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ABSTRACT

Essays on Information Economics

Rafayal Ahmed

This dissertation explores topics in information economics. A particular focus in this

dissertation is how competition affects incentives for information acquisition and information

sharing between competitors. The first chapter studies a principal-agent setting where two

principals compete for the services of one agent. The second chapter studies how competition

in the product market affects firms’ incentives to conduct market research. The third chapter

highlights how asymmetric information affects technology licensing and firms’ incentives to

conduct their research and development activities.

The first chapter studies a dynamic principal-agent model of adverse selection under

competition among principals. Principals are ex-ante identical, but receive information about

the agent independently which creates a setting of imperfect competition. I study how the

agent’s payoffs in this setting differ compared to the regular monopoly principal-agent case,

and how that affects the agent’s incentives to reveal information. The focus is on how the

information structure affects the competition for the agent’s services, and how the nature

of competition in turn affects the agent’s incentives. In a repeated setting with short term

contracts and private observability of the agent’s performance measure, the agent cannot
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be incentivized to fully reveal his private information as the familiar ratchet effect persists.

Finally, I show that allowing voluntary information sharing among principals can benefit

principals and improve welfare in general.

In the second chapter, which is joint work with Colin Shopp, we apply the main result in

Persico (2000), that decision-makers acquire more information when their payoffs are more

risk-sensitive, to a duopoly model of Bertrand competition with uncertain demand following

Vives (1984) in order to show how the amount of covert market research firms undertake

depends on the level of competition. We decompose marginal returns to research into two

effects, a competitive profit effect and a coordination effect, and show how each of these

depends on competition. When the cost of market research is sufficiently high, the amount

firms invest in market research is decreasing in the level of competition. In contrast, when

the cost of market research is sufficiently low, firms perform the most market research at an

intermediate level of competition. We partially extend this result to a public market research

setting.

The third chapter studies a duopoly pricing game where firms may have asymmetric

information about their production technology. I show that having asymmetric information

may lead to firms being unable to engage in profitable technology licensing, and how this

problem is mitigated when firms outsource their research activities as opposed to conducting

research in-house.
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CHAPTER 1

Dynamic Screening with Differentially Informed Principals

1.1. Introduction

In an employment relationship, firms often acquire information over time about a worker’s

productivity, through various performance measures. This information is valuable for two

reasons: first, it allows the firm to write more effective incentive contracts with their employ-

ees, and second, it gives them an informational advantage when competing with other firms

to retain those employees. Nevertheless, many firms reveal at least some of this information

to their potential rivals, either directly – through reference letters or outplacement services

– or indirectly – through job titles or responsibilities.1 Why might a firm reveal its private

information to the rest of the labor market?

This paper argues that revealing information about past performance can effectively

commit a firm to pay high wages to its high-ability workers. That is, without disclosing

information, the firm would extract rents from its employees after they reveal that they

are high ability. This manifestation of the classic ratchet effect means that firms would

struggle to induce their high ability workers to stand out. By disclosing information and

thereby inducing more severe competition for their employees, the firm can credibly promise

to reward high-ability workers, which encourages those workers to reveal themselves.

1Top management consulting firms, for example, often have outplacement services that help their employees
to find new jobs. They provide this help in the form of connecting the employee with prospective employers,
and through providing credible information about the employee’s productivity in the forms of references,
evaluations, and performance reviews.
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To make this point, I develop tools for understanding imperfect competition among

differentially-informed principals who seek to hire an agent. I show that this problem can

be formulated as a first-price common-value auction, where each principal’s bid is a contract

that maps output to wages, which in turn generates a schedule of rents given to agents with

different abilities. While identifying closed-form equilibrium contracts in this setting is not

tractable, I establish comparative statics results on the agent’s equilibrium rent as a function

of the principals’ information. These comparative statics allow me to analyze the costs and

benefits to the incumbent principal of revealing her private information.

Formally, I consider a two-period model with two principals and one agent. In each

period, the agent’s ability is perfectly known only to the agent; however, both principals

independently receive informative signals2 about the agent’s ability, after which they offer

contracts simulataneously. Higher signals correspond to more favorable beliefs regarding the

agent’s ability. The agent can only choose to work with one principal in each period. In

the two-period model, I consider both the setting where principals can credibly publicize

information, and the one where they cannot.

I show that in each period, the rent offered to the agent by a principal is increasing in

the principal’s signal; that is, a more favorable belief induces the principal to pay the agent

more. This is true both when principals receive signals of the same level of informativeness

and when the level of informativeness is different. However, between these two cases, a

meaningful comparion of the agent’s payoffs can be made, and it can be shown that when

one principal is more accurately informed than the other, this reduces the agent’s ex ante

expected payoff from the setting where both principals have the lower accuracy.

2This can be thought of as an interview of the agent conducted by the pricipal, or another type of information
acquisition.
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In the two-period model presented in this paper, if a principal learns something about

the agent’s productivity in the first period, it gives her an informational advantage over her

opponent in the second period. However, this informational advantage is detrimental for the

agent’s payoff, which makes it harder to induce the agent to reveal information. For this

reason, even though ex post the principal would benefit from having superior information, ex

ante it is beneficial for her to commit to share any information about the agent’s productivity

she learns in the first period. Publicizing information works as an incentive tool because the

incremental benefits of public information is higher for more productive agents, which means

more productive agents will have a stronger incentive to exert effort in order to publicize

their productivity. Availability of more public information makes the competition for the

agent’s services stronger in the second period; however, because we have two principals

competing for the agent, the agent’s second period expected payoff is the higher of the two

payoffs offered to him by the two principals, whereas from the principal’s perspective, the

added payoff she must offer due to stronger competition is only the expected increase in her

own bid in the second period. Because of this, from the point of view of the principal, the

lowered cost of providing incentives dominates the effect of added competition, so publicizing

information is ex ante beneficial for the principal’s payoff.

The formal model is introduced in section 1.2. In section 1.3, I characterize necessary

conditions for incentive compatible contracts and list the relevant results for the monopolist

principal benchmark.

Results for the one-period model is presented in section 1.4. Because equilibria in the

two-period game crucially depends on the information structure in the second period, it

will be very useful to compare equilibrium payoffs for the agent under different information
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structures for the principals, and we build on these results from the static game in the two-

period model. The analysis of the two-period game is in section 1.5. Section 1.6 discusses

possible extensions. Section 1.7 concludes.

1.1.1. Related Literature

Monopolistic screening has been studied in its various forms as a partial solution to this prob-

lem in early works such as Mussa & Rosen (1978), Baron & Myerson (1982), and Laffont &

Tirole (1986). However, much less emphasis has been given to forms of incentive contracts

for screening in a setting with competition. Imperfect competition has been mostly studied

within the domain of IO theory where the “imperfection” arises from some form of differenti-

ation among the competitors. Most of this literature has been focused on intrinsic differences

among the competitors themselves. However, even though less studied, interesting insights

can be generated from models where competitors only differ in terms of the information they

are endowed with. Spulber (1988) studies a simple model of Bertrand competition where the

marginal costs of the producers are realized from a distribution at the beginning of the game,

and becomes private information of each producer. In this setting, the Bertrand paradox is

mitigated, and this private information generates enough differentiation among competitors

that they each make positive expected profits in equilibrium. The game analyzed there is a

specialized version of an independent private values auction setting.

The “symmetric”, or “mineral-rights” model of common value auctions has been stud-

ied in early papers such as Wilson (1967) and Milgrom & Weber (1982). Common-value

auctions with asymmetrically informed bidders have received much less attention, although

this setting plays an important role in this paper. Such settings have been analyzed in
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Engelbrecht-Wiggans, Milgrom & Weber (1983) and Milgrom & Weber (1982b). Represent-

ing a screening contract as a form of auction has also been studied in Biglaiser & Mezzetti

(1993, 2000) in the framework of the independent private values model.

The central theme of screening contracts with short-term commitment is the ratchet

effect. Starting from Freixas, Guesnerie & Tirole (1985), the ratchet effect has been studied

under a procurement setting in Laffont & Tirole (1988), as well as worker incentives in a firm

in Gibbons (1987), Ickes & Samuelson (1987), and Carmichael & Macleod (2000), and in the

economics of corruption (Choi & Thum 2003). Empirical analysis of the ratchet effect is not

numerous, but recently there has been some work. For example, in Charness et al. (2011),

they find that the ratchet effect is indeed a significant problem in the labor market when

there is less competition between firms or between workers, however, competition in either

side mediates the problem. They interpret this result as the parties’ outside options playing

an important role in solving the problem. Their work is partly inspired by the theoretical

treatment of the ratchet effect in Kanemoto & Macleod (1992), which has a two period model

of “second-hand workers” with short term commitment, but in the 2nd period the agent is

free to choose offers from other competing principals, who crucially, does not observe the

agent’s performance in the 1st period. Competition among principals, therefore, mitigates

the ratchet effect, and the first-best outcome is possible with perfect competition among

principals.

1.2. The Model

There is one risk-neutral agent, A, and two risk-neutral principals P1 and P2, over two

periods, t = 1, 2. The agent has private information about his type θt, which is drawn from
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a commonly known distribution F (·) at t = 1, and F (·|θ1) at t = 2, over the interval sup-

port [θ, θ̄]. We assume that θ > 1, and the associated density functions f(·) and f(·|θ1) are

positive and atomless everywhere in the support. In each period, each principal Pi receives

a private signal Xit, which is informative of the agent’s type θt; the signals are distributed

independently according to the signal-generating processes Sit(·|θt) with the associated den-

sity functions sit(·|θt), which are positive and atomless everywhere in the support. This is

also commonly known.

In each stage, if the agent chooses to work with one of the principals, he chooses a non-

negative effort level et ∈ [0, ē], and which produces output yt = et+θt. We assume that ē > 1.

The agent’s effort level is not observed by the principals. Output, however, is observed by

the employing principal and it is contractible. Effort is costly for the agent, with C(et) = e2t/2.

Each principal Pi can offer a contract wit : R+ → R which determines a payment wit(yt)

which the principal must pay the agent following the realization of output3. In the first

period, as part of the contract, the principals can also commit to a public message mi(y1)

which the first period employing principal sends after realization of the output. We will look

at two cases for the messages available to the principals. In the non-disclosure setting, the

message space is MND
i = φ, meaning principals cannot choose informative messages, whereas

in the disclosure setting, the message space is MD
i =

{
mi : mi ⊆ [θ, θ̄]

}
, so the principals

can commit to reveal information about their beliefs regarding the agent’s first-period type

θ1.

The agent’s outside option is zero. Let’s denote principal Pi’s payoff as πit, and the

agent’s payoff as Ut. The payoffs are therefore:

3Note that we restrict the contract to only be conditioned on the output produced. In particular, we do not
allow one principal’s contract to condition on another principal’s contract
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πit =


yt − wit(yt) if A chooses Pi’s contract

0 otherwise

Ut =


wit(yt)− e2t/2 when wit is the chosen contract

0 if no contract is chosen

The timing in the first period is:

(1) The agent’s type θ1 is realized and privately observed by the agent.

(2) Each principal Pi observes a signal xi1, realized according the distribution Si1(·|θ1).

(3) Each principal simultaneously and privately offers the agent a contract wi1 : R+ →

R, which is a function that maps output to payment, and commits to a public

message mi : R+ →Mi

(4) The agent accepts at most one contract; the agent’s decision is d1 ∈ {φ, P1, P2}

(5) If no contract is accepted, the stage ends. If the agent accepts Pi’s offer, he then

exerts effort e1, output y1 is produced and only observed by Pi. The output accrues

to Pi.

(6) Pi pays the agent wi1(y1), and sends public message mi(y1).

The timing in the second period is similar to that of the first period; however, principals

don’t choose any messages, and both principals use all of their information at the time

of offering contracts. We denote Pi’s available information at the time of offering second-

period contracts as Ii = {xi1, xi2, d1, Ci,m}, where Ci contains any information about θ1 that

Pi gained through a contractual relationship with the agent in the first period, and m is the

public message sent in the first period.
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I use the following assumptions throughout the paper. The first characterizes the infor-

mative nature of the principals’ signals. The second is a technical assumption commonly

used in screening models.

Assumption 1. The signals Xit are affiliated with the agent’s realized type,θt.

Assumption 1 implies, for any θ
′
t > θt, the signal generating process Sit(·|θ

′
t) stochastically

dominates Sit(·|θt) according to the likelihood ratio order.

Assumption 2. For any possible pair of signal realizations (x, y) for the two princi-

pals, each principal’s posterior belief about the agent’s type, Fit(·|x, y) satisfies the monotone

hazard rate condition.

Assumption 2 implies, for any pair of signal realizations for the two principals (x, y),

fit(θt|x,y)
1−Fit(θt|x,y)

is non-decreasing in θt.

1.3. The Monopoly Benchmark

It is instructive to start with the one-period monopoly benchmark where one principal

is inactive throughout. This case is a straightforward analog of the framework analyzed in

Mussa & Rosen (1978). An important observation in this setting is that the agent’s payoff

depends on the principal’s beliefs about his type. By the revelation principle, the principal’s

maximization problem after receiving realized signal x is:

max
e(·)

θ̄w

θ

[e(θ) + θ − w(θ)] dF (θ|x)

subject to:



18

U(θ) ≥ U(θ̂|θ),∀θ, θ̂ (IC)

U(θ) ≥ 0,∀θ (IR)

Here, U(θ̂|θ) is the agent’s payoff when his real type is θ and he chooses the allocation

for type θ̂. U(θ) = U(θ|θ) is the agent’s payoff under truth-telling.

Lemma 1. For a smooth effort allocation e(·), The IC constraints are satisfied if and

only if:

(1) e(θ) + θ is non-decreasing

(2) U(θ) = U(θ) +
θr

θ
e(q)dq

Proof. See appendix. �

Throughout the paper, the first condition is referred to as the monotonicity constraint, and

the second one as the envelope condition.

By Lemma 1, we can see that because e(q) is non-negative, setting U(θ) = 0 satisfies the

IC constraints for all types. The principal’s relaxed maximization problem can therefore be

written as:

max
e(·|x)

θ̄w

θ

e(θ|x) + θ − e(θ|x)2

2
−

θw

θ

e(q|x)dq

 dF (θ|x)

Let eM(θ|x) be the solution to this problem, and πM(x) be the principal’s expected payoff

after receiving signal x.

Proposition 1 characterizes the eM and πM .
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Proposition 1. In the monopoly setting, the optimal contract in the stage game has the

following properties:

(1) The optimal effort level is eM(θ|x) = 1− 1−F (θ|x)
f(θ|x)

, which is strictly decreasing in x,

for all θ < θ̄.

(2) U(θ|x) is strictly decreasing in x, for all θ.

(3) The principal’s expected payoff, πM(x), is strictly increasing in x.

Proof. See appendix. �

The main idea behind these results is the tradeoff between efficiency and rent extraction.

For an agent of type θ, total surplus equals e + θ − e2/2, which is maximized by choosing

e(θ) = 1, that is to say, in our setting, eFB(θ) = 1 for any θ. As we see from Lemma 1, the

θ-type agent’s payoff, which consists entirely of his information rent in the monopoly setting,

is increasing in the proposed effort level the principal chooses for all types lower than θ. This

leads the principal to choose an effort level that is less than first-best for all types other than

the highest type, θ̄.In other words, the principal distorts the effort level from the efficient

level of 1 in order to reduce rent for higher types. The amount of distortion depends on the

principal’s beliefs about the agent’s type. When higher types are more likely, reducing rent

for higher types becomes more important compared to efficiency for lower types, which leads

to more distortion for the low types. This is why after receiving a higher signal, which makes

higher types of agents more likely according to the principal’s updated beliefs, the principal

chooses a lower (more distorted) effort level for all agent types other than θ̄. This leads to

a lower payoff for all types of the agent. However, this increases the principal’s expected

payoff, which means the principal’s value from working with the agent goes up following a

high signal.
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1.4. The Static Game under Competition

In this section the analysis of the one-period game with two principals is presented.

Here I use a subclass of perfect Bayesian equilibrium which I call regular equilibrium. I put

conditions on the principals’ equilibrium strategies so that the equilibrium involves each

principal using a continuous strategy as a function of her signal.

Let us then analyze the principals’ maximization problem. Suppose P−i is playing the

strategy e−i(·|·) with the associated payoff schedule U−i(·|·). Because the space of allowed

contracts here is the same as in the monopoly setting, lemma 1 still pins down the necessary

conditions for the agent’s IC constraints.4 Therefore, after receiving signal x, principal Pi’s

maximization problem is:

max
ei(·|x),Ui(θ|x)

∞w

−∞

[
θ̄w

θ

{(
ei(θ|x) + θ − ei(θ|x)2

2
− Ui(θ|x)

−
θw

θ

ei(t|x)dt
)
1{U−i(θ|y)<Ui(θ|x)}

}
dFi(θ|x, y)

]
dG−i(y|x)

Subject to:


e
′
i(θ|x) ≥ −1,∀θ monotonicity

Ui(θ|x) ≥ 0 IR

Here, G−i(y|x) is the distribution of the opponent’s signal, which is updated using Bayes’

rule after receiving signal x. In other words, this is the principal’s posterior belief about the

signal of her opponent.

4Here, the rent offered to agent type θ by P−i with realized signal y, which is U−i(θ|y), is the θ type agent’s
outside option for Pi’s offered contract. This outside option may be a random variable if P−i is playing a
strategy conditional on y. The fact that lemma 1 still pins down the agent’s IC constraints for Pi’s contract
is an implication of lemma 2 in Rochet & Stole (2002), which studies screening with random outside options.
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Before proving existence of equilibrium, it is helpful to define a few terms.

Let the pair (e∗i (·|x), U∗i (θ|x)) be an optimal strategy in the above maximization problem.

