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ABSTRACT

Methods for Images, Time Series, and Activation Functions with Deep Neural Networks

Mark Harmon

In this work, we explore the utility of the three main types of neural networks: feed forward,

convolutional, and recurrent. While using these networks, we develop a new way to model

multiagent trajectory data, explore the use of multiple activation functions for neurons at each

layer of a neural network, and create a new model that makes a dynamic number of predictions

with sequence data.
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CHAPTER 1

Introduction

The goal of this study is to create valuable new methodologies for solving problems with

deep neural networks. This work includes the three main types of neural networks: feed for-

ward (FFN), convolutional (CNN), and recurrent (RNN). Deep neural networks have a range

of uses and have been successful in applications such as: image recognition, foreign language

translation, image generation, and video classification.

These models are becoming more widely adopted in industrial settings by technological

giants. Services such as Google Voice and Alexa rely on these powerful machine learning tools

to create products we use daily. Since this field is finding success in a variety of data settings,

pushing the limits of these powerful models is imperative. This work pushes the boundaries of

a variety of neural network architectures and pushes the scope of the types of problems that can

be solved by deep neural networks. Before we begin with the main studies of this work, we first

introduce the primary components of deep neural networks, also known as ”deep learning.” In

the following chapter, we explore feed forward, convolutional, and recurrent neural networks.

1.1. Feed Forward Neural Networks

Neural networks are effective because of their ability to extract features from raw data. In

typical machine learning models, we must construct features from the raw data for our model

inputs. Hand-crafting features is time consuming and unreliable. It may take a long time to

find features that explains the variance of the dataset. A model that can extract features from
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raw data can save a lot of time otherwise spend creating features. The model may also improve

accuracy since it can automatically discover important characteristics that are missed when

manually hand-crafting features.

Feed Forward Networks (FFN) are the most basic form of a deep neural network. The

architecture of an FFN consists of a number of layers `, weights θ , and activation functions

a. The goal of an FFN is to find the weights θ that maximize the likelihood that the network

represents the relationship between the data X and the labels of the data Y . During the training

phase, the error between the outputs of the network f (X ;θ) and the labels Y is used to calculate

the next gradient step. For a classification problem, log loss is the function used to calculate the

error. At each layer `, there are a specified number of neurons that have a specified activation

function a`. The equations for a typical FFN with the Kullback-Leibler divergence as the loss

function are as follows:

min
θ

E(X ,Y )KL(Y || f (X , ;θ)) = E(X ,Y )∑
i

yi log fi(X ;θ) Optimization Function

z0 = X inputs of the model

z`i (X ;θ) = a`
( K

∑
k=1

z`−1
k θ

`−1
ik

)
for neuron i in layer ` and K neurons at layer `−1

fi(X ;θ) =
ezL

i θ L
i

T

∑m ezL
mθ L

i
T softmax function for probability of each class i

To clarify the FFN architecture, we provide a visual representation of a feed forward neural

network with Figure 1.1. The data moves through the model from the bottom to the top. Each

neuron at the input layer represents a feature from the data to be run through the model. Each
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input neuron connects to every neuron in the first hidden layer via a trainable weight, which

are typically represented as θ . At each hidden layer, there are a specified number of neurons,

each with an activation function a. Typically, the activation functions are the same for each

layer, but we challenge this notion later in Chapter 3. In the Figure 1.1, the number of neurons

is the same. This does not need to be the case. Typically, the number of neurons are treated

as hyperparameters to find the best possible architecture depending on the dataset and model

depth.

Figure 1.1. Visual representation of a Feed Forward Network (FFN) with two
hidden layers with six neurons each and three outputs. Note that it is not neces-
sary for each hidden layer to have the same number of neurons.

Usually we favor model depth over layer width due to the former yielding higher accuracy

on most datasets. In other words a model with more layers and less neurons tends to perform

better than a shallow network with many neurons. The current knowledge for this discrepancy

is that increased depth allows the model to learn more advanced features at each layer. Another
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way of viewing this phenomena is by comparing a FFN to a logistic regression model. Both

models end in a log loss function for classification problems. The difference is that a FFN

transforms the input data at each hidden layer to another space before classification. At each

transformation, the network transfers the data to a space that is more easily separable. There-

fore, with more hidden layers, the data can easily be separated at the end of the network, which

is essentially a logistic regression model.

A feed forward network has the name ”feed forward” because of the two-step process for

model training. First, the data inputs X are fed into the model, and each layer calculates a linear

combination of the weights and inputs followed by an activation function. At the network’s

output layer, the output probabilities are calculated by the softmax function. Then the log loss

between the outputs and true labels is measured. This is the feed-forward step.

The next step for training a FFN is the backpropagation step. After the error calculation, we

compute the gradient of the network with respect to the weights θ . The derivative calculations

are the most time-consuming portion of training a network. The derivatives are calculated

through the chain rule, but the large number of computations can bog down the training phase.

This is an important consideration when choosing the activation functions for a network. It is

imperative to have an activation function that trains quickly and effectively. There are a number

of typical choices for a FFN. A small fraction of these choices are:

• Sigmoid: f (x) = 1
1+e−x

• Tanh: f (x) = tanh(x)

• ReLU: f (x) = max(x,0)
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All of these activations have derivatives that are easy to calculate. More importantly, these

functions do not have exploding gradients, which may cause enormous issues when backpropa-

gating through many hidden layers. Sigmoid functions were by far the most popular activation

function before neural networks gained traction in the late 2000’s. At the time, computational

power was not widely available. Computers lacked both memory and cheap parallel computing

capabilities. Also, the gradient of the sigmoid function has a maximum value of 0.25. This

leads to an additional difficulty in training deep networks since the gradient becomes arbitrarily

small near the input layer of a network. Therefore, for most architectures, the ReLU (Rectified

Linear Unit) is used.

The ReLU was first used by Nair and Hinton (2010) for a type of network called a Restricted

Boltzmann Machine (RBM). We are not reviewing RBM’s in our work here, but ReLU’s broke

the computation barrier for training deep neural networks. The derivative is simple, being 1 or

0 except for the case in which x = 0. The ReLU is advantageous because of its gradient does

not vanish during backpropagation with deep networks. Its behavior also resembles the spiking

activation of a neuron seen in brain cell models.

1.2. Convolutional Neural Networks

In this section, we explore another main architecture used for neural networks, convolu-

tional neural networks (CNN’s). CNN’s were made specifically for a difficult ImageNet dataset

by Krizhevsky, Sutskever, and Hinton (2012). The original version of the dataset contained

200,000 training images with 1000 categories/labels. The images contained pictures of a vari-

ety of objects to classify including: vehicles, pets, and other wildlife.
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FFN’s are effective for a variety of problems, but they struggle when presented with image

classification. A FFN treats each pixel of information from an image as i.i.d., which causes

numerous issues for image classification. To clarify the weaknesses of a FFN, we utilize the

MNIST dataset, which consists of black and white images of hand-written digits as seen in

Figure 1.2.

Figure 1.2. A few images from MNIST training set. Each is composed of 28x28
pixels.

An FFN can solve this dataset with over 80% in its original form. However, an FFN will

mis-classify most examples if the digits in the images are moved one pixel to the left or right.

The images remain the same to the observer’s eye. Therefore, the FFN network is over-fitting

and more important missing the context of the relationship of one pixel to another. To prevent

over-fitting, we can shift the images an arbitrary number of pixels to the left or right, flip the

images, rotate the images φ o, and stretch the images. Introducing noise into the training data

is effective for the MNIST dataset, but it is inadequate for more complicated datasets such as

ImageNet. The ImageNet images each are 3×256×256 (3 extra dimensions for RGB), which

is too complex for the standard FFN.

CNN’s are derived from the use of filters in computer vision. Filters are used to extract

features from an image. Some filters in computer vision may extract the edges of an image

while other filters may add Gaussian noise to make an image ”fuzzy.” Filters are effective at

feature extraction for images, but we do not want to be encumbered with hand-crafting features.
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Therefore, rather than using known filters to extract information from a network, a convolutional

neural network learns the weights θ for a variety of filters.

A CNN is composed of two parts. One is the convolutional layer and the other is a pooling

layer. At the output layer, a CNN usually connects to a feed forward layer followed by a softmax

function. In Figure 1.3, we present the architecture of a typical CNN. It is composed of only

a single convolution and pooling layer before connected to a FFN hidden layer. Like a FFN,

a CNN can contain any number of layers, any number of filters, and any number of pooling

layers.

Figure 1.3. Visual representation of a Convolutional Neural Network (CNN).
This example has four filters and a single convolution and pooling layer. Note
that a CNN can have a number of convolution and pooling layers, and it has
been shown that having no pooling layer at all can result in higher accuracy
Springenberg et al. (2014).

To understand CNN’s, we explain the two main components: the convolution layer and the

pooling layer. The convolution layer contains two hyperparameters: the filter sizes and the

number of filters (number of neurons).

The shape of a filter can change depending on the type of problem being solved, but the

shape used for most image problems is square. This is subject to change depending on the be-

havior of the dataset. For example, in Chapter 4 we use 1D convolutions to extract information
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from a multiple time series signal. The filter size determines how much context the model learns

from one pixel to the next. Rather than treating each pixel as i.i.d. as in a FFN, the filter learns

the relationship between pixels that are close to one another.

Under the extreme case of a 1× 1 filter κ , a convolutional layer is computationally equiv-

alent to a feed forward layer. It is important to note that each n×m filter is used across the

entire input image. Therefore, a typical CNN will have far fewer trainable parameters than a

FFN, which helps prevent over-fitting. The convolutional step at layer ` with an n×m filter is

governed by the following equation:

x`i j =
n−1

∑
a=0

m−1

∑
b=0

κaba`−1
(i+a)( j+b)

The next part of a CNN is the pooling layer. By far the most common pooling layer is

the max pooling layer. After the convolutional layer, a max-pooling layer is typically used to

reduce the number of features and extract the most important features from the convolution step.

A pooling layer reduces the size of each filtered image, but it does not traditionally change the

number of filtered images. Each pooling layer has a predetermined pooling size, which like a

filter size, determines the number of pixels to consider in relationship with one another. A max

pooling layer finds the maximum value given the pooling size for n×m pixels,which moves

across the entire filtered image. It is important to note that recent work by Springenberg et al.

(2014) shows that using only convolutional layers may lead to better training and generalization.

In Chapters 3 and 4, we utilize only convolution layers and no pooling layers for this reason.
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1.3. Recurrent Neural Networks

One of the most relevant problems for large datasets is time series prediction. Some example

problems in this space are sentiment analysis of written documents, language translation, chat

bots, and financial security prediction. After residual networks by He, Zhang, Ren, and Sun

(2016) and inception networks by Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Van-

houcke, and Rabinovich (2015) recently garnered amazing results for image-based problems,

deep learning interests shifted toward sequence problems.

FFN’s struggle with sequences because they fail to identify relationship between each input

of a time series. A recurrent neural network (RNN) takes an input sequence one at a time

and remembers each previous input. An RNN remembers previous inputs by creating a hidden

vector that contains the features of previous inputs and combines this vector with the current

input. In Figure 1.4 we present a graphical representation of an RNN.

Figure 1.4. Visual representation of a Recurrent Neural Network (RNN). On the
right is the typical structure of an RNN and the left is an ”unrolled” version
showing memory extraction with h1 and h2 along with each individual input into
the network.

In Figure 1.4, we show the typical structure of an RNN on the right and the “unrolled”

version of the same network on the left. The “R” node represents a recurrent layer. Similar to
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other neural networks, RNN’s may have any number of layers. At each layer n of an RNN, the

hidden state hn
t transfers to layer n only at time t +1 (not any other layer i receives the hidden

vector from layer n). In addition, a recurrent layer contains separate weight matrices Wi where

i can refer to the output vector f , hidden vector h, and input x. Note that there are versions of

RNN’s that pass hidden vectors of layer n to different layers k of the network, but we do not use

these variants in our study. The following are the basic equations for a simple recurrent layer at

time t:

ft =Wf ht

ht = σ(Whht−1 +Wxxt)

σ(x) =
1

1+ e−x

The forward step of an RNN is very similar to that of an FFN. The only difference is that

class evaluations are done at each time t rather than a single time with all current features.

This small difference in the forward step causes a major difference with the backpropagation

step. Since the hidden vector ht is dependent upon each previous hidden vector hi<t , the chain

rule must be applied backwards in time as well as in layers. Therefore, each sequence input is

essentially adding a layer to the model when considering backpropagation. The computational

complexity compounded when a recurrent model consists of multiple recurrent layers. When

constructing a RNN, one must carefully consider model depth and sequence input length.

In Section 1.1, we stated that sigmoid functions lead to low performance and ReLU func-

tions are the preferred activation function for neural networks. However, since RNN’s back-

propagate through time, there is a danger of exploding gradients. The sigmoid function prevents
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exploding gradients, but it causes vanishing gradients for large sequences or deep networks.

Thus, Hochreiter and Schmidhuber (1997) present a layer they dub the Long Short Term Mem-

ory (LSTM) layer. These are the layers that we use for all of our RNN’s, which are in Chapter

4. In their paper, they show that their new LSTM layer has an effective gradient of 1, which

prevents the vanishing gradient problem present in basic recurrent networks. The following are

the basic equations of an LSTM layer with trainable weights Wnm:

ft = σ(Wf hht−1 +Wf xxt)

it = σ(Wi f ht−1 +Wixxt)

c̃t = tanh(Wchht−1 +Wcxxt)

ct = ftCt−1 + it c̃t

ot = σ(Wohht−1 +Woxxt)

ht = ot tanh(Ct)

The main idea of an LSTM layer centers around the cell state ct . When an input xt is entered

into the model, the layer first calculates the forget gate ft to determine how much of the old cell

state to forget. After calculating the proposed cell state c̃t , the new cell state ct is computed

followed by the output values ht . Note that even though this structure is more complicated than

a simple RNN, the computational overhead is minimal in our experience.
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1.4. Regularization

A typical neural network usually includes an additional term in the loss function for regular-

ization, which we present here as Ω(θ) with hyperparameter µ . Here, a hyperparameter refers

to a parameter than is trained vida cross-validation instead of by gradient descent.

min
θ

E(X ,Y )KL(Y || f (X , ;θ))+µΩ(θ)

Because of the extensive number of trainable parameters in a neural network, there is a

lot of potential for over-fitting. Typical functions for Ω(θ) are the L1 and L2 norms which

cause weight sparsity and lower weight magnitude respectively. In addition to a regularization

function, neural networks are typically regularized using a leave-one-out validation data set.

