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ABSTRACT

Fiberwise Poincaré–Hopf Theory and Exotic Smooth Structures on Manifold Bundles

Yajit Kumar Jain

We prove the Rigidity Conjecture of Goette and Igusa, which states that, after ra-

tionalizing, there are no stable exotic smoothings of manifold bundles with closed even

dimensional fibers. The key ingredients of the proof are fiberwise Poincaré–Hopf theorems

generalizing earlier such results about the Becker–Gottlieb transfer. These theorems show

how to compute the smooth structure class, an invariant of smooth structures on fiber

bundles, using the data of a fiberwise generalized Morse function. We use these results to

prove a duality theorem for the smooth structure class, from which the conjecture directly

follows. This duality theorem generalizes Milnor’s duality theorems for Reidemeister and

Whitehead torsion, as well as similar results for higher Franz–Reidemeister torsion due

to Igusa.
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CHAPTER 1

Introduction

A topologically trivial family of smooth h-cobordisms is a bundle of h-cobordisms that

is fiberwise homeomorphic but not fiberwise diffeomorphic to a bundle of product h-

cobordisms. In [GIW14], Goette, Igusa, and Williams study an equivalent notion: exotic

smooth structures on smooth manifold bundles. Briefly, a bundle M ′ → B is an exotic

smoothing of a bundle M → B if these bundles form the boundary of a topologically

trivial family of smooth h-cobordisms.

In [GIW14], the authors define the smooth structure class Θ(M,M ′), an element

of the real homology of the total space that distinguishes exotic smooth structures on

manifold bundles and is closely related to the higher Franz–Reidemeister torsion. In a

subsequent paper, [GI14], Goette and Igusa give a procedure to construct exotic smooth

structures on a bundle with closed odd dimensional fibers. In other words, they construct

topologically trivial families of smooth h-cobordisms with odd dimensional boundaries for

which the smooth structure class Θ(M,M ′) is nonzero. Furthermore, for fixed M , they

show that their procedure for constructing M ′ generates all possible values of Θ(M,M ′),

up to linear combinations of rational multiples. They go on to conjecture that when the

fibers of M are closed even dimensional manifolds, there are no rationally nontrivial exotic

smooth structures on M . I.e., the smooth structure class always vanishes in this case.
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In this paper, we prove the Rigidity Conjecture of Goette and Igusa [GI14] (See Appen-

dix A for an explanation of how the main theorem below compares to the statement of

the original conjecture in [GI14]).

Main Theorem (Theorem H). If the fibers of p0 : M → B are even dimensional and

closed, then for any topologically trivial family of smooth h-cobordisms p : W → B from

M to M ′, Θ(M × I,M ′ × I) is trivial.

The main theorem stated above has several antecedents for related invariants. These

include vanishing theorems for the Euler characteristic, Reidemeister torsion, the Becker–Gottlieb

transfer, and the higher Franz–Reidemeister torsion. Vanishing theorems for each of these

invariants are proven in stylistically equivalent ways, though the technical ingredients vary

widely. They generally follow by applying a Poincaré–Hopf type theorem in combination

with Poincaré duality. In order to motivate the contents of this paper, we will briefly

describe these theorems and their proofs. This discussion is summarized in the table

below. At the end of this section we summarize the proof of our main theorem and give

an outline of the contents of this paper.

Recall the classical proof that the Euler characteristic of a closed odd dimensional

manifold is zero: The Poincare–Hopf theorem states that the Euler characteristic of a

closed manifold M is equal to the sum of the indices of isolated critical points of a Morse

function f on M :

χ(M) =
∑
z∈Z

(−1)Ind∇f (z)

On an odd dimensional manifold, Ind∇(−f)(z) and Ind∇f (z) have opposite parity. It follows

that χ(M) = 0.
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Euler characteristic Reidemeister torsion Becker–Gottlieb
transfer

higher torsion τ IK smooth structure class
Θ

Poincaré–
Hopf
theorem

χ(M) =
∑

(−1)IndX(z) Compute torsion from
explicit choice of tri-
angulation

Fiberwise
Poincaré–Hopf theo-
rem

Framing Principle Theorem F

Poincaré
duality

IndX(z) = − Ind−X(z)
for odd dimensional
manifolds

Recompute for dual
cell complex

Recompute fiber-
wise index map
after negating Morse
function and compare

Apply the framing
principle for a fiber-
wise GMF f and
compare with results
for −f

Theorem G

⇒Vanishing
result

χ(M) = 0 when
dimM is odd

Torsion is trivial on
even dimensional
manifolds

transfer map on real
cohomology vanishes
for odd dimensional
fibers

higher torsion of even
dimensional manifold
bundles is MMM
class⇒relative torsion
of fiberwise tangen-
tially homeomorphic
manifold bundles
vanishes

Rigidity Conjecture,
Theorem H

Table 1.1. Proofs of vanishing theorems by analogy.

We adopt a stylized view of this proof: the vanishing result for the Euler characteristic

is proven by applying the Poincaré–Hopf theorem in combination with Poincaré duality.

The Reidemeister torsion is a K-theoretic generalization of the Euler characteristic

that admits an analogous vanishing theorem: the Reidemeister torsion of a closed even

dimensional manifold is zero. To prove this, recall that the Reidemeister torsion of a

manifold is computed in terms of a triangulation of the manifold that can be obtained

from a Morse function. We can compare the torsion of one cell decomposition to the

torsion of the dual cell decomposition obtained by inverting the Morse function. The

specific computation is due to Milnor [Mil62], and when the dimension is even it follows

that the torsion must be zero. Stylistically this proof is the same as the proof of the

vanishing result for the Euler characteristic: the formula for torsion in terms of the data

of a triangulation is an instance of a Poincaré–Hopf theorem. The comparison to the dual

cell complex is an instance of Poincaré duality. A nearly identical argument is also used

to prove a duality theorem for Whitehead torsion [Mil66].
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The Becker–Gottlieb transfer is a generalization of the Euler characteristic to families.

For a smooth bundle of smooth manifolds p : E → B, one can associate a wrong way map

of spectra Σ∞B+ → Σ∞E+. If the base is a point, this is equivalently a map of infinite

loop spaces from S0 to Ω∞Σ∞E+. On components, if E is connected, we have a map

S0 → Z, and the non-basepoint element maps to χ(E) ∈ Z.

One can easily prove a vanishing result for the Becker–Gottlieb transfer using a small

amount of technology. Fiberwise Poincaré–Hopf theorems for the Becker–Gottlieb transfer

have been proven by [BM76,Dou06]. Briefly, assume that X is a smooth nondegenerate

vertical vector field on the total space of a smooth bundle p : E → B. This vector field

might be obtained by computing the gradient of a fiberwise Morse function, so long as

such a function exists. Let Z be the vanishing locus of the vector field, which forms a

covering space π over B. Then the fiberwise Poincaré–Hopf theorem is expressed in terms

of the following homotopy commutative diagram of spectra:

Σ∞B+

trp
//

trπ

��

Σ∞M+

Σ∞Z+

IndX
// Σ∞Z+

+

OO

In the diagram above, trπ and trp denote the transfers associated to π and p. The

map IndX denotes a fiberwise index map associated to the vertical vector field X. On real

cohomology one can easily prove from the definitions that (IndX)∗ = (−1)d(Ind−X)∗, where

d denotes the fiber dimension. It follows that (trp)
∗ = (−1)d(trp)

∗. Thus the transfer map
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on cohomology vanishes when the fiber dimension is odd, if p admits a fiberwise Morse

function. In this case the classical Poincaré–Hopf theorem was replaced by a parametrized

version, and Poincaré duality arose in the comparison of the vector field and its negative.

A common generalization of the Euler characteristic to both the K-theoretic and

parametrized settings is the higher Franz–Reidemeister torsion. This invariant is a char-

acteristic class in the cohomology of the base of a smooth fiber bundle. The primary

tool that enables computations of this invariant is Igusa’s framing principle [Igu05]. The

framing principle describes the higher Franz–Reidemeister torsion as the sum of an ‘exotic’

class and a ‘tangential’ term

A consequence of the framing principle is that for smooth manifold bundles with closed

even dimensional fibers, the torsion class is congruent to a Miller–Morita–Mumford class.

To prove this, Igusa compares the framing principle for a fiberwise generalized Morse

function f to the analogous formula for −f . By studying the canonical involution on the

Whitehead space, one can prove that the exotic term is two-torsion. Thus we are left only

with the tangential term which agrees with a Miller–Morita–Mumford class.

Once again, this proof is analogous to those from above: the framing principle resem-

bles a Poincaré–Hopf theorem, and the comparison of the formulas for f and −f resembles

an application of Poincaré duality. However, the proof of this vanishing theorem requires

significantly more technology than those which came previously. In particular, to define

the exotic term in the framing principle, Igusa uses a Waldhausen category model for the

Whitehead space which encodes the combinatorics of colliding critical points of fiberwise

generalized Morse functions. The proof of the framing principle requires an understanding

of the deformation properties of the critical loci of fiberwise generalized Morse functions.
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We postpone giving a precise definition of the smooth structure class until Section 3.4,

however we point out that the smooth structure class is closely related to the invariants

discussed above. One explanation for this is that the higher Franz–Reidemeister torsion

and the smooth structure class can both be defined in terms of nullhomotopies of maps

that factor through the Becker–Gottlieb transfer. An explicit relationship between these

invariants at the level of homology groups of the base is proven in [GI14]: the pushdown

class p∗Θ(M,M ′) is congruent to Dτ IK(M,M ′), the Poincaré dual of the relative higher

torsion. Thus one should expect that a proof of the main theorem above should follow

from a sufficiently general version of a Poincaré–Hopf theorem along with an application

of Poincaré duality. This paper provides such a proof, which is summarized in the next

section.

1.1. Proof Summary

In this paper we prove a vanishing result for the smooth structure class, an invari-

ant of smooth structures on fiber bundles introduced by Goette, Igusa, and Williams

in [GIW14], after work of Dwyer, Weiss, and Williams [DWW03]. In analogy with the

examples above, the proof is an application of a Poincaré–Hopf type theorem in combi-

nation with Poincaré duality. In this section we give a precise outline of the proof.

By a fiberwise Poincaré–Hopf theorem we broadly mean a computation of a fiberwise

characteristic, e.g. the Becker–Gottlieb transfer, the excisive A-theory Euler characteris-

tics, etc., in terms of the critical locus of a fiberwise generalized Morse function. Examples

of such theorems can be found in [BM76,CJ98,Dou06]. These theorems generalize the
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classical Poincaré–Hopf theorem, which computes the Euler characteristic in terms of local

data at the isolated critical points of a Morse function.

The following is a bullet-pointed outline of the proof of the main theorem.

(0) These background items are necessary for this outline:

• The smooth structure class Θ(M,M ′) is an element of π0ΓBH%
B(M)⊗Q. The

space ΓBH%
B(M) is the space of sections of the fiberwise homology bundle

obtained by taking fiberwise smash products with the stable h-cobordism

space of a point. See Section 3.4 for a precise definition.

• By the stable parametrized h-cobordism theorem, ΓBH%
B(M) is the homo-

topy fiber of the map ΓBQB(M)→ ΓBA
%
B(M), which is induced by the unit

map from the sphere spectrum to A(∗). The spectrum A(∗) is the Wald-

hausen K-theory of spaces functor, otherwise known as A-theory, evaluated

at a point. The functor A% is the excisive approximation to A-theory.

• All smooth bundles admit fiberwise generalized Morse functions by [Igu84,

Lur09, EM12]. In stark contrast, smooth bundles rarely admit fiberwise

Morse functions.

• If a family of h-cobordisms p : W → B with boundaries p0 : M0 → B

and p1 : M1 → B is topologically trivial, then W is fiberwise tangentially

homeomorphic to M0×I. This data produces a nullhomotopy of the excisive

A-theory Euler characteristic of χ%(W,∂0W ), which are used to define the

smooth structure characteristics θ(W,∂0W ) in Definition 4.1. Likewise, we

define the smooth structure characteristic θ(W,∂1W ).
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(1) We prove a fiberwise Poincaré–Hopf theorem for the Becker–Gottlieb transfer, an

element of ΓBQB(W ). This result, Theorem A, expresses the transfer in terms

of the critical locus of a fiberwise generalized Morse function on W .

(2) In Theorem B, we further generalize the fiberwise Poincaré–Hopf theorem for the

Becker–Gottlieb transfer to the excisive A-theory characteristic, an element of

ΓBA
%
B(W ). Furthermore, this factorization is compatible with the factorization

of the Becker–Gottlieb transfer in the previous theorem. This is Theorem C.

(3) We generalize Theorems A, B, and C to be invariant under any stratified defor-

mation of the critical locus of a fiberwise generalized Morse function. This yields

Theorems D and E.

(4) Theorem F gives a fiberwise Poincaré–Hopf theorem for the smooth structure

characteristic. This theorem is different from those preceding it because it is

a rational statement. This theorem relies on Theorem D, in that the smooth

structure class is expressed in terms of a particular stratified deformation of the

critical locus of a fiberwise generalized Morse function. The stratified deforma-

tion that we use encodes a parametrized handle cancellation argument used by

Hatcher in [Hat75] and Igusa in [Igu84, Igu88, Igu02, Igu05]. We summarize

this construction in Subsection 4.3.

(5) Theorem F is used to prove a duality theorem for the smooth structure class,

Theorem G, by inverting the Morse function. Theorem H, equivalent to the

Rigidity Conjecture, follows from this duality theorem.
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To complete the analogy in the exposition from the previous section, we will indicate

how the proof of the main theorem, Theorem H, can be thought of as an application of a

Poincaré–Hopf type theorem and Poincaré duality. The Poincaré–Hopf type theorem that

we ultimately apply is Theorem F, and as the outline indicates, this is a generalization of

other Poincaré–Hopf theorems that we prove along the way. The duality theorem for the

smooth structure class, Theorem G, is our instance of Poincaré duality.
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CHAPTER 2

Related Work

Two main ideas arising in this paper, fiberwise Poincaré–Hopf theorems and the

Hatcher construction, are of independent interest. In this section we give a brief sur-

vey of the literature and recent progress pertaining to both keywords. We omit a dis-

cussion of the most immediate literature pertaining to the Rigidity Conjecture, includ-

ing [DWW03,GIW14,GI14], as detailed descriptions of these works appear elsewhere

in this paper.

Hatcher’s construction associates to an element of the kernel of the J-homomorphism

a disk bundle which is fiber homotopy trivial but not smoothly trivial. The construc-

tion should be interpreted as a stable map from G/O to ΩWhDiff(∗). Waldhausen gave

a different formulation of the same map in [Wal82], and in [Bök84] Bokstedt proved

this map to be a rational homotopy equivalence. Later Igusa gave another proof using

parametrized Morse theory. Exciting new developments by Kragh [Kra18] have identified

the homotopy fiber of the Hatcher–Waldhausen map as a certain functional space M∞

considered by Eliashberg and Gromov in [EG98], establishing a connection between the

study of Lagrangians to algebraic K-theory of spaces. Kragh associates to every exact

Lagrangian an element of π∗(M∞). If any of these examples were proven to be nontriv-

ial, they would be counterexamples to the nearby Lagrangian conjecture in symplectic

topology. In essence, counter examples to the nearby Lagrangian conjecture might be
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found in the kernel of Hatcher’s construction. Recent work by Igusa and Alvarez-Gavela

elaborates further on these developments [ÁGI21].

