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ABSTRACT

Essays on Industrial Organization

Carlos Germán Bet

This dissertation comprises three essays on industrial organization. In Chapter 1 I study

the productivity effects of corporate diversification, where productivity is understood as

a measure of sales per input at the productive unit level, and diversified firms are defined

as firms that operate in different industries. I develop and estimate a dynamic structural

model that allows current diversification level and research and development expenditures

to affect future productivity. I then apply this model to a panel of U.S. manufacturing

firms to measure the impact of diversification on productivity. My estimates suggest that

diversification plays a key role in explaining the differences in productivity across firms and

time. The average return to diversification is estimated at around 4% at the productive

unit level, though there is considerable variation across industries and firms. Moreover,

the effect of current diversification on future productivity depends crucially on already

attained productivity. This non-linearity typically takes the form of complementarities

between current productivity and diversification, where current productivity tends to

reinforce the effect of diversification on future productivity. Finally, I use the estimates
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from the model to test two different hypotheses related to firm diversification. First, I

test the hypothesis that diversification is most likely to produce economies of scope in

research and development. Second, I study the relationship between firm diversification

and the misallocation of inputs. I find that the average gross rate of return to research and

development is 3.5 times higher in diversified firms than in non-diversified firms. Finally,

my results support the hypothesis that diversified firms are more efficient in the allocation

of inputs.

In Chapter 2 I study how incumbents respond to a threat of entry by a competitor

using nonprice modes of competition. My analysis focuses on the U.S. airline industry,

by studying how incumbent airlines change their flight schedules (departure times around

the clock) and the degree of product differentiation in terms of departure times when

Southwest Airlines threatens entry into a market (i.e., when it establishes presence at both

endpoint airports of a market) but before it starts flying non-stop flights in that market.

I find that incumbents increase significantly their degree of differentiation in departure

times when threatened by Southwest’s entry. This implies that flights’ departure times

are scheduled more evenly spaced around the clock after Southwest threatens entry into

the market. Around 60% of Southwest’s impact on incumbent schedules takes place

before Southwest enters the market. In addition, the results show that this effect depends

strongly upon the level of market share that the incumbent airline has in the market.

Finally, the evidence on whether incumbents are trying to deter or accommodate entry

seems to point towards the deterrence motive.

Chapter 3 investigates the effects of an airline’s scale of operation at an airport (or

airport presence) and airport constraints on market structure and pricing for the U.S.
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airline industry. I estimate a static complete information game where firms decide first

whether or not to enter a market and its product offerings (conditional on entry), and then

the prices to be charged for its products. The model is estimated using data from the U.S.

airline industry for the period 2014- 2016, and for markets comprised by the 55 largest

U.S. cities. I find that, on average, fixed entry costs represent a substantial proportion

of airlines’ variable profits, reflecting presumably the relevance of economies of scale in

the airline industry. In addition, the fixed costs of serving a market decline significantly

with airport presence at the origin and destination airports of the market, and increase

if the market contains at least one capacity constrained or slot controlled airport in any

of its endpoints. I study the effects of airport constraints and airport presence on market

structure by running counterfactual exercises. The results indicate that airport constraints

and airport presence affect pricing and market structure significantly. Elimination of

airport constraints or changes in airport regulation affecting airport presence considerably

encourages airlines to enter into new markets offering non-stop service, and in a greater

extent, offering stop service. As a consequence, the change in market structure tend to

drive prices down. The results speak to the importance of policies aimed to make market

entry less costly or improve airport access for potential entrants.
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CHAPTER 1

The Productivity Effects of Corporate Diversification

1.1. Introduction

A diversified, or conglomerate, firm is usually defined in the economic and corporate

finance literature as a firm that operates in different industries, as classified by the Stan-

dard Industrial Code (SIC).1 Production by diversified firms represents more than 50%

of production in the United States.2 It is therefore important to understand the costs

and benefits of this form of organization. Questions include whether firm diversification

creates or destroys value, under what circumstances corporate diversification affects firm

performance, and what are the mechanisms behind value creation or destruction. These

questions go back to Coase’s (1937) seminal paper on the nature and boundaries of the

firm, where he asserts that boundaries are such that the costs of carrying out transactions

within a firm are equal to those of carrying them out in the open market or in another

firm. One can ask whether diversification affects the costs of carrying out transactions

within the firm.

In this chapter, I focus on the effects of firm diversification on firm performance.

Specifically, I study how diversification shapes a business unit’s productivity, measured

as sales per input at the business or productive unit level. The goal is then to assess

1 The typical example is General Electric, which manufactures aircraft engines, but it is also active in
other industries, such as, water processing, oil and gas, power generation, transportation, healthcare, and
household appliances.
2 See Maksimovic and Phillips (2007).
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the role of firm diversification in determining the differences in productivity across busi-

ness units and the evolution of firm-level productivity over time. Theoretical arguments

suggest different motives and effects of diversification. Researchers have often claimed

that a firm reaps efficiency gains when it diversifies production because its managerial

and research and development (R&D) inputs can be shared among its various activi-

ties.3 Similarly, by operating in different industries, a firm may increase its sales and

may realize economies of scope in promoting, advertising, and distributing its products.

Other performance-enhancing motives for firm diversification include lower overall firm

risk through imperfectly correlated cash flows, greater market power and debt capacity,

higher product compatibility, and greater operating efficiency. In principle, by operating

different lines of business, a diversified firm can reallocate control of productive assets

to entities that can apply them more efficiently, creating value to the firm. Similarly,

under the theory of internal capital markets, a line of business’s assets can be used as

collateral to obtain funding for other business units. Cash flows generated by one business

unit may be used to subsidize investment projects in other divisions of the firm. This

cross-subsidization can be efficient if it helps the firm to reduce the costs of financial con-

straints. However, it might also be inefficient if the firm under-invests in lines of business

with better growth opportunities and over-invests in those with worse prospects.4

Other theoretical models explain diversification as an ex ante rational and value max-

imizing strategy (e.g., Jovanovic, 1993; Matsusaka, 2001; Maksimovic and Phillips, 2002

3 See, for example, Gort (1967), Teece (1980), Scherer (1983), Jovanovic (1993), Jovanovic and Rousseau
(2002) or Tate and Yang (2015).
4 For instance, Meyer, Milgrom and Roberts (1992) point out that a failing business cannot have a value
below zero if operated on its own, but can have a negative value if it is part of a conglomerate that provides
cross-subsidies. Then, unprofitable lines of business might create greater value losses in conglomerates
than they would as stand-alone firms.
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and Gomes and Livdan, 2004). In these models, firms diversify in an attempt to match

organizational capabilities, or as a value maximizing response to increasing firm age and

growth. Some of these models (i.e., Gomes and Livdan, 2004) explain the diversifica-

tion decision as an endogenous selection mechanism, whereby firms diversify when they

become relatively unproductive in their current businesses.5 Agency theory suggests an-

other motive for diversification. It predicts that diversification depends on the incentives

of individual managers to diversify their firms, such as an increase in their power and com-

pensation, a reduction of individual employment and firm risk, or to entrench themselves.

Under this theory, managers have a tendency to over-invest and grow their firms beyond

the optimal size, engaging in investment projects that are not necessarily performance-

maximizing. However, it could also be that managers affect firm performance and pro-

ductivity through other channels. For example, the misalignment of incentives and the

information asymmetry costs that arise between central and divisional managers in diver-

sified firms might lead to more dispersed information within the firm and, consequently,

to lower profits than each of the business units would obtain separately (Myerson, 1982

and Harris, Kriebel and Raviv, 1982). On the other hand, changes in the corporate struc-

ture of the firm might spur productivity growth if it puts the firm’s assets under the

control of more able managers or better management practices (Bloom and Van Reenen,

2007; Bloom and Van Reenen, 2010; Bloom, Genakos, Sadun and Van Reenen, 2010; and

Bloom, Eifert, Mahajan, McKenzie and Roberts, 2013a).6

5 This model rationalizes the negative correlation between diversification and firm value reported by some
early studies (i.e., Lang and Stulz, 1994 and Berger and Ofek, 1995).
6 Different papers have documented that management practices might influence firm’s productivity.
Bloom and Van Reenen (2007) study the effects of management practices (though not managers per
se) on productivity. They surveyed plant managers from over 700 medium sized firms in the United
States, the United Kingdom, France, and Germany; measuring day-to-day and close-up operations rather
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Theory does not offer a clear prediction about the overall effect of diversification on

firm performance. The overall effect of a diversification strategy will depend on whether

the potential costs outweigh the potential benefits. A considerable amount of empiri-

cal literature has studied the relationship between diversification and firm value, though

previous empirical studies of the effect of diversification on firm value have not been

conclusive. Early studies on firm diversification show that diversified firms trade at a

discount compared to a portfolio of comparable stand-alone firms (e.g., Lang and Stulz,

1994; Berger and Ofek, 1995). These findings led to the belief, for some time, that di-

versification destroys value and that conglomerates are inefficient. However, these early

studies did not account for sample selection biases and the endogeneity of the diversifi-

cation decision. Firms operating in different industries are systematically different than

non-diversified firms and face different investment opportunities and abilities.7 Despite

efforts to control for these biases in estimation, there is still no clear agreement on whether

diversification leads to higher firm value (e.g., Campa and Kedia, 2002; Villalonga, 2004;

than the broader strategic choices made at the executive level. They find that higher-quality manage-
ment practices are correlated with several measures of productivity and firm performance, including labor
productivity, total factor productivity, return on capital, sales growth, and the probability of survival.
Bloom and Van Reenen (2010), Bloom et al. (2010), and Bloom et al. (2013a) review results from an
extension of this survey program to nearly 6,000 firms in seventeen countries; the results are similar to
those mentioned above.
7 For instance, Hyland and Diltz (2002) find significant differences in firm characteristics between diver-
sified firms and focused firms. Diversified firms have lower q’s (i.e., total market value of the firm over
total asset value), more cash, lower sales growth, and invest significantly less in R&D. Maksimovic and
Phillips (2008) show that diversified and non-diversified firms differ both in the type of investment and
in the level of total investment. Similarly, Campa and Kedia (2002) find that diversified firms differ from
non-diversified firms in terms of their size, industry growth rate, capital expenditures/sales, earnings
before interests and taxes/sales, and R&D/sales.
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or Kuppuswamy and Villalonga, 2010), or if it is indeed a mechanism to reduce it (e.g.,

Lamont and Polk, 2002; or Ammann, Hoechle and Schmid, 2012).8 9

Although the empirical research conducted on the topic of diversification and pro-

ductivity is not as prolific as on the effects of diversification on firm value, there is still

no agreement in the literature on whether diversification increases productivity or if it

is indeed a mechanism to reduce it. Using data from the Longitudinal Research Data-

base (LRD), Lichtenberg (1992) finds ambiguous results on the productivity differences

between diversified and non-diversified firms. Maksimovic and Phillips (2002) find that

diversified firms are less productive than non-diversified firms of a similar size. Addi-

tionally, they show that the productivity pattern within the firm is consistent with one in

which the main business units are more productive than the peripheral units, and that the

sales growth of a business unit varies with its productivity and industry business cycle.

In a related paper, Maksimovic and Phillips (2001) find that plants, divisions, or firms

acquired by other firms had low productivity before the ownership change and experience

an increase in productivity afterwards. The productivity gains depend on the produc-

tivity of the acquiring and acquired firm, as well as on the productivity of the type of

division (core or peripheral) that is buying or selling the assets.10 Finally, Schoar (2002)

8 The literature on firm diversification and firm value is very extensive. See Maksimovic and Phillips
(2007), Erdorf, Hartmann-Wendels, Heinrichs and Matz (2013), or Maksimovic and Phillips (2013) for
complete surveys of this literature.
9 Different econometric techniques have been used to control for the endogeneity of the diversification
decision, such as the fixed-effects estimator, instrumental variables estimation, Heckman’s two-stage
method, and propensity score methods.
10 The literature on the productivity effects of acquisitions and mergers is extensive, although it is typically
not directly related to the productivity effects of diversification since many mergers and acquisitions take
place within the same industry. See Braguinsky, Ohyama, Okazaki and Syverson (2015) for references in
this topic as well as an analysis of the productivity effects of acquisitions in the Japanese cotton spinning
industry.
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finds that, unlike Maksimovic and Phillips (2002), plants in diversified firms are more

productive than plants in comparable non-diversified firms. However, she also finds that

increases in diversification are associated with a decline in the firm’s overall productivity.11

Although there could be different motives and effects of diversification, part of the

literature’s lack of agreement is due to the limitations of the approaches used to handle

heterogeneities across industries and firms, as well as the difficulty in controlling for the

selection bias and endogeneity of the diversification decision.12 The empirical work de-

scribed in the previous paragraph has studied the relationship between productivity and

diversification under a two-stage procedure. In the first stage, a productivity estimate

at the plant level is obtained as the residual from an ordinary least square regression

of gross revenue on inputs (i.e., labor, materials, and capital). In the second stage, the

productivity estimate is regressed on a diversification index and a set of control variables

in order to study the effects of diversification on productivity. Implicit in this approach

is the assumption that productivity evolves exogenously and that it is not observed by

the firm when making its input and diversification decisions. Conceptually, an exogenous

productivity process implies that a firm’s diversification level has no impact on produc-

tivity through any of the mechanisms discussed before, namely, efficiency gains due to

economies of scope in managerial practices or in promoting, advertising, and distribution

11 She describes this as a “new toy effect.” While the newly acquired plants increase their productivity,
the incumbent plants show productivity declines and the total effect on firm productivity is negative.
12 For instance, Santalo and Becerra (2008) find that the empirical correlation between diversification
and firm value depends on characteristics of the industry. They also argue against the use of industry
instruments since they find them to be correlated with both the diversification decision and the firm
value (and thus likely to yield upward biased estimates of the average value of diversification across all
industries).
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of products; technological improvements; or sales through greater market power, product

quality upgrading, marketing, or product innovation.

The use of this two-stage approach to study the productivity effects of firm diver-

sification is also problematic in that it potentially suffers from three biases. The first

bias, known as transmission bias in the industrial organization literature on production

function estimation (i.e., Griliches and Mairesse, 1997), takes place in the first stage of

the two-stage procedure described above. While an ordinary least square estimation of

a production function implicitly assumes that productivity is orthogonal to input usage,

it might be the case that the productivity level is observed by the firm when making

its inputs decisions. This would create a positive correlation between productivity and

inputs, and consequently, an upward bias in the coefficients of inputs. The second source

of bias, known as selection bias or reverse causality, occurs in the second stage of the

approach. When regressing the productivity estimates on the diversification level, the

coefficient associated with the diversification variable might not only be capturing the

effects of diversification on productivity, but also any selection mechanisms with which

firms with certain productivity levels self-select into different degrees of diversification.

Finally, the approach of the existing literature potentially suffers from a third bias which

affects both stages of the estimation. I observe in the data that input usage at the business

unit level systematically accompanies changes in the diversification level. If diversification

affects sales or gross output through channels other than input usage (e.g., by increasing

productivity), then the fact that input usage adjusts with diversification changes implies

that the standard approach to measuring the productivity effects of diversification could



22

bias the estimates by attributing output gains to input usage, rather than to changes in

productivity.13

This chapter studies the role of changes in firm diversification in shaping business

units’ future productivity using a dynamic structural model and a production function

approach. The model builds on recent advances on the identification and estimation of

production functions (i.e., Gandhi, Navarro and Rivers, 2016), which allows me to control

for the transmission bias in the estimation of the production function and productivity

measures. In order to control for other biases in the estimation, I depart from the standard

assumption made in this literature that productivity follows an exogenous process and a

firm’s diversification decisions do not impact the business units’ future performance. I

develop and estimate a model of endogenous productivity change by explicitly allowing

the evolution of productivity to depend on the firm’s previous diversification status and

efforts, as well as R&D investments. The starting point for studying the role of firm

diversification on productivity is thus a dynamic model of a firm that makes decisions

regarding which industries to operate in the next period and investment decisions across

industries, in addition to carrying out a series of investments in R&D to improve its

productivity over time. The evolution of productivity at the business unit level follows a

Markov process that can be shifted, in expectation, by the degree of a firm’s diversification

and R&D expenditures. At the same time, it is subject to random shocks or innovations to

productivity that capture the uncertainties inherent to production. For diversified firms

and firms that engage in R&D expenditures, it also captures the uncertainties related to

13 A similar point has been discussed in other contexts. See, for instance, De Loecker (2013) for the
case of productivity and exporting, or Braguinsky et al. (2015) for the case of the productivity effects of
acquisitions in the Japanese cotton spinning industry.
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the diversification decisions and the R&D process. The identification of the effects relies

on timing assumptions, which intuitively can be interpreted as firms that are unable to

immediately adjust their diversification status upon receiving productivity or demand

shocks. The estimation of the effects builds on a strategy similar to the one already

applied in other studies and settings, such as the productivity effects of R&D activities

(e.g., Doraszelski and Jaumandreu, 2013), exporting and R&D (e.g., Aw, Roberts and

Xu, 2011), or learning by exporting (e.g., De Loecker, 2013).14

The estimation strategy allows us to recover the law of motion for productivity, which

I then use to study the link between diversification and productivity in a panel of man-

ufacturing business units from 1980 -1998. In addition, I use the model and estimates it

provides to test two different hypotheses related to firm diversification. First, I test the

hypothesis that diversification is most likely to produce economies of scope in research

and development since a firm with a wider range of products has more opportunities for

exploiting the results of a research program. If know-how can be transferred from one

activity to another, then productivity growth among diversified firms might be driven by

knowledge spillovers among distinct production processes. To this end, I use the model

to obtain an estimate of the firm-wide gross rate of return to R&D expenditures, and

compare it between diversified and non-diversified firms. Second, I use the estimates of

the model to study the relationship between firm diversification and the misallocation of

inputs. Under the predictions of the theory of internal capital markets, diversification

may help the firm to reduce the costs associated with financial constraints, or the costs of

14 Other papers that build on a similar strategy are Bilir and Morales (2016) in their study of the
productivity effects of R&D activities, and Braguinsky et al. (2015) in their study of the productivity
effects of acquisitions in the Japanese cotton spinning industry.
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adjusting capital or any other input. Then, under the predictions of this theory, the mar-

ginal revenue product of inputs of business units belonging to diversified firms should be

less responsive to shocks to productivity, since these business units have more flexibility

to adjust input usage when hit by shocks compared to non-diversified firms.

One of the advantages of my estimation strategy is that I can assess the productivity

effects of diversification across the current distribution of firm productivity, allowing het-

erogeneities across firms and industries. I estimate the model using Compustat data, for

a panel of U.S. manufacturing business units for the period 1980 -1998. My findings draw

a more comprehensive picture of the effects of firm diversification on firm performance

than the more simplistic reports of the previous literature on diversification enhancing

performance or diversification reducing performance. I find that the productivity effects

of diversification vary considerably, with significant heterogeneity across industries and

firms. My estimates of the law of motion for productivity suggest important nonlinearities

and uncertainties in the diversification process. The effect of the diversification level on

future productivity largely depends on current productivity. Nonlinearities typically take

the form of complementarities between diversification and current productivity. In addi-

tion, the diversification process is inherently uncertain. I estimate that, depending on the

industry, between 20% and 62% of the variance in productivity is explained by innova-

tions that cannot be predicted based on current productivity and diversification decisions.

Moreover, my estimates suggest that significant variations in the level of diversification

substantially increase the degree of uncertainty in the productivity process.

The estimate for the law of motion for future expected productivity allows me to assess

the role of diversification in determining the differences in productivity across business
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units, as well as the evolution of firm-level productivity over time. I find that the dis-

tribution of expected productivity for business units belonging to diversified firms first

order stochastically dominates the distribution of non-diversified firms. Additionally, I

find that business units belonging to diversified firms grow faster than non-diversified

firms, suggesting that the mechanisms that affect productivity when firms diversify might

be a source of productivity growth. The estimate for the law of motion for future expected

productivity also allows me to study the return at the margin of diversification, measured

by the revenue elasticity with respect to the degree of diversification. Although there is

considerable variation across industries, the average return at the margin is positive in

most industries, as well as for the full sample. Additionally, I estimate the average return

to diversification for the average diversified firm in the sample at around 4%.

The estimation of the model provides us with an estimate for the elasticity of revenue

with respect to R&D expenditures. I use these estimates to compute the firm-wide gross

rate of return to R&D expenditures, and then compare the results between diversified and

non-diversified firms. I find that the average firm-wide gross return to R&D is 0.20 dollars

for non-diversified firms and 0.73 dollars for diversified firms. This implies an average firm-

wide gross return to R&D 3.5 times higher for diversified firms than non-diversified firms.

The results are consistent with the hypothesis that knowledge can be transferred from one

activity to another, and thus knowledge spillovers among distinct production processes

might constitute the drivers of productivity growth among diversified firms. Finally, I

use the estimates of the model to study the relationship between input misallocation and

diversification. Input misallocation measures are constructed using static measures of

marginal revenue product of inputs. The results provide evidence consistent with the
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internal market capital hypothesis that firm diversification helps to reduce adjustment

and transaction costs related to input usage and, consequently, helps in the allocation of

inputs within the firm.

The remainder of the chapter is organized as follows. In Section 1.2, I describe the

model in which I base the estimation. Section 1.3 presents the data and descriptive

statistics about diversification and the firms’ characteristics. Section 1.4 describes the

estimation approach. In Section 1.5, I report the main results on firm diversification

and productivity. In Section 1.6 I study the relationship between diversification, R&D

investment, and firm performance. Finally, Section 1.7 concludes.

1.2. Model

This section presents a dynamic model which is used to evaluate the relationship

between firm diversification and productivity. The details regarding the estimation of the

model are left for Section 1.4, after describing the data at hand in Section 1.3. The model

builds on the framework presented by Olley and Pakes (1996) and extended by Levinsohn

and Petrin (2003), Ackerberg, Caves and Frazer (2015), and Doraszelski and Jaumandreu

(2013). In the model, each business unit within a firm is associated with an idiosyncratic

revenue productivity measure that reflects both the physical productivity and the demand

shifter of the unit. Diversification decisions and investment in R&D may influence the

stochastic process governing the evolution of the productivity of a firm’s business units.

The model delivers a set of moment conditions and explicit estimating equations that

allow us to recover the parameters governing revenue at the business unit level and those
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associate with the law of motion for productivity, which in turn determine the return to

diversification.

The industry is characterized by firms that make production, investment, and diversi-

fication decisions in a discrete time, infinite horizon model.15 At any given point in time,

each firm is composed of a core business unit and potentially one or more business units

located in other industries. Firms with operations outside their core industry are diver-

sified, while non-diversified firms are those that only produce within their core industry.

Firms with core operations within the manufacturing sector are indexed by i = 1, 2, ..., It.

The set of firm-i business units active in period t is represented by Jit. Business units

in Jit are indexed by j. I assume that each business unit produces and sells its output

in a single market, represented by the industry it belongs to. Markets, or industries,

are indexed by s, being sijt the industry in which business unit j, belonging to firm i,

produces and sells its output at time t.

Each firm i makes diversification and R&D investment decisions, and also decides

about production and physical investment for each of its business units. Each business unit

determines the amount of materials (static input) to be used in production. I assume that

investment, production and diversification decisions are made with the goal of maximizing

the firm-wide expected net present value of future cash flows.

The production, demand, and productivity processes of each firm’s business units are

described below. Then I briefly discuss the firm’s dynamic optimization problem.

15 For simplicity I will not consider entry or exit decisions at the firm level, but they could be easily
incorporated into the model. I will also leave out strategic considerations.



28

1.2.1. Production, Demand, and Revenue

Business unit j belonging to firm i produces output Qijt combining labor, materials and

capital according to the following translog production function:

qijt = ψijt + αlslijt + αms
mijt + αkskijt + αllsl

2
ijt + αmms

m2
ijt + αkksk

2
ijt +

+ αmlsmijtlijt + αmksmijtkijt + αlkslijtkijt + αmlksmijtlijtkijt

where qijt = ln(Qijt), lijt denotes (log) number of employees, kijt the (log) stock of capital,

andmijt (log) materials usage. Hicks-neutral physical productivity at time t is represented

by ψijt. I assume that ψijt is observed by the firm when making its output decisions, but

not to the econometrician. The vector of parameters α = (αls , αms
, αks , αmms

, αlls , αkks ,

αmls , αmks , αlks , αmlks) translates inputs into output. I make the assumption that produc-

tion technology is the same for business units belonging to diversified and non-diversified

firms within the same industry. To the extent that this is not true, I will be introducing

a bias in the estimation. However, the above equation allows output elasticities with re-

spect to inputs to be heterogeneous across industries, reflecting differences in technologies

of productions across industries. Moreover, unlike a Cobb-Douglas production function,

a translog production function allows output elasticities with respect to inputs to be

heterogeneous across production units within an industry.16 Although technology that

translates inputs into output is the same for production units belonging to diversified

and non-diversified firms operating in the same industry, I allow diversification to affect

16 In a translog production function the output elasticities with respect to inputs are a function of input
usage. Given this, variations in input usage across business units within an industry will be reflected in
differences in output elasticities across units.
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output through physical productivity. I provide details about this mechanism in the next

section when describing the productivity process. Finally, I assume that business units

take prices of labor P l
ijt, capital P

k
ijt, and materials Pm

sijt
as given. Unlike the prices of

labor and capital, the prices for materials are assumed to be common across all production

units within an industry-year.

Each business unit j belonging to firm i sells a single variety as a monopolistically

competitive firm in market sij. I assume that business unit j faces the following isoelastic

demand curve for its output Qijt:
17

Qijt = Qsijt(Pijt/Psijt)
−σs exp(νijt(σs − 1))

where Pijt is the output price set by business unit j, σs > 1 is the elasticity of substitution

across output varieties, and where Psijt and Qsijt are the period t aggregate price index and

aggregate demand level, respectively. The variable νijt represents a demand shock that is

observed by the firm when making its output decisions, but not to the econometrician.

Revenue of business unit j belonging to firm i is represented by:

Ỹijt = PijtQijt

Given the production and demand structures described above, log revenue ỹijt can be

expressed as:

ỹijt = hs(mijt, lijt, kijt; β) + ωijt + µst

17 A demand system like the one described here has been widely used in the estimation of production
functions for manufacturing firms. See, for instance, Klette and Griliches (1996) or De Loecker (2011).
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where

hs(mijt, lijt, kijt; β) = β0 + βlslijt + βms
mijt + βkskijt + βllsl

2
ijt + βmms

m2
ijt + βkksk

2
ijt

+ βmlsmijtlijt + βmksmijtkijt + βlkslijtkijt + βmlksmijtlijtkijt

and β = (βls , βms
, βks , βmms

, βlls , βkks , βmls , βmks , βlks , βmlks) is a vector of parameters that

translate inputs into revenue. Each parameter in β combines the corresponding element

in α and the elasticity of substitution across output varieties. Revenue productivity is

denoted by ωijt and comprises physical productivity (ψijt) as well as shocks to demand

(νijt). The variable µst is an industry-year effect that accounts for variation in market

level variables across time. In Appendix A.1 I provide details on the derivation of the

revenue equation.

I allow revenue to be measured with error, and represent observed revenue yijt =

ỹijt + ǫijt as:

(1.1) yijt = hs(mijt, lijt, kijt; β) + ωijt + µst + ǫijt

where measurement error ǫijt is assumed to be mean independent of all variables contained

in the firm’s information set at time t, Et(ǫijt) = 0. Thus, firms do not observe ǫijt when

making optimal input and investment decisions.

1.2.2. Productivity Process

Firms’ profits and production depend also on their productivity level. The productivity

of business unit j belonging to firm i at time t is given by ωijt. Productivity is assumed
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to be known by the firm when it makes its decisions, and thus it is a state variable in the

firm’s problem. I adhere to most of the industrial organization literature on production

function estimation (i.e., Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et

al., 2015; and Gandhi et al., 2016) by assuming that the productivity level is not observed

by the econometrician. However, I depart from the assumption usually made by this

literature in that productivity is governed by an exogenous first order Markov process.

Note that relying on an exogenous Markov process does not allow us to distinguish between

the two mechanisms potentially explaining the correlation between productivity and firm

diversification highlighted in the literature. In particular, it is important to know if

this correlation is due to an underlying process whereby firms with exogenously high

productivity in their current businesses incur the costs of expanding their lines of business,

or if it is a consequence of diversification activities directly affecting productivity. Given

that these two mechanisms are not mutually exclusive, and since the goal of this chapter

is to assess the role of the introduction (or destruction) of lines of business segments

(or the change on the intensity of production decisions across different business lines) on

differences in productivity across firms and the evolution of firm-level productivity over

time, I endogenize the productivity process.

I consider a general model in which firm diversification and expenditure on R&D are

allowed to impact future productivity as given by

ωijt+1 = Et(ωijt+1) + ξijt+1(1.2)
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where the expectation of revenue productivity ωijt+1 conditional on the information avail-

able to firm i at time t is represented by a function gs(.) which depends on past produc-

tivity (ωijt), diversification efforts and R&D investment:

Et(ωijt+1) = gs(ωijt, divit, rit)

where divit is a vector measuring the diversification efforts and experience of firm i at time

t, and rit is firm i’s expenditure on R&D at time t.18 ξijt+1 captures unexpected effects on

future productivity. The only restriction imposed over the marginal distribution of ξijt+1

is the mean independence implied by equation (1.2).

The important assumption in equation (1.2) is that the impact of the current diversi-

fication level and R&D on productivity is represented by the dependence of the expected

future productivity function gs(.) on these two variables. In contrast, ξijt+1 does not

depend on the diversification level or the R&D expenditures. Thus, when firms make

optimal decisions at time t, they are only able to anticipate the expected effect of diver-

sification and R&D on productivity in period t as given by gs(.). The actual effect will

also depend on the realization of the productivity innovation ξijt+1 that occurs after these

decisions has been made.

18 The literature following Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg et al.
(2015) typically assumes an exogenous first order Markov process where ωit+1 = g(ωit) + ξit+1. Some
recent papers have relaxed this assumption. The list includes Aw et al. (2011) and their study of the R&D
investment and exporting effects on productivity dynamics; De Loecker (2011) and De Loecker (2013) in
his studies of productivity, trade liberalization, and exporting; Doraszelski and Jaumandreu (2013) and
Bilir and Morales (2016) who study the productivity effects of R&D activities; and Braguinsky et al.
(2015) on the productivity effects of acquisitions in the Japanese cotton spinning industry.
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1.2.3. Firm Optimization

In every period t, firm i decides the optimal levels of materials (Mit) and labor (Lit) for

each of its business units active at time t. It also determines the level of R&D expenditure

(Rit), the set of business units to be active at time t + 1, Jit+1, and the optimal level of

capital investment (Iit) for each of its business units active at either time t or time t+ 1.

The firm makes these decisions after realizing the innovations to revenue productivity ξijt

for each of its business units. The Bellman equation associated with firm i’s dynamic

optimization problem is given by:

V (Sit) = max
Jit+1,Iit,Rit,Lit,Mit







∑

j∈Jit

π(Sijt, Iijt, Rit, Lijt,Mijt)− Ck(P
k
it,Kit, Iit, X

k
it)− CJ (Jit,Jit+1, X

J
it)

− Cr(Rit, X
r
it)− Cl(P

l
it, Lit−1, Lit, X

l
it) + δE [V (Sit+1) | Sit, Iit, Rit, Lit,Jit+1]

}

where V (.) is the value function, δ is a discount factor, Et[.] denotes the expectation

over future states conditional on the information at time t, Sit is a vector representing

the state variables of the problem, described by the collection of Sijt =(ωijt, Kijt, Lijt−1,

P l
ijt, P

m
ijt, P

k
ijt, Fijt, Jit, Zijt) for any business unit j active at time t, and where Zijt is

a vector including other variables potentially affecting input and diversification decisions

(i.e., Xk
it, X

r
it, X

r
it, X

J
it).

Operating profit of business unit j is represented by:

π(Sijt, Iijt, Rit, Lijt,Mijt) = Ỹijt − P l
ijtLijt − Pm

sijt
Mijt − Fijt

where Fijt is a fixed operating cost.
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The functions Ck(.), Cr(.), Cl(.), and CJ (.) are adjustment cost functions for capital,

R&D, labor, and corporate diversification, respectively. They are functions of the state

variables of the problem, the decisions taken at time t, and exogenous shocks to the cost

of investment in physical capital, R&D, hiring or firing employees, and diversification,

represented byXk
it,X

r
it,X

l
it andX

J
it. The functional forms for these functions are irrelevant

for the estimation approach and for the goal of this chapter.19 The only restriction we

need to impose over them is to exist, and rationalize the patterns observed in the data.

The solution to the dynamic programming problem is given by a set of policy functions

Iit = hi(Sit), Rit = hr(Sit), Lit = hl(Sit) and Jit+1 = hJ (Sit) for investment in physical

capital, R&D, labor, and diversification efforts respectively.

I assume that capital accumulates according to Kijt+1 = (1 − δk)Kijt + Iijt, where

δk is the physical capital depreciation rate. This law of motion for capital implies that

there is one period to build capital, and thus capital becomes productive with a one

period lag. Even though labor is also a dynamic input in the firm’s problem, I assume

that it becomes productive immediately, unlike capital. Materials are static inputs in the

problem and also become productive immediately. I assume that materials are chosen

after the optimal level of labor has been decided. The diversification decision consists

of two stages. First, firms decide on which lines of business to be active next period.

Similar to capital, I assume that there is a time to build new lines of business. Thus,

at time t, firm i chooses its next period diversification position Jit+1 (how many, and

what lines of business to operate). In a second stage, conditional on the number and type

of active segments, firms decide how to allocate capital across different lines. I assume

19 The functions Ck(.), Cr(.), Cl(.), and CJ (.) could be simple linear functions or more complex functions
including non-convex components, fixed costs or adjustment costs.
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that the inputs of production (labor, capital, and materials) are substitutable across the

firm’s distinct lines of business. However, I assume that not all factors of productions are

continuously divisible across segments, and that there are potential adjustment costs in

the allocation of inputs across business lines.20

1.3. Data

My main source of data is Standard & Poor’s Compustat. I collect firm-level data

from Compustat Annual Fundamentals, which report a rich set of economic and financial

information on the publicly traded firms in the U.S. The data collected cover the period

1980-1998.21 I restrict the data to those firms with core activities in the manufacturing

sector and headquartered in the U.S.

The data contain firm level information on sales, capital, employment, and total ex-

penses, which are the variables needed to estimate the coefficients of the production func-

tion. They also report information on R&D expenditures that will be used to characterize

the innovation behavior of diversified and non-diversified firms. The book value of capital

is measured by the gross stock of property, plant, and equipment. It includes gross plant,

property and equipment, inventories, investments in unconsolidated subsidiaries, and in-

tangibles other than R&D. Employment is measured by the number of employees, while

20 The model shares some similarities with recent models on multi-product firms, mostly written in
the field of international trade given the importance of these firms on international trade flows (see,
for instance, Feenstra and Ma, 2007; Eckel and Neary, 2010; Arkolakis and Muendler, 2010; Bernard,
Redding and Schott, 2011; Mayer, Melitz and Ottaviano, 2014; and Nocke and Yeaple, 2014). These
models assume that firms can add new goods to their products offerings without varying considerably
their production technology (i.e., flexible manufacturing assumption). Many of these models assume that
the firm has a core competency in a variety or product (the one with lowest marginal cost), and that
marginal costs might increase as the firm moves away from its core competence variety.
21 Compustat data provide information on the publicly traded firms in the U.S. over the years 1964 to
present.
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materials are constructed as the difference between total expenses and labor expenses.22

I use sales as my measure of output. Expenditure in R&D is used to create R&D capital

stocks calculated using a perpetual inventory method with a 15% depreciation rate.23 All

monetary variables are deflated using industry price deflators taken from the NBER-CES

Manufacturing Industry database, which contains shipment, materials, and investment

deflators at the 4-digit level of the Standard Industrial Classification (SIC) system for

the period 1958-2009. Table 1.1 reports some summary statistics of the data at the firm

level. It summarizes information on sales, capital stock, materials, R&D stock, and R&D

expenditure (all of them expressed in constant U.S. dollars). The table also provides

information on the number of employees, business segments, and diversification level.

