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Abstract

Simulation studies are virtually all motivated by decision making. Because simulation output

is stochastic and input models are never perfect, all decisions should include an accounting for

risks. Input model risk refers to the exposure due to imperfect simulation input models that are

estimated from real-world data, involving both the level of uncertainty about the input itself and

the propagation of uncertainty in the input to the output. This dissertation addresses both issues:

reducing and measuring input model risk, with a focus on the latter. For reducing the input model

risk, we propose model averaging, which is a weighted average of the candidate distributions in a

given set with the weights tuned by cross-validation, and extend the implementation in the proba-

bility space to the quantile space that emphasizes the tail behavior. For measuring the input model

risk, we propose a family of solutions to measure the local sensitivity of an output property to an

input property, focusing on the output mean or variance with respect to the input mean or variance.

We extend existing stochastic gradient methods to identify the point and error estimators for any

member of the family from the nominal simulation experiment only. Based on this basic frame-

work, we create a local sensitivity analysis technique for the clinical trial enrollment simulation at

SAS Institute and demonstrate it on a realistic case for the U.S.
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Chapter 1

Introduction

“Analysis methodology” (AM) is the stochastic simulation research area that addresses all of the

statistical aspects of the simulation experiment that remain given a valid simulation model (Nel-

son, 2016). The key AM problems originally identified in Conway (1963) are: (i) establishing

equilibrium (determining the starting and stopping condition of the simulation model to obtain a

steady-state performance measure), and (ii) consideration of variability of simulation output and

sample size. These issues have been the central topics of research in simulation AM ever since.

However, new tactical problems arise with the dramatic change in the applications of interest

to simulation users and in the state of simulation and computing, based on which Nelson (2016)

identifies key AM problems for the next 10 years. The AM problems can be categorized into three

main aspects: (i) simulation analytics, (ii) parallel simulation, and (iii) simulation to support de-

cisions. Simulation analytics is driven by the dramatically increased data storage, which makes it

possible to retain the entire simulation sample path. Simulation analytics treats traditional simula-

tion as data analytics and aims to add the capability of system prediction and revealing key drivers

of the system behavior through investigating the retained sample path. The AM problems in par-

allel simulation address how to deploy multiple processors to assist different tasks of stochastic

simulation, e.g., checking feasibility, optimization, etc. In category (iii), the AM problems target
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supporting decision making. Simulation studies are virtually all motivated by decision making.

Because simulation output is stochastic and input models are never perfect, all decisions should

include an accounting for risks. One central topic of interest in this aspect is reduction in and

evaluation of model risk.

Model risk refers to the exposure due to an imperfect simulation model. At a high level,

a stochastic simulation consists of two parts, inputs and logic, and both affect the validity of a

simulation model. The form of risk that is caused by estimating input models from real-world data

is referred as input uncertainty. An input model is a fully specified stochastic model that drives the

simulation and the process of choosing such models is referred as input modeling.

A simulation model maps its inputs into outputs via a collection of rules and algorithms that

mimic the features of the target system. The output, which can be regarded as a function of the

inputs, is also affected by the uncertainty in the inputs. Therefore, input uncertainty involves both

the level of uncertainty about the input itself, and also how the uncertainty in the input propagates

to the output. In other words, the sensitivity of the output to the input. This dissertation addresses

both issues: (i) reducing input model risk via better input modeling, and (ii) measuring local

sensitivity of the output with respect to the input models. A brief summary of these two research

contributions is presented below.

1.1 Reducing Input Model Risk

We address situations when the input models are fit to a relevant sample of real-world data. Despite

many advances in input modeling, basic univariate input modeling in practice has not advanced

much in decades. The standard practice is fitting a collection of plausible distributions via methods

such as maximum likelihood estimation (MLE) and selecting a single best-fit distribution from a

candidate set based on some ranking (e.g., goodness-of-fit test) or graphical assessment. Yet under

almost all circumstances the real-world data should not be expected to follow any of the candidate
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distributions exactly.

Rather than the standard practice described above, frequentist model averaging (FMA) forms

a mixture distribution that is a weighted average of the candidate distributions with the weights

tuned by cross-validation. Nelson et al. (2020) showed theoretically and empirically that FMA

in probability space leads to higher fidelity input distributions. In Chapter 2 we show that FMA

can also be implemented in the quantile space and leads to fits that emphasize tail behavior. The

quantile model averaging estimator (QMAE), which averages the quantile functions of candidate

distributions rather than the cumulative distribution functions, has weight that minimizes the cross-

validation error between the fitted and empirical quantile functions. The minimization of cross-

validation error can be formulated as a quadratic program with provable unique optimal solution.

We also describe an R package named FMADist for FMA that is easy to use and available for

downloading from CRAN.

1.2 Sensitivity Analysis

Sensitivity analysis quantifies how a model output responds to variations in its inputs, which are

critical to better understand system performance, to quantify risk, or to indicate where input change

or management may be desirable. However, the following sensitivity question has never been

rigorously answered: How sensitive is the mean or variance of a stochastic simulation output to

the mean or variance of a stochastic input distribution? This question does not have a simple

answer because there is often more than one way of changing the mean or variance of an input

distribution as a function of the parameters, which leads to correspondingly different impacts on

the simulation outputs.

In Chapter 3 we propose a new family of output-property-with-respect-to-input-property sen-

sitivity measures for stochastic simulation. We focus on four useful cases of this general family:

sensitivity of output mean or variance with respect to input-distribution mean or variance. Based
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on problem-specific characteristics of the simulation we identify appropriate point and error es-

timators for these sensitivities that require no additional simulation effort beyond the nominal

experiment. We also include two representative examples to illustrate the family, estimators and

interpretation of results.

In Chapter 4 we create a local sensitivity analysis technique for the SAS Clinical Trial En-

rollment Simulator (CTrES). Clinical trial enrollment is expensive and important, and subject to

many uncertainties. Simulation overcomes these limits, so SAS Institute has created CTrES as a

strategic decision-support tool specifically for clinical trial enrollment planning. The goal of sen-

sitivity analysis fits into the framework proposed in Chapter 3, but the framework is not sufficient.

The new challenges include distributions whose support depends on the its parameters, sensitivity

to binary outcomes with respect to the probability of success, interacting inputs, and dependence

among inputs due to the simulation stopping condition. We extend the framework to address these

new challenges and demonstrate it on a realistic enrollment planning problem for the U.S.
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Chapter 2

Better Input Modeling via Model Averaging

2.1 Introduction

Stochastic simulation is a method for analyzing the performance of a system that includes inter-

actions among stochastic processes. At a high level, a stochastic simulation consists of two parts:

inputs and logic. The inputs are the uncertain components of a system, while the logic is a col-

lection of rules and algorithms that govern the behavior of the system as a function of the inputs

Nelson (2013). Inputs are typically described by fully specified probability models, which includes

the case of resampling a fixed set of data. Input modeling, as the name suggests, is the process of

choosing simulation input models to approximate the uncertainty in the target system. In this chap-

ter we are interested in situations when the input models are “fit” to a relevant sample of real-world

data. For instance, we later model data on lot sizes of surface mount capacitors in a manufacturing

simulation from Wagner and Wilson (1996).

Despite many advances in input modeling for complex situations—including non-stationary ar-

rival processes, time-series inputs and heterogeneous random-vector inputs—basic univariate input

modeling in practice has not advanced much in decades: fit a collection of plausible distributions

via methods such as maximum likelihood estimation (MLE) and select one of the candidates based
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on some ranking (e.g., goodness-of-fit test) or graphical assessment, perhaps giving extra consid-

eration to a candidate suggested by the real process physics (e.g., sums of more basic random

outcomes tend to be normally distributed). Yet under almost all circumstances the real-world data

should not be expected to follow any of the candidate distributions exactly: mathematical distribu-

tions are idealizations that describe some precisely defined process physics (often in a limit), while

the real-world processes generating the data have quirks and oddities that make them “real world.”

The preceding paragraph might seem to suggest that one should avoid selecting a mathemat-

ical distribution altogether, and instead just resample the available real-world data to drive the

simulation. This can be a good choice, but empirical distributions are inherently discrete (putting

probability mass only on the sampled values), and therefore manifest gaps and lack a (possibly

important) tail. Which begs the question, how much data are enough to forego the smoothing and

inferred tails obtained by fitting a distribution?

Recently, Nelson et al. (2020) introduced frequentist model averaging (FMA) as an effective

way to build input models that better represent the true, unknown input distributions, thereby

reducing errors when making inference back to the real world. The premise of FMA is that there

may, and often will, be one or more parametric probability distributions that fit the real-world

data reasonably well, but not perfectly if employed alone. Therefore, FMA averages or mixes

the candidate set of distributions to extend their reach, with the ultimate goal of getting the most

fidelity from a given candidate set. Cross-validation (CV) is employed to tune the mixture and

avoid overfitting. Nelson et al. (2020) provide strong theoretical and experimental evidence that

the FMA distribution gets as close as possible to the real-world distribution when using only the

component distributions in the given candidate set. By also including the empirical distribution

(ED) in the candidate set, FMA provides protection when none of the mathematical distributions

is adequate, and explicitly indicates how adequate the ED is by the weight assigned to it.

The FMA distribution explored in Nelson et al. (2020) is fit in probability space: it minimizes

the cross-validation error between the fitted and empirical cumulative probability distributions.
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Therefore, we refer to it as a probability model average estimator (PMAE). In this chapter we

introduce FMA in the quantile space, and refer to it as a quantile model average estimator (QMAE).

As the name suggests, QMAE minimizes the cross-validation error between the fitted and empirical

quantile functions. The choice between PMAE and QMAE depends on the application, and we

show it is easy to fit both.

Although an FMA distribution is simple to use in a stochastic simulation once the fitting is

complete, the fitting process itself requires solving a numerical optimization problem. The second

contribution of this chapter is to provide an R package for fitting and variate generation that can be

downloaded from https://cran.r-project.org/web/packages/FMAdist/index.html.

The chapter is organized as follows. We describe our input model averaging method in Sec-

tion 2.2, and the fitting of the QMAE in Section 2.3 (fitting the PMAE is similar and is described

in Nelson et al. (2020)). Documentation of the R package we created follows in Section 2.4. An

illustration using the package to model two datasets is found in Section 2.5, followed by conclu-

sions.

2.2 Input Modeling and Input Model Averaging

The most common method for selecting a marginal distribution F to represent an independent

and identically distributed (i.i.d.) input process—as described in textbooks (e.g., Law and Kelton

(1991)) and employed by distribution fitting software (e.g., BestFit R©)—is some variation of the

following:

1. Given: x1,x2, ...,xN an i.i.d. sample from some unknown input distribution Fc.

2. Fit q ≥ 1 candidate parametric families of distributions F = {F1,F2, ...,Fq} using methods

such as MLE. This yields a set of fitted distributions F̂ = {F̂1, F̂2, ..., F̂q}.

3. Rank the fitted distributions using one or more goodness-of-fit measures and evaluate the top

https://cran.r-project.org/web/packages/FMAdist/index.html


18

choices. Standard measures are hypothesis-test statistics such as chi-squared, Kolmogorov-

Smirnov, Anderson-Darling and Cramér-von Mises, and likelihood-based statistics such as

AIC and BIC.

4. Select F̂ =Best Choice{F̂1, F̂2, . . . , F̂q}. Alternatively, use the (possibly smoothed) empirical

distribution of x1,x2, ...,xN if nothing fits well.

In contrast to the method above that selects one element of F̂ , the FMA approach of Nelson

et al. (2020) creates an “input model average” of the fitted distributions. This is different from

finite-mixture models, such as McLachlan and Peel (2004), that assume the true distribution Fc

is a mixture of instances of a common parametric family (e.g., normal). Instead, the premise is

that there are one or more parametric families of distributions in F that are plausible choices,

perhaps supported by real-world process physics. Therefore, the first two steps above are adopted,

but rather than ranking the fitted candidate distributions and selecting the best, the mth fitted dis-

tribution is assigned a weight wm ≥ 0 with ∑
q
m=1 wm = 1. Thus, the model average distribution

is

F̂(x,w) =
q

∑
m=1

wmF̂m(x), (2.1)

where F̂m(x) is the mth fitted cumulative distribution function in the candidate set. Notice that

some weights may be 0. Virtually any marginal distribution may be in the candidate set, including

finite-mixture models and flexible families such as the generalized lambda distribution (Karian

and Dudewicz, 2000), as well as the standard choices of normal, lognormal, exponential, gamma,

Weibull, etc. The key to FMA is selecting the weights w to obtain a better fit.

It is clear from (2.1) that F̂(x,w) includes each of the individual fitted candidate distributions as

a special case of w, while increasing their flexibility by allowing mixtures. Thus, FMA maintains

the benefits of the tried-and-true families which, for sound theoretical reasons, are often good

approximations, but provides additional degrees of freedom for adjusting to the complexities of

real data.
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For PMAE, the optimal weight is obtained through minimizing the difference between F̂(x,w)

and Fc(x) in a comprehensive way that guards against overfitting. Specifically, Nelson et al. (2020)

solved for w to minimize the cross-validation squared error with the ED, a consistent and unbiased

estimator of Fc(x). They proved that when the true distribution is not in the candidate set—which

we never expect it to be with real data—then the optimal cross-validation weights converge to the

optimal weights as N → ∞. Additionally, Nelson et al. (2020) showed that when the candidate

set includes the ED then the PMAE is consistent for Fc in the sense that the weight on the ED

ŵED
P→ 1 as N→ ∞.

Once we have the fitted weights ŵm, m = 1,2, . . . ,q, random-variate generation is easy:

1. Select M = m with probability ŵm, m = 1,2, . . . ,q.

2. Generate X ∼ F̂M.

3. Repeat.

Cross-validation in the probability space is just one possible choice for fitting an FMA. Because

probabilities are between 0 and 1, differences between the fitted and ED are also bounded, so large

differences (say) in the tails contribute small absolute differences. This suggests we might form

FMA distributions with different tail behavior if we do cross-validation in the quantile space. We

introduce this new idea here.

Recall that the distributions in the candidate set are Fm(x), m = 1,2, . . . ,q, and F̂m(x) is the

fitted estimator of Fc(x) under the mth candidate distribution. Let Ĝm(u) be the quantile func-

tion corresponding to F̂m(x), Gc(u) the quantile function of the true distribution Fc(x), and v =

(v1,v2, . . . ,vq)
T a weight vector belonging to the set V = {v ∈ [0,1]q : ∑

q
m=1 vm = 1}. The quan-

tile model average estimator (QMAE) of Gc(x) is

Ĝ(u,v) =
q

∑
m=1

vmĜm(u),
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where 0 ≤ u ≤ 1. Obviously, the QMAE is defined only for a candidate set of distributions with

common support, which will be assumed for all of our tests and analysis.

A good choice of weights v, as in PMAE, will make Ĝ(u,v) close to Gc(u) in a comprehen-

sive way. Of course, Gc(u) is unknown. However, based to the fact the empirical cumulative

distribution function,

F̄(x) = N−1
N

∑
i=1

I{xi ≤ x},

is consistent for Fc(x), its inverse Ḡ(u) is also a consistent for Gc(u). By definition, the quantile

function of F̄(x) is

Ḡ(u) = F̄−1(u) = inf{x : F̄(x)≥ u}= (1− γ)x(buNc)+ γx(buNc+1),

where x(i) is the ith smallest x of the i.i.d. samples from Fc, and γ = 1 if uN −buNc > 0, and

γ = 0 otherwise. Therefore, Ḡ(u) is simply an order statistic of the observed values. Similar to the

PMAE, cross-validation with Ḡ(u) is used as we describe explicitly in Section 2.3 below.

Although QMAE is a weighted average of quantile functions, the distribution parameters of

these quantile functions are identical to those of the cdfs for PMAE, which are simply MLEs for

distributions in the given candidate set F . The only difference between PMAE and QMAE is

caused by the CV-estimated weights. Therefore, given a good mixture weight v̂ that minimizes the

CV criterion, variate generation is identical to that of PMAE: each time a value of X is needed,

generate integer M ∼ v̂m to select the distribution, then generate X ∼ F̂M.

Remark: Although less familiar than mixture distributions, there has been previous work on quan-

tile mixture models. Carole and Vanduffel (2015) derive an explicit expression for the quantiles of

a mixture of two random variables as a function of the quantiles of the component quantile func-

tions. The validity of the expression is shown through examining all possible cases of discrete and

continuous variables with possibly unbounded support. Karvanen (2006) suggests the method of
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L-moments or sample Trimmed L-moments (T L-moments) to estimate the parameters of quantile

mixtures, where L-moments are linear combinations of order statistics and T L-moments are gen-

eralizations of L-moments with increased conceptual sample size. Although this paper proposes

certain parametric families of distributions whose parameters can be estimated by the method of

L-moments (or T L-moments) with higher reliability than those estimated using conventional mo-

ment matching, this method is difficult to apply in many cases because it is impossible to derive

closed-form L-estimators for many commonly used distributions. All of this work differs from

ours in that we do not assume that the true distribution Fc is a quantile mixture of known families

of distributions.

2.3 Fitting

The FMA approach uses CV to provide a good fit without overfitting. The J-fold cross-validation

we use is related to the Jackknife model averaging (JMA) of Hansen and Racine (2012), which

was originally proposed for improving the quality of estimators in a heteroscedastic linear regres-

sion model. The JMA estimator was shown to outperform other estimators in terms of smaller

asymptotic expected squared error.

To apply the JMA-like scheme for input modeling in stochastic simulations, we randomly

divide the real-world data set x1,x2, . . . ,xN into J groups such that each group has S = bN/Jc ob-

servations. For the jth group, the observations are labeled x( j−1)S+1, . . . ,x jS, where j = 1,2, . . . ,J.