The validation set is not used during training, but is tested at each epoch, which consists of

training over all examples in the training set once. After the loss of the validation set begins to

increase drastically or the accuracy begins to decrease within some tolerance, we halt training.

Both L1 and L2 norms are used for most neural network applications. Overall in our work,

we found that the L2 norm tends to produce better results. However, there is a more popular

version of regularization that we use in nearly all networks, especially our deep architectures,

called batch normalization created by Ioffe and Szegedy (2015). We found that batch normal-

ization both decreases over-fitting and increases the training speed of the network.

Batch normalization renormalizes the data via z-score at each layer of a network to prevent

stochastic drift from one layer to the next. During the training phase, it calculates the mean and

variance of the incoming activations from the previous layer of the network. The means and

standard deviations are used to normalize the activation for each batch of data during training.
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Note that this only works when training using a batch gradient method, but this is the standard

practice in neural networks.

At the beginning of the training phase, the batch normalization layer contains a running

mean and running standard deviation. These are both used during the prediction phase of a

neural network to normalize the validation and test set inputs at each layer.
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CHAPTER 2

Image Analysis in the NBA

2.1. Contribution

In this paper, we predict the likelihood of a player making a shot in basketball from mul-

tiagent trajectories. Previous approaches to similar problems center on hand-crafting features

to capture domain specific knowledge. Although intuitive, recent work in deep learning has

shown this approach is prone to missing important predictive features. To circumvent this is-

sue, we present a convolutional neural network (CNN) approach where we initially represent

the multiagent behavior as an image. To encode the adversarial nature of basketball, we use

a multi-channel image which we then feed into a CNN. Additionally, to capture the temporal

aspect of the trajectories we use “fading.” We find that this approach is superior to a traditional

FFN model. By using gradient ascent, we were able to discover what the CNN filters look for

during training. Last, we find that a combined FFN+CNN is the best performing network with

an error rate of 39%.

2.2. Introduction to Prediction with Player Trajectories

Neural networks have been successfully implemented in a plethora of prediction tasks rang-

ing from speech interpretation to facial recognition. Because of ground-breaking work in opti-

mization techniques (such as batch normalization, Ioffe and Szegedy (2015) ) and model archi-

tecture (convolutional, deep belief, and LSTM networks), it is now tractable to use deep neural

networks to effectively learn a better feature representation compared to hand-crafted methods.
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One area where such methods have not been utilized is the space of adversarial multiagent

systems (for example, multiple independent players in competition), specifically when the mul-

tiagent behavior comes in the form of trajectories. There are two reasons for this: i) procuring

large volumes of data where deep methods are effective is difficult to obtain, and ii) forming an

initial representation of the raw trajectories so that deep neural networks are effective is chal-

lenging. In this paper, we explore the effectiveness of deep neural networks on a large volume

of basketball tracking data, which contains the x,y locations of multiple agents (players) in an

adversarial domain (game).

To thoroughly explore this problem, we focus on the following task: “given the trajectories

of the players and ball in the previous five seconds, can we accurately predict the likelihood that

a player with position/role X will make the shot?” For this paper, player role refers to a more

fluid position of a player, which was explored by Lucey, Bialkowski, Carr, Morgan, Matthews,

and Sheikh (2013). For example, a player may not be in the point guard position during the

entire play. Since we plan to utilize an image representation for player trajectories, we use a

convolutional neural network (CNN), which is widely considered a powerful method for image

classification problems.

In this study, we treat each player as a generic player, i.e. we are not using player iden-

tities. By modeling generic players rather than individuals, we can more easily quantify the

differences between an individual player and a generic player. Consider, for example, a rookie

(which clearly has limited historical data). After a few games, a coach can compare his shooting

performance against the performance of a generic player, which can be obtained by our model.

Our model offers such comparisons at a very fine granular level of play. The coach can then

guide the player to improvements. The same argument is applicable in other cases such as a
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player getting more play-time (the model allows comparison against generic players in addition

to his past performance, which clearly does not need our model). To obtain these values, we

want to identify shooting for each generic position (point guard, shooting guard, center, power

forward, and small forward). Since we classify whether the shot will be made for a single offen-

sive position, every offensive player corresponds to either the class of making a shot or missing

a shot. Therefore, our classification problem consists of ten classes.

Our work contains three main contributions. First, we represent trajectories for the offense,

ball, and defense as an eleven channel image. Each channel corresponds to the five offensive

and defensive players, as well as the ball. To encode the direction of the trajectories, we fade

the paths of the ball and players. In our case, an instance is a possession that results in a

shot attempt. Second, we apply a combined convolutional neural network (CNN) and feed

forward network (FFN) model on an adversarial multiagent trajectory based prediction problem.

Third, we gain insight into the nature of shot positions and the importance of certain features in

predicting whether a shot will result in a basket.

Our results show that it is possible to solve this problem with relative significance. The

best performing model, the CNN+FFN model, obtains an error rate of 39%. In addition, it

can accurately create heat maps by shot location for each player role. Features which are un-

surprisingly important are the number of defenders around the shooter and location of the ball

at the time of the shot. In addition, we found that our image-based model performs just as well

as a feed-forward technique that required us to build nearly 200 features.



29

2.3. Review of Multiagent Systems in Sports Prediction

With the rise of deep neural networks, sports prediction experts have new tools for analyzing

players, match-ups, and team strategy in these adversarial multiagent systems. Trajectory data

was not available at the time, so much previous work on basketball data using neural networks

have used statistical features such as: the number of games won and the number of points

scored. For example, Loeffelholz, Bednar, Bauer et al. (2009), use statistics from 620 NBA

games and a neural network to predict the winner of a game. Another interested in predicting

game outcomes is McCabe and Trevathan (2008). On the other hand, Nalisnick (2014) in his

blog discusses predicting basketball shots based upon the type of shot (layups versus free throws

and three-point shots) and where the ball was shot from. In other sports related papers, Huang

and Chang (2010) use a neural network to predict winners of soccer games in the 2006 World

Cup. Also, Wickramaratna, Chen, Chen, and Shyu (2005) predict goal events in video footage

of soccer games.

Although aforementioned basketball work did not have access to raw trajectory data, Lucey,

Bialkowski, Carr, Yue, and Matthews (2014), use the same dataset provided by STATS for some

of their work involving basketball. They explore how to get an open shot in basketball using

trajectory data to find that the number of times defensive players swapped roles/positions was

predictive of scoring. However, they explore open versus pressured shots (rather than shot mak-

ing prediction), do not represent the data as an image, and do not implement neural networks

for their findings. Other trajectory work includes using Conditional Random Fields to predict

ball ownership from only player positions (Wei, Sha, Lucey, Carr, Sridharan, and Matthews

(2015)), as well as predicting the next action of the ball owner via pass, shot, or dribble Yue,

Lucey, Carr, Bialkowski, and Matthews (2014). Miller, Bornn, Adams, and Goldsberry (2014)
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use non-negative matrix factorization to identify different types of shooters using trajectory

data. Because of a lack of defensive statistics in the sport, A. Franks et. al. create counterpoints

(defensive points) to better quantify defensive plays ( Franks, Miller, Bornn, Goldsberry et al.

(2015b) Franks, Miller, Bornn, and Goldsberry (2015a) ). Perše, Kristan, Kovačič, Vučkovič,

and Perš (2009) make use of trajectory data by segmenting a game of basketball into phases

(offense, defense, and time-outs) to then analyze team behavior during these phases.

Wang and Zemel (2016) use trajectory data representations and recurrent neural networks

(rather than CNN’s) to predict plays. Because of the nature of our problem, predicting shot

making at the time of the shot, there is not an obvious choice of labeling to use for a recurrent

network. They also fade the trajectories as the players move through time. Like us, they create

images of the trajectory data of the players on the court. Our images differ in that we train

our network on the image of a five second play and entire possession, while their training set

is based on individual frames represented as individual positions rather than full trajectories.

They use the standard RGB channels, which we found is not as effective as mapping eleven

channels to player roles and the ball for our proposed classification problem. Also, the images

they create solely concentrate on the offense and do not include defensive positions.

In addition, work by Cervone, D’Amour, Bornn, and Goldsberry (2016) also explores shots

made in basketball using the same STATS data. Our work focuses on a representation capturing

the average adversarial multiagent behavior, compared to the approach of Cervone et.al., which

focuses on individual players. In addition, while they concentrate on a Markov model that tran-

sitions between a coarse and fine data representation, our goal is to represent the fine-grained

data for a deep learning model. Our work focuses on shot prediction for the average player in

the NBA at the time of the shot while their work formulates a way to calculate estimated point
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value based upon specific player identity without reporting predictions for individual plays.

Their estimated point value includes the probability of making a shot; however, this probability

is based on individual characteristics of a player prior to taking the shot which is different from

our goal of considering generic players. We do not see an easy way to modify their models to

provide answers based on our setting. In summary, there is no readily available numerical com-

parison of the two models that would provide answers for shot making predictions of generic

players.

The final model that we implement, the combined network, utilizes both image and other

statistical features. There is work that utilizes both image and text data with a combined model.

Recently, Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, and Bengio (2015), Karpathy

and Fei-Fei (2015), Socher, Karpathy, Le, Manning, and Ng (2014), Vinyals, Toshev, Bengio,

and Erhan (2015b), and Mao, Xu, Yang, Wang, Huang, and Yuille (2015) all explore the idea

of captioning images, which requires the use of generative models for text and a model for

recognizing images. However, to the best of our knowledge, we have not seen visual data that

incorporates fading an entire trajectory for use in a CNN.

2.4. STATS LLC NBA Trajectory Data

The dataset was collected via SportsVU by STATS LLC. SportsVU is a tracking system

that uses 6 cameras to track all player locations (including referees and the ball). The data

used in this study was from the 2012-2013 NBA season and includes thirteen teams, which

have approximately forty games each. Each game consists of at least four quarters, with a few

containing overtime periods.



32

Table 2.1. Trajectory Data Sample

Game Time Real Time Team Player X Y Z Role Event
693 514200 1 101 21.5 33.6 0.0 1 0
693 514200 1 102 24.1 14.1 0.0 2 1
693 514200 1 103 5.4 9.6 0.0 3 0
693 514200 1 104 3.9 45.6 0.0 4 0
693 514200 1 105 10.4 3.5 0.0 5 0
693 514200 2 201 13.6 31.6 0.0 1 0
693 514200 2 202 20.4 15.4 0.0 2 0
693 514200 2 203 7.7 13.3 0.0 3 0
693 514200 2 204 6.0 38.6 0.0 4 0
693 514200 2 205 13.9 13.2 0.0 5 0
693 514200 -1 -1 25.1 14.0 3.4 0 0
693 514200 -2 1 16.9 49.2 0.0 0 0
693 514200 -2 3 78.9 0.5 0.0 0 0
693 514200 -2 2 26.0 3.1 0.0 0 0

The SportVU system records the positions of the players, ball, and referees 25 times per

second. At each recorded frame, the data contains the game time, the absolute time, player and

team anonymized identification numbers, the location of all players given as (x, y) coordinates,

the role of the player, and some event data (i.e. passes, shots made/missed, etc.). It also contains

referee positions, which are unimportant for this study, and the three-dimensional ball location.

Table 2.1 shows a sample (with player identities masked) of a single frame of data.

The sample detailed above shows a single frame snapshot from a game where team 1 is

playing team 2. ”Game Time” refers to time left in the quarter in seconds while ”Real Time”

is the actual time of the day outside of the game. The next column is the team labels where the

ball and referees are denoted with a ”-1” and ”-2,” respectively. Each player has an ID along

with the ball and each referee. Next are the coordinates of all players, referees, and the ball

along with the role/position of the player and special event codes for passes, shots, fouls, and

rebounds.
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This dataset is unique in that before SportVU, there was very little data available of player

movements on the court and none known that provides frame-by-frame player locations. Since

it is likely that most events in basketball can be determined by the movements of the players and

the ball, having the trajectory data along with the event data should provide a powerful mixture

of data types for prediction tasks.

There are a few ways to extract typical shot plays from the raw data. One is to choose a

flat amount of time for a shooting possession. In our case we choose to include the final five

seconds of a typical possession. To obtain clean plays, those that lasted less than 5 seconds due

to possession changes and those in which multiple shots were taken were thrown out. After

throwing out these cases, we were left with 75,000 five second plays.

The other way of obtaining play data would be to take the entire possession. Thus, rather

than having plays be limited to five seconds, possessions can be much longer or shorter. Since

the raw data does not contain labels for possession, we had to do this ourselves. To identify

possession, we calculate the distance between the ball and each of the players. The player

closest to the ball would be deemed the ball possessor. Since this approach may break during

passes and other events during a game, we end possession when the ball is closer to the defensive

team for 12 frames (roughly 0.5 seconds). The procedure yields 72,000 possession examples.

We found that using an entire possession resulted in lower prediction accuracy probably due

to additional intricacies of court positions. Therefore, we use five second possessions for the

remainder of this study.

Although each player has an assigned role, players change positions with respect to each

other, which effectively changes their role during regular play (Lucey et al. (2013)). Since our

classification problem is dependent upon a player’s position, a player’s role must be chosen
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for each five second play. We ultimately decide to assign a player the role that they occupy at

the beginning of the play. Since we want to explore how a player’s actions resulted in favor-

able/unfavorable shooting position, we do not assign role based upon the end of the five second

play.

2.5. Image-Based Representation of Player Trajectories

In terms of applying deep neural networks to multiagent trajectories, we first form an initial

representation. A natural choice for representing these trajectories is in the form of an image.

Given that the basketball court is 50x94 feet, we can form a 50x94 pixel image. In terms of

the type of image we use, there are multiple choices: i) grayscale (where we identify that a

player was a specific location by making that pixel location 1), ii) RGB (we can represent the

offense trajectories in the red channel, the defense in the blue channel and the ball in the green

channel, and the occurrence of a player/ball at that pixel location can be representing by a 1),

and iii) 11-channel image (where each agent has their own separate channel) with each position

represented by a 1. Examples of the grayscale and RGB approach are shown in Figure 2.1.

