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Abstract 

Background:  Effective surveillance of microbial communities in the healthcare environment is increasingly impor‑
tant in infection prevention. Metagenomics-based techniques are promising due to their untargeted nature but are 
currently challenged by several limitations: (1) they are not powerful enough to extract valid signals out of the back‑
ground noise for low-biomass samples, (2) they do not distinguish between viable and nonviable organisms, and (3) 
they do not reveal the microbial load quantitatively. An additional practical challenge towards a robust pipeline is the 
inability to efficiently allocate sequencing resources a priori. Assessment of sequencing depth is generally practiced 
post hoc, if at all, for most microbiome studies, regardless of the sample type. This practice is inefficient at best, and at 
worst, poor sequencing depth jeopardizes the interpretation of study results. To address these challenges, we present 
a workflow for metagenomics-based environmental surveillance that is appropriate for low-biomass samples, distin‑
guishes viability, is quantitative, and estimates sequencing resources.

Results:  The workflow was developed using a representative microbiome sample, which was created by aggregating 
120 surface swabs collected from a medical intensive care unit. Upon evaluating and optimizing techniques as well as 
developing new modules, we recommend best practices and introduce a well-structured workflow. We recommend 
adopting liquid-liquid extraction to improve DNA yield and only incorporating whole-cell filtration when the nonbac‑
terial proportion is large. We suggest including propidium monoazide treatment coupled with internal standards and 
absolute abundance profiling for viability assessment and involving cultivation when demanding comprehensive pro‑
filing. We further recommend integrating internal standards for quantification and additionally qPCR when we expect 
poor taxonomic classification. We also introduce a machine learning-based model to predict required sequencing 
effort from accessible sample features. The model helps make full use of sequencing resources and achieve desired 
outcomes.

Conclusions:  This workflow will contribute to more accurate and robust environmental surveillance and infection 
prevention. Lessons gained from this study will also benefit the continuing development of methods in relevant 
fields.

Keywords:  Environmental surveillance, Metagenomics, Infection prevention, Low biomass, Viability, Quantification, 
Machine learning, Sequencing depth prediction
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Introduction
Effective microbial surveillance in the built environment 
is increasingly important in infection prevention, given 
the persistence of pathogens in environmental reservoirs 
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and their potential transmission to patients [1–7] (e.g., 
carbapenem-resistant Klebsiella pneumoniae in sink 
drains [8, 9]). Furthermore, with the emergent studies 
showing synergistic relationships among pathogens on 
hospital surfaces [10] and the possibility for pathogenic 
bacteria to acquire antibiotic resistance genes from non-
pathogenic neighbors [11], it is necessary to expand from 
targeted surveillance to untargeted methods. Untargeted 
methods are advantageous in identifying novel or rapidly 
emerging pathogens [12]. Metagenomics-based tech-
niques are the most promising option to achieve these 
goals but are currently challenged by several limitations: 
(1) they are not powerful enough to extract valid signals 
out of the background noise for low biomass samples, 
(2) they do not distinguish between viable and nonviable 
organisms, and (3) they do not reveal the microbial load 
quantitatively [13, 14].

For challenge 1, adoption of appropriate negative con-
trols has been emphasized [15, 16], along with various 
bioinformatic filtering tools to remove putative contami-
nants [17, 18]. While current efforts have largely focused 
on contamination prevention, increasing the biomass 
itself remains understudied [12]. Having adequate bio-
mass is essential, as previous work has indicated that a 
small amount of starting material (i.e., DNA) has adverse 
impacts on the outcome regardless of sample processing 
methods [19]. In practice, methods have been adopted 
as temporary fixes, such as pooling samples from differ-
ent sites or dates [20] and using wipes instead of swabs 
as sample collectors [1]. However, these workarounds are 
not always available [21]. Moreover, systematic evaluation 
and benchmarking of optimization strategies for metagen-
omic sample preparation remain largely unexplored.

For challenge 2, propidium monoazide (PMA) is the 
most widely used viability indicator compatible with 
molecular techniques. Though intensively optimized 
[22], its efficacy and applicability in combination with 
metagenomics are controversial. A semiquantitative 
systematic evaluation concluded that PMA treatment 
coupled with 16S rRNA gene amplicon sequencing 
(PMA-Seq) is reliable when the microbial community 
is not very complex, while uncertainties increase dra-
matically with complexity [23]. The uncertainties come 
from both heterogeneity of microorganisms (e.g., cell 
envelope structure differences, spore formation) and 
complexity of the background matrix (e.g., turbidity, 
salt concentration, dead cell density) [13, 24, 25]. While 
the microbial communities to be surveilled have their 
inherent advantage of being low complexity, little is 
known about the effectiveness of incorporating PMA 
with multispecies internal standards. To be appro-
priately rigorous, comparisons are needed relative to 

standard surveillance that does not consider viabil-
ity (i.e., no PMA), as well as traditional methods (i.e., 
cultivation).

For challenge 3, pitfalls of using relative abundances 
in microbial profiling have been widely indicated. Such 
pitfalls include but are not limited to lack of unique 
connections between biological interpretations and 
experimental observations and unreliable comparisons 
across samples [14, 26, 27]. Strikingly, mis-selection of 
analytical tools for relative abundance data could lead to 
as high as 100% false discovery rates [26]. Besides flow 
cytometry [28, 29], combing sequencing with quantita-
tive PCR (qPCR) and including internal standards [30] 
are two major means of making quantitative estimations 
out of next-generation sequences. In practice, previ-
ously reported applications for qPCR include air and 
dust samples in classrooms [31]; for internal standards, 
applications include Amazon River plume [32], soil [33], 
and stool samples [34]. However, comparisons are not 
yet available between metagenomics coupled with qPCR 
and with internal standards using low-biomass environ-
mental samples in the immediate vicinity of humans 
(e.g., healthcare settings).

An additional practical challenge in developing 
a robust pipeline with metagenomics is how deep 
one should sequence. While useful in whole genome 
sequencing, recommendations of coverages expressed 
by folds of genome sizes (e.g., 15× to 60×) are not 
readily transferable to metagenomic sequencing 
(MetaSeq), as reads do not equally distribute across 
members with substantially different abundances. Non-
pareil, a redundancy-based tool, estimates and projects 
abundance-weighted average coverage for metagenom-
ics (expressed in percentage) [35–37]. This helps reduce 
erroneous interpretations out of metagenomic results. 
Yet, expected coverage is still largely unpredictable 
before sequencing is run. Researchers usually rely on 
previous experience of similar samples and the avail-
able budget to determine the sequencing effort (read 
size, unit: bp), which may lead to either a coverage too 
low, thus limiting the extractable information [11], or a 
waste of resources [1].