Table 1.1. Summary Statistics - Firm Level: 1980-1998

Variable Obs. Mean Std. Dev. Min Max

Sales 44281 541.618 1411.637 0.600 13051.280
Labor 44281 4.152 9.995 0.010 85.099
Materials 44281 286.067 780.381 0.170 7407.270
Capital Stock 44281 183.143 544.804 0.086 5639.330
R&D Stock 44281 60.141 218.879 0.000 2536.711
R&D Expenditure 44281 11.346 40.687 0.000 464.203
Business Segments 44281 1.683 1.164 1.000 10.000
Diversification Index 44281 1.399 0.748 1.000 8.899
Note: The table summarizes the data at the firm level for the period 1980-1998.
All variables are in levels. Monetary variables are measured in prices of 1987 in
$million. Labor is measured in thousands of employees.

22 Total expenses are approximated as the difference between sales and operating income before depreci-
ation and amortization. Labor expenses are calculated as the product between the number of employees
reported by Compustat and the average wage for the core industry where the firm is active.
23 To construct the R&D stock, I follow the methodology used by Hall, Jaffe and Trajtenberg (2005).
Thus, the R&D stock, G, for firm i in year t is Git = (1 − δ)Git−1 + Rit, where Rit is the R&D flow
expenditure in year t and δ = 0.15. For the first year I observe a firm, I input its R&D stock as if it were
in steady state, so G0 = R0/(δ + g), where g = 8% is the steady state growth rate of the R&D stock G.
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Information at the business segment level comes from Compustat segmented data.24

These data contain information at the business unit level on sales, assets, capital expen-

ditures, and operating profits among other variables. Since 1976, publicly traded firms

have been required by the Statement of Financial Accounting Standards (SFAS) 14 to

report disaggregated information for different major segments. Under SFAS 14, a segment

is defined as a component of an enterprise engaged in providing a product or service or

a group of related products and services primarily to unaffiliated customers for a profit.

Distinct segments that represent at least 10% of a firm’s sales, profits, or assets should

be separately reported. Segments are identified by name by the reporting firm and as-

signed a 4-digit SIC code by Compustat. In June 1997, due to segment under-reporting

concerns, and in order to reduce the discretion that managers had to disclose segment

level information, SFAS 131 superseded SFAS 14 in the regulation of segment reporting.

This new standard defines segments following a management approach, where the disag-

gregated information is presented based on how a firm’s management internally evaluates

the operating performance of its business units.25 Firms started to adjust to the new reg-

ulation after the fiscal year of 1998. Although SFAS 131 provides greater insight into the

management strategy of each firm and has effectively increased the number of reported

segments, it also reduces the comparability of segment information between similar lines

of business within the same industry.26 For this reason, I focus on the period where firms

24 Various papers have used these data to study not only firms’ diversification behavior, but also other
economic questions. One example is Bloom, Schankerman and Van Reenen (2013b) who use these data
to determine the product market positioning of a firm in their study of R&D spillovers.
25 Berger and Hann (2003a) mention that some of the goals of SFAS 131 were to provide more disaggre-
gated information and to allow users to assess the performance of individual operating segments in the
same way that management does.
26 Unlike the old reporting regime, the new rule does not specify the definition of segment profit to
be disclosed, allowing any measure used internally for decision making to be reported as the segment
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were required to report according to the previous standard (SFAS 14).27 In Appendix

A.2 I show that under the under-reporting concerns discussed in the literature and by

practitioners in the industry, the baseline estimates reported in this chapter would suffer

from an asymptotic downward bias.

Although segmented data report sales and assets at the business unit level, they do

not report measures of labor or intermediate inputs at this level of analysis. Typical

production data do not record input usage by either product or business segment, as

in this case. The standard practice in the empirical literature for multi-product firms

is either to allocate inputs equally across products (see, for example, De Loecker, 2011)

or according to revenue share (as in Foster, Haltiwanger and Syverson, 2008). I allocate

inputs across different business units according to the asset share of the unit. This implies,

for instance, that material demand (Mijt) for business unit j belonging to firm i at time

t will be given by Mijt =
assetsijt
assetsit

Mit, where Mit is material demand at the firm level, and

assetsijt and assetsit represent total assets at the business unit and firm level, respectively.

Table 1.2 shows the average transition matrix in the number of segments over the

period 1980-1998. On average, around 3.5% of non-diversified firms transition into multi-

segment firms, while 9% of firms active in two or more segments transition into a lower

number of segments. In practice, to identify the effects of firm diversification on produc-

tivity I will not only be exploiting variation on the number of business units, but also on

the degree of concentration of activities across the different lines of business.

profit. In addition, it does not require the measure of segment profit used to be consistent with the assets
attributed to the segment (see Berger and Hann, 2003a for more details).
27 Bloom et al. (2013b) argue that these under-reporting concerns are a far greater problem in the service
sector than in the manufacturing sector due to the difficulties in classifying service sector activity.
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Table 1.2. Average Transition Matrix: 1980-1998

Non- Two At least 3
Diversified Business Units Business Units Total

Non-Diversified 96.47 2.22 1.31 100.00
Two Business Units 9.29 86.67 6.04 100.00
At least 3 Business Units 1.82 7.00 91.17 100.00

Total 64.42 16.60 18.98 100.00

Note: The table reports the average transition matrix in the number of business units
over the period 1980-1998.

One important characteristic of the data is that they not only report the number of

segments in which a firm is active, but also sales and assets in each of them. This feature

of the data allows me to create a diversification index for each firm by incorporating both

kinds of information. I follow most of the existing literature on corporate diversification

and define the diversification level (DIVit) for firm i at time t as:28

DIVit = 1/

(
∑

j∈Jit

(
assetsijt
assetsit

)2
)

(1.3)

where Jit represents the number of business segments in which firm i is active at time

t. By construction this variable is 1 for non-diversified firms and it is increasing in the

number of business segments Jit, holding the variance of segment size constant. In the

empirical application, I measure the degree diversification of firm i at time t divit by the

log of DIVit.

28 Several papers have used this measure as a proxy for the degree of diversification at the firm level.
See, for instance, Teece (1980), Jovanovic (1993), Schoar (2002), Maksimovic and Phillips (2002), or
Villalonga (2004), among others.
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By focusing on segmented data, I am implicitly assuming that diversification can only

be achieved by either varying the intensity of activities within each of a firm’s active

business segments, or by adding new lines of segments. Although this is the standard

assumption made by most of the literature on diversification, it is important to note

that this definition is broader than those traditionally used in the literature to define a

product.29 In this sense, it is important to be cautious when interpreting the results,

since greater diversification does not necessarily imply a higher number of products, but

could simply reflect a greater diversity of activities measured by operating multiple lines

of business in different industries.30 On the other hand, this broad description of activities

used to measure diversification is advantageous to answer the empirical question asked by

this chapter, since presumably the identifying assumption in this scenario is more credible

than in the case of considering the introduction of new products.31

1.3.1. Descriptive Statistics

Table 1.3 presents simple mean differences in various characteristics (size, factor intensity,

productivity, and innovation) between firms operating in only one segment and diversified

firms. Size is measured using four different variables: (log of) sales, (log of) capital stock,

29 Usually, a product is defined at a 7-digit SIC, and the industry at a 2-digit SIC. New segments are
assigned a new 4-digit SIC code by Compustat.
30 Some recent papers have studied the relationship between the number of products and productivity.
For example, Bernard, Redding and Schott (2010), using Census data for the U.S., find evidence that
a firm’s productivity is correlated positively across its products. They conclude that single-product
firms with relatively high productivity in their existing product are more likely to add a new product to
their mix of goods than a relatively low-productivity firm producing the same initial product. Similarly,
Balasubramanian and Sivadasan (2011), also using microdata from the U.S. Census, find that increases in
patent stock are associated with increases in firm size, scope, skill and capital intensity, and total factor
productivity.
31 This would hold true if, for example, fixed costs of entering into a new segment are considerably higher
than those associated with the introduction of a new product within a business segment.
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(log of) employment (in thousands of employees), and (log of) materials. Comparing the

means of these variables, it is clear that, on average, diversified firms are bigger: sales

are 151% larger, capital stock by 206%, employment by 177%, and materials by 148%.32

Diversified firms also exhibit greater capital intensity, measured by capital per worker.

This ratio is about 10.5% higher for diversified firms than non-diversified.

Diversified firms are less productive based on labor productivity (i.e., the ratio between

sales and employment) and total factor productivity. On average, the output per employee

is 9.2% higher for non-diversified firms than diversified firms. Finally, diversified firms

engage in more innovative activities, as measured by the stock and expenditure in R&D.

On average, the stock of R&D is 12.8% higher in diversified firms, and they spend 9.1%

more than non-diversified entities.

32 Since the variables are in logarithm, the percentage increase for the case of sales, for example, is given
by (e0.9226 − 1)× 100 =151%.
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Table 1.3. Mean Firm Characteristics: Diversified vs. Non-Diversified Firms

(1) (2) (3) (4) (5)
Non- Diversified Difference Highly Difference

Diversified (2)-(1) Diversified (4)-(1) Obs.
Size

Sales 3.8329*** 4.7555*** 0.9226*** 6.1649*** 2.3320*** 44,281
(0.0117) (0.0232) (0.0260) (0.0217) (0.0247)

Capital 2.2184*** 3.3381*** 1.1197*** 4.8826*** 2.6642*** 44,281
(0.0130) (0.0258) (0.0289) (0.0241) (0.0274)

Labor -0.8798*** 0.1398*** 1.0196*** 1.4868*** 2.3666*** 44,281
(0.0107) (0.0212) (0.0237) (0.0198) (0.0225)

Materials 3.0586*** 3.9678*** 0.9092*** 5.4000*** 2.3415*** 44,281
(0.0125) (0.0248) (0.0277) (0.0231) (0.0263)

Factor Intensity
Capital Intensity (K/L) 3.0982*** 3.1984*** 0.1001*** 3.3958*** 0.2976*** 44,281

(0.0054) (0.0108) (0.0121) (0.0101) (0.0115)
Productivity

Sales/Employment 4.7128*** 4.6157*** -0.0970*** 4.6781*** -0.0347*** 44,281
(0.0042) (0.0084) (0.0094) (0.0079) (0.0089)

TFP - OLS 0.0105*** -0.0151*** -0.0256*** -0.0230*** -0.0335*** 44,281
(0.0018) (0.0036) (0.0041) (0.0034) (0.0039)

Innovation
R&D Stock 2.0516*** 2.1723*** 0.1207*** 3.2553*** 1.2037*** 44,281

(0.0132) (0.0262) (0.0293) (0.0245) (0.0278)
R&D Expenditure 1.1415*** 1.2290*** 0.0875*** 2.0840*** 0.9425*** 44,281

(0.0099) (0.0197) (0.0221) (0.0184) (0.0209)
Note: The columns Non-Diversified, Diversified and Highly Diversified report the mean of the variables for non-diversified firms,
firms active in two business units, and firms active in three or more business units respectively. All variables are in logs and
measured at the firm level. Variable TFP-OLS is obtained as the residual from an ordinary least squares regression of sales on
inputs (i.e., labor, materials, and capital) and core-industry-year effects. Standard errors are in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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In summary, the statistics presented in Table 1.3 suggest that diversified firms are

larger, tend to choose higher levels of capital, and engage in more innovative activities

(measured by R&D stock and expenditure) than non-diversified firms. However, they are

less productive in terms of labor productivity. One may ask whether these differences

also hold at the productive or business unit level. Table 1.4 reports mean differences

in size, factor intensity and productivity (labor and total factor productivity) between

non-diversified firms and business units belonging to diversified firms. We observe that

business units of diversified firms are approximately 85% larger in terms of sales and in-

put usage, and are 17% more capital intensive than non-diversified firms. Additionally,

although these business units are less productive in term of labor productivity the differ-

ences between them is small (1%). In the next section, I explore whether some of these

differences in firms’ characteristics are associated with changes in the diversification level

within firms. The productivity effects of firm diversification are studied in Section 1.5.



44
Table 1.4. Difference in Mean Business Unit Characteristics

(1) (2) (3)
Non-Diversified Diversified Difference

Mean Mean (2)-(1) Obs.
Size

Sales 3.8800*** 4.4853 0.6053*** 66,118
(0.0119) (0.0161)

Capital 2.3292*** 3.1055 0.7763*** 66,118
(0.0129) (0.0175)

Labor -0.8015*** -0.1857 0.6158*** 66,118
(0.0112) (0.0151)

Materials 3.1224*** 3.6794 0.5570*** 66,118
(0.0124) (0.0167)

Factor Intensity
Capital Intensity (K/L) 3.1307*** 3.2912 0.1605*** 66,118

(0.0046) (0.0062)
Productivity

Sales/Employment 4.6816*** 4.6711 -0.0105* 66,118
(0.0041) (0.0056)

TFP - OLS -0.0046 0.0035 0.0081** 66,118
(0.0029) (0.0039)

Note: The columns Non-Diversified and Diversified report the mean of the variables for non-diversified firms,
and business units belonging to diversified firms, respectively. All variables are in logs and measured at the
business unit level. Variable TFP-OLS is obtained as the residual from an ordinary least squares regression
of sales on inputs (i.e., labor, materials, and capital) and year effects at the industry level. Standard errors
are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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1.3.1.1. Diversification and Firm Characteristics. In this section I examine whether

changes in the diversification level are related to changes in firm characteristics. To explore

this, I use the following regression model:

yit = υ0 + υ1divit + δjt + µi + εit(1.4)

where yit is the variable of interest (i.e., sales, input usage, capital intensity, labor produc-

tivity, and innovation activities) for firm i in period t; divit is the (log of) diversification

index described by equation (1.3), δjt are core-industry-year effects, µi is a firm fixed

effect, and εit is an error term.33

The results are summarized in panel A of Table 1.5, indicating an economically and

statistically significant effect on the variables under analysis with respect to changes in

diversification. A 1% increase in the diversification index is associated with a 0.54%

increase in sales, approximately a 0.55% increase in input usage (capital, labor, and

materials), and a 0.04% increase in capital intensity. In addition, a 1% increase in the

index of diversification is associated with a 0.17% increase in the stock of R&D, and

with a 0.19% increase in the R&D expenditure. These findings suggest, at least, that

firm diversification accompanies expansion in firm size (measured by either sales or input

usage) and innovation activities.34

33 For multi-segment firms, the core-industry refers to the 2-digit SIC code reported by the firm as its
main activity.
34 Other papers have already reported associations between innovation activities and firm scope, measured
by the number of products instead of diversification. For instance, Balasubramanian and Sivadasan (2011)
using microdata from the U.S. Census, find that increases in innovation activities (measured by patent
stock) are associated with increases in firm size, scope (number of products), skill and capital intensity,
and total factor productivity.
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As mentioned previously, a firm can achieve a higher level of diversification by varying

the intensity of activities given a fixed line of segments, and/or by adding new lines of

business. Since the above analysis does not distinguish between the two mechanisms,

Panel B of Table 1.5 shows the results of running a similar specification to equation (1.4),

but using the total number of business units as an explanatory variable instead of the (log

of) diversification index divit. The results indicate that operating a higher number of lines

of business is associated with higher revenues, input usage, and innovation activities. An

additional business unit is associated with a 5% increase in R&D stock, a 6.5% increase

in R&D expenditure, and a 1.4% increase in capital intensity. Moreover, an additional

unit is associated, on average, with an approximately 18% increase in revenue and input

usage.

Finally, in panel C of Table 1.5 I study whether changes in business units’ character-

istics accompany changes in the diversification level. To analyze this, I use a regression

model similar to (1.4), but I include business unit fixed effects instead of firm fixed effects,

and industry-year effects at the business unit level. The results suggest that both output

and input usage at the business unit level accompany changes in diversification at the

firm level. On average, a 1% increase in the index of diversification is associated with a

10% increase in business unit output, and with a 8-11% increase in input usage.
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Table 1.5. Diversification and Firm Characteristics

Panel A Panel B Panel C
Dependent Diversification Number of Diversification
Variable Index Obs. R2 Segments Obs. R2 Index Obs. R2

Sales 0.5361*** 44,281 0.946 0.1818*** 44,281 0.946 0.1005*** 66,118 0.957
(0.0150) (0.0047) (0.0141)

Capital 0.5958*** 44,281 0.945 0.1945*** 44,281 0.945 0.1125*** 66,118 0.956
(0.0168) (0.0053) (0.0157)

Labor 0.5534*** 44,281 0.950 0.1801*** 44,281 0.950 0.0886*** 66,118 0.956
(0.0134) (0.0042) (0.0132)

Materials 0.5438*** 44,281 0.930 0.1792*** 44,281 0.931 0.0799*** 66,118 0.943
(0.0178) (0.0056) (0.0171)

Capital Intensity 0.0425*** 44,281 0.838 0.0144*** 44,281 0.838 0.0239** 66,118 0.884
(0.0110) (0.0035) (0.0100)

R&D Stock 0.1700*** 44,281 0.954 0.0536*** 44,281 0.954
(0.0144) (0.0046)

R&D Expenditure 0.1941*** 44,281 0.930 0.0657*** 44,281 0.930
(0.0134) (0.0042)

Note: The table reports the results of a regression of each of the dependent variables on (log) the diversification index (Panels A
and C) or number of business units (Panel B). All dependent variables are logged. Regressions in panels A and B include
core-industry-year effects, and firm fixed effects. Regressions in panel C include business unit fixed effects and industry-year
effects. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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1.4. Estimation

In order to recover productivity measures, as well as its law of motion, we first have to

obtain consistent estimates of the production function, controlling for unobserved produc-

tivity shocks, which are potentially correlated with input choices. The estimator builds

on the insights of the control function approach literature (Olley and Pakes, 1996; Levin-

sohn and Petrin, 2003 and Ackerberg et al., 2015) in that certain decisions made by the

firm (i.e., investment or static input demand decisions) contain information about cur-

rent productivity and therefore can be used to recover unobserved productivity. Unlike

this literature, I follow Gandhi et al. (2016) in exploiting the fact that demand for static

inputs (materials in this case) is the solution to the firm’s short-run maximization prob-

lem. Given a parametric specification of the production function, the functional form of

the firm’s first order condition is known and contains information about the intermediate

input demand, which is an implicit function of the elasticity of these inputs.35 Using the

parametric restrictions between the firm’s first order condition for a flexible input and the

production function allows us to parametrically recover unobserved productivity without

making assumptions on the firm’s dynamic programing problem.36

35 Gandhi et al. (2016) show that traditional control function approach methods face a fundamental
identification problem when a gross output production function contains flexible inputs. They propose
an identification strategy that solves the problem associated with flexible inputs in the production func-
tion, exploiting the information about the production function that is contained in the firm’s first order
condition for a flexible input.
36 Doraszelski and Jaumandreu (2013) follow a similar approach and exploit the parametric form of the
production function and first order conditions of static inputs. They use lagged prices as instruments
for flexible inputs assuming that prices are serially correlated and vary by firm, and that lagged price
variation is exogenous.
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Profit maximization requires that the firm sets the marginal revenue product of the

static input (i.e., materials) equal to its marginal cost,

∂Ỹijt
∂Mijt

= Pm
sijt

or equivalently,

(1.5)
∂Ỹijt
∂Mijt

Mijt

Ỹijt
=
Pm
sijt
Mijt

Ỹijt

where the left hand side of the equation represents the revenue elasticity with respect to

materials, and the right hand side is the share of materials on revenue. Note also that

the first order condition implies that the demand for materials is an implicit function of

(kijt, lijt, ωijt), i.e.,
37

mijt = mt(kijt, lijt, ωijt)

Equation (1.5) can be used to identify the parameters of the model. The goal is to

estimate the parameters determining the revenue of business units in (1.1), β, as well as

the law of motion for productivity gs(.). Given the parametric assumptions made, the

model is characterized by the following three equations:

yijt = hs(mijt, lijt, kijt; β) + ωijt + µst + ǫijt

ωijt = gs(ωijt−1, divit−1, rit−1) + ξijt

Pm
sijt
Mijt

Yijt
exp(ǫijt) = βms

+ 2βmms
mijt + βmlslijt + βmkskijt + βmlkslijtkijt

37 Note that for a translog production function the inverse material demand function cannot be char-
acterized in closed form. However, estimation and identification only require material demand to be an
implicit function of (kijt, lijt, ωijt), where mt is strictly monotone in ωijt for any (kijt, lijt).
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Estimating the parameters of the model and the law of motion for productivity requires

dealing with two identification challenges. First, labor and material demand by business

unit j at time t are determined after innovation to productivity ξijt is observed by firm

i. This creates a correlation between labor (lijt) or material demand (mijt) and ξijt. This

issue is known in the production function literature as transmission bias (see Griliches

and Mairesse, 1997). Additionally, the error term in the revenue equation (1.1) is not only

a function of unobserved (to the econometrician) productivity, but also of measurement

error ǫijt, which needs to be accounted for in order to obtain consistent estimates of

the production function. I simultaneously address both challenges by estimating the

parameters of interest and the law of motion for productivity in two stages.

In the first stage I use the material optimality condition (1.5) associated with each busi-

ness unit j to estimate the parameters determining the elasticity of revenue with respect to

materials (βms
,βmms

,βmls ,βmks ,βmlks), as well as the measurement error component of rev-

enue (ǫijt) for each business unit j and period t. In the second stage, I condition on these

first stage estimates to recover the remaining model parameters (βls ,βlls ,βlks ,βks ,βkks) and

the law of motion of productivity gs(.). I describe these two stages below.

The first stage relies on the assumption that materials are a static input in the firm’s

problem and its optimality condition described by:

PM
ijtMijt

Yijt
exp(ǫijt) = βms

+ 2βmms
mijt + βmlslijt + βmkskijt + βmlkslijtkijt
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Moment condition Et[ǫijt] = 0 implies that parameters (βms
,βmms

,βmls ,βmks ,βmlks) can be

estimated according to the following moment:

E[mshareijt − ln(βms
+ 2βmms

mijt + βmlslijt + βmkskijt + βmlkslijtkijt) | mijt, lijt, kijt] = 0

where mshareijt = ln
(

PM
ijtMijt

Yijt

)
, which is directly observed in the data. I estimate the pa-

rameters of the above equation (βms
,βmms

,βmls ,βmks ,βmlks) relying on Non-Linear Least

Squares (NLLS). The parameters estimates (β̂ms
,β̂mms

,β̂mls ,β̂mks ,β̂mlks) allows us to re-

cover an estimate of measurement error (ǫ̂ijt) as:

ǫ̂ijt = ln(β̂ms
+ 2β̂mms

mijt + β̂mlslijt + β̂mkskijt + β̂mlkslijtkijt)−mshareijt

The second stage provides an estimate for the remaining production function coeffi-

cients and for the law of motion for productivity. I use θ to denote the vector of parameters

θ = (β0, βl, βll, βlk, βk, βkk, µst). Using the estimates (β̂ms
,β̂mms

,β̂mls ,β̂mks ,β̂mlks) and (ǫ̂ijt),

and defining φ̂ijt as,

φ̂ijt = β̂ms
mijt + β̂mms

m2
ijt + β̂mlsmijtlijt + β̂mksmijtkijt + β̂mlksmijtlijtkijt + ǫ̂ijt

it is possible to compute, for any given value of θ, productivity as

ωijt(θ) = yijt − φ̂ijt − β0 − βlslijt − βllsl
2
ijt − βlkslijtkijt − βkskijt − βkksk

2
ijt − µst

Then, by nonparametrically regressing ωijt(θ) on its lag ωijt−1(θ) and potentially a set

of variables divit−1 and rit−1 affecting productivity, I recover the innovation to productivity

given θ, ξijt(θ).
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Then we can form moments and use standard Generalized Method of Moments (GMM)

techniques to obtain the estimates of the production function. I rely on the following

moment condition:

(1.6) E




ξijt(θ)




lijt−1

l2ijt−1

mijt−1

kijt

k2ijt

lijt−1kijt

kijt−1

Jit

µst







= 0

where Jit denotes the number of business segments in which firm i is active at time t.

The moments above exploit the fact that both capital and the number of business segments

are assumed to be decided a period ahead and therefore should not be correlated with the

innovation on productivity. I rely on lagged labor and material to identify the coefficient

on labor since the current value of these variables are expected to react to shocks to

productivity and hence both E(lijtξijt) and E(mijtξijt) are expected to be nonzero.

The above procedure generates a separate estimate of the diversification effect on pro-

ductivity, through gs(.). The model assumes that the variation in productivity that is

not explained by gs(.), is represented by ξijt. The timing assumption on the arrival of

the productivity shock ξijt+1 identifies the diversification effect and the impact of R&D
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expenditures on productivity. This assumption implies that unexpected shocks to the

firm’s production process are orthogonal to its diversification decision or, formally, that

E(ξijt+1divit) = 0 and E(ξiit+1Jit+1) = 0. In other words, ξijt is assumed to be uncor-

related with past diversification levels divit−1 and R&D investment at t − 1, rit−1. This

follows from the mean independent assumption of ξijt with respect to the information

known to the firm at period t− 1. Intuitively, these assumptions mean that the decision

on the number (and type) of business segments in which to operate (or the diversifica-

tion level given a number of business segments) was made prior to the firm receiving the

productivity shock. An example where this condition would hold is one in which moving

resources from a business unit to another, or entering into new markets (i.e., new lines of

business), is a costly undertaking for the firm. In this case, any fixed or sunk entry costs

associated with starting new businesses would prevent firms from adjusting their diversi-

fication level instantaneously upon receiving shocks to their underlying productivity.

Under the stated assumptions, identification of the effect of firm diversification and

R&D investment on productivity exploits variation in divit−1 and rit−1 conditional on

past productivity ωijt−1. This, in turn, implies that the estimation of the impact of firm

diversification and R&D expenditure on productivity of business units can be achieved by

comparing the productivity growth of two different business units in the same industry

with equal productivity levels at t − 1 but that differ in past diversification experience

and firm R&D investment. Predicted productivity given a firm’s past diversification level

is thus identified by the difference in current productivity between firms with different

diversification levels at period t, while holding their input use constant. Furthermore,

industry-year fixed effects µst control for market or industry characteristics that may
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affect both the productivity of business units and a firm’s incentives to diversify or invest

in R&D. For instance, certain industries may have higher productivity levels and may

also be more appealing to diversified firms or for R&D investment.

Conditioning on productivity at time t controls for unobserved time-varying differences

among firms and guarantees that the estimates are not affected by reverse causality.38 The

typical concern in studies that have looked at the relationship between productivity and

diversification is the possibility that less productive firms self-select into a higher number

of business segments. More specifically, the concern is that when we compare a firm

acting in several markets to a firm acting in a few markets, we would attribute the future

productivity differences to the higher diversification level, although it is simply explained

by the fact that the less-productive firms become more diversified. However, by including

ωijt−1 in the function gs(.) this potential self-selection process is controlled for.39

Finally, it is important to note that the estimation strategy relies on observed choices in

the data for identification of the effects. Note that, conditional on past productivity levels

and number and identity of business units, the observed firms’ optimal diversification

levels and R&D investment may differ due to differences in realized cost shocks to capital

investment (XK
it ), R&D investment (XR

it ), or business units operations (X
J
it ). Relying on

observed choices implies that identification does not require specifying the impact of cost

shocks to capital investment (XK
it ), R&D investment (XR

it ), or business units operations

38 Additionally, the standard Olley-Pakes control for selection can be used to further control for diversified
firms with a higher propensity to survive in a marketplace.
39 A similar argument would hold for the case in which more productive firms self-select into more
lines of business. The argument made here about reverse causality also extends to R&D. In particular,
controlling for past productivity ωijt−1 the estimates do not reflect the correlation between R&D and
current productivity that may arise if for example rit−1 is determined by past productivity ωijt−1 and
productivity is persistent.
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(XJ
it ) on optimal firm’s decisions (i.e., the firm’s optimal diversification level and R&D

investment). The only restriction on the model is the existence of costs shocks and

adjustment cost functions associated with these optimal firm’s decisions that rationalize

the data, as well as the assumption that these decisions (i.e., diversification and R&D

expenditure) are mean independent of innovation to productivity ξijt.

To assess whether a firm’s past diversification decisions impact its future productivity,

I rely on ∂gs(.)
∂divit

, which also depends on the firm’s past productivity level. This allows for

an estimate of the effect of diversification on future productivity to vary with the firm’s

own productivity level. This heterogeneous response of diversification is incorporated into

the nonparametric function gs(.).

1.5. Results

In this section I first analyze the empirical relationship between firm diversification

and productivity. The goal is to verify whether firms engaging in diversification activities

exhibit a change in productivity as a consequence of it. Then I analyze the relationship

between firm diversification and uncertainty, and test some restrictions on the function

gs(.). I conclude the section studying the link between firm diversification and input

misallocation. To ease the exposition of results, I describe the results of the production

function estimation in Appendix A.3. In Section 1.6 I explore firms’ R&D investment

decisions in order to analyze how diversification and R&D investment interact in shaping

a firm’s future productivity.
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1.5.1. Productivity Effects of Diversification

In this section I study the effects of diversification on productivity. I start by describing

the results of a restrictive and simpler model in which the expected future productivity

function is simply a function of current productivity, diversification, and an interaction

term between these two terms. I then turn to a more complex model similar to the one

described in Section 1.2. I estimate these models by primary industry or sector of activity,

defined by the 2-digit SIC code. The industries considered in the analysis (with their re-

spective 2-digit SIC codes) are the following: Food and Beverages (20); Textile, Apparel,

and Leather (22, 23, and 31); Timber and Furniture (24 and 25); Paper and Printing (26

and 27); Chemicals (28); Pete Refining (29); Rubber and Misc. Manufacturing Industries

(30 and 39); Stone, Clay, Glass, and Concrete Products (32); Primary Metal and Fabri-

cated Metal Products (33 and 34); Machinery and Equipment (35); Electrical Machinery

and Apparatus (36); Transportation Equipment (37); and Medical Instruments (38).40

Table 1.6 reports the results of the restrictive model; the results confirm that pro-

ductivity is persistent and increasing in past productivity. Additionally, expected future

productivity is increasing in firm diversification. On average, a 1% increase in the diver-

sification level is associated with a 0.042% increase in the productivity of business units.

The average effects vary by industry, ranging from -0.003% to 0.089% depending on the

industry in which the business unit operates. The results of the restrictive model also

show that current productivity and firm diversification are complementary in most of the

industries.41 This complementarity implies that business units do not benefit equally from

40 Misc. Manufacturing Industries include, for example, jewelry, games and toys, musical instruments,
pens, etc.
41 The exceptions in this case are Primary Metals and Metals Products, and Transportation Equipment.
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firm diversification and that current productivity reinforces the impact of diversification

on future productivity.

Table 1.6. Productivity Effects of Diversification. Restrictive Model

Variables
Industry ωijt−1 divit−1 ωijt−1 × divit−1 Obs.

Food and Beverages 0.7857*** 0.0148* 0.0346 2,183
(0.0200) (0.0081) (0.0244)

Textile, Apparel and Leather 0.6034*** 0.0572*** 0.2004*** 2,271
(0.0247) (0.0122) (0.0269)

Timber and Furniture 0.5164*** 0.0279*** 0.3343*** 1,624
(0.0266) (0.0097) (0.0313)

Paper and Printing 0.6866*** 0.0672*** 0.1771*** 2,680
(0.0216) (0.0102) (0.0266)

Chemicals 0.6966*** 0.0443*** 0.0708** 4,055
(0.0192) (0.0142) (0.0310)

Pete Refining 0.5786*** 0.0627** 0.0357 492
(0.0465) (0.0313) (0.0508)

Rubber and Misc Manuf. Industries 0.6423*** 0.0145** 0.1059*** 2,774
(0.0204) (0.0068) (0.0337)

Stone, Clay, Glass and Concrete Products 0.5616*** 0.0186 0.1490*** 1,036
(0.0346) (0.0113) (0.0467)

Primary Metal Industries and Metal Products 0.5688*** 0.0186* -0.0283 4,484
(0.0177) (0.0109) (0.0291)

Machinery and Equipment 0.6459*** 0.0530*** 0.0838*** 6,625
(0.0128) (0.0045) (0.0187)

Electrical Machinery and Apparatus 0.6187*** 0.0451*** 0.0927*** 6,066
(0.0124) (0.0083) (0.0218)

Transportation Equipment 0.9802*** 0.0450*** -0.0842*** 2,376
(0.0162) (0.0100) (0.0168)

Medical Instruments 0.5224*** 0.0265*** 0.2291*** 4,211
(0.0154) (0.0057) (0.0283)

Note: The table reports the results of a restrictive and simpler model in which the expected future
productivity function gs(.) is simply a function of current productivity (i.e., ωijt−1), diversification
(i.e., divit−1), and an interaction term between these two terms (i.e., ωijt−1 × divit−1).
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

To better understand the productivity effects of firm diversification, I take to the data

the baseline specification described in Section 1.2, where gs(.) is characterized by a high

order polynomial in current productivity, diversification and R&D investment. Given
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the estimates of the function gs(.), we can assess different features of the link between

productivity and diversification in more detail. Specifically, I assess productivity levels,

productivity growth, and the effects of firm diversification on productivity by looking

at ∂gs(.)
∂divit

, where divit measures the degree of firm diversification. We can interpret this

derivative as the return to diversification at the margin.

1.5.1.1. Return to Diversification. I start by discussing the results concerning the

returns to diversification, which can be studied by looking at the estimated value of

∂gs(.)
∂divit

. Table 1.7 presents the results of the estimation. Since the estimated value of ∂gs(.)
∂divit

depends on the current productivity level ωijt and firm diversification divit, the table

shows different moments for the estimated distribution of the effects. In particular, it

shows different percentiles of the distribution of estimated effects, along with a weighted

average computed as 1
T

∑
t

∑
iwit × ∂gs(.)

∂divit
, where T is the number of years used in the

computation, and the weights wit are defined as the share of a firm’s sales on total sales

(i.e., Yit/
∑

k Ykt). Figures 1.1 and 1.2 plot a Kernel density and a cumulative function of

the estimated effects. A 1% increase in the diversification index divit leads, on average, to a

0.051% increase in productivity. This implies an expected positive return to diversification

for all firms in the manufacturing sector. To better understand the economic impact of this

effect, note that firms active in two (three) segments exhibit, on average, a diversification

index 65% (115%) higher than firms operating in only one segment. These numbers

would imply an average return to diversification experience of 3.315% and 5.865% for a

firm active in two and three segments respectively, and with a value for its diversification

index equal to the conditional mean.42

42 The mean value for the diversification index is conditional on the number of business segments. For
this computation I am also holding everything else constant.
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Table 1.7. Productivity Effects of Diversification

Moments
Industry Mean p5 p25 p50 p75 p95

All 0.0510 -0.0660 -0.0150 0.0190 0.0630 0.1360

Food and Beverages -0.0260 -0.0980 -0.0240 0.0120 0.0610 0.1320
Textile, Apparel and Leather 0.2170 -0.1590 -0.0640 -0.0290 0.0390 0.2100
Timber and Furniture -0.0230 -0.0910 -0.0310 0.0150 0.0640 0.1470
Paper and Printing 0.0020 -0.0660 -0.0250 -0.0100 0.0280 0.0970
Chemicals 0.0110 -0.0520 -0.0210 0.0150 0.0660 0.0810
Pete Refining 0.1720 -0.2070 -0.0930 0.0730 0.2090 0.5260
Rubber and Misc Manuf. Industries -0.0160 -0.0450 -0.0160 -0.0080 0.0040 0.0440
Stone, Clay, Glass and Concrete Products 0.0060 -0.0470 -0.0330 0.0040 0.0760 0.1140
Primary Metal Industries and Metal Products 0.0160 -0.0420 -0.0160 0.0040 0.0390 0.1020
Machinery and Equipment 0.0660 -0.0500 -0.0090 0.0240 0.0720 0.1450
Electrical Machinery and Apparatus 0.0350 -0.0590 0.0130 0.0630 0.0920 0.1560
Transportation Equipment 0.0490 -0.1120 -0.0050 0.0580 0.1120 0.2660
Medical Instruments 0.0220 -0.0100 0.0090 0.0450 0.0460 0.0550

Note: The table reports the estimates of the productivity effects of firm diversification, measured by ∂gs(.)
∂divit

.

