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ABSTRACT

Characterizing the Fundamental Chromatin Structure and Function in a Realistic

Nuclear Environment

Ranya Virk

Chromatin is the biological material that packages our genetic information. In humans,

2 meters of linear DNA is compacted into an approximately 6 µm nucleus. Our DNA

is transcribed into RNA, which is then translated into proteins. Cellular phenotype, the

composite of all cellular functions, is defined by the entire transcriptome and proteome

of the cell. Thus, the organization of chromatin, which controls accessibility of DNA

to transcriptional machinery, helps to dictate cellular function. Recent developments in

technology, ranging from high-throughput sequencing, to super-resolution optical imaging

and electron microscopies, to increases in computing power, have greatly expanded our

understanding of chromatin structure and function.

It is not just the genome, the sequence of A’s, T’s, C’s, and G’s, that influences

cellular phenotype. DNA wraps around histone octamers to form nucleosomes, which

are strung together by linker DNA to form the ‘beads-on-a-string’ chromatin fiber. The

epigenome - including chemical modifications such as DNA methylation and histone tail
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acetylation/methylation - modulates cell function by controlling local chromatin structure

and accessibility. Epigenetic marks can recruit chromatin readers, which are capable

of nucleosome remodeling and activating transcription or compacting nucleosomes and

repressing transcription. In contrast to the previously accepted textbook view of a highly

ordered 30 nm fiber, chromatin also exhibits a highly disordered structure at the level of

the primary fiber. Higher-order chromatin domains have also been observed at the level

of 100’s of kilobase pairs to megabase pairs. The existence of these dynamic structures

has been shown to modulate transcriptional efficiency by influencing four-dimensional

enhancer-promoter contacts and the spreading of epigenetic marks.

Despite these recent advances in our understanding, there remain several key open

questions in the chromatin field that this thesis aims to address. Chapter 2 identifies and

investigates the fundamental units of chromatin folding. Chapter 2 begins by employing a

unique combination of high-resolution electron microscopy imaging and polymer physics-

based analysis techniques to characterize the morphological and functional properties of

higher-order chromatin packing domains. Next, in Chapter 2 we uncover fundamental or-

ganizational principles of the genome using nanoimaging and chromosome conformation

capture experimental approaches to validate and better understand a statistical model

of chromatin structure. Altogether, we demonstrate that the topology of chromatin can

be represented by branching, tree-like network structures and that statistical rearrange-

ments in connectivity and mass density distribution occur upon heat stress. Chapter 3

then transitions into the functional implications of the fundamental statistical chromatin

organization identified in Chapter 2. The Chromatin Packing Macromolecular Crowding
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(CPMC) model, which combines a kinetic model of transcription with the statistical pack-

ing descriptors of chromatin packing domains, is able to faithfully predict the phenotypic

plasticity of cancer cells. The initial model is then extended to predict cancer cell death

in response to cytotoxic chemotherapy treatment. Altogether, the initial chromatin pack-

ing state of cells is shown to directly influence cellular adaptability to external stressors.

Chapter 4 then focuses on developing and employing a molecular theoretical approach to

characterize the effects of the physicochemical intranuclear environment, including bulk

ions, pH, and density, on the structure and charge of DNA-like and chromatin-like sys-

tems. We identify bridging of multivalent cations as an important mechanism for both

neutralizing the strongly negative charges of DNA-phosphates and increasing compaction

of DNA-phosphate loops. We extend our approach to investigate the effects of the physic-

ochemical environment on individual nucleosomes and 8-mer nucleosome arrays, and de-

termine the importance of chromatin density on the effects of the monovalent electrolyte

environment on chromatin structure. Finally, Chapter 5 provides a summary of this the-

sis work and an outlook for future directions. Overall, this thesis combines physics-based

modeling, nanoimaging, and sequencing-based molecular approaches to better understand

fundamental mechanisms underlying chromatin structure and function in a realistic nu-

clear environment.
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advances in high-throughput sequencing, super-resolution (SR) optical
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several key tenants underlying supranucleosomal chromatin structure.

(Green) Topologically Associating Domains (TADs) are key structural

features that are distinctly visible on 2D High-throughput Chromosome

Conformation Capture (Hi-C) contact maps [68, 262, 232]. (Orange)

SR optical microscopy techniques, which label TADs and observe their

three-dimensional structure, observed that heterochromatic TADs form

compacted nanocompartments [275]. DNA-specific electron microscopy
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and divalent cations both influence inter-nucleosome interactions [104]. 72
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Label-free PWS images of live A549 cells, including both (D) one field of

view where chromatin packing variations within nuclei are visible (scale
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the ability of PWS to visualize chromatin packing structure of cell

populations (scale bar: 100 µm). The pseudocolor represents the
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(A-B) The DRAQ5 photo-oxidation process takes 7 min for each region
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of interest. Scale bar: 10 µm. (C) The DRAQ5-labeled regions were
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corresponds to the regions in the left panels). Scale bar: 20 µm. (D)

STEM image of a 100 nm thick section of an A549 cell in HAADF mode.

Scale bar: 2 µm. (E) 3D tomography of the A549 chromatin. Scale bar:

120 nm. (F-G) The fine structure of the chromatin fiber: Nucleosomes

(blue arrows in F), linker DNA (blue arrows in G) Scale bar: 30 nm.

(H-I) 3D rendering of the chromatin organization, the pseudo-color was

based on the intensity of the tomograms. (J) A magnified view of the

region labeled by a white square in I. Pink and green regions represent

high and low DNA density regions, respectively. 81

1.5 Power-law scaling behavior of homopolymers. The mass scaling, or

packing scaling, coefficient determines how the mass of the polymer
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encompassing solvent are equally preferred, as in the case of a random

walk, D = 2. When monomer-monomer interactions are heavily

preferred, the polymer collapses. A special case of a D = 3 collapsed

globule is the fractal globule [193]. 86

1.6 Overview of Molecular Theory (MT) approach for DNA-like system,

described in greater details in Chapter 4.6.1. Inputs to MT include
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environment conditions (e.g., bulk ions, pH, DNA density), charge

and size of all molecular species, free energy of all chemical reactions,

and a representative set of chains. Shown above in red are example

conformations of loop chains ranging from more collapsed to more

extended. MT relies on a free energy functional which takes into account

the system entropy (TS), chemical potential (Fchem), electrostatics

(Eelect), Van der Waals interactions (EV dW ), and steric repulsions (Erep).

This free energy functional is then decomposed into a system of nonlinear

coupled integro-differential equations, which are numerically solved

using optimization. Outputs of the theory include any thermodynamic

and structural quantity of interest, including the three-dimensional

distribution of polymer (e.g., DNA) volume fraction. 93

1.7 Macromolecular crowding influences gene transcription. (A) The nucleus

is a highly crowded and heterogeneous environment with chromatin

density as the major crowder. ChromTEM image from [288] shows

areas of low crowding/chromatin density and high crowding/chromatin

density in the same nucleus. (Inset) A hypothetical gene in blue

is surrounded by chromatin density and mobile crowders (brown

spheres). (B) Nonmonotic effect of crowding volume fraction on gene

expression depends on molecular regulators of transcription including
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1.8 Characterizing the chromatin structure and function in a realistic

nuclear environment. Nanoimaging techniques and polymer physics-

based analysis identify packing domains (PDs) as key functional units

of chromatin organization, as their morphological properties have direct

consequences for transcription (Chapter 2). Overall, molecular-level,

physics-based interactions are demonstrated to influence nuclear- and

cell-level processes. Specifically, macromolecular crowding modulates

transcription and phenotypic plasticity through statistical chromatin

packing behavior (Chapter 3) and the physicochemical intranuclear

environment influences DNA and chromatin structure (Chapter 4). 96

2.1 Mass scaling analysis uncovers PD regime with power-law mass scaling

behavior. (A) STEM HAADF image of a 150 nm section of a BJ

cell nucleus for tomography reconstruction. Scale bar: 2 µm. (B) A

magnified view of the chromatin and the nuclear periphery of the same

cell in (A) with gold fiducial markers. The intensity variation of the

image shows that the chromatin packs at different densities throughout.

Scale bar: 200 nm. (C) A virtual 2D slice of the chromatin of a BJ

cell after tomography reconstruction. Scale bar: 100 nm. The mass

scaling analysis was performed on the gray scale tomograms (D-E) The

average mass scaling curves from analysis of four A549 cells in (D) 3D

and (E) Ring, 2D, and 3D. The mass scaling was conducted for the

entire grayscale tomogram and the average mass scaling curve for all

the centers weighted by the chromatin density values was computed.
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3D mass scaling curve exhibits power-law behavior with a single scaling

coefficient up to r = 60 nm. Two regimes of mass scaling with different

packing scaling D can be identified. In the 2D cases for both A549 cells

and BJ cells, the mass scaling curve starts with a packing scaling with

Dlog < 3 (blue dashed line) and smoothly transitions to values close to

Dlog = 3 (red dashed line). 118

2.2 Quantifying PD size and chromatin packing behavior at PD boundaries.

(A) ChromSTEM grayscale tomogram for one field of view of an A549

cell. The color bar represents chromatin mass density. Scale bar: 200

nm. (B&C) Local chromatin maxima map estimated from an enhanced

chromatin density projection was utilized to find chromatin PD centers

shown in C. (D) 3D rendering of the surface of chromatin density in

a region containing the PD of interest (orange square in C). (D) The

average 2D mass scaling curve of the chromatin within the region of

interest (orange square in B&C). (E) For one PD, the mass scaling

curve is resampled from all loci within the PD center identified in C.

The mass scaling analysis was conducted starting from the PD center.

The mass scaling curve starts with D < 3 (blue dashed line) and

transitions to values closer to D = 3 (beyond the red asterisk). (F)

Radial distribution of chromatin density for the same PD. The radial

CVC initially decreases slowly within the PD regime. As the length scale

approaches the PD boundary (red asterisk), the radial CVC rapidly

dips which is followed by a recovery, potentially due to the presence of
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other domains at those length scales. (G) The distribution of Rf , the

PD radius, for A549 cells. 120

2.3 Characterizing morphological properties of chromatin PDs in A549 cells.

A total of 280 A549 cell PDs were analyzed (A) Chromatin packing

scaling D distribution was calculated for A549 cells. The mean of the

wide distribution is equal to 2.57. (B) CVC distribution per PD. We

observed the CVC distribution ranges from 0.15 to 0.92 with a mean

value of 0.40 for A549 cells. (C) Effective domain size Reff for A549

cells. The effective domain size is the ratio between domain size Rf and

domain fiber size Rmin. For A549 domains, the median Rmin is 11.6

nm. (D) Exposure Ratio (ER) is defined as the fraction of chromatin

voxels on the surface of the interchromatin voids compared to the entire

volume of the PDs and represents the surface accessibility of PDs to

transcriptional machinery. For A549 PDs, the ER ranges from 0.11 to

0.50 with a mean value of 0.25. (E) A moderate correlation between

domain CVC and D has been observed for A549 cells, with R2 = 0.32.

(F) ER is negatively correlated with inverse effective domain size with

the weak linear coefficient for A549, with R2 =0.1 124

2.4 PDs are observable structures in fixed and live cells. (A) (Left)

Chromatin packing scaling (D) map of a ChromSTEM A549 cell

tomogram. (Right) Two PDs with different Ds, highlighted in left

map by blue and purple circles, have distinct supranucleosomal packing

configurations. DNA concentration increases from green to red. (B)
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(Left) PWS D map of several A549 cells with nuclei shown in red.

(Right) corresponds to inset. 127

2.5 Relationship between s and D as determined by modeling. (A and B) A

general inverse relationship between s and D is demonstrated using (A)

self-attracting polymer and (B) SRRW simulations, although the exact

relationship is model-dependent. 130

2.6 Relationship between s and D as determined by experiments. (A&B)

Hi-C contact maps for differentiated BJ fibroblasts treated with DXM

treatment for (A) 0 hours and (B) 32 hours. (C) Intrachromosomal

contact probability plotted against genomic distance in log-log scale.

(D) s for BJ cells treated with DXM for 0 and 32 hours. The linear

regression fit was performed on contact probability versus genomic

distance between 105.8 and 106.8 bp. (E&F) ChromTEM images of

BJ cells (E) without and (F) with DXM treatment for 32 hours. (G)

The average ACF of chromatin mass density for untreated cells (blue)

significantly differs from that of treated cells (red). D was measured

inside the fractal PD (50 to 100 nm) by a linear regression fit of the

ACF in log-log scale. (H) Using ChromTEM ACF analysis on fixed

cells, an increase in D was observed after the 32-hour DXM treatment

(N = 31 cells per condition; P < 0.001). (I & J) Live-cell PWS analysis

of BJ cells treated with DXM. (I) PWS images of BJ cells with DXM

treatment at 0, 16, and 32 hour time points. (J) Time course PWS

measurements showed a significant decrease in D for all time points
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after 12 hours (N > 67 cells; ∗P < 0.05 and ∗∗P < 0.001) compared to

the 0 hour time point. 133

2.7 Mass scaling analysis at different dimensions. (A) Rendering of a self-

attracting homopolymer with D = 2.37 (left) which was estimated from

3D, 2D, and Ring mass scaling (right). 3D mass scaling exponent can be

approximated using the relations D3D = D2D + 1 and D3D = D1D + 2,

with standard errors of the mean of 0.023 and 0.019 respectively. (B)

A549 mass scaling curves plotted as 3D mass scaling, 2D mass scaling

+ r, Ring mass scaling + 2r in the log-log scale. The equivalent slope

for the 3D mass scaling regime extending from 2 - 100 nm indicates that

the 3D mass scaling exponent can be derived from 2D and ring mass

scaling exponents. (C) The average mass scaling curves determined from

different dimensions of the amalgam of ChromSTEM tomograms from

three BJ cells. (D) The ring mass scaling curve for A549 cells has three

regimes: 1. Chain mass scaling with slope, D = 2.88 ± 0.2 fitted from

r = 2 - 10 nm (yellow dashed line); 2. Domain mass scaling (blue dashed

line); 3. Supra-domain mass scaling with slope, D = 3.01 ± 0.01 fitted

from r = 145 - 200 nm (red dashed line). (E) The ring mass scaling

curve for BJ cells also shows three regimes: 1. Chain mass scaling with

slope, D = 2.85± 0.04 fitted from r = 2 - 10 nm (yellow dashed line); 2.

Domain mass scaling (blue dashed line) ; 3. Supradomain mass scaling

with slope, D = 3.04± 0.003 fitted from r = 100 - 140 nm (red dashed

line). 144
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2.8 Chromatin mass density analysis to identify PD centers. The average

z-projection for the grayscale tomograms was evaluated to obtain

a map of the average chromatin mass density distribution using

ChromSTEM-HAADF intensity. Then we applied Gaussian filtering

with radius = 5 pixels followed by CLAHE contrast enhancement with

a block size of 120 pixels in FIJI. We identified the local maxima for

unbiased segmentation of chromatin PDs. We then identified the center

of mass pixels for each segmented PD. To obtain the mass scaling curve

for a single PD, we first sampled multiple mass scaling curves starting

from the nonzero pixels within the PD centers, defined as the 15 pixel x

15 pixel window surrounding the center pixel. We then used the average

mass scaling curve for that PD for subsequent analysis. Scale bar: 200

nm. 145

2.9 Determining PD boundaries from the mass scaling behavior. Beyond a

given length scale, r (nm), the 2D mass scaling curve deviates from a

power-law mass scaling. We performed three types of analyses (A-C) to

determine the boundary of PDs, which are denoted as the smallest r

of the three analyses, if it exists. (A) Mass scaling curve deviates from

the initial power-law mass scaling calculated from small length scales

within PD center region by 5%. (B) Local packing scaling Dlog reaches

3 at r = 102 nm. (D) The absolute value of the second derivative of

the logarithm of the mass scaling curve is greater than 2, indicating a

divergence from the power law. Here, all length scales follow under this
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error margin. (C) The radial CVC starts to increase. The radial CVC

decreases initially, then increases at r = 95.7 nm for this domain. In

this case, comparing (A-C), we determined the domain size Rf =95.7

nm. (D) The distribution of R2
f , the square of the radius of the PD,

for A549 (blue) and BJ (orange) cells. (E) The distribution of As, the

asphericity of the chromatin density distribution within the identified

PDs, for A549 (blue) and BJ (orange) cells. 146

2.10 Characterizing morphological properties of chromatin PDs in BJ cells.

The grayscale BJ cell tomogram (A) was utilized to estimate the (B)

chromatin PD centers. Scale bar: 100 nm. (C) Chromatin packing

scaling D distribution with a mean equal to 2.62 was evaluated for BJ

cells. (D) CVC distribution ranges from 0.12 to 0.92 with a median

value of 0.34. (E) Mean effective domain size Reff was 4.84, and median

Rmin is 10.8 nm. (F) Exposure Ratio (ER) ranges from 0.11 to 0.56

with a mean value of 0.35. 147

2.11 Time-resolved PWS imaging of HCT116 cells determines spatial

heritability of chromatin packing scaling for N = 10 progenitor cells and

N = 20 progeny cells. (A) PWS D map of two progeny cells originating

from the same progenitor. (B) Average spatial D distribution of all

cells imaged 5 hours after cell division. (C and D) Histogram ratio of

the spatial D distribution for each individual progeny cell from (A)

normalized by the average histogram of all cells at that time point

from (B). (E) After cell division, the normalized histograms of paired



28

progeny cells are more highly correlated with each other than with

unrelated progeny cells at the same time point (P < 0.05). (F) Across

all time points, normalized histograms of paired progeny cells are more

significantly correlated compared to those of unrelated progeny. (G)

Comparing all progeny cells 3 hours after division to all progenitors 3

hours before division shows that progeny cells have a higher correlation

with their “parent” than with unrelated progenitors (P = 0.021). 148

2.12 Time-resolved PWS imaging of HCT116 cells determines temporal

heritability of chromatin packing scaling for N = 10 progenitor cells

and N = 20 progeny cells. (A & B) PWS D maps at four time points

before, during, and after cell division. During cell division, nuclei exit

the objective’s depth of field by lifting off the glass and return to the

glass when they have finished dividing. (C) Average nuclear D tracked

over time from cells in (A) and (B). After ∼5 hours, both cells have

finished dividing, and their progeny cells were tracked for an additional

∼7 hours. (D) D of progeny cells is more strongly correlated with that

of their paired progeny than with other unrelated cells (P < 0.001). (E)

Progeny cells are more correlated with their parent progenitor cells than

with other unrelated cells. 149

2.13 Measuring chromatin packing scaling and contact probability scaling

alterations induced by dexamethasone (DXM) treatment in BJ

differentiated fibroblasts. (A&B) Contact probability scaling analysis as

analyzed by moving-window linear regression (A) and classical linear
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regression (B) analyses for BJ cells treated with DXM for 0, 16, and 32

hours. For (A), we assume the linear regression fit used to calculate

contact probability scaling follows a normal distribution N (µs, σs) where

the mean contact probability scaling, µs is the slope of the regression

and standard deviation, σs is the root-mean-square error (RMSE) of the

residuals. Contact probability scaling is significantly different between

control, and 16 hour and 32 hour DXM treated BJ cells (P < 0.001).

(C-D) PWS analysis of BJ cells at 0, 16, and 32 hour time points for

untreated cells (C) and DXM treated cells (D). (C) Chromatin packing

scaling D measured in untreated live BJ cells shows no observable

change in D over a 16 hour period and only a small decrease in D over a

32 hour period that is not statistically significant (P > 0.05). (D) Using

double-sided student-t-test, P < 0.005 for DXM treated cells at 16 and

32 hour time points. 150

2.14 Measuring chromatin packing scaling and contact probability scaling

alterations induced by dexamethasone (DXM) treatment in A549

cancer cells. (A&B) Characterization of A549 chromatin structure

with and without DXM treatment. From left to right: TEM images of

chromatin structure with ChromEM staining, scale bar: 1µm. PWS

map of chromatin packing scaling, scale bar: 10 µm. Qualitatively, both

ChromTEM and PWS images show that DXM treatment homogenizes

chromatin packing. (C) Hi-C contact map of human chromosome

1 rendered with 5 kbp resolution for the control and DXM treated
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A549 cells. (D) ACF analysis of ChromTEM images of A549 cells.

The average ACF of the control group (blue) is significantly different

from the average ACF of the treated group (red). The shaded regions

represent standard errors. D was calculated from the PD regime (50 nm

to 100 nm) by performing a linear regression fit to the ACF in the log-log

scale. (E) Contact probability analysis performed on whole-genome

intrachromosomal Hi-C contact data. Contact probability scaling (s)

was calculated from a linear regression fit (dotted line) of the contact

probability curve in the log-log scale between genomic distance 104.4 and

105.5 bp. (F-H) Chromatin packing scaling alterations induced by DXM

treatment measured using ACF analysis of TEM images and PWS and

changes in contact probability scaling of Hi-C contact data. Across

the platform, consistent changes were observed in chromatin packing

scaling upon treatment. Using double-sided student-t-test, P = 0.051

for ChromTEM, P < 0.005 for PWS. (I) Comparing distributions of

contact probability scaling for A549 cells calculated from analysis of

Hi-C contact matrices. We assume the linear regression fit used to

calculate contact probability scaling follows a normal distribution.

Contact probability scaling is significantly different between control,

and 12 hour DXM treated A549 cells (P < 0.001). (J) Chromatin

packing scaling D measured in untreated live A549 cells at 0 and 12

hours shows no observable change in D at time points comparable to
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DXM treatment, which showed a statistically significant decrease in D

after 12 hours of treatment (H). 152

2.15 SR-EV removes overlaps introduced by self-returning steps of SRRW.

(A) Schematic representation of the first 12 beads (left) and their

connecting bonds (right) of an SRRW conformation of 50,000 steps and

α = 1.15. Circles with more than one color represent overlapping points.

(B) Equivalent connectivity (left) and beads (right) of the corresponding

SR-EV. (C) Rendering of the full SRRW conformation and (D) its

SR-EV counterpart. The color bar indicates the connectivity from the

start to the end of the conformation. 156

2.16 PWS microscopy reveals an increase in chromatin packing scaling, D

upon heat shock for 1 hour at 42◦C compared to controls incubated at

37◦C. Each color in the violin plot represents a separate experiment. A

total of 4 experiments, each with a number of cells greater than 167,

were averaged to obtain a mean D of 2.4 for control and 2.44 for the

heat shock conditions. 160

2.17 SR-EV mass scaling analysis matches PWS heat shock experiments.

(A) Average mass scaling for two SR-EV populations with different α’s,

each with 1000 conformations. The red line, representing the control

case, corresponds to α = 1.15. The black line, representing the heat

shock case, corresponds to α = 1.10. The vertical blue lines indicate

the boundaries of the power-law fitting, from 60 to 450 nm, which are

displayed in dashed lines in the corresponding color next to the raw
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results. (B) Distribution of D values obtained from the mass scaling

analysis from individual conformations in the population. 161

2.18 Contact probability calculated from the same two populations as Fig.

2.17. The insert shows the experimental results obtained from Hi-C

experiments on HCT116 cells. Both experimental findings and theory

display the same behavior, with a crossing that shows more contacts for

the control sample at smaller genomic separations and more contacts

for the heat shock sample at larger genomic separations. 163

2.19 Distributions of the number of branches in the SR-EV populations for

the control (red) and heat shock (black) cases show a decrease in the

number of SR-EV branches, proportional to the number of TADs, in the

heat shock condition. 165

2.20 (A&B) Representation of a typical conformation for (A) α = 1.15

(control) and (B) α = 1.10 (heat shock). (C&D) SR-EV backbone in

red, and branches represented as grey spheres, the volume of which

corresponds to the size of tree domains, for (C) control and (D) heat

shock cases. 167

2.21 Self-Returning Random Walk (SRRW) reproduces key experimental

observations of chromatin structure with just one folding parameter.

(A) Example rendering of SRRW with different colors representing

different genomic regions along the linear sequence. (B) The SRRW’s

topological architecture featuring random trees connected by an open

backbone. Tree nodes are formed by frequent self-returning of short
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steps. (C) Coarse-graining diverse epigenetic states at the nanoscale

into a wide distribution of step sizes. One step approximately maps to

10 nucleosomes, or 2 kbp of DNA. The balls represent histones, and the

lines represent DNA. The arrows represent the coarse-grained steps in

the SRRW procedure. (D) Chromatin mass scaling as determined by

ChromSTEM analysis. a.u., arbitrary units. (E) SRRW mass scaling

of the modeled chromatin sampled over 1000 SRRW trajectories. (F)

Hi-C experiments from [251] determined that contact probability scaling

within TADs has a lower absolute contact probability scaling |s| < 1

and then transitions to a higher contact probability scaling at larger

length scales. (G) Contact probability scaling of SRRW compared to

Random Walk (RW). As a guide to the eye, the dashed line shows

power-law scaling, with exponent s = −1. The SRRW reproduces the

two scaling regimes observed by experiments in (F). (H) Structures

of the modeled chromatin at different genomic scales demonstrate a

hierarchical organization of SRRW tree domains. 172

2.22 Mean quadratic end-to-end distance as a function of the genomic

separation s for the SRRW and SR-EV models and for α = 1.15

and α = 1.10, as indicated. The results are averages over ensembles

composed of 1000 individual conformations. The scaling behavior shows

a strong effective attraction resulting from the frequent folding of the

SR-EV polymer which describes chromatin structure. 173
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3.1 The Chromatin Packing Macromolecular Crowding (CPMC) model

integrates molecular and physical regulators of transcription. The

regulators influencing transcription reactions can be generally divided

into two categories: (A-D) molecular regulators (km, KD, and [C]tot)

and (E-H) physical regulators (D, ϕin,0, and Nd). (A) The CPMC model

describes transcription as a series of diffusion-limited chemical reactions.

Ex vivo, expression depends on (B) concentration of transcriptional

reactants [C]tot (TFs (green), RNA Pol II (yellow)), (C) RNA Pol II

elongation rate, km, and (D) the disassociation rate of RNA Pol II

from the transcription start site (TSS) KD. (E) (Left) In addition to

the molecular determinants, transcription reactions are influenced by

the highly dense and complex nuclear environment. The concentration

of the main crowder within the nucleus, chromatin, can be measured

by ChromTEM. As an example, a ChromTEM image of a nucleus

from an A549 lung adenocarcinoma cell is shown. (Right) ChromTEM

measurements of CVC demonstrates that chromatin density varies

throughout the nucleus. (F) Representative PWS image of an A549 cell

demonstrating the existence of chromatin PDs as regions of elevated

chromatin packing scaling, which vary throughout the nucleus. (G)

A PD with a higher D (right) has a more heterogeneous density

distribution and a greater accessible surface area compared to a PD

with a lower D (left). (h) Nd is the genomic size (in bp) of a chromatin

packing domain and can range from less than 100 kbp to several Mbp.
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PDs are illustrated by color coding with each color representing a

separate domain. 182

3.2 Comparison of the CPMC model with experimental measurements

of gene expression as a function of physical regulators Di, Nd, ϕin,0,

and gene length L. (A&B) Representative live-cell PWS microscopy

images of nuclear D distributions scaled between 2.56 and 2.66 for (A)

control and (B) 12 hour dexamethasone-treated lung adenocarcinoma

A549 cells. Brighter red corresponds to higher D regions. (C&D)

Representative heat maps of CVC values from analysis of ChromTEM

images of cell nuclei from (C) A549 cancer cells and (D) BJ fibroblasts.

Representative magnified regions from each nucleus demonstrate average

CVC=0.35 in A549 cell compared to 0.30 in BJ cells. (E-J) Comparison

between the CPMC model (solid lines) and experimentally measured

(points) sensitivity of gene expression to D (Se, y-axis) as a function

of the initial relative gene expression (ln(Ei/Ēi), x-axis). (E) Cell

populations with a higher initial Di = 2.7 (wild-type HT-29 cells) have

a bidirectional Se curve that becomes attenuated if Di is lowered to 2.5

(shRNA knockdown Arid-1a HT-29 cells) (F). Each point represents the

average of 100 genes. Changes in D were induced by cell treatment with

10% fetal bovine serum, 100 nM epidermal growth factor (EGF), and 100

nM phorbol 12-myristate 13-acetate (PMA). The CPMC model was able

to explain 86% of the variance of the experimental data for wild-type

HT-29 cells and 51% of the variance for Arid-1a HT-29 cells. (G) Se
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in cells with a lower average nuclear density (BJ cells, ϕin,0 = 0.35;

each point corresponds to 300 genes; explained variance (EV) = 59%) is

attenuated in comparison to that of cells with a higher nuclear density

(H) (A549 cells; ϕin,0 = 0.40; 100 genes per point; EV = 74%). (I) Genes

located within larger domains (Nd ∼2 Mbp, 12 genes/point, EV = 56%)

have a lower initial expression, but have a positive Se to changes in D in

comparison to genes localized within smaller domains (Nd ∼50 kbp, 12

genes/point, EV = 37%). The change in D was induced in A549 cells by

treatment with 100 nM of dexamethasone. Nd was approximated based

on the corresponding TAD size: 2 Mbp TADs for the high Nd group of

genes vs. 50 kbp TADs for the low Nd genes. TAD size was measured

using the Arrowhead function from the Juicer Tools to analyze Hi-C

data [72]. (J) Comparison between the CPMC model (solid line) with

experimental results (points, 60 genes/point) in HT-29 cells showing the

effect of gene length, L, (x-axis) on Se (y-axis). In agreement with the

model, shorter, initially lowly-expressed genes (blue curve, points, EV

= 67%) are disproportionally repressed by an incremental increase in

D compared to longer genes (high expression, red curve, points). Error

bars represent standard error from 4 biological replicates. 193

3.3 Chromatin packing scaling increases the transcriptional malleability of

cancer cells. (A) In response to a stressor, such as a chemotherapeutic

agent, cells with a higher level of transcriptional malleability may

have the ability to respond faster, which may lead to an increased
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probability of survival. Cells with higher average D (right, Db) have

increased rates of change in gene expression induced by an exogenous

stressor by a factor δ relative to the changes in lower-D cells (left,

Da). For the higher-D cells, this may increase the probability of the

cell remaining viable by reaching a critical threshold of expression of

pro-acclimation genes compared to the lower-D cell which is unable

to meet this threshold. (B&C) The fraction of high-D cells in a

cell culture increases after treatment with paclitaxel for 48 hours,

suggesting that cells with higher D are more likely to survive exposure

to a cytotoxic chemotherapeutic agent. (B) The percentage of cells

having D above the top quartile of a control cell population (y-axis)

increases in cells that survive treatment with paclitaxel for 48 hours.

For both conditions, each dot represents percentage of high-D cells in

one replicate for a total number of N = 5 replicates per condition.

(C) Combination treatment with the D-lowering celecoxib agent and

then paclitaxel for 48 hours (Combo) results in increased elimination

of cancer cells compared with untreated controls and cells treated with

paclitaxel (PAC) alone. (D) CPMC model predictions of the relative

transcriptional malleability coefficient δ for initially lowly-expressed

(blue spline) and highly-expressed genes (red spline). Here, Da = 2.3 and

Db = 2.5, which is comparable to experimentally observed differences

in celecoxib-treated versus untreated A2780 cells. (E) scRNA-seq

on A2780 cells was performed to compare transcriptional profiles of
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control A2780 cells (high-D population) and cells treated with 75 µM

of a D-lowering agent celecoxib (low-D population) and their response

to treatment with 5 nM paclitaxel (stressor) for 16 hours. Initially

lowly-expressed and initially highly-expressed genes are defined based

on control expression levels. Genes are grouped based on their quantile

of log2(EPAC/Econtrol) and the mean and standard errors of each

quantile for initially lowly-expressed genes (blue dots, 300 genes/data

point) and initially highly-expressed genes (red dots, 100 genes/data

point) are plotted. (F) Gene ontology analysis identified biological

processes that are most significantly involved in the response to 48 hour

paclitaxel treatment. Upregulated genes were defined as those with at

least 2× increase in expression. (G) D-facilitated upregulation (δ) of

the stress-response genes identified by the GO analysis (red points, 150

genes/data point) was similar to that for all upregulated genes (blue

points, 650 genes/data point). 202

3.4 Chromatin packing scaling regulates intercellular transcriptional

heterogeneity of cancer cells. (A-E) 3D projections of scRNA-seq data

(TPM values of 8,275 expressed genes) onto reduced t-SNE space for

5 conditions: (A) control cells (N = 46), (B) cells treated with 5 nM

paclitaxel for 16 hours (1 6hr PAC, N = 55), (C) 5 nM paclitaxel for

48 hours (48 hr PAC, N = 5), (D) 75 µm celecoxib for 16 hours (16

hr CBX, N = 62), (E) and combination of 75 µM celecoxib and 5 nM

paclitaxel for 16 hours (16 hr Combo, N = 59). The size of the cluster
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indicates the transcriptional heterogeneity within the population of

surviving cells for each condition. (F) The radius of genomic space Rc

(the radius of clusters through A-E) increases as a function of D, which

was measured by live-cell PWS microscopy at each time point prior

to sequencing. Cells treated with paclitaxel (higher D) have greater

transcriptional heterogeneity, especially when compared to cells treated

with the D-lowering celecoxib agent. Likewise, the CPMC model

(red curve, right side y-axis) shows that intercellular transcriptional

heterogeneity increases with D. Error bars represent the standard error

of D calculated from PWS measurements (x-axis) and Rc (y-axis) for

each condition. (G) Relative expression of high-D versus low-D cells in

response to paclitaxel treatment for genes associated with DNA repair

pathways, which are upregulated in 48 hour paclitaxel-treated cells.

For each condition (Control, 16 hr PAC, 2 hr CBX, 16 hr Combo),

TPM values of these genes (48 in total) were averaged within each cell.

