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ABSTRACT

Essays on Heterogeneous Beliefs in Financial Markets

Hao Sun

In this thesis, I investigate how the disagreements among market participants can

affect markets in various settings. In the first chapter, I study how market participants

with heterogeneous beliefs and non-commitment can create and manage counterparty risk

in a sequentially and bilaterally traded market. I find that the equilibrium price may not

always reflect counterparty risk due to risk-management efforts by market participants.

Even when there is no default in equilibrium, market participants cannot attain the best

allocations since risk-management is costly. In the second chapter, I study disagreements

among market participants under more general belief structures. Here, I employ the col-

lateral equilibrium framework to study the how the disagreements can affect equilibrium

pricing of assets and derivatives. I provide sufficient conditions for bubble to exist in

equilibrium prices. Moreover, I find that certain types of disagreements can also generate

volatility smirks in options. In chapter three, I study asynchronized trading among mar-

ket participants in presence of a growing asset bubble. Market participants disagree on

the starting date of an exogenous asset bubble and decide when to exit the market. I also
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introduce a large market participant alongside numerous infinitesimal market participants

to study their interactions and the mechanism of the bursting an asset bubble. I find re-

sults in contrast to those in the currency attack literature. The market participants in

this setting stand to benefit from a growing asset bubble whereas the market participants

in the currency attack literature only benefit if an attack is successful.
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CHAPTER 1

Counterparty Risk in the Over-the-Counter Derivatives Market:

Heterogeneous Insurers with Non-commitment

1.1. Introduction

Central to any OTC derivative market is the bilateral nature of the trades that involves

counterparty risk, which is the risk that trading counterparties may default on their future

obligations. Counterparty risk entered the spotlight when major players in the OTC

derivative market, e.g. Lehman Brothers and AIG, either declared bankruptcy or were

bailed out by the government during the 2007-08 global financial crisis. The financial

crisis raised an important question of whether the OTC derivatives market participants

can adequately manage counterparty risk themselves, without regulations such as the

mandated central clearing of OTC derivatives.

How do market participants manage counterparty risk? Empirically, market partici-

pants have been shown to manage counterparty risk through counterparty selection (Du

et al., 2016) and hedging1 (Gündüz, 2016). However, in the growing theory literature on

counterparty risk, there has been little focus on counterparty risk management strategies

besides margins. In particular, good and bad insurers do not coexist in existing models.2

1Hedging refers to purchasing credit default swaps on the counterparties.
2Papers studying counterparty risk, e.g. Biais et al. (2016), Stephens and Thompson (2014), typically
model derivative contracts as insurance and study one-sided risk-taking of sellers or insurers. So does
this chapter. Bad insurers are insurers who take on risks that generate a negative externality on others.
Good insurers hedge their positions. In Biais et al. (2016), insurers who sell insurance are homogeneous.
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Thus, in these models, market participants seeking to buy insurance have no choice but

to contract with bad insurers. The contribution of this chapter is to study a novel setting

in which good and bad insurers coexist. This setting is necessary for studying how market

participants can manage counterparty risk. Though good and bad insurers coexist in this

model, the roles are determined endogenously.

I model OTC derivative contract as insurance. The model features a risk-averse hedger

who seeks insurance against her future risky endowment. The hedger can buy insurance

from two insurers, who are heterogeneous in beliefs about the hedger’s endowment. The

optimist is more optimistic about the hedger’s endowment than the pessimist. Because of

their difference in beliefs, the optimist and the pessimist may wish to speculate with each

other after selling insurance to the hedger. Ex-ante, the insurers cannot commit to not

speculating. This is the source of counterparty risk, as the insurers’ speculation with each

other may devalue the hedger’s claim. Because the insurers speculate with each other,

the good insurer is bound to have enough money to insure the hedger.3 However, which

insurer is good may very well depend on which insurer has sold insurance to the hedger.

For example, after the hedger buys insurance from the optimist, the optimist may want

to sell the same insurance to the pessimist and potentially devalue the hedger’s insurance.

Here the pessimist is good. Realizing this, the hedger may want to purchase insurance

from the pessimist. However, when the hedger buys insurance from the pessimist, the

pessimist may also want to sell the same insurance to the optimist and possibly devalue the

hedger’s insurance. Given the hedger purchases insurance from the pessimist, the optimist

Thus, insurers are either all bad or all good. In Stephens and Thompson (2014), insurers are all bad but
take on varying amount of risks that harm others.
3Suppose at least one insurer has enough money to insure the hedger.
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becomes good. Thus, the good insurer who does not devalue the hedger’s insurance may

prove to be ever elusive.

The model builds on two important characteristics of the OTC derivatives market.

First, agents may be heterogeneous in beliefs. The heterogeneous beliefs can be a stand-

in for heterogeneity in agents’ asset positions. For example, agents may have offsetting

exposures so they can insure each other. However, if the agents were to sell insurance

to a hedger, the agents may change the insurance they sell to each other. Second, there

is non-commitment. Agents can always trade with other agents between the time they

sign a contract and the maturity of that contract. For example, the typical maturity of

a credit default swap (CDS) is five years. So in these five years, a CDS seller may have

the incentive to engage in activities that devalue the CDS she has sold. Imagine a firm

buying a five-year CDS contract from AIG before the financial crisis. There is no way4

for the firm to prevent AIG from selling CDS contracts to the point of near-bankruptcy.

A key insight of my analysis is that when there is a bad insurer who devalues her

existing contracts, there is always a good insurer who hedges her existing contracts. When

the insurers speculate with each other, they shift wealth across states. However, because

the insurers speculate with each other, both insurers cannot shift wealth out of the same

state. If the optimist shifts her wealth out of the state in which the hedger requires

insurance payment, the pessimist cannot also shift her wealth out of that same state.

Moreover, in that state, the pessimist holds the optimist’s endowment as well. So, the

pessimist can now fully insure the hedger even if the pessimist’s own endowment were

not enough. In this case, the optimist is the bad insurer while the pessimist is the good

4Assume the firm cannot require 100% initial margin and the variation margin is subject to valuation
disputes.
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insurer. This intuition holds even when the identities of the good and bad insurers are

determined endogenously. Since the good and bad insurers coexist, the hedger is not

limited to buying insurance from only the bad insurer. In the worst case, the hedger can

always buy insurance from both insurers to ensure delivery of payment on at least one of

the contracts. Under certain conditions, the hedger can do better and only buy insurance

from one insurer.

In equilibrium, the hedger can manage counterparty risk by choosing either trade size

or counterparty. When the hedger chooses to contract with both insurers, exactly one

insurer defaults. Nevertheless, the hedger pays the full price for both contracts in order to

ensure the contracts are incentive compatible. So while the contracts traded in equilibrium

look risk-free, it doesn’t mean there is no counterparty risk. When the hedger chooses to

contract with only one insurer, she buys either cheap partial insurance from the optimist

or expensive full insurance from the pessimist. In this case, the hedger buys only risk-free

contracts. However, having only risk-free contracts traded in equilibrium does not mean

there is no counterparty risk. In this case, the hedger instead chooses the suboptimal

risk-free contracts precisely because better contracts are risky with counterparty risk. In

general, when no risky contract is traded in equilibrium, it is possible that the counterparty

risk is so severe that no one wants to trade any risky contracts.

Recent regulations mandate central clearing of standardized OTC derivatives in an

effort to reduce counterparty risk. Central clearing is an important change to the OTC

derivative market. I study the effect of central clearing in this setting. I focus on the

loss-sharing ability of central clearing as opposed to the ability of central clearing to

enforce margin requirement. The agents in the model do not have any cash upfront,
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so margin requirements do not apply. I find that central clearing improves the hedger’s

welfare beyond what the hedger can achieve by trying to manage counterparty risk without

central clearing. The key difference is that central clearing can reduce the speculations

between the insurers while the hedger cannot.

The rest of the chapter is organized in the following manner. Section 1.2 reviews the

related literature. Section 2.3 defines the baseline model when hedging is infeasible and

proceeds to present the benchmark. Section 1.4 analyzes the equilibrium under different

parameters. Section 1.5 then analyzes the effect of central clearing. Section 1.6 examines

hedging and hedging costs. Section 1.7 discusses the assumptions of the model, and finally,

Section 1.8 concludes this chapter. The proofs and additional analysis can be found in

Appendix A.

1.2. Related Literature

This chapter is a study of sequential trading under non-commitment. It is closely

related to Coase (1972), Bizer and DeMarzo (1992), Bisin and Rampini (2006) and sub-

sequent papers. Nevertheless, the mechanism of non-commitment in this chapter differs

from that of the others. In Coase (1972) (Bizer and DeMarzo, 1992; Bisin and Rampini,

2006), the seller (borrower) cannot commit to not selling to (borrowing from) other buyers

(lenders) in subsequent periods, respectively. In this chapter, however, sellers cannot com-

mit to not trading with other sellers in the subsequent period. Thus, in this model, sellers

with bad incentives coexist with sellers with good incentives. Moreover, the natural insur-

ance providers are exactly the sellers with bad incentives. Though buyers can overcome

the non-commitment problem of sellers by trading through sellers with good incentives,
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the first-best allocation cannot be achieved. Moreover, the allocation in equilibrium is

sensitive to the wealth of both types of sellers.

This chapter is also closely related to the theory literature on counterparty risk, e.g.

Thompson (2010), Stephens and Thompson (2014), Biais et al. (2016). This chapter is

closest to Stephens and Thompson (2014) and Biais et al. (2016). Stephens and Thomp-

son (2014) study the case when insurance buyers have varying degrees of aversion to

default, modeled with heterogeneous non-pecuniary default costs. While this chapter and

Stephens and Thompson (2014) both study the trade-offs between price and risk, the fo-

cuses are different. Stephens and Thompson (2014) focus on insurance buyer’s incentive

to avoid bad insurance seller; I take the insurance buyer’s incentives as given and study

how the insurance buyer manages counterparty risk. Biais et al. (2016) consider insur-

ance sellers’ hedging incentives, which can be distorted by bad news, moral hazard, and

limited liability. The insurance sellers who trade with insurance buyers in their model are

homogeneous while insurance sellers in this chapter are heterogeneous. The heterogeneity

of the insurers in this chapter allows the hedger more flexibility in terms of counterparty

choice. As a result, the hedger’s optimal contract in this chapter features interesting

counterparty risk management strategies, with novel empirical implications.

In the literature on financial intermediation, this chapter is closest to Babus and

Hu (2017). In both Babus and Hu (2017) and this chapter, financial intermediation

arises endogenously due to non-commitment. Agents in Babus and Hu (2017) solve the

non-commitment problem using information network and repeated games. This chapter

differs in that the hedger can contract with multiple insurers. Moreover, equilibrium in

this chapter may feature default.
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This chapter is also related to the theory literature on central clearing, e.g. Pirrong

(2011), Duffie and Zhu (2011), Acharya and Bisin (2014), Stephens and Thompson (2014).

Pirrong (2011) provides an extensive overview of central clearing. Duffie and Zhu (2011)

discuss benefit of single central counterparty. Acharya and Bisin (2014) discuss the ability

of central clearing to increase market transparency. Stephens and Thompson (2014) focus

on loss-sharing ability of central clearing as I do. However, Stephens and Thompson

(2014) focus on ex-ante contribution by insurers to cover potential loss of the central

counterparty, while I focus on ex-post loss-sharing.

This chapter complements the search theory literature on OTC market, e.g. Duffie

et al. (2007), Lagos et al. (2011). This chapter’s focus is the strategic risk-taking and

counterparty risk. While matching in search models are typically random, the hedger in

this chapter chooses her counterparties to manage counterparty risk. This chapter also

complements Chang and Zhang (2015), which studies endogenous network formation.

While Chang and Zhang (2015) focuses on network formation with exogenous risk, this

chapter focuses on endogenous risk in a network in which all agents are connected to each

other.

This chapter is also related to the empirical literature on counterparty risk in OTC

derivative market, e.g. Arora et al. (2012), Du et al. (2016), Gündüz (2016). My results

are similar to the price implication in Arora et al. (2012), counterparty selection in Du

et al. (2016), and hedging of OTC derivative contract in Gündüz (2016). I offer novel

empirical implications.



17

1.3. Model

I model OTC derivatives as insurance contracts. There are three dates, t = 0, 1, 2,

one hedger, and two insurers with heterogeneous beliefs. The hedger wishes to purchase

insurance from the insurers. At t = 0, the hedger makes take-it-or-leave-it offers to

insurers and insurers can choose whether to accept the offers. At t = 1, insurers trade

with each other. At t = 0, 1, contracts are agreed upon but no money changes hands. At

t = 2, money changes hands as payments are made.

1.3.1. Agents and Beliefs

Hedger H is risk-averse with twice-differentiable strictly concave utility function u, and

is endowed with one unit of risky asset with a random payoff R in t = 2. For simplicity,

I normalize R ∈ {0, 1}; I refer to the state in which R = s as state s at t = 2. H has the

belief that state 1 happens with probability π and state 0 happens with probability 1−π.

I assume H has all the bargaining power when trading with insurers. This assumption

is sufficient but not necessary. As long as H has some bargaining power, I get similar

results.

The two insurers are risk-neutral. One insurer is more optimistic about R with the

belief that state 1 happens with probability π′ > π. I shall refer to this insurer as optimist

O. The other insurer, pessimist P , shares H’s belief that state 1 happens with probability

π. It is central to this model that O is more optimistic about R than P . This assumption

gives us the non-commitment friction that is at the heart of the model. The belief of H

relative to the beliefs of insurers is of no consequence. I choose P having the same belief
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as H to ensure H is willing to purchase insurance from both O and P . I shall discuss the

implications of different assumptions about beliefs in section 1.7.1.

Both insurers are endowed with cash, or constant endowments, at t = 2. O is endowed

with wO while P is endowed wP . I make the following assumption to ensure O has enough

wealth to insure H.

Assumption 1.1. wO ≥ π′

1−π′ .

1−π′
π′

is the price of insurance that makes O break-even. Since H only has endowment

of 1 in state 1, H can only purchase up to 1/1−π′
π′

= π′

1−π′ units of insurance. Thus, as

long as O has wealth higher than π′

1−π′ , O can fully insure H at price 1−π′
π′

. This bound is

sufficient but not necessary since π′

1−π′ is the upper bound on how much insurance H can

purchase.

When O trades with P at t = 1, I assume O has all the bargaining power. This is for

modeling convenience. Changing the bargaining power between O and P has no material

effect on the model. Since all endowments arrive at t = 2, all agents maximize expected

utility of consumption at t = 2. Moreover, all endowments and beliefs are common

knowledge. At t = 1, everything, including contracts and decisions at t = 0, are common

knowledge. Since many objects defined in this chapter are functions of realization of R, I

refer to x(s) as the value x takes in state s ∈ {0, 1} for any object x, respectively.



19

1.3.2. Contracts and Trading

At t = 0, H makes a take-it-or-leave-it offer5 to insurer i ∈ {O,P} with contract

(1.1) τH,i ≡ (τH,i(0), τH,i(1)) ∈ R+ × [−1, 0].

Contract terms τH,i(0) and τH,i(1) specify transfer from i to H in states 0 and 1, respec-

tively. Positive value represents transfer from i to H while negative value represents trans-

fer from H to i. I restrict the attention to τH,i ∈ R+ × [−1, 0], since H can only credibly

promise payment in state 1 and H would never consider a contract τH,i ∈ R−− × [−1, 0].

At t=1, O makes a take-it-or-leave-it offer6 to P with contract

(1.2) τO,P ≡ (τO,P (0), τO,P (1)) ∈ R× R

The terms are defined similarly. Positive value represents transfer from P to O while

negative value represents from O to P . For now, there are no restrictions on τO,P as there

is on τH,i. In Assumption 1.3, I assume P is wealthy enough so that O always wants to

sell insurance to P , i.e. τO,P ∈ R−×R+. Later, I will relax the assumption and study the

problem without restrict the direction of O’s contract with P .

I assume τO,P is senior to τH,O and τH,P in the sense that O and P ’s claims in τO,P

are paid out before H’s claim is paid out from τH,O and τH,P . Moreover, since everything

is common knowledge, O and P can only credibly promise each other their wealth plus

any transfer from H. Thus, O and P have commitment with each other. The seniority

5As long as H has some bargaining power, the same intuition goes through. I do not consider the case
when H has no bargaining power since my focus is on strategic behavior of H. See section 1.7.1.
6See section 1.7.1.
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assumption and insurers’ commitment to each other resemble the usage of collateral. I

discuss this model in relation to collateral usage in section 1.7.2.

For easy comparison between contracts, I define the price of any contract in t = 0, 1

as

(1.3) q(τi,j) ≡
∣∣∣∣τi,j(1)

τi,j(0)

∣∣∣∣ .
This price represents the amount contract buyer (seller) pays (receives) in state 1 per unit

of wealth she receives (pays) in state 0, respectively. Moreover, I denote the standardized

contract with price q as

(1.4) τq ≡ (1,−q).

This helps simplify the notation.

1.3.3. Insurers’ Problems

First, I state P ’s value function. Then, I state O’s problem. Given contracts τH,P and

τO,P , P ’s value function is

UP (τO,P , τH,P ) ≡ EP
[
(wP − τO,P − τH,P )+]

Whenever P is indifferent between accepting or not accepting any contract, I assume P

accepts the contract. Given (1.1), H only buys insurance. Moreover, there is commitment

between O and P . Thus, P ’s time 2 wealth, i.e. wP − τO,P − τH,P , can only be negative
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in state 0. This is useful. For example, suppose P ’s time 2 wealth in state 0 is positive.

Then, the ()+ operator from P ’s value function can be removed.

Now I define O’s problem. Given contract τH,O, O solves at t = 1

(1.5) UO (τH,O, τH,P ) ≡ max
τO,P

ÛO(τO,P |τH,O, τH,P ) ≡ EO
[
(wO + τO,P − τH,O)+]

subject to P ’s individual rationality constraint

(IR-P) UP (τO,P , τH,P ) ≥ UP ((0, 0), τH,P )

and budget constraints for both insurers

−τO,P ≤ wO − (τH,O)− ,(BC-O)

τO,P ≤ wP − (τH,P )− .(BC-P)

Given common knowledge, O can credibly promise to P as much as O’s wealth as well as

any promises from H to O, i.e. − (τH,O)−. This is represented by O’s budget constraint.

This is where I assume O has commitment to P . Moreover, O can default on τH,O. So,

only the promises from H to O enter into (BC-O). Similarly, only the promises from H

to P enter into (BC-P). Thus, the budget constraints also assumes seniority of τO,P .

1.3.4. Additional Assumptions

O may be indifferent between several contracts that O can offer to P . I make the following

assumption.
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Assumption 1.2 (Tie-breaking). Given τH,O and τH,P , suppose there are 2 contracts

τ 1 and τ 2 such that both contracts satisfy (IR-P), (BC-P), (BC-O), and ÛO(τ 1|·) =

ÛO(τ 2|·). O prefers τ i such that UP (τ i, τH,P ) ≤ UP (τ j, τH,P ) for i 6= j ∈ {1, 2}.

The above assumption states that when O is indifferent between offering two contracts,

O would choose the one that gives P less expected utility. This assumption may seem

to contradict Pareto Optimality. However, whenever O is in this situation, she must be

defaulting on τH,O by offering at least one of the two contracts. When O increases P ’s

expected utility, O is simultaneously decreasing H’s expect utility. Thus, Assumption

1.2 does not violate Pareto Optimality. Moreover, Assumption 1.2 helps H by making O

choose paying H over paying P whenever O is indifferent.

I now make an assumption on the endowment of the pessimist. This assumption helps

put structure on the contract between the optimist and the pessimist, simplifying the

problems for the baseline results. Later in section 1.6, I relax the assumption for more

general results.

Assumption 1.3. wP >
1

h−1(π)−h−1(π′)
> h(π).

The term h(π) ≡ π
1−π ≡ 1/h−1(π) is the hazard rate. Intuitively, as P ’s wealth

increases relative to H’s endowment in state 1, the cost of O buying insurance from P

increases since O gives up more of her valuable7 state 1 wealth for state 0 wealth. Given

contract τH,P between H and P , the benefit O receives from buying insurance from P is

constant with respect to wP . Thus, as wP increases above the threshold in Assumption

1.3, the cost of O buying insurance from P outweighs the benefit. Thus, in this case, the

7O is more optimistic about state 1.



23

incentive for O to sell insurance to P is so strong that it is infeasible for H to change O’s

incentives. H simply expects O to sell insurance to P and cannot do anything to stop it.

Therefore, H cannot impact P ’s problem except directly through contract τH,P . Together

with Assumption 1.2, Assumption 1.3 simplifies the agents’ problems.8

1.3.5. Hedger’s Problem

Since I will relax Assumption 1.3 later, I will state H’s problem in general.9 At t = 0, H

solves

max
τH,O,τH,P

UH(τH,O, τH,P ) = EH
[
u(R + τ ′H,O + τ ′H,P )

]
subject to individual rationality constraints

UO (τH,O, τH,P ) ≥ UO ((0, 0), τH,P ) ,(IR-HO)

EP [(wP − τH,P )+] ≥ EP [wP ],(IR-HP)

and budget constraints for insurers

τ ′H,O = min
(
τH,O, wO + τ ∗O,P [τH,O, τH,P ]

)
,(BC-HO)

τ ′H,P = min
(
τH,P , wP − τ ∗O,P [τH,O, τH,P ]− τH,P

)
,(BC-HP)

where τ ∗O,P [τH,O, τH,P ] ∈ arg maxτ EO
[
(wO + τO,P − τH,O)+] is the solution to O’s problem

given contracts H offers to O and P . Note that τ ∗O,P may not be unique. In that case, I

assume H can force O to pick the τ ∗O,P that is better for H. Such selection is also Pareto

8See sections A.1.1 and A.1.2.
9See section A.1.4 for details on how 1.3 simplifies H’s problem.
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Optimal. The right-hand-side of (IR-HO) doesn’t have ()+ is because of (BC-HO). I shall

refer to τ ′H,O and τ ′H,P as the recovery contracts of the corresponding contracts.

One may wonder whether H can choose risk-free τ ′H,O and τ ′H,P directly rather than

choosing risky τH,O and τH,P . In general, H cannot choose τ ′H,O or τ ′H,P directly since

τ ∗O,P [τH,O, τH,P ] may differ from τ ∗O,P [τ ′H,O, τH,P ] and τ ∗O,P [τH,O, τ
′
H,P ]. However, by As-

sumption 1.3 and Lemma A.2, I know τH,P < wP < wP − τ ∗O,P [τH,O, τ
′
H,P ] if (IR-HP)

binds. Thus, (BC-HP) becomes redundant and τH,P is always risk-free. This simplifies

H’s problem as shown in section A.1.4. Let us first consider a useful benchmark that

gives us the highest utility H can attain.

1.3.6. Benchmark: wP = 0

Since there is no pessimist, the problem reduces to a two-agent contracting problem in

which H has all the bargaining power.

Proposition 1.1. There is a unique solution τBH,O s.t. τBH,O ∝ τh−1(π′). Given As-

sumption 1.1, τBH,O is either interior or τBH,O(1) = −1. In either case, τBH,O ≤ wO.

Since H has all the bargaining power, she would extract all the surplus from O. Thus,

the price of the optimal contract between H and H is h−1(π′). This provides a useful

benchmark. Given the price h−1(π′), H would choose to purchase τBH,O(0) units of the

contract. I define counterparty risk as the difference between H’s expected utility with

equilibrium contract and H’s expected utility with benchmark contract τBH,O. When the

equilibrium contract is τBH,O, there is no counterparty risk by definition.
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1.4. Equilibrium

Equilibrium is defined as Subgame Perfect Nash Equilibrium with contracts {τ ∗H,O, τ ∗H,P ,

τ ∗O,P} such that they solve H and O’s problems and all offered contracts are accepted. I

shall divide the parameter space into 2 scenarios to highlight the effect of the commitment

problem. In the first scenario, O has more wealth relative to H and P . In that case, the

commitment problem has no effect on H as P ’s budget constraint binds before O can sell

enough insurance to default on H’s contract. In the second scenario, O’s wealth is lower

compared to the first scenario. In this case, the commitment problem becomes worse for

H as O’s wealth decreases.

1.4.1. Scenario 1: Wealthy O, No Counterparty Risk

I first study the case when O is wealthy enough so that O’s commitment problem does

not affect H. Formally,

Assumption 1.4. wO ≥ τBO (0) + h(π)wP .

This assumptions states that O has enough wealth to trade with both P and H without

default. The first term τBO (0) is the optimal amount of insurance H purchases when faced

with a price of h−1(π′). Recall O can sell insurance to P for a price of h−1(π). Thus,

the second term h(π)wP represent how much wealth O needs to exhaust P ’s endowment

when O speculates with P . Assumption 1.4 only restricts O’s wealth relative to H and

P ’s wealth. It does not impose any condition on the relative wealth between H and P .

Thus, Assumption 1.4 does not conflict with earlier assumptions. Under this condition, I

have the following Proposition.
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Proposition 1.2. Given Assumption 1.4, there is a unique equilibrium with τ
(0)
H,O =

τBH,O, τ
(0)
H,P = (0, 0), and τ

(0)
O,P = −h(π)wP τh−1(π).

Since H can purchase cheaper insurance from O, H strictly prefers to do so. In this

case, the benchmark contract is available and so H has no appetite for more insurance

from P , especially since P only sells insurance a higher price. Thus, when O is wealthy

relative to H and P , O does not default on contract with H. However, O only fulfills

promises to H because P ’s endowment constraints P from buying more insurance. Thus,

the commitment problem of O does not affect H. In this case, there is no counterparty

risk.

1.4.2. Scenario 2: Less Wealthy O, with Counterparty Risk

Here O has less wealth than in scenario 1.

Assumption 1.5. wO < τBO (0) + h(π)wP .