The table shows different moments for the estimated distribution of the effects (i.e., percentiles of the

distribution of estimated effects) along with a weighted average computed as 1
T

∑
t

∑
iwit × ∂gs(.)

∂divit
,

where T is the number of years used in the computation, and the weights wit are defined as the share of
a firm’s sales on total sales (i.e., Yit/

∑
k Ykt).
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Figure 1.1. Estimated Effect of Firm Diversification.

Notes: The figure shows a Kernel density estimate of the
expected productivity effect from diversification. The red
(dash) vertical line represents the mean effect.

Table 1.7 also shows that there is considerable variation across and within industries

in the return to diversification experience. The average returns to diversification vary

from -0.026% to 0.217% across industries. The returns at the 25th, 50th, and 75th

percentiles range from -0.064% to 0.013%, -0.029% to 0.073%, and from 0.004% to 0.209%,

respectively. Negative returns at the margin are consistent with an overall positive effect

of diversification on revenue, and therefore are justifiable in the model. A firm may

diversify to the point of driving returns below zero for different reasons, with the most

prominent in the current setting being indivisibilities in investment, allocation of capital,

or entry into new lines of business. Moreover, negative returns at the business unit level

are consistent with an overall positive firm-wide return to diversification.
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Figure 1.2. Estimated Effect of Firm Diversification.

Notes: The figure shows a distribution function estimate of
the expected productivity effect from diversification.

Even though the revenue elasticity with respect to diversification provide us with an es-

timate for the rate of return at the margin, it does not provide detailed information on the

size of the effect. To understand this, it is possible to compute an estimate for the average

return to diversification as given by gs(ωijt, divit, rit)− gs(ωijt, 0, rit), where gs(ωijt, 0, rit)

represents the counterfactual value for expected future productivity in the scenario where

the business unit is a stand-alone unit. With some algebra, it is easy to show that

gs(ωijt, divit, rit)−gs(ωijt, 0, rit) ≈ [Yijt(ωijt, divit, rit)−Yijt(ωijt, 0, rit)]/Yijt(ωijt, 0, rit). On

average, the average rate of return to diversification is estimated at 0.039, implying a 4%

increase in revenue at the business unit level. In addition, the mean (median) effect ranges

from 0.001 (-0.002) to 0.070 (0.034) across industries.43

43 Percentile 25th (75th) ranges from -0.011 (0.005) to 0.021 (0.066) across different industries.
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To better understand the variation in the returns to diversification across and within

industries, I use the estimate of gs(.) to analyze how the marginal effect ∂gs(.)
∂divit

varies across

the distribution of initial productivity (ωijt). To this end, Figure 1.3 plots a nonparametric

estimate of the predicted return to diversification conditional on the current productivity

level.44 We observe that the mean value of the estimated effect ∂gs(.)
∂divit

, conditional on

current productivity ωijt, is positive along the distribution of current productivity. In

addition, the estimated return at the margin is increasing in the current productivity

level (a result that holds along the entire distribution of current productivity). This

result suggests that current productivity and diversification experience are complements

for expected future productivity, implying that current productivity tends to reinforce the

impact of diversification on future productivity.

44 I use a local linear estimator with a Epanechnikov Kernel.
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Figure 1.3. Non-Parametric Regression of Expected

Productivity Effect on Current Productivity.

Notes: The blue solid line shows the results of a local lin-
ear regression of the estimated effect on current productivity
(demeaned values). The red (dash) vertical lines represent
the quartiles of the distribution of current productivity. The
gray shaded area around the blue line represents the bands
of a 95% confidence interval.

1.5.1.2. Productivity Levels. In this section I describe differences in future expected

productivity between business units that belong to diversified firms and business units

that do not. Figure 1.4 plots the cumulative distribution function of productivity for

business units belonging to diversified firms and non-diversified firms. The figure pools

all business units within the manufacturing sector. We observe that the cumulative dis-

tribution function for business units operating within diversified firms is to the right of

the distribution function for non-diversified firms. This result strongly suggests first order

stochastic dominance.

Before testing for the equality of the distributions, I test for difference in means in the

expected future productivity function between non-diversified firms and business units
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Figure 1.4. Distribution of Expected Productivity.

Notes: The figure shows the cumulative distribution of ex-
pected future productivity for non-diversified firms and busi-
ness units belonging to diversified firms.

belonging to diversified firms. I compute the difference in means as:

ḡMS − ḡSS =
1

NMS

∑

j

∑

t

1[j∈MS]g(ωijt, divit, rit)−
1

NSS

∑

j

∑

t

1[j∈SS]g(ωijt, 0, rit)

where ḡMS and ḡSS denote the means of business units of diversified firms and non-

diversified firms, respectively. NMS and NSS are the size of the subsamples of observations

with and without diversified business units. The test statistic for testing equality of means

is given by:

t =
ḡMS − ḡSS√

V ar(g(ωijt, divit, rit))/(NMS − 1) + V ar(g(ωijt, 0, rit))/(NSS − 1)
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Columns (1) to (3) of Table 1.8 show the results of the test. We observe that the difference

in means is positive in all industries, with the exception of “Rubber and Misc. Manufac-

turing Industries.”45 Moreover, from columns (2) and (3) we can note that the test rejects

(at conventional levels of significance) the null hypothesis of equality of means. Instead,

the results favor the alternative hypothesis that the mean of expected productivity is

higher for diversified units than for non-diversified firms, with the only exception again

being “Rubber and Misc. Manufacturing Industries.” These results are consistent with

previous findings in the literature (e.g., Schoar, 2002), which have documented higher

average productivity levels for plants belonging to diversified firms than non-diversified

plants.

To compare the distribution in future expected productivity, I apply a Kolmogorov-

Smirnov test. This test requires independence of the observations in each sample. To

accommodate this, I consider the variable of interest to be the average of expected pro-

ductivity for each business unit.46 Columns (4) and (5) of Table 1.8 report the results of

the test, where the null hypothesis is the equality of the two distributions. I reject equality

of the distributions for non-diversified firms and business units belonging to diversified

firms in almost all cases, at a 5% level, being the exceptions “Pete Refining” and “Rubber

and Misc. Manufacturing Industries.”

45 A possible explanation for this result is the considerable heterogeneity in activities across business
units within this industry, which arises as a consequence of the level of aggregation I am using, pooling
Rubber with Misc. Manufacturing Industries.
46 For business units that transition between non-diversification to diversification, I average only over the
years in which the firm operates in multiple industries (and discard the years in which it operates as a
non-diversified firm).
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1.5.1.3. Productivity Growth. I study (expected) productivity growth, which is de-

fined as the difference between future expected productivity and current productivity:

E[ωijt − ωijt−1 | ωijt−1, divit−1] = gs(ωijt−1, divit−1, rit−1)− ωijt−1

where the above equation relies on the fact that ωijt−1 is known to the firm at the time it

makes decisions on diversification.

In order to assess if the productivity of business units belonging to diversified firms

grow faster than non-diversified firms, I regress the measure of expected productivity

growth described above on year fixed effects and a dummy indicating whether the busi-

ness unit belongs to a diversified firm or not. To estimate the average of the expectation

of productivity growth, I weight (wijt) the regressions by the share of output of a business

unit two periods ago (i.e., wijt = Yijt−2/
∑

j Yijt−2). I assume that the weights are orthog-

onal to the previous period productivity innovation (i.e., E[wijtξijt−1 | ωijt−2, divit−2] = 0),

which is reasonable since the value of ξijt−1 is not known to the firm when it makes the

decisions that determine Yijt−2 and thus wijt.

Column (6) of Table 1.8 shows the results of the estimation. Productivity growth is

higher for business units of diversified firms than non-diversified firms in 9 of the 13 indus-

tries. In these industries, the average productivity growth rate of business units belonging

to diversified firms is between 0.3% and 2.1% higher than the productivity growth of non-

diversified firms. These results, together with those presented in the previous section,

suggest that diversified firms are not only more productive on average than those that

are not diversified, but also tend to grow even larger over time. Therefore, diversification

seems to be a primary source of productivity growth.



67
Table 1.8. Productivity Levels and Growth

Mean of diversified Kolmogorov-Smirnov test
is greater Distributions Diff. in

Diff. of are equal Productivity
means t p-val K-S stat p-val Growth

Industry (1) (2) (3) (4) (5) (6)

Food and Beverages 0.072 9.027 0.000 0.295 0.000 -0.022
Textile, Apparel and Leather 0.016 1.522 0.064 0.179 0.002 -0.014
Timber and Furniture 0.099 8.921 0.000 0.447 0.000 -0.043
Paper and Printing 0.012 1.629 0.052 0.162 0.010 0.003
Chemicals 0.070 13.702 0.000 0.300 0.000 0.015
Pete Refining 0.360 7.421 0.000 0.276 0.180 -0.032
Rubber and Misc. Manuf. Industries -0.013 -2.485 0.994 0.071 0.515 0.009
Stone, Clay, Glass and Concrete Products 0.052 4.704 0.000 0.235 0.034 0.004
Primary Metal Industries and Metal Products 0.056 12.049 0.000 0.286 0.000 0.017
Machinery and Equipment 0.111 26.712 0.000 0.374 0.000 0.021
Electrical Machinery and Apparatus 0.059 9.637 0.000 0.186 0.000 0.015
Transportation Equipment 0.159 16.735 0.000 0.474 0.000 0.015
Medical Instruments 0.026 6.623 0.000 0.148 0.001 0.015
Note: Column (1) of the table reports the difference in means in the expected future productivity function gs(.) between
diversified and non-diversified business units. Columns (2) and (3) report the t-statistic and p-value of a difference in means test,
where the null hypothesis is the equality in means in the expected future productivity function between non-diversified and
diversified business units, and the alternative is that the mean is higher for diversified business units. Columns (4) and (5) show
the Kolmogorov-Smirnov statistic and p-value associated with a Kolmogorov-Smirnov test on equality of distributions of expected
future productivity for diversified and non-diversified business units. Column (6) reports the difference in expected productivity
growth between diversified and non-diversified business units. Expected productivity growth is defined as
gs(ωijt−1, divit−1, rit−1)− ωijt−1.
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1.5.2. Unexpected Shocks to Production and Productivity

The estimates of the production function also provide us with estimates for the condi-

tional expectation function gs(.), unexpected shocks to productivity ξijt+1, and unexpected

shocks to production ǫijt. This section reports the results obtained regarding the degree

of persistence in productivity and the unexpected shocks to productivity and production.

In Table 1.9 I report different moments to describe the degree of persistence and un-

certainty in productivity. The degree of persistence is given by ∂gs(.)
∂ωijt

, and measures the

elasticity of expected future productivity to current productivity. The higher the degree

of persistence, the higher the fraction of current productivity that is carried into future

productivity. Since this measure of inertia depends on both current productivity and

diversification decisions, I report different moments of the distribution (the mean, the

median, and percentiles 25 and 75). The degree of persistence in productivity is consid-

erable for most of the industries (columns (2) to (5) of Table 1.9). With the exception of

Pete Refining, Primary and Fabricated Metal Products, and Transportation Equipment

where the average values for the degree of persistence are 0.633, 0.714, and 0.701 respec-

tively, the mean values for ∂gs(.)
∂ωijt

range from 0.798 to 0.860. Similar results are found in

most of the industries when looking at the 25th percentile of the distribution.

The last two columns of Table 1.9 report measures of uncertainty in production and

productivity, respectively. Production uncertainty is measured as
V ar(ǫijt)

V ar(ωijt)
; while uncer-

tainty on productivity is defined as
V ar(ξijt)

V ar(ωijt)
. The ratio of the variance of the unobserved

shock ǫijt to the variance of productivity ωijt is similar across industries and is lower than

1 for most of the industries. This suggests that productivity is at least as important

in explaining the variability in production as other unobserved factors embedded in ǫijt.
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However, there are industries such as Medical Instruments, Machinery and Equipment,

Chemicals, and Electrical Machinery and Apparatus, where unobserved shocks to pro-

duction ǫijt account for a significantly larger fraction of the variability in firms’ revenue.

Finally, the ratio of the variance of the productivity innovation ξijt to the variance of pro-

ductivity ωijt is very similar across industries, ranging from 0.21 to 0.62, and indicating

that the innovation to productivity ξijt accounts for a large part of productivity.

To further explore the relationship between diversification decisions and productivity

uncertainty, I study whether engaging in diversification activities affect the uncertainties

linked to the productivity process, which would be absent if the firms did not diversify.

In the model, the innovation to productivity ξijt can be thought as a measure of the

uncertainties inherent to productivity ωijt and diversification decisions. I construct a

measure of uncertainty as the ratio between the variance of productivity innovation ξijt

and the variance of productivity ωijt.
47 In order to assess whether diversification activities

affect business units’ productivity uncertainty, I take the following two equations to the

data:

ln

(
ξ2ijt

V ar(ωijt)

)
= x′ijtγ + ϕ11[Jit−Jit−1>0] + ϕ21[Jit−Jit−1<0] + µj + λt + εijt

ln

(
ξ2ijt

V ar(ωijt)

)
= x′ijtγ + ϕ11[divit−divit−1≥0.05] + ϕ21[divit−divit−1≤−0.05] + µj + λt + εijt

where xijt is a vector of control variables which includes a constant term, (log of) capital

stock (as a proxy for business unit size), investment rate, and (log of) investment in R&D.

µj and λt are business unit and year fixed effects, respectively. The first equation relates

uncertainty levels to variations in the total number of business segments in which the firm

47 I estimate the variance of productivity V ar(ωijt) separately for non-diversified and diversified firms.
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is active. These are captured by two dummies representing increments and decrements in

the total number of business units, respectively. The second equation relates uncertainty

in productivity to changes in the diversification index. These are also captured by two

dummies representing increments or decrements in the diversification index greater than

5% in absolute value. Finally εijt is an error term.

Table 1.10 shows the results from estimating both models. We observe a positive im-

pact of changes in the diversification level on the degree of uncertainty in all industries.

The coefficients are statistically significant at conventional levels in most of the cases.

The results suggest that the uncertainties inherent in the diversification process are eco-

nomically significant, and that diversification indeed introduces further uncertainties into

the productivity process. This might be linked to the success of the implementation,

successful adoption, and integration of common resources or technologies across different

units, etc.
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Table 1.9. Uncertainty and Persistence

Degree of Persistencea Production Productivity
Industry p25 Median p75 Mean Uncertainty Uncertainty

Food and Beverages 0.749 0.889 0.918 0.807 0.534 0.328
Textile, Apparel and Leather 0.812 0.906 0.959 0.860 0.167 0.300
Timber and Furniture 0.743 0.768 0.908 0.801 0.427 0.383
Paper and Printing 0.726 0.855 0.936 0.800 0.345 0.231
Chemicals 0.798 0.833 0.918 0.841 0.808 0.483
Pete Refining 0.512 0.628 0.793 0.633 0.445 0.425
Rubber and Misc Manuf. Industries 0.757 0.831 0.892 0.803 0.691 0.468
Stone, Clay, Glass and Concrete Products 0.780 0.881 0.948 0.845 0.068 0.248
Primary Metal Industries and Metal Products 0.685 0.723 0.777 0.714 0.521 0.621
Machinery and Equipment 0.790 0.855 0.913 0.827 1.039 0.318
Electrical Machinery and Apparatus 0.752 0.830 0.913 0.815 1.542 0.210
Transportation Equipment 0.624 0.746 0.816 0.701 0.670 0.605
Medical Instruments 0.760 0.816 0.854 0.798 0.922 0.480
Note: The table reports different moments to describe the degree of persistence and uncertainty in productivity

and production. The degree of persistence is measured by ∂gs(.)
∂ωijt

. Production uncertainty is measured as
V ar(ǫijt)

V ar(ωijt)
,

while productivity uncertainty is defined as
V ar(ξijt)

V ar(ωijt)
.

a I trim observations below zero and above one.
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Table 1.10. Productivity Uncertainty and Diversification

(1) (2) (3) (4)
Industry 1[Jit>Jit−1] 1[Jit<Jit−1] 1[divit−divit−1≥0.05] 1[divit−divit−1≤0.05] Obs.

Food and Beverages 2.0966*** 1.3825*** 0.9677*** 1.0021*** 2,183
(0.2902) (0.2341) (0.2141) (0.2024)

Textile, Apparel and Leather 0.7730** 1.0897*** 0.7505*** 0.5662*** 2,271
(0.3635) (0.2915) (0.2368) (0.2150)

Timber and Furniture 0.2119 0.4539 0.4248* 0.9406*** 1,624
(0.4308) (0.3261) (0.2494) (0.2371)

Paper and Printing 1.9987*** 2.0896*** 0.7404*** 0.9044*** 2,680
(0.2802) (0.2653) (0.1938) (0.1751)

Chemicals 1.2669*** 1.0798*** 0.5785*** 0.6374*** 4,055
(0.2301) (0.1797) (0.1647) (0.1399)

Pete Refining 0.7533* 0.0421 0.1939 0.2126 492
(0.4486) (0.4222) (0.3398) (0.3495)

Rubber and Misc Manuf. Industries 0.7087** 1.0818*** 0.4039** 0.9386*** 2,774
(0.2819) (0.2208) (0.1833) (0.1616)

Stone, Clay, Glass and Concrete Products 2.1184*** 0.6393** 1.1307*** 0.6668*** 1,036
(0.3805) (0.3025) (0.2538) (0.2231)

Primary Metal Industries and Metal Products 1.1469*** 0.4281*** 0.6418*** 0.4290*** 4,484
(0.2256) (0.1584) (0.1202) (0.1091)

Machinery and Equipment 1.7192*** 1.6831*** 0.4164*** 1.0523*** 6,625
(0.1957) (0.1693) (0.1143) (0.1084)

Electrical Machinery and Apparatus 0.9281*** 0.9277*** 0.6508*** 0.5823*** 6,066
(0.2361) (0.1864) (0.1450) (0.1324)

Transportation Equipment 0.5373** 0.5228*** 0.2519* 0.4927*** 2,376
(0.2402) (0.1900) (0.1451) (0.1355)

Medical Instruments 1.1177*** 1.6799*** 0.6481*** 0.9055*** 4,211
(0.3141) (0.2501) (0.1811) (0.1605)

Note: Columns (1) and (2) of the table report the results of a regression of productivity uncertainty at the business unit level,

defined as ln(
ξ2ijt

V ar(ωijt)
), on dummies for expansion (i.e., 1[Jit>Jit−1]) and contraction (i.e., 1[Jit<Jit−1]) at the firm level (i.e.,

dummies for entry into new business units and exit from existing lines of business). Columns (3) and (4) report the results of a
regression of productivity uncertainty at the business unit level on dummies for expansion (i.e., 1[divit−divit−1≥0.05]) and
contraction (i.e., 1[divit−divit−1≤0.05]) at the firm level defined according to the diversification index divit. Both regressions
contain a vector of control variables which includes a constant term, (log of) capital stock (as a proxy for business unit size),
investment rate, and (log of) investment in R&D, and business unit and year fixed effects. Standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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1.5.3. Tests on the Expected Productivity Function gs(.)

This section tests some of the assumptions made on the expected productivity function

gs(.). One of the main assumptions made in this chapter is that firms’ future productivity

might react endogenously to past diversification in a flexible and complex way, whereby the

effects of firm diversification on productivity might vary across the distribution of current

productivity and past diversification level. In this section I test whether the data support

this assumption or not. To do so, I first compare the estimated function gs(ωijt, divit, rit)

to an alternative law of motion, in which expected future productivity is only a function of

current productivity and R&D expenditures (i.e., gs(ωijt, rit)). Column (1) of Table 1.11

shows the results of this test. As we observe, the data reject the alternative assumption

of the conditional expectation function gs(.) in almost all of the industries, thus ruling

out the hypothesis in which we can exclude firms’ past diversification level from gs(.).
48

Additionally, I test for nonlinearities between current productivity ωijt and the vector

divit. To this end, I test whether the conditional expectation function gs(.) is separable

in ωijt and divit. Column (2) of Table 1.11 reports the results of the test. Separability

in ωijt and divit is rejected at the 10% level of significance in most of the industries.49

These results indicate that the effects of firm diversification on future expected produc-

tivity depend on the current level of productivity, and that these interact in a complex

way to affect future productivity. I will discuss in more detail the non-linear relationship

between current productivity and diversification when interpreting the rate of return of

48 I fail to reject the null hypothesis in Pete Refining and Stone, Clay, Glass, and Concrete Products.
These results are likely associated with both the smaller number of observations and small number of
diversified firms operating in these industries.
49 As in the previous test, I fail to reject the null hypothesis in the following two industries: Pete Refining
and Stone, Clay, Glass, and Concrete Products.
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firm diversification. However, a natural question is whether current productivity and firm

diversification are substitutes or complements on expected future productivity. To an-

swer this, I compute ∂2gs(.)
∂ωijt∂divit

. Since this is a function of both ωijt and divit, I look at the

percentage of observations within each sector that are significantly positive (negative) at

a 5% level, so that productivity and diversification are complements (substitutes) in the

accumulation of productivity. While productivity and diversification are strategic substi-

tutes for approximately half of the observations in industries 1, 8 and 11, I find strong

evidence of complementarities in industries 2, 3, 4, 5, 9, 10, 12 and 13, suggesting that

current productivity tends to reinforce the impact of diversification on future productivity.

Finally, I also test if expected future productivity depends only on the diversification

status of the firm as opposed to the degree of firm diversification. The results are pre-

sented in column (3) of Table 1.11 (Extensive Margin). I fail to reject this restriction

at the 10% level of significance in only three industries (Timber and Furniture, Chem-

icals, and Primary Metal Industries and Metal Products), meaning that the degree of

firm diversification seems to be relevant for explaining the evolution and differences in

productivity across firms.
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Table 1.11. Tests on gs(.)

(1) (2) (3)
Exogeneity Separability Extensive

Test Test Margin
Industry F(16, df.) F(5, df.) χ2(19) df.
Food and Beverages 8.567 10.809 57.954 2173

(0.000) (0.000) (0.000)
Textile, Apparel and Leather 6.468 10.086 61.827 2261

(0.000) (0.000) (0.000)
Timber and Furniture 2.448 3.481 20.901 1614

(0.000) (0.000) (0.340)
Paper and Printing 8.885 12.433 56.500 2670

(0.000) (0.000) (0.000)
Chemicals 2.272 3.396 23.755 4045

(0.003) (0.000) (0.210)
Pete Refining 0.827 1.130 56.071 482

(0.650) (0.350) (0.000)
Rubber and Misc Manuf. Industries 1.841 2.054 57.589 2764

(0.002) (0.070) (0.000)
Stone, Clay, Glass and Concrete Products 1.144 1.386 67.873 1026

(0.310) (0.230) (0.000)
Primary Metal Industries and Metal Products 9.093 13.667 26.106 4474

(0.000) (0.000) (0.130)
Machinery and Equipment 8.434 10.610 172.269 6615

(0.000) (0.000) (0.000)
Electrical Machinery and Apparatus 5.509 7.078 126.945 6056

(0.000) (0.000) (0.000)
Transportation Equipment 5.863 7.503 111.796 2366

(0.000) (0.000) (0.000)
Medical Instruments 5.781 7.159 58.756 4201

(0.000) (0.000) (0.000)
Note: The table reports the results of three different tests conducted to assess the assumptions made
on the expected productivity function gs(.). The first column tests if firms’ past diversification level
divit can be excluded from gs(.). The second column tests if the conditional expectation function
gs(.) is separable in ωijt and divit. Finally, column (3) tests if the conditional expectation function
gs(.) is a function of the diversification status (i.e., diversified vs. non-diversified) rather than the actual
diversification level as measured by divit. p-values are in parentheses.

1.5.4. Capital Misallocation

In this section I turn attention to the relationship between diversification and misallo-

cation of inputs. The literature on misallocation has focused on the marginal revenue

product (MRP) of an input to study the degree of misallocation of resources within a firm
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or in an industry. In a static model with no frictions, profit maximization implies that

the marginal revenue product of an input should be equal to its unit input cost. In the

case of capital, this measure (MRPK) is given by:

MRPKijt =
∂Yijt
∂Kijt

= (βk + 2βkkkijt + βmkmijt + βlklijt + βmlkmijtkijt)
Yijt
Kijt

In a dynamic setting, when firms face different adjustment costs to capital, shocks to

productivity should induce differences in the MRPK among firms.50 In the absence of

adjustment costs, producers could simply adjust their capital, leading to the equalization

of MRPK across producers. The theory of internal capital markets is usually presented

as one of the most important motives for diversification. Under this theory, a segment’s

assets can be used as collateral for obtaining funding for other segments, and cash flows

generated by one segment may be used to subsidize investment projects in other divisions

of the firm. This cross-subsidization can be efficient if it helps the firm to eliminate any

cost associated with financial constraints or any cost of adjusting capital. Then, under

the predictions of this theory, the MPRK of business units belonging to diversified firms

should be less responsive to shocks to productivity. To test this mechanism, I run the

following regression equation:51

ln(MRPKijt) = γ0 + γ1ξijt + γ2ξijtdivit + γ3kijt + γ4ωijt−1 + λt + λs + νijt

50 This point has been discussed by Asker, Collard-Wexler and De Loecker (2014).
51 This regression equation is similar to the one fitted by Asker et al. (2014). In this paper the authors
test whether differences in the innovation to productivity are associated with differences in MRPK, which
would suggest the presence of adjustment costs or frictions to capital, preventing firms to adjust the stock
of capital immediately upon receiving these productivity shocks.
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where ξijt = ωijt − g(ωijt−1, divit−1) is the innovation to productivity, divit is the (log)

diversification index, kijt is logged capital stock, λt and λs are year and industry fixed

effects, and νijt is an error term.

From the one period to build assumption, the innovation to productivity ξijt has not

been observed when the firm makes its diversification decision divit or investment decision

about capital stock kijt at time t− 1. I include business units’ past productivity ωijt−1 in

order to compare units with the same productivity level at time t−1 and that are making

the same investment decisions in physical capital. Then we ask whether business units’

MRPK is different if they are hit by different productivity shocks, and whether these

differences vary by the level of diversification. Under the predictions of a static model,

coefficients γ1 and γ2 should be zero, since there should be no dispersion in MRPK as a

function of the innovation to productivity. Under any cost of adjusting capital we expect

γ1 to be positive. Finally, under the internal capital markets hypothesis, the coefficient for

the interaction between ξit and firm diversification should be negative, since the impact

of shocks to productivity should be moderated for diversified firms.

Column (1) of Table 1.12 reports the results of the estimation. We observe a positive

and statistically significant coefficient for γ1, as predicted. Similarly, γ2 is estimated to

be negative and statistically significant at conventional levels of significance, confirming

the predictions of the theory. The results thus confirm that the MRPK of business units

of diversified firms are less responsive to productivity shocks, supporting the hypothesis

that diversification helps to eliminate costs in the efficient allocation of inputs.

A dynamic setting in which firms face different adjustment costs to inputs and shocks

to productivity also has implications in terms of industry measures. In particular, this
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setting predicts a positive relationship between productivity volatility, measured by the

standard deviation of innovations to productivity (i.e., stdst(ξijt)), and MRPK dispersion

stdst(mrpkijt), dispersion in the change of MRPK stdst(∆mrpkijt), and dispersion in the

change of capital stdst(∆kijt), where all these variables are measured at the industry-year

level and are proxies for the degree of static misallocation for the industry.52 If the MRPK

of business units belonging to diversified firms is less responsive to productivity shocks,

then we should observe a lower correlation between productivity volatility and the degree

of static misallocation at the industry level the higher the fraction of business units of

diversified firms operating in the industry. To test this, I regress each of these static

misallocation measures on productivity volatility, the interaction between productivity

volatility and the fraction of diversified business units operating in the industry, and year

fixed effects. The results are reported in columns (2) to (4) of Table 1.12 and confirm the

predictions discussed above. More specifically, we observe that the correlation between

productivity volatility and the measures of static misallocation decreases in the percentage

of business units belonging to diversified firms operating in the industry

52 See Asker et al. (2014) for further details about this.
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Table 1.12. Diversification and Misallocation

(1) (2) (3) (4)
Firm Level Industry Level

Variables log(mrpkijt) Stdst(∆mrpkijt) Stdst(∆kijt) Stdst(mrpkijt)

Stdst(ξijt) 1.1437 0.6601 0.7047
(0.2040) (0.1247) (0.1135)

Stdst(ξijt) ∗ (%Div.F irms) -1.3994 -0.3366 -0.6453
(0.3508) (0.1819) (0.1655)

ξijt 0.2909
(0.0232)

ξijt ∗ divit -0.0936
(0.0336)

Year FE Y Y Y Y
Industry FE Y N N N

R2 0.2446 0.2775 0.3279 0.3472
Note: Column (1) reports the coefficients of a regression of (log of) marginal revenue product of
capital (i.e., log(mrpkijt)) against the innovation to productivity ξijt and the interaction of the
innovation to productivity and the diversification level (i.e., ξijt × divit). The regression includes
as additional controls logged capital, past productivity (i.e., ωijt−1), and industry and year fixed
effects. Columns (2) to (4) report the coefficients of a regression of three different measures of static
misallocation at the industry level against productivity volatility Stdst(ξijt) (defined as the standard
deviation of the innovation to productivity in a given industry-year), the interaction between
productivity volatility and the fraction of diversified business units operating in the industry, and
year fixed effects. In column (2) the measure of static misallocation is represented by the standard
deviation in the change of the marginal revenue product of capital (i.e., Stdst(∆mrpkijt)). In column
(3) the measure of static misallocation is represented by the standard deviation in the change of
capital (i.e., Stdst(∆kijt)), while in column (4) by the standard deviation in marginal revenue product
of capital (i.e., Stdst(mrpkijt)).
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1.6. Diversification, R&D, and Productivity

The literature has emphasized the importance of studying the productivity- diversifica-

tion relationship, while acknowledging that firms often simultaneously decide to diversify

and invest substantially in R&D (see, for example, Jovanovic, 1993 for theoretical work

related to this topic). The theoretical foundations for explaining this relationship between

diversification and R&D expenditure usually rely on spillovers of knowledge among dis-

tinct production units. By considering a law of motion for expected future productivity

which incorporates information not only about diversification but also R&D efforts, we

can not only learn about the complementarity or spillovers between diversification and

R&D investment, but it also allows us to separately identify the productivity effects of

diversification when firms jointly invest in R&D and diversify.53

In the estimated model, I allow R&D expenditures rit to affect future expected pro-

ductivity differently as a function of a firm’s diversification status. Additionally, I allow

the coefficients associated with R&D investment to vary by type of business unit (i.e., core

units and peripheral units).54 This distinction is, of course, irrelevant for non-diversified

firms. Note that in the above equation, expected future productivity of business unit j

at firm i is affected by total expenditure (at the firm level) in R&D, rit. Unfortunately, I

do not observe expenditures in R&D at the business unit level. Although the empirical

evidence suggests that most of R&D investment is conducted at the core unit, having

information on R&D at the business unit level would allow us to distinguish spillovers

53 The concern here is that if firms diversify while also engaging in other productivity-enhancing actions,
such as investing in R&D, we might be overstating the effects of diversification on productivity.
54 The core business unit is defined as the line of business which the firm reports as its main activity.
It typically matches the unit in which the firm concentrates its activities (measured by either assets or
sales).
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across different line of business. Thus, we should interpret the estimates reported below as

the direct effect of a business unit’s own R&D expenditure plus spillovers effects coming

from investments in R&D performed by other units.

Table 1.13 reports the estimated revenue elasticities with respect to R&D expenditure

by industries for the full sample, and also differentiates the results for business units

belonging to diversified firms and non-diversified firms. These elasticities are measured by

∂gs(.)
∂rit

, and can be interpreted as the return to R&D at the margin. There is a considerable

amount of variation across industries and across production units within an industry. The

average elasticities range from 0.004 to 0.06 across industries. The results are similar to

previous findings in the literature (e.g., Doraszelski and Jaumandreu, 2013).
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Table 1.13. Revenue Elasticities with respect to R&D

All Non-diversified Firms Diversified Units
Industry Mean Median Mean Median Mean Median

Food and Beverages 0.0203 0.0115 0.0179 0.0109 0.0226 0.0123
Textile, Apparel and Leather 0.0099 0.0035 0.0158 0.0073 0.0019 0.0006
Timber and Furniture 0.0051 0.0017 0.0020 0.0009 0.0076 0.0032
Paper and Printing 0.0082 0.0038 0.0028 0.0010 0.0112 0.0065
Chemicals 0.0116 0.0048 0.0080 0.0021 0.0138 0.0073
Pete Refining 0.0613 0.0581 0.0488 0.0475 0.0654 0.0602
Rubber and Misc Manuf. Industries 0.0062 0.0010 0.0064 0.0016 0.0061 0.0006
Stone, Clay, Glass and Concrete Products 0.0092 0.0049 0.0001 0.0003 0.0123 0.0069
Primary Metal Industries and Metal Products 0.0090 0.0025 0.0047 0.0021 0.0107 0.0028
Machinery and Equipment 0.0075 0.0011 0.0070 0.0012 0.0080 0.0009
Electrical Machinery and Apparatus 0.0087 0.0015 0.0053 0.0011 0.0136 0.0024
Transportation Equipment 0.0140 0.0046 0.0100 0.0018 0.0155 0.0065
Medical Instruments 0.0048 0.0007 0.0020 0.0005 0.0087 0.0015
Note: The table reports the average and median revenue elasticity with respect to R&D expenditure. The revenue

elasticity at the business unit level is computed as ∂gs(.)
∂rit

.
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The estimated output elasticities with respect to R&D investment can be used to

compute the gross rate of return to R&D. The gross firm-i return to R&D is described

by:

GRit =
∂
∑

k>t

∑
j∈Jik

δk−tEt[Ỹijk]

∂Rit

With some algebra, and assuming for simplicity that expected revenue for firm i is repre-

sented by value added at period t+ 1 levels, the above equation becomes,

GRit =
∑

j∈Jit

∂Et[ωijt+1]

∂rit

V Aijt+1

Rit

where V Aijt+1 represents value added of business unit j, belonging to firm i, at time

t+ 1.55 Intuitively, multiplying the revenue elasticity with respect to R&D by a measure

of expected value (value added in this case) gives us the rent that the firm can expect

from this investment at the time it makes its decisions. Then, dividing this by R&D

expenditures Rit gives an estimate of the gross rate of return (GRit), or dollars obtained

by spending one dollar on R&D.

Table 1.14 shows the results for the average gross return to R&D for the full sample,

and across industries. The average firm-wide gross return to R&D is estimated at around

0.20 dollars for non-diversified firms, and 0.73 dollars for diversified firms. This implies

an average firm-wide gross return to R&D 3.5 times higher for diversified firms than

non-diversified firms.