Let G̃(− j)
m (u) be the maximum likelihood estimator of Gc(u) for the mth candidate distribution

with observations from the jth group removed from the data set. Notice that this is just the inverse

function of the MLE for candidate cdf Fm using the same data. Therefore, the QMAE with the jth

group removed is

G̃(− j)(u,v) =
q

∑
m=1

vmG̃(− j)
m (u).

Denote the ith smallest observation in the jth group as x( j)
(i) . The ED estimator of Gc(u) using
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observations from the jth group only is denoted by Ḡ( j)(u). Our J-fold CV criterion is

CVJ(v) =
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− Ḡ( j)

(
i

S+1

)}2

=
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− x( j)

(i)

}2

.

In other words, we consider the sum of squared differences between the QMAE constructed with-

out the jth group of real-world data, and the empirical quantile function constructed from only the

jth group, across all groups. The optimal weight vector resulting from this criterion is

v̂ = argminv∈V CVJ(v),

resulting in the quantile model averaging estimator Ĝ(u, v̂) of Gc(u). This contrasts with PMAE

where the weight ŵ minimizes

CVJ(w) =
J

∑
j=1

S

∑
s=1

{
F̃(− j)(x( j−1)S+s,w)− F̄( j)(x( j−1)S+s)

}2
.

The optimization problem we need to solve to find v̂ can be formulated as a quadratic program
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(QP). Specifically,

Minimize: CVJ(v) =
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− x( j)

(i)

}2

=
J

∑
j=1

S

∑
i=1

{
q

∑
m=1

vm

[
G̃(− j)

m

(
i

S+1

)
− x( j)

(i)

]}2

=
J

∑
j=1

S

∑
i=1

{
q

∑
m=1

vmbm js

}2

(2.2)

=
J

∑
j=1

S

∑
i=1

vT B jsv

= vT Bv

subject to:
q

∑
m=1

vm = 1

vm ≥ 0, m = 1,2, . . . ,q.

where the matrices B js and B are defined in the obvious way. If the q× q matrix B is positive-

definite, then the objective function is strictly convex and the QP has a unique optimal solution

(refer to Chapter 16 in Nocedal and Wright (2006)). Since it is obtained from the quadratic term

in (2.2), it is clear that the matrix B js is positive semi-definite, and therefore so is its sum B; that

it is positive-definite with probability 1 can be shown in a similar way to Nelson et al. (2020) for

PMAE. PMAE also leads to a QP.

Notice that the dimension of the QP is only the number of candidate distributions, q, and it

only needs to be solved once. It is hard to imagine the number of candidates ever being larger than

q = 40, which is a modest QP. In practice we expect that reasoned choices for the candidate set

will lead to 2 ≤ q ≤ 5, making it a very small QP. The computational burden is in computing the

MLEs for each candidate distribution from all of the data, and from the data with each of the J

folds removed (thus, q(J + 1) MLEs in total), and construction of the matrix B. Again, these are

one-time calculations. The number of observations N and folds J only affect the set up, not the

size of the QP.
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2.4 R Package

In this section we describe the R package we created for FMA fitting—either PMAE or QMAE—

and variate generation from the fitted distribution. The software may be downloaded from https:

//cran.r-project.org/web/packages/FMAdist/index.html. This section is written in the

form of standard R documentation. We illustrate use of the software in the following section.

Description

Creation of an input model via the frequentist model averaging (FMA) approach and random-

variate generation for the fitted input model.

Usage

fmafit(X,Fset,J,type)

rfma(n,myfit)

Arguments

X a numeric vector of nonzero length containing data values for fitting

Fset a list of character strings that specifies the set of candidate distributions;

supported distributions are ’normal’, ’lognormal’, ’exponential’, ’gamma’,

’weibull’, ’inverse gaussian’,’student t’, ’uniform’, ’cauchy’,

’loglogistic’, ’ED’, ’beta’, ’logistic’, ’pareto’, ’rayleigh’

J number of groups to divide the data into for cross-validation; if not specified, J = 10

type a character string specifying the type of model averaging estimator,

’P’ for probability, ’Q’ for quantile; if not specified, type = ’P’

n number of random variates to generate

myfit a list object returned by fmafit containing the four components

needed for random-variate generation: w, MLE_list, Fset and data

https://cran.r-project.org/web/packages/FMAdist/index.html
https://cran.r-project.org/web/packages/FMAdist/index.html
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Details

fmafit first fits each candidate parametric distribution in Fset to the data X using maximum

likelihood estimation, which yields a set of fitted distributions F̂ = {F̂1, F̂2, . . . , F̂q}. The MLEs for

each distribution are returned as MLE_list. Next a weight vector w= {w1,w2, ...,wq} is obtained

through cross-validation and also returned. The resulting model-average estimator of the true

cumulative distribution of the data is

F̂(x,w) =
q

∑
m=1

wmF̂m(x).

The model average fitting can be either in probability space or quantile space. The difference

between the two types of model averaging is only in the weight vector associated with the candidate

distributions, which is obtained through cross-validation in either probability or quantile space.

rfma generates random variates that have the distribution of the model-average estimator. Each

time a random variate is needed, a distribution is selected with probability equal to the correspond-

ing weight and then a random variate from the fitted distribution is generated.

Values

fmafit returns an object called myfit which is a list with four components:

w weight vector associated with distributions in Fset

MLE_list list of MLEs for each candidate distribution with ’NA’ for ED (empirical distribution)

Fset same as the input argument

data same as input argument X (needed for ED)

rfma generates random variates from the distribution specified by myfit
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Figure 2.1: Histogram of financial returns (DATA1) and lot sizes (DATA2).

2.5 Illustrations

Nelson et al. (2020) provide a comprehensive empirical evaluation of PMAE by creating cases

in which the true distribution Fc is known. Both the fidelity of the fit, and more importantly

the fidelity of the simulation output with respect to the real-world system, tended to be greatly

improved, especially when the tails of the input distributions matter. A queueing example, a highly

reliable system and a stochastic activity network were considered, as well as a wide range of input

distributions and candidate sets. Similar conclusions hold for QMAE.

In this section we illustrate PMAE, the new QMAE and our software on two real data sets, ex-

amining the fits that they provide and the protection afforded by including the ED in the candidate

set. One data set is 200 financial returns, which we call DATA1. The second is 417 lot sizes of

surface mount capacitors in a manufacturing simulation described in Wagner and Wilson (1996);

we call this DATA2. The latter data set is bimodal and therefore is not well represented by the

usual unimodal distribution choices. See Figure 2.1 for histograms of the two data sets. We used J

= 10 in both cases.

We first model DATA1 using fmafit. Of the distribution choices in fmafit, the best-fit dis-

tribution as measured by minimum AIC is ’gamma’. Notice that fmafit can be employed to fit a

single distribution, if desired, by only having a single choice in Fset. In Figures 2.2 and 2.3 we
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compare this single choice to a model average of Fset=(’gamma’,’weibull’,’lognormal’) for

PMAE and QMAE, respectively. We also include the empirical cumulative distribution function

(ECDF) in both plots for comparison. The R command for QMAE fitting is

myfit <- fmafit(DATA1, c(’gamma’,’weibull’,’lognormal’), 10, ’Q’)

The weight vectors obtained for PMAE and QMAE are wP = (0,0.0804,0.9196) and wQ =

(0,0.3627,0.6373), respectively. From both figures it is clear that PMAE and QMAE are closer to

the ECDF than the single best-fit gamma distribution, which indicates that the two FMA estimators

better represent the distribution of DATA1. As illustrated in the figures and by the different weights,

PMAE and QMAE lead to distinct fits. The Kolmogorov-Smirnov distance between each fit and

the ED is 0.08 for the gamma, and 0.06 for both PMAE and QMAE, showing better conformance

to the data for model averaging.

Interesting results are observed when fitting the bimodal lot size data, DATA2. The single

best-fit distribution based on AIC is ’weibull’. We compare it with the PMAE and QMAE when

Fset= (’exponential’, ’weibull’,’gamma’,’lognormal’). The weight vectors associated

with PMAE and QMAE are wP = (0.4343,0.5657,0,0) and wQ = (0,1,0,0), respectively. Fig-

ures 2.4 and 2.5 are plots of the CDFs of the resulting estimators. PMAE is better than the single

best-fit distribution in the left tail of Figure 2.4 but worse in the right tail. QMAE, on the other

hand, places all weight on ’weibull’, which is exactly the same as the single-best distribution and

better models the right tail. Thus, QMAE emphasizes the (long) right-tail behavior of the unknown

input distribution more than PMAE does.

That said, neither fit is very good for this bimodal data when Fset includes only unimodal

distributions. This is the common context when no standard distribution represents the data,

even approximately, and including the ED as a candidate has significant value. To illustrate,

we fit DATA2 with two candidate distribution sets, one including the ED (Fset+ED) and one

without (Fset). The weight vector for the two PMAE fits are wP = (0.4343,0.5657,0,0) and
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Figure 2.2: CDF of single best-fit distribution ’gamma’, vs. PMAE with Fset =

(’gamma’,’weibull’,’lognormal’) for DATA1.
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Figure 2.3: CDF of single best-fit distribution ’gamma’ vs. QMAE with Fset =

(’gamma’,’weibull’,’lognormal’) for DATA1.
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Figure 2.4: CDF of single best-fit distribution ’weibull’ vs. PMAE with Fset =

(’exponential’,’weibull’,’gamma’,’lognormal’) for DATA2.
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Figure 2.5: CDF of single best-fit distribution ’weibull’ vs. QMAE with Fset =

(’exponential’,’weibull’,’gamma’,’lognormal’) for DATA2.
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Figure 2.6: CDF of PMAE with Fset = (’exponential’,’weibull’,’gamma’,’lognormal’)

vs. PMAE with Fset+ED for DATA2.
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Figure 2.7: CDF of QMAE with Fset = (’exponential’,’weibull’,’gamma’,’lognormal’)

vs. QMAE with Fset+ED for DATA2.
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wP = (0.1596,0,0,0,0.8404), respectively. The corresponding weight vectors for the two QMAE

fits are wQ = (0,1,0,0) and wQ = (0.0180,0.1583,0,0.0167,0.8070). Both PMAE and QMAE

place most, but not all, of the weight on the ED for Fset+ED. Thus, there is still some benefit of

including the standard distributions. Figures 2.6 and 2.7 demonstrate the superior fit of Fset+ED,

and thus the protection offered by including the ED in the candidate set of distributions. The

Kolmogorov-Smirnov distance between each fit and the ED is 0.12 for the ’weibull’, and both

the PMAE and QMAE with ’exponential’, ’weibull’, ’gamma’ and ’lognormal’; however,

it is only 0.02 for both PMAE and QMAE when the ’ED’ is included, showing a substantially

better fit.

2.6 Conclusions

In this chapter we described two methods for “frequentist model averaging” that allow a simula-

tion modeler to exploit the proven value of the standard families of distributions included in every

simulation language (normal, lognormal, exponential, gamma, Weibull, etc.), while acknowledg-

ing that real-world input data will never perfectly conform to such distributions. Through model

averaging we greatly extend the reach of these distributions, and by tuning the model average via

cross-validation with the empirical distribution we insure that the fit is representative of the given

real-world data. Including the empirical distribution as one of the candidates provides protection

against data sets for which none of the standard distributions fit well.

Our R software fmafit makes fitting a model average distribution easy and fast. We recom-

mend doing both probability and quantile fitting and comparing the results. The user may then

take the weights and parameter estimates returned by fmafit and implement them as a simple

mixture distribution in any simulation software, or use rfma to generate observations outside of

the simulation model to read in as needed.

We recommend keeping the candidate set, Fset, small, remembering that the weights are esti-
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mates that will be noisier the more candidate distributions q there are. A set of q≤ 5 distributions

including any with the right physical basis for the situation (e.g., Weibull for failures), that have

good fit measures (e.g., AIC), plus the ED is our suggested approach. Our method also provides a

way to judge when it is acceptable to use the ED alone: when the weight on the ED is close to 1.

On the other hand, when this weight is far from 1, it indicates that the ED alone is insufficient. In

any event, mixing smooths the ED in a way that is less arbitrary than, say, linear interpolation, and

extends the ED’s tails, which is often desirable.
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Chapter 3

Meaningful Sensitivities:A New Family of

Simulation Sensitivity Measures

3.1 Introduction

Computer models, including stochastic simulations, can be regarded as functions mapping inputs,

denoted generically by X = (X (1),X (2), . . . ,X (K))>, into one or more outputs, denoted generically

by Y , via a collection of rules and algorithms that mimic the features of the system under investiga-

tion: Y = g(X). In this chapter we consider “inputs” that are more-or-less beyond the control of the

modeler, rather than decision variables that can be chosen. These inputs may be characterized via

subjective judgement or estimated from historical data, but in either case are subject to uncertainty

that propagates (whether measured or not) through the model to the outputs. Sensitivity analysis

(SA) investigates how the output of a computer model responds to variations in its inputs. SA is of

critical importance for identifying the relative contributions of the inputs to output uncertainty, as-

sessing model risk, designing robust systems, calibrating a model, and quantifying the interactions

among inputs (Saltelli et al., 2000).

Based on the type of uncertainty inherent in the inputs, and the purpose of the model-based
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analysis, there are two broad categories of SA: global and local. Global SA is applicable when the

input is a random variable naturally varying within its range, X (i) ∼ Fi, such as the daily temper-

ature or the wind speed at a site during a specific season, and also when the input is believed to

be a constant but we have less-than-complete knowledge of its value, such as the failure rate of an

electronic component or the stress tolerance of a material. The goal in global SA is to apportion

the overall output uncertainty to each of the inputs as a measure their contribution. Management

effort may then be applied to the inputs to which the output is the most sensitive, or those inputs

that are not significant contributors may be excluded to create a more parsimonious model.

Measures of global SA attempt to discern the inputs that drive the output uncertainty across

each input’s overall range, while measures of local SA focus on the influence of the inputs near a

nominal setting. Local SA makes sense when the input is some parameter or property of a random

variable, such as its mean, and we have some confidence in its nominal value. The goal of local SA

is to measure the impact on the output of small perturbations of an input around its nominal value.

A local sensitivity measure is conceptually (and in our new family, precisely) a partial derivative of

the output with respect to the input, which can be justified by a Taylor Series approximation which

implies that the first-order partial derivatives are sufficient for predicting output change for small

perturbations around the nominal setting. The “sensitivity” we consider in this chapter is local.

In the context of stochastic simulation when the simulation is driven by input probability

distributions—X (i) ∼ Fi(·|θ (i)))—then the parameters of each distribution are one type of input,

denoted here by θ
(i). Output variability depends on both the input probability distributions them-

selves (i.e., the inherent randomness of the system), and possibly uncertainty about the parameter

values (e.g., if θ
(i) is estimated by θ̂

(i)
). When the distributions’ parameters are estimated from

historical data, then this variability is referred to as “input uncertainty” in the simulation literature;

see for instance, Barton et al. (2002), Barton et al. (2014), Lam (2016) and Song et al. (2014).

Thus, there is both sensitivity of the performance measures to the nominal values of these input-

distribution parameters, and also statistical uncertainty as to their nominal values. In this chapter
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we focus on the former: the local sensitivity of simulation output properties to input-distribution

properties, and not input uncertainty. Thus, our measures are useful even if distribution parameters

are obtained from experience, subjective judgement, or guesses, as well as from data.

The reason we emphasize “input-distribution properties” is that sensitivity of the simulation

output to the natural input-distribution parameters themselves is often difficult to interpret; this can

be true even when the mean or variance of the distribution is one of the parameters. For example,

a common sensitivity measure implemented in commercial software (e.g., Simio R©) is simply the

slope coefficient of a linear regression relating simulation output Y to the sample mean of the input

variates. This measure quantifies how much Y would change per unit change in the sample mean

of the input random variable, say X (i), but cannot necessarily be interpreted as the partial derivative

of E(Y ) with respect to E(X (i)). Of course, the mean and variance are not the natural parameters of

many distributions, such as the Weibull which is usually parameterized by shape and scale. Local

sensitivities to such parameters are rarely meaningful to the simulation user.

Therefore, in this chapter we reach beyond the partial derivative of the output performance mea-

sure with respect to input-distribution parameters, and to the partial derivative of an output prop-

erty with respect to an input property. This can be represented conceptually as ∂HO(Y )/∂HI(X (i)),

where H(·) is an operator yielding a property of a random variable, and the subscript O and I are

for the “output” and “input,” respectively. Here we consider input distributions that are parametric,

having parameters such as mean, variance, shape, scale, rate, etc. Thus, their properties can be rep-

resented as functions of their distribution parameters: HI(X (i)) = r(θ (i)). We focus the properties

E(·) or Var(·), because of their practical usefulness, but our family is more general. Stated differ-

ently, we estimate the sensitivity of the mean or variance of the simulation output to the mean or

variance of each input distribution around a nominal value of its parameters. To achieve our goal,

we propose a new family of local sensitivity measures that enable us to quantify ∂HO(Y )/∂ r(θ (i)
0 )

along a meaningful direction in the input-parameter space.

A practical example of the sort of insight we seek from local sensitivity analysis is in the clinical
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trial enrollment simulation of Jiang et al. (2020). Two output properties of interest are the mean

time to enroll 800 patients and the mean cost to enroll them. Users of this model are interested in

how sensitive these outputs are to inputs such as the assumed rate of patient arrivals and the mean

time to open each clinic. Our sensitivity measurs provide answers to such questions.