Next, expression of paclitaxel-stimulated cells was normalized by the

average of the corresponding unstimulated population. The resulting

intercellular distribution of relative expression levels is shown. Dashed

lines represent mean relative expression. Solid red and blue arrows

represent the standard deviation of distributions EPAC/EControl and

ECBX/ECombo, respectively. For these stress response genes, cells with

a higher initial D versus cells with a lower initial D had an increase

in transcriptional malleability (↑ δ) as well as a higher intercellular
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transcriptional heterogeneity (↑ H). (H) Distribution of the relative

expression of genes, as described in (G), in the lowest quantile (10th

percentile) of control expression levels (839 in total). (I) Variance (σ2)

of intercellular distribution of relative expression for each percentile

of control expression levels. Initially lowly-expressed genes show an

increased effect of chromatin packing scaling on increasing intercellular

transcriptional heterogeneity in response to paclitaxel stimulation

compared to that of initially highly-expressed genes in higher quantiles. 207

3.5 STORM-PWS imaging validates the relationship predicted by CPMC

between local chromatin packing behavior and active transcription.

(A) Multiple realizations of the CPMC model with varying molecular

conditions, specifically different concentrations of RNA Pol II, TFs, and

promoters. The modeling predicts that in all cases, the surrounding

chromatin packing scaling has a nonmonotonic relationship with gene

expression. (B) The relationship between D and the local concentration

of active RNA Pol II which correlates with gene expression level (N = 4

cells) compared with one realization of the CPMC model. (C) STORM

image of an M248 ovarian cancer cell with labeled active RNA Pol II

(green) overlaid on top of chromatin packing scaling D map measured

by PWS (red). (D) Magnified view of the white square in (C). 211

3.6 Chromatin-Dependent Adaptability (CDA) model predicts cell survival

to cytotoxic stressors from the initial chromatin packing behavior of cells.

CDA model predicts that cells with higher average chromatin packing
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scaling have both an increased average and spread of upregulation of

potentially critical genes for cell survival. Thus, high-D cells (in red)

will have a higher probability of upregulating key gene(s) beyond a

threshold, xcrit, before a critical cell decision timepoint. Consequently,

these high-D cells will have a lower death probability, θ, which will

increase cell survival. Conversely, low-D cells (in blue) might not be

able to upregulate genes beyond the critical threshold within the same

amount of time, and will have a higher death probability. 216

3.7 CDA parameters influence death probability of cells under cytotoxic

stress. (A) Cells with higher ⟨D⟩ have increased transcriptional

malleability k and heterogeneity s compared to reference cells with

Da = 2.6. (B) Death probability compared to ⟨D⟩ follows a general

sigmoidal relationship that is dependent on the critical upregulation

rate of certain gene(s), xcrit. Higher xcrit results in increased death

probability, θ, for cells with the same ⟨D⟩. (C) Initial relative expression

of genes ln(Ei/Ēi) influences the sigmoidal behavior of the ⟨D⟩

versus death probability relationship. Genes with lower initial relative

expression have a steeper sigmoidal curve. (D) Agreement was found

between the death probability curve predicted by the CDA model and

the experimental death probability values calculated for cell clusters

with varying initial ⟨D⟩ after a 48 hour oxaliplatin treatment of HCT116

cells. After optimization, fitting parameters were determined to be

xcrit = 6.9 and βa = 19.1. 221
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3.8 Lowering population-wide D with “strong” CPTs increases cell death

upon treatment with cytotoxic chemotherapy. (A) CDA model predicts

that higher D populations have more cells above the survival probability

threshold (1-θ) and thus more cells from the high-D population will

survive compared to the low-D population. (B) CDA model predictions

are validated by experiments assessing survival of A2780 cancer cells

upon exposure to different concentrations of chemotherapy (high-D

population) compared to A2780 cells first treated with the CPT

celecoxib and then exposed to the same concentrations of chemotherapy

(low-D population). Fitting parameter for optimization βa = 9. 225

3.9 Sensitivity of gene expression is greatest for chromatin packing

scaling compared to average density and genomic size of domains.

(A-C) Statistical properties of PDs from A549 cells as determined by

ChromSTEM analysis: (A) average PD chromatin density, ϕin,0, (B)

genomic size of PD, Nd, in kbp, and (C) chromatin packing scaling

D. (E-G) Sensitivity of gene expression to (E) ϕin,0, (F) Nd, and (G)

D versus initial relative expression ln(Ei)/ ¯ln(Ei as determined by the

CPMC model. The three different values for each sensitivity curve were

determined from the 25th, 50th, and 75th percentiles of PD properties

determined from (A-C). Note that the range of sensitivity values for

initial lowly expressed versus initial highly expressed genes occurs over

a much greater range for SeD compared to Seϕin,0
and SeNd

. 236
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3.10 CVC distributions of A549 and BJ cells as measured by ChromTEM.

Analysis of ChromTEM CVC values across N=4 replicates of

differentiated BJ fibroblast nuclei and N=9 replicates of A549 lung

adenocarcinoma nuclei. A549 nuclei have a pooled CVC average of

0.35 while BJ nuclei have a pooled CVC average of 0.30. These values

represent the chromatin contribution to ϕin,0. 237

3.11 Chromatin packing scaling D increases in chemoevasive cells. (A)

Average population of surviving cells steadily increases over the course

of chemotherapeutic intervention with oxaliplatin in HCT116 cells.

Error bars are standard error. (B) The relative increase in D of

HCT116 cell clusters treated with oxaliplatin for 48 hours depends

largely on the initial D of the cluster prior to treatment, with low D

clusters experiencing the most pronounced change in D. Each point

represents one cluster and error bars are standard error. (C) Exposure

of cancer cell lines to standard concentrations of chemotherapeutic

agents for 48 hours results in a shift in the population distribution

of D to higher values in the surviving cells. Cells were treated with

previously reported concentrations of these chemotherapeutics based

on which chemotherapies are currently used as standard of care

for a given malignancy. Violins correspond to control A2780 cells

(N = 332), paclitaxel treated A2780 cells (N = 99, P = 1.1 × 10−3),

5-fluorouracil treated A2780 cells (N = 147, P = 9.9 × 10−21), and

oxaliplatin treated A2780 cells (N = 101, P = 2.6 × 10−35); control
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A2780.m248 cells (N = 259), 5-fluorouracil treated A2780.m248 cells

(N = 100, P = 3.9 × 10−3), paclitaxel treated A2780.m248 cells

(N = 45, P = 4.7 × 10−6), and oxaliplatin treated A2780.m248 cells

(N = 85,P = 1.5 × 10−18); control HCT116 cells (N = 262), and

oxaliplatin treated HCT116 cells (N = 289, P = 1.7 × 10−35); control

MDA-MB-231 cells (N = 128), 5-fluorouracil treated MDA-MB-231

cells (N = 81,P = 4.1 × 10−2), oxaliplatin treated MDA-MB-231 cells

(N = 59, P = 2.8 × 10−5), and paclitaxel treated MDA-MB-231 cells

(N = 36,P = 4.7 × 10−5); control MES-SA cells (N = 265), docetaxel

treated MES-SA cells (N = 194, P = 2.0 × 10−2), and gemcitabine

treated MES-SA cells (N = 101, P = 4.0×10−13); control MES-SA.MX2

cells (N = 203), gemcitabine treated MES-SA.MX2 cells (N = 103,

P = 7.3 × 10−6), and docetaxel treated MES-SA cells (N = 106,

P = 1.7×10−8). Significance was determined using Student’s t-test with

unpaired, unequal variance on the average nuclear D of the treated group

against the control group within each cell line (∗∗∗P < 0.001, ∗∗P < 0.01,

∗P < 0.05). (D) Representative PWS microscopy images of control and

chemoevasive cells for each chemotherapy tested. Image pseudocolor is

D, with brighter red corresponding to higher D values. Scale bars are

15 µm. A2780, A2780.m248, HCT116, MDA-MB-231, MES-SA, and

MES-SA.MX2 were treated for 48 hours with 5-fluorouracil, paclitaxel,

oxaliplatin, 5-fluorouracil, gemcitabine, and docetaxel respectively as

representatives of all cell line and chemotherapy combinations. 239
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3.12 Chromatin packing scaling D increases with selective resistance to

chemotherapy. (A) Representative PWS microscopy images of ovarian

carcinoma A2780 wild-type (WT), and TP53-mutant A2780.m273

(M273), A2780.m175 (M175), and A2780.m248 (M248) cells. Arrows

indicate representative nuclei. Scale bars, 10 mum. Pseudo-color: D.

(B) Under normal growth conditions, D remained similar to the WT

in the A2780.m273 subclone and increased in the A2780.m248 subclone

(P = 1.0 × 10−59) relative to the WT A2780 cells. (C) Analysis of

TCGA data for high-grade serious epithelial ovarian carcinoma patients

revealed a strong correlation between median survival (as reported

by TCGA) and D (as measured by PWS). (D) Representative PWS

microscopy images of leiomyosarcoma MES-SA and mitoxantrone

resistant MES-SA/MX2 derivative (MX2) cells. Arrows indicate

representative nuclei. Scale bars, 10 mum. Pseudo-color: D. (E)

Under normal growth conditions, D was increased in the MES-SA.MX2

chemoresistant subclone (P = 3.1 × 10−30) compared to the sensitive

MES-SA subclone. Significance was determined using Student’s t-test

with unpaired, unequal variance on the average nuclear D of the mutant

subclone against the WT within each cell line (∗∗∗P < 0.001). N = 1877

A2780, N = 309 M273, N = 237 M175, N = 1321 M248, N = 836

MES-SA, and N = 558 MX2 cells. 242

3.13 Increased transcriptional malleability for higher D cells is a generalizable

phenomenon. The transcriptional malleability coefficient δ =
E2,b/E1,b

E2,a/E1,a
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was determined from additional bulk RNA-seq experiments on A2780

cells and TP53 mutated clone A2780.m248 cells along with propranolol,

another D-lowering compound. PWS measurements showed a 2%

decrease in D in A2780 cells after propranolol treatment for 16 hours and

a ∼5% decrease in D in m248 cells treated separately with celecoxib and

then propranolol for 16 hours. (A) Transcriptional malleability in A2780

cells treated with propranolol to lower D. All treatment conditions

include: control, 16 hour propranolol, 16 hour paclitaxel, and 16 hours

paclitaxel plus celecoxib. (B&C) δ tested in m248 cells treated with (B)

celecoxib and (C) propranolol as D-lowering compounds for 16 hours.

All treatment conditions include control, 16 hours celecoxib/propranolol,

16 hours paclitaxel, 16 hours paclitaxel plus celecoxib/propranolol. All

results are based on the expression data at t = 16 hours. Error bars

represent the standard error of δ for all genes within each quantile.

There are three biological replicates for every condition. 243

3.14 Transcriptional heterogeneity is increased in high-D cells. (A) Spread

of pairwise Euclidean distance was calculated between cells in each

condition for genes associated with DNA repair pathways that are

upregulated in 48 hour paclitaxel treated cells. (B) Coefficient of

variation (COV) across treatment populations of genes grouped by

control expression levels normalized by control COV. Genes were first

binned into groups of ∼100 genes (80 quantiles total) each based on

relative control expression, which are assumed to be exposed to roughly
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similar molecular regulators of transcription. The expression of these

genes was averaged within each cell. COVj = σ2
Ei
/µEi

was calculated

over all average expression levels of cells in treatment condition i for

genes in control expression quantile j and each non-control condition

was normalized to COV calculated for each bin in the control condition.244

3.15 Decision time Tcrit influences relationship between average packing

scaling and, ⟨D⟩, and death probability, θ. Decision times were varied

over commonly observed times to observe signs of apoptosis (5 − 10

hours) and up to 24 hours. 245

3.16 Strong CPT agents can decrease chromatin packing scaling D

independent of cancer cell line. (A) Drug treatments on A2780 cells

caused varying levels of decrease in D. Violin plots correspond to

A2780 cells treated with control (N = 360), insulin regulator metformin

(N = 195, P = 7.9 × 10−2), HDAC inhibitor valproic acid (N = 234,

P = 1.4× 10−11), beta-blocker metoprolol (N = 156, P = 674× 10−6),

seratonin reuptake inhibitor sertraline (N = 157, P = 3.7 × 10−10),

anti-oxidant green tea extract EGCG (N = 276, P = 4.1 × 10−15),

beta receptor agonist propranolol (N = 111, P = 1.4 × 10−8), HDAC

inhibitor resveratrol (N = 271, P = 1.8 × 10−43), non-steroidal

anti-inflammatory drug celecoxib (N = 132, P = 7.0 × 10−34), and

cardiac glycoside digoxin (N = 572, P = 8.3 × 10−86). Significance

was determined using Student’s t-test with unpaired, unequal variance

on the average nuclear D of each treated group against the control
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group (∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05). (B) Representative

PWS microscopy images of control and CPT treated cells. Image

pseudocolor is D, with brighter red corresponding to higher D values.

Scale bars are 15 µm. A2780 cells were treated for 30 minutes with

celecoxib and digoxin. (C) A 30-minute treatment with select CPT

compounds decreases population-wide D in the nine different cell lines

tested. Violin plots correspond to control A2780.m248 cells (N = 125),

celecoxib-treated A2780.m248 cells (N = 36, P = 9.3 × 10−3),

valproic acid-treated A2780.m248 cells (N = 51, P = 4.9 × 10−8), and

digoxin-treated A2780.m248 cells (N = 91, P = 1.5 × 10−8); control

AsPC-1 cells (N = 107), and 9-ING-41-treated AsPC-1 cells (N = 111,

P = 1.1 × 10−14); control HCT116 cells (N = 64), 9-ING-41-treated

HCT116 cells (N = 85, P = 9.0 × 10−10), aspirin-treated HCT116

cells (N = 130, P = 9.0 × 10−23), and celecoxib-treated HCT116 cells

(N = 75, P = 5.79 × 10−35); control L3.6pl cells (N = 150), and

9-ING-41-treated L3.6pl cells (N = 163, P = 1.6 × 10−19); control

M9K cells (N = 191), and 9-ING-41-treated M9K cells (N = 224,

P = 1.1×10−27); control MDA-MB-231 cells (N = 89), celecoxib-treated

MDA-MB-231 cells (N = 86, P = 5.6 × 10−4), and digoxin-treated

MDA-MB-231 cells (N = 83, P = 1.2 × 10−10); control MES-SA cells

(N = 314), digoxin-treated MES-SA cells (N = 342, P = 1.7 × 10−5),

and celecoxib-treated MES-SA cells (N = 275, P = 1.5 × 10−29);

control MES-SA.MX2 cells (N = 227), digoxin-treated MES-SA.MX2
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cells (N = 252, P = 1.3 × 10−30), and celecoxib-treated MES-SA cells

(N = 216, P = 8.8 × 10−55); control OVCAR-8 cells (N = 65), and

9-ING-41-treated OVCAR-8 cells (N = 82, P = 4.2×10−7). Significance

was determined using Student’s t-test with unpaired, unequal variance

on the average nuclear D of the treated group against the control group

within each cell line (∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05). 248

3.17 Inhibition of cancer cells by chemotherapy increases upon addition

of “strong” CPTs. To examine the relationship between cell death

and initial chromatin packing scaling experimentally, we focused on

three complementary methods for assessing cell survival – cell coverage

analysis using transmission microscopy, which provided information on

total population viability, automated cell counting paired with dead

and apoptotic cell stains, and flow cytometry measurement of live cell

caspase 3/7 staining, which captured the relative induction of apoptosis.

Altogether, these measures provided quantifiable information on cell

inhibition as well as percentage viability for each population. Mild

CPTs, which cause a relatively smaller decrease in D (valproic acid

and aspirin) are less effective at improving chemotherapeutic efficacy

than “strong” CPTs (celecoxib and digoxin). Error bars are standard

error. Significance was determined using Student’s t-test with unpaired,

unequal variance on the inhibition of the co-treated group against

the chemotherapy treated group within each cell line (∗∗∗P < 0.001,

∗∗P < 0.01, ∗P < 0.05). 249
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4.1 Description of phosphate loop system. (A) Representation of an

end-grafted planar layer of loops, where each monomer has the chemical

properties of the phosphate molecule of DNA. Phosphate loops are

composed of 100 monomers. Our system explicitly contains the most

prevalent intracellular or intranuclear ions, including Na+, K+, Mg2+,

and Cl− as well as water, OH− and H+ to account for charge regulation

effects of ions and acid-base equilibrium. We consider both (B) dilute

and (C) denser systems that are more relevant to physiological DNA

concentrations in the nucleus. The bulk density of the system is

determined by the grafting density σ, which controls spacing between

the graft-points of the loops. Note (B) & (C) are example conformations

and a large range of conformations are considered for MT calculations. 257

4.2 Description of chromatin-like system for (A) single nucleosomes and (B)

8-mer nucleosome arrays. Our chromatin system also explicitly contains

the most prevalent intracellular ions, including Na+, K+, and Cl− as

well as water, OH− and H+ to account for charge regulation effects

of ions and acid-base equilibrium. (A) Rendering of single, tailless

nucleosome that is coarse-grained to the molecular level from the human

1KX5 crystal structure [61]. Elementary units of histones include basic,

acidic, and neutral amino acids and basic units of DNA are represented

by the 3SPN model [88], where each nucleotide is represented by one

sugar, one phosphate, and one nucleobase. (B) Rendering of an example

conformation for the 8-mer nucleosome chain system composed of 8
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nucleosomes connected by linker DNA. The density of this system is

controlled by the box size, which is an input into the MT calculations. 258

4.3 The influence of monovalent cations on structure and charge of dilute

phosphate loop system depends on ion binding strength. The influence

of increasing Na+ concentration on (A) average height ⟨h⟩ in nm and (B)

average fraction of charged phosphates, fP−, is dependent on strength

of ion binding ∆G

d (PNa) for dilute systems of σ = 0.0002nm−2,

physiological bulk pH = 7.4 and no K+ or Mg2+. Physiological

monovalent salt concentration of 150mM is denoted by the dotted grey

line. 270

4.4 Ionic atmosphere depends on Na+ binding strength and concentration.

(A) For bulk [Na+] = 10mM , fraction of excess ions contributed by free

versus bound ions to total normalized excess ions, βNa+ . Here, increasing

ion binding G

d (PNa) results in increasing Na+ ion condensation and

decreasing free ions undergoing ion confinement. The total ion cloud

encompassing the phosphate loop system remains the same. (B) βNa+

is more sensitive to increasing Na+ concentration for lower G

d (PNa).

Physiological monovalent salt concentration of 150mM is denoted by

the dotted grey line. (C) Fraction of phosphates that are bound to Na+

fPNa and bound to K+ fPK changes as K+ concentration increases for

G

d (PNa) = G


d (PK) = 3 kBT and fixed bulk [Na+] = 50mM . fPK

surpasses fPNa around bulk [K+] = 50mM , which is equal to bulk
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[Na+] in this system. Inset Fraction of phosphates that are negatively

charged fP− decreases with increasing bulk [K+]. 272

4.5 Effects of monovalent salt on average phosphate loop height and charge

depends on bulk density. The effect of K+ concentration on (A) the

average height ⟨h⟩ in nm and (B) the average charged fraction of

phosphates ⟨fP−⟩ of the phosphate loop layer varies depending on

grafting density σ, which determines the bulk density. Higher σ has

a larger height and a lower charged fraction of phosphates that are

both less sensitive to changes in monovalent cations. Physiological

intracellular [K+] = 150mM is denoted by the grey dotted line. 276

4.6 Bulk density influences phosphate density distribution for monovalent

salt conditions. (A-B) 3D isosurface plot of DNA-phosphate volume

fraction, ⟨ϕDNA−P ⟩ for a phosphate loop system with (A) σ = 0.05nm−2

and (B) σ = 0.10nm−2. Loop centers are indicated by yellow regions

with higher volume fractions of DNA-phosphates. Resolution is 0.65nm

x 0.65nm x 0.65nm.(C&D) Average distribution of phosphate volume

fraction in the z-direction up to z = 5nm for (A) σ = 0.05nm−2 and

(B) σ = 0.10nm−2. Lines represent the average over the entire system

(Average; Blue Line), the average over the centers of all 16 graft points

(Loop Center; Orange Line), and the average over “between loop”

regions that are equidistant from graft points (Between Loops; Purple

Line). 278
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4.7 Bulk density influences electrostatic potential for monovalent salt

conditions. 3D isosurface plot of electrostatic potential ψ in units of

mV , for a 4x4 phosphate loop system with (A) σ = 0.05nm−2 and

(B) σ = 0.10nm−2. Loop centers are dark purple regions with lower

electrostatic potential due to the negative charges of DNA-phosphates.

Resolution is 0.65nm x 0.65nm x 0.65nm. (C&D) Average distribution

of electrostatic potential in the z direction up to z = 5nm for (A)

σ = 0.05nm−2 and (B) σ = 0.10nm−2. Lines represent the average over

the entire system (Average; Blue Line), the average over the centers of

all 16 graft points (Loop Center; Orange Line), and the average over

“between loop” regions that are equidistant from graft points (Between

Loops; Purple Line). At large enough values of z, electrostatic potential

will reach ≈ 0mV . 280

4.8 Bulk density influences local pH under monovalent salt conditions.

3D isosurface plot of local pH(−→r ) = −log10[H+](−→r ), for a 4x4 loop

system with (A) σ = 0.05nm−2 and (B) σ = 0.10nm−2. Loop centers

are dark purple regions with lower local pH resulting from a higher

local density of H+ attracted by the negative phosphate charges.

Resolution is 0.65nm x 0.65nm x 0.65nm. (C&D) Average distribution

of electrostatic potential in the z direction up to z = 5nm for (A)

σ = 0.05nm−2 and (B) σ = 0.10nm−2. Lines represent the average over

the entire system (Average; Blue Line), the average over the centers of

all 16 graft points (Loop Center; Orange Line), and the average over
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“between loop” regions that are equidistant from graft points (Between

Loops; Purple Line). At large enough values of z, pH will reach bulk

levels of pH = 7.4. 283

4.9 Effects of 1:1 Mg2+ binding on phosphate loop system under

dilute conditions. All calculations are performed for bulk pH=7.4,

[Na+] = 25mM , [Mg2+] = 2.5mM , σ = 0.0002nm−2 (i.e., dilute

conditions). (A) Normalized excess ions, βi+ , for Na
+ and Mg2+ versus

∆G

d (PMg+). (B) Average height of loop layer (in nm) versus bulk

[Mg2+] for varying ∆G

d (PMg+). Shaded grey region extends from

0.5mM , the estimated intracellular freeMg2+ concentration, to 10mM ,

the estimated total intracellular [Mg2+] [244, 106]. (C) Average fraction

of phosphates with a negative charge (P−), in a protonated state (PH),

bound to 1 Mg2+ cation (PMg+), or bound to 1 Na+ cation (PNa) for

∆G

d (PMg+) = 6 kBT and varying bulk [Mg2+]. 286

4.10 Ion bridging has a large influence on structure and charge of

dense phosphate loop systems. All calculations were performed for

higher bulk density (σ = 0.10nm−2), bulk pH = 7.4, physiological

monovalent cations (bulk [K+] = 140mM , bulk [Na+] = 10mM),

∆G

d (PNa) = G


d (PK) = 3 kBT , and ∆G

d (PMg+) = 6 kBT . (A)

Average height (in nm) of phosphate loop layer for varying bulk

[Mg2+]. Each colored line represents different ion bridging free energies,

∆G

d (P2Mg). Higher ion bridging results in a stronger loop collapse for

lower bulk [Mg2+]. Shaded region represents physiologically relevant
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intracellular concentrations of free Mg2+. (B) Normalized excess

Mg2+ cations split into total, βMg2+ , 1:1 Mg2+-phosphate pair, 2:1

Mg2+-phosphate pair, and free Mg2+ for varying ∆G

d (P2Mg). (C)

Fraction of phosphates with a negative charge (P−), bound to Na+

(PNa), bound to K+ (PK), bound in a 1:1 Mg2+-phosphate pair,

or Mg2+ forming an ion bridge between two phosphates (P2Mg) for

∆G

d (P2Mg) = 14 kBT . (D-E) Electrostatic potential, ψ, in units of

mV for (D) lower, 0.1mM and (E) upper, 10mM , bounds of free Mg2+

with physiological ion bridging, ∆G

d (P2Mg) = 14 kBT . 291

4.11 Monovalent electrolyte environment influences charge and excess ions in

distinct ways for yeast versus human nucleosomes. All calculations were

performed for bulk pH = 7.4 and bulk [K+] = [Mg2+] = 0mM . (A)

Rendering of single nucleosome in solution. Na+ counterions shield the

negative electrostatic potential of the nucleosome by either binding and

changing the charged state of the DNA-phosphates or being localized in

close proximity to the nucleosome in the free state via ion confinement.

(B) Comparing total nucleosome charge versus [Na+] for human (1KX5)

and yeast (1ID3) nucleosomes. In general, yeast nucleosomes carry a

more negative charge than human nucleosomes. (C&D) Total excess

ions (βNa+), fraction of bound excess Na+, and fraction of free Na+

versus bulk [Na+] for (C) human and (D) yeast nucleosomes. 296

4.12 Influence of bulk pH and ion condensation on the charge of chromatin

systems. All calculations were performed for [K+] = 140mM ,
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[Na+] = 10mM , and [Mg2+] = 0mM . (A) The three-dimensional

distribution of electrostatic potential of the single nucleosome system

for bulk pH = 7.4. Regions with more negative electrostatic potential,

occupied by negatively charged phosphates and acidic amino acids,

are in pink and regions with more positive electrostatic potential,

occupied by basic amino acids, are in green. (B) Charge per nucleosome

(Qchr(e)/#nuc) versus bulk pH for single nucleosome and 8-mer

nucleosome chain systems with and without ion condensation to

DNA-phosphates. Range of bulk pH encompasses approximately ±1.0

from physiological pH. 298

4.13 Influence of monovalent electrolyte conditions and bulk density on

charged state and of 8-mer nucleosome arrays. All calculations were

performed for physiological bulk pH = 7.4 and bulk [Na+] = [Mg2+] =

0mM . (A) Calculations were performed for lower density (3 µM) and

higher density (19 µM) systems where concentration was determined by

the number of chains within a given box size. (B&C) Influence of K+

on charged state and ion cloud of 8-mer system. (B) Average charge

per nucleosome and (C) total excess K+, βK+ , versus bulk [K+] for

lower density (Blue) and higher density (Orange) systems. Physiological

monovalent cation concentration ∼ 150mM is denoted by grey dotted

line. 300

4.14 Influence of monovalent electrolyte conditions and bulk density on

structure of 8-mer nucleosome arrays. Calculations were performed
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for lower density (3 µM) and higher density (19 µM) systems where

concentration was determined by the number of chains within a

given box size. All calculations were performed for physiological bulk

pH = 7.4 and bulk [Na+] = [Mg2+] = 0mM . (A) Rendering of example

conformation for 8-mer nucleosome array system with bond angle and

nucleosome spacing explicitly denoted. (B-D) Influence of bulk [K+]

on chromatin structure depends on bulk system density (Blue: lower

bulk density, Orange: higher bulk density). (B) Radius of gyration

(in nm),
√

⟨R2
g⟩, representing the spread of the chromatin chain, (C)

average nucleosome spacing (in nm) determined by averaging pairwise

distance between neighboring nucleosomes (as in A), and (D) bond

angle (in degrees) determined by three neighboring nucleosomes (as in

A). For (B-D) physiological monovalent cation concentration ∼ 150mM

is denoted by grey dotted line. 304

4.15 Biased sampling for chain generation of coarse-grained DNA-phosphate

loops. (A) VMD renderings of examples of Collapsed (C) and Extended

(E) conformations from GROMACS MD simulations performed with a

bias potential. (B-C) Bias potential Vbias in units of kJ/mol versus z (in

nm). This is a two-well potential that biases the MD trajectory towards

both more collapsed (C) and more extended (E) states to increase

the conformational space of the loops. (D-E) Distribution of (D) the

maximum z value (in nm) and (E) height (in nm) for all conformations

in all 8 production runs. Here, height is calculated as 2⟨z⟩. 316
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4.16 Conformations for 8 nucleosome chromatin-like system were generated

by first performing 1CPN MD simulations [159] and then re-introducing

molecular detail. Elementary units of DNA are sugars, phosphates, and

nucleobases, as represented by the 3SPN model of DNA [88]. Elementary

units of histones are amino acid residues where coarse-graining was

performed using the AICG method [165]. A total of ∼125,000 such

conformations were input into the chromatin-level MT of 8-mer chains. 319

4.17 Effect of monovalent cations for dense phosphate loop systems

depends on ion binding strength for lower (σ = 0.05nm−2) and higher

(σ = 0.10nm−2) bulk densities under non-dilute conditions. Compared

to dilute systems, 1D and 3D calculations are more comparable for the

(A&B) height of loop system and (C&D) average charged fraction of

phosphates. 320

4.18 Indices for average z analysis: domain center versus between loop

regions for (A) σ = 0.05nm−2 and (B) σ = 0.10nm−2. “Loop center”

regions are represented by orange X’s and “between loop” regions are

represented by purple dots and are equidistant from loop centers on the

planar lattice. 321

4.19 Effects of random compared to homogeneous grafting of phosphate

loops. (A-B) 3D isosurface plot of DNA-phosphate volume fraction,

ϕDNA−P for a phosphate loop system with (A) regular and (B) random

grafting patterns for higher bulk density (σ = 0.10nm−2), bulk

[K+] = 150mM , bulk [Na+] = [Mg2+] = 0mM and physiological bulk
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pH = 7.4. Random grafting is achieved by shifting each homogeneously

grafted loop by a random value generated from a random seed. Loop

center are indicated by regions with higher phosphate volume fractions.

(C) Height and (D) average charged fraction of phosphates have a

similar dependence on changes in [K+] for homogeneously and randomly

grafted systems indicating that, although there are differences between

the two systems in the xy plane, their average properties are very

similar. 322

4.20 Effects of 2:1 Mg2+ binding on charge regulation of 1:1 Mg2+ binding

in dilute systems for bulk pH = 7.4, bulk [Na+] = 25mM , bulk

[Mg2+] = 2.5mM , bulk [K+] = 0mM , and dilute bulk density

(σ = 0.0002nm−2). (A) Normalized excess ions, βi+ , for Na
+ and

Mg2+ versus ∆G

d (PMg+) for ∆G


d (P2Mg) = 11 kBT (higher ion

bridging). (B-C) Fraction of each chemical state depends on 1:1 Mg2+

binding coefficient ∆G

d (PMg+) for (B) ∆G


d (P2Mg) = 7 kBT (lower

ion bridging) and (C) ∆G

d (P2Mg) = 1 kBT (higher ion bridging). 323

4.21 Influence of ion bridging coefficient on charged fraction for higher bulk

density (σ = 0.10nm−2), bulk pH = 7.4, and physiological monovalent

cations (bulk [K+] = 140mM , bulk [Na+] = 10mM) corresponding

to Fig. 4.10A. Each line represents different ion bridging coefficients,

∆G

d (P2Mg). 324

4.22 Effects of system density on charge regulation of Mg2+ via ion bridging.

All calculations performed for higher bulk density (σ = 0.10nm−2), bulk
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pH = 7.4, and physiological monovalent cations (bulk [K+] = 140mM ,

bulk [Na+] = 10mM). (A) Average height (in nm) versus [Mg2+]

for lower (σ = 0.05nm−2) compared to higher σ = 0.10nm−2 grafting

densities and physiological ion bridging ∆G

d (P2Mg) = 14 kBT . (B)

Fraction of phosphates with a negative charge (P−), bound to Na+

(PNa), bound to K+ (PK), bound in 1:1 fashion to Mg2+ cation,

or Mg2+ forming an ion bridge between two phosphates (P2Mg)

for ∆G

d (P2Mg) = 14 kBT and lower bulk density (σ = 0.05nm−2)

compared to Fig. 4.10C. 325

4.23 3D distribution of DNA-phosphate density and local pH for lower and

higher bounds of physiological Mg2+. All calculations performed for

higher bulk density (σ = 0.10nm−2), bulk pH = 7.4, and physiological

monovalent cations (bulk [K+] = 140mM , bulk [Na+] = 10mM),

and physiological ion bridging ∆G

d (P2Mg) = 14 kBT . (A&B)

Distribution of phosphate volume fraction, ϕDNA−P for (A) lower

bulk [Mg2+] = 0.1mM and (B) higher bulk [Mg2+] = 10mM . As

bulk [Mg2+] increases, the phosphate density distribution becomes

compacted and more localized closer to the planar surface (i.e., towards

smaller z values). (C&D) Local pH distribution for (C) lower bulk

[Mg2+] = 0.1mM and (D) higher bulk [Mg2+] = 10mM . As [Mg2+]

increases, pH becomes more homogenous and closer to bulk pH values

(i.e. lower local [H+]). 326
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4.24 Dependence of phosphate loop structure and charge on bulk pH

compared to bulk [Mg2+]. (A) Average height (in nm) and (B) average

charged fraction of phosphates for bulk pH ranging from 1 to 10 with

varying bulk [Mg2+]. Although these properties are sensitive to bulk

pH at very low pH, they remain stable above pH ≈ 2. 327

4.25 Excess ionic environment of dilute phosphate loop system under

monovalent cation conditions for dilute bulk density (σ = 0.0002nm−2),

bulk [K+] = [Mg2+] = 0mM and bulk pH = 7.4. (A) Representation of

dilute phosphate loop system in a solvent with Na+ cations that shield

negative phosphate charges in both the free and the bound state. (B)

Total excess ions (βNa+), fraction of bound excess Na+, and fraction of

free Na+ for phosphate loop system. 327

5.1 Summary of thesis work to determine underlying principles of chromatin

structure and function. Chapter 2 identifies the existence of chromatin

PDs and that statistical chromatin organization can be described by

the SR-EV model of chromatin. (Left) ChromSTEM tomogram of

chromatin mass density distribution with PD centers marked with

crosses. (Right) SR-EV-like rendering of chromatin PDs (red, green,

blue) each with distinct statistical packing properties separated by low

density chromatin (in grey) representing the SR-EV backbone. Chapter

3 determines that the initial chromatin packing state of cells determines

their ability to survive cytotoxic stressors. Specifically, high-D cancer

cells are more likely to upregulate critical stress response genes upon
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exposure to chemotherapy, allowing them to survive chemotherapeutic

stress. Chapter 4 characterizes the effects of the physicochemical

environment on DNA-like and chromatin-like systems. (Left) The

ability of divalent Mg2+ (green cations) to form ion bridges between two

phosphates allows for increased charge neutralization and compaction

of these loop systems. These effects are dependent on average system

density, determined by grafting density σ. (Right) The bulk monovalent

electrolyte environment, pH, and system density influence the charge

and structural parameters, including bond angle, nucleosome spacing,

and radius of gyration, of chromatin. 331



63

CHAPTER 1

Introduction
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1.1. An Introduction to Chromatin Structure and Function

Figure 1.1. Chromatin structure relates to function at multiple length scales
from the genome (Chapter 1.1.1), to the epigenome (Chapter 1.1.3), to
higher-order chromatin structures (Chapter 1.1.4). Adapted from [120, 70].