55 I follow Doraszelski and Jaumandreu (2013) in using value added instead of revenue, since value added
is closer to profits than gross revenue.
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Table 1.14. Average Gross Returns to R&D

Gross Return
Industry Non-diversified Diversified

All 0.2062 0.7275

Food and Beverages 0.8378 1.5913
Textile, Apparel and Leather 0.2130 0.6662
Timber and Furniture 0.2710 0.7634
Paper and Printing 0.1727 0.4862
Chemicals 0.3605 0.5437
Pete Refining 0.0258 0.3666
Rubber and Misc Manuf. Industries 0.7512 0.9118
Stone, Clay, Glass and Concrete Products 0.0266 0.9491
Primary Metal Industries and Metal Products 0.1173 0.8045
Machinery and Equipment 0.1877 0.4598
Electrical Machinery and Apparatus 0.1520 0.4334
Transportation Equipment 0.4799 0.7030
Medical Instruments 0.0573 0.2959
Note: The table shows the average gross return to R&D expenditure for diversified
and non-diversified firms. Average gross returns to R&D by industry are computed
after classifying diversified firms by their main industry. Gross return to R&D at

the firm level is calculated according to
∑

j∈Jit

∂gs(.)
∂rit

Yijt+1

Rit
.
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1.7. Conclusions

This chapter estimates a dynamic structural model that describes how a firm’s diver-

sification level and R&D expenditures endogenously affect the future productivity tra-

jectories of a firm’s business units. The estimation strategy allows for a general process

for productivity, whereby the level of diversification and R&D expenditures are flexibly

allowed to affect a business unit’s productivity. This flexible approach allows the effects

of diversification to be heterogeneous across producers. I estimate the model using data

for U.S. manufacturing business units from the period 1980-1998.

There are five broad conclusions I draw about the productivity and the sources of pro-

ductivity evolution among the producers studied in this chapter. First, the distribution of

expected productivity for business units belonging to diversified firms first order stochas-

tically dominates the distribution of non-diversified firms. Moreover, I find that business

units belonging to diversified firms grow faster than non-diversified firms, suggesting that

those mechanisms in place that affect firm productivity when firms diversify might be a

source of productivity growth. Second, business unit productivity evolves endogenously in

response to the firm’s diversification level or investment in R&D. The relationship between

future expected productivity, current productivity, diversification and R&D investment

is complex and characterized by non-linearities. Relative to non-diversified firms, diver-

sification raises, on average, future expected productivity at the business unit level by

4%. However, I find that the productivity effects of diversification vary considerably, with

significant heterogeneity across industries and firms. Additionally, the average revenue

elasticity with respect to R&D expenditure ranges between 0.005 and 0.061 depending

on the industry under consideration. Third, the marginal benefits of firm diversification
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typically increase with the business unit’s productivity. This non-linearity typically takes

the form of complementarities between current diversification level and current productiv-

ity: high-productivity business units exhibit large benefits from diversification. Fourth,

I find that the average firm-wide gross return to R&D is 0.20 dollars for non-diversified

firms and 0.73 dollars for diversified firms. This implies an average firm-wide gross return

to R&D 3.5 times higher for diversified firms than non-diversified firms. The results are

consistent with the hypothesis that knowledge spillovers among distinct activities might

constitute the drivers of productivity growth among diversified firms. Finally, I use the

estimates of the model to study the relationship between static input misallocation and

diversification both at the business-unit and industry level. The results provide evidence

consistent with the internal market capital hypothesis that firm diversification helps to

reduce adjustment and transaction costs related to input usage, helping consequently in

the allocation of inputs within the firm.

Overall, the empirical findings emphasize the important role of firm diversification in

shaping a firm’s productivity and in determining productivity growth among manufactur-

ing producers. Although the estimation strategy used in this chapter allows us to flexibly

recover the productivity effects of firm diversification at the business-unit level, it does

not allow us to learn about the exact theoretical and underlying mechanisms whereby

firm diversification is affecting productivity. This raises the important issue of the spe-

cific sources behind the productivity effects associated with firm diversification, a topic

on which I provide some suggestive evidence (e.g., R&D investment, input allocation),

but otherwise leave open for future research. If more detailed data were available on the
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diversification structure of the firm, and particularly on how this diversification strat-

egy maps into the different theoretical mechanisms discussed in the introduction, then it

would be possible to distinguish the return to the various motives for firm diversification.



88

CHAPTER 2

Location Choice and Product Differentiation under a Threat of

Entry

2.1. Introduction

Understanding how firms compete along dimensions other than price is a topic that

has recently been the focus of attention, given its relevance from a policy point of view.1

One question that has received considerable attention in the theoretical literature is how

the level of competition in a market, firm entry into a market as well as a threat of

entry affect the location choice of stores in some characteristic space of the products.

Product differentiation through location allows firms to better serve consumers’ differing

preferences and to acquire a degree of local market power. Questions include how market

power and profits of firms depend on the location of its outlets relative to the location

of competitors, and how important the location differentiation is in explaining market

power. Despite the considerable theoretical debate and the importance of understanding

the strategic effects of product location choices within a market, this topic has received

little attention in empirical work. Most of the existing literature has relied on entry

models limited to study the tradeoff between market size and intensity of competition

1 There has been a recent explosion of research on product repositioning and differentiated product
competition, where product characteristics are allowed to react to market structure and competition.
Some papers in this literature include Mazzeo (2002), Seim (2006), Fan (2013), Draganska, Mazzeo and
Seim (2009), Eizenberg (2014), Nosko (2014), Wollmann (2015), or Sweeting (2013) among others.
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while allowing for product differentiation, leaving the question of the effects of a threat

of entry on the repositioning of a product virtually unanswered.

This chapter studies how incumbents respond in terms of location choices to a threat

of entry by a competitor. The empirical literature has focused on other kinds of preemp-

tive actions, such as price cuts and capacity investment (e.g., Goolsbee and Syverson,

2008; Gedge, Roberts and Sweeting, 2014), strategic alliances (e.g., Goetz and Shapiro,

2012), advertising to influence the size of the market (e.g., Ellison and Ellison, 2011),

and responses of incumbents airlines in on-time performance measures (e.g., Prince and

Simon, 2015).2 3 To the best of my knowledge, there has not been an attempt to empiri-

cally detect preemptive motives behind the location choices of incumbents in terms of the

space of possible attributes of the product.

I study this question in the context of the airline industry, by analyzing how incumbent

airlines adjust their flight schedules (i.e., location of departure times for non-stop flights)

in response to a threat of entry by Southwest Airlines. I examine this issue within the

framework of a horizontal product differentiation and spatial model, where the space

on which airlines locate their flights is a circle (i.e., 24 hour clock). Passengers have a

distribution of most preferred departure times (MPDT) around the clock, and airlines set

their flight schedules (or departure times) taking into account this distribution and the

schedules of competitors. Then, passengers not only obtain utility from the price paid

2 Airlines’ measures of on-time performance can be interpreted as a dimension of product quality for air
travel, and thus, as a vertically differentiated feature of the product.
3 Snider (2009) also studies price cuts and capacity investment as an entry deterrence strategy in the
market Dallas-Fort Worth to Wichita, one of the markets in which the Department of Justice alleged
predation against American Airlines in 2000. Unlike other papers that look at preemptive actions, Snider
(2009) studies incumbent responses when the competitor enters the market.
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and vertical attributes of product, but also from the schedule delay, which is the difference

between the passengers’ most preferred departure time and the flights’ departure times.

Theoretical models of spatial product differentiation stress two opposite incentives

that firms face when deciding their locations. On the one hand, firms have an incentive

to minimize differentiation in order to steal business or customers from competitors. On

the other hand, there is an incentive to maximize differentiation in order to reduce price

competition. Different assumptions on the elasticity of demand, number of stores or

outlets to be located, distribution of consumers around the space, or nature of transport

costs (i.e., schedule delay costs in this case) can cause one or the other of these forces to

dominate, resulting in a tendency towards either minimal or maximal differentiation.4 The

empirical evidence on tests of theoretical models of spatial product differentiation is scarce.

A notable exception is Borenstein and Netz (1999) who study the effects of competition

in location patterns for the airline industry.5 They analyze, for example, the difference in

the locational pattern between a market characterized by two firms each locating three

outlets, and a market characterized by six firms each locating one outlet. They find a

negative effect of competition on differentiation at the market level. However, reductions

in exogenous scheduling constraints increase differentiation, implying that firms may be

differentiating their products where possible to reduce price competition.6

4 See Borenstein and Netz (1999) or Loertscher and Muehlheusser (2011) for a survey on theoretical
models of spatial product differentiation.
5 Examples of other papers that study this topic are Mazzeo (2002) or Seim (2006).
6 As mentioned by Borenstein and Netz (1999), the airline industry is a complicated setting for testing
the predictions of the theoretical models, since many of the assumptions of these models do not hold
in this industry. More specifically, airlines not only compete on schedules and prices, but also on other
dimensions such as quality of their products or the routing network. In addition, passengers are dis-
tributed non-uniformly in their most preferred departure times and face schedule delay costs which vary
over consumers. Lastly, airline scheduling decisions are the solution of a problem where each flight is
integrated into the network. In this sense, airlines attempt to schedule flight departures and arrivals into
short periods of time in order to facilitate connections. By doing this, they must trade off benefits from
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In this chapter I examine a different question, not only because I look at the effects of

a threat of entry on incumbent responses, but also because I look at the location pattern

responses from the incumbent perspective, instead of looking at the location patterns at

the market level (i.e., characterization of the distribution of all departure times in the

market). The chapter contributes to and builds on the literature on airline competition.

Despite the importance of understanding the strategic effects of product positioning within

a market, such as the departure times of flights in a market, most of this literature has

focused on other sources of market power in the industry (such as an airline’s scale of

operation at an airport), or the effects of entry on market outcomes after entry occurs.7

In addition, the chapter provides an empirical setting for testing the theoretical work

on strategic entry deterrence and accommodation linked to location choices, which typi-

cally offer a rationale for preemptive action. This theoretical work includes Hay (1976),

Prescott and Visscher (1977), and Schmalensee (1978), whose “proliferation strategy”

stories indicate that a threat of entry might induce incumbent firms to produce a larger

amount of products than they would otherwise. By crowding the space of possible at-

tributes of the product, this strategy has the effect of forcing out potential entrants.

more convenient connections against congestion costs and revenue losses from locating around times with
less dense demand.
7 The exceptions are Goolsbee and Syverson (2008), Goetz and Shapiro (2012), and Prince and Simon
(2015). Examples of papers on the airline competition literature include Borenstein (1989), Reiss and
Spiller (1989), Borenstein (1991), Berry (1990), Berry (1992), Peters (2006), Ciliberto and Tamer (2009),
Benkard, Bodoh-Creed and Lazarev (2010), Aguirregabiria and Ho (2012), Ciliberto, Murry and Tamer
(2015), or Li, Mazur, Roberts and Sweeting (2016) among others.
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Bonanno (1987) shows that entry deterrence need not be achieved through product pro-

liferation, and in some cases, the incumbent firm resorts to an entry deterring stage based

on location choice (or product specification strategy) rather than product proliferation.8

To answer the question of interest, I follow an empirical strategy similar to the one used

by Goolsbee and Syverson (2008), who previously studied incumbent airlines responses

when Southwest threatens entry into a market. They define as an exogenous threat of

entry situations where Southwest begins operating in the second endpoint airport of a

market (i.e., directional airport pair), but before it starts flying non-stop flights in the

market itself. Using a within market regression model of an airline’s schedule differentia-

tion decision over time, I look at how the differentiation in departure times for non-stop

flights of an incumbent airline is affected when Southwest threatens entry. I focus my

analysis on the markets between the 93 airports out of which Southwest operated flights

at any point between January, 1993 and November, 2016.

Goolsbee and Syverson (2008) show that Southwest presence at both endpoint airports

of a market is a strong predictor of Southwest entering the market with non-stop flights

in the future. This allows us to identify preemptive actions by measuring how incumbents

respond to Southwest presence at both endpoints of the market. In this particular case,

since Southwest is likely to enter the market with non-stop flights in the near future,

the incumbent may change the degree of differentiation in departure times as an attempt

to either deter or accommodate entry. For example, as an attempt to deter entry, an

incumbent might change the degree of product differentiation by concentrating its flights

8 Other papers that offer a rationale for preemptive action in decisions other than location choices are
Dixit’s (1979) capacity commitment model, Spence’s (1981) strategic learning-by-doing model, Milgrom
and Roberts’ (1982) cost-signaling model, Aghion and Bolton’s (1987) long-term contracting model, and
Klemperer’s (1987) and Farrell and Klemperer’s (2007) switching costs model.
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around peaks of demand or around times when there is an expectation that Southwest

will place its flights. Conversely, if there is an expectation that Southwest will enter

the market no matter what, the incumbent might respond by increasing the degree of

differentiation in departure times as an attempt to soften price competition when entry

takes place. In any case, the identification strategy is based on the fact that there is

little reason to expect demand or cost driven motives for re-scheduling of flights to be any

stronger or weaker in the face of such a threat. In other words, if revenue gains or cost

savings are to be had by changing the schedule, then incumbents should be re-scheduling

their flights regardless of the presence or absence of threats from Southwest, which do

not affect these variables. Then, any preemptive action in response to a threat must be a

strategic response.

My main set of results indicate that incumbent airlines respond to the threat of entry

by increasing the degree of differentiation in departure times when Southwest threatens

a market. My estimates also show that when a carrier is threatened in a market by

Southwest, both the incumbent’s range in departure times (i.e., difference in minutes

between the last and first flight of the day) and the incumbent’s interquartile range of the

distribution of departure times increase. I do not find evidence of incumbents trying to

schedule their flight closer to the peaks of demand.

In addition, I analyze heterogeneities on incumbent responses by characteristics of

the market and the incumbent. In particular, I study incumbent responses by dividing

the sample either according to market share levels or by whether the flight departs from

a hub or arrives to a hub. I find that higher market share is a strong determinant of

the strength of the carrier’s response to a threat of entry by Southwest. The response



94

in terms of product differentiation is more pronounced when the incumbent has higher

market share. Hub at a destination airport (as opposed to flights departing from a hub)

is also a strong determinant of the incumbent’s response.

I also present evidence on the explanation for these preemptive actions. Consistent

with a deterrence motive, I find that in large markets where Southwest’s entry is guar-

anteed, and consequently entry deterrence is not possible, incumbents do not appear to

change the degree of product differentiation. Similarly, I do not find evidence of incum-

bents changing their degree of product differentiation in those markets where Southwest

begins non-stop service between two endpoint airports of the market either in the same or

the following month that it starts operating in the second endpoint airport (i.e., instances

where entry is likely to be preannounced). Finally, and also consistent with the deterrence

motive, I find suggestive evidence of incumbents placing their flights closer to times when

there is an expectation that Southwest will schedule its departures.

The chapter is organized as follows. Section 2.2 describes the airline scheduling deci-

sion problem. It also introduces some terminology related to the schedule development

that is useful for the remaining sections of the chapter. Section 2.3 describes the data

and some summary statistics. The estimation and identification strategies are presented

in Section 2.4. Section 2.5 discusses the main results, and Section 2.6 presents evidence

on the explanation for the preemptive actions. Finally, Section 2.7 concludes.

2.2. The Scheduling Decision Problem

Airlines compete for passengers and market share based on the price charged, the

quality of service (e.g., airport and in-flight service amenities), products offered (e.g.,
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restrictions on discount fare products), and other dimensions such as the frequency of

service and departure schedule on each route served. The airline scheduling development

process is a component of an airline’s strategic plan that involves decisions on frequency

plans, timetable development, and other elements such as fleet assignment and the aircraft

rotation planning.9 The frequency of service is usually established first. Decisions are

made a year or more in advance, and are based on the routes to be flown (i.e., airline’s

network) and fleet capabilities. Timetables and aircraft rotations are decided between 2

and 6 months in advance, and after frequency decisions have been made. The process

typically continues with final revisions until the flight departs.10

Frequency of flights on a route is typically driven by demand forecasts and competition.

It involves not only estimates of total demand between origin and destination cities, but

also of the potential for additional traffic and profits from connecting flights. It also

comprises estimates of the expected market share on the route, determined to a great

extent by frequency share relative to competitors.11 The number of departures, as well as

9 Schedule development is one of the parts of an airline’s strategic plan. The airline economics literature
usually classifies the airlines’ planning and strategic decisions into five different components of interacting
decisions: 1) fleet planning; 2) network and route planning; 3) schedule development; 4) pricing; and 5)
revenue management. The first three are considered long run strategic decisions, since they typically
require a long lead time before implementation as well as a considerable investment. Additionally, they
are expected to have a significant impact on the configuration of the airline in the long run. Examples
of these include fleet sizing (i.e., what aircraft to acquire/retire, when and how many of them); the
type of network structure to operate (i.e., hub and spoke system or point to point), hub locations and
city-pairs to be served; and how often, at what times and with which aircraft to operate on each route.
The last two components, pricing and revenue management, are usually decided or adjusted in a daily
basis, with the objective of maximizing airlines’ revenue. They involve decisions on prices as well as
inventory control for each different fare type. See Barnhart (2009), Belobaba (2009) or Jacobs, Garrow,
Lohatepanont, Koppelman, Coldren and Purnomo (2012) for an exhaustive discussion of the airline
planning and scheduling process.
10 Barnhart (2009), Belobaba (2009) and Jacobs et al. (2012) provide a comprehensive discussion of the
airline scheduling decision problem.
11 The airline economics and transportation economics literature recognizes that the frequency of depar-
tures on a route improves the “convenience” of air travel for passengers, which in turn increases market
share in the route. This relationship is usually known as the “S-curve” effect (see for instance Wei and
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aircraft size decisions, are also affected by “load consolidation” (i.e., consolidation on the

ratio between passengers and seats). The goal of load consolidation is easier to achieve

when airlines operate a hub and spoke network, since it allows them to operate higher

frequency and/or larger aircraft, given that a single flight can provide service to several

origin-destination markets at the same time.

After choosing a given number of departures on a each route, airlines define a specific

timetable of flight departures. One of the goals is to provide departures at peak times

(usually early morning and late afternoon) that are most attractive to a larger proportion

of travelers in many markets. Although proximity to passengers’ most preferred travel

times is one of the primary goals when defining a timetable of flight departures, airlines

usually take into account, and trade off, other factors that affect demand for air travel.

One of these factors is represented by airlines’ strategic incentives in the selection of de-

parture times in response to competitors times on the same route. In particular, airlines

weigh two opposite forces when choosing location times: locate closer to competitor times

for business stealing or further apart to create differentiation and weaken price competi-

tion. Borenstein and Netz (1999) study the relationship between competition in a market

and the degree of product differentiation in departure times. They find that reductions

in exogenous scheduling constraints increase differentiation, implying that firms may be

differentiating their products where possible to soften price competition.

Hansen, 2005; or Hansen and Liu, 2015). In particular, higher frequency reduces schedule displacement
or wait time between flights, reducing thus travel inconvenience. This is specially important for capturing
time sensitive business travelers. Even though it is much more important in short-haul markets than for
long-haul routes where actual flight time dominates wait time, the literature indicates that in some cases
it can be as important as path quality (e.g., non-stop service vs. one-stop service).
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Air carriers also select schedules in order to enable one-stop city-pair market service

by creating potential connections.12 The value or quality of these connections is usually

described by the layover time as well as the itinerary distance relative to the non-stop

distance between the origin and destination airports. To achieve this goal, airlines seek

to coordinate connections at their hubs at a few points in time by scheduling their flights

into periods of time which comprise a high number of arrivals and departures, something

denominated as banks. Figure 2.1 shows departures and arrival banks for American

Airlines at the Dallas- Fort Worth airport, where American holds one of its hubs. We

observe how departure banks follow arrival banks in order to facilitate connections with

layover times as short as possible.

The network benefits associated with the facilitation of connections (or the hub and

spoke system) come, however, at the costs of rising marginal congestion costs due to

more traffic, as well as longer connecting times and greater delays. Hub carriers want

to maximize the number of possible connecting markets for passengers, but also want

to minimize operational costs related to congestion and passengers’ travel time spent on

congestion delays or layover times. Thus, they must trade off the benefits from scheduling

banks of flights against all costs associated with congestion. Although hub airlines can

partially offset the increased congestion by smoothing scheduled flight arrival times, it

comes at the expense of increasing the length of connections for some passengers (poten-

tially decreasing profits). Mayer and Sinai (2003a) analyze the two commonly mentioned

factors that might explain air traffic congestion: network benefits due to scheduling bank

12 Domestic flights in the U.S. are required a minimum time for connection. Additionally, the maximum
connection time for two domestic flights to be eligible as a connection in a single ticket is 4 hours.
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Figure 2.1. American Airlines - Arrivals and Departures at

Dallas-Fort Worth.

Notes: The figure shows, for October 5th 2015, the distribution of
arrivals and departures of American Airlines (AA) at Dallas-Fort Worth
(DFW). Data come from the On Time Performance database (OTP).

of flights and congestion externalities.13 They find that although both factors impact

congestion, the first effect dominates empirically, implying that hub carriers incur most

13 The congestion externality hypothesis, also known as the tragedy of the commons, states that con-
gestion occurs because airlines schedule flights without internalizing the true marginal cost of adding a
flight, which leads to congestion at airports, and consequently to flight delays and higher travel time for
other airlines. This is consistent with the fact that most airports in the U.S. allow unlimited landings and
takeoffs. A few exceptions to this in the United States are slot controlled airports, where airlines hold
slots or permissions on the number of takeoffs and landings that the carrier can schedule over a given time
period. To schedule a commercial flight between two airports in non-slot controlled airports, air carriers
only need to pay user and landing fees and to have access to gates and other airport (on-ground) services.
Access to runway, either for arrivals or departures, is allocated by air traffic controllers according to a
first-come, first-serve basis. Thus, flights obtain runway access by queuing on the airport’s taxiways or
airspace, and as a consequence, any flight is subject to the possibility of delay for those periods of the
day in which scheduled demand exceeds runway capacity. See Odoni (2009) for additional details on this.



99

of the additional travel time and congestion costs from hubbing.14 Daniel (1995), Daniel

and Harback (2008) and Molnar (2013) study other reasons why an airline may find it

profitable to schedule the departure and arrival of flights in short periods of time. In

particular, these authors analyze the case in which an airline may find it profitable to

schedule flights at a hub airport in a way that causes runway congestion if this action

deters competitor entry. This airline strategy can be profitable to a carrier by deterring

competitor entry by raising their costs, allowing the airline to preserve market power at

the hub airport.

There are other sets of factors that airlines take into account when scheduling flights.

One of them is the cannibalization of demand for other flights in the airline’s route or

network that serve the same city-pairs. Others are related to schedule development con-

straints such as minimum turnaround times (i.e., minimum time required to clean and

refuel the plane), time zone differences that set limits in feasible departure times, airport

14 It seems to be the case that the benefits created by tighter connections outweigh the cost generated
by higher congestion. Anecdotal evidence suggests the same outcome. For example, American Airlines
depeaked its Chicago hub in 2002, and applied later the same strategy to its remaining hubs. The
depeaking of its hubs, known in the airline industry as “rolling the hub”, consisted in spreading out
operations and lengthening of layover times with the goal of saving costs and raising profits by reducing
congestion and improving operational performance. Delta and United Airlines also followed a depeaking
strategy of their hubs after American’s adoption of rolling hubs. In recent years, however, there has been
a reversal of this trend, where network carriers have mostly rebanked their hubs. The explanation for this
phenomenon has to do with the fact that in the early 2000’s airlines needed a different business model.
Air carriers were struggling financially and cost reduction in the industry was critical. Moreover, the high
level of competition meant that there was less incentive to schedule flights into periods of time which
comprise a high number of arrivals and departures, since airlines had less pricing power to extract fare
premiums for shorter connections. Nowadays, the situation is different. There is less competition and
air carriers have more pricing power, being worth to rebank hubs accepting the resulting higher costs of
congestion and lower asset utilization. Managers in the industry have stated that although the depeaking
strategy has lowered operating costs, the lost revenue outweighed the savings, with the revenue losses
apparently attributed to the lower number and timeliness of possible connections. See Brueckner and Lin
(2015) for additional details on this.
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slot times and noise curfews that limit scheduling flexibility, or crew scheduling and rou-

tine maintenance requirements. These constraints, and the consequent schedule choice,

affect airlines’ operational costs since they determine the extent of efficient utilization of

fleet, crew and ground installations.

Finally, any flight flying non-stop in a given route has not only a departure time

associated with it, but also an arrival time. Airlines schedule arrival times to include a

schedule buffer in excess of the minimum time required to move the aircraft from gate to

gate in standard weather conditions and in the absence of congestion. This schedule buffer

is aimed to control for runway or airspace congestion, or any other sources of delay (such

as expected weather conditions or mechanical problems). Both high values and low values

of the schedule buffer are costly for airlines. Pilots are paid for the maximum of scheduled

time and the duration of a flight from gate to gate. Then, higher flight times increase

airlines operation costs. Additionally, since higher schedule buffer times increase flight

time, it reduces aircraft productivity and potentially passenger demand, since longer flight

times are supposed to decrease passengers’ utility from air travel. On the other hand,

short buffer times leaves little room for dealing with any unexpected problems, such as

mechanical problems or weather delays. This decreases airlines’ profits to the extent that

flight delays reduce demand. In practice, the empirical evidence suggests that airlines

choose scheduled travel times which are very close to the minimum allowed under federal

regulations. The likeliest explanations for this behavior are labor cost minimization at

passengers’ expenses, and airlines trying to maintain greater aircraft utilization.15

15 These are findings reported by Mayer and Sinai (2003b). See Mayer and Sinai (2003b) for additional
details about this.
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2.3. Data

The goal of this chapter is to empirically test whether the threats of entry in given

markets are determinants of airline’s flight location decisions and differentiation in depar-

ture times decisions. To study this, it is necessary to measure both location decisions and

threats of entry with the data. The data come from two main sources. Information on

scheduled departure and arrival times comes from the On Time Performance (OTP) data-

base, which contains domestic airline segment data. Certificated U.S. air carriers, that

account for at least one percent of domestic scheduled passenger revenues, report monthly

air carrier scheduled and actual arrival and departure times for flights. These data also

provide information on the number of scheduled and actual departures, departure and

arrival delays, origin and destination airports, canceled or diverted flights, taxi-out and

taxi-in times, air time, and non-stop distance between airports. These data are collected

daily and span from the first month of 1993 to November of 2016. I restrict the data for

my analysis to Mondays.

Information on capacity (i.e., available seats), enplaned passengers, load factors (i.e.,

ratio of enplaned passengers to available seats), market presence (e.g., number of desti-

nations served out from an airport and number of total departures performed from an

airport), and airport entry decisions come from the Air Carrier Statistics (T-100 Domestic

Segment) database. These data are collected monthly and span from the first month of

1993 to November of 2016. Both sources of data are maintained and published by the

U.S. Department of Transportation (DOT).

Table 2.1 reports summary statistics of the data on scheduling decisions, for all Mon-

days of 2015. In column (1) I show information for the whole sample, while in columns (2)
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to (5) I report the same information for each of the four main airlines: American (AA),

United (UA), Delta (DL), and Southwest (WN). We observe that the mean departure

time locates at around 13:30pm for the pooled sample, while the mean value for the ar-

rival time is 15:10pm. Since the distribution of departure and arrival times is usually not

uni-modal, the mean does not provide rich information about it. Figure 2.2 plot the dis-

tribution of arrival and departure times for all airlines in the sample. Both distributions

exhibit several peaks around the clock. We observe that the distribution of departure

times contains more mass around early times in the day than the distribution of arrival

times. The opposite is true for late times in the day. Figures B.1 to B.4 in Appendix B.1

plot the distribution of departure times around the clock for each of the big four airlines

(i.e., American, United, Delta, and Southwest).

Table 2.1 also shows information on aircraft utilization. Southwest airlines is, among

the big four airlines, the one that reports (on average) the lowest scheduled and actual

flight times. The typical flight duration for Southwest is of 2 hours. All network carriers

report longer average flight times, which possibly reflects the selection of routes that they

fly, with higher non-stop distances. Additionally, we observe that Southwest is the airline

with higher aircraft utilization among the four. In a typical day, the average aircraft em-

ployed by Southwest flies for approximately 670 minutes, performs 6 departures, spends

around 43 minutes on the ground before departing again, and its flight duration contains

only 22 minutes in excess of the minimum impeded time. These numbers differ consid-

erably from those exhibited by network carriers, which display lower aircraft utilization.

This is consistent with the empirical evidence reporting higher productivity levels for

Southwest compared to major airlines.
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Table 2.1. Descriptive Statistics

(1) (2) (3) (4) (5)
Variable All American Delta United Southwest

Departure Time 807.950 795.382 811.190 798.612 808.341
(292.575) (296.903) (292.787) (296.949) (292.652)

Arrival Time 907.166 917.167 919.581 902.917 902.697
(306.306) (307.822) (297.881) (323.008) (315.332)

Scheduled Flight Time 141.034 170.988 147.052 197.939 126.425
(74.898) (77.581) (73.922) (88.392) (57.312)

Actual Flight Time 136.559 165.666 140.023 189.409 120.489
(73.935) (77.308) (73.198) (87.593) (55.678)

Aircraft Use 586.373 549.006 576.361 582.838 671.759
(220.087) (232.977) (216.069) (248.415) (162.231)

Departures per Aircraft 5.290 4.070 4.842 3.642 6.162
(1.959) (1.482) (1.538) (1.207) (1.519)

Turn around Times 61.191 77.311 66.978 77.544 42.758
(77.179) (93.822) (83.027) (92.909) (42.662)

Buffer Time 25.612 30.687 28.137 34.397 22.040
(10.828) (11.216) (10.392) (10.850) (9.282)

Note: The table reports the mean and standard deviation (in parentheses) of variables
characterizing scheduling decisions for all Mondays of 2015. All variables except
“Departures per Aircraft” are measured in minutes. Departure and Arrival Times
are measured in minutes from midnight. Data come from the On Time Performance
database (OTP).



104

0
.0

0
0

5
.0

0
1

.0
0

1
5

.0
0

2
D

e
n

si
ty

0 500 1000 1500
Minutes from midnight

Departures Arrivals

Distribution of Arrival and Departure Times
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Notes: The figure shows, for all Mondays of 2015, the distri-
bution of arrival and departure times, measured in minutes
from midnight. Data come from the On Time Performance
database (OTP).

To select the sample for studying incumbent responses in location times when South-

west threatens entry, I restrict the sample to those markets between the 93 airports out

of which Southwest operated flights at any point between January, 1993 and November,

2016. A market in this case, is defined as a directional trip between an origin and desti-

nation airport. This definition is the same as in Borenstein (1989), Ciliberto and Tamer

(2009) or Berry and Jia (2010); and similar to the ones used by Berry (1992), Berry,

Carnall and Spiller (1996), or Aguirregabiria and Ho (2012), with the only difference that

they consider city-pairs instead of airport-pairs.16 A product, in a given market, is defined

16 Goolsbee and Syverson (2008) define a market as a non-directional airport pair. In the current setting,
the directionality of the market matters, since several factors which depend on the direction of travel
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as a combination of airline and departure time. I only look at those products offered by

incumbents airlines that comprise non-stop flights. Figure 2.3 shows the evolution over

time in the number of airports in which Southwest established presence.
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Figure 2.3. Airport Presence Over Time - Southwest

Airlines.

Notes: The figure shows, for the period 1990:M1-2016:M11,
the evolution over time in the number of airports in which
Southwest Airlines (WN) established presence. Data come
from the Air Carrier Statistics (T-100 Domestic Segment).

The empirical strategy follows closely the one used by Goolsbee and Syverson (2008).

For each market in the sample, I look at incumbents’ location responses once that South-

west begins operating in the second endpoint airport of a market (i.e., threatens entry),

but before it starts flying non-stop flights in the market itself.17 I capture these responses

affect the scheduling decision problem. Examples include time zones, hub or airport presence status, or
airport regulations on take-offs and landings such as noise curfews, among others.
17 Note that this definition for a threat of entry is only appropriate for low cost carriers, due to the way
in which these airlines are willing to fly routes between two non-hub airports. In fact, Goolsbee and
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using dummies in the 73-month window surrounding the month in which Southwest es-

tablishes a presence in both endpoints of a market (36 months before to 36 months after).

Southwest’s actual entry is defined as occurring when it establishes direct non-stop service

between the two airports. I control for this event using dummies during and after South-

west starts flying the market. The data contain 525 instances of Southwest threatening

entry into markets, 265 of which Southwest had actually entered with direct flights by the

end of 2016.18 This yields around 37,000 market-carrier-month observations of average

logged differentiation in departure times measures for incumbent airlines’ direct flights on

threatened markets.

To measure incumbent airlines’ location decisions, I construct measures of differen-

tiation in departure times for each airline-market-time, using information on scheduled

departure times from the OTP database. These measures take into account the differ-

entiation between every pair of flights in a market own by a given airline. This means,

for instance, that when looking at the differentiation in departure times for airline i in

market m, the measure will only contain information on the relative distance of airline i’s

flights in market m, telling us nothing about the distance of flights belonging to i relative

to flights own by competitor airlines in the market (if any). To formalize these measures,

consider the case of airline i in market m, with n daily departures scheduled at times

d1, ..., dk, ..., dn, and expressed as minutes after midnight. Differentiation in departure

times for flight k belonging to airline i in market m is then calculated as in Borenstein

Syverson (2008) find that when Southwest threatens a market according to this definition, it was 18.5%
more likely to enter the market with a non-stop flight in the next quarter.
18 I also follow Goolsbee and Syverson (2008) in eliminating from the sample any routes that are truncated
by the end of the sample, and those routes where Southwest establishes a second endpoint airport presence
simultaneously with actually flying the route, since in those cases it is not possible to identify the threat
of entry separately from actual entry.
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and Netz (1999):

Diffimk =
1

n− 1

∑

l 6=k

[min{| dl − dk |, 1440− | dl − dk |}]α

where α ∈ (0, 1) is a parameter that captures the sensitivity of the differentiation index

to flights that are farther away. When α is close to zero, this measure is more sensitive

to changes in the time between flights that are close together to begin with. If α is close

to 1, then this measure is equally affected by changes in the time between flights that

are close together or far apart to begin with. It is also very close to the average distance

between flights. I arbitrarily set α = 0.5, but also try alternative values such as 0.25 and

0.75. Note also that the above index is minimized at zero, when all flights exhibit the

same departure time. On the other hand, it is maximized when the n flights are equally

spaced around the 24-hour clock. Finally, the reason why the number 1440 appears in

the definition of the index is because we are measuring distance between flights located

in a circle (i.e., 24-hour clock), and 1440 is the number of minutes in a day.

Average differentiation in departure times for airline i in market m is then given by:

AvgDiffim =
1

n(n− 1)

n∑

k=1

∑

l 6=k

[min{| dl − dk |, 1440− | dl − dk |}]α , 0 < α < 1

where this index measures the average of the absolute time difference between each pair

of i’s flights in the market raised to the α power. I follow Borenstein and Netz (1999) and

normalize the above index by the maximum possible time difference (MaxDiffim), given

the number of scheduled flights. This maximum possible time difference is simply the value

of the average differentiation in departure times that would result if the flights were equally
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spaced around the clock. This normalization allows for comparisons of differentiation in

departure times across airlines-markets with different numbers of scheduled flights. Then,

the measure I use to quantify the degree of product differentiation for an incumbent airline

in a market is:

(2.1) Dim,α =
AvgDifim
MaxDiffim

This variable ranges between 0 and 1, measuring the proportion of the maximum possible

differentiation in departure times. The closer to 1, the closer the flights are to being

evenly distributed over a 24-hour clock.

Besides the differentiation in departure times variable, I characterize the distribution

of departure times using a set of alternative measures. The list includes the departure

times of the first and last flights of the day, the range (i.e., difference between the departure

time of the last and first flights of the day), percentiles 25th and 75th of the distribution

of departure times, the interquartile range, the fraction of flights scheduled during the

morning and afternoon peaks of demand, and measures of correlation between scheduled

departure times and passengers’ most preferred departure times. To construct these

correlation measures, I use information on scheduled departures from the OTP database.