Goodwillie, Igusa, and Ohrt have developed an equivariant version of Hatcher’s con-

struction [GIO15]. Ordinarily, the space G/O classifies vector bundles whose spherical

fibrations are fiber homotopy trivial. In the equivariant version, G/O is replaced by the

space Gn/U , which is the colimit of spaces Gn(N)/U(N), classifying rank N complex vec-

tor bundles together with a Cn-equivariant fiber homotopy trivialization of the associated

sphere bundle. The equivariant Hatcher construction is then a map Gn/U → Hs(BCn),

where the target is the stable h-cobordism space of the classifying space of Cn. The geo-

metric outcome of the construction is no longer a disk bundle, but instead a bundle of

h-cobordisms of the product of a disk with lens spaces.

Bunke and Gepner have reformulated the Becker–Gottlieb transfer in the context of

derived algebraic K-theory [BG13]. Their work leads to the Transfer Index Conjecture,

essentially a derived version of the parametrized index theorem of Dwyer, Weiss, and

Williams. This conjecture suggests as a corollary the existence of certain classes in alge-

braic K-theory of a ring of integers in a number field. The authors prove that the Hatcher

construction produces nontrivial representatives for these classes in special cases.

The Farell–Hsiang [FH78] results on diffeomorphism groups of disks relative to their

boundary prove that in the pseudoisotopy stable range,
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(2.1) πiBDiff∂(D
n)⊗Q =


Q if i = 0 mod 4 and n odd

0 otherwise

According to [Igu02], the nontrivial generator for odd dimensional disks can be ob-

tained from Hatcher’s construction. There has been much recent progress outside of the

stable range by a number of authors, including distinct but related work by Kupers,

Randal-Williams, Watanabe, and Weiss. In [Wei15] Weiss identifies nontrivial Pon-

tryagin classes pn+k ∈ H4n+4k(BTop(2n);Q). These are shown to evaluate nontrivially

on π4n+4k(BTop(2n);Q). It then follows by the Morlet equivalence that there must be

nonzero rational homotopy in π∗(BDiff∂(D
2n)) outside of the stable range. One might rea-

sonably suspect that these examples could produce unstable exotic smoothings of manifold

bundles. However, stably these classes are trivial, so they do not provide counterexamples

to the Rigidity Conjecture.

Fiberwise Poincaré–Hopf theorems first appeared in work by Brumfiel and Mad-

sen [BM76], and have proven to be a useful computational tool with many applications.

For instance, in [MT01] the authors then apply the theorem towards early progress on

the Mumford conjecture. Similar theorems are used in [RW08] to compute the mod 2

homology of the stable nonorientable mapping class group, as well as in [Rei19] to es-

tablish the existence of ‘non-kinetic’ smooth bundles over the classifying space BSU(2).

Douglas [Dou06] gave alternative proofs to [BM76] using Dold’s Euclidean neighborhood

rectracts. This paper establishes fiberwise Poincaré–Hopf theorems for smooth manifold

bundles admitting fiberwise Morse functions, and provided motivation for the present
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work. Our results provide fiberwise Poincaré–Hopf theorems for bundles that admit fiber-

wise generalized Morse functions. This is a significant strengthening, as all bundles admit

fiberwise generalized Morse functions, but bundles rarely admit fiberwise Morse functions.

This paper is concerned with a characteristic in the homotopy fiber of the fibration

ΓBH%
B(M)→ ΓBQB(M)→ ΓBA

%
B(M)

that arises from a nullhomotopy of the excisive A-theory characteristic. One could natu-

rally ask about characteristics in the homotopy fiber of the fibration

ΓBΩWhPL
B (M)→ ΓBA

%
B(M)→ ΓBAB(M)

given by a nullhomotopy of the ordinary A-theory characteristic. This is the premise

of Steimle’s PhD thesis [Ste10], in which the author studies the ‘parametrized excisive

characteristic’. One of the main technical results of their work is an additivity theorem for

the parametrized excisive characteristic, which parallels the Poincaré–Hopf theorems in

the present work, if they were restricted to bundles admitting fiberwise Morse decompo-

sitions. For comparison, the smooth structure class appearing in ΓBH%
B(M) concerns the

existence of stable exotic smoothings of fiber bundles, whereas the parametrized excisive

characteristic appearing in ΓBΩWhPL
B (M) concerns the existence of topological manifold

bundles whose projection maps are homotopic to stabilizations of an arbitrary map of

compact topological manifolds.
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CHAPTER 3

Characteristics associated with topologically trivial families of

h-cobordisms

In this section we formally introduce topologically trivial families of smooth h-cobordisms,

with the goal of defining the smooth structure characteristic. We begin in Subsection 3.1

with the definition of a topologically trivial families of smooth h-cobordisms, and intro-

duce the immersed Hatcher construction as the main example. In Subsection 3.2, we

identify the moduli space of topologically trivial h-cobordisms as the homotopy fiber of

the forgetful map from the space of smooth h-cobordisms to the space of topological

h-cobordisms. In Subsection 3.3 we introduce the smooth structure characteristic, a char-

acteristic of topologically trivial families of smooth h-cobordisms defined as a lift of the

Becker–Gottlieb transfer. The content of this section is used in Subsection 5.5 and Sec-

tion 6 where the Theorems of Section 5 are applied to topologically trivial families of

smooth h-cobordisms.

3.1. Topologically trivial families of h-cobordisms

In this subsection we define topologically trivial families of h-cobordisms, and then

provide examples of such objects.

Definition 1.1. A smooth family of h-cobordisms p : W → B with boundaries

∂0W := M and ∂1W := M ′ given as smooth manifold bundles p0 : M → B and p1 : M ′ →
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B is topologically trivial if there exists a fiberwise homeomorphism h : W →M × I over

B.

Remark 1.2. When the base is a point, the Whitehead torsion of a topologically

trivial h-cobordism must be trivial, and thus by the s-cobordism theorem W must be a

cylinder. This is not necessarily the case when the base is not contractible.

Example 1.3. Hatcher’s construction takes as input a vector bundle classified by

G/O and produces disk bundles that are fiberwise homeomorphic to a trivial disk bun-

dle, but not fiberwise diffeomorphic. The immersed Hatcher construction [GI14] utilizes

Hatcher’s disk bundles to produce topologically trivial h-cobordisms. Briefly, given a

smooth manifold bundle p0 : M → B, they consider the bundle p0 × I : M × I → B

and glue a family of handles parametrized by B on the outgoing boundary M × 1 → B.

This family of handles is essentially one of Hatcher’s disk bundles. The result of this con-

struction is a topologically trivial family of h-cobordisms, as the bundle remains fiberwise

homeomorphic to M × I → B. See Sections 6.4.1 and 6.4.2 or [GI14] for details of the

construction.

3.2. Moduli spaces of h-cobordisms

Given a smooth manifold F , we now define the space of smooth h-cobordisms on

F , the space of topological h-cobordisms on F , and the space of topologically trivial

h-cobordisms on F . We also introduce notation for the stable versions of these spaces.

Definition 2.1. Let H t(F ) denote the space of topological h-cobordisms on F . This

space is defined to be the geometric realization of a simplicial set H t
•(F ). A k-simplex in
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H t
•(F ) is a topological manifold bundle π : E → ∆q for which each fiber Wp = π−1(p) is

a topological h-cobordism on F . We denote by H t
B(F ) the mapping space |H t

•(F )|B.

Definition 2.2. Let Hd(F ) denote the space of smooth h-cobordisms on F . This

space is defined to be the geometric realization of a simplicial set Hd
• (F ). A k-simplex

in Hd
• (F ) is a smooth bundle π : E → ∆q for whcih each fiber Wp = π−1(p) is a smooth

h-cobordism on F . We denote by Hd
B(F ) the mapping space |Hd

• (F )|B.

Definition 2.3. Let H t/d(F ) denote the space of topologically trivial h-cobordisms

on F . This space is defined to be the geometric realization of a simplicial set H
t/d
• (F ).

A k-simplex in H
t/d
• (F ) is a pair (π, h) for which the map π : E → ∆q is a smooth

bundle such that each fiber Wp = π−1(p) is a smooth h-cobordism on F . The map h is

a homeomorphism from E to F × I ×∆k over ∆k. We denote by H
t/d
B (F ) the mapping

space |H t/d
• (F )|B.

Let HX
B (F ) denote the stabilizations of the spaces HX

B (F ) with respect to stabilization

maps HX
B (F )→ HX

B (F × I) for X being any of t, d, or t/d.

Proposition 2.4. The space Ht/d(F ) is the homotopy fiber of the forgetful map

Hd(F )→ Ht(F ) over F × I.

Proof. It suffices to see that the unstable space H t/d(F ) is the homotopy fiber of

the forgetful map Hd(F ) → H t(F ). Let (π, h) be a zero simplex in H
t/d
• (F ). That is,

π : E → ∗ is a smooth manifold bundle with E is a smooth h-cobordism on F , and h

is a homeomorphism from F × I to E. Then π is clearly a point in Hd(F ). It remains

to show that h is equivalent to a 1-simplex in H t
•(F ). Thus from h we must obtain a
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one parameter family of topological h-cobordisms on F that starts at F × I and ends at

E. Consider the h-cobordism F × I ∪∂0 E in Hd(F ), which is diffeomorphic to E, and

homeomorphic to F × [−1, 1]. Let π′ : E ∪F × I → [−1, 1] be the new projection map for

this family of topological h-cobordisms, and consider the h-cobordisms given by π−1[−t, 1]

for t ∈ [0, 1]. This is the desired one parameter family of topological h-cobordisms. �

3.3. Characteristics of h-cobordisms and the Dwyer–Weiss–Williams

pullback square

In this section we introduce the relative Becker–Gottlieb transfer and relative excisive

A-theory Euler characteristic on families of smooth and topological h-cobordisms, respec-

tively. We then recall a result from [DWW03] which situates these characteristics in a

homotopy pullback square.

Associated to a smooth manifold bundle p : M → B with compact fibers, our charac-

teristics will be points in the section spaces ΓBQB(M+) and ΓBA
%
B(M). Roughly speaking,

these spaces are sections of the fiberwise homology bundles obtained by taking a fiber-

wise smash product with the sphere spectrum S and the algebraic K-theory of spaces

functor evaluated at a point, A(∗). Moreover, these section spaces are related by a map

η : ΓBQB(M+)→ ΓBA
%
B(M) induced by the unit map S→ A(∗).

The Becker–Gottlieb transfer is a section tr(p) ∈ ΓBQB(M+), for which the composi-

tion of tr(p) and the inclusion map QB(M+) ↪→ Q(M+) is the usual transfer B → Q(M+).

The excisive A-theory Euler characteristic is a section χ%(p) ∈ ΓBA
%
B(M). More precise

homotopical formulations of these spaces and exact definitions of these characteristics are

given in Section 5.
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Given that our purpose is to study h-cobordisms, we also require relative versions of

these characteristics. When considering a smooth h-cobordism bundle p : W → B with

boundaries ∂0W := M and ∂1W := M ′ given as smooth manifold bundles p0 : M → B and

p1 : M ′ → B, we require versions of the Becker–Gottlieb transfer and excisive A-theory

Euler characteristics that are relative to ∂0W .

We denote by tr∂(p) the section r∗ tr(p)− tr(p0) in ΓBQB(M) where r is the retraction

of W onto M . We denote by χ%
∂ (p) the section r∗χ

%(p)− χ%(p0) in ΓBA
%
B(M).

Dwyer, Weiss, and Williams proved the following theorem relating tr(p) and χ%(p).

Theorem (Index Theorem [DWW03]). For p : M → B a bundle of compact smooth

manifolds, χ%(p) ∈ ΓBA
%
B(M) is fiberwise homotopic to η ◦ tr(p).

The theorem above implies the commutativity of the diagram in the following stronger

theorem about h-cobordisms also proven by Dwyer, Weiss, and Williams.

Theorem (Corollary 12.3 in [DWW03]). The following diagram is a homotopy pull-

back square:

(3.1) Hd
B(F )

tr∂(p)
//

forget

��

ΓBQB(M+)

η

��

Ht
B(F )

χ%
∂ (p)
// ΓBA

%
B(M)

Remark 3.1. This theorem is an essential step in the proof of Dwyer, Weiss, and

William’s converse Riemann–Roch theorem.
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Corollary 3.2. The homotopy fiber of the left vertical arrow in diagram (3.1) is the

space Ht/d
B (F ), and the homotopy fiber of the right vertical arrow is the space ΓBH%

B(M),

the space of sections of the space obtained by taking a fiberwise smash product with H(∗).

The induced map on these homotopy fibers, θ : Ht/d
B (F ) → ΓBH%

B(M) is a homotopy

equivalence.

3.4. The smooth structure characteristic

In light of Corollary 3.2, we will now define the smooth structure characteristic for a

single family of topologically trivial h-cobordisms. Associated to a topologically trivial

family of h-cobordisms is a canonical nullhomotopy of the excisive A-theory Euler char-

acteristic. This nullhomotopy is used to define the smooth structure characteristic, as in

the following definition.

Definition 4.1. The smooth structure characteristic of a topologically trivial family

of h-cobordisms p : W → B, denoted θ(W,∂0W ), is a section in ΓBH%
B(W ) canonically

determined by the point tr∂(p) ∈ ΓBQB(W ) over χ%
∂ (p) ∈ ΓBA

%
B(W ), and the canonical

path from χ%
∂ (p) to χ%(M) determined by the fiberwise homeomorphism h : W →M×I.

Remark 4.2. In keeping with the definition of higher smooth torsion due to [DWW03]

as a nullhomotopy of the composition of the Becker–Gottlieb transfer with the map

Q(M+)→ K(Z), Definition 4.1 presents the smooth structure characteristic as a nullho-

motopy of the excisive A-theory Euler characteristic. Thus, we may think of the smooth

structure characteristic as a refinement of the higher smooth torsion.
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CHAPTER 4

Review of Generalized Morse Functions

In this section we introduce the theory of generalized Morse functions used in the

rest of this paper. In Subsection 4.1 we define generalized Morse functions, give the

local properties of these functions as they vary in families, and prove the transversality

result that implies that the critical locus of a fiberwise generalized Morse function is a

submanifold of the total space. In Subsection 4.2 we introduce ghost sets, a perturbation of

the critical locus of a fiberwise generalized Morse function in the neighborhood of a birth-

death singularity which will be used in subsequent sections to compute characteristics

associated to the critical locus. In Subsection 4.3 we introduce stratified subsets as a

generalization of the critical locus of a fiberwise generalized Morse function. We define

stratified deformations of stratified subsets, and give a general purpose construction that

deforms the critical locus into two degrees. This property is used in Subsection 5.5 to

prove a fiberwise Poincaré–Hopf theorem for the smooth structure characteristic, and in

Subsection 6.2 to prove a duality theorem for the smooth structure characteristic.

