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ABSTRACT

Phase-Field Crystal Model Development

Eli Alster

The phase-field crystal (PFC) model is an exciting new method for simulating crystalline

materials with atomic resolution over diffusional time scales. Unfortunately, applications

of the model have been severely limited by the requirement that novel free energies must be

constructed for each new material of interest. This thesis describes three different methods

by which the basic PFC model has been extended to simulate additional materials and

also demonstrates that these new models capture some of the physics of real materials.

The first extension is the development of a PFC model for a multicomponent ordered

crystal. As a test case, a generic B2 compound is investigated. This model produces a

line of either first-order or second-order order-disorder phase transitions, depending on

parameters. This B2 model is then used to study antiphase boundaries (APBs), which

are shown to reproduce classical mean field behavior. Lastly, we found through dynamical

simulations of ordering across small-angle grain boundaries that the model predicts that

dislocation cores pin the evolution of APBs.
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The second extension is a method that, utilizing a numerically tractable three-point

correlation function, creates an array of new complex three- and two-dimensional crystal

structures. The three-point correlation function is designed in order to energetically fa-

vor the principal interplanar angles of a target crystal structure. This is achieved via an

analysis performed by examining the crystal’s structure factor. This approach successfully

yields energetically stable simple cubic, diamond cubic, simple hexagonal, graphene layers,

and CaF2 crystals. To illustrate the ability of the method to yield a particularly com-

plex and technologically important crystal structure, this three-point correlation function

method is used to generate perovskite crystals.

The last extension is for a two-component PFC model that undergoes displacive phase

transitions. When the intercomponent free energy in the model is a simple polynomial,

the crystal undergoes displacive transitions in 〈10〉 and 〈11〉 directions. When the inter-

action is a correlation function however, displacements in any direction can occur. This

displacive phase-field crystal (DPFC) model also maps to Landau-Ginzburg-Devonshire

(LGD) theories for ferroelectrics, and the DPFC and LGD models are compared in terms

of phase transitions and domain walls. The DPFC model also displays stable quadrijunc-

tions and pinning of domain wall evolution by dislocation cores.
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CHAPTER 1

Introduction

A fundamental problem in science is understanding multiscale phenomena. As a result

of decades of research, molecular dynamics (MD) is now powerful enough to accurately

predict the structure of quickly folding proteins [2] and the faceting of asymmetrical

grain boundaries [3] with atomic resolution. However, MD is fundamentally constrained

by the fastest vibrational frequency of the system, so time scales beyond a microsecond

are normally inaccessible. Unfortunately, most interesting phenomena in materials science

take longer than a microsecond.

One method that can simulate longer timescales is the phase-field (PF) method. The

PF method postulates that the free energy of the system is a functional of various order

parameters, which are statistically averaged over short time and length scales [4]. The

simplest PF model is the Cahn-Hilliard free energy,

(1.1) F [φ] =
∫
V

[
f(φ) + K

2 |∇φ|
2
]
dr ,

where φ(r) is an order parameter, f(φ) is the bulk free energy function, and K is a

constant describing the interfacial energy. To go from a static free energy to an equation

for evolution dynamics, Fick’s First Law is employed for conserved order parameters,

namely
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(1.2) J = −M∇δF
δφ

,

where M is the mobility, δF
δφ

is related to the chemical potential, and J is the flux.

Accordingly, Fick’s second law is

(1.3) ∂φ

∂t
= M∇2 δF

δφ
.

Surprisingly, even this simple free energy makes reasonable predictions for dynamics, at

time and length scales inaccessible to MD. Unfortunately, by coarse-graining over short

length scales, atomic features such as grain boundaries and dislocation structures are lost.

The phase-field crystal (PFC) method operates in between the regimes of MD and PF.

Like traditional PF models, PFC theory involves a free energy functional, and it averages

over rapid fluctuations in time to give a time scale of evolution on the order of diffusion

rather than atomic vibration. However, unlike traditional PF, the free energy does not

average over atomic distances, resulting in pattern formation at equilibrium. The simplest

such free energy is

(1.4) F =
∫
V

[
φ

2 (−ε+ (1 +∇2)2)φ+ φ4

4

]
dr ,

which is known as the Swift-Hohenberg model [5].

Although originally phenomenologically motivated, the Swift-Hohenberg model can

been derived from classical density functional theory. Like the PFC model, classical
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density-functional theory (CDFT) postulates that the free energy of a system is a func-

tional of its density. If the Helmholtz free energy of a system is expanded around a

constant (e.g., liquid) state to second order then

F [ρ(r)] ≈ F [ρ0] +
∫
V

δF [ρ]
δρ(r)

∣∣∣∣∣
ρ=ρ0

∆ρ(r)dr + 1
2!

∫
V

∫
V1

δ2F [ρ]
δρ(r)δρ(r1)

∣∣∣∣∣
ρ=ρ0

∆ρ(r)∆ρ(r1)dr1dr,

(1.5)

where ρ is the density, ρ0 is the reference density, and ∆ρ = ρ− ρ0. The first variation in

Eq. (1.5) does not depend on interactions and is consequently just the entropic ideal free

energy [6], and the second term is the isotropic two-particle direct correlation function [7].

With these changes and ignoring constants in energy, the one component free energy is

(1.6) F [ρ(r)] = kT
∫
V

(
ρ ln ρ

ρ0
−∆ρ

)
dr − 1

2

∫
V

∆ρ(C2 ∗∆ρ)dr

where C2 ∗ ∆ρ =
∫
V1
C2(|r1 − r|)∆ρ(r1)dr1 and C2 is the two-point direct correlation

function. Performing the substitution φ = ρ−ρ0
ρ0

and expanding the logarithm to fourth-

order gives

(1.7) F [φ] = ρ0kT
∫
V

[1
2φ

2 − 1
6φ

3 + 1
12φ

4 − 1
2φC2 ∗ φ

]
dr,

the starting point for many PFC models. If the correlation function itself is expanded to

fourth-order, i.e.

(1.8) C2 ≈ (C̃0 + C̃2∇2 + C̃4∇4)δ(r − r1),
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and the result non-dimensionalized, Eq. (1.4) arises. Surprisingly, the simple PFC model

in Eq. (1.4) gives accurate descriptions of elasticity—it reproduces both Read-Shockley

grain boundary energies and Matthews and Blakeslee misfit dislocation behavior during

epitaxy [5]. Further, this model with minor modifications has been quantitatively fit to

body-centered cubic (bcc) iron [8,9].

Unfortunately, Eq. (1.4) can only produce stripes, triangular rods, and bcc patterns in

any reasonable parameter range [10], and derivations from CDFT have been unsuccessful

for deriving any structures beyond bcc [11]. Although the classical density functional

theory community has claimed to correctly predict the structure of face-centered cubic

(fcc) Al and hexagonal close packed (hcp) Mg [12], this result has never been successfully

reproduced in the PFC community. The problem is that the liquid correlation function

does not seem to contain enough information to determine the solid state crystal structure

(Fig. 1.1).

Consequently, progress in the PFC community has largely been made by consider-

ing various phenomenological forms for the Fourier transform of the two-point corre-

lation function, Ĉ2 [11, 13, 14]. For a Ĉ2 containing up to three peaks, there exist

two-dimensional (2D) PFC models for all five Bravais lattices [15] and various chiral

phases [16]. In three-dimensions, PFC models with this Ĉ2 can form simple cubic [14],

fcc [14], hcp [17], and diamond cubic structures [18]. These phenomenological two-point

correlation functions have generally been in the form of polynomial expansions or Gaus-

sians. Gradient expansion models are simply generalizations of Eq. (1.8), where the

expansion is to higher order than fourth-order, for example eighth or twelfth. In Gauss-

ian models, known as structural PFC models (XPFC), the two-point correlation function
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Figure 1.1. Experimental direct two-point correlation functions for a bcc,
fcc, and hcp liquid metal slightly above melting point, with q normalized
so that the maximum of Ĉ2(q) occurs at q = 1 [1]. Because the correlation
functions for each metal are so similar, and in fact are well-approximated by
a hard-sphere model, the liquid two-point correlation function alone seems
unlikely to be sufficient to determine the solid crystal structure.

is

(1.9) Ĉ2(q) = max
j

(
bje

−(q−qj)2

2σ2
j

)

instead. Others have suggested functional forms such as rational functions [19] and Bessel

functions [20] but have failed to gain traction.
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Although the vast majority of PFC models truncate the free energy at the two-point

correlation function, some recent work has included higher-order interactions. For exam-

ple, if a three-point interaction is added, then

(1.10) F [n] = F1[n] + F2[n] + F3[n]

where F1 + F2 is Eq. (1.7) and

(1.11) F3[n] = −1
6

∫∫∫
n(r)C3(r − r′, r − r′′)n(r′)n(r′′)drdr′dr′′,

where C3 is the three-point correlation function. Unlike the two-point correlation function,

it is not trivial to express this correlation function in a form that is numerically efficient,

rotationally invariant, and useful. For example, Tupper and Grant suggested a three-point

correlation function early-on to create a two-dimensional square structure, but their form

was of computational complexity O(N3), unlike the O(N logN) speed for the two-point

correlation enabled by the fast-Fourier transform. Lavrskyi et al. were able to form highly

complex crystal structures using the closely related atomic density field model [21], but

they relied on a free-energy function that was not rotationally invariant [22]. In fact,

Wang et al. recently proved that no gradient expansion for a three-point correlation

function is rotationally invariant [23].

Seymour et al. made some progress by considering three-point correlations of the

form [20]

(1.12) C3(r1, r2) =
∑
i

C
(i)
3 (r1)C(i)

3 (r2),
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where r1 ≡ r − r′ and r2 ≡ r − r′′. In this case, the free energy and evolution equations

simplify into a number of convolutions of O(N logN) computational complexity that are

easily computed via the fast-Fourier transform, and the isotropic theorem of Wang et al.

is not a problem since the corresponding gradient expansion is of infinite order. Unfortu-

nately, Seymour’s proposal for the C(i)
3 functions only yields two-dimensional equilibrium

states with a specified bond angle where the bond angle, θ, satisfies the relation

(1.13) 360◦ mod θ = 0,

for example 60◦, 90◦, and 120◦ [20]. Although this yields an improved 2D graphene

model [24], this method is not flexible enough to generate any new crystal structures in

either two or three dimensions [20].

In addition to the crystal structure limitations of Eq. (1.4) just discussed, another

downside of the Swift-Hohenberg model is that it is for a single component material while

most materials are multicomponent. The first multicomponent PFC model dealt with

substitutional and intermetallic alloys. In this case, instead of the free energy being a

function of the normalized atomic density of a single component, F [n], the free energy

is a function of the total normalized density and a long wavelength concentration order

parameter, F [n, c] [6,25,26]. In contrast to substitutional alloys, in intermetallic alloys

the “concentration” order parameter varies on the length scale of the unit cell, and the

long wavelength approximation is invalid. Instead, intermetallic PFC models utilize an

additional correlation function to cause the “concentration” order parameter to vary on the

length scale of the unit cell [27,28]. When the intermetallics have exact stoichiometries
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that do not readily permit substitutions though, models are typically constructed as

explicit functions of the separate component densities, F [nA, nB] [29,30].

Despite this progress, these models permit simulations of only a small fraction of ex-

tant crystalline materials, and most applications of three-dimensional (3D) PFC models

have been dominated by simulations of bcc [8,9,27,31,32] and fcc [11,31,33–35] ele-

ments or alloys. The challenge of producing complex crystal structures in PFC models is

similar to that faced by the self-assembly community. Their goal is to solve the so-called

“inverse” statistical mechanics problem: how to design interaction potentials between dis-

crete particles such that a given structure is a global energy minimum. They have also

found this task to be non-trivial [36–39].

A class of materials that exemplifies the limitations of PFC models are perovskites,

which are of interest due to applications ranging from solar cells [40,41] to light-emitting

diodes [42]. However, ferroelectric perovskites have multiple complex crystal structures,

are made of multiple types of atoms, and exhibit both first- and second-order displacive

phase transitions. Furthermore, a free energy that gives a ground state crystal structure

with a particular symmetry is far from sufficient for a model to be useful, and perovskites

demonstrate complex physics including coupling between electrodynamics, temperature,

strain, composition, and boundary conditions.

Although a PFC model for displacive phase transitions does not exist, there does exist

a plethora of phase-field models for modeling ferroelectrics. These models, also known

as Landau-Ginzburg-Devonshire (LGD) models, postulate a free energy as a function of

a polarization vector, gradients in the polarization vector, and elastic strain [43]. This

theory has been used to predict topological phase transitions in ferroelectric nanoparticles
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[44], understand ferroelectric switching and domain wall profiles in perovskites [45–47],

and much more [48]. As PFC models naturally incorporate elasticity without requiring

an explicit elastic field, Seymour et al., based off of similar work in magnetic systems by

Faghihi et al. [49,50], introduced a model [51] where the free energy is a function not

only of the normalized atomic density but also the polarization vector and its gradient.

This was accomplished by adding the polarization terms of LGD models onto a normal

PFC functional [Eq. (1.4)], and then introducing appropriate coupling terms between the

polarization and PFC terms in order to recover the traditional LGD models in the phase-

field limit. As might be apparent from the descriptions alone, both Seymour’s model and

LGD models are quite complex. There are numerous remaining challenges for a simple

and realistic perovskite model, and this thesis focuses on solving just a few of them.

Chapter 2 develops an equimolar binary PFC model that allows for sublattice ordering

and that can be used to model a wide class of compounds. Section 2.1 derives the

model directly from classical density functional theory, describes the general procedure

for modeling any compound of interest, and implements a more appropriate temperature

dependence of the Debye-Waller factor than used in the original XPFC models [13,14].