The inequality states that when O trades to the limit with P , the benchmark contract

between H and O is no longer feasible. This assumption is the complement of Assumption

1.4 in terms of the parameter space.

Proposition 1.3. There is a unique equilibrium. There are 3 cases depending on wO.

(1) τ
(1)
H,O = wO + τ

(1)
O,P (0)τh−1(π′), τ

(1)
H,P = (0, 0), and τ

(1)
O,P = −h(π)wP τh−1(π)

(2) τ
(2)
H,O = (0, 0), τ

(2)
H,P ∝ τh−1(π), and τ

(2)
O,P = −h(π)(wP − τ (2)

H,P (1))τh−1(π),

(3) τ
(2)
H,O = (0, 0), τ

(2)
H,P ∝ τh−1(π), and τ

(3)
O,P = −wOτh−1(π),

where τ
(2)
H,P (0) is the optimal amount of insurance H purchases given price h(π). Equi-

librium is in case 2 and 3 when UH(τ
(2)
H,O, τ

(2)
H,P ) ≥ UH(τ

(1)
H,O, τ

(1)
H,P ). There exist unique
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w∗O ≥ h(π)wP and w∗∗O , such that case 1 is the equilibrium for wO > w∗O, case 2 is the

equilibrium for w∗∗O < wO ≤ w∗O, and case 3 is the equilibrium otherwise.

When wO is in the interval defined in Assumption 1.5, there are 3 possible cases. When

O’s wealth is high, H only buys insurance from O. Though H purchases the insurance

at a low price of h−1(π′), the quantity H can purchase is constrained by O’s commitment

problem. In such case, H can only purchase partial insurance. H can also simultaneously

buy insurance from P but H chooses not to since buying insurance from P increases

O’s commitment problem and devalues H’s existing contract with O. When H buys

insurance from both O and P , H is essentially competing against herself for O’s wealth.

Thus, H only buys cheap partial insurance from O. In this case, there is no pricing effect

of the commitment problem, since H deals with the problem by decreasing the quantity

purchased. This implies that when counterparty risk is not priced in the data, it doesn’t

mean the commitment problem has no effect. The effect may just not be in the price.

H’s welfare can still very much be improved as shown in section 1.5.

In case 2 and 3, H is better off buying full insurance at a higher price than buying

partial insurance at a lower price. When H buys more the expensive insurance from P ,

part of the insurance may be sold by O through P . Even though P may have enough

wealth10 to insure H, each unit of insurance H buys induces O to sell one more unit

of insurance to P . This happens in case 2 until O runs out of wealth and then the

equilibrium moves to case 3. This result is similar to Du et al. (2016), who document

that CDS market participants are less likely to trade with counterparties who have credit

risk correlated with the CDS’s underlying asset. However, in this model, O’s ex-ante

10This is true by Assumption 1.3.
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endowment is not correlated with R. O has incentive to take on risks correlated with

R only after selling insurance to H. Even so, in case 2 and 3, H would choose not to

contract with O. Proposition 1.3 gives a more refined result than the observations from

Du et al. (2016). It provides a new empirical prediction.

Notice H offers the same contracts in cases 2 and 3, regardless of the contract between

O and P . This is because P has enough wealth to insure H by Assumption 1.3. If that

were not the case, things get more complicated as shown in section 1.6. In all 3 cases, H

cannot offer the benchmark contract. In case 1, the price is same as in the price in the

benchmark contract but the quantity is less. In case 2 and 3, the price is higher than the

price of the benchmark contract.

1.5. Central Clearing

After the recent financial crisis, both U.S. and Euro-zone has pushed for central clear-

ing of standardized OTC derivatives to reduce counterparty risk. Central clearing is im-

plemented through the use of central counterparty (CCP), which stands between trades

and guarantees payment. The CCP replaces each existing contract with two new con-

tracts. The two new contracts are equivalent to the old contract. However, buyer and

seller of the old contract now both trade with the CCP instead. This way, the CCP

can reduce counterparty risk through collateral requirements and loss-sharing. Since the

agents do not have money in t = 0, collateral requirements do not apply here. I shall

focus on the loss-sharing.
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1.5.1. Loss sharing

The CCP does not have any endowment. Agents trading directly with the CCP are called

clearing members. Agents trading with the clearing members are called clients. When

a clearing member defaults on a client’s trade, the CCP spreads the loss to all other

clearing members by withholding their payments until the client’s obligations are paid in

full. In this setting, the CCP maximizes H’s welfare by designating H as the client and

the insurers as the clearing members.

While it is possible to model the CCP literally by creating 2 new contracts for each

existing contract, it is not necessary to do so. For the purpose of modeling loss-sharing,

the CCP can simply deduct any defaulted amount from all the non-defaulting clearing

members.

Given Lemma A.2, I only need to consider when O defaults on τH,O. Recall τ ′H,O as

defined in the hedger’s problem. Suppose O defaults on contract with H, i.e. τH,O > τ ′H,O.

the CCP deducts the difference τH,O − τ ′H,O from O’s contract with P , i.e. τO,P . The

effective contract P receives from O is thus

−τ ′O,P = −τO,P − (τH,O − τ ′H,O)

with the restriction that τ ′O,P ≥ 0. I need to rewrite O’s problem in terms of τ ′O,P . For

simplicity, I assume τH,O ≤ wO. This simplifies the notation. At t = 1, O now solves

max
τ ′O,P

EO[wO + τ ′O,P − τH,O]
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subject to P ’s individual rationality constraint

EP [τ ′O,P ] = 0,(IR-P-CCP)

and budget constraints, or loss-sharing constraints

−τ ′O,P ≤ wO − τH,O,(BC-O-CCP)

τ ′O,P ≤ wP − τH,P .(BC-P-CCP)

With loss-sharing, O cannot credibly promise τO,P to P , O can only promise τ ′O,P . There

is still commitment between O and P . However, loss-sharing makes H’s claim more senior

to τO,P . Given this problem, I have the following Proposition.

Proposition 1.4. There is a unique equilibrium with τCCPH,O , which weakly improves

H’s welfare compared to corresponding cases in section 1.4.2. In some cases, the price

of τCCPH,O is between h−1(π) and h−1(π′). τCCPH,O is worse than the benchmark contract for

H. Nevertheless, τCCPH,O is Pareto Optimal, since H’s utility cannot be increased without

sacrificing O’s utility.

Loss-sharing weakly improves H’s welfare. With loss-sharing, H can be guaranteed

payment if O accepts H’s contract. However, since O can reject contract from H and

sell insurance to P , H competes with P in price. Thus, the benchmark contract cannot

be attained by H in equilibrium. With loss-sharing, H can purchase blocks of insurance

from O at different prices. For example, in case 1 from 1.4.2, H can only purchase partial

insurance at price h−1(π′) without the CCP. With the CCP, H can purchase additional
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insurance from O at a higher price of h−1(π). Thus, the average price H pays for insurance

is between the high price and the low price.

1.5.2. Voluntary Central Clearing

In this case, both O and P are indifferent between participating and not participating in

central clearing. Even if P has some bargaining power, H can always compensate O and

P enough so that both O and P would be willing to enter central clearing. In that case,

central clearing is still welfare improving for H.

1.6. Hedging

In this section, I relax Assumption 1.3 and allow O to have the option to purchase

insurance from P . In this case, there is incentive for O and P to speculate in either

direction. Thus, H may have to hedge by trading with both O and P . First, I find the

partial equilibrium.

Proposition 1.5. Given τH,P such that (IC-O-B) holds for τH,O = (0, 0), there is a

unique τ
(4)
H,O[τH,P ] that maximizes H’s objective function. τ

(4)
H,O ∝ τh−1(π′). Either τ ′H,O =

τ
(4)
H,O and τ ′H,P = (0, τH,P (1)) or τ ′H,O = (wO − (wP − τH,P (1))h−1(π))+ and τ ′H,P = τH,P .

Above I characterize the solutions to H’s problem given τH,P that induces O to sell

insurance to P when O does not trade with H. Given such a τH,P , H chooses either to

hedge τH,O by giving money to P for free or to hedge τH,P by offering O a contract that

H knows O will default on. Thus, it’s possible for H to hedge her contract with O by

inducing O to buy insurance from P . When P defaults on τH,P , τH,P (1) is the cost of
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hedging τH,O. When O defaults on τH,O, τH,O(1) − τ ′H,O(0)h−1(π′) is the cost of hedging

τH,O.

Hedging τH,O may be expensive. Below I provide a lower bound and an upper bound

on cost of hedging.

Proposition 1.6. Hedging cost for τH,O has a lower bound of

min
[
(wO + wP )

(
h−1(π)− h−1(π′)

)
, h−1(π)

(
1 + h−1(π)

)
(h(π′)− h(π))wP , h

−1(π)wP
]

and an upper bound of h−1(π)wP . Hedging cost for τH,P has a lower bound of 0 and an

upper bound of [min (wO, h(π)wP ) (h−1(π)− h−1(π′))− h−1(π′)wP ]
+

.

Hedging cost of τH,O increases with wP . When wP increases, so does counterparty

risk. Thus, hedging cost co-moves with counterparty risk. Depending on wO, wP , π′ and

π, hedging τH,O may be expensive. Hedging τH,P is not as expensive since H can always

pick a τH,P so that no hedging is needed, i.e. both (IC-O-B) and (IC-O-S) binds with

equality at τH,O = (0, 0). Hedging is cheaper when the gains from O speculating with P ,

i.e. h−1(π) − h−1(π′) is small. When cost of hedging is small enough, H may choose to

hedge in equilibrium.

1.7. Discussions

1.7.1. Different Beliefs, Bargaining Power

As long as there is an insurer who is more optimistic than the other insurer, I get similar

results. If both insurers are more optimistic than the hedger, I also get the similar

results. If the pessimist’s belief is below the hedger’s certainty equivalent, the hedger
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prefers buying no insurance to buying insurance from the pessimist. Similarly, if both

insurers’ beliefs are below the hedger’s certainty equivalent, the hedger will choose not to

purchase insurance.

In the model, O has all the bargaining power when trading with P . I can give all the

bargaining power to P and I would get similar results. When P has all the bargaining

powers, P can extract all the surplus when trading with O. However, P will still only

accept contract from H with a price no lower than h−1(π). Thus, in cases similar to the

ones in section 1.4.2, H may still prefer to purchase partial insurance from O at price of

h−1(π′) < h−1(π). When both O and P have some bargaining power and when H doesn’t

have all the bargaining power, I get similar results. In this case, O and P still cannot

commit to not speculating with each other.

1.7.2. Collateral

The seniority assumption can be replaced by usage of costly collateral. Imagine O and P

have endowment at t = 0 and H can ask for collateral. However, suppose O and P can

manage collateral without a cost while H incurs a cost when holding collateral. In the

case, when the hold cost of collateral for H is too high, H would prefer the equilibrium

with no collateral. In that case, O and P can still post collateral to each other and thus

have seniority in each other’s claim.

1.8. Conclusion

I study how the hedger manages counterparty risk when insurers with heterogeneous

beliefs cannot commit to not speculating with each other. When the insurers are wealthy
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relative to the hedger, the hedger cannot change the direction of the insurers’ speculations.

In that case, the hedger chooses between cheaper partial insurance and more expensive

full insurance. The hedger does not trade with both insurers since her contract with one

insurer devalues her contract with the other insurer. When the hedger chooses cheaper

partial insurance, she manages counterparty risk through the rationing of quantities pur-

chased. In that case, the price of the insurance does not reflect counterparty risk. This is

consistent with the empirical findings in Arora et al. (2012) whereby the effect of coun-

terparty risk on the price of OTC derivative contracts is small. When counterparty risk

is not priced, it does not mean that there is no counterparty risk. Counterparty risk may

still appear as costs for the hedger in other dimensions.

When the hedger chooses the more expensive full insurance, the hedger chooses to

trade with the pessimist. This is similar to the counterparty selection in Du et al. (2016).

However, insurers in this model do not have existing risky assets when selling insurance

to the hedger. Thus, this model predicts that even if an insurer does not have existing

credit risk correlated with the endowment of the hedger, the hedger may still choose not

to contract with that insurer. This is a new empirical prediction.

I also provide an upper and lower bound on the cost of hedging insurance contracts.

When gains from speculating are small, hedging becomes cheaper. When hedging is cheap

enough, furthermore, the hedger may choose to hedge by trading with both insurers.

Given specific utility function, this model can predict when the hedger will choose to

trade with both insurers. This prediction connects Du et al. (2016) and Gündüz (2016).

Finally, I examine the effect of central clearing on the hedger’s welfare. I focus on

the ability of the central counterparty to share losses across its clearing members. In this
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case, central clearing increases the hedger’s welfare. However, since the hedger has to

compete with the pessimist in price, the price of the equilibrium contract depends on the

bargaining power between the optimist and the pessimist. Both insurers, this chapter

argues, are indifferent between participating and not participating in central clearing.

Thus, even if participation is voluntary, both insurers would participate.
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CHAPTER 2

Leverage, Bubble and Option

2.1. Introduction

This chapter extends Simsek (2013) to study more general belief structure in col-

lateral equilibrium. Market participants have heterogeneous beliefs and disagree about

future payoffs. The majority of the literature in heterogeneous beliefs has focused on

disagreement about the mean. However, in practice, market participants may disagree

about future volatility as well as the tail risks. This chapter explores more general beliefs

structures that allow the agents to disagree in more than one dimension.

Heterogeneous beliefs can cause that the market participants to speculate on their

beliefs and take on risky portfolios with high leverage. This is especially true when

the market participants are presumedly risk-neutral. Many stock market crashes in the

past were attributed to this kind of speculation by optimistic investors. For example,

the hallmark of the financial crisis in 2007 is optimism and high leverage. In another

example, the rapid growth in the Chinese stock market in 2015 before the eventual crash

in 2016 is also said to have been fueled by optimistic investors borrowing money (often

from family and friends) to invest in the stock market. This chapter studies how more

general heterogeneous beliefs interact with leverage and how they affect the prices. In

particular, I find the sufficient conditions in terms of disagreements in beliefs that can

generate bubble in asset prices.
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A natural setting to study heterogeneous beliefs, leverage, and bubble is the collateral

equilibrium framework introduced by Geanakoplos (1997) and employed in Simsek (2013).

I follow Simsek (2013) to model an economy with an infinite number of states that are

determined by realization of payoffs from an asset A. There are two types of risk-neutral

agents in the economy, one unit mass each. They are called optimists and pessimists for

their belief about the mean of A’s payoff. However, the optimists can disagree with the

pessimists in other aspects as well. For example, the optimists may believe in a greater

variance in the distribution of A’s payoffs. In addition to the asset A, the agents can also

trade simple debt contracts which have to be collateralized by the asset A. For each unit

of simple debt contract an agent sells, the agent has to hold one unit of asset A. The

simple debt contract is essentially a way for the agents to leverage up their position by

borrowing to purchase the asset A. Thus, leverage is endogenous in this model. A third

investment option for the agents is to simply hold cash, which has a gross return of 1.

Despite the more general belief structure in the model, a unique Nash Equilibrium

exists if the pessimists are wealthy enough to always hold cash. In this unique equilibrium,

I find that a bubble can exist if the optimists believe in larger future volatility. I define

bubble as the equilibrium price of the asset that exceeds the optimists’ valuation. Here,

the bubble exists for reasons different from both Harrison and Kreps (1978) and Fostel and

Geanakoplos (2015). Using the simple debt contracts, the asset can be split into pieces

held by different agent. Thus, the asset as a whole is priced by more than one type of

agents in this model. Therefore, the price of the asset may exceed the optimists’ valuation

if each agent holds the portion of the asset that she is most optimistic about. This is
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different from resale value or collateral value. As a result, this a model can generate a

bubble in the equilibrium asset price with a simple one-period model.

Moreover, since leverage is endogenous in this model, I find interesting and counter-

intuitive results. Since the pessimists’ large endowment prevent them from taking on

leverage, I will only discuss the results for the optimists. First, the more wealth the

optimists have, the lower their equilibrium leverage. Essentially, leverage is a poor man’s

tool. While one can achieve high return with leverage, one mainly uses leverage to obtain

positions that are out of her reach with her available endowment. As the optimists have

more endowment while the supply of asset A remains constant, the need for leverage

decreases. Thus, endogenous leverage decreases. The second interesting result is that the

equilibrium price of asset A decrease with leverage. This is counterintuitive as people

often blame speculators for driving up the price with their leverage. This result, by no

means, claims that the price is low. In fact, the equilibrium price can still be higher than

the optimists’ valuation while decreasing with leverage. The reason for these results is

again due to endogenous leverage. Since only the poor uses high leverage, higher leverage

means the optimists are poorer. Thus, the pessimists, who do not use leverage, will obtain

a larger share of the payoffs from asset A. So, the market as a whole has lower leverage

and thus lower prices.

Since the asset and the simple debt contracts replicate option payoffs, I also examine

implications in option pricing. In the case when the risk-neutral investors’ beliefs are

normally distributed with different variances, the model can generate the option smirk.

The drivers of the smirk in this chapter are different from that in Buraschi and Jiltsov

(2006). In Buraschi and Jiltsov (2006), the option smirk is driven by the investors’
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disagreement in the mean of the payoff distribution. In this model, even when investors

agree on the mean, if they disagree on variance of the distribution, the volatility smirk

arises. The main drivers of the smirk are the underpricing of options with high strike

price and the overpricing of the asset itself. The intuition is simple. If options with

high strike prices are underpriced, there will be the smirk. If the asset is overpriced, the

true distribution is skewed to the left relative the distribution used to back out implied

volatility. Thus, volatility would be higher for the options with lower strike prices and

lower for the options with higher strike prices.

The chapter proceeds as follows. Section 2.2 discusses the literature review. Section

2.3 presents the model. Section 2.4 present the equilibrium results. Section 2.5 studies

implications in option pricing. Section 2.6 provides extensions and discussions on alter-

native assumptions. Finally, Section 2.7 concludes. The proofs and additional analysis

can be found in Appendix B.

2.2. Literature Review

This chapter extends the literature in collateral equilibrium. This chapter is closely

related to Fostel and Geanakoplos (2015) and Simsek (2013). More specifically, this

chapter extends the framework from Simsek (2013) to study more general belief structures.

The more general beliefs structures yield similar yet different results. Similar to Fostel

and Geanakoplos (2015), in the more general belief structure, the equilibrium asset price

contains a positive collateral value. At the same time in this model, the optimists, who

hold the asset in the equilibrium, also enjoy a discount due to their disagreement with

the pessimists. This discount counteracts the effect of the positive collateral value. Thus,
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I provide sufficient conditions in which the positive collateral value overcomes the effect

of the discount to result in a bubble in the asset price. The existence of a bubble is in

contrast to results from Simsek (2013). Moreover, I find that leverage decreases the asset

price in contrast to Fostel and Geanakoplos (2015).

This chapter is also closely related to the literature on heterogeneous beliefs and bub-

bles (e.g. Harrison and Kreps, 1978; Scheinkman and Xiong, 2003; Buraschi and Jiltsov,

2006). In this literature, the models are typically dynamic and the agents disagree over

the process for the mean. The dynamic disagreement is able to generate bubble in asset

prices due to resale value of the asset and optimists becoming pessimists in the future.

The model in this chapter is static and the agents disagree over the entire payoff distribu-

tion rather than just over the mean. Thus, the optimists who are overall optimists about

the asset may in fact be more pessimistic than the pessimist over either the left tail or

the right tail of the payoff distribution. In fact, the disagreement over the tail is enough

to generate a bubble in the asset price. The static nature of the bubble means the bubble

can grow or crash easily depending on how disagreement changes through periods. One

can imagine an overlapping generation type formulation to extend this model to multiple

periods to study dynamics of the bubble.

This chapter is also closely related to the literature on asset price bubbles (e.g. Harrison

and Kreps, 1978; Banerjee, 1992; Abreu and Brunnermeier, 2003). The bubble here is a

result of collateral value of the asset. It is in contrast to the resale value in Harrison and

Kreps (1978), herding in Banerjee (1992), and the asynchronized trading in Abreu and

Brunnermeier (2003).
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This chapter has option pricing implications. Thus, this chapter is also closely related

to the option pricing literature (e.g. Merton, 1976; Buraschi and Jiltsov, 2006). In this

chapter, option pricing is non-standard as the asset price includes an additional collateral

component. Moreover, the disagreement between the agents result in a discount in the

asset prices. This positive collateral component and the discount compete to cause the

asset to be either overpriced or underpriced. Thus, using the price as an input to compute

the option prices is incorrect. Moreoever, the discount in the asset price translate directly

to the option prices, causing the options to be undervalued. Thus, this model can generate

a volatility smirk. The driver of the volatility smirk in this model is the discount in the

asset price, which is a result of disagreement between the agents over the tail of the payoff

distribution. This is in addition to the disagreement between the agents over the mean

as in Buraschi and Jiltsov (2006). Under the more general belief structure, this chapter

identifies more ways the agents can disagree to cause implied volatility to smirk.

2.3. Model

This is a one period model with time t ∈ {0, 1}. There is one unit of asset A in the

economy with a payoff s ∈ [s, s̄] at t = 1. For convenience, I restrict s and s̄ to be finite.

Since the payoff of the asset is the only state variable, s also represents states of the world

at t = 1. Agents cannot short-sell asset A.

In addition to A, the agents in the model can trade simple debt contracts with each

other. In a simple debt contract, the seller promises to repay D at t = 1 for upfront

payment π(D) by the buyer at t = 0. As there is no commitment or enforcement in

repaying the debt, each unit of simple debt contract must be collateralized by one unit of
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A . Thus, for promised repayment D, the simple debt contract pays out

min(s,D)

at t = 1. If s, the realized payoff from A, is not enough to cover promised repayment

D, the buyer simply keeps1 realized payoff s and let the borrower default with no further

recourse. In this case, the seller of the simple debt contract is the borrower and the

buyer is the lender. Since simple debt contracts are solely defined by promised repayment

D. I call the simple debt contract D if the seller promises to repay D. Moreover, since

promising to repay D > s̄ is the same as promising to repay D = s̄, I can restrict my

attention to D ∈ [s, s̄]. The risk-free rate is normalized to 0.

Before proceeding, I would like iron out some wrinkles in the definitions. Since selling

the simple debt contract D = s̄ (collateralized by the asset) is the same as selling the

asset and thus canceling out the seller’s asset position, the simple debt contract s̄ can

create potential problems. One immediate problem is that simple debt contracts cannot

be collateralized by other simple debt contracts. Thus, if an agent hoards all of asset A

and then use it as collateral to sell simple debt contract s̄, no other agents can sell simple

debt contracts since they do not have any asset. This scenario is clearly suboptimal. So,

I make the following assumption.

Assumption 2.1. For every unit of simple debt contract s̄ an agent sells, her position

in asset A is reduced by a unit.

1For each unit of debt contract sold, the seller must hand over one unit of A as collateral at t = 0.
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Note that Assumption 2.1 does not relax the short-sell constraint, since simple debt

contract s̄ still needs be collateralized with asset A.

2.3.1. Agents

There are two types of agents, one unit mass each. The types are defined by the agent’s

beliefs about asset A. Type o agents are optimist with the optimistic belief that state

s occurs with probability fo(s) for all s ∈ [s, s̄]. Type p agents are pessimist with the

pessimist belief fp(s) for all s ∈ [s, s̄]. For simplicity, I require fo(s) and fp(s) to be

continuous over [s, s̄]. The continuity ensures the functions’ respective integral, i.e. cu-

mulative distribution functions Fo(s) and Fp(s), to be well defined. In Assumption 2.2, I

define optimism.

Assumption 2.2 (optimism). Eo[s] > Ep[s]

This is the natural definition of optimism as the risk-neutral optimists value A more.

If A were the only thing trade, the risk-neutral agents would only care about the mean.

However, the agents can also trade simple debt contracts with each other. Since the

payoff of simple debt contracts is not a linear function of s, the agents also care about the

entire distributions fo and fp. For this reason, Simsek (2013) uses a stronger condition

for optimism

fp(s)

1− Fp(s)
>

fo(s)

1− Fo(s)
,(2.1)

for all s ∈ [s, s̄]. Though this condition is convenient as it guarantees uniqueness in

solution, it is perhaps too strong as it rules out bubble in asset prices. It is possible to
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weaken (2.1) and still achieve uniqueness without restricting equilibrium prices too much.2

For now, Assumption 2.2 suffices in defining optimism.

Each agent is endowed with cash at t = 0. There are no asset endowments. One can

think of the unit of asset being held by some unmodeled agents who sell their assets at

t = 0 for consumption. The optimists are endowed with no in cash while the pessimists

are endowed with np in cash. One can also think of no and np as the mass of optimists

and pessimists, respectively, while each agent has one unit of cash endowment at t = 0. I

assume

Assumption 2.3 (Wealthy Pessimists). np is large enough so that pessimists always

hold some cash in any equilibrium.

This assumption only matters when the optimists don’t also hold cash in equilibrium.

When only the pessimists hold cash in equilibrium, Assumption 2.3 implies the optimists

have all the bargaining power when determining the equilibrium price of the simple debt

contracts. In such case, although there is no bargaining in the model, the equilibrium

price of the debt contract would coincide with the bargaining price. Assumption 2.3 also

implies the pessimists weakly prefers3 holding cash to holding asset A and using A as

collateral to borrow. Thus, I can restrict my attention to any equilibrium in which only

the optimists hold the asset and borrow. Turns out Assumption 2.3 is not as restrictive

as it seems. Under Assumption 2.6 in section 2.3.3, Assumption 2.3 is redundant4.

