sampling that in each dimension, each

60

stratum is sampled from exactly once, we get:

exp(nφLHS
n (θ)) =

1

(n!)d

(n!)d∑

k=1

n∏
i=1

nd

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

exp(θh(z)) dz

=
1

(n!)d

(n!)d∑

k=1

d∏
j=1

n∏
i=1

n

∫ bj
i (k)

aj
i (k)

exp(θhj(zj)) dzj

=
1

(n!)d

(n!)d∑

k=1

d∏
j=1

n∏
i=1

n

∫ i
n

i−1
n

exp(θhj(zj)) dzj

=
d∏

j=1

n∏
i=1

n

∫ i
n

i−1
n

exp(θhj(zj)) dzj

= exp

(
θ

n∑
i=1

c1
i (n)

)
· · · exp

(
θ

n∑
i=1

cd
i (n)

)

= exp

(
θ

d∑
j=1

n∑
i=1

cj
i (n)

)
,

where the cj
i (n) are defined as in (3.16) (with hj in place of h). Then,

φLHS
n (θ) =

d∑
j=1

θ
1

n

n∑
i=1

cj
i (n).

This is just the sum of d one-dimensional cases. Thus, it follows from Proposition 3.12 that

φLHS(θ) = lim
n→∞

φLHS
n (θ) = θ

d∑
j=1

∫ 1

0

hj(zj)dzj = θ

∫

[0,1]d
h(z)dz = θµd,

so Assumption 3.2 holds. Since φLHS(·) is a linear function, Assumptions 3.3, 3.4, and 3.5

61

follow and the Gartner-Ellis Theorem can be applied. We obtain

ILHS(x) = sup
θ∈R

[θx− φLHS(θ)] = sup
θ∈R

[θ(x− µd)] =





∞, if x 6= µd

0, if x = µd,

which is a good rate function since there exists a point for which ILHS(x) = 0. ¤

As before, for any closed subset F of R, as long as µd /∈ F we have a decay with infinite

rate, i.e.,

lim sup
n→∞

1

n
logP

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
ILHS(x) = −∞.

Moreover, as in the one-dimensional case, when h(z) is separable the upper bound for the

probability of a large deviation is smaller under Latin Hypercube sampling than under Monte

Carlo sampling for any sample size n, i.e., we have an extension of Proposition 3.14:

Proposition 3.16. Consider the setting of Theorem 3.15. Let IMC(x) and ILHS(n, x) denote

the (non-asymptotic) functions defined in (3.11) respectively for Monte Carlo and for LHS.

Then, for any sample size n and all x we have that ILHS(n, x) ≥ IMC(x).

Proof. As in the one-dimensional case, it again suffices to show that φLHS
n (θ) ≤ φMC(θ)

for all n and θ. In the separable case, can also write φLHS
n (θ) =

∑d
j=1 φ

(j)LHS
n (θ).

For Monte Carlo sampling, using a similar calculation we get,

φMC(θ) = log

(∫

[0,1]d
exp(θh(z))dz

)
= log

(
d∏

j=1

∫ 1

0

exp(θhj(z))dzj

)

=
d∑

j=1

log

[∫ 1

0

exp(θhj(z))dzj

]
=

d∑
j=1

φ(j)MC(θ).

Since we have already shown in one dimension that, for each j, φ
(j)LHS
n (θ) ≤ φ(j)MC(θ) for all

θ and all n, it follows that φLHS
n (θ) ≤ φMC(θ) for all θ and n if h(z) is a separable function.

62

¤

3.4.2 Case 2: The Bounded Residual Case

We now turn to the case where h(·) is not separable, but its residual term in the ANOVA

decomposition is bounded. Recall that we can decompose h as h(z) = µ+hadd(z)+hresid(z),

where µ = E[h(Z)], hadd(z) =
∑d

j=1 hj(zj) and E[hj(Zj)] = E[hresid(Z)] = 0 for all j. The

bounded residual case assumes that −m ≤ hresid(·) ≤ M where m,M ≥ 0. This includes a

large class of functions including all functions that are bounded themselves. Of course, the

results below are useful only in case the bounds on the residual are significantly smaller than

the bounds on the whole function, i.e. the function may not be separable but must have a

strong additive component.

The infinite rate of decay for the deviation probability no longer holds in general when

the separability condition is removed. However, we will show that the infinite rate does still

hold if the deviation is sufficiently large. This is stated in the proposition below:

Proposition 3.17. Suppose h(z) : [0, 1]d 7→ R is a function such that its residual component

satisfies −m ≤ hresid(·) ≤ M for some m,M ≥ 0. Suppose also that each term hj of the

additive component hadd satisfies Assumption 3.9. Let Z be a random vector with independent

components uniformly distributed on [0, 1]d, and define µ := E[h(Z)] =
∫
[0,1]d

h(z)dz.

Then, for any a, b such that a < µ < b, the LHS estimator Sn/n of µ satisfies

lim
n→∞

1

n
log

[
P

(
1

n
Sn ≥ b

)]
= −∞ if b > µ + M (3.27)

lim
n→∞

1

n
log

[
P

(
1

n
Sn ≤ a

)]
= −∞ if a < µ−m. (3.28)

63

Proof. By assumption, we have

µ +
d∑

j=1

hj(zj)−m ≤ h(z) ≤ µ +
d∑

j=1

hj(zj) + M.

For θ > 0,

exp

(
θ

[
µ +

d∑
j=1

hj(zj)−m

])
≤ exp(θh(z)) ≤ exp

(
θ

[
µ +

d∑
j=1

hj(zj) + M

])
.

Also, by the properties of the integral, for any i ∈ 1, 2, . . . , n and any permutation index k,

we have that

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

nd exp

(
θ

[
µ +

d∑
j=1

hj(zj)−m

])
dz

≤
∫ bd

i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

nd exp(θh(z)) dz

≤
∫ bd

i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

nd exp

(
θ

[
µ +

d∑
j=1

hj(zj) + M

])
dz.

Then, since all of these integrals are positive, we have

1

(n!)d

(n!)d∑

k=1

n∏
i=1

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

nd exp

(
θ

[
µ +

d∑
j=1

hj(zj)−m

])
dz (3.29)

≤ exp(nφn(θ))

≤ 1

(n!)d

(n!)d∑

k=1

n∏
i=1

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

nd exp

(
θ

[
µ +

d∑
j=1

hj(zj) + M

])
dz,

64

where we know from (3.26) that

exp(nφLHS
n (θ)) =

1

(n!)d

(n!)d∑

k=1

n∏
i=1

nd

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1i (k)

a1
i (k)

exp(θh(z))dz.

By manipulating (3.29) as in the proof of Theorem 3.15 we obtain

n∏
i=1

exp(θ(µ−m))
d∏

j=1

∫ i
n

i−1
n

n exp
(
θhj(zj)

)
dzj

≤ exp(nφn(θ))

≤
n∏

i=1

exp(θ(µ + M))
d∏

j=1

∫ i
n

i−1
n

n exp
(
θhj(zj)

)
dzj.

By defining quantities cj
i (n) as in (3.16) (with hj in place of h) we can rewrite the above

inequalities as

n∏
i=1

[
exp(θ(µ−m))

d∏
j=1

exp(θcj
i (n))

]
≤ exp(nφn(θ)) ≤

n∏
i=1

[
exp(θ(µ + M))

d∏
j=1

exp(θcj
i (n))

]
,

which further simplifies to

exp

(
θ

d∑
j=1

n∑
i=1

cj
i (n) + θn(µ−m)

)
≤ exp(nφn(θ)) ≤ exp

(
θ

d∑
j=1

n∑
i=1

cj
i (n) + θn(µ + M)

)
,

and so

1

n
θ

d∑
j=1

n∑
i=1

cj
i (n) + θ(µ−m) ≤ φn(θ) ≤ 1

n
θ

d∑
j=1

n∑
i=1

cj
i (n) + θ(µ + M). (3.30)

Note that, as shown in the proof of Proposition 3.12, the term 1
n

∑d
j=1

∑n
i=1 cj

i (n) converges

65

to
∫

[0,1]d
hadd(z) dz = E[hadd(Z)], which is equal to zero. Hence, given ε > 0 we have that

θ (µ−m− ε) ≤ φn(θ) ≤ θ (µ + M + ε)

for n large enough and thus

sup
θ≥0

[θx− θ(µ + M + ε)] ≤ sup
θ≥0

[θx− φn(θ)] ≤ sup
θ≥0

[θx− θ(µ−m− ε)]

for any x. Clearly, when x > µ + M + ε the left-most term is infinite. Since ε was chosen

arbitrarily, it follows from (3.8) that

lim
n

1

n
log

[
P

(
1

n
Sn ≥ b

)]
= −∞ if b > µ + M.

For θ < 0, we can use a similar argument to conclude that

lim
n

1

n
log

[
P

(
1

n
Sn ≤ a

)]
= −∞ if a < µ−m. ¤

Note that this result generalizes the separable case, since in that context we have hresid ≡
0 and so m = M = 0.

3.4.3 Case 3: The Monotone Case

We move now to the case of functions that possess a certain form of monotonicity, in the

specific sense defined below:

Definition 3.18. A function h(z) : [0, 1]d 7→ R is said to be monotone if it is monotone

in each argument when the other arguments are held fixed, i.e., if for all z ∈ [0, 1]d and all

66

j = 1, . . . , d we have that either

h(z1, . . . , zj−1, zj, zj+1, . . . , zd) ≤ h(z1, . . . , zj−1, wj, zj+1, . . . , zd) for all wj ∈ [0, 1], zj ≤ wj

or

h(z1, . . . , zj−1, zj, zj+1, . . . , zd) ≥ h(z1, . . . , zj−1, wj, zj+1, . . . , zd) for all wj ∈ [0, 1], zj ≤ wj.

Note that this includes functions that are monotonically increasing in some arguments

and monotonically decreasing in others. The relevance of this case is due to the fact that

monotone functions preserve a property called negative dependence, which we for complete-

ness we define below:

Definition 3.19. Random variables Yi, i = i . . . n are called negatively dependent if

P(Y1 ≤ y1, . . . , Yn ≤ yn) ≤ P(Y1 ≤ y1) · · ·P(Yn ≤ yn).

The following lemma from Jin et al. (2003) gives an important property of negatively

dependent random variables.

Lemma 3.20. If Yi, i = 1, . . . n are nonnegative and negatively dependent and if E[Yi] <

∞, i = 1 . . . n and E[Y1 · · · · · Yn] < ∞, then E[Y1 · · · · · Yn] ≤ E[Y1] · · ·E[Yn].

In our context, we are interested in the case where Yi = g(Z1
i , . . . , Z

d
i), where g is nonneg-

ative monotone and the vectors Zi, i = 1, . . . , n are LH samples of a Uniform([0, 1]d) random

vector Z. Jin et al. (2003) show that (i) Latin Hypercube samples are negatively dependent,

and (ii) monotone functions preserve negative dependence. Hence, if g is monotone then the

random variables Y1, . . . , Yn are negatively dependent. In what follows we will use such a

property repeatedly.

67

Unfortunately, in the present case it is not clear whether we can apply the Gartner-

Ellis Theorem to derive large deviations results — the reason being that we do not know

if negative dependence suffices to ensure convergence of the functions {φLHS
n (θ)}. We must

note, however, that the Gartner-Ellis Theorem only provides sufficient (but not necessary)

conditions for the validity of a large deviation principle; that is, it is possible that a large

deviation principle holds in the present case even if the assumptions of the theorem are

violated. A definite answer to that question is still an open problem.

Nevertheless, we can still derive results that fit the framework of the discussion around

(3.12). Proposition 3.21 below provides results that are analogous to Propositions 3.14 and

3.16, i.e., it shows that the Monte Carlo rate IMC(x) is dominated by ILHS(n, x). Jin et al.

(2003) show that, when the quantity to be estimated is a quantile, the upper bound on a

deviation probability with negatively dependent sampling is less than that from Monte Carlo

sampling. Here we show a similar result but in the context of estimation of the mean.

Proposition 3.21. Suppose h(z) : [0, 1]d 7→ R is a monotone function in the sense of

Definition 3.18. Let Z be a random vector with independent components uniformly distributed

on [0, 1]d, and assume that E[exp(θh(Z))] < ∞ for all θ ∈ R. Let IMC(x) and ILHS(n, x)

denote the (non-asymptotic) functions defined in (3.11) respectively for Monte Carlo and for

LHS. Then, for any sample size n and all x we have that ILHS(n, x) ≥ IMC(x).

Proof. We will show that, if h is monotone, then φLHS
n (θ) ≤ φMC(θ) for all n and all θ.

Note initially that from (3.7) we have

exp(nφLHS
n (θ)) = E

[
n∏

i=1

exp(θh(Zi))

]
. (3.31)

Clearly, the monotonicity of the exponential function (in the standard sense) implies that

exp(θh(·)) is a monotone function in the sense of Definition 3.18 and so exp(θh(·)) preserves

68

negative dependence. By assumption, E[exp(θh(Z)] < ∞ for all θ ∈ R, and hence a direct

application of Cauchy-Schwarz inequality shows that E [
∏n

i=1 exp(θh(Zi))] < ∞. Thus, we

can apply Lemma 3.20 to conclude that, for any θ,

E

[
n∏

i=1

exp(θh(Zi))

]
≤

n∏
i=1

E [exp(θh(Zi))] = (E [exp(θh(Z))])n , (3.32)

the latter equality being a consequence of the unbiasedness of LHS estimators. Combining

(3.31) and (3.32), it follows that

φLHS
n (θ) ≤ logE [exp(θh(Z))] = φMC(θ). ¤

3.5 Examples

We now show examples comparing the probability of a large deviation under Latin Hyper-

cube sampling and Monte Carlo sampling on five different functions. For each function, we

generated both Monte Carlo and Latin Hypercube samples for various sample sizes n (n =

50, 100, 500, 1000, 5000, 10000). For each sampling method and each n, we estimated the

probability that the estimator Sn/n deviates by more than 0.1% of the true mean. This was

calculated by doing 1000 independent replications and counting the number of occurrences

in which the sample mean was not within 0.1% of the true mean, divided by 1000.

In each graph below, the x-axis represents the different sample sizes while the y-axis

shows the estimated large deviations probabilities for each sample size. Estimates for both

Latin Hypercube and Monte Carlo sampling are graphed as well as the upper and lower 95%

confidence intervals for each estimate (represented by the dashed lines).

Example 1: h(z) = log(1√
z1

). This is a one-dimensional function with a singularity at z1 =

0. Its integral on [0, 1] is equal to 1
2
. Latin Hypercube sampling considerably outperforms

69

Monte Carlo sampling with a large deviation probability of essentially zero by the time

n = 5000. Meanwhile the probability of a large deviation is still roughly 0.9 for Monte Carlo

sampling with n = 10000. This is shown in Figure 3.1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Large Deviations Probabilities: LHS vs. MC
Example 1

N

P
ro

ba
bi

lit
y

MC
LHS
95% CI

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
ro

ba
bi

lit
y

Large Deviations Probabilities: LHS vs. MC
Example 2

MC
LHS
95% CI

Figure 3.1: Examples 1 (left) and 2 (right).

Example 2: h(z) = log(z1z2z3z4z5). This function is separable, so by Theorem 3.15 we

expect the large deviation probability to be essentially zero under Latin Hypercube sampling

with large n. The integral of the function is −5. Again the Latin Hypercube sampling

dominates the Monte Carlo sampling which has a large deviation probability of nearly 0.8

at n = 10000. This is also shown in Figure 3.1.

Example 3: h(z) = log(1√
z1

+ 1√
z2

). While not separable, this function is monotone in both

z1 and z2. Its integral is 5
4
. From Proposition 3.21, we know that the upper bound for the

large deviations probability is guaranteed to be smaller under LHS than under Monte Carlo

for each value of n, and indeed we see that LHS again dominates Monte Carlo. This is shown

in Figure 3.2.

Example 4: h(z) = log [2 + sin(2πz1) cos(2πz2
2)]. This function is neither separable nor

70

monotone — in fact, it is highly non-separable. We have no guarantee that Latin Hypercube

sampling will produce a lower probability of a large deviation than Monte Carlo sampling.

This function has integral 0.6532 (this value was calculated numerically). From the run, we

see that it is possible for Monte Carlo sampling to have a lower probability of large deviation

than Latin Hypercube sampling, even at n = 10000. In fact, the two sampling methods give

similar results for this function. This is also shown in Figure 3.2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
ro

ba
bi

lit
y

Large Deviations Probabilities: LHS vs. MC
Example 3

MC
LHS
95% CI

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.75

0.8

0.85

0.9

0.95

1

N

P
ro

ba
bi

lit
y

Large Deviations Probabilities: LHS vs. MC
Example 4

MC
LHS
95% CI

Figure 3.2: Examples 3 (left) and 4 (right).