Section 2.2 examines the analytical behavior, elasticity, and numerical phase diagram for

the specific case of a B2 compound, giving rise to both first- and second-order phase

transitions. Section 2.3 applies this B2 model to the study of antiphase boundaries and

their dynamical interactions with grain boundaries.
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Chapter 3 develops a generalization of Seymour’s three-point correlation model. This

is done by introducing a form for C3 that stabilizes angles between specified crystallo-

graphic planes and can include multiple length scales, multiple preferred angles, and an-

gles not restricted by Eq. (1.13). Furthermore, an in-depth explanation for how to derive

parameters for new energy-minimizing single-component crystal structures is given. We

show that this method can produce a wide array of energy-minimizing crystal structures,

from simple cubic (e.g., Po [52]) and diamond cubic (e.g., C-diamond, Si, α-tin [53]), to

graphene layers and disordered CaF2 (e.g., the structure of the θ′c phase of Al2Cu, which

is commercially very important for strengthening in aluminum alloys [54]). Additionally,

it produces an unnamed crystal structure corresponding to the X atoms in ABX3 per-

ovskite (a structure we will call X3). Finally, as a capstone demonstration of the method,

the X3 and simple cubic models are combined to generate a perovskite crystal structure.

Chapter 4 develops a square two-component two-dimensional PFC model that spon-

taneously undergoes displacive phase transitions. Using a simple free energy, the crystal

can undergo displacive transitions in 〈10〉 and 〈11〉 directions, and with a little more

complexity, displacements in any direction are possible, in agreement with eighth-order

Landau theory. This displacive phase-field crystal (DPFC) model also maps to Landau-

Ginzburg-Devonshire (LGD) theories for ferroelectrics, and the DPFC and LGD models

are compared in terms of phase transitions and domain walls. The DPFC model also

displays stable quadrijunctions and pinning of domain wall evolution by dislocation cores.
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CHAPTER 2

Order-Disorder Model

This chapter describes a method to model order-disorder transitions in the PFC model.

Prior to the publication of this chapter’s contents in 2017, sublattice ordering modeling

was not possible in the PFC framework, despite these compounds being of significant

scientific interest. Interesting B2 CsCl-type compounds include the highly ductile rare

earth intermetallics (YAg, YCu, DyCu) [55] and metal aluminides with high-temperature

structural stability (FeAl, CoAl, NiAl) [56]. Further, because nearly all existing PFC

models focus on solid-liquid coexistence, the only example of a second-order transition

line in PFC theory was Seymour et al.’s paramagnetic to ferromagnetic transition [51].

However, order-disorder transitions can be both first order, for example Cu3Au (L12) and

DyCu (B2) [57], or second order, for example CuZn (B2) and Fe3Al (D03) [58]. Second-

order transitions are interesting as not only do they exhibit their namesake discontinuity

in the second derivative of the free energy, but they also do not form wetted domain

boundaries, instead exhibiting correlation lengths between antiphase boundaries (APBs)

that diverge as the phase boundary is approached [59].
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2.1. Ordered Binary PFC Model

2.1.1. Derivation from CDFT

As explained in Chapter 1, the free energy of a single component system from classical

density function theory is

(2.1) FA[ρA] =
∫
V

(
ρA ln ρA

ρA0
−∆ρA −

1
2∆ρAC(2)

AA ∗∆ρA
)
dr,

where C(2)
AA is the two-particle correlation function for component A. For the case of a

two component system,

(2.2) F = FA + FB − kT
∫

∆ρAC(2)
AB ∗∆ρBdr

since C(2)
AB = C

(2)
BA, where C(2)

AB is a partial correlation function between A and B [6].

Performing the substitutions ρ = ρA + ρB, c = ρA/ρ, and ρ0 = ρA0 + ρB0 results in

F = kT
∫ {

ρ ln ρ

ρ0
− (ρ− ρ0)− 1

2ρ
[
cC

(2)
AAc+ (1− c)C(2)

BB(1− c) + 2cC(2)
AB(1− c)

]
ρ+

ρ
[
(1− c) ln(1− c) + c ln c

]
+ ρc

[
(C(2)

AA − C
(2)
AB)ρA0 + (C(2)

AB − C
(2)
BB)ρB0 + ln ρB0

ρA0

]}
dr

(2.3)

as in [60], where
∫
φ1C

(2) ∗ φ2dr =
∫
φ2C

(2) ∗ φ1dr is written as
∫
φ1C

(2)φ2dr for brevity.

For an AB compound, using the following substitutions, [61]

(1) ψ = 2c− 1 = ρA−ρB
ρA+ρB

(2) n = ρ−ρ0
ρ0

(3) ∆C = ρ0
4 (C(2)

AA + C
(2)
BB − 2C(2)

AB)
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(4) δC = ρ0
4 (C(2)

AA − C
(2)
BB)

(5) C = ρ0
4 (C(2)

AA + C
(2)
BB + 2C(2)

AB)

expanding n and ψ to fourth order, and ignoring linear terms as is customary [6] results

in

F =kTρ0

∫
V

{
n

2

[
1− (C + 2δCψ + ψ∆Cψ)

]
n− 1

6n
3 + 1

12n
4 + +1

2ψ(1−∆C)ψ

1
2ψ
[

ln ρB0

ρA0
+ 2∆C

ρ0
(ρA0 − ρB0)

]
(n+ 1) + 1

12ψ
4 − nδCψ − nψ∆Cψ + 1

2nψ
2
}
dr.(2.4)

As is typical in PFC models, n is interpreted as the normalized atomic density and ψ as

the normalized difference in composition. Because the ψ expansion is performed around

ψ = 0, this model is only appropriate for systems where c ' 1/2. Of course, a more

general model could be derived by expanding around a generic concentration, at the cost

of increased complexity. In the random binary alloy case, ψ is assumed to vary on a

length scale much larger than the atomic unit cell. In this limit, Eq. (2.4) reduces to

the free energy of the binary alloy [60]. However, drawing inspiration from the theory of

concentration waves, our model regards ψ as a field that specifies the chemical identity of

atoms inside a unit cell [62].

Two additional simplifying assumptions are now made in order to make Eq. (2.4) more

tractable. First, the fourth-order convolution term, nψ∆Cnψ, is neglected for numerical

ease. Second, it is assumed that C(2)
AA = C

(2)
BB and ρA0 = ρB0. This assumption treats

pure A and B as equivalent and yields a phase diagram that is symmetric about a 50-50
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stoichiometry. With these assumptions, Eq. (2.4) simplifies to

(2.5)

F = kTρ0

∫
V

[
1
2n

2− 1
6n

3 + 1
12n

4− 1
2nCn+ 1

2ψ
2 + 1

12ψ
4− 1

2ψ∆Cψ+ 1
2nψ

2−nψ∆Cψ
]
dr.

In a situation where the effect of the ordering on the free energy is considered minor in

comparison to the overall crystal structure, we phenomenologically add a factor of ε to

all terms that involve ordering,

F̃ =
∫
V

[
1
2n

2 − 1
6n

3 + 1
12n

4 − 1
2nCn+

ε
(1

2ψ
2 + 1

12ψ
4 − 1

2ψ∆Cψ + 1
2nψ

2 − nψ∆Cψ
)]
dr(2.6)

where F̃ = F/(kTρ0). This ε factor will be further explained in Sec. 2.2.

2.1.2. Correlation Function Determination

In order to construct ∆C and C, we adapt a methodology similar to Greenwood et al. by

considering their form in Fourier space [14]. In this section, we demonstrate a method

to determine where the peaks of the correlation function in Fourier space should be for a

given target structure.

In the case of a bulk crystal, we can exactly express the density as a Fourier series

over all the reciprocal lattice vectors, namely

(2.7) ρA = ρ̄A +
∑

k
AA(k)eik·r .
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In the limit where ρA consists of delta functions weighted by fA at each atomic position,

then orthogonality gives easily calculable values for the amplitudes in terms of structure

factors, namely

(2.8) AA(k) = fA
V

∑
j∈cell

e−ik·rj = 1
V
SA(k)

where V is the volume of the unit cell, j indexes through all atoms in the unit cell, and

SA ≡ fA
∑
e−ik·rj is the structure factor of A, consistent with the definition by Cullity

and Kittel [63,64] (this definition is not universal [65,66]). Fourier expanding n and ψ

using the same reciprocal lattice vectors as A and B results in

(2.9) An = 1
ρ0

(AA + AB)

and

(2.10) Aψ '
1
ρ0

(AA − AB),

where the approximation ρA(r) + ρB(r) ' ρ0 (equivalent to assuming n(r) is small) is

used for deriving the latter expression.

Because the exact values calculated from Eq. (2.9) and Eq. (2.10) depend on the delta

function assumption, these values will never occur in the numerical model. What is more

important than the exact value calculated is whether the amplitude for a given k value

is zero or nonzero, since the free energy is only affected by the value of the correlation

function at k values when the amplitude for that same k is nonzero. This is because after



29

Fourier expanding n,

(2.11)
∫
V
nCndr = V

∑
k
|An(k)|2Ĉ(|k|),

where the hat denotes the Fourier transform. Since the amplitude for each individual

component is proportional to its structure factor, we define Sn ≡ SA + SB and Sψ ≡

SA−SB, and we expect the underlying symmetries of these “structure factors” to preserve

the symmetries in the amplitudes as is the case for experimental structure factors [63]. In

order to calculate Sn and Sψ, the simplifying assumption that fA = fB = f is employed,

consistent with assuming ρA0 = ρB0.

As an example, let us calculate the peak locations for the B2 system explicitly (Fig.

2.1). Practically, the relation ∆φ(k) = k · x0 is helpful, where ∆φ(k) is the change in

phase in the structure factor as a result of moving the origin of the coordinate system by

x0. Denoting k = hb1 + kb2 + lb3, where bi is the ith reciprocal lattice vector, then

(2.12) SA = f for all h, k, l

SB =


f if h+ k + l = 2m

−f if h+ k + l = 2m+ 1

and

Sn = 2f if h+ k + l = 2m and

Sψ = 2f if h+ k + l = 2m+ 1
(2.13)



30

where m is an integer. Thus, the only k that are non-zero are

n : 2π
a
{110}, 2π

a
{200}, 2π

a
{211}, ...(2.14)

ψ : 2π
a
{100}, 2π

a
{111}, 2π

a
{210}, ...(2.15)

where {} denotes a family of reciprocal lattice vectors created by the permutation of the

internal elements (for example, {110} includes 12 vectors: x̂ + ŷ, x̂ − ŷ, x̂ + ẑ, ...). The

structure factor [Eq. (2.13)] for n is consistent with the missing reflections for a BCC

lattice. Because the first nonzero k for n has magnitude 2π
√

2/a, and the first nonzero

k for ψ has magnitude 2π/a, the ratio of the first peak in C in reciprocal space to the

first in ∆C must be
√

2. This same procedure can be easily performed to construct

correlation functions for other 50-50 stoichiometry compounds, with the results for the

locations of the first three peaks for n and ψ for various compounds listed in Table 2.1. All

compounds listed in Table 2.1 can produce (at least) metastable structures using at most

three peaks. However, many, such as B2, can exist with fewer, with the exact stability

regimes depending on parameter choices. The model can be extended to other compounds

without 50-50 stoichiometry through this same method, but as explained in Sec. 2.1.1,

rigorously the free energy should also be derived with that additional complication—

an extension left for future work. Although the values of the correlation function at

specific |k| values are the only quantities that determine equilibrium structure, the exact

functional form of the correlation function is important for properties such as elastic

constants, defect structures, and dynamics.



31

Figure 2.1. Structure for a B2 crystal. The origin used for calculating the
structure factor is at the center of a dark blue atom.

2.1.3. XPFC Model

In this study, the XPFC formalism was employed [13,14]. In the case of a single peak

for n and ψ,

(2.16) Ĉ = Bxe
−T/Tne

− (k−kn)2

2α2
n and ∆Ĉ = Dxe

−T/Tψe
−

(k−kψ)2

2α2
ψ ,
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Table 2.1. Table of peak locations, |k|i ≡ ki, for the n and ψ correlation
functions in reciprocal space for various crystal structures. The ki values
for each structure were calculated using a square/cubic unit cell with side
lengths of 2π, except p3m1 whose calculation was performed using a rect-
angular unit cell with dimensions 2π × 2

√
3π. Because the calculations are

performed on nonprimitive unit cells for convenience, the total atoms per
cell are listed in order to uniquely identify the unit cell geometry.

Space Group Example Atoms/Cell kn kψ
p4gm {100} NaCl 4 2,

√
8, 4

√
2,
√

10,
√

18
p3m1 2d h-BN 4 2/

√
3, 2, 4/

√
3 2/

√
3, 4/

√
3,
√

28/3
Pm3̄m (B2) CuZn 2

√
2, 2,

√
6 1,

√
3,
√

5
Fd3̄m (B32) NaTl 16

√
8, 4,

√
24

√
3,
√

11,
√

19
P4/mmm (L10) CuAu 4

√
3, 2,

√
8 1,

√
2,
√

5

where k ≡ |k|, Bx and Dx are phenomenological constants, T is a temperature-like pa-

rameter, Tn controls the solid-liquid transition temperature, and Tψ controls the ordering

temperature. The one-peak XPFC model has the advantage compared to polynomial PFC

models in that the former does not exhibit significant changes in the equilibrium lattice

constant with changes in average density or temperature, simplifying phase diagram con-

struction. In polynomial PFC models, such as Eq. (1.4), the equilibrium lattice constant

is determined by a competition between the energies of the primary frequency and the

higher order harmonics; the primary frequency energy is minimized by a lattice constant

that corresponds to the extremum of the correlation function while the higher frequen-

cies decrease in energy by increasing the lattice constant [67]. However, the correlation

function in XPFC quickly goes to zero for large k. Consequently, changing the lattice

constant only negligibly affects the energetic contributions of higher frequency modes,

and so the lattice constant is chosen purely so that the primary frequency of the structure

coincides with the correlation function’s maximum. Because the peak location in the
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correlation function is independent of temperature and composition, the lattice constant

is not affected by these parameters.