1.1.1. DNA as the Heritable Material

The discovery of DNA as a heritable material spanned an entire century. As the “Father

of Genetics”, Gregor Mendel discovered fundamental laws of inheritance, now referred

to as Mendelian inheritance, through experiments performed on pea plants in the 1850s

and 1860s. In 1869, Friedrich Miescher was the first to isolate DNA, which he termed

“nuclein”, from lymphoid white blood cells. In 1881, Albrecht Kossel identified the four

types of nucleic acids that constitute the building blocks of DNA: adenine (A), thymine

(T), cytosine (C), and guanine (G). Throughout the late 19th and early 20th centuries,

prominent scientists such as Walther Flemming, Oswald Avery, Barbara McClintock, and
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Erwin Chargaff discovered key principles that proved DNA as the material of genetic

inheritance and that this genetic code was passed onto daughter cells during the process

of mitosis, or cellular division. Finally, in the 1950s, James Watson, Francis Crick, and

Rosalind Franklin first visualized the three-dimensional structure of DNA using X-ray

crystallography and determined that DNA is a double-helix, where nucleotides where

stabilized by a sugar-phosphate backbone [293]. The importance of DNA was so solidified

in the collective mentality of scientists that, in the 1990s and early 2000s an international

research consortium, called the Human Genome Project, was formed to identify, map,

and sequence all genes within the human genome [154].

1.1.2. A General Overview of Disordered Chromatin Structure and Function

However, unlike the bacterial genome, the eukaryotic genome does not simply exist as

naked DNA in the nucleus. In human cells, 2 meters of DNA is packed into an approx-

imately 6 µm nucleus as chromatin. Unlike proteins, chromatin is a dynamic, fluid-like

material without well-defined primary, secondary, and tertiary structures [180, 308, 139].

In 1997, Karolin Luger discovered the crystal structure of the nucleosome, the fundamen-

tal unit of chromatin [174]. To form the nucleosome, 147 base pairs (bp) of DNA wrap

around a core histone octamer composed of dimers of H2A, H2B, H3, and H4 proteins,

each with their own intrinsically disordered histone tails [174]. The core particle adopts a

squat cylindrical shape, with a diameter and a height of approximately 11 nm and 5.5 nm,

respectively [210]. Nucleosomes are connected by linker DNA, which altogether form the

10 nm chromatin fiber [149]. Central to the textbook view of chromatin packing is that

the 10 nm ‘beads-on-a-string’ fiber assembles into the 30 nm fiber, which further folds
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into 120 nm chromonema that organize into 300 to 700 nm chromatids, and ultimately,

mitotic chromosomes [26, 25, 81, 27]. In interphase nuclei, chromosomes themselves are

spatially partitioned into chromosome territories [54].

However, the key tenant of this view, the 30 nm fiber, has been challenged by an

abundance of recent evidence. Various studies using cryo-electron microscopy, small-angle

X-ray scattering, electron spectroscopy imaging, and super-resolution (SR) microscopies

failed to observe 30 nm fibers in both interphase chromatin and mitotic chromosomes

in numerous cell lines [75, 131, 91, 240, 212]. For example, Ricci et al. observed the

existence of heterogeneous nucleosome ‘clutches’ at the level of the primary fiber, the

size of which depends on the local epigenetic state of chromatin and the cell type [240].

Recently, a combination of DNA-specific staining (ChromEM) and multi-tilt electron

tomography (ChromEMT) observed in situ that the chromatin folds into disordered fibers

that have diameters between 5 to 24 nm during both interphase and mitosis (Fig. 1.2)

[212]. Additionally, ChromEMT demonstrated that the nucleus is highly crowded, with

chromatin volume concentrations (CVC) ranging from 12-52% in interphase cells and >

40% in mitotic cells [212]. Altogether, these studies suggest that the interphase chromatin

and mitotic chromosome organization is constructed by 10 nm fibers without folding

into ordered 30 nm fibers [237, 179]. In this new paradigm, the 10 nm fibers condense

into highly disordered and interdigitated states, which may be constantly moving and

rearranging at the local level [180, 111]. Label-free Partial Wave Spectroscopic (PWS)

microscopy has also demonstrated large mass density heterogeneities between length-

scales of 20-300 nm throughout the entire nucleus [3], further proving that chromatin

folding is disordered and heterogeneous.
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In general, the chromatin organization may influence critical cellular processes, ranging

from gene transcription to DNA replication and repair [52, 146, 233]. This thesis will

focus specifically on the inter-relationship between chromatin structure and transcription.

Transcription of most protein-coding genes is enacted by RNA polymerase II (RNA Pol

II), which binds to the promoter region of the gene, along with initiating factors such as

transcription factors (TFs), to form a pre-initiation complex [52]. Promoters themselves

are activated by TFs, which recruit proteins that modulate promoter accessibility, for

example by creating nucleosome-depleted regions to increase transcription of genes in

that area [85, 280]. Enhancers are genomic elements located far away from promoters on

the linear DNA sequence that can influence the activation of promoters when the enhancer

is in close 3D proximity to its cognate promoter [52]. Thus, transcription processes can

remodel local chromatin organization, but the four-dimensional structure of chromatin

can also influence enhancer-promoter contacts and facilitate gene expression.

1.1.3. The Epigenome: Heredity on Top of the Genome

Chromatin writers and erasers chemically modify the epigenome while chromatin readers

interpret the epigenetic code and reorganize the local chromatin structure. The term

epigenetics refers to modifications outside of the DNA sequence itself that contribute

to a heritable phenotype. These include DNA methylation, covalent modifications to

histone tails, including acetylation, methylation, ubiquitylation, phosphorylation, and

sumoylation, as well as RNA such as long noncoding RNAs (lncRNAs) and micro RNAs

(miRNAs), all of which are fully detailed in several key reviews such as [306, 14].
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DNAmethylation occurs primarily at CpG sites, DNA regions with sequential stretches

of CG repeats, and approximately 70-80% of CpG sites in the mammalian genome have

methylated DNA [103, 162]. Functions of DNA methylation include gene repression when

promoters and enhancers are heavily methylated [294], gene activation when gene bod-

ies are methylated [305], repression of transposons, genomic imprinting [80], and specific

DNA methylation patterns are even associated with aging [117]. Chromatin writers in-

clude DNMT (DNA methyltransferase) proteins, which maintain DNA methylation, and

chromatin erasers include TET proteins, which remove DNA methylation [103]. Chro-

matin readers include methyl-CpG-binding domain (MBD) proteins, which interact with

nucleosome remodelling and histone deacetylase complexes [199].

Histone tail modifications are generally characterized into those associated with tran-

scriptionally active euchromatin and others which are associated with transcriptionally

inactive heterochromatin. Lysine acetylation (e.g., H4K16ac, H3K27ac) neutralizes the

positive charge of histone tail lysines, which disrupts electrostatic interactions between his-

tones and DNA [14]. Chromatin writers include histone acetyltransferases (HATs) such as

the CBP/p300 family and erasers include histone deacetylases (HDACs) [14, 306]. Chro-

matin readers of acetylation marks have bromodomains, including the ATP-dependent

SWI/SNF nucleosome remodelling complexes which increase DNA accessibility for active

transcription [112]. Methylation of lysine and arginine histone tail residues can be asso-

ciated with either euchromatin or heterochromatin, depending on the exact mark itself.

H3K9 di-, and tri-methylation are associated with constitutive heterochromatin, defined

by stable repression in key structural regions such as centromeres and telomeres [14].
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The SUV39H1 histone lysine methyltransferase chromatin reader enacts H3K9 methyla-

tion and heterochromatin protein 1 (HP1) reads H3K9 methylation and oligomerizes in

regions with high H3K9me3 density to repress transcription [238, 16]. H3K27 di- and

tri-methylation are associated with facultative heterochromatin, which is associated with

developmental transcriptional repression and is known as the more “plastic” of the two

heterochromatin types. Polycomb Repressive Complexes (PRCs) are both readers and

writers of H3K27 methylation. The EZH2 component of PRC2 catalyzes H3K27 di- and

tri-methylation and PRC1 mediates transcriptional repression via histone ubiquitylation

and chromatin compaction [43, 292]. Histone tail marks such as H3K4 and H3K36 methy-

lation are associated with active transcription [258, 15]. Chromatin erasers of methylation

include lysine-specific demethylases and JMJD2 which specifically demethylates trimethy-

lated lysines [14].

Overall, the balance of the chemical modifications comprising the epigenome con-

tributes to the a spectrum of states ranging from open chromatin regions with highly

active transcription to compacted regions that are transcriptionally repressed. One no-

table phenomenon which the epigenome may contribute to is phase separation, a physical

process that creates two distinct phases from a homogeneous mixture. For example, first

discovered by the Narliker group, oligomerization of HP1 proteins associated with con-

stitutive heterochromatin (H3K9 methylation) have been shown to contribute to phase-

separated condensates [155, 253]. Additionally, super-enhancers, regions of the mam-

malian genome that contain multiple enhancers and are associated with large swaths of
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H3K27 acetylation, are thought to form phase-separated condensates of active transcrip-

tion by cooperatively recruiting transcriptional regulators such as the Mediator complex

[250, 116].

By definition, the epigenome contributes to heritability of cellular phenotype. A hier-

archy of gene expression patterns are faithfully reestablished after mitosis to ensure the

maintenance of cell identity. Transcriptional memory propagation across generations may

occur through mechanisms such as mitotic bookmarking [216]. Specifically, bookmark-

ing TFs remain bound to condensed chromosomes and allow gene expression to occur

throughout mitosis, potentially helping to reestablish transcription patterns following cell

division [216, 215]. In addition, both active and repressive histone modifications are pre-

served throughout the cell cycle, although genomic regions with larger, more repressive

heterochromatin marks are more stably inherited [215, 58].

In addition, the epigenome is highly responsive to external stimulation. Changes in

extracellular pH regulate histone acetylation levels that, in turn, help to buffer intracellu-

lar pH [186]. Cells exposed to mechanical stress increase cytoplasmic-to-nuclear shuttling

of histone deacetylases, which lowers histone acetylation levels and increases chromatin

compaction [2]. The epigenetic inheritance of trauma has huge societal implications, in-

cluding the inter-generational propagation of internalized racism. Differential epigenetic

profiles, including DNA methylation of promoters related to stress-response genes, have

been discovered in the progeny of children diagnosed with post-traumatic stress disorder

from the Holocaust as well as mouse models of childhood trauma [302, 87].
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1.1.4. Higher-Order Chromatin Structure

Several recent developments, allowing for both high-throughput sequencing and SR imag-

ing, have helped to uncover higher-order structural elements of chromatin above the level

of the epigenome.

High-throughput chromosome conformation capture (Hi-C), the modern version of 3C,

4C, and 5C approaches, measures the two-dimensional chromatin connectivity throughout

the entire genome [168]. As described in the seminal 2009 paper by Lieberman-Aiden and

colleagues, the process of Hi-C involves [168]:

(1) Crosslinking DNA that is in close 3D proximity,

(2) Cutting the genome with restriction enzymes,

(3) Biotinylating the ends of both DNA fragments,

(4) Ligating the ends of fragments together,

(5) Purifying and shearing all DNA,

(6) Pulling down biotinylated fragments, and

(7) Using paired-end sequencing to determine genomic regions that are in direct

contact.

Alignment of the sequenced reads to your genome of interest results in a 2D contact

map of all chromatin-chromatin contacts within the genome. Several sequencing-based

techniques, most notably Chromatin ImmunoPrecipitation Sequencing (ChIP-seq), allow

for characterization of 1D epigenetic marks throughout the genome, which can be co-

localized with Hi-C maps to determine how the epigenome modulates chromatin structure

[128]. In situ Hi-C improved the resolution of Hi-C by almost an order of magnitude,

from just under 1 megabase pair (Mbp) to 10’s of kilobase pairs (kbp) [232]. Micro-C
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Figure 1.2. Summary of techniques to interrogate chromatin structure. Re-
cent advances in high-throughput sequencing, super-resolution (SR) optical
and electron microscopies, and computational modeling have uncovered sev-
eral key tenants underlying supranucleosomal chromatin structure. (Green)
Topologically Associating Domains (TADs) are key structural features that
are distinctly visible on 2D High-throughput Chromosome Conformation
Capture (Hi-C) contact maps [68, 262, 232]. (Orange) SR optical mi-
croscopy techniques, which label TADs and observe their three-dimensional
structure, observed that heterochromatic TADs form compacted nanocom-
partments [275]. DNA-specific electron microscopy techniques show that
the primary chromatin fiber is disordered [212]. (Purple) Computational
simulations can be employed to elucidate principle mechanisms underlying
chromatin structure. Shown are mesoscale simulations from the Schlick
group investigating how linker histone H1, which is not part of the canon-
ical nucleosome core particle, and divalent cations both influence inter-
nucleosome interactions [104].

can interrogate chromatin-chromatin contacts at the single nucleosome (∼100s bp) level,

but is less sensitive to long-range contacts and more costly than traditional Hi-C methods

[119].
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Several key structural elements are observable from Hi-C contact maps. Topologically

associating domains (TADs) are regions of genomic size ∼100s kbp with a high frequen-

cies of self-self chromatin contacts (Fig. 1.2) [68, 262, 232, 274]. TADs are thought to

form through dynamic biophysical processes, including loop extrusion [251]. During loop

extrusion, cohesin actively extrudes chromatin and CCCTC-binding factor (CTCF) pro-

teins are bound to specific genomic regions and act as a stopping signal for the cohesin

proteins [90]. The existence of TAD cliques, clusters of TADs which interact frequently

between TADs, have also been demonstrated, and such cliques are enriched in heterochro-

matin marks [170]. A and B compartments are larger than TADs (on the order of several

Mbp) and are determined from eigenvector decomposition of the 2D Hi-C contact ma-

trix to categorize preferential associations within versus between compartments [168]. ‘A’

compartments are associated with transcriptionally active euchromatic marks and ‘B’

compartments are associated with transcriptionally inactive heterochromatic marks [168].

There is an inherent competition between biophysical processes driving TAD formation

versus compartmentalization, as depletion of cohesin proteins involved in loop extrusion

strengthens compartmentalization [206, 208]. Topological constraints are enacted by ar-

chitectural proteins such as cohesin to form TADs. Chromatin can also be physically teth-

ered to the nuclear lamina by lamin proteins to form lamin associated domains (LADs)

[118]. LADs are associated with the transcriptionally inactive Hi-C B compartments and

are enriched in constitutive heterochromatic marks (H3K9me2/3) [118]. As Hi-C de-

tects chromatin contacts from millions of nuclei, this only provides a population-average

snapshot of higher-order chromatin structures. Notably, single-cell Hi-C methods have

demonstrated the potential existence of TADs in individual nuclei, although a high degree
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of intercellular heterogeneity in TAD distribution has been reported [198, 281]. Despite

the advent of single-cell Hi-C methods, Hi-C itself is still a two-dimensional technique

that detects chromatin organization at one fixed timepoint.

Recently, the development of super-resolution (SR) microscopies, have allowed for

interrogation of chromatin structure down to the level of tens of nanometers. This

resolution is well below the diffraction limit of light, which is around 200-300 nm for

spectra in the visible range. Such microscopies include stochastic optical reconstruction

microscopy (STORM) and photoactivated localization microscopy (PALM). Paired with

labeling methods, fluorescence in situ hybridization-based (FISH-based) labeling methods

such as Oligopaint [24], this allows for the study of 3D chromatin organization of specific

genomic regions. Several types of domains have been observed using such microscopy

techniques, including punctate “chromomeres” in both interphase and mitotic cells and

replication domains with coherent motion [101, 207].

Multiple independent studies have also reported the existence of TAD-like chromatin

domains using SR microscopies [275, 32, 194]. Repressed, heterochromatic TADs form

discrete and compacted nanocompartments, which are interspersed with more loosely

packed transcriptionally active genomic regions (Fig. 1.2) [275, 194]. Employing high-

throughput optical mapping, Finn et al. demonstrated that there is extensive variability

in TAD structures between individual cells, pointing to the hypothesis that TADs may

only be aggregate behaviors observed at the level of cell population [82]. Upon cohesin

removal, domain-like structures remain with similar nanoscale topography, but are ran-

domly localized throughout the genome [32, 194]. Therefore, the specificity, not the

existence, of three-dimensional domains may be determined by biophysical mechanisms
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that maintain population-average TAD structures. Additionally, Gabriele et al. recently

observed the dynamic process of loop extrusion, which contributes to TAD formation, in

live cells [92]. This study revealed that the fully looped states, where cohesins are halted

by CTCF proteins, only occurs approximately 3% of the time, while 92% of the time loops

exist in partially extruded states [92]. Altogether, this points to extensive heterogeneity

in the structure of TADs in individual cells due to highly dynamic processes such as loop

extrusion.

There is a complex, bidirectional link between TADs and transcription. As reviewed

in [286], TADs may influence transcription by: (1) insulating promoters from enhancers

located in neighboring TADs, (2) reducing the search space and increasing the probability

of promoters and enhancers within the same TAD to find each other [161], and (3) TAD

boundaries may act as a barrier to the spreading of euchromatic and heterochromatic epi-

genetic marks. However, disruption of TAD structures by genetic manipulation of CTCF

sites and depletion of loop extrusion-associated proteins do not always have significant

effects on gene expression [296, 261]. A very recent result from Kane et al. points to

the complexity of this regulation by demonstrating that cohesin, not CTCF, is required

for enhancer-promoter activation, but only for enhancers and promoters > 100 kbp apart

on the linear DNA sequence [136]. Conversely, transcription also regulates TADs them-

selves. TAD boundaries are enriched in active genes and these boundaries are weakened

by inhibition of transcription [284]. Additionally, negative supercoiling induced by tran-

scription is a key regulator of loop extrusion and chromatin density distribution within

loops [204]. Overall, TADs seems to have functional importance but cannot be thought

of as the unequivocal fundamental unit of transcription.
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1.2. Chromatin and Complex Diseases

Waddington’s landscape, a term proposed by Conrad Waddington in 1957, describes

an epigenetic landscape where ridges and valleys denote paths that a stem cell can take

on its way to differentiation. In general, the epigenome and 4D chromatin structure itself

have been implicated in driving cellular differentiation and lineage commitment [225, 50,

22, 224, 33]. Thus, it comes as no surprise that chromatin processes can be dysregulated

in the disease state, resulting in complex diseases such as cancer, neurological disorders,

and have recently even been implicated in post-traumatic stress disorder [277, 218, 1].

Flavahan et al. posit that all of the “hallmarks of cancer”, a concept introduced by

Hanahan and Weinberg [109, 110], can be explained by aberrations in chromatin and as-

sociated epigenetic mechanisms [84]. Extending the idea of Waddington’s landscape, they

argue that chromatin insults can result in overly permissive, or “plastic”, epigenetic land-

scapes that could allow for transitions to more malignant cell states [84]. In malignancy,

genetic, metabolic, or environmental insults may aberrantly remodel chromatin structure

across a hierarchy of length-scales.

The epigenetic landscape of chromatin is altered in many cancer states. Gain-of-

function mutations of Polycomb repressor EZH2 block differentiation in prostate, lung,

and skin cancers [28, 29, 144]. Global DNA hypomethylation and local promoter/enhancer

hypermethylation are common among multiple cancer types, including Acute Myeloid

Leukemia [145, 135, 185]. However, Acute Lymphoblastic Leukemia exhibits CpG island

hypermethylation and minimal global loss of methylation, indicating the existence of a

non-canonical regulation of methylation in other cancer types [113]. Kretzmer et al.

recently determined that aberrant DNA methylation occurs early on in malignant cell
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state transitions and persists stably, even upon chemotherapy treatment, indicating a

potential role of DNA methylation in disease onset [153].

Nucleosome remodeling and three-dimensional chromatin organization are also altered

in cancer, which can be linked to epigenetic changes. Exome-wide sequencing studies

demonstrate that the ATP-dependent chromatin remodeler, SWI/SNF, is mutated in

> 20% of all cancers, and several of these mutations are oncogenic drivers [133, 12].

The increased activity of TET DNA demethylase, caused by oncometabolites, disrupts

CTCF binding, resulting in insulator dysfunction and oncogene activation in gliomas [83].

A and B compartment switching and mixing are accompanied by compartment-specific

hypomethylation [307, 129].

The chromatin state has also been heavily implicated in cancer progression and chemo-

evasion. Drug-tolerant persisters (DTPs), small subpopulations of cancer cells which tran-

siently commit to a slow-cycling drug-resistant state through non-genetic mechanisms,

can evade chemotherapy through distinct chromatin-mediated pathways [264, 235]. In

addition, clinical studies across multiple cancer types identified alterations in chromatin

packing as predictors of cancer progression [134, 246], and survival time of late-stage can-

cer patients undergoing therapeutic treatments [288]. Although much progress has been

made, understanding how alterations in the 4D chromatin structure contribute to disease

remains an actively investigated question.
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1.3. nanoscale Chromatin Imaging and Analysis (nano-ChIA) Platform

The nano-ChIA platform in the Backman group aims to quantify chromatin organi-

zation at broad spatial and temporal scales and to relate this structure to transcription

(Fig. 1.3) [167]. Because no individual technique can accomplish this feat, it is nec-

essary to develop a multi-modal platform combining complementary techniques. Such

a platform should have high resolution across the entire nucleus with dynamic, live-cell

imaging capabilities and analysis methodologies to link these results to genome connec-

tivity and the localization of critical molecular factors. To meet these requirements, we

have developed the nanoscale chromatin imaging and analysis (nano-ChIA) platform,

which incorporates chromatin scanning transmission electron microscopy (ChromSTEM),

chromatin transmission electron microscopy (ChromTEM), Partial Wave Spectroscopic

(PWS) microscopy, and Stochastic Optical Reconstruction Microscopy (STORM). Each

facet of nano-ChIA interrogates distinct aspects of chromatin architecture as outlined in

Table 1.1. Consolidating these modalities, nano-ChIA is a fully quantitative nanoscale

imaging platform that complements the genomic information provided by chromatin con-

formation capture and other sequencing-based techniques. By bridging high-resolution

imaging of chromatin structure and molecular processes with high-throughput, label-free

analysis of chromatin dynamics in live cells across time scales spanning from minutes

to hours, nano-ChIA has the potential to provide insights into crucial questions in 4D

genomics.
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Figure 1.3. nano-ChIA platform. (A) ChromSTEM HAADF tomography
characterizes the 3D chromatin structure of a lung adenocarcinoma A549
cell (contrast inverted). The inverted image contrast is inversely propor-
tional to the local DNA density. As the electrons encounter a higher density
of DNA along their trajectory, the image contrast appears darker. Individ-
ual nucleosomes and linker DNA are resolved at 2 nm spatial resolution.
Scale bar: 30 nm. (B) ChromTEM imaging of a BJ cell nucleus on a 50
nm resin section prepared by ChromEM staining. Similar to ChromSTEM,
ChromTEM also maps the DNA distribution, but the image contrast follows
Beer’s law. Scale bar: 1 µm. (C) Coregistered PWS and STORM imaging
of chromatin packing scaling (D, red pseudocolor) and active RNA Pol II
(green) of an ovarian carcinoma M248 cell nucleus. Scale bar: 3 µm. (D and
E) Label-free PWS images of live A549 cells, including both (D) one field
of view where chromatin packing variations within nuclei are visible (scale
bar: 20 µm) and (E) a 9x9, stitched together, image to demonstrate the
ability of PWS to visualize chromatin packing structure of cell populations
(scale bar: 100 µm). The pseudocolor represents the chromatin packing
scaling inside the cell nuclei.

1.3.1. ChromSTEM/ChromTEM

At the smallest length scales, the nano-ChIA platform combines DNA-specific labeling

(ChromEM) with high-angle annular dark-field (HAADF) imaging in STEM (Chrom-

STEM)and TEM imaging (ChromTEM). Specifically, ChromSTEM, an adaptation of the

pioneering work demonstrated by Ou et al. [212], is able to reconstruct chromatin ul-

trastructure of a thick nuclear cross section at sub-6-nm resolution (Fig. 1.3A) with the
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Technique Contrast Spatial/
Temporal
Resolution

Field of View/
Throughput

Information

ChromSTEM Chromatin <6 nm;
Fixed
timepoint

2 µm x 2 µm x
300 nm;
Several cells

3D chromatin
density
distribution
and packing
scaling

ChromTEM Chromatin 6-10 nm;
Fixed
timepoint

150 µm x 150
µm x 50 nm;
Tens of cells

2D chromatin
density
distribution
and packing
scaling

STORM Molecular <20 nm;
Fixed
timepoint

10 µm x 10 µm;
Several cells

Spatial
distribution of
macromolecules
of
interest

PWS Senses
statistical
chromatin
properties

Sensitivity:
20 - 300 nm;
∼5s

150 µm x 150
µm;
100s to 1000s of
cells

Chromatin
mass density
variations and
packing scaling

Table 1.1. Descriptions of imaging modalities in nano-ChIA.

potential to image the entire nucleus by serial sectioning [268]. As ChromSTEM is not

high throughput, the platform uses ChromTEM to gain statistical power. By imaging ul-

trathin (∼50 nm) cross sections with a larger field of view, ChromTEM extends the yield

of ChromSTEM from a fraction of a cell nucleus to multiple entire cell nuclei. Although

not a 3D technique, ChromTEM provides faster, pseudo-2D quantification of chromatin

packing structure from the cross sections of the nucleus at 6 to 10 nm lateral resolution

(Fig. 1.3B).

The Click-EM staining procedure was adapted from [212]. Briefly, after fixation,

samples are stained by DRAQ5 and then submerged in 3-5’-diaminobenzidine (DAB)
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Figure 1.4. ChromSTEM tomography reconstruction of chromatin in an
A549 cell. (A-B) The DRAQ5 photo-oxidation process takes 7 min for each
region of interest. Scale bar: 10 µm. (C) The DRAQ5-labeled regions
were more intensely stained than the nearby regions (red squares; the letter
corresponds to the regions in the left panels). Scale bar: 20 µm. (D) STEM
image of a 100 nm thick section of an A549 cell in HAADF mode. Scale
bar: 2 µm. (E) 3D tomography of the A549 chromatin. Scale bar: 120 nm.
(F-G) The fine structure of the chromatin fiber: Nucleosomes (blue arrows
in F), linker DNA (blue arrows in G) Scale bar: 30 nm. (H-I) 3D rendering
of the chromatin organization, the pseudo-color was based on the intensity
of the tomograms. (J) A magnified view of the region labeled by a white
square in I. Pink and green regions represent high and low DNA density
regions, respectively.

solution. After photobleaching, which induces DAB polymerization onto DRAQ5, chro-

matin is stained with the heavy metal osmium tetroxide. DAB polymerization increases

the contrast and specificity of DNA staining compared to other macromolecules. Ethanol

dehydration is performed before resin embedding and sections of varying thicknesses are

prepared using an ultramicrotome and diamond knife. After resin embedding, the labeled
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regions can be identified based on image contrast in bright field optical micrographs: the

photo-oxidized cells appeared significantly darker than the non-photobleached cells (Fig.

1.4A-C). For ChromSTEM, dual-tilt STEM tomography in HAADF mode was performed

for part of the nucleus on a ∼100 nm resin section. Within the same tomogram, there are

large variations in DNA contrast, potentially indicating the coexistence of euchromatic

and heterochromatic regions (red box in Fig. 1.4D). Only interior sections of the nucleus

were analyzed, as images with peripheral chromatin also included signal from the nuclear

envelope that is difficult to segment from the DNA signal. Unlike the near-binary image

contrast from the conventional EM staining and analysis methods [212], ChromSTEM

provides continuous variations of the DNA contrast inside the nucleus. The final tomo-

gram (Fig. 1.4E) has a nominal voxel size of 2.9 nm, with clearly resolved nucleosomes

(Fig. 1.4F) and linker DNA (Fig. 1.4G). A rendering of the 3D volume of the chromatin

is shown in Fig. 1.4H&I.

1.3.2. PWS Microscopy

PWS microscopy is used for for label-free, real-time imaging of statistical chromatin pack-

ing across thousands of cells (Fig. 1.3D&E). PWS directly measures variations in spectral

light interference. Such variations are caused by light scattering due to refractive index

variations from heterogeneities in chromatin density. This interference signal is then

processed to characterize the shape of the auto-correlation function (ACF) of chromatin

density within the coherence length (∼1 µm in depth) in either fixed or live cells. The

mass density ACF determines the chromatin packing scaling (D) in each voxel as detailed

in [74]. Chromatin packing scaling is a statistical property derived from polymer physics
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that characterizes the relationship between the mass of chromatin (M) and the 3D space

the chromatin occupies (r) asM ∝ rD (Fig. 1.5). Although the spatial resolution is ∼250

nm, PWS is sensitive to structural length scales between 20 and 300 nm [46].

The PWS optical instrument is built on a Leica commercial inverted microscope using

a CCD camera coupled to an LCTF to perform hyperspectral imaging. Spectrally resolved

images are collected between 500 and 700 nm with 2 nm steps. Broadband illumination

is provided by an Xcite-120 light-emitting diode lamp. For live-cell measurements, cells

are imaged live and maintained under physiological conditions (5% CO2 and 37◦C) via a

stagetop incubator.

To investigate the molecular functionality relevant to chromatin structure, nano-ChIA

coregisters STORM and PWS. This allows for visualization of chromatin packing struc-

ture with respect to the spatial distribution of functionally important macromolecules,

such as actively elongating RNA Pol II(Fig. 1.3C). All STORM images have an average

localization precision below 20 nm.
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1.4. Computational Modeling of Chromatin and Transcription

1.4.1. A General Overview of Modeling in the Chromatin Space

Computational modeling of biological systems can uncover fundamental mechanisms that

can explain experimentally observable phenomena. As discussed by Moller et al., general

modeling categories can fall into “top-down” or “bottom-up” approaches [196]. Briefly,

“top-down” modeling employs data-driven approaches to integrate data from experimental

methods such as Hi-C, ChIP-seq, and SR microscopies to learn about four-dimensional

chromatin structure. Both Monte Carlo (MC) and Molecular Dynamics (MD) approaches

can be employed. Many data-driven approaches have been developed to obtain three-

dimensional information about the chromatin polymer from 2D contact maps generated

by Hi-C experiments, including how chromatin conformations in individual cells contribute

to structural ensembles at the population level [245, 190, 283, 65, 222]. Computational

methodologies developed by Michele di Pierro are also able to integrate Hi-C data with

epigenetic information from 1D ChIP-seq tracks and 3D super-resolution microscopy data

[65, 205] and are even able to reproduce subdiffusive dynamics and spatially coherent

motion observed by optical experiments [64, 308, 173].

“Bottom-up” modeling encompasses polymer models that are built from the first prin-

ciples of physics to determine fundamental rules underlying chromatin structure and

function. The computational models presented in this thesis work can be categorized

as “bottom-up” models. Such models can be theory-based or simulation-based.
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Theory-based models oftentimes characterize the statistical properties of polymers

using scaling laws. For example, they determine how the number of monomers or, equiv-

alently, the polymer mass for homopolymers, scales with the physical space the polymer

occupies [63]. The scaling laws of a homopolymer chain, where all monomers interact in

the same way, depend on the balance of the free energy of monomer-monomer compared to

monomer-solvent interactions. Under dilute, equilibrium conditions, such homopolymers

are expected to exhibit mass scaling behavior characterized by a length-scale invariant

power-law relationship between the mass (M) and the size of the polymer r: M ∝ rD,

where D is the mass scaling coefficient, or the packing scaling, of the polymer (Fig. 1.5).

For example, the fractal globule model first proposed by Alexander Grosberg in 1988

has a D = 3 [105]. The fractal globule is a collapsed polymer where topological con-

straints result in a hierarchical organization of non-entangled structures. The first Hi-C

studies were compatible with chromatin being organized as a fractal globule [193, 168].

The contact probability scaling is the power-law scaling relationship (s) between contact

probability (P ) and linear genomic distance (N), i.e., P ∝ N−s. Experimental analy-

sis observed s = 1 that was predicted by the fractal globule model. Additionally, the

non-entangled nature of the fractal globule made it an attractive model to explain how

transcription and replication processes were able to access a non-dilute chromatin system.

However, higher-resolution in situ Hi-C demonstrated that contact probability scaling is

actually smaller within TADs and larger for longer-range contacts [251], thus disproving

the fractal globule model as one that fully describes statistical chromatin structure.