4.1. Definitions and transversality properties of generalized Morse functions

We begin with the definition of a generalized Morse function.

Definition 1.1. A generalized Morse function on a single manifold M is a function

f : (M,∂0M)→ (I, 0) that admits only Morse and birth-death critical points.
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In local coordinates, a Morse critical point of the function f can be written in the form

f(x) = −x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n

with respect to coordinates (x1, · · · , xn) ∈ Ri ×Rn−i. At a birth-death critical point, the

normal form is as follows:

f(x) = −x2
1 − · · · − x2

i−1 + x3
i + x2

i+1 + · · ·+ x2
n

In this paper, we are interested in families of generalized Morse functons. Let f :

(W,∂0W )→ (I, 0) be a fiberwise generalized Morse function, meaning that its restriction

to each fiber is a generalized Morse function. Igusa proved that such functions always

exist on smooth fiber bundles when the dimension of the fiber is at least the dimension

of the base [Igu90], and this dimensionality condition was later relaxed by independent

work of Lurie [Lur09] and Eliashberg–Misachev [EM12]. Our goal is to recall the local

behavior of such functions, and to illustrate the key transversality property enjoyed by

their critical loci.

In the parametrized setting, we have the following proposition/summary from [Igu05]:

Proposition 1.2. In a generic p-parameter family of generalized Morse functions,

birth-death points occur on a codimension one subspace of the parameter space. The

family of functions ft has the form

ft(x) = −x2
1 − · · · − x2

i−1 + x3
i + t0xi + x2

i+1 + · · ·+ x2
n
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with respect to parameter coordinates t0, · · · tp−1 and t-dependent local coordinates (x1, · · · , xn)

for M .

The coordinate t0 in the proposition above is often referred to as the ‘unfolding di-

recton’ associated to the birth-death critical point. This suggests the following useful

depiction of a birth-death critical point, which might be thought of as a ‘cancellation’ of

Morse critical points, or their associated handles.

x

t0
Figure 4.1. A depiction of the critical locus of a fiberwise generalized Morse
function in the local neighborhood of a birth-death critical point.

To obtain our desired transversality result, we proceed to compute the Hessian of f

at a birth-death critical point.

Let p : Wm → Bk be a smooth fiber bundle with compact base and fiber F n. Let

f : (W,∂0W ) → (I, 0) be a fiberwise generalized Morse function as before. Then by the

proposition above, in local coordinates at a birth-death singularity we have

ft(x) = −x2
1 − · · · − x2

i + x3
i+1 + t0xi+1 + x2

i+2 + · · ·+ x2
n.
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where t0 is the unfolding direction. The gradient of this function is a section W → TW ,

and if we take the gradient with respect to fiber coordinates, we have a section of the

vertical tangent bundle, W → T∨W . We can explicitly compute the map∇f : W → T∨W

as

(x, t) 7→ 〈−2x1, · · · ,−2xi, 3x
2
i+1 + t0, 2xi+2, · · · , 2xn〉

The derivative of ∇f is a map on tangent spaces with the last map in the composition

below being the projection off of the nonidentity component.

T(x,t)W 7→ T∇f(x,t)(T
∨W ) ∼= T∨W ⊕ T∨W → T∨W

This map takes the form of a rectangular matrix of size (2n + k) × (n + k), which is

written below. The tangent space in the domain is labeled using coordinates t0, · · · , tk−1

in the base, and x1, · · · , xn in the fiber. In the target we add labels ∂
∂xi

for i, · · · , n for

the coordinates in the vertical tangent direction. Keep in mind that in the neighborhood

of a birth-death singularity, t0 is always identified with the ‘unfolding‘ direction.
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x



t



∂
∂x





x︷ ︸︸ ︷
1

t︷ ︸︸ ︷
1

1

1

1

1

1

1

1

1

1

1

1

1

−2

. . .

−2

6xi+1 1

2

. . .

2

︸︷︷︸
t0



We began with a smooth map ∇f : W → T∨W , and now we can check to see

whether the image of this map is transverse to the inclusion of the zero section of T∨W ,

i0 : W → T∨W . If ` is in ∇f(W )∩ i0W , then ∇f(W ) is transverse to i0W if, for all a, b, `



34

so that ∇f(a) = i0(b) = `,

Im(D(∇f)(a))⊕ Im(D(i0)(b)) � Tp(T
∨W ).

It is clear that the intersection ` ∈ ∇f(W ) ∩ i0W is the set of critical points of f , and

as these points are either Morse critical points, or birth-death singularities, we handle

each of these cases independently. In the event that ` is a Morse critical point, it is a

standard exercise that the map above is surjective. The case of a birth-death singularity

is identical, except in the row labelled by ∂
∂xi+1

. At the birth-death singularity, the entry

6xi+1 vanishes, and if it were not for the 1 in the t0 entry of the row, there would be

no image in the 1-dimensional subspace spanned by ∂
∂xi+1

of the matrix above. So we

do have surjectivity and thus transversality, but only because of the derivative in the

unfolding direction t0. So transversality is a direct consequence of the unfolding behavior

of a parametrized family of generalized Morse functions. We summarize this discussion

in the lemma and corollary below:

Lemma 1.3. For f : (W,∂0W ) → (I, 0) a fiberwise generalized Morse function on

a smooth fiber bundle W → B, the section ∇f : W → T∨W is transverse to the zero

section of the vertical tangent bundle of W .

Corollary 1.4. If Σf denotes the critical locus of a fiberwise generalized Morse func-

tion f , then the normal bundle ν(Σf )→ Σf to the embedding Σf ↪→ W is isomorphic to

the restriction of the vertical tangent bundle of W to Σf , T∨W |Σf .
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4.2. Cancelling critical points and ghost sets

In this section we will consider the submanifold Σf of W , introduce notation for the

submanifolds made up of Morse critical points and birth-death critical points, and discuss

how to perturb the critical locus to facilitate the proofs of the fiberwise Poincaré–Hopf

theorems appearing later in this paper.

Let Zi denote the submanifold of Morse critical points of degree i, where the degree

is the number of negative eigenvalues of the Hessian of f at any point in Zi. In general

the collection of such critical points may have more than one component, but we will

not introduce extra notation for this level of generality. Instead, we assume that Zi is

connected, and note that all proofs in this paper can easily be generalized to accomodate

multiple components. The collection of all such Zi is denoted S (Σf ).

The submanifolds Zi and Zi+1 share a common boundary which we denote by Z1
i . The

submanifold Z1
i contains the birth-death critical of degree i. Again, there may be more

than one component of birth-death critical points of degree i, but we elect not to work at

that level of generality.

The diagram below depicts how Zi, Zi+1, and Z1
i are arranged in the neighborhood of

a birth-death critical point.

The image of the birth-death set in B, p(Zi
1), is known as the bifurcation set. The

bifurcation set is a codimension zero submanifold of B. In the neighborhood of a birth-

death singularity, the points locally given by xi = 0 and −ε < t0 < 0 are inflection points

on which the second derivative of f in the vertical direction vanishes [Igu05]. We call
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Zi

Zi+1

Z1
i

Figure 4.2. The critical submanifolds Zi and Zi+1 share a common bound-
ary Z1

i .

these points ghost points, and they allow us to define a ghost set, Zg
i , which is formally a

lift of a one-sided collar neighborhood of the bifurcation set. The ghost set is transverse

to Z, as in the following figure.

Zg
i Z1

i

Zi

Zi+1

Figure 4.3. The ghost set is transversally attached to the critical locus at

the birth-death set.

The ghost set is used to locally perturb Z so that the critical points of the generalized

Morse function do not cancel over the ghost set. In particular, we consider manifolds

with corners Ẑi := Zi ∪Zg
i and Ẑi+1 := Zi+1 ∪Zg

i and we smooth both of these manifolds
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to obtain manifolds Z̃i and Z̃i+1 that are locally diffeomorphic to B. These are depicted

below.

Z̃i

Z̃i+1

Figure 4.4. The manifolds with corners Ẑi and Ẑi+1 are smoothed out to Z̃i

and Z̃i+1.

The outcome of this perturbation is that any sufficiently small simplex in the base

which intersects the bifurcation set has the same number of critical points over each

point in the simplex. This essential property of ghosts is used in [Igu05] in the proof

of the ‘transfer theorem’, and in [Ohr19] to give a combinatorial description of the

Becker–Gottlieb transfer.

4.3. Stratified deformations of critical loci

In this section we define stratified subsets and stratified deformations, and we construct

a particular stratified deformation that will be used in Section 5.4 to prove Theorems D

and E.

Definition 3.1. A stratified subset of a smooth bundle p : W → Bk is a pair (Σ, ψ)

where Σ is a compact smooth k-dimensional manifold together with a map ρ : Σ → B
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and a tangential structure ψ : Σ → X. The map ρ is everywhere smooth, but may

admit birth-death singularities locally given by ρ(x1, · · · , xk) = (x2
1, x2, · · · , xk). These

singularities form a k − 1 dimensional submanifold of Σ.

We give two examples of stratified subsets, the first explains how to obtain the canoni-

cal example of a stratified subset from a fiberwise generalized Morse function. The second

example introduces a special type of stratified subset called an immersed lens. The par-

ticular stratified deformation discussed below begins with a critical locus of a fiberwise

generalized Morse function and deforms it into a disjoint union of immersed lenses.

Example 3.2. For our purposes the pair (Σ, ψ) will be the stratified subset corre-

sponding to the critical locus of a fiberwise generalized Morse function f : (W,∂0W ) →

(I, 0) on the bundle p : W → B. In this case, Σ is the critical locus Σf , and the map ρ is

the projection p restricted to Σf . The map ψ will be a map Σ → BO × BO classifying

the stable negative eigenspace bundle of f in the first component, and the stable positive

eigenspace bundle of f in the second component.

Remark 3.3. There are two different stratifications on a stratified subset. The titular

stratification refers to the stratification by dimension: each stratum is either of dimension

k or dimension k − 1. Often this will not be the stratification that we are interested in.

Instead, we will make use of the degree stratification which distinguishes by the degree

of their critical points. For instance, the submanifold of the critical locus containing

those critical points of degree i, previously denoted Zi, is a stratum of the degree-wise

stratification of Σf . We will denote the set of such strata by S (Σf ).

The following is an example of a stratified subset concentrated in two degrees.
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Example 3.4 (Immersed Lenses - p.70 in [Igu05]). Let V be a compact connected k

manifold with boundary so that V is immersed in Bk. Let ψ1, ψ2 : V → X be continuous

maps which are trivial on ∂V . Then the immersed lens Li(V, ψ1, ψ2) is defined to be the

stratified subset (L, ψL) where L is the double of V in indices i and i + 1, and ψL is ψ1

on the lower stratum and ψ2 on the upper stratum.

Definition 3.5 (p. 67 in [Igu05]). A stratified deformation between stratified subsets

(Σ, ψ) and (Σ′, ψ′) of p : W → B with coefficients in X is a stratified subset (S,Ψ) of

p × I : W × I → B × I with coefficients in X so that the restrictions of (S,Ψ) to

p× 0 : W × 0→ B × 0 and p× 1 : W × 1→ B × 1 are (Σ, ψ) and (Σ′, ψ′). In the event

that (Σ, ψ) and (Σ′, ψ′) are related by a stratified deformation we say that they belong to

the same stratified deformation class and use the notation (Σ, ψ) ∼ (Σ′, ψ′).

Remark 3.6. Note that when considering a stratified deformation of a critical locus

of a fiberwise generalized Morse function, the end result of the deformation may not

necessarily be realized as the critical locus of a fiberwise generalized Morse function.

When referencing the collection of strata of the stratified subset (Σ, ψ) distinguished by

their degree (in this case the dimension of the negative eigenspace bundle), we use the

notation S (Σ). When Σ is the critical locus Σf , S (Σ) is identical to S (Σf ).

For the remainder of this section we fix (Σ, ψ) as in Example 3.2.

Lemma 3.7. There exists a stratified deformation between stratified subsets (Σ, ψ)

and (Σ′, ψ′), so that the degree-wise strata of (Σ′, ψ′) are concentrated in two consecutive

degrees. Furthermore, each component of the lower stratum of Σ′ lies in a contractible

subset of Σ′.
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Remark 3.8. Lemma 3.7 is an excerpt from the proof of the transfer theorem in [Igu05].

In particular, the statement is identical to Step (c) on p.70, the proof of which appears

on pages 71-73.

Briefly, the strategy of the proof is to first add and delete twisted lenses, immersed

lenses for which ψ1 is the same as ψ2 after composition with the fold map, to concentrate

the stratified subset into two consecutives degrees. The stratified deformations obtained

by adding and deleting the twisted lenses reduce the number of components in the top de-

gree by one. An inductive argument starting in the minimal stratum will then concentrate

all strata in two degrees.

The next task is to prove that the lower stratum lies in a contractible subset of Σ′. To

do this, we choose a triangulation of Σ′, and do a deformation on each simplex. On the

zero simplices the idea is to add a lens above a zero simplex, give a stratified deformation

that cancels the lower stratum of this lens to obtain a ‘mushroom’, and then observe that

the mushroom has the desired property: the ‘−’ stratum on top of the mushroom (as well

as it’s boundary) lies in a contractible subset. We give a pictorial version of this stratified

deformation in the figure below. This construction, as well as the inductive constructions

for higher simplices, also appears with pictures in the proof of Lemma 3.2.1 in [GI14].

−

+

−

− −

+ +

−

Figure 4.5. The stratified deformation introduces a lens above a designated
point in Σ− and then cancels the + and - strata to obtain a ‘mushroom’.
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Lemma 3.9 (Lemma 5.7 in [Igu05]). The stratified subset (Σ′, ψ′) can be deformed

into a stratified subset (ΣSD, ψSD) presented as a disjoint union of immersed lenses and

components on which ψSD is trivial. Furthermore, ψSD is trivial on the lower stratum of

each of the immersed lenses.

Let Λ denote the component of ΣSD on which ψSD is trivial.

Lemma 3.10. An integer multiple of the stratified subset (Λ, ∗) is stratified null-

deformable.

Proof. Since Λ is concentrated in two degrees, Λ gives a map from B into the con-

figuration space of positive and negative particles which is homotopy equivalent to QS0.

Since QS0 is rationally trivial in degrees greater than 0, and this map lands in the zero

component of π0(QS0) = Z, some positive integer multiple of (Λ, ∗) must be stratified

null-deformable. �

Remark 3.11. In Section 5.4 the stratified deformation between (Σ, ψ) and (ΣSD, ψSD)

is used to prove a fiberwise Poincaré–Hopf theorem that factors the Becker–Gottlieb

transfer in terms of (ΣSD, ψSD). In the proof of Theorem D we make use of ghost sets on

ΣSD, which are defined on arbitrary stratified subsets identically to how they are defined

on Σf .
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CHAPTER 5

Fiberwise Poincaré–Hopf Theorems

This section contains several fiberwise Poincaré–Hopf theorems, the main technical

results of this paper. Roughly speaking, a fiberwise Poincaré–Hopf theorem computes a

characteristic in terms of Morse theoretic data, in analogy with the classical Poincaré–Hopf

theorem. The results in this section are preceded in the literature by computations of the

Becker–Gottlieb transfer due to [BM76] and [Dou06].