This particular computational advantage of XPFC comes at the price of a less accurate

one mode approximation however. Because polynomial correlation functions diverge for

large k, their correlation functions strongly penalize higher order harmonics, resulting in

free energies dominated by only the primary frequency [6,11,15]. In contrast, the XPFC

correlation function vanishes for large k, rather than negative, so higher order harmonics

play a larger role.

Unlike that shown in Eq. (2.16), previous XPFC models have assumed that the

temperature is proportional to σ, using a temperature factor exp(σ2/σ2
M), equivalent

to treating
√
T as the temperature in Eq. (2.16) [13, 14, 35, 68, 69]. However, this

relation is inconsistent with the usual temperature dependence of the Debye-Waller factor

observed in diffraction experiments. When temperatures are much higher than the Debye

temperature of the crystal, which is the case for PFC models [63], the atomic structure

factor can be approximated as [64]

(2.17) f = f0e
−T/T0 .

Assuming Ĉ(k) ∝ f ν , meaning the correlation function peak height scales with the atomic

structure factor to some power, then in the case T � T0, Ĉ(k) decreases linearly with T .

Note that this is exactly the temperature dependence of the correlation function in PFC

models with polynomial correlation functions and is consistent with the linear temperature

dependence of the quadratic term in Landau models. For example, in Eq. (1.4), ε is

considered the variable proportional to the temperature, and it decreases the effective
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correlation function linearly. Because the original XPFC model goes as exp(σ2/σ2
M), in

the limit σ � σM the correlation function decreases quadratically with σ. Although

understanding that in the original XPFC terminology σ2 is the temperature parameter

rather than σ does not matter when fitting data at a particular temperature, nor does

it matter when calculating the shape of phase diagrams qualitatively, it does affect the

values of critical exponents (see Sec. 2.3).

2.2. B2 Ordering

In the remainder of this chapter, three B2 models based on Eq. (2.6) will be examined.

The first model considers the limit ε → 0 in Eq. (2.6). Namely, the density field is

considered completely independent of the composition field, but the composition field is

dependent on the density field. This assumption is analytically equivalent to separating

the free energy into two separate equations,

Fn =
∫
V

[1
2n

2 − 1
6n

3 + 1
12n

4 − 1
2nCn

]
dr

and Fψ =
∫
V

[
1
2ψ

2 + 1
12ψ

4 − 1
2ψ∆Cψ + 1

2nψ
2 − nψ∆Cψ

]
dr(2.18)

with F̃ = Fn + εFψ. For dynamical behavior, evolution follows the typical simplified

conserved Cahn-Hilliard equations [6]

∂n

∂t
= Mn∇2 δFn

δn
(2.19)

∂ψ

∂t
= Mψ∇2 δFψ

δψ
.(2.20)
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This approach, which we will call the “uncoupled” case, is both computationally cheaper

compared to the “coupled” case (i.e. nonzero ε) and is also significantly simpler with

respect to phase diagram construction because the n field in isolation has already been

described by the original XPFC papers [13,14].

Similar to the uncoupled model is the “weakly coupled” model, which uses a finite

ε� 1. For simplicity, the evolution equations for the coupled case simply replaces Fn and

Fψ with F̃ rather than the rigorously derived evolution equations described by Jugdutt

[70] although both methods result in the same equilibrium states. Assuming ε � 1

is physically reasonable because the energy associated with order-disorder transitions is

significantly less than that for atomic rearrangements. For example, in the FeAl system

at 0 K, the free energies of ordered B2 and disordered A2 structures are within 0.001

eV/atom of each other [71, 72]. In contrast, Bh, the FeAl ordered structure with the

next lowest energy, is 0.125 eV/atom higher in energy [71]. Both the weakly coupled and

uncoupled models result in phase diagrams with a line of second-order transitions.

The last model, the “strongly coupled” case, considers when ε = 1, or equivalently

Eq. (2.5). In this case, there are very different n fields in the B2 versus A2 (disordered)

phases, giving rise to first-order transitions. Further, because this model strongly couples

the n and ψ fields, a disordered hexagonal rod phase is in competition with the B2

and A2 phases. For all parameter regimes tested with a single peak, B2-hexagonal rod

coexistence occurred rather than B2-A2 coexistence. Consequently, an additional k = 0

peak was added to ∆C in order to preferentially stabilize the A2 phase over the hexagonal
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rod phase. Namely,

(2.21) ∆Ĉ = D0e
− k2

2α2
ψ +Dxe

−T/Tψe
−

(k−kψ)2

2α2
ψ ,

where D0 was phenomenologically chosen.

2.2.1. Analytic Phase Diagram

Because the structure factors for n and ψ for the B2 system (Eq. 2.13) are real and only

dependent on |k|, a one mode approximation for n and ψ is

(2.22) n = n̄+ An
∑

j∈{110}
eikj ·r and ψ = ψ̄ + Aψ

∑
j∈{100}

eikj ·r,

where, ~kj = 2π
a

(h, k, l), An and Aψ are constant real numbers, and Aψ is the system’s

order parameter. Substituting equations 2.16 and 2.22 into Eq. (2.18) and integrating

with the equilibrium lattice parameter results in

(2.23) Fn = 6n̄2A2
n + 16n̄A3

n − 6n̄A2
n + n̄4

12 −
n̄3

6 + n̄2

2

+ 6A2
n(1−Bxe

− T
Tn ) + 45A4

n − 8A3
n,

(2.24) Fψ = −6n̄A2
ψDxe

− T
Tψ + 3n̄A2

ψ + 3ψ̄2A2
ψ + 1

2 n̄ψ̄
2(1− 2D0) + ψ̄4

12 + ψ̄2

2

+ A2
ψ

[
12An(1− 2Dxe

− T
Tψ )− 3Dxe

− T
Tψ + 3

]
+

15A4
ψ

2 − D0

2 ψ̄2.

The phase diagram was constructed using four methods using the parameters shown

in Table 2.2, which was also used for the numerical phase diagram (Fig. 2.5 and 2.6). The
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first and simplest method used the uncoupled free energy. These calculations were per-

formed at n̄ = 0 by both a common tangent construction and by solving ∂2Forder
ψ /∂A2

ψ = 0

(Fig. 2.2). Both techniques yielded the same result, implying a second-order transition.

The second method was similar, except that it investigated the weakly coupled model

with ε = 0.05. Unsurprisingly, it gave a similar result. Although constructing the phase

diagram at n̄ = 0 is a common approximation for a constant pressure phase diagram [25],

it is known to not be thermodynamically consistent [70,73]. For the third method, the

phase boundary was calculated for the weakly coupled model using the true two-phase

equilibrium conditions

µeq =
(

1
n̄+1

∂F̄
∂ψ̄

)∣∣∣∣∣
B2

=
(

1
n̄+1

∂F̄
∂ψ̄

)∣∣∣∣∣
A2

(2.25)

(
∂F̄
∂n̄
− ψ̄µeq

)∣∣∣∣∣
B2

=
(
∂F̄
∂n̄
− ψ̄µeq

)∣∣∣∣∣
A2

(2.26)

p =
(
(n̄+ 1)∂F̄

∂n̄
− F̄

)∣∣∣∣∣
B2

=
(
(n̄+ 1)∂F̄

∂n̄
− F̄

)∣∣∣∣∣
A2

(2.27)

where n̄ and ψ̄ can differ between the two phases and F̄ ≡ F̃ /V [73]. Notice that using

these equilibrium conditions, the densities of the two phases can differ. However, for the

weakly coupled model, the solution within numerical resolution is coexistence at the same

densities and compositions, implying a second-order transition. For a judicious choice of

pressure (p = −0.063), n̄ ' 0 at all temperatures, and the phase boundary is very similar

to those calculated by the previous techniques.

The last phase diagram construction was done for the strong coupling case with p =

−0.063, ε = 1, and D0 = 0.5 (Fig. 2.3). Unlike weak coupling, this results in first-order

transitions with two-phase coexistence. Calculating the order parameter of the B2 phase
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for increasing temperatures at ψ̄ = 0, where n̄ is the B2 coexistence value, results in a

discontinuity in the order parameter at the point where the two phase boundaries meet

(Fig 2.4). Consequently, this point is a congruent point. In contrast, the order parameter

would go continuously to zero if it was a critical point with a second-order transition.

In order to use Eq. (2.23) and Eq. (2.24) to describe a real compound such as

FeCo [74], one can simply match properties such as the temperature and second derivative

of the phase boundary at the critical point measured from an experimental phase diagram

to the corresponding values at the critical point in the analytic (or numeric) model.

2.2.2. Elasticity

Since ρA and ρB ought to undergo identical strains, the ψ field is strained identically to

the n field. Substituting in Eq. (2.22) into Eq. (2.6) and applying isotropic, biaxial, and

simple shear strains at n̄ = ψ̄ = 0 as described by Pisutha-Arnond [75] results in the

“traditional” elastic constants

Ct
11 = A2

nBxe
− T
Tn

α2
n

+
ε (8An + 1)A2

ψDxe
− T
Tψ

2α2
1

(2.28)

Ct
12 = Ct

44 = A2
nBxe

− T
Tn

2α2
n

.(2.29)

Note that the strains only couple to the correlation terms in the free energy and are not

affected by the ideal entropy of mixing terms. Spatschek and Karma ( [76], Eq. 59) make

two related predictions for a free energy consisting of a single peak in the correlation
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0.008
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0.012

0.014

T

uncoupled
ǫ=0.05

p=−0.063
ǫ=0.05

B2

A2

Figure 2.2. Phase diagram for analytical model. The uncoupled and cou-
pled models using a common tangent equilibrium condition are compared
to a constant pressure phase diagram. As all phase diagrams are very simi-
lar, including constant pressure and weak coupling complications appear to
have little effect.

function. First, they predict that

(2.30) Ct
11
2 = Ct

12 = Ct
44 = −1

2C
′′(q0)q2

0A
2
110 ,

which, using Eq. (2.14), agrees with Eqs. (2.28) and (2.29) in the limit ε = 0. Second,

they predict that Ct
12 and Ct

44 depend on neither {100} nor {200} amplitudes. This
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Figure 2.3. Phase diagram for analytical model in strongly coupled case,
ε = 1, at pressure = -0.063.

explains why only Ct
11 depends on the ordering amplitude, since the ordering wave is a

{100} mode.

Another way to help rationalize the lack of ordering dependence of the Ct
44 elastic

constant is that C44 physically represents shear on {100} planes. These planes are of a

single atom type, however, and thus not really dependent on ordering (to lowest order).

The shear mode on the {110} planes is proportional to C11 − C12, and as expected does

depend on Aψ.
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Figure 2.4. Plot of the order parameter as a function of T for ψ̄ = 0.
Because of the discontinuity of the order parameter from nonzero to zero,
the transition is first-order with a congruent point at T ' 0.0134.

Equations (2.28) and (2.29) also agree with the Monte Carlo simulations of a B2

compound by Castan and Planes who found that the shear modulus, (C11 − C12)/2, is

linearly proportional to the long-range order parameter squared [77]. However, Eqs.

(2.28) and (2.29) are inconsistent with experimental data for CuZn as McManus found

no anomalous behavior near the critical temperature for C11, but an abrupt change in
dC44
dT

shortly before the critical temperature [78]. This is possibly because the discrepancy
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between the “traditional” elastic constants, Ct
ij and the true elastic constants, Cij, as

recently discussed by Wang [79].

2.2.3. Numerical Phase Diagram

To confirm the behavior of the one-mode model phase diagram in the case where all

frequencies were included, the phase diagram was calculated numerically at n̄ = 0 for the

uncoupled (Fig. 2.5), weakly coupled (ε = 0.05, Fig. 2.5), and strongly coupled (ε =

1, D0 = 0.5) cases (Fig. 2.6). Because the constant pressure condition was unimportant

when constructing the analytic phase diagrams, only the n̄ = 0 method was employed

for ease when constructing the numerical phase diagrams. Numerical construction of the

phase diagrams validated the qualitative behavior of a curve of second-order and first-

order transitions seen previously. Quantitative disagreement with analytical results are

explained by the fact that the XPFC model permits high frequency modes, so the one

mode approximation provides poor quantitative estimates of free energies (see Sec. 2.1.3).

The free energies for the phase diagram were calculated by minimizing the free energy

in a 2× 2× 2 set of unit cells using the parameters found in Table 2.2. Each system was

initialized by either a prior equilibrated structure for different parameters or by a single

mode approximation. Each system was then evolved using Eq. (2.19) and Eq. (2.20)

using the standard semi-implicit integral spectral method [60]. Conditions near the phase

transition were tested carefully to ensure that the order of the transition was determined

correctly. The amplitude of the {100} peak from the numerical Fourier transform of ψ was

treated as the order parameter in the numerical model (Fig. 2.7). In the case of first-order

transitions, the coexistence region was determined by fitting a fourth-order polynomial
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through a set of free energies for B2 and A2, and then finding the convex hull. The phase

transition in the simulations can be understood as follows: At ψ̄ = 0, the ordered state

for ψ consists of only the ordering modes ({100}, {111}, ...). For ψ̄ 6= 0, the disordering

modes ({110}, {200}, ...) appear and gradually increase in magnitude while the ordered

reflections diminish (see Sec. 2.1.2). At the phase transitions, only the disordered modes

remain.