The 11-channel approach requires some type of alignment. In this paper, we apply the

‘role-representation’ which was first deployed by Lucey et al. (2013). The intuition behind

this approach is that for each trajectory, the role of that player is known (i.e., point-guard,

shooting guard, center, power-forward, small-forward). This is found by aligning to a pre-

defined template which is learnt in the training phase.

Figure 2.1 shows examples of the methods we use to represent our data for our CNN. The

grayscale image, which appears on the left, can accurately depict the various trajectories in our

system. However, because the image is grayscale, the CNN will treat each trajectory the same.
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Figure 2.1. A grayscale and RGB image of the same trajectory of all 10 players
plus the ball. Each red/blue line corresponds to an offensive/defensive player,
and green indicates the ball trajectory.

Since we have an adversarial multiagent system in which defensive and offensive behavior in

trajectory data can lead to different conclusions, grayscale is not the best option for represen-

tation. Therefore, to increase the distinction between our agents, we represent the trajectories

with an RGB scale. We choose red to be offense, blue to be defense, and green to be the ball.

This approach takes advantage of multiple channels to allow the model to better distinguish our

adversarial agents. Although the ball may be part of the offensive agent structure, we decide to

place the ball in a channel by itself since the ball is the most important agent. This approach,

although better than the gray images, lacks in distinguishing player roles. Since we classify our

made and missed shots along with the role of the player that shoots the ball, a CNN will have

trouble distinguishing the different roles on the court. Therefore, for our final representation, we

decide to separate all agents into their own channel so that each role is properly distinguished

by their own channel.

The above ideas nearly create ideal images; however, it does not include time during a

play. Since each trajectory is of equal brightness from beginning to end, it may be difficult to
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identify where the ball was shot from and player locations at the end of the play. Therefore, we

implement a fading variable at each time frame. We subtract a parameterized amount from each

channel of the image to create a faded image as seen in Figures 2.1 and 2.2. Thus, it becomes

trivial to distinguish the end of the possession from the beginning and leads to better model

performance.

Figure 2.2. Figure on left depicts a five second play with all 10 players while
the right is of an entire possession. As expected of five second plays, most of
the trajectories remain near the basket located at the bottom of the image. Each
red/blue line corresponds to a offensive/defensive player with green indicating
the ball trajectory.

2.6. Prediction Models for Shot Prediction

To fully utilize the power of this dataset, we implement a variety of networks for our predic-

tion task. For our base model, we use logistic regression with 197 hand-crafted features detailed

later. To improve upon this basic model, we use a multi-layer FFN with the same features and

utilize batch normalization during training. Because of the nature of these two models, we

could only include the positions of the players at the time of the shot. Therefore, we craft im-

ages to include the position of the players throughout the possession. We then apply a CNN to
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these new image features. Finally, we create a combined model that adopts both images and the

original FFN features for training.

2.6.1. Logistic Regression and Feed Forward Network

For the baseline models, features based upon basketball knowledge were crafted. The list of

features includes:

• Player and ball positions at the time of the shot

• Game time and quarter time left on the clock

• Player speeds over five seconds

• Speed of the ball

• Distances and angles (with respect to the hoop) between players

• Number of defenders in front of the shooter (300 angle of the shooter) and within six

feet based upon the angles calculated between players

• Ball possession time for each offensive player

• Number of all individuals near the shooter (including teammates)

Logistic regression and FFN both use the same calculated features. In addition, only the

CNN does not incorporate the above features.

A deep neural network is a machine learning model that consists of several layers of linear

combinations of weights, inputs, and activation functions. The number of weights θ , layers

L, and activation functions a are specified before training with data X . The model outputs

probabilities f and the error is calculated generally with the Kullback-Leibler divergence, a.k.a

log loss function KL(y|| f ), against the true values y. A deep neural network generally refers

to a neural network that is at least three layers deep. The depth (number of layers) of network
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versus the breadth (number of neurons) allows it to learn more complex features of the dataset.

The following is a mathematical model of a deep neural network:

min
θ

E(X ,Y )KL(Y || f (X , ;θ)) = E(X ,Y )∑
i

yi log fi(X ;θ) Optimization Function

z0 = X inputs of the model

z`i (X ;θ) = a`
( K

∑
k=1

z`−1
k θ

`−1
ik

)
for neuron i in layer ` and K neurons at layer `−1

fi(X ;θ) =
ezL

i θ L
i

T

∑m ezL
mθ L

i
T softmax function for probability of each class i

2.6.2. Convolutional Neural Network

A CNN is similar to a Feed Forward Network, except that instead of learning individual weights

per neuron, the model learns many filters (which consist of weights) that are convolved with the

incoming data and reduced in size by a pooling layer. Like FFN’s, they consist of multiple lay-

ers. For our model, we use a CNN that consists of three full convolutional layers, each with 32

3x3 filters and a max-pooling layer with a pool-size of 2x2 following each convolutional layer.

After the final pooling layer, there is a fully connected layer with 400 neurons. The network

ends with an output layer consisting of a softmax function and ten neurons. In addition, we

use the ReLU function for our nonlinearity at each convolutional layer and the fully connected

layer. We also implement AlexNet, Network-in-Network, and Residual Networks, but we did

not garner significant improvement from any of these models.
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2.6.3. CNN + FFN Network

The final network implemented is a combination of both the feed forward and convolutional

networks. For this model, we use both the feed forward features and the fading trajectory

images from the CNN. The idea behind the combined network is to have the model identify

trajectory patterns in the images along with statistics that are known to be important for a typical

basketball game.

The CNN and FFN parts of the combined network have the exact same architecture as the

stand-alone versions of each model. The final layers just before the softmax layer of each

stand-alone network are then fully-connected to a feed-forward layer that consists of 1,000

neurons. This layer is then fed into the final softmax layer to give predictions. After performing

experiments and measuring log loss, we found that adding layers to this final network or adding

additional neurons to this layer did not improve our final results.

2.7. Shot Prediction Results of Trajectory Data

All the models (FFN, CNN, and CNN+FFN) use the typical log loss function as the cost

function with a softmax function at the output layer. The weights are initialized with a general

rule of ±
√

1/n where n is the number of incoming units into the layer. For training, we imple-

ment the batch stochastic gradient method utilizing batch normalization. Batch normalization

is used on the convolutional and feed forward layers of the model. In addition, we train the

models on a NVIDIA Titan X using Theano.

For the CNN and CNN+FFN networks we utilize our eleven channel images with fading.

We randomly split our data into train, validation, and test sets. The training set contains 52,000
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samples while the validation and test sets contain 10,000 samples each. All experiments are

completed using the same data split.

To justify our image representation, we first evaluate our model with each of the following

image sets: one (grey) channel, three (RGB) channels, and eleven channels (for each player and

the ball). These sets are all assessed on the previously mentioned CNN architecture consisting of

three convolutional layers. Figure 2.3 displays the log loss and error rate on both validation and

test sets for each of our representations. The log loss and error rate show a dramatic difference

in accuracy based upon each image representation. By both accuracy and loss metrics, using

eleven channels is the best representation. The eleven channel representation minimizes the

overlapping trajectory issue that hinders the one and three channel methods. Thus, with eleven

channels, the CNN can more easily capture more relevant on-the-court features such as ball

possession and passes.

In addition to the image representations of Figure 2.2, we made each trajectory a different

color in RGB space, varying the strength of the fading effect, and including extra channels of

heat maps depicting the final ball position (none of which outperformed the eleven channel

method). Successfully representing trajectory data in sport that outperforms traditional metrics

is a nontrivial problem, but is not further explored in this study.

Next, we evaluate both the accuracy and loss values for our FFN, CNN, and combined

CNN+FFN models. A quick observation of the metrics represented in Figure 2.4 shows that the

final combined model is the best predictor. While the performance of the eleven channel im-

ages is an improvement over our other proposed image representations, there remains potential

progress since our FFN has only slightly lower classification accuracy on the test set.
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Figure 2.3. Log loss and accuracy for three image representations (smaller is
better). The eleven channel method is superior.

Figure 2.4. Log loss and accuracy for FFN, CNN, and combined CNN+FFN.
The combined model is the best classifier by both metrics.

The remaining analyses are based on the combined CNN+FFN model. In addition to as-

sessing the accuracy of our model, we explore a basic heat map of basketball shots based upon

the raw data. At the very least, we expect that our complete model should be similar to a heat
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map created via raw data. We make the heat map by taking a count of shots made against shots

missed within a square foot of the basketball court. Since our classification model gives prob-

abilities of making a shot (rather than a binary variable), we take the maximum probability to

create a heat map equivalent to the raw data map. From the heat map comparison, we aim to

further understand how our model is making predictions.

Figure 2.5. Heat map from model data and heat map of the raw data. The hot
areas depict locations in which players are much more likely to take a shot.

In the raw data heat map, Figure 2.5, we note that the best probability of making a shot lies

on top of the basket. As we get farther back, the probability decreases with two less probable

zones (lighter zones separated by a thin green strip of higher probability): one right outside

the paint and another just inside the three-point line. This means that our model is placing too

much importance on the shooter being near the hoop. The model also predicts a larger high

value area surrounding the basket, which extends further into the paint of the court. However,

the dead zones in the model heat map are much larger. In addition, the model over predicts near

the basket while under predicting outside this area. Curiously, there are a few areas that have

higher probability outside of the paint.
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To further explore our results, we create heat maps solely based on the role of the player

(to break down scoring chances by agent). As before, each role represents an offensive player.

In Figure 2.6 we present a few player roles and their representative heat maps. Role 3 must be

the center position from their shot selection and Role 5 is the left guard. Note that the model

predicts a much smaller area of midrange scoring probability than from the raw data for Role

3. The model heat map for Role 3 strictly covers the paint, while the raw data has significantly

higher shot probabilities outside of the paint. Roles 1, 4, and 5 show similar behavior in the

model prediction. These maps are very heavy-handed with respect to under the basket shots

with extremely small probabilities outside of the paint. The one exception is Role 2, which the

model predicts has a much more likely chance of scoring outside of the paint. We observe from

these heat maps that Role 2 is the reason the heat map for all in Figure 2.5 exhibits an arc of

higher probability outside the hoop. Therefore, for Role 2, our model is learning more than

simply distance from the hoop for prediction in this case. The raw data shows that shots outside

the hoop are just as likely from any player, but our model argues that Role 2 is more likely to

make a shot when shooting further away from the hoop.

The probabilities that the combined model predicts for each shot may also provide useful

insight into the game and our model’s interpretation of high versus low value shots. We create

these histograms by finding which examples the model gives the highest probability as a shot

made or missed by player with role x. We then group these examples together, and the proba-

bility of making a shot is reported in the histogram. In the histograms depicted in Figure 2.7 we

see that most of shots have a low probability. This agrees with common basketball knowledge

because many of a guard’s shots are beyond the paint. On the other hand, a center remains pri-

marily under the basket and in the paint. Therefore, many of their shots are much more likely.
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Figure 2.6. Roles 1-5 left to right. Model results top and raw data bottom. The
model matches best with the center (image column 3) and power forward (image
column 2), but provides a larger coverage in all other positions.

Watching a game live, a center getting a clean pass right under the basket often results in a made

shot. In addition, most roles tend to follow the probability pattern of Role 1 except for Role 3

(the center), which has a wider distribution and higher average probability of making a shot. In

addition, Role 5 tends to have a better ratio of high probability shots to low compared to Roles

1,2, and 4. A brief glance at NBA statistics agrees with this interpretation as the players with

the highest shooting percentage (barring free throws) tend to be centers.

When viewing the histograms more carefully, there are additional role dependent insights.

For example, Role 1 has the lowest probabilities for shots made compared to all other roles.

Although the general shape is the same as for Role 2, the predictions are shifted significantly

to the left. We also note that overall, most of the shots fall into the 45% category of shot

being made, which is aligned with general basketball knowledge. Since these histograms are

predictions of the average basketball player in each role, the takeaway message is that unless

you have an ace shooter (Lebron James or Steph Curry), a team should focus on ball movement

to give the center an open shot rather than relying on outside shooters.



45

Figure 2.7. From left to right and top to bottom: (1) All roles. (2) Role 1. (3)
Role 2. (4) Role 3. (5) Role 4. (6) Role 5. Probabilities of shot prediction by
role. Note that role 3 (the center) has the largest overall probability of making a
shot.

We also exhibit Figure 2.8 to provide additional visual context for our model probabilities.

These figures depict the final positions of all players on the court at the time of the shot. We

can assess how “open” the shot maker is at the time of the shot and the relative position of both

the offensive and defensive players. The offensive players are blue, defensive players red, and

the ball is green. Each offensive and defensive player has the letter “O” and “D” respectively

followed by a number signifying the role of that player at that time. There are times when the

model makes some questionable predictions. For example, the three-point shot that is exhibited

in the top right of Figure 2.8 with a 0.610 probability is much too high. Unguarded, we do not

expect three-point shots to be made more than 50% of the time. Thankfully, these examples

are very rare in our model. For the most part, three-point shots are rated extremely low by the

model garnering probabilities of less than 20%.



46

Figure 2.8. Locations of offensive (O) and defensive (D) players on the court
at the time of the shot displaying the model’s prediction probabilities. Most
of the predictions are reasonable when considering shot location and defensive
positioning.

In addition to three-point shots having a generally low probability, shots that are well-

covered by defenders have a much lower probability of success. This is an unsurprising well-

known result, but it does add validity to our model. In addition, shots that are open and close

to the basket are heavily favored in our model. For example, in the bottom right picture, Role 3

has a very good chance of making a wide-open shot with the defense well out of position.

As noted in Figure 2.4, the FFN classifies with nearly the same accuracy as the CNN;

however, the combined CNN+FFN model is the best classifier. Therefore, the CNN must learn

features that elude the FFN.

We next explore our CNN model by creating images that result in maximum activation in

the CNN (Erhan, Bengio, Courville, and Vincent (2009)). The goal of creating these images is
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to find the features in our images that the CNN model learns. The process is similar to a reverse

of training a neural network. First, we take an already trained CNN and a randomly created

image. Then without changing the weights θ ∗ of the CNN that feed into filter i at layer `, we

use gradient ascent with respect to the image x that yield maximum value to activation a`i . To

make the image from the filter we solve: x∗ = argmaxx a`i (θ
∗,x).