Simulation-based models can be sub-categorized into atomistic, mesoscale, and more

course-grained simulations. Atomistic simulations explicitly represent all atoms, and all



86

Figure 1.5. Power-law scaling behavior of homopolymers. The mass scal-
ing, or packing scaling, coefficient determines how the mass of the polymer
(M) or number of monomers (N) scales with the 3D space the polymer
occupies (r). In a good solvent (i.e., monomer-solvent interactions are pre-
ferred), D = 5/3 and the polymer adopts a swollen self-avoiding walk.
When a polymer’s self-interaction and interaction with the encompassing
solvent are equally preferred, as in the case of a random walk, D = 2.
When monomer-monomer interactions are heavily preferred, the polymer
collapses. A special case of a D = 3 collapsed globule is the fractal globule
[193].

pairwise interactions between atoms, in the polymer system. These simulations are highly

detailed, and are therefore highly computationally expensive. This is especially for larger

and denser systems, such as the dynamic chromatin structure in the nucleus. Thus, most

atomistic simulations are performed to understand the fundamental organization and dy-

namics of smaller structures such as the nucleosome [183, 297]. Even with the advent of

supercomputing, which has tremendously increased the computational power available for

simulations, the largest massively parallelized atomistic simulations have been performed

only for the GATA4 gene locus [132]. Many mesoscale models of chromatin structure have
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been developed to increase the length- and time-scales accessible to simulation (Fig. 1.2).

Mesoscale simulations coarse-grain interactions from atomistic-level simulations and thus

reduce the level of detail within the system. For example, the de Pablo group has de-

veloped the three-sites-per-nucleotide (3SPN) model of DNA and subsequent “1-cylinder-

per-nucleosome” (1CPN) model of chromatin with different levels of coarse-graining for

each mesoscale model [88, 159]. Such models were then employed to study, for example,

how changes in the length of linker DNA can alter the free energy landscape of chromatin

structure [159]. The Schlick group’s nucleosome-resolution mesoscale model was recently

combined with SR microscopy experiments to determine direct contributions of structural

changes, such as nucleosome positioning, and chemical changes, such as histone tail acety-

lation, to experimentally observed changes in nucleosome clutch organization throughout

differentiation [227].

At the most coarse-grained scale, chromatin can be represented using a “beads-on-a-

string” approach, where interactions between monomers are treated even more generically.

Such models are important for studying biological processes at larger length-scales, up to

entire nuclei, and time-scales, including across multiple cell divisions. Macpherson et al.

determined how preferential binding of HP1 to H3K9me3 heterochromatin results in phase

separation only for stretches of H3K9me3 marks above a certain length threshold [178].

This model was then extended to explain how constitutive heterochromatin methylation

is reliably maintained over generations (∼days) [252]. Additionally, the mechanistic loop

extrusion model combined with differential interactions between A and B compartments

has been able to explain several key experimentally observable phenomena, including the

effects of loop extrusion-related genetic perturbations on Hi-C maps [90, 206]. This model
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was then employed used to determine the minimal number of interactions necessary to

reproduce conventional nuclear organization. For example, heterochromatin compartmen-

talization and lamin interactions with heterochromatin, but not euchromatin interactions,

are necessary for conventional nuclear organization with heterochromatin at the periphery

and euchromatin in the nuclear interior [77].

However, all simulation-based models discussed in this section require many different

inputs to parameterize interactions. The Self-Returning RandomWalk (SRRW) statistical

model of chromatin structure was first developed by Kai Huang in the Szleifer group

[120]. With just one parameter, the SRRW model was able to faithfully represent and

reconcile several distinct aspects of chromatin structure: a high degree of mass-density

heterogeneity [3, 212], high contact frequency within chromatin domains (i.e., TADs)

[232, 274], and a hierarchical folding structure [281]. This thesis will extend results from

the SRRW study to help uncover fundamental folding mechanisms of chromatin that are

agnostic to specific biophysical mechanisms (see Chapter 2.3).

1.4.2. A Discussion of the Representation of Electrostatics and Charge in

Simulations

DNA is a strong polyelectrolyte due to the chemical behavior of the phosphate in its

sugar-phosphate backbone [35]. When DNA wraps around histones to form nucleosomes,

the basic histone amino acid residues only partially neutralize the negative charge of

DNA-phosphates [95]. Due to the strongly negative charge density of chromatin, the

physicochemical environment, including the electrolyte environment, pH, and chromatin

density, are expected to influence chromatin structure. Experiments have demonstrated
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the effects of the ionic environment on chromatin, ranging from DNA persistence length

(i.e., elasticity) [20] to compaction of chromatin domains [309]. Thus, a faithful represen-

tation of electrostatics is crucial from a modeling perspective in order to better understand

the relationship between the intranuclear physicochemical environment and chromatin.

Here, let us discuss the representation of electrostatics in simulation-based approaches

for DNA and chromatin. Although simulations have been integral to our mechanistic

understanding of how the physicochemical environment modulates DNA and chromatin,

it is important to discuss the deficiencies of how these models represent electrostatic in-

teractions between charged groups in these systems. Atomistic MD simulations provide

a more detailed representation of electrostatics by accounting for Coulombic interactions

between charged particles at the atomistic scale. Such simulations provide detailed infor-

mation regarding, for example, ion-DNA localization, but can have varying results due

to the inherent difficulty in implementing correct force fields to represent ion-phosphate

and ion-ion interactions [151, 44, 226]. Recent advances in experimental methods have

facilitated a more complete characterization of the ionic atmosphere surrounding DNA, in-

cluding Small Angle X-ray Scattering (SAXS) [60] and, more recently, Inductively Coupled

Plasma Mass Spectrometry (ICP-MS) [94, 93, 95] and have been used to better param-

eterize the force-fields of MD simulations [303, 93]. However, even with experimentally-

informed parameterization, such approaches may still incorrectly predict trends which

are not observed experimentally. For example, modeling of DNA nucleotides by Pan-

teva et al. incorrectly predicted a size dependence of cation occupancy of DNA that was

subsequently disproven by ICP-MS measurements [219, 93]. Acid-based equilibrium, the
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protonation and deprotonation of the phosphate acid, and ion condensation, the bind-

ing of positively charged cations to negatively charged phosphates and consequent charge

neutralization, are both dynamic chemical reactions. Although approaches such as λ-

integration have been developed to incorporate variable pH in atomistic simulations [69],

it remains computationally intractable to concomitantly account for explicit pH and ion

condensation reactions. Additionally, atomistic simulations are computationally expen-

sive to converge and simulating larger and denser systems that have more relevance to

intranuclear conditions becomes even more computationally intractable.

On the other hand, several well-developed mesoscale models, which effectively coarse-

grain atomistic force fields, are able to reproduce experimental observations, such as the

decrease in persistence length of dsDNA and chromatin with increasing salt concentration

[271, 88, 255, 150, 159]. Yet, the question of how to represent electrostatics becomes more

complex with such coarse-grained models. Nonlinear Poisson-Boltzmann is a mean-field

approximation that works relatively well if there are no significant short-range electrostatic

correlations, especially since Poisson-Boltzmann considers ions as point charges without

excluded volume. Debye-Hückel is a linearized approximation of Poisson-Boltzmann and is

only valid for relatively weak electrostatic fields. Thus, for denser systems with multivalent

ions, Debye-Hückel approximations are not as correct. Beard, et al. have developed an

innovative approach which minimizes the error between Poisson Boltzmann and discrete

Debye-Hückel charges and can be applied to mesoscale modeling of a chromatin system

[21]. However, this approach still contains the pitfalls of Poisson Boltzmann. Finally,

ion condensation has been accounted for in coarse-grained simulations by using Manning

condensation, which predicts a charge of ≈ −0.6 for a strong polyelectrolyte such as
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DNA. However, this theoretical approach assumes cylindrical geometry of the polymer

and, again, becomes less accurate for multivalent cations. Most coarse-grained models

that represent DNA employ Debye-Hückel, sometimes with Manning condensation to

account for charge neutralization of phosphates by counterions [88]. Additionally, many

coarse-grained simulations are performed under implicit solvent conditions, and thus do

not explicitly account for the excluded volume effects of counterions. All coarse-grained

computational methodologies discussed thus far assume both fixed charges and fixed pH

throughout the entire simulation. Thus, so far, no simulation-based approach that models

DNA and chromatin, especially in denser, non-dilute systems, has properly accounted the

effects of charge regulation.

1.4.3. An Introduction to Polymer Brush Theory and Molecular Theory

Previous theoretical approaches that have been employed to study brushes of strong poly-

electrolytes may also be relevant to studying DNA and chromatin systems. In general,

theoretical treatment of polymer brushes involves expressing the system free energy as a

functional of the density of all species involved, including solvent, ions, and monomers.

Different theories employ distinct methods to represent polymer conformations and their

resulting conformational entropy. Self-Consistent Field (SCF) theories represent poly-

mers as Gaussian chains and Scheutjens-Fleer Self-Consistent Field (SF-SCF) theory can

be thought of as a version of SCF with segment distributions discretized into a lattice

[122, 123]. Such SCF approaches have explicitly considered charge regulation of polyelec-

trolyte brushes.
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In this thesis, we employ a molecular theoretical approach, henceforth referred to a

Molecular Theory (MT), to investigate the effects of the physicochemical environment on

DNA-like and chromatin-like systems. MT employs a similar approach to the discretized

SF-SCF, but free energy minimization determines the probability distribution of input

polymer conformations instead of assuming Gaussian statistics. Thus, unlike SF-SCF,

MT: (1) is able to represent more complex polyelectrolyte systems that deviate from

Gaussian statistics and (2) explicitly considers chain connectivity.

MT is a statistical thermodynamical theory that accounts for complex molecular-level

interactions among the elementary units of the system, including chemical reactions and

electrostatics [201, 100]. MT predictions have been found to agree with experimental

observations for relevant biological systems, including polyelectrolyte brushes and nuclear

pore complexes as well as phenomena such as protein adsorption of polymer brush surfaces

[189, 254, 299, 278, 269, 239, 291, 156].

An overview of the MT approach is represented in Fig. 1.6. This theoretical mean-

field approach links the structural state of the polymer system with its chemical/charged

state and solves for equilibrium properties by explicitly accounting for the charge, vol-

ume, and conformations of all constituent molecules. The MT calculations take as input

environmental conditions, the size and charge of all molecular species, the free energies

of all chemical reactions, and a representative set of chain conformations. MT outputs

any thermodynamic or structural quantity of interest, including the system free energy,

the polymer density distribution, and the distribution of solvent, ions, and electrostatic

potential. Importantly, the MT outputs the probability of all input conformations, which
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Figure 1.6. Overview of Molecular Theory (MT) approach for DNA-like
system, described in greater details in Chapter 4.6.1. Inputs to MT include
environment conditions (e.g., bulk ions, pH, DNA density), charge and size
of all molecular species, free energy of all chemical reactions, and a rep-
resentative set of chains. Shown above in red are example conformations
of loop chains ranging from more collapsed to more extended. MT relies
on a free energy functional which takes into account the system entropy
(TS), chemical potential (Fchem), electrostatics (Eelect), Van der Waals in-
teractions (EV dW ), and steric repulsions (Erep). This free energy functional
is then decomposed into a system of nonlinear coupled integro-differential
equations, which are numerically solved using optimization. Outputs of the
theory include any thermodynamic and structural quantity of interest, in-
cluding the three-dimensional distribution of polymer (e.g., DNA) volume
fraction.

directly contributes to the 3D distribution of polymer density, electrostatics, etc. Un-

like simulation-based methods, with MT it is computationally feasible to: (1) perform

parameter scans over a wide range of environmental conditions, including for non-dilute

systems, and (2) have a relatively accurate representation of system electrostatics and

charge.
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1.4.4. Modeling of Transcription Under Crowded Conditions

Macromolecular crowding was first described by Allen Minton in 1981 [192]. Crowders are

macromolecules that exclude volume and thus influence adjacent chemical reactions, but

do not directly participate in them. The intranuclear environment is a highly crowded

environment, with chromatin volume concentration (CVC) ranging from 12-52% in inter-

phase nuclei [212], along with currently unknown concentrations of mobile crowders, such

as transcriptional machinery. As 98% of chromatin is non-coding and is only transcribed

at negligible levels, chromatin density can be considered as the major intranuclear crowder

(Fig. 1.7A). Hiroki Matsuda in the Szleifer group developed a model of gene expression in

which transcription is considered as a network of crowding-dependent chemical reactions

[184]. The model employs MC simulations to determine the free energy of binding and

Brownian Dynamics (BD) simulations to determine diffusion rates of transcriptional re-

actants, which include RNA Pol II and TFs [184]. Matsuda et al. demonstrate that gene

expression is a non-monotonic function of crowding [184]. As crowding increases from

zero, attractive depletion interactions increase the binding free energy of transcriptional

reactants, thus increasing transcription rates (Fig. 1.7B). However, after a certain critical

crowding concentration, the reduction in diffusion of reactants decreases gene expression

(Fig. 1.7B). The exact relationship between crowding and transcription is dependent

on molecular factors of gene expression, including the concentrations of transcriptional

reactants (Fig. 1.7B). Interestingly, the “optimal” crowding conditions occur within phys-

iological average chromatin density, as determined by ChromEM experiments [212, 167].
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Figure 1.7. Macromolecular crowding influences gene transcription. (A)
The nucleus is a highly crowded and heterogeneous environment with chro-
matin density as the major crowder. ChromTEM image from [288] shows
areas of low crowding/chromatin density and high crowding/chromatin den-
sity in the same nucleus. (Inset) A hypothetical gene in blue is surrounded
by chromatin density and mobile crowders (brown spheres). (B) Non-
monotic effect of crowding volume fraction on gene expression depends on
molecular regulators of transcription including concentrations of promoters
(O), RNA Pol II, and TFs [184].
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1.5. Scope of Dissertation

Overall, this thesis will employ a quantitative and biophysical approach to address how

molecular-level interactions in a realistic nuclear environment contribute to the regulation

of chromatin structure and function. More specifically, this dissertation will focus on

answering three key questions in the field of chromatin research.

Figure 1.8. Characterizing the chromatin structure and function in a real-
istic nuclear environment. Nanoimaging techniques and polymer physics-
based analysis identify packing domains (PDs) as key functional units of
chromatin organization, as their morphological properties have direct con-
sequences for transcription (Chapter 2). Overall, molecular-level, physics-
based interactions are demonstrated to influence nuclear- and cell-level pro-
cesses. Specifically, macromolecular crowding modulates transcription and
phenotypic plasticity through statistical chromatin packing behavior (Chap-
ter 3) and the physicochemical intranuclear environment influences DNA
and chromatin structure (Chapter 4).
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Firstly, what are the fundamental units of higher-order chromatin structure at the

single-cell level? Structural units, such as TADs, have previously been identified by a com-

bination of Hi-C and SR microscopy methods. However, their exact functional importance

and how the chromatin conformation in individual cells contributes to population-level

behavior is still under debate, as discussed in Chapter 1.1.4. Employing a combina-

tion of statistical modeling, chromosome conformation capture, and optical and electron

microscopies introduced in Chapter 1.3, Chapter 2 will characterize key principles of

supranucleosomal chromatin organization through the lens of polymer physics.

Next, we address how exactly the supranucleosomal chromatin structure modulates

genome-wide transcription processes. Chapter 1.2 identifies specific aberrations in chro-

matin structure that are observed in the complex diseases such as cancer. However,

due to the inherent complexities of nuclear processes, there does not yet exist a univer-

sal, length-scale-independent relationship between chromatin structure and the disease

state. Chapter 3 will define a framework for how statistical chromatin packing of pack-

ing domains contributes to large-scale gene expression patterns through macromolecular

crowding-mediated effects. Our modeling can even predict cellular adaptability to exter-

nal stressors, encompassing the chemoevasion potential of cancer cells.

Finally, as chromatin is a highly charged polyelectrolyte, Chapter 4 will address the

question of exactly how all aspects of the physicochemical environment, including bulk

ions, pH, and chromatin density influence chromatin structure. The intranuclear envi-

ronment is highly crowded, and single-molecule experiments and simulations performed

under dilute conditions to interrogate these effects are not representative of a realistic

intranuclear environment. Additionally, it is difficult to experimentally determine the



98

specific effects of the physicochemical environment on chromatin in vitro, as altering the

pH and electrolyte environment influence enzymatic reactions, signalling pathways, and

other important cellular processes. It is also computationally difficult to properly model

electrostatic interactions in such dense systems, as discussed in Chapter 1.4.2. Thus,

Chapter 4 will introduce a molecular theoretical modeling approach to characterize the

influence of the physicochemical environment on both the charge and structure of DNA-

like and chromatin-like systems in physiologically dense environments.
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1.6. List of Key Contributors by Chapter

The chapters of this dissertation are structured around the key questions that are

being addressed. Each chapter is composed of multiple independent journal articles (as

detailed in Chapter 1.7) and the main contributors to each are listed below.

Chapter 2 can be broken down into two sections. The first section of Chapter 2 contains

work published in [167, 166]. For the experimental work, Yue Li and Vasundhara Agrawal

mainly performed and analyzed ChromSTEM and ChromTEM experiments, with help

from Wing Shun Li, and Adam Eshein and David VanDerway performed and analyzed

PWS experiments. All ChromSTEM work was performed in collaboration with Professor

Vinayak Dravid. The second section introduces and validates the Self-Returning Random

Walk (SRRW) as published in [120] and the Self Returning-Excluded Volume (SR-EV)

model, which is currently in preparation. Kai Huang developed the SRRW model and

Marcelo Carignano developed the SR-EV model of chromatin, with help from Rikkert Nap

and Anne Shim. Vasundhara Agrawal performed Hi-C and PWS heat shock experiments.

Chapter 3 is composed of one published manuscript [288], with Wenli Wu and Luay

Almassalha as co-first authors, and one manuscript currently in preparation with Jane

Frederick as co-first author. Wenli Wu and Luay Almassalha first conceptualized the

Chromatin Packing Macromolecular Crowding (CPMC) model along with Vadim Back-

man and Igal Szleifer. The initial iterations of this model were published in [6, 5]. Luay

Almassalha, Greta Bauer, Jane Frederick, and David VanDerway performed experiments

to validate and understand the CPMC and Chromatin-Dependent Adaptability (CDA)

models. Adam Eshein and Jane Frederick performed STORM and PWS experiments to
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determine the relationship between packing scaling and gene expression as published in

[167].

Chapter 4 is composed of two separate manuscripts currently in preparation. Rikkert

Nap helped with theory and software development as well as analysis for the DNA-like

and chromatin-like systems. Marcelo Carignano helped with biased MD simulations of

DNA-like loops. The chromatin work was performed in collaboration with Juan de Pablo’s

group with help from Aria Coraor, who generated the 8-mer nucleosome chains via 1CPN

simulations which were used as input for the theory.

Vadim Backman and Igal Szleifer are senior authors on all manuscript and helped with

conceptualization of models and experimental analyses.
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CHAPTER 2

Higher-Order Organization of Chromatin into Hierarchically

Folded Packing Domains
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2.1. Introduction

Dynamic, three-dimensional chromatin organization plays an important role in regu-

lating a vast number of cellular processes, including cell type–specific gene expression and

lineage commitment [225, 50, 22]. Large-scale alterations in chromatin structure are asso-

ciated with cancer, numerous neurological and autoimmune disorders, and other complex

diseases [277, 218]. However, the precise conformation of chromatin remains contested.

The basic units of chromatin is the nucleosome, formed by 147 bp of DNA wrapping

around histone proteins. Nucleosomes are connected by linker DNA to form a “beads-on-

a-string” chromatin fiber. Previously, the primary 10 nm fiber was thought to aggregate

into a thicker 30 nm chromatin fiber, but this textbook view has been challenged by several

recent studies [131, 75]. One such work employed a novel imaging technique, chromatin

electron microscopy tomography (ChromEMT), to interrogate chromatin ultrastructure

down to the level of single nucleosomes [212]. Using ChromEMT, Ou et al. discovered that

DNA and nucleosomes assemble into disordered chains, with diameters varying between

5 and 24 nm, which themselves pack at various densities within the nucleus [212].

Parallel to microscopy-based techniques such as ChromEMT, chromosome conforma-

tion capture–based (3C-based) methods have provided key insights into higher-order chro-

matin structures by linking chromatin topology with genomic information [257]. Specif-

ically, Hi-C measures pairwise chromatin-chromatin contact frequencies throughout the

entire genome to capture average chromatin connectivity over millions of cells [168]. 3C

and related methods (4C, 5C, Hi-C) have revealed that the eukaryotic genome is par-

titioned into topologically associating domains (TADs) at the scale of several 100’s of

kilobases (kbp) and smaller loop domains, or sub-TADs [68, 262, 232, 281]. Notably,
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single-cell Hi-C methods have demonstrated the potential existence of TADs in individual

nuclei, although a high degree of intercellular heterogeneity in TAD distribution has been

reported [198]. The potential functional importance of TADs is also implied by their her-

itability. Higher-order cell-type–specific structures, such as TADs, are lost during mitosis

and reestablished along with a lineage-specific replication timing program in the early G1

phase of the cell cycle [66].

The recent development of SR microscopies, including STORM and PALM, in combi-

nation with FISH-based labeling techniques, has allowed for investigation of higher order

chromatin structures down to a resolution of ∼10s of nm, almost at the level of the pri-

mary chromatin fiber. ‘Chromomeres’, punctate chromatin particles around 200-300 nm

in diameter, have been observed in both interphase chromatin and mitotic chromosomes

using stimulated emission depletion (STED) microscopy [101]. A recent study employing

live-cell photo-activated localization microscopy (PALM) in mammalian cells determined

that nucleosomes are arranged into physically compact chromatin domains with a 160 nm

diameter [207]. The dynamics of these chromatin domains were correlated with those of

replication domains, which range in diameter between 110-150 nm [207, 57, 300]. Also

in mammalian cells, 3D-structured illumination microscopy (SIM) imaging discovered

chromatin domain clusters (CDCs) of around 120 to 150 nm in diameter in which the

chromatin compaction increases radially from the periphery towards the CDC core [53].

Recently, high-resolution imaging experiments have visualized the three-dimensional orga-

nization of heterochromatic TADs identified by Hi-C contact maps as compacted domains

in single cells, providing a link between the nanoscopic spatial structures and genomic do-

mains [275, 32]. Altogether these higher-order chromatin structures potentially play an
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important role in DNA-based processes, such as transcription, replication, and repair,

and perhaps extend to complex processes, such as aging and diseases such as cancer

[84, 163, 298, 195, 175].

Mechanistic “bottom-up” polymer models (see 1.4.1), including the loop extrusion

[251, 90] and the Strings&Binders models [18, 31, 47], have been proposed to better under-

stand physical mechanisms underlying chromatin organization. The loop extrusion model

assumes dynamic loop formation is generated by the active process of CTCF-cohesin-

mediated loop extrusion. However, although TAD structures are significantly altered after

depletion of CTCF, which supposedly provides genomic specificity for TADs, interactions

persist at the A/B compartment level and within former TADs [206]. Multiplexed-FISH

microscopy also demonstrates that TAD boundaries can occur with nonzero probability

at any genomic locus and, after cohesin depletion, domains are still observed at the single-

cell level [32]. Chromatin structure also involves the interplay between multiple folding

mechanisms such as supercoiling [152, 202, 51], phase separation [155, 253, 250, 96],

molecular binding [30], crowding effects [141], as well as loop extrusion [251, 90], all under

the feedback control of transcription to be responsive to external stimuli. Altogether, this

demonstrates the intricacy of biological phenomena at play which are difficult to fully rep-

resent using mechanistic modeling. An ideal minimal model of chromatin structure would

recapitulate the major experimental observations with a small number of adjustable pa-

rameters and computational complexity, while establishing the existence of fundamental

principles of genome organization. Such a model would not have the burden of account-

ing for all the physical interactions and biological mechanisms that are far from fully

understood.
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Despite advances in -omics, SR microscopies, and modeling techniques there remain

several key open questions in the chromatin field, such as:

(1) What are the functional units of chromatin?

(2) What is the hierarchy of chromatin folding hidden in the disordered morphology?

(3) What is the connection between chromatin conformation, gene loci connectivity,

and transcription?

(4) What mechanisms contribute to the formation and maintenance of higher-order

chromatin structure in live cells?

(5) What are the inner workings of higher-order chromatin domains at the single-cell

level?

Among these questions, perhaps the most fundamental one is whether there are abstract,

yet universal, folding principles of our genomic code independent of the known molecular

and mechanistic complexity.

This chapter begins with the discovery of chromatin packing domains (PDs). We

utilized ChromSTEM (see Chapter 1.3) for an in-depth quantification of 3D chromatin

conformation down to 6 nm resolution, allowing for characterization of higher-order chro-

matin structure almost at the level of the DNA base pair. Employing mass scaling analysis

on ChromSTEM mass density tomograms, we observed that chromatin forms spatially

well-defined higher-order domains around 80 nm in radius. Within domains, chromatin

exhibits a polymeric fractal-like behavior and a radially decreasing mass-density from the

center to the periphery. Unlike other nanoimaging and analysis techniques, we demon-

strate that our unique combination of a high-resolution imaging technique with polymer

physics-based analysis enables us to (i) investigate the chromatin conformation within
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PDs and (ii) quantify statistical descriptors of chromatin structure that are relevant to

transcription. We observe that PDs have heterogeneous morphological properties, even

within the same cell line, underlying the potential role of statistical chromatin packing in

regulating gene expression within mammalian nuclei. We also observed PDs in live-cells

using our label-free PWS modality (see Chapter 1.3) and determined that the packing be-

havior within these domains is both heritable across cell division and related to statistical

genome connectivity behavior, as determined by Hi-C.

Next, we show that the Self-Returning Random Walk (SRRW) statistical model and

the Self Returning-Excluded Volume (SR-EV) polymer model are able to reconcile distinct

properties of chromatin structure. This necessitates modularizing the three-dimensional

genome into tree-like data structures where the functional modules are connected by an

isolated by open backbone. Using live-cell PWS microscopy and Hi-C, we then demon-

strate that the SR-EV polymer model is able to represent statistical rearrangements in

chromatin structure that occur upon heat stress. Altogether, our results also suggest

that α, the single parameter of the SR-EV model, is related to the temperature history

of the system due to rearrangements in connectivity and mass density distribution from

gradations of the heat shock response. Our multiscale theoretical and experimental re-

sults suggest the existence of higher-order universal folding principles for the disordered

chromatin fiber to avoid entanglement and fulfill its biological functions.
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2.2. Chromatin Forms Packing Domains (PDs) with Heterogeneous Packing

Properties

2.2.1. ChromSTEM Uncovers Power-Law PD Mass Scaling Regime in A549

and BJ Nuclei

The mass scaling behavior of homopolymers under dilute and equilibrium conditions con-

ditions is well-defined for simple polymer models (Fig. 1.5). Mass scaling behavior is

characterized by a power-law relationship at certain length-scales between the mass (M)

of the polymer and the 3D size r the polymer occupies: M ∝ rD, where D is the mass

scaling coefficient, or the packing scaling.

Chromatin itself exists as a heteropolymer. Its monomers, i.e., nucleosomes, possess

varying biochemical properties in the form of chemical modifications - including epigenetic

marks - and physical constraints - including CTCF-cohesin- or transcription-dependent

looping, interactions with nuclear lamins, and phase separation driven by chromatin-

associated proteins such as HP1 [208, 77, 253, 178]. Therefore, at any given point in time,

chromatin conformation is determined by different, and potentially competing forces, alto-

gether resulting in a dynamic, non-equilibrium system. Additionally, chromatin occupies

a significant volume fraction within the nucleus. As a result, the intranuclear chromatin

environment is both non-equilbrium and non-dilute, and thus the rules of polymer physics

do not guarantee that the genome-wide structure of chromatin can be described using the

same power-law packing scaling relationship.

Thus, in the nucleus, there may be separate regimes or length-scales in which chro-

matin exhibits different mass scaling behavior. For example, (1) the primary 10 nm
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chromatin fiber may exhibit a unique intra-fiber scaling compared to larger length-scales,

(2) higher-order chromatin domains could exist where power-law packing scaling behavior

is observed within certain regimes, and (3) for length scales above the size of the individ-

ual domains there could be additional structured organization of domains or a random

distribution of spatially uncorrelated domains.

To elucidate the chromatin structure within the cell nucleus, we investigated the mass

scaling behavior of the continuous signal of DNA contrast obtained from ChromSTEM

imaging (Fig. 2.1A-C). Image acquisition was performed as follows. To first locate the

cell of interest, we collected an image of the nucleus at lower magnification (∼2kX). Next,

we collected tilt series ChromSTEM images in the HAADF mode by selecting a random

intranuclear region of interest at higher magnification (∼90 kX) that is located away

from the nucleoli and the nuclear envelope (Fig. 1.6D&E, Fig. 2.1A-C). The resultant 3D

tomogram has a high contrast signal emerging specifically from chromatin. In the analysis,

we consider the disordered chromatin fiber with heterogeneous diameter to be the building

block of higher-order structures [212]. Practically, the 3D mass scaling relationship is

defined as how the total amount of chromatin (M) enclosed within a volume V = 4/3πr3

changes with its radius r. The 2D case can be described as a cross-sectional slice of the 3D

system. In this case,M is the amount of chromatin enclosed within an area A = πr2. The

derivative of the area results in the perimeter, which represents the 1D case. Therefore, in

the 1D scenario,M is the amount of chromatin positioned on the circumference of a circle

P = 2πr, which we refer to as “ring mass scaling”. We calculated the ring, 2D, and 3D

mass scaling by performing linear regression analysis on the log-log mass scaling curves

for the given dimensions. The law of additivity of fractal codimensions approximates
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the conversion of chromatin packing scaling between different dimensions [282], and we

confirmed from our calculations that the 3D mass scaling exponent can be estimated using

the 2D and ring mass scaling (Fig. 2.7).

As ChromSTEM only provides a snapshot of the chromatin conformation at a single

time point, we randomly sampled different regions within the field of view and calculated

the mean mass scaling to capture the statistical behavior. We performed mass scaling

analysis on tomograms from both A549 and BJ cells. For four A549 cells with a total

volume of 1.16 µm3 resolved at a voxel size of 2.0 to 2.9 nm, we obtained the mass

scaling curves for all three dimensions (Fig. 2.1D&E). A total volume of 0.09 µm3 was

reconstructed from three BJ cells at a nominal voxel size of 1.8 to 2 nm and both the 1D

and 2D mass scaling analysis were performed (Fig. 2.7C). To identify length scales where

a single packing scaling exponent can sufficiently describe the mass scaling behavior, and

to determine average packing scaling within this regime, we evaluated the derivative of

the log-log scale of the 3D and 2D mass scaling curves as a function of r. The slope, Dlog

was defined as the linear regression fit to the log-log mass scaling curves. In this linear

regression fit, Dlog should be equivalent to the packing scaling, D, within the power-law

scaling regime. Power-law scaling occurs when the length scales associated with Dlog

extend over at least one order of magnitude. From our 3D mass scaling analysis on A549

cells, we observed a power-law mass scaling regime extending from 2 nm to 60 nm with a

fitting parameter of Dlog = 2.82± 0.01 (Fig. 2.1D&E, blue dashed line). We refer to the

region where power-law mass scaling occurs with one chromatin packing scaling exponent

as the PD regime. From ∼60 to 90 nm, a gradual increase in Dlog to about 2.92±0.02 was

observed, which we refer to as the supradomain regime. However, because the maximum
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section thickness of A549 tomograms was 180 nm, our 3D analysis was unable to reliably

evaluate mass scaling behavior above 90 nm. Additionally, we did not perform the 3D

mass scaling analysis for BJ cells, as the thickness of the reconstructed section of BJ cells

was smaller than 70 nm, and thus the 3D mass scaling curve would only extend up to 35

nm.

Due to the intrinsic length-scale limitations of 3D mass scaling determined by sample

thickness, we next performed the mass scaling analysis at different dimensions for both

A549 and BJ cells. Employing the law of additivity of fractal codimensions [282], we

calculated the 3D mass scaling exponent from 2D and 1D mass scaling curves as: D3D =

D2D + 1 and D3D = D1D + 2 (Fig. 2.7B). For both A549 and BJ cells, we first evaluated

the slope of the 2D mass scaling curve in the log-log scale along its entire length using a

12 nm sliding window. By estimating the local slope for small ranges of r along the entire

length of the 2D mass scaling curves, two distinct regimes were identified. The first regime

extended up to r ∼55 nm, followed by a gradual increase in the local log-log derivative

towards a value of Dlog ∼ 3. Similar to the 3D mass scaling analysis, for A549 cells (Fig.

2.1E), we then obtained the slope of linear regression, Dlog = 2.74± 0.01 for 2 nm < r <

55 nm (blue dashed line). Above these length scales (r ∼60 nm), the slope continuously

increases until it approaches 3 for r > 145 nm (red dashed line) up to 200 nm. Similarly,

for BJ cells (Fig. 2.7B), the fitting parameter for the linear regression was estimated to

be Dlog = 2.78 ± 0.01 (blue dashed line) for 2 nm < r < 50 nm, and Dlog approaches

3 (red dashed line) for r >100 nm. The shift from the PD regime with similar packing

scaling behavior (2 nm < r < 50-60 nm) to the supra-domain regime where Dlog ∼ 3 (r >
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100-145 nm) is continuous, as opposed to a sharp, biphasic transition. The implications

of this result will be discussed later.

Therefore, both the average 3D and 2D mass scaling analyses suggest that, for length

scales up to 60 nm, chromatin packs into domains which statistically exhibit internal mass

scaling behavior and can be described by one average packing scaling exponent. As this

behavior was observed in two genetically distinct cell lines, it seems to be a relatively

conserved phenomenon in mammalian cells.