Let

U∗i (θ|x) = U∗i (θ|x) +

θw

θ

e∗i (t|x)dt

In competing with P−i, Pi decides, for every agent type θ, what level of rent U∗i (θ|x) to

offer to the agent of type θ, as a function of Pi’s realized signal x. This makes the game

analogous to a first price common value auction, which we can then study as a bidding game,

and analyze the two principals’ bidding behaviors in terms of their information.

1.4.1. Regular Equilibrium

We will focus on a class of competitive equilibria where the principals’ strategies are con-

tinuous functions of their signals. We will call an equilibrium in such strategies a regular

equilibrium.

For any regular equilibrium, we define a “lowest contract” for that equilibrium, which

is by construction the unique contract offered by both principals as their signal realizations

approach the infimum of their signal supports. This lowest contract determines the initial

value for the differential equations that govern how much rent Pi bids for each type of the

agent, θ.

Definition. The lowest contract, (e(·),U(θ)) is defined as:

e(·) := lim
x→xi

e∗i (·|x); for i = 1, 2

U(θ) = lim
x→xi

U∗i (θ|x); for i = 1, 2
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where xi is the infimum of Pi’s signal space.

Throughout the rest of the paper, I put conditions that the lowest contract satisfy the

monotonicity constraint, it allocates an inefficient effort level for all interior types of the

agent, and the efficient level for the lowest type.

Condition 1. e(·) is continuous and differentiable over [θ, θ̄], and e
′
(θ) > −1, for all

θ ∈ [θ, θ̄].

Condition 2. In any regular equilibrium, e(θ) = eFB, e(θ) < eFB for all θ ∈ (θ, θ̄), and

U(θ) = 1
2

+ θ.

We will look at regular equilibria where in all equilibrium contracts, the effort allocation

is efficient for the lowest type who gets the total surplus generated, and the effort level is

inefficient for all interior types. If we start from a lowest contract where principals offer

efficient effort allocations for all types, then the only equilibrium is where they both offer

the same contract regardless of their realized signals. Condition 2 is required to have an

equilibrium where principals choose non-constant strategies based on their signals.

Next, it is useful to formalize some tools that allow the contracting problem to be dis-

cussed in terms of a common values auction. I make use of these terms in proving results

for the competitive screening game, through using results from auction theory.

Definition. The actual value to principal Pi of obtaining agent of type θ, given Pi’s

realized signal x and P ′−is realized signal y, is

R̂i(θ|x, y) :=

θ̄w

θ

[{
e∗i (q|x) + q − e∗i (q|x)2

2
−

qw

θ

e∗i (t|x)dt

}
1{U∗−i(q|y)<U∗i (q|x)}

]
dFi(q|x, y)
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This term is the expected payoff to the principal generated from all types of the agent

above θ, under the optimal contract when the principal’s own signal is x and the opponent’s

signal is y.

It will also be useful sometimes to define this function without the indicator. So let’s

define:

Ri(θ|x, y) :=

θ̄w

θ

{
e∗i (q|x) + q − e∗i (q|x)2

2
−

qw

θ

e∗i (t|x)dt

}
dFi(q|x, y)

Definition. The interim value to principal Pi, conditional on winning, of obtaining agent

of type θ, given her realized signal x, is

Vi(θ|x) :=

∞w

−∞

({
R̂i(θ|x, y)

}
1{U∗−i(θ|y)<U∗i (θ|x)}

)
dG−i(y|x)

The interim value is Pi’s expected payoff given her realized signal in the equilibrium

from all agent types above θ, where the expectation is taken over the agent’s types and the

opponent’s signal realizations, conditional on Pi winning.

Definition. The ex ante value to principal Pi, conditional on winning, of obtaining agent

of type θ, is

Vi(θ) :=

∞w

−∞

Vi(θ|x)dSi(x|θ)

The ex ante value is the expected interim value for agent type θ, where the expectation

is taken over all possible signal realizations for Pi given the agent’s type is θ.

Now I present the main result for the static game with competition, that highlights the

role of competition on the agent’s equilibrium payoff. Unlike in the monopoly benchmark,
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in a regular equilibrium with competition, the agent’s payoff is increasing in the principals’

signals, which mean favorable beliefs are beneficial for the agent’s payoff.

Proposition 2. In any regular equilibrium of the static game, for any agent type θ ∈

(θ, θ̄), U∗i (θ|x) is strictly increasing in x, for i = 1, 2.

Proof. First of all, suppose that in the equilibrium the opponent principal P−i is playing

a strictly increasing strategy in her signal for all θ ∈ (θ, θ̄), that is, U∗−i(θ|y) is strictly

increasing in y for all θ ∈ (θ, θ̄).

We consider principal Pi’s equilibrium strategy after receiving signal x. Now pick an

arbitrary θ ∈ (θ, θ̄). Let u = U∗i (θ|x).

We can separate out the principal’s payoff coming from agent types below θ, from the

ones above θ. This is useful because this allows us to focus on the effect of changing u only

on the associated change in winning probability for types above θ. That is,

πi(x) =

∞w

−∞

θw

θ

({
e∗i (q|x) + q − e∗i (q|x)2

2

}
1{U∗−i(q|y)<U∗i (q|x)}

)
dFi(q|x, y)dG−i(y|x) + πi(θ|x;u)

+

∞w

−∞

({
R̂i(θ|x, y)

}
1{U∗−i(θ|y)>U∗i (θ|x)}

)
dG−i(y|x)

where

πi(θ|x;u) =

∞w

−∞

({
R̂i(θ|x, y)

}
1{U∗−i(θ|y)<U∗i (θ|x)} − u

)
dG−i(y|x)

Notice that the benefit of marginally increasing u in the form of increasing the probability

of winning all agents of type θ or above, can be captured by the term πi(θ|x;u), because as

u = U∗i (θ|x), and for any θ
′ ∈ [θ, θ̄], U∗i (θ

′|x) = U∗i (θ|x) +
θ
′

r

θ

e(q)dq, increasing u increases
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the rent offered to all types between θ and θ̄, and given P−i is playing a strictly increasing

strategy, increasing the rent for all types between θ and θ̄ increases the probability of winning

all types between θ and θ̄.

Because P−i is playing a strategy that is strictly increasing in her signal, we can write5

πi(θ|x;u) =

U∗
−1

−i (u)w

−∞

{
R̂i(θ|x, y)− u

}
dG−i(y|x)

It is easy to see that in any equilibrium, no principal would ever offer a contract that

specifies e∗i (θ|x) > eFB = 1, because there are always profitable deviations that offer

e∗i (θ|x) = eFB, and adjusts the payment accordingly so that U∗i (θ|x) remain unchanged and

total surplus goes up, thereby increasing the principal’s payoff without affecting the agent’s

incentive constraints or choice of contract. Now, for any θ > θ, as long as e∗i (θ|x) < eFB,

because signals are affiliated, for any pair of signals (x, y), Ri(θ|x, y) is strictly increasing

in x,by the same proof as that of part 3 in proposition 1. Because P−i is playing a strictly

increasing strategy, there are signals y ∈ (−∞, U∗−1

−i (u)] of P−i such that for q ∈ (θ, θ̄) the

indicator 1{U−i(q|y)<Ui(q|x)} equals 1. Hence, Vi(θ|x) =
U∗
−1

−i (u)r

−∞
R̂i(θ|x, y)dG−i(y|x) is strictly

increasing in x.

Now, we can rewrite πi(θ|x;u) = G−i

[(
U∗
−1

−i (u)
)
|x
]

(Vi(θ|x)− u).

By taking the cross-partial derivative in Pi’s own signal x and bid u, we can see that

∂2πi
∂u∂x

= g−i

[(
U∗
−1

−i (u)
)
|x
] 1

U∗
′

−i
(
U∗
−1

−i (u)
)Vx

We assumed that the distribution of signals has strictly positive density everywhere within

the domain, we assumed the opponent is playing a strictly increasing strategy in her signal,

5Here U∗−1

−i (u) refers to the signal of P−i that induces her to offer rent u, for agent type θ.
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and we showed Vi(θ|x) is strictly increasing in x. All of these together imply that that

πi is strictly supermodular in (x;u). By Theorem 2.1 in Edlin & Shannon (1998) and the

monotonicity theorem in Milgrom & Shannon (1994), we can say that U∗i (θ|x) is strictly

increasing in x. Because θ was arbitrarily chosen from (θ, θ̄), this holds for all θ ∈ (θ, θ̄).

Because Vi(θ|x) is positive whenever e∗i (q|x) < eFB for some q ∈ [θ, θ̄], there cannot be a

regular equilibrium in which Pi plays constant bidding strategy U∗i (θ|x) for some realizations

x, because if the constant bidding is for some e∗i (θ|x) < eFB, there is an atom at that effort

level and P−i can get a positive payoff by placing an atom at e∗i (θ|x) + ε and by making ε

small enough, which makes Pi’s strategy suboptimal. If there is constant bidding at some

signal realization x with e∗i (q|x) = eFB for all q ∈ [θ, θ̄], then a profitable deviation exists by

choosing a smaller e∗i (θ|x) because by condition 2, in a regular equilibrium e(θ) < eFB, so for

a positive measure of signal realizations, P−i offers a less than first-best contract, therefore

reducing e∗i (θ|x) increases payoff because Pi can still win for some signal realizations of

P−i, which makes it a profitable deviation. Finally, because Vi(θ|x) is strictly increasing in x

whenever e∗i (q|x) < eFB for some q ∈ [θ, θ̄], both principals cannot play a decreasing strategy

for any signal realizations, because Pi can increase her payoff by placing an atom at some

e∗−i(θ|y) where P−i plays a decreasing strategy for y.

�

Unlike in the monopoly setting, where the principal has no benefit from offering rent to

the agent, under competition the principals can increase the probability of winning the agent

by offering more rent to the agent. Two factors pin down the increase in rents offered to the

agent in terms of the principal’s signal. First, just as in the monopolist principal benchmark,

for any given interior agent type, a higher signal increases the principal’s expected payoff
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from hiring the agent, so the agent becomes more valuable for the principal to hire. This

leads to the principal wanting to increase the probability of winning the agent, which is

done by increasing the rent offered to the agent. Second, because both principals’ signals

are affiliated with the agent’s type, they are affiliated with each other, so a higher signal

makes it more likely from the principal’s perspective that the other principal also received a

higher signal, which in this equilibrium means that the other principal is more likely to bid

a higher rent. Therefore, in order to win the agent, the first principal must also offer higher

rent to the agent. Both of these forces work in the same direction, therefore with a higher

signal realization, principals offer more rent to all interior agent types.

Following is a couple of useful results that follow from proposition 2.

Corollary 1. In any regular equilibrium, U∗i (θ|x) is nondecreasing in x, for i = 1, 2.

Proof. Take any x < x
′
. Suppose towards a contradiction that U∗i (θ|x) > U∗i (θ|x′),

and let the difference be δ = U∗i (θ|x) − U∗i (θ|x′) > 0. By proposition 2, for any θ > θ, we

must have U∗i (θ|x) < U∗i (θ|x′), which means U∗i (θ|x) +
θr

θ
e∗i (q|x)dq < U∗i (θ|x′) +

θr

θ
e∗i (q|x

′
)dq.

So δ <
θr

θ
e∗i (q|x

′
)dq −

θr

θ
e∗i (q|x)dq. But as θ → θ, this inequality cannot be satisfied for

δ > 0 because by condition 1, in a regular equilibrium contracts are continuous functions of

θ and hence their integrals cannot have a discrete jump in value. Therefore U∗i (θ|x) must be

nondecreasing in x. �

Corollary 2. In any regular equilibrium, for all θ ∈ (θ, θ̄), e∗i (θ|x) is strictly increasing

in x, for i = 1, 2.

Proof. Notice that in any regular equilibrium we must have U∗i (θ|x) = 1
2

+ θ for all

x. Towards a contradiction, suppose not. By proposition 2, U∗i (θ|x) is strictly increasing
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in x, and by condition 2 and corollary 1, U∗i (θ|x) ≥ 1
2

+ θ. If U∗i (θ|x) > 1
2

+ θ, and

e∗i (θ|x) = eFB for all θ, then Pi is making a negative payoff so can benefit by decreasing

U∗i (θ|x). If e∗i (θ|x) < eFB for some θ, then it is profitable for Pi to decrease U∗i (θ|x) and

increase e∗i (θ|x) as to keep U∗i (θ|x) unchanged, but this increases total surplus so increases

Pi’s payoff. So we must have U∗i (θ|x) = 1
2

+ θ for all x. We know that for any θ > θ,

U∗i (θ|x) = U∗i (θ|x)+
θr

θ
e∗i (q|x)dq. By proposition 2, ∂

∂x
(U∗i (θ|x)) > 0, and U∗i (θ|x) is constant

in x, so ∂
∂x

(U∗i (θ|x)) =
θr

θ

∂
∂x

(e∗i (q|x)) dq > 0, and because this holds for all θ > θ, it follows

that in a regular equilibrium the allocated effort level, e∗i (θ|x) is strictly increasing in x. �

As proposition 2 shows, a higher signal induces principals to offer more rent to the agent.

The way principals offer higher rent in a regular equilibrium is through offering higher

effort allocations to the agent. The alternative is paying higher wages without increasing

efficiency, which is less profitable, because increasing effort to a more efficient level increases

total surplus, so for the same increase in rent for the agent, the principal can benefit more

in terms of capturing the added surplus.

Having proven in proposition 2 that in any regular equilibrium the bids for all interior

types of the agent are strictly increasing in the principal’s signal, and because both principals

have a common lowest contract, it is now possible to define a correspondence between realized

signals of the two principals, based on their optimal bidding strategies. For some given θ > θ,

and for any realized signal x of Pi, we can find the corresponding realization y of P−i that

makes her bid the same amount. We will call this the tying function. The tying function

Qi(·) maps Pi’s realized signals to P−i’s corresponding realized signal that induces P−i to

bid the same amount. We also define the inverse bidding functions. Both of these are

well-defined by proposition 2. The following definitions are used to formalize this.
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Definition. For an arbitrary θ > θ, the inverse bidding function φi(·) is defined as

φi(u) := U∗
−1

i (u)

That is, if U∗i (θ|x) = u, then φi(u) = x.

Definition. For an arbitrary θ > θ, for any signal x of Pi, define the tying function

Qi(x) as

Qi(x) := φ−i (U
∗
i (θ|x))

Definition. For an arbitrary θ > θ, for any signal x of Pi and signal y of P−i, define

the total value of obtaining agent of type θ as

R̃i(θ|x, y) :=

θw

θ

({
e∗i (q|x) + q − e∗i (q|x)2

2

}
1{U∗−i(q|y)<U∗i (q|x)}

)
dFi(q|x, y) + R̂i(θ|x, y)

The following result formalizes how each principal’s bidding strategy is determined based

on her signals as well as the other principal’s bidding strategy. It is also useful in establishing

the existence of equilibrium in the static game.

Proposition 3. Given a common lowest contract e(·) for both principals, the tying func-

tion for an arbitrary θ > θ is the solution to the following differential equation:6

dQi(x)

dx
=

{
R̃−i (θ|Qi(x), x)− U∗−i(θ|Qi(x))

R̃i (θ|x,Qi(x))− U∗i (θ|x)

}
si(x)

s−i(Q(x))

G−i(Qi(x)|x)

Gi(x|Qi(x))

6where G−i(·|x) is the cumulative distribution of P−i’s signal given Pi’s signal x, and si(·) is the prior

unconditional density function of Pi’s signal, that is, si(x) =
θ̄r

θ
si(x|θ)dF (θ)
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With the associated initial condition Qi(xi) = x−i

And the associated equilibrium bid profile is characterized by:

U∗i (θ|x) =U(θ) +

xw

−∞

R̃i(θ|t, Qi(t))dL(t|x)

U∗−i(θ|y) =U∗i
(
θ|Q−1

i (y)
)

where L(t|x) := exp

(
−

xr

t

gi(s|Qi(s))
Gi(s|Qi(s))ds

)
, and U(θ) is the type-θ agent’s payoff under a

lowest contract satisfying conditionss 1 and 2.

Proof. See appendix. �

1.4.2. Existence of Regular Equilibria

Taking any lowest contract that satisfies conditions 1 and 2 as the boundary condition,

we can write down a differential equation for each principal using the tying function from

proposition 3, which pins down, for any given θ, how Ui(θ|x) must be increasing in x. This

differential equation takes Ṽi(θ|x) :=
Qi(x)r

−∞
R̃i(θ|x, y)dG−i(y|x) as given, and using it we can

write down an expression for Ui(θ|x) in terms of Ṽi(θ|x). For some given signal x, we can

then write down the optimal bid for two interior agent types
ˆ̂
θ and θ̂, then by taking the

limit as
ˆ̂
θ → θ̂, we can set it up as a calculus of variations problem using the observation that

U
′
i (θ|x) = ei(θ|x) where the derivative is taken with respect to θ, along with the boundary

conditions ei(θ) = ei(θ̄) = eFB. Because the integrand in the principal’s maximization

problem is concave in ei(·|x) and Ui(·|x), a solution exists to the maximization problem.
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1.4.3. Other Equilibria

Apart from regular equilibria, where principals offer contracts based on their signals, there is

an equilibrium in constant strategies. In this equilibrium, both principals offer the efficient

effort allocation to all types of the agent, and all of the surplus generated to the agent as rent.

However, unlike the regular equilibria, this equilibrium is in weakly dominated strategies,

because both principals receive a payoff of zero, principal Pi can deviate by choosing a

distorted contract and still receive the same payoff. However, in that case, it is no longer

a best response for P−i to offer the first-best contract. Therefore, this equilibrium is not

robust to perturbations in principals’ strategies.

Proposition 4. (Price war equilibrium) Both principals offering the first-best contract

to all agent types, and offering all the surplus to the agent is an equilibrium in the static

game.