Information on passengers’ most preferred departure times comes from Garrow, Jones

and Parker (2007) and Brey and Walker (2011), who construct these measures based on

a 2004 on-line survey conducted by the Boeing Company.19 I create these variables using

the uncentered correlation coefficients between the firms’ scheduled departure profiles and

19 See Garrow et al. (2007) and Brey and Walker (2011) for more details about the survey design.
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passengers’ most preferred departure times.20 Appendix B.2 formalizes these correlation

measures and provides details on their construction.

I also create measures of departure and arrival banks, for each airline-airport-time

in the data, using information on scheduled departure and arrival times from the On

Time Performance database. Departure and arrival banks are constructed using kernel

estimates of the probability of departing or arriving from/to an airport at certain times

of the day. I use these variables for two different purposes. First, I use them to check

the robustness of the results when studying the distance of scheduled departures to the

banks. Second, I use the departure and arrival banks variables to create measures of

differentiation in departure and arrival banks using equation (2.1). Then, these variables

are included as control variables in the main regression equation.

Finally, I construct other variables at the carrier-market-time level, such as the number

of destinations served out from an airport, the total number of departures scheduled from

an airport, the incumbent’s market share of passengers in the market, and variables

denoting the hub status of the incumbent at the endpoint airports of the market. Some

of these variables are interacted with the threat proxy to assess heterogeneities in an

incumbent’s response as a function of market or incumbent characteristics.

Table 2.2 reports summary statistics for the final sample. The standard deviation for

the logged value of differentiation in departure times (α = 0.5) is 0.142, and for the logged

number of departures is 0.545.

20 Uncentered correlation measures have already been used in other applications. Jaffe (1986), for exam-
ple, uses it to measure the degree of technology closeness between firms. Bloom et al. (2013b) use it to
measure the proximity in technology and product market space between firms.
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Table 2.2. Summary Statistics

Variable Obs Mean Std. Dev. Min Max

D0.25 37206 0.918 0.059 0.352 1
D0.5 37206 0.854 0.102 0.124 1
D0.75 37206 0.804 0.136 0.043 1
ln(D0.25) 37206 -0.088 0.070 -1.045 0
ln(D0.5) 37206 -0.167 0.142 -2.091 0
ln(D0.75) 37206 -0.237 0.214 -3.136 0
ln(flights) 37206 1.413 0.545 0.693 3.016
ln(seats) 37176 9.619 0.744 5.011 11.550
ln(Diff. Arrival Banks) 37206 -0.253 0.188 -2.196 -0.001
ln(Dif. Departure Banks) 37206 -0.254 0.200 -2.226 0.000
ln(Total passengers Dest. Airport) 37206 13.585 1.000 9.705 15.235
ln(Total passengers Origin Airport) 37206 13.575 1.003 9.705 15.235
ln(Airports served from Dest. Airport) 37206 2.548 1.494 0 4.868
ln(Airports served from Origin Airport) 37206 2.520 1.499 0 4.868
ln(Departures from Dest. Airport) 37188 7.209 1.634 0 9.996
ln(Departures from Origin Airport) 37188 7.179 1.644 0 9.996
Note: The table reports summary statistics of variables in the final sample. Data come
from the On-Time Performance database (OTP) and the Air Carrier Statistics (T-100
Domestic Segment).

2.4. Estimation

The empirical specification follows closely the model used by Goolsbee and Syverson

(2008). It measures the impact of the threat of entry (i.e., Southwest establishing a

presence in both endpoints of a market) around the time of the event (by looking at

the periods before, during, and after this event), exploiting the time-series variation in

location decisions and threats of entry for a specific incumbent-market. The regression
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equation is as follows:

yimt = γim + µit +
3+∑

τ=−8

βτSW Threatm,t0+τ

+
3+∑

τ=0

ϕτSW Entrym,te+τ +X ′
imtα + ǫimt

where yimt is the outcome of interest (e.g., incumbent’s degree of product differentiation

in terms of departure times) for incumbent carrier i, flying market m, in month t. γim

and µit are carrier-market and carrier-time fixed effects, respectively.21 The periods in

which Southwest establishes a presence in both endpoints of a market and starts flying

the market are denoted by t0 and te, respectively. Therefore, variables SW Threatm,t0+τ

and SW Entrym,te+τ are dummies surrounding the period when Southwest establishes

a presence in both endpoints of a market but without flying the market, and dummies

that begin in the period when Southwest actually starts flying the market. To measure

the impact of threatened entry on incumbents’ outcomes, the coefficients of interest are

those corresponding to the SW Threatm,t0+τ dummies. These are quarterly dummies

that comprise the 24 months prior to the month when Southwest establishes presence at

the two endpoints of the threatened market, a dummy for the month in which Southwest

establishes presence at both endpoints of a market, quarterly dummies for the 6 months

after presence is established, and a single dummy for the period 7 or more months after

t0. These post establishment dummies take a value of one only if Southwest has not

yet entered the market with non-stop flights. Given that the regression equation include

21 To clarify this, carrier-market effects γim are fixed effects at the level of the incumbent airline and
directional airport-pair. Similarly, carrier-time effects µit are represented by dummies at the airline-year-
month level.
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carrier-market fixed effects, the coefficients for these dummies measure the relative size of

the dependent variable in the dummy period relative to its average value in the excluded

period (i.e., between two and three years prior to establishing presence in both endpoints

of a market).

In most of the specifications I include in the regression equation a vector of control

variables, Ximt, containing the (log of) total number of passengers flying through the origin

and destination airports of the market, the (log of) the number of destinations served

by the incumbent airline out of the origin and destination airports of the market, and

measures of differentiation for departure and arrival banks at the origin and destination

airports, respectively. Finally, ǫimt is an error term. In order to account for intertemporal

correlation in the error term, I cluster the standard errors at the market-carrier level.

I measure the impact of Southwest threatening entry on different outcomes which

summarize incumbents’ location decisions. The baseline specifications use as dependent

variable the degree of product differentiation in terms of departure times, where differen-

tiation in departure times is measured by equation (2.1). Since the differentiation index

Dim,α is bounded between zero and one, I also report results using as dependent variable

the log-odds ratio of the index, given by Dodds
im,α = ln[Dim,α/(1 −Dim,α)], which produces

an unbounded statistic.22 Other specifications look at the locations of the first and last

flights of the day, the range of the locations (i.e., difference between the departure times

of the last and first flights of the day), the interquartile range of the distribution of depar-

ture times, and the locations of flights relative to peaks of demand (i.e., 7am-10am and

5pm-8pm) and own arrival banks.

22 One might be worried about the limited range of the differentiation index Dim,α, since the assumption
of a normally distributed error term may not be justifiable.
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The identification of the effect exploits variation in location decisions and threats on a

given airline and market over time. Identification of airlines’ motives for relocating their

flights originates from the manner in which a threat will impact an airline’s decision to

supply flights at different departure times in a particular market at a given time. Since

airlines schedule their flights not only in response to competing flights, but also taking

into consideration the distribution of demand over the day as well as network effects (i.e.,

connections), identification of the effect relies on the fact that the incentive for improved

service though connections or from matching higher densities of demand from relocating

their flights should not be affected one way or another by a new threat from Southwest.

As the threat is generated from Southwest starting non-stop service in a market whose

one of its endpoints is also the endpoint of the threatened market, it is unlikely to be

correlated with any supply or demand related factors that would make the threatened

market more efficient for the incumbent airline to change the location of its flights.

There are different threats to the identification strategy. The identification assumption

behind any strategic effect is that the entry threats are exogenous to demand and supply

side factors that might affect the location of flights in a given market. In other words,

Southwest’s decision to enter a market must be uncorrelated with cost or demand factors in

the market in which the incumbent is currently operating (and shares one of its endpoints

with the market in which Southwest enters) that would make it more suitable for the

incumbent to relocate its flights. An endogeneity problem would arise if changes in the

location of an incumbent’ flights and an initiation of a threat of entry are simply the

responses to changes in demand conditions at an endpoint airport. Similarly, responses

to changes in aggregate supply at an endpoint airport (such as hubbing, de-hubbing, or



114

changes in the level of concentration) might also confound the effects of a threat of entry.

I attack these issues by controlling for the overall airport-level demand in the time period,

as well as for the degree of differentiation in arrival and departure banks at the origin and

destination airports, respectively. To further control for supply side factors, I include in

the regressions the total number of destinations served by the incumbent airline out of

the origin and destination airports of the market.

Another threat to the identification strategy may arise if both threats and schedule

changes are responses made primarily to compete for passengers on one-stop service to

one of the endpoint airports. For instance, consider the case where American Airlines

is offering one-stop service from Cincinnati, OH to Austin, TX through its hub in Dal-

las, TX. Similarly, Southwest offers non-stop service from Phoenix, AZ to Austin, TX,

from Dallas, TX to Austin, TX, and now enters the route Cincinnati, OH-Phoenix, AZ,

threatening non-stop service on the route Cincinnati, OH-Dallas, TX. However, in this

scenario, American and Southwest start competing over stop passengers in the market

Austin, TX-Cincinnati, OH. Then, rather than a preemptive action to a threat of entry,

the co-movement between an entry threat and schedule changes may be explained by

a competitive response to recently established competition for one-stop passengers. For

instance, in the above example, American Airlines may change its schedule in the Dal-

las, TX- Cincinnati, OH market to compete with Southwest’s one-stop Austin-Phoenix-

Cincinnati service, by reducing its layover time for its own one-stop service from Austin

to Cincinnati through Dallas.

The aforementioned type of competition would create a positive correlation between

entry threats and schedule changes if Southwest’s new connecting service encourages the
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incumbent airline to provide a different set of connecting times that it had no intention in

offering before Southwest established a presence at both endpoint airports of the market.

Even though competition for connecting service may be a motive for changing the location

of flights in a market, I disregard its importance for explaining the identification of any

effect. In particular, most of incumbent airlines in the data are hub-and-spoke carriers,

which unlike point-to-point airlines, create one-stop service by building connections at

their hub locations. The one-stop flights formed by the entry threat and those belonging to

incumbent airlines using the non-stop threatened market are serving completely different

sets of passengers. More specifically, the threatened non-stop market can be used by

passengers from many origin cities other than passengers from the origin city of the new

one-stop product added by Southwest, as well as non-stop passengers. This makes unlikely

that a change in the schedule would be made primarily for the purpose of competing over a

specific one-stop product that a low-cost competitor is entering. Moreover, it is unrealistic

that the new Southwest’ one-stop product created by the entry threat is a good substitute

for incumbents’ service through their hubs.

2.5. Results

Column (1) of Table 2.3 reports the results where the dependent variable measures

the (log of) degree of differentiation in departure times for the incumbent carrier in the

market. The coefficients of interest for determining the impact of an entry threat on

incumbents’ flight schedules are the βτ ’s. These are the coefficients for dummies for the

36 months prior to the month when Southwest establishes presence at both endpoints of

the threatened market, for the establishment month (i.e., t0) itself, for the 6 months after
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t0, and a single dummy for the period 7 or more months after t0. All these dummies

take a value of one only if Southwest has not yet entered the market. The distribution

of incumbents’ departure times change significantly before Southwest begins flying non-

stop flights in the market, with incumbents shifting the distribution of flight locations

towards times where the distribution of departure times is more equally spaced around

the clock. Since all specifications include market-carrier fixed effects, reported coefficients

show the relative sizes of the dependent variable in the dummy period relative to its

average value in the excluded period between 25 and 36 months prior to t0. By the time

Southwest establishes a presence at both endpoint airports of the market (period t0), the

differentiation in departure times measure is 3.3% higher than in the excluded period.

Moreover, the differentiation index in departure times increases slightly further as time

passes without Southwest entering the market with non-stop flights.

The aforementioned index is also higher in months before t0 than in the excluded

period. The patterns suggest that it begins to increase around fourth quarters before t0

(i.e., between 10 and 12 months before the month in which Southwest establishes presence

in both endpoints of the market).23 The differentiation index increases to 2.8% above the

average of the baseline period once Southwest actually enters the market with non-stop

flights at time te. The increasing trend in the outcome variable continues by the periods

23 As Goolsbee and Syverson (2008) mention, it is not surprising to observe a preemptive action before
the month in which Southwest establishes presence at both endpoints of the market. This preemptive
action should take place when incumbents realize that Southwest’s chances of entering a market have
risen. Since advertising, selling tickets and hiring decisions have to be made several months before
the entry actually occurs, airlines typically announce entry several months in advance. Moreover, as
Goolsbee and Syverson (2008) note, industry insiders are likely to find out about entries before the public
announcement, as airlines must negotiate gate leases and airport facilities with the airport authority. In
their study, Goolsbee and Syverson (2008) find statistically significant differences in incumbents prices
(relative to the excluded period) as far as seven quarters before t0.
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following entry (increasing to 3.3% above the average of the baseline period). To provide

an intuition for the size of the effect, in the case of a market with two flights (and assuming

that flight frequency does not change with the entry threat), the value of the index for the

excluded period would correspond to a schedule with one departure at 8am and another

departure at 4:45pm. The entry threat would imply moving the second flight to 5:20pm

if the first flight remained at 8am.

Demand and supply shocks may also be an alternative explanation for the results

reported in column (1). For instance, if Southwest chooses to enter airports where ag-

gregate demand is growing faster, or de-hubbing at some of the endpoint airports of the

market is taking place, this will lead to a spurious correlation between the entry threat

and the change in incumbents’ departure times. To account for these confounding effects,

I control in the regressions for the (log of) total number of passengers flying through the

origin and destination airports of the market, the (log of) number of destinations served

by the incumbent airline out of the origin and destination airports of the market, and (log

of) measures for the degree of time differentiation in arrival and departure banks at the

origin and destination airports, respectively. Column (2) of Table 2.3 reports the results

of a specification that controls for the potential role of demand and supply shocks. Most

of the control variables have significant and positive coefficients. More specifically, when

either the demand for air-travel, or the differentiation in departure and arrival banks in-

creases, the differentiation in departure times also rises. The coefficients related to the

threat of entry and entry variables remain similar to those reported in column (1), and

still statistically significant and economically substantial. These results imply that the

change in the differentiation measure due to Southwest’s actual entry is the difference
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Table 2.3. Incumbent Responses to a Threat of Entry

(1) (2) (3) (4) (5)

Variables ln(D0.5) ln(D0.5) ln(flights) ln(seats) ln(D0.5)

SW Threat t0−8 0.0057 0.0027 -0.0049 -0.0141 0.0016
(0.0067) (0.0061) (0.0126) (0.0161) (0.0055)

SW Threat t0−7 0.0008 0.0030 -0.0013 -0.0141 0.0003
(0.0078) (0.0073) (0.0141) (0.0202) (0.0068)

SW Threat t0−6 0.0123 0.0118 -0.0047 -0.0041 0.0089
(0.0096) (0.0090) (0.0146) (0.0178) (0.0084)

SW Threat t0−5 0.0150 0.0140 -0.0089 0.0129 0.0101
(0.0103) (0.0096) (0.0167) (0.0211) (0.0090)

SW Threat t0−4 0.0300*** 0.0270*** -0.0053 0.0242 0.0219**
(0.0105) (0.0100) (0.0190) (0.0226) (0.0095)

SW Threat t0−3 0.0325*** 0.0295*** 0.0097 0.0177 0.0220**
(0.0105) (0.0096) (0.0205) (0.0257) (0.0089)

SW Threat t0−2 0.0318*** 0.0281*** 0.0197 0.0268 0.0179*
(0.0115) (0.0106) (0.0210) (0.0269) (0.0098)

SW Threat t0−1 0.0303*** 0.0282*** 0.0079 0.0219 0.0197**
(0.0115) (0.0106) (0.0228) (0.0281) (0.0099)

SW Threat t0 0.0330*** 0.0240** 0.0068 0.0164 0.0163
(0.0127) (0.0119) (0.0253) (0.0323) (0.0112)

SW Threat t0+1 0.0330*** 0.0286*** 0.0042 0.0164 0.0217**
(0.0122) (0.0108) (0.0253) (0.0306) (0.0101)

SW Threat t0+2 0.0308** 0.0248** -0.0119 -0.0147 0.0205*
(0.0128) (0.0118) (0.0268) (0.0325) (0.0111)

SW Threat t0+3 0.0423*** 0.0399*** 0.0143 0.0249 0.0281**
(0.0136) (0.0128) (0.0291) (0.0353) (0.0122)

SW Entry te 0.0283* 0.0318** -0.0095 -0.0043 0.0234*
(0.0155) (0.0152) (0.0329) (0.0381) (0.0142)

SW Entry te+2 0.0329** 0.0415*** 0.0025 0.0073 0.0301**
(0.0149) (0.0143) (0.0338) (0.0399) (0.0133)

SW Entry te+3 0.0334* 0.0457*** -0.0222 -0.0010 0.0365**
(0.0181) (0.0170) (0.0374) (0.0443) (0.0155)

Observations 37,206 37,206 37,170 37,176 37,206
Notes: all specifications, except column (1), include as control variables the (log of)
total number of passengers flying through the origin and destination airports of the
market, the (log of) number of destinations served by the incumbent airline out of the
origin and destination airports of the market, and (log of) measures for the degree of
time differentiation in arrival and departure banks at the origin and destination airports,
respectively. Column (5) includes as an additional control the (log) number of departures
performed by the incumbent carrier in the market. Standard errors are in parentheses
and are clustered by market-carrier. *** p < 0.01, ** p < 0.05, * p < 0.1
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between the preemptive (2.4%) and ultimate (4.1%) increase. These results indicate that

preemptive actions in terms of flight location decisions are important. Approximately 60%

of the differentiation in departure times effect that Southwest has on incumbents’ flight

locations takes place before Southwest begins non-stop flights operations in the market

itself.

One possibility that might explain the previous findings is that, under the threat of

entry, incumbents might be adjusting the frequency of departures in the market, and

consequently the changes in location patterns observed in the data might be the response

to this action. This would confound the distinction between the location choice mechanism

and the product proliferation strategy if, for instance, incumbents increase flight frequency

under a threat of entry, and as a consequence relocate their flights more equally spaced

around the clock as a response to it.24 Columns (3) and (4) of Table 2.3 report the

results where the dependent variables are the (log of) average number of departures per

day in the market and the (log of) number of seats per month, respectively. All of the

dummies surrounding the threat event are not statistically significant at conventional

levels, and in many instances they change signs over time. This suggests at least that the

increase in differentiation in departure times is not always accompanied by an increase

in the number of flights or capacity.25 In column (5) I run the baseline specification

24 For example, Dixit’s (1979) capacity commitment model offers a rationale for investments in capacity
as a preemptive motive. Investments in capacity, in the case of the airline industry might be achieved
through a higher flight frequency.
25 The result related to flight frequency is robust to other sources of data as well as the distinction
between departures performed and scheduled. Results for departures scheduled and performed based
on information from the Air Carrier Statistics (T-100 Domestic Segment) are available from the author
upon request. In both cases, the results are qualitatively and quantitatively similar to those reported
in column (2) of Table 2.3, confirming the preemptive actions by incumbent firms in terms of location
decisions of flights within a market-day, instead of number of departures.
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including as an additional control variable the (log of) average number of departures per

day in the market. The results are almost identical to those reported in column (2).

This set of results would support the hypothesis that airlines use as a preemptive action

a product specification strategy, by relocating their flights or capacity decisions across

different departure times.

I augment this analysis in several ways. First, I consider alternative measures of dif-

ferentiation in departure times by taking into account different values of α, the parameter

that captures the sensitivity of the differentiation index to flights that are located farther

away. Columns (2) and (3) of Table 2.4 report the results for alternative differentiation

in departure times measures that were computed using values of α of 0.25 and 0.75, re-

spectively. The results are qualitatively identical to those reported in column (1) for α

equal to 0.5 (i.e., baseline specification). The magnitudes of the coefficients, however, are

different. In particular, there is a monotonic relationship between the values of α and

the estimates of the coefficients associated with any of the dummy variables surrounding

the threat and entry events. These results might suggest, that the relocation of flights

takes place by re-scheduling flights that are more far away to begin with. Columns (4)

to (6) of the table report results using as dependent variable the log-odds ratio of the

index. The results are qualitatively similar to those reported in columns (1) to (3). The

coefficients, however, are in most of the cases not statistically significant at conventional

levels. This is likely driven by the fact that the constant marginal effect of the right-hand

side variables on the log-odds ratio variable implies that as the differentiation measures
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approaches either limit (i.e., 0 or 1), the right-hand side variables have less and less impact

on the differentiation index.26

A second expansion in the baseline results looks at different moments of the distribu-

tion of departure times, such as, the departure times of the first and last flights of the day,

the range (i.e., difference between the departure times of the last flight of the day and

first flight of the day), percentiles 25th and 75th of the distribution of departure times,

and the interquartile range. Column (1) of Table 2.5 shows the estimation of the model

where the dependent variable is the (log of) range. The threat of entry has a positive

and significant effect on the range, increasing the time difference between the first and

last flights of the day in approximately 6% above the average of the baseline period. This

coefficient implies an average increase in the range of approximately 25 minutes. The

trend continues in the periods following entry, where the range rises to approximately 9%

above the average of the baseline period. One might be wondering if this increase in the

range is a consequence of first flights of the day departing earlier, or last flights of the

day departing later. Columns (2) and (3) of Table 2.5 show incumbent responses in terms

of departure times of first and last flights of the day. The estimates are imprecise, but

the point estimates suggest that departure times of the first and last flights of the day

decrease and increase, respectively, on threatened routes in the period before and around

when Southwest enters the second endpoint airport of the market. The lack of precision

of the estimates, joint with the fact that the coefficients for the dummies of interest in

the range regression are greater in magnitude than the difference between the coefficients

for these dummies in the last and first flights of the day regressions, might suggest that

26 The mean values for the differentiation measures are 0.918, 0.854, and 0.804 for α equal to 0.25, 0.5
and 0.75, respectively
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Table 2.4. Incumbent Responses to a Threat of Entry - Robustness

(1) (2) (3) (4) (5) (6)

Variables ln(D0.5) ln(D0.25) ln(D0.75) ln(Dodds
0.25 ) ln(Dodds

0.5 ) ln(Dodds
0.75 )

SW Threat t0−8 0.0027 0.0011 0.0045 0.0002 0.0039 0.0083
(0.0061) (0.0030) (0.0093) (0.0380) (0.0422) (0.0485)

SW Threat t0−7 0.0030 0.0013 0.0050 -0.0246 -0.0225 -0.0221
(0.0073) (0.0036) (0.0111) (0.0463) (0.0505) (0.0567)

SW Threat t0−6 0.0118 0.0061 0.0175 0.0128 0.0138 0.0136
(0.0090) (0.0045) (0.0136) (0.0534) (0.0579) (0.0644)

SW Threat t0−5 0.0140 0.0068 0.0216 0.0366 0.0421 0.0447
(0.0096) (0.0048) (0.0146) (0.0550) (0.0601) (0.0678)

SW Threat t0−4 0.0270*** 0.0131*** 0.0418*** 0.0830 0.1010 0.1210
(0.0100) (0.0049) (0.0151) (0.0598) (0.0659) (0.0756)

SW Threat t0−3 0.0295*** 0.0144*** 0.0453*** 0.0839 0.1008 0.1198
(0.0096) (0.0048) (0.0146) (0.0621) (0.0686) (0.0788)

SW Threat t0−2 0.0281*** 0.0138*** 0.0431*** 0.0911 0.1084 0.1285
(0.0106) (0.0053) (0.0160) (0.0674) (0.0743) (0.0850)

SW Threat t0−1 0.0282*** 0.0140*** 0.0429*** 0.0899 0.1062 0.1247
(0.0106) (0.0053) (0.0161) (0.0705) (0.0779) (0.0895)

SW Threat t0 0.0240** 0.0123** 0.0360** 0.0501 0.0588 0.0678
(0.0119) (0.0059) (0.0179) (0.0776) (0.0856) (0.0980)

SW Threat t0+1 0.0286*** 0.0144*** 0.0432*** 0.0685 0.0779 0.0870
(0.0108) (0.0054) (0.0164) (0.0771) (0.0851) (0.0978)

SW Threat t0+2 0.0248** 0.0122** 0.0379** 0.0801 0.0934 0.1095
(0.0118) (0.0059) (0.0179) (0.0799) (0.0879) (0.1006)

SW Threat t0+3 0.0399*** 0.0196*** 0.0612*** 0.1350 0.1581* 0.1847*
(0.0128) (0.0064) (0.0194) (0.0865) (0.0957) (0.1104)

SW Entry te 0.0318** 0.0156** 0.0487** 0.1158 0.1357 0.1578
(0.0152) (0.0076) (0.0230) (0.0962) (0.1065) (0.1223)

SW Entry te+2 0.0415*** 0.0205*** 0.0633*** 0.1376 0.1582 0.1796
(0.0143) (0.0071) (0.0216) (0.0948) (0.1046) (0.1197)

SW Entry te+3 0.0457*** 0.0227*** 0.0689*** 0.1218 0.1352 0.1448
(0.0170) (0.0084) (0.0256) (0.1024) (0.1135) (0.1300)

Observations 37,206 37,206 37,206 37,199 37,199 37,199
Notes: All specifications include airline-market fixed effects and airline-time fixed effects. All
specifications include as control variables the (log of) total number of passengers flying through
the origin and destination airports of the market, the (log of) number of destinations served by
the incumbent airline out of the origin and destination airports of the market, and (log of)
measures for the degree of time differentiation in arrival and departure banks at the origin and
destination airports, respectively. Standard errors are in parentheses and are clustered by
market-carrier. *** p < 0.01, ** p < 0.05, * p < 0.1
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incumbents might be re-scheduling either the first or last flight of the day (but not nec-

essarily both) depending on the characteristics of the market. Columns (4), (5), and (6)

report the results from the estimation of the model where the dependent variables are the

interquartile range of the distribution of departure times, and percentiles 25th and 75th of

this distribution, respectively. The results for the interquartile range and percentile 25th

are qualitatively and quantitatively similar to those obtained for the range and first flight

of the day, respectively. In all three cases the estimates are imprecise. We do not observe

a clear pattern in the case of percentile 75th. Overall, these results imply that the higher

level of differentiation in departure times is not only driven by changes in schedules of

flights at the extremes of the day, but also by flights located closer to the center of the

distribution.

I also check if the preemptive actions correspond to incumbents trying to schedule

some of its flights closer to peaks of demand, or more specifically, if there is an effort

for trying to place flights around times with a higher density of passengers that prefer

to flight at those times. To this end, I look first at the fraction of flights scheduled

during the morning (i.e., 7am-10am) and afternoon (i.e., 5pm-8pm) peaks, respectively.

Columns (1) and (2) of Table 2.6 report the results from the estimation of these models.

Although the coefficients are positive in both columns, they tend to be small and and in

all cases they are not statistically significant. To further explore this issue, I look at the

response in measures of correlation between scheduled departure times and passengers’

most preferred departure times when Southwest threatens entry. Columns (3) to (6) of

Table 2.6 show the estimates for these models. Column (3) reports the results for a model

where passengers would only obtain utility if they flew at their most preferred departure
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Table 2.5. Incumbent Responses to a Threat of Entry - Alternative Outcomes

(1) (2) (3) (4) (5) (6)
Variables ln(range) ln(first flight) ln(last flight) ln(iqr) ln(pctile 25th) ln(pctile 75th)

SW Threat t0−8 0.0123 -0.0080 0.0060 0.0098 -0.0024 0.0030
(0.0144) (0.0090) (0.0053) (0.0142) (0.0088) (0.0055)

SW Threat t0−7 0.0070 -0.0014 0.0018 0.0045 0.0023 0.0009
(0.0166) (0.0126) (0.0064) (0.0169) (0.0134) (0.0066)

SW Threat t0−6 0.0240 0.0041 0.0106 0.0215 0.0038 0.0105
(0.0198) (0.0162) (0.0073) (0.0197) (0.0159) (0.0075)

SW Threat t0−5 0.0324 -0.0071 0.0098 0.0229 -0.0037 0.0063
(0.0214) (0.0180) (0.0080) (0.0210) (0.0173) (0.0082)

SW Threat t0−4 0.0581*** -0.0092 0.0167** 0.0500** -0.0112 0.0127
(0.0223) (0.0175) (0.0085) (0.0226) (0.0169) (0.0089)

SW Threat t0−3 0.0651*** -0.0099 0.0148 0.0512** -0.0115 0.0109
(0.0221) (0.0199) (0.0094) (0.0216) (0.0199) (0.0095)

SW Threat t0−2 0.0662*** -0.0216 0.0152 0.0292 -0.0115 0.0055
(0.0241) (0.0230) (0.0100) (0.0234) (0.0228) (0.0101)

SW Threat t0−1 0.0638*** -0.0235 0.0127 0.0322 -0.0146 0.0040
(0.0242) (0.0246) (0.0106) (0.0250) (0.0241) (0.0109)

SW Threat t0 0.0533** -0.0208 0.0091 0.0040 -0.0069 -0.0060
(0.0270) (0.0267) (0.0120) (0.0275) (0.0259) (0.0123)

SW Threat t0+1 0.0662*** -0.0209 0.0124 0.0229 -0.0158 -0.0011
(0.0255) (0.0252) (0.0114) (0.0263) (0.0243) (0.0118)

SW Threat t0+2 0.0496* -0.0184 0.0072 0.0372 -0.0225 0.0034
(0.0274) (0.0270) (0.0121) (0.0273) (0.0260) (0.0119)

SW Threat t0+3 0.0919*** -0.0282 0.0196 0.0565* -0.0201 0.0089
(0.0293) (0.0303) (0.0125) (0.0297) (0.0282) (0.0128)

SW Entry te 0.0657* -0.0240 0.0178 0.0609* -0.0234 0.0144
(0.0345) (0.0349) (0.0145) (0.0354) (0.0292) (0.0148)

SW Entry te+2 0.0959*** -0.0253 0.0220 0.0637* -0.0246 0.0118
(0.0332) (0.0335) (0.0145) (0.0336) (0.0304) (0.0146)

SW Entry te+3 0.1080*** -0.0300 0.0162 0.0592 -0.0237 0.0022
(0.0394) (0.0357) (0.0158) (0.0392) (0.0320) (0.0162)

Observations 37,206 37,206 37,206 37,206 37,206 37,206
Notes: All specifications include airline-market fixed effects, airline-time fixed effects. All specifications
include as control variables the (log of) total number of passengers flying through the origin and
destination airports of the market, the (log of) number of destinations served by the incumbent airline
out of the origin and destination airports of the market, and (log of) measures for the degree of time
differentiation in arrival and departure banks at the origin and destination airports, respectively.
Standard errors are in parentheses and are clustered by market-carrier.
*** p < 0.01, ** p < 0.05, * p < 0.1

times. Columns (4) to (6) relax this assumption, allowing passengers to derive utility

from flying at times which are not necessarily their most preferred. I allow consumers
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to derive utility from flying within 60, 240, and 1440 minutes of their most preferred

departure times (columns (4), (5) and (6), respectively). There are no significant effects

in the results. Coefficients on the time dummies tend to be small and negative, and in all

cases they are not statistically significant. The results seem to suggest that the increase

in differentiation in departure times originated by a threat of entry is not accompanied

by an effort of trying to schedule flights around times with a higher density of demand.

Finally, I check whether my results are somehow being driven by a price and cost

cutting strategy. Goolsbee and Syverson (2008) find that incumbents’ market prices

generally fall in the face of a threat of entry by Southwest. Then, a concern here is that

when Southwest threatens entry into a market, incumbent airlines respond not only by

cutting prices but also costs in these markets in order to sustain profitability, and that

this cost cutting behavior is performed through scheduling decisions. The feasibility of

this price and cost cutting strategy through scheduling decisions depends on the extent

to which scheduling of departure times impacts costs.27 Airlines’ operational costs linked

to scheduling decisions are typically determined by two factors: 1) the extent of efficient

utilization of fleet, crew and ground installations; 2) costs derived from congestion.

While airlines can re-schedule their flights in order to avoid congestion and reduce

costs, this strategy also involves a revenue loss or leakage. Hub carriers want to maximize

the number of possible connecting markets for passengers, but also want to minimize

passenger travel time spent on congestion delays or layover times. Thus, they must

trade off all costs associated with congestion against the benefits from scheduling banks

of flights. Although airlines can partially offset the increased congestion by smoothing

27 It also depends on the extent to which passengers are more sensitive to price than to departure times,
something that is presumably the case.
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Table 2.6. Incumbent Responses to a Threat of Entry - Alternative Outcomes

(1) (2) (3) (4) (5) (6)
Fraction of Fraction of
flights in flights in

Variables morning peak afternoon peak ρ(schd,mpdt) ρk1h(schd,mpdt) ρk4h(schd,mpdt) ρk24h(schd,mpdt)

SW Threat t0−8 0.0063 0.0089 0.0001 -0.0042 -0.0196 -0.0451
(0.0078) (0.0061) (0.0030) (0.0109) (0.0317) (0.0684)

SW Threat t0−7 0.0166 0.0158* -0.0024 -0.0098 -0.0305 -0.0857
(0.0102) (0.0086) (0.0037) (0.0133) (0.0385) (0.0777)

SW Threat t0−6 0.0067 0.0150 -0.0053 -0.0232 -0.0612 -0.1236
(0.0109) (0.0099) (0.0041) (0.0148) (0.0429) (0.0788)

SW Threat t0−5 0.0007 0.0114 -0.0024 -0.0138 -0.0285 -0.0420
(0.0116) (0.0098) (0.0044) (0.0161) (0.0474) (0.0916)

SW Threat t0−4 -0.0006 0.0105 -0.0015 -0.0134 -0.0309 -0.0314
(0.0127) (0.0104) (0.0048) (0.0169) (0.0503) (0.1010)

SW Threat t0−3 0.0025 0.0101 -0.0029 -0.0166 -0.0355 -0.0440
(0.0137) (0.0113) (0.0051) (0.0179) (0.0548) (0.1119)

SW Threat t0−2 0.0006 0.0164 -0.0008 -0.0131 -0.0390 -0.0679
(0.0149) (0.0119) (0.0056) (0.0200) (0.0598) (0.1184)

SW Threat t0−1 0.0109 0.0182 0.0026 -0.0051 -0.0071 -0.0582
(0.0152) (0.0134) (0.0059) (0.0211) (0.0640) (0.1285)

SW Threat t0 0.0109 0.0180 0.0008 -0.0112 -0.0174 -0.0532
(0.0167) (0.0143) (0.0064) (0.0230) (0.0711) (0.1426)

SW Threat t0+1 0.0187 0.0125 -0.0002 -0.0161 -0.0280 -0.0766
(0.0170) (0.0142) (0.0061) (0.0218) (0.0675) (0.1413)

SW Threat t0+2 0.0142 0.0169 -0.0000 -0.0156 -0.0359 -0.1657
(0.0181) (0.0150) (0.0068) (0.0240) (0.0720) (0.1443)

SW Threat t0+3 0.0113 0.0213 0.0013 -0.0052 0.0171 -0.0170
(0.0194) (0.0160) (0.0074) (0.0256) (0.0764) (0.1532)

SW Entry te 0.0168 0.0227 -0.0032 -0.0264 -0.0589 -0.1732
(0.0204) (0.0172) (0.0081) (0.0283) (0.0851) (0.1765)

SW Entry te+2 0.0172 0.0197 -0.0027 -0.0230 -0.0424 -0.1003
(0.0211) (0.0172) (0.0083) (0.0292) (0.0883) (0.1850)

SW Entry te+3 0.0291 0.0123 -0.0070 -0.0396 -0.0901 -0.1817
(0.0236) (0.0187) (0.0090) (0.0323) (0.0982) (0.2121)

Observations 37,206 37,206 37,206 37,206 37,206 37,206
Notes: All specifications include airline-market fixed effects, airline-time fixed effects. All specifications
include as control variables the (log of) total number of passengers flying through the origin and
destination airports of the market, the (log of) number of destinations served by the incumbent airline
out of the origin and destination airports of the market, and (log of) measures for the degree of time
differentiation in arrival and departure banks at the origin and destination airports, respectively.
Standard errors are in parentheses and are clustered by market-carrier.
*** p < 0.01, ** p < 0.05, * p < 0.1
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scheduled arrival times, it comes at the expense of increasing the length of connections

for some passengers (potentially decreasing profits). In fact, Mayer and Sinai (2003a) find

that airlines incur most of the congestion costs from hubbing, implying that congestion is

the price they are willing to pay for network benefits associated with the hub and spoke

system.28 Then, the empirical evidence does not provide support to the cost cutting

strategy motivated by decreasing congestion costs. In any case, I examine how the average

distance to the closest bank is affected by a threat of entry by Southwest. Column

(1) of Table 2.7 look at the average distance to the closest bank of incumbents’ flights

in threatened markets. The results show that there are no significant patterns in the

distance to the closest bank. The coefficients tend to be small, implying average changes

in distance to the banks of no more than seven minutes. In all cases the coefficients

are not statistically significant, and the coefficients of the time dummies change signs

over the event study. In column (2) of Table 2.7 I empirically analyze the response

on the utilization of fleet, in order to understand if incumbents are trying to increase

aircraft productivity in threatened markets. The dependent variable I look at is (log of)

turnaround time (i.e., time required to unload an airplane after its arrival at the gate

and to prepare it for departure again). There are no effects of the threat of entry on this

variable. All coefficients are small and not statistically significant.