To address these challenges, we present a workflow 
for metagenomics-based environmental surveillance 
that is appropriate for low-biomass samples, distin-
guishes viability, is quantitative, and estimates sequenc-
ing resources (Fig.  1). Liquid-liquid extraction, PMA 
treatment equipped with internal standards and abso-
lute abundance profiling, qPCR, and a machine learn-
ing-based model are the recommended components for 
the comprehensive workflow, with whole-cell filtration 
and cultivation as optional accessories.
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Results
Liquid‑liquid extraction improves the power of handling 
low‑biomass samples
To improve DNA yield of low-biomass samples, we first 
compared 3 categories of extraction methods. Bead beat-
ing and heat lysis followed by liquid-liquid extraction 
were the optimal method, as opposed to widely used 
column- and magnetic bead-based methods (“Methods,” 
Additional file 1: Fig. S1) [38, 39]. Notably, no detectable 

DNA was recovered using Qiagen DNeasy PowerSoil Kit. 
Supplementary to the recommendation that DNA input 
≥ 1 ng for Nextera Flex Library Prep kit, we correlated it 
to the practical outcome and found that DNA > 11.2 ng 
corresponded to raw reads > 1e + 05 (Additional file 1: 
Fig. S1).

In addition to being low biomass, environmental sam-
ples of interest are usually in the immediate vicinity of 
humans and thus often contain eukaryotic cells. These 

Fig. 1  A workflow for metagenomics-based environmental surveillance that is appropriate for low-biomass samples, distinguishes viability, is 
quantitative, and estimates sequence resources
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cells may compete with bacteria for sequencing depth, 
lowering detectable resolution on bacteria, especially for 
low-abundance members. Collection methods such as 
swabs and wipes can further recover abiotic debris along 
with biological materials, to which chemicals potentially 
interfering with downstream experiments may adsorb 
[40]. To address these issues, we evaluated the imple-
mentation of whole-cell filtration in the workflow. Four 
filtration steps (100, 80, 41, 5 μm) were conducted in 
descending order of pore sizes. For our samples, filtration 
did not exert a significant effect on detected proportions 
of bacteria (Fig. 2a) or eukaryotic reads (Additional file 1: 
Fig. S2), according to paired t-tests (p ≥ 0.05). Consider-
ing that the nonbacterial proportion of our samples was 
relatively small (~1%), filtration appears ineffective (or 
unnecessary) in increasing the bacterial proportion by 
excluding eukaryotic cells for samples with similar char-
acteristics. Instead, most of the eukaryotic reads were 
human-associated and thus able to be removed in silico 
(Additional file 1: Fig. S2). Moreover, we did not observe 
an increase in the number of rare taxa post filtration. 
Nevertheless, filtration did not negatively affect the num-
ber of recoverable taxa (Additional file 1: Fig. S3) [41, 42].

As expected, filtration introduced biomass loss of ~13–
44%, according to 16S rRNA gene copy number (Fig. 2b). 
The biomass loss may be compensated by a two-fold con-
centration, material permitting. Alternatively, the total 
biomass loss can be reduced in practical applications 
where one-step filtration is streamlined. Filtration did not 
impact the overall bacteria composition (Fig. 2c), nor did 
it change the relative abundances of top abundant taxa 
(average abundance > 1%) (Additional file 1: Fig. S4). This 
evidence supports the validity of using filtration to con-
centrate bacterial samples in sequencing-based experi-
ments for profiling relative abundances. However, the 
absolute abundances would be affected disproportion-
ately, as the extent of biomass loss varied across samples 
(Fig. 2b). Therefore, when an absolute metric is of inter-
est, the recovery rate needs to be rigorously measured. 
Bacteria retention profiles on 5 μm filters were similar to 
those of the liquid samples. However, bacterial members 
were not proportionally retained by filters of a larger pore 
size (100, 80, 41 μm) (Fig. 2d). Hence, treating microbial 
samples with large pore-size filters may introduce biases, 
even when relative abundances are used.

Taken together, for samples whose nonbacterial pro-
portion is small (e.g., ~1%), it is unnecessary to incorpo-
rate filtration to increase the bacterial fraction. Filtration 
is valid in concentrating samples. However, for low-
biomass samples which are low in both cell density and 
quantity, biomass loss outweighs the slight increase of 
bacterial signal. Instead, switching to a high-yield DNA 
extraction method, such as liquid-liquid extraction, can 

achieve higher folds of signal improvement (DNA con-
centration from undetectable to 18.62 ± 1.16 ng/μL).

PMA and cultivation improve the ability to determine 
viability
We examined the efficiency of PMA treatment coupled 
with metagenomic sequencing (PMA-MetaSeq) on hos-
pital-associated surface samples with the ZymoBIOMICS 
Microbial Community spike-in as the internal standard. 
The Zymo community consists of 8 bacterial species and 
2 yeasts, which presumably will function more compre-
hensively and accurately regarding bias correction and 
quality control than a single-species standard [13, 23, 24, 
43]. Sequencing outcomes were compared with cultiva-
tion results for benchmarking, as cultivation is the gold 
standard for determining microbial viability.

Absolute abundance of samples decreased after PMA 
treatment, indicating the depletion of nonviable signals 
(Fig.  3c). This was further supported by the observa-
tion that 𝛂 diversity was lower in PMA-treated samples 
(Fig.  3a), and that inter distances between paired sam-
ples were larger than intra distances within each sample 
group (Jaccard Distance; Fig. 3b). We note that absolute 
abundance should be used when analyzing sequence data 
involving viability assessment, as relative abundance pro-
file is likely distorted (Fig. 3 c–d) [33]. Although relative 
abundance is informative in demonstrating the presence/
absence, it neglects the amount of overall biomass and 
thus may inflate the apparent abundance of even low-
abundance organisms. While absolute abundance is more 
reflective of reality, field trials are necessary to determine 
whether absolute or relative abundance, or either, can be 
linked to infection or other clinical outcomes.

We calculated the efficacy of 8 spike-in bacteria [23]. 
The efficacy should be 1 under ideal conditions, given 
that the percentage of viable microbes in the Zymo 
community is negligible (Additional file 1: Fig. S5). The 
efficacy equaled 1 for all taxa, suggesting that PMA 
treatment is effective in low-biomass samples regardless 
of taxonomy. This conclusion is partly consistent with 
our previous evaluation of PMA-Seq where E. coli was 
spiked in [23].

Focusing on specific taxa (Fig. 4b), we observed occa-
sions of a complete depletion for high-absolute-abun-
dance taxa and retention for low-absolute-abundance 
taxa, suggesting an effective viability distinction. Relative 
abundance for some taxa increased after PMA treatment 
(g_Pseudomonas, s_Pseudomonas psychrophila, c_Gam-
maproteobacteria, s_Pseudomonas fragi, s_Pseudomonas 
koreensis, k_Bacteria), while all taxa showed a decrease in 
absolute abundance. This indicates that PMA treatment 
may increase the ability to detect taxa with majoritar-
ily viable populations. We did not detect new taxa that 
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Fig. 2  Effects of sequential filtration on hospital-associated surface samples. a Bacteria proportion was not significantly increased after filtration 
according to paired t-tests. b Biomass of samples with and without filtration as well as retained by filters according to 16S rRNA gene copy number. 
In a and b, error bars represent the mean standard error of triplicates. Filter retention includes all biomass captured by 100, 80, 41, and 5 μm filters. 
Ns and ** are significance codes, representing p > 0.05 and 0.001 < p ≤ 0.01, respectively. A linear scale was used for both a and b because for a, a 
linear scale is more conservative than a log scale when no significant difference was concluded; for b, linear-scale biomass loss is more informative 
for metagenomic sequencing. c Principal coordinate analysis using Jaccard distance metric among samples with and without filtration. d Principal 
coordinate analysis based on Jaccard distance metric revealed that bacterial profiles retained on 5 μm filters clustered together with liquid samples, 
while those on 100, 80, and 41 μm filters were away from the major group
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Fig. 3  Effects of PMA treatment on hospital-associated surface samples. a PMA-treated samples had lower α diversity based on Shannon index. 
b Inter distances between paired samples with and without PMA treatment were larger than intra distances within each sample group (based on 
Jaccard metric). Comparisons of profiling the bacterial composition by c absolute abundance and d relative abundance