Example 5: h(z) = (z1 − 1
2
)2(z2 − 1

2
)2. Again, this function is neither separable nor

monotone. When considering deviations of 0.1% from its mean of 1
144

, we can see that

neither deviation probability approaches zero very quickly. See Figure 3.3a. However, if we

measure larger deviations such as any value of the mean outside of the interval [0, 3
144

] (note

that the function itself is bounded below by zero), the deviation probability approaches zero

rapidly for Latin Hypercube Sampling. This is shown in Figure 3.3b for sample sizes from 1 to

10 (10000 replications). Figure 3.3c plots the logarithm of the deviation probability divided

by the sample size n versus the sample size. This is the large deviation rate −I(n, z). The

Monte Carlo deviation rate approaches a value near −0.7 while the LHS deviation rate heads

71

toward −∞. The graph cuts off at the point the estimated deviation probability becomes

zero, in which case the logarithm cannot be calculated.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Large Deviations Probabilities: LHS vs. MC
Example 5

N

P
ro

ba
bi

lit
y

MC
LHS
95% CI

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

ba
bi

lit
y

Large Deviations Probabilities: LHS vs. MC
Example 5

MC
LHS
95% CI

1 2 3 4 5 6 7 8 9 10
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

Large Deviations Probabilities: LHS vs. MC
Example 5

N

lo
g(

P
ro

ba
bi

lit
y)

 /
N

MC
LHS
95% CI

Figure 3.3: Example 5 (graphs labeled clockwise from the top left).

72

3.6 Connection to Stochastic Programming

Homem-de Mello (2006) has taken the large deviation results for Latin Hypercube sampling

we have presented above and extended them to stochastic optimization problems.

First, we introduce a couple more assumptions:

Assumption 3.22.

1. There exists L > 0 such that, for almost every ξ and all x, y ∈ X, we have

|G(x, ξ)−G(y, ξ)| ≤ L‖x− y‖, (3.33)

where X is a subset of Rn, ξ is a random vector in Rs, and G : Rn ×Rs 7→ R is a real

valued function.

2. The set X in Problem (1.1) is compact. ¤

The first part of the assumption ensures that G(·, ξ) is continuous for almost every ξ and

implies that the objective functions g(x) and ĝN(x) from (1.1) and (1.3) respectively are

Lipschitz continuous with the same constant L.

The following theorem applies when the function G(x, ξ) is monotone in each component

of ξ.

Theorem 3.23. Suppose that (i) Assumption 3.22 holds, (ii) G(x, ξ) is monotone in each

component of ξ, (iii) for each x ∈ X, the moment generating function of G(x, ξ) is finite

everywhere. Consider the Latin Hypercube estimators ĝLHS
N (·) and the corresponding problem

minx∈X ĝLHS
N (x). Let x̂LHS

N denote an optimal solution of that problem and S∗ be the set of

optimal solutions to the true problem. Then, given ε > 0 there exist constants K̃ > 0 and

α̃ > 0 such that

P(dist(x̂LHS
N , S∗) ≥ ε) ≤ K̃e−α̃N for all N ≥ 1.

73

Moreover, the exponent α̃ is at least as large as the corresponding exponent obtained for

standard Monte Carlo.

Proof See Homem-de Mello (2006). ¥

This suggests that convergence of optimal solutions under Latin Hypercube sampling

will be faster that under Monte Carlo sampling. A special case of this occurs when the

distribution of ξ has finite support and the true optimization problem (1.1) has a unique

optimal solution x∗. Here by slightly modifying the proof of Theorem 3.2 in Shapiro and

Homem-de-Mello (2000), we find that there exists β > 0 such that

lim sup
N→∞

1

N
logP(x̂LHS

N 6= x∗) = −β

and that the constant β is at least as large as the corresponding constant under Monte Carlo

sampling.

When the function G(x, ξ) is separable in each component of ξ, we get an even stronger

result:

Theorem 3.24. Suppose that (i) Assumption 3.22 holds, (ii) G(x, ξ) is separable in each

component of ξ, (iii) for each x ∈ X, the moment generating function of G(x, ξ) is finite

everywhere. Consider the Latin Hypercube estimators ĝLHS
N (·) and the corresponding problem

minx∈X ĝLHS
N (x). Let x̂LHS

N denote an optimal solution of that problem and S∗ be the set of

optimal solutions to the true problem. Then, given ε > 0 there exist constants K̃ > 0 and

α̃ > 0 such that

P(dist(x̂LHS
N , S∗) ≥ ε) ≤ K̃e−α̃N for all N ≥ 1.

Moreover, the exponent α̃ is at least as large as the corresponding exponent obtained for

standard Monte Carlo.

74

In addition, we have

lim
N→∞

1

N
logP(dist(x̂LHS

N , S∗) ≥ ε) = −∞.

Proof Homem-de Mello (2006). ¥

Thus, when the function G(x, ξ) is separable in ξ, we asymptotically achieve an infinite

convergence rate for the sampled optimization problem using Latin Hypercube sampling.

3.7 Conclusions

We have studied large deviations properties of estimators obtained with Latin Hypercube

sampling. We have shown that LHS satisfies a large deviation principle for real-valued

functions of one variable and for separable real-valued functions in multiple variables, with

the rate being equal to infinity. We have also shown that the upper bound of the probability

of a large deviation is smaller under LHS than it is for Monte Carlo sampling in these

cases regardless of the sample size. This is analogous to the result that Latin Hypercube

sampling gives a smaller variance than Monte Carlo sampling in these same cases since

VarLHS approaches the variance of the residual term, which in these cases is nonexistent.

Further, as the number of samples becomes large, the probability of a large deviation from

the true mean is essentially zero under Latin Hypercube sampling.

We have also shown that, if the underlying function is monotone in each component, then

the upper bound for the large deviation probability is again less than that of Monte Carlo

sampling regardless of the sample size. Again, this is analogous to the fact that the variance

from LHS is no greater than that of Monte Carlo sampling when the function is monotone in

all arguments. Unfortunately we do not know whether the large deviations rate is infinite,

as it is in the separable case.

75

Large deviations results for LHS for general functions still remain to be shown, though

the Latin Hypercube variance results found in the literature seem to provide a good direction.

In general, the variance of a Latin Hypercube estimator may not be smaller than that of

a Monte Carlo estimate (recall the bound VarLHS ≤ n
n−1

VarMC proven by Owen (1997a)) ;

however, asymptotically it is no worse. This might also be the case for the upper bound of

the large deviations probability. Also, Stein (1987) has shown that asymptotically, VarLHS

is equal to just the variance of the residual term. In the separable function case, the upper

bound for the large deviation probability is zero, which is also the variance of the residual

term (in fact, the residual term is exactly zero). This suggests that the rate of convergence

of large deviations probabilities for LHS may depend only on the residual terms — indeed,

we have shown that, in case the residual term is bounded, the rate of convergence depends

directly on the values of such bounds. We hope these results will stimulate further research

on this topic.

76

Chapter 4

A Central Limit Theorem for Padded

Latin Hypercube Sampling

4.1 Introduction

In this section, we consider the problem of computing µ = E[f(X)] where f is a bounded

function. Without loss of generality, we assume that X is uniformly distributed on the s-

dimensional unit hypercube [0, 1)s. We can approximate µ by drawing N samples X1, . . . , XN

from the distribution of X and replacing the expectation with the sample average IN =

1
N

∑N
i=1 f(X i). We then can measure the error of the sampling scheme by looking at |IN−µ|.

The most well-studied sampling scheme in this context is Monte Carlo sampling where

the samples are independent and identically-distributed. It is well-known that the error from

Monte-Carlo sampling is O(1√
N

) and has an asymptotic normal distribution with a mean of

0 and some variance σ2. Note that the order of the error is independent of the dimension

of the problem. A major problem however with Monte Carlo sampling is the possibility

of clustering, i.e., where the actual number of sample points in a particular region of the

77

sample space is much larger than the expected number. One way to remedy this problem

is to deterministically choose the sample points, rather than randomly, in such a way that

clustering is avoided. Such methods are called Quasi-Monte Carlo (QMC) methods. QMC

methods can be further enhanced by adding a shuffling or randomization to the sampling

points, which allows us to calculate errors using multiple independent replications of the

sampling scheme. These enhanced methods are called Randomized QMC (RQMC) methods.

A number of (R)QMC sequences have been discovered to have an error of O(log(N)s

N
). While

this is asymptotically better than the Monte Carlo rate of O(1√
N

), the sample size N at

which the QMC error becomes lower can be extremely large even for modest-sized s.

One technique that has been used to improve the performance of QMC sampling in

high dimensions is called padding. Some subset of the random variables is sampled using a

(R)QMC point set, while the rest of the variables are “padded” using some other sampling

method such as the midpoint of the sampling interval, Monte Carlo sampling (Spanier 1995,

Ökten 1996, Ökten 2001), or Latin Hypercube sampling (Owen, 1998).

Owen (1998) takes the concept of partitioning the random variables further with Latin

Supercube sampling (LSS). Rather than partitioning the random variables into two disjoint

groups (one which is sampled with a QMC point set and the other padded with another

method), he partitions the random variables into r disjoint subsets, each of which gets sam-

pled by a different point set. The run order of each point set is then permuted independently

of the other point sets. It can be shown that padded sampling is a special case of LSS (Owen,

1998).

Ökten et al. (2006) show that when a QMC point set is padded with Monte Carlo sampling

(a sampling scheme we will denote as PMC) to estimate the expectation of a bounded

function f , then the estimator IN has an asymptotic normal distribution, its asymptotic

variance is theoretically known, and that asymptotic variance is no worse than the asymptotic

78

variance obtained from Monte Carlo sampling. In this chapter we show that for these same

functions, when we pad with Latin Hypercube sampling (denoted PHLS), the asymptotic

distribution is also normal, the asymptotic variance is also theoretically known, and that

asymptotic variance is no worse than either Monte Carlo or PMC sampling.

In section 4.2, we introduce Latin Supercube sampling and show its relationship to padded

sampling. We also give an expression for the variance of IN under PHLS. In section 4.3,

we show that IN satisfies a central limit theorem under PHLS and finally in section 4.4 we

provide some concluding remarks.

4.2 Latin Supercube Sampling

Latin Supercube sampling (LSS) was first introduced by Owen (1998). To construct an

s-dimensional LSS point set, the random variables are partitioned into r disjoint subsets

A1, . . . , Ar with |Ak| = sk and
∑r

k=1 sk = s. For the kth subset or block, an sk-dimensional

(R)QMC point set {Qi
k : i = 1, . . . , N} with N samples is generated. The point sets for each

block are generated independently of each other. Then the run order of each point set is

permuted independently of all of the other point sets. If {πk, k = 1, . . . , r} are independent

permutations of the numbers 1, . . . , N for each block respectively, then the Latin Supercube

sample can be written as {X i : i = 1, . . . , N} with X i =
[
Q

π1(i)
1 , Q

π2(i)
2 , . . . , Q

πr(i)
r

]
.

Latin Hypercube sampling (LHS) is just a special case of LSS where each block contains

just one random variable since Latin Hypercube is indeed a QMC point set (it is a (0, 1, s)-

net in base N). Thus, permuting the run order within each block involves simply generating

a permutation for each random variable. Similarly, padding with LHS (PLHS) is also a

special case of LSS. In a padded sampling scheme, d ≤ s random variables are sampled with

a (R)QMC point set Q = [q1, . . . , qd] and the remaining s−d random variables with a point set

from some other sampling method Y = [yd+1, . . . , ys]. Without loss of generality, we let the

79

first d components be the QMC variables, though in practice any subset of the variables may

be the QMC variables. Then the padded sample is X = [Q, Y] = [q1, . . . , qd, yd+1, . . . , ys].

Viewing PHLS as a Latin Supercube sample yields s− d + 1 blocks. On the surface, PLHS

does not seem to satisfy the criteria for LSS since we are not shuffling the run order within

the QMC block. However, since the overall run order of the Latin Supercube sample points

does not matter (we are ultimately calculating the sample mean, which is an exchangeable

function, in order to estimate an integral), it suffices to shuffle all but one of the blocks.

Using the following result about the mean and variance of LSS from Owen (1998), we can

determine the asymptotic variance of the PLHS estimator using the terms from the ANOVA

decomposition (2.8).

For Owen’s result, we must first define εN
k (f) as the worst N -sample integration error

for function f obtained by the integration rule for block k when all of the components not

in block k are held constant. Also, recall that an s-dimensional function f has ANOVA

decomposition

f(ξ) =
∑
u⊆S

fu(ξ),

where S = {1, . . . , s}. With this decomposition, the variance σ2 of f can be decomposed as

σ2 =
∑

u⊆S σ2
u.

Theorem 4.1. In Latin Supercube sampling, if εN
k (f) = O(N−1/2), for k = 1, . . . , r, then

ELSS(IN) = µ + O(N−1/2).

Also, if εN
k (fufv) = O(N−1/2) for all u, v ⊆ S, and k = 1, . . . , r, then

VLSS(IN) =
1

N

(
σ2 −

r∑

k=1

∑
u⊆Ak

σ2
u

)
+ O(N−3/2).

80

Proof: We have modified the condition on εN
k (f) from Owen (1998) to be O(N−1/2) rather

than o(N−1/2). This changes the orders on the remainder terms, but otherwise the proof

follows directly from Owen (1998). ¤

It should be noted that the necessary conditions on εN
k (·) hold for LHS, as well as for

most QMC and RQMC sampling schemes — in particular, for (t, m, s)-nets and scrambled

(t,m, s)-nets.

Theorem 4.2. Let f be a measurable real-valued function with ANOVA decomposition f =
∑

u∈S fu and let {X i, i = 1, . . . , N} be a PLHS point set with X i = [Qi, Y i] where {Qi, i =

1, . . . , N} is a d-dimensional QMC point and {Y i, i = 1, . . . , N} is a (s − d)-dimensional

LHS point set. Further, let D = {1, . . . , d} be the set of indices of the QMC variables. Then,

as the number of samples N →∞,

1. the asymptotic variance of IN under PLHS is

VPLHS(IN) =
s2

N

N
=

1

N

(
σ2 −

∑
u⊆D

σ2
u −

s∑

j=d+1

σ2
{j}

)
+ O(N−3/2); (4.1)

2. the variance from Equation (4.1) is no larger than the variance from pure Monte Carlo

sampling or from PMC sampling.

Proof: As described above, PLHS is a special case of Latin Supercube sampling. By

Theorem 1 of Owen (1998), we then have that Equation (4.1) holds.

By Theorem 7 of Ökten et al. (2006), the theoretical asymptotic variance of PMC is

VPMC(IN) =
s2

N

N
=

1

N

(
σ2 −

∑
u⊆D

σ2
u

)
+ O(N−3/2) (4.2)

and further, that variance is no larger than the asymptotic variance for pure Monte Carlo

sampling, which is simply σ2

N
. Since, the variance terms are nonnegative, VPLHS ≤ VPMC

81

which proves the second statement. ¤

We further note for reference that the asymptotic variance for pure LHS can be written

as

VLHS(IN) =
s2

N

N
=

1

N

(
σ2 −

s∑
j=1

σ2
{j}

)
+ O(N−3/2). (4.3)

4.3 A Central Limit Theorem for PLHS

To prove asymptotic normality for PLHS, we follow a similar technique to the one used in

the proof of the central limit theorem for LHS (Owen, 1992). Assume that the PLHS point

set in s dimensions consists of a QMC point set on indices D = {1, . . . , d} and a Latin

Hypercube point set on the remaining dimensions {d + 1, . . . , s}. We can then define an

alternate ANOVA decomposition for the function f : [0, 1)s → R:

f = µ +
∑
u∈D

fu +
∑

j=d+1

f{j} + r (4.4)

where r is a residual term containing all of the remaining ANOVA terms. Before, showing

the central limit theorem, we first present two lemmas.

Lemma 4.3. Let f be a bounded function over [0, 1)s and r be the residual term in (4.4).

Let X ⊆ {X1, . . . , X i−1}. Then for any i = 1, . . . , N :

EPLHS[f(X i)|X] = EIID[f(X i)] + O(N−1) (4.5)

EPLHS[r(X i)|X] = O(N−1) (4.6)

Proof: Under LHS with N samples each dimension of the sample space is split into N

strata of equal probability. Within each dimension, each stratum is sampled from exactly

once. Thus each sample excludes an additional area that has a volume of O(N−1). Applying

82

this idea on the LHS portion of PLHS, Equation (4.5) holds because the PLHS expectation

is over all of [0, 1)i except for a volume of O(N−1) excluded by the samples we know. Then

since f is bounded, we can find a constant times O(N−1) to serve for the known values in X.

For Equation (4.6), note that if f is bounded, its residual will also be bounded. Then

Equation 4.5 holds for the residual. However, by definition of the ANOVA decomposition,

the residual term has an expected value of zero, thus giving equation (4.6). ¤

Lemma 4.4. Let f be a bounded function over [0, 1)s and let r be defined as before. Let

ri = r(X i) and R̄ = 1
N

∑N
i=1 ri. Then for integral p ≥ 1

EPLHS{(
√

NR̄)p} = EIID{(
√

NR̄)p}+ O(N− 1
2) (4.7)

as N →∞.