The first-order transition was also confirmed by equilibrating a 2× 2× 128 simulation

box of B2-A2 using ψ̄ = 0.265 and T = 0.0144. As predicted, B2 and A2 were found

to coexist at equilibrium. Although the two phases had different average densities as

suspected, n̄B2 ' 0.052 and n̄A2 ' −0.027, both densities were still close to zero. In order

to speed up this large calculation, simple conserved global dynamics were used for both

the n and ψ fields in this calculation [70,80], namely

∂n

∂t
= −δF̃

δn
+ 1
V

∫
V

δF̃

δn
dr(2.31)

∂ψ

∂t
= −δF̃

δψ
+ 1
V

∫
V

δF̃

δψ
dr.(2.32)

2.3. Applications

2.3.1. Antiphase Boundaries

As a test case for a system with a second-order transition, antiphase boundaries (APB)

were investigated using the uncoupled model. Experimental evidence and Landau-Ginsburg
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Table 2.2. Table of parameter values for phase diagrams.

Quantity Value
Mn 1
Mψ 1
Tn 1
Tψ .2
kn 1
kψ 1/

√
2

Dx 0.8
D0 0.5 (strongly coupled)

0 (otherwise)
Bx 1
αn 0.08
αψ 0.08
a0 2π

√
2

Mesh 16 / unit cell dimension
∆t 0.015

theory predicts that the signed local order parameter, η, across the APB boundary is [58]

(2.33) η(z;T ) = Aψ(T ) tanh
(
z − z0

2ξ(T )

)

where Aψ is the unsigned bulk order parameter, ξ is the correlation length, z is the

coordinate perpendicular to the APB, and z0 is the position of the interface. Aψ, the

APB energy γ, and ξ all exhibit critical exponents. Meaning, near the critical point they

are of the form ∼
(
Tc−T
Tc

)νi , for some corresponding critical exponent νi. This result was

verified in the uncoupled B2 PFC model by initializing with a single mode approximation

for two domains with opposite order parameters in a single grain, and the free energy was

minimized using Eq. (2.19). The parameters in Table 2.2 were used except αψ = 0.25

in order to reduce the width of the APB so that the simulation could be performed in a

smaller domain. This change in αψ gave a new Tc ' 0.01750. A box size of 2 × 2 × 24
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Figure 2.5. Numerical phase diagram for the B2 system, with the uncoupled
case (solid violet line) and weakly coupled case (dashed pink line). Con-
sistent with the analytic results, the weakly coupled and uncoupled cases
nearly overlap with second-order transitions. The curves are parabolic fits
through the numerically determined points.

unit cells was used with periodic boundary conditions (i.e. two identical APBs). A

comparison of a typical numerical result and a hyperbolic tangent profile fit is shown in

Fig. 2.8. Because the local order parameter, η, is a function of position in this case, the

amplitude of ψ along a unit cell edge was used as a proxy for the order parameter. The

measured critical exponent for Aψ was 0.51 with R2 ' 1.0× 10−6. The critical exponent
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Figure 2.6. Numerical phase diagram for the B2 system in the strongly
coupled case. Consistent with the analytic results, the transition is always
first-order, and the region between the phase boundaries is coexisting B2
and A2. The curves are parabolic fits through the numerically determined
points.

for the APB energy calculated using the typical form

(2.34) γ = l⊥
2 (F̄ψ, APB − F̄ψ, eq),

was 1.53 with R2 ' 2.7× 10−5 (Fig. 2.9), where l⊥ is the length of the simulation box in

the z direction, F̄ψ, APB is the free energy per volume measured with the APB, and F̄ψ, eq
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Figure 2.7. Plot of the order parameter for the uncoupled case as a function
of ψ̄ for T = 0.01 using parameters found in Table 2.2. The fit is to
the function Aψ = A

√
ψ̄c − ψ̄, the function for a second-order mean-field

transition as elaborated upon in section 2.3.

is the bulk free energy per volume. In order to ensure that the domain was sufficiently

large compared to the APB correlation length, the critical exponents were also calculated

by relaxation in a larger 2 × 2 × 96 simulation domain, with critical exponents for Aψ

and γ only differing by 3.3 × 10−3 and 1.4 × 10−5 respectively compared to the smaller

domain. Both of these exponents are consistent with the 1/2 and 3/2 exponents for Aψ
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and γ respectively for an APB resulting from the simple Landau model

(2.35) F =
∫
V

(
r

2η
2 + u

4η
4 + K

2 |∇η|
2
)
dr,

where r ∝ (Tc − T ) and u and K are independent of temperature. This is not surprising,

as the PFC method is a mean field model and has been shown to reduce to simple Landau

models in appropriate limits [81]. Although comparison to this same Landau model would

imply a critical exponent of -0.5 for ξ, unfortunately this exponent is difficult to determine.

Because the critical exponent is highly sensitive to the method of fitting the ψ profile,

very small changes to the fitting methodology that only result in a few percent differences

in the interface width give very different critical exponents. Because of a lack of a clear

criteria for determining ξ, this critical exponent is left unreported.

As noted in section 2.1, all these results are dependent on the new definition of tem-

perature. Using the original XPFC temperature parameter, both the critical exponents

change, deviating more from mean field theory, and R2 increases.

2.3.2. Grain Boundaries

As a further demonstration of the applicability of the this new method, ordering dynamics

were investigated for symmetric tilt boundaries using the uncoupled model. The simu-

lations were set up using the standard method for periodic grain boundaries [80]. The

equilibrium density was determined by minimizing the energy with respect to n, and then

initialized with Guassian noise for ψ at T = 0.01 using the parameters in Table 2.2 ex-

cept with αψ = 0.25. The misorientation angle between the grains was 3.8◦. The system

first undergoes spinodal ordering. Then, domains grow and shrink in order to reduce the
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Figure 2.8. Demonstration of a tanh profile across an APB. The oscillating
amplitude of ψ along the edge of the unit cell (violet) and a tanh fit to Eq.
(2.33) (pink) are plotted.

total APB energy. Interestingly, the model predicts that dislocation cores act as natural

pinning points for APBs (Fig. 2.10). The dislocations pin the domain walls as excess

disordered regions are created when a domain wall breaks free of the dislocation core.
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Figure 2.9. Scaling behavior of bulk order parameter, Aψ (left scale bar),
and APB boundary energy, γ (right scale bar), for temperatures near Tc.
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Figure 2.10. Images for dynamic ordering of a B2 crystal, showing an xy
slice through the middle z coordinate. (a) shows the static n field for the
simulations with 3.8◦ misorientation between the two grains. After initial-
izing the ψ field with Gaussian noise, (b)-(e) show snapshots of ψ at pro-
gressively later stages in the evolution. (b) shows spinodal ordering while
(c)-(e) show coarsening. The green (white) disordered regions down the
middle of (b)-(g) correspond to the edge dislocation cores in (a). Although
much of the evolution can be understood through a simple reduction of
mean curvature, the arrows point to examples of dislocation anchors that
act to pin APB movement. The anchoring phenomenon was confirmed by
initializing another simulation with the same conditions but a different set
of random Gaussian noise to start, and two sample time steps from this
second simulation are show in (f) and (g).
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CHAPTER 3

Complex Crystal Structures

In this chapter, we introduce a form for C3 that stabilizes angles between specified

crystallographic planes and can include multiple length scales, multiple preferred angles,

and angles not restricted by Eq. (1.13).

3.1. Model

A free energy of the form

(3.1) F [n] = F1[n] + F2[n] + F3[n]

is assumed, where F1[n] + F2[n] is Eq. (1.7), the XPFC model is used for the two-point

correlation function, and F3 is Eq. (1.11). The ansatz for C3 is

(3.2) Ĉ3(k1,k2) = β2R(k1)R(k2)
lmax∑
l=0

αlPl(k̂1 · k̂2),

where Ĉ3 is the Fourier transform of the three-point correlation function, ki = |ki|, k̂i =

ki/|ki|, β is an interaction strength parameter, R(k) is a real radial function, Pl are the

Legendre polynomials, and αl are constant coefficients. As is explained later, αl should

be interpreted as determining the preferred interplanar angles. Because Ĉ3(Rk1,Rk2) =

Ĉ3(k1,k2) for any rotation matrix R, Ĉ3 is rotationally invariant and so is C3. By keeping

the free energy rotationally invariant, it is possible to study phenomena such as solid-liquid
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interfaces and grain boundary energies as a function of misorientation, which would be

impossible otherwise.

This ansatz was chosen not only because it is rotationally invariant but also because

the Legendre polynomials are both separable and form a complete orthogonal set. More

explicitly, the separability of the Legendre polynomials means that

(3.3) Pl(k̂1 · k̂2) =
l∑

m=−l

4π
2l + 1Ylm(k̂1)Ylm(k̂2),

where Ylm are the normalized real spherical harmonics [82]. Thus, Ĉ3 can be written as

a sum of products of two-point correlation functions, i.e.,

(3.4) Ĉ3(k1,k2) =
lmax∑
l=0

αl(−1)l
l∑

m=−l
Ĉ(lm)(k1, k̂1)Ĉ(lm)(k2, k̂2),

where

(3.5) Ĉ(lm)(k, k̂) ≡ (−i)l
√

4π
2l + 1βR(k)Ylm(k̂).

The factor of (−1)l in Eq. (3.4) was introduced to cancel the phase factors, (−i)l, in Eq.

(3.5) so that C(lm) is real (see Appendix B for details).

Substituting the inverse Fourier transform of Eq. (3.4) into Eq. (1.11) results in

(3.6) F3 = −1
6

lmax∑
l=0

αl(−1)l
l∑

m=−l

∫
n(r)

(
C(lm) ∗ n

)2

dr

and

(3.7) δF3

δn
= −

lmax∑
l=0

αl(−1)l
6

l∑
m=−l

{
(C(lm) ∗ n)2 + 2(−1)lC(lm) ∗ [n(C(lm) ∗ n)]

}
,
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since C(lm)(−r) = (−1)lC(lm)(r) by the parity property of real spherical harmonics (note

the similarity between these expressions and Eq. 10 and Eq. 42 respectively from [20]).

Since the Legendre polynomials form a complete orthogonal set, if

(3.8) B(x) ≡
lmax∑
l=0

αlPl(x),

then each αl is given by

(3.9) αl = 2l + 1
2

∫ 1

−1
B(x)Pl(x)dx.

This is convenient because it implies that the angular portion of Eq. (3.2) can represent

any function through a series of Legendre polynomials.

The only task remaining is choosing β, Ĉ2, R, and αl in order to produce the targeted

structure. The β constant is not strictly necessary since changing its value from unity is

equivalent to modifying R. For convenience, however, β was introduced in order to easily

tune the relative strengths of the two- and three-point interactions. The parameters

choices listed in Appendix A are motivated by considering diamond cubic and disordered

CaF2 as examples.
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3.2. Structures

3.2.1. Diamond

First the diamond cubic crystal structure is considered. Since diamond cubic, like all

crystal structures, is periodic, the density field can be expanded in a Fourier series, i.e.,

(3.10) n(r) = n̄+
∑
j

Aje
ikj ·r,

where n̄, the average value of n, will be set to zero in all cases in this chapter for simplicity.

When the diamond cubic structure is expressed on a simple cubic lattice, the atoms are

located at both the fcc sites and the fcc sites translated by (1/4, 1/4, 1/4), for a total of

eight atoms per unit cell. If k is then expressed in terms of primitive reciprocal lattice

vectors, i.e. k = hb̂1 + Kb̂2 + lb̂3, the amplitudes for an atomic density represented by

Dirac delta functions at the atomic positions are

Aj(hKl) =



8 if h + K + l = 4N

and h, K, l are all even

4(1 + i) if h + K + l = 4N + 1

and h, k, l are all odd

4(1− i) if h + K + l = 4N + 3

and h, K, l are all odd

0 otherwise

(3.11)

where N is an integer.
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The calculated amplitudes [Eq. (3.11)] are used to select the parameters of the model.

First, the two-point correlation is discussed. Since the smallest set of reciprocal lattice

vectors with nonzero amplitudes in Eq. (3.11) is the {111} set,

(3.12) Ĉ2(k) ≡ A2e
− (k−q1)2

2σ2 ,

where q1 = 2π
√

3/a0, A2 is a temperature-dependent parameter, a0 is the lattice constant,

and σ is related to interfacial free energy, consistent with XPFC models [13,14,18,27].

To choose the parameters for the three-point correlation, consider the free energy

resulting from it

(3.13) F3/V = −1
6
∑
pqr

Ĉ3(kp, kq, k̂p · k̂q)ApAqArδkp+kq+kr,0.

Notice that the only nonzero contributions to this energy come from groups of vectors,

[kp,kq,kr], that satisfy both Ĉ3(kp, kq, k̂p · k̂q) 6= 0 and kp +kq +kr = 0. From Eq. (3.2),

it is clear that Ĉ3 is nonzero only when both R(kp) and R(kq) are nonzero. Consequently,

R(k) can be interpreted as a weighting factor for wave vector magnitudes, like Ĉ2. There-

fore, it is convenient to define R in a similar manner as Ĉ2 was defined. For diamond and

most other crystal structures, R(k) = Ĉ2(k) [given by Eq. (3.12)] was found to work well.

In the limit of small σ for this choice of R, only groups where the first two wave vectors

are of magnitude q1 can contribute to the three-point term of the free energy. Since the

kp + kq + kr = 0 condition must also be satisfied, only groups like [(111), (111), (2̄2̄2̄)],

[(111), (111̄), (2̄2̄0)], and [(111), (11̄1̄), (2̄00)] contribute to the free energy. However, wave

vectors of type (2̄2̄2̄) and (2̄00) have zero amplitude for the diamond structure [see Eq.