Fig. 4  Performance of cultivation and PMA-MetaSeq in viability distinction of hospital-associated surface samples. a Venn diagram showing 
the detected taxa by cultivation and MetaSeq. Taxa detected by PMA-MetaSeq are color coded in red. Pseudomonas fragi was also detected in 
the genome-centric approach and is marked with an asterisk. b The abundance change of all taxa detected under the framework of absolute 
abundance and relative abundance. Taxa in the theoretical composition of the internal standard and recovered in cultivation are color coded in 
purple and green, respectively. The Y-axis follows a descending order of the average abundance across samples. Error bars represent the mean 
standard error of triplicates
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were previously undetectable  in PMA-treated samples. 
However, if nonviable microbes are not of interest, treat-
ing samples with PMA will improve the detection power 
for the overall community with comparable sequencing 
resources (Fig.  6c), as it reduced the overall 𝛂 diversity 
(Fig. 3a).

Cross-referencing between cultivation and PMA-
MetaSeq was greatly impeded by their inherent limi-
tations (e.g., detection limit for MetaSeq, biases with 
bioinformatics; viable but non-culturable cells for cul-
tivation). Even for PMA-untreated samples, cultivation 
and MetaSeq only agreed with each other on a small 
number of taxa (Fig.  4a). Among the 3 viable taxa con-
firmed by cultivation, viability of s_Pseudomonas fragi 
and s_Pseudomonas stutzeri was reflected by PMA-
MetaSeq, while s_Pseudomonas fluorescens became 
undetectable after PMA treatment. This might imply 
over-depletion but could also be because its abundance 
went below the detection limit of MetaSeq. As indicated 
by Barbau-Piednoir et al., less-abundant taxa were more 
likely to be eliminated (to undetectable) by PMA treat-
ment [44]. This is consistent with our observation, as the 
abundance of s_Pseudomonas fluorescens was the small-
est among the cultivation-confirmed taxa. Thus, for low-
abundance taxa, cultivation could serve as a supplement 
to sequence-based viability assessment techniques, as a 
small unintentional removal of viable cells may lead to 
a large presence/absence difference. Moreover, incorpo-
rating cultivation can expand the detection spectrum in 
general, and particularly for low-abundance taxa, due to 
MetaSeq’s restrictions such as detection limit and failure 
to distinguish closely related taxa.

Collectively, we emphasize the importance of using 
absolute abundance and demonstrate a successful 
application of multispecies internal standards in PMA-
MetaSeq. PMA is effective in low biomass samples and 
can improve the detection power by eliminating irrel-
evant signals. Cultivation remains a valuable supplement 
to sequence-based techniques for capturing a compre-
hensive picture.

Poor taxonomic classification is a major hurdle for internal 
standards in quantitative metagenomics
Quantifying metagenomics-based abundances using 
internal standards has substantial benefits. Theoreti-
cally, addition of internal standards could compensate for 
errors resulting from nonquantitative steps [13]. E. coli 
is one of the most used spike-in strains, in part because 
it is well-studied and easy to recover in sequencing [23]. 
However, ideally, we want the internal standard to con-
tain a set of diverse taxa, so that it well represents the 
diversity in microbial communities. We investigated the 
performance of the Zymo community as the internal 

standard for hospital-associated environmental samples, 
along with qPCR for the 16S rRNA gene.

Unfortunately, the efficiency of implementing the Zymo 
standard in quantitative metagenomics was drastically 
impeded by the limited resolution of taxonomic clas-
sification. We tried two approaches: Metaxa2 [45–47] 
coupled with the SILVA 132 SSU database [48, 49] and 
MetaPhlAn3 [50, 51], which uses a collection of marker 
genes. The taxonomic resolution varied substantially 
across different taxa. For samples containing only the 
Zymo standard, 85% of the small subunit rRNA reads 
were attributable by Metaxa2, while only 48.14% of the 
metagenomes were recognized by MetaPhlAn3. Within 
the attributable portion, MetaPhlAn3 performed bet-
ter regarding specificity; all reads were classified at the 
species level, while Metaxa2 retained a decent amount 
of information at higher levels, with the ratio of genus/
family-level and species-level classifications ranging from 
0.18 to 11.28.

Foreseeably, this issue will be alleviated as reference 
databases and taxonomic assignment tools continue to 
advance. Currently, advantages of internal standards are 
mainly reflected when species-level identification is the 
major focus. For instance, clinical samples usually target 
pathogenic species whose core pangenomes are relatively 
well represented in databases. In this case, the biases 
from uneven representation of species can also be cor-
rected based on the performance of closely related inter-
nal-standard species. However, if information at genus or 
higher levels is of consideration, internal-standard tech-
niques become non-applicable, as we are not able to dis-
tinguish internal-standard taxa from other species within 
the same genus (or at higher levels), which is the basis 
of making calculations and corrections. Coupling with 
qPCR, instead, is more appropriate (Fig.  3c). Environ-
mental communities are typical examples where coupling 
with qPCR stands out because environmental microor-
ganisms are not usually well represented at the species 
level. Of 87 samples in our study, strikingly, MetaPhlAn3 
only recognized an average of 19.68% of the metagen-
ome at the species level. The classification rate slightly 
increased to 38.40% using Metaxa2, which substantially 
improved to 87.24% when genus level was included.

Accessible sample features can predict required 
sequencing effort
To enable more informed decision-making before 
MetaSeq, we conducted a quasi-meta-analysis, using the 
limited number of existing hospital-related environmen-
tal metagenomics studies [1, 5, 20, 52–54]. We recruited 
956 shotgun samples (874 from 6 previous studies and 
82 from this study) (Additional file 2). Using these data, 
we linked accessible features (e.g., location, building, 
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sampling method) to the required sequencing effort 
given a targeted coverage, leveraging machine learning-
based models and Nonpareil (Fig. 6a).