Proof: The term of the left side of Equation (4.7) can be rewritten as:

EPLHS{(
√

NR̄)p} = N−p/2

N∑
i1=1

· · ·
N∑

ip=1

EPLHS

(
p∏

m=1

rim

)
.

We can view the terms of the resulting polynomial as follows: There are N distinguishable

cells (the samples) and we need to place p indistinguishable balls into those cells. Suppose

when we do this, S of the cells are nonempty. There are then
(

N
S

)
ways to select the S

nonempty cells, which we will index by k. Let {cjk : j = 1, . . . , S} be the indices of the S

nonempty cells and {ajk : j = 1, . . . , S} be the number of balls in the jth nonempty cell for

cell choice k. Note that
∑S

j=1 ajk = p for all k. Then,

N−p/2

N∑
i1=1

· · ·
N∑

ip=1

EPLHS

(
p∏

m=1

rim

)
= N−p/2

p∑
S=1

(N
S)∑

k=1

∑
a1k,...,aSk

coefS(a1k, . . . , aSk)EPLHS

(
S∏

j=1

r
ajk
cjk

)

83

where the third sum is over all sets of positive integers a1k, . . . , aSk for which
∑S

j=1 ajk = p.

Since p is fixed, the number of terms in the first and third summations does not grow with

N . There are
(

N
S

)
terms in the second sum which is O(NS), and so the coefficients after all

of the summations will also be O(NS), whatever the values of ajk as N → ∞. The actual

values of the coefficients are not important, just their magnitude.

It suffices to show that:

N−p/2+S

[
EPLHS

(
S∏

j=1

r
ajk
cjk

)
−

S∏
j=1

EIID(r
ajk
cjk)

]
= O(N− 1

2) (4.8)

as N →∞ for all k. For readability, we will drop the k from the notation.

We handle each residual term in the product differently depending on its exponents.

Residual terms with exponent 1 can be simplified using Equation (4.6) while residual terms

with exponents larger than 1 must be simplified using Equation (4.5). When aS > 1, by

Equation (4.5) we get

EPLHS

(
S∏

j=1

raj
cj

)
= EPLHS

[
S−1∏
j=1

raj
cj
EPLHS(raS

cS
|Xc1 , . . . , XcS−1

)

]

= EPLHS

(
S−1∏
j=1

raj
cj

)
{EIID(raS

cS
) + O(N−1)}, (4.9)

and when aS = 1, we have by Equation (4.6) that

EPLHS

(
S∏

j=1

raj
cj

)
= EPLHS

[
S−1∏
j=1

raj
cj
EPLHS(raS

cS
|Xc1 , . . . , XcS−1

)

]

= EPLHS

(
S−1∏
j=1

raj
cj

)
O(N−1)}, (4.10)

Suppose that none of the aj is equal to 1. Then, they all must be at least 2, and so

84

S < p/2. Then by repeated application of Equation (4.9), the left-hand side of Equation

(4.8) becomes O(N−p/2+S)O(N−1) = O(N−p/2+S−1) = O(N−1) = O(N− 1
2).

Now, suppose that t > 0 of the aj are equal to 1. Then by repeated application of

Equation (4.10), the left-hand side of Equation (4.8) becomes O(N−p/2+S−t). Now there are

S− t of the aj greater than 1 and their sum is p− t. By a similar argument as above, S− t ≤
(p−t)/2 and the left-hand side of Equation (4.8) is now O(N− p

2
+ p−t

2) = O(N−t/2) = O(N− 1
2)

since t ≥ 1. ¤

Theorem 4.5. Under the conditions of Lemma 4.4, let Y i = f(X i) and Ȳ = 1
N

∑N
i=1 Y i.

Then
√

N(Ȳ − µ) tends in distribution to N(0, r2
PLHS) as N →∞, where

r2
PLHS =

(
σ2 −

∑
u⊆D

σ2
u −

s∑

j=d+1

σ2
{j}

)
.

Proof: The mean of
√

N(Ȳ − µ) is zero and the variance tends to N · VPLHS = r2
PLHS by

Theorem 4.2, so it only remains to show that the limit distribution of PLHS is normal.

Using the alternate ANOVA decomposition of f in Equation (4.4), we can rewrite

√
N(Ȳ − µ) =

√
N

(∑
u⊆D

f̄u +
s∑

j=d+1

f̄{j} + R̄

)

with f̄u = 1
N

∑N
i=1 f i

u for both u ⊆ D and u ∈ {d + 1, . . . , s}.
Recall that random variables d + 1, . . . , s in the PLHS sample come from a Latin Hy-

percube point set. Thus, using a sample padded with LHS to integrate only over those

variables is equivalent to using a pure Latin Hypercube sample. Then for j = d + 1, . . . , s,

varPLHS(
√

Nf̄{j}) = varLHS(
√

Nf̄{j}) = O(N−1) (Owen, 1992). Further, if Fj is the dis-

tribution function of random variable Xj, then
∫

f{j}dFj = 0 (a property of the ANOVA

decomposition) and it follows that
√

Nf̄{j} converges in probability to 0 for j = d+1, . . . , s.

85

Also, since the {fu, u ⊆ D} are the ANOVA terms corresponding only to the deterministic

variables, their average value will remain the same regardless of the sample. Thus, the

variance for those f̄u terms is identically 0. This leaves only R̄.

We know that a normal limit holds for
√

NR̄ under i.i.d. sampling since the residuals are

all bounded. Lemma 4.4 shows that the moments of
√

NR̄ are asymptotically equal under

i.i.d. and PLHS sampling. Then by the method of moments (Chung, 1974), a normal limit

also holds for PLHS. ¤

4.4 Conclusions

In this chapter we have shown that padded Latin Hypercube sampling satisfies a central

limit theorem for bounded functions. We have also shown that the variance under this

sampling method is no worse than the variance of a comparable padded Monte Carlo sampling

method. While we have given a formula for the theoretical asymptotic variance under PLHS,

computing that value is often difficult in practice due to the complexity of calculating the

ANOVA decomposition for functions of many variables. Additionally, there is the problem

of which random variables should be chosen for the QMC block and which for the padded

block. This is a question we will explore more in Chapter 5 of this dissertation.

86

Chapter 5

A Padded Sampling Algorithm for

Stochastic Programming

5.1 Introduction

We now focus on two-stage stochastic linear programs with fixed recourse. In these problems,

a decision x (from some set of decisions X) is made in the first stage in anticipation of some

future random event(s). Following the random event(s), a recourse action y is then taken in

the second stage. Typically these problems are of the form:

min
x∈X

{g(x) := cT x + E[Q(x, ξ)]} (5.1)

where X is a subset of Rn, the second stage stochastic program Q(x, ξ) is defined as

Q(x, ξ) := inf{qT y : Wy ≥ h(ξ)− T (ξ)x, y ≥ 0} (5.2)

87

and the random vector ξ = (h, T). We also assume that all of the components of ξ are

independent of each other. Thus the optimal value of the second stage stochastic program

can be thought of as a function Q(x, h, T). Similar to Equation (1.2) we can create a sampled

optimization problem by replacing the expectation with the sample average. As before, we

let v̂N and x̂N be the optimal objective value and some optimal solution to the sampled

problem and v∗ and x∗ be the corresponding quantities for the true problem.

External sampling methods which solve the sampled problem using Quasi-Monte Carlo

sampling have been quite successful compared to their Monte Carlo counterparts (see Sec-

tion 5.2 for an overview). However, there are issues with QMC sampling. First, the upper

bound for the integration error under QMC is dependent on the dimension of the problem

(i.e., the number of components of ξ). Yet numerical results show that the integration error

is much more in line with the effective dimension of problem instead of the larger true dimen-

sion. Second, while Quasi-Monte Carlo integration may improve on Monte Carlo integration

in terms of the number of samples needed, there may not be an improvement in terms of

computing time. When the dimension of the problem is large, it may become difficult and

time-consuming to construct low discrepancy Quasi-Monte Carlo point sets.

One solution to this is to use a padded sampling scheme where only a subset of the ran-

dom variables are sampled using Quasi-Monte Carlo sampling and the remaining variables

are sampled using some other (typically less computationally intensive) sampling scheme

such as the midpoint of the interval, a Monte Carlo sample (Spanier 1995), or a Latin Hy-

percube sample (Owen 1998). To maximize the efficiency of a padded sampling scheme,

we can assign some measure of importance to each of the random variables, and then only

choose the most important variables to be sampled with QMC. Since QMC is a method

used to reduce integration error, it seems natural for each random variable’s measure of

importance to correspond with its contribution to the variance of the optimal value of the

88

optimization problem. We then can construct a smaller QMC point set on just these im-

portant components and pad the sample using some other method such as Monte Carlo or

Latin Hypercube sampling on the remaining components. In Section 5.2, we review the use

of sampling algorithms in stochastic optimization and in Section 5.3 we give an overview of

the field of sensitivity analysis, which is the study of how the variation of the output of a

model can be attributed to each of its input variables. In Section 5.4, we discuss the problem

of identifying the important variables in a two-stage stochastic program with fixed recourse.

We present an external sampling algorithm with padded sampling to solve two-stage stochas-

tic programs in Section 5.5 and prove in Section 5.6 that the algorithm stops after a finite

number of samples. We show some numerical results for our algorithm in Section 5.7 before

offering some concluding remarks in Section 5.8.

5.2 Sampling Methods in Stochastic Optimization

5.2.1 Methods

Since the expected value in (1.1) and (5.1) is often difficult to calculate directly, sampling

methods have become popular in stochastic optimization. The sampling-based algorithms

tend to fall under two classes – those where the sampling procedure is executed internally to

the optimization algorithm and those where the sampling procedure is executed externally.

One example of an internal method is the Stochastic Approximation (SA) algorithm

introduced by Robbins and Monro (1951a). This algorithm is defined by a recursive sequence

xn+1 := xn + αnχn, n = 0, 1, . . ., where χn is the step size at iteration n, ξn is an estimate of

the gradient 5g(xn) or some other random direction, and x0 is a given starting point. The

step sequence {αn} is chosen so that it goes to zero but not too fast:
∑∞

n=0 αn = ∞ and
∑∞

n=0 α2
n < ∞. Other such methods are the Stochastic Quasi-Gradient method (Ermoliev

89

1983) where subgradients are estimated through sampling and the Stochastic Decomposition

Method (Higle and Sen 1991) where random samples are used to generate cuts at each

iteration.

External sampling methods involve estimating the function g(x) in (1.1) by the family of

random approximations {ĝ(xN)} where ĝ(xN) is as defined in (1.2). These methods are some-

times referred to as Sample Average Approximations (SAA) or Sample Path Optimizations

as ĝ(xN) is obtained by averaging the results of N sample paths ξ1, . . . , ξN . The exter-

nal sampling approach with Monte Carlo sampling has been used in many instances, e.g.,

Kleywegt et al. (2001), Gürkan, Özge, and Robinson (1999), and Plambeck, Fu, Robinson,

and Suri (1996). This approach has some nice convergence properties. If x∗ is the unique

optimal solution to the true optimization problem and v∗ the optimal value and if x̂N and

v̂N are the corresponding quantities for the sampled optimization problem, then x̂N → x∗

and v̂N → v∗ under some general conditions (See, e.g. Dupačová and Wets 1988, King and

Rockafellar 1993, Robinson 1996, Shapiro 1991, Shapiro 1993). Shapiro (1991) has shown

that the sequence of optimal objective values {v̂N} satisfies a central limit theorem. Namely,

√
N(v̂N − v∗) ⇒ Normal(0, σ2

∗)

where “Rightarrow” denotes convergence in distribution and σ2
∗ := V ar(G(x∗, ξ)). Thus

the convergence of optimal objective values is of order 1√
N

.

Quasi-Monte Carlo sampling (including the special case of Latin Hypercube sampling

which is a (0, 1, s)-net in base b = n) has also been implemented into stochastic optimiza-

tion in several places— e.g., Shapiro and Homem-de-Mello (2000) and Linderoth, Shapiro,

and Wright (2005) — and numerical results indicate that the Quasi-Monte Carlo methods

considerably outperform Monte Carlo methods in terms of rates of convergence of optimal

values and solutions. A few papers have looked specifically at the use of QMC methods for

90

external sampling schemes. Kalagnanam and Diwekar (1997) show empirical results using

Hammersley sequences. Koivu (2005), Pennanen and Koivu (2005), and Pennanen (2005)

show that under mild assumptions when Quasi-Monte Carlo methods are used to solve (1.1),

the estimator function ĝN epiconverges to the true function g. This guarantees that the op-

timal values and optimal solutions converge with probability one. Based on the results from

Chapter 3 of this thesis, Homem-de Mello (2006) has shown convergence results for deviation

probabilities when Latin Hypercube sampling is used in an external sampling scheme (see

section 3.6), but as of yet, there are no comparable results for general Quasi-Monte Carlo

methods.

5.2.2 Stopping Criteria

The results above discuss properties of sampling methods for stochastic optimization as the

number of samples N grows to ∞. Practically though, we need to determine some finite

sample size at which to stop the sampling algorithm. All of the stopping criteria below require

that the following assumptions hold with respect to the two-stage optimization problem in

(5.1).

Assumption 5.1. Let G(x, ξ) = cT x + Q(x, ξ).

(A1) G(·, ξ)is continuous on X

(A2) E[supx∈X G2(x, ξ)] < ∞

(A3) X is nonempty and compact.

For instance, these assumptions will hold if (5.1) has relatively complete recourse and ξ

has finite support.

Mak, Morton, and Wood (1999) introduce a stopping criteria based on the optimality gap

µx̃ between the true optimal value v∗ and the objective value evaluated at some suboptimal

91

candidate solution x̃ obtained by the sampling algorithm. By solving multiple sampled

problems, they estimate a lower bound L and an upper bound U for the true optimal value

and calculate 100(1 − α)% confidence intervals on both L and U . The lower bound comes

from the result that E[v̂N] ≤ E[v̂N+1] ≤ v∗ (Mak et al., 1999). The stage 1 sampled stochastic

program is solved NL times using independent replications each with N i.i.d. samples, with

replication j having optimal solution v̂j
N . We can then calculate:

LN,NL
=

1

NL

NL∑
j=1

v̂j
N , (5.3)

s2
L(NL) =

1

NL − 1

NL∑
j=1

(v̂j
N − LN,NL

)2, (5.4)

and

εL =
tNL−1,αsL(NL)√

NL

(5.5)

to construct the (1− α)-confidence interval LN,NL
± εL for the lower bound.

For an upper bound to v∗, it suffices to find a suboptimal solution to the sampled problem.

Given a suboptimal stage 1 solution x̃, the stage 2 problem, Q(x̃, ξ) (see Equation 5.2),

can be solved NU times (again with independent replications each with N i.i.d. samples).

Replication j will yield suboptimal solution

ĝj
N(x̃) = cT x̃ +

1

N

N∑
i=1

Q(x̃, ξi,j) =
1

N

N∑
i=1

G(x̃, ξi,j) (5.6)

to the sampled stochastic program. Then the upper bound for v∗ can be calculated as

UN,NU
=

1

NU

NU∑
j=1

ĝj
N(x̃). (5.7)

92

s2
U(NU), εU , and the (1− α)-confidence interval can be calculated similar to before.

They then introduce two methods of constructing confidence intervals on the optimality

gap at candidate solution x̃. In the first method, the random number streams used to

calculate L and U are independent of each other. Then

[0, UN,NU
− LN,NL

+ εL − εU] (5.8)

is an approximate (1 − 2α)-level confidence interval for the optimality gap at x̃. In the

second method, common random number streams are used when calculating the upper and

lower bounds and the replication size is denoted NG = NL = NU . For replication j, the gap

estimate is Gapj
N(x̃) = ĝj

N(x̃)− v̂j
N . The mean gap is

GapNG
(x̃) =

1

NG

NG∑
j=1

Gapj
N(x̃). (5.9)

sGap(NG) and εGap can be calculated similar to before and then an approximate (1−α)-level

confidence interval for the optimality gap at x̃ is

[0, GapNG
(x̃) + εGap]. (5.10)

For both methods, the candidate solution x̃ is deemed optimal when the width of the con-

fidence interval for the optimality gap at x̃ falls below some threshold. Bayraksan, Morton,

and Partani (2007) further show that using multiple independent replications where each

replication uses N non-i.i.d. samples also yields valid confidence intervals.

The methods above are called multiple replications procedures (MRP). However, in order

for the MRP to have good statistical properties, the number of replications needs to be at

least 30. This means we need to solve at least 30 SAA optimization problems to determine

93

whether or not the candidate solution is a good solution, which is not always practical.

Bayraksan and Morton (2006) develop a method to test the quality of the candidate

solution x̃ using a single replication. We refer to the resulting single replication procedure

as SRP or 1RP. As before, we start with the candidate solution x̃ and draw N i.i.d. samples

ξ1, . . . , ξN from the distribution of ξ. Next the sampled stochastic program is solved with

those N samples to obtain a solution x∗N . The gap is calculated similar to before:

GapN(x̃, x∗N) =
1

N

N∑
i=1

(G(x̃, ξi)−G(x∗N , ξi)) = ḡ(x̃)− ḡ(x∗N). (5.11)

The sample variance is then

s2
N(x̃, x∗N) =

1

N − 1

N∑
i=1

((G(x̃, ξi)−G(x∗N , ξi))− (ḡ(x̃)− ḡ(x∗N)))2 (5.12)

and εGap =
tN−1,αsN (x̃,x∗N)√

N
giving a (1−α)-level confidence interval of [0, GapN(x̃, x∗N) + εGap].