Figure 2.9. From left to right: (1) Filter 6 in convolution layer 3 of the offensive
players (2) Filter 20 in convolution layer 1 of the ball (3) Filter 6 in convolution
layer 1 of the offense and ball (4) Filter 25 in convolution layer 1 of the defense.
Images that yield maximum activation using a trained CNN.

In Figure 2.9, we present four images from four distinct filters in our CNN model (several

other filters result in white noise). The images in the figure are an RGB representation of the

eleven channel images we create with the maximum activation method. Since we know which

agent is represented by each channel, we let green, red, and blue represent the ball, offense, and

defense, respectively. We implement this transformation into the RGB space for qualitative and

quantitative assessments when compared to historical data of the ball, offense, and defense.
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The first and third images of Figure 2.9 are nearly identical; however, while the first image

displays primarily offensive areas, the third image presents the same areas but with ball (green)

information as well. The second image shows that the filter is attempting to identify ball (green)

activity, and the fourth image is a filter identifying defensive (blue) activity. We did not expect

filters to look for offensive, defensive, or ball activity near the top of the court (away from the

hoop) since we ensure that the offense always shoots towards the bottom of the image.

Figure 2.10. From left to right: (1) Historical offense data (2) Historical ball
data (3) Historical defense data. Figures on the court of hot spots for the offense,
ball, and defense at the time of a shot. Note that the defense is much more tightly
packed around the hoop than the offense.

Figure 2.10 is a historical representation of the locations of all offensive (including the ball)

and defensive agent locations at the time of the shot for our five second plays. For ease of com-

parison, we retain our qualitative RGB representation of green, red, and blue representing the

ball, offense, and defense, respectively. The historical images in Figure 2.10 show all activity

is near the hoop while the filter images in Figure 2.9 show additional activity far away from the

hoop. To compare Figures 2.9 and 2.10 quantitatively, we utilize the SSIM, a.k.a. the structural
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similarity index measure (Wang, Bovik, Sheikh, and Simoncelli (2004)). If a noisy version of

an image is compared to the original, the SSIM can correctly identify that the images are the

same. SSIM ranges from −1 to 1, where a perfect score of 1 indicates that the two images are

the same.

We choose to compare the images from Figures 2.9 and 2.10 based upon our RGB repre-

sentations. For example, previously we established that the red areas in image (1) of Figure

2.9 are a representation of the offense. Therefore, we compare the offensive channel of image

(1) in Figure 2.9 to the historical offensive data of image (1) in Figure 2.10. We then compare

image (2) of Figure 2.9 to image (2) of Figure 2.10 (historical ball data). We choose to compare

image (3) of Figure 2.9, which we stated before represents both offensive and ball activity, to

both the historical ball (2) and offense images (1) of Figure 2.10. After computing the SSIM for

each part of the third filter of Figure 2.9, we average the two SSIM scores. Last, we compare

image (4) of Figure 2.9 to historical defensive data displayed in image (3) of Figure 2.10. We

calculate the SSIM for two cases: the entire court and the half of the court containing the hoop.

We choose these two cases because the filter images of Figure 2.9 show activity away from the

court while the images of Figure 2.10 do not. We detail the comparison images and resulting

SSIM scores in Table 2.2.

Table 2.2. SSIM Results

Figure 2.9 Image Figure 2.10 Image SSIM (Half) SSIM (Full)
Filter (1) Offense (1) 0.623 0.715
Filter (2) Ball (2) 0.310 0.277
Filter (3) Offense, Ball (1,2) 0.554 0.580
Filter (4) Defense (3) 0.561 0.680
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When calculating the SSIM for both half court and full court images, we expected that the

full court image scores would be lower. However, as seen in Table 2.2, this is not the case for

a majority of the images. Historical data from Figure 2.10 shows that most activity is near the

hoop; however, there is some activity far away from the hoop (likely due to transition plays).

Since the filters of Figure 2.9 capture this, the full court SSIM is larger for three out of four of

the Figure 2.9 images.

The worst performing image using SSIM as our evaluation tool is image (2) from Figure

2.9 with an SSIM of 0.310. This is due to a lack of large green areas near the hoop of the court

in the filter image. When considering the entire court, image (2) from Figure 2.9 shows ball

activity in the corners away from the hoop. Since the historical ball image in Figure 2.10 shows

no activity in the upper corners, it is not surprising that it is the worst performing image.

Examining the results of Table 2.2, we can scrutinize the strength of our CNN. The accuracy

of the CNN is close to that of the FFN, but the SSIM scores show room for improvement. It is

clear that the CNN struggles to identify ball information when comparing image (2) of Figure

2.9 to historical ball data.

2.8. Discussion

Rather than other methods that incorporate transitions between a coarse and fine-grained ap-

proach or use small pieces of trajectory data, we utilize the full trajectory data of both offensive

and defensive players. Since player alignments commonly permute, an image-based approach

maintains the general spatial alignment of the players on the court. To integrate the time de-

pendency of the trajectories, we introduce “fading” to our images to capture player paths. We

found that using linear fading rather than a one-hot fade, works much better in our predictions.
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In addition, using a different color for each trajectory does not increase predictability in an

RGB, three channel, image. Since traditional CNN’s utilize three channels, we found that net-

works created to work with that kind of data, such as residual networks, AlexNet, and Network

in Network underperformed. We therefore opt to build our own CNN to handle the trajectory

images. Thus, by using our combined CNN and FFN, we can predict whether a shot is made

with 61.5% accuracy with the CNN proving to be more accurate than a FFN with hand-crafted

features.

We found that by using a CNN, we can further explore the data using gradient ascent to

picture the various filters of our network. We found that as the network gets deeper, it tends to

gather several features together. For example, in the first layer, the filters look for shot locations.

As we delve deeper into the network, the filters also begin to look for defensive and offensive

spatial positions to make a more accurate prediction. Also, the histograms agree with common

knowledge that centers have the highest short percentage since their shots tend to be right beside

the basket.

For further research, it would be very interesting to identify time dependency in basketball

plays. In our image data, we subtract a flat amount at each equally spaced frame to cause the

fading effect. However, this assumes that the data in time is linearly related. Since this is not

necessarily true, designing a recurrent model to find this temporal dependency could be a very

interesting problem. Instead of having a fading effect in the image data, we can design an LSTM

that takes a moving window of player and ball trajectories.

One last aspect that was not considered during this study was the identities of teams and

players. The focus of this research was to gather more insight on the average shooting plays of



52

teams in the NBA. However, teams in the NBA have drastically different strategies. For exam-

ple, the Golden State Warriors tend to rely on a three-point strategy while bigger teams, such

the Thunder, build their offensive strategy around being inside the paint. Thus, new knowledge

on basketball could be gathered if models were applied to different teams and possibly identify

some overall team strategies. Such a more fine-grained analysis would require much more data.
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CHAPTER 3

Activation Ensembles for Deep Neural Networks

3.1. Contribution

Many activation functions have been proposed in the past, but selecting an adequate one

requires trial and error. We propose a new methodology of designing activation functions within

a neural network at each layer. We call this technique an “activation ensemble” because it allows

the use of multiple activation functions at each layer. This is done by introducing additional

variables, α , at each activation layer of a network to allow for multiple activation functions to

be active at each neuron. By design, activations with larger α values at a neuron is equivalent

to being “chosen” by the network. We implement the activation ensembles on a variety of

datasets using an array of FFN’s and CNN’s. By using the activation ensemble, we achieve

superior results compared to traditional techniques. In addition, because of the flexibility of this

methodology, we more deeply explore activation functions and the features that they capture.

3.2. Introduction

Most of the recent advancements in the mathematics of neural networks come from four

areas: network architecture Jaderberg, Simonyan, Zisserman et al. (2015) Gulcehre, Moczul-

ski, Denil, and Bengio (2016a), optimization method (AdaDelta Zeiler (2012) and Batch Nor-

malization Ioffe and Szegedy (2015) ), activations functions, and objective functions (such as

Mollifying Networks Gulcehre, Moczulski, Visin, and Bengio (2016b) ). Highway Networks

Srivastava, Greff, and Schmidhuber (2015) and Residual Networks He et al. (2016) both use the
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approach of adding data from a previous layer to one further ahead for more effective learning.

On the other hand, others use Memory Networks Weston, Chopra, and Bordes (2015) to more

effectively remember past data and even answer questions about short paragraphs. These new

architectures move the field of neural networks and machine learning forward, but one of the

main driving forces that brought neural networks back into popularity is the rectifier linear unit

(ReLU)Glorot, Bordes, and Bengio (2011) Nair and Hinton (2010). Because of trivial calcu-

lations in both forward and backward steps and its ability to more effectively help a network

learn, ReLU’s revolutionized the way neural networks are studied.

One technique that universally increases accuracy is ensembling multiple predictive models.

When neural networks garnered more popularity in the 90’s and early 2000’s, researchers used

ensembles to great effect Zhou, Wu, and Tang (2002). Additionally, other techniques may

identify as an ensemble. For example, the nature of Dropout Srivastava, Hinton, Krizhevsky,

Sutskever, and Salakhutdinov (2014) trains many different networks together by dropping nodes

from the entirety of a network.

We focus on activation functions rather than expanding the general architectures of net-

works. Our work can be seen as a layer or neuron ensemble that can be applied to any variety of

deep neural network via activation ensembles. We do not focus on creating yet another unique

activation function, but rather ensemble a number of proven activation functions in a compelling

way. Each activation function, from ReLU to hyperbolic tangent contain advantages in learning.

We propose to use the best parts of each in a dynamic way decided by variables that configure

contributions of each activation function. These variables put weights on each activation func-

tion under consideration and are optimized via backpropagation.
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As data passes through a deep neural network, each layer transforms the data to better

interpret and gather features. Therefore, the best possible function at the top of a network may

not be optimal in the middle or bottom of a network. The advantage of our architecture is that

rather than choosing activations at specified layers or over an entire network, one can give the

network the option to choose the best possible activation function of each neuron at each layer.

Creating an ensemble of activation functions presents some challenges in how to best com-

bine the activation functions to extract as much information from a given dataset as possible.

In the most basic model ensembles, one can average the given probabilities of multiple mod-

els. This is only feasible because the range of values in each model are the same, which is not

replicated in most activation functions. The difficulty lies in restricting or expanding the range

of these functions without losing their inherent performance.

An activation ensemble consists of two important parts. The first is the main α parameter

attached to each activation function for each neuron. This variable assigns a weight to each

activation function considered, i.e., it designs a convex combination of activation functions.

The second are a set of “offset” parameters, η and δ , which we use to dynamically offset

normalization range for each function. Training of these new parameters occurs during typical

model training and is done through backpropagation.

Our work contains two significant contributions. First, we implement novel activation func-

tions as convex combinations of known functions with interesting properties based upon cur-

rent knowledge of activation functions and learning. Second, we improve the learning of any

network considered herein, including the well-established residual network in the Cifar-100

learning task.
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3.3. Review of Work on Activation Functions and Ensembling

There is a plethora of work in building the best activation functions for neural networks.

Before ReLU activations were commonly used, deep neural networks were nearly impossible to

train since the neurons would get stuck in the upper and lower areas of sigmoid and hyperbolic

tangent functions. Some work has focused on improving these activation functions, such as

Gulcehre et al. (2016a), who introduce a stochastic variable to the sigmoid and hyperbolic

tangent functions. Since sigmoid and hyperbolic tangent function both contain areas of high

saturation for values in large magnitude, the stochastic variable can aid in pushing the activation

functions out of high saturation areas. In our work, rather than introducing stochasticity, we

introduce several activations at each neuron, from which the network can choose a combination.

Thus, it can reap the benefits of the sigmoid and hyperbolic tangent function without being

limited to these functions at each layer.

On the other hand, Clevert, Unterthiner, and Hochreiter (2016) create a smoother leaky

ReLU function dubbed the exponential linear function in order to take advantage of including

negative values. Trottier, Giguère, and Chaib-draa (2016) further generalize the exponential lin-

ear unit by Clevert. The new exponential linear unit is called the Parametric Exponential Linear

Unit (PELU). The extra parameters increase the flexibility of this activation function similar to

that of the leaky ReLU compared to a regular rectifier unit. They find that this more general

format dramatically increases accuracy. Our work differs from those who utilize different ac-

tivation functions by being able to use as many activation functions as a user’s computational

capabilities allow. Rather than choosing one for a network, we allow the network to not only

choose the best function for each layer, but also for each single neuron in each of the layers. We
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grant activation functions with negative values in our network, but we restrict this after a simple

transformation to ensure that our functions are similar in magnitude.

Li, Ouyang, and Wang (2016) take a different approach from typical work that focuses on

activation functions. Rather than combining inputs, they use multiple biases to find features

hidden within the magnitudes of activation functions. In this way, they can threshold various

outputs to find hidden features and help filter out noise from the data. We restrict the range

of our activation functions, which helps the neural network find features that may be hidden

within the magnitude of another activation function. Thus, we are able to find hidden features

via known activation functions without introducing multiple biases.

Scardapane, Scarpiniti, Comminiello, and Uncini (2016) create an activation function dur-

ing the training phase of the model. However, they use a cubic spline interpolation rather than

using the basis of the rectifier unit. Their work differs from ours in that we use the many differ-

ent available activation functions rather than creating an entirely new function via interpolation.

It is important to note that we restrict our activation function to a particular set and then al-

low the network to chose the best one or some combination of those available rather than have

activation functions with open parameters (though this is possible in our architecture).

Maxout Networks, Goodfellow, Warde-Farley, Mirza, Courville, and Bengio (2013), allow

the network to choose the best activation function similar to our work. However, Maxout Net-

works require many more weights to train. For each activation function, there is an entirely new

weight matrix while our extra activations only require a few parameters. In addition, Maxout

Networks find the maximum value for the activation function rather than combining the activa-

tion functions into a novel function as done in our work. Thus, features in a Maxout Network

are lost due to not being represented after the maximization function.