(3.11)]. This leaves only groups equivalent to [(111), (111̄), (2̄2̄0)] as contributors to the
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three-point term (e.g., [(11̄1̄), (1̄1̄1̄), (022)] would be another example of a contributing

group). It can be shown that for these groups, k̂p · k̂q = 1/3, or equivalently, the an-

gle between the p and q planes is cos−1(1/3) ' 70.5◦. Also note that, for these groups,

the product ApAqAr is always positive [see Eq. (3.11)]. Consequently, by choosing the

coefficients αl in Eq. (3.2) in such a way that Ĉ3 is positive when k̂p · k̂q = 1/3 and

zero otherwise, we energetically promote the angle cos−1(1/3), corresponding to the angle

between {111} planes. One simple way to do so is for B in Eq. (3.9) to be a delta function

centered at x = 1/3. Namely, we take

(3.14) αl = 2l + 1
2

∫ 1

−1
δ(x− 1/3)Pl(x)dx = 2l + 1

2 Pl(1/3).

Trial-and-error is required for determining how many terms are necessary. For this case,

we found that lmax = 3 was sufficient. To demonstrate that diamond cubic is likely the

equilibrium structure, it was tested against bcc, fcc, simple cubic, hexagonal rods, hcp,

disordered CaF2, graphene rods, simple hexagonal, simple cubic rods, and stripes [18].

To test for the equilibrium phase, an initial condition is set up so that it approximates a

possible structure in a unit cell of the appropriate size, and then the energy is minimized

through standard conserved nonlocal dynamics [80],

(3.15) ∂n

∂t
= −δF

δn
+ 1
V

∫
V

δF

δn
dr.

Out of the structures that were tested, diamond cubic was the one with the lowest energy.

However, because only a finite number of structures can be examined, this does not prove

that the global minimum energy structure was found. Nonetheless, it was also observed

that if a system of size 4 × 4 × 4 unit cells is initialized with noise, a diamond cubic
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structure forms. Although using purely the dynamics of Eq. (3.15) results in the structure

becoming kinetically trapped in a high-energy, low-amplitude state (i.e., the evolution

toward equilibrium is very slow), the dynamics can be accelerated by multiplying the

amplitude of the high-energy structure by a large factor (on order of 500), after which the

diamond cubic phase quickly appears when the system is relaxed, regardless of the seed

used to generate the initial random condition. The formation of the diamond structure

without any a priori information about the equilibrium state, except through the periodic

boundary conditions, suggests that there are no unaccounted for lower energy phases.

3.2.2. CaF2

As a second example, the case of a single-component CaF2 model is presented. Consider

a simple cubic lattice with atoms at the fcc positions and at the tetrahedral voids. The

amplitudes for this structure are

Aj(hKl) =



12 if h + K + l = 4N

and h, K, l are all even

4 if h, K, l are all odd

−4 if h + K + l = 4N + 2

and h, K, l are all even

0 otherwise.

(3.16)

Notice that this structure has nonzero amplitudes for the same (hKl) (i.e., has the same

extinction symbol [83]) as fcc but with different amplitude values. Since the energy from
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the two-point interaction term is a function of only the magnitudes of the amplitudes and

not their phase, it is difficult, and maybe impossible, to generate a two-point correlation

that is able to stabilize this structure over fcc and bcc. However, discerning between

the fcc and CaF2 structures is possible using a three-point correlation. Like for diamond

cubic, R(k) = A2e
− (k−q1)2

2σ2 where q1 = 2π
√

3/a0. This selects the first nonzero reciprocal

lattice vector (the {111} planes). Using this R, there are groups with two relevant angles,

unlike the diamond cubic case: [(111), (111̄), (2̄2̄0)] type groups with kp · kq = 1/3 and

[(111), (11̄1̄), (2̄00)] groups with kp ·kq = −1/3. For the former, ApAqAr > 0, and for the

latter, ApAqAr < 0. Consequently, Eq. (3.9) becomes

(3.17) αl = 2l + 1
2 (−Pl(−1/3) + Pl(1/3)).

For this case, lmax = 5 was sufficient for B(x) to produce a peak at ±1/3 (see Fig.

3.1). However, among the structures examined, the lowest energy state with this lmax

was found to be an “inverse” bcc structure (i.e., −n has a bcc structure), rather than

the single-component CaF2 structure. This occurs because inverse bcc has contributing

groups equivalent to [(110), (1̄01̄), (01̄1)], like bcc, and these groups have kp · kq = −1/2.

When lmax = 5, B(x) has a broad peak and B(−1/2) ' B(−1/3), so the same symmetry

reasons that normally prefer bcc over fcc in this case prefer inverse bcc over the single-

component CaF2 structure [84]. Consequently, the peaks were narrowed with lmax = 13,

in which case the CaF2 structure is the energy minimum among all structures examined.

Although lmax = 13 at first might appear computationally expensive, it can be evaluated

efficiently because every convolution term can be computed in parallel.
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Figure 3.1. Plot of B(x) for lmax = 3, 5, and 13, normalized to their max-
imum values. For lmax < 5, the functions’ peaks are not close to ±1/3,
marked by the vertical dashed lines. Although the peaks for lmax = 5 are
on target, the wide breadth of peaks includes the values ±1/2. In contrast,
lmax = 13 has sharp, centered peak with close to zero baseline.

A similar approach was employed to identify the parameters for the simple hexagonal,

simple cubic, and X3 structures, in addition to graphene layers. All crystal structures

were found to be lower in energy than all the compounds listed previously in connection

with diamond cubic. Additionally, CaF2 spontaneously ordered from noise, and the rest

(except X3, which spontaneously ordered to a higher energy phase) ordered from noise
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with the aforementioned method to accelerate the kinetics. A full listing of parameters

used is contained in Appendix A.

3.2.3. Perovskite

As a capstone demonstration, the single-component three-point correlations are combined

to construct a simple PFC model for perovskite (Fig. 3.2) where the only interaction

coupling the components is an excluded volume term. Since the model does not include

electrostatic interactions, the structure is equivalent to antiperovskite as well. The free

energy of this model is given by

(3.18) F [nA, nB, nX ] = FA[nA] + FB[nB] + FX [nX ] + Z
∫
V

(nAnB + nAnX + nBnX)dr,

where FA and FB are simple cubic single-component free energies, FX is the free energy

for X3, and Z > 0. Note that each of the single-component free energies are of the form

given by Eq. (1.10). If the parameters for A and B are the same, there is no driving

force for the B atoms, rather than the A atoms, to have a coordination number of six. To

break this symmetry, the radii of the B isosurfaces were made smaller (as in the actual

perovskite structure). A small Z was found to be sufficient for the perovskite structure

to be an energy minimum and be able to spontaneously order from noise (parameters are

given in Appendix A).

There are many potential ways in which the method introduced above can be applied

in future research. For all of the particular structures described, information including

their elastic properties, surface energies, and grain boundary morphologies are of interest.

For example, the perovskite model could be used to model chemical vapor deposition
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Figure 3.2. Three-dimensional isosurface plot of equilibrated cubic per-
ovskite using Eq. (3.18). For the canonical ABX3 perovskite, blue A atoms
are at the corners and a green B atom is at the center surrounded by six
red X nearest-neighbors.

grown perovskite solar cells [85]. Other potential applications include combining this

model with the PFC ordering model [27] to create a two-component CaF2 model for
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modeling θ′ precipitates in Al-Cu alloys, combining it with a vapor phase model [86,87]

to create a 3D single layer graphene model, and extending it to other complex phases

such as Heusler alloys and Laves phases.
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CHAPTER 4

Displacive phase transitions

4.1. Introduction

A ferroelectric is a material whose spontaneous electric polarization is reversible upon

application of an external electric field. Ferroelectricity can be modeled highly phenomo-

logically with models such as Landau-Ginzburg-Devonshire (LGD) theory [43], as well

as with more first-principles based approaches, such as quantum density functional the-

ory [88]. As discussed in Sec. 1, previous ferroelectric PFC modeling followed the phe-

nomological approach and included the LGD polarization terms in the free energy ex-

plicitly, i.e. F [n, p] [51]. In contrast, this chapter introduces a more fundamental PFC

ferroelectric model, where the polarization is not explicitly modeled but rather is an

emergent property of a displacive phase transition.

Displacive phase transitions are phase transitions in which small motions of atoms

change the symmetry of the crystal structure. Initially, the crystal has some particular

symmetry, and then that symmetry is lost. For example in Fig. 4.1, the plane group is

p4mm, but following a displacive phase transition, Fig. 4.2, the plane group is p1m1.

The consequent polarization is then calculated from the amount of atomic displacement

and is a coarse-grained property of the unit cell.
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Figure 4.1. Plot of the unpolarized states in the two-component square crys-
tal model. The yellow regions (corners and center) are sites for component
A, and the dark-blue regions are sites for component B. The red lines are
visual aids to show symmetries of the unit cell.

4.2. Model Formulation

In general, the free energy of a two-component system can be decomposed into the free

energies of the individual components, Fi, plus an interaction correction, FAB. Namely,

(4.1) F [nA, nB] = FA[nA] + FB[nB] + FAB[nA, nB]
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Figure 4.2. Plot of the [10] polarized state in the two-component square
crystal model.

where F is the total nondimensionalized free energy. The nondimensionalized atomic

density for component i, ni, is defined by

(4.2) ni = ρi − ρi,0
ρi,0

,

where ρi is the actual atomic number density and ρi,0 is the reference atomic number

density. In general, FA and FB could be any one component free energy model, involving
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Figure 4.3. Plot of the [11] polarized state in the two-component square
crystal model.

either only two-point [6,14] or also three-point [20,23,27] interactions. For simplicity,

in this chapter FA[nA] and FB[nB] will be identical XPFC models in the form of Eq.

(1.7) [13,14]. The correlation function itself is defined in Fourier space such that

(4.3) ĈA(q) = ĈB(q) = max
j

(
bje

−(q−qj)2

2σ2
j

)
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Figure 4.4. Plot of the “generic” polarized state in the two-component
square crystal model.

where Ĉi is the Fourier transform of the isotropic two-point correlation function for com-

ponent i, q = |q|, qj are constants that determine the crystal structure, σj are standard

deviations that control the elastic constants, and bj are positive numbers connected to

the system temperature [14].
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4.2.1. Symmetric Transitions

The simplest method for modeling exact intermetallics is to, following Taha et al., Taylor

expand FAB in the variables nA and nB. To fourth-order, for the symmetric nA and nB

components

FAB =
∫
V

[α2nAnB + α3(nAn2
B + n2

AnB) + α4

2 n
2
An

2
B + α5(n3

AnB + nAn
3
B)]dr.(4.4)

For additional simplicity, α5 = 0 henceforth. To explain why Eq. (4.4) is sufficient for

polarization, Landau models for the one-dimensional and two-dimensional cases will be

explained.

4.2.1.1. One-dimensional crystal. Consider the case where the single-component cor-

relation function [Eq. (4.3)] is only a single Gaussian with a peak at wavenumber

q1 = 2π/a, where a is the lattice constant. In one dimension, the polarization imag-

ined is shown in Fig. 4.5. The blue and red curves are the same shape but are phase

shifted relative to each other. In the unpolarized state, the relevant phase shift, ∆x,

between the two waves is exactly a/2. In the polarized state on the other hand, the

phase shift ∆x = a/2 + δ, where δ is the nonzero displacement from the centrosymmetric

position.

The conditions for when a displacive phase transition occurs can be understand in

terms of one-dimensional Landau theory. Since the single-component correlation function

contains only a single peak, it is reasonable to use a one mode expansion for ni. Namely,

(4.5) nA(x) = n̄A + Aeiq1x + A∗e−iq1x
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Figure 4.5. Numerical simulation demonstrating polarization in one dimension.

and

(4.6) nB(x) = n̄B +Beiq1x +B∗e−iq1x,

where A and B are the amplitudes, A∗ and B∗ are the complex conjugates of A and B,

and n̄A = n̄B to ensure charge neutrality. For the duration of this article, n̄A = 0 for

simplicity. Since F [nA, nB] = F [nB, nA], it is assumed that |A| = |B|. This is equivalent
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to assuming that nB is a phase shifted copy of nA. Consequently, B can be expressed as

(4.7) B = Aeiq1∆x.

Since FA and FB are independent of ∆x, only Eq. (4.4) must be minimized to find the

conditions for polarization. Plugging in Eq. (4.5) and Eq. (4.6) into Eq. (4.4) in the

simplified α3 = 0 case results in

(4.8) FAB
a

= −2α2|A|2 cos(q1δ) + α4|A|4[2 + cos(2q1δ)].

From Eq. (4.8) it is clear why α4 is necessary; without it, δ = 0 or δ = a/2 (depending on

the sign of α2). The polarization phenomena occurs because with α2 > 0, the nAnB term

favors δ = 0 while the n2
An

2
B term favors δ = ±a/4. This competition drives a displacive

phase transition. More precisely, there is polarization when α2, α4 > 0 and

(4.9) α2

α4|A|2
< 2,

with the value of the displacement itself being

(4.10) δ = 1
q1

cos−1 α2

2α4|A|2
.

The polarization condition, Eq. (4.9), can also be derived by Taylor expanding Eq. (4.8)

FAB
a|A|2

≈(−2α2 + 3α4|A|2) + q2
1(α2 − 2α4|A|2)δ2+

q4
1(−α2

12 + 2
3α4|A|2)δ4.(4.11)
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As usual for a single order parameter quartic Landau model, the equilibrium phase just

depends on the sign of the quadratic term. The connection between the displacement δ

and the polarization p is discussed in Appendix C but is generally of the form

(4.12) p = Q̃δ.

4.2.1.2. Two-dimensional polarization. Unlike in one dimension, in two dimensions

there are many possible polarization directions. In this work, only a square crystal is

considered for simplicity. In the unpolarized state (Fig. 4.1), the phase shift, ∆r, between

nA and nB is (a/2, a/2). In the polarized state (Fig. 4.2–4.4), the nB peaks are off-center,

i.e. δ = ∆r − (a/2, a/2) = (δx, δy) is nonzero.