2See section 2.3.3.
3See section B.1.2 for more detail.
4See section 2.6.1.
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2.3.2. Agents’ Problem

At t = 0, the agents choose their asset, cash, and debt positions. Agents of type i chooses

asset positions αi. The agents cannot short-sell, so

αi ≥ 0,(2.2)

for all i ∈ {o, p}. The agents cannot carry negative cash balance, since the only form of

borrowing in the model is through simple debt contracts. So, the agents’ cash balance ci

is subjected to

ci ≥ 0,(2.3)

for all i ∈ {o, p}. The agents also have to choose positions in simple debt contracts. For

simple debt contract D, the agents have to choose positions µi(D). The agents have to

do this for all D ∈ [s, s̄]. Thus, the agents’ debt positions can be summarized by the

function µi : [s, s̄]→ R mapping D to a real number. As collateral is core of this chapter,

the agents’ debt positions are subjected to collateral constraint

αi ≥
∫
D∈[s,s̄]

−µi(D)−dD,(2.4)

for all i ∈ {o, p}, where µi(D)− = min(0, µi(D)) is the negative positions of the agents

in simple debt contract D. In other words, only the sellers have to put up collateral

since they promise payments in the future and may not deliver. It is useful to also define

µi(D)+ = max(0, µi(D)). Note that µi(D) = µi(D)− + µi(D)+.
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Lastly, the agents have to balance their budgets. They are subjected to budget con-

dition

ni ≥ αiq + ci +

∫
D∈[s,s̄]

π(D)µi(D)dD,(2.5)

for all i ∈ {o, p}, where q is asset A’s price and π(D) is the price of simple debt contract

D. The agents take these prices as given. The budget constraint is fairly straightforward

with the left-hand-side being the endowment and the right-hand-side being the costs of

obtaining positions in asset A, cash, and simple debt contracts.

The agents choose their positions and maximize their t = 1 wealth. Formally, type i

agents solve

Vi(ni) ≡ max
αi,ci,µi

U(·|ni) ≡ Ei [αis] + Ei
[∫

D∈[s,s̄]

min(s,D)µi(D)dD

]
+ ci,(2.6)

subject to constraints (2.2), (2.3), (2.4), and (2.5).

2.3.3. Belief Structure

The belief structure is the main focus of this chapter. I generalize the belief struction

from Simsek (2013), which is a bit restrictive. To see this, I have the following corollary.

Corollary 2.1. Given (2.1) from Simsek (2013), 1−Fo(s) > 1−Fp(s) for all s ∈ (s, s̄).

In other words, (2.1) implies that the complementary cumulative distribution function

(CCDF) of the optimists’ beliefs is always higher than the CCDF of the pessismists’ beliefs.
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Figure 2.1. CCDFs for fo ∼ N (0.1, 2) and fp ∼ N (0, 1)

This implies that the equilibrium price of A is always lower than the optimists’ expected

value of A.5 Thus, (2.1) essentially rules out a bubble in the equilibrium price of A.

Although (2.1) is convenient to use as it helps satisfy the second order condition for

the agents’ problem and establish uniqueness in solution, it only allows certain types of

disagreement between the agents. For example, if the agents have truncated normal (TN)

beliefs and only disagree over the mean, (2.1) will be satisfied. However, if the agents have

TN beliefs and disagree over both the mean and the variance, (2.1) will be violated, as

shown in Figure 2.1. It is not uncommon that the agents would disagree over the variance

of their beliefs. Thus, I will replace (2.1) with a weaker condition.

5This follows from (B.16) and Corollary B.3
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Assumption 2.4. The slope of 1−Fo(s)
1−Fp(s)

crosses zero at most once and is otherwise

non-zero for all s ∈ (s, s̄).

This assumption is weaker than (2.1) and gives the agents more freedom in terms of

disagreement. It’s easy to see that (2.1) satisfies Assumption 2.4. Moreover, if the slope

of 1−Fo(s)
1−Fp(s)

does not cross zero, Assumption 2.4 will be equivalent to (2.1). Intuitively, if

the slope doesn’t cross zero, it’s either negative or positive. In that case, Assumption 2.2

implies that the slope has to be positive, which is equivalent to (2.1).

As seen in Figure 2.1, there exists exactly one point at which the two CCDF’s cross

and the ratio 1−Fo(s)
1−Fp(s)

is increasing. This is implied by Assumption 2.4.

Corollary 2.2 (Single Crossing and Maximum). There is a unique ssc ∈ [s, s̄) such

that 1−Fo(ssc)
1−Fp(ssc)

= 1 and fp(ssc)

1−Fp(ssc)
> fo(ssc)

1−Fo(ssc) . There is also a unique solution sm(> ssc) to

arg maxs
1−Fo(s)
1−Fp(s)

.

Turns out, ssc is the least amount the optimists are willing to borrow6 and sm is the

most amount the optimists are willing to borrow7. This is useful in determine whether the

optimists have too much or too little endowment. In Simsek (2013), ssc = s and sm = s̄.

Hence, Simsek (2013)’s Assumption A1, 0 < no < Eo[s]− s. For the same reason, I make

an additional assumption.

Assumption 2.5. 1−Fp(sm)

1−Fo(sm)
Eo[s−min(s, sm)] < no < Eo[s−min(s, ssc)].

Under Assumption 2.5, the optimists don’t have too much cash. Thus, they can always

find some investment that is more profitable than holding cash. Assumption 2.5 also helps

6This means the optimists will not choose simple debt contracts with D < ssc
7Similarly, this means the optimists will not choose simple debt contracts with D > sm
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avoid corner cases when the optimists don’t have enough endowment to enter their desired

investment. The Eo[s −min(s,D)] term is simply the cost of borrowing D to buy asset,

i.e. a leveraged position. As shown in Appendix B.1, the term 1−Fo(D)
1−Fp(D)

is the return on

the leveraged position with debt D.

Assumption 2.4 also has some interesting implications. On one hand, if the slope of

1−Fo(s)
1−Fp(s)

crosses zero exactly once from below, the optimists still care more about the best

states than the pessimists, but the optimists may also care more about the worst states.

In other words, the optimists’ belief may have a greater variance than the pessimists’

belief. On the other hands, if the slope of 1−Fo(s)
1−Fp(s)

crosses zero exactly once from above,

the opposite is true in that the pessimists may believe in greater variance in the future.

It is possible to remove Assumption 2.4 completely to consider any belief structure, but

the problem becomes much more complex. So instead, I will discuss an example in which

the belief structure violates Assumption 2.4.

I also define a slightly stronger assumption

Assumption 2.6. The slope of 1−Fo(s)
1−Fp(s)

crosses zero at most once and it is from below.

Otherwise, 1−Fo(s)
1−Fp(s)

is non-zero for all s ∈ (s, s̄).

Figure 2.1 also satisfies this assumption. This stronger assumption help establishing

uniqueness. Under Assumption 2.6, the optimists may believe in larger variance or a larger

right tail in the payoff distribution. This is reminiscent of the capital asset pricing model

and the optimists believe in a larger beta than the pessimists. There are alternatives to

Assumption 2.6.8

8See discussion in section 2.6.2.
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2.4. Equilibrium

First, I define the market clearing conditions.

αo + αp = 1(2.7)

µo(D) + µp(D) = 0 ∀ D ∈ [0, s̄](2.8)

Next, I define the equilibrium and present the first major result.

Definition 2.1 (Nash Equilibrium). A Nash Equilibrium is a collection of prices

(q ∈ R++, π : [0, s̄] → R++) and portfolios (αi, ci, µi) such that the portfolios solve

problem (2.6) for each i ∈ {o, p} and the market clears with (2.7) and (2.8).

Proposition 2.1. Given Assumptions 2.2, 2.3, 2.5, and 2.6, Nash Equilibrium ex-

ists and is unique up to allocations and prices of traded contracts. In the unique Nash

Equilibrium,

(1) only the asset A and simple debt contract D∗(no) are traded;

(2) optimists hold all of asset A and sells simple debt contract D∗(no);

(3) D∗(no) is strictly decreasing function in no;

(4) the equilibrium prices are q = qo(D
∗)9 and π(D∗) = Ep[min(s,D∗)];

(5) for D 6= D∗, the price π(D) lies in an interval defined by (B.24) and (B.25);

(6) q is strictly decreasing in D∗.

If the optimists also believe in more future variance, there is a unique Nash Equilibrium

in which the optimists sell simple debt contract D∗ to help fund their purchase of asset A.

9qo(D
∗) ≡ Ep [min (s,D∗)] +

1−Fp(D∗)
1−Fo(D∗)Eo [s−min (s,D∗)]. Also see (B.16) in Appendix B.1.4.
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In this case, the pessimists would never purchase the asset in equilibrium since asset A’s

price is higher than the pessimists’ valuation and they make zero profit on selling simple

debt contracts.

2.4.1. Prices

The traded simple debt contract D∗ is priced by the pessimists’ break-even price. It is as

if the optimists have all the bargaining power when selling the simple debt contracts. Note

that I made no assumption about bargaining power, only about the pessimists’ wealth

(Assumption 2.3). One conclusion that can be drawn is that the more abundant side of

the market pays the break-even price. The price of each non-traded simple debt contract

lies in an interval and is not unique. They are bounded above and below by the optimists

and pessimists’ first order conditions. The rest of asset A, after deducing the payoffs to

simple debt contract D∗, is priced by the optimists at a discount 1−Fp(D∗)
1−Fo(D∗) . This discount

is the effective bargaining power of the optimists. The overall return from the optimists’

investment is exactly the reciprocal, 1−Fo(D∗)
1−Fp(D∗)

(≥ 1).

Despite the discount, the equilibrium price of asset A may exceed both types of agents’

expected values. The overpricing is due to the additional value of asset A as collateral.

Specifically, the collateral value of asset A is the profit the optimists gain from selling

simple debt contract D∗, or 1−Fo(D∗)
1−Fp(D∗)

Ep[min(s,D∗)] − Eo[min(s,D∗)]. In Simsek (2013),

this collateral value is negative due to the assumption (2.1) on the beliefs. In this frame-

work under the more general belief structure, there are cases when the collateral value is

positive. Thus, overpricing may result. Below I give the sufficient condition on the beliefs

to general a bubble in the price of asset A.
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Proposition 2.2. Given Assumption 2.2 and Assumption 2.3, for there to be a no

such that some equilibrium price q > Eo[s], it is sufficient that the slope of 1−Fo(s)
1−Fp(s)

crosses

zero exactly once from below.

By take leveraged position, the agents essentially split the asset into two pieces. Each

type of agents holds one piece of the asset. If the asset can be split in a way that each

holder is more optimistic about her portion of the asset, the combine price of the asset

will exceed each individual’s valuation. The sufficient condition is a stronger version of

Assumption 2.6, where the optimists’ belief about the variance is larger than the pes-

simists’ belief. If the disagreement about the variance is large enough relative to their

disagreement about the mean, overpricing can result.

Since this is not a pure exchange economy, the overpricing of the asset matters. Even

though the agents each hold pieces of the asset and only pay for their pieces, together

they pay the full price for the unit of asset A. Since A is help by an unmodeled third

party, the more overpricing there is the more money is drained from the economy.

2.4.2. Endogenous Leverage

The promised repayment D in simple debt contracts can be thought of as leverage, since

it reduces capital required to purchase the asset. Thus, leverage can be defined as D.

The more the agents borrow, the higher their leverage. In this case, only the optimists

use leverage. Here, the leverage is endogenous as D∗ is determined in equilibrium. Thus,

there are two interesting observations from Proposition 2.1.

First, in the unique Nash Equilibrium, the leverage decreases with the optimists’

endowment. While higher leverage gives the optimists higher return, leverage is essentially
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a poor man’s tool. Given the market clearing conditions, as the optimists get wealthier,

there is still one unit of the asset available. Thus, the optimists cannot leverage up even

if they wanted. From anecdotal evidence, this is the reason why hedge funds are not

scalable even though they have high returns.

Second, in the similar vein, the unique equilibrium price of asset A is strictly decreasing

in leverage. If the equilibrium leverage D∗ is higher, it simply means the optimists are

paying less for their portion of the asset while owning smaller portion of the asset. This

mean the pessimists, who do not use leverage, own bigger portion of the asset. Thus, even

though the optimists’ leverage is higher, overall leverage in the market actually decreases.

Though the equilibrium price decreases with leverage, the equilibrium price is not cheap.

As discussed before, the equilibrium price can still be higher than both types of agents’

valuations.

2.5. Option Pricing

Since Assumption 2.6 gives uniqueness, I will proceed under this assumption. The

asset plus the simple debt contracts replicate option payoffs. When holding the asset and

borrowing in the unique equilibrium, the optimists’ payoff in each state s is

s−min(s,D∗) = max(0, s−D∗),

which is equivalent to the payoff from a call option written on asset A with strike price

D∗. Thus from now on, I will refer to the optimists holding as the call option with strike

price D∗. Since any non-traded simple debt contract does not have a unique price, I will

examine implications in options pricing across equilibrium for different endowments. I
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Figure 2.2. Call Option Expected Payoff vs. Price

will focus on call options since put options, obtained through the put-call-parity, tell the

same story.

The cross-sectional call options prices can be determined by the following formula.

Given equilibrium D∗, the call option price C(D∗) is

C (D∗) = qo(D
∗)− Ep[min(s,D∗)] =

1− Fp(D∗)
1− Fo(D∗)

Eo[min(s,D∗)].(2.9)

The option price decreases with the equilibrium leverage D∗ as the equilibrium price

qo(D
∗) decreases with D∗. This is shown in Figure 2.2. Regardless of the equilibrium

D∗, the prices of the call options are always below the optimists’ expected payoff. The
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call options are underpriced due to the discount 1−Fp(D∗)
1−Fo(D∗) < 1 the optimists enjoy. Under

Assumption 2.6, the discount decreases with D∗. Thus, the out of money call options

are more expensive. In fact, as shown in Figure 2.3, the call options are either too cheap

at low strike prices or too expensive at high strike prices. Consequently, the implied

volatility features a downward volatility smirk as seen in Figure 2.3. The steepness in the

smirk depends on how fast the discount decreases with D∗. The fast the decrease, the

steeper the smirk. In other words, if the optimists are increasingly more optimistic about

the good states, the volatility smirk becomes steeper.
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Note in Figure 2.3, there are no values for call options with strike prices far below the

asset price. This is because these strike prices are not in any equilibrium. The agents in

this model would never choose these simple debt contracts, reiterating the risky debt that

investors take from Simsek (2013).

This result is different from that of Buraschi and Jiltsov (2006), which also examines

heterogeneous beliefs and volatility smirk. In Buraschi and Jiltsov (2006), the main driver

of the volatility smirk is the disagreement over the mean. Here however, the main driver

of the volatility smirk is the increasing optimism of the optimists over the good states.

In this setting, even if the agents were to agree on the mean, as long as they disagree

over the variance, volatility smirk would result. Moreover, the agents in this chapter

are risk-neutral in contrast to the agents in Buraschi and Jiltsov (2006) with constant-

relative-risk-aversion utilities. Thus, the effect of disagreement on option pricing in this

chapter is not a result of risk-aversion. It is a result of the effective bargaining power for

the optimists due to their beliefs.

2.6. Discussions

2.6.1. Endowment

Assumption 2.3 simplifies the problem by making the pessimists wealthy. For the market

to clear, the pessimists cannot achieve a return higher than one. In the parameter space

outside of the one defined by Assumption 2.3, the pessimists may achieve a return of

λb ≥ 1, where λb is the Lagrange multiplier on the pessimists’ budget constraint. This
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is equivalent to δb for the optimists10. Without Assumption 2.3, the pessimists and op-

timists’ returns are determined jointly in equilibrium. In analysis similar to the one in

section B.1.3, one can find δb
λb

= 1−Fo(D)
1−Fp(D)

for simple debt contract D to be traded in equi-

librium. This gives rise to the possibility that the pessimists may in fact hold the asset

and borrow in equilibrium. Nevertheless, given Assumption 2.6, one can show that there

is no equilibrium in which the pessimists hold the asset and borrow. Intuitively, under

Assumption 2.6 as shown in Figure 2.1, the optimists value the good states of the asset

more than the pessimists. If the pessimists hold the asset and borrow, the pessimists are

holding the asset in the good states, which they value less. Thus, if the pessimists prefer

to hold the asset in the good states, the optimists would prefer to hold the asset even

more. So, there is no equilibrium in which the pessimists hold the asset and borrow as

the optimists would always compete for the asset and prevent the market from clearing.

Though for small pessimists’ endowment np, the pessimists can have a return higher than

one. This would depress both the asset price and the prices of simple debt contracts.

Thereefore, under Assumption 2.6, Assumption 2.3 does not make qualitative differences.

2.6.2. Belief Structure

Assumption 2.6 guarantees uniqueness of the equilibrium. Under the more general As-

sumption 2.4, there can be multiple equilibria. In particular, the equilibrium in which

the pessimists hold the asset and borrow can coexist with the equilibrium in which the

optimists hold the asset and borrow. For example, when the pessimists believe in a larger

future volatility, Assumption 2.6 is violated while Assumption 2.4 holds. In this case, the

10See section B.1.3.



58

pessimists may actually be more optimistic about the states with higher payoffs. Despite

the multiple equilibria, a bubble in the asset price can still result if the pessimists are

more optimistic about the states with higher payoffs. This hints at a more general con-

dition for a bubble to exist. Due to the nature of simple debt contracts, as long as the

pessimists are more optimistic than the optimists about either the left tail or the right of

the payoff distribution, a bubble can exist. Thus, complex financial instruments are not

necessary for a bubble to exist in the asset price when the agents disagree about the tail

distribution.

While it is possible to generalize the belief structure even further to include cases when

the CCDFs crosses multiple times and the slope of their ratio changes signs multiple times,

it becomes more of an empirical exercise as multiple equilibria become even more of an

issue. Moreover, for normal and log-normal distributions, disagreement over the mean

and variance fall under Assumption 2.4. Thus in most cases, Assumption 2.4 suffices.

2.7. Conclusion

This chapter generalizes Simsek (2013) and provides sufficient conditions for a bubble

to exist in equilibrium. Bubble exists in this setting because of positive collateral value for

the asset and low effective bargaining power from the optimist. The drivers are different

from Fostel and Geanakoplos (2015) and Harrison and Kreps (1978). Since the portion of

the asset held by the optimists in equilibrium replicates a call option, I also examine option

pricing implications. Due to the heterogeneous beliefs, the optimists enjoy a discount when

purchasing their portion of the asset. This discount causes the equivalent call options to

be undervalued. This is particularly true at higher strike prices. This implies a downward
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sloping volatility smirk. Here the disagreement over risk in the right tail of the payoff

distribution is the main driver of the discount and the volatility smirk.
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CHAPTER 3

Attack on the Bubble: Role of a Large Arbitrageur and

Desynchronized Small Arbitrageurs

3.1. Introduction

In the past, there have been many asset bubbles. From the earliest Dutch Tulip

Mania to the recent Housing Bubble in the Great Recession, all asset bubbles grew and

eventually burst. In many cases, the market participants willingly ride the bubble even

though they know that the bubble would eventually burst.1 More interestingly, some

market participants enter, exit, and reenter the bubble. One famous anecdote is that

the great physicist Sir Isaac Newton bought into the South Sea Bubble in 1720, exited

with a large profit, and reentered the bubble a few months later only to lose all of his

investments. Commenting on his experience, Newton stated, “I can calculate the motions

of heavenly bodies, but not the madness of people.” Perhaps Newton himself was the

mad/irrational one. This raises the questions of whether rational market participants

would choose to ride the bubble and whether they would reenter the bubble if they have

previously exited. Moreover, from a policy perspective, it is interesting to study whether

a single large market participant can help discipline the smaller market participants and

burst the bubble earlier like how George Soros broke the peg on the British pound. This

1See Temin and Voth (2004) and Brunnermeier and Nagel (2004).



61

chapter examines the interaction between large and small market participants to answer

the above questions.

This chapter extends the setting from Abreu and Brunnermeier (2003) with a large

market participant and uses a novel solution technique to study whether and how large

and small market participants can coordinate to burst an asset bubble. I compare my

results to the results from the currency attack literature (e.g. Corsetti et al., 2004) since

the settings are similar. I find that similar to the currency attack literature, the presence

of a large market participant induces the small market participants to attack the bubble

more aggressively. In other words, the small market participants ride the bubble for a

shorter duration. However, in contrast to the currency attack literature, I also find that

the information of the large market participant and the information of the small market

participants are complements. The more information the large market participant has,

the longer the small market participants ride the bubble. Finally, I find that under certain

conditions, the market participants would not reenter the bubble if they have previously

exited.

This model is a continuous time model. There is one large arbitrageur and a unit mass

of small arbitrageurs. They choose their optimal holding in an asset with an exogenous

price process. After a certain time, the price starts growing faster than the fundamental

value of the asset and overpricing occurs. The arbitrageurs who hold the asset sequentially

become aware of its overpricing. They can choose to sell their share or to ride the price

growth. When a sufficient number of arbitrageurs sell their shares, the price collapses to

the fundamental value of the asset. It is in the arbitrageur’s best interest, therefore, to

try to time the price collapse and reap maximum profits. With this framework in mind,
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the role of the small arbitrageurs is to sustain the overpricing while the role of the large

arbitrageur is to discipline the small arbitrageurs and accelerate the bubble bursting.

The main risk in the model is that the arbitrageurs do not know whether they are the

first ones or the last ones to discover the overpricing. This is what Abreu and Brunner-

meier (2002) call the synchronization risk. More specifically, the arbitrageurs can only

perceive time relative to the time when they discover the overpricing. Thus, they have

no concept of absolute time. Therefore, it is more convenient to consider the problem

in each arbitrageur’s relative time, or time relative to the arbitrageur’s time of discovery

of the overpricing. This is the novel solution technique that this chapter introduces. It

greatly simplifies the problem since all the small arbitrageurs solve the same problem in

their relative time. The usage of relative time also allows an easy addition of the large

arbitrageur for analysis in this chapter.

This chapter is organized in the following manner. Section 3.2 reviews the literature.

Section 3.3 presents the model. Sections 3.4 and 3.5 present the equilibrium results.

Section 3.6 presents the extension. Finally, 3.7 concludes. The proofs and additional

analysis can be found in Appendix C.

3.2. Literature Review

This chapter extends Abreu and Brunnermeier (2003) and is closely related to Doblas-

Madrid (2012) and Sato (2015). I use the same synchronization risk that is present in

all three papers. The exogenous pricing of the asset and the synchronization risk allows

me to study the mechanism of the bursting of an asset bubble. Distinct from all three
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papers, I use a novel relative time solution technique and introduce a large arbitrageur to

study the interaction between the large and small arbitrageurs.

This chapter studies asset bubbles. It is closely related to the various strands of

the theoretical bubble literature. There is the overlapping generation models pioneered

by Samuelson (1958), Diamond (1965), Tirole (1985), and others. There is Allen and

Gorton (1993) from the delegation literature. And, there is Harrison and Kreps (1978)

and Scheinkman and Xiong (2003) from the Heterogeneous-Beliefs literature. However,

these papers focus on how an asset bubble can exist and be sustained in equilibrium.

They do not offer insight into how a bubble may crash. Backward induction generally

rules out the coexistence of a bubble and its crash.

This chapter is also related to currency attack/global games literature (e.g. Corsetti

et al., 2004), which also focuses on coordination problems between market participants.

I compare my results to those in the currency attack literature. There are similarities

and differences. The differences highlight the difference between a currency attack and

an attack on a bubble asset.

Finally, this chapter is also related to the empirical analyses on asset bubbles: Temin

and Voth (2004) and Brunnermeier and Nagel (2004). These papers document market

participants riding the bubble which is consistent with the predictions from this model.

3.3. Model

3.3.1. Basic Setting

The model setting follows Abreu and Brunnermeier (2003) closely. The only major differ-

ence is the addition of one large arbitrageur. Time t is continuous and lies in the interval
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[0, τ̄ ], for some finite constant τ̄ . There are one large arbitrageur and a unit mass of

small arbitrageurs in the economy. The arbitrageurs choose their positions at each time

instance in a single asset with an exogenous price process. Since the price is exogenous,

there is no need to worry about the supply of the asset. When the arbitrageurs buy or

sell the asset, they are guaranteed execution at the exogenous price. One can think of the

exogenous price as a price driven by unmodeled behavioral traders or noise traders. For

convenience, I restrict short-selling. The instantaneous risk-free rate for holding cash is a

constant denoted r.

3.3.1.1. The Asset. The asset has an exogenous price process that coincides with its

fundamental value process until some time t0. Formally,

ft = Pt = egt, ∀ t < t0,

where ft is the fundamental value process for the asset, Pt is the price process for the

asset, and g is a constant denoting the instantaneous grow rate of the fundamental value

and the price process. After t0, the price process remains the same and grows at rate g.

The fundamental value process, however, drops to

ft = (1− β(t− t0))Pt, ∀ t ≥ t0,

where β(t − t0) : [0, τ̄) → [0, β̄] is a strictly increasing function of t − t0. To keep the

fundamental value process non-negative, I assume β(τ̄) = β̄ < 1. I call β(t − t0)Pt the

bubble component in the price, since that is how much the price exceeds the fundamental

value. In other words, the overpricing of the asset starts at t0.
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The high and sustained growth in the price process can be justified in the same way

as in Doblas-Madrid (2012). To make this model interesting and meaningful, I make the

following assumption.

Assumption 3.1. g > r; dft
ft
≤ rdt, for t ≥ t0.

In words, the fundamental value process grows faster than the risk-free rate before

t0 and slower than the risk-free rate after t0. Therefore, the price process dominates the

risk-free rate for all t while the risk-free rate weakly dominates the fundamentals value

process after t0. The time t0 is random and exponentially distributed with the cumulative

distribution function

Φ(t0) = 1− e−λt0 , t0 ∈ [0,∞),

for some constant λ.

3.3.1.2. The Small Arbitrageurs. In this economy, there is a unit mass of identical

risk-neutral small rational arbitrageurs with initial wealth of 1. They sequentially learn

about the overpricing of the asset over the time interval [t0, t0 + η], for some constant η.