Proof. See appendix. �

1.4.4. Accuracy of Principals’ Information

We now look at how the informativeness of the principals’ signals affects the payoff of the

agent. In the terminology used in auction theory, this is analyzing the expected revenue under

different signal structures. Note that we are still in a pure common value environment, which

keeps the analysis more tractable than with a general interdependent values setting.

As shown previously, a principal’s expected payoff is supermodular in her signal and

bid, and higher signals result in higher optimal bids. The principal’s decision problem is

therefore a monotone decision problem. The most common approach to modeling quality

of information is Blackwell’s “sufficiency” criterion, whereby one signal is more informative
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than another if the less informative signal is constructed by “garbling” the more informative

one, meaning the better informed principal cannot learn anything from the less informative

signal. Not only is this a very restrictive setting which does not allow ranking a wide range

of signal structures where intuitively some signals seem more informative than others, it

is also not very tractable in an affiliated information setting. A more general (and more

convenient) notion of informativeness is what’s called “accuracy” in Persico (2000), which

first appeared in Lehmann (1988). In terms of notation of the signal structures, here we will

drop the subscripts for the principals and replace them with superscripts as accuracy levels

{αi}i=1.2

Definition. Given two signal structures Sα1(·|θ) and Sα2(·|θ), both of which are affiliated

with the parameter θ, we say that Sα1(·|θ) is more accurate than Sα2(·|θ) if

Tα1,α2,θ(x) := Sα
−1
1 (Sα2(x|θ)|θ)

is strictly increasing in θ, for all signals x.7

Here, Tα1,α2,θ(x) is the signal y with accuracy α1 which is the corresponding signal to

signal x with accuracy α2 under the parameter θ in the sense that the probability of getting

a signal no higher than y under structure Sα1 is the same as the probability of getting a

signal no higher than x under structure Sα2 . Suppose we take any signal x from Sα2 , find

the corresponding signal y from Sα1 when the underlying parameter is θ. For a higher

parameter θ′ > θ, for the same signal x from Sα2 , the new corresponding y′ from Sα1 will

be to the right of y if Sα1 is more accurate than Sα2 . One way to understand this notion of

7Here we impose “strictly increasing” as opposed to “non-decreasing”, this is without loss because we have
an unbounded signal space in our setup.
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informativeness is that given both signals are affiliated with θ, both of them will respond to

an increase in θ by redistributing probabilities and by putting more probability mass to the

right. The more accurate signal structure responds “more”, in the sense that for an equal

increase in the parameter θ, the more accurate signal structure shifts more probability to

the right compared to the less accurate one. As explained in Persico (2000), this can also be

understood by noticing that the transformation Tα1,α2,θ(x) varies together with θ, meaning

by plugging in the same signal x, for a low θ, the transformation gives us a lower signal y

compared to a higher signal y′ when θ is high. In this way, the transformed signal is more

correlated with the parameter, hence “more accurate”.

Now consider a symmetric setting with α1 = α2 = αS. Contrast that with an asymmetric

setting where α1 > α2 = αS. For an arbitrary type of the agent θ > θ, let
{
US
i (θ|·)

}
i=1,2

be

the payoffs offered to the agent under equilibrium contracts in the symmetric setting, and{
UD
i (θ|·)

}
i=1,2

be the payoffs offered in the setting with different accuracy levels. Let US
i (θ)

be the expected payoff offered to agent type θ in the symmetric equilibrium by Pi, where

the expectation is taken over all realizations of the signal. That is,

US
i (θ) =

∞w

−∞

US
i (θ|x)dSi(x|θ)

And similarly define UD
i (θ) for the asymmetric case.

Just as in section 4, for an arbitrary θ > θ, when P−i is using an increasing strategy

U−i(·), we can write down Pi’s payoff from bidding u after receiving signal x as:

πi(x, u) =

U−1
−i (u)w

−∞

{
R̂i(θ|x, y)− u

}
dG(y|x)
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Let’s define Πi(α) := max
u

∞r

−∞
πi(x, u)dSi(x|θ) under the signal Xα where α denotes the

accuracy level.

By proposition 2, in a regular equilibrium P−i indeed does use an increasing strategy,

and as shown in the proof of proposition 2, this implies that this payoff is supermodular in

(x, u), which implies that it has the single-crossing property in (x, u). We now restate an

important result from Lehmann (1988) that links the accuracy of signals with payoffs having

the single-crossing property.

Lemma 2. Suppose signals Xα1, Xα2 are affiliated with θ. Then, Xα1 is more accurate

than Xα2 if and only if for all payoffs π(x, u) having the single-crossing property, Π(α1) >

Π(α2)

Proof. See Lehmann (1988). �

Proposition 5. In any regular equilibrium, UD
i (θ) < US

i (θ) for any θ > θ, for i=1,2.

Proof. See appendix. �

The intuition here is the following. In both settings, we are looking at a competition

analogous to a common-value auction. Therefore there will be a winner’s curse effect active in

either situation. However, in the symmetric information setting, after winning, the winning

principal will only know that her opponent’s signal was lower than that of hers. This could be

because she herself received an unusually high signal and the agent’s type is actually quite low

(winner’s curse), or it could be that her opponent got an unlikely low signal and the agent’s

type is actually quite high. Because both possibilities exist in the symmetric information

setting, the winner’s curse is weaker compared to the setting with asymmetrically informed

principals. In the asymmetric setting, after winning, the less informed principal will induce
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that it’s more likely that her signal was unusually high and the agent’s realized type is more

likely to be low, because the other principal received a more accurate signal. Therefore the

less informed principal must bid pessimistically enough to account for this stronger winner’s

curse, and knowing this, the informed principal will also lower her bid. This leads to overall

lower utility (revenue) for the agent regardless of his type.

1.5. The Two-period Game

Suppose now that the game is repeated in a second period, where in period 1, the agent’s

type, θ1, is realized from the distribution F (·), whereas in period 2, his type, θ2, is realized

from the distribution F (·|θ1). In the two-period setting with only short-term contracts, we

will assume that all players maximize the undiscounted sum of their payoffs over the two

periods.

Assumption 3. θ1 and θ2 are affiliated.

Assumption 3 says that for any θ
′
1 > θ1, F (·|θ′1) stochastically dominates F (·|θ1) in

the likelihood ratio sense. This.captures the connection between the agent’s productivity

in period 1 and his productivity in period 2. This assumption means that a higher ability

agent in period 1 is also more likely to be higher ability in period 2, and thus any information

learned by the principals in period 1 about θ1 is useful in period 2 as well.

In the repeated game, payoffs are the same for each period as in the static game. For

the two-period setting, as described in section 2, we denote Pi’s information structure at the

end of period 1 as Ii.
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Let U∗i2(θ2|m) be the expected equilibrium payoff offered by Pi in the second period to

the agent of realized type θ2, when the public message m was sent in the first period. That

is,

U∗i2(θ2|m) =

∞w

−∞

U∗i2(θ2|m,x)dSi(x|θ2)

Let U2(θ2|m) denote the expected payoff of type θ2 when message m was sent; that is,

U2(θ2|m) is the expected value of the higher of the two payoffs offered by the principals.

When in the first period, Pi offers a contract that specifies for a given θ1 its allocated

effort level ei1(θ1) together with wi1(θ1) and mi(y1(θ1)), let UTP
i (θ̂1|θ1) denote the agent’s

two-period expected payoff when he chooses to work with Pi in the first period, and mimics

type θ̂1. Therefore,

UTP
i (θ̂1|θ1) = wi1(θ̂1)− C

(
ei1(θ̂1|θ1)

)
+

θ̄w

θ

{
U2

(
θ2|mi(y1(θ̂1))

)}
dF (θ2|θ1)

= wi1(θ̂1) +

θ̄w

θ

{
U2

(
θ2|mi(y1(θ̂1))

)}
dF (θ2|θ1)− C

(
ei1(θ̂1|θ1)

)
d

dθ̂1

(
UTP
i (θ̂1|θ1)

)
= w

′

i1(θ̂1)−
(
C
′
(
ei1(θ̂1|θ1)

))(
ei1(θ̂1) + 1

)
+

θ̄w

θ

[
d

dθ̂1

{
U2

(
θ2|mi(y1(θ̂1))

)}]
dF (θ2|θ1)

Similar to Lemma 1, by applying the requirement for first period local incentive compat-

ibility, we get
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w
′

i1(θ1) =
(
C
′
(e∗i1(θ1))

)
e∗
′

i1(θ1) + C
′
(e∗i1(θ1))−

θ̄w

θ

[
d

dθ1

{U2 (θ2|mi(y1(θ1)))}
]
dF (θ2|θ1)

Which means,

U
′

i1(θ1) = e
′

i1(θ1)−
θ̄w

θ

{
d

dθ1

(U2 (θ2|mi(y1(θ1))))

}
dF (θ2|θ1)

This leads to the necessary envelope condition for first-period incentive compatibility:

Ui1(θ1) =

θ1w

θ

ei1(q)−
θ̄w

θ

(U2(θ2|mi(y1(q))) dF (θ2|θ1)

 dq

However, without knowing the shape of mi(·), we cannot say whether this envelope

condition is sufficient for incentive compatibility.

1.5.1. Non-Disclosure Policy

Now consider a second-period situation where Pi employed the agent in the first period. In

the second period, at the time of offering contracts, Pi may have learned some information

about θ1 through her contractual relationship with the agent in the first period. Because θ1

and θ2 are affiliated, any such information is also informative of the agent’s second period

type θ2. This is an informational advantage that the first period employing principal may

have over the outsider principal, in case the informational learned through the first period

contractual relationship, Ci, is nonempty. We model this by assuming that under a non-

disclosure policy (where Mi = φ), Pi’s second-period information has accuracy level αi2 > αS,
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where αS is the accuracy level of the outsider principal’s information, and the accuracy level

of both principals’ information in period 1.

Proposition 5 illustrates that we cannot have a first period separating equilibrium in the

setting with non-disclosure, because the required high-powered incentive in the first-period

will attract lower types to mimic as higher types, and to “take the money and run”. This is

the Ratchet effect as described in Laffont & Tirole (1988).

Assumption 4. Under a non-disclosure policy, if Ci is nonempty, then in the second

period, the accuracy levels of signals satisfy αi2 > α−i2 = αS.

We now focus on what this implies about possible equlibria in the two-period game.

Proposition 6. In the two-period game under non-disclosure, there does not exist an

equilibrium where the agent fully reveals his type to the employing principal in the first period.

Proof. See appendix. �

This is simply an instance of the ratchet effect as in Laffont & Tirole (1988). Even though

unlike that paper (which has a monopolist principal offering a spot contract to the agent),

we have competition in our setting, as long as we do not have second period competition

between symmetrically informed principals, the ratchet effect persists. Because as we see

in proposition 6, the agent’s second-period payoff will be lower if he completely reveals his

type to the employing principal in the first period, so he has an extra incentive to not reveal

his type. Only monetary incentives are ineffective in overcoming this ratchet effect problem,

because without long-term commitment, nothing stops lower types to mimic higher types

and take the extra money in the first period.
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1.5.2. Disclosure Policy

Under the disclosure policy, the employing principal in the first period can commit to sending

a public message containing any information learned in period 1. We will assume that the

principals’ second period signals are of symmetric accuracy, therefore using a public message,

the first period incumbent principal can give away any informational advantage.

Assumption 5. Under the disclosure policy, principals in the second period receive sym-

metric signals.

Proposition 7. In the repeated game under disclosure, there exists a regular equilibrium

where the agent fully reveals his type to the employing principal in the first period, and the

employing principal chooses to publicly reveal the agent’s first-period type.

Proof. When both principals and the agent play the strategies under this separating

equilibrium, in the first period, Pi would choose mi(y) = θ1 such that y = e∗i1(θ1) + θ1. In

this case, mi(y) is a sufficient statistic for IDi because in the second period, the realization of

the agent’s first-period type is the only piece of information from IDi which is payoff-relevant.

When choosing Pi’s contract in the first period and exerting effort e∗i1(θ1), an agent of type

θ1 can get a two-period expected payoff of

UTP
i (θ1) = U∗i1(θ1) +

θ̄w

θ

US(θ2|θ1)dF (θ2|θ1)

where US(θ2|θ1) is the θ2 type agent’s expected payoff in the second period when both

principals receive symmetric signals and update their beliefs to Fi(·|θ1, xi), where xi is the

realization of Pi’s signal in the second period. Because principals update their beliefs using

Bayes’ rule, and by assumption 3, for any θ
′
1 > θ1, F (·|θ′1) stochastically dominates F (·|θ1)
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according to the monotone likelihood ratio, applying proposition 2, we get that US(θ2|θ
′
1) >

US(θ2|θ1) for all θ2 ∈ (θ, θ̄]. Moreover, for any θ
′
2 > θ2, because

d

dθ1

US(θ
′

2|θ1) =

θ
′
2w

θ

d

dθ1

eS(q|θ1)dq >

θ2w

θ

d

dθ1

eS(q|θ1)dq =
d

dθ1

US(θ2|θ1)

and because F (·|θ′1) first order stochastically dominates F (·|θ1), we have that

θ̄w

θ

d

dθ
′
1

US(θ2|θ
′

1)dF (θ2|θ
′

1) >

θ̄w

θ

d

dθ1

US(θ2|θ1)dF (θ2|θ1)

which means that the marginal benefit of disclosure is higher for higher first period types.

We can thus say that incentive-compatibility in the two-period game requires that for

any θ
′
1 > θ1,

Ui1(θ
′

1) = Ui1(θ1) +

θ
′
1w

θ1

ei1(q)−
θ̄w

θ

US(θ2|q)dF (θ2|θ
′

1)

 dq

In particular, we can thus write down the first period rent that needs to be paid for any

type θ1 as

Ui(θ1) = Ui(θ) +

θ1w

θ

ei1(q)−
θ̄w

θ

US(θ2|q)dF (θ2|θ1)

 dq

Notice that this is smaller than the required rent in the static game. For any choice of

first-period effort allocation ei1(·), the principal can adjust the payment accordingly so that

this IC requirement is satisfied.

We still need to show that the principal cannot do better by choosing a first-period

contract that involves pooling, and a message rule that does not completely reveal the
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agent’s type. Based on the linkage principle in Milgrom & Weber (1982)8 we know that the

agent’s second period rent will be highest when the maximum possible information is publicly

available, and as can be seen from the IC requirement above, the first period principal can

extract the incremental rent the agent can get in period 2 from improving public information

about his type in the first period. In the first period, suppose U∗i1(θ1|x) is the two-period

payoff-maximizing bid offered by Pi. Because

US(θ2|θ1) = EXj
[
max
j=1,2

{
U∗j2(θ2|θ1)

}]
≥ EXi [U∗i2(θ2|θ1)]

Lastly, given this is a symmetric contract, if P−i offers a separating contract, and by

condition 2, the lowest contract satifies the monotonicity constraint, it is optimal for Pi to

also offer a separating contract.

Pi can maximize her two-period payoff by choosing a separating equilibrium and revealing

all information learned in the first period. �

Committing to disclosure of information has two effects on both total surplus and the

incumbent principal’s payoff. First, by committing to disclose information to her opponent,

the principal implicitly commits to bid aggressively for the agent in period 2. That is,

the principal commits to pay the agent more rent in period 2, relative to the case with no

disclosure. But by corollary 2 of proposition 2, the principal optimally promises rent to the

agent by asking that agent to exert more effort. Higher effort increases total surplus, so

more aggressive bidding in period 2 implies higher total surplus. The incumbent principal

can extract some of this future surplus by paying lower wages in period 1. Consequently,

both principals earn higher expected ex ante payoffs in an equilibrium with disclosure. Note

8Especially Theorem 17 in Milgrom &Weber (1982) and Theorem 7 in Milgrom &Weber (1982b).
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that principals cannot fully extract the additional surplus created from disclosure, since

they compete with one another. However, they earn at least part of the additional surplus

whenever that competition is imperfect, as it is when each of them has private information

about the agent’s ability.

Second, committing to disclosure increases the slope of the agent’s expected second period

rent as a function of his first period type. Consequently, with disclosure, it is cheaper to

incentivise higher ability agents to separate from the lower ability agents, this second effect

mitigates the ratchet effect problem, and allows principals to offer screening contracts in the

first period.

1.6. Extensions

1.6.1. More Than Two Principals

It is natural to think about implications of having stronger competition for the agent when

there are N > 2 principals. As in auction theory, the analysis of this situation is very similar

to the two principals case. From each principal’s perspective, the relevant belief about

the opponents’ bidding behavior is only the distribution of the highest of the N − 1 other

principals’ bid. The inverse bidding function φ−i(u) that is used to map the opponent’s bid

to her signal needs to be modified to be φY1(u), which is the inverse bidding function that

maps the highest of the N − 1 bids to a random variable Y1 which is the signal associated

the highest bid. That is, U∗Y1
(·|·) is the bidding strategy Pi bids against, where for a given

agent type θ, and for signal realization y,

U∗Y1
(θ|y) = max

j 6=i
U∗j (θ|y)
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The effect of increased competition in this way is straightforward. As seen earlier, with

2 principals, the best response to a more aggressive bidding strategy from the opponent is

to become more aggressive. When there are more than two principals, the highest of the

other principal’s bids is higher as we are now considering the first order statistic of N − 1

other bids. The outcome is that each principal bids more aggressively, and as N → ∞ the

contract offered by Pi approaches the first-best contract given any realization of her signal,

and the agent gets all of the surplus he generates.

For this part we will again assume that all signals are affiliated with the agent’s type θt.

Assumption 6. Xit is affiliated with θt, for i = 1, ......, N

Here we will show that the analog of proposition 2 for N > 2 principals holds; that is,

with more than 2 principals, the utility offered to the agent by each principal is strictly

increasing in the principal’s signal realization. Before establishing this result, we state a

useful lemma which is part of theorem 2 in Milgrom & Weber (1982).