To understand the polarization process, Landau theory analysis like in 1D is per-

formed. Unfortunately, it is more difficult. Since the square crystal structure is two-

dimensional and cannot be stabilized by a single frequency [13,14], now ni are expressed

as more general Fourier series. Namely,

(4.13) nA(r) =
∑
hk

Ahke
iqhk·r

and

(4.14) nB(r; ∆r) =
∑
hk

Ahke
iqhk·(r+∆r),

where

(4.15) qhk = hb̂1 + kb̂2
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is a reciprocal lattice vector of the crystal, h and k are integers, and b̂i is the ith prim-

itive reciprocal lattice vector. It is worth noting that during numerical simulations, it

was discovered that the approximation of Eq. (4.7) and Eq. (4.14) is not exactly true.

Meaning, nB is not exactly a phase shifted copy of nA, and given the numerical nA, there

is no ∆r that exactly solves Eq. (4.14) for all amplitudes. For simplicity however, the

approximation that a single parameter, the phase shift vector ∆r, can map Ahk to Bhk is

made.

In addition to the phase shift approximation, there are other complications when

converting this model into a Landau model like in one dimension. Since the unpolarized

state is a member of the plane group p4mm, there are eight general Wyckoff positions

denoting equivalent positions in the unit cell, and these real-space symmetries correspond

to symmetries in the amplitudes [83]. If the Fourier series in Eq. (4.13) has its origin at

the corner of a unit cell, one example equivalency is that

(4.16) nA(x, y) = nA(x,−y) =⇒ Ahk = Ahk̄,

This analysis for all Wyckoff positions implies that all A{hk} are equal, where {·} denotes a

family of hk pairs created by the permutation and negation of the internal elements (e.g.,

{12} includes eight pairs: 12, 1̄2̄, 12̄, 1̄2, 21, 2̄1̄, 21̄, 2̄1). When the structure polarizes

in the [10] direction however, the plane group changes to p1m1. This plane group has

only two general Wyckoff positions, and the only amplitude symmetry is that Ahk =

Ah̄k. Consequently, A10 = A1̄0 but A10 6= A01 in general, which further complicates the

analytical free energy expression. For simplicity however, this complication is neglected

as A10 ≈ A01 still.
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With these caveats, the bulk analytical free energy, FAB, as a function of two modes

A1 = A{10} and A2 = A{11} with α3 = α4 = 0 is

(4.17) FAB
α2A

= −2A2
1

(
cos(q1δx) + cos(q1δy)

)
+ 2A2

2

(
cos[q1(δx + δy)] + cos[q1(δx − δy)]

)
,

or in Taylor expanded form

FAB
α2A

=4(−A2
1 + A2

2) + q2
1Q̃

2(A2
1 − 2A2

2)(p2
x + p2

y) + q4
1Q̃

4
(
− 1

12A
2
1 + A2

2
6

)
(p4
x + p4

y)

+ q4
1Q̃

4A2
2p

2
xp

2
y(4.18)

= FAB,0 + 1
2α(p2

x + p2
y) + 1

4[γ11(p4
x + p4

y) + γ12p
2
xp

2
y].(4.19)

Equation (4.18) is exactly the fourth-order Landau free energy for a two-component spin

system with cubic anisotropy [89]. This is interesting because in general when construct-

ing phenomenological Landau models, one must be careful to only include terms that have

the same symmetries as the crystal under study. Because the PFC model has the crystal

structure built-in, the resulting Landau model automatically contains only the terms with

the correct symmetries.

Landau theory can be used to understand not only the existence of displacive phase

transitions but also their direction. In Eq. (4.18), if γ12 > 2γ11, then if polarization occurs

it will be in the 〈10〉 direction (Fig. 4.2) [89]. (N.B., 〈·〉 denotes a family of real variables

in the same manner that {·} denotes a family of reciprocal space variables.) If γ12 < 2γ11

on the other hand, then any polarization will be in the 〈11〉 direction (Fig. 4.3) [89].

Parameters were found such that both 〈11〉 and 〈10〉 polarizations occur in numerical

simulation, using α3 = 0 and α3 6= 0 respectively (Fig. 4.3 and 4.2). In the normal
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Table 4.1. Table of parameter values for {10} polarizing model.

Quantity Value
b1 1.0
b2 0.98
q1 2π
q2 2π

√
2

σ1 2.0
σ2 2.0
α2 0.01
α3 0.05
α4 0.05
α5 0
a0 1.0
n̄ 0

parameter space of the single component PFC model, the quadratic coefficient α in Eq.

(4.18) is always positive, so polarization does not occur. Parameters that analytically

minimize the free energy and give 〈10〉 polarizations do exist but require α3, α4 6= 0 and

an A{20} mode. For brevity, this full expression is emitted.

4.2.2. Generic Polarization

In order to model polarization in an arbitrary direction, the free energy

(4.20) FAB =
∫
V
nmACAB ∗ nmBdr,

where m is a positive integer, is used in place of Eq. (4.4). The possibility of a displacive

phase transition to an “arbitrary” direction is motivated by the fact that although such

a polarization is impossible in fourth-order Landau theory, it is possible in eighth-order
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Landau theory [89]. Equation (4.20) itself is phenomenologically motivated, and presum-

ably, additional terms where the powers for nA and nB are not the same could give rise

to additional behavior. In the simple case of a displacive transition in the square crystal,

this term is sufficient to describe all possible polarization states consistent with the plane

group. Plugging in Eqs. (4.13) and (4.14) into Eq. (4.20) gives

FAB(∆r)
A

=
∑

h1k1,...,hmkm,h1K1,...,hmKm

m∏
α=1

AhαkαAhαKαĈAB(s)eis·∆rδ−s,t(4.21)

where the nA sum has hk indices, the nB sum has hK indices,

(4.22) s =
m∑
l=1
qhlKl , t =

m∑
l=1
qhlkl ,

and s = |s|. If ni are Fourier expanded with two amplitudes as in Sec. 4.2.1.2, then Eq.

(4.21) simplifies to

(4.23) FAB(∆r)
A

=
∑
s

cse
is·∆r,

where

(4.24) cs =
2m∑
K=0

AK1 A
2m−K
2 Ns,KĈAB(|s|)

and Ns,K is the number of vector sums in Eq. (4.21) such that both s = −t and exactly

K vectors of magnitude q1 are terms in the sum s. Because Ns,K is an integer, it can be

calculated exactly, albeit with computational assistance.
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Observe that Eq. (4.23) is in the form of a Fourier series and has the same periodicity

as FA and FB. Since s is a sum of reciprocal lattice vectors, it is a reciprocal lattice

vector as well and can be referenced with indices hk. Although for finite m there are

only a finite set of s vectors, as m→∞, s comes to include all reciprocal lattice vectors.

Consequently, in order to create a desired FAB(∆r), one simply needs to control cs, which

is accomplished through modifying ĈAB(s).

The fact that ĈAB is isotropic limits FAB to functions with certain types of symmetries.

Since N{hk},K are all equal, c{hk} are all equal as well. This implies that FAB must be a

member of the p4mm plane group, for similar reasons as explained in Sec. 4.2.1.2. Further,

if vectors shk and suv are distinct but of the same magnitude, meaning (uv) 6∈ {hk} but

(4.25) h2 + k2 = u2 + v2,

then

(4.26) chk
cuv

=
∑2m
K=0A

K
1 A

2m−K
2 Nhk,K∑2m

K=0A
K
1 A

2m−K
2 Nuv,K

since their correlation function terms must be equal. An example of coefficients that must

satisfy Eq. (4.26) are c{34} and c{50}, as well as any other Pythagorean triple. In technical

terms, Eq. (4.25) is a Diophantine equation (whose general solution is known) [90].

However, given these restrictions on allowed FAB functions and ignoring the problematic

terms that solve Eq. (4.25), FAB is controlled by setting ĈAB according to

(4.27) ĈAB,set(s) = cs∑2m
K=0A

K
1 A

2m−K
2 Ns,K

.
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In order to validate that this method can create arbitrary polarizations (Fig. 4.4), it

is necessary to choose cs values. As a simple test, these coefficients were chosen to be

the coefficients from an expansion of a sum of delta functions that have the eight-fold

symmetry required by a generic position in the p4mm plane group [83]. Namely,

chk(x0, y0) = cos[2π(hx0 + ky0)] + cos[2π(hx0 − ky0)]

+ cos[2π(hy0 + kx0)] + cos[2π(hy0 − kx0)](4.28)

where ∆r = (x0, y0) (in units of the lattice constant). Although in general A1 and A2 are

functions of FAB, this makes calculation of ĈAB,set challenging. An example FAB plot for

(x0, y0) = (0.66, 0.84) is shown in Fig. 4.6, where the single-component amplitudes are

used for Ai as in approximation, which is reasonable when FAB is small.

Since Eq. (4.27) only specifies the value of ĈAB at points, a simple extension of Eq.

(4.3) is used for defining ĈAB(q). Namely,

ĈAB(q) = Ω
[

max
j

(
ĈAB,set(qj)e

−(q−qj)2

2ς2

)
+

min
j

(
ĈAB,set(Qj)e

−(q−Qj)2

2ς2

)]
(4.29)

where ĈAB,set(qj) > 0, ĈAB,set(Qj) < 0, and Ω is a scale factor. In the limit where ς is

small, Eq. (4.29) reduces to a sum. The parameters listed in Table 4.2 were successfully

used to create the polarization in Fig. (4.4).
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Table 4.2. Table of parameter values for crystal with p = (0.16, 0.34). The
associated set of {hk} pairs is given for each reciprocal wavevector magni-
tude.

Quantity Value Vector Set
q1 2π

√
8 {22}

q2 2π
√

10 {31}
q3 2π

√
20 {24}

Q1 2π
√

2 {11}
Q2 4π {20}
Q3 8π {40}
Q4 2π

√
18 {33}

m 4
b1 7.6531× 10−4

b2 6.3636× 10−3

b3 1.2671× 10−1

B1 2.6224× 10−4

B2 5.2784× 10−4

B3 6.3886× 10−2

B4 1.7314× 10−1

ς 0.1
a0 1.0
n̄ 0

4.2.3. Dynamics

In order to create dynamic models out of these free energies, the standard conserved local

dynamics equations were employed [29]. Namely,

(4.30) ∂ni
∂t

= ∇2 δF

δni
.
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Figure 4.6. FAB plot over a unit cell for a desired p = (0.16, 0.34). The
colormap goes from dark blue (lowest values) to light yellow (highest val-
ues). FAB contains eight equal minima as intended, horizontal, vertical,
and diagonal mirror planes, as well as various four-fold rotation axes.

In cases where the goal is to minimize the free energy, and the equilibrium path is not of

interest, the global dynamics equation

(4.31) ∂ni
∂t

= − δF
δni

+ 1
V

∫
V

δF

δni
dr,
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can be used instead for computational efficiency [80].

4.3. Comparison to LGD Models

Like traditional PFC models [91], our model can also be mapped to phase-field models,

namely Landau-Ginzburg-Devonshire models. In general, these models are of the form

F =
∫
V

[fbulk(p) + fgrad(∇p) + felast(ε) + fc(p, ε) + felec(p,E)]dr(4.32)

where fbulk is the bulk free energy density, fgrad is the energy due to gradients in the

polarization, felast is the contribution from the strain tensor ε, fc is the coupling energy

between the polarization and strain fields, and felec is the electrical energy density as

a result of the electric field E [48]. Mapping our PFC model to a LGD model is of

interest because LGD parameters have been calculated for real materials [44,92,93], and

consequently, this is a possible method for PFC parameters fitting. The derivation of the

LGD model from the PFC model of Eq. (4.4) is discussed below, and the analytic results

from a three amplitude approximation are found in Appendix D.

4.3.1. Bulk Energy

The bulk, or Landau-Devonshire, free energy is derived in the same manner as discussed

in Section 4.2.1.2. Three-dimensional Landau-Devonshire potentials used practically for

modeling perovskites are either sixth- or eighth-order [94,95], and the PFC model auto-

matically gives the correct symmetries for the bulk energy regardless of the order of the
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expansion. To sixth-order, the free energy of a perovskite is

fbulk = 1
2α(p2

x + p2
y) + 1

4[γ11(p4
x + p4

y) + γ12p
2
xp

2
y]

+ 1
6[ω111(p6

x + p6
y) + ω112(p4

xp
2
y + p2

xp
4
y)].(4.33)

4.3.2. Gradient Energy

In LGD models for perovskites, the two-dimensional gradient term is

fgrad = 1
2g11

(
∂px
∂x

2
+ ∂py

∂y

2)
+ g12

∂px
∂x

∂py
∂y

+

g44

(
∂px
∂y

2
+ ∂py
∂x

2)
.(4.34)

Although many authors include a fourth gradient coefficient [92,96,97], two of the coef-

ficients are degenerate [46,98].

The gradient coefficients in our model are calculated by imagining that nA is fixed,

and the polarization gradients are due to the offset ∆r between the sublattices in Eq.

(4.14) being a slowly varying function of position. The strained reciprocal lattice vectors,

qstr, are defined in terms of the Jacobian of ∆r (the displacement gradient tensor in the

language of elasticity), u, and the unstrained reciprocal lattice vectors q. Namely,

(4.35) qstr = (u + I)−1 · q,

where I is the identity matrix. If the strained wavevectors are used in Eq. 4.14, the

difference in free energy from the unstrained state will solely be due to the two-point

correlation function of the strained component. Upon Taylor expanding to second-order,
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this free energy difference is exactly Eq. (4.34) where

g11 = −q2
1

3∑
i=1
|Ai|2Ĉ ′′BB(qi)

g12 = g44 = −q2
1|A2|2Ĉ ′′BB(q2).(4.36)

This method for calculating the gradient coefficients is similar to how elastic constants

were originally calculated for a single component PFC model [51]. It was later discovered

that this method for calculating elastic constants is incorrect since the average density

changes when the system is strained [75,79]. This critique could also be leveled against

this method of calculating the gradient coefficients. However, because the electrostriction

coefficients for this model are approximately zero (see sec. 4.3.3), density changes as a

function of polarization can be ignored.