Our proposed sensitivity measures require the estimation of a stochastic gradient of the output

property with respect to the natural input-distribution parameters, denoted ∇
θ
(i)
0

HO(Y ). This is a

well-studied problem. Existing simulation-based estimators can be categorized into two groups:

indirect and direct methods. Indirect methods estimate an approximation of the true gradient by

running additional simulations beyond the nominal setting, but they require no knowledge of the

underlying mechanics of the simulation model (Fu, 2015). The direct methods, which do require

additional knowledge, lead to estimators that are typically unbiased. We also employ the less-

well-known method of Wieland and Schmeiser (2006) which is particularly well-suited to estimate

output gradients with respect to input-distribution parameters. However, an appropriate stochastic

gradient estimator depends on characteristics of the specific problem. Therefore, we describe three

methods that apply to distinct situations that we expect to encounter in practice and demonstrate

how to use them to obtain point and error estimators of our sensitivity measures.

The chapter is organized as follows. We define our new family of sensitivity measures in

Section 3.2, and two representative examples of stochastic simulations to which they apply in

Section 3.3. Appropriate gradient-estimation methods for the two examples and the resulting sen-

sitivity estimators are established in Sections 3.4–3.5. Section 3.6 summarizes results from an

empirical study of the two examples, followed by conclusions in Section 3.7.

3.2 A New Family of Sensitivity Measures

In this chapter we address the problem of local sensitivity of the mean or variance of the simulation

output with respect to the mean or variance of its stochastic inputs. Some of the background
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material in this section is based on Section 2 of Jiang et al. (2019).

Consider a simulation model with K independent, scalar, parametric input distributions denoted

F(1)(·|θ (1)),F(2)(·|θ (2)), . . . ,F(K)(·|θ (K)), having in total q≥ K input parameters (for some distri-

butions θ is a vector). Let Θ = (θ (1),θ (2), . . . ,θ (K)) be the vector of all input parameters, where

θ
(i) ∈ ℜpi , with pi ≥ 1 the dimension of the parameter vector for input distribution i. The simu-

lation output of interest can be represented as Y (Θ) = η(Θ)+ ε(Θ) where η(Θ) is the expected

value of the simulation output given the input parameters, and ε(Θ) is the corresponding stochastic

noise with mean 0 and finite variance. In this chapter we consider the parameters Θ to be fixed at

Θ0, so where no confusion is possible we will simply write Y . We also let X (i) represent a random

variable with distribution F(i), whose mean µi and variance σ2
i are differentiable with respect to

θ
(i) at the nominal setting θ

(i)
0 . Our local sensitivity is with respect to each input distribution sepa-

rately, so for ease of exposition we focus first on a single input X ∼ F(·|θ) with parameter θ ∈ℜp,

having mean µ = µ(θ), variance σ2 = σ2(θ) and nominal parameter value θ 0.

Suppose that we are interested in the effect of a unit change in the variance of an input random

variable X on the variance of the output Y , which conceptually is ∂Var(Y )/∂σ2. This partial

derivative is not well defined when there are multiple ways to achieve a change in σ2. That is,

different changes in the distribution parameters that lead to the same change in the variance of

the input might result in a different change in the variance of the output. Therefore, the meaning

of this derivative is not clear unless the input distribution belongs to the location-scale family

X = µ +σW , where W ∼ (0,1). Similar issues arise if we want to estimate the impact on the

variance of Y of changing the mean of X , or the impact on the mean of Y of changing the mean

or variance of X . The key insight is that the mean and variance of both the output and the input

are completely determined by θ ; therefore, by fixing the direction of change in the input-parameter

space we obtain a unique value for the desired sensitivities.

Now we are ready to formally introduce our new family of sensitivity measures. Given an

output property HO, an input property HI , and a normed direction ~d from the nominal parameter
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setting θ 0, we define the sensitivity of HO(Y ) with respect to HI(X) as

~dT ∇θ 0HO(Y )
~dT ∇θ 0HI(X)

(3.1)

where ∇ is the gradient operator. This is simply an application of the chain rule for directional

derivatives. The only requirements are that ∇θ 0HO(Y ) exists and can be estimated, and that

∇θ 0HI(X) exists and can be computed. These are mild conditions.

Remark. There are many possible ways to express “sensitivity,” therefore, some sensible choices

must be made create a well-defined measure. A key choice that we have made is that the family

of the input distribution does not change as it is perturbed. Given that restriction, our definition is

very flexible, as we illustrate later.

For practical reasons we focus on the four sensitivity measures shown in the Table 3.1. For

example, we call the sensitivity of the mean of the output, E(Y ) = η(θ), with respect to the mean

of the input E(X) = µ(θ), the mean sensitivity to the mean (MSM). In the table, the first letter

in bold denotes the property of the output Y of interest and the final letter in italic indicates with

respect to what property of the input X . More formally,

MSM~d =
∂E(Y )
∂ µ~d

=
~dT ∇θ 0E(Y )
~dT ∇θ 0 µ

(3.2)

MSV~d =
∂E(Y )
∂σ2

~d

=
~dT ∇θ 0E(Y )
~dT ∇θ 0σ2

(3.3)

VSM~d =
∂Var(Y )

∂ µ~d
=
~dT ∇θ 0Var(Y )

~dT ∇θ 0 µ
(3.4)

VSV~d =
∂Var(Y )

∂σ2
~d

=
~dT ∇

θ
0Var(Y )

~dT ∇
θ

0σ2
. (3.5)

For many input distributions the gradient of the mean or variance of X with respect its parameter θ

at θ 0, ∇θ 0 µ or ∇θ 0σ2, is available in closed form or easily computed numerically. The unknowns

in (3.2)–(3.5) are ∇θ 0E(Y ) and ∇θ 0Var(Y ).
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Table 3.1: New Local Sensitivity Measures.

Output Mean Output Variance
Input Mean Mean Sensitivity to Mean Variance Sensitivity to Mean

(MSM) (VSM)
Input Variance Mean Sensitivity to Variance Variance Sensitivity to Variance

(MSV) (VSV)

Estimating ∇θ 0E(Y ) has been studied extensively (Fu, 2015). There exist many simulation-

based techniques to estimate this gradient and we extend some of the them to estimate ∇θ 0Var(Y ).

Although gradient estimation is not our contribution, we do present gradient estimators that fit

our needs in Section 3.4, based on different practical situations described in Section 3.3. Then in

Section 3.5, we provide point and error estimators of the proposed sensitivity measures. Although

we focus on the sensitivity of the mean and variance, other properties such as quantiles also fit into

this framework.

3.2.1 Meaningful Directions

The proposed sensitivity measures can be computed along any direction~d, but our definition will

only be valuable if there are practically useful directions. For instance, for sensitivity with respect

to the variance of the input, Jiang et al. (2019) introduced two meaningful directions. The steepest-

ascent direction is the direction along which σ2 increases the fastest: ~d = ∇
θ

0σ2/‖∇
θ

0σ
2‖; it is

a pessimistic choice. The minimum-mean-change direction minimimizes the rate of change in the

mean of the input while increasing its variance:

Minimize:
~d∈ℜp

∣∣∣~d>∇
θ

0 µ(θ)
∣∣∣

subject to:~d>∇
θ

0σ
2(θ) > 0

‖~d‖ = 1.
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For many distributions the mean can be held constant.

The meaningful directions described above, and their obvious generalizations, will be relevant

and sufficient for many applications. However, there will be situations in which a problem-specific

direction arises; see Jiang et al. (2020) for examples in a clinical trial enrollment simulation. In

the following subsections we consider issues associated with shifted distributions and alternative

parameterizations.

3.2.2 Shifted Distribution

Notice that the minimum-mean change direction of the input variance may not be unique for in-

put distributions with p > 2 parameters. Here we address the special case of a three-parameter

distribution obtained by shifting the lower bound of a two-parameter distribution.

Consider the shifted gamma distribution as an example, X ′ = X +ξ where X ∼ gamma(α,β ),

α is the shape parameter, β is the rate parameter, and ξ is the shift parameter (i.e., θ = (α,β ,ξ )).

Notice that ξ does not affect the variance. Thus, the steepest-ascent direction for sensitivity with

respect to the variance of X ′ is

~d =
∇θ 0σ2

‖∇θ 0σ2‖
=

(
β√

4α2 +β 2
, − 2α√

4α2 +β 2
,0

)
, (3.6)

where
(

β/
√

(4α2 +β 2),−2α/
√

4α2 +β 2
)

is the direction that most rapidly increases the vari-

ance of the X .

Because ξ can compensate any change in the mean, there are multiple ways to do a min-mean-

change direction unless we fix ξ . We argue that fixing ξ is typically the most relevant case in

practice because it defines the support of the distribution; if sensitivity with respect to the support

is the goal then it should be assessed directly, rather than indirectly through a change in the mean or

variance. For a practical example in which changing the support is relevant, see Jiang et al. (2020).

With the lower bound ξ fixed, the minimum-mean-change direction for the sensitivity with respect
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to the variance of X ′ is given by

~d =

(
− α√

α2 +β 2
, − β√

α2 +β 2
, 0

)
,

where
(
−α/

√
α2 +β 2, −β/

√
α2 +β 2

)
is the min-mean-change direction for X .

3.2.3 Alternative Parameterizations

Another issue of note is that even for sensitivity measures from the same family along conceptually

the same direction, different parametrization of the input distribution might result in a different

sensitivity value. Consider again the gamma distribution that has two parameterizations in common

use: gamma(α,β ) for which µ = α/β , σ2 = α/β 2, and gamma(k,θ) for which µ = kθ and

σ2 = kθ 2. Thus, α = k and β = 1/θ . The corresponding unit-norm steepest-ascent directions of

the variance of the gamma distribution under these two parameterizations are

~d1 =

(
β√

4α2 +β 2
, − 2α√

4α2 +β 2

)
, and~d2 =

(
θ√

θ 2 +4k2
,

2k√
θ 2 +4k2

)
, (3.7)

respectively, and the min-mean-change directions are

~d1 =

(
− α√

α2 +β 2
, − β√

α2 +β 2

)
, and~d2 =

(
− k√

θ 2 + k2
,

θ√
θ 2 + k2

)
, (3.8)

respectively.

Does it matter? Suppose that the service-time distribution of an M/G/∞ queue is gamma, and

the output performance of interest, Y , is the number of customers in the system in steady state. Let

λ be the rate parameter for the interarrival-time distribution. Then E(Y ) = λα/β = λkθ . Thus,
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along the steepest ascent directions in (3.7), the corresponding MSV~d’s are given by

MSV~d1
=

λβ 3 +2λα2β

β 2 +4α2

MSV~d2
=

λθ 2 +2λk2

θ 3 +4k2θ
=

λβ +2λαβ 3

1+4α2β 2 .

Apparently, MSV~d1
6= MSV~d2

, which can be explained by the different rates of change of the

output mean and the input variance while increasing β vs. θ . The MSV~d along the two min-mean-

change directions in (3.8), on the other hand, are both equal to 0, which makes sense because E(Y )

does not depend on the variance of the service-time distribution, only the mean.

Remark. What should be done in practice? Currently we suggest either following the parame-

terization that was originally chosen for the input distribution, or taking the worst case among the

alternative parameterizations. Within our family the user can pick any, or multiple, directions~d that

they find meaningful without affecting our definition, or the point and error estimators presented

below.

3.3 Two Examples

In Section 3.2 we defined four families of sensitivity measures and noted that the greatest diffi-

culty to apply them is estimation of ∇θ 0E(Y ) and ∇θ 0Var(Y ). An appropriate method depends on

characteristics of the input and the output because all gradient-estimation methods use observed

outputs Y , and possibly observed inputs X , but in different ways. We employ the following two ex-

amples to illustrate three distinct contexts. An M/G/1 queue with gamma-distributed service time

illustrates the situation when there are within-replication estimators of both the input-distribution

parameter and the output property. A stochastic activity network illustrates two further cases: (i)

when neither the input parameter nor the output property can be estimated within each replication

(so multiple replications are essential), and (ii) when only an estimator of the output property,
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but not of the input-distribution parameter, is observed within each replication. Many practical

situations are covered by these cases.

3.3.1 M/G/1 Queue

An M/Gamma/1 queue has K = 2 input distributions and q = 3 parameters: the interarrival time

following an exponential distribution with θ
(1) = λ , and the service time following a gamma dis-

tribution with θ
(2) = (α,β ). To execute the simulation we set the value of these parameters to θ

(1)
0

and θ
(2)
0 , respectively. Among a total of n replications, the jth replication generates m independent

and identically distributed (i.i.d.) interarrival times, X (1)
i j , i = 1,2, . . . ,m, and m i.i.d. service times,

X (2)
i j , i = 1,2, . . . ,m, where m > 1.

Since multiple input variates are observed within each replication, the input parameter Θ0 can

be estimated, for instance via maximum likelihood. Denote the estimators of the input parameters

from within the jth replication as Θ̂ j =

(
θ̂
(1)
j , θ̂

(2)
j

)
. We do this even though Θ0 is known because

one of the gradient estimators exploits it.

Replication j also generates m outputs, W` j, ` = 1,2, . . . ,m. Suppose W` j is the waiting time

of the `th of a total of m customers arriving to the system after a sufficient warm-up period and

before the stopping time within the jth replication. Then one key output from the jth replication is

Yj = ∑
m
`=1W` j/m, an estimator of the steady-state mean waiting time of customers in the system. If

the performance measure of interest is the steady-state variance of the waiting time of customers in

the system, then the key output is Yj = ∑
m
`=1(W` j−W̄j)

2/(m−1) where W̄j = ∑
m
`=1W` j/m. Thus,

in this setting we observe i.i.d. pairs (Yj,Θ̂ j), j = 1,2, . . . ,n.

3.3.2 A Stochastic Activity Network

This example is based on a problem created by Burt and Garman (1971). A small instance of

a project planning problem is modeled as a stochastic activity network (SAN). The network is
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Figure 3.1: A Small Stochastic Activity Network

shown in Figure 3.1 where the nodes (circles) represent project milestones and the arcs (arrows)

are activities to be completed. The project starts from the source node a and is completed when

the sink node d is reached, with the rule that all outgoing activities from a node begin when all

of the incoming activities to that node are completed. The duration of the ith activity is a random

variable X (i). Thus, the time to complete the project, Y , will be the longest path through the

network: Y = max{X (1)+X (4),X (1)+X (3)+X (5),X (2)+X (5)}.

In this example there are K = 5 inputs whose distributions and parameters are specified in

Table 3.6. To execute the simulation we set the values of these parameters to nominal values and

run a total of n replications. Notice that for this simulation each replication generates exactly

one sample from each input variate and one output value. Let X (i)
j be the sample generated from

the distribution of ith activity and Y j be the output, both from the jth replication. Because of

the single input variate from each input distribution within each replication, there is no natural

within-replication estimator of θ
(3),θ (4) and θ

(5).

If the output property of interest is the mean time to complete the project, then Y j returned from

replication j is the corresponding estimator. However, if the property of interest is the variance of

the time to complete the project, then no estimator of this output is observed within each replica-

tion. In this case we need a method to obtain the gradient of the variance of Y with respect to input
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parameters; we provide such a method in Section 3.4.

3.4 Stochastic Gradient Estimation

In this section we describe three gradient estimation methods that are appropriate for the contexts

introduced in Section 3.3. The proper gradient estimator depends very much on specifics of the

simulation and there is no one that is superior for all situations. We provide some guidance here

to the vast literature on this subject as it relates to our problem; see for instance, Fu (2015) and

L’Ecuyer (1990). Although most simulations have multiple input distributions, local sensitivity

analysis is with respect to each input distribution separately so we consider only a single input

distribution X with a scalar parameter θ having nominal value θ0 here (e.g., the interarrival time

in the M/G/1 queue, or the duration of the first activity in the SAN.)

3.4.1 Finite-Difference Method

A straightforward method to estimate the gradient is the finite-difference (FD) method, which

perturbs each component of the input separately while holding the others at their nominal values.

To implement FD, we need to make additional replications beyond the nominal experiment for each

gradient direction. The simplest FD estimator is the one-sided forward difference estimator given

by FD(θ) = (Y (θ +∆θ)−Y (θ))/∆θ where Y (θ) is the output of the nominal experiment and ∆θ

is the perturbation size. In our context when we obtain n replications at the nominal setting, then

n additional replications are required in each coordinate direction; therefore, a total of n(p+ 1)

simulation replications are required to estimate the gradient for a p-dimensional input parameter.

Averaging FD(θ0) across n replications, the FD gradient estimator is

∂̂FDE(Y )
∂θ0

=
1
n

n

∑
j=1

Yn+ j(θ0 +∆θ)−Y j(θ0)

∆θ
. (3.9)
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Notice that the FD estimator is biased because the derivative is the limit as ∆θ → 0. However,

making ∆θ too small will result in a noisy estimator; variance reduction technique of common

random numbers can be helpful. Thus, there is a trade-off between bias and variance in select-

ing the perturbation size for each component of the input separately, which can be burdensome

for a high-dimensional problem. A more accurate estimator is often obtained by using central

differences (Fu, 2015), but this requires about twice the simulation replications required for the

one-sided forward-difference estimator.

For the gradient of Var(Y ) with respect to the parameter θ (e.g., in the SAN), we need to

obtain an estimator of the Var(Y ), which can be achieved in two ways: batching the replications to

estimate the variance, or decomposing Var(Y ) into a function of E(Y ) and E(Y 2).

Let b be the batch size so there are k = n/b batches of b replications each. For the purpose of

presentation we assume that n/b is integer. For the forward difference gradient estimator we do

this twice: the first n replications use θ0, and the second n replications use θ0 +∆θ . The gradient

estimator is
∂̂FDVar(Y )

∂θ0
=

1
k

k

∑
`=1

S2
k+`(θ0 +∆θ)−S2

`(θ0)

∆θ
(3.10)

where S2
` = ∑

`b
j=(`−1)b+1

(
Yj− Ȳ`

)2
/(b−1) and Ȳ` = ∑

`b
j=(`−1)b+1Yj/b.