More specifically, at each t′ ∈ [t0, t0 + η], 1
η

of the small arbitrageurs wake up and learn

about the overpricing. However, the small arbitrageurs who learned about the overpricing

t′ do not know the current time t′ or the exact time t0 when the overpricing started. Their

best (rational) guess of t0 given ti is the conditional cumulative distribution,

Φ(t0|ti, η) =
Φ(t0)− Φ(ti − η)

Φ(ti)− Φ(ti − η)
=
eλη − e−λ(t0−ti)

eλη − 1
, ∀ t0 ∈ [ti − η, ti],
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where ti is the time when small arbitrageur i realizes there is an overpricing. Note that

Φ(t0|ti, η) = 0 for t0 < ti − η and Φ(t0|ti, η) = 1 for t0 > ti.

3.3.1.3. The Large Arbitrageur. Now, I introduce a risk-neutral large arbitrageur.

I first consider the case in which the large arbitrageur has initial wealth ηκ and learns

about the overpricing at time t0. As defined in section 3.3.1.4, κ is an important constant.

I then derive the comparative statics for when the large arbitrageur has wealth w ≤ ηκ

and is uncertain about when the overpricing started.

3.3.1.4. Bubble and Burst. First I define the price collapse. The price of the asset

collapses to the fundamental value if the total selling pressure, i.e. cumulative amount of

the asset sold over time, exceeds some constant κ. This is useful in defining a bubble. In

the absence of the large arbitrageur, a bubble is defined as in Abreu and Brunnermeier

(2003); a bubble is the overvaluation of the fundamentals for a duration longer than ηκ.

ηκ is the time needed for at least κ small arbitrageurs to learn about the overpricing.

Suppose all arbitrageurs buy the asset at t = 02. If the overprice persists for a duration

longer than ηκ, it means that there are enough small arbitrageurs who know about the

overpricing to collapse the price but decide not to do so. In other words, they are riding

the bubble.

In the presence of the large arbitrageur who has wealth w ≤ ηκ and realizes the

overpricing at t` ∈ [t0, t0 +ν], a bubble is defined as the overvaluation of the fundamentals

for a duration longer than ηκ ∨ (t` ∧ (ηκ − w)), i.e. the minimum time to reach a total

selling pressure of ηκ. The intuition is as the following. If weighted by wealth and time,

2This is true without loss of generality due to Assumption 3.1.



67

the large arbitrageur counts as w/η small arbitrageurs.3 Therefore, to reach a critical

mass of κ in selling pressure, duration of ηκ − w is needed. Thus, t` ∧ (ηκ − w) gives

the earliest time that enough large and small arbitrageurs learn about the overpricing to

collapse the price. Moreover, to remedy the case in which κ small arbitrageurs learn about

the overpricing before the large arbitrageur does, I take the minimum ηκ∨ (t` ∧ ηκ−w).

When the price collapses, the bubble bursts. Henceforth, I will refer to the price

collapse as the bubble bursting.

3.3.2. Information Structure and Filtration

For simplicity, henceforth I refer to the cohort of the small arbitrageurs who learn about

the overpricing at ti simply as small arbitrageur ti. For the large arbitrageur who learns

about the overpricing at t`, I refer to her as large arbitrageur t`. First, I define relative time

t− ti for arbitrageur ti.
4 This is useful as the arbitrageurs do not know the absolute time

when they learn about the overpricing and can only perceive relative time. For arbitrageur

ti, she learns the existence of the overpricing at ti. Her conditional cumulative distribution

is

Φ(t0 − ti|η) ≡ Φ(t0|ti, η) =
eλη − e−λ(t0−ti)

eλη − 1
, ∀ t0 − ti ∈ [−η, 0].

3Time refers to when the arbitrageur learn about the overpricing. At each time, 1/η small arbitrageurs
learn about the overpricing. Thus, there is a mass of 1/η of small arbitrageurs distributed across time.
Since the large arbitrageur learn about the overpricing at a single time, she is comparable to 1/η of the
small arbitrageurs for each unit of wealth she has.
4It is the same for both large and small arbitrageurs. So, here I will not distinguish them.
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Here, I rewrite Φ as a function of the relative time t0− ti. Moreover, t0− ti is independent

of ti.
5 Thus, I can drop the condition on ti.

Now, let’s look at the price process and fundamental value process in terms of relative

time. From the perspective of small arbitrageur ti, I define

P (t− ti) ≡ eg(t−ti) = Pt/Pti .

Since all quantities are in terms of prices, it is possible to define Pti as the numeraire for

arbitrageur ti and replace all quantities to be defined with respect to numeraire Pti for

arbitrageur ti. Thus, the fundamental value process for t > t0 can also be replaced with

f(t− ti, t0 − ti) ≡ ft = (1− β(t− t0))P (t− ti) = [1− β((t− ti)− (t0 − ti))]P (t− ti).

Each arbitrageur solves different problems before and after the time when she realizes

the overpricing. The problem before the arbitrageur’s realization of the overpricing is

trivial since the asset that grows at g strictly dominates the risk-free rate r. Thus, I can

assume each arbitrageur invest all of her wealth into the asset before her realization of

the overpricing and focus on her problem after the discovery without loss of generality.

Thus, I only need to consider arbitrageur ti’s problem at ti. So, the discount e−r(t−ti) is

also a function of relative time. For convenience, I define the transaction cost as Cer(t−ti)

to keep the arbitrageurs from trading infinite number of times.

5Too see this, I have

Φ((t0 − ε)− (ti − ε)|η) =
eλη − e−λ((t0−ε)−(ti−ε)

eλη − 1
=
eλη − e−λ(t0−ti)

eλη − 1
= Φ(t0 − ti|η),

for any ε > 0. Moreover, (t0 − ε)− (ti − ε) = t0 − ti ∈ [−η, 0].
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As arbitrageur ti does not know the absolute time of ti, the arbitrageur’s action cannot

be contingent on the absolute time. Thus, the arbitrageur’s action must be defined as a

function of relative time,

σ(t− ti) : (−∞,∞)→ [0, 1].(3.1)

Here, I define 1 − σ(t − ti) as proportion of arbitrageur ti’s wealth that is invested in

the asset at time t. Thus, wealth times σ(t − ti) is the selling pressure of arbitrageur ti.

Notice the range of σ is positive and thus rules out short-selling. For notation simplicity,

relative time will be denoted as

τ0 = t− t0, τi = t− ti, τ 0
i = t0 − ti.

3.3.3. The Small Arbitrageurs’ Problem

I first define some useful notations and quantities before writing out the small arbitrageurs’

problem. I define the cumulative selling pressure as

s(τ0) =

∫ τ0

(τ0−η)∧0

σ(τi)dτi.(3.2)

The burst time of the bubble given the selling pressure can then be defined as

T ∗(t0) = inf {τ0 + t0|s(τ0) ≥ ηκ} = t0 + inf {τ0|s(τ0) ≥ ηκ} = t0 + T̄ .(3.3)

where T̄ is independent of t0. T̄ is also treated as a constant by all arbitrageurs, since each

small arbitrageur has infinitesimal weight and cannot affect s(τ0). I define inf{∅} = τ̄ as

the exogenous burst time. The cumulative probability function of bursting can then be
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defined as6

Π(τi|η) = Φ(τi − T̄ |η).

I define π(τi|η) ≡ dΠ(τi|η)
dτi

= dΦ(τi−T̄ |η)
dτi

≡ φ(τi− T̄ |η) to be the probability density functions

of bursting.

Small arbitrageur ti’s problem at time ti is as the following.

max
σ′

∫ T̄

0

[ ∫ τ ′i

0

e−rτ
′′
i P (τ ′′i )σ′ (τ ′′i ) dτ ′′i

+e−rτ
′
i (1− σ (τ ′i))

[
1− β

(
ti + τ ′i − T ∗

−1 (ti + τ ′i)
)]
P (τ ′i)

]
dΠ(τ ′i |η)− C

∫ τi

0

|σ′(τ ′i)|dτ ′i

Notice that since T ∗(t) = t + T̄ , the inputs of the β function above can be simplified to

β(T̄ ). Also, note that since before small arbitrageur ti’s realization of the overpricing, the

asset price strictly dominates the risk-free rate. It is optimal for the risk-neutral small

arbitrageur ti to be fully invested in the stock. The above can be stated more formally as

Lemma 3.1. Since Pt > ert, σ(τi) = 0 for all τi < 0.

The proof is trivial as stated above. Therefore, it is not necessary to include τi < 0

in the maximization problem. Moreover, since ti is arbitrary and appears nowhere in the

objective function, all small arbitrageurs have the same maximization problem. Thus, if

the solution to the small arbitrageur’s problem is unique, all the small arbitrageurs should

have the same solution in relative time.

6Π(τi|η) =
∫
T∗(t0)<t

dΦ(t0 − ti|η) =
∫
t0+T̄<t

dΦ(t0 − ti|η) =
∫
ti+τ0

i +T̄<t
dΦ(τ0

i |η) =
∫
τ0
i <τi−T̄

dΦ(τ0
i |η) =

Φ(τi − T̄ |η)
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3.3.4. The Large Arbitrageur’s Problem

In this section, I present the general problem for the large arbitrageur who has wealth

w ≤ ηκ and realizes the bubble at time g uniformly distributed in [t0, t0 +ν], where ν ≤ T̄ .

I call ν the inverse information quality of the large arbitrageur’s information, since the

large arbitrageur’s information becomes more accurate the smaller ν becomes. But before

proceeding, I make one simplifying assumption.

Assumption 3.2 (Almost-Complete Information). Even though the large arbitrageur

does not know the realization of absolute time t`, the small arbitrageurs do. Nevertheless,

the small arbitrageurs only know absolute time t`, not time relative to the realizations of

their own ti’s.

Under this assumption, the small arbitrageurs do not have to be concerned with the

uncertainty of the large arbitrageur. Because of this, the selling pressure function s(τ0)

keeps the same form when including the large arbitrageur, greatly simplifying the analysis.

This is comparable to the assumption on the information of small arbitrageurs, since

each small arbitrageur knows the absolute time for the realization of all the other small

arbitrageurs.

Now, I present the large arbitrageur’s problem. I will later show that the large arbi-

trageur will not reenter the market after she first exists. Thus, the problem simplifies to

optimal exit time problem as the following.

max
γ

w ×
∫ γ

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

(3.4)
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+

∫ T̄

γ

e−rγP (γ)[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγ(1− β(γ − γ′ + T̄ ))P (γ)[(s̄(γ − γ′ + T̄ )− (ηκ− w)) ∧ 0]φ(γ′ − T̄ |ν)dγ′

−C

where s̄(τ0) = s(τ0|T̄ = τ0), i.e. the selling pressure of all small arbitrageurs at t0 + τ0 if

they expect the bubble to burst at t0 + τ0.

3.4. Equilibrium with only Small Arbitrageurs (Benchmark Case)

In this section, I present the benchmark equilibrium in the economy with only small

arbitrageurs. The equilibrium in the is section provides a good benchmark against the

equilibrium in the economy with both large and small arbitrageurs. First, I define the

equilibrium below.

Definition 3.1 (Equilibrium). An equilibrium is a defined as a Perfect Bayesian Nash

Equilibrium, where agents optimizes their actions based on their (correct) beliefs of other

agents’ optimal actions.

3.4.1. Equilibrium: No updating

Before stating the equilibrium result, I specify a technical assumption.

Assumption 3.3. λ
1−e−ληκ <

g−r
β(ηκ)

.

This assumption is very useful as it helps rule out the no-bubble equilibrium and helps

compute the equilibrium bubble bursting time.7

7See section C.1.1
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Proposition 3.1. The bubble bursts exogenously at t0 + τ̄ if and only if λ
1−e−ληκ ≤

g−r
β̄

.

Moreover, the bubble bursts endogenously at t0 + τ ∗0 ≡ t0 +β−1
(

(g−r)(1−e−ληκ)
λ

)
if and only

if λ
1−e−ληκ >

g−r
β̄

.

If the bubble bursts endogenously at or after τ̄ , then s̄(τ0) < ηκ for all τ0 < τ̄ . In

other words, the small arbitrageurs will not be able to coordinate to reach a cumulative

selling pressure of ηκ before τ̄ . Therefore, in this equilibrium, the bubble will burst at

τ̄ for sure. Thus, one can consider endogenous bursting of the bubble at and after time

τ̄ as exogenous bursting. For example, if I were to add an arbitrageur who can reach a

selling pressure of ηκ by herself (i.e. the large arbitrageur) to this setting, the rest of

the arbitrageurs would simply treat the action of the new arbitrageur, e.g. bursting the

bubble by herself, as exogenous and would modify their own strategies accordingly.

3.4.2. Equilibrium with Updating

The only new source of information after ti for each small arbitrageur ti is whether her

selling of the asset bursts the bubble. On one hand, if the bubble didn’t burst after

small arbitrageur ti sells, small arbitrageur ti would immediately realize that she is one

of the first κ small arbitrageurs to realize the overpricing. That is, t0 ∈ [ti − ηκ, ti].

This information would change the small arbitrageur’s posterior cumulative distribution

function of t0 to Φ(τ 0
i |ηκ). On the other hand, if the bubble bursts before the small

arbitrageur sells, the small arbitrageur would realize that she is one of the latter 1 − κ

small arbitrageurs to realize the overpricing. However, since the bubble already burst,

there is nothing the small arbitrageur can do except exiting the market (or staying in

the market if the post-crash price/fundamental value grows at same rate as the risk-free
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interest rate). Note that the small arbitrageur still has to sell at τ ∗i so that she can get

this new information. Thus, the small arbitrageur problem with and without updating

only differs after τ ∗i , i.e. small arbitrageur’s decision to reenter the market if her sale

does not burst the bubble. I write the small arbitrageurs’ new problem of reentry as the

following, from the perspective of τi (if the bubble didn’t burst after τ ∗i ).

max
σ′

∫ T̄

τ∗i

σ′
(
τ ′i
) [
e−rτ

′
iP
(
τ ′i
) (

1−Π
(
τ ′i |ηκ

))
−
∫ T̄

τ ′i

e−rτ
′′
i
[
1− β

(
T̄
)]
P
(
τ ′′i
)
dΠ(τ ′′i |ηκ)− C × sign(σ′(τ ′i))

]
︸ ︷︷ ︸

A(τ ′i)

dτ ′i

With the new problem for the small arbitrageurs, I have the following result.

Proposition 3.2. The small arbitrageurs do not reenter even with updating. Thus,

the equilibrium with updating is equivalent to the equilibrium without updating.

Proposition 3.2 establishes the result that small arbitrageurs only use symmetric trig-

gering strategy and thus proves the claim of Abreu and Brunnermeier (2003) that when

each small arbitrageur’s asset holding is less than maximum, she correctly believes that

the asset holding of all small arbitrageurs who became aware of the bubble prior to her

are also at less than maximum. Since the equilibrium with updating is equivalent to the

equilibrium without updating, I will proceed to use the results from Proposition C.1 and

3.1 in the following analysis.

3.5. Equilibrium with Large and Small Arbitrageurs

The equilibrium notion here is same as before except I augment the set of arbitrageurs

with the large arbitrageur. First, let us rearrange (3.4) to what follows, so that it’s easier
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to work with.8

max
γ

w ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′ − C(3.5)

First, I will consider the case in which the large arbitrageur has complete information,

i.e. ν = 0, and enough wealth to burst the bubble by herself, i.e. w = ηκ. Then, I will

consider the other extreme case where the large arbitrageur has minimum information,

i.e. ν = T̄ , and maximum wealth w = ηκ. Though I call ν = T̄ the minimum possible

information, I realize that ν can be even larger than T̄ . However, I will show in section

3.5.3 that the minimum ν, denoted ν, is actually less than T̄ and that the equilibrium

is identical for all ν ≥ ν. Finally, I examine the more general case with ν ∈ (0, T̄ ) and

w = ηκ. For tractability, I henceforth define β(τ0) = 1− e−(g−r)τ0 .9 And, I state another

assumption.

Assumption 3.4. λ
1−e−λη ≤ g − r (⇔ 1

λ
[log(g − r)− log(g − r − λ)] ≤ η)

Assumption 3.4 is fairly innocuous. It holds automatically in the case of exogenous

bursting of the bubble. In the endogenous case, the burst time depends only on ηκ.

Thus, if the above condition doesn’t hold, I can simply increase η (to η′) until the above

condition holds and decrease κ (to κ′) so that η′κ′ = ηκ.

8For completeness see section C.1.2
9See section C.1.3 for detail.



76

3.5.1. Case 1: Complete information and Maximum Wealth

Proposition 3.3. There exists a unique equilibrium in which 0 < γ∗ ≤ T̄ solves (C.1)

and the large arbitrageur does not reenter after she sells at γ∗. Moreover, γ∗ = T̄ if and

only if T̄ = τ̄ , i.e. the bubble bursts exogenously.

Given the unique equilibrium, I now examine whether the overpricing lasts long enough

to be called a bubble. Since the large arbitrageur has wealth w = ηκ and becomes aware

of the overpricing at t0, the overpricing is a bubble if the price doesn’t collapse at t0.

Since the large arbitrageur has enough wealth to burst the bubble anytime, the bubble

bursts exactly at γ∗ when the large arbitrageur sells. By Proposition 3.3, γ∗ > 0. That

is, the large arbitrageur sells after t0 + γ∗ > t0. So, there is indeed a bubble equilibrium.

In the case that T̄ is endogenous, i.e the bubble bursts endogenously by the small

arbitrageurs at T̄ in absence of the large arbitrageur, Proposition 3.3 shows that γ∗ < T̄ .

In other words, the large arbitrageur accelerates the bursting of the bubble. Moreover,

the small arbitrageurs attack the bubble earlier when compared to the benchmark case.

Formally,

Corollary 3.1. When there is a the large arbitrageur in the market and T̄ is en-

dogenous, the time of sale for each small arbitrageur is τ ∗∗i = γ∗ − 1
λ
(log(g − r) −

log(g − r − λβ(γ∗)) < τ ∗i .

The result from Corollary 3.1 is in line with the findings in Corsetti et al. (2004). The

presence of a large arbitrageur makes the small arbitrageur more aggressive in attacking

both the bubble in this chapter and the currency peg in Corsetti et al. (2004). However,

I must exercise care when comparing the model/results here to that in Corsetti et al.
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(2004), since the main uncertainty in this model is time (i.e. synchronization risk a la

Abreu and Brunnermeier (2002)) whereas the main uncertainty in Corsetti et al. (2004)

is the fundamental value (i.e. fundamental risk). What time is to this model is equivalent

to what probability is to Corsetti et al. (2004). Nevertheless, the intuition transcends the

differences between this chapter and Corsetti et al. (2004). The reason for the similarity

in the results is that the presence of a large arbitrageur in both models improves the

coordination of the small arbitrageurs. Intuitively, since the large arbitrageur exerts

non-negative selling pressure, the presence of a large arbitrageur decreases the threshold

number of small arbitrageurs required to burst the bubble and thus makes it easier for

the small arbitrageurs to coordinate. However, the similarity between the results here

and those in Corsetti et al. (2004) is only limited to the endogenous case. According

to Proposition 3.3, when the small arbitrageurs cannot coordinate to burst the bubble

endogenously, it is optimal for the large arbitrageur hold the bubble asset until time t0+ τ̄ .

In other words, if the bubble bursts exogenously in absence of the large arbitrageur, the

large arbitrageur does not accelerate the bubble bursting, nor does she make the small

arbitrageurs more aggressive. Formally,

Corollary 3.2. When there is a the large arbitrageur in the market and T̄ is exoge-

nous, the time of sale for each small arbitrageur is τ ∗∗i = γ∗ − 1
λ
(log(g − r)− log(g − r −

λβ(γ∗)) = τ ∗i .

Thus, while the presence of the large arbitrageur accelerates the endogenous bursting,

the presence of the large arbitrageur cannot covert the endogenous bursting to exogenous

bursting or vice versa. Here is another way to interpret the result so that it’s readily
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comparable to that of Corsetti et al. (2004). Suppose exogenous bursting means the

bubble never bursts, i.e. τ̄ =∞. Then, the large arbitrageur would not burst the bubble

if the small arbitrageurs could not do so by themselves. In the words of Corsetti et al.

(2004), the presence of the large arbitrageur does not affect the probability of the bubble

bursting. This result is in contrast with another result from Corsetti et al. (2004), i.e. the

presence of a large arbitrageur unambiguously increases the probability of attack. The

difference between Corollary 3.2 and the result from Corsetti et al. (2004) is driven by the

difference between an attack on pegged currency and an attack on growing bubble. Since

the price of the bubble asset is growing exponentially, the large arbitrageur stands to gain

if the small arbitrageurs cannot coordinate. In Corsetti et al. (2004), however, the peg is

constant. So, the large arbitrageur gains nothing by not attacking the peg regardless of

the small arbitrageurs’ coordination ability.

It is important to note, however, that the large arbitrageur’s increase probability of

the bubble bursting as her information becomes incomplete. Intuitively, as the large

arbitrageur loses track of absolute time, she becomes more cautious and would start

selling (or attacking the bubble) earlier, even when the bubble would otherwise burst

exogenously. I shall first examine the case when the large arbitrageur has worst possible

information, i.e. ν = T̄ .

3.5.2. Case 2: Minimum Information and Maximum Wealth

In this case, I examine the large arbitrageur’s optimal exit time when she has minimum

information, i.e. ν = T̄ . Since the large arbitrageur should be more cautious, the optimal
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exit time relative to the time when the large arbitrageur becomes aware of the overpricing

should be smaller than γ∗ from last subsection.

Proposition 3.4. There exists a unique solution 0 < γ∗∗ < T̄ to the large arbitrageur’s

problem10.

Recall t` is the absolute time when the large arbitrageur becomes aware of the bubble.

Fixing t` = t0, i.e. that the large arbitrageur is aware of the bubble since t0 but thinks

that t` ∈ [t0, t0 + T̄ ], I can compare this case directly to Case 1. In this case, the large

arbitrageur sells earlier than τ̄ since γ∗∗ < T̄ ≤ τ̄ by Proposition 3.4. Therefore, when the

bubble bursts exogenously, the large arbitrageur sells earlier in this case than in the previ-

ous case with complete information. In other words she bursts the bubble endogenously.

The large arbitrageur also sells earlier when the bubble bursts endogenously.

Corollary 3.3. γ∗∗ < γ∗

The presence of the large arbitrageur with incomplete information unambiguously in-

creases the probability of the bubble bursting. Following the footsteps of Corsetti et al.

(2004), now I analyze the effect of the large arbitrageur’s information on the small arbi-

trageurs. With Assumption 3.2, I can rule out any direct effect of the large arbitrageur’s

information on the small arbitrageurs. Thus, the large arbitrageur only has indirect effect

on the small arbitrageurs through her time of sale. According to Corollary 3.1, the small

arbitrageurs’ optimal selling time increases with the large arbitrageur’s optimal selling

time. Therefore, Corollary 3.3 also implies that small arbitrageurs sell earlier in this case

when compared to Case 1 and the Benchmark Case. Now the result is more akin to

10See C.2
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that of Corsetti et al. (2004). That is, the presence of the large arbitrageur makes the

small arbitrageurs more aggressive regardless of whether the bubble bursts endogenously

in absence of the large arbitrageur. However, this result is also in direct contrast with

yet another result from Corsetti et al. (2004). While the small arbitrageurs here are more

aggressive in Case 2 than in Case 1, the small arbitrageurs in Corsetti et al. (2004) are

less aggressive in their equivalent of my Case 2 and in their equivalent of my Case 1.11

The intuition of the result in Corsetti et al. (2004) is the following. If the large

arbitrageur has better information (relative to the smaller arbitrageurs), she can identify

the true fundamental value better and attack the peg with higher accuracy and probability.

Since the probability of the large arbitrageur directly enters into the small arbitrageurs’

payoff function, increased probability would cause the small arbitrageurs to be more

aggressive. Knowing this, the large arbitrageur would become more aggressive herself. If,

however, each small arbitrageur has better information (relative to the large arbitrageur),

the small arbitrageurs may fail to coordinate since each one has independent signals.

Thus, to the small arbitrageurs, the coordination-free large arbitrageur’s information is

more valuable than their own information. In a sense, the information of the small

arbitrageurs and the large arbitrageur are substitutes.

In this model, however, the information quality of the large arbitrageur does not

affect the information quality of the small arbitrageurs (as ruled out by Assumption 3.2).

The information quality of the large arbitrageur only affects the actions of the small

arbitrageurs indirectly through the action of the large arbitrageur. Thus, Assumption

11If I hold the small arbitrageurs’ information constant in Corsetti et al. (2004), I can map Case 1 and 2
to two of the limiting cases in Corsetti et al. (2004).
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3.2 essentially eliminates the information effect and allows me to focus on the large-

arbitrageur effect, i.e. the effect of changing the large trader’s optimal exit time on the

small arbitrageurs. With only the large-arbitrageur effect, the information of the large

arbitrageur and small arbitrageurs are more like complements.

Moreover, the large arbitrageur attacks the bubble less aggressively the more informa-

tion she has, since there are gains by holding the exponentially growing bubble asset. In

the absence of Assumption 3.2, the better information of the large arbitrageur also gives

better information to the small arbitrageurs and would thus make the small arbitrageurs

attack more aggressively. Thus, if I were to remove Assumption 3.2, I would get conflict-

ing results with the information effect increasing the small arbitrageurs’ aggressiveness

and the large-trader effect would decrease the small arbitrageurs’ aggressiveness. I want

to focus on the large-arbitrageur effect and thus my decision to have Assumption 3.2.

In the next subsection, I solve the general case with ν ∈ (0, T̄ ) and w = ηκ and show

that the results holds in the intermediate cases as well.