4.3.3. Elastic Energy

In addition to the free energies due to polarizations, there are also free energies due to

elastic strain. For a material with cubic symmetry, the elastic energy in two dimensions

is

(4.37) felast = 1
2c11(ε2xx + ε2yy) + c12εxxεyy + 2c44ε

2
xy.

The elastic constants are derived in the manner suggested by Wang et al. [79], except

the anisotropic variations of the amplitudes are neglected for simplicity. In order to avoid

issues with the stresses inherent in the undeformed state affecting the elastic constants, the
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system pressure is set to zero in the calculations. Namely, a linear term
∫
V β(nA + nB)dr

is added to the free energy, Eq. (4.1), and β is then solved so the system pressure is zero.

In real materials, in addition to the purely elastic strain, the fc energy couples the

polarization and strain fields. Namely, there are terms of the form −λijklεijpkpl, where

λ is the electrostrictive constant tensor [48]. The result of these terms are that the

spontaneous polarization causes a plastic strain so that the unit cell shape changes. For

example, PbTiO3 undergoes a cubic → tetragonal transition when polarization occurs.

Indeed, numerical simulations of the polarization process verifies a square → rectangular

transition. However, this phenomenon, unlike in real systems, is very small. Using the

coefficients in Table 4.1 for example, the unit cell distortion c/a ' 1.0003. Because the

distortion is so small, the electrostriction constants are approximated as zero in this work.

The free energy due to the electrical energy density, felec, found by solving an electro-

static equation is also in theory important [44,46,48,93,99,100]. For simplicity however,

the path of early phase-field models is followed [92,96,101], and the inclusion of this term

in the PFC model is left for future work. Ignoring the electrical energy density is the limit

of high dielectric constant.

4.4. Applications

4.4.1. Phase Transitions

As a method for comparing the full numerical model to the analytic LGD theory, a 〈10〉

displacive phase transition was examined near the critical temperature. As predicted by

fourth-order Landau theory [89], the displacive phase transition is second-order. As can

be seen in Fig. 4.7, the numerical and analytical results match closely. This check can
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Figure 4.7. Second-order phase transition calculated numerically and analytically.

be thought of as a verification of the Landau-Devonshire [Eq. (4.33)] portion of the free

energy. The parameters for Fig. 4.7 and the rest of the applications sections are in Table

4.1.

4.4.2. Domain Walls

As a method for comparing the polarization gradient coefficients in our numerical model to

the analytic LGD theory, an isolated domain wall was numerically modeled. The system

was tested numerically in a 64×2 domain with periodic boundary conditions and domain



86

15 20 25 30 35 40 45
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15

p y

Figure 4.8. Polarization in the y direction across an Ising wall. The points
are the numerically calculated values, the red line is a fit to Eq. (4.38) with
ξ = 7.26, and the dashed line is the analytically calculated ξ = 8.23 width.

walls at the center and edges of system. The process for calculating the polarizations is

described in Appendix E. Compared with the Cahn-Hilliard equation, many more types

of domain walls are possible in our system, including ↑↓, ↑→, and →← boundaries. In

the case of the ↑↓ walls simulated, known as Ising walls [102], the math reduces to the
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one-dimensional case. For a sixth-order bulk free energy, the analytic profile is

(4.38) py(x) = p0

sinh
(
x− x0

ξ

)
[
C + sinh2

(
x− x0

ξ

)]1/2 ,

where

(4.39) ξ = 1
2p0

√
g44

C(120ω111p2
0 + 3Γ11)

measures the interface width and C measures the contribution of the sixth-order bulk

energy term (the typical fourth-order tanh profile occurs when C = 1) [103]. By fitting

the results of the numerical domain wall to Eq. (4.38), ξ and C were calculated, and

their values were used to make a semi-numeric estimate of g44. Namely, the value of p0

from a numerical bulk polarization equilibration, A1, A2, and A3 from a numerical bulk

unpolarized state equilibration, and ω111 and Γ11 from the LGD model, were combined

with ξ = 7.26 and C = 0.41 from Ising wall simulation to yield g44 = 0.19. In comparison,

the expression for g44 from the LGD model (Appendix D) is g44 = 0.24, reasonably

similar. This implies that the approximations made in the gradient coefficient calculation

are somewhat reasonable.

4.4.3. Quadrijunctions

In “traditional” systems, such as soap froths and single phase grain structures, quadrijunc-

tions (junctions where four domain walls meet) are thermodynamically unstable and split

into trijunctions [104,105]. However, Cahn showed in the context of an Ising-type stripe

formation model on a discrete, square lattice with two-components that weak first and
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Figure 4.9. The initial condition, with head-to-tail quadrijunctions at the
corners and center, and head-to-head quadrijunctions at the midpoints of
the sides. The colors denote the four different polarization directions: [10],
[01], [1̄0], and [01̄]. The white regions are domain boundaries, and the axes
are labeled in units of the lattice constant.

strong second neighbor interactions stabilized quadrijunctions [105]. Although quadri-

junctions have not been studied using LGD models to the authors’ knowledge, it was
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Figure 4.10. The system a short simulated time afterward Fig. 4.9. The
head-to-tail quadrijunctions remain stable, but the head-to-head quadri-
junctions have decomposed into two trijunctions.

thought that the DPFC model might stabilize quadrijunctions since like in Cahn’s Ising

model, there are four possible domains.
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This hypothesis was confirmed by simulating a periodic domain with clockwise quadri-

junctions (↑→←↓) at the system’s center and corners and head-to-head quadrijunctions (↑←→↓)

at the edges (Fig. 4.9). The head-to-head quadrijunctions quickly decomposed into tri-

junctions, but the clockwise junctions remained stable (Fig. 4.10). This is somewhat

surprising, as although head-to-head boundaries do not exist in real systems, this is at-

tributed to an excess charge accumulation at the interface, and our model lacks explicit

electrostatics terms [103].

4.4.4. Domain Coarsening with Dislocations

Although it is possible to simulate polarization domains through LGD models [48], it is

challenging to study the interaction of polarizations with dislocations and grain boundaries

using LGD models or traditional atomistic methods. In contrast, this is easy using the

phase-field crystal model.

As an illustrative example, domain coarsening across a low-angle symmetric grain

boundary was simulated. First, the low-angle boundary was initialized by using a plane

wave expansion in the form of Eq. (4.5) for ni, and the standard method was imple-

mented for calculating the dimensions of the periodic grains [80]. The maxima of the nB

plane wave expansion were then located. A random number from a multivariable normal

distribution was subsequently generated and added to the stored position for the max-

ima. The plane wave version of nB was then discarded, and a new nB that is the sum

of multivariable Gaussians created, with each Gaussian centered on a moved maxima. In

this way, a system was generated such that the polarization in each unit cell was random.
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This system was then run using dynamics of Eq. (4.30), and the results are in Fig. 4.11

– Fig. 4.13. The central line of dislocations clearly impedes the motion of the central [10]

domain. Additionally, the [01̄] region on the left grows downward, despite this increasing

the amount of interface, and it is thought this occurs because the two interfaces it creates

is lower in energy than the single one is destroys. Neither of these behaviors are motion

by mean curvature.

4.5. Summary

Although this model successfully incorporates polarization transitions, it lacks a few

features true of real perovskites. When real perovskites undergo a 〈10〉 polarization,

it simultaneously undergoes a cubic → tetragonal transition. The ratio c/a = 1.18 in

PbTiO3 [106]. In the DPFC model, a square → rectangular transition occurs during

polarization, but the ratio is extremely small. Further, the DPFC model has long range

interactions through elasticity, but there are no long range electrostatic contributions as

in Seymour’s model [51]. Lastly, in this model, it is not possible to alter the polarization

gradient coefficients independent of the elastic constants. These improvements are left for

future work.

What this model does well is introduces a simple and computationally efficient way

to begin incorporating displacive ferroelectricity into the PFC model. It is possible to

compare this model to LGD models and get qualitatively reasonable results. Phenomena

that would be very challenging otherwise, such as the interaction of dislocations with

grain boundaries, can begin to be studied. Given a suitable simple cubic model, the

model could also be used to simulate perovskites in three dimensions. The model could
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Figure 4.11. Polarization domain coarsening across a 3.8◦ tilt grain bound-
ary at 9000 timesteps. The color scheme and units are the same as for
Fig. 4.9. The dislocations are recognizable as the line of strangely colored
points down the middle and edges of the figures. The dislocations impede
the domain boundary motion of the central [10] domain. Further, the [01̄]
region on the left side grows during the simulation, despite this growth in-
creasing the amount of boundary. The reason for this is hypothesized to
be because ← → interfaces are higher energy than ←↓ and ↓→ interfaces.
Thus, domain motion is not simply reduction of mean curvature.

also be extended to more complex displacive transitions, such those accomplished through

octahedral rotations in SrTiO3 [95]. Additionally, the ideas introduced through creating

“generic” polarization begins the conversation about how one might model truly complex

materials, such as metal-organic frameworks, using the phase-field crystal method.
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Figure 4.12. Polarization domains at 23000 timesteps.
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Figure 4.13. Polarization domains at 48000 timesteps.
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CHAPTER 5

Conclusion

The fundamental paradigm of materials science states that the processing of a material

determines its structure, and its structure determines its properties. However, predicting

and understanding the relationship between processing and structure is difficult. Although

experimental methods can examine an existing material’s structure, accurate computa-

tional models can be quite useful for probing problems that are intractable experimentally,

as well as for making predictions.

Unfortunately, typical modeling methods are limited by an inherent coupling between

the spatial resolution of the model and the timescale of simulation. For example, tradi-

tional molecular dynamics has high spatial resolution, tracking each individual atom, but

existing computational hardware normally limits simulation times to the order of nanosec-

onds. Continuum models are able to span the timescales of actual processing conditions,

but they do not contain the spatial resolution necessary for understanding processes that

depend on atomistic details.

This thesis focused on one particular methodology that is able to simulate crystalline

materials with atomistic resolution on much longer timescales than molecular dynamics.

This method, the phase-field crystal method, has been limited by the small number of

crystal symmetries it can handle. The thesis greatly expands the number of crystal

structures that can be examined by the phase-field crystal model.
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In Chapter 2, a PFC model was developed for sublattice ordering and studying order-

disorder phase transitions. The free energy for this model was inspired by classical density

functional theory, and the chapter describes a systematic method for developing PFC

potentials for different ordered crystals. Using the B2 compound as an example, first-

and second-order and phase transition were demonstrated, consistent with different types

of materials. This investigation also uncovered that the typical expression for temperature

dependence in the XPFC model was incorrect, and the correct temperature dependence

was clarified. Finally, the model made an interesting prediction that dislocations slow the

movement of domain boundaries in these materials.

Chapter 3 developed a systematic technique for creating a new set of single component

PFC models, this time using a rotationally invariant three-point correlation function. This

method produced a wide array of energy-minimizing crystal structures, from simple cubic

and diamond cubic, to graphene layers and disordered CaF2. As an illustration of the

utility of this method, the first PFC model with a perovskite structure as the minimum

free energy state was created.

Although this model for the perovskite structure was a free energy minimum, it does

not demonstrate ferroelectricity, a technologically relevant feature of many perovskites.

With the aim of better understanding how to model ferroelectricity in the PFC model,

Chapter 4 developed a square two-component two-dimensional PFC model that spon-

taneously undergoes displacive phase transitions. The mechanism for controlling dis-

placive transitions is discussed in detail, and the model is compared to Landau-Ginzburg-

Devonshire (LGD) theories for ferroelectrics. The model also predicts stable quadrijunc-

tions and pinning of domain wall evolution by dislocation cores.
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Although much of this work was theoretical and parameter values from real materi-

als were never used, it lays the foundation for future projects in the phase-field crystal

community. For example, there are many future directions for the displacive transition

topic. For one, it should properly be extended to three dimensions. Both PbTiO3 and

BaTiO3 experience polarization states similar to the two-dimensional case explored, so

this could be a natural extension. Additionally, all the displacive transitions explored

in this work occurred in vectorial directions, and the phase transitions only caused in-

significant changes to the crystal’s unit cell. In actual systems, other types of displacive

transitions are possible. For example, in SrTiO3 the displacive transition involves oc-

tahedral rotations. The unit cell also changes dramatically in shape during the phase

transition.

This polarization model also does not include any electrostatic terms, clearly impor-

tant in perovskites. This could perhaps be accomplished by including fields that track

the concentration of electrons and holes, so that the charge density could be computed

and thereby the polarization and electric potential. In addition to the intrinsic electric

potential, future work ought to include the effects of external electric fields.

A final suggested extension for this thesis is to examine defect structures. While this

thesis largely focused on equilibrium structures for the new class of materials, it is in fact

the defects that are usually of interest. Edge and screw dislocations for crystal structures

including L10, perovskite, and graphene layers could be studied. Their movement and

formation in chemical deposition growth is incompletely understood and could benefit

from phase-field crystal studies.
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APPENDIX A

Complex Crystal Structure Parameters

The parameters for all the crystal structures of Chapter 3 are detailed in Table A.1.

The abbreviation DC refers to diamond cubic, SH to simple hexagonal, SC to simple

cubic, GL to graphene layers, and X3 to the structure of the X component of the ABX3

perovskite/anti-perovskite structure. The asterisk denotes that for graphene layers, α0

was changed from −1/2, inconsistent with the Pl calculation. This change was motivated

by the fact that the graphene layers structure is the inverse (negative peaks) of simple

hexagonal. The correlation function parameters are defined by the equations

(A.1) Ĉ2(k) = A0e
− k2

2σ2 + max
i

(Aie−
(k−qi)

2

2σ2 )

and

(A.2) R̂(k) = max
j

(Aje−
(k−rj)2

2σ2 ).