3.4.2 Likelihood Ratio Method

The likelihood ratio (LR) method, which is also called the score function method, is a direct gra-

dient estimator. It can be computationally efficient because the entire gradient is computed using

only simulations at the nominal setting Θ0 regardless of the dimension. For a p-dimensional input

parameter and a simulation budget of n replications, only 2n/(p+1) replications are available to

estimate each dimension of the gradient using the one-sided FD method, while all n replications

are used to compute the gradient in all coordinate directions using the LR method. In addition, LR

gradient estimators are easy to derive and exist for most common distributions for all parameters.
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LR is particularly well-suited for cases such as the SAN when each replication generates only one

input variate from each input distribution.

Suppose that X has a density f (x|θ). The LR gradient estimator of E(Y ) with respect to θ in

the one-dimensional case is

LR(θ) = Y (θ)
∂ ln f (X |θ)

∂θ
.

Since the required partial derivatives for standard distributions are often known in closed-form

or easily computed numerically, we do not need additional simulation runs beyond the nominal

setting. Thus, to estimate ∂E(Y )/∂θ we average LR(θ0) over n replications and the gradient

estimator is
∂̂LRE(Y )

∂θ0
=

1
n

n

∑
j=1

Yj(θ0)
∂ ln f (X j|θ0)

∂θ
. (3.11)

Notice that the term ∂ ln f (X |θ)/∂θ is the well-known score function in statistics. For instance,

when X follows an exponential distribution, the expression in Equation (3.11) can be simplified to

1
n

n

∑
j=1

Y j(θ0)

(
X j−θ0

θ 2
0

)
.

Although we have not seen it in the literature, rewritting Var(Y ) = E(Y 2)−E2(Y ) leads to the

asymptotically consistent LR gradient estimator

∂̂LRVar(Y )
∂θ0

=
1
n

n

∑
j=1

{(
Yj(θ0)

2−2ȲYj(θ0)
) ∂ ln f

(
X j|θ0

)
∂θ

}
(3.12)

where Ȳ = ∑
n
j=1Yj(θ0)/n. In this case the LR gradient estimator will be biased for finite n due

to the use of Ȳ for E(Y ). To achieve an unbiased estimator we could apply the LR concept to

the estimator of Var(Y ) based on the sum of squares of all-pairwise differences; although it is

unbiased this estimator is computationally burdensome. In Appendix A we derive the LR gradient

estimators of ∇θ 0Var(Y ) using these two methods.
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3.4.3 Wieland-Schmeiser Method

A method due to Wieland and Schmeiser (2006) (WS) is also well-suited to estimate output gra-

dients with respect to input parameters without additional simulation effort beyond the nominal

experiment. WS is most appropriate when we observe multiple input variates within each repli-

cation so that the input parameter under the nominal setting θ0 can be estimated, as in the M/G/1

queue example.

Let X be the interarrival-time in the M/G/1 queue and θ̂ j = 1/(∑m
i=1 Xi j/m) be the maximum

likelihood estimator (MLE) of θ0 from replication j. Thus, from n replications we observe i.i.d.

pairs (Yj, θ̂ j), j = 1,2, . . . ,n. If their joint distribution is bivariate normal then

E(Y |θ̂) = β0 +β1θ̂ (3.13)

where β1 = Cov(Y, θ̂)/Var(θ̂). Therefore, the ∂E(Y )/∂θ under the nominal setting θ0 is β1 and

the WS gradient estimator is simply the ordinary least squares (OLS) estimator of β1:

∂̂WSE(Y )
∂θ0

≡ β̂ =
∑

n
j=1
(
Yj− Ȳ

)(
θ̂ j− θ̄

)
∑

n
j=1
(
Yj− Ȳ

)2

where Ȳ = ∑
n
j=1Y j/n and θ̄ = ∑

n
j=1 θ̂ j/n. The WS method regards θ̂ j as the realized value of the

θ that is fixed at θ0 and estimates the sensitivity of the response Yj to this realized parameter θ̂ j as

it varies across n replications. Because this relationship is linear when they are bivariate normal,

the derivative at θ = θ0 can be obtained via OLS. When θ is a vector, relationship (3.13) still

holds if the joint distribution of (Yj, θ̂ j) is multivariate normal. Lin et al. (2015) show that the

corresponding WS gradient estimator can be obtained via multivariate regression.

Notice that joint normality of (Yj, θ̂ j) is only a sufficient condition to apply the method of

Wieland and Schmeiser (2006). And it is plausible to approximate the joint distribution as normal

when both Yj and θ̂ j are the average of a large number of observations within replication j, or
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MLEs of their respective parameters. When this relationship does not hold, batching the replica-

tions can be used to induce normality, as suggested in Wieland and Schmeiser (2006).

When estimating the gradient of the variance of the output Y with respect to the input parameter

θ , similar to the FD method, we can rewrite Var(Y ) as E(Y 2)− E2(Y ) and do multi-response

regression. Regressing Y and Y 2 on θ̂ leads to the gradient estimator

∂̂WSVar(Y )
∂θ0

≡ α̂−2Ê(Y )β̂ =
∑

n
j=1

(
Y 2

j −Y 2
)(

θ̂ j− θ̄

)
∑

n
j=1

(
Y 2

j −Y 2
)2 −2Y

∑
n
j=1
(
Yj− Ȳ

)(
θ̂ j− θ̄

)
∑

n
j=1
(
Y j− Ȳ

)2

where Y 2 = ∑
n
j=1Y 2

j /n.

We could also use batching to set up a single linear regression of the output sample variance

on θ̂ to estimate the gradient. In other words, we compute the sample variance within each batch,

and to be consistent, batch the realized parameter θ̂ with the same batch size to estimate its mean.

Then the gradient can be estimated by regressing the sample variance on the batched mean of the

realized parameter.

3.5 Sensitivity Measures and Their Variances

In this section we derive the point and variance estimators of the four families of sensitivity mea-

sures. From here on θ and θ̂ are p×1, denoting the parameter and its estimator of a single input

distribution with nominal value θ 0; and Θ and Θ̂ are q×1, containing the parameters across all K

input distributions with nominal value Θ0.

For the four families of sensitivity measures introduced in Section 3.2, the corresponding point

estimator is obtained by plugging the appropriate gradient estimator into Definitions (3.2)–(3.5),
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i.e.,

M̂SM~d =~d>∇̂θ 0E(Y )
(
~d>∇θ 0 µ

)−1

M̂SV~d =~d>∇̂θ 0E(Y )
(
~d>∇θ 0σ

2
)−1

V̂SM~d =~d>∇̂θ 0Var(Y )
(
~d>∇θ 0 µ

)−1

V̂SV~d =~d>∇̂θ 0Var(Y )
(
~d>∇θ 0σ

2
)−1

.

(3.14)

All of these are linear functions of a gradient estimator ∇̂θ 0 . Thus, if ∇̂θ 0 is unbiased, then so is

the corresponding sensitivity estimator.

Notice that the only uncertain quantities in these expressions are the gradient estimators; there-

fore, their variances are

Var
(

M̂SM~d

)
=~d>Var

(
∇̂θ 0E(Y )

)
~d
(
~d>∇θ 0 µ

)−2

Var
(

M̂SV~d

)
=~d>Var

(
∇̂θ 0E(Y )

)
~d
(
~d>∇θ 0σ

2
)−2

Var
(

V̂SM~d

)
=~d>Var

(
∇̂θ 0Var(Y )

)
~d
(
~d>∇θ 0 µ

)−2

Var
(

V̂SV~d

)
=~d>Var

(
∇̂θ 0Var(Y )

)
~d
(
~d>∇θ 0σ

2
)−2

.

(3.15)

The key to estimating the variance of a sensitivity measure is estimating the variance of the cor-

responding gradient estimator ∇̂θ 0 , where the situations we consider can be categorized into the

following three settings:

• Setting 1: The gradient estimator with respect to the parameters of a single input distribution,

∇̂θ 0 , is the average of i.i.d. observations of the basic gradient estimator, ∇̂1, ∇̂2, . . . , ∇̂n. Thus,

the variance-covariance matrix of the gradient estimator can be estimated by V̂= Σ̂/n, where

Σ̂ =
1

n−1

n

∑
j=1

(∇̂ j−∇)(∇̂ j−∇)>
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and ∇ = ∑
n
j=1 ∇̂ j/n = ∇̂θ 0 .

• Setting 2: The gradient estimator across all K distributions, ∇̂Θ0 =

(
∇̂
>
θ
(1)
0
, ∇̂>

θ
(2)
0
, . . . , ∇̂>

θ
(K)
0

)>
is the OLS estimator of the slope coefficient ∇̂Θ0 = β̂ 1,OLS, where

β̂ OLS = (X>X)−1X>Y =

β̂0,OLS

β̂ 1,OLS

 ,
with Y = [Y1,Y2, . . . ,Yn]

> and

X =



1 x>1

1 x>2
...

...

1 x>n


,

with xi the predictor variables from the ith replication. Assuming the joint distribution of

(Y,x) is multivariate normal, this regression model is correct and the variance-covariance

matrix of the slope coefficients is

V =
σ2

ε

n−q−2
Σ
−1
x,x , (3.16)

where σ2
ε is the conditional variance of Y given x. Therefore, we can estimate it by

V̂ =
s2

ε

n−q−2

(
Σ̂x,x

)−1
, (3.17)

where s2
ε = SSE/(n−q−1), SSE is the sum of squared errors of the multiple linear regres-

sion of Y on x, and Σ̂x,x is the sample variance-covariance matrix of x. The estimator of the

variance-covariance matrix of ∇̂
θ
(i)
0

is the ith pi× pi submatrix on the diagonal of V̂. The

complete derivation of this variance-covariance matrix and its estimator are found in Jiang

et al. (2019).
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• Setting 3: The gradient estimator with respect to the parameters of a single input distribution,

∇̂θ 0 , can be expressed as the average of Wj + µ̂U j, j = 1,2, . . . ,n, where (Wj,U j) are i.i.d.,

and µ̂
a.s.−−−→

n→∞
µ . If n is large enough so that we can treat µ̂ as constant, then Setting 3 becomes

identical to Setting 1, with ∇̂ j =Wj + µ̂U j.

In Appendix C we provide variance estimators for the FD, LR, and WS methods separately by

categorizing each situation into one of the three settings above.

3.6 Empirical Illustrations

In this section we illustrate the estimation and interpretation of the proposed sensitivity measures

using the two examples introduced in Section 3.3. This is not an evaluation or a comprehensive

study of the gradient estimators that are inputs to our sensitivity measures. Rather, we demonstrate

how these gradient estimators can be combined with our new family of sensitivities to yield use-

ful and interpretable results. If and when better gradient estimators are invented, our sensitivity

measures will benefit from them.

Since the true gradients for both examples are not known, but the systems are computationally

inexpensive to simulate, we employ intensive simulation to precisely estimate the true gradients

for each output property with respect to each input parameter using the FD method; this in turn

yields a “true” value of the corresponding sensitivity measures. We compare these to simulations

at the nominal setting that employ the LR or WS gradient estimators.

Recall that the proposed sensitivity measures reveal the change in the output mean or variance

per unit change in the mean or variance of an input distribution along a meaningful direction. When

we refer to “per unit change” for the mean it is in the natural units, while for the variance it in the

natural units squared. Stating sensitivities as standard deviation rather than variance is possible,

and probably more useful in practice, as illustrated in Jiang et al. (2020).
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Table 3.2: Experiment Setup of M/G/1 Queue Example.

Input Distribution Parameter Nominal Value
interarrival time (ARR) exponential mean θ

(1)
0 = 1

service time (SER) gamma (shape, scale) θ
(2)
0 = (4,5)

3.6.1 M/G/1 Queue

The output property of interest is the steady-state mean waiting time of customers in an M/G/1

queue. We illustrate estimating its sensitivity with respect to the mean of each input distribution

when the mean changes along the steepest ascent direction, and with respect to the variance of each

input distribution when the variance changes along the steepest-ascent and minimum-mean-change

directions.

The waiting time is simulated via Lindley’s equation and, to speed up the convergence to steady

state, the system is preloaded with one waiting time at the steady-state expected value obtained

from the Pollaczek-Khinchine formula. The warm-up period is the first 200 customers; after that,

the waiting times of 4,000 customers arriving to the system are averaged to estimate the steady-

state mean. The nominal experiment ran 900 replications with the input distributions specified in

Table 3.2. For simplicity of notation, we use “ARR” for the interarrival-time input and “SER”

for the service-time input. The intensive simulation to estimate the true sensitivities ran 64,000

replications ensuring the relative error of the gradient estimator to be less than 0.001.

Since multiple variates are observed from both the interarrival-time and the service-time distri-

butions within each replication of the nominal experiment, the WS gradient estimator is particularly

appropriate. Furthermore, because the distributions of the MLEs of the distribution parameters, Θ̂,

are asymptotically normal and the mean waiting time is the average of the waiting times of a large

number of customers arriving to system within each replication, it is plausible to approximate the

distribution of (Y,Θ̂) as multivariate normal and thus the relationship between E(Y |Θ̂) and Θ̂ as

approximately linear. Accordingly, we have the sufficient conditions to apply the WS method—
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Table 3.3: Regression Results for M/G/1 Queue Example (* p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 2e−16).

Parameter Coefficient Significance StdErr (SE)
ARRmean −10.632 ∗∗∗ (0.398)
SERshape 3.070 ∗∗∗ (0.215)
SERscale −2.532 ∗∗∗ (0.160)
Intercept 13.026 ∗∗∗ (0.510)
Observations 900
R2 0.514
Adjusted R2 0.512
Residual Std. Error 0.197 (df = 896)
F Statistic 316∗∗∗∗ (df = 3; 896)

linear regression of Y on Θ̂—to obtain the gradient estimator, ∇̂Θ0E(Y ), and its variance-covariance

matrix.

A summary of the fitted model is shown in Table 3.3, where we see that although the adjusted

R2 of 0.51 is low, all predictors are significant. We also applied model diagnostics to validate

assumptions including normality, homoscedasticity, and linearity. In summary, we conclude that

the linear model fits the data well. Thus, we can draw important conclusions about how changes in

the input distribution parameters affect the mean waiting time from the fitted model. For example,

the coefficient associated with the mean of the interarrival time is negative, which makes sense

because longer interarrival times will help mitigate the congestion and reduce the expected waiting

time. A similar explanation applies to the negative (positive) sign of the shape (scale) parameter

of the service-time input distribution because increasing (decreasing) shape (scale) increases the

mean of the service time which is the main driver of congestion in the queue.

After plugging the gradient estimates into (3.14) and their variances into (3.15), we report the

MSM and MSV estimates and their standard errors along with their “true” values in Tables 3.4

and 3.5. The two subscripts specifying the direction of sensitivity measures are “SA,” denoting the

steepest-ascent direction, and “MM,” denoting the minimum-mean-change direction. Notice for all

MSM and MSV estimates, the “true” value is included in the ±2×SE interval, indicating that the
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Table 3.4: MSM Estimates for M/G/1 Queue Example.

MSMInput,Dir Estimate (WS) SE “True” Value (FD)
MSMARR,SA -10.632 0.398 -9.959
MSMSER,SA 15.514 1.024 14.658

MSM and MSV are pretty well estimated using the WS method with 900 simulation replications.

In Table 3.4 the MSMSER,SA estimate suggests that the steady-state mean waiting time is ex-

pected to increase by about 16 time units per unit increase in the mean of the service time at

the fastest rate. The MSMARR,SA estimate, on the other hand, implies that the steady-state mean

waiting time is expected to decrease by around 10.6 time units per unit increase in the mean of the

interarrival time. Thus, this table suggests that the steady-state mean waiting time is more sensitive

to the mean service time at this nominal setting.

In Table 3.5 the MSVSER,SA estimate implies that the steady-state mean waiting time would

increase by around 50 time units when the variance of the service time increases by one unit at the

fastest rate, which is about three times the MSMSER,SA estimate. This can be explained by the fact

in the SA direction for the variance both the the mean and the variance of the service time increase.

The ∆µ column in Table 3.5, where ∆µ(θ 0) =~dT ∇
θ

0 µ/~dT ∇
θ

0σ2, tells us approximately how

much the mean of each input distribution, µ(θ), would change if the variance of the distribution

σ2(θ) changes one unit. Notice that the MSVSER,MM estimate indicates that per unit increase in

the variance of the service time in the minimum-mean-change direction would lead to only 2 time

units increase in the mean waiting time. Moreover, the ±2× SE interval includes 0, implying

this sensitivity might not be statistically significant. This substantial difference in MSVSER,SA and

MSVSER,MM emphasizes the critical importance of specifying a direction of change to be able to

interpret results.
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Table 3.5: MSV Estimates for M/G/1 Queue Example.

MSVInput,Dir Estimate (WS) SE “True” Value (FD) ∆µ

MSVARR,SA -5.316 0.199 -4.980 0.5
MSVSER,SA 49.941 3.237 47.231 3.2
MSVSER,MM 2.382 1.942 2.676 0

Table 3.6: Experiment Setup of SAN Example.

Input Distribution Parameter Nominal Value
X (1) exponential mean θ

(1)
0 = 5

X (2) exponential mean θ
(2)
0 = 15

X (3) weibull (shape, scale) θ
(3)
0 ≡ (ϑ

(3)
1 ,ϑ

(3)
2 ) = (5,11)

X (4) gamma (shape, rate) θ
(4)
0 ≡ (ϑ

(4)
1 ,ϑ

(4)
2 ) = (30,2)

X (5) gamma (shape, rate) θ
(5)
0 ≡ (ϑ

(5)
1 ,ϑ

(5)
2 ) = (20,4)

3.6.2 Stochastic Activity Network

In this example we measure the sensitivity of two output performance measures of the SAN—the

mean and the variance of the time to complete the project—to the mean and variance of each of

the five input distributions along meaningful directions. Specifically, for sensitivities with respect

to the input mean (i.e., MSM and VSM measures), we consider the steepest ascent direction of

the mean of the input, and for sensitivities with respect to the input variance (i.e., MSV and VSV

measures), the directions are the steepest-ascent and the minimum-mean-change directions.