The candidate solution x̃ is again deemed optimal when the width of the confidence interval

falls below some threshold, and indeed under i.i.d. sampling, the stopping criteria will be

achieved as the sample size N grows large (Bayraksan and Morton, 2006). Specifically, the

stopping algorithm is as follows:

Algorithm 5.2. Single Replication Stopping Procedure (1RP)

1. Inputs to the algorithm are: a candidate solution x̃ ∈ X, sample size N , and a value

of 0 < α < 1 for a (1− α)-level confidence interval.

2. Sample i.i.d. observations ξ1, . . . , ξN from the distribution of ξ.

a. Using this sample, solve the sampled stochastic program to obtain solution x∗N . Be

sure to store the values G(x∗N , ξi).

94

b. Using this sample and the candidate solution x̃, obtain the values G(x̃, ξi).

3. Calculate GapN(x̃, x∗N) and s2
N(x̃, x∗N) as defined in (5.11) and (5.12) respectively.

4. Output a one-sided confidence interval [0, GapN(x̃, x∗N)+
tN−1,αsN (x̃,x∗N)√

N
] on the optimal-

ity gap µx̃.

In the same paper, two different stopping procedures using two replications are intro-

duced. The first is the independent 2-replication procedure (I2RP). It aims to eliminate the

correlation between GapN(x̃, x∗N) and s2
N(x̃, x∗N) by estimating the two quantities using two

separate replications. In the first replication of N i.i.d samples, the gap estimate is calcu-

lated as in 1RP. However, to estimate the sample variance, a second replication of N i.i.d.

samples is drawn and the sampled stochastic program is solved with those samples to obtain

a solution x∗∗N . The sample variance s2
N(x̃, x∗∗N) is estimated by replacing all instances of x∗N

in Equation (5.12) with x∗∗N , and it then follows that εGap =
tN−1,αsN (x̃,x∗∗N)√

N
. The resulting

confidence interval is also asymptotically valid.

Algorithm 5.3. Independent 2-Replication Stopping Procedure (I2RP)

1. Inputs to the algorithm are: a candidate solution x̃ ∈ X, sample size N , and a value

of 0 < α < 1 for a (1− α)-level confidence interval.

2. Sample i.i.d. observations ξ1, . . . , ξN from the distribution of ξ.

a. Using this sample, solve the sampled stochastic program to obtain solution x∗N . Be

sure to store the values G(x∗N , ξi).

b. Using this sample and the candidate solution x̃, obtain the values G(x̃, ξi).

3. Sample an additional N i.i.d. observations ξN+1, . . . , ξ2N from the distribution of ξ.

95

a. Using this second sample, solve the sampled stochastic program to obtain solution

x∗∗N . Be sure to store the values G(x∗∗N , ξi).

b. Using this second sample and the candidate solution x̃, obtain the values G(x̃, ξi).

4. Calculate GapN(x̃, x∗N) and s2
N(x̃, x∗∗N) as described above.

5. Output a one-sided confidence interval [0, GapN(x̃, x∗N)+
tN−1,αsN (x̃,x∗∗N)√

N
] on the optimal-

ity gap µx̃.

The second stopping procedure is essentially a MRP with 2 replications each with N

i.i.d. samples. A gap estimate and a sample variance is calculated for each replication and

are averaged across the two replications. This is called the averaged 2-replication procedure

(A2RP). The confidence interval here differs slightly from the previous procedures as there

are 2N samples rather than N . This too yields an asymptotically valid confidence interval.

Bayraksan and Morton (2007) later extend the single replication procedure to a sequential

sampling procedure. Rather than drawing a new sample each time a candidate solution

needs to be tested, additional sample points are appended to the current sample. This

saves a great deal of computational work as it cuts down the number of times the stochastic

optimization problem needs to be solved. They show that if the gap estimator has a finite

moment generating function, then the (1− α)-level confidence interval generated under this

procedure is asymptotically valid.

In Section 5.6, we show that the 1RP and I2RP stopping procedures can be modified to

also yield asymptotically valid confidence intervals with non-i.i.d. sampling schemes.

5.3 Sensitivity Analysis

Sensitivity analysis is the study of how the variation in the output of a model can be explained

by its input factors. For our purposes, the output of the model is the optimal value of the

96

second stage of a stochastic program and the inputs are the random right-hand side values

or left-hand side coefficients of the constraints. There are a number of different methods

for sensitivity analysis— including derivative-based methods, screening methods, sampling-

based methods, and variance-based methods. In this section, we will give an overview of

some of these methods and discuss their advantages and drawbacks. Further details about

sensitivity analysis can be found in Saltelli, Chan, and Scott (2000). For purposes of this

section, let us denote the input variables to our function as {ξj, j = 1, . . . , s} and the output

as Y = g(ξ1, . . . , ξs). We now give a brief overview of some of the more common methods of

sensitivity analysis.

5.3.1 Local Methods

Local sensitivity analysis methods focus on how the output behaves in the neighborhood of a

specific fixed point for the input variables. The most commonly used local sensitivity measure

is the gradient ∇Y = (∂Y
∂ξ1

, . . . , ∂Y
∂ξs

). This measure is often used in deterministic optimization

where the {ξj} correspond to the right-hand sides of the constraints and are not variable at

all (leaving an easy choice for the fixed point at which to calculate the gradient). In this

case, the gradient for each constraint corresponds to its dual multiplier— information which

is readily available from most optimization software. In stochastic optimization, however,

since the right-hand sides of the constraints may be random, ∇Y will change depending on

the values of ξ for each scenario. It will also change depending on the values of the first-

stage decision variables. Thus using the gradient evaluated at a single point as a sensitivity

measure is not so informative. Another drawback to partial derivatives is that they only

measure how the output changes as one input variable changes at a time.

An improvement is to use Principal Components Analysis (PCA) to measure how the

output changes as all of the input variables change simultaneously. We can sample N re-

97

alizations, ξ1, . . . , ξN , of the input vector ξ and solve stochastic program (5.2) with each

realization to obtain optimal values Y 1, . . . , Y N . Let Zj = ∂Y
∂ξj

(or some function of ∂Y
∂ξj

) and

Z be the column vector with jth entry Zj. One can create a sensitivity matrix S equal to

the sample covariance matrix of the components of Z. Note that while we assume that the

input random variables in stochastic program (5.2) are uncorrelated, the components of Z

will likely be correlated due to the interaction of the constraints of the stochastic program.

Then since S is a covariance matrix and hence positive semi-definite, it can be decomposed

as CΛCT , where the rows Ci of matrix C are the eigenvectors of S and the matrix Λ is

a diagonal matrix whose nonzero entries are the eigenvalues λj of S. If λ is the vector

of the eigenvalues with entries λj, then Z can be transformed into another random vector

Ψ = CT Z. It is easy to see that Ψ has covariance matrix CT CΛCT C = Λ. This transforms

the correlated variables Zj into a set of uncorrelated variables Ψj called principal components.

The principal components are just linear combinations of the original random variables and

the variance of the principal components are just the eigenvalues. Thus by matching the

principal components to the original variables, we can determine which variables contribute

most to the variance of the function. To determine the number of important variables, we

renumber the eigenvalues in descending order and calculate the trace of S (the sum of all the

eigenvalues). Then the number p of important variables is the smallest number p satisfying

∑p
j=1 λj

trace(S)
≥ θ (5.13)

for some constant 0 < θ < 1.

To determine which variables are important, we look at the spectral decomposition of S:

S = CΛCT =
s∑

i=1

λiCiC
T
i . (5.14)

98

Suppose that λ1 is much larger than the other eigenvalues. Then any differences in magnitude

between the entries of S are primarily determined by C1C
T
1 . Since we are interested in

the diagonal terms of S (the variance terms), the p largest and most important diagonal

terms correspond to the p largest entries (in absolute value) of eigenvector C1. If multiple

eigenvalues are of similar magnitude, we can take a weighted average of the corresponding

eigenvectors and use similar reasoning to determine the important variables.

5.3.2 Screening Methods

Screening methods are similar to the derivative-based methods described above in that they

look at perturbations around a few base values; however, the perturbations tend to be larger

than those used in derivative-based methods. The main goal of screening methods is to

determine with low computational effort a small subset of factors that are important to the

problem from some much larger group of factors.

The most basic type of screening method is the one-at-a-time (OAT) design where the

sensitivity measure of each input variable is determined by perturbing the factor of interest

by δ from some fixed point while keeping the other factors constant, and then dividing the

change in function value by δ. Included in these designs are standard OAT designs where one

factor at a time is varied from some standard point and strict OAT designs where one factor

is changed from the condition of the prior experimental run. As with the derivative-based

methods, these are local methods.

Morris (1991) proposed a OAT design to calculate a global sensitivity measure. In his

method the number of experimental runs is proportional to the number of input factors. For

each factor, he computes r local sensitivity measures at different points and then calculates

the sample mean and sample standard deviation over the points. Factors whose effects have

high mean have a high linear effect and are deemed important. Factors with a high standard

99

deviation are either highly nonlinear or interact greatly with other factors. Factors with low

mean and low standard deviation are unimportant.

A broader category of screening methods are general factorial designs where each factor

is set to either some high level (+) or some low level (−). A full factorial design contains

all 2s combinations of + and − for the s factors and can produce an enormous number of

calculations. Fractional factorial designs (FFD) look at only a subset of these combinations

with the idea that after some point, higher-level interactions become negligible. Andres and

Hajas (1993) developed the iterated fractional factorial design (IFFD) in which the number of

runs required is fewer than the number of factors. IFFD is an example of a group screening

method, and it estimates the main effects, quadratic effects, and two-factor interactions

of the factors. In each iteration of IFFD, the factors are randomly split into groups and

each factor is assigned a random level – high, medium, or low (factors in the same group

may be assigned different levels). The groupings change with each iteration. Groups with

no important factors should all behave similarly regardless of the factor levels, while the

presence of influential factors in a group should greatly effect the group’s results. Andres

(1997) later infused some ideas from Latin Hypercube sampling to improve IFFD. Namely,

rather than sampling factors at three levels, we sample at K levels; and rather than having

each level be a fixed value, the levels represent intervals and a random value is sampled from

that interval. With multiple factors, this is analogous to randomly selecting a hypercube

and then sampling a point inside that hypercube.

Another group screening technique is sequential bifurcation originally proposed by Bet-

tonvil (1990) (see also Bettonvil and Kleijnen (1997)). Factors are again split into groups

and by sampling the factors in each group at multiple levels (typically just low and high

levels), we can determine whether the group as a whole is influential. If a group is declared

unimportant, then all of the factors within that group are deemed unimportant and are

100

disregarded for the remainder of the algorithm. If the group is important, then it is split

into two subgroups and the process is repeated. The process ends when all of the remaining

groups contain only one element and those elements are labeled as important. In order for

sequential bifurcation to work properly, the signs for all of the main effects must be known

and nonnegative to prevent multiple factors in a group from canceling each other out. This

of course will not always be the case.

On the whole, screening methods are computationally efficient techniques to determine a

subset of most influential factors from a much larger subset of input factors. However, they

have one major drawback. They qualitatively label factors as important or unimportant

but do not in general provide good quantitative measures for the order of importance. In

turn, these algorithms tend to have high Type I errors (false positives) as the threshold for

importance may vary depending on the application. Often screening methods are used as a

first step in sensitivity analysis to eliminate unimportant random variables, and then some

other method is used to quantify the level of importance.

5.3.3 Sampling-Based Methods

The next class of sensitivity analysis methods are sampling-based methods. Rather than

setting factors at specified levels, we sample from the input distributions of the factors.

Traditionally, Monte Carlo sampling has been used, but other sampling methods such as

Latin Hypercube sampling or Quasi-Monte Carlo sampling may be used instead. Importance

measures are then calculated using a variety of statistical techniques.

Perhaps the simplest technique for sensitivity analysis is to generate scatterplots. We

plot each input variable against the corresponding output variable and visually analyze the

relationship between them. While an effective technique, it is unfortunately not practical in

an automated algorithm.

101

Regression analysis (for reference, see Tamhane and Dunlop (2000)) is also commonly

used in sensitivity analysis. In regression analysis, the output variable Y i from sample i can

be estimated as a linear function Ŷ i = β̂0 +
∑s

j=1 β̂jξ
i
j of the input variables ξ1, . . . , ξs. The

quality of the regression is measured by

R2 =

∑N
i=1(Y

i − Ŷ i)∑N
i=1(Y

i − Ȳ)

where Ȳ = 1
N

∑N
i=1 Y i. The regression coefficients {β̂j, j = 1, . . . , s} can then serve as

importance measures for the random variables.

From the regression, we can also calculate the standardized regression coefficients (SRC)

r̂ξj ,Y =
β̂j ŝj

ŝ
where ŝj is the sample standard deviation of ξj and ŝ is the sample standard

deviation of Y . These are the regression coefficients if the input and output variables of

the regression were all normalized to have mean 0 and standard deviation 1. SRC’s are

equivalent to the Pearson correlation coefficients (PEAR)

r̂ξj ,Y =

∑N
i=1(ξ

i
j − ξ̄j)(Y

i − Ȳ)√∑N
i=1(ξ

i
j − ξ̄j)2

√∑N
i=1(Y

i − Ȳ)2

. (5.15)

When the input variables ξj, j = 1, . . . , s are independent, rξj ,Y can be used as an importance

measure. A related measure is the partial correlation coefficients (PCC) which provide a

measure of the linear relationship between ξj and Y after the linear effects of the other

random variables have been removed. Regression analysis and correlations can further be

combined with other statistical tests, such as hypothesis tests which can determine whether

β̂j = 0 for factor j.

Another regression technique is stepwise regression where we begin by fitting a regression

model to the single input variable that most impacts the uncertainty of the output variable.

In the next iteration, the second-most influential input variable is added to the model and

102

regression coefficients are calculated for this two-variable model. This process continues until

adding an additional input variable has a minimal impact to the R2 of the model. The final

regression model contains only the important input variables.

While the models above improve upon screening methods in that they give quantitative

measures of importance, they too still have one major drawback. The importance measures

are only as good as the underlying regression. This is especially problematic for highly

nonlinear models. Rank transformations, where the random variables are replaced by their

respective ranks (1=smallest, etc.), can increase the R2 of the regression, but still require

monotonic relationships between the input and output variables to be truly effective. Simi-

larly, Pearson correlation and partial correlation can also be calculated using ranks but with

the same monotonicity requirements.

5.3.4 Variance-Based Methods

Variance-based sensitivity analysis methods assume that the importance of each input vari-

able can be determined solely by measuring its contribution to the variance of the output

variable.

One way to measure the effect of input variable ξj on the variance of Y is to determine

how much that total variance would be reduced if we fixed the value of ξj, i.e.,

Varξj
(E[Y |ξj = k])

Var(Y)
. (5.16)

McKay (1995) named this ratio the correlation ratio and the numerator the variance cor-

relation expectation (VCE). Similarly Hora and Iman (1986) previously used
√

VCEj as a

measure of importance, where VCEj is the numerator of (5.16) for factor ξj. Unfortunately,

while mathematically correct, these methods were found to lack robustness and improve-

103

ments have been suggested such as rank transformations (Homma and Saltelli, 1994) and

replacing Y with log(Y) (Iman and Hora, 1999).

Sobol (1993) proposed a method of determining importance measures using the ANOVA

decomposition of the function. Recall from Section 2.3.2 that a function g(ξ1, . . . , ξs) can

be decomposed into a sum of orthogonal functions each corresponding to a different subset

of the input variables. This decomposition has the property that the total variance of the

function (denoted σ2) is equal to the sum of the variances of each of the component functions

σ2 =
∑

A⊆{1,...,s}
σ2

A.

Sobol originally based the decomposition on multiple Fourier Haar series, but later repre-

sented the decomposition using multiple integrals, which are typically calculated using Monte

Carlo (or QMC) integration. Using the decomposition, he defines two sensitivity measures

for each random variable. The first-order sensitivity index of ξj (sometimes referred to as

the main effect) is

Sj =
σ2

j

σ2
(5.17)

and the total sensitivity index (TSI) is

TSj =

∑
{A⊆{1,...,s}:j∈A} σ2

A

σ2
. (5.18)

Note that the numerator of (5.18) sums up the variance terms for all of the subsets of random

variables that contain variable ξj.

Homma and Saltelli (1996) devised a method to compute the total sensitivity indices

without calculating the variance terms for every component. To calculate TSj they partition

the random variables into two subsets – one containing only random variable ξj and the

104

other with the remaining variables. Using a generalized ANOVA decomposition, the variance

can be decomposed as σ2 = σ2
j + σ2

∼j and the total sensitivity index can be calculated as

TSj = 1 − S∼j. While this eliminates some of the calculations involved in Sobol’s method,

the resulting method is still significantly more computationally expensive to run and more

difficult to code than the screening and sampling-based sensitivity methods.