3.5.3. Case 3: Incomplete Information and Maximum Wealth

In this case, I have the following result.12

Proposition 3.5. There exists a unique equilibrium γ∗∗∗ = arg maxγ H(γ). Moreover,

γ∗∗∗ = γ∗∗ if ν ≥ T̄ − γ∗∗ and γ∗∗ < γ∗∗∗ ≤ T̄ − ν if ν < T̄ − γ∗∗. Also, if ν < T̄ − γ∗∗,

γ∗∗∗ = T̄ − ν only if T̄ = τ̄ .

There exists a unique equilibrium for the general ν < T̄ . I also have γ∗∗∗ ≥ γ∗∗.

This implies that the optimal exit time for the large arbitrageur (or the burst time of the

12See section C.1.5 for additional analysis
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bubble) is weakly later than the optimal exit time in Case 2. Thus, the small arbitrageurs

attack less aggressively than in Case 2. Moreover, as stated in Proposition 3.5, γ∗∗∗ = γ∗∗ if

and only if ν ≥ T̄ − γ∗∗. This mean I overstated the worst-case scenario at the beginning

of this section. the large arbitrageur’s strategy is not affected by the deterioration of

her information if her (inverse) information quality is already ν = T̄ − γ∗∗. Thus, the

worse information quality for the large arbitrageur is ν = T̄ − γ∗∗. Now, two questions

remain: 1. Can γ∗∗∗ be larger than γ∗? 2. What’s the relationship between γ∗∗∗ and

ν? The answer to the first question in the exogenous case is trivial. By Proposition 3.5,

γ∗∗∗ ≤ T̄ − ν ≤ T̄ = τ̄ = γ∗. For the answer to the first question in the endogenous case

and the answer to the second question, I have the following lemma.

Lemma 3.2. γ∗∗∗ ≤ γ∗. Moreover, γ∗∗∗ is strongly monotonic in −ν for all ν < ν.

This Lemma states that the large arbitrageur attacks the bubble less aggressively the

more information he has. This would also mean the small arbitrageurs attack the bubble

less aggressively when the large arbitrageur has more information. Again note that this

result follows from the large-arbitrageur effect.

Thus far, I have only used the case where the large arbitrageur has ηκ. In the next

section, I will evaluate the comparative statics with respect to wealth.
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3.6. Extensions

3.6.1. Comparative Statics on Wealth of the large arbitrageur

Going back to the large arbitrageur’s problem in the beginning of Section 3.5 with general

w, I have

max
γ

w ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′ − C

For any fixed w, the first and last terms are constants with respect to the problem, so I

can simplify it to the following

max
γ

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′

With the min function in the heart of the objective function. I can’t very well take the

derivative to get the first order condition as it is. However, I can modify split the objective

function into two parts, one part unrestricted by w and another part with only w.

max
γ

∫ γ+T̄−s̄−1(ηκ−w)

γ

e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ+T̄−s̄−1(ηκ−w)

e−rγP (γ)β(γ − γ′ + T̄ )wφ(γ′ − T̄ |ν)dγ′(3.6)

For any fixed w, let γ̂(w) ≡ s̄−1(ηκ− w).13 Then, it is clear that for all γ ≥ γ̂, the above

objective function is exactly the same as the one in Section C.1.5. Thus, if γ̂(w) ≤ γ∗∗∗,

13s̄−1 exists in the endogenous case and in the exogenous case if ηκ − w is not in the range of s̄, I set
γ̂ = τ̄ .
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the equilibrium with w would be exactly the same as the equilibrium with w = ηκ in

section 3.5.3. However, if γ̂(w) > γ∗∗∗, the optimal selling time for the large arbitrageur

is γ(4) ∈ (γ∗∗∗, γ̂(w)). To see this, first note that for all γ ≥ γ̂(w), objective function in

(3.6) is same as H. By properties of H, H ′(γ̂(w)) < 0. Thus, the first order condition for

(3.6) is also negative at γ̂(w). Let us denote the objective function in (3.6) as L. Then,

L(γ) =H(γ)

+

∫ T̄

γ+T̄−γ̂(w)

e−rγP (γ)β(γ − γ′ + T̄ )(w − [ηκ− s̄(γ − γ′ + T̄ )])φ(γ′ − T̄ |ν)dγ′.

This implies

L′(γ∗∗∗) =H ′(γ∗∗∗)

+

∫ T̄

γ∗∗∗+T̄−γ̂(w)

{
(g − r)e(g−r)γ∗∗∗β(γ∗∗∗ − γ′ + T̄ )(w − [ηκ− s̄(γ∗∗∗ − γ′ + T̄ )])

+ e(g−r)γ∗∗∗β′(γ∗∗∗ − γ′ + T̄ )(w − [ηκ− s̄(γ∗∗∗ − γ′ + T̄ )])

+ e(g−r)γ∗∗∗β′(γ∗∗∗ − γ′ + T̄ )s̄′(γ∗∗∗ − γ′ + T̄ )
}
φ(γ′ − T̄ |ν)dγ′

>H ′(γ∗∗∗) = 0.

where the last inequality is from γ̂(w) > γ∗∗∗ and w > ηκ − s̄ in the range of the

integral. Thus, γ(4)(w) > γ∗∗∗. The exogenous case γ̂(w) = τ̄ is trivial with γ(4) = τ̄ .

In this general case, it’s difficult to say whether γ(4) is monotonic in −w without further

analysis. Nevertheless, in Case 1, since γ(4)(w) = γ∗ ∧ γ̂(w), γ(4) is weakly monotonic in

−w. More specifically, γ(4) is (strongly) monotonic in −w if and only if w ≤ ηκ− s̄(γ∗).
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3.7. Conclusion

In this chapter, I first solve the Abreu and Brunnermeier (2003) model with a different

approach. Specifically, I analyze the information that is available to each arbitrageur and

conditioned the arbitrageurs’ actions on the information available to them. In this case,

since all the small arbitrageurs have common prior and the distribution of the main

uncertainty is updating-proof, all the small essentially perceive the same information in

the time frame that is relative to their own time. Thus, the arbitrageurs’ actions in relative

time must be identical. This greatly simplifies the problem since now the arbitrageurs

no longer need to worry about absolute time. With this novel method, I prove that

arbitrageurs use trigger strategies and would not reenter the market even when they

update on new information.

Next, I examine the implications introducing a large arbitrageur. Specifically, I study

the effect of the presence of the large arbitrageur on the small arbitrageurs. I found

that the presence of the large arbitrageur induces the small arbitrageurs to sell earlier by

partially alleviating the synchronization/coordination problem between the small arbi-

trageurs. This result is in line with Corsetti et al. (2004), who also suggest that the pres-

ence of a large arbitrageur reduces the coordination problem between small arbitrageurs

in a global-games setting. Nevertheless, my results do have some differences with those

of Corsetti et al. (2004). There is one result from this model that is absent from Corsetti

et al. (2004). If the large arbitrageur has perfect information and the small arbitrageur

cannot coordinate, then the large arbitrageur will not attack the bubble until the last

moment when the bubble bursts exogenously. This model also suggests that the small

arbitrageurs are less aggressive when the large arbitrageur’s information improves. This
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is in direct contrast with one result from Corsetti et al. (2004). In Corsetti et al. (2004),

the small arbitrageurs become more aggressive when the large arbitrageur’s information

improves. The difference between the results here and in Corsetti et al. (2004) lies in the

difference between the attack on currency and the attack on an asset bubble. The price

of the bubble asset here is growing exponentially while the currency peg in Corsetti et al.

(2004) is constant. On one hand, mis-coordination in this model gives birth to a bubble

and thus gains from riding the bubble. On the other hand, coordination in Corsetti et al.

(2004) allows successful attack on the pegged currency, yielding profit.

Lastly, I examine the effect of wealth of the large arbitrageur on her strategy. I find

that in the general case, having less wealth than ηκ induces the large arbitrageur to sell

later than the case when she has exactly ηκ. In the case when the large arbitrageur has

complete information, if the large arbitrageur’s wealth is below a certain threshold, her

optimal time of sale is strongly monotonically decreasing in her wealth.
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APPENDIX A

Appendix for Chapter 1

A.1. Additional Analysis

A.1.1. Simplifying the problems with Assumption 1.2

Lemma A.1. Given Assumption 1.2, O would never choose τO,P s.t. (IR-P) is slack.

Lemma A.1 is an immediate consequence of Assumption 1.2. By Lemma A.1, I can

restrict the attention to τO,P such that (IR-P) binds with equality. I shall refer to the

equality version of (IR-P) as (IR’-P). Lemma A.1 means P will always accept O’s offer

and this reduces P ’s value function to

(A.1) ÛP (τH,P ) ≡ UP (τO,P (τH,P ), τH,P ) = EP [(wP − τH,P )+].

At t = 2, P ’s wealth, including the trades, is still (wP − τO,P − τH,P )+. This may be

different from (wP − τH,P )+. However, ex-ante at t = 1, P can be sure that O will offer

τO,P such that P is indifferent between the two. Thus, at t = 0, P is only concerned

about EP
[
(wP − τH,P )+]. This decouples P ’s decision of accepting H’s offer from other

contracts. This simplifies H’s problem.
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A.1.2. Simplifying the problems with Assumption 1.3

In section 1.3.2, I make no restriction on τO,P . Assumption 1.3 helps put some structure on

τO,P for the baseline result. As defined in (1.2), there are two possibilities, τO,P ∈ R+×R

and τO,P ∈ R−×R. The first possibility corresponds toO buying insurance from P whereas

the second possibility corresponds to O selling insurance to P . Given τH,O = τH,P = (0, 0),

O would always choose to sell insurance to P since O is more optimistic about state 1 and

O has all the bargaining power. When τH,O and τH,P are both non-zero, O may choose to

buy insurance from P so that P would default on τH,P . In that case, O would compare

the expected revenue from buying insurance from and selling insurance to P and choose

the better of the two. The only benefit for O to buy insurance from P is that O can get

min(τH,P (0), wP ) for free, since H already paid the price. The cost of doing so is that O

is trading against her own interest as O values state 1 more. It’s helpful to first study the

result when I restrict τO,P ∈ R− × R. Thus, I impose an Assumption 1.3 on wP to rule

out τO,P ∈ R+ × R. In section 1.6, I relax the assumption.

Assumption 1.3 also helps reduce the pessimist’s problem to a simple participation

constraint. To see this, I have the following Lemma, which follows immediately from

Assumption 1.3.

Lemma A.2. Given Assumption 1.3, O would only consider τO,P ∈ R− × R+.

This is very useful as I only need to consider O selling insurance to P . Thus, Lemma

A.2 states that O always has commitment problem. Assumption 1.3 also has another

implication. The second inequality in Assumption 1.3, which follows from the definition

of h(·), implies that P always has enough wealth to insure H. With Assumptions 1.1 and



92

1.3, I am essentially studying the case when both O and P are wealthy relative to H.

Together with P ’s value function in (A.1), Assumption 1.3 also implies P would not accept

any offer from H with τH,P (0) > wP , since H cannot afford τH,P (1) = wPh
−1(π) > 1,

which is required by (IR-HP) defined in the next section. Thus, H can never offer a

contract in which H asks P to pay more than P ’s wealth. P ’s value function can be

further reduced to

ŪP (τH,P ) ≡ EP [wP − τH,P ].

A.1.3. Analysis for Benchmark Case

In this case, τ ∗O,P = (0, 0) and H would choose τH,P = (0, 0). This provides a useful

benchmark since O does not have commitment problem. O’s value function becomes

EO[(wO − τH,O)+].

In words, O chooses whether to accept τH,O. With wO being common knowledge, H would

only offer contract τH,O ≤ wO. This reduces O’s objective function to EO[wO−τH,O]. Thus,

O would only accept the contract if EO[wO − τH,O] ≥ EO[wO] or EO[τH,O] ≤ 0. In other

words, O only accepts contract τH,O if O at least breaks even. Knowing this, H maximizes

EH [u(R + τH,O)] subject to O’s budget constraint, τH,O ≤ wO, and individual rationality

constraint, EO[τH,O] ≤ 0.
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A.1.4. Preliminary Analysis

As discussed previously, given Assumption 1.3, (IR-HP) can be reduced to

EP [wP − τH,P ] ≥ EP [wP ],(IR’-HP)

as P has enough wealth to insure H. Then, (IR’-HP) implies τH,P ∝ τh−1(π). In other

words, H only trades with P at the price of h−1(π). By Lemma A.2, wP − τH,P (0) > 0

implies wP − τO,P (0)− τH,P (0) > 0. This implies (BC-HP) can be removed and τ ′H,P can

be replaced by τH,P . In other words, P never defaults on H and so I can replace the

recovery contract τ ′H,P in H’s objective function with the actual contract τH,P .

Moreover, since wP − τO,P (0)− τH,P (0) > 0, P ’s value function reduces to

EP [wP − τO,P − τH,P ] .

Thus, O’s (IR’-P) simplifies further to a break-even condition for P

(IR”-P) EP [τO,P ] = 0.

This implies that O can sell insurance to P for price of h−1(π). (IR’-P) was the only

condition that dependents on both τH,P (0) and τH,P (1). With (IR”-P), O’s problem now

only depends on τH,P (1) with (BC-HP). By Lemma A.2, (BC-O) can be modified to

(BC’-O) − τO,P ≤ wO.
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Since τO,P is in the same direction as τH,O, O pays out to P exactly when H asks O for

payment. Thus, contract τH,O does not increase O’s budget constraint anymore. Given

Lemma A.2 and the above, I have the following Proposition.

Proposition A.1. Given any τH,P (1), there is a unique solution τ ∗O,P [τH,P (1)] ∝

−τh−1(π) to O’s problem. τ ∗O,P is independent of τH,O and τH,P (0). Moreover, τ ∗O,P is

a corner solution determined by either (BC’-O) or (BC-P). τ ∗O,P is only dependent on

τH,P (1) when (BC-P) binds.

O can sell insurance to P for a price of h−1(π), which is higher than O’s break-even

price of h−1(π′). Thus, O is willing to sell insurance to P until either O or P runs out

of money. This leads to commitment problem as O sells insurance to P to the limit,

regardless of O’s existing contract with H.

Given Proposition A.1, as long as the recovery contract τ ′H,O breaks even for O, O

will happily accept τH,O. Given independence of τ ∗O,P from τH,O, I can replace τ ′H,O in H’s

problem with τH,O and modify (IR-HO) and (BC-HO) to

EO[τH,O] ≤ 0,(IR’-HO)

τH,O ≤ wO + τ ∗O,P [τH,P (1)].(BC’-HO)

Thus, H can offer contract with a price as low as h−1(π′). H can do this as long as O has

enough resources. Moreover, the independence statements in Proposition A.1 imply

Proposition A.2. Either τ ∗H,O = (0, 0) or τ ∗H,P = (0, 0).
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In equilibrium, H would only consider trading with O or P . There are two cases.

First, H would only trade with O when (BC-P) binds, i.e. P runs out of wealth first

while trading with O. Intuitively, when H trades with both O and P , P would take

promises from H and use it to trade with O. This diverts state 0 wealth of O away from

H’s contract with O. Thus, H is essentially competing against herself for O’s state 0

wealth. Second, H would only trade with P when (BC’-O) binds, i.e. O runs out of

wealth first while trading with P . In that case, O gives all of her state 0 wealth to P .

Thus, H cannot expect O to pay her anything; H would only trade with P .

A.1.5. Additional Analysis for Hedging

Recall τO,P can be either R−×R or R+×R. I can immediately rule out τO,P ∈ R−×R−−

and τO,P ∈ R+×R++. Contracts in the first space means non-negative transfers from O to

P in both states while contracts in the second one means non-negative transfers from P to

O in both states. O would prefer offering (0, 0) to offering any contract τO,P ∈ R−×R−−.

P would never accept any contract τO,P ∈ R+ × R++ since P is better off with (0, 0).

Thus, it is only necessary to consider contracts τO,P that in either R− ×R+ or R+ ×R−.

In other words, I only need to consider O buying insurance from P or selling insurance

to P .

First, let us define useful notations. I shall denote

(A.2) τO,P,+ ≡ τO,P ∈ R+ × R− and τO,P,− ≡ τO,P ∈ R− × R+
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In words, τO,P,+ represents O buying insurance from P while τO,P,− represents O selling

insurance to P . Moreover, I define

UO(τH,O, τH,P , i) ≡ max
τO,P,i

ÛO(τO,P,i|τH,O, τH,P )(A.3)

τ ∗O,P,i ≡ arg max
τO,P,i

ÛO(τO,P,i|τH,O, τH,P )(A.4)

for i ∈ {+,−}. UO(τH,O, τH,P ,+) is O’s problem with the restriction that O can only buy

insurance for P . UO(τH,O, τH,P ,−) is defined analogously. I have the following Lemma.

Lemma A.3. Given τH,P and τH,O, τ ∗O,P,+ is either (0, 0) or h−1(π)(wP ,−(wP −

τH,P (0))+. τ ∗O,P,− is either

(1) wO(−τh−1(π))− (0, h−1(π)(τH,P (0)− wP )+),

if h−1(π)(wO − (τH,P (0)− wP )+) ≤ wP − τH,P (1),

(2) h(π)(wP − τH,P (1))(−τh−1(π))− ((τH,P (0)− wP )+, 0),

if h−1(π)(wO − (τH,P (0)− wP )+) > wP − τH,P (1),

(3) or (0, 0) if 1 and 2 gives lower expected utility.

Thus, given τH,P and τH,O, I only need to compare τ ∗O,P,+ and τ ∗O,P,− to find out whether

O prefers to buy insurance from or to sell insurance to P . Now I can define the incentive

compatibility constraints of O as the following:

ÛO(τ ∗O,P,+|τH,O, τH,P ) ≥ ÛO(τ ∗O,P,−|τH,O, τH,P ),(IC-O-B)

ÛO(τ ∗O,P,+|τH,O, τH,P ) ≤ ÛO(τ ∗O,P,−|τH,O, τH,P ).(IC-O-S)
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The first IC constraint states O prefers buying insurance from P . The second IC con-

straint states O prefers selling insurance to P . I augment H’s problem with the incentive

compatibility constraints. Whether H prefers O to buy insurance from P or otherwise, it

must be incentive compatible for O to do so.

For H’s problem, (IR-HO) requires comparison between ÛO(τO,P |τH,O, τH,P ) and

ÛO(τO,P |(0, 0), τH,P ) to determine the price of the contract. To aid the comparison in

(IR-HO), I have the following Lemma.

Lemma A.4. Given τH,P and τH,O, ÛO(τ ∗O,P,+|τH,O, τH,P ) ≥ ÛO(τ ∗O,P,−|τH,O, τH,P ) only

if ÛO(τ ∗O,P,+|(0, 0), τH,P ) ≥ ÛO(τ ∗O,P,−|(0, 0), τH,P ) for all τ ∗O,P,+ and τ ∗O,P,−.

In words, O prefers to buy insurance from P given τH,O and τH,P , only if O also prefers

to buy insurance from P when O rejects contract τH,O from H. Intuitively, when O sells

insurance to P , O can default on τH,O. Thus, τH,O increases O’s expected utility more

when O sells insurance to P than when O buys insurance from P . So, if O doesn’t want

to buy insurance from P even when O rejects contract τH,O, O would not want to buy

insurance from P no matter what contract H offers. As a result, the direction of trade

between O and P relies heavily on τH,P .

Lemma A.4 simplifies H’s problem. If H wants O to buy insurance from P in equi-

librium, H only need to consider τH,P such that (IC-O-B) binds for τH,O = (0, 0). Given

such a τH,P , H can solve for τH,O using (IR-HO). Thus, I have Proposition 1.5.
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A.2. Proofs

A.2.1. Proof of Lemmas

A.2.1.1. Proof of Lemma A.1.

Proof. Consider τO,P such that (IR-P) is slack and τO,P satisfies all other constraints.

Let e0 = (1, 0) and e1 = (0, 1).

I can always find δ0, δ1 > 0 such that (IR-P) binds with equality for τ(δ0, δ1) =

τO,P + δ0e0 + δ1e2, since τ > (0, 0) for sufficiently high δi and (IR-P) is violated in that

case. Since UP is a continuous function with respect to τ(δ0, δ1), which is continuous with

respect to δi’s, there must be some pair of δi’s such that (IR-P) binds with equality for

τ(δ0, δ1). Let’s denote the resulting contract as τ ′.

Since δ0, δ1 > 0, (BC-O) is satisfied and ÛO(τ ′|·) ≥ ÛO(τO,P |·). By construction, all

constraints are satisfied for τ ′. Thus, O prefers τ ′ by Assumption 1.2. Thus, O would

never choose τO,P such that (IR-P) is slack. �

A.2.1.2. Proof of Lemma A.2.

Proof. Since τH,O ∈ R− × R− is weakly dominated by (0, 0) and τH,O ∈ R+ × R+

violates (IR-P), I only need to consider 2 cases.

Given τH,P , τH,O and Assumption 1.3. Since H receives at most 1 in state 1, Assump-

tion 1.3 together with (IR-HP) implies τH,P (0) ≤ h(π). Consider τO,P = (wP ,−(wP −

τH,P (0))h−1(π)). If this is not feasible according to (BC-O), the only feasible τO,P ∈

R+ × R− is τO,P ∝ (1,−h−1(π)), which is strictly dominated by (0, 0). Then, I am done.

So now suppose τO,P = (wP ,−(wP − τH,P (0))h−1(π)) is feasible. Then EO[(wO − τH,O +

τO,P )+] ≤ EO[(wO − τH,O)+ + τO,P ] since τH,O ∈ R+ × [−1, 0] and (BC-O). Moreover,
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EO[(wO− τH,O)+ + τO,P ] = EO[(wO− τH,O)+]+EO[τO,P ]. And EO[τO,P ] = (1−π′)(−(wP −

τH,P (0))h−1(π)) + π′(wP ) = wP (1 − π′)(h−1(π) − h−1(π′)) + (1 − π′)h−1(π)τH,P (0) ≤

wP (1− π′)(h−1(π)− h−1(π′)) + (1− π′)h−1(π)h(π) < 0, where the last inequality follows

from Assumption 1.3. Thus, EO[(wO − τH,O + τO,P )+] ≤ EO[(wO − τH,O)+] + EO[τO,P ] <

EO[(wO − τH,O)+] so again τO,P is dominated by (0, 0). Thus, given Assumption 1.3, all

τO,P ∈ R+×R− are dominated by (0, 0). Thus, O will not consider any τO,P ∈ R+×R−. �

A.2.1.3. Proof of Lemma A.3.

Proof. First, τ ∗O,P,+. O prefers (0, 0) to τO,P ∝ τh−1(π). (IR’-P) implies τO,P ∝ τh−1(π)

or τO,P = (x,−(wP − τH,P (0))+h−1(π)) for all x ∈ [0, wP ]. O prefers τO,P = (wP ,−(wP −

τH,P (0))+h−1(π)) over all others. Thus, if τO,P = (wP ,−(wP−τH,P (0))+h−1(π)) is feasible,

that is τ ∗O,P,+. If not, τ ∗O,P,+ = (0, 0).

Now, τ ∗O,P,−. Solution is always corner by same argument as in proof of Proposition

A.1. Suppose (wO− (τH,P (0)−wP )+)h−1(π) ≤ wP − τH,P (1). (BC-O) binds first. (IR’-P)

implies τ̂O,P,− = wO(−τh−1(π))−(0, (τH,P (0)−wP )+h−1(π)). Suppose the opposite, (BC-P)

binds first. (IR’-P) implies τ̂O,P,− = h(π)(wP − τH,P (1))(−τh−1(π))− ((τH,P (0)−wP )+, 0).

τ ∗O,P,− is either τ̂O,P,− or (0, 0) if ÛO(τ̂O,P,−|·) ≤ ÛO((0, 0)|·). �

A.2.1.4. Proof of Lemma A.4.

Proof. I prove using contrapositive. Suppose

ÛO(τO,P,+|(0, 0), τH,P ) < ÛO(τO,P,−|(0, 0), τH,P ).
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I have

ÛO(τO,P,+|τH,O, τH,P ) = ÛO(τO,P,+|(0, 0), τH,P )− π′τH,O(1)

− (1− π′) min(τH,O(0), wO + wP )

ÛO(τO,P,−|τH,O, τH,P ) = ÛO(τO,P,+|(0, 0), τH,P )− π′τH,O(1)

− (1− π′) min(τH,O(0), wO − h(π)(wP − τH,P (1))− (τH,P (0)− wP )+)

Since

wO + wP > wO > wO − h(π)(wP − τH,P (1))− (τH,P (0)− wP )+,

I have ÛO(τO,P,+|τH,O, τH,P ) < ÛO(τO,P,−|τH,O, τH,P ) as desired. �

A.2.2. Proof of Propositions

A.2.2.1. Proof of Proposition 1.1.

Proof. It is strictly optimal to have τFBO ∝ h(π′)τh−1(π′). So plugging this into objec-

tive function, I get FOC: (1− π)u′(h(π′)x)− πu′ (1− x) ≤ 0, where x ∈ [0, 1]. Since u is

strictly concave and FOC is positive at x = 0. If there is an interior solution, I am done.

If not, x = 1. Assumption 1.1 ensures τFBO ≤ wO. �

A.2.2.2. Proof of Proposition A.1.

Proof. (IR”-P) implies the price. I first prove that the solution is corner. Suppose

τ ∗O,P [τH,O] is not a corner solution, I can always multiply τ ∗O,P [τH,O] by 1 + ε for ε > 0

small enough so that the constraints are satisfied. However, I can increase the objective

function of O by doing so. This contradicts the optimality of τ ∗O,P [τH,O]. There are only



101

2 corner solutions. When both are feasible, they are the same. Thus there is a unique

solution. Now I prove the independence. None of the constraints depend on τH,O and

τH,P (0). Specifically, the corner constraints that determine the solution do not depend

on τH,O and τH,P (0). Thus, the solution is independent of τH,O and τH,P (0). Moreover,

only (BC-P) depends on τH,P (0). Thus, the solution is only dependent on τH,P (1) when

(BC-P) binds. �

A.2.2.3. Proof of Proposition A.2.