Lemma 3. Xit and Y1t are affiliated.

Proof. See Milgrom & Weber (1982). �

Because in the one-period game with N > 2 principals, from Pi’s perspective, the maxi-

mization problem is the same as in the two principal case with Y1 being the relevant signal,

and because Xi and Y1 are affiliated, the following analog for proposition 2 holds.

Proposition 8. In the one-period game with competition between N principals, for any

agent type θ ∈ (θ, θ̄), U∗i (θ|x) is strictly increasing in x, for i = 1, ......, N .



44

1.6.2. Short-lived Principals

Consider a two-period setup where there are N1 ≥ 1 principals active in the first period,

and N2 ≥ 2 principals active in the second period. This means there is competition among

principals in the second period. We can have a set of active principals in period 1, P1, and

a set of principals active in period 2, P2. It may be that some of the principals belonging

to P1 are also in P2, while some are not, and P2 can have principals that are not in P1. So

some principals may be short-lived, while others may be long-lived, and there may be some

who are only active in period 2. However, the set of active principals in each period is fixed

at the beginning of the game, so there are no entry or exit decisions made by principals. In

this setup, in a disclosure setting, that is, in the first period, letting the message space be

MD
i , there is a fully separating equillibrium in the two-period game.

Proposition 9. In the repeated game under disclosure with sets of principals P1 and

P2, there exists a regular equilibrium where the agent fully reveals his type to the employing

principal in the first period, and the employing principal chooses to publicly reveal the agent’s

first-period type.

Proof. Under the strategies described, if Pi ∈ P1 employs the agent of type θ1 in the

first period and chooses message mi(y) = θ1 such that y = e∗i1(θ1)+θ1. Because θ1 and θ2 are

affiliated, and N2 ≥ 2, US(θ2|θ1) is strictly increasing in θ1, by propositions 2 and 8. Similar

to proposition 7, under the revealing public message, the agent’s first period IC constraints

under Pi’s contract can be written as

Ui(θ1) = Ui(θ) +

θ1w

θ

ei1(q)−
θ̄w

θ

US(θ2|q)dF (θ2|θ1)

 dq
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This means Pi can extract the incremental rent the agent gets in the second period

by adjusting the payment accordingly in the first period. If Pi /∈ P2, then it is clearly

beneficial for Pi to maximize the agent’s second period payoff by revealing all information and

extracting it in the first period. If Pi ∈ P2, because US(θ2|θ1) = EXj
[
max
j∈P2

{
U∗j2(θ2|θ1)

}]
≥

EXi [U∗i2(θ2|θ1)], it is still profitable for Pi to reveal the agent’s type. �

1.6.3. Public Output

When the agent works with Pi in the first period, generates output y which is publicly

observable, but the contract he was offered is not publicly observed, this may lead to a

setting where Pi still has an informational advantage over the other principal because she

may infer the agent’s first-period type more accurately as she knows what contract the agent

chose, while P−i can only use a probability distribution over Pi’s signal and the subsequent

contract offered by Pi. As we saw in proposition 4, such a setting does not allow for separating

contracts, as the ratchet effect is still present. When both output and contract offers are

publicly observed, this makes information structure the same as under the disclosure policy.

So similar to the disclosure setting, the first period employing principal can still capture

some of the incremental rent the agent receives in the second period due to improved public

information, because it is still the first period employing principal who is generating this

value by giving the agent to credibly signal his type.

1.7. Conclusion

The implications of public disclosure of some performance measure can be seen through

an increase in the degree of competition for the agent’s services in the future. This creates

value for the agent in the future through a reduction in the firms’ uncertainty regarding



46

the agent’s worth (winner’s curse), which leads to firms offering more efficient contracts,

generating more surplus. However, this value is being created by the principals through

their ability to credibly reveal information about the agent’s performance, and as such, the

principals will appropriate this additional surplus upfront by offering lower payment to the

agent in the first period, utilizing the agent’s incentive to work hard in the first period for the

rent in the future. As the incremental rent from better public information is higher for higher

types, this incentive is also stronger for higher types, which makes screening higher types

from lower types easier for the principal. However, because both principals can generate this

value, they compete away some of these rents to the agent, and how much of these rents the

agent gets depends on the initial level of competition.
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CHAPTER 2

Market Research and Differentiated Bertrand Competition (joint

with Colin Shopp)

2.1. Introduction

Firms learn demand in order to optimally set prices. In competitive settings, market

research not only directly informs a firm about demand for its own good, but indirectly

informs the firm about how its competitor will price in the face of uncertain demand for its

good. Firms will only perform market research to the extent that the returns from doing so

exceed the costs, and these returns may vary with the level of differentiation between one

firm’s product and its competitor’s product.

We explore this phenomenon in the context of a standard differentiated duopoly Bertrand

model with uncertain linear demand, in the style of Vives (1984). Rather than assume exoge-

nous signals of the demand intercept, we instead allow firms to covertly choose the accuracy

of their signals at some cost. We compare the level of market research in (symmetric) equilib-

rium across different levels of competition, as measured by how differentiated the goods are.

We give sufficient conditions such that endogenous market research monotonically decreases

in the level of competition, as well as sufficient conditions such that endogenous market

research is non-monotonic in the level of competition.

In this model, fixing some exogenous level of market research, a firm optimally prices by

setting an average price plus a linear function of its signal. The more accurate a firm’s signal,

the more it will condition its price on its signal. Its average price will not change, fixing the
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other firm’s behavior. As the goods become less differentiated, competition sharpens: both

firms’ prices will go down for any given signal, which lowers overall profits.

Fixing the level of competition, as one firm’s accuracy increases, its expected profits

increase through two channels. First, it is better able to match its price to demand. Second,

it is better able to coordinate its price with the other firm. Fixing average prices, one firm

would rather price high when the other firm prices high, and low when the other firm prices

low. A more accurate signal of demand is also a more accurate signal of the other firm’s price.

Because of this, if either firm’s accuracy exogenously increases, both firms will condition their

prices more on their signals. Otherwise, they will price conservatively in order to coordinate

better. At any level of differentiation (other than perfectly homogenous goods), profits for

both firms increase when either firm’s accuracy increases.

The size of the marginal return to increasing accuracy varies with the amount of com-

petition and can be broken down into two effects, which we call the competitive profit effect

and the coordination effect. Both of these effects are weighted by the sensitivity of the

firm’s price to its signal; prices compress towards marginal cost as competition increases, so

that the accuracy of a signal becomes less important fixing the other firm’s behavior. The

competitive profit effect is that as goods become less differentiated, so that both firms not

only set prices lower on average but also condition prices less on the state, the firm cannot

improve profits as much by setting high prices when the state is high and low prices when the

state is low. If a firm is a monopoly, it can better align its prices with the state by increasing

the accuracy of its signal. However, when the firm is forced to price conservatively because

of increased competition, it cannot fully take advantage of a more accurate signal to match

its price to the state.
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The coordination effect has two components in addition to the sensitivity of the firm’s

price to its signal: the substitution effect and the competitor pricing effect. The substitution

effect is that as goods become less differentiated, demand for one firm’s good is more sensitive

to the difference between the firms’ prices. It becomes more important for a firm to coordinate

its price with the other firm’s price. The competitor pricing effect moves in the other

direction. As competition intensifies, the firm’s competitor not only lowers its price after

any signal, but also compresses those prices towards marginal cost. This makes it easier to

coordinate pricing, since the firms’ prices are close even if their signals are very different.

In the extreme case of homogenous goods, prices equal marginal cost and the competitor

pricing effect is zero. At the other extreme, when goods are completely differentiated and

firms function as monopolies, the substitution effect is zero. The total coordination effect is

inverted U-shaped, so that it is highest at some intermediate level of competition.

We examine the competitive profit and coordination effects together. Marginally increas-

ing accuracy always helps firms match the state better and coordinate better. However, the

amount that it allows one firm to better coordinate with the other depends on the other’s

accuracy level. When both firms have very low accuracy, one firm marginally increasing its

accuracy does not help it coordinate much with the other firm, whose price is not very cor-

related with demand. When both firms have high accuracy, one firm increasing its accuracy

also allows it to better coordinate its price with the other firm. Thus, the relative importance

of the competitive profit effect and the coordination effect depends on accuracy levels. We

show that the competitive profit effect dominates when research costs are sufficiently high,

so that equilibrium market research is monotonically decreasing in the level of competition.

We also show that when research costs are sufficiently low, the coordination effect is large

enough that equilibrium research is highest at an intermediate level of competition.
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This paper is related to a wider literature on market research and competition. Building

on the differentiated duopoly models of Singh & Vives (1984), Vives (1984) examines whether

firms would prefer to commit to making their endogenous research public. He shows that

firms prefer to pool their information in a Bertrand setting but not in a Cournot setting.

Other models have endogenized market research, although they have tended to focus on

Cournot rather than Bertrand competition, overt rather than covert research, and on differ-

ent measures of competition than we do. For example, Hwang (1993) studies overt research

in Cournot duopolies when goods are homogenous, but firms face different costs of acquiring

information. Hwang (1995) also studies overt research in a Cournot setting with homogenous

goods, but measures competition as the number of firms as well as a somewhat idiosyncratic

“conjectural variation” model of competition. That paper finds a result qualitatively sim-

ilar to ours: firms perform the least amount of research when competition is perfect, and

perform the most amount of research either in an oligopoly or in a monopoly, depending on

the parameters. Hauk & Hurkens (2000) study covert research in a Cournot setting, where

competition is measured as the number of firms and goods are homogenous. Vives (2000)

is an excellent overview of competition more broadly, and addresses some models of market

research.

We utilize the central result of Persico (2000) in order to compare equilibrium market

research at different levels of competition. That paper shows that when signals are ordered

by accuracy, a concept first presented by Lehmann (1988), marginal returns to accuracy can

be ranked according to a relatively straightforward single crossing condition. The paper then

applies that ranking to compare information acquisition in first and second price auctions,

building on the work of Milgrom and Weber (1982). To our knowledge, this is the first direct

application of the theorem to a duopoly setting.
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The paper shares some similarities to the literature on innovation, though in our setting

market research hurts rather than helps consumers, since firms use the information to ex-

tract more surplus rather than to create better products.1 Questions about the effects of

competition on innovation have been raised and debated since seminal works by Schumpeter

(1912, 1942). We do not address this debate, except to note that Aghion et al. (2005) find

evidence of an inverted-U shape in equilibrium innovation that is qualitatively similar to

our coordination effect. Goettler & Gordon (2014) also find an inverted-U shape between

innovation and competition in their model of dynamic oligopoly with endogenous market

structure.

The rest of the paper is organized as follows. Section 2.2 contains the model. Section 2.3

applies Persico’s theorem to identify the two effects of competitiveness on returns to market

research and gives the main results. Section 2.4 concludes.

2.2. The Model

We give the timing and payoffs and review the relevant result of Vives (1984). Two

symmetric firms indexed by i each privately choose a signal distribution indexed by vi ∈

[0,∞) at differentiable cost K(vi). The state α ∼ N (ᾱ, Vα) is realized. The cdf of this

disribution, G(α), is commonly known to the firms when they choose vi. Each firm receives

a private signal realization si = α + εi, where εi ∼ N (0, vi), and ε1 and ε2 are independent.

Define ti = Vα
Vα+vi

∈ (0, 1]. Since for any Vα there is a one-to-one, continuous relationship

between vi and ti, we consider firm i to be choosing ti at cost C(ti). We assume that C(ti) ≥ 0

and C ′(ti) ≥ 0.

1We address this further in Section 2.4.
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We write the conditional distribution on α after seeing signal realization si as Gti(α|si).

For a given α′ and ti we write the conditional distribution on all signals si as F ti(si|α′). For

a given ti, we write the prior distribution on all signals si as F ti(si).

After privately receiving signals, firms simultaneously set prices p1 and p2. Following

Vives (1984), firm i faces the following linear inverse demand:2

pi = α− qi − γq−i.

Direct demand is

qi =
α

1 + γ
− 1

1− γ2
pi +

γ

1− γ2
p−i.

Goods are substitutes, i.e. γ ∈ [0, 1).3 The state α, the demand intercept, captures the level

of demand, while increasing γ decreases the level of differentiation between firms. When

γ = 0 the firms are monopolies, while as γ → 1 demand approaches perfect competition. We

normalize the marginal cost of production to be 0 for simplicity. After privately observing a

signal, each firm chooses price. Firm i earns profits piqi.

We consider Perfect Bayesian Equilibrium of this game, with firm i’s equilibrium strategy

written {t∗i , p∗i (si|ti)}. In the Bertrand competition stage, firms maximize their expected

profits given their conjecture of the other firm’s pricing strategy as a function of their signal.

Firm i’s maximization problem after receiving signal si when their signal structure is indexed

by ti and the conjectured signal structure of firm −i is indexed by t−i, is

max
pi

∞w

−∞

∞w

−∞

piqi(pi, p−i(s−i), α, γ)dF t−i(s−i|α)dGti(α|si).

2This is a special case of Vives (1984) with β normalized to 1, so that γ ∈ [0, 1] fully characterizes the level
of substitutability across firms, and with independent signals to simplify the firm’s choice of t.
3Direct demand is undefined at γ = 1, where profits are discontinuous in price.
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Equilibrium prices must be as in Vives (1984):

p∗i (si|γ, ti) = A+Biti

(
si −

ᾱ

1 + γ

)

Where

A =
ᾱ(1− γ)

2− γ

Bi =
(2 + γt−i)(1− γ2)

4− γ2t1t2
.

Anticipating this, firm i chooses ti to maximize R(ti)− C(ti), with

R(ti) ≡
∞w

−∞

∞w

−∞

∞w

−∞

p∗i (si|γ, ti)qi(p∗i (si|γ, ti), p−i(s−i|γ, t−i), α, γ)dF t−i(s−i|α)dF ti(si|α)dG(α).

We call this the market research problem and we call ti firm i’s accuracy level.

Following Persico (2000), let asymmetric marginal revenue AMRγ(t, t
′) be firm i’s mar-

ginal returns from increasing ti from ti = t when the level of differentiation is γ and firm −i

plays pricing strategy p∗−i(si|γ, t−i = t′, ti = t′), i.e. when firm −i has accuracy level t′ and

prices as if firm i also has accuracy level t′. Define marginal revenue of accuracy at level

of differentiation γ as as MRγ(t) ≡ AMRγ(t, t). Define the marginal cost of accuracy as

MC(t) ≡ C ′(t).

We focus on symmetric equilibrium in which t∗i = t∗−i = t∗(γ) and p∗i (si|γ, t∗(γ)) =

p∗−i(s−i|γ, t∗(γ)) ∀si = s−i. At such an equilibrium it must be thatMRγ(t
∗(γ)) = MC(t∗(γ)).

2.3. Returns to Market Research

This section contains the main results of the paper. We state the relevant result from Per-

sico (2000) in the framework of our model. Without directly solving for marginal returns to
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accuracy, we are able to apply the result in order to rank marginal returns to accuracy across

different levels of differentiation. We decompose relative marginal revenue from accuracy into

two components, the competitive profits component and the coordination component. We

then give two main results: (1) when the cost of accuracy, C(·), is sufficiently high, market

research in the unique symmetric equilibrium is decreasing in the level of competition, and

(2) when C(·) is sufficiently low, equilibrium market research is higher at an intermediate

level of competition than in either the monopoly or perfect competition setting. Finally, we

show that the second result extends to a setting in which the both firms’ choice of accuracy

is publicly observed.4

Let uγ(α, p
∗
i (si|γ, ti, t−i)) ≡

∞r

s−i=−∞
p∗i (si)qi(p

∗
i , p
∗
−i, α, γ)dF t−i(s−i|α). When t1 = t2 = t,

denote this as uγ(α, p
∗(s, t)). Given two payoff functions uγ′(α, p

∗
i (s, t)) and uγ′′(α, p

∗
i (s, t)),

we write uγ′ � uγ′′ if uγ′−uγ′′ has the single-crossing property, i.e. if
∂uγ′ (α,p)

∂p
crosses

∂uγ′′ (α,p)

∂p

at most once, and from below, as α increases. We write uγ′ � uγ′′ if uγ′ � uγ′′ and uγ′′ � uγ′ .

Lemma 4. For γ′ and γ′′, if uγ′(α, p
∗(s, t)) � uγ′′(α, p

∗(s, t)), then MRγ′(t) > MRγ′′(t).

Proof. See Appendix B.1. �

The lemma states that in order to compare the marginal returns of accuracy at two

different competition levels, it suffices to show that their difference satisfies single-crossing.5

Note that p∗i (si) is non-decreasing in si. In order to show for a given pair γ′,γ′′ that

MRγ′′(ti) > MRγ′(ti), it suffices to show that

∂

∂si
[uγ′′(α, p

∗
i (si|γ′′, t))− uγ′(α, p∗i (si|γ′, t))]

4We do not extend the first result to the public setting.
5See Persico (2000) for a detailed discussion.
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is increasing in α. To that end, we first examine ∂2

∂si∂α
[uγ(α, p

∗
i (si|γ, ti, t−i))] for fixed γ ∈

[0, 1), which satisfies the following.6

(2.1)
∂2

∂si∂α
[uγ(α, p

∗
i (si|, ti))] =

∂q∞
∂α

∂p∗i
∂si

+

(
∂qi
∂p−i

∂p−i
∂s−i

∂p∗i
∂si

)
.

Where q∞ denotes qi(p
∗
i , p
∗
−i(∞), α, γ).

From the equation we see that firm i’s marginal return to accuracy has two components.

Both components are weighted by the sensitivity of the firm’s optimal price to their signal,

and they are smaller if the firm’s optimal price is not very sensitive to the signal.