Relationships between Nonpareil diversity (Nd, unit: 
log-bp) and metadata features were first explored (Fig. 6a: 
stage 1). Nd is an index measuring the complexity of a 
microbial community regarding “sequence space,” which 
correlates with classic bin-based diversity indices (e.g., 

Shannon index) for bacteria [35, 37]. Though not passing 
the normality test (Shapiro-Wilk test, p = 3.338e-16) [55], 
normal distribution was still the best-fit distribution of 
our dataset, followed by logistic distribution, upon inves-
tigation by Cullen and Frey Graph and R package “fitdis-
trplus” (Fig. 5a, Additional file 1: Fig. S6). Presumably, the 
deviation from normality will decrease as sample sizes 
increase. For 90% of samples, Nd was within 2 orders of 

Fig. 5  Relationships between Nonpareil diversity and metadata features for hospital-associated surface samples. a Overall distribution of Nonpareil 
diversity (black) and distributions for individual studies. b Interquartile range of Nonpareil diversity for microbiome samples from different 
environments. This study is color coded in orchid. Effects of c sample type, d sampling method, and e sample pooling on Nonpareil diversity. 
Significance codes are as follows: p > 0.05 (ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), p ≤ 0.001 (***)
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magnitude (15.4–20.0, natural log scale), suggesting a 
common range for hospital-associated environmental 
samples, which is valuable for reference when design-
ing future studies. Notably, this Nd level was among the 
lowest across 6 different environments including animal 
hosts, fresh water, and soil (Fig. 5b) [37].

We further examined the influences of sample type 
(sink versus surface), sampling method and sample 
pooling on Nd. No significant difference was observed 
between sink and surface samples (Fig. 5c). Within sink 
samples, Nd was significantly different across sampling 
methods (ANOVA, p = 7.18e-06). Specifically, samples 
collected by swabs seemed to have a smaller diversity 
than those by the other methods (Tukey’s post hoc test; 
samples without a clear collection method stated in the 
original paper were assigned as “sink”). Note that even 
though sink samples are generally from the same loca-
tion, the confounding effects introduced by sub-locations 
(e.g., sink basin, pipe edge, P-trap) cannot be ruled out. 
Similarly, within surface samples, though Nd of wipes 
was significantly larger than that of swabs (unpaired 
t-test), confounding effects remain (e.g., researchers tend 

to use wipes for large-area and high-biomass locations, 
like floors, which often contain more diverse communi-
ties) (Fig. 5d). Though weak, we noticed a trend of diver-
sity increase after sample pooling (Fig.  5e), raising the 
alarm that more caution should be taken when increas-
ing biomass by pooling samples. The practice of sample 
pooling assumes that the pooled samples share some 
core features, whose biomass will be increased past the 
detection limit. This may be true of certain sample types, 
e.g., host-associated microbiomes, but is unlikely to be 
true of built-environment samples that lack a conserved 
core [56]. Further investigations are needed should more 
data become available, as the sample size was quite lim-
ited for some groups (e.g., n(pooled monitor) = 2, n(not-
pooled monitor) = 4). In the interim, we recommend 
seeking other methods, such as a high-yield DNA extrac-
tion, before resorting to sample pooling, as the resulting 
sample characteristics may be different from individual 
samples.

To further harness the reference potential of Nd, 
we built models to predict Nd from metadata features 
based on machine learning algorithms. Eight predictor 

Fig. 6  Required sequencing effort can be predicted by accessible sample features and targeted coverage. a Workflow of making the prediction. 
b Variable importance rankings by random forest. c The natural log of estimated sequencing effort at 95% coverage is linearly correlated with 
Nonpareil diversity
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variables (location, building, study, country, touch fre-
quency, sample type, sampling method, sample pooling) 
were included based on data availability, MIxS-BE stand-
ards, and previous experience (Additional file 2) [53, 57, 
58]. Nd, the response variable, was first converted from 
a numerical variable to a nominal variable. Three con-
version schemes were tried, with the intervals being 2.5, 
1.0, and 0.5 (number of categories being 2, 5, 11, respec-
tively). Random sampling was adopted to split the entire 
dataset into training and testing datasets at the ratio of 
4:1. Implementing repeated cross-validation (5 folds, 5 
times) on the training dataset, 9 algorithms were exam-
ined to optimize the classification performance, including 
random forest, stochastic gradient boosting, and support 
vector machines. Algorithms were evaluated according to 
4 metrics (area under curve, Kappa, and balanced accu-
racy on both training and testing datasets) [59]. Overall, 
no difference was observed among the tested algorithms. 
Random forest was selected due to its slightly better per-
formance from a holistic perspective and capability of 
ranking the predictor variables.

The model accuracy positively correlated with the 
interval size. At 2.5, the accuracy on the training dataset 
was as high as 87.69% and slightly lower on the testing 
dataset (82.60%). The accuracy dropped as the classifica-
tion demand rose. The mean balanced accuracy on the 
testing dataset was 64.08% and 61.38% when intervals 
were 1.0 and 0.5, respectively. Considering that Nd was 
converted from a continuous variable, we examined the 
misclassifications and found that most of them fell into 
nearby categories. We thus calculated the mean bal-
anced accuracy ± 1 category and observed a substantial 
improvement. Specifically, mean balanced accuracy of 
87.06% and 77.17% can be achieved for 5- and 11-cat-
egory classifications, respectively. Considering the spar-
sity of the currently available dataset and the challenge 
of multiclass classification, this model demonstrated a 
reasonable degree of accuracy, which should improve as 
sample sizes and available features grow.

The variable importance ranking generated by ran-
dom forest separated the predictor variables into 3 
groups (Fig.  6b). Location, building, and study were the 
top 3 variables with the highest importance, followed by 
country, touch frequency, and sample type, while sample 
pooling and sampling method hardly impacted the clas-
sification. Groupwise, this ranking was generally con-
sistent with the explanatory power described by linear 
regression (Additional file  1: Fig. S7) [58]. That “study” 
ranked as one of the most important variables indicated 
the existence of biases towards individual studies in the 
current dataset (e.g., “batch effects” related to respective 
sampling, processing, sequencing, and analysis), which 
was also observed by a previous meta-analysis of indoor 

microbiota [58]. Interestingly, despite its high impor-
tance, the model performance had almost no drop after 
excluding “study” (> 95% for all conversion schemes), 
justifying making predictions without involving artifi-
cial metadata features like “study.” It is worth noting that 
importance of the other variables (e.g., building, country) 
was raised after this exclusion (Additional file 1: Fig. S8). 
To find the features necessary for making a comparably 
accurate prediction, we further examined the perfor-
mance of models after gradually reducing the number 
of predictor variables and found that using only 2, “loca-
tion” and “building,” the new model achieved 95% accu-
racy regardless of interval sizes tested.

With Nd and metadata features connected, the 
required sequencing effort at a targeted coverage was 
then inferred (Fig. 6a: stage 2). Upon fitting the data, we 
revealed a linear relationship between the natural log of 
estimated sequencing effort at 95% coverage (ln(LRstar)) 
and Nd, with the equation being ln(LRstar) = 1.14 × 
Nd + 1.21 (adjusted R-squared = 0.6012, p < 2.2e-16) 
(Fig. 6c). This is theoretically backed up by previous find-
ings that sequencing effort depends on the diversity level 
and the genome size, and that the latter can be ignored 
for most microbial communities, particularly bacte-
rial communities, since the differences in genome size 
are usually no more than one order of magnitude [35]. 
Instructions to make calculations between sequencing 
effort and other coverage levels are provided at https://​
github.​com/​jxshe​n311/​workf​low_​metag​enomic_​envir​
onmen​tal_​surve​illan​ce/​tree/​main/​nonpa​reil/​examp​le_​
SeqEf​fort%​26Cov​erage.