Proof. For any τH,P , (BC-P) binding implies (BC-P) binds for all τ̂H,P with τ̂H,P (1) ≤

τH,P (1). (BC-P) binding for τH,P implies τ ∗O,P = −h(π)(wP − τ̂H,P (1))τh−1(π) for all τ̂H,P

with τ̂H,P (1) ≤ τH,P (1). Thus, H’s problem becomes

max
τH,O,τH,P

EH [u(R + τH,O + τH,P )]

s.t. EP [τH,P ] ≤ 0

EO[τH,O] ≤ 0

τH,O(0) ≤ wO − h(π)(wP − τH,P (1))

Since it’s strictly better to have first and second constraint binding, I can replace them

with equalities. I can then replace τH,P (1) with −h−1(π)τH,P (0) as implied by first con-

straint with equality. Thus, H’s problem becomes

max
τH,O,τH,P

EH [u(R + τH,O(0)τh−1(π′) + τH,P (0)τh−1(π))]

s.t. τH,O(0) + τH,P (0) ≤ wO − h(π)wP
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In this case, since τH,O is cheaper, H strictly prefers τH,O. Since this holds for all τ̂H,P with

τ̂H,P (1) ≤ τH,P (1), H prefers τH,O to all such τ̂H,P and picks τH,P 6= (0, 0). Now if (BC-P)

doesn’t bind τH,P , (BC’-O) binds. In that case, τH,O = (0, 0). Thus, the equilibrium

contracts can only be either τ ∗H,P = (0, 0) or τ ∗H,O = (0, 0). �

A.2.2.4. Proof of Proposition 1.2.

Proof. Given τ
(0)
H,O and τ

(0)
H,P , constraint (BC-P) binds first. Thus, I have τ

(0)
O,P by

Proposition A.1. Since H can buy insurance from P for price of h−1(π) and H can buy

insurance from O for price of h−1(π′) < h−1(π), H would choose O for cheaper price.

Moreover, since τ
(0)
H,O = τFBH,O, H does not want to purchase any more insurance even at

the lower price, much less the higher price.

By Proposition A.2, there are only two possibilities. Since H strictly prefers τFBH,O,

there is a unique equilibrium. �

A.2.2.5. Proof of Proposition 1.3.

Proof. τ
(1)
H,O is given by (IR’-HO) and (BC’-HO). τ

(2)
H,P is the solution to H’s problem

given price h(π). H will choose whichever gives her the higher utility. By Assumption 1.5,

(BC-P) binds for O. Thus, any increase in τH,O(1) increases τO,P , which decreases τH,O.

Thus τH,O competes with τH,P for wO and H would never choose both to be non-zero

simultaneously due to Proposition A.2.

Suppose τ
(1)
H,O gives H higher expected utility. Since τ

(1)
H,O is preferred to τ

(2)
H,P , τ

(1)
H,O is

preferred to any τH,P ∝ τh−1(π). Thus τ
(1)
H,O is the unique solution in this case. τ

(1)
O,P is

implied by τ
(1)
H,P = (0, 0). Thus is case 1. Suppose τ

(2)
H,P gives higher utility. Given any

other τH,P and τH,O, H would deviate. So τ
(2)
H,P is the unique solution. τ

(2)
O,P and τ

(3)
O,P are
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determined by whether (BC-P) or (BC’-O) binds first. Thus, all equilibrium is unique

in all 3 cases. Moreover, there is a unique threshold w∗∗O such that (BC-P) and (BC’-O)

binds at the same time. Equilibrium is in case 2 when it’s not case 1 and wO is above the

threshold and in case 3 otherwise.

In the upper bound for wO in Assumption 1.5, τ
(1)
H,O = τFBH,O which is strictly preferred

to τ
(2)
H,P . In the lower bound for wO in Assumption 1.5, τ

(1)
H,O = 0 as τ

(1)
O,P (0) = wO. Thus,

τ
(2)
H,P is strictly preferred to τ

(1)
H,O = 0. Since τ

(1)
H,O is a linear decreasing function of wO

while τ
(2)
H,P is constant with respect to wO, there must a unique w∗O such that the two are

indifferent. w∗O ≥ h(π)wP since τ
(1)
H,O = (0, 0) at h(π)wP . �

A.2.2.6. Proof of Proposition 1.4.

Proof. Given case 1 in section 1.4.2. If O rejects τH,O, O would choose τO,P = τ ∗O,P .

Thus, for O to accept τH,O, it must be τH,O = wO − τ ∗O,P + a × (1,−h−1(π)). H would

solve for a ∈ [0, τ ∗∗H,P (0)]. Since u is concave, there is a unique maximum. τCCPH,O is weakly

better than corresponding contracts in section 1.4.2. Moreover, τCCPH,O weakly dominates

τH,P since price of τCCPH,O is weakly higher. �

A.2.2.7. Proof of Proposition 1.5.

Proof. Consider any τH,P such that (IC-O-B) binds for τH,O = (0, 0). Since (IC-O-B)

binds for τH,O = (0, 0), τ ′H,P = (0, τH,P (1)) when τH,O = (0, 0). (IR-HO) implies τH,O ∝

τh−1(π′) as long as τH,O(0) ≤ wO + wP . Since LHS of (IC-O-B) is constant while RHS

increases when τH,O(0) ≥ wO − h(π)(wP − τH,P (1)) − (τH,P (0) − wP )+. The may ex-

ist a unique threshold τ̂H,O(0) such that both (IC-O-B) and (IC-O-S) binds for τ̂H,O ≡

τ̂H,O(0)τh−1(π′). If it doesn’t exist, let τ̂H,O(0) = wO +wP . Then for τH,O(0) ∈ [0, τ̂H,O(0)],
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(IC-O-B) binds, τ ′H,O = τH,O and τ ′H,P = (0, τH,P (1)). H’s objective function is concave

over closed and bounded feasible set. Thus, there is a unique solution τ̃H,O. Now, if

τ̂H,O(0) = wO + wP , τ
(4)
H,O = τ̃H,O. Else, when (IC-O-S) binds at τ̂H,O, τ ′H,O = ((wO −

(wP − τH,P (1))h−1(π))+, τ̂H,O(1)) and τ ′H,P = τH,P . τ̂H,O is strictly preferred to τH,O =

(τ̂H,O(0), τH,O(1)) with τH,O(1) > τ̂H,O(1). Thus, τ̂H,O is the argmax when (IC-O-S) binds.

In this case, τ
(4)
H,O equals to ˆtauH,O or τ̃H,O, whichever gives H higher utility with corre-

sponding τ ′H,O. �

A.2.2.8. Proof of Proposition 1.6.

Proof. By Lemma A.4, I only need to be concerned with τH,P such that (IC-O-B)

holds for τH,O = (0, 0). H can always make (IC-O-B) hold by increasing τH,P (0) above

wP . Thus, the upper bound of τH,P (1) is h−1(π)wP , which is implied by (IR-HP) for

τH,P (0) > wP . The lower bound is determined by the lowest τH,P such that (IC-O-B)

holds for τH,O. I only need to consider τH,P (0) ≤ wP . If there is no such τH,O(0), the lower

bound is equal to upper bound. If (BC-O) binds, (IC-O-B) becomes

π′[wO − (wP − τH,P (0))h−1(π)] + (1− π′)(wO + wP ) ≥ π′[wO − wOh−1(π)].

I can rearrange term to get hedging cost τH,P (1) ≥ (wO + wP )(h−1(π) − h−1(π′)). If

(BC-P) binds, (IC-O-B) becomes

π′[wO − (wP − τH,P (0))h−1(π)] + (1− π′)(wO + wP )

≥ π′[wO − (wP − τH,P (1))] + (1− π′)[wO − (wP − τH,P (1))h(π)].
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I can rearrange term to get hedging cost τH,P (1) ≥ h−1(π)[1 + h−1(π)][h(π′) − h(π)]wP .

Thus are the upper and lower bounds.

For lower bound of hedging cost of τH,P , it’s 0 since (IC-O-S) also holds when (IC-O-B)

binds with equality at τH,O = (0, 0). H needs to increase RHS of (IC-O-B) to hedge τH,P .

Thus, the hedging cost increases with the difference between LHS and RHS of (IC-O-B)

at τH,O = (0, 0). The maximum difference between LHS and RHS is when RHS is equal

to EO[wO]. When that happens, the difference between LHS and RHS is

π′min[wO, h
−1(π)wP ][h−1(π)− h−1(π′)]− (1− π′)wP .

The hedging cost needs to compensate O for this amount in state 1. Thus, the hedging

cost in this case is min[wO, h
−1(π)wP ][h−1(π)−h−1(π′)]−h−1(π′)wP . Thus are the upper

and lower bounds. �
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APPENDIX B

Appendix for Chapter 2

B.1. Additional Analysis

B.1.1. Preliminary Analysis

In the general problem, agents can choose to hold any amount in an infinite number of

simple debt contracts. However, the agents would only ever want to choose one simple

debt contract or are indifferent between multiple simple debt contracts. To see this, I use

Fubini’s theorem. First,

Ei
[∫

[s,s̄]

|min(s,D)µi(D)| dD
]
< Ei

[∫
[s,s̄]

max (|s| , |s̄|) |µi(D)| dD
]
≤ max (|s| , |s̄|) <∞.

The first inequality follows from |min(s,D)| ≤ max (|s| , |s̄|). All simple debt contracts

must be collateralized by A regardless of the seller. Since there is only one unit of A in

the economy,
∫

[0,s̄]
|µi(D)|dD ≤ 1. Thus, the second inequality follows. Since s and s̄ are

finite, the third inequality follows. Now the condition is satisfied for Fubini’s theorem.

By Fubini’s theorem, I can replace (2.6) with

max
αi,ci,µi

U(·|np) ≡ Ei [αis] +

∫
D∈[s,s̄]

Ei [min(s,D)]µi(D)dD.(B.1)

All the constraints still apply. Written this way, it’s easy to see that the benefit of choosing

µi(D) is independent from that of µi(D
′) for any D′ 6= D.
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B.1.2. Solving Pessimists’ Problem

By Assumption 2.3, cash constraint (2.3) does not bind for the pessimists and can be

removed from the pessimist’s problem. So first, I solve the pessimists’ maximization

problem in (B.1). After plugging the budget constraint (2.5) into (B.1), I get

max
αi,ci,µi(D)

np + αpEp [s− q] +

∫
Ep [min(s,D)− π(D)]µp(D)dD.

The first order condition with respect to αp is

Ep [s− q] + λs + λcol = 0,(B.2)

where λs ≥ 0 is the Lagrange multiplier for the short-sell constraint (2.2) and λcol ≥ 0 is

the Lagrange multiplier for the collateral constraint (2.4). Since λs, λcol ≥ 0, this implies

Ep [s− q] ≤ 0⇒ Ep [s] ≤ q

Immediately, I have the following corollary.

Corollary B.1. If an equilibrium exists, it must be that the equilibrium asset price

q ≥ Ep [s].

For each D, taking the first order condition with respect to µp(D)− gives

Ep [min(s,D)− π(D)] + λcol ≥ 0.(B.3)
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If the inequality is strict, it means µp(D)− = 0 is a corner solution. Equation (B.3) implies

Ep [min(s,D)] + λcol ≥ π(D). Taking first order condition with respect to µp(D)+ yields

Ep [min(s,D)− π(D)] ≤ 0(B.4)

Similarly, if the inequality is strict, it means µp(D)+ = 0 is a corner solution. Together,

(B.3) and (B.4) imply the next Corollary.

Corollary B.2. If an equilibrium exists, it must be that the equilibrium debt price

π(D) ∈ [Ep [min(s,D)] ,Ep [min(s,D)] + λcol](B.5)

for all D ∈ [0, s̄] and some λcol ≥ 0.

With complementary slackness, it is easy to check that the indirect utility Vp(np) = np.

In words, it doesn’t matter what the pessimists do, their expected utility cannot exceed

their endowment. Thus, the pessimists weakly prefer holding cash to holding any position

in A or in simple debt contracts.

If a portfolio (αp, cp, µp) gives the pessimists the expected utility of np, it solves the

pessimists’ problem. Therefore, the pessimists’ problem can be reduced to a participation

constraint,

Up (αp, cp, µp|np) ≥ np,(B.6)

along with the other constraints. In any equilibrium, the optimists’ allocation will solve

the optimists’ problem. The pessimists’ allocation, determined by the optimists’ allocation

and market clearing conditions (2.7) and (2.8), must satisfy (B.6).
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B.1.3. Solving Optimists’ Problem

The optimists’ problem is similar. But since the cash constraint may bind, I do not want

to plug the budget constraint into the problem first. So the optimists’ problem is the

same as (B.1). First, the first order condition with respect to αo is

Eo [s] + δs + δcol − δbq = 0,(B.7)

where δs, δcol, and δb ≥ 0 are the Lagrange multipliers for constraints (2.2), (2.4), and

(2.5), respectively. Next, the first order condition with respect to µo(D)− is

Eo [min(s,D)] + δcol − δbπ(D) ≥ 0(B.8)

and the first order condition with respect to µo(D)+ is

Eo [min(s,D)]− δbπ(D) ≤ 0.(B.9)

Note that Finally, the first order condition with respect to co is

1− δb + δcash = 0,(B.10)

where δcash ≥ 0 is the Lagrange multiplier on the cash constraint (2.3). The multiplier

δb is essentially the return on the optimists’ asset and debt investments. If δb = 1, the

optimists’ investments will have a return of one, meaning the optimists are indifferent

between investing and holding cash. If δb > 1, the optimists’ investments will have a

return greater than 1, dominating cash holding.
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Given δb, if Eo [min(s,D)]−δbπ(D) < 0 for someD, it must be that δcol > 0. Otherwise,

(B.8) will be violated. Moreover, for (B.8) to hold for all D, it must be that

δcol = 0 ∨ −
[
min
D

Eo [min(s,D)]− δbπ(D)
]
.(B.11)

And, for any D′ ∈ arg minD Eo [min(s,D)]− δbπ(D), µi(D) = αi maximizes the optimists’

problem given αi and λb. So, first order condition (B.8) can be replaced by the minimiza-

tion problem (B.11). To solve (B.11), π(D) is needed. Thus, I’ll continue in the next

subsection where π(D) can be determined in equilibrium.

B.1.4. Equilibrium Analysis

Equilibrium is defined in Definition 2.1. This subsection includes analysis and Lemmas

that help prove Proposition 2.1. When analyzing the equilibrium, one can connect the

pessimists’ problem with the optimists’ problem by using the market clearing conditions.

This way, it is possible to further simplify the problems with 2 observations.

Observation 1: The optimists would only sell simple debt contract for a unique D∗

in equilibrium and the equilibrium price of the asset can be determined by D∗. Next, I

go through the reasoning. If the optimists sell any simple debt contract in equilibrium,

the pessimists must buy those contracts due to the market clearing conditions. When

pessimists buy simple debt contract D in equilibrium, their first order condition (B.4)

must hold with equality for D. This implies that if the optimists sell simple debt contract

D in equilibrium, it must be that

π(D) = Ep[min(s,D)].(B.12)
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Note that this is due to Assumption 2.3. Thus, when the optimists borrow or sells debt

contracts, it is as if the optimists hold all the bargaining power. Debt price (B.12) can

be plugged into (B.11) to get

δcol = 0 ∨ −
[
min
D

Eo [min(s,D)]− δbEp[min(s,D)]
]
.(B.13)

It is helpful to state the following corollary first.

Corollary B.3. For i ∈ {o, p}, Ei [s] =
∫ s̄
s

1 − Fi(s)ds + s; Ei [min(s,D)] =
∫ D
s

1 −

Fi(s)ds+ s; and Ei [s−min(s,D)] =
∫ s̄
D

1− Fi(s)ds.

To solve this minimization problem, I take the derivative of the objective with respect

to D to get

1− Fo(D)

1− Fp(D)
= δb(≥ 1),(B.14)

where the optimists’ cash constraint (B.10) implies δb ≥ 1. Since the objective is non-

linear, it is necessary to check the second order condition. The second order condition is

−fo(D) + δbfp(D) > 0. Plugging (B.14) into the second order condition gives

fp(D)

1− Fp(D)
>

fo(D)

1− Fo(D)
.(B.15)

For D such that (B.14) and (B.15) holds, D maximizes the return from selling debt.

Note that (B.15) is implied by Simsek (2013)’s assumption (2.1). Under (2.1), 1−Fo(D)
1−Fp(D)

is

increasing and thus unique for each D. Under the weaker Assumption 2.4 in this model,

for D such that (B.15) holds, 1−Fo(D)
1−Fp(D)

is increasing and thus unique for each D. In words,
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given the weaker Assumption 2.4, there is still a unique solution D to the minimization

problem (B.13). Formally,

Lemma B.1. Given Assumption 2.4, in any equilibrium, δb ∈
[
1,maxD

1−Fo(D)
1−Fp(D)

)
and

for each δb, there is a unique interior solution D∗(δb) to the minimization problem (B.13).

This is a very useful result as it will also help us pin down asset price. Given δb =

1−Fo(D∗)
1−Fp(D∗)

, for the asset to be worth investing for the optimists, it must be that

q = qo(D
∗) ≡ Ep [min (s,D∗)] +

1− Fp(D∗)
1− Fo(D∗)

Eo [s−min (s,D∗)] ,(B.16)

where I replaced 1/δb with 1−Fp(D∗)
1−Fo(D∗) to remove δb from the equation. One can simply

check the derivative to see that the asset price qo(D
∗) is decreasing and unique for each

D∗. If the optimists hold the asset in equilibrium, the equilibrium asset price qo(D
∗) will

be uniquely determined by D∗, which will be uniquely determined by market clearing

conditions and the optimists’ budget constraint.

Observation 2: If the pessimists were to hold the asset and borrow, the pessimists’

optimal debt contract D is also unique such that δb = 1−Fo(D)
1−Fp(D)

. If the pessimists were to

have µp(D)− < 0 for some D, market clearing conditions imply µo(D)+ > 0. Thus, the

optimists’ first order condition (B.9) gives the debt price,

π(D) =
1

δb
Eo [min (s,D)] .(B.17)
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Given this debt price, the pessimists must find λcol such that their first order condition

(B.3) must hold for all D. Similar to the optimists, the pessimists must solve

λcol = 0 ∨ −
[
min
D

Ep [min(s,D)]− 1

δb
Eo[min(s,D)]

]
.(B.18)

Upon closer inspection, one may realize that the objective function in the pessimists’

minimization problem (B.18) is simply the negative of the objective function in the op-

timists’ minimization problem (B.13). Thus, this problem is equivalent to maximizing

the objective function in the optimists’ problem (B.13). The first order condition for the

maximization problem is exactly the same as the first order condition in the minimization

problem. It is the second order condition that differentiates maximization from mini-

mization. Thus, the first order condition to (B.18) is again (B.14). The second order

condition, however, is the opposite of (B.15),

fp(D)

1− Fp(D)
<

fo(D)

1− Fo(D)
.(B.19)

Notice that δb ≥ 1 still have to hold. So, under some belief structure, an interior solution

may not exist for (B.18). When that happens, it is easy to see that D = s̄ is the solution,

since Ep [s]− δbEo [s] < (1− δb)s ≤ 0. Per Assumption 2.1, if an interior solution does not

exist, the pessimists hold no asset. Analogous to observation 1, given δb, for the optimists

to hold the asset, it must be that

q = qp(D) ≡ 1− Fp(D)

1− Fo(D)
Eo [min (s,D)] + Ep [s−min (s,D)] .(B.20)

This follows immediately from the pessimists’ first order conditions (B.2) and (B.3).
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B.2. Proofs

B.2.1. Proof of Corollaries

B.2.1.1. Proof of Corollary 2.1.

Proof. First, 1−Fo(s) = 1 = 1−Fp(s). Let G(s) = 1−Fo(s)
1−Fp(s)

. So, G(s) = 1. Moreover,

G′(s) ∝
(

fp(s)

1−Fp(s)
− fo(s)

1−Fo(s)

)
> 0 for all s ∈ (s, s̄) by Assumption A2 from Simsek (2013).

Since fo and fp are both continuous, fp(s)

1−Fp(s)
≥ fo(s)

1−Fo(s) for s = s. Thus, G(s) is an increasing

function that starts at 1. So, G(s) > 1 for all s ∈ (s, s̄). This implies 1−Fo(s) > 1−Fp(s)

for all s ∈ (s, s̄). �

B.2.1.2. Proof of Corollary 2.2.

Proof. By Assumption 2.2 and Corollary B.3, there must be an non-empty interval

[s′, s′′] ⊂ [s, s̄] such that 1 − Fo(s) > 1 − Fp(s) for all s in the interval. By Assumption

2.4, it must be that s′ = s or s′′ = s̄ and the interval is unique. In either case, ssc = s′. If

slope of 1−Fo(s)
1−Fp(s)

crosses zero from above, the crossing point is sm. Otherwise, sm = s̄. It’s

unique because of Assumption 2.4. In either case, sm > ssc since the maximum of 1−Fo(s)
1−Fp(s)

is greater than 1 (by Assumption 2.2) and the slope of 1−Fo(s)
1−Fp(s)

is positive at ssc. �

B.2.1.3. Proof of Corollary B.3.

Proof. This can be done with integration by parts. Ei [min(s,D)] =
∫ D
s
sdFi(s) +

D(1− Fi(D)) = D(Fi(s))−
∫ D
s
Fi(s)ds + D(1− Fi(D)) =

∫ D
s

1− Fi(s)ds + s. Similarly,

Ei [s] =
∫ s̄
s
sdFi(s) = s̄ −

∫ s̄
s
Fi(s)ds =

∫ s̄
s

1 − Fi(s)ds + s. So, taking the difference gives

Ei [s−min(s,D)] =
∫ s̄
D

1− Fi(s)ds. �
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B.2.2. Proof of Lemmas

B.2.2.1. Proof of Lemma B.1.

Proof. I will prove the existence and uniqueness of D∗ first. By Assumption 2.2 and

Corollary B.3, the interval
[
1,maxD

1−Fo(D)
1−Fp(D)

)
is non-empty. Given Assumption 2.4, there

are 3 cases. First, the slope does not cross 0. The slope must be positive, otherwise

Assumption 2.2 will be violated. This is the same as Simsek (2013)’s (2.1). Uniqueness is

established per Simsek (2013). Second, the slope crosses 0 from below. This means there

is a D′ such that slope is negative before D′ and positive after D′. For all D > D′, slope

is positive. So 1−Fo(D)
1−Fp(D)

is increasing and unique for each D > D′. Since 1−Fo(s)
1−Fp(s))

= 1 and

the slope is negative for all D < D′, 1−Fo(D)
1−Fp(D)

< 1 for all D < D′. Since maxD
1−Fo(D)
1−Fp(D)

> 1,

there must be D′′ > D′ such that 1−Fo(D)
1−Fp(D)

≥ 1 and is increasing for all D ≥ D′′ Third, the

slope crosses 0 from above. This means there is a D′ such that slope is positive before

D′ and negative after D′. For all D < D′, slope is positive. So 1−Fo(D)
1−Fp(D)

is increasing and

unique for each D < D′. Since 1−Fo(s)
1−Fp(s))

= 1 and the slope is positive for all D < D′,

1−Fo(D)
1−Fp(D)

> 1 for all D < D′.

Now, I prove the restriction on δb. (B.10) gives the lower bound. I will prove the

upper bound by contradiction. First, I will make an observation.

max
D

1− Fo(D)

1− Fp(D)
>

Eo [s]

Ep [s]
.(B.21)

Let’s simplify the notation a bit. Let’s denote G(D) = 1−Fo(D)
1−Fp(D)

and D̂ = arg maxDG(D).

Note D̂ is unique. To see (B.21), consider the following. Ep [s]G(D̂) =
∫

1−Fp(s)dsG(D̂)+

sG(D̂) >
∫

1−Fp(s)dsG(D̂) + s >
∫

1−Fo(s)ds+ s = Eo [s]. The first and last equalities



116

follow from Corollary B.3. The first inequality follows from G(D̂) > 1 and the second

inequality follows from the maximality of G(D̂). Now, suppose δb > maxD
1−Fo(D)
1−Fp(D)

> Eo[s]
Ep[s]

,

D∗ = s̄ is the unique solution and

δcol = − [Eo [s]− δbEp[s]] > 0.(B.22)

Plugging (B.22) into the optimists’ first order condition w.r.t. αo (B.7) gives

Eo [s] + δs − Eo [s] + δbEp[s]− δbq = 0 =⇒ δs = δb(q − Ep[s]) ≤ 0.

where the last inequality follows from Corollary B.1. Since δs ≥ 0 by definition, q = Ep[s].

Since the collateral constraint binds, the asset position and debt positions cancel out.

Since δb > 1, the budge constraint reduces to

no =

∫
π(D)µo(D)+dD.

There must be at least one D′ such that µo(D
′)+ > 0, meaning µp(D

′)− < 0 by market

clearing condition. By (B.9) and maximality of G(D̂), µo(D
′)+ > 0 implies π(D′) =

Eo[min(s,D′)]
δb

< Ep [min(s,D′)] . This implies λcol < 0 for the pessimists. Contradiction!