A final variance-based method is the Fourier amplitude sensitivity test (FAST) method

developed by Cukier, Fortuin, Shuler, Petschek, and Schaibly (1973). It is an alternative

approach to calculate the same indices as the Sobol method. The main idea behind this

method is to convert the s-dimensional integral of Y = g(ξ1, . . . , ξs) into a one-dimensional

integral over some scalar variable t ∈ (−π, π) by using the transformations

ξj = Gj(sin(ωjt))

where {Gj, j = 1, . . . , s} are transformation functions and {ωj} are integer angular frequen-

cies. First-order sensitivity indices can be calculated for each variable by using the Fourier

decomposition of E[Y] and Var(Y). It turns out that these first-order indices are identical to

those calculated using the Sobol method. Saltelli, Tarantola, and Chan (1999) proposed a

method called Extended FAST to compute the total sensitivity indices under FAST. FAST

and Extended FAST are computationally more efficient than the Sobol method, but still less

so than the other types of sensitivity analysis methods.

5.4 Identifying the Set of Important Variables

The first task in a padded sampling scheme is identifying the set of important random

variables that will be estimated using QMC in the sampling scheme. Since Quasi-Monte

Carlo sampling typically results in a lower integration error than Monte Carlo sampling,

105

it seems natural to label the important variables as the ones that contribute the most to

the overall variance of the function. For the two-stage stochastic program, the function of

interest is the second stage optimal value Q(x, h, T). Using traditional sensitivity analysis

methods to determine the importance of the random variables is problematic for a number of

reasons. First, the random quantities h and T are in the right-hand sides of the constraints

of the optimization problem. This can be remedied by writing the dual of the second stage

stochastic program:

sup{πT (h(ξ)− T (ξ)x) : πT W ≤ qT , π ≥ 0} (5.19)

Thus the total variance of the optimal value is

Var

(∑

k

π∗k(hk −
∑

j

Tkjxj)

)
(5.20)

where π∗k is the optimal dual multiplier for constraint k. However, the optimal dual mul-

tipliers in the function depend on the values of the random variables (right-hand sides of

the constraints) and are often correlated with each other, due to the interacting structure

of those constraints. This makes evaluating the second stage optimal value a nontrivial

task, and thus sensitivity measures involving a large number of function evaluations are

unattractive. Further, when there is interaction among the constraints, Q(x, h, T) is a non-

linear function with respect to the random variables. This prevents us from using most

regression-based methods. Finally, Q(x, h, T) additionally depends on the vector x of stage

1 variables which is not random. Thus, it is not only necessary to determine some global

sensitivity measure for h and T , sensitivity measures must be calculated for different values

of x. Solving the first-stage stochastic program is a particularly computationally intensive

task.

Due to the structure of our problem and the need to limit the number of stochastic pro-

106

grams we solve, we have developed our own heuristics for determining the importance of

each random variable — i.e., its contribution to the overall variance of the optimal value.

Assuming that the primal problem has m constraints and n variables, the summation in

Equation (5.20) has M := m + mn terms. To simplify notation, we can rewrite the opti-

mal value as
∑M

i=1 Zi, where the Zi are defined accordingly. Note that in Equation (5.20),

some of the hk and Tkj terms may not be random. Let s ≤ M be the number of random

components among the hk and Tkj. Each Zi contains at most one of these random compo-

nents. Without loss of generality, assume that the Zi are labeled in such a way that these

random components correspond to Z1, . . . , Zs. Note that while we assume that the random

components themselves are mutually independent, the Zi terms in the objective function

are usually dependent due to the interactions of the dual multipliers. The variance of the

optimal value is now

V ar(
M∑
i=1

Zi) =
∑
i,j

Cov(Zi, Zj). (5.21)

Similarly, let Vk, k = 1, . . . , s be the portion of the total variance explained by random

variable ξk. Then the variance of the optimal value can also be written as
∑s

k=1 Vk. Our

goal then is to estimate the individual covariance terms in (5.21) and assign each to one of

the Vk.

5.4.1 Calculating Importance Measures

We now present three heuristics for estimating the importance measures Vk, k = 1, . . . s.

Since the Vk represent the contributions of each random variable to the overall variance,

larger values of Vk should be associated with more important random variables.

The first heuristic uses an idea similar to the first-order sensitivity index from sensitivity

analysis.

107

Heuristic 1:

V̂k = Var(Zk), k = 1, . . . , s. ¤ (5.22)

This is a very crude approximation which completely ignores any dependence between the

dual multipliers. It is analogous to a main effect term from sensitivity analysis. Its advantage

is that it only involves estimating at most s terms of the covariance matrix so it may be

preferable for large problems.

Our second heuristic attempts to apportion the covariance terms to the input variables.

Heuristic 2:

V̂k =

∣∣∣∣∣Var(Zk) +
s∑

j=1,j 6=k

Cov(Zk, Zj) +
M∑

j=s+1

Cov(Zj, Zk)

∣∣∣∣∣ , k = 1, . . . , s. ¤ (5.23)

Here the contribution of each random variable to the overall variance includes the variance

of its own Z term plus the covariance with the Z terms of the other random variables plus

both covariance terms with the Z terms that do not have a random variable (as the second

covariance term would otherwise be unassigned). We ignore covariance terms of the form

{Cov(Zi, Zj) : i > s, j > s} since these terms should theoretically be small as there are no

random variables present. Finally, we take the absolute value to account for random variables

that greatly affect the variance in either direction and to adjust for computer rounding error.

This method involves estimating at most s(M − s) terms in the covariance matrix (due

to the symmetry of the matrix) though this number can be reduced by ignoring all of the Z

terms that are identically zero. Still, since M is at least as large as the number of constraints

in the primal problem, these estimates can be quite cumbersome for very large problems.

The third heuristic uses principal components analysis (PCA) on the covariance matrix

to calculate importance measures. The eigenvalues and corresponding eigenvectors of the

covariance matrix are calculated. We look at the eigenvector associated with the largest

108

eigenvalue. Then importance measure V̂k is equal to the kth component of that eigenvector.

5.4.2 Choosing the Number of Important Variables

Once we have calculated the V̂k via one of the heuristics, we can select the subset of im-

portant random variables. It is critical to decide the cutoff point for inclusion into this

subset. Due to the poor performance of pure QMC sampling in high dimensions, we cap the

number of important random variables at some numbers Dcap. Typically, important subsets

are chosen using the effective dimension in the truncation sense (2.9), i.e., by choosing a

subset of random variables that accounts for some specified percentage of the total variance.

Unfortunately, for some of our stochastic programs and some of our heuristics, the number

of “important” variables under this method always exceeds the cap of ten random variables.

So instead we have chosen to use the PCA method of determining the number of important

variables for all three heuristics, even though for heuristics 1 and 2 the importance measure

is not calculated using PCA. In PCA, the number of important variables is determined by

the eigenvalues λ1, . . . , λM of the covariance matrix S. We can reorder the eigenvalues in

descending order and calculate the trace of Σ (the sum of the eigenvalues). The number

of important variables from the PCA is then the number p such that
∑p

i=1 λi

trace(S)
≥ θ. For our

algorithm, we assume θ = 0.9. Then we use d = min(p, Dcap) as the number of important

variables in our algorithm.

5.4.3 Other Considerations

There are two other items to consider when choosing the important subset and eventually

executing the padded sampling scheme. First, variance reduction is maximized for a QMC

point set when the variables are in descending order of importance (Fox, 2000). Thus, our

important subset should be an ordered subset to maximize the efficiency of the sampling

109

algorithm. Second, we add an extra rule when choosing important variables for a PLHS

scheme as opposed to a PMC scheme. In PLHS, important variables are sampled using a

QMC point set and the remaining variables using a Latin Hypercube point set. However,

one of the properties of LHS is that the asymptotic variance is equal to just the variance

of the nonlinear terms of the ANOVA decomposition. Thus, it should be most efficient to

assign random variables whose effects are mostly linear to the Latin Hypercube point set

regardless of that variable’s importance measure. A random variable whose effect is mostly

linear should not have significant interactions with the other random variables. Heuristic

2 accounts for the non-diagonal terms in the covariance matrix (i.e., the terms measuring

interactions between random variables) while Heuristic 1 does not. The two heuristics should

give similar importance measures for random variables whose interactions with other random

variables are insignificant. Thus, we use the ratio
V̂ Heur1

k

V̂ Heur2
k

to measure the linear effect. This

involves the following steps:

• Calculate each random variable’s importance measure from Heuristics 1 and 2. For

the kth random variable, call these V̂ Heur1
k and V̂ Heur2

k respectively.

• If 0.9 <
V̂ Heur1

k

V̂ Heur2
k

< 1.1, then the random variable has a mostly linear effect and should

be sampled using LHS.

In summation, we propose the following algorithm to select the important subset:

Algorithm 5.4. Selecting the Important Set I

1. Rewrite the second stage dual objective as
∑

k Zk as described earlier in this section.

2. Calculate importance measures {V̂k, k = 1, . . . , s} using one of the three heuristics.

For PLHS, it will additionally be necessary to calculate the importance measures from

heuristics 1 and 2 regardless of the heuristic used.

110

3. Let the important set I = ∅, and unimportant set U = {1, . . . , S}.

4. Rank the V̂k in descending order.

5. Calculate the number of important variables p using the eigenvalues of the covariance

matrix. Then let d = min(p, 10) be the number of important variables for the algorithm.

6. Select the largest remaining V̂k.

a. For PLHS sampling, calculate the ratio
V Heur1

k

V Heur2
k

. If this ratio is between 0.9 and

1.1, then set Vk = 0, and repeat step 5.

b. If
V Heur1

k

V Heur2
k

is not between 0.9 and 1.1 in step 5a or for PMC sampling, let I ←
I

⋃ {k} and U ← U − {k}.

7. If |I| = d then terminate the algorithm with important set I. Otherwise, return to step

5.

We are now ready to implement this method into an external sampling algorithm to solve

two-stage stochastic programs.

5.5 The Algorithm

All of our heuristics in the prior section require the calculation of a covariance matrix from the

second stage stochastic program (5.2). However, in order to solve the second stage program,

we need a first stage candidate solution x̃. Thus the algorithm we propose is an iterative

algorithm where the sampled stochastic program is solved to obtain a new x̃ at each iteration

using a padded sample and then that x̃ is used to determine the set of important variables

for the next iteration. The initial x̃ value is determined by solving the sampled optimization

problem using a Monte Carlo point set (as we have not yet identified the important random

111

variables by that time). To estimate each random variable’s contribution V̂k to the variance

and to determine the set of important random variables, we estimate E[Q(x, h, T)] using a

Monte Carlo point set. Then from the samples we can estimate the covariance matrix of

the Zk terms (as defined in section 5.4). In order to gauge each random variable’s full effect

on the overall variance, it is essential that we employ a sampling scheme with no variance

reduction while estimating the covariance terms. The algorithm terminates via a 1RP or

2RP stopping criterion when the ratio of the width Wof the 95%-confidence interval on the

optimality gap at x̃ is less than some tolerance ε. We detail the full External Sampling

Algorithm with Padded Sampling (ES-PAD) below. Specifically when the padded sampling

scheme is padded Monte Carlo, we call the algorithm ES-PMC, and when it is padded Latin

Hypercube we call it ES-PLHS.

Algorithm 5.5. An External Sampling Algorithm with Padded Sampling (ES-PAD)

1. Initialization:

(a) Set ε > 0 for the stopping criterion. Select initial sample size n0 and sample

increase multiplier κ.

(b) Set iteration count i ← 0, important set I(0) = ∅, let sample size N (0) = n0.

(c) Using a Monte Carlo point set of size N (0), solve the sampled optimization program

to determine first stage candidate solution x̃(0) and optimal value ψ(0).

2. Increment: Let i ← i + 1 and N (i) = κN (i−1).

3. Using N (i) Monte Carlo samples to solve the second stage stochastic program at candi-

date solution x̃ = x̃(i−1), calculate the estimates V̂k, k = 1, . . . , s using one of the three

heuristics described in section 5.4.

4. Using Algorithm 5.4, select the important set I(i) for iteration i.

112

5. Using a padded point set— i.e., a Quasi-Monte Carlo point set for random variables

k ∈ I(i) and a padded (Monte Carlo or LHS) point set on random variables k /∈ I(i) —

solve the sampled optimization program to determine first stage candidate solution x̃(i)

and optimal value ψ(i).

6. Calculate the width W (i) of the confidence interval on the optimality gap at the candi-

date solution x̃(i) using one of the stopping criteria (1RP or I2RP). If W (i)

ψ(i) ≤ ε then

terminate the algorithm with optimal first stage solution x̃(i) and optimal value ψ(i).

Otherwise return to step 2. ¤

We will compare this algorithm to the corresponding algorithm ES-NoPAD where all

sampling is done with a single unpadded sampling scheme, thus making it unnecessary to

estimate the importance of the random variables. When that unpadded sampling scheme is

crude Monte Carlo, we call the algorithm ES-MC. Latin Hypercube will be called ES-LHS

and pure QMC will be ES-QMC.

Algorithm 5.6. An External Sampling Algorithm with No Padding (ES-NoPAD)

1. Initialization:

(a) Set ε > 0 for the stopping criterion. Select initial sample size n0 and sample

increase multiplier κ.

(b) Set iteration count i ← 0, important set I(0) = ∅, let sample size N (0) = n0.

(c) Using an unpadded point set of size N (0), solve the sampled optimization program

to determine first stage candidate solution x̃(0) and optimal value ψ(0).

2. Increment: Let i ← i + 1 and N (i) = κN (i−1).

3. Using an unpadded point set, solve the sampled optimization program to determine first

stage candidate solution x̃(i) and optimal value ψ(i).

113

4. Calculate the width W (i) of the confidence interval on the optimality gap at the candi-

date solution x̃(i) using one of the stopping criteria (1RP or I2RP). If W (i)

ψ(i) ≤ ε then

terminate the algorithm with optimal first stage solution x̃(i) and optimal value ψ(i).

Otherwise return to step 2. ¤

In Section 5.7, we will present numerical results of our five algorithms (ES-PMC, ES-

PLHS, ES-MC, ES-LHS, and ES-QMC) run with the different importance heuristics and

stopping criteria.

5.6 A Stopping Criterion for the Algorithm

The stopping procedures in Section 5.2.2 all assume that the samples within each replication

are i.i.d. Since the sampling methods in our algorithms are mostly non-i.i.d. (except for

ES-MC), we would like to take advantage of the presumably lower sample variance these

sampling methods offer so that we may reach the stopping criterion after fewer samples. For

our algorithm, we will use only the 1RP (Algorithm 5.2) and I2RP (Algorithm 5.3) stopping

procedures. Our amended stopping procedures will work the same as the original procedures

except with Monte Carlo sampling replaced by a non-i.i.d. sampling scheme to estimate the

mean and variance of the optimality gap µx̃ at candidate solution x̃. Since the asymptotic

variance under any of LHS, PMC, and PLHS is no worse than the asymptotic variance

under Monte Carlo sampling (see Equations 4.3, 4.2, and 4.1, respectively), this should lead

to a tighter confidence interval around the optimality gap. With this change though, it is

necessary to show that the confidence intervals for these amended stopping procedures are

asymptotically valid. We will show below that this result is true for PLHS, PMC, and LHS

for both the 1RP and I2RP stopping procedures. We will specifically show the proof for the

1RP sampling procedure for PLHS. The proofs for the other five combinations follow the

114

same steps substituting the appropriate sampling method and stopping procedure.

For reference, we state without proof a lemma and a theorem regarding stochastic pro-

grams (1.1) and (1.2) from Rubinstein and Shapiro (1993) that will be needed in the proofs

of this section. These results assume:

Assumption 5.7.

1. For almost every ξ, the function G(·, ξ) is continuous, and

2. The family {|G(x, ξ)|, x ∈ X} is dominated by an integrable function.

Note that Assumption 5.7 will hold if we have Assumption 5.1.

Lemma 5.8. Suppose Assumption 5.7 holds and let g(x) = E[G(x, ξ)]. Then the expected

value function ĝN(x) = 1
N

∑N
i=1 G(x, ξi) is continuous on X. If, in addition, the set X is

compact, then w.p.1. ĝN(x) converges to g(x) uniformly on X.

Proof: See Rubinstein and Shapiro (1993). ¤

Theorem 5.9. Suppose Assumption 5.7 holds and that X is compact. Let v∗ = minx∈X g(x)

and v̂N = minx∈X ĝN(x). Then v̂N converges to v∗ w.p.1. Moreover, if x∗ is a unique

minimizer of g(x) over X, then x̂N converges to x∗ w.p.1.

Proof: See Rubinstein and Shapiro (1993). ¤

With i.i.d. sampling, Bayraksan and Morton (2006) show the asymptotic validity of

the confidence interval for the optimality gap at candidate solution x̃ for the 1RP stopping

algorithm under Assumption 5.1, or, more formally, that

lim inf
N→∞

P
(

µx̃ ≤ GapN(x̃, x∗N) +
zαsN(x̃, x∗N)√

N

)
≥ 1− α.