Discussion
Although sequence-based environmental surveillance of 
microbial communities for better management of public 
health has been appealed for and utilized, best practices 
of the workflow have not been systematically studied to 
ensure proper interpretations of sequencing results to 
aid in infection risk assessment [13, 14]. This study intro-
duces a well-structured and informed metagenomics-
based workflow towards the goal of being appropriate for 
low-biomass, viability, quantification, and resource esti-
mation. We recommend adopting liquid-liquid extraction 
to improve DNA yield and only incorporating whole-cell 
filtration when nonbacterial proportion is large. Despite 
its imperfection, we suggest including PMA treatment, 
and involving cultivation when demanding comprehen-
sive profiling. We further recommend integrating inter-
nal standards for quantification, and additionally qPCR 
when we expect poor taxonomic classification. We also 
introduce a machine learning-based model to pre-
dict required sequencing effort from accessible sample 

https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance/tree/main/nonpareil/example_SeqEffort%26Coverage
https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance/tree/main/nonpareil/example_SeqEffort%26Coverage
https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance/tree/main/nonpareil/example_SeqEffort%26Coverage
https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance/tree/main/nonpareil/example_SeqEffort%26Coverage
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features. The model helps make full use of sequencing 
resources and achieve desired outcomes.

While using realistic samples in testing simulates con-
ditions the workflow may face in practical applications, 
it comes with side effects. Our aggregation sample had a 
small fraction of nonbacterial organisms (~1%). Thus, the 
conclusion that whole-cell filtration does not increase the 
bacterial proportion and signal of rare taxa to a statistically 
significant degree is probably only applicable to samples 
with similar characteristics, representing 84.90% among the 
874 samples from hospital-related environmental studies 
used in the quasi-meta-analysis [1, 5, 20, 52–54]. However, 
a few samples did contain a decent proportion of eukary-
otes. Specifically, 132 samples harbored more than 1% 
eukaryotic reads, and strikingly, more than half reads were 
attributed to eukaryotes for 20 samples. Moreover, samples 
collected from high-touch surfaces were more likely to have 
higher proportions of eukaryotes than low-touch surfaces 
and sinks. Of the 104 sink samples, the maximum percent-
age of eukaryotes was 0.1%. Therefore, filtration is probably 
unnecessary for most environmental samples (especially 
sink samples) and may be beneficial for part of high-touch 
surface samples (Additional file 1: Fig. S9).

Despite being semiquantitative and entailing consider-
able uncertainty, involving PMA takes us a step closer to 
understanding viability, particularly for low biomass sam-
ples whose complexity is also relatively low [23]. Notably, 
the overall uncertainty comes not only from PMA treat-
ment but also from the metagenomics pipeline itself, 
such as biases from DNA extraction kits and taxonomic 
assignment tools [16, 60]. In addition to PMA, alternative 
metrics have been proposed, including methods based on 
RNA (reflects active transcription), peak-to-trough ratio 
(PTR) (reflects active replication), and nuclease digestion 
(e.g., benzonase). As stated in a systematic evaluation, 
while 16S rRNA transcript-based amplicon sequenc-
ing semi-quantified viability of synthetically constructed 
simple communities (Escherichia coli and Streptococ-
cus sanguinis), it is inappropriate for realistic complex 
communities [61]. PTR has been demonstrated as an 
efficacious metric to estimate microbial growth rates in 
both human (e.g., skin, fecal) and environmental (e.g., 
marine, sludge) datasets by several studies [62–65]. How-
ever, a study based on freshly collected marine prokary-
otes raised concerns as they observed poor correlations 
between PTR and growth rates for most marine bacterial 
populations (r ~−0.26–0.08), except for the rapidly grow-
ing γ-Proteobacteria (r ~0.63–0.92) [66].

Some overlap exists between methods for viability 
determination and those for depleting eukaryotic DNA. 
For example, osmotic lysis followed by PMA treatment 
is recommended to remove human DNA in saliva sam-
ples [67]. However, recommended methods depend on 

the sample type. PMA is not recommended for sputum 
samples, where nuclease-based methods (e.g., digest 
with benzonase) showed an equal or better performance 
[68]. Benzonase has also been applied to skin microbi-
ome samples with desired outcomes [69]. In general, 
factors impacting method performance include percent-
age and composition (e.g., extracellular DNA, DNA in 
largely lysed or partially compromised cells) of targets to 
be removed (i.e., eukaryotes and dead bacteria), as well 
as characteristics of background matrix (e.g., viscos-
ity). For instance, saliva and sputum consistently con-
tain ≳ 90% human DNA [67, 68], while this percentage 
is very diverse for hospital-associated environmental 
samples (Additional file  1: Fig. S9). Filtration failed to 
exclude human DNA in saliva likely because extracellu-
lar DNA was the dominant component rather than cells 
[67]. For sputum samples where cells are lysed and DNA 
is no longer protected, nucleases might be quite effec-
tive in depleting extracellular DNA, whereas PMA effi-
cacy could be hindered by the viscosity of the matrix) 
[68]. In contrast, in environments where cells gradually 
decay due to harsh conditions (e.g., desiccation), more 
DNA attributable to dead cells would still have a partially 
compromised membrane; PMA, as a small molecule, may 
be more effective in penetrating the damaged cell mem-
brane and depleting the DNA. For eukaryotic depletion, 
it may be beneficial to further unravel the underlying 
mechanisms influencing the efficacy of different methods 
in different sample types and characteristics.

Nevertheless, for viability assessment, instead of focus-
ing on this viable/dead dichotomy, perhaps more criti-
cally, we should keep in mind that “viability” is rather an 
intermediate or methodological term, linking surveil-
lance results to questions of interest (e.g., which bacteria 
are infectious) [13]. In the future, it is worth exploring 
whether the concept “viability” in the context of interest 
is closer to intact cell membrane, active transcription, or 
active replication. Moreover, rather than optimize one 
single metric, integration of multiple methods has been 
proposed (e.g., using multi-omics techniques) [23]. Pur-
suing viability profiles using orthogonal methods would 
plausibly enable a more comprehensive understanding, 
but the cost-benefit ratio may be considerably high for 
multi-omics techniques. Integrating with cultivation, 
instead, provides an affordable alternative. Notwithstand-
ing, it remains to be investigated how to properly inter-
pret results generated by a combination of methods, as 
inconsistencies between disparate methods are common.

We applied multi-taxa internal standards and calcu-
lated PMA efficacy of spike-in taxa based on a reasonable 
assumption that the percentage of viable microbes in the 
Zymo community is negligible, resulting in a theoretical 
value of 1 (Additional file 1: Fig. S5). While this internal 
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standard can strongly reflect incomplete suppression of 
nonviable signals, potential toxicity of PMA might be 
underrepresented. Although no toxicity was observed at 
the PMA dose of our protocol in validation (Additional 
file 1: Fig. S10), a customized internal-standard mixture 
featuring 0.5 as the designed PMA efficacy would be ideal 
for future studies [23]. As opposed to purchasing com-
mercial products, we recommend utilizing the Zymo 
community as a reference for the taxonomic composi-
tion and constructing the mixture with live cultures in 
real time, because viability (or membrane integrity when 
PMA is used) is difficult to maintain in manufacturing, 
shipping, and storage.