Thus, δb is bounded by the interval
[
1,maxD

1−Fo(D)
1−Fp(D)

)
. Thus, a unique interior solution

always exists. �

B.2.3. Proof of Propositions

B.2.3.1. Proof of Proposition 2.1.
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Proof. First, the problem can be simplified as shown in Appendix B.1. I now prove

existence. I claim there always exists an equilibrium in which only the optimists hold

the asset. I prove this by construction. When only the optimists hold the asset, αo = 1

and αp = 0 by market clearing. Given the equilibrium asset price qo(D) for some D, the

optimists will also have µo(D) = −1. The optimists’ budget constraint becomes

no = qo(D)− Ep[min(s,D)] =
1− Fp(D)

1− Fo(D)
Eo[s−min(s,D)] =

1− Fp(D)

1− Fo(D)

∫ s̄

D

1− Fo(s)ds,

(B.23)

where the second equality follows from definition of qo(D) and the last equality follows

from Corollary B.3. By Assumption 2.5 and the fact that 1−Fp(D)

1−Fo(D)

∫ s̄
D

1−Fo(s)ds is decreas-

ing in D, there exists a unique D∗ ∈ [ssc, sm] such that the above equation holds. One

can check the following prices and allocations solve both the pessimists and the optimists’

problems and the market clears. qo(D
∗) is the asset price. For all D, simple debt contract

D has the price π(D) = max
[
Ep[min(s,D)], 1−Fp(D∗)

1−Fo(D∗)Eo[min(s,D)]
]
. The allocations are

(αo = 1, αp = 0, µo(D
∗) = −1, µp(D

∗) = 1, µo(D) = µp(D) = 0 ∀ D 6= D∗). Thus,

equilibrium exists.

I now prove the above equilibrium is also unique. First, note that under Assumption

2.6, there is no equilibrium in which the pessimists hold asset A. For the pessimists to

hold asset A and borrow, (B.14) and (B.19) must both hold. However, under Assumption

2.6, there is no D such that both (B.14) and (B.19) hold. This is because Assumption

2.6 implies either the slope of 1−Fo(D)
1−Fp(D)

is always positive or it is first negative and then

positive. Thus, I only need consider equilibria in which only the optimists hold asset

A. When only the optimists hold asset A, equilibrium D∗ is determined by (B.23). By
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(B.23) and Assumption 2.5, D∗ is strictly decreasing in no. Thus, there is a one-to-one

mapping from no to D∗. Moreover, there is a one-to-one mapping from D∗ to qo(D
∗)

by (B.16). Thus, for each no, there is a unique equilibrium price qo(D
∗) that clears the

market. Given qo(D
∗), there is a unique set of allocations that solves the optimists and

pessimists’ problems. The price of the traded simple debt contract D∗ is given by (B.4).

Thus, the allocations and equilibrium prices of the asset and simple debt contract D∗ are

unique. The price π(D) of any non-traded simple debt contract D has to satisfy

π(D) ≥ max

[
Ep[min(s,D)],

1− Fp(D∗)
1− Fo(D∗)

Eo[min(s,D)]

]
(B.24)

π(D) ≤ min

[
qo(D

∗)− Ep[s−min(s,D)],(B.25)

Ep[min(s,D∗)] +
1− Fp(D∗)
1− Fo(D∗)

Eo[min(s,D)−min(s,D′)]

]
.

In the first inequality, the first term inside min function is from (B.3) and the second term

is from(B.9). In the second inequality, the first term in the min function is from (B.8)

and the second term is from (B.2) and (B.3). Thus, the equilibrium is unique up to the

allocations and the prices of traded contracts. �

B.2.3.2. Proof of Proposition 2.2.

Proof. Given Proposition 2.1, the equilibrium price in unique for each no. When the

slope of 1−Fo(s)
1−Fp(s)

crosses zero exactly once from below, the CCDFs’ cross each other for the

first time at some interior ssc > s. Then the price

q = qo(ssc) ≡ Ep [min (s, ssc)] +
1− Fp(ssc)
1− Fo(ssc)

Eo [s−min (s, ssc)]
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is the equilibrium price for no such that no ≥ 1−Fp(ssc)

1−Fo(ssc)Eo[s − min(s, ssc)]. Since the

slope of 1−Fo(s)
1−Fp(s)

is negative for s < ssc,
1−Fo(s)
1−Fp(s)

< 1 for all s ∈ (s, ssc). This means

1− Fo(s) < 1− Fp(s) for all s ∈ (s, ssc). So,

Ep [min (s, ssc)] =

∫ ssc

s

1− Fp(s)ds+ s >

∫ ssc

s

1− Fo(s)ds+ s = Eo [min (s, ssc)] .

The equality follows from Corollary B.3 and the inequality follows from 1 − Fo(s) <

1− Fp(s) for all s ∈ (s, ssc). Putting this back into the price gives

qo(ssc) > Eo [min (s, ssc)] +
1− Fp(ssc)
1− Fo(ssc)

Eo [s−min (s, ssc)] = Eo[s].

The equality follows from the fact that 1−Fp(ssc)

1−Fo(ssc) = 1. �
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APPENDIX C

Appendix for Chapter 3

C.1. Additional Analysis

C.1.1. Additional Analysis for section 3.4.1

The small arbitrageurs’ maximization problem defined above does not condition on any

new information. Thus, here I present the equilibrium where each small arbitrageur ti

does not use any information from after time ti. Since Π and Φ does not condition on new

information, it’s always conditioned on the constant η. Thus, I can drop the conditioning

on η for notational convenience. To derive the equilibrium where the small arbitrageurs

condition their actions on new information, I would have to modify Π and Φ. First I

establish some useful conditions to help us solve for the equilibrium.

Lemma C.1. Since the small arbitrageurs are risk-neutral, σ(τi) ∈ {0, 1} for all τi.

Corollary C.1. For any τi, σ
′(τi) ∈ {0, 2σ(τi)− 1}

The proofs are immediate. Note σ(τi) is the result of adding σ′(τi) to the selling pressure

from the previous instant, i.e. σ(τi) = limτ ′i→τ
−
i
σ(τ ′i) + σ′(τi). Corollary C.1 implies any

two consecutive non-zero σ′ has to have opposite signs.

Corollary C.2. For any τi such that σ′(τi) 6= 0, let τ ′i = inf{τ ′′i |σ′(τ ′′i ) 6= 0 and τ ′′i >

τi}. Then, σ′(τi) = −σ′(τ ′′i ).
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Intuitively, during any two consecutive changes of action, the changes must be in oppo-

site directions so that the action stays in the set {0, 1}. Now, I present the following

Proposition.

Proposition C.1. Let

τ ∗i ≡ inf

{
τi

∣∣∣∣ λ

1− eλ(τi−T̄ )
≥ g − r
β(T̄ )

}
< T̄ .

The small arbitrageurs optimally exit the market at τ ∗i . Moreover, once the small arbi-

trageurs exit the market, they will not reenter, i.e. σ(τi) = 1 for all τi ≥ τ ∗i .

With the exit condition in Proposition C.1, I immediately have the following Corollary.

Corollary C.3. If λ
1−e−ληκ <

g−r
β(ηκ)

, I can rule out no-bubble equilibrium.

Proof by contrapositive. In a no-bubble equilibrium, all small arbitrageurs sell

at τi = 0 and the price collapse exactly at t0 + T̄ = t0 + ηκ. In order for the small

arbitrageurs to sell at τi = 0, I must have (by Proposition C.1)

λ

1− eλ(τi−T̄ )
≥ g − r
β(T̄ )

⇔ λ

1− e−ληκ
≥ g − r
β(ηκ)

,

since τi − T̄ = 0− ηκ = −ηκ and T̄ = ηκ. �

Now that I can rule out no-bubble equilibrium, I can simplify the exit condition in Propo-

sition C.1 in the following Corollary.

Corollary C.4. If λ
1−e−ληκ <

g−r
β(ηκ)

, τ ∗i = T̄ − 1
λ

(
log(g − r)− log(g − r − λβ(T̄ )

)
.
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Proof. λ
1−e−ληκ <

g−r
β(ηκ)

implies

0 < τ ∗i ≡ inf

{
τi

∣∣∣∣ λ

1− eλ(τi−T̄ )
≥ g − r
β(T̄ )

}
< T̄ .

Since the solution is interior, the first order condition must hold with equality, i.e.

λ

1− eλ(τ∗i −T̄ )
=
g − r
β(T̄ )

.

I can then rearrange and get the desired time τ ∗i as a function of T̄ . �

Thus, I add Assumption 3.3 as it has more uses beyond the last two Corollaries. With As-

sumption 3.3, I can plug the expression in Corollary C.4 into equation (3.2) and compute

the equilibrium burst time of the bubble.

C.1.2. Rearranging (3.4)

w ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγP (γ)[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγ(1− β(γ − γ′ + T̄ ))P (γ)[(s̄(γ − γ′ + T̄ )− ηκ) ∧ −w]φ(γ′ − T̄ |ν)dγ′ − C

=w ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[(ηκ− s̄(γ − γ′ + T̄ )) ∨ w]φ(γ′ − T̄ |ν)dγ′ − C
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C.1.3. Additional Analysis for section 3.5.1

In the base case, the problem for the large arbitrageur reduces to the following

max
γ

ηκ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |0)dγ′

+

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |0)dγ′ − C

Since φ(·|0) is a Dirac delta function, the above problem can be further simplified to

max
γ

ηκ
[
e−rT̄ (1− β(T̄ ))P (T̄ )

]
+ e−rγP (γ)β(γ)[ηκ− s̄(γ)]1{γ≤T̄}

Lemma C.2. If γ∗ = arg maxγ ηκ
[
e−rT̄ (1− β(T̄ ))P (T̄ )

]
+ e−rγP (γ)β(γ)[ηκ − s̄(γ)]

× 1{γ≤T̄} exists, it must be that γ∗ ≤ T̄ .

Proof. Since e−rγP (γ)β(γ)[ηκ− s̄(γ)] ≥ 0 for γ ≤ T̄ , it is γ ≤ T̄ (weakly) dominates

γ′ > T̄ . �

At this point, the analysis cannot proceed without specifying a β function or at least

more properties of the β function since the β function is also embedded in s̄. However,

instead of deriving properties of β function that guarantees existence of unique solution,

I restrict my attention to a special case where β(τ0) = 1 − e−(g−r)τ0 . In this case, the

fundamental value after t0 becomes

ft = (1− β(τ0))egt = egt0+rτ0 .

In this case, Assumption 3.1 binds with equality. As a result, the arbitrageurs trapped

in the asset after the crash will keep holding the asset as there is cost of selling the asset
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and the arbitrageurs are indifferent between the asset and the risk-free interest rate. I

call this a special case because there are other β functions that fit the criteria, i.e. strictly

increasing and continuous with range between 0 and 1. However, this choice of β function

is almost natural, because the fundamental value of the stock is essentially risk-free after

t0 and, therefore, should grow at the risk-free rate. Since the small arbitrageurs’ problem

does not depend on any additional properties of β function, the special case β function

does not affect the small arbitrageurs’ problem. Therefore, I can simply plug the special

case β function into s̄ without additional qualifications. With the β function, the large

arbitrageur’s problem simplifies even further to

max
γ

e(g−r)γ[ηκ− s̄(γ)] + s̄(γ)(C.1)

Moreover, the choice of β function and Assumption 3.4 also simplifies s̄ so that it’s dif-

ferentiable everywhere. One immediate result from this Assumption 3.4 is

Corollary C.5. g − r − λ ≥ (g − r)e−λη > 0.

Up until now, I have been using log without qualifications. Corollary C.5 ensures that

all of the natural logs have real values since g − r − λβ(τ0) > g − r − λ > 0. Another

result immediately follows.

Corollary C.6. Let B(τ0) = 1
λ
[log(g − r)− log(g − r − λ+ λe−(g−r)τ0)],

dB(τ0)

dτ0

=
(g − r)e−(g−r)τ0

g − r − λ+ λe−(g−r)τ0
=

(g − r)
λ+ (g − r − λ)e(g−r)τ0

> 0,

d2B(τ0)

dτ 2
0

=
−(g − r)2(g − r − λ)e(g−r)τ0

(λ+ (g − r − λ)e(g−r)τ0)2
< 0.
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Corollary C.6 shows that B(τ0) is concave. This fact along with Assumption 3.4

establishes following Lemma.

Lemma C.3. s̄(τ0) = 1
λ
[log(g − r)− log(g − r − λ+ λe−(g−r)τ0)].

C.1.4. Additional Analysis for section 3.5.2

I will provide a more formal proof after the next Proposition. Now I derive the large

arbitrageur’s problem for this special case. Plugging in ν = T̄ and w = ηκ, into (3.5), I

get

max
γ

ηκ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |T̄ )dγ′

+

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |T̄ )dγ′ − C

Since the first term and last term are simply constants with respect to γ, the above

maximization problem is equivalent to

max
γ

∫ T̄

γ

e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |T̄ )dγ′(C.2)

Let’s denote the objective function as G(γ) ≡
∫ T̄
γ
e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ +

T̄ )]φ(γ′ − T̄ |T̄ )dγ′. The equilibrium result is as the following.
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C.1.5. Additional Analysis for section 3.5.3

The only complication involved with incomplete information is that φ(τ 0
i |ν) is not contin-

uous and is 0 for all τ 0
i ∈ (−∞,−ν) ∪ (0,∞). Thus, I can rewrite (3.5) as the following

max
γ

ηκ×
∫ T̄

0

e−rγ
′
(1− β(T̄ ))P (γ′)φ(γ′ − T̄ |ν)dγ′

+

∫ T̄

γ∧(T̄−ν)

e−rγP (γ)β(γ − γ′ + T̄ )[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |ν)dγ′ − C

As usual, I can remove the constants in the maximization problem. Let’s denote the

objection as H, i.e.

H(γ) ≡
∫ T̄

γ∧(T̄−ν)

(e(g−r)γ − e(g−r)(γ′−T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |ν)dγ′

Before I proceed, here are some useful results.

Lemma C.4. H is continuous at T̄ − ν for endogenous and exogenous T̄ . H ′ is

continuous at T̄ − ν for endogenous T̄ . For exogenous T̄ , H ′ has a negative jump at

T̄ − ν.

Let’s define

H(γ) ≡
∫ T̄

T̄−ν
(e(g−r)γ − e(g−r)(γ′−T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |ν)dγ′,

H̄(γ) ≡
∫ T̄

γ

(e(g−r)γ − e(g−r)(γ′−T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ̄(γ′ − T̄ |ν)dγ′.

so that H(γ) = H̄(γ) for γ ≥ T̄ − ν and H(γ) = H(γ) for γ < T̄ − ν. Then, I have two

more useful results.
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Lemma C.5. H ′ crosses 0 at most one time and if it crosses 0, it does so from above.

Lemma C.6. H ′(γ∗∗) > 0.

C.2. Proof of Lemmas and Corollaries

C.2.1. Proof of Corollary 3.1

Proof. Let D(τ0) ≡ τ0 − B(τ0) = τ0 − 1
λ

(log(g − r)− log(g − r − λβ(τ0)). Since the

small arbitrageurs treat the bubble bursting caused by the large arbitrageur as if it’s

exogenous, their optimal selling time, according to Proposition C.1 and Corollary C.4 is

τ ∗∗i = D(γ∗) = γ∗ − 1
λ

(log(g − r)− log(g − r − λβ(γ∗)). Since B′(0) = 1 and B′′(τ0) < 0

for all τ0 (by Corollary C.6), B′(τ0) < 1 for all τ > 0. Thus, D′(τ0) = 1 − B′(τ0) > 0

for all τ0 > 0. Proposition 3.3 shows that γ∗ < T̄ when T̄ is endogenous. Thus, τ ∗∗i =

D(γ∗) < D(T̄ ) = τ ∗i . �

C.2.2. Proof of Corollary 3.2

Proof. Since γ∗ = T̄ = τ̄ in the exogenous case, τ ∗∗i = D(γ∗) = D(T̄ ) = τ ∗i . �

C.2.3. Proof of Corollary 3.3

Proof. In the exogenous case, by Proposition 3.3 and 3.4, I have γ∗∗ < T̄ = τ̄ = γ∗.

Now I prove the endogenous case. Recall that by Proposition 3.3, F (γ∗) = 0. Moreover,

in Proposition 3.4, I have that G′(γ∗∗) = 0 and G′′(γ∗∗) < 0. I also have that G′′(γ) =

(g − r − λ)G′(γ)− λ
eλT̄−1

F (γ) for any γ. Therefore, F (γ∗∗) = eλT̄−1
λ

[(g − r − λ)G′(γ∗∗)−

G′′(γ∗∗)] = − eλT̄−1
λ

G′′(γ∗∗) > 0. Since γ∗ is the unique maximum and there is no reentry,

F (γ∗∗) > 0 implies γ∗∗ < γ. �



128

C.2.4. Proof of Lemma C.3

Proof. Recall that s̄(τ0) = τ0∨ η∨B(τ0). By Assumption 3.4, B(τ0) = 1
λ
[log(g− r)−

log(g−r−λ+λe−(g−r)τ0)] ≤ 1
λ
(log(g−r)− log(g−r−λβ̄)) ≤ η. Thus, s̄(τ0) = τ0∨B(τ0).

Moreover, since B(τ0) is concave by Corollary C.6, I have

B(τ0) ≤ B(0) +B′(0)(τ0)

Since B(0) = 0 and B′(0) = 1, I have B(τ0) ≤ τ0. So, s̄(τ0) = B(τ0) = 1
λ
[log(g − r) −

log(g − r − λ+ λe−(g−r)τ0)]. �

C.2.5. Proof of Lemma C.4

Proof. Let

H(γ) ≡
∫ T̄

T̄−ν
(e(g−r)γ − e(g−r)(γ′−T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |ν)dγ′,

H̄(γ) ≡
∫ T̄

γ

(e(g−r)γ − e(g−r)(γ′−T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ̄(γ′ − T̄ |ν)dγ′.

where φ̄(γ|ν) = λe−λγ

eλν−1
. Clearly, H(γ) = H̄(γ) for γ ≥ T̄ − ν and H(γ) = H(γ) for

γ ≤ T̄ − ν. Note that H̄(T̄ − ν) = H(T̄ − ν). Therefore, H is continuous at T̄ − ν.

Similarly, H ′ = H̄ ′ when γ ≥ T̄ − ν and H ′ = H ′ when γ < T̄ − ν. And

H ′(γ) =

∫ T̄

T̄−ν

[
(g − r)e(g−r)γ[ηκ

− s̄(γ − γ′ + T̄ )]− (e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′(γ − γ′ + T̄ )
]
φ(γ′ − T̄ |ν)dγ′

H̄ ′(γ) =

∫ T̄

γ

[
(g − r)e(g−r)γ[ηκ
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− s̄(γ − γ′ + T̄ )]− (e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′(γ − γ′ + T̄ )
]
φ(γ′ − T̄ |ν)dγ′

− (e(g−r)γ − e(g−r)(γ−T̄ ))[ηκ− s̄(T̄ )]φ(γ − T̄ |ν)

In the endogenous case, s̄(T̄ ) = ηκ. So H ′(T̄ − ν) = H̄ ′(T̄ − ν), i.e. H ′ is continuous at

T̄ − ν. In the exogenous case, however, s̄(T̄ ) < ηκ. So H̄ ′(T̄ − ν) < H ′(T̄ − ν), i.e. H ′

has a negative jump at T̄ − ν. �

C.2.6. Proof of Lemma C.5

Proof. First I need the second derivative.

H ′′(γ) = (g − r)

(
H ′(γ)−

∫ T̄

T̄−ν
e(g−r)(γ′−T̄ )s̄′(γ − γ′ + T̄ )φ(γ′ − T̄ |ν)dγ′

)

−
∫ T̄

T̄−ν
(g − r)e(g−r)γ s̄′(γ − γ′ + T̄ )φ(γ′ − T̄ |ν)dγ′

−
∫ T̄

T̄−ν
(e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′′(γ − γ′ + T̄ )φ(γ′ − T̄ |ν)dγ′

= (g − r)

(
H ′(γ)−

∫ T̄

T̄−ν
e(g−r)(γ′−T̄ )s̄′(γ − γ′ + T̄ )φ(γ′ − T̄ |ν)dγ′

)

+

∫ T̄

T̄−ν

[
− (g − r)e(g−r)γ s̄′(γ − γ′ + T̄ )

− (e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′′(γ − γ′ + T̄ )
]
φ(γ′ − T̄ |ν)dγ′

Notice the term in square brackets. Using similar method as in Proposition 3.3, I can

simplify the second derivative to the following

H ′′(γ) = (g − r)

(
H ′(γ)−

∫ T̄

T̄−ν
e(g−r)(γ′−T̄ )s̄′(γ − γ′ + T̄ )φ(γ′ − T̄ |ν)dγ′

)
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−
∫ T̄

T̄−ν

(g − r)2λe(g−r)γ + (g − r)2(g − r − λ)e(g−r)γ

(λ+ (g − r − λ)e(g−r)(γ−γ′+T̄ ))2
φ(γ′ − T̄ |ν)dγ′

Now it is easy to see that whenever H ′(γ) ≤ 0, H ′′(γ) < 0. Thus, whenever H ′(γ) = 0,

H ′(γ′) < 0 for all γ′ > γ. �

C.2.7. Proof of Lemma C.6

Proof. Let us denote the integrand of H ′(γ) and H̄ ′(γ) as E(γ, γ′), i.e.

E(γ, γ′) ≡
[
(g − r)e(g−r)γ[ηκ− s̄(γ − γ′ + T̄ )]

−(e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′(γ − γ′ + T̄ )
]
φ(γ′ − T̄ |ν)

Then, let’s take a look at the derivative of E with respect to γ′.

∂E(γ, γ′)

∂γ′
=
[
(g − r)e(g−r)γ s̄′(γ − γ′ + T̄ )

+ (e(g−r)γ − e(g−r)(γ′−T̄ ))s̄′′(γ − γ′ + T̄ )
]
φ(γ′ − T̄ |ν)

+ φ′(γ′ − T̄ |ν)
E(γ, γ′)

φ
(γ′ − T̄ |ν)]

= φ(γ′ − T̄ |ν)
(g − r)2λe(g−r)γ + (g − r)2(g − r − λ)e(g−r)γ

(λ+ (g − r − λ)e(g−r)(γ−γ′+T̄ ))2

+ φ′(γ′ − T̄ |ν)
E(γ, γ′)

φ
(γ′ − T̄ |ν)]

Since φ′(γ′−T̄ |ν) = −λ2e−λ(γ′−T̄ )/(eλν−1) < 0, whenever E(γ, γ′) ≤ 0, I have ∂E(γ,γ′)
∂γ′

> 0.

Therefore, if E(γ, γ′) > 0, then E(γ, γ′′) > 0 for all γ′′ ≥ γ′.

Now Recall that G′ is the first order condition in Proposition 3.4. First note that

(eγν − 1)H̄ = (eγT̄ − 1)G. Thus, (eγν − 1)H̄ ′ = (eγT̄ − 1)G′. By Proposition 3.4, I know
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H̄ ′(γ∗∗) = eλT̄

eλν−1
G′(γ∗∗) = 0. Since 0 = H̄ ′(γ∗∗) =

∫ T̄
γ∗∗

E(γ∗∗, γ′)dγ′, it must be that∫ T̄−ν
γ∗∗

E(γ∗∗, γ′)dγ′ < 0. (If not, the property of E from above implies E(γ∗∗, T̄ − ν) > 0,

which in turn implies H̄ ′(γ∗∗) > 0, a contradiction.) By Lemma C.5, H̄ ′(γ∗∗)−H ′(γ∗∗) ≤∫ T̄−ν
γ∗∗

E(γ∗∗, γ′)dγ′ < 0. Thus, H ′(γ∗∗) > H̄ ′(γ∗∗) = 0. �

C.2.8. Proof of Lemma 3.2

Proof. The statement is true for the exogenous case as explained above. The case is

also trivial for ν ≥ T̄ − γ∗∗, since γ∗∗∗ = γ∗∗ < γ∗ (by Corollary 3.3). Thus, I only need

to prove for the endogenous case with ν > T̄ − γ∗∗. By Lemma C.4 and property of G′, I

have H ′(T̄ − ν) = H̄ ′(T̄ − ν) = eλT̄

eλν−1
G′(T̄ − ν) < 0. Moreover, by Lemma C.5, H ′(γ) < 0

for all γ > T̄ − ν. Thus, if γ∗ > T̄ − ν, H ′(γ∗) < 0. Since ν in φ is only causes monotonic

transformation in H ′ and H̄ ′, I can disregard the effect from ν in φ. Thus,

H ′ν(γ, ν) ≡ dH ′(γ)

dν
= − λeλν

eλν − 1
H ′(γ) + E(γ, T̄ − ν)

= − λeλν

eλν − 1
H ′(γ) + e−(g−r)νφ(−ν|ν)F (γ + ν)

Since F (γ∗ + ν) < 0, H ′ν(γ
∗, ν) < − λeλν

eλν−1
H ′(γ∗), for all ν > 0. I already know, by

Proposition 3.5 that when ν = T̄ −γ∗∗ < γ∗, H ′(γ∗) < 0. Moreover, whenever H ′(γ∗) = 0

for some ν < ν, H ′ν(γ, ν) < 0. Thus, H ′(γ∗) ≤ 0 for all ν < ν. By Lemma C.5, H ′(γ) < 0

for all γ > γ∗. Thus, γ∗∗∗ ≤ γ∗.