Taken together, the results suggest that incumbents do engage in preemptive sched-

uling behavior when Southwest threatens entry into a market. In Section 2.6 I present

some evidence regarding the motivation for this preemptive action. Before that, in the

next section I explore heterogeneous effects by market characteristics.

28 See footnote 14 of this chapter for more details about this.
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Table 2.7. Incumbent Responses to a Threat of Entry - Price/Cost Cutting
Strategy

(1) (2)
Variables ln(distance to closest bank) ln(turnaround)

SW Threat t0−8 -0.0391 -0.0106
(0.0239) (0.0153)

SW Threat t0−7 0.0383 -0.0056
(0.0274) (0.0198)

SW Threat t0−6 -0.0010 0.0027
(0.0304) (0.0182)

SW Threat t0−5 0.0246 0.0189
(0.0318) (0.0197)

SW Threat t0−4 0.0462 0.0176
(0.0324) (0.0211)

SW Threat t0−3 0.0034 0.0110
(0.0347) (0.0224)

SW Threat t0−2 -0.0008 0.0231
(0.0381) (0.0243)

SW Threat t0−1 0.0033 0.0222
(0.0401) (0.0269)

SW Threat t0 -0.0183 0.0029
(0.0443) (0.0301)

SW Threat t0+1 0.0516 0.0225
(0.0426) (0.0293)

SW Threat t0+2 0.0740 -0.0025
(0.0474) (0.0313)

SW Threat t0+3 0.0798 0.0095
(0.0507) (0.0334)

SW Entry te 0.0888 -0.0175
(0.0570) (0.0366)

SW Entry te+2 0.0909 -0.0081
(0.0552) (0.0375)

SW Entry te+3 0.1101* 0.0027
(0.0579) (0.0407)

Observations 37,205 34,307
Notes: All specifications include airline-market fixed effects and airline-time fixed effects.
All specifications include as control variables the (log of) total number of passengers flying
through the origin and destination airports of the market, the (log of) number of destinations
served by the incumbent airline out of the origin and destination airports of the market, and
(log of) measures for the degree of time differentiation in arrival and departure banks at the
origin and destination airports, respectively. Standard errors are in parentheses and are
clustered by market-carrier. *** p < 0.01, ** p < 0.05, * p < 0.1



129

2.5.1. Subsample Analysis

In this section I study how market and incumbent characteristics interact with an incum-

bent’s response in terms of differentiation in departure times when Southwest threatens

entry into a market. More specifically, I study if preemptive actions in departure times

vary according to the incumbent’s market power and the hub status of the endpoint

airports of the market.

In the first subsample analysis, I study the incumbent’s response as a function of its

market share, measured in terms of passengers transported. Presumably, one should ex-

pect a stronger incumbent’s response in those markets where the incumbent has a greater

market share, not only because it has more at stake, but also because it is less constrained

by competition. To test this hypothesis, I divide the sample into three mutually exclusive

subsamples: (1) those cases where the incumbent’s average market share was below the

25th percentile (46.1%), (2) those cases which lied between the 25th and 75th percentile

(90.3%), and (3) those cases where the incumbent’s average market share was above the

75th percentile.29 Columns (1) to (3) of Table 2.8 report the results of the analysis, show-

ing that the effect of a threat of entry on the differentiation index is largest on those

incumbents in the upper 25th percentile of market share (i.e., those instances where the

incumbent is essentially a monopolist). On instances where the incumbent’s market power

is low (those in the bottom 25th percentile), the effect of a threat of entry on the differen-

tiation index is small and statistically insignificant. Overall, the results seem to confirm

29 The incumbent’s average market share is computed over the period before Southwest establishing
presence at both endpoints of the market.
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the hypothesis that the incumbent’s response should be monotone increasing in market

share.

In a second subsample analysis, I divide the sample according to the hub status of the

incumbent at the origin and destination airports of the market in question. In particular,

I run separate models for flights departing from a hub, and flights arriving to a hub.30

The effect of a threat of entry on an incumbent’s response as a function of the hub

status at the origin or destination airports is not trivial. The literature has established

that an airline’s operation at a given airport significantly affects its competitive position

on routes flown out of that airport.31 The mechanisms behind this phenomenon might

include greater market power, lower costs and better service through the use of a hub-

and-spoke network, or product differentiation. According to the market power story, we

should observe stronger incumbent responses in flights departing from a hub than in the

case of flights arriving to a hub. On the other hand, adjusting the schedule of departures

at a hub airport seems to be a much more complicated task than doing the same at a

non-hub airport, since it would involve rescheduling a higher number of flights (in order to

account, for instance, for gate availability and connections). Similarly, if airport presence

is an important component for product differentiation, an incumbent airline might not

need to resort to a product specification strategy in location times in order to further

differentiate (horizontally in this case) its products, since an alternative strategy to soften

30 For simplicity I do not distinguish by size of the hub. I define a hub as an airport from which the
incumbent airline serves at least 20 different destination airports.
31 See, for instance, Levine (1987); Borenstein (1989), Morrison, Winston, Bailey and Kahn (1989), Berry
(1990), or Berry (1992) among others.
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price competition could potentially be achieved in a different and more effective way.32

Columns (4) and (5) of Table 2.8 show the results of the hub subsample analysis. We

observe that the positive coefficients on the threat variables are much more pronounced

when the destination airport is a hub than in the case when the origin airport is a hub.

In the sample of markets where the destination airport is a hub the effect of a threat of

entry by Southwest on the differentiation index is 0.029 (at t0), compared to 0.0038 when

the sample includes only incumbents-markets where the origin airport is a hub. Overall,

these results are indicative of an incumbent reacting more aggressively when the origin

airport of the market is not a hub, something that would be consistent with the stories

mentioned above about product differentiation or schedule adjustment costs at a hub.

32 For instance, when firms compete in several non-price dimensions, Irmen and Thisse (1998) show that
if one dimension is sufficiently dominant, firms will maximally differentiate along that dimension and
minimally differentiate along all others.
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Table 2.8. Incumbent Responses to a Threat of Entry: Subsample Analysis

(1) (2) (3) (4) (5)
ln(D0.5) ln(D0.5) ln(D0.5) ln(D0.5) ln(D0.5)

Avg. Mkt Share Avg. Mkt Share Avg. Mkt Share
Variables < 25th pctile > 25th & < 75th pctile > 75th pctile To Hub From Hub

SW Threat t0−8 -0.0284 0.0221** 0.0042 0.0008 -0.0045
(0.0176) (0.0091) (0.0144) (0.0095) (0.0081)

SW Threat t0−7 -0.0259 0.0021 0.0144 -0.0000 -0.0030
(0.0216) (0.0118) (0.0154) (0.0113) (0.0098)

SW Threat t0−6 -0.0252 0.0230 0.0123 0.0136 0.0032
(0.0264) (0.0145) (0.0153) (0.0157) (0.0117)

SW Threat t0−5 -0.0134 0.0167 0.0211 0.0238 -0.0072
(0.0274) (0.0165) (0.0154) (0.0157) (0.0136)

SW Threat t0−4 0.0017 0.0204 0.0353* 0.0368** 0.0053
(0.0294) (0.0162) (0.0192) (0.0176) (0.0137)

SW Threat t0−3 -0.0064 0.0223 0.0297 0.0365** 0.0110
(0.0284) (0.0139) (0.0210) (0.0167) (0.0132)

SW Threat t0−2 -0.0231 0.0138 0.0370* 0.0342* 0.0081
(0.0299) (0.0160) (0.0210) (0.0176) (0.0156)

SW Threat t0−1 -0.0204 0.0140 0.0536** 0.0311* 0.0095
(0.0297) (0.0156) (0.0215) (0.0183) (0.0165)

SW Threat t0 -0.0053 -0.0040 0.0599** 0.0290 0.0038
(0.0306) (0.0172) (0.0230) (0.0198) (0.0189)

SW Threat t0+1 -0.0179 0.0152 0.0601*** 0.0334* 0.0055
(0.0302) (0.0162) (0.0230) (0.0184) (0.0166)

SW Threat t0+2 -0.0183 0.0129 0.0453* 0.0300 -0.0029
(0.0364) (0.0163) (0.0248) (0.0204) (0.0172)

SW Threat t0+3 0.0084 0.0264 0.0494* 0.0476** 0.0180
(0.0380) (0.0190) (0.0251) (0.0217) (0.0181)

SW Entry te -0.0250 0.0132 0.0367 0.0301 0.0109
(0.0421) (0.0218) (0.0318) (0.0260) (0.0214)

SW Entry te+2 0.0056 0.0207 0.0433 0.0472* 0.0219
(0.0397) (0.0217) (0.0310) (0.0248) (0.0200)

SW Entry te+3 0.0231 0.0262 0.0284 0.0555* 0.0265
(0.0420) (0.0240) (0.0332) (0.0293) (0.0246)

Observations 8,867 19,152 9,187 16,885 16,535
Notes: All specifications include airline-market fixed effects and airline-time fixed effects. All specifications
include as control variables the (log of) total number of passengers flying through the origin and destination
airports of the market, the (log of) number of destinations served by the incumbent airline out of the
origin and destination airports of the market, and (log of) measures for the degree of time differentiation
in arrival and departure banks at the origin and destination airports, respectively. Standard errors are
in parentheses and are clustered by market-carrier. *** p < 0.01, ** p < 0.05, * p < 0.1
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2.6. Entry Deterrence or Accommodation?

A natural question is whether the preemptive actions taken by incumbent airlines

when Southwest threatens entry into a market respond to an entry deterrence strategy,

or instead, to a strategy followed to try to soften competition once entry occurs (i.e.,

accommodation strategy).

To detect this, I conduct different tests. First, following the insights of Dafny (2005)

and Ellison and Ellison (2011), I compare the preemptive behavior in markets in my

sample where entry is unlikely, entry is uncertain, and in markets where entry is very

likely. If entry deterrence is the motivation, we should not observe a preemptive action

where deterrence is impossible. Southwest business model, based on aircraft productivity

and density of the market, implies that market size is a good proxy for assessing the

likelihood of entry, conditional on presence at both endpoints of the market. Then, we

should not observe a preemptive action in very small markets, since either entry deterrence

(or accommodation) is unnecessary. On the other hand, if entry deterrence is impossible

in very large markets, we should not observe any preemptive action in these markets

if entry deterrence is the motivation. To test this hypothesis, I divide the sample into

three mutually exclusive subsamples: (1) those markets where average market size was

below the 25th percentile, (2) those markets with average market size laying between

the 25th and 75th percentile (i.e., interquartile range), and (3) those markets where the

average market size was above the 75th percentile. Columns (1) to (3) of Table 2.9

report the results of the analysis, showing that the effect of a threat of entry on the

differentiation index is largest in those markets in the interquartile range of market size

(i.e., those instances where Southwest entry is uncertain). On instances where the average
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market size is low (those in the bottom 25th percentile), the effect of a threat of entry

on the differentiation index is small and statistically insignificant. A similar result is

found for those cases in which the average market size is high (i.e., those in the upper

25th percentile). In this later case, point estimates are not statistically significant at

conventional levels, but they are slightly higher than those corresponding to the lower

quartile of average market size. Thus, when there is no such possibility of deterrence, as

on the upper quartile markets, incumbents take, at best, modest actions. These results

suggest that incumbents’ responses are motivated by their goal of deterring Southwest

from entry.

To further investigate the strategic motives behind the preemptive actions, I follow

an analysis similar to the one performed by Goolsbee and Syverson (2008) by looking at

those markets in which Southwest begins direct service between two endpoint airports

of the market either in the same or the following month that it starts operating in the

second endpoint airport. These are instances where entry is likely to be preannounced,

and therefore the deterrence motive is very unlikely since it seems impossible to deter

entry. Column (4) of Table 2.9 shows the results from the estimation of this model.

All coefficients are negative, but they are all imprecisely estimated (and not statistically

significant at conventional levels of significance). It seems that in this exercise the data

are too sparse to speak to preemptive motives.

The way through which the deterrence action, higher incumbent levels of differenti-

ation in departure times in this case, might operate is not clear. A possible mechanism

through which the deterrence behavior could operate involves business stealing, by placing

flights around times which would constitute niches of the market for a potential entrant.
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Then, a possible explanation for the observed preemptive action is that it reflects efforts by

incumbents to reduce displacement costs (i.e., difference between the departure time and

passengers’ most preferred departure times) among existing valuable customers, making

them less likely to switch to Southwest should it enter. Another possible explanation for

the observed preemptive behavior is that it reflects efforts by incumbents to place flights

close to Southwest expected departure times. The mechanism here is the same as before:

business stealing effects. In order to test this hypothesis, I construct measures of expected

departure times for Southwest, in the threatened markets. These measures are created

using the departure and arrival banks at the airport of the market in which Southwest

established presence first. If the endpoint airport of the market in which Southwest estab-

lished presence first is the origin airport, then the expected departure times for Southwest

in this market are given by the arrival banks plus 45 minutes (where 45 minutes repre-

sents the average turnaround time for Southwest Airlines). If the endpoint airport of the

market in which Southwest established presence first is the destination airport, then the

expected departure times for Southwest in this market are given by the departure banks

at the destination airport, minus 45 minutes, minus the median flight time in the market,

plus any time difference between the origin and destination airports in the market. These

expected departure times would coincide with those chosen by Southwest if the airline

wanted to maximized the connectivity of its flights as well as minimize the layover times

of its passengers at the connections. To study if incumbents react to a threat of entry

by scheduling their flights closer to Southwest expected departure times I compute the

average distance to the closest expected departure time by Southwest. The results for this

entry deterrence motive are shown in column (5) of Table 2.9. Although noisy, the point
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estimates from the regression suggest that when Southwest threatens entry into a mar-

ket, incumbents respond by placing their flights closer to Southwest’s expected departure

times. I cannot definitively confirm this deterrence behavior given the point estimates

and the coefficients’ precision, but there is an indication at conventional significance lev-

els that flights are scheduled closer to Southwest’s expected departure times once presence

at both endpoints of the markets has been established.
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Table 2.9. Incumbent Responses to a Threat of Entry: Entry Deterrence
or Accommodation?

(1) (2) (3) (4) (5)
ln(D0.5) ln(D0.5) ln(D0.5) ln(D0.5) log avg. Distance
Small Medium Large Preannounced to closest expected

Variables Mkt. Size Mkt. Size Mkt. Size Entry departure time by SW

SW Threat t0−8 -0.0195 0.0096 0.0023 -0.0135 -0.0351
(0.0203) (0.0100) (0.0084) (0.0241) (0.0268)

SW Threat t0−7 -0.0082 0.0035 0.0087 -0.0463 -0.0105
(0.0216) (0.0117) (0.0122) (0.0322) (0.0309)

SW Threat t0−6 -0.0114 0.0198 0.0230 -0.0511 -0.0045
(0.0262) (0.0121) (0.0179) (0.0342) (0.0347)

SW Threat t0−5 0.0056 0.0193 0.0169 -0.0560 0.0220
(0.0245) (0.0146) (0.0176) (0.0440) (0.0358)

SW Threat t0−4 0.0135 0.0391*** 0.0217 -0.0276 -0.0110
(0.0274) (0.0142) (0.0200) (0.0644) (0.0385)

SW Threat t0−3 0.0172 0.0489*** 0.0308 -0.0338 -0.0349
(0.0241) (0.0146) (0.0196) (0.0632) (0.0419)

SW Threat t0−2 0.0166 0.0489*** 0.0291 -0.0469 -0.0064
(0.0264) (0.0162) (0.0177) (0.0633) (0.0426)

SW Threat t0−1 0.0194 0.0524*** 0.0258* -0.0371 -0.0530
(0.0271) (0.0166) (0.0154) (0.0717) (0.0418)

SW Threat t0 0.0027 0.0548*** 0.0278 -0.0832*
(0.0336) (0.0192) (0.0170) (0.0466)

SW Threat t0+1 0.0142 0.0623*** 0.0199 -0.0786*
(0.0301) (0.0164) (0.0174) (0.0452)

SW Threat t0+2 -0.0067 0.0544*** 0.0310 -0.0802*
(0.0316) (0.0181) (0.0202) (0.0476)

SW Threat t0+3 0.0057 0.0742*** 0.0383 -0.1205**
(0.0381) (0.0185) (0.0259) (0.0537)

SW Entry te -0.0041 0.0527** 0.0396* -0.0636 -0.1445**
(0.0404) (0.0259) (0.0240) (0.0497) (0.0623)

SW Entry te+2 -0.0023 0.0720*** 0.0477* -0.0485 -0.1104*
(0.0419) (0.0214) (0.0245) (0.0776) (0.0595)

SW Entry te+3 -0.0214 0.1017*** 0.0462* -0.0565 -0.1310**
(0.0457) (0.0270) (0.0273) (0.0889) (0.0636)

Observations 6,914 18,435 11,857 3,056 34,626
Notes: All specifications include airline-market fixed effects and airline-time fixed effects.
All specifications include as control variables the (log of) total number of passengers
flying through the origin and destination airports of the market, the (log of) number of
destinations served by the incumbent airline out of the origin and destination airports
of the market, and (log of) measures for the degree of time differentiation in arrival and
departure banks at the origin and destination airports, respectively. Standard errors are
in parentheses and are clustered by market-carrier. *** p < 0.01, ** p < 0.05, * p < 0.1
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2.7. Conclusions

This chapter studies the response of incumbent airlines to a threat of entry by South-

west Airlines, which is initiated when Southwest starts operating in both endpoint airports

of a market but before it starts flying non-stop flights in that market. I examine whether

entry threats by Southwest cause incumbent airlines to change the degree of product dif-

ferentiation in the market, measured by differentiation in departure times, in an effort to

either deter or accommodate entry.

The results indicate that incumbents do indeed take preemptive actions as a response

to Southwest’s entry threat. In particular, an incumbent airline reacts by increasing the

degree of differentiation in departure times before entry takes place. The results also reveal

that this response is typically accompanied by an increase in the incumbent’s range in

departure times (i.e., difference in minutes between the last and first flights of the day) as

well as in the interquartile range of the distribution of departure times. The preemptive

action does not seem to be related to incumbents trying to schedule their flights closer to

the peaks of demand. Moreover, the response does not appear to be driven by efficiency

motives, or airport specific supply or demand shocks. I also find that higher market share

is a strong determinant of the strength of the carrier’s response to a threat of entry by

Southwest. The response in terms of product differentiation is more pronounced when the

incumbent has higher market share. Hub at a destination airport (as opposed to flights

departing from a hub) is also a strong determinant of the incumbent’s response.

The chapter also presents evidence on the explanation for these preemptive actions.

Consistent with a deterrence motive, I find that in markets where Southwest’s entry is

guaranteed, and consequently entry deterrence is not possible, incumbents do not appear
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to change the degree of product differentiation. Additionally, and also consistent with

the deterrence motive, I provide suggestive evidence that the preemptive action takes the

form of incumbents scheduling their flights closer to times when there is an expectation

that Southwest will schedule its departures.

Overall, the findings of the chapter suggest that, in addition to pricing and quality,

schedule planning is an important tool for competition in the U.S. passenger airline in-

dustry. The chapter demonstrates the importance of considering the role of scheduling

decisions not only in terms of integrating the carriers’ networks, but also as a strategic

response to the competitive environment.
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CHAPTER 3

Airport Access and Market Structure in the Airline Industry

3.1. Introduction

This chapter estimates a static oligopoly model of airline competition to study the

effects of an airline’s scale of operation at an airport (airport presence hereafter) and

airport constraints on market structure. The model is a static complete information

game, where players first decide on the type of products to be offered in the market, and

then, conditional on entry, the prices for their products. Thus, an important feature of

the model is that it allows for market structure (number and identity of players that enter

the market, the type of product offered by each entrant, and the prices charged) to be

endogenous and to react to counterfactual scenarios.

A very well established fact in the literature on airline economics is that an airline’s

operation at a given airport significantly affects its competitive position on routes flown

out of that airport.1 The most common explanations for this effect rely on demand

and cost factors.2 The demand side story suggests that passengers might value certain

characteristics that are associated with airport presence, such as in-airport amenities,

1 Borenstein (1989) finds that airport dominance and route dominance significantly affect the fares in
markets where a carrier is dominant at the originating hub airport. Borenstein (1991) shows that an
airline with a dominant position at an airport has a larger share of the overall originating traffic, and
thus also has a larger share of any market originating at the dominated hub. Berry (1992), using a
structural model, also finds evidence consistent with the large literature that indicates an important role
for airport presence in determining airline profitability.
2 In fact, some literature also emphasizes the role of strategic factors. In particular, this literature argues
that airport presence can be an effective strategy to deter the entry of competitors (see for instance
Hendricks, Piccione and Tan, 1997).
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frequent flyer miles, more convenient check-in, etc. On the other hand, the supply side

story establishes that higher airport presence leads to lower costs (either variable or fixed),

not only because it reduces the number of round-trips necessary to carry a given number

of passengers on a given set of itineraries (if a hub and spoke system is used), but also

because it might decrease the cost per passenger on a route if economies of scale on plane

size are sufficiently large. In addition, the fixed costs of entering a market or route may

also decline if the airline already operates at both endpoint airports of the market. These

cost savings may be achieved, for example, by sharing certain inputs in production across

flights that serve different destinations from an origin airport. They might include the

costs of getting access to airport facilities, staff re-location, new sales offices, etc. A natural

question is whether or not airport presence can act as a barrier to entry for other firms,

given its role on the demand and supply side of the market. Consumers view products as

imperfect substitutes for a number of reasons, one of them being airport presence in the

airline industry. If introducing a new product is connected with significant fixed costs,

product differentiation may well lead to persistent entry barriers.

Another cause of entry barriers in the airline industry may be airport constraints.

Airports operating at full capacity constrained the mode of competition in the market,

preventing entry and making it too costly or even impossible for incumbents to re-gain

market share or compete in dimensions other than price.3 Airport constraints, such as

number of runways, gates, or Air Traffic Control systems not only influence entry into a

3 An established fact in the economic airline literature is the S-curve relationship between market share
and frequency share. This suggests that there is a region of increasing returns to market share when
increasing the frequency share. Airport capacity constraints impose restrictions in this mode of compe-
tition.
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market, but also airlines’ choices of aircraft size, service frequency and routing network.4

By affecting airlines’ incentives on routing network, frequency and aircraft size, these

constraints affect the equilibrium variety of products offered by airlines in the market.

In fact, the role of airport capacity (or operating barriers) hindering competition has

been a topic of debate among researchers and policy makers. For instance, the U.S.

Government Accountability Office (GAO) has raised concerns in reiterated opportunities

regarding the effects of airport constraints on competition (GAO, 1996; GAO, 1997b;

GAO, 1997a; GAO, 1998; GAO, 1999; GAO, 2012). In these documents, the GAO

sustains that the operating limits in the form of slot controls, restrictive gate leasing

arrangements, perimeter rules, and growing capacity constraints (because of congestion

and limited facilities) continue to block entry at key airports, especially in the East and

upper Midwest where slot controls and perimeter rules are in place.5 6 Likewise, the

GAO states that opportunities for establishing new or expanded service are limited at

different airports by restrictive gate leases. These leases grant an airline exclusive rights

to use most of an airport’s gates over a long period of time. Such long-term, exclusive-

use gate leases prevent nonincumbents from securing necessary airport facilities on equal

terms with incumbent airlines. To gain access to an airport in which most gates are

exclusively leased, a nonincumbent must sublet gates from the incumbent airlines, often

4 Government regulations, such as landing fee policies, also influence these airlines’ choices.
5 The Federal Aviation Administration (FAA) has since 1969 set limits on the number of operations
(takeoffs and landings) that can occur during certain periods of the day at a few airports with the goal
of minimizing congestion and reducing flight delays. The authority to conduct a single operation during
those periods is commonly referred to as a “slot”. Currently, there are four slot controlled airports:
Washington National, New York Kennedy, Newark and La Guardia.
6 Perimeter rules governing operations at New York’s La Guardia and Washington’s National airports
prohibit flights to and from those airports that exceed a certain distance.
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at non-preferred times and at a higher cost than the incumbent.7 Ciliberto and Williams

(2010) study the effect of limited access to airport facilities on creating market power

in the airline industry. They find that control of an airport’s resources appears to be an

important source of the dominant carriers’ market power (for example, the control of gates

is a crucial determinant of the hub premium).8 In a related paper, Snider and Williams

(2015) investigate the effects of Congressional mandates aimed at increasing competition

in the industry, which required highly concentrated major U.S. airports to increase the

availability of scarce facilities to all carriers. They find a significant decrease in fares

resulting in airports covered by the legislation. This fare reduction is mostly driven by

decreases in dominant carriers’ fares at hub airports and by the entry of low-cost carriers

into new markets.

To study the effects of airport presence and airport constraints on market structure I

rely on the estimation of a static complete information game. The model incorporates the

dependence of demand and costs to airport presence and constraints that I have described

above. In this model, airlines decide first what markets (directional city-pairs) to enter,

the type of product to provide conditional on entry (i.e., non-stop flights vs stop-flights),

and then the fares for each market-product they serve. A key feature of the model is

that it allows me to recover an estimate of the fixed costs of serving a market, and its

dependance on airport constraints and airport presence. This enables me to estimate

7 Although the development, maintenance, and expansion of airport facilities is essentially a local respon-
sibility, most airports are operated under federal restrictions that are tied to the receipt of federal grant
money from the FAA. The GAO suggested that one way to alleviate the barrier created by exclusive-use
gate leases would be for the FAA to add a grant restriction that ensures that some gates at an airport
would be available to nonincumbents.
8 In this sense, reduction in airport constraints might create opportunities for incumbent and non-
incumbent airlines to re-establish their competitive position at an airport, by bargaining and getting
access and control over new resources and facilities.
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the relative contribution of airport presence on demand and costs to explain price-cost

margins in the industry. The goal of this chapter is then characterized by the following

questions: (1) What are the fixed costs of entering into a market? (2) How do airport

presence and airport constraints affect these fixed costs? (3) How do airport presence

and airport constraints affect market structure (equilibrium entry, product offerings and

prices)?

The chapter adds to the extensive empirical literature on the airline industry, con-

tributing more specifically to the topics of entry and determinants of market power.9 The

closest paper in terms of this research question is Berry (1992), who investigates the im-

portance of airport presence in determining the profits of operating in a given market.

He relies on a structural model of equilibrium outcomes where airlines’ profit function

is modeled in reduced form. This assumption implies that airlines have homogeneous

products and variable costs. In my model, products are differentiated and variable costs

are heterogeneous across airlines. My specification of demand and variable costs follows

a random coefficient logit model as in Berry, Levinsohn and Pakes (1995), where product

characteristics comprise an indicator for non-stop flight and measures of market presence

at origin and destination airports, among other characteristics. Perhaps most impor-

tantly, the model I use accounts for the decision of whether or not to enter the market as

well as the type of products to be offered. Considering this stage is necessary to recover

an estimate of fixed entry costs, which are relevant for learning about their implications

9 Previous work on the airline industry has mainly focused on the determinants of the hub premium (e.g.,
Borenstein, 1989; Borenstein, 1991; Berry, 1992), the effects of mergers (e.g., Borenstein, 1990; Kim and
Singal, 1993; Peters, 2006; Benkard et al., 2010; Li et al., 2016), and the effects of entry on market
outcomes (Sinclair, 1995; Reiss and Spiller, 1989; Ciliberto and Tamer, 2009; Goolsbee and Syverson,
2008; Boguslaski, Ito and Lee, 2004; Benkard et al., 2010; Aguirregabiria and Ho, 2012).
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on market structure. In particular, the differentiated effects of airport presence on profits

through its influence on demand and supply allow us to separate, for example, the price-

cost margins into the component that is due to product differentiation and the one that

is due to costs.

This chapter builds on a significant literature on structural models of firm product

repositioning. Prior work on firm product repositioning has either relied on cross-sectional

variation provided by multiple geographic markets (e.g., Mazzeo, 2002; Seim, 2006; Fan,

2013; Draganska et al., 2009; Ciliberto et al., 2015; Li et al., 2016) or on the times series

or panel feature of the data to recover fixed costs measures of repositioning the product

(e.g., Eizenberg, 2014; Nosko, 2014; Wollmann, 2015; Sweeting, 2013; and Aguirregabiria

and Ho, 2012). In this chapter I follow the first approach to recover the fixed costs of

entry. The model used in this chapter is similar to a set of closely related models used

in three different recent papers. The first one is Eizenberg’s (2014) model of entry and

competition in the personal computer industry. He assumes that firms do not know the

error terms of the demand and marginal costs equation before entry. This limits the

amount of entry selection captured by the model to only selection in observables. Li et

al. (2016) and Ciliberto et al. (2015) estimate a model of entry and competition for the

airline industry, with the goal of studying the effects of the recent wave of mergers. Unlike

Eizenberg’s (2014) model, these papers allow for selection on entry both on observable

and unobservable characteristics of demand and marginal costs. Differences between

these two papers rely on equilibrium selection rules and correlation in unobservables.10

10 More specifically, the model estimated by Li et al. (2016) imposes an equilibrium selection rule in the
entry stage and does not allow for correlation in the unobservables. Then, this model can be thought of as
a private case of the model estimated by Ciliberto et al. (2015), which does not rely on that assumptions
for estimation.
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In this chapter, estimation relies on the timing assumption that firms do not observe the

error terms for product quality or marginal costs before entry (similar to the model by

Eizenberg, 2014), as well as on equilibrium selection rules and stronger assumptions about

the correlation of unobservables (like in the model estimated by Li et al., 2016).

I estimate the model using data from the Airline Origin and Destination Survey

(DB1B) for the second quarter of 2014, 2015 and 2016. I focus on markets between

the 55 largest U.S. cities (2,970 markets or directional city-pairs), and on the behavior

of six carriers: American, United, Delta, Southwest, Other network carriers, and Other

low cost carriers. The results indicate that an airline’s scale of operation at an airport

measured by the number of non-stop destinations that the airline serves from the airport

is an important factor for consumers’ willingness to pay as well as for the fixed costs of

entering a market. I find that the effect of airport presence on the fixed costs of serving a

market is substantial, especially for non-stop products. Additionally, my results indicate

that the fixed costs of offering service in a market in which any of its endpoint airports is

either a slot controlled airport or classified as capacity constrained by the Federal Avia-

tion Administration are considerably higher than in non-capacity constrained or non-slot

controlled airports. I use the estimated model and counterfactual experiments to study

the effects of airport constraints and airport presence on market structure and pricing.

The results of these experiments suggest that both airport constraints and airport pres-

ence affect pricing and market structure significantly. Elimination of airport constraints

or changes in airport regulation affecting airport presence significantly encourage entry

into markets and, as a consequence, tend to drive prices down.
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This chapter is organized as follows. Section 3.2 introduces the model. Section 3.3

presents the data and some summary statistics. Section 3.4 describes the estimation

strategy, and Section 3.5 reports the results. I study the effects of airport presence

and airport constraints on market structure in Section 3.6 using counterfactual analysis.

Finally, Section 3.7 concludes.

3.2. Model

The industry is configured byN airline companies, C cities,M = C×(C−1) local mar-

kets, and Q =M/2 city-pairs. A local market is a particular directional origin-destination

city-pair. At any given period t the industry contains a set of network (or legacy) carriers

N and low cost carriers L. Any airline can only be described or characterized by one of

these types (i.e., network carrier, or low cost carrier (LCC)). Low cost carriers, as opposed

to network carriers who provide service using their hubs, fly point-to-point.

For my analysis, I take airlines hubs as given, focusing primarily on the determination

of entry decisions into local markets and prices charged.11 Each period t, airlines solve a

two-stage game, where they first make decisions sequentially on entry (i.e., no entry, stop

entry, or non-stop entry) on each city pair (and thus, their product offerings); and then

maximize profits competing on prices in each market given the current state. The timing

of the game is as follows:

11 Low cost carriers do not operate hubs but focus cities.
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1- Network and LCC carriers realize sunk costs shocks of entry using stop and non-

stop products (ηs, ηns), and sequentially make their decisions on entry in each

segment. I aasume that at the entry stage, airlines do not observe the shocks

to preference and marginal costs (ξ, ζ). The entry decision is characterized by

the three possible actions: no entry, entry with connecting service, or entry with

non-stop service. I assume that players only choose one of these options.

2- Given legacy and LCC carriers entry decisions, these two type of airlines observe

the shocks to preference and marginal costs (ξ, ζ) and compete in prices, setting

prices according to a model of Nash-Bertrand competition.

I assume that airlines solve the problem by working backwards from the second stage.

They first compute the expected equilibrium profits that will obtain under any possible

set of product offerings (i.e., entry decisions) and then choose the products (i.e., no entry,

stop entry, or non-stop entry) that maximize those profits. For this reason, I describe

first the demand system and static profit maximization problem, to turn attention then

to the airlines’ entry decision problem.

3.2.1. Demand

A market is defined as directional round-trip air travel between an origin and destination

city during a given time period. The assumption that markets are directional implies

that round-trip air travel from Chicago to Miami is a distinct market as compared to

round-trip air travel from Miami to Chicago. Furthermore, this directional assumption

allows for the possibility that origin city characteristics may influence market demand.
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A flight itinerary (r) is defined as a specific sequence of airport stops in traveling from

the origin to destination city. Products are defined as a unique combination of airline

and flight itinerary. For instance, a United non-stop flight from Miami to Chicago and

a United stop flight from Miami to Chicago with a stop in New York are two different

products in the same market. A set of Jmt products is offered in quarter t and market m.

Each consumer chooses among one of these products or chooses the outside option of not

purchasing any of them, which may include other means of transportation such as train

or auto travel, or the use of phone.

I follow Berry et al. (1995) and model demand as a random-coefficient logit speci-

fication. The demand model is also similar to the one used in Berry et al. (1996) and

Berry and Jia (2010). Every time (t) consumers decide whether to purchase a ticket for

market m, which airline to patronize (a), and the type of product (j). The indirect utility

function of a consumer who purchases product (j,m) is:

(3.1) uijmt = xjmtβ − αpjmt + ξjmt + µijt + εijmt

where β is a K×1 vector of taste for product characteristics; and xjmt is a K dimensional

vector of product characteristics, including a constant term, market distance and the

squared value of it, a binary indicator for one-stop itinerary, variables measuring the scale

of operation or airport presence of the airline in the origin and destination airports of the

route, a dummy for a tourist destination, the number of slot controlled airports in the

route, market size fixed effects, and airline and time (year) fixed effects.12 I allow some of

12 I follow Ciliberto and Tamer (2009) and measure airport presence as a carrier’s ratio of markets served
by an airline out of an airport over the total number of markets served out of an airport by at least one
carrier.
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the parameters associated with these characteristics to vary by type of carrier (i.e., legacy

or low cost). This heterogeneity in carrier-type in the parameters is aimed to capture

the different amenities and type of services between low cost and legacy carriers. Price is

denoted by pjmt, and its coefficient is denoted by α.