The nominal setup of the experiment is specified in Table 3.6. The three paths connecting

the source node and the sink node, X (1) + X (4), X (1) + X (3) + X (5), and X (2) + X (5), have bal-

anced means so that each path is approximately equally likely to be the longest path. The two

output properties of interest represent two different situations: whether there is, or is not, a within-

replication estimator of the property of interest. We illustrate the estimation and interpretation of

the corresponding sensitivity measures separately in the next two subsections.
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Output: Mean of the Project Completion Time

Despite the simplicity of this problem, gradients with respect to the activity time parameters are

notoriously hard to estimate with generic methods; this fact has nothing to do with our sensitivity

measures, it is simply a property of this noisy problem.

To guarantee the relative error of the gradient estimator is less than 0.001, we ran 200,000

replications in the intensive simulation. The nominal experiment was also run with 200,000 repli-

cations, which is larger than we would expect to in practice but we wanted to have a precise

comparison of sensitivity measures obtained using different gradient estimation methods. We also

ran nominal experiments with a more reasonable number of replications (10,000) and report those

results at the end of this subsection. A gradient estimator tailored specifically for this problem,

perhaps employing variance-reduction techniques, would also help our sensitivity measures.

The LR method is a good fit for the case when only one input variate is generated within each

replication. The gradient estimator with respect to each input parameter is then an average of

200,000 corresponding LR gradient estimates. The LR gradient estimator of E(Y ) with respect

to the mean of an exponential distribution (e.g., X (1), X (2)), the shape and scale of a Weibull

distribution (e.g, X (3)), and the shape and rate of a gamma distribution (e.g., X (4), X (5)) are given

in Appendix B. The estimated values of the gradients are shown in Table 3.7, along with the “true

value” estimated using FD.

We also applied the WS method because there are sufficient replications to batch with a large

enough batch size to obtain precise MLEs of each input parameter, and at the same time with

enough batches for the subsequent regression. Specifically, we batched the observed input variate

from each input distribution with batch size b = 100 to estimate the MLEs of each input distribu-

tion parameter and, to be consistent, the observed output with the same batch size to estimate its

mean. Therefore, for the same reason as stated for the M/G/1 queue example, it is reasonable to

approximate the joint distribution of the batch means of Y and the MLEs of all input parameters, Θ̂,

as multivariate normal and we can use the WS method to estimate the gradient, ∇̂Θ0E(Y ), and its
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Table 3.7: LR Gradient Estimates of SAN Example with Output E(Y).

Parameter LR Gradient Estimate SE “True” Value (FD)
X (1)

mean 0.728 0.017 0.739
X (2)

mean 0.689 0.009 0.702
X (3)

shape -0.047 0.018 -0.033

X (3)
scale 0.352 0.031 0.347

X (4)
shape 0.138 0.012 0.167

X (4)
rate -2.240 0.184 -2.633

X (5)
shape 0.174 0.015 0.175

X (5)
rate -0.909 0.075 -0.882

variance-covariance matrix through regressing Ȳ on Θ̂. The summary of the fitted model is shown

in Table 3.8 where the coefficient column is the WS gradient estimates. As can be seen from Ta-

ble 3.7 and 3.8, both the LR and WS gradient estimates are consistent with the “true” values and

their SEs are small.

In Table 3.8 all predictors are significant except the shape parameter of the distribution of X (3),

which might be because the rate of change in the mean of X (3) with respect to its shape is the

smallest compared with that of the other parameters at the nominal setting. The positive signs

associated with the means of X (1) and X (2) are not surprising because increasing the mean should

increase the length of the corresponding path and accordingly the probability of being the longest.

A similar explanation applies to the signs associated with other predictors. The adjusted R2 is 0.88.

We also did regression diagnostics to test the standard multiple linear regression assumptions and

checked multicollinearity and outliers. In summary, we conclude that the linear model fits the data

well.

After plugging the gradient estimates into (3.14) and their variances into (3.15), the MSM

and MSV estimates using the LR and WS methods, their standard errors, and their true values are

reported in Table 3.9 and 3.10. For both MSM and MSV measures estimated using either the LR or
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Table 3.8: Regression Results for SAN Example with Output E(Y ) ( ‘ ’ p < 1; ‘∗’ p < 0.05; ‘∗∗’
p < 0.01; ‘∗∗∗’ p < 0.001).

Regression Result of Ȳ on Θ̂

Parameter Coefficient Significance SE
X (1)

mean 0.762 ∗∗∗ (0.018)
X (2)

mean 0.704 ∗∗∗ (0.006)
X (3)

shape −0.023 (0.024)

X (3)
scale 0.313 ∗∗∗ (0.042)

X (4)
shape 0.138 ∗∗∗ (0.016)

X (4)
rate −2.203 ∗∗∗ (0.243)

X (5)
shape 0.1780 ∗∗∗ (0.020)

X (5)
rate −0.894 ∗∗∗ (0.099)

Intercept 9.414 ∗∗∗ (0.469)
Observations 2000
R2 0.877
Adjusted R2 0.876
Residual Std. Error 0.414 (df = 1991)
F Statistic 1767∗∗∗ (df = 8; 1991)
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Table 3.9: MSM Estimates of SAN Example.

MSMInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD)
MSMX (1),SA 0.728 0.017 0.762 0.018 0.739
MSMX (2),SA 0.689 0.009 0.704 0.007 0.702
MSMX (3),SA 0.369 0.032 0.331 0.044 0.366
MSMX (4),SA 0.299 0.025 0.294 0.032 0.351
MSMX (5),SA 0.726 0.060 0.715 0.079 0.706

Table 3.10: MSV Estimates of SAN Example.

MSVInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD) ∆µ

MSVX (1),SA 0.073 0.002 0.076 0.002 0.074 0.1
MSVX (2),SA 0.023 0.0003 0.023 0.0002 0.023 0.033
MSVX (3),SA 0.090 0.011 0.072 0.015 0.083 0.133
MSVX (3),MM 0.045 0.010 0.032 0.013 0.039 0
MSVX (4),SA 0.299 0.025 0.294 0.032 0.352 1.001
MSVX (4),MM 0.046 0.006 0.035 0.008 0.036 0
MSVX (5),SA 1.467 0.121 1.445 0.159 1.425 2.019
MSVX (5),MM 0.116 0.038 0.013 0.051 0.018 0

WS method, the value of almost every estimate is close to the true value obtained using FD method

and the SE is always smaller than the estimate itself by at least one order of magnitude. The only

estimate that appears to have relatively large error is the LR MSVX (5),MM estimate. This might

be because the estimation error of the LR gradient estimate with respect to X (5)
rate is magnified in

the minimum-mean-change direction. Since the WS method slightly outperforms the LR method

in this setting, we use the corresponding estimates for illustrating the interpretation of MSM and

MSV sensitivities.

In Table 3.9 the MSMX (1),SA estimate is the largest, indicating that a unit increase in the mean

of X (1) would lead to an increase in the mean project completion time by about 0.76 units, which

is larger than the case when the mean duration of any other activity increases at the fastest rate.
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However, since the differences between MSMX (1),SA, MSMX (2),SA, and MSMX (3),SA are not signif-

icant, the mean duration of all three activities should receive attention when managing the mean

projection completion time.

In Table 3.10 the MSVX (1),SA implies that the mean project completion time is likely to increase

around 0.076 time units, i.e., one-tenth of the MSMX (1),SA estimate, per unit increase in the vari-

ance of X (1). This can be explained by ∆µ , which suggests that every unit increase in the variance

along the steepest-ascent direction comes with 0.1 unit increase in the mean, and that the mean

is more influential on the length of the longest path of the SAN. A similar explanation applies to

the difference between the MSMX (i),SA and the MSVX (i),SA estimates for all of the other activi-

ties. Additionally, throughout we see the sensitivity to the variance in the steepest-ascent direction

is consistently larger than in the minimum-mean-change direction, and in some cases when the

mean is held constant the sensitivity may not be statistically significant, e.g., MSVX (5),MM. This

is because the mean duration of activities is the primary determinant of the longest path, and the

steepest-ascent direction of the variance also changes the mean, but the minimum-mean-change

direction does not, as shown in the ∆µ column. Comparing all the MSM and MSV estimates,

the MSV with respect to X (5) along the steepest-ascent direction is the largest, suggesting that the

variance of X (5) should receive attention under current setup if we want to control the length of the

longest path.

Applying the same estimation process to a the nominal experiment with 10,000 replications, we

report the LR gradient estimates and the WS gradient estimates obtained with batch size b = 20 in

Table 3.11. The resulting MSM and MSV estimates are reported in Tables 3.12 and 3.13. To assist

with comparison, we also include the true values of the gradients and the corresponding sensitivity

measures in these tables.

Comparing Table 3.7 and 3.8 with Table 3.11, the WS gradient estimate obviously has the

advantage because its SE does not suffer as seriously as the LR gradient estimate when the number

of replications is smaller, even though most of the LR estimates themselves are still relatively
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Table 3.11: Gradient Estimates of SAN Example with Output E(Y ) and 10,000 Observations.

Parameter LR Gradient Estimate SE WS Gradient Estimate SE “True” Value

X (1)
mean 0.737 0.074 0.756 0.037 0.739

X (2)
mean 0.669 0.038 0.701 0.012 0.702

X (3)
shape 0.027 0.078 -0.042 0.038 -0.033

X (3)
scale 0.209 0.136 0.611 0.084 0.347

X (4)
shape 0.133 0.055 0.139 0.027 0.167

X (4)
rate -2.055 0.820 -2.101 0.409 -2.634

X (5)
shape 0.158 0.066 0.109 0.035 0.175

X (5)
rate -0.775 0.330 -0.494 0.169 -0.882

Table 3.12: MSM Estimates of SAN Example with 10,000 Observations.

MSMInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD)
MSMX (1),SA 0.737 0.074 0.756 0.037 0.739
MSMX (2),SA 0.669 0.038 0.701 0.012 0.702
MSMX (3),SA 0.227 0.142 0.646 0.089 0.366
MSMX (4),SA 0.274 0.109 0.280 0.055 0.351
MSMX (5),SA 0.621 0.264 0.397 0.135 0.706

close to true values. The big increase in the SE also explains the discrepancy in the sign of the LR

gradient estimate with respect to X (3)
shape.

In Table 3.12, the ±2×SE interval for each LR MSM estimate includes the true value, but in

some cases wrongly includes 0, e.g., MSMX (3),SA. On the other hand, for the WS MSM estimates,

their ±2×SE interval might fail to include the true value because of larger bias of the estimate

itself, e.g., MSMX (3),SA and MSMX (5),SA. Thus, when the number of observation is reasonable

but still large, it is hard to tell which method has absolute advantage over the other based on this

experiment. Similar observations can be drawn from those MSV estimates in Table 3.13. Notice

the wrong signs of the LR and WS MSVX (5),MM estimate, which might be because the minimum-

mean-change direction of X (5) magnifies the moderate estimation error of the gradient estimate.
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Table 3.13: MSV Estimates of SAN Example with 10,000 Observations.

MSVInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD) ∆µ

MSVX (1),SA 0.074 0.007 0.076 0.004 0.074 0.1
MSVX (2),SA 0.022 0.001 0.023 0.0004 0.023 0.033
MSVX (3),SA 0.031 0.049 0.140 0.025 0.083 0.133
MSVX (3),MM 0.001 0.041 0.060 0.020 0.039 0
MSVX (4),SA 0.274 0.110 0.281 0.055 0.352 1.001
MSVX (4),MM 0.017 0.029 0.005 0.012 0.036 0
MSVX (5),SA 1.253 0.533 0.800 0.273 1.425 2.020
MSVX (5),MM -0.039 0.164 -0.169 0.067 0.018 0

Output: Variance of the Project Completion Time

When the output property of interest is the variance of the project completion then we need to

batch the replications to estimate the variance when using the FD method. Thus, to ensure the

relative error of the gradient estimator is less than 0.001, we ran 600,000 replications of intensive

simulation with a batch size of b = 8,000. Assuming the same simulation budget for precise

comparison, the nominal experiment was also run for 600,000 replications. Moreover, to observe

performance with a more reasonable number of replications we also ran the nominal experiment

with 10,000 replications; the results are displayed at the end of this section.

Both the LR method and the WS method are applied for estimating the gradient of Var(Y ) with

respect to each input distribution parameter. The LR gradient estimator is the average of 600,000

observations of the basic LR gradient, which is similar to the one in Appendix B except that Yj

is replaced by Y 2
j − 2ȲYj. For the WS method, we did two regressions to estimate the gradient,

∇̂Θ0Var(Y ). Specifically, the method of batching is first used with a batch size of 100 to set up two

linear regressions and then the batched means of both Y 2 and Y were regressed on Θ̂ (i.e., Setting

2).

The resulting LR gradient estimates, WS gradient estimates, and their true values estimated

using FD are shown in Table 3.14. Based on this experiment, the LR gradient estimates have an
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Table 3.14: Gradient Estimates of SAN Example with Output Var(Y ).

Parameter LR Gradient Estimate SE WS Gradient Estimate SE “True” Value
X (1)

mean 1.182 0.193 1.204 1.025 1.036
X (2)

mean 23.131 0.247 23.331 0.340 23.101
X (3)

shape -0.075 0.273 -0.324 1.322 -0.082

X (3)
scale -2.791 0.460 2.606 2.293 -2.997

X (4)
shape -1.502 0.189 -1.052 0.896 -1.388

X (4)
rate 22.885 2.816 17.502 13.318 21.052

X (4)
shape 0.895 0.228 0.238 1.105 0.697

X (4)
rate -4.579 1.125 -1.748 5.454 -3.543

obvious advantage over the WS gradient estimates because of the smaller SE; in most cases the

SE is smaller by one order of magnitude. In some cases, the WS gradient estimate even has the

wrong sign, e.g., with respect to X (3)
scale. This is not surprising because its SE is nearly as large as the

estimate itself. Our conjecture is that this is because the joint regression model of the WS method

is noisier and needs more data to be accurate and precise, but the LR method does not need that.

With the gradient estimates and their variances ready, the resulting VSM and VSV estimates

are posted in Table 3.15 and 3.16. Here we continue to see the benefit of using the LR gradient

estimator when the output property is the variance because the corresponding sensitivity measure

has smaller SE. On the other hand, the larger SE of the WS gradient estimate might lead to the

wrong sign of the corresponding sensitivity measure estimate, e.g., the wrong signs of the WS

VSMX (3),SA and VSVX (3),SA estimates due to the wrong sign of the WS gradient estimate with

respect to X (3)
scale. Also notice that, based on this experiment, VSV is harder to estimate than VSM,

especially if using the WS method, in the sense that the SE of the estimate is often larger than the

estimate itself. Since neither of the sensitivity estimates using LR or WS is uniformly accurate and

precise, we focus on the true value obtained via FD for interpretation.

First to recap, the VSMX (i),SA tells us the expected change in the variance of the output per unit
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Table 3.15: VSM Estimates of SAN Example.

MSMInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD)
VSMX (1),SA 1.182 0.193 1.204 1.025 1.036
VSMX (2),SA 23.131 0.247 23.331 0.339 23.101
VSMX (3),SA -3.063 0.480 2.737 2.399 -4.288
VSMX (4),SA -3.051 0.375 -2.333 1.776 -2.807
VSMX (5),SA 3.660 0.900 1.381 4.363 2.833

change in the mean of X (i) at the fastest rate, while VSVX (i),SA tells us the effect per unit change

in the variance of X (i) at the fastest rate. Comparing the VSMX (i),SA estimate and the VSVX (i),SA

estimate for i = 1,2, . . . ,5, we see throughout that the ratio of two effects is almost equal to the

corresponding ∆µ value. In addition, the VSV estimates in the minimum-mean-change direction

are consistently much smaller than the ones in the steepest-ascent direction. Both observations can

be explained by the fact that in the steepest-ascent direction of the variance the mean will change

by around ∆µ unit per unit change in the variance but in the minimum-mean-change direction the

mean is held constant. Thus, our observation suggests that the mean is also more important for

determining the variance of the longest path of the SAN, especially the mean of X (2).

Furthermore, although it is expected that an increase in the variance of any input would increase

the variance of Y , we see a statistically significant negative value associated with X (4) along the

steepest-ascent direction. This might be because the three paths in this SAN example are designed

such that the probability of each path being the longest is about the same. However, an increase in

the variance of an activity breaks the balance, and thus the path where X (4) is more/less likely to be

the longest, which might reduce the variance of Y . Comparing all the VSM and VSV estimates, the

mean of X (2) and the variance of X (5) are significantly more important for controlling the variance

of the project completion time than the others in the nominal setting and these two are where we

would recommend putting most of the management effort.

With 10,000 replications for the nominal setting, the gradient estimates and the corresponding
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Table 3.16: VSV Estimates of SAN Example.

VSVInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD) ∆µ

VSVX (1),SA 0.118 0.019 0.120 0.103 0.103 0.1
VSVX (2),SA 0.771 0.008 0.778 0.011 0.770 0.033
VSVX (3),SA -0.340 0.167 0.655 0.808 -0.568 0.133
VSVX (3),MM 0.073 0.142 0.325 0.687 -0.158 0
VSVX (4),SA -3.055 0.376 -2.336 1.778 -2.810 1.001
VSVX (4),MM -0.095 0.100 -0.458 0.453 -0.064 0
VSVX (5),SA 7.396 1.818 2.806 8.813 5.722 2.020
VSVX (5),MM 0.342 0.569 1.789 2.769 0.193 0

sensitivity measure estimates are reported in Tables 3.17–3.19. Although both gradient estimates

have larger SE as the number of observations decreases, the LR gradient estimator still outperforms

the WS gradient estimator. However, the gradients are poorly estimated in any event as the SE is

much larger than the estimate itself. Similar statements apply to the VSM and VSV estimates in

Tables 3.18 and 3.19.