In Subsection 5.1 we fix notation and introduce the indexing categories that are used

to give refinements of our characteristics as Euler sections which should be thought of as

the Poincaré duals of the usual characteristics. The constructions of the characteristics

appearing in the subsection are used several times in the subsequent subsections.

In Subsection 5.2 we prove a fiberwise Poincaré–Hopf theorem for the Becker–Gottlieb

transfer. To be exact, we factor the Poincaré dual of the Becker–Gottlieb transfer, and

Euler section ed(p), in terms of the critical locus of a fiberwise generalized Morse function.

In Subsection 5.3 we prove a fiberwise Poincaré–Hopf theorem for the excisive A-theory

Euler characteristic. To be exact once again, we factor the Poincaré dual of the excisive

A-theory Euler characteristic, and Euler section et(p), in terms of the critical locus of a

fiberwise generalized Morse function. We also prove that the results of Subsections 5.2

and 5.3 are compatible.
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In Subsection 5.4 we generalize the results of the previous two sections to an arbi-

trary stratified deformation of the critical locus of a fiberwise generalized Morse function.

We also translate the theorems of this section into rational formulas in π0 for use in

Subsection 5.5 and Section 6.

In Subsection 5.5 we use the rational formulas of the previous section, as well as the

stratified deformation constructed in Subsection 4.3 to prove a fiberwise Poincaré–Hopf

theorem for the smooth structure class. In contrast to the previous fiberwise Poincaré–Hopf

theorems, Theorem F is a rational statement.

The contents of this section build towards Theorem F, which is the only theorem from

this section used in Section 6.

5.1. Definitions and a recollection of Dwyer–Weiss–Williams index theory

For the subsections that follow we will fix a smooth manifold bundle p : W → B, where

W is a compact smooth manifold of dimension m, B is a compact smooth manifold of

dimension k, and the fiber of p is a compact smooth manifold F of dimension n. We fix an

embedding of W into B×Rd over B for d large. We also fix a fiberwise generalized Morse

function f : W → R, with critical locus Σk
f and vertical gradient vector field X := ∇∨f .

We denote by π the restriction of the projection p to Σf . The tubular neighborhood

of Σf in W is a disk bundle q : DΣf → Σf , and the restriction of p to DΣf is a map

ψ : DΣf → B. These choices are summarized in the following diagram. We also fix the

notation τ and ν for, respectively, the vertical tangent bundle and the vertical normal

bundle of W .
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F n

��

// Rd

��

Σk
f

π
--

// DΣm
f

ψ

''

q
oo // Wm

p

��

// B × Rd

{{

Bk

Next we introduce indexing categories associated to the manifolds above, which will

be used to construct the characteristics considered in subsequent subsections.

Definition 1.1. The category Disk
B/
k is the category of one point compactifications of

q-disks embedded in B. More precisely, an object U ∈ Disk
B/
k is the one point compactifi-

cation of an open disk Rq embedded in B. An open embedding Rq ↪→ Rq ↪→ B gives rise

to a morphism U ′ → U given by the one point compactification of the open embedding

Rq ↪→ Rq.

Remark 1.2. The category Disk
B/
k of Definition 1.1 is similar to the category

(
Disk+

n

)B∗/
used in [AF19], with the only difference being that the n-disks used here have only one

component.

Definition 1.3. For fixed U ∈ Disk
B/
k , we define the category Diskp

−1U/
m to be the

category of one point compactifications of m-disks in p−1U . An object V in Diskp
−1U/
m is

the one point compactification of an m disk Rk × Rn ∼= Rm embedded in p−1U so that

the composition Rk ×Rn → p−1U
p−→ U factors through the projection Rk ×Rn → Rk. A

morphism from V ′ to V is given by the one point compactification of an open embedding

Rk × Rn → Rk × Rn that commutes with the projection maps to Rk.
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Definition 1.4. The category Diskψ
−1U/

m is a subcategory of Diskp
−1U/
m containing those

disks V for which the embedding Rk ×Rn ↪→ p−1U ↪→ W factors through the embedding

DΣ ↪→ W .

The proposition below indicates how the categories Disk
B/
k and Diskp

−1U/
m are used to

model the homotopy types of ΓBQB(W ), ΓBA
%
B(W ), and ΓBH%

B(W ). These are the spaces

of sections of the fiberwise homology bundles whose fibers are Q(F+) := Ω∞(F+ ∧ S) for

S the sphere spectrum, A%(F ) := Ω∞(F+ ∧ A(∗)) for A(∗) the algebraic K-theory of

spaces functor evaluated at a point, and H%(F ) := Ω∞(F+ ∧ H(∗)) for H(∗) the stable

h-cobordism space of a point.

Proposition 1.5. The following are homotopy equivalences:

ΓBQB(W )
'−→ holim

U∈Disk
B/
q

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)(5.1)

ΓBA
%
B(W )

'−→ holim
U∈Disk

B/
q

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))(5.2)

ΓBH%
B(W )

'−→ holim
U∈Disk

B/
q

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧H(∗))(5.3)

Proof. These homotopy equivalences are each instances of Poincaré duality, e.g.

[DWW03] or nonabelian Poincaré duality from [AF19]. �

5.1.1. Constructions of characteristics

We will now construct refinements of the Becker–Gottlieb transfer tr(p) ∈ ΓBQB(W ) and

the excisive A-theory Euler characteristic χ%(p) ∈ ΓBA
%
B(W ). First we recall the Euler

sections of [Bec70] and [DWW03].
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Let γ(n) be the tautological bundle on BTop(n), and let [etn] ∈ Hγ(n)(BTop(n);A(∗)),

the cohomology of BTop(n) with twisted coefficients in the spectrum A(∗), denote the

generalized Becker–Euler class defined in [Bec70]. The class [etn] is refined in [DWW03]

to a section etn of the bundle with base BTop(n) and fiber Ω∞(γ(n)•x ∧ A(∗)) over x ∈

BTop(n). Given a manifold M with tangent Euclidean bundle τ classified by a map

M → BTop(n), the associated Euler section etn(τ) is defined as the pullback of etn to a

section of the bundle over M with fibers Ω∞(τ •x ∧ A(∗)) over x ∈M .

Similarly, let ε(n) be the tautological bundle on BO(n), and consider the Becker–Euler

class [edn] ∈ Hε(n)(BO(n);S), the cohomology of BO(n) with twisted coefficients in the

sphere spectrum. The class [edn] is refined in [DWW03] to a section edn of the bundle with

base BO(n) and fiber Ω∞(ε(n)•x ∧ S) over x ∈ BO(n). Given a manifold M with tangent

bundle τ classified by a map M → BO(n), the associated Euler section edn(τ) is defined as

the pullback of edn to a section of the bundle over M with fibers Ω∞(τ •x ∧ S) over x ∈M .

For U ∈ Disk
B/
k and V ∈ Diskp

−1U/
m , let c denote the Thom collapse map U• ∧ Sd →

V •∧Th(ν|V ) associated to the embedding V ↪→ U×Rd. Let edn(τ) : Th(ν|V )∧S0 id∧edn(τ)−−−−−→

Th(ν|V ) ∧ Th(τ |V ) ∧ S denote the restriction of the Euler section edn(τ) on M to V . At

a point in Th(ν|V ) over x ∈ V , the map edn(τ) is the Euler section at x, i.e. a map

S0 → τ •x ∧ S. Then we consider the composition below:

(5.4) U• ∧ Sd ∧ S0 c∧id−−→ V • ∧ Th(ν|V ) ∧ S0 id∧edn(τ)−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ S

Identifying Th(ν|V ) ∧ Th(τ |V ) as Sd and taking adjoints, we equivalently have a map
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U• ∧ S0 → ΩdΩ∞(V • ∧ Sd ∧ S).

For simplicity, we further compose with a homotopy equivalence given by the inclusion

ΩdΩ∞(V • ∧ Sd ∧ S)→ Ω∞(V • ∧ S) to obtain a map

U• ∧ S0 → Ω∞(V • ∧ S)

The construction above is natural in V , and thus yields a map

U• ∧ S0 → holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

Naturality in U then produces a map

S0 ed(p)−−−→ holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

which we denote by ed(p) and refer to as the Euler section of p in ΓBQB(W ).

Similarly, considering the composition

(5.5) U• ∧ Sd ∧ S0 c∧id−−→ V • ∧ Th(ν|V ) ∧ S0 id∧etn(τ)−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ A(∗)

results in a map

S0 et(p)−−→ holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

which we denote by et(p) and refer to as the Euler section of p in ΓBA
%
B(W ).



48

5.1.2. Recollections from Dwyer–Weiss–Williams

Proposition 1.6. With the vertical map induced by the unit map η : S→ A(∗), the

following diagram is homotopy commutative:

S0
ed(p)

//

et(p)

++

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

η∗

��

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

Proof. It suffices to construct a path relating the universal Euler sections η∗e
d
n and

etn. This is imprecisely Theorem 4.10 and precisely Theorem 4.13 in [DWW03]. �

The fiberwise Poincaré duality map

p : holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ J)
'−→ Ω∞((p−1U)• ∧ J)

is a homotopy equivalence for any spectrum J (see, e.g. [AF19] or [DWW03]).

Proposition 1.7. There is a canonical path between ped(p) and tr(p) in

holim
U∈Disk

B/
k

Ω∞((p−1(U))• ∧ S) ' ΓBQB(W )

There is also a canonical path between pet(p) and χ%(p) in

holim
U∈Disk

B/
k

Ω∞((p−1(U))• ∧ A(∗)) ' ΓBA
%
B(W )
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Proof. The first sentence is Theorem 5.4 in [DWW03]. The second sentence is

Theorem 3.18 in [DWW03]. �

Proposition 1.8. There is a canonical path betwween η tr(p) and χ%(p) in ΓBA
%
B(W ).

In particular, the following diagram is homotopy commutative.

S0
tr(p)

//

χ%(p) ((

ΓBQB(W )

η

��

ΓBA
%
B(W )

Proof. This follows from combining Propositions 1.6 and 1.7. �

5.2. Fiberwise Poincaré–Hopf Theorem for the Becker–Gottlieb transfer

In this section we factor the Becker–Gottlieb transfer in terms of the critical locus Σf

of the fiberwise generalized Morse function f : W → [0, 1] and the vertical gradient vector

field X := γ∨f .

Recall the notation Zi for the connected submanifold of Σf containing those critical points

of degree i. The submanifolds Zi and Zi+1 share a boundary Z1
i consisting of birth-death

critical points. The set S (Σf ) is defined to be the set of all such Zi. In this section, we

will make use of manifolds Z̃i obtained by perturbing Zi over the ghost set as in Section

4.2. Note that we will often omit the degree i subscript from Z̃i when it is not essential.

We denote by πZ̃ the local diffeomorphism given by the restriction of p to Z̃.
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We begin by introducing two maps associated to Z̃. The first is an Euler section associated

to Z̃, and the second is an index map associated to Z̃. After these are defined, we prove

the main theorem of this section.

5.2.1. The Euler section associated to Z̃

We begin by giving definitions of the categories used to approximate Z̃.

Definition 2.1. The category Disk
Z̃/
k is the category of one point compactifications of

k disks embedded in Z̃. More precisely, an object V ∈ Disk
Z̃/
k is the one point compactifi-

cation of an open disk Rk embedded in Z̃. An open embedding Rk ↪→ Rk ↪→ Z̃ gives rise

to a morphism V ′ → V given by the one point compactification of the open embedding

Rk ↪→ Rk.

Definition 2.2. For U ∈ Disk
B/
k , the category Disk

Z̃/U
k is the subcategory of Disk

Z̃/
k

consisting of those objects V for which the assosicated Rk embedded in Z̃ maps into U

under the projection map p, which restricts to a local homeomorphism on Rk.

As in the previous section, the composition (5.4) is used to construct a map

S0 ed(π
Z̃

)
−−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

Aggregate over all Z ∈ S (Σf ), we have a map

S0

∏
Z∈S (Σf ) e

d(π
Z̃

)

−−−−−−−−−−→
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)
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5.2.2. The index map associated to Z̃

At a point z ∈ Z, we can consider the derivative of the gradient vector field X at z, a

map dXz : τz → τz. This induces a self-map on the one point compactification of τz, and

thus a map dX : Th(τZ)→ Th(τZ). For any V ∈ Disk
Z̃/
k , we can restrict the map dX to

V to obtain a map dX|V : Th(τ |V )→ Th(τ |V ). Then the local map

(5.6) V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ S id∧id∧dX|V ∧id−−−−−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ S

induces a map

(5.7) holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)
Indd

Z̃−−→ holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

which we denote by Indd
Z̃

and refer to as the index map on Z̃ with coefficients in S.

Aggregate over all Z ∈ S (Σf ) we have a map

(5.8)∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

∏
Z∈S (Σf ) Ind

d
Z̃−−−−−−−−−→

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

The following lemma will be used in Section 5.4.

Lemma 2.3. For Z ∈ S (Σf ) of degree j, Indd
Z̃

is multiplication by (−1)j on homotopy

groups.
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Proof. This is the correction in [MP89] to Theorems 2.11 and 3.11 in [BM76]. �

5.2.3. Factoring the Becker–Gottlieb transfer

Theorem A. The diagram below is homotopy commutative.

S0

∏
Z∈S (Σf ) e

d(π
Z̃

)

��

ed(p)
// holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S) ∏
Z∈S (Σf ) Ind

d
Z̃

//
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

incl

OO

(5.9)

Proof. We begin by introducing an auxilliary map. Let edX(p) be the vector field Euler

section, a map

S0 edX(p)
−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

given locally as

(5.10) U• ∧ Sd ∧ S0 c∧id−−→ V • ∧ Th(ν|V ) ∧ S0 id∧edX(τ)
−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ S
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The only difference between the composition above and (5.4) is the map edX(τ), which

we define to be the composition

S0 edn(τ)−−−→ Th(τ |V ) ∧ S `∧id−−→ Th(τ |V ) ∧ S

in which the map ` : Th(τ |V ) → Th(τ |V ) sends a point over y ∈ V to y + X(y). By

placing the scaling factor t ∈ [0, 1] as a coefficient in front of X, we obtain a family of

maps `t which is a homotopy between the map ` and the identity. Thus, the vector field

Euler section edX(p) is homotopic to the Euler section ed(p) from before. This results in

homotopy commutativity of the following diagram:

(5.11) S0
ed(p)

//

edX(p)
++

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

id
OO

The remainder of this proof is organized in smaller pieces, each of which proves the

homotopy commutativity of a triangle in the diagram below.
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S0

∏
Z∈S (Σf ) e

d(π
Z̃

)

��

ed(p)
//

∏
Z∈S (Σf ) e

d
X(π

Z̃
)

��

edX(ψ)

##

edX(p)

++

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

(1)

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

id

OO

(2)

(3)

holim
U∈Disk

B/
k

holim
V ∈Disk

ψ−1U/
m

Ω∞(V • ∧ S)

incl

OO

(4)

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S) ∏
Z∈S (Σf ) Ind

d
Z̃

//
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

g

OO

(5.12)
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We will now prove the homotopy commutativity of each subtriangle in the diagram

above, beginning from the top triangle and proceeding clockwise. We will define the

morphisms in each triangle as needed.