The first component is the competitive profit effect, CMP (t, γ) ≡ ∂q∞
∂α

∂p∗i
∂si

. This depends

on the change in expected profit as the state changes evaluated when firm −i sets its price

at ∞. When the state increases, the quantity demanded at any price also increases. As the

firm’s accuracy increases, it is better able to tailor its demand to the state, α. However, if

the firm’s are very insensitive to their signal due to either low accuracy or high competition,

then the firm cannot benefit as much from a high state. Even though this effect is evaluated

when the competing firm chooses a fixed high price, we call it the “competitive” profit effect

because it is dependent on the firm’s ability to price high and condition its price on the state,

which is determined by the level of competition.

The second component is the coordination effect, CRD(t, γ) ≡ ∂qi
∂p−i

∂p−i
∂s−i

∂p∗i
∂si

. As the firm’s

accuracy increases, it not only learns more about the state, but also learns more about the

other firm’s pricing. It is able to better coordinate its pricing with the competing firm.

6See Appendix B.2 for a derivation of this equation, which depends on our distributional and linear demand
assumptions. Arguments are suppressed for neatness.
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Fixing an average price, the firm is better off pricing high when its competitor prices high,

and low when its competitor prices low. The coordination effect measures this benefit.

The coordination effect has two components in addition the sensitivity of firm i’s price

to its signal: the sensitivity of firm i’s demand to firm −i’s price, ∂qi
∂p−i

, i.e. the substitution

effect, and the sensitivity of firm −i’s price to its signal, ∂p−i
∂s−i

, i.e. the competitor pricing

effect. The substitution effect reflects that if demand is more sensitive to firm −i’s price, it

is more important that firm i prices accordingly. As goods become less differentiated, then

the quantity a firm sells is highly dependent on the difference between the two firms’ prices.

This is magnified by the competitor pricing effect. If firm −i’s price is more sensitive to

its signal, then it is more important for firm i to coordinate signals with firm −i. A small

difference in signals leads to a large difference in prices when firm −i’s price is very sensitive

to its signal.

We now plug in equilibrium prices to Equation 2.1. For given accuracy levels ti, t−i, the

equation is equivalent to

(2.2)
∂2uγ(α, p

∗
i (si|γ, ti))

∂α∂si
=

1

1 + γ
Biti +Biti

γ

1− γ2
B−it−i.

Recall that Bi = (2+γt−i)(1−γ2)
4−γ2t1t2

. Since we are interested in symmetric equilibrium, suppose

ti = t−i = t, in which case Bi = B−i. Then Equation 2.2 is equivalent to

(2.3)
∂2uγ(α, p

∗
i (si|γ, t))

∂α∂si
=

1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

We can now examine how both CMP and CRD depend on the level of competition γ.

Proposition 10. For any t ∈ (0, 1], the competitive profit effect CMP (t, γ) is strictly

decreasing in γ.
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Proof. For t ∈ (0, 1], ∂
∂γ

[
1−γ
2−γtt

]
= −t(2−t)

(2−γt)2 < 0. �

As the environment becomes more competitive and firms price more aggressively, not

only does the size of the pie effectively shrink, but the firms are less able to maximize their

profits by tailoring prices to demand. The more a firm is forced to compete, the less it is

able to condition its price on its signal and better match its price to the state. Accuracy

becomes marginally less valuable.

Proposition 11. For any t ∈ (0, 1], the coordination effect CRD(t, γ) is single-peaked

in γ, and CRD(t, 0) = lim
γ→1

CRD(t, γ) = 0.

Proof. First note that at γ = 0 and at γ = 1 the coordination effect is (1−γ2)γ
(2−γt)2 t

2 = 0.

The derivative of the coordination effect w.r.t. γ is

∂

∂γ

[
(1− γ2) γ

(2− γt)2 t
2

]
=
−6γ2 + (γ3 + γ)t+ 2

(2− γt)3 t2.

This is continuous, positive at γ = 0, and negative at γ = 1. Setting it equal to zero, there is

only one real-valued solution in γ, which must be interior by the intermediate value theorem.

It must be the global maximum in γ on γ ∈ [0, 1). �

Changes in competition change the relative size of the coordination effect in two ways.

First, as γ increases, firm i’s profits are more dependent on firm −i’s price. Thus, it becomes

more important to learn the state in order to learn more about firm −i’s price. Second,

the size of this effect depends on how sensitive firm −i’s price is to the signal s−i. Since

these effects are multiplicative, the coordination effect is highest at intermediate levels of

competition, where prices are sensitive enough to signals that coordinating prices requires

high accuracy, and goods are similar enough that price coordination is important.
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Examples of the competitive profit effect and the coordination effect as a function of γ

are shown in Figure 2.1 for t = 0.5.

Figure 2.1. Competitive Profit Effect and Coordination Effect

Corollary 3. For any t ∈ (0, 1], MR0(t) > lim
γ→1

MRγ(t).

The competitive profit effect is positive in the monopoly case, i.e. γ = 0, where firms’

profits when they price optimally are very sensitive to the state. The coordination effect is

0 in the monopoly case, since one firm’s price has no impact on the other firm’s demand or

optimal price. In the (almost) perfect competition case, i.e. as γ approaches 1, both the

competitive profit effect and the coordination effect approach 0. Each firm’s equilibrium price

approaches marginal cost at all signals, so there are minimal returns to better information.

The change in the total effect across competition levels, ∂
∂γ

[CMP (t, γ) + CRD(t, γ)],

depends on the level of accuracy, t. If both firms’ signals are not very accurate, then one

firm getting better accuracy does not help coordination very much, but it does help that

firm better match the state. Thus, when t is low enough, the competitive profit effect is

relatively more important than the coordination effect. The marginal return to accuracy

is monotonically decreasing in γ in that case. When t is high enough, the coordination

effect becomes relevant so that the marginal return to accuracy is no longer monotonically
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decreasing in the level of competition, but instead is highest at some intermediate level of

competition. Examples of CMP (t, γ)+CRD(t, γ) are shown in Figure 2.2 for t = 0.5 on the

left and t = 0.98 on the right. In the right-hand graph, CMP (t, γ)+CRD(t, γ) is maximized

at an interior value of γ.

Figure 2.2. Total Effect at Low Accuracy and High Accuracy

The following lemmas formally state that the marginal return to accuracy is monoton-

ically decreasing in γ when t is low, and that it is maximized at some interior γ when t is

high.

Lemma 5. ∃t̄ such that for any t ∈ (0, t̄), ∂
∂γ

[MRγ(t)] < 0.

Proof. See Appendix B.3. �

Lemma 6. ∃t
¯

s.t. for any t > t
¯
∃γ′ > 0 s.t. MRγ′(t) > MR0(t).7

Proof. See Appendix B.4. �

We can compare equilibrium levels of market research across levels of competition as

long as there exists a symmetric equilibrium in market research. For any pair t, γ both

7The lowest such t
¯

is approximately 0.96778. Note that the notation is somewhat idiosyncratic in that the

minimum t
¯

satisfying Lemma 3 is larger than the maximum t̄ satisfying Lemma 2.
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the competitive profit and coordination effects are weakly positive. This is true even if

ti 6= t−i, as in Equation 2.2. It is immediate by inspection that for any tuple {γ, ti, t−i},

AMRγ(ti, t−t) > 0, i.e. firm i always benefits from more accuracy.8

This implies that we can find a cost function C(t) such that when this is the cost of

accuracy for both firms, at any γ there exists a unique symmetric equilibrium in accuracy

t∗(γ). Furthermore, we can find a cost function such that for some t̄, t∗(γ) ∈ (0, t̄) ∀γ ∈ [0, 1].

Call such a cost function C t̄(t). We can also find a cost function such that for some t
¯
> t̄,

t∗(γ) ∈ (t
¯
, 1) ∀γ ∈ [0, 1]. Call such a cost function Ct

¯
(t).

Finally, in order to state the main result we must formally define “higher costs” and

“lower costs” of accuracy. For a given cost function Ĉ(t), let {Ĉ(t)}L be the set of all

cost functions C(t) such that ∀γ there exists a symmetric equilibrium, and ∀t′ ∈ [0, 1],

C(t′) ≤ Ĉ(t′) and C ′(t′) ≤ Ĉ ′(t′). Similarly, let {Ĉ(t)}H be the set of all cost functions

C(t) such that ∀γ there exists a symmetric equilibrium, and ∀t′ ∈ [0, 1], C(t′) ≥ Ĉ(t′) and

C ′(t′) ≥ Ĉ ′(t′).

Theorem 1. There exist {t̄, t
¯
} with 1 > t

¯
> t̄ > 0 such that:

(1) ∃C t̄(t) such that for any cost function C(t) ∈ {C t̄(t)}H , at every γ ∈ [0, 1) there exists a

unique symmetric equilibrium with market research t∗(γ) s.t. ∂
∂γ

[t∗(γ)] < 0, and

(2) ∃Ct
¯
(t) such that for any cost function C(t) ∈ {Ct

¯
(t)}L, at every γ ∈ [0, 1) there exists a

unique symmetric equilibrium with market research t∗(γ) s.t. t∗(γ′) > t∗(0) > lim
γ→1

t∗(γ) for

some γ′ ∈ (0, 1).

Proof. By Lemma 4, single crossing is sufficient for ranking marginal returns to accuracy.

Existence of symmetric equilibrium is immediate from Lemmas 5 and 6. t∗(γ) is continuous

8AMRγ(ti, t−t) approaches 0 as γ → 1.
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in γ by the continuity of equilibrium prices and equilibrium payoffs in all arguments. For

(1), by Lemma 5 there exist some t̄ and C t̄(t) such that ∂
∂γ

[MRγ(t)] ≤ 0 ∀t ∈ [0, t̄] ∀γ

and t∗(γ) < t̄ ∀γ. This is true for all higher cost functions such that there exists a unique

equilibrium at every γ. For (2), by Lemma 6 there exist some t
¯

and Ct
¯
(t) such that ∀t >

t
¯
∃γ′ ∈ (0, 1) s.t. MRγ′(t) > MR0(t) and t∗(γ) > t

¯
∀γ. In particular, for t∗(0) ∃γ′ s.t.

MRγ′(t
∗(0)) > MR0(t∗(0)). Therefore it must be that t∗(γ′) > t∗(0). This is true for all

lower cost functions such that there exists a unique equilibrium at every γ. �

The theorem states that, for cost functions such that there exists a unique equilibrium

at all levels of competition, equilibrium private market research is decreasing in competition

when accuracy costs are sufficiently high, and is maximized at some intermediate level of

competition when accuracy costs are sufficiently low.

The second part of the result readily extends to the case of public market research.

Suppose that after firms choose accuracy levels vi and v−i, both firms observe vi and v−i

prior to choosing prices. The game is otherwise as in Section 2.2. Call this the overt game. In

this setting, both accuracy and prices are strategic complements.9 Thus, firms have weakly

higher marginal returns to accuracy compared to the private market research game. However,

in the monopoly case there is no strategic effect from increasing accuracy, so marginal returns

are the same in both settings. Let t∗O(γ) denote market research in a symmetric equilibrium

of the overt market research game. For any cost function such that there exists a unique

symmetric equilibrium in both the private research game and the overt game at some γ, it

must be that t∗O(γ) ≥ t∗(γ). In the monopoly case (γ = 0), t∗O(0) = t∗(0). Furthermore,

9See Chapter 8 in Vives (2000) for a more thorough discussion.
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returns to market research approach zero in both settings as competition approaches perfect

competition: lim
γ→1

t∗O(γ) = lim
γ→1

t∗(γ) = 0.

As in the private market research setting, in the overt game for any t
¯

one can find a cost

function Ct
¯
(t) such that at every γ there exists a symmetric equilibrium in the overt game

with 1 > t∗O(γ) > t
¯
. Define {Ĉ(t)}OL in the overt game analogously to {Ĉ(t)}L in the private

market research game. Corollary 4 immediately follows.

Corollary 4. ∃t
¯
, Ct

¯
(t) such that for any cost function C(t) ∈ {Ct

¯
(t)}OL , at every γ ∈ [0, 1)

there exists a unique symmetric equilibrium with market research t∗O(γ) s.t. t∗O(γ′) > t∗O(0) >

lim
γ→1

t∗O(γ) for some γ′ ∈ (0, 1).

As in the private market research game, in the overt game when accuracy costs are

sufficiently low, firms facing some intermediate level of competition invest more in market

research than monopolistic firms.

2.4. Conclusion

This paper examines how differentiation affects equilibrium market research in a Bertrand

duopoly. We conjecture that in symmetric Bertrand oligopolies with n > 2 firms, the results

hold qualitatively, meaning there exist parameters such that firms with partially differentated

goods invest more in market research than firms with completely differentiated goods.

We do not explicitly analyze consumer welfare across differentiation levels, as to do so

would require finding equilibrium market research in closed form, but we can say something

about it. Increased accuracy has competing effects on consumer welfare. When firms increase

their accuracy, they condition their prices more on their signals and thus better align their

prices with the state. This is partially beneficial for consumers, since fixing the average price,
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they would prefer to pay a high price when the state is high and a low price when the state

is low, rather than the same price in all states. However, consumers also prefer for firms to

have different prices from each other, as it allows them to substitute the cheaper good for

the more expensive good. When firms increase their accuracy, their prices tend to be closer.

This harms consumers. The net effect in our model is that consumer surplus decreases in

the firms’ accuracy.10

Fixing the accuracy of both firms, consumer welfare increases as goods become closer

substitutes. However, as we have shown accuracy is sometimes non-monotonic in the level

of differentiation. This highlights a challenge in regulating either market research or pricing

behavior when market research is endogenous. For a given market research cost function, it

may be that consumer welfare is sometimes higher when goods are less differentiated than

when goods are more differentiated.

10See Proposition 6 in Vives (1984).
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CHAPTER 3

Eating Your Cake and Selling it too: Adverse Selection in

Technology Licensing

3.1. Introduction

Traditionally much of the analysis of marketing an invention has focused on the assump-

tion that the technology-holder acts as a monopolist in marketing the invention. Unsurpris-

ingly, a lot of the analysis of licensing technology has also focused on a monopoly inventor.

Katz & Schapiro (1986) develops a model where a single inventor, who does not compete in

the product market, licenses to firms who competes downstream, and determine the optimal

strategy to license. Since then it has been noted that the presence of substitute technolo-

gies is a salient feature in R&D intensive industries. For example, Arora (1997) finds that

in the chemical industry, leading firms compete with each other in selling polypropylene

licenses. In an era of rapid technological growth and high-frequency R&D activity, it seems

unreasonable to think that most inventions are unique and without substitutes. Hence, for

most inventions, the useful lifetime of the invention is more accurately measured by the

time it takes for a newer, better invention to come along, rather than simply by the legal

patent length. Scotchmer et al (1998) takes this view, and defines this time as the “effective

patent life”1. Mansfield (1984) finds from survey evidence that in some industries, 60% of

the patents effectively terminate within 4 years, and Schankerman and Pakes (1986) find

that European patents lose about 20% of their value each year. In this paper, I focus more

1Their focus is on how the breadth of a patent influences effective patent life.
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on the implications this substitutability has on licensing, what this means for the inventing

firm, and for a potential licensee. Perhaps it behooves us to see that in a bilateral trade

framework, the inventor resembles a seller, the licensee resembles a buyer, and the effective

life is a property of the product (the invention) about which the inventor may have better

information than the licensee, provided that licensing periods cannot be arbitrarily small.

Before going into the main idea, we should justify the strategy of licensing to competitors

in the first place. The traditional idea is that licensing creates dissipation in rents because of

increased competition and significant transaction costs, and so the inventor can reap the most

benefit from an invention by excluding competitors from using it. Explanations for licensing

include a lower ability of the inventor to utilize the gains from the invention compared to

rivals, and licensing as a means to set an owned technology as the industry standard. Arora

and Fosfuri (2003) explain licensing through a mechanism that creates negative pecuniary

externality on rival firms, and obtain that even though licensing is inefficient, in that it

decreases industry profits, the patent-holder chooses to license because it gets a larger share

of a smaller pie through licensing. This result stems from the “efficiency effect” (Tirole

(1988)) which says there is a negative correlation between aggregate industry profits and the

number of firms in the market. However, this presupposes strong Bertrand competition, and

may not hold with substantial product differentiation. The ideas in what follows, are quite

different from those in Arora and Fosfuri (2003) in that the focus is more on the inefficiencies

of failing to license, rather than on the inefficient aspects of licensing. We create a simple

model of differentiated Bertrand competition with a firm holding the rights to a valuable

invention and a potential licensee, where after a round of licensing (or a lack of it), the two

compete by choosing prices. In a rather Coasian setting, ignoring inefficient transaction costs,

we show that successful licensing is more profitable for the inventor, but may be infeasible
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due to an asymmetric information problem and lack of a commitment device. The problem

arises mainly because the inventor firm itself is a consumer of the invention, and as such may

have better information regarding the usefulness of the invention. Hence, even though we will

assume that the licensee can directly observe the quality of the technology, its true value is its

quality relative to that of substitute technologies, and that may not be perfectly observable.

We then extend the model to include a specialized R&D firm (outsourcing option) and see

how this can affect the profitability of the inventor firm and also the aggregate industry

profits.

Using a simple model, we illustrate a problem in licensing that an inventor firm faces

when inventions are strong substitutes. This is an adverse selection problem, and stems

from the fact that an inventor firm that is also a user of its own product; namely, the

invention; always has an incentive to protect its most valuable inventions and license out the

less valuable ones. One implication of the model in this paper is that firms can overcome the

commitment problem by outsourcing R&D to an external partner. The intuition here is that

while the development cost of an in-house R&D project is sunk/unobservable, trade with

an external partner creates an endogenous cost of “bluffing” or selling an inferior product,

thereby making it possible to credibly signal the quality of the technology.2 Therefore, a

firm planning to license a future invention would develop it by contracting with an external

partner, and only develop in-house the technologies it plans to exclude rivals from using.