In summary, if we obtain a large enough number of replications, then both WS and LR can

work for this example; at smaller (but still large) sample sizes there are issues, especially when the

output is Var(Y ). The WS method is better for estimating the sensitivity of the E(Y ), even with

a moderate number of observations, while the LR method has obvious benefits for estimating the

sensitivity of the Var(Y ). As noted earlier, gradient estimation is difficult for the SAN, even with

FD.

3.7 Conclusions

In this chapter we defined a new family of sensitivity measures for a simulation output property

with respect to some input property based on directional derivatives. Unlike gradients with respect

to the input-distribution parameters, our sensitivity measures are easy to interpret and allow for the
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Table 3.17: Gradient Estimates of SAN Example with Output Var(Y ) and 10,000 Observations.

Parameter LR Gradient Estimate SE WS Gradient Estimate SE “True” Value

X (1)
mean 1.218 1.451 3.835 3.301 1.036

X (2)
mean 21.222 1.605 22.985 1.094 23.101

X (3)
shape -1.560 1.843 -1.295 3.390 -0.082

X (3)
scale 0.517 3.396 18.326 7.597 -2.997

X (4)
shape -0.740 1.428 -3.230 2.472 -1.388

X (4)
rate 8.019 21.296 48.439 36.887 21.052

X (5)
shape 0.753 1.610 -1.287 3.108 0.697

X (5)
rate -3.944 7.994 10.805 15.214 -3.543

Table 3.18: VSM Estimates of SAN Example with 10,000 Observations.

MSMInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD)
MSMX (1),SA 1.218 1.451 3.835 3.301 1.036
MSMX (2),SA 21.222 1.605 22.985 1.094 23.101
MSMX (3),SA 0.322 3.554 19.392 8.022 -4.288
MSMX (4),SA -1.071 2.840 -6.459 4.918 2.807
MSMX (5),SA 3.149 6.395 -8.510 12.178 2.833

Table 3.19: VSV Estimates of SAN Example with 10,000 Observations.

MSVInput,Dir Estimate (LR) SE Estimate (WS) SE “True” Value (FD) ∆µ

MSVX (1),SA 0.122 0.145 0.384 0.330 0.104 0.1
MSVX (2),SA 0.707 0.054 0.766 0.037 0.770 0.033
MSVX (3),SA 0.740 1.160 4.207 2.274 -0.568 0.133
MSVX (3),MM 0.774 0.966 1.817 1.785 -0.158 0
MSVX (4),SA -1.071 2.843 -6.466 4.924 -2.810 1.001
MSVX (4),MM 0.810 0.718 0.003 1.077 -0.064 0
MSVX (5),SA 6.366 12.917 -17.320 24.590 5.722 2.020
MSVX (5),MM 0.579 3.824 -13.989 6.027 0.193 0
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selection of a direction that is meaningful for the problem at hand.

We focused on output mean or variance with respect to input mean or variance, but the only

actual restriction is that the input and output properties must be a differentiable with respect to

the input-distribution parameters. Identifying the inputs whose mean or variance has the greatest

impact on output performance is often of interest for system design and control (e.g., Schoemig

(1999), Hopp and Spearman (2011)). Specific directions that seem useful for many application

were identified, and with the use of existing gradient estimation methods, point and error estimators

for any member of the family are obtainable with data from the nominal experiment only.

Our definition of the family of sensitivity measures does not depend on the gradient estimator

used, but the statistical properties of our estimators do. We illustrated estimation of sensitivity in

different contexts in Section 3.6. Although we considered generic gradient estimation methods,

specifically FD, LR and WS, problem-specific approaches may also be employed.

An open issue is that our family of sensitivity measure requires specifying a direction, but al-

ternative parameterizations of an input distribution might lead to different values of the sensitivity

measure along conceptually the same direction. Although we suggested adopting whatever param-

eterization was used in the simulation model, it makes sense to search for a parameterization-free

definitions of “direction.”

In this chapter we focused only on univariate input distributions. Our framework extends nat-

urally to multivariate input distributions. However, meaningful directions involving, say, correla-

tions are harder to specify.
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Chapter 4

Sensitivity Analysis in Clinical Trials

Simulation at SAS Institute

4.1 Introduction

The design of any clinical trial includes the development of a plan to enroll a target number of

patients while remaining within an available budget. Clinical trial enrollment planning can be a

daunting task for clinical research organizations (CROs) and pharmaceutical companies, consid-

ering the level of uncertainty under which the planning is done. Given the tight deadlines for

creating the enrollment plan and the difficulty in capturing the sources of uncertainty, these plans

often ignore the variability in the process and create inaccurate predictions of the total cost and

total time for study enrollment. SAS Institute has been partnering with the healthcare industry for

40 years and has developed an analytical tool known as SAS Clinical Trial Enrollment Simula-

tor (CTrES) for CROs and pharmaceutical companies. The objective of this tool is to equip its

users with the power to develop high-fidelity plans for enrolling patients in clinical trials. SAS is

a founding member organization of the CEO RoundTable on Cancer, which is committed to the

health and well-being of employees with the belief that cancer can be prevented, and lives can be
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prolonged (Goodnight, 2007). In line with this commitment, SAS recognizes how critical it is for

CROs and pharmaceutical companies to have access to strategic decision-support tools to design

better patient enrollment plans and accurate cost estimates. SAS offers CTrES as a solution for the

healthcare industry.

There are three main sequential events that affect the enrollment timeline of a clinical trial:

(i) starting clinical research efforts in a country; (ii) activating the clinical research sites in that

country; and (iii) enrolling and tracking patients who arrive at each site. The timing of these events

and their successful execution determine the performance of the clinical trial enrollment plan. The

typical key performance indicators (KPIs) are the duration of time it takes to enroll a target number

of patients in the clinical trial and the total cost of starting up the countries, activating the sites,

enrolling patients and tracking the enrolled patients. Of these, the time to enroll patients in a

trial is the most important consideration of the enrollment plan. Obtaining accurate predictions of

these KPIs is often challenging because the events of country start-up, site activation and patient

enrollment and tracking are connected through a sequence of subprocesses, each of which is subject

to high level of uncertainty.

Here are some representative subprocesses corresponding to the main events (i)–(iii) enumer-

ated above, which are the reasons why a clinical trial enrollment plan may achieve low patient

enrollment or high cost. Under main event (i), after preparing the core regulatory package and

completing the regulatory timeline, the pharmaceutical company could be unsuccessful at obtain-

ing regulatory approval in a country while still incurring the country activation costs. After col-

lecting information about a site, waiting for the availability of personnel, and spending the time

needed to start up the site in main event (ii), site activation may still fail. Even if a site is suc-

cessfully activated, it may fail to enroll patients. Moreover, after the arrival of patients, only the

successful completion of screening will result in the enrollment of patients in the clinical trial in

main event (iii).

Thus, there is a high degree of uncertainty at every step of clinical trial enrollment planning,



71

from the probability that a single site will succeed to enroll patients to the random arrival of patients

to a potential site. In their 2013 impact report, the Tufts Center for the Study of Drug Development

noted that as many as 37% of sites missed their enrollment targets and 11% failed to enroll a

single patient. This lack of certainty turns enrollment planning into a difficult task. In fact, 80% of

clinical trials fail to meet enrollment timelines, and one-third of Phase III clinical trial terminations

stem from poor patient enrollment planning (Cognizant, 2015). Often the problem is inaccuracy in

gauging the time that it takes to reach target patient enrollments and in estimating the total cost of

starting clinical research efforts in new countries, activating clinical research sites, and screening

and enrolling patients. In 2018, the Tufts Center for the Study of Drug Development reported

30%–40% of sponsors and CROs indicated dissatisfaction with their site initiation processes and

concluded that clinical site initiation remains lengthy and highly inefficient. Failure to reach the

target patient enrollment in time could lead to delays in getting medicine to the market and result

in significant cost overruns.

The industry practice in clinical trial enrollment design is to make many assumptions about

enrollment rates and various components of cost, motivated by experience and learning from feasi-

bility studies (Box, 2018). In a feasibility study, a team contacts potential sites and asks questions

about the types of patients that they typically treat in the therapeutic area of interest. The team also

gathers answers to the following questions: (a) How long would it take to get your site ready to

enroll patients? (b) How many patients would you expect to enroll each month? (c) How much

would it cost to get ready for enrollment and how much would it cost to treat the patients according

to the protocol? The answers to these questions are used to obtain a rough estimate of how long it

would take to enroll a target number of patients.

An example of this rough estimate is provided on the left-hand-side (LHS) of Figure 4.1. In

Figure 4.1 the cumulative number of patients enrolled (y-axis) is plotted against time (x-axis) and

the implied total cost to enroll, say 800, patients is presented. As implied by the construction

of a single path on the LHS, the rough estimate based on the data from a feasibility study lacks
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Figure 4.1: Illustrating time vs, patient enrollment in deterministic (LHS) and stochastic (RHS)
solutions.

any formal quantification of risk. This is an example of a deterministic but incomplete solution

to the problem of KPI prediction in clinical trial enrollment planning. However, accounting for

the uncertainty in the inputs provides a range of between 10.5 months and 18 months for the

time it takes to enroll 800 patients on the RHS of Figure 4.1, which is generated by a CTrES

simulation. Similar statements can be made for the total cost. The two prediction intervals for the

total cost and the time it takes to enroll 800 patients clearly demonstrate the significant impact of

input risk on KPI variability. The capability to quantify this risk for CROs and pharmaceutical

companies has two noteworthy benefits: First, it informs them about the level of risk in their cost

and enrollment predictions; second, it guides them towards the identification of enrollment plans

to reduce uncertainty. Therefore, it is important to plan patient enrollment and estimate cost by

searching beyond traditional deterministic solutions.

Stochastic simulation is a natural choice to capture the risk arising in different stages of a

clinical trial enrollment plan. The use of simulation to mimic the clinical trial enrollment process

can help overcome the three primary challenges of clinical trial enrollment planning (Handelsman,

2012): 1) The patient enrollment process consists of a long sequence of dynamic random events;

2) the hierarchical relationship among country startups, site activations, and patient screening and

enrollment complicates the process of design and analysis of patient enrollment; and 3) enrollment
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planning must be driven by country, site, and patient data sets, and the solution must be robust to

the data uncertainty and scalable to any number of countries and sites under consideration. SAS

CTrES is the solution developed by SAS Institute to overcome these challenges.

In addition to the classical problem of KPI prediction, examples of the what-if questions that

planners want to ask are the following: If mean site activation delay increased by 1 week, how

would the mean KPI change? If mean screening failure probability increased by 1%, how would

the mean KPI change? If the standard deviation of site activation delay increased by one week,

how would the mean KPI change? Obtaining answers to these what-if questions helps CROs and

pharmaceutical companies diagnose the current setup and decide where to put management effort

towards the design of a better clinical trail enrollment plans.

Each of these questions can be answered by creating a new scenario in the SAS CTrES UI (User

Interface). Specifically, the first question can be addressed by creating a second scenario where

the mean site activation delay is increased by one week, and the simulation output data obtained

from these two scenarios are compared. Unfortunately, a typical enrollment planning exercise may

involve multiple countries and hundreds of sites. A study of the SAS CTrES simulation engine for a

single-country, 10-site setting reveals 51 different stochastic inputs to support enrollment planning

(Biller et al., 2019). Thus, at least 52 computationally intensive simulations would be needed just

to evaluate the sensitivity to changes in the means for one possible scenario of countries and sites

to activate. Thus, CTrES currently lacks the capability to quickly answer what-if questions in a

way that scales with the number of countries and sites involved in a clinical trial design. Our

work reported here enables CTrES to overcome this limitation and equips CTrES with the power to

answer what-if questions for any number of stochastic inputs using the output data obtained from

simulation of the only base scenario.

Answering the types of what-if questions posed above for the stochastic inputs of the simulation

is a type of local sensitivity analysis, which focuses on the influence of the inputs on the output

near a nominal setting. And while SAS already has global sensitivity analysis capabilities, it does
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not support the type of local sensitivity analysis CTrES requires. The focus of this chapter is

creation of local sensitivity analysis technology for CTrES. Although the methods presented here

were created for CTrES, they are broadly applicable to many simulation contexts.

The chapter is organized as follows. Section 4.2 presents the literature review on existing

studies about clinical trial enrollment planning. In Section 4.3 we illustrate the basic elements of

CTrES including the process flow and the simulation inputs. The sensitivity measures of interest

for the CTrES users and the solutions to new technical challenges are addressed in Section 4.4.

Section 4.5 summarizes results from an illustrative one-country-ten-site case, followed by conclu-

sions in Section 4.6.

4.2 Literature Review

Clinical trial enrollment planning has been studied from different perspectives for different pur-

poses. However, most published research makes significant simplifying assumptions to formulate

the problem as a mathematical model that is tractable.

From the perspective of production planning and supply chain design, the key is to position

the right inventory of drugs at the right time at the right trial site considering both the cost of

production, shipping, inventory carrying, enrollment, and duration of the clinical trial, e.g., Zhao

et al. (2018, 2019). The problem is formulated as a multi-stage stochastic programming model

and the only uncertainty considered is the number of patients, which is modeled as a countable

number of scenarios where each scenario represents a possible realization based on previous trial

data. Furthermore, the enrollment cost is either not considered or assumed to be independent of

patient arrivals, which seems unrealistic in the scenarios modeled by CTrES.

Kouvelis et al. (2017) study the problem of maximizing the expected net present value of a

drug considering the costs of clinical trial, the drug’s likelihood of approval, and its subsequent

expected revenue if approved given the maximum duration of the study. The problem is modeled



75

as a discrete-time, discounted dynamic program determining when and how many test sites should

be opened and the rate at which patients should be recruited to achieve the optimum. To simplify

the analysis, the paper assumes that the sites will be opened in a given order, which is restrictive

unless all sites have identical capacity and zero startup cost. Moreover, under most cases, the

recruitment rate is not controllable but rather a site-specific characteristic with uncertainty.

There are also many studies focusing on modeling of patient recruitment, e.g., Monte Carlo

simulation models in Abbas et al. (2007), and the Pareto-Poisson statistical model in Mijoule et al.

(2012). The most widely used is the Gamma-Poisson model in the empirical Bayesian framework

proposed by Anisimov. This purely statistical model not only enables the prediction of recruitment

with confidence bounds, but also evaluates various site performance measures and approximates

the minimal number of sites needed with confidence (Anisimov, 2008, 2009, 2016). The model

accounts for the natural variation in recruitment over time, in recruitment rates among different

sites, and in site startup delays (Anisimov, 2008). However, the real-life clinical trail enrollment

process is far more complex because of the uncertainty associated with site startup and enrollment

success, and the patient screening success. Mijoule et al. (2012) further studies to what extent

estimation error of the arrival rate generates an error in the prediction of the trial duration, which

is known as “input uncertainty” in the simulation literature.

In summary, no model in the existing literature fully captures the risk arising in different stages

of a clinical trial enrollment plan, let alone the capability of answering the what-if questions that

are critical for indicating where input change or management effort may be desirable.

4.3 The Clinical Trial Enrollment Model

SAS considers any stochastic simulation to consist of system logic and simulation inputs. For a

clinical trial enrollment simulation, the process flow in Figure 4.2 plays the role of the system logic,

and Table 4.1 specifies the simulation inputs. Sampling realizations of these inputs and applying
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Figure 4.2: High-Level View of Clinical Trial Enrollment Process Flow.

the system logic enables the generation of predictions of KPIs.

Figure 4.2 presents a high-level illustration of the CTrES process flow, which is implemented

in SAS Simulation Studio, a Java-based discrete-event simulation tool (Hughes et al., 2018). Thus,

SAS Simulation Studio serves as the engine for SAS CTrES to address clinical trial enrollment

planning questions for SAS customers; it is made available through a web interface as software as

a service.

The simulation model is composed of three modules consistent with the three main events

introduced in Section 1: (i) country activation, (ii) site activation, and (iii) patient enrollment and

tracking. Each module introduces a specific entity flowing through the corresponding portion of the

logic illustrated in Figure 4.2: (i) Country entities in Country Activation module, (ii) Site entities in

Site Activation module, and (iii) Patient entities in Patient Enrollment and Tracking module. Each

entity has attributes that are subject to uncertainty characterized by probability distributions based

on expert opinions and historical data. Within each replication, the realized value of each uncertain
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attribute of each entity is updated after the corresponding subprocesses and reported right before

leaving the corresponding module.

Box (2018) outlines the following key points for the CTrES process flow: (a) A start time

is established as Day 0 for the clinical trial study. (b) Countries are selected and may receive

approval after a certain duration of delay. Countries may have different values for the startup delay

during country activation. Once a country successfully starts up, site initiation begins. (c) Sites are

initiated in the countries that start up successfully and can start enrolling patients. (d) Patients start

arriving at sites that are activated successfully and able to enroll for screening. (e) Some of the

patients fail the screening process while those passing the screening test are enrolled in the study.

(f) Patients progress through the study. Some of the patients quit the study early while others reach

the last scheduled visit. (g) As soon as total patient enrollment reaches the target enrollment, the

patient arrival process is terminated. (h) The study remains operational until all the patients that

are still flowing through the system either finish the study or drop out.