(1) The top triangle relating maps ed(p) and edX(p) is identically diagram (5.11).

(2) The map edX(ψ) is defined locally on a pair U ∈ Disk
B/
k and V ∈ Diskψ

−1U/
m

as the composition given in (5.18). Since the characteristics edX(p) and edX(ψ)

have identical local definitions, it suffices to see that the composition (5.18) is

nullhomotopic on objects of Diskp
−1U/
m that are not also objects in Diskψ

−1U/
m . Since

DZ is the unit disk bundle on Z, the vector field X has length greater than 1 at

any point x 6∈ DZ. This means that the map j : Th(τ |V ) → Th(τ |V ) appearing

in the definition of the vector field Euler section ed(τ) is nullhomotopic on any

V ∈ Diskp
−1U/
m that is not also an object in Diskψ

−1U/
m . Thus the map edX(p) factors

through edX(ψ) as indicated in the diagram above.

(3) The map edX(πZ̃) is defined as the composition InddX ◦ed(πZ̃) so that the bottom

triangle commutes.

Consider the functor RZ̃ : Diskψ
−1U/

m → DiskZ̃/Um that sends a disk V correspond-

ing to an embedding Rk × Rn ↪→ DΣf to the intersection of the image of this

embedding and Z̃. The map g is induced by the product of functors RZ̃ over

Z ∈ S (Σf ).

To see that this triangle commutes, it suffices to see that the local definitions

of the characteristics edX(πZ̃) and edX(ψ) agree up to homotopy. There are two
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cases, either U intersects a bifurcation set in B, or it does not. Assuming that

it does not, we have U ∈ Disk
B/
k , V ∈ Diskψ

−1U/
m , and RZ̃(V ) ∈ DiskZ̃/Um for some

Z ∈ S (Σf ), and we must check that the local definitions of the characteristics

edX(πZ̃) and edX(ψ) agree up to homotopy. Thus we must construct a homotopy

that makes the diagram below commute. This diagram is obtained by comparing

(5.18) applied to V (the left vertical composition) with (5.4) composed with

(5.14) applied to RZ̃(V ) (the composition along the top).

U• ∧ Sd ∧ S0
c∧id

//

c∧id

��

RZ̃(V )• ∧ Th(ν|R
Z̃

(V )) ∧ S0

id∧edn(τ)

++

V • ∧ Th(ν|V ) ∧ S0

id∧edX(τ)

��

RZ̃(V )• ∧ Th(ν|R
Z̃

(V )) ∧ Th(τ |R
Z̃

(V )) ∧ S

id∧id∧dX|R
Z̃

(V )∧id

��

V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ S RZ̃(V )• ∧ Th(ν|R
Z̃

(V )) ∧ Th(τ |R
Z̃

(V )) ∧ S
incl

oo

(5.13)

Recall that the map edX(τ) is defined to be the composition

S0 edn(τ)−−−→ Th(τ |V ) ∧ S j∧id−−→ Th(τ |V ) ∧ S

Thus we must show that the map dX|R
Z̃

(V ) is homotopic to j. However, this is an

immediate consequence of the fact that in the neighborhood of a nondegenerate

zero a vector field is homotopic to its derivative.

Next we assume that U does intersect a bifurcation set. Then for some V ∈

Diskψ
−1U/

m we have nontrivial RZ̃i
(V ) ∈ Disk

Z̃i/U
k and RZ̃i+1

(V ) ∈ Disk
Z̃i+1/U
k , and

we must see that the local definition of the characteristic edX(ψ) agrees with the

wedge sum of the local definitions of the characteristics edX(πZ̃i) and edX(πZ̃i+1
)
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It suffices to verify that the map dX|R
Z̃i

(V ) ∨ dX|R
Z̃i+1

(V ) composed with the

inclusion

Th(τ |Ri (V )) ∨ Th(τ |R
i+1(V )

)→ Th(τ |V )

is homotopic to j : Th(τ |V ) → Th(τ |V ). This homotopy is given as the usual

homotopy of the vector field X with only one degenerate zero to a vector field

with two nondegenerate zeros of degree i and i+ 1.

(4) Recall from the previous step that the map edX(πZ̃) is defined as the composition

InddX ◦ed(πZ̃) so that the bottom triangle commutes.

�

5.3. Fiberwise Poincaré–Hopf Theorem for the excisive A-theory Euler

characteristic

In this section we prove a fiberwise Poincaré–Hopf theorem for the excisive A-theory

Euler characteristic. The proof of this result is largely the same as the proof of Theorem A

in the previous section, with the main differences being that the Euler section edn is replaced

with etn, and the coefficient spectrum S is replaced with A(∗). All indexing categories used

in this section are defined in Section 5.2. However, we give new definitions of the maps

and an abbreviated proof to keep the discussion in this section mostly self contained.
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5.3.1. Preliminaries

We begin by defining an Euler section and index map associated to Z, as we did in the

previous section. The composition (5.5) from Section 5.1 is used to construct an Euler

section associated to Z.

S0 et(π)−−−→ holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))

Aggregate over all Z ∈ S (Σf ), we have a map

S0

∏
Z∈S (Σf ) e

d(π
Z̃

)

−−−−−−−−−−→
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗))

To define the index map, we can consider the derivative of the gradient vector field

X at z ∈ Z. This is a map dXz : τz → τz which induces a self-map on the one point

compactification of τz, and thus a map dX : Th(τZ) → Th(τZ). For any V ∈ Disk
Z/
k , we

can restrict the map dX to V to obtain a map dX|V : Th(τ |V ) → Th(τ |V ). Then the

local map

(5.14) V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ A(∗) id∧id∧dX|V ∧id−−−−−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ A(∗)

induces a map

(5.15) holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗)) IndtZ−−→ holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))
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which we denote as IndtZ and refer to as the index map on Z with coefficients in A(∗).

Aggregate over all Z ∈ S (Σf ) we have a map

(5.16)∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V •∧A(∗))
∏
Z∈S (Σf ) Ind

t
Z̃−−−−−−−−−→

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V •∧A(∗))

The following lemma will be used in Section 5.4.

Lemma 3.1. For Z ∈ S (Σf ) of degree j, Indt
Z̃

is multiplication by (−1)j on homotopy

groups.

Proof. This follows immediately from Lemma 2.3, since the definition of Indt
Z̃

is iden-

tical to that of Indd
Z̃

, up to a change of coefficients on which the index map is the iden-

tity. �

5.3.2. Factoring the excisive A-theory Euler characteristic

Theorem B. The diagram below is homotopy commutative.

S0

∏
Z∈S (Σf )

et(πZ̃)

��

et(p)
// holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗)) ∏
Z∈S (Σf )

Indt
Z̃

//
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗))

incl

OO

(5.17)



60

Proof. In this proof we rehash the main steps of the proof of Theorem A, making the

necessary changes as needed.

We begin by defining the vector field Euler section etX(p), a map

S0 etX(p)
−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

given locally as

(5.18) U• ∧ Sd ∧ S0 c∧id−−→ V • ∧ Th(ν|V ) ∧ S0 id∧etX(τ)
−−−−−→ V • ∧ Th(ν|V ) ∧ Th(τ |V ) ∧ A(∗)

The map etX(τ) is defined to be the composition

S0 edn(τ)−−−→ Th(τ |V ) ∧ A(∗) `∧id−−→ Th(τ |V ) ∧ A(∗)

in which the map ` : Th(τ |V ) → Th(τ |V ) sends a point over y ∈ V to y + X(y). By

placing the scaling factor t ∈ [0, 1] as a coefficient in front of X, we obtain a family of

maps `t which is a homotopy between the map ` and the identity. Thus, the vector field

Euler section etX(p) is homotopic to the Euler section et(p). This results in homotopy

commutativity of the following diagram:

(5.19) S0
et(p)

//

etX(p)
++

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

id
OO
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The remainder of this proof is organized in smaller pieces, each of which proves the

homotopy commutativity of a triangle in the diagram below.

S0

∏
Z∈S (Σf ) e

t(π)

��

et(p)
//

∏
Z∈S (Σf ) e

t
X(π)

��

etX(ψ)

$$

etX(p)

++

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

(1)

holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

id

OO

(2)

(3)

holim
U∈Disk

B/
k

holim
V ∈Disk

ψ−1U/
m

Ω∞(V • ∧ A(∗))

incl

OO

(4)

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗)) ∏
Z∈S (Σf ) Ind

t
Z

//
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗))

g'

OO

(5.20)
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The map etX(π) in the diagram above is defined as the composition IndtZ ◦et(π), hence

the bottom triangle commutes. The triangle at the top of the diagram above is Diagram

(5.19). The proofs of the commutativity of the middle two triangles are identical to the

analogous steps in the proof of Theorem A, so long as the Euler sections edn(τ) are replaced

with etn(τ), and the coefficient spectrum S is replaced with A(∗). �

We conclude this section by giving a generalization of Theorems A and B.

Theorem C. The following diagram of spaces is homotopy commutative.

S0 holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ S)
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ S)

S0 holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))
∏

Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))

ed(p)

∏
Z∈S (Σf ) e

d(π)

id
η∏

Z∈S (Σf ) Ind
d
Z̃

η

+

η

et(p)

∏
Z∈S (Σf ) e

t(π)

∏
Z∈S (Σf ) Ind

t
Z

+

Proof. Theorem A indicates that the top square commutes, and Theorem B indicates

that the bottom square commutes. The back face of the cube commutes by Proposi-

tion 1.6.

Homotopy commutativity of each of the remaining vertical faces follows from applying

Theorem 4.13 in [DWW03] to the local definitions of each map to construct the homotopy

locally on each disk. �
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5.4. Fiberwise Poincaré–Hopf Theorem for stratified deformations

In this section, our primary goal is to generalize the definitions of Sections 5.2 and 5.3

to arbitrary stratified subsets, so that we may generalize Theorems A, B, and C to the

particular stratified deformation constructed in Section 4.3.

We begin by fixing some notation for this section. Let (Σ, ψ) denote an arbitrary

stratified subset of p : W → B with coefficients in X = BO×BO. The map ψ : Σ→ BO×

BO composed with projection onto the first factor is denoted γΣ
−, and when composed

with projection onto the second factor is denoted γΣ
+. These choices will ultimately be

used to classify the negative and positive eigenspace bundles on Σ, as in Example 3.2. Let

S (Σ) denote the collection of strata in the degree-wise stratification on Σ. We denote an

element of S (Σ) in degree i by Zi, but may drop the subscript when it is unnecessary.

Stratified subsets admit ghosts just the same as the critical locus of a fiberwise generalized

Morse function. Just as before, we use the notation Z̃ to denote the smooth manifold

obtained by perturbing a stratum of S (Σ) over the ghost set as in Section 4.2.

For Z ∈ S (Σ), the category DiskZ̃/Um is defined identically as in Definition 2.2. As in

Sections 5.2 and 5.3, the composition (5.4) is used to construct a map

S0 ed(π
Z̃

)
−−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

and the composition (5.5) is used to construct a map

S0 et(π
Z̃

)
−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗))

Aggregate over all Z ∈ S (Σ), we also have the maps
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S0

∏
Z∈S (Σ) e

d(π
Z̃

)
−−−−−−−−−→

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

S0

∏
Z∈S (Σ) e

t(π
Z̃

)
−−−−−−−−−→

∏
Z∈S (Σf )

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ A(∗))

In summary, the definitions of the local characteristics on Σ do not depend on Σ being

obtained as the critical locus of a fiberwise generalized Morse function.

Next, we must generalize the definitions of the index maps from before. Recall that

when working with the critical locus of a fiberwise generalized Morse function, the index

map was defined using a family of matrices which provided an automorphism of the one

point compactification of the vertical tangent space at each point in the critical locus.

That particular matrix was the derivative of the vertical gradient vector field of the

function, or the Hessian of the function.

For an arbitrary stratified deformation, our matrix is given by the block sum of neg-

ative the identity matrix on the negative eigenspace bundle, and the identity matrix on

the positive eigenspace bundle. In the event that Σ is the critical locus of a fiberwise gen-

eralized Morse function, this choice clearly agrees with the maps (5.8) and (5.16). Thus,

we use the same notation for index maps on arbitrary stratified subsets: Indd
Z̃

and Indh
Z̃

.

Let (Σf , ψf ) be the stratified subset obtained from the critical locus of a fiberwise

generalized Morse function. Let (S,Ψ) be a stratified deformation between (Σf , ψf ) and

(ΣSD, ψSD). Let (Σα, ψl) denote the stratified subset given by the slice of (S,Ψ) at time

l ∈ [0, 1]. For Zl ∈ S (Σl), consider the composition
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S0

∏
Zl∈S (Σl)

ed(π
Z̃l

)

��∏
Zl∈S (Σl)

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃l/U
m

Ω∞(V • ∧ S)

∏
Zl∈S (Σl)

Indd
Z̃
//
∏

Zl∈S (Σl)

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃l/U
m

Ω∞(V • ∧ S)

(5.21)

Varying l ∈ [0, 1] provides a homotopy

 ∏
Z∈S (Σf )

ed(πZ̃)

 ◦ (∏Z∈S (Σf ) Ind
d
Z̃

)
◦+

 ∼
 ∏

Z1∈S (Σ1)

ed(πZ̃1
)

 ◦ (∏Z1∈S (Σ1) Ind
d
Z̃

)
◦+

 (5.22)

Thus, we have the following theorem.

Theorem D. With (S,Ψ) a stratified deformation between (Σf , ψf ) and (ΣSD, ψSD),

the following diagram is homotopy commutative.

S0

∏
Z∈S (ΣSD) e

d(π
Z̃

)

��

ed(p)
// holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

∏
Z∈S (ΣSD)

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S) ∏
Z∈S (ΣSD) Ind

d
Z̃

//
∏

Z∈ΣSD

holim
U∈Disk

B/
k

holim
V ∈Disk

Z̃/U
m

Ω∞(V • ∧ S)

incl

OO

(5.23)

Proof. First we apply Theorem A to (Σf , ψf ). Then the homotopy (5.22) is used to

make the diagram above commute. �
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Remark 4.1. The homotopy (5.22) used in the proof of Theorem D also proves the a

general statement: that the composition in question is a stratified deformation invariant.

Compare to [Igu05] Lemma 5.4.

We now have the following generalization of Theorem C:

Theorem E. The following diagram of spaces is homotopy commutative.