Even in the absence of comparative cost advantages of specialized R&D firms, this suggests

a possible incentive competitive firms may have to outsource R&D.

In section 3.2 we introduce the model and provide a numerical example to illustrate

the key ideas of the paper. In section 3.3 we explain the asymmetric information problem

2Signaling quality by burning money.
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stemming from firms conducting in-house R&D, and how that problem may be mitigated by

outsourcing R&D activities. Section 3.4 concludes.

3.2. The Model

Two firms indexed by i ∈ {I, A} engage in price competition with differentiated products.

The demand firm i faces is given by Di(pi, p−i), where ∂Di
∂pi

< 0, ∂2Di
∂p2
i
≤ 0, ∂Di

∂p−i
> 0 and∣∣∣∣∂Di∂pi

∣∣∣∣ >∣∣∣∣ ∂Di∂p−i

∣∣∣∣, and pi and p−i represents prices chosen by firm i and firm −i, respectively.

We assume that demand is invertible, and the inverse demand function firm i faces is given by

Pi(qi, q−i), where qi and q−i are the quantities produced by firm i and firm −i, respectively.

Each firm i produces its product using technology ci which is its constant marginal cost

of production. For simplicity, we assume there are no fixed costs of production. There are

three possible technologies that firms can use, which are c2 > c1 > c0, where c0 is the best

technology and c2 is the worst. Only firm I may access technology c0, and the ex ante

probability of firm I being able to access c0 is q ∈ [0, 1]. Technology c1 may be licensed at a

fee L, and the licensing agreement takes place before firms choose prices.

Firm i’s maximization problem is therefore:

max
pi

(pi − ci)Di(pi, p−i)

The conditions on the demand functions guarantee that the maximands are strictly

concave in pi, therefore a unique solution exists. Let us denote firm i’s optimal price as

pBi (ci, c−i), where the first argument stands for the firm’s own marginal cost and the second

argument stands for its opponent’s marginal cost. Let us denote by DM
i (pi) the demand firm
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i faces when firm −i chooses to not produce any output (monopoly demand).3Let us denote

by pMi (ci) the optimal price in the monopoly case. Similarly denote profits by πBi (ci, c−i)

and πMi (ci).

3.2.1. Illustrative Numerical Example

Let us consider a pricing game where each of two firms, indexed by i ∈ {I, A}, produce

differentiated products and face demand Di(pi, p−i) = 10 − 2pi + p−i, where pi is the price

of the firm’s product and p−i is the price of its competitor’s product. We can also derive

from this demand specification the monopoly demand firm i would face if firm −i chooses

to not enter the market, which is DM
i (pi) = 15− 3

2
pi. There are three possible technologies

(modeled as marginal costs of production) in this world, which are c2 = 19
2

, c1 = 8, and

c0 = 0. There are no fixed costs of production.

Firm I currently possesses technology c1, whereas firm A possesses c2. It is easy to

see that if both firms engage in price competition, the equilibrium price for firm A will be

pA = 142
15

< 19
2

= c2. Which means firm A would earn negative profits from competing,

so it would choose not to enter the market. Firm I can therefore enjoy monopoly profits

πMI (c1) = 3
2
.

However, if firm I instead chooses to license its technology c1 to firm A at a licencing

fee L and induce firm A to enter the market, each firm will make a profit of 8
9
, so the joint

competitive profit would be πBI + πBA = 16
9
> 3

2
= πMI . So it is more profitable for firm I to

license by choosing some L satisfying 11
18
≤ L ≤ 8

9
than to enjoy the monopoly profits. Let

3This is derived from Di(pi, p−i) by first deriving the inverse demand function Pi(qi, q−i) for firm i, deriving
Pi(qi, 0) by plugging in q−i = 0, and inverting Pi(qi, 0) again to get DM

i (pi).
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L = 11
18

= πMI −πBI denote the minimum licencing fee firm I would be willing to accept when

it knows c1 is the best technology it can use.

Now suppose firm I knows whether it has access to technology c0, whereas firm A believes

that with probability q = 3
5
, firm I has access to technology c0. If firm I uses technology c0

and firm A only has c1, then the equilibrium price in that case for firm A will be pA = 38
5
<

8 = c1, which means firm A in that case will not enter the market and make a profit of 0.

Given this, the maximum licensing fee firm A would be willing to pay is L̄ = 2
5
(8

9
)+ 3

5
(0) = 16

45
.

Notice that L̄ = 16
45
< 11

18
= L, which means in this case there is no licensing fee which firm

A is willing to pay and firm I is willing to accept when c1 is the best technology firm I can

use. This illustrates a breakdown in the market for technology licensing very similar to the

lemons problem in Akerlof (1970).

Instead, if both firms believe with some probability q ∈ [0, 1] that firm I has access to

c0, then licensing is optimal if the following holds:

q

(
75

2

)
+ (1− q)

(
8

9

)
+ L ≥ q

(
75

2

)
+ (1− q)

(
3

2

)
This tells us that the minimum licensing fee firm I would accept is L = (1− q) 11

18
.

Notice now that L̄ = (1− q) 8
9
> (1− q) 11

18
= L, which means there are licensing fees that

are mutually agreeable for any value of q.

Let us now consider another situation, where firm I knows if it has access to c0 , while firm

A believes with probability q ∈ [0, 1] that firm I has access to c0. Both firms have technology

c2 = 19
2

, and firm I may choose to acquire technology c1 = 8 at a commonly known price

W = 1. Now in the case where firm I has access to c0, it knows its market profit will be
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πMI (c0) = 75
2

regardless of whether it licenses c1 to firm A. Given L̄ = (1− q) 8
9
< W , firm I

will not acquire c1 in the case it has access to c0.

Because of this, if firm A observes that firm I chose to acquire c1 at price W = 1, it will

infer that firm I does not have access to c0, and would be willing to pay a licensing fee up to

8
9
. When it does not have access to c0, it is optimal for firm I to acquire c1 and license it if:

8

9
+ L− 1 ≥ 3

2
− 1

Which means for any L ≥ 11
18

, it is profitable to acquire c1 and license it. For any q ∈ [0, 1],

there are licensing fees L satisfying 11
18
≤ L ≤ 8

9
, that are agreeable to both firms I and A.

So by acquiring c1 at a high enough price firm I can credibly signal that it does not have

access to c0, which is another way of mitigating the asymmetric information problem.

3.3. Asymmetric Information in Licensing

Here we consider the possible differences in information structures that may arise from

firm I conducting its R&D activities in-house as opposed to outsourcing them. Then we

consider the impacts different information structures may have on licensing outcomes and

what effect that has on profits of the two firms.

To concisely reflect on the problem of asymmetric information in this licensing setting,

we make a few simplifying assumptions that considerably reduces the complexity of analysis.

Assumption 7. pBi (c2, c1) < c2 and pBi (c1, c0) < c1

This assumption states that each of the three technologies is a “drastic” improvement

over its next-best technology. This means that a firm would make negative profits from

competing against an opponent that has a superior technology.



71

Assumption 8. πBI (c1, c1) + πBA(c1, c1) > πMI (c1)

This assumption is about the product variety the two firms bring to the market, and

this assumption says that when c1 is the best technology firm I possesses, by licensing this

technology, the profitability firm I can achieve by utilizing the product variety of the two

differentiated goods is greater than the profitability resulting from monopoly market power

that firm I can achieve.

Assumption 8 guarantees that when firm I does not have access to c0, the profit-

maximizing strategy is to license c1 to firm A at some licensing fee L satisfying πMI (c1) −

πBI (c1, c1) ≤ L ≤ πBA(c1, c1). This is because πBA(c1, c1) is the maximum fee firm A would ever

be willing to pay,4 and πMI (c1) − πBI (c1, c1) is the loss in profits firm I faces from inducing

competition. The exact value of L would depend on the relative bargaining power of the two

firms.

3.3.1. In-house R&D

In this section we highlight the problem of asymmetric information a firm may face when it

conducts its R&D in-house. For this section, suppose that firm I currently has technology

c1 whereas firm A only has technology c2, and both of these are commonly known between

the two firms. However, firm I also knows if it can also access technology c0,5 whereas firm

A only knows the prior probability q of firm I having access to technology c0.

Proposition 12. If q >
πBI (c1,c1)+πBA (c1,c1)−πMI (c1)

πBA (c1,c1)
, then there is no licensing fee L > 0

which both firms can agree on.

4This depends on the value of q, for example firm A is only willing to pay πBA (c1, c1) when q = 0.
5One may think of this as firm I’s insider information about whether the new technology is in the pipeline
and will soon be available. Firm I possesses this insider information when it conducts its R&D in-house.
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Proof. By assumption 7, pBi (c2, c1) < c2, which means if licensing of technology c1 does

not occur, firm A’s payoff will be 0, as it will choose to not enter the market. In case firm

A obtains a license to use technology c1, with probability q firm I can access technology c0

and the competitive equilibrium price firm A will be able to charge is pBA(c1, c0), which, by

assumption 1, is less than c1. This means in that case firm A will decide not to produce and

earn a market profit of 0. With probability 1− q firm I will have technology c1, and firm A’s

profit will be πBA(c1, c1). So following licensing of technology c1 at fee L, firm A’s expected

payoff is q ∗ 0 + (1− q)πBA(c1, c1)− L = (1− q)πBA(c1, c1)− L. This must be weakly greater

than 0, firm A’s payoff from not licensing. So to satisfy firm A’s incentives, the licensing fee

L must satisfy L ≤ (1− q)πBA(c1, c1).

Now consider firm I’s situation. Consider first the case when c1 is the best technology

it can access. By not licensing, firm I can achieve monopoly profits πMI (c1), which follows

from assumption 7. By licensing technology c1 at a fee L, firm I can make a total payoff

of πBI (c1, c1) + L. In order for licensing to be optimal, this payoff must be weakly higher

than the monopoly profit firm I could make, meaning πBI (c1, c1) + L ≥ πMI (c1), or L ≥

πMI (c1)− πBI (c1, c1).

In case firm I has access to technology c0, it would be willing to charge a fee lower than

πMI (c1)− πBI (c1, c1), however, any fee L < πMI (c1)− πBI (c1, c1) reveals to firm A that firm I

has access to technology c0, which means licensing will yield a payoff of 0 for firm A, which

means firm A will not pay any positive licensing fee L. This means there is no licensing fee

L satisfying 0 < L < πMI (c1)− πBI (c1, c1).
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Now consider fees L satisfying πMI (c1) − πBI (c1, c1) ≤ L ≤ (1 − q)πBA(c1, c1). When

q >
πBI (c1,c1)+πBA (c1,c1)−πMI (c1)

πBA (c1,c1)
, this implies πMI (c1)−πBI (c1, c1) > (1−q)πBA(c1, c1), which means

when q >
πBI (c1,c1)+πBA (c1,c1)−πMI (c1)

πBA (c1,c1)
there exists no L which satisfies both firms’ incentives. �

This illustrates the problem with asymmetric information in technology licensing. It is

in part a problem of firm I not being able to credibly reveal whether it has access to the

superior technology c0. It is also a result of firm I not being able to commit to not using

c0 in case it has access.6When the prior probability of firm I having technology c0 is high

enough, the asymmetric information problem is strong enough to deter any possible licensing

agreement.

3.3.2. Outsourced R&D

Now consider the situation when firm I outsources its R&D activity to a third-party firm R,

which is a research firm and does not compete with either of the two firms in the product

market. Here we will consider two scenarios that illustrate mechanisms firm I may utilize

to alleviate the asymmetric information problem using firm R.

3.3.2.1. Symmetric Information About c1. In this subsection, suppose that all of firm

I’s R&D activities are undertaken by firm R, and only firm R knows whether firm I will

have access to technology c0 or not. Therefore both firms I and A only knows that with

probability q that firm I’s marginal cost will be c0, and with probability 1− q the marginal

cost will be c1.

Proposition 13. When firms I and A have symmetric information about technology c0,

licensing always takes place.

6Formal agreements to not using technology c0 amounts to price-fixing.
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Proof. As before, the maximum licensing fee firm A would be willing to pay is (1 −

q)πBA(c1, c1). If firm I chooses to license technology c1 at fee L, its expected payoff is qπMI (c0)+

(1− q)πBI (c1, c1) + L, otherwise its expected payoff is qπMI (c0) + (1− q)πMI (c1). So in order

for licensing to be optimal, the fee L must satisfy

qπMI (c0) + (1− q)πBI (c1, c1) + L ≥ qπMI (c0) + (1− q)πMI (c1)

This simplifies to

L ≥ (1− q)πMI (c1)− (1− q)πBI (c1, c1)

By assumption 8, (1− q)πBA(c1, c1) > (1− q)πMI (c1)− (1− q)πBI (c1, c1), so for any value

of q, there are always licensing fees L that firm A is willing to pay and firm I is willing to

accept. Which means under symmetric information, licensing always takes place. �

3.3.2.2. Public Procurement of Technology. In this subsection, suppose that firm R

develops the technology c1 at production cost F , and both firms I and A initially possess

technology c2 only. As in the previous subsection, firm I may access technology c0 with the

prior probability q. Importantly, we assume that firm R has an exclusive dealing contract

with firm I in selling technology c1, so firm R cannot sell c1 to firm A. Firm I may procure

technology c1 from firm R at a publicly observed price W . For simplicity, let us assume here

that firm I has all the bargaining power in choosing the licensing fee L.

Proposition 14. If W > πBA(c1, c1), whenever firm I acquires technology c1 from firm

R, it successfully licenses the technology to firm A.

Proof. Let us consider the situation when firm I publicly acquires technology c1 at a

price W > πBA(c1, c1). The maximum licensing fee L that firm A would ever be willing to
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pay is πBA(c1, c1), so in the case where firm I has access to c0, it makes a loss from acquiring

technology c1 because it is always the case that L < W , and firm I’s market profit is πMI (c0)

regardless of W and L. So after observing a price W > πBA(c1, c1), firm A believes with

probability 1 that firm I does not have access to technology c0. Therefore it is willing to pay

L = πBA(c1, c1).

It follows from the previous argument that firm I would only obtain c1 if it does not

have access to c0. For acquiring c1 to be worthwhile, it must be the case that πBI (c1, c1) +

πBA(c1, c1) −W ≥ πBI (c2, c2), which means W ≤ πBI (c1, c1) + πBA(c1, c1) − πBI (c2, c2). So firm

I would choose to obtain c1 and license it whenever W satisfies the following condition:

πBA(c1, c1) < W ≤ πBI (c1, c1) + πBA(c1, c1)− πBI (c2, c2)

If firm I cannot choose a W that satisfies the above condition, then firm I would choose

to not acquire c1. Whenever the above condition is satisfied, firm I chooses to acquire

technology c1 from firm R, and successfully licenses the technology to firm A. �

3.4. Conclusion

The simple model in this paper illustrates an adverse selection problem a firm faces in

licensing its technologies when it conducts its R&D in-house. The problem is well-understood

in information economics, where inefficient outcomes arise because of a friction caused by

asymmetric information. We proposed two ways in which outsourced R&D development

might mitigate this problem. One of these solves the problem by creating a symmetric

information structure, and the other way allows the licensor firm to signal the value of the

technology by credibly investing enough to acquire it (burning money).



76

References

[1] Aghion, P., Bloom, N., Blundell, R., Griffith, R., & Howitt, P. (2005). Competition and
innovation: An inverted-U relationship. The Quarterly Journal of Economics, 120(2),
701-728.

[2] Akerlof, G. A. (1970). The market for ”lemons”: Quality uncertainty and the market
mechanism. The quarterly journal of economics, 488-500.

[3] Arora, A., 1997. Patent, licensing and market structure in the chemical industry.
Research Policy 26, 391–403.

[4] Arora, A., & Fosfuri, A. (2003). Licensing the market for technology. Journal of Eco-
nomic Behavior & Organization, 52(2), 277-295.

[5] Baron, D. P., & Myerson, R. B. (1982). Regulating a monopolist with unknown costs.
Econometrica: Journal of the Econometric Society, 911-930.

[6] Biais, B., Martimort, D., & Rochet, J. C. (2000). Competing mechanisms in a common
value environment. Econometrica, 68(4), 799-837.

[7] Biglaiser, G., & Mezzetti, C. (1993). Principals competing for an agent in the presence
of adverse selection and moral hazard. Journal of Economic Theory, 61(2), 302-330.

[8] Biglaiser, G., & Mezzetti, C. (2000). Incentive auctions and information revelation.
The RAND Journal of Economics, 145-164.

[9] Carmichael, H. L., & MacLeod, W. B. (2000). Worker cooperation and the ratchet
effect. Journal of Labor Economics, 18(1), 1-19.

[10] Charness, G., Kuhn, P., & Villeval, M. C. (2011). Competition and the ratchet effect.
Journal of Labor Economics, 29(3), 513-547.

[11] Choi, J. P., & Thum, M. (2003). The dynamics of corruption with the ratchet effect.
Journal of public economics, 87(3), 427-443.



77

[12] Edlin, A. S., & Shannon, C. (1998). Strict monotonicity in comparative statics. Journal
of Economic Theory, 81(1), 201-219.

[13] Engelbrecht-Wiggans, R., Milgrom, P. R., & Weber, R. J. (1983). Competitive bidding
and proprietary information. Journal of Mathematical Economics, 11(2), 161-169.

[14] Freixas, X., Guesnerie, R., & Tirole, J. (1985). Planning under incomplete information
and the ratchet effect. The review of economic studies, 52(2), 173-191.

[15] Gibbons, R. (1987). Piece-rate incentive schemes. Journal of Labor Economics, 5(4,
Part 1), 413-429.

[16] Hauk, E., & Hurkens, S. (2001). Secret information acquisition in Cournot markets.
Economic Theory, 18(3), 661-681.

[17] Hwang, H. S. (1993). Optimal information acquisition for heterogenous duopoly firms.
Journal of Economic Theory, 59(2), 385-402.