The two primary KPIs of interest for a CTrES user is the time it takes to enroll a given tar-

get number of patients, say 800, denoted as “TimeToEnrollTarget,” and the implied total cost of

the clinical trial, denoted as “TotalCost,” which is the sum of country and site activation costs,

and the costs of screening and enrolling 800 patients. There are two other timeline KPIs: “First-

TimeEnrolls,” which is the time the first patient enrolls, and “EnrollmentDuration,” which is the

time between “FirstTimeEnrolls” and “TimeToEnrollTarget.”

For these KPIs, only the stochastic inputs associated with countries and sites are relevant for

the development of the local sensitivity analyzer for SAS CTrES. Table 4.1 lists those uncertain

inputs and their corresponding probability distributions, which are the sources of uncertainty in the

process flow illustrated in Figure 4.2. The use of the three-parameter triangular distribution to cap-

ture the uncertainty associated with the length of subprocesses is common practice so that expert

users can provide the corresponding input parameters, i.e., minimum, most likely, and maximum

values. The Bernoulli distributions are used to capture the uncertainty associated with a subprocess



78

Table 4.1: Distributions Relevant for Local Sensitivity Analysis.

Level Uncertainty Input Distribution Input Parameters
Country Startup Delay triangular distribution (min, mode, max)

Startup Success Bernoulli distribution probability
Screening Failure Bernoulli distribution probability

Site Startup Delay triangular distribution (min, mode, max)
Startup Success Bernoulli distribution probability
Enrollment Success Bernoulli distribution probability
Identification Delay triangular distribution (min, mode, max)
Site Patient Arrival piecewise-constant non-stationary (rate high, rate low)

Poisson process (NSPP) with two pieces
Duration of Rate High triangular distribution (min, mode, max)

happening or not. Notice that although the enrollment of each patient is subject to the probability

of passing screening, the screening failure distribution is designed at the country level.

The input that is quite different and worth more explanation is the patient arrival process,

designed at the site level. The arrival process of patients is characterized by a piecewise-constant

non-stationary Poisson process (NSPP) with two pieces because sites tend to have patients arriving

at a higher rate at the beginning of the clinical trial. Moreover, there is uncertainty about the length

of the time the arrival rate is high. A triangular distribution is used to capture this uncertainty.

4.4 Sensitivity Measures and New Challenges

The what-if questions described in Section 4.1 can be summarized as the quantification of the

expected change in the mean KPI per unit change in the mean or standard deviation of each un-

certain subprocess, as characterized by probability distributions specified in Table 4.1. Since the

KPI is the simulation output and we are interested in its mean, where no confusion will arise, we

will redefine KPI as the expectation of the simulation output from now on, i.e., KPI ≡ E[output].

Therefore, the goal is to measure the sensitivity of each KPI to the mean or standard deviation of

each input distribution, near a nominal setting. This goal fits in the framework of output-property-
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with-respect-to-input-property sensitivity measures proposed in (Jiang et al., 2019, 2020). The

sensitivity measures of interest in the context of CTrES are two special cases of the general family:

mean sensitivity to mean (MSM) and mean sensitivity to standard deviation (MSSD). The MSSD

measure is built upon the mean sensitivity to variance (MSV) measure described in Jiang et al.

(2020) through replacing the variance by the standard deviation.

For ease of explanation we focus on a single output and a single input distribution. Let Y be

the simulation output, E[Y ] be one of the KPIs, and X ∼ F(·|θ) be one of the uncertain inputs that

are listed in Table 4.1 with distribution parameter θ . Without loss of generality, let θ ∈ℜp where

p ≥ 1. Further, let µ = µ(θ) and σ = σ(θ) be the mean and standard deviation of input X , both

of which are differentiable with respect to θ around the nominal setting θ = θ
0.

Recaping the definition introduced in Jiang et al. (2020), the MSM measure is defined as the

directional derivative of E(Y ) with respect to µ along a normed direction ~d from the nominal

parameter setting θ
0, i.e.,

MSM~d =
∂E(Y )
∂ µ~d

=
~dT ∇

θ
0E(Y )

~dT ∇
θ

0 µ
.

A meaningful direction is the steepest-ascent direction of the mean,~d = ∇
θ

0 µ/‖∇
θ

0 µ‖, which is

a defensive (aggressive) choice assuming the goal is to identify the maximal sensitivity. Similarly,

MSSD is defined as

MSSD~d =
∂E(Y )
∂σ~d

=
~dT ∇

θ
0E(Y )

~dT ∇
θ

0σ
.

For sensitivity with respect to the standard deviation, meaningful directions are the steepest ascent

direction along which σ increases the fastest:~d = ∇
θ

0σ/‖∇
θ

0σ‖; and the minimum-mean-change

direction, which minimizes the rate of change in the mean of the input while increasing its standard

deviation. The minimum-mean-change direction can be determined through solving an optimiza-

tion problem similar to the one in Section 2.1 of Jiang et al. (2020) after replacing σ2 with σ .

In the context of CTrES, the gradient of the mean or standard deviation of the inputs with

respect to the input parameter, ∇
θ

0 µ or ∇
θ

0σ , are known and the key is estimating ∇θ 0E(Y ),
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known as the stochastic gradient. For stochastic gradient estimation in CTrES we used the method

of Wieland and Schmeiser (2006) as extended by Lin et al. (2015).

Specifically, let Yj be the output and Xi j, i = 1,2, . . . ,m j, be the input variates generated within

replication j, j = 1,2, . . . ,n, where m j could be random. The input parameter of X under the

nominal setting, θ
0, can be estimated (e.g., maximum likelihood estimation, or moment matching)

as a function of the input variates observed within each replication. The method of Wieland and

Schmeiser regards the estimator of the parameter, θ̂ j, as the realized value of θ that is fixed at

θ
0 and estimates the sensitivity of the response Yj to this realized parameter θ̂ j as it varies across

n replications. Because this relationship is linear when the distribution of (Y j, θ̂ j) is multivariate

normal, the gradient, ∇
θ

0E(Y ), can be estimated by the ordinary least square (OLS) estimator of

the slope coefficient of linear regression of Yj on θ̂ j, i.e.,

∇̂
θ

0E(Y ) = β̂ 1,OLS when β̂ OLS =
(

θ̂
>

θ̂

)−1
θ̂
>

Y =

β̂0,OLS

β̂ 1,OLS

 (4.1)

where Y = [Y1,Y2, . . . ,Yn]
> ∈ℜn is the vector of output, and

θ̂ =



1 θ̂
>
1

1 θ̂
>
2

...
...

1 θ̂
>
n


.

In some cases when there is only one input variate observed (i.e., m j = 1) such that θ̂ j can not be

obtained, we break replications into batches and estimate the parameters within the batches. To be

consistent, the observed output is batched with the same batch size to estimate its mean, which is

regressed on the within-batch estimators of the parameters to estimate the gradient.

However, the framework in Jiang et al. (2020) is not sufficient for conducting local sensitivity
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analysis for all CTrES inputs. In Table 4.1, only sensitivity to Screening Failure fits perfectly

within our previous work. The sensitivity to inputs following a triangular distribution needs a

problem-specific direction. The sensitivities to the remaining inputs require new methods. We

describe these new challenges and our solutions in four subsections below.

4.4.1 Direction~d for Triangular Distribution

The challenge presented by the triangular distribution is that its support depends on the distribu-

tion parameters and that makes the gradient of the mean or standard deviation with respect to the

input parameters hard to interpret. In this case, the meaningful directions described above are not

appropriate. This is an example of a problem-specific direction that we need to determine in the

context of CTrES.

Denoting the parameters of a triangular distribution as (a,b,c), where a is the minimum, b is

the mode, and c is the maximum, the mean and standard deviation of the distribution are given by

µ =
a+b+ c

3

σ =

√
a2 +b2 + c2−ab−ac−bc

18
.

For sensitivity with respect to the mean (i.e., MSM), the unit-norm steepest ascent direction

of the mean, where the probability density function (pdf) shifts to the right by
√

3/3 unit (i.e.,

~d = (
√

3/3,
√

3/3,
√

3/3)>), still makes sense for CTrES. Along this direction the mean increases

at the fastest rate while the standard deviation is kept constant, i.e., isolating the effect of input-

distribution location with minimal change to its spread.

For sensitivity with respect to the standard deviation (i.e., MSSD), we chose a meaningful

direction to be the direction where the end points of the pdf move in the opposite direction by the

same amount, i.e,~d = (−
√

2/2,0,
√

2/2)>. The triangular distribution has no unique min-mean-

change direction because of having more than two parameters. However, this particular min-
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mean-change direction is practically meaningful for CTrES because the expert users who provide

the parameters are often confident about the mode but not the support of the distribution. Thus,

the sensitivity measure that tells users the impact of adjusting the minimum and the maximum of

a triangular distribution without affecting the mean or mode is the most useful.

4.4.2 Sensitivity with Respect to Piecewise-constant NSPP

The piecewise-constant NSPP in CTrES consists of two distinct arrival rates, λhigh and λlow, over

two intervals [0,Lhigh) and [Lhigh,T ), where Lhigh is the duration of the time when the arrival rate

is high. The duration Lhigh has a triangular distribution, and T is the time necessary to enroll

the required number of patients. Because this piecewise-constant NSPP has two intervals with

uncertain length, it is particularly challenging to directly measure the sensitivity with respect to its

mean or standard deviation.

As suggested in Morgan et al. (2016), each interval in a piecewise-constant NSPP can be re-

garded as a single input distribution to the simulation with the observation interval matching the

simulation interval. Therefore, the sensitivity with respect to this NSPP can be decomposed into

sensitivities with respect to two independent Poisson processes. We describe the Poisson process as

interarrival times following exponential distribution so that the corresponding stochastic gradient

can be estimated using the method of Wieland and Schmeiser (2006). For exponential distribution

µ = σ , so we only do sensitivity to the mean of the interarrival time. With this formulation, the

sensitivity falls within the framework of Jiang et al. (2020).

The stochastic input Lhigh is problematic because it affects the number of arrivals under the

high and low rates. Therefore, we reformulated the sensitivity question to be “How sensitive are

the KPIs to the actual duration of the time when the arrival rate is high?” To obtain this we

simply do a regression of the simulation output on the observed value of Lhigh of all sites and the

sensitivities are the corresponding coefficients.
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4.4.3 Sensitivity with respect to Bernoulli Distribution

For the inputs following a Bernoulli distribution, only sensitivity with respect to the mean of

the input, i.e., µ ≡ E(X) = p, makes sense, so MSM requires estimating the stochastic gradient

∂E(Y )/∂ p. For Screening Failure, the screening test results of at least 800 patients are recorded

within each replication, so the stochastic gradient we need can be estimated using the method of

Wieland and Schmeiser (2006). However, for Startup Success and Enrollment Success, only a sin-

gle outcome (0 or 1) is observed in each replication. Thus, the method of Wieland and Schmeiser

(2006) does not apply.

However, notice that when there is a single Bernoulli ∂E(Y )/∂ p can be derived directly by

conditioning on X ∼ Bernoulli(p), i.e.,

E[Y ] = E[Y |X = 1]p+E[Y |X = 0](1− p)

⇒ ∂E[Y ]
∂ p

= E[Y |X = 1]−E[Y |X = 0]. (4.2)

Expression (4.2) can be estimated directly from the output data by

η̂ =
∂ Ê[Y ]

∂ p
=

∑
n
i=1Yi · I{Xi = 1}
∑

n
i=1 I{Xi = 1}

− ∑
n
i=1Yi · I{Xi = 0}
∑

n
i=1 I{Xi = 0}

.

An estimator of the variance of η̂ is derived in Appendix E, which is needed because the denomi-

nators are random variables.

4.4.4 Interacting Inputs

In the context of CTrES, there are inputs that interact with each other. For example, as shown in

Figure 4.2, the impact of a site’s startup delay and interarrival time only matter if that site starts

up successfully and is able to enroll patients. Similarly, the site-specific inputs of a country have

impact on the KPIs only when that country starts up successfully. With such interacting inputs, it
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is tricky to find an appropriate sensitivity measure.

Specifically, if the result of the country startup is failure, then no variates will be observed

from uncertain inputs at the site level for all sites in the country. Similarly, if the startup or en-

rollment of a site fails, no variates will be observed from the inputs Site Patient Arrival or Du-

ration of Rate High for that site. One solution is measuring the sensitivities conditional on the

successful startup of the country and all sites, and enrollment at all sites. However, this is a sen-

sitivity conditional on a situation that rarely happens and it does not answer the what-if questions

that help with plan management. What CTrES users want is an unconditional sensitivity measure.

Therefore, we propose a new input that considers the interaction among inputs. We demonstrate

for the case when X ∼ F(·|θ), B ∼ Bernoulli(p), and θ = E[X ] with nominal value θ
0. Define a

new variable X ′ = XB which has θ
′ = E[X ′] = pθ and B is the input that interacts with X . Because

X ′ is observable on each replication, we can apply the method of Wieland and Schmeiser (2006)

to estimate the stochastic gradient of E[Y ] with respect to θ
′ using OLS by regressing Yj on the

observed parameter θ̂
′
j, j = 1,2, . . . ,n, i.e.,

Y = β0 +β
>
1 θ̂
′
+ ε. (4.3)

However, if we use the model in (4.3) we have ∇
θ

0E[Y ] = pβ 1 where β 1 can be estimated via

OLS. Thus, for unconditional sensitivity we use pβ̂ 1,OLS as the estimator of the gradient of E[Y ]

with respect to θ .

4.4.5 Dependence Because Total Enrolled Patients is Fixed

A CTrES simulation stops when a fixed number of patients, say 800, is enrolled. This forces a

constraint on the number of patients recruited at each open site because they have to total to 800.

Therefore, there is functional dependence among the observed arrival processes of open sites. The

goal here is to decide how to parameterize the interarrival time such that the dependence works in
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our favor for local sensitivity analysis. For the purpose of explaining our solution, suppose each

site has only as single arrival rate, instead of high and low.

Let θ̂
(i)

be the observed parameter of the exponential distribution of the interarrival time of site

i. Suppose there are S sites where each is affected by its Startup Success B(i) ∼ Bernoulli(p(i)).

The regression model for estimating the gradient of E[Y ] with respect to θ
(i) at the nominal setting

is given by

Y = β0 +
S

∑
i=1

β
>
i B(i)

θ̂
(i)
+ ε.

Analysis of the model is straightforward if B(i) is independent of B( j) and B(i) is independent of

θ̂
( j)

for i 6= j, ∀i, j. However, the latter assumption does not hold because the simulation terminates

when 800 patients are enrolled.

Specifically, when θ is the rate parameter λ , the arrival counting process of site i, N(i)(t), is

Poisson(λ (i)t), and the time it takes to enroll 800 patients can be represented as:

T = inf

{
t ≥ 0 :

S

∑
i=1

B(i)N(i)(t) = 800

}

⇒
S

∑
i=1

B(i)N(i)(T ) = 800. (4.4)

Therefore, the observed arrival rate of site i is λ̂ (i) =B(i)N(i)(T )/T and Equation (4.4) is equivalent

to ∑
S
i=1 λ̂ (i) = 800/T , which shows that λ̂ (i)’s are not independent. If λ̂ (i) is larger than expected,

the observed rates of other sites must be smaller to compensate. Such dependence among pre-

dictors of the regression makes sense from a local sensitivity point of view. Thus, we propose

parameterizing the interarrival time by the rate parameter and using p(i)β̂ i as the change in E[Y ]

per unit increase in the observed rate of at site i.

If on the other hand, we let θ
(i) be the mean interarrival time µ(i), then the observed mean

interarrival time at site i is given by µ̂(i) = T/
(

B(i)N(i)(T )
)

when B(i) = 1, and is undefined oth-

erwise. In this case we no longer have the sum of B(i)µ̂(i) to be some constant and the relationship
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among the µ̂(i)’s depends on the observed B(i)’s. Therefore, the resulting regression coefficients

are hard to interpret.

4.4.6 Large Number of Inputs

A CTrES simulation typically involves multiple countries and hundreds of sites, which leads to

a huge number of inputs. With so many sensitivities to look at, it is challenging to tease out the

inputs that are critical for a better clinical trial enrollment plan. Therefore, backward stepwise

regression is used to pre-screen all relevant inputs such that the reduced model only includes the

ones that have statistically significant impact on the KPIs.

4.5 An Illustrative Case: One Country with Ten Sites

In this section we illustrate interesting results discovered via local sensitivity analysis on a CTrES

simulation with 1 country, 10 sites. This is a realistic case for a clinical trial in the U.S., but

specific parameter values were chosen only for demonstration purposes. The country and all sites

are subject to the uncertainties specified in Table 4.1; There are 62 stochastic inputs with 135

parameters in total. The two primary KPIs are the mean time it takes to enroll 800 patients (denoted

as “TimeToEnrollTarget”) and the mean of the implied total cost (denoted as “TotalCost”). The

simulation was run for 6000 replications and the estimated mean “TimeToEnrollTarget” and mean

“TotalCost” are around 61 weeks and 8 million dollars. Using these 6000 replications we measured

the sensitivity of each KPI to the mean and standard deviation of each stochastic input and screened

out the unimportant ones.

When we interpret the sensitivity measure, the change in the mean or standard deviation of an

input is in its actual units, i.e., in weeks for Startup Delay, Identification Delay, and interarrival

time, and in percentages for Startup Success, Enrollment Success, and Screening Failure. For

ease of representation, we express the units of cost in thousands of dollars (K). Except for Lhigh,
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where we care about the effect of a change in its actual value, for other inputs we focus on the

MSM measures because the MSSD measures only make sense for inputs that have a triangular

distribution and the change in the standard deviation of those inputs has negligible impact on the

KPIs in this particular illustration.