S0 holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ S)

∏
Z∈S (ΣSD)

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ S)
∏

Z∈S (ΣSD)

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ S)

S0 holim
U∈Disk

B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧ A(∗))

∏
Z∈S (ΣSD)

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))
∏

Z∈S (ΣSD)

holim
U∈Disk

B/
k

holim
V ∈Disk

π−1U/
m

Ω∞(V • ∧ A(∗))

ed(p)

∏
Z∈S (ΣSD) e

d(π)

id
η∏

Z∈S (ΣSD) Ind
d
Z̃

η

+

η

et(p)

∏
Z∈S (ΣSD) e

t(π)

∏
Z∈S (ΣSD) Ind

t
Z

+

5.4.1. Rational fiberwise Poincaré–Hopf formulas

In Subsection 5.5 and Section 6, we will make use of the following simplifications of

Theorem E. Let Σ#
SD be the complement of the component Λ of ΣSD on which ψSD is

trivial (see Lemmas 3.9 and 3.10). Let Aj ⊂ S (Σ#
SD) contain those elements of degree

j corresponding to the lower stratum of the remaining immersed lenses and let Aj+1 ⊂

S (Σ#
SD) contain those elements of degree j + 1 corresponding to the upper stratum of

the immersed lenses.
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Corollary 4.2. The following equality holds in π0ΓBQB(W )⊗Q

ed∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)ied(πZ̃i)

Proof. In π0ΓBQB(W ), Theorem D reduces to the formula

ed∂(p) =
∑

Zi∈S (ΣSD)

Indd
Z̃
ed(πZ̃i)

By Lemma 2.3, we can replace Indd
Z̃

with (−1)i as in the formula below

ed∂(p) =
∑

Zi∈S (ΣSD)

(−1)ied(πZ̃i)

By Lemma 3.10, we can eliminate the summands for those Z in S (Λ), and we are left

with the following formula in π0ΓBQB(W )⊗Q.

ed∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)ied(πZ̃i)

�

Corollary 4.3. The following equality holds in π0ΓBA
%
B(W )⊗Q

et∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)iet(πZ̃i)

Proof. In π0ΓBA
%
B(W ), Theorem D reduces to the formula

et∂(p) =
∑

Zi∈S (ΣSD)

Indd
Z̃
et(πZ̃i)
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By Lemma 3.1, we can replace Indd
Z̃

with (−1)i as in the formula below

et∂(p) =
∑

Zi∈S (ΣSD)

(−1)iet(πZ̃i)

By Lemma 3.10, we can eliminate the summands for those Z in S (Λ), and we are left

with the following formula in π0ΓBA
%
B(W )⊗Q.

et∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)iet(πZ̃i)

�

5.5. Fiberwise Poincaré–Hopf Theorem for the smooth structure

characteristic

In this section, we return to the setting of Section 3, in which we have a topologically

trivial family of smooth h-cobordisms p : W → B with boundaries ∂0W := M and

∂1W := M ′ given as smooth manifold bundles p0 : M → B and p1 : M ′ → B. The bundle

p admits a fiberwise generalized Morse function f : W → [0, 1]. By Theorem 3.3, we have

a canonical nullhomotopy of the relative excisive A-theory Euler characteristic χ%
∂ (p). It

then follows by Proposition 1.7 that we have a nullhomotopy of the Euler section ed∂(p).

This nullhomotopy is used in the following definition.

Definition 5.1. For p a topologically trivial family of smooth h-cobordisms p : W →

B, the Euler section e
t/d
∂ (p) is a map

S0 e
t/d
∂ (p)
−−−−→ holim

U∈Disk
B/
k

holim
V ∈Disk

p−1U/
m

Ω∞(V • ∧H(∗))
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defined to be the lift of ed∂(p) obtained from the nullhomotopy of et∂(p).

In the proof of the theorem below, we express this nullhomotopy in terms of ΣSD, the

stratified subset from Subsection 4.3. Recall that the stratified subset is concentrated in

two degrees, and is obtained by applying a stratified deformation to the critical locus of

f .

For the remainder of this paper, we denote et/d(πZ̃) ∈ π0ΓBH%
B(W )⊗Q to be the lift

of ed(πZ̃) resulting from the identity η∗e
d(πZ̃) = et(πZ̃) = 0.

Theorem F. For p : W → B a topologically trivial family of smooth h-cobordisms,

the following equality holds in π0ΓBH%
B(W )⊗Q

e
t/d
∂ (p) =

∑
Zi∈S (Σ#

SD)

(−1)iet/d(πZ̃i)

Proof. Corollary 4.2 indicates that the following equality holds in π0ΓBQB(W )⊗Q

ed∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)ied(πZ̃i)

From Corollary 4.3, if we apply η∗ to both sides we have the following equality in

π0ΓBA
%
B(W )⊗Q

et∂(p) =
∑

Zi∈S (Σ#
SD)

(−1)iet(πZ̃i)

Since p is a topologically trivial family of smooth h-cobordisms, et∂(p) = 0 in π0ΓBA
%
B(W )⊗

Q. Recall from Lemma 3.7 and Lemma 3.9 that the elements of S (Σ#
SD) are concentrated

in two degrees, j and j + 1. Let Aj ⊂ S (Σ#
SD) contain those elements of degree j and

let Aj+1 ⊂ S (Σ#
SD) contain those elements of degree j + 1. Since ψSD is trivial on each
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element Zj in Aj, for all such elements we have that et(πZ̃j) = 0. We are left with the

equation ∑
Z∈Aj+1

et(πZ̃) = 0

Since each Z ∈ Aj+1 is of the same degree, there cannot be a relation among these

characteristics. Thus, each et(πZ̃) for Z̃ an upper stratum element in Aj+1 must be 0. It

follows that η∗e
d
∂(p) = et∂(p) = 0, and η∗e

d(πZ̃) = et(πZ̃) = 0 for each Z ∈ S (Σ#
SD).

Since the fibration ΓBH%
B(W ) → ΓBQ

%
B(W ) → ΓBA

%
B(W ) is split by the trace map,

we have a short exact sequence

0→ π0ΓBH%
B(W )⊗Q→ π0ΓBQB(W )⊗Q→ π0ΓBA

%
B(W )⊗Q→ 0

It then follows from Definition 5.1 that

e
t/d
∂ (p) =

∑
Zj∈Aj

(−1)jet/d(πZ̃i) +
∑

Zj+1∈Aj+1

(−1)j+1et/d(πZ̃j+1
)

The result follows since Aj ∪Aj+1 = S (Σ#
SD) �
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CHAPTER 6

Calculations of the Smooth Structure Class

In this section we prove the main theorem. We begin in subsection 6.1 by reviewing

the setup for the proof of the Rigidity Conjecture. In Subsection 6.2 we use Theorem F to

prove a duality theorem for the smooth structure class, Theorem G. In Subsection 6.3 we

prove the Rigidity Conjecture, Theorem H. We also give slightly more general statements

in Theorem I and Corollary 3.1. In Section 6.4 we explain Hatcher’s construction and

the immersed Hatcher construction, and we conclude by applying Theorems F and G to

recover Goette and Igusa’s computation of the smooth structure class for the immersed

Hatcher construction.

6.1. Setup for the Proof of the Rigidity Conjecture

Let W be a smooth h-cobordism bundle over B that is topologically trivial as in

Section 3. This means that p : W → B is a smooth fiber bundle with two boundary

components ∂0W := M0 and ∂1W := M1 so that p0 : M0 → B and p1 : M1 → B are

smooth manifold bundles. In addition, there is a homeomorphism h : W → ∂0W × I so

that (p0× id) ◦h is a topological manifold bundle and (p0× id) ◦h restricts to the smooth

bundles p0 and p1 over B × 0 and B × 1. If the fibers of M0 and M1 themselves have

boundary, then we additionally require that ∂∨W is diffeomorphic to M0∪∂M0× I ∪M0.

Let χ%(W,∂0W ) denote the relative excisive A-theory Euler characteristic of (W,∂0W ),

and let tr(W,∂0W ) denote the relative Becker–Gottlieb transfer of (W,∂0W ). Then the
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map h provides a path from χ%(W,∂0W ) to χ%(M0 × I,M0). Concatenating this path

with the homotopy from η ◦ tr(W,∂0W ) to χ%(W,∂0W ) supplied in [DWW03], we have

a nullhomotopy of the composition η ◦ tr(W,∂0W ). In Definition 4.1, the relative smooth

structure characteristic θ(W,∂0W ) ∈ ΓBH%
B(W ) is defined to be the lift of tr(W,∂0W )

determined by this nullhomotopy. This is summarized in the following diagram.

ΓBH%
B(W )

��

S0

θ(W,∂0W )

<<

tr(W,∂0W )
//

χ%(W,∂0W )

""

ΓBQB(W )

η

��

ΓBA
%
B(W )

We can similarly define θ(W,∂1W ) in ΓBH%
B(W ).

Proposition 1.1. Given a topologically trivial family of smooth h-cobordisms p :

W → B, the smooth structure characteristic θ(W,∂0W ) is fiberwise Poincaré dual to the

Euler section e
t/d
∂ (p) of Definition 5.1.

Proof. This follows by combining the definition of θ(W,∂0W ) (4.1) as the homotopy

fiber of tr(W,∂0W ) over χ%(W,∂0W ), the definition of e
t/d
∂ (p) as the homotopy fiber of

ed∂(p) over et∂(p), and Proposition 1.7. �
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To prove the Rigidity Conjecture, we must compute Θ(W,∂0W )−Θ(W,∂1W ) for a topo-

logically trivial h-cobordism bundle W .

Remark 1.2. See Appendix A for an explanation of why Θ(W,∂0W ) − Θ(W,∂1W )

agrees with the smooth structure class in [GI14].

6.2. A Duality Theorem for the Smooth Structure Class

In this section we prove a duality theorem for the smooth structure class using The-

orem F. Recall how, in Section 5, we made use of a fiberwise generalized Morse function

f : W → [0, 1] for which f(∂0N) = 0 and f(∂1N) = 1. In this section we will also make

use of the fiberwise generalized Morse function f := 1− f . In particular we will prove a

duality theorem, Theorem G, by applying Theorem F to f and f , and then comparing

the results.

Theorem G. For p : W → B a topologically trivial bundle of smooth h-cobordisms

with fiber dimension n,

Θ(W,∂0W ) = (−1)n−1Θ(W,∂1W )

Proof of Theorem G. From Subsection 4.3, we have a stratified deformation of

the stratified subset (Σf , ψf ) to the stratified subset concentrated in two degrees (ΣSD, ψSD).

Applying this stratified deformation instead to (Σf , ψf ), we obtain the stratified deforma-

tion (ΣSD, ψSD). We take care to point out that while ΣSD and ΣSD are diffeomorphic,

the particular stratum of S (ΣSD) may have a different degree in ΣSD, and the bundles

ψSD and ψSD are only equivalent after applying the swap map BO × BO → BO × BO,

since the positive and negative eigenspaces have been exchanged.
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We begin by applying Theorem F to f and f to obtain the following formulas.

(6.1) e
t/d
∂0

(p) =
∑

Zi∈S (Σ#
SD)

(−1)iet/d(πZ̃i)

(6.2) e
t/d
∂1

(p) =
∑

Zj∈S (Σ#
SD)

(−1)jet/d(πZ̃i)

The stratified subsets (ΣSD, ψSD) and (ΣSD, ψSD) are each disjoint unions of immersed

lenses concentrated in two degrees, and a component on which the tangential data is triv-

ial. We do not consider this extra component because it has a trivial rational contribution,

according to Lemma 3.10. Because the critical loci of f and f are identical, the sub-

manifolds ΣSD and ΣSD constructed from the same stratified deformation are identical.

In particular, there is a one-to-one correspondence between immersed lenses comprising

(ΣSD, ψSD) and (ΣSD, ψSD). It suffices to consider one such pair, and observe how the

bundle data ψSD and ψSD has changed. Below we depict Li−1(Z, ψi−1, ψi), an immersed

lens belonging to (ΣSD, ψSD).

Li−1(Z, ψi−1, ψi)

degree i

degree i− 1 ψi−1 = ∗

ψi

Z

Z
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The immersed lens Li−1(Z, ψi−1, ψi) above corresponds to the immersed lens Ln−i(Z, ψn−i, ψn−(i−1))

belonging to (ΣSD, ψSD), depicted below.

Ln−i(Z, ψn−i, ψn−(i−1))

degree n− (i− 1)

degree n− i ψn−i = ∗

ψn−(i−1)

Z

Z

Recall that after the stratified deformation of Lemma 3.7, the bundle data on the

lower stratum is trivial, so ψi−1 and ψn−i are trivial as in the diagrams above. On the

upper strata, ψSD is the map Z → BO×BO classifying the stable negative and positive

eigenspace bundles, γf and γ−f , respectively. These stable bundles γf and γ−f have the

property that γf ⊕ γ−f ∼= T∨M |Z ⊕ εn. The section et/d(πZ̃) is defined in terms of the

restriction of the vertical tangent bundle T∨M |Z . Thus the summand (−1)iet/d(πZ̃i) for

Z ∈ S (Σ#
SD) is the same up to a sign as the summand (−1)n−(i−1)et/d(πZ̃n−(i−1)

) with

Zn−(i−1) in Σ#
SD. It then follows that

e
t/d
∂0

(p) = (−1)n−1e
t/d
∂1

(p)

Taking Poincaré duals on both sides gives the result in the theorem statement. �

6.3. Proof of the Rigidity Conjecture

We can now prove the Rigidity Conjecture.
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Theorem H. If the fibers of p0 : M → B are even dimensional and closed, then for

a topologically trivial family of smooth h-cobordisms W from M to M ′, Θ(M × I,M ′× I)

is trivial.

Proof. When the fibers ofM are even dimensional, n−1 is even. Thus, by Theorem G,

Θ(W,∂0W ) = Θ(W,∂1W ). It follows that the smooth structure class of [GI14], Θ(M ×

I,M ′ × I), is trivial. �

We might also consider the relative case, where the boundaries ∂0W and ∂1W have

corners. Recall that in this case we consider h-cobordisms W from M to M ′ so that ∂∨W

is diffeomorphic to M ∪ ∂M × I ∪M ′.

Theorem I. If M has boundary and the fiber dimension of M is even, then for any

topologically trivial family of smooth h-cobordisms W from M to M ′ with ∂∨W diffeomor-

phic to M ∪ ∂M × I ∪M ′, the smooth structure class Θ(M × I,M ′ × I) is trivial.

Proof. The proof is word-for-word the same as the proof of Theorem H. �

Applying the two theorems above to a bundle M with closed fibers, we obtain the following

corollary.

Corollary 3.1. If n + k is even and k ≥ 0, then for any topologically trivial family

of smooth h-cobordisms W from M × Ik to M ′ × Ik satisfying the condition ∂∨W =

M × Ik ∪ ∂(M × Ik) × I ∪M ′ × Ik, the smooth structure class Θ(M ′ × Ik+1,M × Ik+1)

is trivial.