58

Jin, Xu, Feng, Wei, Xiong, and Yan (2016) approach the problem of activation functions

through the lens of ReLU’s. Similar to PReLU’s, which are leaky ReLU’s with varying slope

on the negative end, they create unique activation functions for rectifier units. However, they

combine the training of the network and learning of the activation functions similar to our work

and that of Scardapane et al. (2016). Their work restricts the combination to a set of linear

functions with open parameters, while our does not have a restriction on the type of functions.

Since the work of Jin et al. (2016) has this restriction, they cannot combine functions of various

magnitude like the work we present here.

Chen (2016) uses multiple activation functions in a neural network for each neuron in the

field of stochastic control. Similar to our work, he combines functions such as the ReLU, hy-

perbolic tangent, and sigmoid. To train the network, Chen uses Neuroevolution of Augmenting

Topologies (NEAT) to train his neural network for control purposes. However, he simply adds

together the activation functions without capturing magnitude and does not allow the network

to choose an optimal set of activations for each neuron.

Work by Agostinelli, Hoffman, Sadowski, and Baldi (2015), which is closest to our ap-

proach, explores the construction of activation functions during the training phase of a neural

network. Their work combines a rectifier unit with trainable variables to create a new function

composed of rectifier units. Thus, rather than combining various activations functions together

via an optimization process, Agostinelli et al. (2015) take the baseline foundation of the ReLU

function and optimize based upon this singular function. The difference in our work is that we

want to capture the features extracted by many different common activation functions to find

the best possible activation function/s by neuron.
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3.4. Activation Ensemble Architecture

Ensemble Layers were created with the idea of allowing a network to choose its own acti-

vation for each neuron and for each layer of the network. Overall, the network takes the output

of a previous layer, for example from a convolutional step, applies its various activations, nor-

malizes these activations, and places weights on each activation function. We first go through

each step of the process of making such a layer.

The first naive approach is to simply take the input, use a variety of activation functions,

and add these activation functions together. We denote the set of activation functions we use to

train a network f j ∈ F . Using this method, a network may reap the benefits of having more than

one activation function, which may extract different features from the input. However, simply

adding poses a problem for most functions. Many functions, like the sigmoid and hyperbolic

tangent possess different values, but they can be easily scaled to have the same range. However,

other functions, such as the rectifier family and the inverse absolute value function cannot be

easily adjusted due to their unbounded ranges. If we simply add together the functions, the

activation functions with the largest absolute value will dominate the network leaving the other

functions with minimal input.

To solve this issue, we need to normalize the activation functions with respect to one another

in order to have relatively equal contribution to learning. One option would be to use mean and

standard deviation normalization; however, this would not equalize contribution. Therefore, we

scale the functions to [0,1]. While building our method, we additionally performed tests using

the range of [-1,1] for each activation function. We found that the performance was either close

to that of [0,1] or slightly worse. In addition, allowing negative values causes additional issues

when choosing the best activation functions with the α parameter we introduce later.
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Simply adding activations together and forcing them to have equal contribution does not

solve our second goal of finding the best possible activation functions for particular problems,

networks, and layers. Therefore, we apply an additional weight value, α , to each activation for

each neuron. Therefore, for the output of each neuron i and m being the number of activation

functions, we have the following activation function for each neuron:

h j
i (z) =

f j(z)−mink( f j(zki))

maxk f j(zki)−mink f j(zki)+ ε

yi(z) =
m

∑
j=1

α
j

i h j
i (z)

Here, ε is a small number, k goes through all training samples (in practice k varies over the

samples in a minibatch), and zki is the input to neuron i with training example k. We consider

α
j

i as part of our network optimization. In order to again avoid one activation growing much

larger than the others we must also limit the magnitude of α . Since the activation functions are

contained to [0,1], the most obvious choice is to limit the values of α to lie within the same

range. Thus, the network also has the ability to choose a particular activation function f j ∈ F

if the performance of one far outweighs the others. For example, during our experiments, there

were many neurons that we found heavily favored the ReLU function after training signified by

the α j for the ReLU function being magnitudes larger than the others.

In order to force the network to choose amongst the presented activation functions, we

further require that all the weights for each neuron add to one. This then gives us another

optimization problem to solve when updating the weights. In what follows, the values α̂ j are

the proposed weight values for the activation function j gradient update and α j are the new

values we find after solving the projection problem. We omit the neuron index i for simplicity,

i.e. this problem must be solved for each neuron.
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minimize
α

m

∑
j=1

1
2(α̂

j−α
j)2

subject to
m

∑
j=1

α
j = 1

α
j ≥ 0, j = 1,2, . . .m.

This optimization problem is convex, and is readily solvable via KKT conditions. It yields

the following solution:

α
j =


α̂ j +λ , if λ > α j,

0, otherwise.

m

∑
j=1

max(0, α̂ j +λ ) = 1

This problem is very similar to the water-filling problem, and has an O(m) solution. Algo-

rithm 1 exhibits the procedure for solving this problem. The projection sub-problem must be

solved for each neuron for each layer that our multiple activations are applied.

Algorithm 1 Projection Sub-Problem
Input: Vector α̂ ,
Initialize Vector G = 1 and Scalar D = m
for k = 1 to m do

λ =
1−∑

m
j=1 α̂ j

D
α = α̂ +λ

α = α ◦G (Hadamard Product)
if any αk < 0 then

D = D−1
Gk = 0

end if
end for
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We borrow two elements in our approach from Batch Normalization Ioffe and Szegedy

(2015). We record running minimum and maximum values while training over each minibatch.

Thus we transform the data using only a small portion (dictated by batch-size during training).

The other element that we introduce is the two parameters, η and δ , which allow for the pos-

sibility of the network choosing to leave the activation at its original state. Below is the final

equation that we use for the activation function at each neuron.

yi =
m

∑
j=1

α
j(η jh j

i +δ
j)

Therefore, the final algorithm for our network involves both maintaining running maximum

and minimum values and solving the projection subproblem during training. Then in the test

phase, we use the approximate minimum and maximum values we obtain during the training

phase. The weights learned during the training phase, namely our new parameters α,η , and

δ remain as is during training. In summary, rather than creating a new weight matrix for each

activation function, which adds a huge amount of overhead, we allow the network to change its

weights according to the activation function that is optimal for each neuron.

We next provide derivatives for the new parameters. Let ` denote the cost function for our

neural network. We backpropagate through our loss function ` with the chain rule to find the

following:

∂`

∂α j =
∂`

∂yi
·
(

η
jh j

i +δ
j
)

∂`

∂η j =
∂`

∂yi
·α jh j

i

∂`

∂δ j =
∂`

∂yi
·α j
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As a note, activation ensembles and the algorithms above work in the same way for CNN’s.

The only difference is that instead of using a set of activations for a specific neuron, we use a

set of activations for a specific filter.

3.4.1. Activation Sets

To explore the strength of our ensemble method, we create three sets of activations to take ad-

vantage of the weakness of individual functions. The first set is a number of activation functions

seen in networks today. One of the functions, the exponential linear units, garners favorable re-

sults with datasets such as CIFAR-100. Others include the less popular inverse absolute value

function and the sigmoid function (which is primarily relegated to recurrent networks in most

literature). One omission we must mention is the adaptive piecewise linear unit. Since our

goal is to create an activation from common functions, a function that focuses on adapting via

weights is not included. The following are the activations we use for the first set: sigmoid, hy-

perbolic tangent, soft linear rectifier, linear rectifier, inverse absolute value, and the exponential

linear function.

The next two sets of activations are designed to take advantage of the ensemble method’s

ability to join similar functions to create a better function for each neuron. Since ReLU func-

tions are widely regarded as the best performing activations functions for most datasets and

network configurations, we introduce an ensemble of varying ReLU functions. Since rectifier

neurons can ”die” when the value drops below zero, our ensemble uses rectifiers with vari-

ous intercepts of form f b(z) = max(0,z+ b), where b ∈ R. We settle with five values for b,

[−1.0,−0.5,0,0.5,1.0], to balance around the traditional rectifier unit.
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The final activation set is a reformation of the absolute value function. It only consists

of two mirrored ReLu functions of the form, f 1(z) = max(0,−z) and f 2(z) = max(0,z). The

behavior of the graphed function is very similar to that of an absolute value; however, our

function contains individual slopes that vary by the value of α1 and α2. We create this function

to capture elements of the data that may not necessarily react positively with respect to a rectifier

unit, but still carry important information for prediction.

3.5. Results of Activation Ensembles on Prominent Datasets

For our experiments, we use the datasets MNIST, ISOLET, CIFAR-100, and STL-10. For

MNIST and ISOLET, we use small designed feed forward and convolutional neural networks.

For CIFAR-100, we apply a residual neural network. Last, we design an auto-encoder strategy

for STL-10. In addition, we use Theano and Titan X GPU’s for all experiments. We found that

the optimization function AdaDelta performs the best for all of the datasets. For each network,

we set the learning rate for AdaDelta to 1.0, which is the suggested value by the authors for most

cases. In each network that was designed in-house, we implemented batch normalization before

each ensemble layer. We describe the architecture used for each dataset under their respective

sections. The nomenclature we use for network descriptions is (16)3c−2p−10 f where (16)3c

describes a convolutional layer with 16 filters of size 3x3, 2p for a max-pooling layer with filter

size 2x2, and 10 f for 10 neurons of a feed foward layer.

The weights at the ensemble layer were initialized at 1
m where m is the number of activation

functions at a neuron. Furthermore, we set η = 0 and δ = 1 and initialized the traditional neural

network weights with the Glorot method. In addition, we initialize the residual network using

the He Normal method. We train on our three activation sets as well as the same networks
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with rectifier units for the original networks since they are the standard in most cases. Our

stopping criterion is based upon the validation error for each network except for the residual

network, in which the suggested number of epochs is 82. Also, we apply AdaDelta for each

optimization step for all new variables as well, α,η , and δ for each minibatch. In Table 3.1

below, we summarize the test accuracy (reconstruction loss for STL-10) of our datasets and

various models. Each number is an average over five runs with different random seeds. Note that

the largest improvement is found for the ISOLET dataset; however, we also find that separate

models and datasets prefer one activation function over another, which we expand upon below.

Table 3.1. Final Model Results for Models with and without Activation Ensembles

DataSet Model Original/Ensemble

MNIST FFN 97.73% / 98.37%

MNIST CNN 99.34% / 99.40%

ISOLET FFN 95.16% / 96.28%

CIFAR-100 Residual 73.64% / 74.20%

STL-10 CAE 0.03524 / 0.03502

3.5.1. Comparing Activation Function Sets

We first explore the α parameter values of our activation functions. We primarily concentrate

on the first set of activations (Sigmoid, Tanh, ReLU, Soft ReLu, ExpLin, InvAbs). Since ReLU

is the most common activation function in literature, we expect it be chosen the most by our

networks. As seen Figures 3.1,3.3, and 3.4, we find this to be true. However, neurons that are

deeper may not choose any particular activation. In fact, at some neurons in the bottom layers,

the parameters for choosing a function are nearly equal.
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Figure 3.1 illustrates the differences between layers of our activation ensembles for the in-

house Feed-Forward Network model applied to the MNIST dataset. Each data point is taken at

the end of an epoch during training. The neurons in the images were chosen randomly.

Figure 3.1. Top image is a neuron from the first layer while the bottom is from
the second layer

The top image of Figure 3.1, which comes from the top layer of the network, shows that

the ReLU becomes the leading function very quickly. The other functions, with the exception

of the exponential linear function, are very close to zero. The bottom image, which is a neuron

from the next layer in the network, still chooses the rectifier unit, but not as resolutely as in the
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previous layer. It is interesting that the sigmoid function in the next layer does not become zero

immediately like the neuron in the previous layer. We experimented as well with momentum,

and found that with a step of 0.1, the network still chooses a leading activation function. We find

that this is a general trend for FFN’s and the MNIST dataset. However, as we discuss below,

this does not hold for all models or datasets.

Figure 3.2. Example activation functions from each of the three sets of functions.

Next we compare the functions that the ensembles create. Figure 3.2 depicts the various sets

of activations for our ensemble. The images are of the same five random neurons taken from the

second layer of the FFN for the MNIST dataset in the first two figures while the final image is

taken from the second layer of the same model trained on the ISOLET dataset. The images are

made by taking the final α’s for each activation function, inputing a uniform vector from [−1,1],
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and adding the functions together. Note that we leave out the normalization technique used for

activation ensembles and the values for η and δ . The first set of activations, presented in the top

left of Figure 3.2, behave very similarly to the exponential linear unit. However, this function

appears closer to an x3 function because of its inflection point near the origin. The second set

of functions clearly form a piecewise ReLU unit with the various pieces clearly visible. The

last set appears much like an absolute value function, but differentiates itself by having varying

slopes on either side of the y-axis. We observe that the best activation function for each model

is the third set, with the exception of the residual network.

3.5.2. MNIST

We solve the MNIST dataset using two networks, a FFN and a CNN. The FFN has the form

400 f −400 f −400 f −10 f while the CNN is of the form (32)3c−2p− (32)3c−2p−400 f −

10 f . MNIST is not a particularly difficult dataset to solve and is one of the few image-based

problems that classical FFN’s can solve with ease. Thus, this problem is of particular interest

since we may compare results between two models that can easily solve the classification prob-

lem with our activation ensembles. One of the aspects we explore is whether or not different

activations prefer certain models.

In Figure 3.3, we present histograms representing the share of α values for each activation

function in the ensemble. The histograms are a representation of favored activation function by

layer for the first set of activations. The top left image in Figure 3.3 shows what we expect,

namely that the ReLU dominates the layer. As we move towards the bottom of the network, the

ReLU is still the most favored function; however, the difference becomes marginal. Also note

that the sigmoid function is the lowest value function in all 3 layers and that the exponential
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Figure 3.3. Left to right layers 1-2 and bottom layer 3 for a Feed Forward Net-
work on MNIST of activation set 1.

linear function has the smallest range of all the functions. For the experiments on the other two

activation sets, we note that the difference between one activation and another is not nearly as

significant as activation set 1.