We first consider the sensitivities with respect to Lhigh, which tell us how the KPIs respond to a

change in the duration of the time when the arrival rate is high at each site. Notice that there is risk

pooling because the change in Lhigh of all sites that are activated successfully might contribute to

the change in the KPIs, which by design makes the sensitivity lower. Therefore, we set a threshold

for reporting sensitivities to be a negative value significantly different from 0. This is because

an increase in the duration of the high rate period increases the average rate of arrivals and thus

decreases the KPIs of interest. For the response mean “TotalCost,” the sensitivity with the largest

magnitude is around −$6K with respect to Lhigh of site 10, indicating that when the Lhigh of site

10 increases by 1 week, the mean “TotalCost” of enrolling 800 patients is expected to decrease

by −$6K. Among all sites, site 10 has the largest impact because it has relatively high arrival

rate throughout but incurs the lowest costs of screening and enrolling patients. The sensitivities

for mean “TimeToEnrollTarget” are not reported because the coefficients of most of the sites are

statistically significant but close to zero.

For MSM results, the site-specific interarrival time is always the most important category

among the remaining 52 inputs. Specifically, mean ”TimeToEnrollTarget” is sensitive to the in-

terarrival time at all sites, especially during the high rate period at sites 5 and 9. The values are 6

and 12, indicating that 1 week increase in the mean interarrival time at site 5 would increase the

mean “TimeToEnrollTarget” by 6 weeks and 12 weeks for site 9. For inputs determining whether a

subprocess happens or not, Screening Failure has the largest impact: 1% increase in the screening

failure probability would increase the mean enrollment duration by around 0.8 week.

In summary, to shorten the time it takes to enroll 800 patients, we recommend putting manage-

ment effort on increasing the patient traffic at sites 5 and 9.
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For mean “TotalCost,” the sensitivities with respect to the mean interarrival time of sites 5, 7,

and 10 during the period with high arrival rate are around −$120K, −$90K, and $120K, respec-

tively, which are the largest among all significant inputs. That is, the mean total cost is expected

to decrease by $120K when the mean interarrival time at site 5 increase by 1 week, and decrease

by $90K for site 7. On the other hand, if the mean interarrival time at site 10 increased by 1 week,

the mean total cost would increase by $120K. The opposite impact of an increase in the mean

interarrival time at these sites is because of their high arrival rates but different costs of screening

and enrolling patients. Among all site, sites 5 and 7 have the highest and site 10 has the lowest

cost. Thus, the increase in mean interarrival time at sites 5 or 7 would decrease the proportion

of patients get enrolled with high costs and thus reduces the total cost. Comparing sensitivities

with respect to the inputs capturing the uncertainties associated with the success of subprocesses,

Screening Failure is the largest, which is around $23K. That is, 1% increase in the screening

failure probability comes with the increase in the mean total cost by $23K. Among the 10 sites,

sensitivities with respect to the Startup Success and Enrollment Success of site 10 have the largest

magnitude, i.e., −$3K and −$4K, respectively.

Therefore, the most efficient way to reduce the total cost is to put management effort on de-

creasing the patient traffic at site 5 or increasing the patient traffic at site 10. However, because

the time to enroll patients is the most important concern of the enrollment plan, the management

strategy that is both time and cost efficient is increasing the patient traffic at sites 5, 9, and 10.

4.6 Conclusions

SAS CTrES is a powerful tool for CROs and pharmaceutical companies for clinical trail enrollment

planning because it is capable of capturing all the uncertainties throughout the process and quanti-

fying the risk in the cost and enrollment prediction beyond the traditional deterministic solutions.

However, CTrES lacks the capability to quickly answer the what-if questions that are important
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for problem diagnosis and management of a clinical trial. We extend the framework in Jiang et al.

(2020) and enable CTrES to conduct local sensitivity analysis to answers the what-if questions for

any number of stochastic inputs without running addition simulations beyond the basic scenario.

Instead of directly opening more sites to improve only the most important KPI, the time it takes

to enroll a given target number of patients, the sensitivity measures suggest smart resource and

management effort allocation strategies that are both time efficient and cost efficient.
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Appendix A

Derivation of ∂̂LRVar(Y )/∂θ0

Using standard LR reasoning, the LR gradient estimator of E(Y 2) with respect to θ in the one-

dimensional context is given by

Y 2(θ)
∂ ln f (X |θ)

∂θ
.

Averaging across n replications, the gradient estimator of E(Y 2) with respect to θ is

∂̂LRE(Y 2)

∂θ0
=

1
n

n

∑
j=1

Y 2
j (θ0)

∂ ln f
(
X j|θ0

)
∂θ

. (A.1)

Using insight (??) and estimating E(Y ) by Ȳ , we can obtain the a gradient estimator of Var(Y ) with

respect to θ at nominal setting in (3.12) after plugging in the estimator of ∇θ 0E(Y ) from (3.11)

and the estimator of ∇θ 0E(Y 2) from (A.1).

Notice that we could do all pairwise differences to estimate Var(Y ), i.e.,

s2
Y =

1
2
(n

2

)∑
i 6= j

(
Yi−Y j

)2
=

1
n(n−1) ∑

i 6= j

(
Yi−Yj

)2
,
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where the gradient of each summand with respect to θ can be estimated using LR reasoning as

(Yi−Yj)
2 ∂ ln

[
f (Xi|θ0) f (X j|θ0)

]
∂θ

.

Thus, the resulting gradient estimator is

∂̂LRVar(Y )
∂θ0

=
1

n(n−1) ∑
i6= j

(
Yi−Yj

)2 ∂ ln
[

f (Xi|θ0) f (X j|θ0)
]

∂θ
.

Although this gradient estimator is unbiased, it is expensive to compute.
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Appendix B

LR Gradient Estimators for SAN with

Output E(Y )

Distribution of X Parameter LR Gradient from jth Replication

exponential µ (mean) Yj(X j−µ)/µ2

weibull k (shape) Yj

(
1
k + logX j− logλ − log X j

λ

(
X j
λ

)k
)

weibull λ (scale) Yj

(
− k

λ
+ k

λ

(
X j
λ

)k
)

gamma α (shape) Y j
(
logβz(α)+ logX j

)
gamma β (scale) Yj

(
β

α
−X j

)
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Appendix C

Variance Estimators

This appendix derives variance estimators associated with our sensitivity point estimators.

C.1 Estimating Variance of the ∇̂θ 0E(Y )FD and ∇̂θ 0E(Y )LR

We consider estimators of the variances of ∇̂θ 0E(Y )FD and ∇̂θ 0E(Y )LR together because both

belong to Setting 1 where we have i.i.d. observations of the corresponding ∇̂θ 0 so that we can

compute its sample variance-covariance matrix. Specifically, extending the expression in (3.9)

to θ = (ϑ1,ϑ2, . . . ,ϑp)
>, where ϑi’s are individual components of θ , the FD gradient esti-

mator is an average of the i.i.d. observations of the basic FD gradient estimator, FD(θ 0) j =

(FD(ϑ1) j,FD(ϑ2) j, . . . ,FD(ϑp) j)
>, across n replications, where FD(ϑk) j = (Yn+ j(θ 0 +∆ϑk)−

Y j(θ 0))/∆ϑk. Thus, the p× p sample variance-covariance matrix of FD(θ 0) divided by n is an

estimator of the variance-covariance matrix of the FD gradient estimator.

Similarly, based on the expression in (3.11), the LR gradient estimator for θ ∈ℜp is also an av-

erage of the i.i.d. observations of the basic LR gradient estimator, LR(θ 0) j = Y (θ 0) j∇θ 0 ln f (X j),

j = 1,2, . . . ,n. Thus, the variance-covariance matrix of the LR gradient estimator can also be

estimated by the sample variance-covariance matrix of LR(θ 0) divided by n.
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C.2 Estimating the Variance of the ∇̂θ 0E(Y )WS

When using the method of Wieland and Schmeiser (2006), we regress Y on Θ̂ to estimate the

gradient of E(Y ) with respect to all input parameters,

∇Θ0E(Y ) =
(

∇
>
θ
(1)
0

E(Y ),∇>
θ
(2)
0

E(Y ), . . . ,∇>
θ
(K)
0

E(Y )
)>

,

where ∇>
θ
(i)
0

is the gradient with respect to the parameters of ith input distribution. Assuming the

joint distribution of (Y,Θ̂) is multivariate normal, we have the correct regression model and the

gradient estimator is the OLS estimator of the slope coefficients. This case belongs to Setting 2

and the variance-covariance matrix can be estimated by V̂ in (3.16) where the predictor variable x

is Θ̂.

C.3 Estimating Variance of ∇̂θ 0Var(Y )FD and ∇̂θ 0Var(Y )LR

Estimation of the variances of ∇̂θ 0Var(Y )FD and ∇̂θ 0Var(Y )LR are similar and straightforward be-

cause in both cases the ∇̂θ 0 is, or at least can be approximated as, an average of i.i.d. observations

of the basic gradient estimator.

Extended from (3.10), the FD estimator of ∇̂θ 0Var(Y )FD is an average of the i.i.d. obser-

vations of FD(θ 0)` = (FD(ϑ1)`,FD(ϑ2)`, . . . ,FD(ϑp)`)
>, for ` = 1,2, . . . ,k, where FD(ϑk)` =(

S2
k+`(θ 0 +∆ϑk)−S2

`(θ 0)
)
/∆ϑk is obtained within the `th batch. Hence, this case belongs to Set-

ting 1 and the estimator of the variance-covariance matrix of ∇̂θ 0Var(Y )FD is the sample variance-

covariance matrix of FD(θ 0) divided by k.

The LR gradient estimator in (3.12) belongs to Setting 3 and is approximated as

an average of the i.i.d. observations of the basic LR gradient estimator, LR(θ 0) j =(
Y 2

j (θ 0)−2ȲYj(θ 0)
)

∇θ 0 ln f (X j), across n replications. Thus, the variance-covariance matrix

of ∇θ 0Var(Y ) can be estimated in the same way as for the LR gradient estimator of ∇θ 0E(Y ).
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However, when approximating Setting 3 as Setting 1—that is, treating Ȳ as constant—the resulting

variance estimator is not generally consistent because of non-negligible covariances terms.

C.4 Estimating Variance of ∇̂θ 0Var(Y )WS

If we use the WS method together with batching to set up the linear regression, the variance

estimated within batches, S2, is regressed on the batch means of Θ̂ with batch size b, Θ̂(b), to

estimate the complete gradient

∇Θ0Var(Y ) =
(

∇
>
θ
(1)
0

Var(Y ),∇>
θ
(2)
0

Var(Y ), . . . ,∇>
θ
(K)
0

Var(Y )
)>

.

Under the assumption the joint distribution of (S2,Θ̂(b)) is multivariate normal, we have Setting 2

where the response vector Y = [S2
1,S

2
2, . . . ,S

2
k ]
>, x is Θ̂(b).

Alternatively we can do multi-response regression, i.e., regressing both Y and Y 2 on Θ̂, to

obtain the gradient estimator ∇̂Θ0Var(Y ) = ∇̂Θ0E(Y 2)−2Ȳ ∇̂Θ0E(Y ), which is a linear combination

of two OLS estimators. Again, if we treat Ȳ as constant, then the variance-covariance matrix of the

gradient estimator is

Var
(

∇̂Θ0Var(Y )WS

)
= Var

(
∇̂Θ0E(Y 2)

)
+4Y 2Var

(
∇̂Θ0E(Y )

)
−4Y Cov

(
∇̂Θ0E(Y 2), ∇̂Θ0E(Y )

)
.

(C.1)

Specifically, we have two regression models:

Y = Xβ + ε1

Y2 = Xα + ε2



101

where

X =



1 Θ̂>1

1 Θ̂>2
...

...

1 Θ̂>n


is common to both models, Θ̂ j is Θ̂ estimated within the jth replication, Y = [Y1,Y2, . . . ,Yn]

>, and

Y2 = [Y 2
1 ,Y

2
2 , . . . ,Y

2
n ]
>. We estimate ∇Θ0E(Y ) and ∇Θ0E(Y 2) by the OLS estimator of the slope

coefficients of the two models above, i.e., β 1,OLS and α1,OLS. Since both cases belong to Setting 2,

assuming the joint distributions of (Y,Y 2,Θ̂) is multivariate normal, and Y⊥ ε1 and Y2 ⊥ ε2, then

the variance-covariance matrices of these two OLS estimators, and the covariance matrix between

them, can be estimated from regression, which gives us all the terms needed for estimating the

variance-covariance matrix in (C.1). The complete derivation is in Appendix D. Of course, this

estimator is biased because the covariance between ∇̂Θ0E(Y 2) and 2Ȳ ∇̂Θ0E(Y ) and between Ȳ and

∇̂Θ0E(Y ) are not taken into account.



102

Appendix D

Complete Derivation of Variance of

Multi-response Regression

When writing Var(Y ) = E(Y 2)−E2(Y ) and set up multivariate regression to estimate ∇Θ0Var(Y ),

the gradient estimator is given by

∇̂Θ0Var(Y )WS = ∇̂Θ0E(Y 2)WS−2Ȳ ∇̂Θ0E(Y )WS

where ∇̂Θ0E(Y 2)WS = Σ̂Y 2,Θ̂

(
Σ̂

Θ̂,Θ̂

)−1
is equivalent to the OLS estimator of the slope coefficients

of the multiple linear regression of Y 2 on Θ̂, and ∇̂Θ0E(Y )WS = Σ̂Y,Θ̂

(
Σ̂

Θ̂,Θ̂

)−1
is equivalent to the

OLS estimator of the slope coefficients of the multiple linear regression of Y on Θ̂. Treating Ȳ as

constant, the variance-covariance matrix of the gradient estimator is simplified to

Var
(

∇̂Θ0Var(Y )WS

)
= Var

(
∇̂Θ0E(Y 2)

)
+4Y 2Var

(
∇̂Θ0E(Y )

)
−4Y Cov

(
∇̂Θ0E(Y 2), ∇̂Θ0E(Y )

)
.

Assuming the relationship between Y and Θ̂ and between Y 2 and Θ̂ are both linear, both cases

belong to Setting 2 where Var
(

∇̂Θ0E(Y )
)

can be estimated by V̂ in (3.16) with x = Θ̂, and
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Var
(

∇̂Θ0E(Y 2)
)

can be estimated by V̂ in (3.16) with the response vector Y2 = [Y 2
1 ,Y

2
2 , . . . ,Y

2
n ]
>

and the predictor variable x = Θ̂.

We can derive, in a similar manner to Jiang et al. (2019), that

Cov(∇̂Θ0E(Y )WS, ∇̂Θ0E(Y 2)WS) =
σεY,Y 2

n−q−2
Σ

Θ̂,Θ̂

where σ2
εY

is the covariance between ε1 (Y given Θ̂) and ε2 (Y 2 given Θ̂).

Therefore,
Cov

(
∇̂Θ0E(Y 2)WS, ∇̂Θ0E(Y )WS

)
Var
(

∇̂Θ0E(Y )WS

) =
σεY,Y 2

σ2
εY

.

where σ2
εY

is the variance of ε1 (Y given Θ̂). Because σεY,Y 2 can be estimated by sεY,Y 2 , the

sample covariance between the residuals of the multiple linear regression of Y on Θ̂ and the

residuals of the multiple linear regression of Y 2 on Θ̂, and σ2
εY

can be estimated by s2
εY

, the

sample variance of the residuals of the multiple linear regression of Y on Θ̂, we can estimate

Cov
(

∇̂Θ0E(Y 2), ∇̂Θ0E(Y )WS

)
by

V̂ar
(

∇̂Θ0E(Y )
)

sεY,Y 2

s2
εY

.

Therefore, the estimator of the variance-covariance matrix of the complete WS gradient estimator

is

V̂ar
(

∇̂Θ0Var(Y )WS

)
=

(
s2

ε,E2

n−q−2
+4Ȳ

(
Ȳ −

sεY,Y 2

s2
εY

) s2
ε,E

n−q−2

)(
Σ̂

Θ̂,Θ̂

)−1
.
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Appendix E

Variance of ∂ Ê[Y ]/∂ p

Let X ∼ Bernoulli(p) be the input, Xi (0 or 1) be the observed X within the ith replication, and n

be the total number of replications. Let K be the number of Xi that are equal to 1; then we know

that K ∼ Bin(n, p). Based on Cochran (2007), conditional on K 6= 0 and K 6= n, we have for large

n and to the order of n−2:

E
(

1
K

∣∣∣∣K 6= 0,K 6= n
)
=

1− (1− p)n

(1− pn− (1− p)n)np
+

(1− p)(1− (1− p)n)

(1− pn− (1− p)n)n2 p2 . (E.1)

Similarly, we have

E
(

1
n−K

∣∣∣∣K 6= 0,K 6= n
)
=

1− (1− p)n

(1− pn− (1− p)n)n(1− p)
+

p(1− (1− p)n)

(1− pn− (1− p)n)n2(1− p)2 . (E.2)

Now let Y be the simulation output as a function of the input X , i.e., Y |X = 1 ∼ (µ1,σ
2
1 ) and
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Y |X = 0∼ (µ0,σ
2
0 ). Because K is random, the variance of η̂ can be written as

Var(η̂) = E[Var(η̂ |K)]+Var[E(η̂ |K)]

= E[Var(η̂ |K)]

= E
[

σ2
1

K
+

σ2
0

n−K

]
. (E.3)

The second equation is because Var[E(η̂ |K)] = Var[η ] = 0. Plugging (E.1) and (E.2) in Expres-

sion (E.3) we have

Var
(

η̂

∣∣∣∣K 6= 0,K 6= n
)
≡ 1− (1− p)n

1− pn− (1− p)n

(
σ2

1
np

+
σ2

0
n(1− p)

+
σ2

1 (1− p)
n2 p2 +

σ2
0 p

n2(1− p)2

)
.
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