The variable ξjmt is a demand shifter or a measure of differences in product quality

that are unobserved by the researcher, but observed by consumers and firms. These

unobserved characteristics might include factors such as the quality of the food and the

service, departure times, or tickets restrictions such as advanced purchase Saturday night

stayover fares or advanced purchase fares with no stayover restrictions.13 Since prices are

likely to be correlated with ξjmt (e.g., refundable tickets are generally more expensive than

nonrefundable ones), I will instrument for prices allowing for any arbitrary correlation

between these unobserved product attributes and prices.

Note that utility is the sum of a mean-utility (across consumers) component δjmt =

xjmtβ − αmpjmt + ξjmt obtained from consuming product j, and a consumer specific de-

viation µijt + εijmt. The term µijt = σppjmtνip +
∑K

k=1 σkxjtkνik is a consumer-specific

deviation from the mean utility level which depends on the consumers’ taste for each

product characteristic, where σ = (σp, σ1, ..., σK) is a set of parameters that measure

variation (across consumers) in random taste shocks for respective product characteris-

tics, and νi = (νip, νi1, ..., νiK) is a set of consumer i’s random taste shocks for respective

product characteristics. Finally, εijmt is the logit error random component of utility,

distributed i.i.d. (across consumers and products) as a Type-I Extreme Value.

13 Although the data allows to distinguish between restricted and unrestricted fares, it is still not possible
to learn about the different kinds of restrictions. See Section 3.3 for further discussion about the data.
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The utility from the outside option is given by:

uiot = εiot

where εiot is another logit error term. Therefore, coefficients of variables that vary at the

market level and enter the utility for inside the market goods are interpreted as being

relative to the outside good.

The demand specification described above allows the taste of consumers who purchase

a product to vary systematically with xjmt and pjmt. In particular, it allows consumers’

taste towards a product characteristic k ∈ 1, 2, ..., K to shift around its mean, βk, with

the consumer-specific term σkνik. Traditional random coefficient models, as in Berry et

al. (1995), assume that the individual taste for product characteristics and prices (βi, αi)

are distributed i.i.d. normal across consumers, with correlation of tastes across these

characteristics assumed to be zero for simplicity. As noted by Berry et al. (1996) and Berry

and Jia (2010), there are reasons to believe that this assumption does not hold true in the

airline industry. In particular, there is not only a group of travelers for whom the price

of a ticket is not an important consideration in their decision to fly (business travelers),

and another group of consumers for whom the price of a ticket is an important factor;

but moreover, business travelers may have systematically different tastes for observed x’s,

such as non-stop itineraries, flight frequencies or airport presence.14 This observation

suggests that tastes are correlated across characteristics. For computational reasons, I

14 Berry et al. (1996) and Berry and Jia (2010) assume two different type of consumers (i.e., business
and tourist travelers). Berry et al. (1996) allow for correlation in tastes across price, connection in the
itinerary, hub size, flight frequency in the route, and difference between origin and destination mean
January temperatures. Berry and Jia (2010) allow for correlation in tastes across price, connection in
the itinerary, and the constant term.
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restrict the correlation of tastes across characteristics and some of the σk to be zero in the

empirical application. However, I allow for heterogeneity in price sensitivity, in the taste

for stop travel, in the taste for airport presence at the origin airport, and in the taste for

the outside option (via a random coefficient on the constant term). Heterogeneity along

these dimensions governs firms’ incentives to provide product variety.

The market share of product j ∈ Jmt predicted by the model is given by:

djmt =

∫
eδjmt+µijt

1 +
∑Jmt

l=1 e
δlmt+µilt

dF (ν)

where F (.) is the joint distribution of taste shifters νi. Then, market shares are defined

as the share of a given product out of all potential trips between the two endpoint cities.

Since the number of potential trips is not observed, I follow the standard practice in the

economic airline literature of assuming that it is proportional to the population of the

origin and destination cities.15

3.2.2. The Firm’s Problem

At any given period t, airlines solve a two-stage game. In the first stage, airlines choose

sequentially whether or not to enter in a local market and their product offerings (i.e.,

stop or non-stop service). In the second stage, air carriers maximize profits by setting

prices a la Nash-Bertrand for each product in each market; taken as given the current

entry decisions, and the knowledge of demand. Additionally, consumers make purchase

decisions.

15 In the empirical application, it is assumed to be proportional to the geometric mean of the population
of the origin and destination cities.
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I assume that airlines solve the problem by working backwards from the second stage.

They first compute the expected equilibrium profits that will obtain under any possible

set of product offerings and then choose the products (i.e., no entry, stop service, or non-

stop service) that maximize those profits. For this reason, I start describing the second

stage of the game (i.e., pricing stage), to turn attention then to the first stage (i.e., entry

stage).

3.2.2.1. Second Stage: Pricing. In the second stage of the game, upon observing

shocks to demand and marginal costs, air carriers maximize profits by setting prices

according to a static Nash-Bertrand equilibrium, conditioning in own and rival’s observed

entry decisions.

In this second stage, the variable profit function for airline a in local market m at time

t is given by:

Ramt = (pjmt −mcjmt)qjmt for j ∈ Ω = {Stop,Non− stop}(3.2)

where mcjmt is the constant marginal cost of providing the services necessary to offer

product j (or the cost per passenger of product j), qjmt = djmt × Mmt represents the

number of enplaned passengers (equal to market share times the size of the market Mmt),

and Ω = {Stop,Non − stop} is the set of product offerings that an airline can offer in a

market. As it was previously mentioned, I assume that players only choose one type of

product (e.g., stop vs non-stop service) conditional on entry.

Marginal costs for product j in market m are represented by:

lnmcjmt = w′
jmtγ + ζjmt(3.3)
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where wjmt is a vector of observed cost-shifters for product j in market m, γ is a vector

of parameters to be estimated, and ζjmt is an unobserved cost shock at the product level.

The vector of cost-shifters wjmt include a constant term, itinerary round-trip distance (in

1,000 of miles) and the squared value of it, a dummy for a connection in the itinerary,

the number of destinations served out by the air carrier from the origin and destination

airports, dummies of ticketing carriers, and time (year) effects. These cost-shifters are

aimed to capture those costs that vary with the number of passengers, such as certain

inflight amenities (e.g., food), baggage handling and processing costs, ticketing costs,

security screening costs, and airport passenger facility charges, among others.

Prices are set according to a static Nash-Bertrand equilibrium. Following Berry et al.

(1995), equilibrium markups bjmt(dmt, xmt, pmt, θd) are computed from the knowledge of

the demand data and parameters. Thus, the pricing equation for product j in market m

is given by:

(3.4) pjmt = mcjmt + bjmt(dmt, xmt, pmt, θd)

where θd is the vector of parameters that enter in the demand equation.

3.2.2.2. First Stage: Entry. As mentioned in previous sections, the industry is config-

ured by N airlines, which are potential entrants in each of theM local markets (directional

round-trip between two cities). In the entry stage, each carrier observes the realizations

of fixed entry costs, but not the demand and marginal cost realizations. The fixed costs

realizations are known by all potential entrants in the game (i.e., complete information

game). Upon observing these realizations, air carriers decide sequentially on entry into

the market and the type of service to provide. The strategy space is then characterized
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by the following three possible actions: no entry, entry with connecting service, or entry

with non-stop service. I assume that players only choose one of these options.16 Note that

the information assumption on observability of demand and cost shocks allows airlines to

be selected only on observed characteristics of demand and marginal costs, and therefore

it rules out entry selection on unobserved variation in qualities and costs.

Airlines make entry decisions sequentially. I assume that airlines with the highest

average presence at the endpoint cities move first. The sequential move assumption,

together with the single product assumption, ensures that the game has a unique pure-

strategy equilibrium (provided that there is a unique equilibrium in the pricing stage

of the game). Additionally, the assumptions of the game imply that even though the

entry decision and product offerings are endogenous, the airlines’ hub status are taken as

exogenous.

Airline a’s expected profit in market m at time t is given by:

πamt =

∫

ξ,ζ

Ramt(σamt, σ−amt; θ̂d, γ̂, x, p
∗, w, ξ, ζ)dFξdFζ

− 1[σamt=Non−stop] × FCNS
amt − 1[σamt=Stop] × FCS

amt

where σamt ∈ {No − entry, Stop,Non − stop} represents the strategy profile, and where

the fixed costs of non-stop and stop service are represented by:

16 This means that an airline offering non-stop service does not offer connecting service.
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FCNS
amt = γns0 + γns1 Avg NDSamt + γns2 LCCa + γns,s3 CONSTmt + ηnsamt

FCS
amt = γs0 + γs1Avg NDSamt + γs2LCCa + γns,s3 CONSTmt + ηsamt

Fixed costs of offering service represent those costs that do not vary with the number

of passengers flown in the market. These costs represent, for example, the cost of leasing

gates, office space, or hiring personnel for aircraft operations at the airports (in order to

enplane and deplane flights, for example). I assume that fixed costs of offering non-stop

and stop service depend on an airline’s network (i.e., economies of density) measured

by the average number of non-stop routes that an airline serves out of the origin and

destination airports of the market (Avg NDSamt), the type of carrier (where LCCa is a

dummy for low cost carrier), and on whether the market contains a constrained airport

at any of its endpoints.17 The marginal effect of CONST on fixed costs is assumed to

be the same across the two type of fixed costs (i.e., the coefficient for this variable is the

same across fixed cost equations). {ηnsamt, η
s
amt} are shocks to the fixed costs functions

observed by airlines when making its entry decisions. I assume that ηj ∼ N(0, σj
f ) for

j ∈ {ns, s}, and that ηjamt is independent across airlines and city-pairs.18 Finally, I assume

that non-entrants make zero profit.

17 The set of constrained airports is comprised by slot controlled airports and airports classified as capacity
constrained by the Federal Aviation Administration (FAA). The list of slot controlled airports include
Washington Reagan (DCA), Newark (EWR), John F. Kennedy (JFK), and La Guardia (LGA). The list
of capacity constrained airports, as classified by the FAA, include Newark (EWR), John F. Kennedy
(JFK), La Guardia (LGA), San Francisco (SFO), O’Hare Chicago (ORD), Atlanta (ATL), Philadelphia
(PHL), Charlotte (CLT), and Fort Lauderdale-Hollywood (FLL).
18 I also assume independence among ηns, ηs, ξ, and ζ.
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3.3. Data

The data come from two main sources. The Origin and Destination Survey (DB1B),

which is a 10 percent random sample of airline tickets from U.S. reporting carriers,

provides information on flight itineraries (origin, destination and connecting airports),

itinerary fare, ticketing and operating carriers for each segment of the itinerary, distance

flown on each itinerary in a directional market, and the number of passengers travel-

ing on a given itinerary in each quarter and year. These data are collected quarterly

and span from the first quarter of 1993 to the third quarter of 2016. Airport presence

data comes from the Air Carrier Statistics database, also known as the T-100 data bank,

which contains domestic airline market and segment data. Certificated U.S. air carriers

report monthly air carrier traffic information using Form T-100. Segment data provides

information on the number of departures performed, departures scheduled, passengers,

freight, mail, cargo and aircraft hours. These data are collected monthly and span from

the first month of 1993 to the last month of 2016. Both sources of data are maintained

and published by the U.S. Department of Transportation (DOT). For my analysis, I use

data from the second quarter of 2014, 2015, and 2016.

I focus on the the 55 largest metropolitan areas (”cities”), which comprise a total of 67

airports.19 A market, then, is a directional round-trip between and origin and destination

city. This implies that there are 2,970 markets in the model. These definitions are the

19 This selection criterion is similar to others papers in the literature. For instance, Berry (1992) who
selects the 50 largest cities, and uses city-pair as definition of market. Ciliberto and Tamer (2009) select
airport pairs within the 150 largest Metropolitan Statistical Areas. Borenstein (1989) considers airport-
pairs within the 200 largest airports. Aguirregabiria and Ho (2012) focus on the 55 largest metropolitan
areas, using directional city-pairs as definition of the market. Berry and Jia (2010) focus on airports
located in medium to large metropolitan areas with at least 850,000 people in 2006, defining the market
as a directional round-trip travel between and origin and destination airport.
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same as in Berry (1992), Berry et al. (1996), and Aguirregabiria and Ho (2012); and

similar to the ones used by Borenstein (1989), Ciliberto and Tamer (2009) or Berry and

Jia (2010) with the only difference that they consider airport-pairs instead of city-pairs.

In the estimation of the model, I include markets that are temporarily not served by any

carrier (i.e., markets where the number of observed entrants is equal to zero). Market

size is defined as the geometric mean of the total population of the origin and destination

cities.20 Table 3.1 presents the list of metropolitan areas with their respective airports.

To construct the estimation sample, I keep only round-trip tickets within the con-

tinental U.S., with at most four segments. I eliminate tickets cheaper than $20, those

containing ground transportation as a part of the itinerary, those with multiple ticketing

carriers, and tickets with fare credibility questioned by the Department of Transportation.

Additionally, I consider that a product of an airline is active in the market if during the

quarter the product has at least 270 passengers per quarter (approximately 21 passengers

per week) or if the share of the product on the total number of passengers enplaned by the

airline in the market is at least 5%. Other papers have used similar criteria and thresholds

to help eliminate idiosyncratic product offerings that are not part of the normal set of

products offered in a market.21 Service in the market is defined by the ticketing carrier

in the DB1B data. This implies that passengers carried by regional affiliates (such as

American Eagle, Delta connection, or United Express) count as if they were carried by

the associated major carrier.

20 These data come from the Population Estimates Program of the US Bureau of Statistics, which
produces annually population estimates based upon the last decennial census.
21 See for example Berry (1992), Ciliberto and Tamer (2009) or Aguirregabiria and Ho (2012).
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Table 3.1. Metropolitan Areas and Airports

City Airports City Airports

New York, NY LGA, JFK, EWR Las Vegas, NV LAS
Los Angeles-Long Beach, CA LAX, BUR, LGB Portland, OR PDX
Chicago, IL ORD, MDW Oklahoma City, OK OKC
Dallas, TX DAL, DFW Tucson, AZ TUS
Phoenix, AZ PHX Albuquerque, NM ABQ
Houston, TX HOU, IAH, EFD New Orleans, LA MSY
Philadelphia, PA PHL Cleveland, OH CLE, CAK
San Diego, CA SAN Sacramento, CA SMF
San Antonio, TX SAT Kansas City, MO MCI
San Jose, CA SJC Atlanta, GA ATL
Detroit, MI DTW Omaha, NE OMA
Denver, CO DEN Tulsa, OK TUL
Indianapolis, IN IND Miami, FL MIA, FLL
Jacksonville, FL JAX Colorado Spr, CO COS
San Francisco-Oakland, CA SFO, OAK Wichita, KS ICT
Columbus, OH CMH St Louis, MO STL
Austin, TX AUS Santa Ana, CA SNA
Memphis, TN MEM Raleigh-Durham, NC RDU
Minneapolis, MN MSP Pittsburg, PA PIT
Baltimore, MD BWI Tampa, FL TPA
Charlotte, NC CLT Cincinnati, OH CVG
El Paso, TX ELP Ontario, CA ONT
Milwaukee, WI MKE Buffalo, NY BUF
Seattle, WA SEA Lexington, KY LEX
Boston, MA BOS Norfolk, VA ORF
Louisville, KY SDF Orlando, FL MCO
Washington, DC DCA, IAD Salt Lake City, UT SLC
Nashville, TN BNA

To estimate the model, I restrict the analysis to the entry decisions of six carriers.

Some of the carriers are modeled as individual carriers: American Airlines (AA), Delta

(DL), United Airlines (UA), and Southwest (WN). From this list, Southwest Airlines is

defined as a low cost carrier, while the remaining airlines are considered legacy carriers.

I aggregate the service of all remaining carriers in the data into two different groups:
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“Other Legacy Carriers” (e.g., Alaska Airlines or Virgin America) and “Other Low Cost

Carriers” (e.g., JetBlue, Spirit Airlines, or Frontier). I consider an airline as a potential

entrant if it is serving at least one market out of both of the endpoint airports.22

I construct measures of airport presence at the origin and destination cities of a mar-

ket following the definition used by Ciliberto and Tamer (2009), who measure airport

presence as a carrier’s ratio of markets served by an airline out of an airport over the total

number of markets served out of an airport by at least one carrier. Airport presence is

allowed to affect both demand for air travel and costs. This is aimed to capture product

differentiation through in-airport amenities or frequent flyer programs, but also the fact

that airlines with high airport presence have a different cost structure than other carriers

(e.g., economies of density).23 I assume that it is the airline’s presence at the origin and

destination airports (separately) what affects demand. I allow the effect of airport pres-

ence on product quality to be different for legacy and low costs carriers. On the other

hand, marginal costs are assumed to be affected by the number of destinations served out

from the origin and destination airports of the market (i.e., a different measure of airport

presence than the one that is allowed to affect demand). I use the airport presence mea-

sures to construct hub indicator variables for airlines, which are then used to instrument

for the demand equation. I defined an airline having a hub in a given city if it serves at

22 Variation in the number of potential entrants can play an important role in the identification of the
parameters in entry models. See for instance Berry and Tamer (2006). Variation in market size, like in
Ciliberto and Tamer (2009), has also been proven to help identification of the model.
23 Hub and spoke networks reduce the number of trips necessary to carry a given number of passengers
on a given network of cities. Then, economies of scale in plane size allow airlines to lower total costs by
using a hub and spoke network. In addition, high airport presence at an airport allow carriers to lower
market specific fixed cost, given that some resources, such as gates and personnel, can be used by flights
from different origin and destination cities.
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least 20 destinations and the airline has at least 25% of airport presence (according to the

definition by Ciliberto and Tamer, 2009).

I conduct the empirical analysis using data from the second quarter of 2014, 2015,

and 2016. As mentioned in Section 3.2, a product in a given market and time is a

unique combination of airline and flight itinerary. The sample contains 53,207 products

or observations for a total of 8,309 market-year combinations. On average, there are

approximately 6.4 observations per market-year.

3.3.1. Descriptive Statistics

Table 3.2 reports summary statistics of my sample, pooling all of the years together (i.e.,

2014- 2016). The table shows the mean, standard deviation, minimum, and maximum

values for some of the variables used in the analysis and estimation. The average fare is

estimated at around $502. This represents an increase with respect to values reported for

previous years by the empirical literature. For example, Berry and Jia (2010) estimate

the average fare for 2006 at around $451. This numbers would imply a 11.3% increase in

the average fare between 2006 and 2014- 2016. We also observe that the average itinerary

distance is approximately 1,500 miles, and around 18% of the products in the sample are

non-stop products.

The average value of airport presence for the products in the sample is estimated at

around 38%.24 Approximately 32% of the products have a hub or focus city at the origin

or destination airport, while 74% have one at a connecting airport. Moreover, 94% of the

products in the sample have a hub or focus city on route. This numbers speak to the

24 Airport presence is defined as a carrier’s ratio of markets served by an airline out of an airport over
the total number of markets served out of an airport by at least one carrier.
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important role of hub airports and focus cities in the provision of air travel. Finally, the

table also provides information on the share of products by carriers. American accounts

for 17% of the products in the sample. Delta and United account for similar numbers: 22%

and 15%, respectively. Southwest, on the other hand, accounts for the highest proportion,

holding approximately 32% of the products in the sample.

Table 3.2. Summary Statistics - Product Level

Variable Mean Std. Dev. Min Max

Product Share 0.020 0.044 3.34E-04 0.364
Fare ($100) 5.026 1.251 1.503 13.710
Distance (1,000 miles) 1.541 0.657 0.129 3.774
Non Stop 0.178 0.382 0 1
Stop Inconvenience 0.959 0.486 0 2.242
Presence Origin 0.388 0.284 0.016 1
Presence Destination 0.387 0.285 0.016 1
Hub Origin 0.325 0.461 0 1
Hub Connection 0.739 0.384 0 1
Hub Destination 0.325 0.460 0 1
Hub on Route 0.938 0.191 0 1
No. of Connections 1.535 0.763 0 2
American 0.171 0.376 0 1
Delta 0.222 0.415 0 1
United 0.155 0.362 0 1
Southwest 0.323 0.468 0 1
US Airways 0.069 0.254 0 1
Other Major Carriers 0.015 0.120 0 1
Other Low Cost Carriers 0.045 0.208 0 1

Obs. 53207

Table 3.3 shows some summary statistics at the market-year level for the full sample

(i.e., years 2014, 2015, and 2016). It complements the information provided in the previous

table by reporting information on the level of competition within a market-year. The
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average number of products in a market-year is estimated at around 6.4. On average,

60% of the products in a market-year are rival products. The average number of carriers

in a market-year is approximately 3.5, and on average, 20% of the products in a market are

rival non-stop products. The table also reports the average number of passengers flying

non-stop and connecting flights. As expected, the average number of passengers flying

non-stop is considerable higher than the average number of passengers flying connecting

flights.

Table 3.3. Summary Statistics - Market Level

Variable Mean Std. Dev. Min Max

No. of Products 6.404 4.278 1 30
No. of Carriers 3.491 1.383 1 9
% Rival Products 0.600 0.201 0 0.875
% Rival Routes Non-Stop 0.201 0.288 0 1
No. Passengers Direct Flights 594.151 1251.395 0 18061
No. Passengers Connecting Flights 124.961 125.367 0 1304

No. Market-Year 8309

Tables 3.4 and 3.5 report summary statistics for the probability of entry by airline and

type of product, and for the distribution of entrants in the markets. Table 3.4 shows that

American enters in 49% of the markets, United in 28% and Southwest in 57%. Southwest

is the airline with the highest probability of entering with non-stop service (29%). The

average number of entrants across markets is approximately 2. Finally, Table 3.5 indicates

that in 20% of the markets there are no airlines offering service (of any kind). Similarly,

in 17.5% of the markets there is only one airline offering service.
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Table 3.4. Probability of Entry by Airline and Type of Entry

(1) (2) (3)
Probability of Probability of Probability of

Airline Entry Non-Stop Entry Stop-Entry

American 0.493 0.196 0.297
Delta 0.467 0.166 0.304
United 0.281 0.164 0.117
Southwest 0.569 0.289 0.280
Other Legacy 0.061 0.054 0.006
Other LCC 0.150 0.141 0.008

Avg. No. Entrants 2.023
Avg. No. Non-stop Entrants 1.010
Avg. No. Stop Entrants 1.013

Table 3.5. Distribution of Entrants by Type of Entry

No. Airlines in Market Any Product Non-stop Products Stop Products

0 Airlines 0.2067 0.483 0.434
1 Airline 0.1754 0.232 0.271
2 Airlines 0.2397 0.153 0.178
3 Airlines 0.1987 0.075 0.083
4+ Airlines 0.1795 0.057 0.034

Total 1 1 1

3.4. Estimation

The estimation strategy requires recovering from the data the parameters of the de-

mand (θd, σ), marginal cost (γ), and fixed cost functions (γs, γns, σs
f , σ

ns
f ). Even though

the number of parameters is large (i.e., 49), the assumption of the model on that selection

in the entry stage is only characterized by selection on observables (i.e., firms make entry

decisions base only on fixed cost and observable characteristics of demand and marginal
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costs, but not on the unobservable characteristics of these two elements) allows for a

two-stage approach in the estimation of the parameters. The estimation strategy is then

characterized by the following two stages. The first stage recovers an estimate for demand

and marginal costs parameters. This provides information on variable profits associated

with product configurations. The second stage provides an estimate for the fixed costs

parameters. The equilibrium and assumptions of the model place restrictions on fixed

cost parameters. I describe first the estimation of the first stage parameters (i.e., demand

and marginal costs parameters), and then the procedure followed to estimate the fixed

costs parameters of the model.

3.4.1. First Stage: Demand and Marginal Costs Parameters

Identification of demand parameters comes from the joint distribution of prices, market

shares, and observed product characteristics. Marginal costs are identified from the pricing

equation (3.4), as the difference between observed prices and equilibrium markups. Then,

the joint distribution of marginal costs and cost shifters identifies the marginal costs

parameters.

It is important to emphasize, that the timing assumptions of the model rule out entry

selection on unobservable characteristics of the demand or marginal costs functions. The

intuition for this assumption is that firms do not observe (ξ, ζ) until after they have made

their entry and product offerings decisions. Consequently, selection on entry does not

depend on these unobservable variables.25 This timing assumption of the model implies

that selection on (ξ, ζ) can be ignored, and that demand and marginal costs parameters

25 The timing assumption not only rules out observability of (ξ, ζ) at the entry stage, but also implies
that airlines cannot forecast these variables, even though they know their distribution.
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can be consistently estimated following the Berry et al. (1995) method, and are still

point-identified.

The estimation of the demand and supply parameters is performed using the General-

ized Method of Moments (GMM). I minimize the following loss function by choosing the

parameter vector (θd, σ, γ):

min
θd,σ,γ

υ′ZΦ−1Z ′υ(3.5)

where υ = (ξ ζ)′ is a column vector of demand (ξ) and supply (ζ) residuals with:

ξjmt = δjmt − xjmtβ − αpjmt

ζjmt = lnmcjmt − w′
jmtγ

Z is a matrix containing the instruments for the demand (Zd) and supply (Zs) equation,

(3.6) Z =



Zd 0

0 Zs




and Φ−1 is a positive definite weighting matrix given by

(3.7) Φ−1 =




[ 1
n
Z ′

dξξ
′Zd]

−1 0

0 [ 1
n
Z ′

sζζ
′Zs]

−1




where n is the number of observations.

Estimation exploits the fact that the demand and marginal costs parameters enter

linearly in the loss function. This implies that, in practice, the minimization of the loss

function can be performed by searching only over σ. Thus, I follow Berry et al. (1995)
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nested fixed point algorithm in the estimation of these parameters, where conditional on

a parameter vector σ, the remaining parameters can be obtained as:

θd =
(
X ′

dZdΦ
−1
d Z ′

dXd

)−1
X ′

dZdΦ
−1
d Z ′

dδ(3.8)

γ =
(
W ′ZsΦ

−1
s Z ′

sW
)−1

W ′ZsΦ
−1
s Z ′

s lnmc(3.9)

where Xd and W are matrices of regressors in the demand model (xjmt and pjmt) and

supply model respectively, δ is a vector of mean utilities, and Φ−1
d and Φ−1

s are the portion

of Φ−1 that corresponds to the demand and supply moments respectively.

In the estimation, I assume that the set of consumers’ random taste shocks for product

characteristics ν = (νp, ν1, ..., νK) are independent and identically distributed according

to a standard normal distribution.26

According to the demand specification (3.1), demand is affected by the following prod-

uct attributes: a constant term, fares, an indicator for a stop itinerary, airport presence

at the origin and destination cities, the interaction between a dummy for low cost carrier

and airport presence at the origin and destination cities, a dummy for a tourist destina-

tion, the number of slot controlled airports in the route, market size fixed effects, and

carrier and time (year) effects. Fares are endogenous, since they are set in the second

stage after airlines observe the realized errors. I instrument for fares using variables that

help to predict the markup (and thus the fare) as well as variables that affect costs but

do not affect the demand. The first set of instruments used to identify the fare coefficient

include a mix of variables related to product rival attributes, the competitiveness of the

26 In practice I use 50 draws for each product characteristic.
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market environment and route level characteristics. The list of instruments for the de-

mand equation includes the number of carriers in the market, the percentage of products

in the market that are offered by competitors, and the percentage of rival routes that

offer direct flights. A potential concern here is that, product attributes of rivals might be

correlated with unobserved demand variables. The typical example is ticket restrictions.

If ticket restrictions respond to rival product attributes, then the use of this variable as

an instrument would be problematic. This concern is mitigated, however, by the fact that

airlines typically offer all levels of restrictions in all markets. This means, for example,

that both refundable and non-refundable tickets are available in all markets (see for ex-

ample Berry and Jia, 2010). Some other components of ξjmt capture the frequency and

time of departures, the fleet composition and in-flight amenities, etc., which we would

expect to be exogenous in the short run.

Another set of instruments is comprised by those variables that affect costs but do

not affect demand. The list of these variables includes itinerary distance and its squared

value, interactions between these two variables and a dummy for low cost carrier, and a

dummy for hub (or focus city) at a connection.

Finally, all exogenous variables that enter into the demand equation (3.1) are also

used as instruments.

The instruments for the supply equation (3.3) include all the exogenous cost shifters

(w), as well as some of the exogenous demand side instruments that help to predict the

markup term.
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3.4.2. Second Stage: Fixed Costs Parameters

In a second stage, I use the simulated method of moments (SMM) to estimate the pa-

rameters on the fixed cost function γF = (γs, γns, σs
f , σ

ns
f ) ∈ Γ ⊂ ℜP , where P is the

dimensionality of the parameter space. For each market, and any guess of γF ∈ Γ, I solve

a large number (S) of games.

I assume that the following moment condition holds at the true parameter value γF0 :

E[g(X, γF0 )] = 0

where g(X, .) ∈ ℜL with L ≥ P is a vector of moment functions that specifies the

differences between the observed equilibrium moments (m(X)) and those predicted by

the model (ms(X, γF )).

A SMM estimator γ̂F minimizes a weighted quadratic form in ĝ(X, .) given by:

(3.10) γ̂F = arg min
γF∈Γ

[
m̂(X)− m̂s(X, γF )

]′
W
[
m̂(X)− m̂s(X, γF )

]

where m̂(X) − m̂s(X, γF ) is a simulated estimate of the true moment function, and W

is an L × L positive semidefinite weighting matrix. I use the optimal weighting matrix

given by the inverse of the variance covariance matrix of g(X, γF ).27 Since m(x) and

ms(X, γF ) are independent by construction, the optimal weighting matrix is equal to

W = [(1+ 1
S
)Ω]−1, where Ω denotes the variance covariance matrix of the data (observed)

moments, the first term in the inner brackets represents the randomness in the actual

27 Pakes and Pollard (1989) and McFadden (1989) showed that the SMM estimator is consistent. More-
over, under the optimal weighting matrix, the SMM estimator is asymptotically efficient relative to
estimators which minimize a quadratic norm in g(.).



170

data, and the second term represents the randomness in the simulated data.28 I compute

Ω by block bootstrap with replacement on the actual data.29 Note that the asymptotic

variance of the efficient estimator γ̂F is proportional to (1 + 1
S
). Since I use S = 50, this

implies that the standard error of γ̂F is increased by 2% by using simulation estimation.

Standard errors are computed numerically (see Appendix C.1 for details on this).

Element l of moment function g(X, .) is denoted by gl(X, .) and represented by:

gl(X, .) = E[YlZl − Es[Y
s
l (X, γ

F
0 )Zl]] = 0

where Yl is the observed outcome of interest (e.g., number of non-stop entrants in a

market), Y s
l is the simulated outcome, and Zl is a vector of instruments.

To create instruments, I define groups of markets that share characteristics. An indi-

cator variable for membership in the group plays the role of an instrument. Therefore,

taking means for an outcome over markets within each group creates a moment for each

group. The groups are chosen to be informative about the parameters. There are 8

different groups, which are formally defined as indicators for market size (small, medium-

small, medium-large, and large markets, defined by quartiles) and distance (short and

long, defined as round-trip nonstop market distance of 2,000 miles or more) pairings.

Within each group, I calculate 14 outcomes of interest providing consequently 14 mo-

ments per group, and a total of 112 moments. The moments I seek to match are the total

number of nonstop entrants, the total number of stop entrants, each firm nonstop entry

28 Lee and Ingram (1991) showed that under the estimating null, the variance-covariance of the simulated
moments is equal to 1

S
Ω.

29 I use 1,000 bootstrap replications on actual data to generate the variance covariance matrix of the
actual moments.
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decision, and each firm stop entry decision (where the potential entrants are American,

United, Delta, Southwest, Other Network Carriers, and Other LCC).

The estimation procedure is as follows:

• Step 1. Start from some initial guess of the parameter values and draw inde-

pendently from the normal distribution the following vectors: the fixed costs

errors for both the non-stop and stop products (ηns, ηs). At the same time, using

the empirical distribution of (ξ, ζ) conditional on type of product (i.e., non-stop

or stop) and airline identity, draw demand and marginal costs errors for both

non-stop and stop products.

• Step 2. Obtain the simulated profits πam for all airlines a and markets m, and

solve for the equilibrium of the game in each market.

• Step 3. Repeat steps 1 and 2 S times and formulate ĝ(X, γF ). Search for param-

eter values that minimize the objective function (3.10), while using the same set

of simulation and empirical draws for all values of γF .

Identification of the fixed cost function exploits variation in the identity and number

of potential entrants across markets, as well as the amount of entry conditional on a set of

potential entrants. Additionally, identification of the fixed cost function is helped by the

variable Avg NDSamt (i.e., the average number of non-stop routes that an airline serves

out of the origin and destination airports of the market), that shifts the fixed cost of one

airline without changing the fixed costs of the competitors.
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3.5. Results

3.5.1. Demand and Marginal Cost Parameters

Table 3.6 shows the parameter estimates for the demand equation. To illustrate the

endogeneity problem, the first two columns report the results of ordinary least squares

(OLS) and instrumental variables (2SLS) estimation, respectively. The estimates from

these two columns do not incorporate into the estimation procedure the supply equation.

The last column shows the results obtained from the random coefficient logit model.

Most coefficients are precisely estimated. As expected, consumers’ utility decrease

with the fare. The 2SLS and random coefficient logit model estimates of the coefficient

for the fare are significantly smaller than the OLS estimate. This is consistent with the

endogeneity of the fare variable in the OLS estimation. The estimates from the random

coefficient model imply an average own price elasticity of approximately -3.9. These results

are consistent with others reported by the existing literature (see for example Berry and

Jia, 2010 or Li et al., 2016 among others).

Demand for air travel seem to be U-shaped in market distance. Utility increases

in distance up to 4,900 miles (one-way) and then decreases.30 An intuitive explanation

for this result seems to be that demand for air travel competes with other modes of

transportation (such as cars or trains) in short-haul markets. As distance increases, these

modes of transportation become worse substitutes, and therefore demand for air travel also

increases with distance. As distance continues increasing, travel becomes less convenient

30 This is an out-of sample prediction, since the maximum market distance (one-way) observed in the
data is 2,724 miles.
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or pleasant and utility decreases (and perhaps, other options such as phone or video calls

become better substitutes).

Consumers have a strong preference for non-stop itineraries (or disutility for stop

service). In other words, the coefficient for the stop variable suggests that passengers

prefer itineraries with less circuitous routes while traveling from the origin to destination

city. The average stop semi-elasticity, or the average percentage reduction in demand

when a non-stop flight becomes a stop flight is estimated at around 0.92. This means

that the number of passengers on a non-stop flight would fall by approximately 90% when

a stop was added to its itinerary, holding the attributes of all other products (including

those of rival carriers) fixed. By dividing the mean coefficient of the stop dummy by the

mean coefficient of the fare variable it is possible to obtain a dollar amount estimate of

the willingness to pay for a non-stop flight. I find that, on average, the willingness to pay

for a non-stop flight is $374 more than for a stop-flight.