Continuous advancement of internal standards for 
quality control, as well as quantification and other fea-
tures, is still one of the major hotspots in method optimi-
zation. A suitable internal standard should well balance 
representation and recognizability. Good representation 
means that the workflow impacts the spike-in and tar-
geted microbes comparably (because of their similarity). 
Good recognizability means that the spike-in can be eas-
ily distinguished from the targets. In this study, the Zymo 
community was selected due in large part to its represen-
tation, as it spans broadly the phylogenetic tree. Previ-
ous studies have selected internal standards based on a 
similar principle. For instance, the Zymo community and 
a 10-species mock community were chosen for gastroin-
testinal and stool samples, respectively [70, 71]. Peroxide-
killed Campylobacter sputorum was used to quantify 
viable thermotolerant Campylobacter [72]. These internal 
standards are prone to be confounded with targets, thus 
posing challenges for bioinformatics to accurately iden-
tify and quantify taxa. To obtain good recognizability, 
exotic materials are sought. In the aforementioned exam-
ple, the researchers chose 10 species that were generally 
absent from the stool of healthy individuals. The same 
criterion was followed by another gut microbiome study 
in which microbes from hypersaline environments, soil, 
and plants were utilized [34], as well as a study on Ama-
zon River plume to which genomic DNA from Thermus 
thermophilus HB8 was applied [32]. Finding a completely 
exotic species is more challenging for environmental sur-
veillance whose subjects are influenced by both human 
and environmental activities. As a potential solution, 
artificial DNA have been developed to ensure differen-
tiation from the targets. Previous reports included sets 
of synthetic DNA, 16S rRNA genes, and chimeric DNA 
fragments, implemented in different venues of metagen-
omic and amplicon sequencing [33, 73, 74]. However, 
whether these exogenous (or even artificial) standards’ 
behavior resembles that of the targets remains ques-
tionable. By and large, more systematic evaluation and 
optimization are needed to foster the development of 

internal-standard techniques that better balance repre-
sentation and recognizability or at least make their pros 
and cons quantitatively accessible, both in general and for 
specific contexts. For example, it will be beneficial to con-
duct data-driven meta-analyses and curate databases to 
further inform the field.

Though the classification models performed well from 
a practical perspective, their accuracy with small inter-
vals still merits improvement. Building a hierarchical 
classification model might be beneficial, as we observed 
a drastic increase in the accuracy when the interval size 
was enlarged. It is also likely that the available dataset is 
not good enough to train a model with very high accu-
racy. For example, there is clear evidence that the data 
were biased by the disparate sample sizes between stud-
ies. Moreover, we only managed to collect 7 common 
metadata features (excluding “study”) without involv-
ing a substantial number of missing values, which raises 
the question of whether what we achieved has already 
reached the theoretical plateau of explanatory power of 
these features. If this is the case, standardized reporting 
of more high-quality metadata should be further pro-
moted. Additionally, since normal distribution was the 
best-fit distribution of the current dataset, with seem-
ingly missing pieces in the middle (Fig.  5a), fitting data 
into known distributions may be more explanatory as 
large sizes of data become accessible.

Conclusions
This study presents an improved workflow towards accu-
rate and robust healthcare environmental surveillance 
using metagenomics. The workflow is appropriate for 
low-biomass samples, distinguishes viability, is quan-
titative, and enables estimation of necessary sequenc-
ing resources. We recommend liquid-liquid extraction, 
propidium monoazide treatment coupled with inter-
nal standards and absolute abundance profiling (e.g., 
using qPCR), and a machine learning-based model for 
sequencing depth calculation. In addition, whole-cell fil-
tration and cultivation may be valuable under particular 
circumstances.

This metagenomics-based environmental surveil-
lance workflow is particularly useful in infection preven-
tion and disinfection assessment. Although we focus on 
microbial surveillance of built environments, especially 
hospital-associated surfaces, the workflow developed in 
this study can be adapted to other contexts with similar 
characteristics. For example, the multifaceted lessons 
learned from this study will benefit the continuing devel-
opment of microbiome-based clinical testings from body 
sites (e.g., skin), such as methods to increase low-bio-
mass signals and determine viability [12]. Moreover, the 
experience gained in overcoming challenges unique to 
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environmental microbiomes (e.g., quantitative metagen-
omics with poor taxonomic classifications) is also useful 
to studies on other environments, such as wastewater 
and air.

Methods
Sample collection, aggregation, and cultivation
We collected 120 surface swabs from the 28-bed medi-
cal intensive care unit (MICU) at Rush University 
Medical Center (RUMC) in October 2018. RUMC is a 
720-bed tertiary care teaching hospital in Chicago, IL, 
USA. Samples were collected from door sills, computer 
keyboards, light switches, nurse call buttons, and bed 
rails in 13 single-bed patient rooms, as well as door sills 
in 4 medication rooms, 2 public restrooms, 1 staff-only 
restroom, and the communicating space of MICU (Addi-
tional file  3). Weighted mean area of sampled surfaces 
was 216 cm2. Patient rooms were selected to keep a rela-
tively balanced number for both contact isolation and 
noncontact isolation rooms. Healthcare providers and 
visitors entering contact isolation rooms are required to 
wear gowns and gloves, which may reduce transmissions 
via contaminated healthcare providers. Room tempera-
ture and relative humidity were documented during the 
collection, which varied slightly across rooms, with the 
average being 23.8 °C and 45%, respectively. Each sample 
was collected by 3 COPAN Nylon Flocked Swabs (Copan 
Diagnostics, Murrieta, CA, USA) and 1.5 mL phosphate-
buffered saline with 0.02% Tween 80 (PBST) and stored 
at 4 °C for up to 24 h prior to extraction, aggregation, and 
cultivation [53, 75]. Swabs were extracted and aggregated 
to create a representative microbiome sample [56, 75, 
76]. Aliquots of this aggregation sample were then sub-
jected to different processing methods (i.e., several DNA 
extraction methods, microbial community standard 
spike-in, PMA treatment and whole-cell filtration) to find 
best practices of the workflow (Additional file 1: Fig. S11).

To capture a large fraction of the indoor microbi-
ome diversity, we cultured the samples with 4 differ-
ent media: tryptic soy agar (TSA), Reasoner’s 2A agar 
(R2A), 0.1 strength R2A at 25 °C, and blood agar (BA) at 
37 °C, all supplemented with 4 mg/L itraconazole [75]. 
This resulted in 233 cultivable isolates. All colonies that 
could be individually picked or purified were subject to 
taxonomic identification by matrix-assisted laser des-
orption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS) using the VITEK® MS Mass spec-
trometry microbial identification system (BioMerieux, 
Marcy-l’Étoile, France) and the VITEK MS V3.2 FDA 
510(k) cleared database. Among the 233 isolates, 201 
were identified. It is important to note that because mul-
tiple media types were used, the number of isolates for 
each species identified does not represent the relative 

abundance of this species in the sample, as some species 
may have grown on multiple media.