[18] Hwang, H. S. (1995). Information acquisition and relative efficiency of competitive,
oligopoly and monopoly markets. International Economic Review, 325-340.

[19] Ickes, B. W., & Samuelson, L. (1987). Job transfers and incentives in complex organi-
zations: Thwarting the ratchet effect. The Rand Journal of Economics, 275-286.

[20] Kamenica, E., & Gentzkow, M. (2011). Bayesian persuasion. The American Economic
Review, 101(6), 2590-2615.

[21] Kanemoto, Y., & MacLeod, W. B. (1992). The ratchet effect and the market for
secondhand workers. Journal of Labor Economics, 10(1), 85-98.

[22] Katz, M. L., & Shapiro, C. (1986). How to license intangible property. The Quarterly
Journal of Economics, 101(3), 567-589.

[23] Laffont, J. J., & Tirole, J. (1986). Using cost observation to regulate firms. Journal of
political Economy, 94(3, Part 1), 614-641.

[24] Laffont, J. J., & Tirole, J. (1988). The dynamics of incentive contracts. Econometrica:
Journal of the Econometric Society, 1153-1175.

[25] Lehmann, E. L. (1988). Comparing location experiments. The Annals of Statistics,
521-533.



78

[26] Mansfield, E., 1984, “R&D and Innovation: Some Empirical Findings,” in Zvi
Griliches, ed., R&D, Patents and Productivity, Chicago: University of Chicago Press
for the National Bureau of Economic Research.

[27] Martimort, D. (2006). Multi-contracting mechanism design. Econometric Society
Monographs, 41, 57.

[28] Milgrom, P., & Shannon, C. (1994). Monotone comparative statics. Econometrica:
Journal of the Econometric Society, 157-180.

[29] Milgrom, P. R., & Weber, R. J. (1982). A theory of auctions and competitive bidding.
Econometrica: Journal of the Econometric Society, 1089-1122.

[30] Milgrom, P., & Weber, R. J. (1982). The value of information in a sealed-bid auction.
Journal of Mathematical Economics, 10(1), 105-114.

[31] Mussa, M., & Rosen, S. (1978). Monopoly and product quality. Journal of Economic
theory, 18(2), 301-317.

[32] O’Donoghue, T., Scotchmer, S. and Thisse, J.-F. (1998), Patent Breadth, Patent Life,
and the Pace of Technological Progress. Journal of Economics & Management Strategy,
7: 1–32.

[33] Pakes, A. and M. Schankerman, 1984, “The Rate of Obsolescence of Patents, Re-
search Gestation Lags, and the Private Rate of Return to Research Resources,” in Zvi
Griliches, ed., R&D, Patents, and Productivity, Chicago: University of Chicago Press,
73–88.

[34] Parreiras, S. O. (2006). Affiliated common value auctions with differential information:
the two bidder case. Contributions in Theoretical Economics, 6(1), 1-19.

[35] Persico, N. (1996). Information acquisition in affiliated decision problems. Center for
Mathematical Studies in Economics and Management Science, Northwestern Univer-
sity.

[36] Persico, N. (2000). Information acquisition in auctions. Econometrica, 68(1), 135-148.

[37] Rochet, J. C., & Stole, L. A. (2002). Nonlinear pricing with random participation. The
Review of Economic Studies, 69(1), 277-311.

[38] Schumpeter, J. A. (1912). Theorie der wirtschaftlichen Entwicklung. Leipzig: Duncker
& Humblot. English translation published in 1934 as The theory of economic develop-
ment.



79

[39] Schumpeter, J. A. (1942). Socialism, capitalism and democracy. Harper and Brothers.

[40] Singh, N., & Vives, X. (1984). Price and quantity competition in a differentiated
duopoly. The RAND Journal of Economics, 546-554.

[41] Spulber, D. F. (1995). Bertrand competition when rivals’ costs are unknown. The
Journal of Industrial Economics, 1-11.

[42] Tirole, J. (1988). The Theory of Industrial Organization: Jean Tirole. MIT press.

[43] Vives, X. (1984). Duopoly information equilibrium: Cournot and Bertrand. Journal of
economic theory, 34(1), 71-94.

[44] Vives, X. (2001). Oligopoly pricing: old ideas and new tools. MIT press.

[45] Wilson, R. B. (1967). Competitive bidding with asymmetric information. Management
Science, 13(11), 816-820.

[46] Wilson, R. (1977). A bidding model of perfect competition. The Review of Economic
Studies, 511-518.



80

APPENDIX A

Omitted Proofs: Chapter 1

A.1. Proof of Lemma 1

Given an allocation rule e(θ), define e(θ̂|θ) by the equation e(θ̂|θ) + θ = e(θ̂) + θ̂; that is,

it is the level of effort an agent of type θ has to exert in order to mimic type θ̂. Therefore,

e
′
(θ̂|θ) = e

′
(θ̂) + 1, where the derivative on LHS is taken with respect to θ̂. For an agent of

type θ, his payoff if he mimics type θ̂ is:

U(θ̂|θ) = w(θ̂)− C
(
e(θ̂|θ)

)
;

where C(·) is the cost of effort function. Therefore,

U
′
(θ̂|θ) = w

′
(θ̂)− C ′

(
e(θ̂|θ)

)
e
′
(θ̂|θ) = w

′
(θ̂)− C ′

(
e(θ̂|θ)

)(
e
′
(θ̂) + 1

)
Local incentive compatibility1 requires that

U
′
(θ̂|θ)

∣∣∣∣
θ̂=θ

= w
′
(θ)− C ′ (e(θ)) e′(θ)− C ′ (e(θ)) = 0

So, w
′
(θ) = C

′
(e(θ))e

′
(θ) + C

′
(e(θ))

Now, as U(θ) = w(θ)− C(e(θ)), U
′
(θ) = w

′
(θ)− C ′(e(θ))e′(θ) = C

′
(e(θ))

1Because the agent’s utility function U(e, θ) satisfies the single-crossing condition, local IC implies global IC.



81

Because we are using the quadratic cost of effort function C(e) = e2/2, C
′
(e(θ)) = e(θ),

therefore U
′
(θ) = e(θ), which gives us the envelope condition

U(θ) = U(θ) +

θw

θ

e(t)dt

For the monotonicity part, let θ1 > θ2 be arbitrary. IC requires

U(θ2|θ1) ≤ U(θ1)

Now, when IC is satisfied,

U(θ2|θ1) = w(θ2)− e(θ2|θ1)2

2

= w(θ2)− 1

2
[e(θ2) + (θ2 − θ1)]2

= w(θ2)− 1

2
e(θ2)2 + e(θ2)(θ1 − θ2)− 1

2
(θ1 − θ2)2

= U(θ2) + (θ1 − θ2)

[
e(θ2)− 1

2
(θ1 − θ2)

]
≤ U(θ1)

∴ U(θ1)− U(θ2) ≥ (θ1 − θ2)

[
e(θ2)− 1

2
(θ1 − θ2)

]

Similarly, we need U(θ1|θ2) ≤ U(θ2). Now,
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U(θ1|θ2) = w(θ1)− e(θ1|θ2)2

2

= w(θ1)− 1

2
[e(θ1) + (θ1 − θ2)]2

= w(θ1)− 1

2
e(θ1)2 − e(θ1)(θ1 − θ2)− 1

2
(θ1 − θ2)2

= U(θ1)− (θ1 − θ2)

[
e(θ1) +

1

2
(θ1 − θ2)

]
≤ U(θ2)

∴ U(θ1)− U(θ2) ≤ (θ1 − θ2)

[
e(θ1) +

1

2
(θ1 − θ2)

]

Combining the two, we get:

(θ1 − θ2)

[
e(θ2)− 1

2
(θ1 − θ2)

]
≤ U(θ1)− U(θ2) ≤ (θ1 − θ2)

[
e(θ1) +

1

2
(θ1 − θ2)

]

Dividing by θ1 − θ2 and rearranging gives us e(θ2) + θ2 ≤ e(θ1) + θ1, which establishes

the monotonicity requirement.

A.2. Proof of Proposition 1

Using integration by parts, the monopolist principal’s maximization problem can be

written as

max
e(·|x)

θ̄w

θ

{
e(θ|x) + θ − e(θ|x)2

2
− 1− F (θ|x)

f(θ|x)
e(θ|x)dq

}
dF (θ|x)

Let H(θ|x) = f(θ|x)
1−F (θ|x)

, then by taking the first order condition, the principals maxi-

mization problem can be pointwise solved and the optimal effort allocation eM(θ|x) can be
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written out as

eM(θ|x) = 1− 1

H(θ|x)

By assumption 1, for any pair of signals x1 > x2, F (·|x1) stochastically dominates F (·|x2)

in the likelihood-ratio sense (LRD). LRD implies hazard-rate dominance (HRD), therefore

F (·|x1) hazard-rate dominates F (·|x2), that is, H(θ|x1) < H(θ|x2) for any θ. Therefore,

1− 1
H(θ|x1)

< 1− 1
H(θ|x2)

, that is, eM(θ|x) is decreasing in x for any θ.

The type-θ agent’s payoff is simply

U(θ|x1) =

θw

θ

eM(t|x1)dt <

θw

θ

eM(t|x2)dt = U(θ|x2)

This proves the second part of proposition 1.

Finally, consider the principal’s expected payoffs under the signals x1 and x2. LRD

implies first-order stochastic dominance (FOSD), therefore F (·|x1) FOSD F (·|x2).

π(θ|x1) = max
e(θ|x1)

θ̄w

θ

{
e(θ|x1) + θ − e(θ|x1)2

2
− 1

H(θ|x1)
e(θ|x1)

}
dF (θ|x1)

Consider the Principal’s payoff even if she (suboptimally) choses the schedule eM(θ|x2)

after receiving signal x1. Her payoff in this case is:

θ̄w

θ

{
eM(θ|x2) + θ − eM(θ|x2)2

2
− 1

H(θ|x1)
eM(θ|x2)

}
dF (θ|x1)

Now, because eM(θ|x2) is increasing in θ, and eM(θ|x2) < 1 for all θ other than θ̄,

d

dθ

(
eM(θ|x2)− eM(θ|x2)2

2

)
=
(
1− eM(θ|x2)

) d
dθ

(
eM(θ|x2)

)
> 0
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Hence, eM(θ|x2)− eM (θ|x2)2

2
is an increasing function of θ. Therefore,

θ̄w

θ

{
eM(θ|x2)− eM(θ|x2)2

2

}
dF (θ|x1) >

θ̄w

θ

{
eM(θ|x2)− eM(θ|x2)2

2

}
dF (θ|x2)

It can be showed using integration by parts that

E [θ|x1] =

θ̄w

θ

θf(θ|x1)dθ = θF (θ|x1)|θ̄θ = θ̄ −
θ̄w

θ

F (θ|x1)dθ

And similarly, E [θ|x2] = θ̄ −
θ̄r

θ
F (θ|x2)dθ

So, E [θ|x1]−E [θ|x2] =

θ̄ − θ̄r

θ
F (θ|x1)dθ

−
θ̄ − θ̄r

θ
F (θ|x2)dθ

 =

 θ̄r

θ
F (θ|x2)dθ

− θ̄r

θ
F (θ|x1)dθ

 =
θ̄r

θ
{F (θ|x2)− F (θ|x1)} dθ =

θ̄r

θ
{(1− F (θ|x1))− (1− F (θ|x2))} dθ

Because F (θ|x1) FOSD F (θ|x2) , E [θ|x1] > E [θ|x2]
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So,

θ̄w

θ

{(1− F (θ|x1))− (1− F (θ|x2))} dθ > 0

θ̄w

θ

{
((1− F (θ|x1))− (1− F (θ|x2)))

(
1− eM(θ|x2)

)}
dθ > 0

θ̄w

θ

{
(F (θ|x2)− F (θ|x1))− ((1− F (θ|x1))− (1− F (θ|x2))) eM(θ|x2)

}
dθ > 0

E [θ|x1]− E [θ|x2]−
θ̄w

θ

{
((1− F (θ|x1))− (1− F (θ|x2))) eM(θ|x2)

}
dθ > 0

θ̄w

θ

θf(θ|x1)dθ −
θ̄w

θ

θf(θ|x2)dθ −
θ̄w

θ

{
((1− F (θ|x1))− (1− F (θ|x2))) eM(θ|x2)

}
dθ > 0

therefore,
θ̄r

θ
θf(θ|x1)dθ −

θ̄r

θ

{
(1− F (θ|x1)) eM(θ|x2)

}
dθ

>
θ̄r

θ
θf(θ|x2)dθ −

θ̄r

θ

{
(1− F (θ|x2)) eM(θ|x2)

}
dθ

which means,

θ̄w

θ

{
θ − 1

H(θ|x1)
eM(θ|x2)

}
dF (θ|x1) >

θ̄w

θ

{
θ − 1

H(θ|x2)
eM(θ|x2)

}
dF (θ|x2)

Combining the two inequalities, we can say that
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θ̄w

θ

{
eM(θ|x2) + θ − eM(θ|x2)2

2
− 1

H(θ|x1)
eM(θ|x2)

}
dF (θ|x1)

>

θ̄w

θ

{
eM(θ|x2) + θ − eM(θ|x2)2

2
− 1

H(θ|x2)
eM(θ|x2)

}
dF (θ|x2)

So even if after receiving signal x1, the principal suboptimally chooses eM(θ|x2), her

expected payoff is higher than π(θ|x2). This means,

π(x1) = max
e(θ|x1)

θ̄w

θ

{
e(θ|x1) + θ − e(θ|x1)2

2
− 1

H(θ|x1)
e(θ|x1)

}
dF (θ|x1)

≥
θ̄w

θ

{
eM(θ|x2) + θ − eM(θ|x2)2

2
− 1

H(θ|x1)
eM(θ|x2)

}
dF (θ|x1)

>

θ̄w

θ

{
eM(θ|x2) + θ − eM(θ|x2)2

2
− 1

H(θ|x2)
eM(θ|x2)

}
dF (θ|x2) = π(x2)

That is, π(x1) > π(x2), which concludes the proof.

A.3. Proof of Proposition 3

Take an arbitrary θ > θ. For the ease of exposition, we shall henceforth omit the argument

θ from this proof and the proof of existence of equilibrium, and just write R̂(x, y) as the

actual value for winning the agent of type θ given signals (x, y).

Suppose P−i is playing the strategy U∗−i(·) as described in proposition 3. Pi’s expected

payoff from bidding u after receiving signal x is therefore
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πi(x;u) =

φ−i(u)w

−∞

{
R̂i(x, y)− u

}
dG−i(y|x)

Differentiating with respect to u, we get

∂πi(x;u)

∂u
=
[{
R̂(x, φ−i(u))− u

}
g−i ((φ−i(u)|x)

]
φ
′

−i(u)−G−i (φ−i(u)|x)

The first order condition is derived by equating this derivative to 0. Therefore, in equi-

librium we have

1

φ
′
−i(u)

=
{
R̂i(x, φ−i(u))− u

} g−i (φ−i(u)|x)

G−i (φ−i(u)|x)

Because in equilibrium x = φi(u), and analogously for signal y of P−i, y = φ−i(u), we

can write down the first order conditions for each principal as

1

φ
′
−i(u)

=
{
R̂i(φi(u), φ−i(u))− u

} g−i (φ−i(u)|φi(u))

G−i (φ−i(u)|φi(u))
for i=1,2

These, together with the common boundary conditions

lim
x→−∞

U∗i (θ|x) = U∗(θ) = lim
y→−∞

U∗−i(θ|y)

characterizes the equilibrium bids. That the equilibrium bids characterized in the expo-

sition of proposition 3 form a solution to this system is the same as in Milgrom & Weber

(1982).

Using the aforementioned first order conditions, one can write
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φ
′
−i(u)

φ
′
i(u)

=

{
R̂−i(φ−i(u), φi(u))− u

}
gi(φi(u)|φ−i(u))
Gi(φi(u)|φ−i(u)){

R̂i(φi(u), φ−i(u))− u
}

g−i(φ−i(u)|φi(u))
G−i(φ−i(u)|φi(u))

=

{
R̂−i(φ−i(u), φi(u))− u
R̂i(φi(u), φ−i(u))− u

}
si(φi(u))

s−i(φi(u))

G−i (φ−i(u)|φi(u))

Gi (φi(u)|φ−i(u))

Where the second line follows using Bayes’ rule.

Now, by definition of the tying function,

Qi(φi(u)) = φ−i(u)

Taking derivative with respect to u and using the chain rule, we get

Q
′

i(φi(u)) =
φ
′
−i(u)

φ
′
i(u)

Which then means

Q
′

i(x) =

{
R̂−i(φ−i(u), φi(u))− u
R̂i(φi(u), φ−i(u))− u

}
si(φi(u))

s−i(φi(u))

G−i (φ−i(u)|φi(u))

Gi (φi(u)|φ−i(u))

or,
dQi(x)

dx
=

{
R̂−i (θ|Qi(x), x)− U∗−i(θ|Qi(x))

R̂i (θ|x,Qi(x))− U∗i (θ|x)

}
si(x)

s−i(Q(x))

G−i(Qi(x)|x)

Gi(x|Qi(x))

Now going back to the first order conditions, and rewriting them in terms of bids instead

of inverse bids, we get

U∗
′

i (x) =
[
R̂i(x,Qi(x))− U∗i (x)

] g−i(Qi(x)|x)

G−i(Qi(x)|x)
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One can check that the equilibrium bidding strategy U∗i (x) in the exposition of proposi-

tion 3 satisfies this differential equation. We can also show that for the symmetric case, that

is, when Si(·|θ) ≡ S−i(·|θ), the equilibrium bidding strategy is unique up to the choice of the

lowest contract. Suppose, for a contradiction, that Ui(·) and Ûi(·) are both solutions to this

equation, and for some x, Ui(x) < Ûi(x). Because in the symmetric case, Qi(x) = x, this

implies, from the differential equation, that U
′
i (x) > Û

′
i (x), which means that they cannot

both be solutions to the first order condition. Hence, the equilibrium bidding strategies in

the exposition of proposition 3 form the unique regular equilibrium of the bidding game for

the agent of type θ, taking R̂i(θ|x, y) as given.