Demand is positively affected by airport presence at both the origin and destination

airport. However, the effect of airport presence on utility is lower for low cost carriers

compared to legacy carriers. These results are consistent with the idea that the higher

the presence at the airport, the more convenient gate access and better service that a

carrier can offer at the airport. Berry and Jia (2010) suggest that this might also capture

the value of frequent flier programs, since the larger the number of destination cities that

can be reached from an airport, the larger the number of cities for which consumers can

redeem frequent flier miles and the higher the value of these loyalty programs. Borenstein

(2005) and Borenstein and Rose (2013) pointed out that the hub premium declined over

the past several years. My estimates, however, suggest that airport presence is still an
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important dimension for product differentiation. Holding everything else constant, a one

percentage point increase in airport presence at an origin airport for a legacy carrier

increases, on average, the willingness to pay of the product in $1.89.

The tourist and slot variables exhibit the expected signs on their coefficients. Tourist

destinations attract more passengers, and flights through slot controlled airports have

fewer passengers. The slot variable is expected to capture the potential negative effects

on demand for air travel of congestion and travel inconvenience in slot controlled airports.

Regarding the carrier dummies, American and Delta exhibit the highest parameter values.

Finally, the taste variation parameters for the constant term, the fare, the stop dummy,

and airport presence at the origin airport are statistically significant at conventional levels

of significance. This suggests that passengers are heterogeneous in terms of their taste for

these product characteristics incorporated into the model.

Table 3.7 reports the parameter estimates for the supply equation. The marginal cost

equation is a function of a constant term, itinerary distance and the square value of it,

a dummy for connection in the itinerary, the number of destinations served out from the

origin and destination airports (measured in 10), time (year) effects, and carrier dummies.

The average marginal costs for the products in the sample is estimated at around $357.

Not surprisingly, itinerary distance raises the marginal cost of the product. However, the

relationship between marginal costs and itinerary distance is non-linear. The marginal

effect of itinerary distance on marginal costs is decreasing in distance. This result is

consistent with the fact that most of the fuel consumption is consumed during takeoffs

and landings.
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Table 3.6. Demand Parameter Estimates

(1) (2) (3)
Variables OLS 2SLS Random Coeff.
Means
Fare ($100) -0.122*** -0.669*** -0.790***

(0.004) (0.015) (0.011)
Distance (1,000 miles) -0.004 0.680*** 0.743***

(0.032) (0.041) (0.044)
Distance2 -0.014 -0.077*** -0.076***

(0.011) (0.012) (0.013)
Stop -3.008*** -2.938*** -2.962***

(0.013) (0.015) (0.016)
Presence Orig. 0.736*** 1.413*** 1.494***

(0.020) (0.029) (0.030)
Presence Dest. 0.038* 0.410*** 0.450***

(0.020) (0.025) (0.027)
Presence Orig.* LCC -0.249*** -0.637*** -0.675***

(0.036) (0.043) (0.044)
Presence Dest.*LCC 0.130*** -0.150*** -0.167***

(0.035) (0.042) (0.043)
Slot -0.098*** -0.139*** -0.120***

(0.012) (0.014) (0.016)
Tourism 0.868*** 0.590*** 0.610***

(0.014) (0.017) (0.019)
Delta 0.022* 0.056*** 0.063***

(0.013) (0.015) (0.016)
United -0.213*** -0.238*** -0.239***

(0.014) (0.016) (0.017)
Southwest -0.253*** -0.435*** -0.458***

(0.030) (0.035) (0.035)
US Airways -0.026 -0.238*** -0.246***

(0.018) (0.022) (0.022)
Other Major Carriers 0.399*** 0.042 0.056

(0.035) (0.041) (0.049)
Other Low Cost Carriers -0.033 -0.765*** -0.848***

(0.026) (0.036) (0.039)
Taste Variation (σ)
Constant 0.015***

(0.001)
Fare ($100) 0.126***

(0.002)
Stop 0.015***

(0.002)
Presence Orig. 0.007**

(0.003)

Obs. 53,207 53,207 53,207
R-squared 0.661 0.543

Notes: All specifications include a constant, year effects, and
market size fixed effects. Standard errors in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1
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Products that include a connection exhibit a higher marginal cost. Controlling for

other cost shifters, the marginal cost of a stop flight was 2.4% more expensive than that

of a non-stop flight. The are different factors that affect the marginal cost of connecting

flights. First, as it was mentioned above, most of the fuel is consumed at the takeoffs

and landings. Then, we would expect higher marginal costs in connecting flights since

they involve additional landings and takeoffs than non-stop flights. On the other hand,

by combining passengers from different origins and to different destinations through the

connecting airport, carriers can generate denser traffic, increase the load factor, and dilute

costs with more passengers. Thus, the coefficient on the connection dummy reflects these

two opposite channels (Berry and Jia, 2010).

Flights departing from airports with a higher number of destinations served by the

airline also have a higher marginal cost. The same is found for flights arriving at airports

with a higher number of destinations served by the carrier, but the coefficient for this

variable in the supply equation is small. Although the same economies of scale argument

for connecting flights that was discussed above also applies to flights at airports with

higher market presence since they tend to have denser traffic, these airports are usually

bigger airports with higher landing fees and more stringent regulations. In this sense, the

coefficients on the number of destination variables reflect these two countervailing effects.

Finally, as expected, Southwest and other low cost carrier (such as JetBlue) had lower

marginal costs than the legacy carriers.
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Table 3.7. Marginal Costs Estimates

Variables (1)

Distance (1,000 of miles) 0.573***
(0.014)

Distance2 -0.100***
(0.004)

Stop 0.024***
(0.006)

No. Destinations Orig. (10) 0.020***
(0.001)

No. Destinations Dest. (10) 0.003***
(0.001)

Year 2014 0.110***
(0.004)

Year 2015 0.060***
(0.004)

Delta 0.003
(0.004)

United -0.001
(0.004)

Southwest -0.164***
(0.005)

US Airways -0.109***
(0.006)

Other Major Carriers -0.248***
(0.013)

Other Low Cost Carriers -0.799***
(0.015)

Constant 0.588***
(0.015)

Observations 53,207
Notes: Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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3.5.2. Fixed Costs Estimates

Table 3.8 shows the estimation results of the fixed costs parameters. I estimate the aver-

age per-quarter fixed costs for non-stop service at around $250,000. This value represents

30% of the mean value of quarterly variable profits for non-stop products (which is ap-

proximately $900,000 in my sample). Presumably, the high value of the ratio between

fixed costs and variable profits shows substantial economies of scale in the airline indus-

try. Fixed costs of non-stop products are, on average, higher for low cost carriers. On

average, fixed costs of non-stop service for low cost carriers are $370,000 higher than the

average value estimated for legacy carriers. Airport presence, measured as the number

of non-stop destinations served out from the endpoints of a market, has also a significant

effect on fixed costs. A unit increase in airport presence (i.e., an additional destination

with a non-stop connection at both endpoints of the market) implies a $63,200 reduction

in fixed costs of non-stop service. The negative sign for the coefficient of this variable is

what one would expect if there were economies of density. Moreover, the magnitude of

this effects seems sizable. An airline with the minimum possible value for average airport

presence in the market (i.e., zero non-stop destinations in the two endpoint airports of

the market) would have to pay a fixed cost of approximately $2,800,000 for serving the

market with non-stop flights. On the other hand, an airline serving 20 non-stop destina-

tions from both endpoints of a market (i.e., approximately the average number for any of

the big four airlines) would pay $1,500,000. Entry into a market containing a constrained

airport is much more costly than entry into markets characterized by unconstrained air-

ports. On average, serving a market containing a constrained airport increases fixed costs
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in approximately $266,000. This magnitude is approximately equivalent to the average

fixed cost for non-stop service.

Per-quarter fixed costs for stop service are estimated, on average, at around $46,000.

Similar to the case of fixed costs for non-stop service, fixed costs of stop products are,

on average, higher for low cost carriers than legacy carriers. Airport presence, measured

as the number of non-stop destinations served out from the endpoints of a market, plays

also an important role in characterizing the value of fixed costs for stop service. A unit

increase in airport presence (i.e., an additional destination with a non-stop connection at

both endpoints of the market) implies a $5,400 reduction in fixed costs of stop service.

Finally, the standard deviation of the fixed costs is estimated to be very small.

Table 3.8. Fixed Costs Estimates

Fixed Costs Non-Stop Service Stop Service

Constant 27808.460*** 789.937***
(669.044) (15.469)

LCC 3722.776*** 867.174***
(331.921) (26.637)

Avg. Non-Stop Destinations -632.226*** -54.349***
(17.121) (1.353)

Constrained Airport 2663.956*** 2663.956***
(82.596) (82.596)

Fixed Cost Std. Dev. 56.570 28.664***
(97.658) (5.101)

Notes: Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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3.6. Counterfactual Analysis

In this section I evaluate the effects of airport constraints and airport presence on

market structure and other quantities of interest, such as equilibrium prices. A typical

question asked by authorities, regulators, and practitioners in the industry is whether

prices would decrease significantly after the elimination of airport constraints or after

encouraging entry on airports where an incumbent has a dominant position in terms of

airport presence. Since I estimate a model of entry and pricing decisions of airlines, I can

use the model to simulate both the pricing and market structure effects of an elimination

of airport constraints or changes in airport regulation affecting airport presence.

I first consider the case of an elimination of airport constraints. In this experiment,

I set γns,s3 = 0 and solve for the equilibrium of the model leaving all other parameters

unaltered. The results of this experiment are reported in Tables 3.9 and 3.10. Table

3.9 shows the probability of observing different number of airlines in a market by type

of product, before and after the elimination of airport constraints. It also reports the

average number of entrants and fare by type of product. We observe that the elimination

of airport constraints shifts the distribution of the number of entrants to the right, shifting

mass from one or less entrants to three or more. This outcome is mostly explained by

changes in the probability of offering stop service, and is related to the fact that the

elimination of airport constraints represents, on average, a higher proportional reduction

of fixed costs for stop products than for non-stop products. This might be driven by the

fact that I restricted the coefficient of the constrained airport variable to be same across

the two types of fixed costs.
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The results shown in Table 3.9 indicate that, after the elimination of airport con-

straints, all carriers increase entry into new markets using both non-stop and stop prod-

ucts. Non-stop entry increases between 3.6% and 8.7%, depending on the airline. South-

west is the airline that exhibits the highest percentage increase in the probability of of-

fering non-stop service. The effects on the probability of offering stop service are sizable.

The probability of offering stop services increases between 33.5% and 70.8%, depending

on the airline. United is the airline that exhibits the highest percentage increase in this

probability.

Next, I simulate the effects of airport presence on market structure and pricing. In

particular I ask how market structure would change if airport presence at both endpoints

of a market were higher than observed. As mentioned by Berry (1992), the idea behind this

experiment is to think about it as a crude approximation to policies that increase airport

access. Policies that make market entry less costly or improve airport access for potential

entrants (either by subsidizing the entry of airlines, passing changes in airport regulation,

or increasing the capacity of an airport) are typically perceived as a good strategy for

reducing concentration in airline markets. I conduct this experiment by increasing in 10

the average number of destinations served by an airline out of the endpoint airports of

the market. The policy change affects all firms and local markets in the industry. Given

the estimates of the fixed cost function, this policy experiment is equivalent to a subsidy

of $630,000 and $54,000 for establishing non-stop and stop service, respectively.

The results of this experiment are shown in Tables 3.11 and 3.12. Table 3.11 reports

the distribution of the number of airlines in a market by type of product, before and after

the policy experiment. It also reports the average number of entrants and fare by type of



182

Table 3.9. Counterfactual Experiment 1: Distribution of Number of En-
trants by Type of Service

Panel A: Initial Situation

No. Airlines in Market Any Product Non-stop Products Stop Products

0 Airlines 0.1297 0.403 0.481
1 Airline 0.3551 0.372 0.274
2 Airlines 0.2505 0.147 0.150
3 Airlines 0.1435 0.055 0.075
4+ Airlines 0.1212 0.023 0.020
Total 1 1 1

Avg. No. Entrants 1.810
Avg. No. Non-stop entrants 0.929
Avg. No. Stop entrants 0.880
Avg. Fare 4.173 4.600 3.917

Panel B: Counterfactual Experiment 1: Elimination of Airport Constraints

No. Airlines in Market Any Product Non-stop Products Stop Products

0 Airlines 0.0836 0.390 0.299
1 Airline 0.2911 0.368 0.347
2 Airlines 0.2473 0.153 0.216
3 Airlines 0.1770 0.061 0.108
4+ Airlines 0.2010 0.028 0.030
Total 1 1 1

Avg. No. Entrants 2.197
Avg. No. Non-stop entrants 0.975
Avg. No. Stop entrants 1.222
Avg. Fare 4.210 4.576 4.027

Notes: The table shows the distribution of the number of entrants by type of
product, before and after the policy experiment. It also reports the average
number of entrants and fare by type of product.
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Table 3.10. Counterfactual Experiment 1: Product Offerings Responses by
Airline

Counterfactual Experiment 1: Elimination of Airport Constraints
(1) (2) (3) (4)

Non-Stop Entry Stop-Entry Percentage ∆ Percentage ∆
Airline at beginning at beginning in Non-Stop Entry in Stop Entry

American 0.194 0.255 7.543 34.404
Delta 0.171 0.247 3.997 33.541
United 0.159 0.117 3.618 70.849
Southwest 0.211 0.247 8.742 35.886
Notes: The table shows the probabilities of offering non-stop and stop service
by airline (before the policy experiment), and the responses in these probabilities
after the policy experiment.

product. We observe that encouraging airport access for potential entrants significantly

changes the distribution of the number of entrants. In particular, it shifts mass from two or

less entrants to four or more. Moreover, the average number of entrants increases from 1.8

to 3.2. Even though changes in the probabilities of offering non-stop service explain part of

this result, most of the outcome is explained by shifts in the distribution of the number of

entrants offering stop service. One possible explanation for this finding might be related

to the fact that in many markets, market size is too thin to accommodate more than

two firms offering non-stop service. On the other hand, stop-service seems to be a poor

substitute of non-stop service, what mitigates the effects of within-market competition on

the number of entering airlines. The results shown in the table also indicate that average

prices charged by air carriers drop for both non-stop and stop service. The effect on fares

is more pronounced for stop products, which is explained by the results discussed above

regarding the probabilities of offering stop and non-stop service.
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Finally, Table 3.12 shows the percentage change in the probability of offering non-stop

and stop service as a consequence of the policy experiment for each of the big four airlines

(i.e., American, Delta, United, and Southwest). The probability of offering non-stop

service increases between 43% and 65% depending on the airline. United and Southwest

are the airlines that increase their offerings of non-stop service the most. In the new

equilibrium, legacy carriers offer non-stop products in approximately 25% of the markets,

while Southwest does this in 35% of the markets. Entry behavior using stop products

changes dramatically after the policy experiment. The probability of offering stop service

increases by 115% for American and Delta, 353% for United, and 22% for Southwest.
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Table 3.11. Counterfactual Experiment 2: Distribution of Number of En-
trants by Type of Service

Panel A: Initial Situation

No. Airlines in Market Any Product Non-stop Products Stop Products

0 Airlines 0.130 0.403 0.481
1 Airline 0.355 0.372 0.274
2 Airlines 0.251 0.147 0.150
3 Airlines 0.144 0.055 0.075
4+ Airlines 0.121 0.023 0.020
Total 1 1 1

Avg. No. Entrants 1.810
Avg. No. Non-stop entrants 0.929
Avg. No. Stop entrants 0.880
Avg. Fare 4.173 4.600 3.917

Panel B: Counterfactual Experiment 2: Increase in Airport Presence

No. Airlines in Market Any Product Non-stop Products Stop Products

0 Airlines 0.017 0.231 0.294
1 Airline 0.152 0.423 0.077
2 Airlines 0.109 0.208 0.184
3 Airlines 0.141 0.091 0.303
4+ Airlines 0.581 0.047 0.143
Total 1 1 1

Avg. No. Entrants 3.238
Avg. No. Non-stop entrants 1.313
Avg. No. Stop entrants 1.925
Avg. Fare 3.876 4.567 3.623

Notes: The table shows the distribution of the number of entrants by type of
product, before and after the policy experiment. It also reports the average
number of entrants and fare by type of product.
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Table 3.12. Counterfactual Experiment 2: Product Offerings Responses by
Airline

Counterfactual Experiment 2: Increase in Airport Presence
(1) (2) (3) (4)

Non-Stop Entry Stop-Entry Percentage ∆ Percentage ∆
Airline at beginning at beginning in Non-Stop Entry in Stop Entry

American 0.194 0.255 43.095 115.411
Delta 0.171 0.247 46.907 114.964
United 0.159 0.117 52.365 353.187
Southwest 0.211 0.247 65.101 21.744
Notes: The table shows the probabilities of offering non-stop and stop service
by airline (before the policy experiment), and the responses in these probabilities
after the policy experiment.
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3.7. Conclusions

This chapter estimates a static oligopoly model of airline competition to study the

effects of airport presence and airport constraints on market structure. The model is a

static complete information game, where players first decide on the type of products to

be offered in the market, and then, conditional on entry, the prices of their products.

Thus, an important feature of the model is that it allows for market structure (number

and identity of players that enter the market, the type of product offered by each entrant,

and the prices charged) to be endogenous and to react to counterfactual scenarios.

The results from estimating the model suggest that on average, fixed costs represent

a substantial proportion of airlines’ variable profits. In addition, fixed costs of serving a

market decline significantly with airport presence at the origin and destination airports

of the market, and increase if the market contains at least one slot controlled or capacity

constrained airport in any of its endpoints.

I use the model to study the effects of airport constraints and airport presence on

market structure by running counterfactual exercises. In particular, I ask how market

structure would change if airport presence at both endpoints of a market were higher than

observed, or if airport constraints were eliminated. The results from the counterfactual

exercises indicate that both airport constraints and airport presence affect pricing and

market structure significantly. Elimination of airport constraints or changes in airport

regulation affecting airport presence significantly encourage entry into markets and, as a

consequence, tend to drive prices down.
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APPENDIX A

Appendix to Chapter 1

A.1. Revenue Function

This section describes in detail the derivation of revenue equation (1.1). Log revenue

of business unit j at time t is represented by ỹijt = pijt + qijt, where log output qijt is

represented by the translog production function:

qijt = ψijt + αlslijt + αms
mijt + αkskijt + αllsl

2
ijt + αmms

m2
ijt + αkksk

2
ijt +

+ αmlsmijtlijt + αmksmijtkijt + αlkslijtkijt + αmlksmijtlijtkijt

The demand function assumed implies that,

pijt =
1

σs
qsijt −

1

σs
qijt + psijt +

σs − 1

σs
νijt

Then, log revenue can be expresses as:

ỹijt =
σs − 1

σs
qijt +

1

σs
qsijt + psijt +

σs − 1

σs
νijt

or equivalently as,

ỹijt = βlslijt + βms
mijt + βkskijt + βllsl

2
ijt + βmms

m2
ijt + βkksk

2
ijt +

+ βmlsmijtlijt + βmksmijtkijt + βlkslijtkijt + βmlksmijtlijtkijt +
1

σs
qsijt + psijt + ωijt
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where βf = σs−1
σs

αf for f ∈ {m, l, k,mm, ll, kk,ml,mk, lk,mlk}, and ωijt =
σs−1
σs

(ψijt +

νijt).

Observed log revenue (yijt) is allowed to be measured with error (i.e., yijt = ỹijt+ ǫijt)

and it is also deflated by a price index at the industry level (i.e., psijt). Thus,

yijt = βlslijt + βms
mijt + βkskijt + βllsl

2
ijt + βmms

m2
ijt + βkksk

2
ijt +

+ βmlsmijtlijt + βmksmijtkijt + βlkslijtkijt + βmlksmijtlijtkijt + µst + ωijt + ǫijt

where µst =
1
σs
qsijt.

A.2. Misreporting

The misreporting of firm diversification levels might introduce bias in the parameters

that govern the law of motion for productivity, affecting the estimates that characterize

the productivity effects of firm diversification. To characterize the bias, I define observed

diversification as true diversification level minus the degree of under-reporting:

divit = div∗it − uit

where divit represents the observed diversification level of firm i at time t, div∗it the true

diversification level, and uit ≥ 0 the degree of under-reporting.

For simplicity in the exposition, I consider the simplest case where the expected future

productivity is represented by:

ωijt = γ0 + γ1ωijt−1 + γ2div
∗
it−1 + ξijt
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Then, the estimating equation can be written as:

ωijt = γ0 + γ1ωijt−1 + γ2divit−1 + ξijt + γ2uit−1

The GMM estimate of γ2 is described by the following equation:

γ̂2 =
cov(ωijt, divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)cov(ωijt, ωijt−1)

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

=
cov(γ1ωijt−1 + γ2divit−1 + ξijt + γ2uit−1, divit−1)var(ωijt−1)

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

− cov(ωijt−1, divit−1)cov(ωijt, ωijt−1)

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

where cov(.) and var(.) denote covariance and variance respectively.

After assuming that the misreporting error uit−1 is mean independent of the innovation

to productivity ξijt, and enforcing the mean independence assumption in the law of motion

for future expected productivity, we can rewrite the above equation as,

γ̂2 = γ2 +
var(ωijt−1)[γ1cov(ωijt−1, divit−1) + γ2cov(uit−1, divit−1)]

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

− cov(ωijt−1, divit−1)[γ1var(ωijt−1) + γ2cov(uit−1, ωijt−1)

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

Note that, with some algebra this can be written as:

γ̂2 = γ2 +
γ2[var(ωijt−1)(cov(uit−1, div

∗
it−1)− var(uit))]

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2

− γ2[cov(ωijt−1, divit−1)cov(uit−1, ωijt−1)]

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2
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and therefore the asymptotic bias of the estimator will be given by,

γ2[var(ωijt−1)(cov(uit−1, div
∗
it−1)− var(uit))− cov(ωijt−1, divit−1)cov(uit−1, ωijt−1)]

var(divit−1)var(ωijt−1)− cov(ωijt−1, divit−1)2
(A.1)

Note that by definition, var(divit−1) > 0 and var(ωijt−1) > 0, and additionally

var(divit−1) × var(ωijt−1) > cov(ωijt−1, divit−1)
2, which implies that the denominator

in the above equation is positive. In the data we observe that cov(ωijt−1, divit−1) > 0,

that is, a positive covariance between observed diversification and productivity. This

finding has already been documented in other studies (see, for instance, Schoar, 2002).

We also expect cov(uit−1, ωijt−1) > 0 and cov(uit−1, div
∗
it−1) < 0. We should expect the

first covariance to be positive since, in principle, it should be driven by what the cor-

porate finance literature has described as strategic accounting. Under this hypothesis,

high performers firms (or at least a subset of them) are less inclined to disclose financial

information at the business unit level.1 According to the literature, this strategy might

be used to avoid disclosing information to potential competitors about the profitability

of their operations.2 This is also consistent with the results of some empirical studies

that find evidence of managerial reporting practices matching the predictions of strate-

gic accounting theory (see, for example, Harris, 1998; Piotroski, 1999; Berger and Hann,

2003b; Berger and Hann, 2003a; Villalonga, 2004; or Berger and Hann, 2007). Finally, we

should expect a negative correlation between the true diversification level div∗it−1 and the

1 This hypothesis is supported by some game theoretical models of a firm’s disclosure choices. See, for
instance, Darrough and Stoughton (1990), or Feltham, Gigler and Hughes (1992).
2 For example, Ettredge, Kwon and Smith (2002) report that 86% of the firms that commented on the
exposure draft for SFAS 131 were opposed to the new standard on the grounds that it would put them
at competitive disadvantage.



211

degree of under-reporting uit−1. In particular, high levels of true diversification are typ-

ically associated with operations in different, dissimilar industries. This raises the costs

of hiding information, mitigating the aggregation of business activities and leading to a

lower degree of under-reporting. This intuition is consistent with the findings reported by

Berger and Hann (2003a), Herrmann and Thomas (2000), and Street, Nichols and Gray

(2000), who show that the change in segment reporting introduced by the SFAS 131 was

effective in inducing diversified firms to reveal previously hidden information about the

firm’s diversification strategy, mitigating the aggregation of business activities and raising

the number of reported business units for many firms, especially for those who previously

reported a single line of business.

Under the conditions discussed above, driven by the results and insights discussed

in the literature, the sign of the asymptotic bias described by equation (A.1) would be

negative. Then, we should expect the baseline estimates related to the productivity effects

of corporate diversification to be asymptotically downward biased.

A.3. Production Function Estimates

Table A.1 presents the output elasticities from the revenue production function es-

timation. As discussed in Section 1.2, the coefficients of the production function are

assumed to be industry specific, and thus they are assumed to be the same across differ-

ent business units in a given industry. This means that production technology is assumed

to be the same for non-diversified firms and business units belonging to diversified firms

operating within the same industry. Therefore, in the estimation, the coefficients of the

production function are recovered by pooling together these two types of lines of business
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(i.e., non-diversified firms and business units belonging to diversified firms) within the

same industry. I estimate the production function coefficients by the primary industry

or sector of activity, defined by the 2-digit SIC code. The industries considered in the

analysis (with their respective 2-digit SIC codes) are the following: Food and Beverages

(20); Textile, Apparel, and Leather (22, 23, and 31); Timber and Furniture (24 and

25); Paper and Printing (26 and 27); Chemicals (28); Pete Refining (29); Rubber and

Misc. Manufacturing Industries (30 and 39); Stone, Clay, Glass, and Concrete Products

(32); Primary Metal and Fabricated Metal Products (33 and 34); Machinery and Equip-

ment (35); Electrical Machinery and Apparatus (36); Transportation Equipment (37);

and Medical Instruments (38).3

The first two columns of Table A.1 report the 2-digit SIC industry code and the in-

dustry description respectively. Columns (3) to (5) show the estimated average revenue

elasticity with respect to each factor of production (labor, materials, and capital, respec-

tively) under the estimation strategy described in Section 1.4. Note that, since I am

relying in a translog production function, each business unit may have a different revenue

elasticity with respect to inputs. Unlike the Cobb-Douglas production function, revenue

elasticities in the translog case are a function of input usage, and thus they are likely

to vary by business units. For this reason, I report both the average and the standard

deviation of the elasticities across aggregated sectors (at the 2-digit level of the industrial

classification). The last two columns report the average return to scale and number of

observations respectively. Labor coefficients range from 0.11 to 0.50, while the coefficients

for materials range from 0.46 to 0.81. The output elasticity with respect to capital ranges

3 Misc. Manufacturing Industries include, for example, jewelry, games and toys, musical instruments,
pens, etc.
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from 0.03 to 0.17. These estimates are similar and comparable to others obtained in

the production function literature.4 Standard deviations of the revenue elasticities are

reported in parentheses below the means. The returns to scale coefficients are not only

similar across different industries but also close to 1 in most cases.

Finally, ordinary least squares (OLS) regressions produce higher estimates for the

input elasticities of variable inputs in almost all of the cases.5 As expected, the simul-

taneity problem biases the estimates on the inputs upwards, and thus, when correcting

for unobserved productivity shocks, the implied coefficients on the inputs drop.

4 See for example, Doraszelski and Jaumandreu (2013), Pavcnik (2002), De Loecker (2011), or De Loecker,
Goldberg, Khandelwal and Pavcnik (2016).
5 These results are not shown in the table, but are available from the author upon request.
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Table A.1. Production Function Estimates

(1) (2) (3) (4) (5) (6) (7)
Returns

SIC code Industry Labor Materials Capital to Scale Obs.
20 Food and Beverages 0.2452 0.6896 0.0701 1.005 2,636

(0.0443) (0.0390) (0.0318)
22, 23, 31 Textile, Apparel and Leather 0.2310 0.6003 0.1048 0.936 2,741

(0.0725) (0.0887) (0.0485)
24, 25 Timber and Furniture 0.3247 0.5499 0.1201 0.995 1,940

(0.0447) (0.0537) (0.0401)
26, 27 Paper and Printing 0.4490 0.4804 0.0819 1.011 3,206

(0.0617) (0.0498) (0.0397)
28 Chemicals 0.3439 0.5875 0.0537 0.985 4,961

(0.0750) (0.0625) (0.0326)
29 Pete Refining 0.1226 0.8170 0.0672 1.007 582

(0.0788) (0.0930) (0.0359)
30, 39 Rubber and Misc Manuf. Industries 0.2688 0.6613 0.0494 0.980 3,444

(0.0298) (0.0246) (0.0130)
32 Stone, Clay, Glass and Concrete Products 0.3389 0.4854 0.1058 0.930 1,270

(0.0729) (0.0776) (0.0525)
33, 34 Primary Metal Industries and Metal Products 0.2900 0.6151 0.0864 0.992 5,531

(0.0768) (0.0571) (0.0296)
35 Machinery and Equipment 0.1177 0.8141 0.0576 0.989 8,096

(0.0385) (0.0416) (0.0183)
36 Electrical Machinery and Apparatus 0.1344 0.7066 0.1754 1.016 7,445

(0.0496) (0.0487) (0.0295)
37 Transportation Equipment 0.3452 0.5249 0.1210 0.991 2,910

(0.0627) (0.0539) (0.0406)
38 Medical Instruments 0.5063 0.4667 0.0364 1.009 5,190

(0.0545) (0.0428) (0.0194)
Note: The table reports the average revenue elasticities with respect to inputs (i.e., materials, labor, and capital).
Standard deviation of average revenue elasticities are in parentheses. Column (6) reports the sum of columns
(3) to (5).
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APPENDIX B

Appendix to Chapter 2

B.1. Distribution of Scheduled Departure Times by Airline
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Figure B.1. Distribution of

Scheduled Departure Times -

American Airlines.

Note: The figure shows, for all Mondays of
2015, the distribution of scheduled departure
times for American Airlines. Departure times
are measured in minutes from midnight. Data
come from the On Time Performance data-
base (OTP).
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Figure B.2. Distribution of

Scheduled Departure Times -

United Airlines.

Note: The figure shows, for all Mondays of
2015, the distribution of scheduled departure
times for United Airlines. Departure times
are measured in minutes from midnight. Data
come from the On Time Performance data-
base (OTP).



216

0
.0

00
5

.0
01

.0
01

5
.0

02
D

en
si

ty

0 500 1000 1500
Minutes from midnight

Distribution of Departure Times − Delta Airlines

Figure B.3. Distribution of

Scheduled Departure Times -

Delta Airlines.

Note: The figure shows, for all Mondays of
2015, the distribution of scheduled departure
times for Delta Airlines. Departure times are
measured in minutes from midnight. Data
come from the On Time Performance data-
base (OTP).
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Figure B.4. Distribution of

Scheduled Departure Times -

Southwest Airlines.

Note: The figure shows, for all Mondays of
2015, the distribution of scheduled depar-
ture times for Southwest Airlines. Departure
times are measured in minutes from midnight.
Data come from the On Time Performance
database (OTP).

B.2. Data Construction

This section describes the construction of correlation measures between airlines’ flight

scheduling decisions and passengers’ most preferred departure times. To create these

correlation measures, I use information on scheduled departures from the OTP database.

Information on passengers’ most preferred departure times comes from Garrow et al.

(2007) and Brey and Walker (2011), who construct these measures based on a 2004 on-line

survey conducted by the Boeing Company.1 I create these variables using the uncentered

correlation coefficients between the firms’ scheduled departure profiles and passengers’

most preferred departure times. Although these measures vary by the direction of travel

(i.e., west to east, east to west, and south-north), I do not have information on most

preferred departure times by day of the week. Therefore I assume they represent the

1 See Garrow et al. (2007) and Brey and Walker (2011) for more details about the survey design.
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preferred travel times for any day of the week. Figure B.5 plots the distribution of

passengers’ most preferred departure times according to the direction of travel.
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Figure B.5. Distribution of Most Preferred Depar-

ture Times.

Notes: The figure shows the distribution of passengers’ most
preferred departure times, measured in minutes from mid-
night. Data come from an online survey conducted by the
Boeing Company.

To formalize these measures, consider the case of an airline i, that at time t has to

allocate a fixed number of planes fi across markets (i.e., directional airport pair), and

within each market, it has to schedule departure times across K available times. In

the empirical application, the space of available times is characterized by a vector with

entries represented by block times (15 minute intervals). Therefore, firm i’s profile of

scheduled departure times at time t in segment or market m can be characterized by a

vector Fimt = (fitm1, .., fitmk), where fitmk is the number of firm i’s planes allocated to

time k at time t in market m. Similarly, it is possible to construct a location profile for
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passengers’ most preferred departure times, by also discretizing the distribution into 15

minute intervals. Then, the measure of closeness between scheduled departure times and

passengers’ most preferred departure times for airline i at time t in market m is given by:

(B.1) yimt =
FimtF

′d
p

(FimtF ′
imt)

1/2(F d
pF

′d
p )1/2

where F d
p represents the profile for the distribution of passengers’ most preferred departure

times. This measure of proximity ranges between zero and one, depending on the degree

of overlap between the airline scheduling decisions and passengers’ preferred travel times.

The proximity measure discussed above treat available times as orthogonal to each

other, since passengers’ preferred travel times only match scheduled times if they coincide

in the same available time. However, the assumption that available times are available to

each other depend on the level of aggregation of the them. In practice, it is plausible that

a passenger whose most preferred travel time is 10:30am also derive some utility from

a plane scheduled, for instance, at 9am (absent a plane scheduled at her most preferred

travel time). To address this, I extend the empirical analysis by estimating a model

with a number of alternatives. In particular, I use a distance measure between location

patterns that weights the covariance in the location profiles by their proximity, using

Kernel functions to compute these weights. Formally, the proximity measure between

scheduled and preferred times for a non-stop product belonging to airline i in market m

at time t is given by:

(B.2) yκimt =
FimtΩF

′d
p

(FimtF ′
imt)

1/2(F d
pF

′d
p )1/2
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where Ω is a k×k symmetric weighting matrix with elements ωrc = K(.), where K(.) is a

Kernel function.2 Finally, note that equation (B.1) is equivalent to equation (B.2) when

Ω = I.

2 In the empirical application, I use a quartic Kernel described by K(u) = 15/16(1 − u2)2 × 1{|u|≤1}. I
tried three different specifications, with different values for the bandwidth across specifications: 60 , 240,
and 1440 minutes.
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APPENDIX C

Appendix to Chapter 3

C.1. Standard Errors (SMM)

To obtain the standard errors of the fixed costs parameter estimates we need to com-

pute the variance-covariance matrix of the estimator. Given the election of the opti-

mal weighting matrix W , the SMM estimator is asymptotically normal for fixed S when

n→ ∞:

√
N(γ̂F − γF0 ) → N(0, V )(C.1)

where,

V =

(
1 +

1

S

)
(J ′WJ)

−1
(C.2)

with

(C.3) J =
∂g(X, γ̂F )

∂γF
=




∂g1(X,γ̂F )

∂γF
1

∂g1(X,γ̂F )

∂γF
2

. . . ∂g1(X,γ̂F )

∂γF
P

∂g2(X,γ̂F )

∂γF
1

∂g2(X,γ̂F )

∂γF
2

. . . ∂g2(X,γ̂F )

∂γF
P

...
...

. . .
...

∂gL(X,γ̂F )

∂γF
1

∂gL(X,γ̂F )

∂γF
2

. . . ∂gL(X,γ̂F )

∂γF
P



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The Jacobian matrix J must be computed numerically. A practical issue connected

with the estimation of this matrix is that the value of the numerical derivative, defined as

∂g(X,γ̂F )
∂γF = g(X,γ̂F+ǫ)−g(X,γ̂F )

ǫ
, is sensitive to the exact value of ǫ in which this derivative is

evaluated. As stated by Bloom (2009), this is a common problem in numerical methods

with simulated data which make use of functions with potential discontinuities. To address

this problem, I compute numerical derivatives following a strategy similar to the one used

by Bloom (2009). In particular, I calculate four values of the numerical derivative for

values of ǫ of +1%, +2.5%, +5% and -1% of the estimated parameter. Then, I take the

median value of these numerical derivatives. This procedure contributes to the robustness

of numerical derivatives to outliers in the function under analysis (which may arise as a

consequence of potential discontinuities).
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