Remark 3.2. Note that the dependence on k in the corollary above implies that the

statement applies just as well when n is odd and k is odd. We explain why this does not
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contradict the constructions in [GI14], which produce topologically trivial h-cobordisms

whose boundaries are bundles with closed odd dimensional fibers. If we take such a bundle

and stabilize once by multiplying with an interval, we produce an h-cobordism, but the

boundary is not a product h-cobordism, and thus Theorem I does not apply. It may

be helpful to note that the smooth structure class defined in [GIW14] is not a stable

invariant with respect to the upper and lower stabilization maps on the h-cobordism

space, which maintain a product structure on the boundary. In particular, Θ(W,∂0W ) is

an invariant of the lower stabilization map, and Θ(W,∂1W ) is an invariant of the upper

stabilization map. Still, the difference Θ(W,∂0W ) − Θ(W,∂1W ) is not an invariant of

either stabilization map, but is only an invariant of the stabilization which multiplies the

entire h-cobordism by an interval. Theorem I does not apply to h-cobordisms obtained

from that type of stabilization.

6.4. Computations for the immersed Hatcher construction

If we apply Theorem G to a topologically trivial smooth h-cobordism bundle p : W →

B with boundaries p0 : M → B and p1 : M ′ → B with odd dimensional fibers, the fiber

dimension of W , n− 1, is odd. Thus,

(6.3) Θ(M × I,M ′ × I) = Θ(W,∂0W )−Θ(W,∂1W ) = 2Θ(W,∂0W )

In [GI14], Igusa and Goette used the immersed Hatcher construction to obtain bundles

that realize a nontrivial value for the left-hand side. After briefly summarizing Hatcher’s

construction and the immersed Hatcher construction, we will compute Θ(W,∂0W ) for

that particular construction using Theorem F.
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6.4.1. Hatcher Construction

Hatcher’s example produces a smooth disk bundle over a compact base that is homeomor-

phic but not diffeomorphic to a trivial disk bundle. The construction proceeds in five steps

below. Briefly, the idea is to use a vector bundle in the kernel of the J-homomorphism

to obtain a disk bundle for which the corresponding sphere bundle is fiberwise homotopy

equivalent to a trivial sphere bundle. After stabilizing so that this homotopy equivalence

produces an embedding, we glue this disk bundle into the center of a trivial sphere bundle

on which the fiber is a solid torus. The result is a disk bundle with the desired property.

There are several descriptions of this construction in the literature, the construction used

here is identical to the one used in [GI14], and when the base is a 4k-dimensional sphere

a similar construction can be found in [Goe01]. We proceed step by step, starting only

with a compact manifold B of dimension q, and a continuous map Bq → G/O.

(1) We extract from the map Bq → G/O an n-dimensional vector bundle whose

associated sphere bundle, Sn−1(ξ)→ B, is fiber homotopy trivial. Here n ≥ q+1.

(2) Let η be an m-dimensional vector bundle on B complementary to ξ. Construct

the bundle Dn(ξ)⊕Dm(η) over B. This bundle contains a subbundle Sn−1(ξ)⊕

Dm(η). This will make up the boundary of the disk bundle that we later glue

inside of the bundle of solid tori.

(3) Construct the trivial sphere bundle Sn−1×(I×Dm)×B → B. This is the bundle

of solid tori. We group the (I ×Dm) term because it is helpful to think of this

as a Dm+1 disk.

(4) We construct a fiberwise smooth embedding S(j) : Sn−1(ξ) ⊕Dm(η) ↪→ Sn−1 ×

Dm ×B



79

(5) Now we attach the disk bundle to the solid torus to obtain a smooth disk bundle

En,m(ξ).

En,m(ξ) := Dn(ξ)⊕Dm(η) ∪S(j) S
n−1 ×Dm ×B

The bundle En,m(ξ) is Hatcher’s example.

Dn

Dm

Sn−1 ×Dm × I

Dm+n

Figure 6.1. Fiberwise surgery in Hatcher’s example

Steps (1) and (4) above require justification. The map B → G/O classifies a stable

vector bundle whose spherical fibration is trivial. Since the map BO(n) → BO is q + 1

connected when n ≥ q + 1, this stable vector bundle is given by a unique n-plane bundle

ξ. See [GI14] for a proof that Sn−1(ξ) → B is fiber homotopy trivial (one must check

that the composition B
ξ−→ BOn → BGn is nullhomotopic). The construction of the

embedding S(j) follows from the following crucial lemma.
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Lemma 4.1 (Lemma 1.2.1 in [GI14]). If m > n > q then there is a smooth fiberwise

embedding of pairs:

j : (Dn(ξ), Sn−1(ξ))→ (Dn, Sn−1)×Dm ×B

over B which is the standard embedding over ∂0B and which is transverse to Sn−1×Dm.

Furthermore, if m ≥ q + 3 then this fiberwise embedding will be unique up to fiberwise

isotopy.

Let η be the normal bundle to the embedding j. Then we have a codimension 0

embedding

D(j) : Dn(ξ)⊕Dm(η) ↪→ Dn ×Dm ×B

from which we obtain S(j) by restricting to the boundary ∂Dn(ξ)⊕Dm(η).

Remark 4.2. The constraint m > n > q implies that m+n ≥ 2q+3. Thus Hatcher’s

construction can only be used to produce disk bundles where the dimension of the fiber is

2 dimB+ 3. Our intent is to perform surgery on manifold bundles by gluing in Hatcher’s

construction, so these bundles must also have the property that the dimension of the fiber

is at least 2 dimB + 3.

6.4.2. Immersed Hatcher Construction

The goal of the immersed Hatcher construction is to use Hatcher’s disk bundle to produce

exotic smoothings of smooth manifold bundles that are supported on embedded disk

bundles. Roughly, we attach thickenings of Hatcher’s disk bundle along the top M × 1
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boundary of M × I at surgery sites which are tubular neighborhoods of the critical locus

of a fiberwise generalized Morse function. Since Hatcher’s construction only produces

disk bundles whose fibers have dimension at least 2 dimB + 3, the same is true of the

immersed Hatcher construction. The construction proceeds in four steps.

(1) First, given a fiberwise generalized Morse function f : M → R, let L denote the

submanifold of the critical locus consisting of those critical points of even index.

L will likely have multiple components and has nonempty boundary consisting of

the birth-death critical points. There is an embedding L
λ−→M and an immersion

λ : L → B given by restricting the projection p : M → B. The reason λ is

an immersion and not an embedding is because fibers may have multiple even

index critical points. Let T be a tubular neighborhood of L, so that the following

diagram commutes

T
D(λ̃)

//

π
��

M

p
��

L
λ
// B

(2) Construct a Hatcher handle Bn,m(ξ, η) by attaching the top of T ×I to Hatcher’s

construction En,m(ξ).

(3) Attach the Hatcher handle to the top of T × I.

En,m+1
L (ξ, η) := T × I ∪Bn,m(ξ, η)

(4) Now we excise T × I from M × I and glue in En,m+1
L (ξ, η). The result is

En,m
+ (M, λ̃, ξ) = (M − T )× I ∪ En,m+1

L (ξ, η)
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L L

L L

I

Figure 6.2. This figure depicts steps 1, 2, and 3 of the immersed Hatcher

construction on a single fiber, in which case L is a point.

M

I

LDL

Dn(ξ)⊕Dm(η)

Figure 6.3. This figure depicts steps 3 and 4 of the immersed Hatcher con-

struction when L is one dimensional.
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To simplify the notation, let E := En,m
+ (M, λ̃, ξ). The newly constructed h-cobordism

bundle p : E → B is a topologically trivial bundle of h-cobordisms over B. The boundary

∂0E is the bundle p0 : M → B, and the boundary ∂1E is the bundle p1 : M ′ → B.

6.4.3. Computing the smooth structure class for the immersed Hatcher con-

struction

In this section, our goal is to compute Θ(W,∂0W ). To start we construct a fiberwise

generalized Morse function on p : E → B. This construction is extracted from the proof

of Theorem 2.4.1 in [GI14].

The bundle EL = En,m
L (ξ, η) admits a fiberwise Morse function f : EL → [0, 1] which

is projection to I in a neghborhood of the bottom and sides of T × I, and has two critical

points over every point t ∈ L, one of yt of index n and one point xt of index n− 1. The

vertical tangent bundle of EL splits as εn−1(η ⊕ ε1) along the section xt of EL, where the

trivial n − 1 plane bundle εn−1 is the negative eigenspace of D2ft along xt. The vertical

tangent bundle of EL along yt splits as ξ ⊕ (η0 ⊕ ε1) where the vector bundle ξ, which

is homotopically trivial in the sense that J(ξ) = 0, is the negative eigenspace bundle.

The critical points can be cancelled along ∂0L, to produce a fiberwise generalized Morse

function, which we also denote as f . Let g be the fiberwise generalized Mose function on

E obtained by taking projection to I on (M − T )× I, and f on EL.

Since g has the same Morse theoretic data as f , we can apply Theorem F, with

S (Σg) = {Zn, Zn−1}. Since the vertical tangent bundle is trivial along Zn−1, we are left

with

e
t/d
∂ (p) = (−1)net/d(πZ̃n)
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Applying Poincaré duality on both sides, we have

Θ(W,∂0W ) = (−1)nDet/d(πZ̃n)

From [GI14], et/d(πZ̃n) is equal to λ̃∗c̃h(ξ), where c̃h is the normalized Chern character

(see Definition 1.3.8 in [GI14]). Thus, by (6.3), we have

Θ(M × I,M ′ × I) = 2 · (−1)n · λ̃∗Dc̃h(ξ)

This computation confirms the statement of Theorem 3.0.5 in [GI14].
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APPENDIX A

The purpose of this appendix is to explain how the smoothing theory used in [GIW14]

to define the space of stable exotic smoothings is related to the space of topologically trivial

families of smooth h-cobordisms, and to use this relationship to explain and correct work

of Goette and Igusa [GI14]. Of crucial importance is an old theorem of Burghelea and

Lashof stating that the space stable exotic smoothings on a smooth manifold M is a

homology theory in M given by smashing with the stable h-cobordism space of a point.

Also of fundamental importance is a result of Dwyer, Weiss, and Williams, which identifies

the space of topologically trivial h-cobordisms on M as the same homology theory.

In [GI14], Goette and Igusa construct topologically trivial families of smooth h-

cobordisms and compute an invariant of these manifold bundles known as the smooth

structure class. However, in their language, they construct ‘exotic smoothings of smooth

manifold bundles with closed fibers.’ This presents the following contradiction: it follows

by classical smoothing theory, or the work of [GIW14], that such bundles cannot exist.

In fact, exotic smoothings can only exist when the fibers have boundary.

Nevertheless, their constructions and computations are valid. We augment and correct

their paper by observing that since their immersed Hatcher construction is a topologically

trivial family of smooth h-cobordisms, it does give rise to an exotic smoothing of the

cylinder M × I, as opposed to an exotic smoothing of a bundle M with closed fibers.
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We also redefine their smooth structure class in terms of topologically trivial families of

smooth h-cobordisms, so that we may correct a handful of statements in their paper.

A.1. Moduli Spaces of h-cobordisms and exotic smoothings of fiber bundles

In this section we prove that the stable space of exotic smoothings used in [GIW14] is

homotopy equivalent to the space of topologically trivial families of smooth h-cobordisms.

In Subsection A.1.1 we recall the structure spaces of smooth manifolds, linearized mani-

folds, and topological manifolds used in [GIW14]. We also identify these spaces in terms

of spaces of lifts of maps classifying tangent bundle data. In Subsection A.1.2 we show

that the space of topologically trivial families of smooth h-cobordisms on a smooth bundle

p : M → B is homotopy equivalent to the stable space of exotic smoothings on the same

bundle. We also show that both of these spaces are homotopy equivalent to ΓBH%
B(M),

the space of sections of the bundle obtained by taking a fiberwise smash product with

H(∗). These results follow from work of [DWW03] on the converse Riemann–Roch the-

orem, and are descendents of the surprising fact, proven in [BL77], that the space of

topologically trivial h-cobordisms on a smooth manifold is a homology theory.

A.1.1. Spaces of smooth structures

In this section, we recall the structure spaces defined in [GIW14], and identify these

spaces as spaces of lifts.

Recall from [GI14] the simplicial set St•(n) whose k-simplices are continuous ∆k fami-

lies of compact topological n-manifolds. The geometric realization |St•(n)| is the classifying
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space for bundles of compact n manifolds, and satisfies the homotopy equivalence

|St•(n)| '
∐

BHomeo(M)

wherein the disjoint union is taken over all homeomorphism classes of compact n-manifolds.

In the smooth setting, the simplicial set Sd• (n) has k-simplices which are smoothings

of compact topological n-manifolds immersed into R∞ × ∆k. The geometric realization

|Sd• (n)| is the classifying space for bundles of smooth compact n-manifolds, and satisfies

the homotopy equivalence

|Sd• (n)| '
∐

BDiff(M)

wherein the disjoint union is taken over all diffeomorphism classes of smooth compact

n-manifolds.

Let S̃t•(n) be the simplicial set whose k-simplices are continuous ∆k families of lin-

earized n-manifolds. A linearized n-manifold is a compact topological manifold Mn with

a vector bundle structure on its topological tangent microbundle. In otherwords, we have

a lift of the map M → BTop(n) classifying the topological tangent bundle on M , to

a map M → BO(n). The data of a linearization does not include a compatible map

∂M → BO(n− 1).

The simplicial forgetful map Sd• (n) → St•(n) factors through S̃t•(n) as in the diagram

below:
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S̃t•(n)

##

Sd• (n) //

;;

St•(n)

Below we will work with families of manifolds. Given a simplicial set X•, the notation

|X•|B refers to the space of maps Map(B, |X•|).

Definition 1.1. Suppose p : M → B is a bundle of compact topological n-manifolds

with nonempty boundary classified by a point α in |St•(n)|B. Then the homotopy fiber

of the map |Sd• (n)|B → |St•(n)|B over α is the space of smooth structures on p : M → B,

and is denoted by St/dB (M).

Definition 1.2. Suppose p : M → B is a bundle of compact topological n-manifolds

with nonempty boundary classified by a point α in |St•(n)|B. Then the homotopy fiber of

the map |S̃t•(n)|B → |St•(n)|B over α is the space of linear structures on p : M → B, and

is denoted by S̃t/tB (M).

Definition 1.3. Suppose p : M → B is a bundle of linearized compact topological n-

manifolds with nonempty boundary classified by a point β in |S̃t•(n)|B. Then the homotopy

fiber of the map |Sd• (n)|B → |S̃t•(n)|B over β is the space of smooth structures on p : M →

B, and is denoted by S̃t/dB (M).

With p : M → B a bundle of linearized compact topological n-manifolds with

nonempty boundary classified by a point β in |S̃t•(n)|B, with underlying topological man-

ifold bundle classified by a point α ∈ |St•(n)|B, we have the homotopy fiber sequence
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S̃t/dB (M)→ St/dB (M)→ S̃t/tB (M)

In the three propositions below, we identify the homotopy types of each of these three

spaces in terms of the classifying spaces BO(n), BO(n−1), BTop(n), and BTop(n−1). At

the end of this section, we will use these characterizations to indicate when the homotopy

fiber sequence above is useful. For instance, when the fibers are closed the space S̃t/dB (M)

is contractible.