Besides the two regimes determined by 2D and 3D mass scaling, the ring mass scaling

curve exhibits a third regime from 2 nm < r < 10 nm for both cell lines (Fig. 2.7C-D).

This can be interpreted as the chromatin fiber regime. The upper length scale of 10

nm agrees with the upper limit of the primary chromatin fiber size (24 nm maximum

diameter) [212]. However, this regime was not identified on the mass scaling curves of

higher dimensions, possibly due to limited tomography resolution.
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Figure 2.1. Mass scaling analysis uncovers PD regime with power-law mass
scaling behavior. (A) STEM HAADF image of a 150 nm section of a BJ cell
nucleus for tomography reconstruction. Scale bar: 2 µm. (B) A magnified
view of the chromatin and the nuclear periphery of the same cell in (A)
with gold fiducial markers. The intensity variation of the image shows that
the chromatin packs at different densities throughout. Scale bar: 200 nm.
(C) A virtual 2D slice of the chromatin of a BJ cell after tomography re-
construction. Scale bar: 100 nm. The mass scaling analysis was performed
on the gray scale tomograms (D-E) The average mass scaling curves from
analysis of four A549 cells in (D) 3D and (E) Ring, 2D, and 3D. The mass
scaling was conducted for the entire grayscale tomogram and the average
mass scaling curve for all the centers weighted by the chromatin density
values was computed. 3D mass scaling curve exhibits power-law behavior
with a single scaling coefficient up to r = 60 nm. Two regimes of mass scal-
ing with different packing scaling D can be identified. In the 2D cases for
both A549 cells and BJ cells, the mass scaling curve starts with a packing
scaling with Dlog < 3 (blue dashed line) and smoothly transitions to values
close to Dlog = 3 (red dashed line).
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2.2.2. Quantifying PD Size and Chromatin Packing Behavior at the Domain

Boundary of Individual Domains

Our previous analysis averaged the mass scaling behavior from all PDs analyzed within

a given field of view. Next, we wanted to better characterize the mass scaling behavior

of individual PDs. Here, we outline the criteria to define PD boundaries, which involves

analyzing both mass scaling behavior and radial chromatin density. To begin this more

detailed analysis, we first identified the “domain center region” of each PD using grayscale

ChromSTEM z-stacks with local chromatin density information (Fig. 2.2A-C, Fig. 2.8).

From the spatial distribution of 3D chromatin density distribution (Fig. 2.2A), we applied

Gaussian filtering and local contrast enhancement before segmentation to create a map of

local maxima from the enhanced chromatin contrast tomogram (green areas in Fig. 2.2B).

The centers of these local chromatin intensity maps were then identified (Fig. 2.2C).

For each PD, we resampled the mass scaling curves with centers inside the “domain

center region” (Fig. 2.2D) and determined mass scaling behavior from these “domain

centers” up to r = 400 nm for A549 cells and r = 200 nm for BJ cells due to differences

in section thickness between samples. For each individual domain, the average mass

scaling curve exhibits a power-law scaling regime with similar chromatin packing scaling

and, at larger length-scales, a gradual deviation from the initial power-law behavior (Fig.

2.2E). We performed linear regression on the 2D mass scaling curve and obtained a slope,

Dlog = 2.56±0.02 for r up to 100 nm (Fig. 2.2E, blue dashed line). This power-law scaling

relationship can model the mass scaling curve with less than 5% error within the given

fitting range, while a more significant divergence is observed beyond r =110 nm (Fig.

2.2E, red asterisk). Therefore, the mass scaling behavior for a single PD demonstrates
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that the smaller length scales have a packing scaling D < 3 and that, as r increases up

to around 100 nm, there is a sharp transition to the supra-domain regime with Dlog = 3.

Figure 2.2. Quantifying PD size and chromatin packing behavior at PD
boundaries. (A) ChromSTEM grayscale tomogram for one field of view
of an A549 cell. The color bar represents chromatin mass density. Scale
bar: 200 nm. (B&C) Local chromatin maxima map estimated from an
enhanced chromatin density projection was utilized to find chromatin PD
centers shown in C. (D) 3D rendering of the surface of chromatin density in
a region containing the PD of interest (orange square in C). (D) The average
2D mass scaling curve of the chromatin within the region of interest (orange
square in B&C). (E) For one PD, the mass scaling curve is resampled from
all loci within the PD center identified in C. The mass scaling analysis was
conducted starting from the PD center. The mass scaling curve starts with
D < 3 (blue dashed line) and transitions to values closer to D = 3 (beyond
the red asterisk). (F) Radial distribution of chromatin density for the same
PD. The radial CVC initially decreases slowly within the PD regime. As
the length scale approaches the PD boundary (red asterisk), the radial CVC
rapidly dips which is followed by a recovery, potentially due to the presence
of other domains at those length scales. (G) The distribution of Rf , the
PD radius, for A549 cells.
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Additionally, we determined the radial distribution of chromatin density, or chromatin

volume concentration (CVC), to characterize changes from the “domain center region” to

the periphery of individual PDs (Fig. 2.2F). We observed three key trends in the radial

CVC at different distances from the PD center: 1) a relatively flat, slowly decreasing

curve near the PD center, 2) a rapidly decreasing curve at a moderate distance from the

PD center, and 3) an increasing curve at even larger distances. This third trend is likely

caused by the inclusion of chromatin from other nearby PDs. The transition point from

rapid decrease to increase in radial CVC (red asterisk in Fig. 2.2F) is consistent with

the transition point in the mass scaling curve from power-law mass scaling behavior to

Dlog = 3 (red asterisk in Fig. 2.2E), and both transitions indicate the edge of the analyzed

PD.

Next, we estimated the median genomic size of A549 and BJ domains. Assuming that

the highest intensity in the tomograms represents 100% dehydrated DNA (density = 2

g/cm3) and the average molecular weight for a nucleotide is 325 Da, we calculated the

highest mass (m) per voxel (dr = 2 nm) to be ∼15 bp. We further calculated the median

genomic size of A549 and BJ PDs to be 207 kilobase pairs (kbp) and 82 kbp, respectively,

based on the relation M = m
(

Rf

dr

)D
.

Here, we interpret Rf as the length scale where the chromatin mass scaling behavior

no longer follows a power-law relationship, or where a single packing scaling coefficient

is not sufficient to explain the packing behavior. However, this view does not indicate

that each PD is spherical with radius Rf . We further investigated the shape of the PD

boundary by calculating the 2D asphericity (As) of the chromatin enclosed by the PD

boundary [276, 249]. Considering a 2-dimensional ellipse, As = (a2−b2)2

(a2+b2)2
, where a and b



122

are the semiaxes of the ellipse. Here, As can take on values from 0 to 1, depending on

the ratio a
b
. For the case a = b, As = 0 indicates an isotropic or spherical configuration.

In the limit, a ≫ b, As = 1 indicates a linear or stretched configuration. To avoid edge

effects, we only considered PDs that are entirely within the field of view. We estimated

the average of As to be 0.446 ± 0.04 from 280 PDs for A549 cells and 0.458 ± 0.05 from

104 PDs for BJ cells, respectively (Fig. 2.9E). Altogether, analysis of individual PDs from

two different cell lines demonstrates that chromatin fibers are packed into anisotropic PDs

of variable sizes.
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2.2.3. Heterogeneous Morphological Properties of Chromatin PDs

Statistical descriptors of PDs, including chromatin packing scaling, average chromatin

density, and size of domains were previously determined to be physical regulators of tran-

scription through crowding-mediated effects (see Chapter 1.4.4, Chapter 3) [288]. Thus,

characterizing the distribution of statistical properties that control chromatin density

distribution can help decode the complex chromatin structure-function relationship.

First, for individual PDs, we obtained the distribution of packing scaling D, with a

mean value of 2.619±0.010 for A549 cells (Fig. 2.3A), and D = 2.622±0.012 for BJ cells

(Fig. 2.10A-C), both with relatively wide distributions. For the same PDs, we determined

the average CVC per domain to quantify chromatin compaction. For each pixel, a CVC=0

signifies there is no chromatin density within the pixel and a CVC=1 signifies that the

entire pixel volume is filled by chromatin density. Similar to the anisotropy analysis, we

excluded the PDs at the edge of the field of view. We obtained a median CVC of 0.37

for A549 cells (IQR: 32-45%; Fig. 2.3B), and 0.33 for BJ cells (IQR: 24-61% Fig. 2.10D).

As with domain size, we again observed large heterogeneity of average chromatin density

and packing scaling between PDs within the same cell line.

For a polymer that exhibits power-law mass scaling behavior within a certain regime,

such as chromatin within PDs, the relationship between mass density (i.e., CVC) and

packing scaling should follow the relationship CV C =
NfVpix

Vf
= A

(
Rf

Rmin

)D−3

∝ ARD−3
eff

[125]. Here, the total mass of chromatin within a PD NfVpix = A
(

Rf

Rmin

)D
is measured

as the product of the number of pixels within the PD that contain chromatin, Nf , and

the resolution or smallest unit of chromatin measured by ChromSTEM, Vpix. Rf and

Vf are the PD size and total volume of all pixels within the domain, Rmin is the radius
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Figure 2.3. Characterizing morphological properties of chromatin PDs in
A549 cells. A total of 280 A549 cell PDs were analyzed (A) Chromatin
packing scaling D distribution was calculated for A549 cells. The mean of
the wide distribution is equal to 2.57. (B) CVC distribution per PD. We
observed the CVC distribution ranges from 0.15 to 0.92 with a mean value
of 0.40 for A549 cells. (C) Effective domain size Reff for A549 cells. The
effective domain size is the ratio between domain size Rf and domain fiber
size Rmin. For A549 domains, the median Rmin is 11.6 nm. (D) Exposure
Ratio (ER) is defined as the fraction of chromatin voxels on the surface
of the interchromatin voids compared to the entire volume of the PDs and
represents the surface accessibility of PDs to transcriptional machinery. For
A549 PDs, the ER ranges from 0.11 to 0.50 with a mean value of 0.25. (E)
A moderate correlation between domain CVC and D has been observed for
A549 cells, with R2 = 0.32. (F) ER is negatively correlated with inverse
effective domain size with the weak linear coefficient for A549, with R2 =0.1

of the elementary unit of the chromatin fiber, and Reff =
Rf

Rmin
is the effective PD size

(Fig. 2.3C). A is the packing efficiency factor of the fundamental chromatin fiber within

the domain. A chromatin domain with A = 1 specifies that each concentric layer of

the domain is packed in the most efficient manner, and the mass-density distribution of
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chromatin is fully designated by the PD packing scaling. Here, we assume that the packing

efficiency within the chromatin fiber, the primary building block is 1. In other words, the

entire volume of the fiber is completely filled by chromatin. Similar to Rf , Rmin can be

estimated from the limits of the first regime of the ring mass scaling curve. We define

Rmin as the upper bound of the chromatin fiber regime, or the spatial separation that

significantly deviates from the mass scaling behavior within the chromatin fiber. Next,

we investigated the relationship between average density (CVC), effective size (RD−3
eff ),

and chromatin packing scaling (D) within PDs across a population of isogenic cells. Our

goal was to determine whether there was a universal relationship between CVC and D

which could be described by one packing efficiency factor (A) and one fiber size (Rmin).

In general, we observed a positive correlation between CVC and D for A549 cells (linear

regression R2 = 0.328) (Fig. 2.3E). From the ring mass scaling analysis, we also observed

that Rmin was not significantly different across PDs, between cells within the same cell

lines, and even between the two cell lines. This relationship suggests that the chromatin

fiber size may be constant, even across genetically different cells. However, the packing

efficiency factor A is PD-specific as there is a wide spread of CVC-D relationships that

cannot be described by just one A from one linear regression fit (Fig. 2.3E). Average A

for each cell line was evaluated from the regression of CVC on RD−3
eff .

As the boundaries of TADs and chromatin PDs are enriched in active transcription

processes [284], we next studied how the probability of chromatin being exposed to tran-

scriptional machinery on the PD surface changes across PDs for both cell lines. Here,

we define an exposure ratio (ER) as the fraction of voxels containing chromatin on the

surface of the PD compared to the total number of pixels encompassing the PD volume.
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The surface here exclusively refers to the internal surface created by the interchromatin

voids within PDs. This metric evaluates the surface area to volume ratio of a PD. Without

changing the genomic size of a PD, an increase in ER for a given chromatin PD would indi-

cate an increase in the chromatin PD surface, which could increase the amount of surface

chromatin that is accessible to transcription processes. First, we define Asp as the surface

packing efficiency, i.e., the prefactor in the scaling relationship Sf = AspSmin

(
Rf

Rmin

)D−1

where Sf is the total surface area of the PD and Smin is the surface area of the elementary

unit of the chromatin fiber, measured as the number of pixels. For each PD, ER can

then be estimated by the following relation: ER =
Sf/Smin

Mf/Mmin
= AERR

−1
eff , where Mf is the

total mass of a PD, Mmin is the mass of the elementary unit of the chromatin fiber, and

AER = Asp

A
is the exposure ratio efficiency factor and represents the ratio between the

packing efficiency at the PD surface, Asp, compared to the packing efficiency of the entire

PD, A. There is a relatively large variability in the distributions of effective domain size,

Reff , (Fig. 2.3C, Fig. 2.10E) and the exposure ratios (ERs) of PDs within each cell line

(Fig. 2.3D, Fig. 2.10F). Next, we investigated if AER is constant for all PDs within the

same cell line. We performed linear regression analysis to better characterize the rela-

tionship between the inverse effective domain size and ER at the PD level. We observed

a weak negative association between the ER and R−1
eff for A549 cells (Fig. 2.3F). This

suggests that the exposure ratio is very weakly dependent on effective PD size and that

the exposure ratio efficiency factor is very small, although it varies between PDs.

Altogether, these results demonstrate that PDs have unique morphological properties

that are transcriptionally relevant, including average density, packing scaling, packing

efficiency, and exposure ratios, that are heterogeneous within the same cell line.
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2.2.4. PDs are Observable in Live Cells and are Heritable across Cell Division

As ChromSTEM has a limited field of view and requires chemical fixation, we used PWS

microscopy to inspect the chromatin packing scaling distribution across the entire nucleus

and confirm the presence of PDs in live cells. As previously mentioned, PWS microscopy

measures chromatin density fluctuations. Chromatin packing scaling, D, can be calcu-

lated from these measured fluctuations as described in [74]. PWS analysis also identified

spatially separable chromatin PDs characterized by similar D values within each PD.

Specifically, the average chromatin packing scaling determined from the ChromSTEM D

map (Fig. 2.4) differs from the average D values measured with PWS microscopy (Fig.

2.4) by only ∼6%. In summary, by combining the high spatial resolution of ChromSTEM

in fixed cells and live-cell imaging capabilities of PWS, we have identified the existence of

spatially separable supranucleosomal chromatin PD structures (Fig. 2.4).

Figure 2.4. PDs are observable structures in fixed and live cells. (A) (Left)
Chromatin packing scaling (D) map of a ChromSTEM A549 cell tomogram.
(Right) Two PDs with different Ds, highlighted in left map by blue and
purple circles, have distinct supranucleosomal packing configurations. DNA
concentration increases from green to red. (B) (Left) PWSD map of several
A549 cells with nuclei shown in red. (Right) corresponds to inset.



128

Next, we employed live-cell PWS microscopy to investigate whether chromatin packing

behavior is transferred between parent and progeny cells across cell division. With its high-

throughput, label-free, and live-cell imaging capabilities, PWS microscopy is uniquely

suited for this task. PWS imaging was performed on HCT116 colon cancer cells over the

course of 20 hours, over which several cell division events were observed. We then used

these measurements to determine how the spatial distribution of the chromatin packing

scaling evolves over a long period of time (hours) and quantified the time-dependent fluc-

tuations of chromatin packing scaling across the entire nucleus for parent and progeny cells

(Fig. 2.11,2.12). Overall, we determined that PD structure, specifically the spatial distri-

bution of chromatin packing scaling and the temporal fluctuations of average chromatin

packing scaling, are heritable through the process of cell division (Fig. 2.11,2.12).
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2.2.5. Relationship between Chromatin Packing Behavior and Genome Con-

nectivity

The packing behavior of a mass-fractal polymer is expected to influence the probabil-

ity distribution of contacts between non-neighboring monomers. We thus wanted to test

whether this intuition was the case within chromatin PDs. Contact probability scaling is

an important statistical property of chromatin that represents overall chromatin connec-

tivity and can be measured using chromosome conformation capture techniques such as

Hi-C. Prior studies have revealed the critical role of such contact properties in transcrip-

tion regulation, with implications for enhancer-promoter interactions [286]. Returning to

simple homopolymeric systems as a conceptual example, the probability of contact (P )

between two monomers of N distance apart on the linear chain can follow a power-law

scaling relation: P ∝ N−s, where s is the contact probability scaling exponent. Recent

advances in Hi-C have demonstrated that no single power-law scaling exponent can de-

scribe chromatin organization throughout the entire nucleus, and several studies have used

analyses of genome-wide contact probability scaling behavior to disprove the previously

popular fractal globule model of chromatin [251].

A chromatin polymer with a higherD has a lower rate of decrease of CVC as a function

of distance from the PD core. Thus, intuitively, a higher D should be associated with

higher contact frequencies between distant genomic loci. This would translate into a lower

contact probability scaling s. Multiple homopolymer models show an inverse relationship

between these two properties, with s = 3/2 for a random walk with D = 2 and s = 1

for a fractal globule with D = 3 [193]. Both cases are in agreement with a more general
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relationship: s = 3/D. Does this inverse relationship still hold for more complex models

of chromatin structure, or is it only relevant for these simpler polymer models?

Halverson et al. [108] reached the same functional relationship between s and D by

using a mean-field argument. However, this initial derivation assumed that two monomers

separated by genomic distance N will have a uniform probability of being at spatial

distance r apart anywhere within volume R3
g ∼ N3/D. This assumption is not true for

all cases. Good solvent conditions are one such limiting case, which result in polymer

swelling, causing repulsions between non-neighboring monomers that would break down

the mean-field assumption. Halverson et al. [108] provide additional scaling analysis,

demonstrating that the contact probability scaling exponent does not depend solely on

D. These results suggest the more complex chromatin polymer might follow a general

inverse relationship between these two scaling properties, but the exact functional form

has yet to be established.

Figure 2.5. Relationship between s and D as determined by modeling. (A
and B) A general inverse relationship between s and D is demonstrated
using (A) self-attracting polymer and (B) SRRW simulations, although the
exact relationship is model-dependent.

Because no existing model can faithfully capture all aspects of chromatin structure,

we sought to test this hypothesis by implementing two distinct computational models of
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chromatin. The models we use here are not expected to be an exhaustive set but instead

were used as test beds to ascertain whether the inverse relationship between s and D

was likely to be a model-independent property. First, we ran BD simulations of a basic

homopolymer model under varying solvent conditions to represent chromatin structure

within PDs for different intranuclear environments. We introduced effective attractions

between monomers using the Lennard-Jones (LJ) potential, which physiologically rep-

resents the solvent quality of the polymer solution. We tuned the attractive potential

between monomers to generate polymers ranging from a swollen self-avoiding walk un-

der good solvent conditions to a collapsed globule under poor solvent conditions. This

tuning allowed us to modulate two measurable statistical polymeric properties, D and s,

and investigate their relationship. For these simulations, each monomer represented one

nucleosome (∼147 bp DNA), and the entire polymer chain contained 1000 monomers.

In addition, we used the self-returning random walk (SRRW) model (discussed further

in Chapter 2.3) to investigate this relationship. We varied the SRRW folding parameter

to tune statistical chromatin conformation [120]. SRRW conformations were generated as

in [120] with each step size representing 2 kbp of DNA (∼10 nucleosomes).

For both models, we determined D and s by performing a linear regression on their

respective power-law scaling relations. The linear regression was performed for the ge-

nomic range from 20 to 200 kbp, which is within the predicted genomic size of chromatin

PDs. Although the two chromatin models resulted in two distinct functional forms of

s(D), as would be expected, both models demonstrated an inverse relationship between

these two statistical parameters (Fig. 2.5). After computationally establishing a more
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chromatin-specific inverse relationship between packing behavior and polymer connectiv-

ity, we wanted to investigate whether this property can be observed in vitro.

To test this hypothesis experimentally, we used the nano-ChIA platform to measure

changes in chromatin packing scaling, D, upon external stimulation, which we compared

with changes in contact probability scaling, s, determined by Hi-C analysis. Dexam-

ethasone (DXM) treatment has previously been demonstrated to alter large-scale genome

connectivity [67]. Analysis of publicly available Hi-C data revealed that s increases upon

32 hours of DXM treatment in differentiated BJ fibroblast cells treated with 100 nM DXM

(Fig. 2.6 A-D), which we hypothesized would result in an inverse change in chromatin

packing scaling.

Thus, we first used ChromTEM (Fig. 2.6 E-H) to measure statistical changes in D

before and after treatment with DXM in fixed cells. Unlike ChromSTEM, which resolves

the exact 3D structure, ChromTEM images the projection of a thin cross section (50

nm) of chromatin. To calculate chromatin packing scaling D from ChromTEM data, we

performed auto-correlation function (ACF) analysis (Fig. 2.6G). The ACF of the spatial

variations of the density of a polymer, such as chromatin, can be derived from its mass

scaling relationship and is thus used to measure D: ACF (r) ∝ dM(r)
dV

∝ rD−3. For an

infinite, continuous, and random structure, the 2D ACF can be considered identical to

the 3D ACF of the original 3D structure with high accuracy. For a finite fractal structure,

we demonstrated numerically that 2D ACF is more accurate at determining D, compared

to mass scaling, for thinner 50 nm ChromTEM sections [167].
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Figure 2.6. Relationship between s and D as determined by experiments.
(A&B) Hi-C contact maps for differentiated BJ fibroblasts treated with
DXM treatment for (A) 0 hours and (B) 32 hours. (C) Intrachromosomal
contact probability plotted against genomic distance in log-log scale. (D) s
for BJ cells treated with DXM for 0 and 32 hours. The linear regression fit
was performed on contact probability versus genomic distance between 105.8

and 106.8 bp. (E&F) ChromTEM images of BJ cells (E) without and (F)
with DXM treatment for 32 hours. (G) The average ACF of chromatin mass
density for untreated cells (blue) significantly differs from that of treated
cells (red). D was measured inside the fractal PD (50 to 100 nm) by a
linear regression fit of the ACF in log-log scale. (H) Using ChromTEM
ACF analysis on fixed cells, an increase in D was observed after the 32-
hour DXM treatment (N = 31 cells per condition; P < 0.001). (I & J)
Live-cell PWS analysis of BJ cells treated with DXM. (I) PWS images of
BJ cells with DXM treatment at 0, 16, and 32 hour time points. (J) Time
course PWS measurements showed a significant decrease in D for all time
points after 12 hours (N > 67 cells; ∗P < 0.05 and ∗∗P < 0.001) compared
to the 0 hour time point.

In agreement with our modeling results, we observed inverse changes in D and s at

the level of individual cells upon DXM treatment, as measured by ChromTEM (2.6 E-H).

Next, we confirmed that the change in D as measured by ChromTEM in fixed cells was

comparable to the D measured in live cells using PWS microscopy, and tracked changes

in chromatin packing scaling for cells treated with DXM every 4 hours for 32 hours (2.6

I&J). We found that the relationship between chromatin packing scaling and contact

probability scaling was consistent for ChromTEM and PWS microscopy measurements

compared to bulk Hi-C methods. Notably, the absolute values of chromatin packing

scaling measured by higher-resolution ChromTEM on fixed cells and PWS microscopy

on live cells under the control and treated conditions were in good agreement (2.6 H&J).

In addition, using PWS microscopy, we saw an intermediate but still significant decrease

in D for the midway 16 hour time point, corresponding to an intermediate increase in s

determined by further Hi-C analysis at this 16 hour time point (Fig. 2.13). To further test
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the inverse relationship between D and s, we performed additional ChromTEM and PWS

experiments on A549 cells treated with DXM for 0 and 12 hours and compared the results

to publicly available Hi-C results under the same treatment conditions [71]. Again, we

observed a decrease in D after DXM treatment and the same inverse relationship between

D and s (Fig. 2.14).

Overall, these results suggest that genome connectivity is inversely related to the

packing scaling behavior of chromatin within PDs. Thus, measuring chromatin packing

behavior within PDs could provide information regarding the overall statistical connec-

tivity of gene promoters and enhancers within a given PD.
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2.2.6. Conclusions and Discussion

Consolidating results from electron and PWS microscopies allowed us to uncover the

existence of chromatin PDs, identified by their power-law mass scaling behavior, in both

fixed and live cells.

First, by employing ChromSTEM on two genetically different cell lines, both chemi-

cally fixed A549 cells (cancer) and BJ cells (non-cancer), we were able to quantify chro-

matin packing in vitro down to the level of the primary chromatin fiber. Importantly,

we studied these cell lines to distinguish basic principles behind chromatin packing that

are generally cell line-invariant. By analyzing the mass-scaling behavior of the chromatin

polymer, we observed spatially separable, and geometrically anisotropic, packing domains

∼80 nm in radius averaging across both cell lines (Fig. 2.2). We also demonstrated that

PDs exist in live cells using our label-free PWS microscopy technique (Fig. 2.4).

The mass scaling within the packing domains follows a power-law relationship with

D < 3, indicating that chromatin packs into PDs that have radially arranged layers with

decreasing chromatin density from the domain center to the periphery. This “core-shell”

structure supports earlier experimental work using SR microscopy at a coarser spatial

resolution [53, 55]. At the same time, PDs are not completely isolated from each other

without any chromatin density in between, as CVC values are always above 0. From these

observations, it is reasonable to suggest chromatin is organized into complex, porous PD

structures which are connected by less dense chromatin fibers. The porosity of PDs

could provide additional surface area, potentially promoting diffusion and targeted search

mechanisms for nuclear processes such as transcription. Outside of PDs, the packing

scaling increases to 3 after crossing the PD boundary. A packing scaling of Dlog = 3
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potentially indicates a random distribution of multiple domains with respect to each other

and, importantly, does not substantiate the existence of higher-order packing structures

above the level of PDs.

Interestingly, the previous ChromEMT study did not observe any higher-order chro-

matin structures above the level of the primary fiber [212], which is incongruous with other

EM and optical microscopy studies. The size of the PDs observed using ChromSTEM

(∼160 nm diameter) is consistent with previous observations of higher-order chromatin

domains, including ‘chromomeres’ (∼200-300 nm) [101], replication domains (∼110-160

nm)[207, 57, 300], and domains associated with TADs (∼200-300 nm) [194]. However,

the PD structures observed using ChromSTEM are obtained at a much higher resolu-

tion than previous SR optical techniques. Additionally, instead of utilizing conventional

TEM tomography as reported in the ChromEMT approach [212], ChromSTEM utilizes

quantitative STEM HAADF imaging. Unlike TEM signal, STEM HAADF signal is ap-

proximately linearly proportional to the chromatin concentration and therefore enables a

more in-depth characterization of higher-order chromatin structures at the single cell level.

This allows for highly accurate characterization of the packing of the primary chromatin

fiber down to sub-6-nm resolution for sections of the nucleus 2µm × 2µm × 300nm.

Previous imaging studies have investigated domains by either labeling specific genomic

regions, including replication domains [207, 57, 300] and Hi-C-identified TADs [275, 194]

or by delineating boundaries based on absolute chromatin density distribution or coherent

motion [101, 207, 55, 194]. On the other hand, ChromSTEM PDs were identified by a

polymer physics-based mass scaling analysis. Thus, the boundaries were not known a

priori as in the other labeling experiments. Additionally, the ChromSTEM technique
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enables the quantification of chromatin structure down to the level of the DNA base pair,

resulting in a highly detailed characterization of 3D chromatin conformation within PDs.

Additionally, the statistical packing behavior of PDs has more direct functional im-

plications than domains distinguished by chromatin density or motion. Functionally im-

portant properties of the packing domains, including average chromatin density, domain

size, packing scaling, surface exposure ratio, and packing efficiency, which are all potential

regulators of crucial nuclear processes (see Chapter 3) [288, 167] can be determined from

ChromSTEM analysis. Such analyses can thus help us to understand the implications of

chromatin structure on gene expression and vice-versa.

Notably, we also determined that contact probability scaling and chromatin packing

scaling within these PDs follow an inverse relationship through computational model-

ing (Fig. 2.5) and experimental cross-validation with Hi-C and ChromTEM and PWS

nanoimaging methods (Fig. 2.6,2.13,2.14). This observation adds to the functional rel-

evance of packing domains, as the packing scaling within PDs could relate to enhancer-

promoter connectivity probabilities.

Our previous experiments on isogenic cell lines have demonstrated D as a crucial

modulator of transcriptional plasticity (see Chapter 3) [288]. The large range in D values

observed in this study within the same cell line implies that genes may be localized into

PDs with different D values depending on how responsive the gene must be to external

stimuli, and that this could be potentially co-opted in the cancer cell state for chemoeva-

sion purposes. Furthermore, for PDs of both A549 and BJ cell lines, we observed a diverse

range of average chromatin densities, domain sizes, asphericities, and exposure ratios, all

of which could also impact transcription rate (Fig. 2.3). Due to the power-law mass
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scaling observed in PDs, some of these morphological properties are interrelated from

a polymer physics perspective. From ChromSTEM data, although they are positively

correlated, we observed chromatin density and packing scaling within PDs cannot be de-

scribed by a universal relationship. We also observed a similarly complex relationship

between the exposure ratio, the probability of a chromatin segment to be on the domain

surface, and PD size. The heterogenous morphological properties of domains could po-

tentially play a role in regulating gene activities by controlling the size of proteins and

other macromolecular complexes that can navigate through this network, thus influencing

material transportation and gene accessibility.

Higher-order chromatin structure changes significantly throughout the cell cycle. Mi-

totic chromosomes lose their cell type–specific organization and gene expression profiles,

yet both are reestablished upon mitotic exit [203]. This poses the question of whether

chromatin organization can be preserved over generations of cells, and in what sequence

the higher-order chromatin structures are reestablished. Unfortunately, nanoimaging tech-

niques such as ChromSTEM and biochemical methods such as chromosome conformation

capture can provide only snapshots of chromatin organization, as chemical fixation is in-

volved. Using our live-cell, label-free PWS modality, we uncovered a strong correlation

between the chromatin packing scaling of progeny cells, which is also correlated with that

of the progenitor cell (Fig. 2.11, Fig. 2.12). For the same progenitor cells, we observed

significant synchronization of the redistribution of chromatin packing immediately after

cell division.
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The spatiotemporal coherence of D among progenitor and progeny cells is indicative of

a heritable chromatin packing structure. This raises the question of what molecular mech-

anisms contribute to the reestablishment of higher-order chromatin structure across cell

division. Although the molecular mechanisms of PD formation remain to be elucidated,

most of the putative determinants are potentially heritable. The expression of ion chan-

nels, which are direct regulators of the intranuclear physicochemical environment and thus

influence chromatin structure (see Chapter 4), is genetically and epigenetically conserved

across cell division. In particular, dysregulated expression and function of ion channels

have been associated with the propagation of cancer phenotypes [223]. The CTCF-cohesin

complex has been shown to play a crucial role in maintaining coherent, cell type–specific,

and heritable TAD boundaries [274]. Furthermore, transcriptional memory propagation

occurs through mechanisms such as mitotic bookmarking [215]. In addition, both ac-

tive and repressive histone modifications are preserved throughout the cell cycle [215],

although heterochromatin marks have been recently shown to be more stably inherited

in regions above critical densities of these marks [58]. Future investigations elucidating

the contribution of these potential mechanisms to the heritability of supranucleosomal

chromatin organization may, in turn, provide insights into the phenotype of disease states

such as cancer.

The major limitations of ChromSTEM/TEM include chemical fixation, low through-

put due to electron tomography, and the inability to obtain locus-specific information.

Therefore, ChromSTEM findings are not directly comparable to discoveries obtained

from sequencing-based techniques such as Hi-C or locus-based imaging methods such as

Fluorescence In Situ Hybridization (FISH). Additionally, ChromSTEM involves reagents
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such as DRAQ5, DAB, and osmium for DNA-specific labeling that may alter nucleotide

structure, however the reagents are added after chemical fixation to minimize the effect.

Dehydration and resin embedding are also known to create unavoidable volume changes.

Another caveat of our nano-ChIA platform is that the conversion from PWS signal to

D assumes that the mass density distribution of chromatin has a given ACF. Although

the mass density ACF has been confirmed by ChromTEM [74], this does not mandate

that this is correct for all cell lines under all treatment conditions and ChromSTEM/TEM

analysis should be performed before making these assumptions. Additionally, PWS di-

rectly measures mass density fluctuations in the nucleus, which is composed of other

macromolecules besides chromatin. Mobile crowders might also contribute to these fluc-

tuations, but we assume variations in chromatin mass density dominate PWS signal.

This is reasonable given the large density occupied by chromatin within the nucleus.

Additionally, the similar behavior of chromatin packing for BJ and A549 cells with and

without dexamethasone treatment observed for PWS microscopy and ChromSTEM/TEM

approaches provides confidence that these assumptions are fairly accurate (Fig. 2.6, Fig.

2.14). Despite its limitations, we believe that the nano-ChIA imaging platform and the

associated analysis methods presented in this thesis work should become an important

tool for understanding the 3D structure and function of chromatin.