Similarly, the confidence interval for I2RP replaces the sN(x̃, x∗N) term with sN(x̃, x∗∗N).

115

Although the sampling methods we wish to use are no longer i.i.d., they are still unbiased,

and thus, the results from Rubinstein and Shapiro (1993) will still apply. The following proofs

will mirror those of Bayraksan and Morton (2006) with comments noting the appropriate

changes to account for our non-i.i.d. sampling method. While we only give the proofs for

the 1RP stopping procedure under PLHS, the proofs for PMC and LHS, as well as the

corresponding I2RP proofs, will follow exactly the same steps and reasoning.

We begin with some notation. Let ĝN(x) be defined as in Lemma 5.8; let

σ2(x̃, x∗) = Var(G(x̃, ξ)−G(x∗, ξ))

be the true variance of the optimality gap; and let

s2
N(x̃, x∗) =

1

N − 1

N∑
i=1

((G(x̃, ξi)−G(x∗, ξi))− (ĝN(x̃)− ĝN(x∗)))2

be the sampled variance of the optimality gap with N samples under PLHS.

Proposition 5.10. Assume Assumption 5.1 holds, x̃ ∈ X, and that ξ1, . . . , ξN are PLHS

samples of ξ. Let X∗ = argminx∈XE[G(x, ξ)] be the set of optimal solutions to the stochastic

program. Then,

(i) v̂N converges to v∗

(ii) All limit points of {x̂N} lie in X∗, w.p.1.

Proof: Since Theorem 5.9 also holds for PLHS, this proof will be identical to the first part

of Proposition 1 of Bayraksan and Morton (2006). ¤

Proposition 5.11. Assume Assumption 5.1 holds, x̃ ∈ X, and that ξ1, . . . , ξN are PLHS

samples of ξ. Let X∗ = argminx∈XE[G(x, ξ)] be the set of optimal solutions to the stochastic

116

program, and let x∗min ∈ argminx∈X∗Var[G(x̃, ξ)−G(x, ξ)] and x∗max ∈ argmaxx∈X∗Var[G(x̃, ξ)−
G(x, ξ)] be the optimal solutions with minimum and maximum variance, respectively. Then,

σ2(x̃, x∗min) ≤ lim inf
N→∞

s2
N(x̃, x̂N) ≤ lim sup

N→∞
s2

N(x̃, x̂N) ≤ σ2(x̃, x∗max)

Proof: To prove this, we need to show that the sequence of continuous functions s2
N(x̃, x̂N)

converges to σ2(x̃, x∗) uniformly, w.p.1. on X. By invoking Lemma 5.8, which also works

on our padded sampling schemes, the rest of this proof will follow that of Proposition 1 of

Bayraksan and Morton (2006). ¤

For the following theorem, we must introduce one additional piece of notation:

σ2
PLHS(x̃, x∗) = VarPLHS(G(x̃, ξ)−G(x∗, ξ))

is the asymptotic PLHS variance of the optimality gap (refer to Equation (4.1) for an expres-

sion for the PLHS asymptotic variance). Please note that the basic structure of the proof

below follows that of Theorem 2 of Bayraksan and Morton (2006) with the necessary modi-

fications for padded sampling and some minor modifications for notation. For completeness

in explaining the effect of the padded sampling, the entire proof is included. Also note that

in the PLHS case, the result holds solely due to the PLHS central limit theorem proven in

Chapter 4 of this thesis.

Theorem 5.12. Assume Assumption 5.1 holds, x̃ ∈ X, and that ξ1, . . . , ξN are from a PLHS

sample of ξ. Then given 0 < α < 1 for the 1RP,

lim inf
N→∞

P
(

µx̃ ≤ GapN(x̃, x∗N) +
zαsN(x̃, x∗N)√

N

)
≥ 1− α. (5.24)

Proof:

117

When x̃ ∈ X∗, Equation (5.24) holds trivially as µx̃ = 0. So, suppose x̃ /∈ X∗. Then,

since v̂N = minx∈X ĝN(x), we have that

GapN(x̃, x∗N) = ĝN(x̃)− v̂N ≥ ĝN(x̃)− ĝN(x), ∀x ∈ X.

Replacing x by x∗min ∈ argminx∈X∗Var[G(x̃, ξ)−G(x, ξ)] we obtain,

P
(

GapN(x̃, x∗N) +
zαsN(x̃, x∗N)√

N
≥ µx̃

)

≥ P
(

ĝN(x̃)− ĝN(x∗min) +
zαsN(x̃, x∗N)√

N
≥ µx̃

)
(5.25)

= P
(

(ĝN(x̃)− ĝN(x∗min))− µx̃

σPLHS(x̃, x∗min)/
√

N
≥ − zαsN(x̃, x∗N)

σPLHS(x̃, x∗min)

)
(5.26)

≥ P
(

(ĝN(x̃)− ĝN(x∗min))− µx̃

σPLHS(x̃, x∗min)/
√

N
≥ −zαsN(x̃, x∗N)

σ(x̃, x∗min)

)
(5.27)

where we assume that σPLHS(x̃, x∗min) > 0. If σPLHS(x̃, x∗min) = 0 then Var[G(x̃, ξ) −
G(x∗min, ξ)] = 1

N
σPLHS(x̃, x∗min) = 0, and it would follow from (5.25) that (5.24) holds triv-

ially. (5.27) holds because σPLHS(x̃, x∗min) ≤ σ(x̃, x∗min) and implies that the probability of

being in the confidence interval (or at least its lower bound) is greater for PLHS than for

i.i.d. sampling.

Let DN =
(ĝN (x̃)−ĝN (x∗min))−µx̃

σPLHS(x̃,x∗min)/
√

N
, aN = − sN (x̃,x∗N)

σ(x̃,x∗min)
, and 0 < ε < 1, and for the moment

assume α ≤ 0.5 so that zα ≥ 0. Then (5.27) can be rewritten as

P(DN ≥ −zαaN)

≥ P(DN ≥ −(1− ε)zα, aN ≥ 1− ε)

= P(DN ≥ −(1− ε)zα) + P(aN ≥ 1− ε)− P({DN ≥ −(1− ε)zα} ∪ {aN ≥ 1− ε}).
(5.28)

118

Taking limits we obtain,

lim inf
N→∞

P
(

µx̃ ≤ GapN(x̃, x∗N) +
zαsN(x̃, x∗N)√

N

)
≥ Φ((1− ε)zα),

where Φ denotes the distribution function of the standard normal. By Proposition 5.11, the

last two terms in (5.28) both converge to 1 and cancel out. Since ĝN(x̃) − ĝN(x∗min) is a

sample mean of PLHS random variables, by the central limit theorem in (4.5) the first term

in (5.28) converges to Φ((1−ε)zα). Letting ε shrink to zero gives the desired result, provided

α ≤ 0.5. When α > 0.5 we replace x∗min by x∗max ∈ argmaxx∈X∗Var[G(x̃, ξ) − G(x, ξ)] in

(5.27) and then follow a similar argument as above. ¤

This proof remains the same for the I2RP when we redefine sN(x̃, x∗N) as sN(x̃, x∗∗N)

in (5.24). Also, since LHS and PMC both satisfy central limit theorems and since their

asymptotic variances are both less than or equal to the asymptotic variance under i.i.d. (i.e.,

the true variance), the same proofs for the 1RP and I2RP stopping procedures will hold for

those sampling schemes.

5.7 Numerical Results

We tested our algorithms ES-PAD (Algorithm 5.5) and ES-NoPAD (Algorithm 5.6) on four

different test problems. Specifically, we tested two versions of ES-PAD — padding with

Monte Carlo Sampling (ES-PMC) and padding with Latin Hypercube sampling (ES-PLHS)

— and three versions of ES-NoPad — Monte Carlo sampling (ES-MC), Latin Hypercube

sampling (ES-LHS), and Quasi-Monte Carlo sampling (ES-QMC) on each problem. For the

padded sequences, we must determine the dimension d of the QMC point set as described

in Section 5.4. For those QMC point sets as well as the point sets for ES-QMC, we used

randomized (t, d)-sequences in base 2 as described by Owen (1995).

119

For each algorithm we tested two different stopping criteria — 1RP and I2RP. Finally,

for the two padded algorithms, we tested the three heuristics described in section 5.4 for

selecting the subset of important random variables used in the QMC point set. Note that

it is not necessary to run these heuristics on any of the ES-NoPAD algorithms as all of the

random variables are sampled using the same sampling method. All of the point sets for

the random variables were generated using the publicly available random sampling routines

from Friedel and Keller (2002) which we built into the SUTIL library (Czyzyk, Linderoth,

and Shen 2005). The resulting stage 1 and stage 2 stochastic programs were solved using

the ATR solver (Linderoth and Wright 2001). Before presenting our numerical results, we

first describe in detail our four test problems.

5.7.1 Test Problems

Our four test problems were:

1. gbd – the airline fleet assignment problem first proposed by Dantzig (1963)

2. LandS – an electrical investment planning problem that originally appeared in Lou-

veaux and Smeers (1988)

3. apl1p – a model for electric power capacity expansion from Infanger (1992)

4. 20term – a vehicle allocation problem described in Bailey et al. (1999)

The first three test problems are relatively small (3 to 5 random variables) and we will

explicitly write out the primal and dual problems in addition to describing the problems to

provide the reader some insight on the problems. Also, given the small size of these problems,

we can more easily estimate (or in some cases calculate exactly) the level of importance of

each random variable. 20term is a larger problems with 40 random variables, so we will

simply describe this problem without writing out its formulation explicitly.

120

gbd

We begin with the fleet assignment problem first described by Dantzig (1963). Four types of

aircrafts are to be assigned to five different routes (with three of the aircraft/route combi-

nations not valid). The random variables are the customer demands for each route. This is

a relatively simple problem where the importance of each random variable can be quantified

in closed form. Notation for the problem is as follows:

Sets: I = {1, 2, 3, 4} := Set of aircrafts

J = {1, 2, 3, 4, 5} := Set of routes

Variables: xij := Number of aircraft of type i assigned to route j

(Combinations (i, j) = (2, 1), (3, 1), (3, 3) are not valid)

yj := Number of bumped passengers on route j

zj := Number of empty seats on route j

Parameters: ai := Number of available aircraft of type i

cij := Cost (in thousands per month) of assigning aircraft of type i to route j

pij := Passenger capacity (per month) for aircraft of type i on route j

ej := Cost per bumped passengers on route j (refund of ticket cost)

dj := Customer demand (per month) on route j (random)

121

The problem is then:

Minimize
4∑

i=1

5∑
j=1

cijxij +
5∑

j=1

ejyj

subject to:
5∑

j=1

xij ≤ ai, ∀i ∈ I

4∑
i=1

pijxij + yj − zj = dj, ∀j ∈ J

x21, x31, x33 = 0

xij, yj, zj ≥ 0 ∀i ∈ I, ∀j ∈ J

Here the first stage decision variables are xij, the number of aircraft of each type to assign

to each route. There are 17 stage 1 variables and four constraints involving only stage 1

variables. The random variables in the problem are the customer demand dj, and the stage

2 recourse variables are yj and zj, the number of bumped passengers and empty seats on

each route respectively. There are 10 second stage variables and 5 random variables (which

correspond to the right-hand sides of the five second stage constraints).

The second stage problem is

Minimize
5∑

j=1

ejyj

subject to: yj − zj = bj, ∀j ∈ J

yj, zj ≥ 0

where bj := dj−
∑4

i=1 pijxij. Note that bj is just the total customer demand for route j minus

the total number of seats available for route j. In order to assess each random variable’s

122

impact on the objective, we write the second stage dual problem :

Maximize
5∑

j=1

πjbj

subject to: 0 ≤ πj ≤ ej, ∀j ∈ J

Using the demand distributions from Linderoth et al. (2005), this stochastic program has a

total of 646425 random scenarios.

This turns out to be an easy problem to solve as there are no interdependencies between

any of the constraints, and we can calculate exactly each random variable’s contribution to

the overall variance of the objective function. In the optimal solution, πj = ej if bj > 0 and

πj = 0 otherwise. Thus, the optimal objective value is
∑5

j=1 ejbj1{bj>0}. Since the five terms

in the sum are all independent, the variance of the sum is equal to the sum of the variance,

meaning that random variable dj contributes Vj = ejVar(bj1{bj>0}) to the overall variance

of the optimal objective value. Using the random demand scenarios from Linderoth et al.

(2005), we can calculate the actual variance contributions at the optimal stage 1 solution.

From Table 5.1, we can see that the most important random variable is d4 followed by d1.

Further, with independence, we expect that the importance heuristics in Section 5.4 should

all give similar estimates for the V̂j as the non-diagonal terms in the covariance matrix should

tend to zero as the number of samples increases.

LandS

Our next example is an electrical investment planning problem that originally appeared in

Louveaux and Smeers (1988). The first stage decision involves allocating capacity to four

new technologies subject to capacity minimums and budget restrictions. Thus, there are

four stage 1 variables and two constraints involving only the stage 1 variables. The second

123

Table 5.1: Actual contribution to total variance (at optimal solution) - gbd

Random Variable Vj

d1 134, 670
d2 5, 035
d3 11, 440
d4 292, 319
d5 32

stage decision is regarding the production of three different modes of electricity for each

technology to meet customer demand subject to the capacities from the first stage. There

are 12 second stage decision variables, four second stage balance constraints (one for each

technology), and three second stage demand constraints (one for each mode of electricity).

In this problem the customer demand for each mode of electricity is random giving a total

of three random variables. We use again use the demand distributions from Linderoth et al.

(2005) where the random variables have identical independent distributions with 100 equally

likely realizations yield a total of one million random scenarios. Notation for the problem is

124

as follows:

Sets: I = {1, 2, 3, 4} := Set of technologies

J = {1, 2, 3} := Set of electricity modes

Variables: xi := Capacity of technology i

yij := Production of electricity mode j for technology i

Parameters: K := Minimum required total capacity

B := Maximum allowable budget

bi := Budget amount per unit capacity of technology i

fi := Cost per unit capacity of technology i

cij := Cost per unit produced of electricity mode j for technology i

dj := Customer demand for electricity mode j (random)

The problem can then be written:

Minimize
4∑

i=1

fixi +
4∑

i=1

3∑
j=1

cijyij

subject to:
4∑

i=1

xi ≥ K

4∑
i=1

bixi ≤ B

− xi +
3∑

j=1

yij ≤ 0, ∀i ∈ I

4∑
i=1

yij ≥ dj, ∀j ∈ J

xi, yij ≥ 0 ∀i ∈ I, ∀j ∈ J

125

The second stage primal problem is

Minimize
4∑

i=1

3∑
j=1

cijyij

subject to:
3∑

j=1

yij ≤ xi, ∀i ∈ I

4∑
i=1

yij ≥ dj, ∀j ∈ J

yij ≥ 0, ∀i ∈ I, ∀j. ∈ J

If we associate dual multipliers σi to the capacity constraints and πj to the demand con-

straints, the second stage dual problem is

Maximize
3∑

j=1

djπj −
4∑

i=1

xiσi

subject to: πj − σi ≤ cij ∀i ∈ I, ∀j ∈ J

σi, πj ≥ 0 ∀i ∈ I, ∀j ∈ J.

While the random variables {dj, j = 1, 2, 3} are each represented in the objective function,

there are also terms with the dual multipliers σi which contain no random variables but are

correlated with the πj multipliers through the dual constraints.

In the original version of the problem, the cost coefficients cij in the primal objective

function take the form ci2 = 6ci3 and ci1 = 10ci3. Since the demand random variables are

identically distributed, the magnitude of the dual objective terms djπj are completely driven

by the πj, which in turn depend greatly on the level of the cij in the dual constraints. As

a result, we find that nearly always the most important random variable is d1, followed by

d2 and then d3. The difference in the importance levels between the random variables is so

126

drastic that the importance heuristic is almost completely irrelevant. Thus to alleviate the

effects of the structure of the cij, we will instead consider a second form of the problem where

we shuffle the 12 cij coefficients. The rest of the problem’s parameters remain the same.

apl1p

Our third problem is a model for electric power capacity expansion first described by Infanger

(1992). The problem consists of two electrical generators that can operate at three levels.

The first stage problem is to determine capacity for the two generators. The second stage

decision is to determine how much to produce at each of the three operation levels on the

two generators subject to (1) the availability of the two generators and (2) customer demand

for each of the three operation levels. Thus, there are nine second stage variables and five

second stage constraints. The availabilities of the generators and the customer demands for

each level are all random giving a total of five random variables. Notation for the problem

127

is as follows:

Sets: I = {1, 2} := Set of generators

J = {1, 2, 3} := Set of operation levels

Variables: xi := Capacity of generator i

yij := Production at operation level j on generator i

sj := Unserved demand at operation level j

Parameters: ci := Investment cost per unit capacity for generator i

fij := Operating cost per unit at operation level j on generator i

uj := Cost per unit of unserved demand at operation level j

Ki := Minimum required capacity for generator i

ai := Availability of generator i (random)

dj := Customer demand for operation level j (random)

(5.29)

The problem can then be written:

Minimize
4∑

i=1

cixi +
2∑

i=1

3∑
j=1

fijyij +
3∑

j=1

ujsj

subject to: xi ≥ Ki, ∀i ∈ I

− aixi +
3∑

j=1

yij ≤ 0, ∀i ∈ I

2∑
i=1

yij + sj ≥ dj, ∀j ∈ J

xi, yij, sj ≥ 0 ∀i ∈ I, ∀j ∈ J.