For perovskite, nearly all parameters are the same as for the single components listed

in Table A.1. The only changes are that for B, A1 = 0.95, A2 = 0.93, and β = 0.95.

Additionally, Z = 0.05.
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Table A.1. Table of parameter values for different crystal structures, with
parameter definitions defined by Eq. (A.1) and Eq. (A.2).

DC SH SC GL CaF2 X3

A0 - - - - −5 -
A1 1.0 1.0 1.0 1.0 0.9 0.95
A2 - 0.99 0.98 0.99 1.05 0.95
A3 - 0.98 - 0.98 - 1.0
A4 - - - - - 0.98
q1 2π 2π 2π 2π 2π

√
3/8 2π

q2 - 3π/
√

8 2π
√

2 3π/
√

8 2π 2π
√

2
q3 - 2π

√
41/32 - 2π

√
41/32 - 2π

√
3

q4 - - - - - 4π
r1 2π 2π 2π 2π 2π

√
3/8 2π

r2 - 3π/
√

8 2π
√

2 3π/
√

8 - -
r3 - 2π

√
41/32 - 2π

√
41/32 - -

β 1.3 1.0 1.0 1.0 0.8 1.3
σ 0.1 0.1 0.1 0.1 0.1 0.1
2αl

2l+1 Pl(1
3) Pl(−13

17) Pl(0) −Pl(−13
17) Pl(1

3)− Pl(−1
3) −Pl(0)

α0 1/2 1/2 1/2 −1/6∗ - −1/2
α1 1/2 −39/34 - 39/34 1 -
α2 −5/6 545/578 −5/4 −545/578 - 5/4
α3 −77/54 1001/9826 - −1001/9826 −77/27 -
α4 - −241911

167042
27
16

241911
167042 - −27/16

α5 - - - - 11/3 -
α7 - - - - −605/243 -
α9 - - - - − 9101

19683 -
α11 - - - - 229057

59049 -
α13 - - - - −353807

59049 -
a1

√
3 2/

√
3 1 2/

√
3

√
8 1

a2
√

3 2 1 2
√

8 1
a3

√
3 4

√
2/3 1 4

√
2/3

√
8 1
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APPENDIX B

Proof that C(lm) is real

To prove C(lm)(r, r̂) is real, use a plane wave expansion

(B.1) eik·r = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Ylm(k̂)Ylm(r̂)

where jl are the spherical Bessel functions. Consequently,

C(lm)(r, r̂) =
( 1

2π

)3
(−i)l

√
4π

2l + 1β
∫
R(k)Ylm(k̂)eik·rdk(B.2)

=Ylm(r̂)
( 1

2π

)3
√

4π
2l + 1β4π

∫ ∞
0

R(k)jl(kr)k2dk(B.3)

by orthogonality of spherical harmonics. Eq. B.3 is real since Ylm, R, and jl are real.
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APPENDIX C

Connecting displacement to polarization

What is the connection between the displacement, δ, and the polarization? Two

approaches are suggested.

C.1. Electrostatics Method

This method ties the polarization vector to the displacement vector through comparing

the electric energy from a macroscopic electric field to the energy from a microscopic

electric field. For a macroscopic system,

(C.1) ε0∇ ·E = −∇ · p,

where ε0 is the vacuum permittivity. If a one-dimensional polarization is considered of

the form

(C.2) px = p0 cos(Qx),

then

(C.3) Emacro = −p0 cos(Qx)/ε0,
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where Ex is the macroscopic electric field and the divergence free electric field is ignored.

The energy density associated with this electric field per period is

(C.4) umacro = ε0
2

∫ s+λ

s
E2

macrodx = π

2ε0Q
p2

0,

where λ = 2π/Q.

Now consider the PFC microscopic case. Assume the charge density

(C.5) ρe = e(ρA − ρB) = eρA0(nA − nB),

where ρe is the charge density and e is the electron charge. Furthermore, consider a charge

distribution such that

nA = A cos(qx) and nB = A cos(q(x− π/q − d)) and d = d0 cos(Qx).(C.6)

If q � Q and d0 � a, Gauss’s law

(C.7) ∇ ·E = ρe/ε0

can be analytically solved for the electric field. If it is assumed that

(C.8) umacro = ε0
2

∫ s+λ

s
[Emicro(d0)− Emicro(d0 = 0)]2dx

then to leading order in d0,

(C.9) |p0| = AeρA0|d0|/
√

2.
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C.2. Modern Theory of Polarization

An alternative approach is inspired by the Modern Theory of Polarization [107]. This

approach requires a little more preliminary discussion.

C.2.1. Circular Mean

Given N real numbers, the mean is typically defined as

(C.10) x̄ ≡ 1
N

N∑
j=1

xj

in the discrete case and

(C.11) x̄ ≡ 1
a

∫ a

0
xP(x)dx

in the continuous case, where P(x), the probability density function for x, is nonzero

only in the interval [0, a]. However, these definitions cause problems when calculating the

means of angles. For most purposes, it makes more sense for the mean of 0◦ and 360◦ to

not be 180◦, the result of Eq. (C.10), but rather 0◦ or 360◦. Consequently, the circular

mean is defined as

(C.12) θ̄ ≡ Im ln
N∑
j=1

eiθj .

This equation takes angles, converts them to Cartesian coordinates on the unit circle,

calculates the average of these points, and then calculates the angle for that Cartesian
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point. In the continuous case,

(C.13) θ̄ = Im ln
∫ s+2π

s
eiθP(θ)dθ,

where s is any real number. The circular mean is multivalued since angles themselves are

not uniquely defined.

C.2.2. Polarization

The circular mean is useful for calculating means of other periodic fields, not just angles.

The dipole moment of a finite system is

(C.14) P =
∫
V
rρe(r)dr

where P the dipole moment and ρe is the charge density. In a charge system with periodic

boundary conditions however, Eq. (C.14) results in a dipole moment per unit cell that

depends on the origin. In 1d, this means that if

(C.15) pincorrect = 1
a

∫ s+a

s
xρe(x)dx,

then the polarization, p, is a function of the origin s. This s dependence is a result of the

lack of periodicity of x, and Eq. (C.13) is origin independent on the other hand since eiθ

is periodic.

Although simply substituting the complex exponential for x,

(C.16) pincorrect =
∫ s+a

s
ei

2πx
a ρe(x)dx
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gives an origin independent result, it does not match traditional polarization calculations

[107]. This is because ρe(x) is not a probability density function, so the example of Eq.

(C.13) is not being followed. Drawing inspiration from this idea though, in the modern

theory of polarization [88,108] the polarization is defined as

(C.17) p = e

2π Im ln
∫
ei

2π
a

(
∑N

l
Zlxl−

∑M

j
xj)|ψ(x)|2dx

where e is the electron charge, N is the number of nuclei,M is the number of electrons, eZl

is the charge of nucleus l, ψ is the (N+M)-particle wavefunction, and x = (x1, . . . , xN+M).

In our model, there are positively and negatively charged ions. Thus, we let

(C.18) p = e

2π Im ln
∫ s+a

s

∫ s+a

s
eiq(xA−xB)|ψ(xA, xB)|2dxAdxB,

where A is assumed to have positive charge and B negative. It seems reasonable to guess

that

(C.19) |ψ(xA, xB)|2 = P(xA, xB) = ρA(xA)
aρ̄A

ρB(xB)
aρ̄B

since then
∫
P(xA, xB)dxAdxB = 1. Thus,

(C.20) p = e

2π Im ln
∫ s+a

s
eiqxAρA(xA)dxA

∫ s+a

s
e−iqxBρB(xB)dxB.
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C.2.3. Delta Functions

Let’s confirm that Eq. (C.20) gives the correct result in the case of point charges. In this

case,

ρA = ρA0δ
(
x− a

4

)
(C.21)

ρB = ρB0δ
(
x− 3a

4 − d
)
,(C.22)

so

(C.23) p = e
(1

2 −
d

a
+ n

)
, n ∈ Z.

This is exactly the polarization lattice calculated using conventional methods [107].

Choosing the n = 0 branch,

(C.24) ∆p =
(
e

2 −
ed

a

)
− e

2 = −ed
a
.

C.2.4. PFC Polarization

In this case, ρi = ρi0(ni + 1). If ni are the same as defined in Eq. (C.6) except d is a

constant, then

(C.25) p = e

2π Im ln A
2π2

q2 e2πi(−d/a+1/2).

If A 6= 0, then

(C.26) ∆p = −ed
a



123

as before. However, if A = 0, the polarization is undefined since the ln 0 is undefined. In

2d, each polarization component is defined the same as in 1d, and

(C.27) pi = e

2π Im ln
∫
eiqxi,AρA(xA)dxA

∫
e−iqxi,BρB(xB)dxB.

Using the three mode square approximation,

(C.28) ∆p = −ed
a
,

unless A1 = 0, in which case the polarization is undefined.
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APPENDIX D

LGD Parameters

Variable Expression

α
− 2q2

1Q̃
2
[
6α4A

4
1 − A2

1(α2 + 20α4A
2
2 + 32α4A3A2 − 4α3A3 + 40α4A

2
3)+

2
(

6α4A
4
2 + A2

2(α2 + 4A3(4α3 + 9α4A3)) + 2A2
3(α2 + 6α4A

2
3)
)]

γ11

1
3q

4
1Q̃

4
[
12α4A

4
1 − A2

1

(
α2 + 4(11α4A

2
2 + 32α4A3A2 − 7α3A3+

58α4A
2
3)
)

+ 2
(

24α4A
4
2 + A2

2(α2 + 204α4A
2
3 + 40α3A3)+

8A2
3(α2 + 12α4A

2
3)
)]

γ12

4q4
1Q̃

4
[
8α4A

4
2 + A2

2(α2 − 16α4A
2
1 + 8α3A3 + 76α4A

2
3)+

4A2
1A2(α3 − 6α4A3) + 2α4(A2

1 − 4A2
3)2
]

ω111

− 1
60q

6
1Q̃

6
[
36α4A

4
1 − A2

1

(
α2 + 4(35α4A

2
2 + 128α4A3A2 − 31α3A3

+ 430α4A
2
3)
)

+ 2
(

96α4A
4
2 + A2

2(α2 + 4A3(34α3 + 399α4A3))

+ 32A2
3(α2 + 36α4A

2
3)
)]

ω112

1
3q

4
1Q̃

6
[
12α4A

4
1 − A2

1

(
α2 + 4(11α4A

2
2 + 32α4A3A2 − 7α3A3+

58α4A
2
3)
)

+ 2
(

24α4A
4
2 + A2

2(α2+

204α4A
2
3 + 40α3A3) + 8A2

3(α2 + 12α4A
2
3)
)]
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c11 2
[
α2 + A2

1

(
−4α4 + b1q

2
1

σ2
1

+ 4
)

+ A2
2

(
12α4 + b2q

2
1

σ2
2

+ 4
)

+ 1
]

c12
2A2

2b2q
2
1

σ2
2

c44 2α2 − 8α4A
2
1 + 24α4A

2
2 + 24α4A

2
3 + 2A2

2b2q
2
1

σ2
2

+ 8A2
1 + 8A2

2 + 8A2
3 + 2

g44
A2

2b2q
2
1Q̃

2

σ2
2

g12
A2

2b2q
2
1Q̃

2

σ2
2

g11 q2
1Q̃

2
(
A2

1b1

σ2
1

+ A2
2b2

σ2
2

+ A2
3b3

σ2
3

)
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APPENDIX E

Calculating Polarizations

Polarizations were calculated for numerical simulations as follows. First, the maxima

of nA and nB were calculated by fitting to a quadratic paraboloid, as described in Ref. [86].

These maxima were interpreted as the atomic positions. Then for each B atom, the four

nearest A atoms were calculated. The displacement vector was defined to be the vector

from the centroid of these four A atoms to B. Note that under this definition, the

polarization vector is still calculated for B atoms located at dislocations, but the results

are spurious. This is the origin of the off-colored regions at the dislocations in Fig. 4.10.
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APPENDIX F

Calculating Analytical Models

Both as a method for brainstorming new PFC models and as a method for under-

standing existing ones, analytical expressions for the free energy are often quite useful.

Although the results of these expansions are given in the previous chapters, this section

will provide some practical advice for doing these calculations. The crucial fact is that

(F.1) 1
V

∫
unit cell

eiq·rdr = δq,0.

if q is a reciprocal lattice vector of the unit cell. Consequently, given an expression like

(F.2)
∫
V

(∑
j

Aje
iqj ·r

)m
dr

one only needs to find the number of sums q1+...+qm = 0 in order to evaluate the integral,

since the sum of reciprocal lattice vectors is a reciprocal lattice vector. A slightly more

general example is

(F.3)
∫
V

∑
j

Aje
iqj ·r

∑
k

Bke
iqk·r...dr

where the set of vectors {qj}, {qk}, etc. could be different. However, the method for

evaluating the integrals is the same.
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Although this reduces the problem of calculating an integral to a combinatorics prob-

lem, this problem is often not feasible to solve by hand. Further, a naive computational

solution is often too slow. For example, if m = 3, a straightforward algorithm is

# Simple Solution

# qList_i is the set of {q_j} vectors

count = 0

for q1 in qList_1:

for q2 in qList_2:

for q3 in qList_3:

if q1+q2+q3 == 0:

count += 1

which is often too slow. A brute force vectorized solution in Python for three-dimensional

vectors is

sums = qList_1[None,None,:,:] + qList_2[None,:,None,:] + qList_3[:,None,None,:]

count = (sums.reshape(-1,qList_1.shape[1])==0).all(1).sum()

which is considerably faster. An alternative approach is to utilize the polynomial manip-

ulation tools of Mathematica. This approach is discussed in Appendix A of Ref. [109].
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