Future experiments are necessary to elucidate the molecular basis of these PDs, as

it is currently unknown whether they are the same as other domain-like structures that

are observable with different methodologies, such as TADs. First, we would like to point

out that several properties of PDs are similar to those of sub-TADs and TADs. From

ChromSTEM data, we estimated the average genomic size of PDs to be 207 kbp in A549



142

cells and 82 kbp in BJ fibroblasts, which is within the range of typical TAD and sub-TAD

sizes [68, 274]. However, we assumed that the highest DNA intensity in ChromSTEM data

represents pure, dehydrated DNA, which is likely to be an overestimation. A more ac-

curate evaluation requires additional calibration experiments to link ChromSTEM image

contrast to the total mass of DNA at different pixel sizes. In addition, PDs are heritable

through the process of cell division, as are TADs. Finally, the genome connectivity be-

havior within TADs is potentially related to the 3D conformation of the chromatin chain

within PDs. However, a definitive link between these structures has yet to be established.

In the future, co-registering ChromSTEM with 3D SR techniques which enable label-

ing of markers for heterochromatin and euchromatin will help improve our understanding

of the relationships between the physical structure of chromatin within PDs, epigenetic

modifications, and transcription. Future work should also focus on developing novel locus-

specific labeling methods that are compatible with ChromSTEM sample preparation and

imaging, and colocalizing chromatin morphological and genetic information for a greater

number of cells. For example, labeling TADs identified by Hi-C experiments on the same

cell lines and co-registering them with ChromSTEM could help to elucidate the relation-

ship between PDs and TADs. This would require the development of non-FISH-based

labeling methods which are not reliant on DNA denaturation, a process that disrupts

the endogenous chromatin packing structure at the nanoscale level. Additionally, such

studies could help to uncover a domain-specific relationship between contact probabil-

ity scaling and chromatin packing scaling. Altogether, these experiments would help to

better understand the functional consequences of observed PD organization.
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2.2.7. Supplementary Material
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Figure 2.7. Mass scaling analysis at different dimensions. (A) Rendering
of a self-attracting homopolymer with D = 2.37 (left) which was estimated
from 3D, 2D, and Ring mass scaling (right). 3D mass scaling exponent can
be approximated using the relations D3D = D2D + 1 and D3D = D1D + 2,
with standard errors of the mean of 0.023 and 0.019 respectively. (B) A549
mass scaling curves plotted as 3D mass scaling, 2D mass scaling + r, Ring
mass scaling + 2r in the log-log scale. The equivalent slope for the 3D
mass scaling regime extending from 2 - 100 nm indicates that the 3D mass
scaling exponent can be derived from 2D and ring mass scaling exponents.
(C) The average mass scaling curves determined from different dimensions
of the amalgam of ChromSTEM tomograms from three BJ cells. (D) The
ring mass scaling curve for A549 cells has three regimes: 1. Chain mass
scaling with slope, D = 2.88± 0.2 fitted from r = 2 - 10 nm (yellow dashed
line); 2. Domain mass scaling (blue dashed line); 3. Supra-domain mass
scaling with slope, D = 3.01±0.01 fitted from r = 145 - 200 nm (red dashed
line). (E) The ring mass scaling curve for BJ cells also shows three regimes:
1. Chain mass scaling with slope, D = 2.85 ± 0.04 fitted from r = 2 - 10
nm (yellow dashed line); 2. Domain mass scaling (blue dashed line) ; 3.
Supradomain mass scaling with slope, D = 3.04±0.003 fitted from r = 100
- 140 nm (red dashed line).
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Figure 2.8. Chromatin mass density analysis to identify PD centers. The
average z-projection for the grayscale tomograms was evaluated to obtain a
map of the average chromatin mass density distribution using ChromSTEM-
HAADF intensity. Then we applied Gaussian filtering with radius = 5 pixels
followed by CLAHE contrast enhancement with a block size of 120 pixels
in FIJI. We identified the local maxima for unbiased segmentation of chro-
matin PDs. We then identified the center of mass pixels for each segmented
PD. To obtain the mass scaling curve for a single PD, we first sampled mul-
tiple mass scaling curves starting from the nonzero pixels within the PD
centers, defined as the 15 pixel x 15 pixel window surrounding the center
pixel. We then used the average mass scaling curve for that PD for subse-
quent analysis. Scale bar: 200 nm.
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Figure 2.9. Determining PD boundaries from the mass scaling behavior.
Beyond a given length scale, r (nm), the 2D mass scaling curve deviates
from a power-law mass scaling. We performed three types of analyses (A-C)
to determine the boundary of PDs, which are denoted as the smallest r of
the three analyses, if it exists. (A) Mass scaling curve deviates from the
initial power-law mass scaling calculated from small length scales within
PD center region by 5%. (B) Local packing scaling Dlog reaches 3 at r =
102 nm. (D) The absolute value of the second derivative of the logarithm
of the mass scaling curve is greater than 2, indicating a divergence from
the power law. Here, all length scales follow under this error margin. (C)
The radial CVC starts to increase. The radial CVC decreases initially, then
increases at r = 95.7 nm for this domain. In this case, comparing (A-C), we
determined the domain size Rf =95.7 nm. (D) The distribution of R2

f , the
square of the radius of the PD, for A549 (blue) and BJ (orange) cells. (E)
The distribution of As, the asphericity of the chromatin density distribution
within the identified PDs, for A549 (blue) and BJ (orange) cells.
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Figure 2.10. Characterizing morphological properties of chromatin PDs in
BJ cells. The grayscale BJ cell tomogram (A) was utilized to estimate the
(B) chromatin PD centers. Scale bar: 100 nm. (C) Chromatin packing
scaling D distribution with a mean equal to 2.62 was evaluated for BJ cells.
(D) CVC distribution ranges from 0.12 to 0.92 with a median value of 0.34.
(E) Mean effective domain size Reff was 4.84, and median Rmin is 10.8 nm.
(F) Exposure Ratio (ER) ranges from 0.11 to 0.56 with a mean value of
0.35.
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Figure 2.11. Time-resolved PWS imaging of HCT116 cells determines spa-
tial heritability of chromatin packing scaling for N = 10 progenitor cells
and N = 20 progeny cells. (A) PWS D map of two progeny cells originat-
ing from the same progenitor. (B) Average spatial D distribution of all cells
imaged 5 hours after cell division. (C and D) Histogram ratio of the spatial
D distribution for each individual progeny cell from (A) normalized by the
average histogram of all cells at that time point from (B). (E) After cell
division, the normalized histograms of paired progeny cells are more highly
correlated with each other than with unrelated progeny cells at the same
time point (P < 0.05). (F) Across all time points, normalized histograms
of paired progeny cells are more significantly correlated compared to those
of unrelated progeny. (G) Comparing all progeny cells 3 hours after divi-
sion to all progenitors 3 hours before division shows that progeny cells have
a higher correlation with their “parent” than with unrelated progenitors
(P = 0.021).
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Figure 2.12. Time-resolved PWS imaging of HCT116 cells determines tem-
poral heritability of chromatin packing scaling for N = 10 progenitor cells
and N = 20 progeny cells. (A & B) PWS D maps at four time points
before, during, and after cell division. During cell division, nuclei exit the
objective’s depth of field by lifting off the glass and return to the glass
when they have finished dividing. (C) Average nuclear D tracked over time
from cells in (A) and (B). After ∼5 hours, both cells have finished dividing,
and their progeny cells were tracked for an additional ∼7 hours. (D) D of
progeny cells is more strongly correlated with that of their paired progeny
than with other unrelated cells (P < 0.001). (E) Progeny cells are more
correlated with their parent progenitor cells than with other unrelated cells.
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Figure 2.13. Measuring chromatin packing scaling and contact probability
scaling alterations induced by dexamethasone (DXM) treatment in BJ dif-
ferentiated fibroblasts. (A&B) Contact probability scaling analysis as ana-
lyzed by moving-window linear regression (A) and classical linear regression
(B) analyses for BJ cells treated with DXM for 0, 16, and 32 hours. For
(A), we assume the linear regression fit used to calculate contact probabil-
ity scaling follows a normal distribution N (µs, σs) where the mean contact
probability scaling, µs is the slope of the regression and standard deviation,
σs is the root-mean-square error (RMSE) of the residuals. Contact prob-
ability scaling is significantly different between control, and 16 hour and
32 hour DXM treated BJ cells (P < 0.001). (C-D) PWS analysis of BJ
cells at 0, 16, and 32 hour time points for untreated cells (C) and DXM
treated cells (D). (C) Chromatin packing scaling D measured in untreated
live BJ cells shows no observable change in D over a 16 hour period and
only a small decrease in D over a 32 hour period that is not statistically
significant (P > 0.05). (D) Using double-sided student-t-test, P < 0.005
for DXM treated cells at 16 and 32 hour time points.
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Figure 2.14. Measuring chromatin packing scaling and contact probability
scaling alterations induced by dexamethasone (DXM) treatment in A549
cancer cells. (A&B) Characterization of A549 chromatin structure with
and without DXM treatment. From left to right: TEM images of chromatin
structure with ChromEM staining, scale bar: 1µm. PWS map of chromatin
packing scaling, scale bar: 10 µm. Qualitatively, both ChromTEM and
PWS images show that DXM treatment homogenizes chromatin packing.
(C) Hi-C contact map of human chromosome 1 rendered with 5 kbp reso-
lution for the control and DXM treated A549 cells. (D) ACF analysis of
ChromTEM images of A549 cells. The average ACF of the control group
(blue) is significantly different from the average ACF of the treated group
(red). The shaded regions represent standard errors. D was calculated
from the PD regime (50 nm to 100 nm) by performing a linear regression
fit to the ACF in the log-log scale. (E) Contact probability analysis per-
formed on whole-genome intrachromosomal Hi-C contact data. Contact
probability scaling (s) was calculated from a linear regression fit (dotted
line) of the contact probability curve in the log-log scale between genomic
distance 104.4 and 105.5 bp. (F-H) Chromatin packing scaling alterations
induced by DXM treatment measured using ACF analysis of TEM images
and PWS and changes in contact probability scaling of Hi-C contact data.
Across the platform, consistent changes were observed in chromatin packing
scaling upon treatment. Using double-sided student-t-test, P = 0.051 for
ChromTEM, P < 0.005 for PWS. (I) Comparing distributions of contact
probability scaling for A549 cells calculated from analysis of Hi-C contact
matrices. We assume the linear regression fit used to calculate contact prob-
ability scaling follows a normal distribution. Contact probability scaling is
significantly different between control, and 12 hour DXM treated A549 cells
(P < 0.001). (J) Chromatin packing scaling D measured in untreated live
A549 cells at 0 and 12 hours shows no observable change in D at time points
comparable to DXM treatment, which showed a statistically significant de-
crease in D after 12 hours of treatment (H).
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2.3. Self Returning-Excluded Volume Model Uncovers Fundamental

Principles of Chromatin Organization

2.3.1. The Self-Returning Random Walk (SRRW) Statistical Model

Kai Huang developed the Self-Returning Random Walk (SRRW) model, which was ini-

tially published in Ref. [120]. The SRRW is essentially a random walk with specific

rules introduced to capture statistical features of chromatin organization as revealed by

experiments. At each step in the SRRW generation there are two possibilities: (1) Per-

form a forward jump or (2) Return over the previous step to the previous position. The

probability distribution function controlling this decision is

(2.1) PR(U0) = 1− PF (U0) =
U−α
0

α
.

Here, PR and PF represent the p.d.f. for a return or a forward step, respectively.

U0 is the length of the previous step along the backbone. The folding parameter α > 1

controls the number of returns. If the SRRW does not continue with a return step, it

must continue with a forward jump. The new forward jump is chosen with an arbitrary

direction and with a length U1 given by the following p.d.f.

(2.2) PJ(U1 > 1) = (α + 1)U
−(α+2)
1 .

There is a minimum size for the forward jumps that also defines the unit of length

in the model. To avoid unrealistically long steps, we introduce a local cutoff to discard

jumps with lengths lying on the higher 0.1% of the probability distribution Eq.(2.2). Ad-

ditionally, to incorporate the confinement effect on chromatin induced by a finite nuclear
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size, we impose a global cutoff of 2α times the local cutoff. This global cutoff is applied

during the generation of the conformation, and is measured from the center of mass of

the already-generated steps. Notice that the SRRW is fully defined by the single folding

parameter α. The SRRW conformations can be analyzed in terms of a backbone from

which tree-like structures branch away. For α ≳ 1, the resulting SRRWs have a short

backbone with tree structures involving many segments. For large α, the SRRWs are

essentially a linear random walk with the backbone comprising the great majority of the

segments and very few branching trees.

Notably, the statistical SRRW model is able to reproduce several key experimen-

tally observed features of chromatin structure. These include: (1) hierarchical organiza-

tion due to its representation as a tree-like data structure, (2) heterogeneous mass density

distribution due to its heterogeneous step sizes, (3) different mass scaling regimes within

versus outside of domains as observed using ChromSTEM experiments, and (4) different

contact probability scaling behavior within versus outside of domains, as observed by Hi-

C experiments, caused by an increase in contact frequency within tree domains from the

self-returning steps (Fig. 2.21).
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2.3.2. The Self Returning-Excluded Volume (SR-EV) Polymer Model

By construction, since the SRRW includes returns over the previous steps, it contains a

large number of overlaps. For example, for α = 1.15 the number of returns in a confor-

mation with a total number of steps N = 50, 000 is approximately 23, 500. Therefore, as

a representation of a physical system, such as chromatin, the SRRW has two important

drawbacks: (1) the conformations violate the principle of excluded volume and (2) it is

not a folded linear chain. The schemes represented in Fig. 2.15 exemplify these two

points. In order to recover these two physical properties, Marcelo Carignano extended

the SRRW statistical model to develop the Self Returning-Excluded Volume (SR-EV)

polymer model. In this new method, the overlapping points are transformed into con-

nected clusters of beads that explicitly represent a linear chain (see Chapter 2.3.6.1). This

procedure affects the SRRW conformation only at small length-scales, and maintains the

overall shape and mass distribution of the original conformation, as exemplified by Fig.

2.15.

At this point it is convenient to introduce the unit conversion to map both models

to a genome system. For the SR-EV model we keep the dimensions introduced originally

for the SRRW. The minimum step size represents 30 nm, and each step includes 2000

bp. In Fig. 2.22 we show the mean quadratic distance
√

⟨R2(s)⟩ between two monomers

separated by a genomic distance s. The plots are obtained as a population average over

sets of 1000 conformations. The plot shows that the difference between the two models is

reflected only at small genomic distance separations. This is indeed the expected result,

since the SR-EV was designed to maintain the overall structure of the conformation while

only affecting the overlaps. Since the overlaps are mainly due to the return steps, this
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Figure 2.15. SR-EV removes overlaps introduced by self-returning steps of
SRRW. (A) Schematic representation of the first 12 beads (left) and their
connecting bonds (right) of an SRRW conformation of 50,000 steps and
α = 1.15. Circles with more than one color represent overlapping points.
(B) Equivalent connectivity (left) and beads (right) of the corresponding
SR-EV. (C) Rendering of the full SRRW conformation and (D) its SR-EV
counterpart. The color bar indicates the connectivity from the start to the
end of the conformation.

effect is significant only at small genomic distance separations. Disregarding this small

discrepancy between the models, we find that, for α = 1.15 (1.10),
√

⟨R2(s)⟩ ∝ sν

with ν = 0.38 (0.36) for 105 < s < 5 × 106. From polymer theory, we know that ν

measures the balance of effective attractions and repulsions between the monomers of a

polymer chain. The exponent that we find suggests that chromatin has a stronger effective

attraction between monomers than an ideal polymer chain in a Theta solvent (ν = 0.5),

a direct consequence of the frequent folding. For larger genomic distance separations, the
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models reflects the effect of the global cut-off, introduced to account for a well-defined

chromosomal territory.
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2.3.3. Heat Shock as an Experimental Model of Environmental Stress

Our goal here is to develop a physical model of chromatin that is able to reproduce the ex-

perimental results relative to statistical contact probability and mass density distribution

with a minimal set of parameters. Besides the goal of fully understanding how chromatin

is organized under standard conditions, we are also interested in understanding how nu-

clear chromatin structure responds to environmental stressors, and if the fundamental

organization we observe under normal conditions persists. For this study, we concentrate

our attention on heat shock, where cells are incubated at a higher temperature for a de-

fined period of time. Heat shock is a stress response that is evolutionarily well-conserved

and enacted by heat shock proteins, which help to mitigate cellular damage induced by

temperature elevations by promoting protein homeostasis, among other cellular functions

[182, 169, 241]. The heat shock response induces massive transcriptional changes with

distinct temporal profiles. The early heat shock response increases production of heat

shock proteins within minutes, while upregulation and, predominantly, downregulation

of thousands of genes occurs at 1 hour timepoints [241, 182]. Large-scale changes in

chromatin connectivity have been observed using Hi-C and HiChIP techniques in both

Drosophila and human embryonic stem cells (hESCs) [164, 176]. Rearrangements in chro-

matin positioning of heat shock-related genes such as HSP70 also influence changes in

gene expression [138]. Altogether, we expect that inducing the heat shock response will

alter the internal nuclear organization and, in particular, the statistical properties of

chromatin.
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2.3.4. SR-EV Model Captures Statistical Chromatin Changes Upon Heat

Shock

The generation of a sample of SR-EV conformations allows for the calculation of individ-

ual properties as well as the estimation of ensemble averages, facilitating a meaningful

comparison with experimental results. Our ChromTEM analysis has determined that

the mass density distribution of chromatin can be somewhat accurately described by a

power-law ACF at certain length-scales [74, 167]. Thus, converting PWS signal to a mass

scaling coefficient relies on the assumption that chromatin organizes, at experimentally

relevant length scales, as a self-similar mass fractal. The SR-EV conformations enable

the direct calculation of the mass scaling behavior. However, to compare experimental re-

sults with SR-EV predictions we must keep in mind the key differences between modeling

and the experimental setting to avoid artifacts. The SR-EV conformations are created in

free space with no periodic boundary conditions or hard, perfectly defined confinement.

Consequently, the outer boundary region of the SR-EV is not well-defined and the radial

density vanishes at the end of the chromosome, instead of transitioning to the territory of

the neighboring chromosomes as occurs in the nucleus [54]. In order to prevent spurious

edge effects, we began the calculation of the mass density ACF by determining the center

of mass of the given conformation, rCM . Next, we consider a sphere centered at rCM

with radius rin = 360 nm. All SR-EV beads contained in this inner sphere were used as a

reference point to calculate the commutative mass scaling behavior. We use all monomers

of the SR-EV conformation as valid second points for the calculation, but we analyze the

mass scaling behavior only up to rout = 450 nm. Beyond that, the system density shows

substantial decay and the results are not comparable to the experiments.
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Figure 2.16. PWS microscopy reveals an increase in chromatin packing scal-
ing, D upon heat shock for 1 hour at 42◦C compared to controls incubated
at 37◦C. Each color in the violin plot represents a separate experiment. A
total of 4 experiments, each with a number of cells greater than 167, were
averaged to obtain a mean D of 2.4 for control and 2.44 for the heat shock
conditions.

Here, we compare changes in statistical chromatin structure upon heat shock ob-

served by experiments to the statistics of SR-EV conformations with different folding

parameters (i.e., α’s). We performed heat shock experiments on HCT116 colon cancer

cells by incubating cells at 42 ◦C for 1 hour. This timepoint was chosen because it was

consistent with changes in chromatin connectivity demonstrated by Lyu et al. in hESCs

[176], and was after a 30 minute timepoint where chromatin connectivity changes were not

observed by Ray et al. in K562 human lymphoblast cells [236]. Using PWS microscopy,

we measured chromatin packing scaling for the same cell populations before and after

exposure to heat shock. To determine population-wide changes in chromatin packing

scaling, D, we averaged chromatin packing scaling for entire cell nuclei and then deter-

mined the distributions of average nuclear D for HCT116 populations exposed to normal
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temperature (control) and heat stress conditions (Fig. 2.16). PWS experiments demon-

strate an increase in population-average chromatin packing scaling from 2.40 to 2.44 for

control and heat shock, respectively. Thus, there is an increment of approximately 1.5%

in the chromatin packing scaling for the heat shocked samples compared to controls.
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Figure 2.17. SR-EV mass scaling analysis matches PWS heat shock experi-
ments. (A) Average mass scaling for two SR-EV populations with different
α’s, each with 1000 conformations. The red line, representing the control
case, corresponds to α = 1.15. The black line, representing the heat shock
case, corresponds to α = 1.10. The vertical blue lines indicate the bound-
aries of the power-law fitting, from 60 to 450 nm, which are displayed in
dashed lines in the corresponding color next to the raw results. (B) Distri-
bution of D values obtained from the mass scaling analysis from individual
conformations in the population.

To compare with experiments, we generated sets of SR-EV conformations with

different folding parameter α. In Fig. 2.17A we show our ensemble average for the mass

scaling behavior corresponding to two samples, one using α = 1.15 that best represents

the control case, and a second case using α = 1.10 that best represents the heat shock

condition. Notably, we can see that there is a power-law scaling behavior spanning from

60 to 450 nm, which is similar to length scales that PWS microscopy is sensitive to (20-

300 nm) [46, 3]. The exponent slightly increases from 2.33 for α = 1.15 (control) to 2.36
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for α = 1.10 (heat shock). This increase of approximately 1.3% is comparable to that

observed by experimental results. It is important to emphasize that this agreement is

obtained using the sample averages for the SR-EV model. Additionally, the mass density

ACF of individual conformations allows for the calculation of D for each conformation,

similar to the PWS experimental procedure for individual nuclei in a given cell population.

In Fig. 2.17B, we show the distribution of D values for each conformation obtained by

assuming a power-law scaling regime in the same range used for the average calculations

(60-450 nm). The results display a considerable spread, as in the experimental case.

Nevertheless, the distribution for α = 1.10 is slightly shifted towards higher D values

than that corresponding to α = 1.15, in full agreement with experimental findings.

Another measurement that probes the organization of chromatin is how the con-

tact frequency between two genomic loci decays as a function of their genomic separation.

Previous Hi-C experiments on human embryonic stem cells (hESCs) determined an in-

crease in long-range contact frequencies upon heat shock [176], a trend which was also

observed in the original SRRW model [120].

Here, we wanted to investigate changes in the statistical contact probabilities of our

new SR-EV model between normal temperature (control) and heat shock conditions for

both short and long genomic separations. In our chromatin model, the contact probability

is easily estimated from the knowledge of the coordinates of the individual SR-EV con-

formations, and this is simply averaged over the complete sample of 1000 conformations

to obtain ensemble behavior. In Fig. 2.18 we demonstrate the SR-EV contact probability

results for both conditions, along with the experimental results obtained from averaging

over all chromosomes. Both experiments and theory predict a crossing between the two
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Figure 2.18. Contact probability calculated from the same two populations
as Fig. 2.17. The insert shows the experimental results obtained from Hi-
C experiments on HCT116 cells. Both experimental findings and theory
display the same behavior, with a crossing that shows more contacts for the
control sample at smaller genomic separations and more contacts for the
heat shock sample at larger genomic separations.

curves at intermediate genomic separations. The crossing occurs at genomic distances of

2× 106 base pairs for the experimental case, and at 2× 105 for the theoretical results. No

exact quantitative agreement should be expected, as the model considers only one chromo-

some (total genomic length 100,000 Mbp) and the experiments combine Hi-C results from

all chromosomes. Importantly, SR-EV results reproduce experimental observations that

the control sample has more contacts than the heat shock for separations smaller than

the crossing, and that heat shock has more contacts for larger genomic separations. Also,

there is a larger difference between conditions for contact probabilities corresponding to

larger compared to smaller genomic separations.

One intrinsic characteristic of the SR-EV conformations is the formation of loops,

directly related to the probability of return steps controlled by Eq. (2.1). Large loops may
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contain smaller loops, forming a hierarchical branched structure that stems out of the open

chromatin backbone. The steps in these loops are not part of the backbone. Therefore,

since the total length of the model chromosome is fixed, the length of the backbone is

shorter than the total length of the chromatin model. The number of steps involved in the

backbone is a direct measure of the number of branches in the SR-EV conformation. Hi-C

experiments reveal the formation of TADs as an important structural feature of contact

maps. While the sequence-specificity of TADS can depend on biophysical mechanisms

such as CTCF-cohesin looping, the existence of loops is cohesin-independent and can be

thought of as statistical features of chromatin organization [261, 32].

Using TopDom for TAD annotation [265], Hi-C experiments reveal that the total

number of TADs genome-wide decreases after the heat shock treatment. There are 7963

TADs annotated in the control sample, and only 7484 after heat shock, an approximately

6% decrease. Concomitantly, average TAD size increases from 342 to 363 kbp, an overall

∼6% increase. Although our SR-EV model does not contain any parameters relating to

specific architectural proteins involved in TAD and loop formation, it has an intrinsic

statistical rule for the formation of loops. In Fig. 2.19 we show the distributions of the

backbone size for our two populations generated with different alpha’s. For the control

case, α = 1.15, the mean value for the number of steps in the backbone is 2486. For

the heat shock case, α = 1.10, the corresponding mean value is 1364. As backbone size

and tree domain size are inversely correlated in the SR-EV model, this implies that the

number of steps within tree domains increases in the heat shock case, which is consistent

with Hi-C experiments. The question that arises from these observations is why are there
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less contacts within loops in the heat shock than in the control case, provided that the

tree domains are less populated in the latter case.
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Figure 2.19. Distributions of the number of branches in the SR-EV popu-
lations for the control (red) and heat shock (black) cases show a decrease
in the number of SR-EV branches, proportional to the number of TADs, in
the heat shock condition.

By comparing with the SRRW results that do not include excluded volume, it

is reasonable to conclude that the decrease in contact probability at shorter genomic

distances in the heat shock case results from the separation of the overlapping beads

by introducing the excluded volume effects in the SR-EV model. On the other hand,

for the control case, the clusters of beads are more numerous than in the heat shock

case and, consequently, the contact probability is larger at smaller to medium genomic

distances. For larger genomic distances, the contact probability is dominated by the inter-

cluster interactions. Since the heat shock case is associated with large clusters that have

considerable surface areas, they favor a higher inter-cluster contact probability than in

the control case.
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To visualize what those changes connote for actual chromatin conformations, we

show in Fig. 2.20 renderings of example conformations for α = 1.15 (control) and α = 1.10

(heat shock). In a simple representation, where SR-EV steps are colored by their location

along the chain, the differences in chromatin rearrangements do not stand out. However,

if we represent the backbone chain as a linear molecule (in red) and the branches as

spheres (in grey), we can appreciate a clear difference in the granularity between the two

conditions. The volume of the spheres is proportional to the number of steps contained in

the corresponding branch. There are fewer branches containing many more steps in the

heat shock case compared to the control case.

The p.d.f. for the length of the jump steps also sheds light on the origin of the

observed changes. The first moment of Eq. (2.2) is 1.87 for the control case, and 1.91

for the heat shock one. This difference, although small, reflects that less dense branching

structures are observed as a smaller contact probability for the heat shock compared to

the control case at shorter genomic separations. For larger genomic separations, since

the branching structures (spheres) are larger for heat shock, the inter-branch contacts are

more likely than in the control case.
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Figure 2.20. (A&B) Representation of a typical conformation for (A) α =
1.15 (control) and (B) α = 1.10 (heat shock). (C&D) SR-EV backbone in
red, and branches represented as grey spheres, the volume of which corre-
sponds to the size of tree domains, for (C) control and (D) heat shock cases.
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2.3.5. Conclusions and Discussion

Here, statistical differences between the organization of chromatin under normal condi-

tions and after heat shock have been investigated by experimental methods and compared

to a novel theoretical model. The study includes bulk Hi-C, which measures alterations

in genome-wide connectivity for millions of cells, and PWS microscopy, which determines

differences in nuclear mass density distribution for hundreds to thousands of cells at

the single-cell level. The theoretical results were obtained with the novel Self Returning-

Excluded Volume (SR-EV) polymer model, where ensemble averages are determined from

the aggregate behavior of 1000 conformations.

PWS analysis is based on the assumption that the mass density distribution of

chromatin can be represented by a mass fractal model, implying a power-law behavior

for the chromatin mass density ACF. The experiments use this assumption to interpret

the output of the PWS signal in a more biologically meaningful way, producing a spatial

map of chromatin packing scaling, D, for each acquired image. We have performed an

analogous computational experiment using the SR-EV model. We found that, in general,

individual conformations do not produce a mass density ACF that can be well described

by any one power-law coefficient for each conformation, as there is a heterogeneous dis-

tribution of packing scaling coefficients at the single-conformation level. However, the

ensemble average mass scaling behavior can be described by power-law scaling. More-

over, the histogram of all D values derived from the individual SR-EV conformations

produces a similar result as the average nuclear D distribution determined by PWS mi-

croscopy experiments. Thus, PWS microscopy and the SR-EV analysis produce a con-

sistent description in relation to the expected chromatin mass density ACF. Importantly,
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SR-EV provides a robust explanation for how heterogeneous mass scaling behavior at

the single conformation levels can produce ensemble averages that can be described with

one chromatin packing scaling exponent. This is an underlying assumption of our in-

terpretation of population-wide PWS microscopy measurements. Additionally, although

ChromSTEM/TEM results demonstrate similar mass scaling behavior as observed with

SR-EV [? 167, 166], there are intrinsic limitations of sample size for these measurements

and they are currently unable to reconstruct exact trajectories of chromatin conformation.

Thus, unlike ChromSTEM/TEM measurements, we can use SR-EV to determine changes

in both statistical mass density distribution and genome connectivity.

The SR-EV depends on a single parameter α. Chromatin under normal conditions

is well represented by SR-EV using α = 1.15, while chromatin after the heat shock

treatment corresponds to α = 1.10. The SR-EV model is a heuristic model, aimed

to provide a statistical description of chromatin structure. Thus, the choice of these

particular values for α is supported by the comparison with the experimental results.

Nevertheless, our findings support the idea that α is related to the temperature or thermal

history of the system. The SR-EV model allows for a graphical 3D representation of the

reorganization of connected chromatin structure triggered by the heat shock treatment,

which is unattainable by experiments alone. The branching patterns emerging from the

SR-EV backbone are different for each condition. The number of branches is smaller in

the case of the heat shock than in the control case, but the size of the branching structures

are larger for the heat shock case. The interplay between the effects of excluded volume

interactions and the number of elements per branch (e.g., size of tree domains) results in a
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higher probability of contacts at shorter genomic separations for the control case, and the

opposite for larger genomics distances, all of which were validated by Hi-C experiments.

The fact that the salient chromatin features can be explained by an abstract folding

algorithm described by the SR-EV statistics indicates the existence of universal principles

of chromatin architecture that are mechanism-independent. Our results suggest a global

coupling between different chromatin properties including domain hierarchy, domain size

distribution, backbone openness, packing heterogeneity, and genomic interactions. As all

of these properties can be modulated with just one folding parameter, α, this indicates

a substantial dimensionality reduction of chromatin folding. This folding picture also

stresses the importance of understanding the 3D genome from a data structure point of

view on top of polymer physics.

The existence of hierarchical tree domains are hypothesized to be the result of a

concert of biophysical mechanisms which potentially create branching structures, includ-

ing DNA supercoiling [152, 202, 51] and CTCF-cohesin-mediated loop extrusion [251, 90].

Future studies employing the SR-EV polymer model could include dynamical simulations

which investigate mechanisms contributing to chromatin organization, including the phe-

nomena of phase separation, the influence of architectural proteins that occupy physical

space and could constrain positions of domain structures, and the study of crowding-

mediated effects of transcription as demonstrated by [184, 288] (see Chapter 3). Such

computations could be paired with experiments that perturb specific mechanisms and

measure changes in chromatin structure and dynamics to better uncover key mechanisms

determining fundamental chromatin structure.
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2.3.6. Supplementary Material

2.3.6.1. SR-EV Energy Minimization Procedure Removes Overlaps. There are

several potential methods to remove the overlap. Here, we describe one of those possibil-

ities. After generating an SRRW conformation, we perform the following steps:

(1) We create a force field where each point is transformed to a Lenard-Jones particle

with σ = 1 and ϵ = 1.

(2) Each SRRW step is considered as a harmonic bond with equilibrium distance

equal to the original SRRW step size.

(3) Each pair of consecutive steps is considered as an angular potential with the

equilibrium angle equal to the original angle of the SRRW conformation.

(4) We perform an energy minimization using the new force field and the original

SRRW conformation as reference for position restraints.

(5) We stop the minimization once all particles are separated by at least 0.9σ.
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2.3.6.2. Supplementary Figures.

Figure 2.21. Self-Returning Random Walk (SRRW) reproduces key experi-
mental observations of chromatin structure with just one folding parameter.
(A) Example rendering of SRRW with different colors representing differ-
ent genomic regions along the linear sequence. (B) The SRRW’s topological
architecture featuring random trees connected by an open backbone. Tree
nodes are formed by frequent self-returning of short steps. (C) Coarse-
graining diverse epigenetic states at the nanoscale into a wide distribution
of step sizes. One step approximately maps to 10 nucleosomes, or 2 kbp
of DNA. The balls represent histones, and the lines represent DNA. The
arrows represent the coarse-grained steps in the SRRW procedure. (D)
Chromatin mass scaling as determined by ChromSTEM analysis. a.u., ar-
bitrary units. (E) SRRW mass scaling of the modeled chromatin sampled
over 1000 SRRW trajectories. (F) Hi-C experiments from [251] determined
that contact probability scaling within TADs has a lower absolute contact
probability scaling |s| < 1 and then transitions to a higher contact probabil-
ity scaling at larger length scales. (G) Contact probability scaling of SRRW
compared to Random Walk (RW). As a guide to the eye, the dashed line
shows power-law scaling, with exponent s = −1. The SRRW reproduces
the two scaling regimes observed by experiments in (F). (H) Structures of
the modeled chromatin at different genomic scales demonstrate a hierarchi-
cal organization of SRRW tree domains.
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Figure 2.22. Mean quadratic end-to-end distance as a function of the ge-
nomic separation s for the SRRW and SR-EV models and for α = 1.15 and
α = 1.10, as indicated. The results are averages over ensembles composed
of 1000 individual conformations. The scaling behavior shows a strong ef-
fective attraction resulting from the frequent folding of the SR-EV polymer
which describes chromatin structure.