128

The second stage primal problem is

Minimize
2∑

i=1

3∑
j=1

fijyij +
3∑

j=1

ujsj

subject to:
3∑

j=1

yij ≤ aixi, ∀i ∈ I

2∑
i=1

yij + sj ≥ dj, ∀j ∈ J

yij, sj ≥ 0 ∀i ∈ I, ∀j ∈ J.

If we again associate dual multipliers σi to the capacity constraints and πj to the demand

constraints, the second stage dual problem is

Maximize
3∑

j=1

djπj −
2∑

i=1

aixiσi

subject to: πj − σi ≤ fij ∀i ∈ I, ∀j ∈ J

πj ≤ uj ∀j ∈ J

σi, πj ≥ 0 ∀i ∈ I, ∀j ∈ J.

Again, the terms in the dual objective function are correlated due to the structure of the

dual constraints. Using the probability distributions for the availabilities and demands from

Infanger (1992) the problem has 1280 random scenarios. Given the small number of scenarios,

we can write out and solve the deterministic equivalent of this stochastic program and

also evaluate the second stage objective function at every scenario given the optimal stage

1 solution. This enables us to perform some of the sensitivity analysis calculations from

Section 5.3 that are too cumbersome for large problems. Table 5.2 contains the calculations

of the correlation ratio (Equation 5.16) and the Pearson correlation coefficients, or PEAR,

129

Table 5.2: Estimating important variables - apl1p

Random Variable Corr. Ratio PEAR
d1 0.0340 0.1844
d2 0.0255 0.1597
d3 0.0132 0.1146
a1 0.5154 0.7153
a2 0.3976 0.6244

(Equation 5.15) from the total enumeration of the stochastic program at the optimal stage

1 solution. We can see that the availability random variables (a1 and a2) are the most

important given the first stage optimal solution.

20term

Our final problem is 20term – a vehicle allocation problem for a motor freight carrier that

appeared in Bailey et al. (1999). The company has a central depot and 20 outlying terminals

and has a fleet consisting of three types of tractors and trailers it must allocate to the 21

stations. The first stage problem, which contains 63 decision variables and three constraints,

is to decide on the fleet configuration at the beginning of the day. The second stage problem

is a vehicle routing problem where random point-to-point demands for shipments must be

satisfied (incurring penalties for unsatisfied demands). Additionally, the fleet configuration

at the end of the day must match the starting configuration. The second stage problem has

764 decision variables and 124 constraints. Forty of these constraints correspond to satisfying

the point-to-point demands and have random right-hand sides. Each random demand has a

bimodal probability distribution which gives the problem 240 = 1012 scenarios. We modified

the probability distributions from the original problem by making the mean µj of the right-

hand side of the jth constraint a uniformly distributed integer between 20 and 60 and the

130

deviation σj a uniformly distributed integer between 10 and 20 (yielding the equally likely

values µj − σj and µj + σj).

5.7.2 Numerical Results of the Algorithm

We performed the following combinations of runs to test our algorithms:

• 4 test problems: gbd, LandS, apl1p, 20term

• 5 algorithms: ES-PMC, ES-PLHS, ES-MC, ES-LHS, ES-QMC

• 2 stopping criteria: 1RP, I2RP

• 3 importance heuristics: Heuristic 1 (Main), Heuristic 2 (Total), and Heuristic 3 (PCA).

Note that these heuristics are only needed for the ES-PMC and ES-PLHS algorithms.

We used three measures to assess the performance of the algorithms:

1. The optimal value at the end of the algorithm

2. The number of iterations of the algorithm until convergence

3. The run time of the algorithm

Note that in the algorithms with padding, since we need to estimate the important subset,

each iteration uses twice as many samples as an iteration of an algorithm without padding.

For each run combination, we ran 10 independent replications in order to calculate confidence

intervals for our performance measures. Parameters used in the algorithm were ε = 0.002,

n0 = 8, and κ = 2. We report the mean and the standard deviation for each performance

measure. Results can be found in the tables in Appendix A.

From our results, we see that the pure Monte Carlo algorithm ES-MC requires more

iterations, takes longer to run, and has a higher variance on the optimal value than the

131

non-i.i.d. sampling algorithms. We also see that for the larger problem 20term, the ES-

QMC algorithm has a significantly longer run time than the other algorithms, highlighting

the need for some form of padding in a QMC sampling algorithm. Further, we see that

ES-PLHS performs better than ES-PMC in nearly all areas. The run times are faster and

the confidence intervals on the optimal values are tighter. The one exception here is in the

problem gbd (Table A.1) where running ES-PMC for three times the number of iterations

as ES-PLHS improves the accuracy of the optimal values.

As for the stopping criteria, the 1RP has much faster run times than the I2RP. This again

is not surprising as the I2RP involves solving an extra stochastic program at each iteration

as the mean and standard deviation of the optimality gap are estimated using two separate

point sets. The confidence intervals on the optimal values are slightly tighter for the I2RP

but the mean optimal values are almost identical. Given the drastic difference in run times,

it is advisable to use the 1RP stopping criterion.

The three importance heuristics are indistinguishable on the gbd and LandS problems.

The results vary more on the other two problems, but are not yet significantly different

enough to make a clear choice between the heuristics.

5.8 Conclusions

In this chapter, we developed an adaptive sampling algorithm that uses padded sampling

to solve two-stage stochastic linear programs. In addition, using the central limit theorem

for PLHS that we proved in Chapter 4, we showed that stopping criteria for the algorithm

where padded Latin Hypercube sampling is used to construct a confidence interval around the

optimality gap are asymptotically valid. Similarly, central limit theorem results for LHS and

PMC sampling enable us to prove corresponding results for stopping criteria that use those

sampling methods. While our numerical results show significant advantages of PLHS over

132

pure Monte Carlo, pure QMC, and PMC sampling for our specific test problems, the results

of ES-LHS and ES-PLHS are not statistically different with 10 replications. However, the

run times of ES-PLHS begin to look consistently faster for ES-PLHS on the 20term problem.

We expect as solve larger stochastic programs that this difference in run time will be more

pronounced. This is an area we hope to explore further.

133

Chapter 6

Conclusion

As we have noted, solving stochastic programs using Monte Carlo sampling has been well

studied. In this dissertation, we have focused on different Quasi-Monte Carlo strategies de-

signed to reduce the number of samples required to solve a stochastic program. One of these

strategies was Latin Hypercube sampling. In Chapter 3, we showed that under certain as-

sumptions, the probability that the sample mean of a function under Latin Hypercube differs

from its true mean by some value δ is no larger than the corresponding deviation probability

under Monte Carlo sampling. These are the only known large deviations results specific

to Latin Hypercube sampling. When these results are applied to stochastic programming

problems, they yield that on average the number of samples needed to obtain a particular

solution accuracy is smaller for LHS than for Monte Carlo sampling.

Another strategy we looked at was padded sampling. Since pure (R)QMC sampling can

lose its effectiveness in high dimensions, we chose instead to only perform (R)QMC on an

important subset of the random variables and to pad the rest of the sample with some other

sampling method like Monte Carlo or LHS. When padding is done with LHS (called PLHS),

we have shown in Chapter 4 that an asymptotic normal distribution holds. Again, this is

the first known central limit theorem proven for PLHS. Also, analogous to the relationship

134

between pure Monte Carlo and pure LHS, the asymptotic variance under PLHS is no worse

than that under PMC (padding done with Monte Carlo). Now that we have a central limit

theorem for general PLHS, we hope to derive convergence results for the optimal values and

optimal solutions of sampled stochastic programs.

In Chapter 5, we proposed a sampling algorithm ES-PAD to solve two stage stochastic

linear programs using padded sampling. While other papers have looked at solving stochastic

programs using QMC, this is the first proposed algorithm to do so in an adaptive way – as

the subset of important variables in the padded sampling scheme is redetermined each time

a new first stage solution is calculated.

One area from this thesis we would like to explore more is choosing the subset of impor-

tant variables for the padded sampling scheme. There are a number of sensitivity analysis

techniques available, however, we are limited in that our function evaluations involve solving

stochastic programs, and thus are expensive. We developed some heuristics for quickly de-

termining the importance of a random variable, and while they seem to perform well, they

perform very similarly on our small- and medium-sized problems. It is likely when solving

very large stochastic programs that these heuristics will need to be further refined.

Another area we did not explore much is focusing not only on reducing the number of

required samples to solve the stochastic program, but also on reducing the actual time spent

solving the program, i.e., the wall clock time. While these often go hand in hand, there are

other ways to reduce the wall clock time. Should we find that the accuracy in estimating

the important subset is critical when solving very large problems, we may face the decision

of using more computing time to estimate the importance of each random variable versus

using extra samples to solve the problem with a rough importance heuristic. It is worth

noting though that using our current software (sutil and ATR), the time spent estimating

the importance of each random variable using our heuristics is negligible compared to the

135

time spent solving the stochastic program.

Additionally, when we begin solving very large stochastic programs, it may be neces-

sary to modify our ES-PAD algorithm to run on a computational grid. Such algorithms

employ a Master-Worker (MW) paradigm where many machines work on different pieces

of the algorithm in parallel and report the results to one Master machine. Linderoth and

Wright (2001) have used Algorithm ATR to solve stochastic programs using Monte Carlo

and Latin Hypercube sampling on a computational grid and reported significant savings in

wall clock time. It remains to be seen whether our padded algorithms can also be effectively

parallelized.

136

Bibliography

T. Andres. Sampling methods and sensitivity analysis for large parameter sets. J. Statist.
Comput., 57:77–110, 1997.

T. Andres and W. Hajas. Using iterated fractional factorial design to screen paramters in
sensitivity analysis of a probabilistic risk assessment model. In K editor, Proceedings of the
Joint International Conference on Mathematical Methods and Supercomputing in Nuclear
Applications, Karlsruhe, Germany, April 1993.

T. G. Bailey, P. Jensen, and D. Morton. Response surface analysis of two-stage stochastic
linear programming with recourse. Naval Research Logistics, 46:753–778, 1999.

R. Bartle. The Elements of Real Analysis. Wiley, New York, 2nd. edition, 1987.

G. Bayraksan and D. Morton. Assessing solution quality in stochastic programs. Mathemat-
ical Programming, 108:495–514, 2006.

G. Bayraksan and D. Morton. A sequential sampling procedure for stochastic programming.
Under Revision, 2007.

G. Bayraksan, D. Morton, and A. Partani. Simulation-based optimality tests for stochastic
programs. In G. Dantzig and G. Infanger, editors, Planning Under Uncertainty: Stochastic
Programming. Kluwer Series on Advances in Mathematical Programming, 2007.

E. M. L. Beale. On minimizing a convex function subject to linear inequalities. Journal of
the Royal Statistical Society, Series B, 17:173–184, 1955.

B. Bettonvil. Detection of Important Factors by Sequential Bifurcation. Tilburg University
Press, Tilburg, 1990.

B. Bettonvil and J. Kleijnen. Searching for important factors in simulation models with
many factors: Sequential bifurcation. Eur. J. Oper. Res., 96:180–194, 1997.

J. A. Bucklew. Introduction to Rare Event Simulation. Springer-Verlag, New York, 2004.

R. E. Caflisch, W. J. Morokoff, and A. B. Owen. Valuation of mortgage backed securities
using Brownian bridges to reduce effective dimension. Journal of Computational Finance,
1:27–46, 1997.

137

A. Charnes and W. W. Cooper. Chance-constrained programming. Management Science, 5:
73–79, 1959.

K. L. Chung. A Course in Probability Theory. Academic Press, New York, NY, 2nd. edition,
1974.

R. Cranley and T. Patterson. Randomization for number theoretic methods for multiple
integration. SIAM Journal on Numerical Analysis, 13(6):904–914, 1976.

R. Cukier, C. Fortuin, K. Shuler, A. Petschek, and J. Schaibly. A study of the sensitivity of
coupled reaction systems to uncertainties in rate coefficients. i. theory. J. Chem. Phys.,
59:3873–3878, 1973.

J. Czyzyk, J. Linderoth, and J. Shen. SUTIL: A utility library for handling stochastic pro-
grams, 2005. User’s Manual. Software available at http://coral.ie.lehigh.edu/sutil.

L. Dai, C. H. Chen, and J. R. Birge. Convergence properties of two-stage stochastic pro-
gramming. J. Optim. Theory Appl., 106(3):489–509, 2000.

G. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
New Jersey, 1963.

G. B. Dantzig. Linear programming under uncertainty. Management Science, 1:197–206,
1955.

G. B. Dantzig and P. W. Glynn. Parallel processors for planning under uncertainty. Annals
of Operations Research, 22:1–21, 1990.

A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer-Verlag,
New York, NY, 2nd. edition, 1998.

F. den Hollander. Large Deviations. Number 14 in Fields Institute Monographs. American
Mathematical Society, Providence, RI, 2000.

S. S. Drew and T. Homem-de-Mello. Some large deviations results for latin hypercube
sampling. Manuscript, Department of Industrial Engineering and Management Sciences,
Northwestern University, 2005.

J. Dupačová and R. J.-B. Wets. Asymptotic behavior of statistical estimators and of optimal
solutions of stochastic optimization problems. The Annals of Statistics, 16:1517–1549,
1988.

M. Emsermann and B. Simon. Improving simulation efficiency with quasi control variates.
Manuscript, 2000.

Y. Ermoliev. Stochastic quasi-gradient methods and their application to systems optimiza-
tion. Stochastics, 4:1–37, 1983.

138

B. L. Fox. Strategies for Quasi-Monte Carlo. Kluwer Academic Publishers, Norwell, MA,
2000.

I. Friedel and A. Keller. Fast generation of randomized low-discrepancy
point sets. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong
Kong), pages 257–273. Springer, Berlin, 2002. Software available at
http://www.multires.caltech.edu/software/libseq/.

G. Gürkan, A. Y. Özge, and S. M. Robinson. Sample-path solutions of stochastic variational
inequalities. Mathematical Programming, 84:313–334, 1999.

J. Hammersley. Monte carlo methods for solving multivariable problems. Ann. New York
Acad. Sci., 86:844–874, 1960.

G. H. Hardy. On double fourier series, and especially those which represent the double zeta-
function with real and incommensurable parameters. Quarterly Journal of Mathematics,
37:53–79, 1905.

J. L. Higle. Variance reduction and objective function evaluation in stochastic linear pro-
grams. INFORMS Journal on Computing, 10(2):236–247, 1998.

J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two stage linear programs
with recourse. Mathematics of Operations Research, 16(3):650–669, 1991.

J. B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms,
volume II. Springer-Verlag, Berlin, Germany, 1993.

T. Homem-de Mello. On rates of convergence for stochastic optimization problems under
non-i.i.d. sampling. Manuscript, 2006.

T. Homma and A. Saltelli. Global sensitivity analysis of nonlinear models: Importance mea-
sures and sobol’ sensitivity indices. Technical Report EUR 16052/EN, European Com-
mission: Joint Research Centre, 1994.

T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear
models. Reliability Engineering and System Safety, 52:1–17, 1996.

S. Hora and R. Iman. A comparison of maximum/bounding anf bayesian/monte carlo for
fault tree uncertainty analysis. Technical Report Technical Report: SAND85-2839, Sandia
National Laboratories, Albuquerque, NM, 1986.

N. Hoshino and A. Takemura. On reduction of finite sample variance by extended latin
hypercube sampling. Bernoulli, 6(6):1035–1050, 2000.

R. Iman and S. Hora. A robust measure of uncertainty importance for use in fault tree
system analysis. Risk Analysis, 10:401–406, 1999.

139

G. Infanger. Monte Carlo (importance) sampling within a Benders decomposition algorithm
for stochastic linear programs. Annals of Operations Research, 39:69–95, 1992.

G. Infanger. Planning under Uncertainty: Solving Large Scale Stochastic Linear Programs.
Boyd & Fraser Publishing Company, Massachusetts, 1994.

X. Jin, M. C. Fu, and X. Xiong. Probabilistic error bounds for simulation quantile estimators.
Management Science, 49(2):230–246, 2003.

J. Kalagnanam and U. Diwekar. An efficient sampling technique for off-line quality control.
Technometrics, 39(3):308–319, 1997.

Y. M. Kaniovski, A. J. King, and R. J.-B. Wets. Probabilistic bounds (via large deviations)
for the solutions of stochastic programming problems. Ann. Oper. Res., 56:189–208, 1995.

A. J. King and R. T. Rockafellar. Asymptotic theory for solutions in statistical estimation
and stochastic programming. Mathematics of Operations Research, 18:148–162, 1993.

A. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–
502, 2001.

M. Koivu. Variance reduction in sample approximations of stochastic programs. Mathemat-
ical Programming, pages 463–485, 2005.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York,
NY, 3rd. edition, 2000.

P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods.
In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Exami-
nation of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic
Publishers, Boston, 2002.

J. Linderoth and S. Wright. Decomposition algorithms for stochastic program-
ming on a computational grid. Manuscript, available on Optimization Online
(www.optimization-online.org), 2001.

J. T. Linderoth, A. Shapiro, and S. J. Wright. The empirical behavior of sampling methods
for stochastic programming. Annals of Operations Research, 2005. forthcoming.

R. Liu and A. B. Owen. Estimating mean dimensionality. Manuscript, Department of
Statistics, Stanford University, 2003.

W. Loh. On latin hypercube sampling. The Annals of Statistics, 24(5):2058–2080, 1996.

140

F. Louveaux and Y. Smeers. Optimal investments for electricity generation: A stochastic
model and a test problem. In Y. Ermoliev and R. J.-B. Wets, editors, Numerical techniques
for stochastic optimization problems, pages 445–452. Springer-Verlag, Berlin, 1988.

W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs. Operations Research Letters, 24:47–56,
1999.

M. McKay. Evaluating prediction uncertainty. Technical Report Technical Report
NUREG/CR-6311, U.S. Nuclear Regulatory Commission and Los Alamos National Lab-
oratory, 1995.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Tech-
nometrics, 21:239–245, 1979.

M. Morris. Factorial sampling plans for preliminary computational experiments. Techno-
metrics, 33:161–174, 1991.

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, PA, 1992.

G. Ökten. High-dimensional simulation. Mathematics and Computers in Simulation, 55:
215–222, 2001.

G. Ökten. A probabilistic result on the discrepancy of a hybrid-monte carlo sequence and
applications. Monte Carlo Methods and Applications 2, 4:255–270, 1996.

G. Ökten, B. Tuffin, and V. Burago. A central limit theorem and improved error bounds
for a hybrid-monte carlo sequence with applications in computational finance. Journal of
Complexity, 22:435–458, 2006.

A. B. Owen. A central limit theorem for latin hypercube sampling. J. Roy. Statist. Soc. Ser.
B, 54:541–551, 1992.

A. B. Owen. Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo. In Monte
Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), pages 86–97. Springer,
Berlin, 2000.

A. B. Owen. Necessity of low effective dimension. Manuscript, Department of Statistics,
Stanford University, 2002.

A. B. Owen. The dimension distribution and quadrature test functions. Statist. Sinica, 13
(1):1–17, 2003.

141

A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In Monte Carlo and
quasi-Monte Carlo methods in scientific computing (Las Vegas, NV, 1994), volume 106 of
Lecture Notes in Statist., pages 299–317. Springer, New York, 1995.

A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal., 34
(5):1884–1910, 1997a.

A. B. Owen. Scrambled net variance for integrals of smooth functions. Ann. Statist., 25(4):
1541–1562, 1997b.

A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM Trans-
actions on Modeling and Computer Simulation, 8:71–102, 1998.

T. Pennanen. Epi-convergent discretizations of multistage stochastic programs. Mathematics
of Operations Research, 30:245–256, 2005.

T. Pennanen and M. Koivu. Epi-convergent discretizations of stochastic programs via inte-
gration quadratures. Numerische Mathematik, 100:141–163, 2005.

E. L. Plambeck, B. R. Fu, S. M. Robinson, and R. Suri. Sample-path optimization of convex
stochastic performance functions. Mathematical Programming, Series B, 75:137–176, 1996.

H. Robbins and S. Monro. On a stochastic approximation method. The Annals of Mathe-
matical Statistics, 22:400–407, 1951a.

H. Robbins and S. Monro. On a stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951b.

S. M. Robinson. Analysis of sample-path optimization. Mathematics of Operations Research,
21:513–528, 1996.

H. L. Royden. Real Analysis. Macmillan, New York, 3rd edition, 1988.

R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochas-
tic Optimization by the Score Function Method. J. Wiley & Sons, Chichester, England,
1993.

A. Saltelli, S. Tarantola, and K. Chan. A quantitative model-independent method for global
sensitivity analysis of model output. Technometrics, 41:39–56, 1999.

A. Saltelli, K. Chan, and E. Scott. Sensitivity Analysis. Wiley, New York, 2000.

A. Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations Research, 30:
169–186, 1991.

A. Shapiro. Asymptotic behavior of optimal solutions in stochastic programming. Mathe-
matics of Operations Research, 18:829–845, 1993.

142

A. Shapiro and T. Homem-de-Mello. On rate of convergence of Monte Carlo approximations
of stochastic programs. SIAM Journal on Optimization, 11:70–86, 2000.

A. Shapiro and T. Homem-de-Mello. A simulation-based approach to two-stage stochastic
programming with recourse. Mathematical Programming, 81:301–325, 1998.

A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems.
Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, 2004.

A. Shapiro, T. Homem-de-Mello, and J. C. Kim. Conditioning of convex piecewise linear
stochastic programs. Mathematical Programming, 94:1–19, 2002.

I. Sobol. Sensitivity analysis for nonlinear mathematical models. Mathematical Modeling
and Computational Experiment, 1:407–414, 1993.

J. Spanier. Quasi-monte carlo methods for particle transport problems. In H. Niederreiter and
P. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
pages 121–148. Springer-Verlag, New York, 1995.

M. L. Stein. Large sample properties of simulations using latin hypercube sampling. Tech-
nometrics, 29:143–151, 1987.

A. Tamhane and D. Dunlop. Statistics and Data Analysis from Elementary to Intermediate.
Prentice-Hall, Upper Saddle River, New Jersey, 2000.

B. Tuffin. On the use of low-discrepancy sequences in monte carlo methods. Technical Report
Technical Report No. 1060, I.R.I.S.A., Rennes, France, 1996.

143

Appendix A. Numerical Results for
ES-PAD and ES-NoPAD

144

Table A.1: A comparison of sampling algorithms – gbd

Stopping Importance Optimal Value Iterations Run Time
Algorithm Criteria Heuristic Mean SD Mean SD Mean SD
PAD-MC 1RP Main 1661 12 4.3 1.5 0:05:19 0:02:23
PAD-MC I2RP Main 1652 8 4.5 1.1 0:08:17 0:02:33
PAD-MC 1RP Total 1661 12 4.3 1.5 0:05:18 0:02:22
PAD-MC I2RP Total 1652 8 4.5 1.1 0:08:15 0:02:34
PAD-MC 1RP PCA 1661 12 4.3 1.5 0:05:16 0:02:22
PAD-MC I2RP PCA 1652 8 4.5 1.1 0:08:12 0:02:32
PAD-LHS 1RP Main 1666 29 1.5 0.5 0:01:41 0:00:32
PAD-LHS I2RP Main 1666 29 1.5 0.5 0:02:27 0:00:46
PAD-LHS 1RP Total 1666 29 1.5 0.5 0:01:41 0:00:32
PAD-LHS I2RP Total 1666 29 1.5 0.5 0:02:26 0:00:46
PAD-LHS 1RP PCA 1666 29 1.5 0.5 0:01:41 0:00:32
PAD-LHS I2RP PCA 1666 29 1.5 0.5 0:02:26 0:00:46

MC 1RP Main 1666 39 5.1 0.7 0:05:57 0:01:12
MC I2RP Main 1686 36 5.1 0.7 0:08:57 0:01:41
LHS 1RP Main 1663 24 2.0 0.0 0:02:01 0:00:06
LHS I2RP Main 1663 24 2.0 0.0 0:03:02 0:00:07
QMC 1RP Main 1653 35 2.1 0.7 0:02:11 0:00:43
QMC I2RP Main 1653 35 2.1 0.7 0:03:16 0:01:09

PAD-MC All All 1656 11 4.4 1.3 0:06:46 0:02:47
PAD-LHS All All 1666 28 1.5 0.5 0:02:04 0:00:45

MC All All 1676 38 5.1 0.7 0:07:27 0:02:06
LHS All All 1663 24 2.0 0.0 0:02:32 0:00:32
QMC All All 1653 34 2.1 0.7 0:02:44 0:01:05
All 1RP All 1662 26 3.0 1.7 0:03:27 0:02:18
All I2RP All 1662 26 3.0 1.7 0:05:15 0:03:17
All All Main 1661 22 3.0 1.8 0:04:26 0:03:09
All All Total 1661 22 3.0 1.8 0:04:25 0:03:09
All All PCA 1661 22 3.0 1.8 0:04:24 0:03:08
All All All 1662 26 3.0 1.7 0:04:21 0:02:58

True Optimal Value = 1656

145

Table A.2: A comparison of sampling algorithms – LandS

Stopping Importance Optimal Value Iterations Run Time
Algorithm Criteria Heuristic Mean SD Mean SD Mean SD
PAD-MC 1RP Main 128.32 0.80 1.9 0.7 0:01:32 0:00:31
PAD-MC I2RP Main 128.26 0.78 2.0 0.7 0:02:22 0:00:43
PAD-MC 1RP Total 128.32 0.80 1.9 0.7 0:01:31 0:00:31
PAD-MC I2RP Total 128.26 0.78 2.0 0.7 0:02:21 0:00:43
PAD-MC 1RP PCA 128.32 0.80 1.9 0.7 0:01:32 0:00:31
PAD-MC I2RP PCA 128.20 0.81 2.1 0.7 0:02:29 0:00:49
PAD-LHS 1RP Main 128.26 0.13 1.7 0.5 0:01:47 0:00:23
PAD-LHS I2RP Main 128.28 0.10 1.9 0.3 0:02:50 0:00:23
PAD-LHS 1RP Total 128.26 0.13 1.7 0.5 0:01:47 0:00:21
PAD-LHS I2RP Total 128.28 0.10 1.9 0.3 0:02:50 0:00:23
PAD-LHS 1RP PCA 128.26 0.13 1.7 0.5 0:01:47 0:00:23
PAD-LHS I2RP PCA 128.28 0.10 1.9 0.3 0:02:50 0:00:23

MC 1RP Main 128.27 1.69 4.6 1.2 0:03:42 0:01:10
MC I2RP Main 128.66 1.27 4.7 1.3 0:05:48 0:01:55
LHS 1RP Main 128.09 0.44 1.6 0.5 0:01:12 0:00:20
LHS I2RP Main 128.03 0.36 1.7 0.5 0:01:54 0:00:29
QMC 1RP Main 128.19 0.15 2.3 0.7 0:01:43 0:00:33
QMC I2RP Main 128.19 0.15 2.3 0.7 0:02:35 0:00:52

PAD-MC All All 128.28 0.76 2.0 0.7 0:01:58 0:00:45
PAD-LHS All All 128.27 0.11 1.8 0.4 0:02:19 0:00:38

MC All All 128.47 1.47 4.7 1.2 0:04:45 0:01:53
LHS All All 128.06 0.39 1.7 0.5 0:01:33 0:00:32
QMC All All 128.19 0.14 2.3 0.7 0:02:09 0:00:50
All 1RP All 128.26 0.72 2.1 1.1 0:01:50 0:00:53
All I2RP All 128.27 0.63 2.3 1.1 0:02:53 0:01:21
All All Main 128.28 0.54 1.9 0.6 0:02:08 0:00:43
All All Total 128.28 0.54 1.9 0.6 0:02:07 0:00:43
All All PCA 128.27 0.55 1.9 0.6 0:02:10 0:00:45
All All All 128.26 0.67 2.2 1.1 0:02:22 0:01:15

True Optimal Value = 128.20

146

Table A.3: A comparison of sampling algorithms – apl1p

Stopping Importance Optimal Value Iterations Run Time
Algorithm Criteria Heuristic Mean SD Mean SD Mean SD
PAD-MC 1RP Main 24626 194 4.5 1.7 0:08:21 0:02:51
PAD-MC I2RP Main 24579 136 5.4 1.3 0:14:25 0:03:09
PAD-MC 1RP Total 24689 115 3.4 0.5 0:06:34 0:01:03
PAD-MC I2RP Total 24678 125 3.3 0.5 0:09:03 0:01:18
PAD-MC 1RP PCA 24581 142 3.6 0.7 0:06:45 0:00:58
PAD-MC I2RP PCA 24581 142 3.6 0.7 0:09:50 0:01:33
PAD-LHS 1RP Main 24664 138 2.7 1.3 0:05:30 0:02:01
PAD-LHS I2RP Main 24667 141 2.8 1.2 0:08:23 0:02:52
PAD-LHS 1RP Total 24664 139 2.8 1.3 0:05:36 0:02:05
PAD-LHS I2RP Total 24667 141 2.8 1.3 0:08:13 0:03:16
PAD-LHS 1RP PCA 24664 136 2.6 1.1 0:05:13 0:01:43
PAD-LHS I2RP PCA 24668 139 2.6 1.1 0:07:41 0:02:39

MC 1RP Main 24720 232 4.9 1.4 0:08:57 0:02:18
MC I2RP Main 24712 247 5.6 1.2 0:15:05 0:03:10
LHS 1RP Main 24593 182 2.8 1.2 0:05:10 0:01:52
LHS I2RP Main 24639 76 3.2 0.9 0:08:19 0:01:59
QMC 1RP Main 24659 206 3.2 0.8 0:05:47 0:01:12
QMC I2RP Main 24688 170 3.4 0.7 0:08:56 0:01:35

PAD-MC All All 24622 146 4.0 1.2 0:09:10 0:03:16
PAD-LHS All All 24666 133 2.7 1.2 0:06:46 0:02:45

MC All All 24716 233 5.3 1.3 0:12:01 0:04:09
LHS All All 24616 138 3.0 1.1 0:06:44 0:02:29
QMC All All 24674 184 3.3 0.7 0:07:21 0:02:07
All 1RP All 24651 167 3.4 1.4 0:06:26 0:02:13
All I2RP All 24653 152 3.6 1.4 0:09:59 0:03:33
All All Main 24634 153 3.9 1.8 0:09:10 0:04:13
All All Total 24674 126 3.1 1.0 0:07:22 0:02:27
All All PCA 24624 141 3.1 1.0 0:07:22 0:02:26
All All All 24652 159 3.5 1.4 0:08:13 0:03:27

True Optimal Value = 24642

147

Table A.4: A comparison of sampling algorithms – 20term

Stopping Importance Optimal Value Iterations Run Time
Algorithm Criteria Heuristic Mean SD Mean SD Mean SD
PAD-MC 1RP Main 529287 2411 2.2 0.9 0:11:34 0:05:16
PAD-MC I2RP Main 529274 2538 2.3 0.7 0:17:08 0:05:21
PAD-MC 1RP Total 529232 2242 2.0 0.7 0:10:17 0:03:27
PAD-MC I2RP Total 529232 2242 2.0 0.7 0:14:45 0:05:06
PAD-MC 1RP PCA 530116 3829 2.7 0.8 0:14:09 0:04:49
PAD-MC I2RP PCA 530470 3120 2.9 0.9 0:22:52 0:08:10
PAD-LHS 1RP Main 531410 2370 1.9 0.6 0:09:10 0:02:43
PAD-LHS I2RP Main 531601 2405 2.0 0.8 0:14:32 0:07:22
PAD-LHS 1RP Total 530593 1603 1.7 0.7 0:08:20 0:03:11
PAD-LHS I2RP Total 530489 1532 1.9 0.7 0:13:29 0:05:24
PAD-LHS 1RP PCA 531610 1265 1.9 0.9 0:09:30 0:04:12
PAD-LHS I2RP PCA 531404 1211 2.3 0.8 0:16:37 0:06:08

MC 1RP Main 533251 5012 2.4 1.2 0:13:00 0:07:36
MC I2RP Main 533288 4325 2.6 0.7 0:19:31 0:06:38
LHS 1RP Main 531052 1601 2.0 1.1 0:10:23 0:05:44
LHS I2RP Main 531214 1502 2.1 1.1 0:15:45 0:08:49
QMC 1RP Main 529489 1537 5.1 1.0 0:33:57 0:12:01
QMC I2RP Main 529799 1437 5.0 0.8 0:46:34 0:12:12

PAD-MC All All 529602 2716 2.4 0.8 0:15:08 0:06:44
PAD-LHS All All 531185 1782 2.0 0.7 0:11:56 0:05:48

MC All All 533270 4556 2.5 0.9 0:16:16 0:07:42
LHS All All 531133 1513 2.1 1.1 0:13:04 0:07:44
QMC All All 529644 1457 5.1 0.9 0:40:16 0:13:27
All 1RP All 530671 2859 2.4 1.3 0:13:22 0:09:30
All I2RP All 530752 2635 2.6 1.2 0:20:08 0:12:09
All All Main 530393 2595 2.1 0.7 0:13:06 0:06:03
All All Total 529886 1974 1.9 0.7 0:11:43 0:04:57
All All PCA 530900 2595 2.5 0.9 0:15:47 0:07:35
All All All 530712 2742 2.5 1.2 0:16:45 0:11:24

True Optimal Value = 531000±1000