For what follows, we denote by (α, ∂∨α) : (M,∂∨M) → (BTop(n),BTop(n − 1)) the

classifying map of the topological vertical tangent bundle on an (underlying) topological

manifold bundle p : M → B classified by a point α ∈ |St•(n)|B.

Proposition 1.4. Let p : M → B be a bundle of compact topological n-manifolds

with nonempty boundary classified by a point α ∈ |St•(M)|B. Then the space St/dB (M) is

homotopy equivalent to the space of pairwise maps MapB((M,∂M), (BO(n),BO(n− 1))

lifting (α, ∂∨α).

Proof. This follows from classical smoothing theory, a reference for which is [KS77a]

Essay V. �

Proposition 1.5. Let p : M → B be a bundle of compact topological n-manifolds

with nonempty boundary classified by a point α ∈ |St•(M)|B. Then the space S̃t/tB (M) is

homotopy equivalent to the space of maps MapB(M,BO(n)) lifting α.

Proof. This follows from the definition of a linearization as a lift of the classifying

map of the topological tangent bundle to a map to BO(n). �
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If the topological manifold bundle p : M → B classified by α is refined to a linearized

manifold bundle β ∈ |S̃t•(n)|B, then we already have a lift of the map α : M → BTop(n)

to a map β : M → BO(n). Thus, to obtain a smooth structure on p : M → B, it suffices

to choose a map ∂∨β : ∂∨M → BO(n− 1) that fills in the following diagram:

(A.1)
BTop(n− 1)

∂∨M BO(n− 1)

BTop(n)

M BO(n)

∂∨β

∂∨α

α

β

Proposition 1.6. Let p : M → B be a bundle of linearized compact topological

n-manifolds with nonempty boundary classified by a point β ∈ |S̃t•(M)|B. Then the space

S̃t/dB (M) is homotopy equivalent to the space of pairwise maps MapB(∂M,BO(n − 1))

compatible with β : M → BO(n).

Proof. This follows from Propositions 1.4 and 1.5. �

If p : M → B is a bundle of compact smooth n-manifolds with nonempty bound-

ary, and we consider the space S̃t/dB (M) constructed as the homotopy fiber of the map

|Sd• (n)|B → |S̃t•(n)|B over β given by the linearized manifold bundle underlying p : M →

B, then we refer to S̃t/dB (M) as the space of exotic smooth structures on p : M → B. In
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this case we think of exotic smooth structures as smoothings of a bundle of manifolds

with boundary that extend a smooth structure from the interior to the boundary.

We conclude by illustrating some subtleties in the smoothing theory above.

Example 1.7. If the fibers of M are closed, then the space S̃t/dB (M) is contractible.

This is because a smooth structure on M is equivalent to a lift of the topological tangent

microbundle classified by α : M → BTop(n) to a vector bundle classified by β : M →

BO(n). Since there is no boundary, no extra compatibility is required on the boundary,

and thus, St/dB (M) and S̃t/tB (M) are equivalent.

Remark 1.8. A fiberwise tangential homeomorphism between two smooth manifold

bundles p0 : M0 → B and p1 : M1 → B is a homeomorphism h : M0 →M1 over B covered

by an isomorphism of the vertical tangent bundles T∨M0 → T∨M1 that is compatible

with the topological derivative of the homeomorphism h. In [GIW14] and [GI14], the

authors define the space St/dB (M0) as the space of smooth manifold bundles p1 : M1 → B

that are fiberwise tangentially homeomorphic to p0 : M0 → B.

Using Proposition 1.6, we see how a fiberwise tangential homeomorphism determines a

point in the space S̃t/dB (M). Let (α0, ∂
∨α0) classify the topological vertical tangent bundle

on p0, and let (β0, ∂
∨β0) classify the vertical tangent vector bundle on p0. Likewise,

let (α1, ∂
∨α1) classify the topological vertical tangent bundle on p1, and let (β1, ∂

∨β1)

classify the vertical tangent vector bundle on p1. Then, after precomposing with the

homeomorphism h, the fiberwise tangential homeomorphism gives a homotopy between β0

and β1, α0 and α1, and ∂∨α0 and ∂∨α1. Thus, the linearized manifold bundles underlying

p0 and p1 are connected by a path in S̃t/tB (M). However, the maps ∂∨β0 and ∂∨β1 need not
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be compatible, since the isomorphism of n-dimensional vector bundles T∨M0 and T∨M1

does not necessarily restrict to an isomorphism of n − 1-dimensional vector bundles on

∂∨M0 and ∂∨M1. Thus, p1 : M1 → B determines a point in the homotopy fiber S̃t/tB (M).

We also note that in [GI14], the authors incorrectly state that p0 : M0 → B and

p1 : M1 → B can be fiberwise tangentially homeomorphic but not fiberwise diffeomorphic

even when the fibers of these bundles are closed. We indicate which statements in their

paper are affected by this mistake and give corrections in Section A.2.

A.1.2. Characteristics of smooth structures on h-cobordisms

Suppose that p : M → B is a bundle of smooth compact n-manifolds with nonempty

boundary. We begin by defining a map H
t/d
B (M)→ St/dB (M × I).

Let W be an element of H
t/d
B (M), i.e. it is a topologically trivial h-cobordism on M →

B. Then we must associate to W a one-parameter family of lifts γt : (M×I)→ BO(n+1)

of the map (M × I, ∂∨1 M)→ (BTop(n + 1),BTop(n)) classifying the vertical topological

tangent bundle of the pair (M × I, ∂∨1 M), in other words a one-parameter family of

linearizations of M × I. We must also give a lift ∂∨1 M → BO(n) that is compatible with

γ1.

Consider the smooth bundle W ∪∂1 M × I of h-cobordisms over B. This bundle is

fiberwise diffeomorphic to W , and is fiberwise homeomorphic to M × [−1, 1], since W is

fiberwise homeomorphic to M × I. After composing the fiberwise homeomorphism with

the projection map onto [−1, 1], we view the bundle M×I∪∂1W as a topological manifold

bundle over [−1, 1]. Consider the one parameter family of h-cobordism bundles given by

Wt := π−1[−1, t] for t ∈ [0, 1]. Since each Wt is a submanifold of the smooth manifold
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bundle M × I ∪∂1 W , we can restrict the vertical tangent bundle of M × I ∪∂1 W to Wt

to get a linearization map γt on Wt, so that W0 is fiberwise diffeomorphic to M × I and

W1 is fiberwise diffeomorphic to W . Thus, we have the desired one parameter family.

Since W is a smooth manifold, the vertical tangent bundle of ∂∨1 W is classified by a map

∂∨1 W → BO(n) that is compatible with γ1.

Thus, to any topologically trivial h-cobordism W on M , we can associate an exotic

smoothing of M × I. After stabilizing with respect to maps M → M × I, we obtain a

stable map

Ht/d
B (M)→ S̃sB(M)

Next we define a map S̃t/dB (M) → ΓBH%
B(M). We can associate to any element

of S̃t/d(M) a fiberwise map from M+ = M/∂M to the homotopy fiber of the map

BO(n)/BO(n − 1) → BTop(n)/BTop(n − 1). Stably, this homotopy fiber is homo-

topy equivalent to H(∗), and the fiberwise mapping space MapB(M/∂M,H(∗)) is ho-

motopy equivalent to ΓBΩ∞(M+ ∧ H(∗)) by Poincaré duality. Thus we have a map

S̃t/dB (M) → ΓBH%
B(M). This construction is compatible with the stabilization maps

S̃t/dB (M)→ S̃t/dB (M × I), so we obtain a stable map

θ : S̃sB(M)→ ΓBH%
B(M)

We have arrived at the following theorem:

Theorem (Theorem 1.5.14 in [GIW14]). The map θ : S̃sB(M) → ΓBH%
B(M) is a

homotopy equivalence of infinite loop spaces.
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Remark 1.9. The map S̃sB(M) → ΓBH%
B(M) is obtained in [GIW14] by inducting

over simplices in B, however it is not explicitly defined. For justifictation that our con-

struction of this map agrees with theirs, observe that over a point in B this statement is a

theorem of Burghelea and Lashof [BL77] which identifies the space S̃s∗(X) as the homol-

ogy theory in X corresponding to the homotopy fiber of the map BO(n)/BO(n − 1) →

BTop(n)/BTop(n− 1). This homology theory is H(∗).

Next, we have the following theorem, which is an intermediate result in Dwyer, Weiss,

and Williams’ proof of the converse Riemann–Roch theorem.

Theorem (Corollary 12.3 in [DWW03]). The diagram below is a homotopy pullback

square

(A.2) Hd
B(M) //

��

ΓBQB(M)

��

Ht
B(M) // ΓBA

%
B(M)

Corollary 1.10. Both maps in the composition

Ht/d
B (M) −→ S̃sB(M) −→ ΓBH%

B(M)

are homotopy equivalences.

Proof. The second map is a homotopy equivalence by Theorem 1.5.14 in [GIW14]

(copied above). The composition is the equivalence obtained by taking homotopy fibers
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over the diagram in Corollary 12.3 in [DWW03] (copied above). It follows that the first

map is a homotopy equivalence. �

A.1.2.1. Characteristic classes associated to exotic smoothings of fiber bun-

dles. Suppose that W is an element of H
t/d
B (M), i.e. it is a topologically trivial h-

cobordism on M → B, which forms the ingoing boundary ∂0W , and suppose that

p′ : M ′ → B is the outgoing boundary ∂1W . Then W is a point in S̃t/dB (M × I) and

the homotopy equivalent space S̃t/dB (M ′ × I). In other words, W is an exotic smoothing

of both M × I and M ′ × I. In the language of [GIW14], we have a fiberwise tangential

homeomorphism from M × I to W , from M ′× I to W , and from M ′× I to M × I so that

the following diagram commutes.

W

##

M × I //

;;

M ′ × I

We can view each of W , M × I, and M ′× I as elements in S̃sB(M). Define θ(W,∂0W )

to be θ(W )− θ(M × I) and θ(W,∂1W ) to be θ(W )− θ(M ′ × I). Denote by Θ(−,−) the

π0 component in which θ(−,−) lives. In [GIW14], given M ′ × I ∈ S̃sB(M), they define

Θ(M ′,M), the smooth structure class of M ′ relative to M , to be the image of M ′ in

π0ΓBH%
B(M)⊗R. By the discussion above, the class Θ(M ′,M) is equal to Θ(W,∂0W )−

Θ(W,∂1W ).
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A.2. Corrections to Exotic Smooth Structures on Topological Fiber Bundles

II

In [GI14], the authors claim to construct exotic smoothings of manifold bundles with

closed fibers. However, exotic smoothings of bundles with closed fibers do not exist.

The result of this mistake is that the statements of a handful of results in [GI14] are

false or vacuously true. However, their mistake is largely one of nomenclature: the main

construction of [GI14] is sound, and the end results of the computations of the smooth

structure class and higher Franz–Reidemeister torsion are unaffected by this mistake.

In this section we indicate which results are incorrect or vacuously true, and provide

corrections.

(1) Theorem 0.1.3 is false as stated: there cannot exist a smooth bundle p′ : M ′ → B

with closed fibers that is fiberwise tangentially homeomorphic to but not fiberwise

diffeomorphic to p : M → B. To correct this statement, we observe that the

immersed Hatcher construction produces a topologically trivial bundle of smooth

h-cobordisms with boundaries given by the smooth bundles p and p′, and thus the

statement should instead be that M × I is fiberwise tangentially homeomorphic

to M ′ × I. The relative torsion τ IK(M ′,M) should be understood as τ IK(M ′ ×

I,M × I).

(2) Conjecture 0.3.3 is vacuously true as stated. In particular, the phrase ‘rationally

stably, there are no exotic smooth structures on manifold bundles with closed

oriented even dimensional fibers’ is always true because such exotic smoothings

do not exist. However, if M ′ and M are the boundaries of a topologically trivial



102

bundle of smooth h-cobordisms then M ′×I is an exotic smoothing of M×I, and it

is entirely reasonable to ask if Θ(M ′,M) is nonzero, in the sense of Subsubsection

A.1.2.1.

Corollary 1.10 indicates that all M ′ and M for which M ′ × I and M × I

are fiberwise tangentially homeomorphic can be obtained as the boundaries of a

topologically trivial bundle of smooth h-cobordisms. We provide the following

more substantive statment of Goette and Igusa’s Rigidity Conjecture.

Conjecture 2.1. If p : M → B is a smooth manifold bundle with closed

even dimensional fibers, then for any topologically trivial family of smooth h-

cobordisms W so that ∂0W is the bundle p : M → B and ∂1W is a smooth

bundle p′ : M ′ → B with closed even dimensional fibers, the smooth structure

class Θ(M ′,M) = Θ(W,∂0W )−Θ(W,∂1W ) is trivial.

(3) Corollary 2.2.5 is false as stated. The vertical boundary ∂∨En,m(ξ, η) cannot

be fiberwise tangentially homeomorphic to the linear sphere bundle Sn+m−1(η)

without also being fiberwise diffeomorphic.

To repair this statement, we first observe that the h-cobordism between

∂∨En,m(ξ, η) and Sn+m−1(η) obtained by deleting a neighborhood of a section of

the disk bundle En,m(ξ, η) is a topologically trivial family of smooth h-cobordisms.

Thus, ∂∨En,m(ξ, η)× I is fiberwise tangentially homeomorphic to Sn+m−1(η)× I,

and the difference torsion of this pair is defined and can be nonzero. The proof

of the corollary goes through since τ IK(∂∨En,m(ξ, η)) = τ IK(∂∨En,m(ξ, η) × I),

and τ IK(Sn+m−1(η)) = τ IK(Sn+m−1(η)× I).
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(4) Corollary 2.3.3 is false as stated. Again, M ′ and M cannot be fiberwise tangen-

tially homeomorphic and have nonzero difference torsion since both have closed

fibers. To correct this statement, we first understand that M ′ and M bound the

topologically trivial bundle of smooth h-cobordisms En,m
+ (M, s, ξ) obtained by

the immersed Hatcher construction. Thus M × I is fiberwise tangentially home-

omorphic to M ′ × I. The difference torsion τ IK(M ′,M) in the statement should

be replaced by τ IK(M ′ × I,M × I).

In addition to the corrections above, we point out that the main theorem of [GI14],

Theorem 3.0.5, is correct as stated, but we clarify their statement of the result as fol-

lows. The immersed Hatcher construction W := En,m
+ (M, λ̃, ξ) is a topologically trivial

bundle of smooth h-cobordisms, and M and M ′ are the boundaries of this bundle. The

smooth structure class Θ(M ′,M) should be understood as Θ(W,∂0W ) − Θ(W,∂1W ) as

in Subsubection A.1.2.1.
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