A.4. Proof of Proposition 4

In this equilibrium both principals get a payoff of 0. Given P−i is offering the first-best

contract for all types and giving the agent all the surplus, any contract offered by Pi that

is distorted downwards will be rejected by the agent, hence Pi cannot do better by offering

a distorted contract. Offering a contract that distorts upwards from the first-best contract

reduces total surplus, and incentive compatibility requires that the agent has to be offered

more surplus than under P−i’s contract. In this case the agent will accept Pi’s contract but

because total surplus decreases and the agent’s rent increases, this means Pi is strictly worse

off, and hence no deviation from offering the first-best contract is strictly beneficial for Pi.

This proves the existence of the price war equilibrium.

A.5. Proof of Proposition 5

Let us first denote the bidding strategies in the symmetric equilibrium (where α1 = α2 =

αS). Let’s say for the particular θ, US(·) is the symmetric bidding function, which maps
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the principal’s signal to the bid. We proceed by analyzing how the best reaction functions

change from the symmetric setting as one principal (P1) gets a signal with a higher accuracy

level α1 > αS.

When P2 has accuracy level αS, and bidding with the symmetric equilibrium strategy

US(·), P1’s maximization problem is the same when she has accuracy α1 > αS as opposed to

αS as in both cases the payoff function to be maximized is π1(x, u). By lemma 3, we can say

that against the symmetric bidding strategy by P2, P1’s expected payoff will be higher under

accuracy α1 compared to αS
2. However, because we start with a common prior distribution

of the agent’s type, F (·) is the same no matter the accuracy levels of the signals. Hence,

taking the expectation over all realizations of signals, the expected posterior for any αi must

equal the common prior for both principals. That is,

∞w

−∞

fi(θ|x)dSαii (x) = f(θ)

Now, because the less informed principal’s accuracy is the same as in the symmetric case,

her signal distribution conditional on any type is also the same. That is, s2(y|θ) is the same

in both cases, for any y and θ.

Which means that for P1, ex ante the distribution of her opponent’s signal is the same

under both cases. That is,

θ̄w

θ

{ ∞w

−∞

g2(y|x)dSα1
1 (x|θ)

}
dF (θ) =

θ̄w

θ

s2(y|θ)dF (θ) = s2(y)

Now we analyze the bidding behavior of the less informed principal. Consider P2’s best

response, after seeing signal y. Suppose that she is facing the same bids from her opponent

2This is presented as Fact1 in Persico (2000).
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as in the symmetric case, that is, U1(θ|·) = US(θ|·). In the asymmetric case, after received

the realized signal y, the less informed principal’s calculation of the interim expected value

conditional on the opponent’s signal being less than or equal to y, is

V D
2 (θ|y) =

yw

−∞

R̂2(θ|y, x)dGα1
1 (x|y)

Because in the asymmetric case the opponent gets more accurate signals, and calculating

R̂2(θ|y, x) involves putting probabilities over [θ, θ̄], and V D
2 (θ|y) is the expected value of

R̂2(θ|y, x) taken only over signals of the opponent smaller than y, in calculating V D
2 (θ|y) the

less informed principal puts higher probabilities on lower values of the agent’s type compared

to the symmetric case. Therefore, using the same calculation as in the proof of part 3 of

proposition 1, we get

V D
2 (θ|y) < V S

2 (θ|y)

Where V S
2 (θ|y) is P2’s expected value under the symmetric information structure.

Because this is true for all θ, it must be that when the opponent plays the symmetric

strategy US(θ|·), in any regular equilibrium, for any type θ > θ, based on the bidding

strategies formulated in proposition 3, P2’s best response is to bid lower in the asymmetric

case. That is, for any y, UD
2 (θ|y) < US(θ|y).

Now from the better informed principal’s perspective, the ex ante distribution of her

opponent’s signal, s2(·), is the same as in the symmetric case. By lemma 2, she must have

an ex ante higher payoff in the asymmetric case, which can only happen if either her ex ante

expected value conditional on winning is higher, that is,
θ̄r

θ
V D

1 (θ)dF (θ) >
θ̄r

θ
V S

1 (θ)dF (θ),

or her ex ante expected bid is lower, that is,
θ̄r

θ
UD

1 (θ)dF (θ) <
θ̄r

θ
US

1 (θ)dF (θ); or both.
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Suppose towards a contradiction that her ex ante expected bid is higher in the asymmet-

ric case, so
θ̄r

θ
UD

1 (θ)dF (θ) >
θ̄r

θ
US

1 (θ)dF (θ). Then her ex ante expected value must be

higher, so at least for some signal realizations her interim value must be higher. Because

under the more accurate signal structure, higher signal realizations are more correlated with

higher types of the agent, this means that these signal realizations are the highest pos-

sible realizations. So we can find some x such that
∞r

x

 θ̄r

θ
V D

1 (θ|z)dFα1
1 (θ|z)

 dSα1
1 (z) >

∞r

x

 θ̄r

θ
V S

1 (θ|z)dFαS
1 (θ|z)

 dSαS1 (z). In order for her ex ante expected value to be higher,

these signal realizations in [x,∞) must have a sufficiently higher probability under Xα1

compared to XαS . However, because Xα1 is more accurate, it is more correlated with θ, and

a higher probability of realizations [x,∞) implies ex ante some subset of of highest types [θ, θ̄]

has greater probability under Xα1 compared to XαS . This violates the fact that the type dis-

tribution F (·) has a common prior distribution, as we must have
∞r

−∞
fi(θ|x)dSαii (x) = f(θ),

for all θ, as shown before. Hence the better informed principal’s ex ante expected bid cannot

be higher under the more accurate signal Xα1 .

For any type of the agent θ > θ, because the less informed principal’s reaction function

moves towards lower bids when α1 > αS, and the more informed principal’s average bid

does not increase, both principals’ expected bid in the asymmetric equilibrium must be

lower than in the symmetric equilibrium, therefore the agent’s ex ante expected payoff in

the asymmetric equilibrium must be lower.

A.6. Proof of Proposition 6

Consider two first-period types of the agent θ
′
1 > θ1. Suppose, towards a contradiction,

that a fully separating equilibrium exists. Denote by UTP
i (θ1|θ

′
1) as the sum of expected
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two-period payoff type θ
′
1 could get by taking the allocated effort for type θ1 at period 1,

under the separating contract. As described in part 3, incentive compatibility requires that

UTP
i (θ

′

1) = UTP
i (θ1) +

θ
′
1w

θ1

ei1(q) +

θ̄w

θ

U2(θ2)dF (θ2|θ
′

1)

 dq

where the agent’s second-period expected contract is U2(·). By proposition 6, for any second

period realization of type θ2 > θ, UD
2 (θ2) < US

2 (θ2), so in order to compensate the agent for

the loss of payoff in the second period, the first period contract must give the higher type

agent

U1(θ
′

1) = U1(θ1) +

θ
′
1w

θ1

{
ei1(q) + E(θ2|θ

′
1)

[
US

2 (θ2)− UD
2 (θ2)

]}
dq

= U1(θ1) +

θ
′
1w

θ1

{
ei1(q) + E(θ2|θ

′
1)

[
US

2 (θ2)− UD
2 (θ2)

]}
dq

∴ U1(θ
′

1)− U1(θ1) =

θ
′
1w

θ1

ei1(q)dq + E(θ2|θ
′
1)

[
US

2 (θ2)− UD
2 (θ2)

]
Here, E(θ2|θ

′
1)

[
US

2 (θ2)− UD
2 (θ2)

]
refers to the expected value of

[
US

2 (θ2)− UD
2 (θ2)

]
, where

the expectation is taken over all possible second period realizations of type θ2, given the

agent’s first period type is θ1.
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Because US
2 (θ2)− UD

2 (θ2) > 0 for any θ2, we can say E(θ2|θ
′
1)

[
US

2 (θ2)− UD
2 (θ2)

]
> 0. By

picking a small enough ε > 0, we can find type θ̂1 = θ
′
1 − ε such that

C
(
ei1(θ

′

1|θ̂1)
)
− C

(
ei1(θ

′

1)
)

=

θ
′
1w

θ̂1

{
C
′
(ei1(q))

(
1 + e

′

i1(q)
)}

dq

=

θ
′
1w

θ̂1

{
ei1(q) + ei1(q)e

′

i1(q)
}
dq

=

θ
′
1w

θ̂1

ei1(q)dq +

θ
′
1w

θ̂1

{
ei1(q)e

′

i1(q)
}
dq

<

θ
′
1w

θ̂1

ei1(q)dq + E(θ2|θ̂1)

[
US

2 (θ2)− UD
2 (θ2)

]

=

θ
′
1w

θ̂1

{
ei1(q) + E(θ2|θ̂1)

[
US

2 (θ2)− UD
2 (θ2)

]}
dq

where the inequality follows from the fact that E(θ2|θ̂1)

[
US

2 (θ2)− UD
2 (θ2)

]
> 0, and the

integral
θ
′
1r

θ̂1

{
ei1(q)e

′
i1(q)

}
dq can be made small enough by picking a small enough ε. This

means, we can find a type below θ
′
1 who will strictly benefit by mimicking type θ

′
1 in the

first period and not taking the specified contract from Pi in the second period. This violates

upward incentive compatibility for any subset of fully separating types in the first period,

which means no fully separating contract can exist in the first period.
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APPENDIX B

Omitted Proofs: Chapter 2

B.1. Proof of Lemma 4

The result is a special case of Theorem 2 in Persico (2000). It suffices to show that the

market research problem satisfies the assumptions of that Theorem.

First we show that for each firm i, signal si is affiliated with α. Two random variables

S and A with joint density f(s, α) are affiliated if for any realizations s
′
> s and α

′
> α,

f(s
′
, α
′
)f(s, α) ≥ f(s, α

′
)f(s

′
, α).

Using the probability density functions of normal distributions with equal variance, for

any two states α
′
> α and any two signal realizations s

′
> s, we can see that

f(s
′
, α
′
)

f(s, α′)
=

exp
(
− (s

′−α′ )2

2v

)
exp

(
− (s−α′ )2

2v

) = exp

(
(2α

′ − s′ − s)(s′ − s)
2v

)

> exp

(
(2α− s′ − s)(s′ − s)

2v

)
=

exp
(
− (s

′−α)2

2v

)
exp

(
− (s−α)2

2v

) =
f(s

′
, α)

f(s, α)
.

So by definition of affiliation, si is affiliated with α.

Given two signals St1 and St2 , we say that St1 is more accurate than St2 if F t−1
1 (F t2(s|α)|α)

is nondecreasing in α, for every s; where F t1(·|·) and F t2(·|·) are cumulative distibution func-

tions for St1 and St2 , respectively. [See Lehmann (1988).] For each firm i, the accuracy of

its signal si is increasing in ti. [See example 4 in Section 3.2 of Persico (1996).]
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By inspection, for each firm i, ui(α, pi) ≡
∞r

−∞
piqi(pi, p−i(s−i), α)dF t−i(s−i|α) is differen-

tiable in pi, and the optimal action p∗i (si, ti) is differentiable in si and ti.

Finally, the cdf of the normal distribution with variance vi and state α is

F (x|α, vi) =

xw

−∞

(
1√
2πvi

exp

(
−(z − α)2

2vi

))
dz,

which is differentiable with respect to vi and continuous in α. Now, because vi = Vα
ti
− Vα is

differentiable in ti, it follows that F (x|α, vi) is differentiable in ti.

Thus, the conditions of Theorem 2 in Persico (2000) are satisfied by the market research

problem.

B.2. Derivation of Equation 2.1

At a given signal si and with accuracy ti, denote firm i’s optimal price p∗i as in Vives

(1984). Define p∗−i similarly.

uγ(α, p
∗
i ) =

∞w

s−i=−∞

p∗i qi(p
∗
i , p
∗
−i, α, γ)dF (s−i|α)

Integrating by parts:

uγ(α, p
∗
i ) = p∗i

{[
qi(p

∗
i , p
∗
−i, α, γ)F (s−i|α)

]∞
s−i=−∞

−
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i

}

= p∗i

{(
qi(p

∗
i , p
∗
−i(∞), α, γ)F (∞|α)− qi(p∗i , p∗−i(−∞), α, γ)F (−∞|α)

)
−
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i

}

= p∗i q∞ − p∗i
∞w

−∞

(
F (s−i|α)

∂qi
∂p−i

∂p∗−i
∂s−i

)
ds−i
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Where q∞ denotes qi(p
∗
i , p
∗
−i(∞), α, γ). We take the derivative with respect to si. Note that

when pricing functions are as in the equilibrium of Vives (1984), both ∂qi
∂p−i

and
∂p∗−i
∂s−i

are

independent of s−i.

∂uγ(α, p
∗
i )

∂si
=

(
q∞ + p∗i

∂q∞
∂pi

)
∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p∗−i
∂s−i

∞w

−∞

(F (s−i|α)) ds−i

}

We take the derivative with respect to α. Note that ∂qi(∞)
∂pi

, p∗i , and
∂p∗i
∂si

are independent of

α, and that conditional on some realization α′ of the state signals are normally distributed

with mean α′ and some variance that is independent of α. The derivative is

∂2uγ(α, p
∗
i )

∂α∂si
=
∂q∞
∂α

∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

∞w

−∞

(Fα(s−i|α)) ds−i

}

=
∂q∞
∂α

∂p∗i
∂si
−

{
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

∞w

−∞

(−f(s−i|α)) ds−i

}

=
∂q∞
∂α

∂p∗i
∂si

+

(
∂p∗i
∂si

∂qi
∂p−i

∂p−i
∂s−i

)
.

B.3. Proof of Lemma 5

By Lemma 4, it suffices to show that ∃t′ s.t. ∂
∂γ

[CMP (t, γ) + CRD(t, γ)] < 0 ∀t < t′.

CMP (t, γ) + CRD(t, γ) =
1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

∂

∂γ
[CMP (t, γ) + CRD(t, γ)] =

t (t2γ3 + t (4 + 2γ − 6γ2)− 4)

(2− tγ)3

∴
∂

∂γ
[CMP (t, γ) + CRD(t, γ)] < 0⇔

(
t2γ3 + t

(
4 + 2γ − 6γ2

)
− 4
)
< 0.
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Suppose t ≤ 1
2
. Then t2γ3 + t (4 + 2γ − 6γ2)− 4 is maximized on the domain 0 ≤ γ < 1 at

γ = 0. At γ = 0

t2γ3 + t
(
4 + 2γ − 6γ2

)
− 4 = 4t− 4 < 0.

The result follows.

B.4. Proof of Lemma 6

CMP (t, γ) + CRD(t, γ) =
1− γ
2− γt

t+
(1− γ2)γ

(2− γt)2
t2

At γ = 0, CMP (t, 0) + CRD(t, 0) = t
2
. Since lim

γ→1
[CMP (t, γ) + CRD(t, 0)] = 0 and

both CMP (t, γ) and CRD(t, γ) are continuous, it must be that if there exists some γ

s.t. CMP (t, γ) + CRD(t, γ) > t
2
, then there exist two values of γ such that CMP (t, γ) +

CRD(t, γ) = t
2
. There are two solutions γ∗ for CMP (t, γ∗) + CRD(t, γ∗) = t

2
:

γ∗ =
1

2
− t

4
±
√
t3 − 4t2 + 36t− 32

4
√
t

If t < 1, the solutions are real-valued and interior exactly when

t3 − 4t2 + 36t− 32 ≥ 0.

When t = 1, the smaller of the two solutions is not interior, but the higher solution is interior.

The left hand side of this expression is increasing in t, strictly negative at t = 0 and strictly

positive at t = 1. The results follow.
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APPENDIX C

Derivations in the Numerical Example in Chapter 3

Given Di(pi, p−i) = 10 − 2pi + p−i, we can invert it to get the inverse demand function

Pi(qi, q−i) = 10 − 2
3
qi − 1

3
q−i. Plugging in q−i = 0 gives us the monopoly inverse demand

function which is Pi(qi, 0) = 10 − 2
3
qi, inverting this again gives us the monopoly demand

function DM
i (pi) = 15− 3

2
pi.

To calculate monopoly profits πMi (ci), we look at the maximization problem

max
pi

(pi − ci)
(

15− 3

2
pi

)
The first-order condition for this problem is 15−3pi+

3
2
ci = 0, which yields pMi (ci) = 5+1

2
ci

and πMi (ci) =
(
5− 1

2
ci
) (

15
2
− 3

4
ci
)
. Therefore πMi (c1 = 8) = 3

2
; and πMi (c0 = 0) = 75

2

To calculate duopoly prices pBi (ci, c−i) and profits πBi (ci, c−i), we look at the maximization

problem

max
pi

(pi − ci) (10− 2pi + p−i)

The first-order condition for this problem is 10 − 4pi + p−i + 2ci = 0, which yields

the best-response functions pBRi (p−i, ci) = 5
2

+ 1
4
p−i + 1

2
ci, and by simultaneously solving

the two best-response functions we get pBi (ci, c−i) = 10
3

+ 8
15
ci + 2

15
c−i and πBi (ci, c−i) =(

10
3
− 7

15
ci + 2

15
c−i
) (

20
3
− 14

15
ci + 4

15
c−i
)
. Hence, pBi (c2, c1) = 142

15
< 19

2
= c2, and pBi (c1, c0) =

38
5
< 8 = c1. Also, πBi (c2, c2) = 1

18
and πBi (c1, c1) = 8

9
.
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