174

CHAPTER 3

Chromatin Packing Behavior Determines Phenotypic Plasticity

and Responsiveness to Chemotherapy
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3.1. Introduction

Most perturbations a eukaryotic cell experiences occur at non-replicative time

scales. These perturbations are remarkably varied, range in intensity, and can be com-

pletely distinct from previously encountered stimuli. Examples exist throughout the hu-

man body, including within the skin, the alimentary tract, the immune system, the respi-

ratory tract, the reproductive system, and in malignancy. Consider the epithelial lining of

the digestive and respiratory systems. While both systems are constantly renewing their

lining, the majority of functional cells within these tissues persist for days to weeks after

replication. During their lifespan, these cells are exposed to a wide range of nutrients

and toxicants that necessitate modification of gene expression to carry on basic cellu-

lar functions across these variable conditions, including nutrient absorption, regulating

ionic homeostasis, maintaining a sufficient mucosal barrier, excreting waste products, and

secreting immunoglobulins.

No better example may exist than malignancy, as tumor cells are remarkably adept

at acclimating to a broad spectrum of cytotoxic chemotherapies and radiation exposure,

while evading detection from the myriad tools present within the immune system. Further-

more, in the field of carcinogenesis, the distinction between healthy tissue and malignancy

becomes blurred as seemingly normal cells acquire cancer-like traits [9, 289, 19]. These

capabilities evoke a critical question – how do individual cells acclimate to fluctuating or

completely novel conditions? Likewise, how do collections of cells, such as an organ or a

tumor mass, acclimate in aggregate to a heterogeneous, rapidly evolving environment?

One widely explored mechanism to respond to such varied conditions is to have

a level of predetermined functionalization: intermixing specialized cells within an organ
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to carry out specific roles. Beyond establishing pre-coordinated responses, an intriguing

possibility is for cells and cell populations to have an encoded level of phenotypic plas-

ticity in order to acclimate to novel conditions in real time [234, 270]. In the context of

multicellular systems, the level of phenotypic plasticity encoded would be a product of

cellular malleability, the functional responsiveness of cells toward end-stable states upon

external stimulation, and the level of intercellular heterogeneity, the diversity of states

that are observed within the same population at a given time.

Transcriptional malleability is related to cancer cell survival in response to

chemotherapy as well as the functional responsiveness of immune cells to microbes

[5]. Recent work using single-cell RNA and DNA sequencing technologies has also

demonstrated that transcriptional heterogeneity is characteristic of chemoevasive tumors

[38, 272, 263, 158]. Furthermore, the cancer state is associated with considerable structural

[147, 23], epigenetic [73, 8], and mutational heterogeneity [157, 73] – all of which have

been demonstrated to be independently linked to chemotherapeutic resistance, metas-

tasis, survival and resilience in multiple cancer models. The basis of chemoevasion in

cancer chemotherapy models remains poorly understood due to a lack of methods that

can image and detect relevant changes in rare chemoevasive subpopulations. Indeed, the

efficacy of sequential or combination treatments of some solid tumors with conventional

chemotherapies produces diminishing returns for each round of therapy [126]. Newer

immunotherapies target a priori identifiable transformations to recruit the patient’s own

immune surveillance for clearance. However, the likelihood of efficacy for both chemother-

apy and immunotherapy depends in part on the intrinsic heterogeneity within the tumor,

which itself increases as a result of cytotoxic intervention [187, 188]. Despite the evidence
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that this tumor heterogeneity is a key determinant of chemotherapeutic efficacy, there are

no existing strategies that definitively decrease intratumor heterogeneity across all tumor

types.

Both the malleability and heterogeneity of gene expression within cell populations

could result from the physical organization of chromatin. Although aberrant chromatin

remodeling across multiple length-scales has been correlated with changes in gene expres-

sion profiles related to malignancy (see Chapter 1.2), to date no one aspect of chromatin

structure has been able to predict both aspects of phenotypic plasticity that relate to

chemoevasion potential. This chapter aims to uncover a genome-wide regulator of phe-

notypic plasticity that is able to predict responsiveness to cytotoxic stressors, such as

chemotherapy treatment in cancer cells. The underlying hypothesis of this work is that

large-scale gene expression patterns, which influence phenotypic outcomes, are influenced

by the statistical distribution of chromatin packing into PDs (as characterized in Chapter

2) due to crowding-mediated effects. Briefly, macromolecular crowding influences the ef-

ficiency and kinetics of transcription reactions (see Chapter 1.4.4) and chromatin density

is the major crowder in the nucleus [5, 4, 6].

First, to test the hypothesis that the statistical packing of chromatin structure is

a regulator of both transcriptional malleability and intercellular heterogeneity, we devel-

oped the chromatin packing macromolecular crowding (CPMC) model. CPMC describes

transcription as a series of chemical reactions occurring in a heterogeneous, crowded en-

vironment. Pairing the CPMC model with single-cell RNA sequencing (scRNA-seq),

ChromTEM and PWS microscopy, we demonstrate that sensitivity of transcriptional
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changes to chromatin packing scaling is dependent on three physical descriptors of chro-

matin PDs: domain size, average chromatin density, and, especially, chromatin packing

scaling. Additionally, average D of PDs determines both the level of transcriptional mal-

leability and heterogeneity in cancer cell populations exposed to chemotherapy.

Next, we extend the CPMC model to study the role of statistical chromatin confor-

mation in chemoevasion that is independent of the underlying tumor model. We term this

new model the Chromatin-Dependent Adaptability (CDA) model. Here, we show that

chromatin packing scaling is tightly paired with adaptability and chemoevasion potential

of cancer cells. Leveraging this information and the capability of live-cell PWS microscopy

to measure changes in chromatin packing within chromatin PDs, we identify compounds

that decrease average chromatin packing scaling of cell populations and increase cancer

cell death upon co-treatment with chemotherapy.
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3.2. Chromatin Packing Macromolecular Crowding (CPMC) Model of

Transcription

The CPMC model considers transcription in dilute, ex vivo conditions as a series

of diffusion-limited chemical reactions that use DNA, TFs, and RNA Pol II to produce

mRNA (Fig. 3.1A). The total production of mRNA in these conditions will depend on the

concentration of reactants ([C]tot; Fig. 3.1B), the rate of polymerase elongation (km; Fig.

3.1C), and the dissociation rates of TFs and Pol II from DNA (KD: Fig. 3.1D). These

molecular factors are well-studied regulators of gene expression in vitro. For example,

at the scale of nuclear compartments, the formation and dissipation of TADs can alter

local TF concentrations [56]. In addition, post-translational histone modifications alter

nucleosomal stability, thereby influencing the rate of Pol II elongation [287]. Other post-

translational modifications of RNA Pol II itself independently control polymerase activity

[48]. Furthermore, gene motifs determine binding affinities of Pol II and TFs, resulting in

varied dissociation constants of these molecules from their respective target genes [130].

Compared to ex vivo conditions, the eukaryotic nucleus is a highly crowded, het-

erogeneous environment (Fig. 3.1E). To model transcription reactions within such an

environment requires consideration of the length scales involved. At the smallest scale

(within ∼20 nm of a gene, i.e., the “transcription interaction volume”), macromolecular

crowding (ϕin) influences transcription by affecting the mobility of transcriptional reac-

tants and the dissociation rate of these molecules from DNA [184, 197, 142]. In addition,

the accessible surface area of chromatin determines the number of DNA binding sites

available to transcriptional reactants. The probability of a gene promoter to be available

for transcription depends on its local accessible surface area. At these small length scales,
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transcription can be modeled as a network of chemical reactions involving TFs, RNA Pol

II, and DNA. TFs bind to their respective DNA binding sites and recruit RNA Pol II to

gene promoters, which, in turn, bind DNA. These series of reactions result in intermediary

transcription complexes that stochastically transcribe genes into mRNA. Each reaction

coefficient depends on local crowding effects, which can be calculated using BD and MC

simulations. Gene expression for particular crowding conditions is calculated by solving

the steady-state network of equations that models these transcription reactions [184, 142]

(see Chapter 1.4.4).

Notably, the most prevalent macromolecular crowder in the nucleus is chromatin.

Thus, local chromatin density within the interaction volume of a gene should have a

profound effect on transcription processes. Recent electron microscopy studies have shown

that chromatin packing density is highly heterogeneous across the genome. Some genes

have interaction volumes with exceedingly high densities (CVC∼0.5), while others may be

positioned in regions of the nucleus with CVC as low as ∼0.1 to 0.2 [212]. One approach

to study the effect of local crowding on transcription in cells would be to experimentally

measure the local density of chromatin near every gene using electron microscopy and

pair these measurements with in situ mRNA levels. This, however, is beyond existing

technical capabilities, and an alternate approach is needed.
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Figure 3.1. The Chromatin Packing Macromolecular Crowding (CPMC)
model integrates molecular and physical regulators of transcription. The
regulators influencing transcription reactions can be generally divided into
two categories: (A-D) molecular regulators (km, KD, and [C]tot) and (E-H)
physical regulators (D, ϕin,0, and Nd). (A) The CPMC model describes
transcription as a series of diffusion-limited chemical reactions. Ex vivo,
expression depends on (B) concentration of transcriptional reactants [C]tot
(TFs (green), RNA Pol II (yellow)), (C) RNA Pol II elongation rate, km,
and (D) the disassociation rate of RNA Pol II from the transcription start
site (TSS) KD. (E) (Left) In addition to the molecular determinants, tran-
scription reactions are influenced by the highly dense and complex nuclear
environment. The concentration of the main crowder within the nucleus,
chromatin, can be measured by ChromTEM. As an example, a ChromTEM
image of a nucleus from an A549 lung adenocarcinoma cell is shown. (Right)
ChromTEM measurements of CVC demonstrates that chromatin density
varies throughout the nucleus. (F) Representative PWS image of an A549
cell demonstrating the existence of chromatin PDs as regions of elevated
chromatin packing scaling, which vary throughout the nucleus. (G) A PD
with a higher D (right) has a more heterogeneous density distribution and
a greater accessible surface area compared to a PD with a lower D (left).
(h) Nd is the genomic size (in bp) of a chromatin packing domain and can
range from less than 100 kbp to several Mbp. PDs are illustrated by color
coding with each color representing a separate domain.

Instead of experimentally mapping gene expression to locus-specific crowding con-

ditions, the CPMC model probabilistically samples the polymeric properties of chromatin

in order to approximate transcriptional output of an ensemble of genes under similar

molecular and varying physical conditions [5, 125, 13]. A combination of molecular fac-

tors influences the relative initial expression levels of these genes [184]. In this thesis,

we focus on how physical regulators further modulate transcription reactions to produce

a final observed transcription rate. The model considers chromatin to be a disordered

heteropolymer that is heterogeneously packed in three-dimensional space. The statistical

packing of the chromatin polymer determines the volume fraction occupied by chromatin
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(CVC, the number of nucleotides acting together as a grouped polymeric entity (Nd), and

the packing scaling behavior (D) of these polymeric entities. Nd can be considered as the

number of nucleotides that are contained within a subset of the chromatin polymer that

has self-similar, power-law scaling properties. As described in Chapter 1.4.1, the power-

law scaling behavior describes the relationship between the length of a given segment of

the chromatin polymer (e.g. the number of nucleotides, N) and the size (r) of the physical

space occupied by the segment, N ∝ rD for N ≤ Nd.

We have been able to visualize the existence of PDs with power-law mass scaling

behavior using ChromSTEM (Chapter 2.2, Fig. 3.1E) and PWS (Chapter 2.2, Fig. 3.1F)

which are ∼100-200 nm in diameter with genomic sizes on the order of 100s kbp. PDs

are visualized as globular regions of higher D. The CPMC model considers a gene’s

interaction volume to be located within these PDs. Accordingly, the local environment

of a gene’s interaction volume is determined by the encompassing PD, each of which may

have its own average nuclear crowding density (ϕin,0) (Fig. 3.1E), chromatin packing

scaling D (Fig. 3.1F&G), and genomic size (Nd) (Fig. 3.1H). In addition, gene length

(L) partially influences the size of the interaction volume of a given gene, affecting the

range of crowding conditions the gene is probabilistically exposed to. The CPMC model

employs these physical regulators of chromatin, measurable by experimental nanoimaging

techniques, to approximate distributions of mass density and accessibility of chromatin,

all to determine transcription for each gene throughout the entire nucleus, a feat which is

currently experimentally infeasible [6].

The expected expression rate of a gene in vitro is the product of the steady-state

mRNA transcription rate of that gene (ϵ) and the probability of the gene to be on the
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accessible surface of the chromatin polymer (pg). Steady-state expression rate is a function

of molecular features surrounding the gene of interest (
⇀
m; e.g., concentrations of RNA

Pol II, TFs, and promoters) (Fig. 3.1B-D) in the context of local physical conditions

(Fig. 3.1E-H) [5, 143, 184, 197]. The probability of gene accessibility contributes to

the likelihood of a gene to interact with transcriptional reactants (TFs and RNA Pol II)

in vitro [86]. It is beyond technical capabilities to measure all molecular and physical

parameters of the model for specific genes at the single-cell level. Thus, we explore how

a given ensemble of genes with similar molecular features
⇀
m grouped by their initial

expression or associated with similar biological pathways as defined by gene ontologies

would respond to changes in average measurable physical conditions.

Specifically, we study how average nuclear crowding density, ϕin,0, average chro-

matin packing scaling, D, and genomic size of a PD, Nd, change the behavior of global

transcription processes. It is critical to stress that the CPMC model does not assume

that the chromatin polymer has the same power-law scaling behavior or constant density

throughout the entire nucleus, but that using population averages is instead an approxi-

mation due to existing experimental limitations. The model can further be extended to

consider each PD has its own chromatin packing scaling D as technological capabilities to

co-register chromatin packing, molecular, and genomic properties advance (see Chapter

3.5 for an experimental analysis of how local packing behavior influences gene expression).

Finally, in this model, nuclear crowding density within each interaction volume, ϕin, is

assumed to be constant relative to the time-scale of transcription, which occurs on the

order of minutes, in line with recent live-cell PWS imaging studies of chromatin mobility

[97].
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Given these considerations, in a population of cells, each gene will be exposed to

different crowding densities ϕin. Each ϕin will be sampled from the probability distribution

function f(ϕin), which is assumed to follow a normal distribution with mean ϕin,0 and

variance σ2
ϕin

≈ ϕin,0

(
1 − ϕin,0

)(
rmin/rin

)3−D
where rmin is the radius of the elementary

unit of chromatin (e.g., one DNA bp) and rin is the radius of the transcription interaction

volume [5]. Due to the mass-fractal nature of chromatin, rin = r0in + L1/Drmin for a

gene of length L, where r0in is the radius of the interaction volume for a single base pair

and is approximated from previous MC simulations of crowding effects [5, 184]. Thus,

the expected range of crowding densities each gene is exposed to is dependent on the

statistical properties of the PD where the gene is located, including D and ϕin,0, and is

further influenced by the length L of the gene.

The transcription rate ϵ itself is assumed to depend on molecular features
⇀
m as

well as on local crowding density ϕin surrounding the gene. We calculate all expression

rates under the assumption that molecular features
⇀
m remain constant throughout the

population, with physiologically relevant values used in previous MC and BD crowding

simulations (Table 3.1) [184]. This gives rise to the form of ϵ̄, the average expression rate

for an ensemble of genes that share a given
⇀
m as:

(3.1) ϵ̄ =

∫
ϵ
(⇀
m,ϕin

)
f
(
ϕin

)
dϕin

Likewise, a fractal model of chromatin PDs allows the CPMC model to calculate

the probability of a unit of DNA, such as a gene promoter, to be on the accessible surface
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of chromatin, pg [125]:

(3.2) pg = N
−1/D
d

Finally, merging accessibility with steady-state expression rate for a group of genes

with similar molecular regulators of transcription, the ensemble expression rate is:

(3.3) E = ϵ̄ · pg

To quantitatively analyze the effect of D on gene expression, and compare CPMC

model predictions with experiments, we calculate the sensitivity of gene expression as a

function of D. Sensitivity (Se) is the measurement of how a dependent variable, such as

gene expression, will change as a function of a perturbation to an independent variable,

such as D. In Chapter 3.8.2, we determine that SeD is much more sensitive to changes

in D and molecular factors compared to both SeNd
and Seϕin,0

by at least one order of

magnitude. Thus, the rest of the study will focus on determining cell death solely using

SeD, which we will refer to as Se.

Se of expression rate for any group of genes to changes in D is defined as:

(3.4) Se =
∂ln(E)

∂ln(D)

∣∣∣
E=Ei,D=Di

where Ei is the initial average expression rate of the group of genes sharing similar molec-

ular features
⇀
m and gene length L, and Di is the initial average chromatin packing scaling

before external perturbation.
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A positive Se for a given group of genes indicates that an increase in D, on average,

enhances their collective expression rate. Importantly, the CPMC model predicts the

output of transcription reactions that occur within the nucleus. Assuming that the half-

life of mRNA transcripts is dictated by cytoplasmic conditions, structural changes in

chromatin that alter D are not considered to alter the degradation rate of mRNA. Thus,

Se should be directly related to the number of transcripts produced for any group of genes

in the nucleus.

To solve Eq. 3.4, we utilized a Taylor series approximation of ϵ̄ around ϕin,0:

(3.5) ϵ̄ ≈ ϵ
(⇀
m,ϕin,0

)
+

1

2
σ2
ϕin

∂2ϵ
(⇀
m,ϕin

)
∂2ϕin

∣∣∣
ϕin=ϕin,0

where ϵ̄ ≈ ϵ
(⇀
m,ϕin,0

)
is a non-monotonic function of ϕin due the competing effects of

crowding on depletion interactions and molecular diffusion, and
∂2ϵ
(
⇀
m,ϕin

)
∂2ϕin

∣∣∣
ϕin=ϕin,0

≈

−
√
ϵ
(⇀
m,ϕin,0

)
κ quantifies gene expression as a function of crowding within a transcrip-

tion interaction volume. Expression rate κ is derived from a steady-state solution of rate

equations that model transcription and whose crowding-dependent rates were determined

from BD and MC simulations as described previously [5]. Although, in principle, the

exact form of
∂2ϵ
(
⇀
m,ϕin

)
∂2ϕin

∣∣∣
ϕin=ϕin,0

as a function of ϵ
(⇀
m,ϕin,0

)
may depend on which com-

ponent of
⇀
m is being varied, i.e. κ = κ(

⇀
m), in practice κ is only weakly dependent on

⇀
m.

In other words,
∂2ϵ
(
⇀
m,ϕin

)
∂2ϕin

∣∣∣
ϕin=ϕin,0

depends on
⇀
m primarily through ϵ

(⇀
m,ϕin,0

)
, with the

average expression rate as the “common dominator” of multiple molecular factors. Thus,

predictions of the CPMC model regarding the effects of physical regulators on ensemble

gene expression should be robust to changes in molecular factors.
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Combining Eq. 3.1,3.2,3.3,3.4,3.5 the Se of expression rate becomes:

(3.6)

Se ≈ 1

Di

lnNd −
κ

8ϵ̄
(σ2

ϕin
)2

(
1 +

√
1 +

16

(σ2
ϕin

)2
ϵ̄

κ

)[
Diln

(
rin
rmin

)
+

3−Di

Di

rmin

rin
L1/DilnL

]
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3.3. Statistical Descriptors of Chromatin PDs Regulate Sensitivity of Gene

Expression to Chromatin Packing Scaling

To first test the CPMC model predictions in vitro, we employed live-cell PWS mi-

croscopy to measure D (Fig. 3.2A&B) and ChromTEM to measure ϕin,0 (Fig. 3.2C&D)

paired with mRNA microarrays, RNA-Seq, and single-cell RNA sequencing (scRNA-seq)

to measure gene expression of cell populations under different conditions. Specifically,

average D of cell populations was calculated by first averaging D values from PWS mea-

surements within each cell nucleus and then averaging these measurements over the entire

cell population for each treatment condition. Utilizing ChromTEM, average chromatin

density was measured within each nucleus. As ϕin,0 represents the crowding contribu-

tions from all nuclear macromolecules, we added to CVC measured by ChromTEM an

additional 0.05 volume concentration contribution to account for nuclear mobile crow-

ders. In addition, we utilized publicly available DNA sequencing information to obtain

gene length and Hi-C data to approximate Nd from TAD sizes. While Nd might not

necessarily represent the organization observed in TADs (see Chapter 2.2.6), TAD size

was utilized as an approximate measure of Nd as these domains have been shown to obey

power-law scaling for contact probability [251]. Combining these methods, we then tested

the CPMC model’s predictions of Se of gene expression against in vitro measurements

for each identified physical regulator of gene expression.

To test the role of initial Di, we performed an RNAi knockdown of the chromatin

remodeling enzyme, Arid-1a (A-KD) in human colon carcinoma HT-29 cells, which re-

sulted in a lower Di compared to wild-type (WT) cells [6]. Next, we measured changes
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in D in serum starved WT and A-KD HT-29 cells before and 30 minutes after stimu-

lation with 10% fetal bovine serum, 100 nM epidermal growth factor (EGF), and 100

nM phorbol 12-myristate 13-acetate (PMA) [5]. In parallel, we measured gene expression

for these conditions at 5 hours utilizing mRNA microarrays. Genes were grouped for

WT and A-KD cells separately based on their relative initial expression during serum

starvation, and the experimentally measured sensitivity ∆ln(E)/∆ln(D) was calculated

for each group of genes. Here, ϕin,0 ∼0.39 was approximated by dividing chromosome

copy number by nuclear volume. As predicted by the CPMC model, experimental mea-

surements of the Se of gene expression show a transcriptional divergence due to D as

a function of initial expression in HT-29 cells. Here, transcriptional divergence denotes

the difference between the upregulation of highly-expressed genes and the downregula-

tion of lowly-expressed genes. In addition, we found that Di predominantly changes the

responsiveness of initially lowly-expressed genes (Fig. 3.2E&F).

These results indicate that populations of cells with a higher D would have a

higher level of transcriptional divergence than low-D cells. Cancer cells across a variety of

malignancies have been shown to have elevated chromatin packing scaling as biomarkers of

early precancerous changes [248, 98, 247, 59] and as predictors of cancer progression [134,

246]. Functionally, this suggests that D can act as a means to optimize transcriptional

response as is explored in subsequent sections.

Next, we tested the effect of average nuclear crowding density, ϕin,0, on gene expres-

sion sensitivity to changes in D. ChromTEM was employed to measure average chromatin

density for both human lung adenocarcinoma A549 cells and differentiated BJ fibroblast

cells, which had mean CVCs of 0.35 and 0.30, respectively (Fig. 3.2C&D, distribution
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of CVC values for each nucleus are shown in Fig. 3.10). Approximating for additional

crowding effects induced by non-chromatin mobile crowders, estimates of ϕin,0 were 0.40

in A549 and 0.35 in BJ cells. Each cell line was treated with 100 nM dexamethasone

(DXM) to modulate D, which was measured by PWS microscopy. Gene expression of

both cell lines with and without DXM treatment was measured by RNA-seq. Sensitivity

of gene expression was measured as described above for each cell line. Interestingly, the

CPMC model predicts cells with a lower ϕin,0 have an attenuated bidirectional Se, an

effect confirmed experimentally in the lower chromatin density BJ cells (Fig. 3.2G). In

contrast, the higher chromatin density A549 cells (Fig. 3.2H) have a higher transcriptional

divergence.
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Figure 3.2. Comparison of the CPMC model with experimental measure-
ments of gene expression as a function of physical regulators Di, Nd, ϕin,0,
and gene length L. (A&B) Representative live-cell PWS microscopy im-
ages of nuclear D distributions scaled between 2.56 and 2.66 for (A) control
and (B) 12 hour dexamethasone-treated lung adenocarcinoma A549 cells.
Brighter red corresponds to higher D regions. (C&D) Representative heat
maps of CVC values from analysis of ChromTEM images of cell nuclei
from (C) A549 cancer cells and (D) BJ fibroblasts. Representative mag-
nified regions from each nucleus demonstrate average CVC=0.35 in A549
cell compared to 0.30 in BJ cells. (E-J) Comparison between the CPMC
model (solid lines) and experimentally measured (points) sensitivity of gene
expression to D (Se, y-axis) as a function of the initial relative gene expres-
sion (ln(Ei/Ēi), x-axis). (E) Cell populations with a higher initial Di = 2.7
(wild-type HT-29 cells) have a bidirectional Se curve that becomes atten-
uated if Di is lowered to 2.5 (shRNA knockdown Arid-1a HT-29 cells) (F).
Each point represents the average of 100 genes. Changes in D were induced
by cell treatment with 10% fetal bovine serum, 100 nM epidermal growth
factor (EGF), and 100 nM phorbol 12-myristate 13-acetate (PMA). The
CPMC model was able to explain 86% of the variance of the experimental
data for wild-type HT-29 cells and 51% of the variance for Arid-1a HT-
29 cells. (G) Se in cells with a lower average nuclear density (BJ cells,
ϕin,0 = 0.35; each point corresponds to 300 genes; explained variance (EV)
= 59%) is attenuated in comparison to that of cells with a higher nuclear
density (H) (A549 cells; ϕin,0 = 0.40; 100 genes per point; EV = 74%). (I)
Genes located within larger domains (Nd ∼2 Mbp, 12 genes/point, EV =
56%) have a lower initial expression, but have a positive Se to changes in
D in comparison to genes localized within smaller domains (Nd ∼50 kbp,
12 genes/point, EV = 37%). The change in D was induced in A549 cells
by treatment with 100 nM of dexamethasone. Nd was approximated based
on the corresponding TAD size: 2 Mbp TADs for the high Nd group of
genes vs. 50 kbp TADs for the low Nd genes. TAD size was measured using
the Arrowhead function from the Juicer Tools to analyze Hi-C data [72].
(J) Comparison between the CPMC model (solid line) with experimental
results (points, 60 genes/point) in HT-29 cells showing the effect of gene
length, L, (x-axis) on Se (y-axis). In agreement with the model, shorter,
initially lowly-expressed genes (blue curve, points, EV = 67%) are dispro-
portionally repressed by an incremental increase in D compared to longer
genes (high expression, red curve, points). Error bars represent standard
error from 4 biological replicates.
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This suggests that cells with smaller nuclear volume, such as immune cells, or

cells with increased chromosome copy number, such as malignant cancer cells, would be

predisposed to produce a more pronounced bidirectional response in gene expression to

stimuli compared to cells with lower chromatin density. These results demonstrate that

the gene expression sensitivity to chromatin packing scaling for cells with higher ϕin,0

results in an increased transcriptional divergence between initially highly- and lowly-

expressed genes.

We then tested the roles of domain size, Nd on Se. From our model, Nd determines

the probability of genes being on an exposed surface to allow transcription reactions to

occur, a relationship which depends non-linearly on D (Eq. 3.2). Consequently, the

CPMC model predicts that (1) genes in larger packing domains (e.g., Nd > 2 Mbp) would

be relatively under-expressed in comparison to those within smaller Nd domains (e.g.,

Nd < 50 kbp) and (2) genes within larger Nd domains would be more likely to become

enhanced as a function of increasing D (+Se). To test these predictions experimentally,

we utilized the Arrowhead function in Juicer tools to measure TAD sizes from Hi-C data

of untreated and DXM treated A549 cells [67]. As the dissociation and formation of TADs

has previously been shown to alter gene expression, for our analysis we only selected TADs

that were unaltered with DXM treatment. The top 20% largest (∼2 Mbp) and bottom

30% smallest (∼50 kbp) of these TADs were chosen to produce gene groups with roughly

equal sizes (∼130 genes in each group). Using RNA-seq to measure gene expression

and PWS microscopy to measure the change in D before and after DXM treatment, we

analyzed the sensitivity of expression of genes localized to smaller 50 kbp TADs compared

to those localized in larger 2 Mbp TADs (Fig. 3.2I). As predicted from the CPMC
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model, in vitro results demonstrate that genes within larger TADs have an overall higher

sensitivity to changes inD (Fig. 3.2I), while simultaneously having lower initial expression

compared to those within smaller TADs. Consequently, these findings suggest a regulatory

role of spatially confining genes into structures with self-similar statistical organization,

such as those found in TADs, in determining the probability of a gene being accessible

to transcription processes. Given that there exists significant intercellular variability in

TADs [82], this would suggest yet another mechanism that cells can use to regulate their

functional diversity within a population.

Finally, we tested the role of gene length, L, on the sensitivity of two fold lowly-

expressed (low) and two fold highly-expressed (high) genes in the serum starved WT

HT-29 cells described above. Using the built-in Mathematica function, GenomeData, to

obtain sequence length of genes, the sensitivity of gene expression to D was then cal-

culated as a function of their length. The model predicts shorter genes have a smaller

interaction volume, increasing the variance of crowding conditions these genes are ex-

posed to. Consequently, an increase in D should further increase fluctuations in crowding

concentrations surrounding these shorter genes, causing initially lowly-expressed genes to

further reduce their expression in proportion to decreasing L. However, genes with an

initially higher expression level will be relatively unaffected by changes in L due to more

optimal molecular characteristics (e.g., high TF and RNA Pol II concentrations) and ini-

tial crowding conditions these genes are exposed to. In line with the CPMC model, our

experimental microarray data demonstrates that shorter, initially lowly-expressed genes

become disproportionately downregulated as a function of increasing D, whereas length

minimally influences initially highly-expressed genes (Fig. 3.2J).
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3.4. Chromatin Packing Scaling Regulates Phenotypic Plasticity

A major implication of the CPMC model is the role physical chromatin structure

plays in shaping gene expression. Thus, the model could provide a mechanistic link be-

tween two aspects of phenotypic plasticity of cell populations: transcriptional malleability

and intercellular transcriptional heterogeneity. In this case, we can consider transcrip-

tional malleability to be the average change in expression of a gene in response to an

external stimulus, while transcriptional heterogeneity can be thought of as the range in

expression levels of each gene across a cell population. While there is likely to be increased

complexity that results from cell to cell variations in average chromatin density and D,

here we test how heterogeneity and malleability are influenced by average chromatin pack-

ing scaling within cell populations. An ideal testbed for this mechanistic integration is

cancer. Multiple lines of evidence have shown that chromatin structure is nearly univer-

sally transformed in malignancy [263, 45, 148] (see Chapter 1.2). Since (1) elevated D is

a hallmark of malignancy [23], (2) there is an emergent role of intercellular heterogeneity

in determining chemotherapeutic responsiveness and (3) cancer cells rapidly alter their

gene expression to overcome cytotoxic stressors [214], we hypothesized that cancer cells

could leverage physical transformation within the nucleus to gain survival advantages.

Therefore, we wanted to test if cells could utilize chromatin packing scaling as a regula-

tor of both transcriptional malleability and heterogeneity to achieve a rapid response to

external stressors.
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3.4.1. Chemotherapy Treatment Selects for Cells with Increased Chromatin

Packing Scaling

We first tested whether chemotherapy treatment of cancer cells resulted in a pre-selection

of high D cells. Using PWS, we measured changes in D for A2780 cells before and after

chemotherapy treatment with 5 nM paclitaxel (PAC) for 48 hours. We also monitored

cell coverage, which represents survival of a cell population. Here, we define high-D cells

as those that fall within the top 25th percentile of D in the A280 cell population prior

to paclitaxel treatment. We then measured the percentage of high-D cells at 48 hours

after paclitaxel treatment and observed an increase in the percentage of high-D cells in

paclitaxel-treated cells compared to the control population (Fig. 3.3B). In combination

with coverage measurements, which demonstrated significant cell death after 48 hours of

paclitaxel treatment, our results indicate that high-D cells have an increased survival rate

when exposed to chemotherapy (Fig. 3.3B&C).

To ensure that this trend can be extended beyond ovarian cancer and taxel

treatment, we then performed additional PWS analysis. Over the course of a 48 hour

chemotherapeutic intervention, the average population D of colon cancer HCT116 cells

treated with oxaliplatin increased, while D in control cells remained at a similar level (Fig.

3.11A). We also observed an increase in D upon chemotherapy treatment in multiple can-

cer cell lines with three classes of chemotherapy drugs: DNA intercalators (oxaliplatin),

microtubule assembly inhibitors (paclitaxel and docetaxel), and nucleotide analogs (5-

fluorouracil and gemcitabine) (Fig. 3.11C&D). We additionally tested two paired cell

line models previously described to confer chemotherapeutic resistance by different mech-

anisms and determined that the high D state is maintained once a cancer cell line has
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become stably chemoresistant (see Chapter 3.8.4). Overall, this demonstrates that a

higher chromatin packing scaling allows cancer cells to better evade a stressor across

multiple cell lines.

However, these population level studies did not elucidate whether this increase in

D was due to preferential killing of cells with low-D or a transformation of low-D cells to a

high-D state. To answer ths, we tracked clusters of HCT116 through a 48 hour oxaliplatin

treatment to determine how initial D changes due to chemotherapy. We observe a clear

trend in that most of the surviving clusters had a higher D prior to treatment and that cell

clusters with initially lower D that evaded chemotherapy experienced the largest overall

increase in D from chemotherapy treatment (Fig. 3.11B). Thus, in order to survive

chemotherapeutic stress, cells must increase their average D.