Now I prove the second result. First I look at the cases of ν > ν̄ where γ∗∗∗ <

T̄ − ν. Since H ′(γ∗∗∗) = 0, H ′ν(γ
∗∗∗, ν) = e−(g−r)νφ(−ν|ν)F (γ∗∗∗ + ν). It’s more use-

ful to think of comparative statics with respect to −ν, so I relabel H ′−ν(γ
∗∗∗, ν) =
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−e−(g−r)νφ(−ν|ν)F (γ∗∗∗ + ν). Thus, for γ∗∗∗ + ν > γ∗, H ′−ν(γ
∗∗∗, ν) > 0, which im-

plies γ∗∗∗ is strongly monotonic in −ν. If, however, γ∗∗∗ + ν ≤ γ∗, H ′−ν(γ
∗∗∗, ν) ≤ 0,

which would imply γ∗∗∗ is weakly decreasing in −ν. Thus, whenever γ∗∗∗ + ν ≤ γ∗, and

γ∗∗∗(ν ′) + ν ′ < γ∗ for all ν ′ < ν. Thus, γ∗∗∗(ν ′) < γ∗∗∗(ν) for all ν < ν ′. Therefore,

if γ∗∗∗(ν) ≤ γ∗ for some ν > 0, limν→0 γ
∗∗∗(ν) < γ∗. This would contradict the fact

that limν→0H
′ = F . Thus, I must have either γ∗∗∗(ν) > γ∗ or γ∗∗∗(ν) + ν > γ∗ for all

0 < ν < ν. Since the first results rules out γ∗∗∗(ν) > γ∗, I must have γ∗∗∗(ν) + ν > γ∗ for

all 0 < ν < ν. Thus, γ∗∗∗ is strongly monotonic in −ν.

In some exogenous cases, there may be ν < ν such that H ′(T̄ − ν) ≥ 0. Since

T̄ − ν > γ∗ − ν, H ′−ν(γ
∗, ν) > 0. Thus, γ∗∗∗ is strongly monotonic in −ν. �

C.3. Proof of Propositions

C.3.1. Proof of Proposition C.1

Proof. I can change the order of the integral of the objective function to get

max
σ′

∫ T̄

0

e−rτ
′
iP (τ ′i)σ

′ (τ ′i) (1− Π (τ ′i)) dτ
′
i

+

∫ τi

0

e−rτ
′
i (1− σ (τ ′i))

[
1− β

(
T̄
)]
P (τ ′i) dΠ(τ ′i)− C

∫ τi

0

|σ′(τ ′i)|dτ ′i ,

Note that by Lemma 3.1, σ(τ ′i) =
∫ τ ′i
−∞ σ

′(τi)dτi =
∫ τ ′i

0
σ′(τi)dτi. Thus, I can rewrite and

reorder the objective function as the following

max
σ′

∫ T̄

0

e−rτ
′
iP (τ ′i)σ

′ (τ ′i) (1− Π (τ ′i)) dτ
′
i − C

∫ T̄

0

|σ′(τ ′i)|dτ ′i

+

∫ T̄

0

e−rτ
′
i

(
1−

∫ τ ′i

0

σ′ (τ ′′i ) dτ ′′i

)[
1− β

(
T̄
)]
P (τ ′i) dΠ(τ ′i)
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= max
σ′

∫ T̄

0

e−rτ
′
iP (τ ′i)σ

′ (τ ′i) (1− Π (τ ′i)) dτ
′
i − C

∫ T̄

0

|σ′(τ ′i)|dτ ′i

−
∫ T̄

0

e−rτ
′
i

∫ τ ′i

0

σ′ (τ ′′i )
[
1− β

(
T̄
)]
P (τ ′i) dτ

′′
i dΠ(τ ′i)

= max
σ′

∫ T̄

0

e−rτ
′
iP (τ ′i)σ

′ (τ ′i) (1− Π (τ ′i)) dτ
′
i − C

∫ T̄

0

|σ′(τ ′i)|dτ ′i

−
∫ T̄

0

σ′ (τ ′i)

∫ T̄

τ ′i

e−rτ
′′
i
[
1− β

(
T̄
)]
P (τ ′′i ) dΠ(τ ′′i )dτ ′i

= max
σ′

∫ T̄

0

σ′ (τ ′i)[
e−rτ

′
iP (τ ′i) (1− Π (τ ′i))−

∫ T̄

τ ′i

e−rτ
′′
i
[
1− β

(
T̄
)]
P (τ ′′i ) dΠ(τ ′′i )− C × sign(σ′(τ ′i))

]
︸ ︷︷ ︸

A(τ ′i)

dτ ′i

There are a few things to note. First, by Lemma 3.1, σ′(τ ∗i ) = 1, where τ ∗i ≡ inf{τi|σ′(τi) 6=

0 and τi ≥ 0}. This means I want to maximize A(τi). Therefore, τ ∗i = inf {τ ′i |A′(τ ′i) ≤ 0}.

Moreover,

A′(τi) = e(g−r)τi
[
(g − r)(1− Π(τi))− β(T̄ )π(τi)

]
≤ 0⇔ π(τi)

1− Π(τi)
≥ g − r
β(T̄ )

which I can further simplify as

λ

1− eλ(τi−T̄ )
≥ g − r
β(T̄ )

.(C.3)

Note that LHS is strictly increasing in τi < T̄ , whereas RHS is a constant. Therefore,

the above condition is true for all τi > τ ∗i . However, by Corollary C.2, two consecutive

non-zero σ′ cannot have the same signs. Thus, σ′(τi) = 0 for all τi > τ ∗i , i.e. once the

individuals leave the market they will not reenter. Moreover, the LHS of (C.3) is ∞ at T̄
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and the RHS is only a finite constant. Thus, τ ∗i < T̄ . Finally note that inequality (C.3)

is exactly the same selling condition as in Abreu and Brunnermeier (2003). �

C.3.2. Proof of Proposition 3.1

Proof. Since σ(τi) = 1 for all τi ≥ τ ∗i , I can plug the exit time expression from

Corollary C.4 into (3.2) and get

s(τ0, T̄ ) =

∫ τ0

(τ0−η)∧0

1τi≥T̄− 1
λ(log(g−r)−log(g−r−λβ(T̄ ))dτi

= τ0 ∨ η ∨
[
τ0 −

(
T̄ − 1

λ

(
log(g − r)− log(g − r − λβ(T̄ )

))]
(C.4)

(Endogenous Bursting) Now I will show that there exists a unique endogenous solution if

and only if λ
1−eληκ >

g−r
β̄

.

(⇐) Suppose λ
1−eληκ >

g−r
β̄

. For the bubble to burst endogenously, I need the following

conditions to hold simultaneously: T̄ = τ ∗0 and s(τ ∗0 ) = ηκ. First, I plug T̄ = τ ∗0 into

(C.4).

s̄(τ ∗0 ) ≡ s(τ ∗0 , τ
∗
0 ) = τ ∗0 ∨ η ∨

[
τ ∗0 −

(
τ ∗0 −

1

λ
(log(g − r)− log(g − r − λβ(τ ∗0 ))

)]
= τ ∗0 ∨ η ∨

[
1

λ
(log(g − r)− log(g − r − λβ(τ ∗0 ))

]

If there exists a τ ∗0 such that s̄(τ ∗0 ) = ηκ, then I am done. It’s useful to note that

1
λ

(log(g − r)− log(g − r − λβ(τ ∗0 )) is a strictly increasing in τ ∗0 . Now recall Assumption

3.3 states that λ
1−e−ληκ <

g−r
β(ηκ)

, which can be rewritten as

1

λ
(log(g − r)− log(g − r − λβ(ηκ)) < ηκ
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Since ηκ = ηκ and η > ηκ, the above condition implies

s̄(ηκ) = ηκ ∨ η ∨
[

1

λ
(log(g − r)− log(g − r − λβ(ηκ))

]
=

1

λ
(log(g − r)− log(g − r − λβ(ηκ)) < ηκ.

So, τ ∗0 6= ηκ. Moreover, for all τ0 < ηκ, s̄(τ0) ≤ τ0 < ηκ. Therefore, if a solution τ ∗0 exists,

it must be that τ ∗0 > ηκ. Furthermore, since τ ∗0 > ηκ and η > ηκ, if s̄(τ ∗0 ) = ηκ, it must

be that

s̄(τ ∗0 ) =
1

λ
(log(g − r)− log(g − r − λβ(τ ∗0 )) = ηκ.

And here is where the new assumption, λ
1−eληκ > g−r

β̄
, comes in. I can rearrange this

assumption and replace β̄ = β(τ̄), where τ̄ > ηκ is some arbitrarily large number repre-

senting the duration of exogenously bursting bubble.

1

λ
(log(g − r)− log(g − r − λβ(τ̄)) > ηκ.

Since 1
λ

(log(g − r)− log(g − r − λβ(τ ∗0 )) is also strictly increasing and continuous in τ ∗0 ,

there exists a unique τ ∗0 ∈ (ηκ, τ̄) such that s̄(τ ∗0 ) = 1
λ

(log(g − r)− log(g − r − λβ(τ ∗0 )) =

ηκ. Existence and uniqueness are established by the continuity (Intermediate Value The-

orem) and monotonicity, respectively.

(⇒) If the bubble bursts endogenously, there exists a τ ∗0 such that s̄(τ ∗0 ) = ηκ. With

same argument as above, Assumption 3.3 implies τ ∗0 > ηκ. So,

s̄(τ ∗0 ) =
1

λ
(log(g − r)− log(g − r − λβ(τ ∗0 )) = ηκ < τ ∗0 ∨ η
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Since the bubble bursts endogenously, it burst before it bursts exogenously, i.e. τ ∗0 < τ̄ .

Thus, by monotonicity, 1
λ

(log(g − r)− log(g − r − λβ(τ̄)) > ηκ which can be rearranged

into λ
1−eληκ >

g−r
β̄

. Notice here I consider endogenous bursting at time t0 + τ̄ as exogenous

bursting. I can also choose an arbitrarily large τ̄ so that the bubble would never burst

endogenously at τ̄ .

(Exogenous Bursting) I proved above that the bubble bursts endogenously if and only

if λ
1−eληκ >

g−r
β̄

. Therefore, by contrapositives, the bubble does not burst endogenously if

and only if λ
1−eληκ ≤

g−r
β̄

. By definition, if the bubble does not bursts endogenously, i.e.

{τ0|s̄(τ0) ≥ ηκ} = ∅, it bursts exogenously, i.e. T ∗ − t0 = inf{∅} = τ̄ . Moreover if the

bubble bursts exogenously at τ̄ , then {τ0|s̄(τ0) ≥ ηκ} = ∅. Thus, exogenous bursting also

implies no endogenous bursting. Therefore, the bubble bursts exogenously if and only if

the bubble does not burst endogenously if and only if λ
1−eληκ ≤

g−r
β̄

. �

C.3.3. Proof of Proposition 3.2

Proof. As before, it is immediate that the small arbitrageur only reenters if A′(τ ′i) > 0

for some τ ′i > τ ∗i . I can simplify the condition as the following

A′(τi) = e(g−r)τi
[
(g − r)(1− Π(τi))− β(T̄ )π(τi)

]
> 0

⇔ π(τi|ηκ)

1− Π(τi|ηκ)
<
g − r
β(T̄ )

⇔ λ

1− eλ(τi−T̄ )
<
g − r
β(T̄ )

However since I know that λ

1−eλ(τ∗
i
−T̄ ) = g−r

β(T̄ )
and LHS increases with τ ′i , I have

λ

1− eλ(τi−T̄ )
<

λ

1− eλ(τ∗i −T̄ )
=
g − r
β(T̄ )
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for all τ ′i > τ ∗i . Thus, the small arbitrageur would never reenter, even when she updates

her beliefs on the information that her sale didn’t burst the bubble. (Note the reentering

condition here is identical to the one in Proposition C.1. It’s the result of a special

property of exponential distribution.) �

C.3.4. Proof of Proposition 3.3

Proof. The first order condition to (C.1) is as the following

F (γ∗) ≡ (g − r)e(g−r)γ∗(ηκ− s̄(γ∗))− (e(g−r)γ∗ − 1)s̄′(γ∗) = 0

Since s̄(0) = 0 and s̄′(0) = 1, I have F (0) = (g − r)ηκ > 0.

(Endogenous) I first start with the case of endogenous bursting by the small arbi-

trageurs. In endogenous bursting, s̄(T̄ ) = ηκ. Moreover, by Corollary C.6, I have

s̄′(τ0) = B′(τ0) > 0 for all τ0. So, F (T̄ ) = −(e(g−r)T̄ − 1)s̄′(T̄ ) < 0. Continuity of

F (γ) establishes existence of 0 < γ∗ < T̄ . The uniqueness is established as what follows.

Whenever F (γ) ≤ 0,

F ′(γ) = (g − r)
[
(g − r)e(g−r)γ(ηκ− s̄(γ))− e(g−r)γ s̄′(γ)

]
− (g − r)e(g−r)γ s̄′(γ)− (e(g−r)γ − 1)s̄′′(γ)

= (g − r) [F (γ)− s̄′(γ)]− (g − r)e(g−r)γ s̄′(γ)− (e(g−r)γ − 1)s̄′′(γ)

≤ −(g − r)s̄′(γ)− (g − r)e(g−r)γ s̄′(γ)− (e(g−r)γ − 1)s̄′′(γ)

= −(g − r)(e(g−r)γ + 1)s̄′(γ)− (e(g−r)γ − 1)s̄′′(γ)

=
−(g − r)2(e(g−r)γ + 1)

λ+ (g − r − λ)e(g−r)τ0
− −(g − r)2(g − r − λ)e(g−r)τ0(e(g−r)γ − 1)

(λ+ (g − r − λ)e(g−r)τ0)2

=
−(g − r)2(e(g−r)γ + 1)λ− (g − r)2(g − r − λ)(e(g−r)γ + 1)e(g−r)τ0

(λ+ (g − r − λ)e(g−r)τ0)2



138

+
(g − r)2(g − r − λ)(e(g−r)γ − 1)e(g−r)τ0

(λ+ (g − r − λ)e(g−r)τ0)2

=
−(g − r)2(e(g−r)γ + 1)λ− 2(g − r)2(g − r − λ)e(g−r)τ0

(λ+ (g − r − λ)e(g−r)τ0)2
< 0

Thus, whenever the first order condition holds, it is maximum. Moreover, the above

implies that F (γ) < 0 for all γ > γ∗, and thus establishing uniqueness and no-reentry.

(Exogenous) I now move on to the exogenous bursting case. Since the bubble bursts

exogenously, s̄(γ) < ηκ for all γ ∈ [0,∞). Since, s̄′(γ) > 0 for all γ > 0, by monotone

convergence theorem, limγ→∞ s̄(γ) < ∞ exists. So, ηκ > limγ→∞ s̄(γ). Similarly, since

s̄′(γ) > 0 and s̄′′(γ) < 0 for all γ > 0, limγ→∞ s̄
′(γ) < ∞ exists. Moreover, since

limγ→∞ s̄(γ) < ∞ exists, a simple proof by contradiction shows that limγ→∞ s̄
′(γ) = 0.

Therefore,

lim
γ→∞

F (γ) = lim
γ→∞

(g − r)e(g−r)γ(ηκ− s̄(γ))− (e(g−r)T̄ − 1)s̄′(γ)

= lim
γ→∞

(g − r)e(g−r)γ(ηκ− s̄(γ))

≥ lim
γ→∞

(g − r)e(g−r)γ(ηκ− lim
γ→∞

s̄(γ)) =∞

The inequality on the third line follows from s̄′(γ) > 0 and the equality on the third line

follows from ηκ − limγ→∞ s̄(γ) being a constant. In addition, I have shown above (in

the endogenous case) that whenever, F (γ) ≤ 0, F (γ′) < 0 for all γ′ > γ. Therefore, if

F (γ) = 0 for some γ, it’s impossible to have limγ→∞ F (γ) = ∞. So, by contradiction,

F (γ) > 0 for all γ. Therefore, I must have a boundary solution and must be the upper

bound. By Lemma C.2 and a version of Lemma 3.1 for the large arbitrageur, 0 ≤ γ∗ ≤ T̄
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Hence, the boundary solution is exactly γ∗ = T̄ = τ̄ . Now I prove the converse. Suppose

the solution is exactly γ∗ = T̄ , the bubble must burst exogenously, since γ∗ < T̄ in the

endogenous case. Therefore, T̄ = τ̄ . �

C.3.5. Proof of Proposition 3.4

Proof. Plugging P (t) and β into the objective function G, I get

G(γ) =

∫ T̄

γ

e(g−r)γ(1− e−(g−r)(γ−γ′+T̄ ))[ηκ− s̄(γ − γ′ + T̄ )]φ(γ′ − T̄ |T̄ )dγ′

=

∫ T̄−γ

0

e(g−r)γ(1− e−(g−r)(−γ′+T̄ ))[ηκ− s̄(−γ′ + T̄ )]φ(γ + γ′ − T̄ |T̄ )dγ′

=

∫ T̄−γ

0

e(g−r)γ(1− e−(g−r)(−γ′+T̄ ))[ηκ− s̄(−γ′ + T̄ )]φ(γ′ − T̄ |T̄ )e−λγdγ′

= e(g−r−λ)γ

∫ T̄−γ

0

(1− e−(g−r)(−γ′+T̄ ))[ηκ− s̄(−γ′ + T̄ )]φ(γ′ − T̄ |T̄ )dγ′

To get the first order condition, I differentiate the objective function using the Leibniz

Rule.

G′(γ) = (g − r − λ)G(γ)− e(g−r−λ)γ(1− e−(g−r)γ)[ηκ− s̄(γ)]φ(−γ|T̄ )

Recall φ(−γ|T̄ ) = 0 for all γ > T̄ . Thus, G(γ) = G′(γ) = 0 for all γ > T̄ . However,

since s̄(0) < ηκ, G(0) > 0. So γ = 0 strictly dominates all γ > T̄ . Thus, I only consider

γ ≤ T̄ . Moreover, a version of Lemma 3.1 for the large arbitrageur establishes that

γ ≥ 0. Therefore, I only need to restrict ourselves to γ ∈ [0, T̄ ], over which interval φ is
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continuous. Thus, I can simplify/expand G′ as what follows. (G′ is also continuous.)

G′(γ) = (g − r − λ)G(γ)− λ

eλT̄ − 1
(e(g−r)γ − 1)[ηκ− s̄(γ)]

Since G(0) > 0, G′(0) = (g − r − λ)G(0) > 0 (by Corollary C.5). Now I will prove the

endogenous case.

(Endogenous) In the endogenous case, I have s̄(T̄ ) = ηκ. In addition, G(T̄ ) = 0. So,

G′(T̄ ) = (g− r−λ)G(T̄ ) = 0. To know whether T̄ is the maximum that I desired, I must

examine the second order condition, i.e.

G′′(γ) = (g − r − λ)G′(γ)− λ

eλT̄ − 1

[
(g − r)e(g−r)γ[ηκ− s̄(γ)]− (e(g−r)γ − 1)s̄′(γ)

]
At T̄ , G′′(T̄ ) = λ

eλT̄−1
(e(g−r)T̄ − 1)s̄′(T̄ ) > 0. Thus, T̄ is not the argmax but the argmin.

However, since G′′(T̄ ) > 0 and G′′ is continuous (since it’s a sum of continuous functions)

for γ ∈ [0, T̄ ], there exists a δ > 0 such that for all γ ∈ (T̄ − δ, T̄ ) such that |G′′(γ) −

G′′(T̄ )| < ε ≡ G′′(T̄ )
2

. Thus, G′′(γ) > 0 for all γ ∈ (T̄ − δ, T̄ ). Thus, by The First

Fundamental Theorem of Calculus,

G′(T̄ − δ) = G′(T̄ )−
∫ T̄

T̄−δ
G′′(γ)dγ = 0−

∫ T̄

T̄−δ
G′′(γ)dγ < 0

Then, existence of 0 < γ∗ < T̄ −δ < T̄ is established by the continuity of G′. The unique-

ness can be proved by contradiction. Without loss of generality let γ′ < γ′′. Suppose

G′(γ′) = G′(γ′′) = 0, G′′(γ′) < 0, and G′′(γ′′) < 0. (i.e. there are two maxima). However,

if G′′(γ′′′) < 0 for all γ′′′ ∈ [γ′, γ′′], then G′(γ′′) < 0 (by The First Fundamental Theo-

rem of Calculus). Therefore, there must exist some γ′′′ ∈ [γ′, γ′′] such that G′′(γ′′′) ≥ 0.
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Moreover, similar to the existence proof, there must exist some γ′′′ ∈ [γ′, γ′′] such that

G′′(γ′′′) ≥ 0 and G′(γ′′′) = 0, i.e. G′(γ′′′) cross 0 from below.

Recall F (γ) = (g − r)e(g−r)γ[ηκ − s̄(γ)] − (e(g−r)γ − 1)s̄′(γ). So, G′′(γ) = (g − r −

λ)G′(γ)− λ
eλT̄−1

F (γ). Then,

0 ≤ G′′(γ′′′) = (g − r − λ)G′(γ′′′)− λ

eλT̄ − 1
F (γ′′′) = − λ

eλT̄ − 1
F (γ′′′)⇔ F (γ′′′) ≤ 0

And recall F ′(γ) < 0 whenever F (γ) ≤ 0. Thus, F (γ) < 0 for all γ > γ′′′. Again, by The

First Fundamental Theorem of Calculus,

G′(γ′′) = G′(γ′′′) +

∫ γ′′

γ′′′
G′′(x)dx =

∫ γ′′

γ′′′
(g − r − λ)G′(x)− λ

eλT̄ − 1
F (x)dx

= (g − r − λ)(G(γ′′)−G(γ′′′))− λ

eλT̄ − 1

∫ γ′′

γ′′′
F (x)dx

> − λ

eλT̄ − 1

∫ γ′′

γ′′′
F (x)dx > 0

which contradicts the assumption that G′(γ′′) = 0 and thus establishing uniqueness and

no reentry. The equality on the second line follows from another application of The First

Fundamental Theorem of Calculus. The first inequality on the second line follows from

γ′′ being local maximum and γ′′′ being local minimum.

(Exogenous) In the exogenous case, s̄(T̄ ) < ηκ. So, G′(T̄ ) = − λ
eλT̄−1

(e(g−r)T̄ − 1)[ηκ−

s̄(T̄ )] < 0. Since G′ is continuous, existence of 0 < γ∗∗ < T̄ is established. Uniqueness is

established by the same proof as in the endogenous case. �
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C.3.6. Proof of Proposition 3.5

Proof. Recall that G′ is the first order condition in Proposition 3.4. First note that

(eλν−1)H̄ = (eλT̄−1)G. Thus, (eλν−1)H̄ ′ = (eλT̄−1)G′. Then, H̄ ′(γ∗∗) = eλT̄

eλν−1
G′(γ∗∗) =

0. And since H ′ = H̄ ′ for ν ≥ T̄ − γ, H ′(γ∗∗) = 0 if ν ≥ T̄ − γ∗∗. Moreover, H ′′(γ∗∗) =

H̄ ′′(γ∗∗) = eλT̄

eλν−1
G′′(γ∗∗) < 0. Thus, existence is established for the case ν ≥ T̄ − γ∗∗.

Moreover, by Lemma C.4 and uniqueness of solution to G′ (and no reentry), if ν ≥ T̄ −γ,

then H ′(T̄ − ν) ≥ H̄ ′(T̄ − ν) = eλT̄

eλν−1
G′(T̄ − ν) > 0. By Lemma C.5, H(γ) = H ′(γ) > 0

for all γ < T̄ − ν. And by properties of G′, H ′(γ) = H̄ ′(γ) = eλT̄

eλν−1
G′(γ) > 0 for all

γ ∈ [T̄ − ν, γ∗∗) and H ′(γ) = H̄ ′(γ) = eλT̄

eλν−1
G′(γ) < 0 for all γ > γ∗∗. Thus, γ∗∗∗ = γ∗∗ is

the unique solution when ν ≥ T̄ − γ∗∗.

[ν < T̄ − γ∗∗ case] Now I consider the case when ν < T̄ − γ∗∗. Then, by properties

of G′, I know H ′(γ) = H̄ ′(γ) = eλT̄

eλν−1
G′(γ) < 0 for all γ ≥ T̄ − ν(> γ∗∗). By Lemma

C.4, H ′(T̄ − ν) ≥ H̄ ′(T̄ − ν). Since H̄ ′(T̄ − ν) < 0, there are two possible cases. First

(for both endogenous and exogenous T̄ ), H ′(T̄ − ν) ≥ 0. Second (only for exogenous T̄ ,

H ′(T̄ − ν) < 0. In the first case, by Lemma C.5, H ′(γ) > 0 for all γ < T̄ − ν. Thus,

the unique solution is γ∗∗∗ = inf{γ|H ′(γ) ≤ 0} = T̄ − ν > γ∗∗. In the second case, I

have H ′(γ∗∗) > 0 by Lemma C.6. So, existence of γ∗∗∗ ∈ (γ∗∗, T̄ − ν) is established by

continuity of H ′ and uniqueness is established by Lemma C.5. �


	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Figures
	Chapter 1. Counterparty Risk in the Over-the-Counter Derivatives Market: Heterogeneous Insurers with Non-commitment
	1.1. Introduction
	1.2. Related Literature
	1.3. Model
	1.4. Equilibrium
	1.5. Central Clearing
	1.6. Hedging
	1.7. Discussions
	1.8. Conclusion

	Chapter 2. Leverage, Bubble and Option
	2.1. Introduction
	2.2. Literature Review
	2.3. Model
	2.4. Equilibrium
	2.5. Option Pricing
	2.6. Discussions
	2.7. Conclusion

	Chapter 3. Attack on the Bubble: Role of a Large Arbitrageur and Desynchronized Small Arbitrageurs
	3.1. Introduction
	3.2. Literature Review
	3.3. Model
	3.4. Equilibrium with only Small Arbitrageurs (Benchmark Case)
	3.5. Equilibrium with Large and Small Arbitrageurs
	3.6. Extensions
	3.7. Conclusion

	References
	Appendix A. Appendix for Chapter 1
	A.1. Additional Analysis
	A.2. Proofs

	Appendix B. Appendix for Chapter 2
	B.1. Additional Analysis
	B.2. Proofs

	Appendix C. Appendix for Chapter 3
	C.1. Additional Analysis
	C.2. Proof of Lemmas and Corollaries
	C.3. Proof of Propositions