We also observe the α’s in our CNN and found that the hyperbolic tangent and inverse

absolute value functions overtake the rectifier unit in importance at the third layer (a feed-

forward layer) versus the first two convolutional layers. Thus, it appears that the transition

of one type of layer to another changes the favored activation functions. Therefore, we see

that given a single dataset, the favored activation depends on the layer and model used for

classification.
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3.5.3. ISOLET

ISOLET is a simple letter classification problem. The data consists of audio data of people

uttering letters. The goal is to predict the letter said for each example (a-z). ISOLET has 7797

examples and 617 attributes. For training and testing, we split the data into 70% for training

and 30% for testing. In addition, we use our in-house FFN described in the previous section

(400 f −400 f −400 f −26 f ). We train both a network with only ReLU’s at each neuron and a

network with activation ensembles. For ISOLET, we implement all three classes of ensembles

we mention in the previous section.

Figure 3.4. Left to right layers 1-2 and bottom layer 3 for a Feed Forward Net-
work on ISOLET of activation set 1.

In Figure 3.4, we present the same images provided for the MNIST dataset. We see much

different behavior of the α values than we did with the MNIST dataset. Most values are clumped
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up near one another. Though the ReLU is the leading activation function, it is not by much in

the first two layers. Similar to the CNN for MNIST, hyperbolic tangent and the inverse absolute

value functions move up in importance.

Thus, we see that even with the same network and sets of activation functions, the model

chooses different optimal activation functions based upon each individual dataset.

3.5.4. CIFAR-100

In order to get a broad scope of networks and test the strength of activation ensembles, we

decide to use a residual network for CIFAR-100. The network we use comes from the Lasagne

recipe Github <https://github.com/Lasagne/Recipes/tree/master/papers>. It was

originally designed for the CIFAR-10 dataset, but we modify the model for CIFAR-100. The

model has three residual columns of which include five residual block each followed by a global

pooling layer for a total of 32 layers.

Challenges arise from two areas while implementing activation ensembles on residual net-

works. First, residual networks are specifically designed for ReLU’s via the residual element

and initialization. Second, the placement of each activation ensemble needs to be carefully

constructed to avoid disrupting the flow of information within each residual block.

We attempt various approaches to activation ensembles on residual networks. The failed

ideas include having an ensemble after each residual block and after the second stack but before

adding in the residual. The implementation that works best is to incorporate the activation

ensemble in the middle of a residual block and not at the end of the block or after. In addition,

this is the only network in which the second class of activations (the 5 ReLU’s with various

<https://github.com/Lasagne/Recipes/tree/master/papers>
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intercepts) works best. This is an expected result because of a residual network’s dependence

on the ReLU.

3.5.5. STL-10

The CAE (Convolutional Autoencoder) we implement for this problem is very similar to one

done by Dosovitskiy, Springenberg, Riedmiller, and Brox (2014). However, our network con-

tains less filters at each layer than their network due to insufficient GPU memory on our

graphical cards. Our structure is the following for the encoder portion of the autoencoder:

(32)5c− 2p− (64)5c− 2p− (128)5c− 6p. Some CAE’s use an ReLU at the end for predic-

tion purposes, but we use the sigmoid function. We keep normalization very simple with this

network by only scaling the data by 255 at the input level. The reproduced images by the net-

work are then very easy for comparison by using the sigmoid function and mean-squared error.

During preliminary experiments we saw certain classes of activation functions tend to perform

better, and thus we implemented only the third ensemble set that resembles an absolute value

function.

We additionally tie all the weights for the encoder and decoder to restrain the model from

simply finding the identity function. Since tying the weights is suitable for autoencoders, we

also tie the weights associated with our activation ensembles (this includes α,δ , and η values).

We choose to not tie the maximum and minimum values we find during the normalization stage

as those are simply used for the purpose of our projection algorithm for the α variables.
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3.6. Discussion

In our work, we introduce a new concept we title as an activation ensemble. Similar to

common ensembling techniques in general machine learning, an activation ensemble is a com-

bination of activation functions at each neuron in a neural network. We describe the implemen-

tation for standard feed-forward networks, convolutional neural networks, residual networks,

and convolutional autoencoders. We create a convex combination of activation functions yet to

be seen in literature with an algorithm to solve the new projection problem associated with our

model. In addition, we find that these ensembles improve classification accuracy for MNIST,

ISOLET, CIFAR-100, and STL-10 (reconstruction loss).

To gain more insight into activation functions and their relationships with the neural net-

work model implemented for a given dataset, we explore the α’s for each activation function

of each model. Further, we examine one dataset, MNIST, with two models, FFN and CNN.

This enables us to discover that the optimal activation varies between a FFN and CNN on the

same dataset (MNIST). While the top two layers of both favor the rectifer unit, the bottom

layer prefers the hyperbolic tangent and inverse absolute value functions. When comparing the

activation ensemble results between ISOLET and MNIST on the FFN, we observe that the opti-

mal activation functions between datasets are also different. While MNIST esteems the ReLU,

ISOLET does not favor a particular activation until the bottom layer, in which it chooses the

hyperbolic tangent.
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CHAPTER 4

Dynamic Time Prediction for Stock Prices

4.1. Contribution

Recurrent neural networks and sequence to sequence models require a predetermined length

for prediction output length. Our model addresses this by allowing the network to predict a

variable length output in inference. A new loss function with a tailored gradient computation is

developed that trades off prediction accuracy and output length. The model utilizes a function to

determine whether a particular output at a time should be evaluated or not given a predetermined

threshold. We evaluate the model on the problem of predicting the prices of securities. We find

that the model makes longer predictions for more stable securities and it naturally balances

prediction accuracy and length.

4.2. Introduction

Recurrent neural networks are very popular and effective at solving difficult sequence prob-

lems such as language translation, creation of artificial music, and video prediction. New ar-

chitectures, such as Sequence to Sequences networks by Sutskever, Vinyals, and Le (2014) and

Memory Networks by Sukhbaatar, Weston, Fergus et al. (2015) are used to solve problems in

language translation and answer questions using a large memory bank. However, these prob-

lems generally have training data with given sequence outputs (for example, a model translating

a sentence from English to Spanish). Because input and output sequences are known a priori

for these problems, it is possible to solve them with a fixed model architecture.
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A fixed model architecture is effective for sequences, but there are a number of problems

related to multiple time series datasets that do not have a natural sequence size. For example,

a company may wish to predict the number of products to be shipped out for sale based upon

customer demand. Each product has a different amount of demand volatility, which can make an

enormous difference in how far in advance they are willing to predict the demand of a product.

In this case, it would be extremely useful to have a model that can balance F1 score and the

number of future predictions based upon a product’s base demand.

Another example, which we explore in this work, is financial security price prediction.

Some securities are extremely volatile, which makes prediction for longer times highly inaccu-

rate. On the other hand, low volatility securities are easier to predict further into the future.

The biggest problem in multiple time series predictions when it comes to dynamic prediction

length is that the training data does not exhibit output sequences of various length. For this

reason, a different model is required. In multiple time series, input sequences can be naturally

created for example by a fixed-size sliding window. However, the length of the output sequences

can be dynamic since typically there is flexibility in how far to predict in the future. In inference,

we allow our prediction model to generate a different number of predictions depending on

the current input sequence as well as a different number of predictions per time series. The

number of predictions the model generates depends on a thresholding function that determines

the model’s confidence of that particular output. If the confidence is too low, we no longer

consider the predictions our model generates for that particular sample.

The main objective of our study is to create a prediction model that balances F1 score and

predicting into the future. The main challenge is the fact that samples which are taken from

infinite time series do not naturally contain dynamic length predictions. This aspect requires
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a different loss function that includes the notion of confidence and tailored computation of

gradients on different length output sequences. We create a model architecture relying on a

novel loss function that allows for a dynamic number of output predictions. We explain the

ideas and concepts by utilizing predictions of several correlated financial securities. In this

case, rather than having to adjust the predictive length manually depending on market volatility,

the model learns how far in advance it can confidently predict during training. For security

prediction, a model that is not limited to a fixed number of output predictions can provide

much more robust price predictions. For example, we expect that some security j with high

volatility during the training phase should result in fewer predictions. On the other hand, if the

same security j is trained during a low volatility period, we expect the model to generate more

predictions. Clearly, a dynamic model that can easily adjust to the current training environment

of a security can provide huge benefits. In inference the model provides a natural way to stop

generating output predictions.

Our work contains two main contributions. First, we create a way to measure the confidence

of a model’s prediction without having to rely on Bayesian statistics. Second, our model is the

first of its kind to allow for dynamic prediction length with sequence to sequence networks.

Along the way, we have to tailor gradient computation.

In our study, we use two financial security datasets which consist of several years of tick

prices. One contains five distinct securities and the other contains twenty-two different securi-

ties. We find that our new architecture successfully balances prediction F1 score and the number

of future predictions. In addition, our architecture uses different prediction lengths at different

times for each security due to stochastic drift between training and test sets. The best dynamic

output prediction length model is a sequence to sequence network which earns an F1 score of
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0.503 in contrast to a traditional LSTM structure that only gets an F1 score of 0.209 for a single

prediction.

In Section 4.2, we review two main subjects related to our work. First, we inspect studies

within the realm of deep learning related to our new model architecture. Second, we analyze

other work on predicting financial securities with a focus on machine learning and deep learning

methods. In Section 4.3, we present the dynamic prediction length model while in Section 4.4

we present a computational study based on securities.

4.3. Related Work

Similar to our concept of dynamic output prediction, Pointer Networks by Vinyals, Fortu-

nato, and Jaitly (2015a) are used for problems such as sorting variable sized sequences. They

use an attention mechanism that points to a particular part of the input sequence that is used as

the next output. Although this architecture can allow for variable input sizes, the output size is

constrained to be the same size as the input. Our model allows for any size output (unrelated to

the input size) up to some arbitrary maximum size. Pointer networks are also not applicable to

our case since output is not a specific part of input.

Graves (2016) introduces adaptive computation time (ACT) for recurrent networks. The

author creates an additional metric that allows the network to continue “pondering” the input

through additional computation. We can think of ACT as a model that in each time has a

dynamic number of stacked LSTM or GRU cells. We considered using ACT along with our

architecture, but it increases the computational complexity by recalculating the feed-forward

step a number of times. Basing the stopping decision with respect to the natural choice of the

output time requiring substantial computational time, does not work when most times a single



78

layer is needed. In time series with a walk forward strategy, smaller less complex models are

more effective. This renders ACT not appropriate. In addition, online algorithms need to be

agile, and adding computational time would be a detriment to a model. Therefore, we choose

to use traditional LSTM architectures that train much faster.

To achieve better training and dynamic output sizes, we added an additional term to the

loss function and modify the measure of predictions. Although there have been many new

architectures such as Residual Networks by He et al. (2016), Memory Networks by Sukhbaatar

et al. (2015), and Neural Turing Machines by Graves, Wayne, and Danihelka (2014), none of

these incorporate a new loss function with their architecture. This tendency of not creating new

loss functions is noted by Janocha, Czarnecki et al. (2017). The authors explain that although

there is a lot of work in neural network activations, optimization, and architecture, the loss

function used for nearly all neural networks is a combination of log loss and L1/L2 norms.

Janocha et al. (2017) show that functions that were previously deemed to be inferior in deep

learning can be more robust than log loss for classification problems. Therefore, it is important

for studies to continue exploring loss functions to increase the network performance and to

create a variety of new models.

There are some studies that significantly change the loss function in deep learning. For

example, GAN’s by Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville,

and Bengio (2014) are immensely popular and design a loss function for their specific problem

and architecture to balance generation and classification. ACT by Graves (2016) also uses a

unique addition to the loss function so that their network does not “ponder” on the input for too

long. There is growing momentum for using the Wasserstein metric as the loss function as seen

in the work by Frogner, Zhang, Mobahi, Araya, and Poggio (2015). The Wasserstein metric is
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even successfully being used in GAN’s in the work of Arjovsky, Chintala, and Bottou (2017).

We expand the volume of work in this area by developing a loss function that encourages a

model to have a dynamic output length at prediction. In contrast to loss functions specific to

problem type, our architecture can be used with any recurrent neural network architecture.

Next, we focus on works on predicting financial securities with deep networks. Most work

utilizing deep neural networks focuses on applying other forms of data for prediction, such

as news about financial markets or specific companies. Chong, Han, and Park (2017) review

many of the prediction methods commonly used for security prediction and the predicted out-

come. Niaki and Hoseinzade (2013), focuses on predicting upward and downward movement

of S&P 500 with a deep feed-forward network. Ding, Zhang, Liu, and Duan (2015) use his-

torical pricing data in combination with financial news data with a deep feed forward network.

Krauss, Do, and Huck (2017) utilizes both random forests and deep feed-forward networks to

find statistical arbitrage on the S&P 500. In contrast to the aforementioned models, we predict

significant movement in prices, utilize temporal models, and predict multiple securities with a

single model.

Sirignano (2016) uses deep learning directly on financial security price data as well. He

utilizes limit order book data with multiple ask/bid prices for each security to predict the change

in the spread. In addition, he uses a deep feed-forward network and a separate model for the

prediction of each security. In contrast, we predict all securities with one model and apply

recurrent neural networks in addition to feed forward networks. Another similar work, Dixon,

Klabjan, and Bang (2016), uses deep feed-forward networks for prediction directly on security

prices. In contrast, our study applies recurrent and convolutional recurrent models in addition

to the baseline feed forward network.
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There is also work on security prediction beyond the standard feed-forward network.

Borovykh, Bohte, and Oosterlee (2017) uses convolutional neural networks over the security

time series to make predictions. Others, such as Bao, Yue, and Rao (2017), use stacked auto-

encoders and wavelet transformations to form an embedding of financial data, and feed this into

an RNN model for prediction. Chen, Zhou, and Dai (2015) use an RNN model on opening

and closing security prices on the Chinese market with seven classification categories. Akita,

Yoshihara, Matsubara, and Uehara (2016) use both textual and price information to predict

a security price. In contrast to these works, our model consists only of security price data.

Also, we apply sequence to sequence and convolutional LSTM models in addition to having a

dynamic output length for security predictions.

4.4. Model

In this section, we explain the architecture of our model that predicts a dynamic number of

outputs. The model uses a sequence to sequence (Seq2Seq) network in combination with our

new proposed loss function. For details on Seq2Seq networks, please see the original paper by

Sutskever et al. (2014). We also use attention in our model which is explained in the paper by

Bahdanau, Cho, and Bengio (2014).