Standard addition, PMA treatment, and whole‑cell 
filtration
All treatments were done in triplicate, including 
cultivation.

Standard addition
Aliquots were snap frozen and stored at −80 °C until fur-
ther processing to maximize the integrity of samples and 
avoid degradation resulting from long-term storage at 4 
°C [76, 77]. Samples were thawed at 4 °C prior to treat-
ments. ZymoBIOMICS Microbial Community Standard 
(Zymo Research, Irvine, CA, USA) was used as both the 
internal standard and the external standard. As the inter-
nal standard, 6.50 μL Zymo community was spiked into 
1 mL aggregate sample, following the criterion that DNA 
of the species with the highest abundance in the Zymo 
community approximates 1% of the total DNA in the 
aggregate sample [32, 78]. As the external standard, ali-
quots of the Zymo community were run in parallel with 
aggregate samples throughout the workflow to assure its 
performance.

PMA treatment
Following standard addition, PMA treatment (Biotium, 
Fremont, CA, USA) with an optimized protocol was 
applied to half of the samples within each group [22, 24, 
25, 79, 80]. The protocol was first validated by reproduc-
ing the work of Nocker et  al. (2006) using Escherichia 
coli (ATCC 8739) as model strain (Additional file 1: Fig. 
S10). E. coli was grown to the exponential phase. The cul-
ture was then split into two aliquots, one of which was 
killed by heat inactivation at 95 °C for 7 min in Eppen-
dorf ThermoMixer shaking at 400 rpm for homog-
enized heating. After cooling to room temperature, live 
and heat-killed aliquots were mixed following the same 
ratios as in Nocker et  al. (2006), yielding samples of 6 
different expected live cell ratios. Viability of both live 
and heat-killed cultures was confirmed by spread plat-
ing onto TSA and incubating at 37 °C overnight. Half of 
each constructed sample underwent PMA treatment. 
The results were evaluated by both DNA concentration 
ratio quantified by Quant-iT™ PicoGreen™ dsDNA Assay 
(ThermoFisher, Waltham, MA, USA) and copy num-
ber ratio by qPCR with 16S universal primers (341F and 
534R) (Additional file 1: Fig. S10). Briefly, a final concen-
tration of 25 μM PMA was used, and several steps were 
conducted to ensure the consistency across samples and 
minimize nonspecific reactions between PMA and ran-
dom sample components, including (1) adding PMA 
to tube caps and inverting all tubes simultaneously, (2) 
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working under red light, and (3) protecting samples from 
light as much as possible before the light activation step 
in the PMA-Lite™ device (Biotium, Fremont, CA, USA). 
An aliquot of samples for each replicate was preserved at 
−80 °C until DNA extraction, with the rest stored at 4 °C 
for downstream filtration.

Whole‑cell filtration
Whole-cell filtration was conducted using EMD Mil-
lipore 25 mm Glass Vacuum Filter kit (MilliporeSigma, 
Burlington, MA, USA), 125 mL filter flask, and Gemini 
vacuum pump in a biosafety cabinet following aseptic 
techniques (Additional file  1: Fig. S12). Notably, auto-
claved tweezers were used to avoid possible contamina-
tions from touching sensitive parts of the setup. Samples 
were filtered by 100 μm nylon membrane, followed by 80 
μm and 41 μm nylon membranes and 5 μm PVDF mem-
brane (MilliporeSigma, Burlington, MA, USA). A total 
of 1 mL PBS was added to the falcon tube and flask at 
each step to increase the sample recovery by rinsing the 
inner wall. The filtered samples were then subjected to 
3-fold (relative to the volume before filtration) vacuum 
concentration with an Eppendorf Vacufuge plus. Filtered 
liquid samples and filter papers were preserved at −80 
°C until DNA extraction. To increase the extraction effi-
ciency from filter papers, we compared (1) cutting them 
with scissors into 9 pieces, (2) grinding them with metal 
spatula after snap freezing in liquid nitrogen, and (3) 
directly putting the whole filter paper into the preserva-
tion tube. We finally selected the third option as this was 
the most operationally feasible way without high risk of 
contamination.

Negative controls
To combat the susceptibility of low-biomass samples to 
contamination, we included 4 types of negative controls 
along the workflow, namely, 6 negative field controls, 6 
negative media controls, 12 negative filter controls, and 
7 negative kit controls [13, 15, 16, 58]. The negative con-
trols were processed in parallel with the surface samples, 
including metagenomic sequencing and bioinformatic 
analysis.

Negative field controls were collected exactly the same 
as surface samples, except that the swabs were exposed to 
the air without contacting targeted surfaces. One nega-
tive field control was collected at the beginning and the 
end of each sampling session. Two negative media con-
trols were included in each sampling session, which were 
unopened media with swabs from the same lot. Each 
collected control was split into triplicate and processed 
along with samples [53, 81]. Negative filter controls were 
included in triplicate for each pore size by letting sterile 
PBST flow through the vacuum filtration system attached 

with blank filter papers. Additionally, 7 negative kit con-
trols were processed across batches of DNA extractions.

DNA extraction, qPCR, and metagenomic sequencing
To ensure enough DNA recovery, we performed an ini-
tial optimization on a separate set of surface swab sam-
ples collected from the same MICU prior to working with 
the aggregate sample (Additional file 1: Fig. S1). Column-
based methods were first tried due to its widespread usage 
in the field. We examined Qiagen DNeasy PowerSoil Kit 
with standard protocol and a modified version by (1) 
changing from vortex lysis to bead-beating lysis, (2) intro-
ducing heat incubation after bead beating, and (3) adding 
50 μL water each time for twice in total at the elution step. 
DNA yields of both were below the limit of detection. 
Liquid-liquid extractions were performed afterwards for 
their high-yielding potentials. Phenol-chloroform extrac-
tion resulted in the highest yield (186.27 ± 55.51 ng/μL by 
NanoDrop), but the purity indicated by 260/280 was not 
acceptable (1.36 ± 0.03). Lucigen MasterPure™ Complete 
DNA and RNA Purification Kit also resulted in high yields 
when coupled with bead beating and heat lysis and better 
purity than phenol-chloroform extraction (260/280 1.62 
± 0.02). We attempted to improve the purity using the 
Agencourt AMPure XP PCR Purification kit. However, 
we did not see a purity increase (260/280 1.62 ± 0.03) and 
incurred a 64.70% DNA yield drop. Based on the above 
tests, we noticed that methods involving columns (Qia-
gen PowerSoil) or magnetic beads (Agencourt AMPure) 
greatly decreased the DNA yield. Because the primary 
concern for surface samples is low biomass, increas-
ing DNA yield is considered more critical than bringing 
260/280 to the desired range of 1.8−2.0. Therefore, the 
Lucigen MasterPure™ Complete DNA and RNA Purifica-
tion Kit with the adapted protocol was chosen for all sub-
sequent analyses [82]. Samples were thawed at 4 °C prior 
to DNA extraction, and DNA concentrations were quanti-
fied by Quant-iT™ PicoGreen™ dsDNA Assay [83].