In addition, we use teacher forcing. We found that the first input to the decoder has a great

impact on accuracy. By far the best performing first decoder input is the ground truth associated

with the last encoder input.

For a general Seq2Seq network, let θ describe the trainable weights, X be our input sample,

and f q
t (X ,θ , fi<t) be the final output via a softmax function at time t for time series q, q= 1...Q.

In the presence of several time series, each time series requires a separate softmax. The general
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formulation for a Seq2Seq network with Kullback-Leibler divergence is the following with true

labels Y = {Y q
t }t :

min
θ

E(X ,Y )

Q

∑
q=1

T

∑
t=1

KL(Y q
t || f

q
t (X ;θ ; fi<t)).

Here fi<t = ( f q
t̄ )

t−1,Q
t̄=1,q=1.

A general Seq2Seq network is effective for multiple time series problems that rely on a

known training output size which is often not the case. However, if the natural sequence size

is not known a priori, a basic Seq2Seq is insufficient. We create a model that is able to learn

from training data that contains a capped output length during the training phase and predicts a

dynamic output sequence during the prediction phase.

4.4.1. Dynamic Prediction Length Sequence to Sequence

To create a model that predicts a dynamic output length for each time series, we introduce a

function, g( fi≤t) that captures confidence of the prediction at time t. Note that the confidence

function may be dependent on previous values f1, f2, ... ft . To determine output length, we mea-

sure the confidence function against a threshold value τ (which is a hyper-parameter) resulting

in

(4.1) min
θ

E(X ,Y )

Q

∑
q=1

∑
g( f q

i≤t(X ;θ ; fi<t))≥τ

KL(Y q
t || f

q
t (X ;θ ; fi<t)).

For the remainder of our work, we let Lq
t := KL(Y q

t || f
q
t (X ;θ ; fi<t)) and

Gq
t := g( f q

i≤t(X ;θ ; fi<t)). Note that we use the output of the softmax function f q
t (X ;θ ; fi) as

a loss measure in the Kullback-Leibler divergence and the confidence measure for dynamic
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output length. As an example, Gq
t can return the maximum predicted probability at time t, but

it can also be total variation between one time step and the next.

The baseline loss function above contains a flaw. Since the set of optimal values are Θ∗ :=

{θ ∗ : Gq
t (θ
∗)≥ τ}, the model does not have to make accurate predictions to minimize the loss

function. It can for example select θ such that Gq
1 < τ and thus an “empty” sum. Therefore,

we add a penalty to the loss function that punishes the model for not meeting the threshold to

generate accurate prediction outputs.

Next, we introduce a second hyperparameter, λ , with the new penalty function in the loss.

If the model makes few predictions, we can increase λ and decrease τ . To balance the F1 score

and output length, we adjust each of these hyperparameters. By using the indicator function

I[Gq
t ≥ τ] for 1 if Gq

t ≥ τ and 0 otherwise, the loss function reads

(4.2) min
θ

E(X ,Y ))

Q

∑
q=1

T

∑
t=1

(
I[Gq

t ≥ τ]Lq
t +λ max(τ−Gq

t ,0)
)
.

By design, if the model masks the Kullback-Leibler divergence (i.e. Gq
t < τ), the penalty func-

tion produces a nonnegative output and vice-versa.

In addition to designing our penalty function to counter the Kullback-Leibler error, we make

the penalty function in the form of a rectifier unit. We do this since rectifier units are effective

with neural networks for training and have a simple non-vanishing gradient. Since there is only

a single gradient difference between this function and the Kullback-Leibler loss, we save a lot

of computational effort.

We also consider a smooth masking function to improve differentiability. We propose a

form of the sigmoid function. With the sigmoid function our loss reads
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(4.3) min
θ

E(X ,Y )

Q

∑
q=1

T

∑
t=1

[
Hk,τ

t (Gq
t )L

q
t +λ max(τ−Gq

t ,0)
]
.

where

Hk,τ
t (x) = 1

1+e−k( x−τ
1−τ

)

for positive and possibly large hyperparameter k. Since the loss function in (4.3) is differen-

tiable, standard back propagation can be used. On the other hand, (4.2) is not differentiable

since the number of summation term depends on trainable parameters θ .

Up until this point, we have not considered the various possibilities for the function

g( f q
i≤t(X ;θ ; fi<t). To properly balance accuracy and future predictions, we require that the

function can express the confidence of the model and/or be an effective measure of volatility.

We choose four different functions that range in both complexity and time dependency:

• Maximum: max j f q
t, j(X ;θ ; fi<t)

• Confidence Distance: max j( f q
t, j(X ;θ ; fi<t))−maxk,k 6= j∗( f q

t,k(X ;θ ; fi<t)) where j∗ :=

argmax j( f q
t, j(X ;θ ; fi<t))

• Total Variation: max j | f q
t, j(X ;θ ; fi<t)− f q

t−1, j(X ;θ ; fi<t−1)|

• Wasserstein/Earth Mover Distance: W 1( f q
t (X ;θ ; fi<t), f q

t−1(X ;θ ; fi<t−1)).

The first two functions are based upon the current prediction time while the other two are

dependent on the current and previous outputs. Confidence distance and maximum measure

confidence of the current prediction. If the model is struggling between two different labels

(uncertainty), then we expect this value to be small enough to be below the threshold. Both

Total Variation and the Wasserstein Distance are classic measures for the distance between two
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probability distributions. Note that we specifically choose the first Wasserstein Distance, which

is also known as the Earth Mover Distance. In addition, because total variation and the earth

mover distance measure volatility, we define Gq
t to be the negative of these two measures, which

then leads to Gq
t ≤ τ .

4.4.2. Training and Inference

There are differences between the training of a typical Seq2Seq model and our new model

during training and prediction. For example, when our network stops at T̂ (q) for time series q,

we no longer consider the accuracy error terms for t > T̂ (q) when computing the gradient.

In the forward pass, we stop when Gq
t̄ < τ occurs the first time for time series q and thus

t̄ = t̄(q). It may happen that for some Gq
t̂(q) ≥ τ for some t̂(q) > t̄(q). When this occurs, we

do not consider the terms corresponding to t̂(q) in the Kullback-Leibler divergence or in our F1

score calculation. With the indicator function, the outputs from the Kullback-Leibler divergence

are completely masked to zero. However, with the sigmoid function, the outputs below τ are

only partially masked. In addition, when utilizing the sigmoid function, we calculate the F1

scores in the same manner as in the case of the indicator function.

After obtaining t̄(q) in the forward pass for each time series q, we change the loss to the

following when using (4.1):

min
θ

E(X ,Y ))

Q

∑
q=1

[
t̄(q)

∑
t=1

Lq
t +

T

∑
t̂=t̄(q)+1

λ max(τ−Gq
t̂ ,0)

]
.

From this point on, we do standard backpropagation treating t̄(q) as fixed for the current

sample.
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4.5. Computational Study

4.5.1. Data Preparation

We study our model on financial time series data. Our data consists of fourteen years of secu-

rities at five minute tick intervals for two sets consisting of twenty-two ETF’s and five distinct

commodities. The identity of the securities are unknown; therefore, we do not incorporate any

additional features such as news and market announcements. To clarify, the dataset consists of

only the single tick price rather than prices on multiple levels of an order book. In addition,

we do not have trade volume information. The prices for the twenty-two ETF dataset are the

returns of each security, which is the relative change in price from one 5 minute interval to the

next. The five commodity dataset consists of the price of each security at each time t. In order

to have consistency between the two datasets, we choose to only consider the returns of the five

commodity dataset.

We create two representations of our data: one for the feed forward and seq2seq networks

and the other for the convolutional seq2seq network. First, we create a sequence of inputs

consisting of T̄ returns for each financial asset. Since our data can be viewed as a continuous

streaming sequence (no obvious beginning or end), we create sequences of various size T̄ . For

each sequence, the next sequence moves forward by a 5 minute interval. We found that includ-

ing this overlap increased prediction accuracy. In our best performing feed forward networks,

our feature vectors consist of ten returns. For a seq2seq network we increase the sequence size

to twenty.

Since an increase in the sequence size greatly increases the computation time of a seq2seq

neural network, we consider a 1-dimensional convolutional LSTM. A convolutional LSTM
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layer can take much larger sequences because the convolutional step in each LSTM node re-

duces the total number of sequences via a convolutional kernel. Since we input multiple returns

from different financial assets, each channel of convolution represents a difference financial se-

curity (similar to RGB). We tried two models: convolution feeding into LSTM and ConvLSTM

(Xingjian, Chen, Wang, Yeung, Wong, and Woo (2015)). All seq2seq models are embedded

with our loss function unless stated otherwise.

For normalization, we use the standard approach of calculating the mean and standard de-

viation of the training set and using that to normalize both the training and validation/test sets.

For our data, we use one year of training data (47,000 samples), and classify the next week of

returns (1,000 samples).

We utilize a walk-forward methodology to evaluate our model over the entire dataset. After

each training phase we move the training and testing windows one week forward. The first

week of the previous training data is dropped form the training data of the next phase. Each

training is warm-started (pretrained) from the previous window.

To classify the returns of each security, we split the labels into five classes: large upward

movement, small upward movement, insignificant movement, small downward movement, and

large downward movement.

We calculate the mean (µD) and standard deviation (σD) of the returns sD of the previous

day to create our labeling scheme of five classes for the returns of day D+ 1. To classify the

return xD+1
t on day D+1 at time t, we use the following rules.

xD+1
t < µD−σD,

µD−σD ≤ xD+1
t < µD−βσD,
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µD−βσD ≤ xD+1
t < µD +βσD,

µD +βσD ≤ xD+1
t < µD +σD,

µD +σD ≤ xD+1
t

Here β is a paramter. We set β such that roughly 50% of all values lie within insignificant

movement (β = 0.14) for the twenty-two security dataset. For the other dataset, a few of the

securities contain large data imbalances at the large upward and downward movements. Since

this is the case, we pick β = 0.1 so that the majority class contains roughly 50% of all labels.

These choices lead to class imbalances of roughly [5%, 20%, 50%, 20%, 5%].

4.5.2. Results

The following results are based upon the best sequence sizes, neurons per layer, optimization

method, and number of layers found through hyperparameterization of each network. The

models were trained on Titan X’s and Nvidia 1080’s and implemented in tensorflow. For each

dataset, we have one model to classify all twenty-two ETF’s from one dataset and one model to

classify all five commodities in the other dataset. We test the ETF dataset on all baseline and

final model architectures. Due to computational time constraints, we only calculate the results

of the commodity dataset using the best model from the ETF dataset.

4.5.3. Baseline Test

For our first experiments, we use a FFN, LSTM network, LSTM Seq2Seq network, and a Con-

vLSTM Seq2Seq network in the setting of a fixed prediction of 1 or 10. The FFN consists of

two layers with sixty-four neurons and ten returns for each security. We train the FFN with the
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Table 4.1. F1 Scores of Baseline Models

Architecture ETF’s Commodities
FFN (One Pred) 0.176 0.159
LSTM (One Pred) 0.209 0.286
ConvLSTM (One Pred) 0.513 0.410
LSTM Seq2Seq (One Pred) 0.598 0.513
LSTM Seq2Seq (Ten Pred) 0.509 0.474

stochastic gradient optimization method. The basic recurrent LSTM network consists of two

LSTM layers, each with sixty-four neurons and input sequence size of twenty. For all recurrent

networks, we use the ADAM optimization method by Kingma and Ba (2014), which is known

to perform well for recurrent networks. We train for a number of epochs until the F1 score no

longer increases on the validation dataset. Last, the sequence to sequence network consists of

one encoder and one decoder layer, each with sixty-four neurons and either LSTM or ConvL-

STM layers. We tried using deeper networks, but those resulted in much lower F1 score. We

utilize the same model architecture for both the ETF and commodity datasets.

We are using financial security datasets, which typically contain imbalanced classes. When

considering imbalanced classes, the traditional accuracy measure does not display the true ef-

fectiveness of a model. Therefore, we utilize the F1 score, which accounts for imbalanced

classes. The F1 score is calculated via a one-against-all structure of precision and recall for

each of the five classes. The values we report are an average of the F1 scores for each class and

security.

The FFN, LSTM, LSTM Seq2Seq, and ConvLSTM Seq2Seq results are presented in Table

4.1. To produce these results, we give each model a warm start by training on 5 windows of data.

We then train the models for 25 more windows on the 22 ETF’s and 5 commodities datasets.

The F1 scores in Table 4.1 are the average test scores over this 25 window period.
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We use our baseline results in Table 4.1 to determine the best architecture for our dynamic

output length model and to examine the differences of the various seq2seq networks. We ob-

serve that each single prediction model generally increases in performance when using more

robust models (such as seq2seq). As expected, the seq2seq models and recurrent LSTM models

far outperform the FFN, but we did not expect such a large performance increase when utiliz-

ing a seq2seq model. Even when making 10 predictions forward in time, the seq2seq model

more than doubles the F1 score compared to the traditional LSTM network that makes a single

prediction. With ConvLSTM layers, we found that the best formulation is utilizing 1D convo-

lutions with each security representing a channel in the image. Ultimately, we find that the best

ConvLSTM seq2seq model does not perform as well as the LSTM seq2seq model. Since the

LSTM seq2seq model is by far the most accurate, we choose it for our dynamic output length

model.

4.5.4. Output Length and Accuracy

We begin by examining the behavior of our dynamic model with the confidence distance (CD)

threshold function, which turns our to be the best one as shown below. We want the model to find

the best number of predictions for each security and each input. To verify this behavior, we train

the seq2seq LSTM model with parameters τ = 0.4 and λ = 1.0 on the first training window. We

utilize these particular hyperparameter values since they showcase dynamic prediction length

and result in superior performance. This pair and other hyperparameter pairs are visualized in

the next section.

In Figure 4.1, we present the training F1 scores and average output length for a single test

window of the 22 ETF’s dataset. In the image on the left we observe that the validation loss
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decreases for roughly 20 epochs before it begins to overfit. During our model training, we

use the model weights that result in the best validation F1 score (which coincides with the

best lowest validation loss) as a starting point for the next training window. For the output

length image on the right, the output length margin between training and validation is small

at the beginning of training. However, as the model continues to train, the average number of

predictions for training and validation diverges slightly. Also, we observe that as the model

continues to train, the number of predictions increases to a limit at around 20 epochs, which

matches the loss.