V3 region of the 16S rRNA gene was amplified in qPCR 
using universal primers (341F: 5′-CCT ACG GGA GGC 
AGC AG-3′, 543R: 5′-ATT ACC GCG GCT GCT GGC 
A-3′) [40]. The 20 μL reaction mixture consisted of 10 
μL PowerUp™ SYBR™ Green Master Mix (Applied Bio-
systems), 0.6 μL forward primer (10 μM), 0.6 μL reverse 
primer (10 μM), 5.0 μL DNA templates (pre-diluted if 
necessary), and 3.8 μL nuclease-free water. The reac-
tion was run in technical triplicate on a QuantStudio  3 
Real-Time PCR System (Applied Biosystems) with an 
initial denaturation step at 95 °C for 2 min, followed by 
40 amplification cycles (95 °C, 15 s; 56 °C, 15 s; 72 °C, 1 
min) and a melting curve stage (95 °C, 15 s; 60 °C, 1 min; 
95 °C, 15 s). No-template control and 5~8 standards were 
included in each batch to generate the standard curve 
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(efficiency > 90%; R2 > 0.99). Plasmid DNA constructed 
by TOPO™ TA Cloning™ Kit (Invitrogen, Waltham, MA, 
USA) was used as standards.

Extracted DNA was shipped on dry ice to the UMICH 
Microbiome Core (Ann Arbor, MI, USA) for library 
preparation using Nextera™ DNA Flex Library Prep Kit 
and paired-end 250-bp shotgun metagenomic sequenc-
ing on an Illumina MiSeq platform (MiSeq Reagent Kit 
v2). Libraries were normalized at equal molarity in a 4 
nM final concentration pool before sequencing, and for 
samples without enough DNA (e.g., negative controls), all 
available materials were used.

Data analysis
Sequence data processing
KneadData (v0.6.1) was first used to clean the shotgun 
sequences with default parameters. Reads present in the 
human reference database (hg37_and_human_contami-
nation) and negative controls were filtered out. Metaxa2 
(v2.2) [45–47] coupled with SILVA 132 SSU database [49, 
84] was chosen to generate taxonomic profiles after com-
paring it with MetaPhlAn2 (v2.6.0) [85] and MetaPhlAn3 
(v3.0.7) [50, 51]. The evaluation was conducted based 
on their performance on external standards and cross 
validation with cultivation results for untreated aggre-
gate samples. Default parameters were used for all three 
tools. MetaPhlAn3 was ruled out mainly because it only 
generates marker genes at the species level, and an aver-
age of 80.32% metagenome was deemed unknown for our 
samples. For external standards, both Metaxa2 and Met-
aPhlAn2 recognized all 8 bacteria species demonstrated 
in the theoretical composition, but MetaPhlAn2 failed to 
classify the 2 eukaryotic species. Moreover, it did not clas-
sify Pseudomonas fluorescens and barely classified Pseu-
domonas stutzeri from aggregate samples, while Metaxa2 
recognized both. Though Metaxa2 included a few spuri-
ous taxa, all can be eliminated by removing singletons. 
Since the primary goal of this study was to compare tech-
niques and recommend best practices, sensitivity out-
weighed specificity. Therefore, Metaxa2 was selected, and 
singletons were removed for downstream analyses. Taxa 
were labeled to the lowest classifiable level, with species 
level as the ultimate target [23]. Metagenomic sequenc-
ing coverage for all samples was estimated by Nonpareil 
(v3.303) under kmer mode using default settings [35, 37].

Comparison between gene‑ and genome‑centric approaches
An evaluation of genome-centric analysis was based on 9 
untreated aggregate samples (Additional file 4). We first 
compared MEGAHIT (v1.0.6.1) [86] and metaSPAdes 
(v3.14.1) [87] and selected metaSPAdes as the assem-
bly tool because it produced better-quality contigs (i.e., 
longer and fewer contigs, higher N50) as assessed using 

QUAST (v4.4) [88]. MetaBAT2 (v1.7) [89] was then used 
to bin the contigs and reconstruct genomes, with bin 
quality checked by CheckM (v1.0.18) [90]. Each sample 
yielded a single high-quality bin (completeness > 92%, 
contamination < 2%). Taxonomy of the bins was subse-
quently assigned using GTDB-Tk (v1.7.0) [91]. All the 
9 metagenome-assembled genomes were classified as 
Pseudomonas fragi. The genome-centric approach thus 
represents the least sensitive method compared with cul-
tivation and gene-centric metagenomics, especially for 
less abundant taxa. Because the genome-centric method 
only detected 1 taxon, while cultivation and gene-cen-
tric metagenomics detected 12 and 11 taxa, respec-
tively (Fig. 4a), this approach was excluded from further 
analysis.

Statistical analysis
Statistical analyses and data visualization were conducted 
in R (v4.0.4) [92] with packages such as Nonpareil, vegan, 
ape, ggplot2 [93], and dplyr. Principal coordinate analysis 
(PCoA) based on Jaccard metric was performed to dem-
onstrate beta diversity [58]. Differences between groups 
were determined by Student’s T-test or ANOVA coupled 
with Tukey’s post hoc test, depending on the number of 
groups under comparison. p ≤ 0.05 was defined as sta-
tistically significant. Significance codes are as follows: p 
> 0.05 (ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), and 
p ≤ 0.001 (***). Package “fitdistrplus” was implemented 
to find the best-fit distribution for Nonpareil diversity. 
Machine learning models were trained using the package 
“caret.”

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01412-x.

Additional file 1: Figure S1. a) DNA yields of low-biomass surface-asso‑
ciated samples extracted by different methods. b) Practical relationship 
between reads number and submitted DNA input. Figure S2. Effects of 
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abundant taxa or c) moderate taxa. Figure S4. Relative abundance of 
the top abundant taxa (average abundance > 1%) for samples with and 
without filtration. Figure S5. Biomass reduction with PMA treatment for 
samples and external standards, according to a) DNA quantity and b) 16S 
rRNA gene copy number. Figure S6. a) Cullen and Frey graph showing 
the distance from theoretical distributions to the observation. b) Fit for the 
normal distribution. c) Fit for the logistic distribution. Figure S7. Ranking 
of variables based on their explanatory power according to the R-squared 
value of a linear regression model. Figure S8. Variable importance 
rankings with and without the variable "study" based on random forest 
classifications. Figure S9. a) Distribution of the percentage of eukaryotic 
reads among 874 samples from hospital-related environmental studies. 
b) Surface samples, especially c) high-touch surface samples are more 
likely to contain higher proportions of eukaryotic reads. d) Distribution of 
the percentage of eukaryotic reads among 763 samples from high-touch 
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surfaces. Figure S10. a) Experimental pipeline and b) result of the PMA 
validation experiment. Figure S11. Experimental pipeline for assessing 
and optimizing techniques in sample treatments. Figure S12. Schematic 
of the whole-cell filtration workflow.

Additional file 2: Table S1. Dataset of hospital-related environmental 
metagenomic samples used in the machine learning models.

Additional file 3: Table S2. Sample collection details.

Additional file 4: Table S3. Statistics of the genome-centric approach.
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