Figure 4.1. Total loss (KL divergence plus max) and average output length for a
single window with the CD thresholding function.

One particularly interesting behavior we find with the dynamic model is that each security

had variable prediction lengths. In Figure 4.2 we present an example of this behavior under

the same setting. The prediction lengths are an average of 5 test set windows after a 5 window

warm-up period with the 22 ETF’s dataset. We notice that the number of predictions varies

from roughly 5 predictions to nearly 10. In addition to the the average number of predictions,

we place the majority class label percentage, which is a proxy to volatility, of each security at the
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top of each corresponding bar. There does not appear to be a correlation between volatility and

the average prediction length. We hypothesize that the difference in prediction length is due to

the difference in volatility of the training and test sets of each security. Financial securities tend

to have covariate shift, and our model may capture this during inference, which we examine in

Figure 4.3.

Figure 4.2. Average number of predictions for each ETF over a 5 window pe-
riod. At the top of each bar is the average percentage of labels for the majority
class for the same 5 window period.

To test the variance, we perform the standard t-test between the samples of the training and

test sets. Specifically, we test the difference between the means of final input (the actual return)

of each training and test sequence. We expect that less variance between the training and test

sets (a larger p-value) correlates with a longer output length. In Figure 4.3, we use the same 5

windows, threshold function, and values for τ and λ as in Figure 4.2. Each point in the plot
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corresponds to the average p-value of the t-test between training and test sets, and the average

prediction length for each of the 22 ETF’s.

Figure 4.3. For each ETF we calculate the p-value between the training and test
sets using the standard t-test. We compare this to the corresponding output length
of the test set.

Next we examine the benefits of a dynamic output length. In the following two sections, we

explore the effectiveness of our four proposed confidence functions.

4.5.5. Maximum and Confidence Distance Confidence Functions

We begin with the two confidence functions that depend only upon the current prediction: max-

imum and CD. We study the sensitivity of τ and λ , and the comparison between the indicator

(Ind) and sigmoid (Sig) functions, i.e. loss functions (4.2) and (4.3) respectively. In the follow-

ing sections, we refer to the indicator and sigmoid functions as masking functions because they

mask the output from the Kullback-Leibler divergence.
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A large gradient for λ max(τ −Gq
t ,0) means that we encourage the model to make more

predictions. We can control the output length by adjusting the hyperparameters λ and τ . In

Figure 4.4 we present a range of τ and λ values and the respective F1 scores with Gq
t being the

maximum. In addition, we place an annotation of the best pair (τ,λ ) that results in the largest

distance above the static curve in bold. We add this annotation to all figures of this type.

Figure 4.4. F1 and average output length for pairs of τ and λ . We use the maxi-
mum confidence function with the indicator function on the left and sigmoid on
the right.

In Figure 4.4, we first create a line that gives the F1 scores from a static seq2seq model for

5 training windows after a 5 window warm start. We compute F1 for 1,4,7,10 predictions by

the static model and interpolate the remaining values. It is important to point out that the F1

scores here are different than in Table 4.1 since we are measuring 5 windows rather than 25.

We expect the dynamic model to be above this curve when using appropriate values for (τ,λ ).

Each point in Figure 4.4 is the average output length and F1 score of the 22 ETF dataset for a

pair (τ,λ ). On the left is the indicator masking function and the right is the sigmoid masking

function. For both figures, we use the same values for τ and λ . We find that with τ = 0.5, our

model has high accuracy with a relatively large average output length.
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The red points are a pair (τ,λ ) that perform worse than the static model and the green are

those that perform better. We expect to find many pairs of hyperparameters that lead to superior

F1 scores since our model uses a dynamic prediction length for each sample. There are a few

outliers that fall well below the estimated performance in the figure on the left, which uses the

indicator masking function. The sigmoid function on the right has many more points above

the static curve and does not have any points below the 0.4 F1 score. We observe that many

red points usually have large λ ’s. When λ is too big, the model stops training for prediction

accuracy and only focuses on creating more predictions. Note that not all large λ ’s lead to

strictly poor performance since the best sigmoid pair has λ = 5.0.

Next we consider CD. As in Figure 4.4, Figure 4.5 shows a hyperparameter search (τ,λ )

with the indicator masking function on the left and sigmoid masking function on the right. Note

that with CD, the number of points below the static line is smaller compared to the maximum

function. When λ is too large, the indicator version has three points that fall far below our

estimation. It is important to point out that there is a large distance between the green points

and the blue curve that is rarely seen with other confidence functions. Based on these results, we

recommend using the CD over the maximum function. It requires very little extra computation

and leads to better F1 with a similar average output length.

In Figures 4.4 and 4.5, we show that large λ ’s usually lead to inferior models. Therefore, we

explore τ to see if we can find a relationship between this hyperparameter and the average output

length. We present two images in Figure 4.6 of the sensitivity of the indicator and sigmoid

masking functions with maximum and CD functions. We create these figures by choosing λ =

0.1, which produces the best performance for all cases of τ and plot the relationship between
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Figure 4.5. F1 score and average output length for pairs of τ and λ . We use CD
with the indicator function on the left and sigmoid function on the right.

average number of predictions and τ . Note that we use the same approach of utilizing a 5

window warm start and measure the average output length based upon the next 5 windows.

On the left, we observe that the slope for the sigmoid masking function is sharper than

the indcator function for both confidence functions. In the case of these two functions, the

sensitivity is not nearly as large as the other two confidence functions that we explore in the

next section. For CD, the slope is much smaller (in terms of absolute value), which provides

additional evidence to recommend it over the maximum confidence function.

Given these two confidence and masking functions, we recommend using CD with the sig-

moid masking function. Although the sigmoid masking function is more sensitive to τ , we find

that sigmoid does not have as many points falling under the static curve. Next, we examine the

two confidence functions that depend on the current and previous predictions.
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Figure 4.6. The output length and τ values for both CD and maximum functions
with λ = 0.1. The trend lines are made via linear regression and show high
statistical significance between τ and output length.

4.5.6. Total Variation and Wasserstein Confidence Functions

The other two functions we test are total variation (TV) and the first Wasserstein distance

(EMD). We design the first two functions, maximum and CD, to find the confidence of the

current prediction using only the current prediction and input sequence. On the other hand, we

use TV and EMD to determine the volatility between the current and previous prediction. If the

volatility is low, we expect the model to be confident enough to make several predictions. We

first examine the results from TV in Figure 4.7.

TV does not garner high performance with either masking function. There are some points

with the sigmoid masking function that are slightly better than the expected F1 scores, but

TV is clearly not a successful measure. There are likely some cases where the TV may be

large between two predictions, but the model may still be confident about that prediction. For

example, if the prediction changes from one label to another at the next prediction step, the TV

between these two predictions may be large. However, this does not necessarily imply that the
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Figure 4.7. The F1 score and respective output length for various (τ,λ ) pairs
with TV. The indicator function is on the left while the sigmoid function is on
the right.

model is not confident about its next prediction. Also note that there are two rows of points

above and below the static curve of the sigmoid version. The difference between these two is

that the value for λ is larger for the points below the estimated curve, which is similar to the

results we obtain form the maximum and CD functions.

Figure 4.8. The F1 score and respective output length for various (τ,λ ) pairs
with EMD. The indicator function is on the left while the sigmoid function is on
the right.
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In Figure 4.8, we observe that EMD contains a similar pattern to TV. Similar to TV, the

indicator masking function with EMD performs poorly on the left compared to the better F1

scores of the sigmoid masking function on the right. EMD performs slightly better than TV

with a few more points above the estimated curve. This likely occurs because EMD is a more

robust probability measure. Instead of finding the maximum distance between two probability

measures P and Q (TV), EMD finds the cost of transforming the entirety of one distribution P

into another distribution Q. EMD is more robust, but a label change from one time step to the

next may correlate with a large EMD. However, this does not always imply lower prediction

confidence.

To conclude our examination of TV and EMD, we observe the relationship between the

number of predictions and τ in Figure 4.9. Note that the relationship is the opposite of the

maximum and CD functions since we reverse the relationship with respect to τ , which we

clarify in Section 4.3.1.

Figure 4.9. The output length and τ values for both TV and the EMD with λ =
0.1. The trend lines are made via traditional linear regression and show high
statistical significance between τ and output length.
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The slopes for the sigmoid versions of both metrics are larger than their indicator function

counterparts. We also observe that the slopes are large overall when compared to both the

maximum and CD confidence functions. Slight changes in τ lead to large changes in output

lengths for TV and EMD. In general, we found that the values of these two metrics tend to be

small, which is what leads to their sensitivity to τ . Overall, for all metrics, the sigmoid masking

function slope is larger in magnitude than the same version with the indicator masking function.

Also, TV and EMD show that confidence in predictions depends upon more than volatility.

4.5.7. Five Commodity Results

Next, we test our model on the five commodity dataset. Since we observe that the CD with

the sigmoid masking function provide the best performing model with the ETF dataset, we use

the identical functions on the commodity dataset. In addition, we create four static models

predicting 1,4,7,10 time steps each to create the blue curve as with the previous ETF figures.

In Figure 4.10, we present the dynamic model results with the commodity dataset. As with the

previous figures of the same type, we run the model for a total of 10 walk-forward steps and

average the final 5 F1 scores, which are reported in Figure 4.10.

The first thing we observe is that this is the first time that every single pair (τ,λ ) is above the

static predictions. This probably occurs because of volatility in the commodity dataset. Some

commodities are extremely volatile, and the price ranges from big highs to lows for a high

percentage of the labels. In addition, other commodities in the dataset have very low volatility

for a long period of time. Because of the skewed nature of the commodity dataset, it is possible

for our model to only choose to predict at times when it can make many correct predictions.
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Figure 4.10. The F1 score and respective output length for various (τ,λ ) pairs
with CD and the sigmoid masking function with the five commodity dataset.

To observe the dynamic model in Figure 4.11, we observe the F1 scores of our best dynamic

commodity model and two static models over 10 walk forward periods.

The F1 score of our dynamic model is superior at nearly every walk forward time period in

comparison to a static single prediction model, except for walk forward period 5. As expected,

the single prediction static model has a better F1 score on average than the static model making

7 predictions. However, the difference between 1 prediction and 7 predictions is small, which

is in stark contrast to the ETF dataset. This provides additional evidence that the price volatility

of the labels makes a static number of predictions difficult, and shows that a dynamic model can

be advantageous with a time series dataset that has a skewed distribution.
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Figure 4.11. The F1 score of our best dynamice model: τ = 0.3 and λ = 0.1
and an average prediction length of 7. We showcase its F1 score for each walk
forward period against two static models.

4.5.8. Summary of Results

In Table 4.2, we present a summary of the best results for our dynamic model. To measure

which pair (τ,λ ) is best, we measure the relative improvement between the F1 score of the

dynamic model and the equivalent prediction length F1 score of the static model (from the blue

curves shown in previous figures). The dynamic model with CD and sigmoid does extremely

well for the commodity dataset. The same functions also give the best F1 score with the ETF

dataset.
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Table 4.2. Dynamic Model Summary (All Sigmoid)

Architecture F1 Gap % (τ,λ ) Prediction Length

Dynamic Max (ETF) 5.44 (0.50,5.0) 7.68

Dynamic CD (ETF) 6.45 (0.40,1.0) 6.76

Dynamic TV (ETF) 4.49 (0.07,0.1) 6.16

Dynamic EMD (ETF) 3.72 (0.12,0.1) 6.00

Dynamic CD (Commodity) 21.2 (0.30,0.5) 6.89

4.6. Summary

In this work, we create a new loss function with the seq2seq network that makes a dynamic

number of predictions for each input sequence. In addition, we construct a new metric called

“Confidence Distance” to measure the confidence the model has when making a prediction.

When testing the new model, we find that a dynamic prediction length model can outperform

a similar static seq2seq network. In addition, we find that of our four confidence functions,

CD gives the most accurate predictions over maximum, TV, and the EMD. We examine two

versions of our model with each confidence function: masking the Kullback-Leibler divergence

with the indicator function and masking with the sigmoid function. We find that the sigmoid

function leads to better and more reliable prediction F1 even though it is more sensitive to

hyperparameter τ .

When using the dynamic model, we recommend to keep the value for λ low and to vary τ to

get the desired output length to F1 ratio. Seq2Seq models perform well with financial security

data, and we recommend their use and to make the first decoder input the label associated with
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the final encoder input. For the best dynamic output length performance, the best setting utilizes

τ ∈ [0.05,0.5] and λ ≤ 1.0 with the confidence distance metric and sigmoid masking.
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CHAPTER 5

Conclusion

In the first chapter of our work, we introduced the three basic neural network architectures:

feed forward, convolutional, and recurrent neural networks.

In Chapter 2, we explored an adversarial multiagent problem in the form of NBA basketball.

This dataset consisted of trajectory data gathered from cameras installed on courts by STATS

LLC. The goal of the work was to predict the probability that a shot is made given that a shot

is taken. We introduced faded trajectories to represent player movement over time on the court.

We found that using convolutional neural networks on the faded trajectories combined with

classic features crafted for a feed forward network produced a model that is over 60% accurate

at predicting whether a shot will be made.

In Chapter 3, we challenged the notion of having a single activation function per neuron. We

created a new architecture that can be applied to any type of neural network. In addition to the

typical activation functions used in deep learning, we introduced a unique set of activations and

found that this set is superior for the datasets MNIST, ISOLET, CIFAR-10, CIFAR-100, and

STL-10. In addition, we found that with the typical set of activation functions used in neural

networks, that the best activation function for a given problem depends on layer depth, network

architecture, and on the dataset itself.

In Chapter 4, we focused on a specific type of recurrent network, the Sequence to Sequence

Network. We created a novel model that can generate a dynamic number of predictions based

upon sequence data. To create our new model, we introduced a new term to the loss function and
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developed a confidence function to determine the confidence of each prediction. We showcased

our model with two financial security datasets, which consisted of security returns at five minute

intervals. We found that our model can succesfully make a dynamic number of predictions and

that our new confidence metric, called the confidence distance, gave the highest F1 score at

each prediction length. Finally, we found that a model that can make a dynamic number of

predictions can achieve superior performance when compared to models restricted to a fixed

output length.
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