3.4.2. Transcriptional Divergence and Malleability

According to the CPMC model, the dependence of transcriptional malleability on D

results from the observed asymmetric response of upregulated and downregulated genes to

changes in D (Fig. 3.2), which we denote as transcriptional divergence. Here, we focus on

changes in gene expression caused by an external stimulus, specifically chemotherapeutic

stress. Chemotherapeutic induction of apoptosis has been shown to depend on the rate

of change in expression of critical genes (e.g., p53) and not their steady-state levels alone

[214]. Accordingly, mechanisms which increase the rate of upregulation of these critical

genes would facilitate the development of cellular resilience to stressors. Consider two

populations of cells that have a baseline difference in their average initial D, Di. These

two populations are then exposed to the same exogenous stressor and a series of stress



199

signaling pathways are activated in an attempt to overcome the perturbation. The cells’

survival now depends, in part, on the increased expression of these genes within a critical

time frame. The CPMC model predicts that the population of cells with initially higher

D will be more likely to upregulate these critical genes (Fig. 3.3A).

To quantify the effect of initial D on transcriptional responsiveness, let mRNA1,a

be the initial expression (i.e., the number of mRNA transcripts) for a given gene in

cell a with initial chromatin packing state Da. At time point t = 0, a stimulus pro-

duces an increase in the gene’s rate of expression from E1,a to E2,a. Without loss of

generality, we assume that the expression rate E2,a remains stable over time. In other

words that a steady-state expression has been reached poststimulation. For a non-steady-

state treatment see Chapter 3.6. We also assume that the rate of cytoplasmic mRNA

degradation, ν, remains constant after stimulation. The relative change in expression

at time t is
(
mRNAa(t) − mRNA1,a

)
/mRNA1,a =

(
E2,a/E1,a − 1

)(
1 − e−νt

)
, where

mRNA1,a = E1,a/ν is the pre-stimulation steady-state expression. This relative change

in expression increases with the ratio E2,a/E1,a, which is itself a function of both molecular

features and the chromatin packing state surrounding the gene. This can be illustrated

by comparing the response of an individual gene to an exogenous stressor in two cells,

a and b. Let the same gene in both cells be associated with similar molecular features

[
⇀
mi,a =

⇀
mi,b, i = 1, 2], but different chromatin packing states Da and Db, with Db > Da.

From Eq.3.4, dE
E

= Se(D)
D

dD, it follows that:

(3.7) Ei,b = Ei,a exp

[∫ Db

Da

Sei(D
′)

D′ dD′
]
, i = 1, 2

where Sei(D) is the sensitivity of expression state Ei,a.
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Under these conditions, the effect of D on relative changes in transcription in cell

b compared to cell a would be defined as:

(3.8) δ =

(
E2,b

/
E1,b

)(
E2,a

/
E1,a

) = exp

[∫ Db

Da

Se2(D
′)− Se1(D

′)

D′ dD′
]

Within the physiological range of transcription, Se is an increasing function of E

(Fig. 3.2) and, as E2 > E1 for both cells, δ > 1. Consequently, the same stimulus will

result in enhanced upregulation of the same gene in cell b with higher Db compared to

cell a, driven by the differences in chromatin packing scaling between the two cells. This

effect is expected to be particularly pronounced for initially lowly-expressed genes with

Se1 < 0 that undergo a significant amplification (Se2 > 0) upon stimulation. We see

that δ is directly related to the transcriptional divergence and the shape of the function

Se(E) (Fig. 3.2). A faster rise of Se as a function of E results in a higher transcriptional

malleability, δ. For cells a and b with small enough differences between Da and Db,

δ = 1 + (Se2 − Se1)(Db − Da)/Da. This implies that factors that tend to increase

transcriptional divergence, including higherD, higher chromatin density ϕin,0, and smaller

Nd, would be expected to result in a higher transcriptional malleability.
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Figure 3.3. Chromatin packing scaling increases the transcriptional mal-
leability of cancer cells. (A) In response to a stressor, such as a chemother-
apeutic agent, cells with a higher level of transcriptional malleability may
have the ability to respond faster, which may lead to an increased probabil-
ity of survival. Cells with higher average D (right, Db) have increased rates
of change in gene expression induced by an exogenous stressor by a factor
δ relative to the changes in lower-D cells (left, Da). For the higher-D cells,
this may increase the probability of the cell remaining viable by reaching
a critical threshold of expression of pro-acclimation genes compared to the
lower-D cell which is unable to meet this threshold. (B&C) The fraction
of high-D cells in a cell culture increases after treatment with paclitaxel
for 48 hours, suggesting that cells with higher D are more likely to survive
exposure to a cytotoxic chemotherapeutic agent. (B) The percentage of
cells having D above the top quartile of a control cell population (y-axis)
increases in cells that survive treatment with paclitaxel for 48 hours. For
both conditions, each dot represents percentage of high-D cells in one repli-
cate for a total number of N = 5 replicates per condition. (C) Combination
treatment with the D-lowering celecoxib agent and then paclitaxel for 48
hours (Combo) results in increased elimination of cancer cells compared
with untreated controls and cells treated with paclitaxel (PAC) alone. (D)
CPMC model predictions of the relative transcriptional malleability coeffi-
cient δ for initially lowly-expressed (blue spline) and highly-expressed genes
(red spline). Here, Da = 2.3 and Db = 2.5, which is comparable to exper-
imentally observed differences in celecoxib-treated versus untreated A2780
cells. (E) scRNA-seq on A2780 cells was performed to compare transcrip-
tional profiles of control A2780 cells (high-D population) and cells treated
with 75 µM of a D-lowering agent celecoxib (low-D population) and their
response to treatment with 5 nM paclitaxel (stressor) for 16 hours. Ini-
tially lowly-expressed and initially highly-expressed genes are defined based
on control expression levels. Genes are grouped based on their quantile
of log2(EPAC/Econtrol) and the mean and standard errors of each quantile
for initially lowly-expressed genes (blue dots, 300 genes/data point) and
initially highly-expressed genes (red dots, 100 genes/data point) are plot-
ted. (F) Gene ontology analysis identified biological processes that are most
significantly involved in the response to 48 hour paclitaxel treatment. Up-
regulated genes were defined as those with at least 2× increase in expression.
(G) D-facilitated upregulation (δ) of the stress-response genes identified by
the GO analysis (red points, 150 genes/data point) was similar to that for
all upregulated genes (blue points, 650 genes/data point).
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The functional significance of the transcriptional malleability coefficient δ is

twofold. First, for genes that are highly amplified post-stimulation (E2/E1 ≫ 1) the

relative increase in transcription at any given time after the stimulation is proportional

to δ:

(3.9)
[mRNA]b(t)− [mRNA]1,b

[mRNA]1,b
≈ δ[mRNA]a(t)− [mRNA]1,a

[mRNA]1,a

Second, the time τ required to reach a given level of expression E2 is dependent

on D and is inversely proportional to δ, τb/τa ≈ δ−1. This conclusion is applicable to

genes that are both upregulated as well as those that are downregulated in response to a

stimulus, an effect that might be especially consequential if decisions regarding cell fates

must be made within a limited time period after the introduction of the stressor [214].

To experimentally explore the relationship between D and transcriptional mal-

leability, we employed scRNA-seq to track gene expression changes of A2780 ovarian

adenocarcinoma cells in response to treatment conditions that modulate chromatin pack-

ing scaling, which was assessed using live-cell PWS microscopy. We then compared the

transcriptional malleability of populations of cells with different initial D values. As a

model system, we relied on chemically-induced modulation of D. To reduce D, we treated

A2780 cells with 75 µM celecoxib, a nonsteroidal anti-inflammatory agent, for 16 hours.

Previously, we have determined that in A2780 cells celecoxib reduces D by at least 8%

compared to untreated cells within 30 minutes of treatment [5]. As a model of high-D

cells, we used untreated A2780 cells. Both celecoxib-treated cells (low-D) and untreated

A2780 cells (high-D) were then exposed to a chemotherapeutic agent for 16 or 48 hours.

scRNA-seq was conducted using Illumina NextSeq500. Raw reads were aligned, mapped
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and used to calculate transcripts per million (TPM) for each condition using bowtie2 and

RSEM.

Inputting the experimentally observed difference in D into the CPMC model, we

estimated δ > 4 for initially lowly-expressed genes that become activated (Fig. 3.3D,

blue manifold) and a smaller increase in δ for initially highly-expressed genes that are

upregulated in response to stimulation (Fig. 3.3D, red manifold). We then tested if

these predicted trends are observed experimentally using scRNA-seq. Importantly, the

crucial window for response to chemotherapy frequently is thought to occur within 24

hours [214, 102]. Thus, we compared changes in gene expression for both high-D and

low-D A2780 cell populations after paclitaxel treatment for 16 hours. In agreement with

the CPMC model, the stimulation of initially lowly-expressed genes by chemotherapy

treatment in the initially high-D population (upregulation of expression rate from control

rate E1,b to 16 hr paclitaxel-treated rate E2,b) was much higher than that in the low-

D population (from celecoxib-treated rate E1,a to 16 hr combo rate E2,a), resulting in

δ ∼ 4 (Fig. 3.3E). This signifies that genes with initially lower expression in the pre-

stimulated state are upregulated 4× more in the high-D compared to the low-D A2780

cell populations. Likewise, a similar but mitigated effect was observed in initially highly-

expressed genes (Fig. 3.3E), in strong agreement with the model predictions.

Next, we tested whether these trends were independent of cell line and compound.

We performed parallel experiments using propranolol as a D-lowering agent in A2780

cells and celecoxib and propranolol to decrease D in more malignant TP53 mutant A2780

(M248) cells. These additional conditions demonstrated a similar effect of initial D on

transcriptional malleability in response to paclitaxel stimulation of high-D compared to
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low-D cell populations (Fig. 3.13). Finally, we tested if the observed effect of chro-

matin packing scaling influences genes specifically involved in functionally-relevant stress

response pathways. We first identified differentially expressed genes that, on average,

increased their expression at least two-fold in A2780 cells treated with paclitaxel for

48 hours compared to control cells. Gene ontology analysis of these upregulated genes

demonstrated the activation of multiple stress response pathways by paclitaxel treatment,

including DNA repair, autophagy, cell cycle arrest, and apoptosis (P < 0.05, Fig. 3.3F).

The effect of D on the activation of these established stress response genes was consistent

with the activation observed for all upregulated genes, with δ as high as ∼4 (Fig. 3.3G).

3.4.3. Chromatin Packing Scaling is Associated with Intercellular Transcrip-

tional Heterogeneity

Another key aspect of phenotypic plasticity that can be modulated by the disordered

packing of chromatin is transcriptional heterogeneity, or the range of expression levels

across genes exposed to similar molecular conditions. The CPMC model predicts that

transcriptional heterogeneity increases as a function of D due to increased variations in

both packing density, σ2
ϕin

, and gene accessibility (pg). To quantify this effect from the

CPMC model, the variance in ϵ across any given cell population, V arϵ, is [5]:

(3.10) V arϵ ≈
1

2

(∂2ϵ(⇀m,ϕin

)
∂2ϕin

∣∣∣
ϕin=ϕin,0

)2
σ4
ϕin
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Figure 3.4. Chromatin packing scaling regulates intercellular transcrip-
tional heterogeneity of cancer cells. (A-E) 3D projections of scRNA-seq
data (TPM values of 8,275 expressed genes) onto reduced t-SNE space for
5 conditions: (A) control cells (N = 46), (B) cells treated with 5 nM pa-
clitaxel for 16 hours (1 6hr PAC, N = 55), (C) 5 nM paclitaxel for 48
hours (48 hr PAC, N = 5), (D) 75 µm celecoxib for 16 hours (16 hr CBX,
N = 62), (E) and combination of 75 µM celecoxib and 5 nM paclitaxel for
16 hours (16 hr Combo, N = 59). The size of the cluster indicates the
transcriptional heterogeneity within the population of surviving cells for
each condition. (F) The radius of genomic space Rc (the radius of clusters
through A-E) increases as a function of D, which was measured by live-
cell PWS microscopy at each time point prior to sequencing. Cells treated
with paclitaxel (higher D) have greater transcriptional heterogeneity, espe-
cially when compared to cells treated with the D-lowering celecoxib agent.
Likewise, the CPMC model (red curve, right side y-axis) shows that inter-
cellular transcriptional heterogeneity increases withD. Error bars represent
the standard error ofD calculated from PWS measurements (x-axis) and Rc

(y-axis) for each condition. (G) Relative expression of high-D versus low-
D cells in response to paclitaxel treatment for genes associated with DNA
repair pathways, which are upregulated in 48 hour paclitaxel-treated cells.
For each condition (Control, 16 hr PAC, 2 hr CBX, 16 hr Combo), TPM
values of these genes (48 in total) were averaged within each cell. Next,
expression of paclitaxel-stimulated cells was normalized by the average of
the corresponding unstimulated population. The resulting intercellular dis-
tribution of relative expression levels is shown. Dashed lines represent mean
relative expression. Solid red and blue arrows represent the standard de-
viation of distributions EPAC/EControl and ECBX/ECombo, respectively. For
these stress response genes, cells with a higher initial D versus cells with
a lower initial D had an increase in transcriptional malleability (↑ δ) as
well as a higher intercellular transcriptional heterogeneity (↑ H). (H) Dis-
tribution of the relative expression of genes, as described in (G), in the
lowest quantile (10th percentile) of control expression levels (839 in total).
(I) Variance (σ2) of intercellular distribution of relative expression for each
percentile of control expression levels. Initially lowly-expressed genes show
an increased effect of chromatin packing scaling on increasing intercellular
transcriptional heterogeneity in response to paclitaxel stimulation compared
to that of initially highly-expressed genes in higher quantiles.
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Consequently, the transcriptional heterogeneity, or the standard deviation of

steady-state expression rate E in Eq. 3.3, becomes:

(3.11) H(D) = pg ·
√
V arϵ ≈

√
2

8
pg ·

(
σ2
ϕin

)2
κ

(
1 +

√
1 +

16(
σ2
ϕin

)2 ϵ̄κ
)

and the coefficient of variation (the ratio of the standard deviation to the mean

expression) is

(3.12) COV (D) =

√
2

8

(
σ2
ϕin

)2κ
ϵ̄

(
1 +

√
1 +

16(
σ2
ϕin

)2 ϵ̄κ
)

Both H and COV increase with D.

To investigate the association between D and intercellular transcriptional het-

erogeneity, using our scRNA-seq data we quantified the spread in transcriptional states

across each treatment condition. Focusing on overall transcriptional differences between

cells within the same condition provides better validation to the model than analyzing

the spread of all observed genes. Thus, we first used t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) combined with principal component analysis (PCA) to reduce

the dimensionality of the system on all cells simultaneously [285]. The dimensional-

ity reduction mapped each cell onto a three-dimensional projection. Distances between

cells in 3D space represent overall differences in transcriptional states, as has been de-

scribed by van der Maaten and Hinton [285]. Intercellular transcriptional heterogene-

ity for each cell population was quantified by the average radius of the cluster of cells,

Rc =
√

1
N

∑N
i=1

(
ri − rmean

)2
where ri is the position of each cell in the reduced spaced, N

is the total number of cells in each treatment group, and rmean = 1
N

∑N
i=1 ri. Intuitively, Rc
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can be thought of as the radius of relative genomic space. Consistent with predictions of

the CPMC model, we found that transcriptional heterogeneity, as measured by the radius

of genomic space, increases with D in response to paclitaxel treatment, which pre-selects

for high D cells, as shown in Fig. 3.3. Notably, after 48 hours of paclitaxel treatment,

the population of surviving cells had both higher D and increased transcriptional het-

erogeneity compared to control cells (Fig. 3.4A-C&F). In contrast, celecoxib treatment

reduces average D of cancer cell populations. Accordingly, cells treated with celecoxib for

16 hours had a lower transcriptional heterogeneity compared to control cells. In addition,

when these celecoxib-primed cells with initially lower D were treated with paclitaxel for 16

hours, they had a decreased transcriptional heterogeneity compared to paclitaxel-treated

control cells (Fig. 3.4D-F). Additional analyses quantifying the Euclidean distance be-

tween expression of stress response-associated DNA repair genes upregulated in 48 hour

paclitaxel treatment as well as the coefficient of variation of expression between cells in

the same treatment condition also demonstrate that cell populations with higher D also

have higher transcriptional heterogeneity (Fig. 3.14).
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3.5. nano-ChIA Validates CPMC in Individual Nuclei

In addition, we employed the STORM-PWS modality of our nano-ChIA platform

to investigate the relationship between chromatin packing behavior and molecular tran-

scriptional events in individual nuclei (see Chapter 1.3). Here, we use the CPMC model to

predict how chromatin packing scaling, D, modulates active gene transcription. As D of

a PD increases, the model predicts an increase in the accessible surface area of chromatin,

pg, within the PD. In addition, an increase in D increases the variance of crowding con-

ditions, σ2
ϕin

, to which the genes within the PD are exposed. As a result of the competing

effects of accessible surface and distribution of crowding conditions, at lower D, gene ex-

pression will increase with D up to an inflection point. Above this critical value of D, the

range of crowding conditions to which the genes are exposed becomes suboptimal. Thus,

after a certain critical D value, the transcriptional output is predicted to decrease. The

shape of this nonmonotonic relationship between D and gene expression is dependent on

the molecular and physical regulators of transcription defined in Chapter 3.2. For exam-

ple, higher concentrations of transcriptional reactants increase ensemble expression rates

across all D values (Fig. 3.5A). In addition, these more favorable molecular conditions

shift the critical D inflection point to higher values (Fig. 3.5A).

To test the predicted relationship between chromatin structure and gene expres-

sion experimentally, we used STORM-PWS to localize regions of active gene transcription

by labeling actively elongating RNA Pol II with the phospho-Ser2 antibody and imaging

with STORM, and then measuring the surrounding chromatin packing scaling with PWS

microscopy (Fig. 3.5 C&D). CPMC model predictions of transcription rates were in excel-

lent agreement with the in situ experimental STORM-PWS findings across multiple cell
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Figure 3.5. STORM-PWS imaging validates the relationship predicted by
CPMC between local chromatin packing behavior and active transcription.
(A) Multiple realizations of the CPMC model with varying molecular con-
ditions, specifically different concentrations of RNA Pol II, TFs, and pro-
moters. The modeling predicts that in all cases, the surrounding chromatin
packing scaling has a nonmonotonic relationship with gene expression. (B)
The relationship between D and the local concentration of active RNA Pol
II which correlates with gene expression level (N = 4 cells) compared with
one realization of the CPMC model. (C) STORM image of an M248 ovar-
ian cancer cell with labeled active RNA Pol II (green) overlaid on top of
chromatin packing scaling D map measured by PWS (red). (D) Magnified
view of the white square in (C).

lines, demonstrating a consistent nonmonotonic relationship between chromatin packing

behavior (D) and transcription (Fig. 3.5B) [45].
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3.6. Chromatin-Dependent Adaptability (CDA) Model

3.6.1. Model Description

Now that we had established that (1) chromatin packing scaling was a strong predictor

of two components of phenotypic plasticity, transcriptional malleability and intercellu-

lar heterogeneity, and (2) D predictably increases upon exposure to numerous types of

chemotherapeutic agents and across multiple cancer lines (see Chapter 3.8.4), as a next

step, we wanted to directly incorporate the effects of initial chromatin state on observed

cell phenotype. This led us to develop a model that mechanistically explores whether

average changes in population-level D directly contribute to cancer cell survival under

cytotoxic stress.

For this purpose, we extended our non-steady-state CPMC model to predict how

the chromatin-mediated changes in expression of certain critical genes contribute to cell

survival upon exposure to a novel cytotoxic stressor. We term our new model the

Chromatin-Dependent Adaptability (CDA) model. A schematic of the CDA model can

be found in Fig. 3.6.

Consider that a cell is exposed to an exogenous stressor and that the survival

of the cell is dependent on the change in expression of gene(s) within key biological

pathway(s) before a critical timepoint. This framework of understanding cell survival is

relevant for the field of cancer where, for example, the change in expression of p53 within

a certain amount of time after chemotherapeutic treatment determines whether cancer

cells undergo apoptosis [214]. Additionally, in the field of ecology the “plasticity-first”

theory of evolution stipulates that environmentally-initiated phenotypic plasticity of a
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natural population can facilitate evolutionary adaptation to a given stressor [160, 243].

This definition of phenotypic plasticity encompasses [160, 243]:

(1) The idea of a reaction norm, or transcriptional changes that contribute to fitness

of a phenotype in response to a stressor (i.e., transcriptional malleability).

(2) The fact that stressors uncovering cryptic genetic variation (i.e., transcriptional

heterogeneity) usually has negligible effects on phenotypic variation, except under

atypical conditions.

Such a framework has been successfully applied to modern ecological problems, such as

how corals survive rapidly changing environmental conditions [243].

The CDA model predicts that if a cell population is exposed to a potentially

cytotoxic stressor, that the population’s survival probability depends on the population’s

average packing behavior, which modulates transcriptional changes in response to the

stressor. To note, we are not considering that all cells will survive all stressors if they

upregulate or downregulate one specific gene or genes in a pathway. This is merely a

statistical model that evaluates cell survival in the context of a dynamic response to a

stressor that is preprogrammed by the average initial chromatin packing state, which

encompasses crowding conditions of all genes within the cell.

For any given gene(s) of interest, the number of transcripts will be up- or down-

regulated by x = N2/N1, whereN1 andN2 are the number of mRNA transcripts before and

after stress exposure, respectively. Without loss of generality, let us consider upregulation

with the understanding that gene downregulation can be treated with a similar formalism.

Let us assume that PDF (x) follows a log-normal distribution. This is a reasonable
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assumption considering that, in general, gene expression (i.e., N1 and N2) follows a log-

normal distribution and ln(x) = ln(N2)− ln(N1).

PDF (x) ≈ 1

s
√
2πx

exp

(
− ln(x/m)2

2s2

)
(3.13)

For s≪ 1, ln(m) ≈ µ, where µ is the mean and s approximates the coefficient of variation

(COV) of the upregulation of transcripts.

Let us now assume that a cell’s decision to survive a cytotoxic stressor within

a critical time period is dependent on the upregulation of certain stress response genes

above a threshold level xcrit. Thus, the probability of cell survival can be considered as a

step function of x/xcrit: if x > xcrit the cell survives, and if x < xcrit the cell dies. The

resulting probability of cell death, θ, can then be defined as the cumulative distribution

function of this threshold xcrit and:

θ(xcrit) = CDF (xcrit) =
1

2
erfc

(
ln(m/xcrit)√

2s

)
(3.14)

Next, we approximate the log-normal CDF as the Hill equation, which is simpler

to approach numerically

θ(xcrit) ≈
1

1 + (k/xcrit)n
(3.15)

where k ≈ m is the malleability and n ≈ 3/
√
π

s
is the inverse COV/heterogeneity.
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If we compare the upregulation of cell a (⟨D⟩ = Da) to that of cell b (⟨D⟩ = Db),

then we can calculate the death probability of cell b as:

θ(xcrit) ≈
1

1 + (kaγk/xcrit)
na
γn

(3.16)

where γk = kb/ka and γn = nb/na. Here, γk represents the ratio of the mean upregulation

N2a,b/N1a,b of cell b and cell a and γn represents the ratio of the COV of the upregulation

of the two cells.

Next, we must link the upregulation of critical gene(s) and cell survival with the

initial chromatin packing state of the cell using our CPMC model (see Chapter 3.2). In

the context of CPMC, k represents the transcriptional malleability, or the average change

in gene expression upon stimulation, and s represents the transcriptional heterogeneity, or

the range of transcriptional states accessible by a cell population. Both of these metrics

of phenotypic plasticity increase with D (see Chapter 3.4). Again, note that when we

consider the initial chromatin packing state of a cell we take the average of all descriptors

over all PDs of the cell. If a cell has a higher average D, for example, then this will

increase the probability of all genes within the cell to be localized to a PD that has a

higher average D.

Note, for steady-state conditions the number of mRNA transcripts (N) is not time-

dependent, i.e., ∂N
∂t

= 0. In steady-state, CPMC can predict N by determining expression

rate E and then using the relation E = Nν for mRNA degradation rate ν [215]. However,

under extreme cytotoxic stressors, such as treatment with chemotherapeutic agents, we

are not likely to be dealing with steady-state conditions. Here, we develop a formalism

for non-steady-state CPMC. Let a cell population be exposed to such a stressor at time
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Figure 3.6. Chromatin-Dependent Adaptability (CDA) model predicts cell
survival to cytotoxic stressors from the initial chromatin packing behavior
of cells. CDA model predicts that cells with higher average chromatin
packing scaling have both an increased average and spread of upregulation
of potentially critical genes for cell survival. Thus, high-D cells (in red) will
have a higher probability of upregulating key gene(s) beyond a threshold,
xcrit, before a critical cell decision timepoint. Consequently, these high-D
cells will have a lower death probability, θ, which will increase cell survival.
Conversely, low-D cells (in blue) might not be able to upregulate genes
beyond the critical threshold within the same amount of time, and will
have a higher death probability.

t = 0. The number of transcripts for a subsequent timepoint t can be determined from

the relation

∂N

∂t
=
∂E

∂t
(1− e−t/τ )(3.17)

where τ is the mRNA elimination time constant. τ is calculated from the mRNA half-life,

τ1/2 using the relation τ = 1
ln2
τ1/2. We consider τ1/2 = 10 hours [301]. We can approximate
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∂N
∂t

≈ N2(t)−N1

N1
as the average change in the number of transcripts and ∂E

∂t
≈ E2(t)−E1

E1
as the

average change in the mRNA production rate. Notice here that both mRNA transcript

number N2(t) and expression rate E2(t) after stress exposure are both functions of time

after treatment t.

Defining β = E2(t)
E1

and k = N2(t)
N1

, we can determine the transcriptional malleability

by:

k(t) = 1 + (β − 1)(1− e−t/τ )(3.18)

In relation to the death probability, θ, we consider that the cell makes a survival decision

after exposure to a cytotoxic stressor at time t = Tcrit.

If we know βa, i.e., the average upregulation of the expression rate for cell a, then

we can predict βb with CPMC using the relation

βb
βa

= exp

(∫ Db

Da

Se(βaE1, D
′)− Se(E1, D

′)
dD′

D′

)
(3.19)

Here, Se represents the sensitivity of gene expression to average chromatin packing scaling

D with initial expression E as described in Chapter 3.2. Thus, we predict the upregulation

of expression rate in cell b based on the differences in average D values between cell b and

cell a. We then can then determine kb = kaγk, which we need to calculate θ(xcrit) (see

Eq. 3.16), by plugging βb determined from Eq. 3.19 into Eq. 3.18.
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Next, we determine the time-dependent changes of transcriptional heterogeneity

for cell b using the relations:

sb(t) = COV

[
x =

N2(t)

N1

]
=

√
σ2
ϵ̄2,b/ϵ̄1,b

k(
ϵ̄2,b
ϵ̄1,b

)
(3.20)

√
σ2
ϵ̄2,b/ϵ̄1,b

=
ϵ̄2,b
ϵ̄1,b

√
COV [ϵ̄1,b]2 + COV [ϵ̄2,b]2(3.21)

sb(t) =
ϵ̄2,b
ϵ̄1,b

1− e−t/τ

1 +
(

ϵ̄2,b
ϵ̄1,b

− 1
)
(1− e−t/τ )

√
COV [ϵ̄1,b]2 + COV [ϵ̄2,b]2(3.22)

where COV [ϵ̄1,2] =
√
2G(ϵ̄1,2) increases with average initialD of the cell population. Here,

ϵ̄1,2 is the expression rate of a given gene per unit of DNA pre and post-stimulus, which

is defined by the following equations:

ϵ̄1,b = ϵ̄1,aγ(Da, Db, ϵ̄1,a)(3.23)

ϵ̄2,b = ϵ̄1,aβaγ(Da, Db, ϵ̄1,aβa)(3.24)

γ(ϵ̄) = exp

(∫ Db

Da

Se(ϵ̄, D′)
dD′

D′

)
(3.25)

where γ(ϵ̄) =
ϵ̄i,b
ϵ̄i,a

represents the average change in expression rate for cell a compared to

cell b before (i = 1) and after (i = 2) treatment with a cytotoxic stressor and is calculated

using the CPMC sensitivity Eq. 3.6. Substituting Eqs. 3.21,3.22,3.23,3.24,3.25 into Eq.

3.20, we can then calculate nb =
3/sqrtπ

sb
= na

γn
, which is necessary to calculate θ(xcrit) in

Eq. 3.16.
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3.6.2. Chromatin Packing Scaling Influences Death Probability of Cancer

Cells Treated with Chemotherapy

Thus, we can predict the death probability of cell b if we know betaa, the upregulation rate

of cell a, and Da and Db. Additionally, we must estimate the relative initial expression of

the given upregulated gene(s), ln(Ei/Ēi), the threshold of upregulation for cell survival

xcrit, and the critical decision timepoint Tcrit as well as other relevant parameters from

the CPMC model including average PD size, Nd, and average PD density, ϕin,0. Here, we

perform all calculations with Nd = 210 kbp, the median value for A549 PDs analyzed by

ChromSTEM (see Chapter 2.2), and ϕin,0 = 0.4, where we added the median CV C = 0.37

of A549 PDs to an estimated volume concentration of 0.03 for mobile crowders.

First, we investigated how the different model parameters contribute to overall

cell death probability. Both malleability, k, and heterogeneity, s, increase with average

nuclear ⟨D⟩ (Fig. 3.7A) as also demonstrated by the shift in the log-normal distribution

for gene expression upregulation (Fig. 3.6). For a set critical threshold, this means that

for higher ⟨D⟩ the overall distribution will be more likely to fall above xcrit (Fig. 3.6).

This is especially the case for genes with low expression levels before stress exposure,

which the CPMC model predicts will be upregulated to a greater extent than genes with

an initial higher expression. There is a general sigmoidal behavior between ⟨D⟩ and cell

death probability. For a specific case of βa = 10 and xcrit = 10, compared to a reference

Da = 2.6, lower ⟨D⟩ ≈ 2.2−2.5 has a death probability θ ≈ 1, which decreases sigmoidally

until it plateaus again between ⟨D⟩ ≈ 2.7−2.8 (Fig. 3.7B). As the threshold xcrit changes,

there is a shift in the sigmoidal distribution (Fig. 3.7B).
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Note that the sigmoidal relationship is also dependent on the initial relative expres-

sion of the critical gene(s). Genes with lower initial expression have a steeper sigmoidal

behavior, resulting in lower cell death for higher ⟨D⟩ values, compared to genes with

higher initial expression, which have death probabilities that are much less sensitive to

⟨D⟩ (Fig. 3.7C).

The critical timepoint for the cell death decision, Tcrit, is another important pa-

rameter in the CDA model. Cells usually exhibit signs of apoptosis between 5− 10 hours

after treatment with chemotherapy, although there is significant heterogeneity in apopto-

sis induction both within and across cell lines that is also dependent on dosage of cytotoxic

chemotherapeutic treatment [99, 127, 242]. Additionally, Mielgo et al. demonstrated that

paclitaxel treatment activates the proapoptic response within 6 hours, which is sufficient

for cell death induction by caspase 8 at later timepoints [191]. This indicates that in-

duction of caspases is a sufficient predictor of commitment to cell death. Here, we use

Tcrit = 7 hours. Fig. 3.15 demonstrates the effects of decision time on the relationship

between ⟨D⟩ and death probability. We calculated these death probability curves within

the range of Tcrit = 5− 10 hours and for Tcrit =24 hours, which represents an upper limit

for the cell death decision. Increasing Tcrit shifts the sigmoidal curve so that cells with

lower ⟨D⟩ have a decreased death probability.

The CDA model as derived can be applied to any potentially cytotoxic stressor.

Now, let us evaluate how this model performs for the specific case of cancer cells exposed

to chemotherapeutic agents. Specifically, we will compare model predictions to exper-

imental data for HCT116 cells which have been treated with oxaliplatin for 48 hours.

Briefly, an optimization procedure over βa and xcrit was performed to produce a best fit



221

Figure 3.7. CDA parameters influence death probability of cells under cyto-
toxic stress. (A) Cells with higher ⟨D⟩ have increased transcriptional mal-
leability k and heterogeneity s compared to reference cells with Da = 2.6.
(B) Death probability compared to ⟨D⟩ follows a general sigmoidal relation-
ship that is dependent on the critical upregulation rate of certain gene(s),
xcrit. Higher xcrit results in increased death probability, θ, for cells with the
same ⟨D⟩. (C) Initial relative expression of genes ln(Ei/Ēi) influences the
sigmoidal behavior of the ⟨D⟩ versus death probability relationship. Genes
with lower initial relative expression have a steeper sigmoidal curve. (D)
Agreement was found between the death probability curve predicted by the
CDA model and the experimental death probability values calculated for
cell clusters with varying initial ⟨D⟩ after a 48 hour oxaliplatin treatment
of HCT116 cells. After optimization, fitting parameters were determined to
be xcrit = 6.9 and βa = 19.1.

for the model to experimental data for these specific experimental conditions. For cells

within the same cell population, the model predicts a higher probability of cell death

for cells with lower ⟨D⟩ values due to their inability to alter expression levels above a
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critical level during chemotherapeutic treatment, which matches well with experiments

(Fig. 3.7D). Experiments were performed by measuring initial ⟨D⟩ of cell clusters using

PWS microscopy and then tracking cell survival over time. Overall, this demonstrates the

ability of the CDA model to capture the relationship between initial chromatin packing

state, ⟨D⟩, of a cancer cell and cell death probability upon exposure to chemotherapeutic

stress.
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3.6.3. Evaluating Effects of Combination Treatment with D-lowering Agents

on Adaptability and Chemoevasion Potential of Cancer Cells

3.6.3.1. Identifying Candidate Chromatin Protective Therapies (CPTs) Us-

ing PWS Microscopy. In response to cytotoxic stress, cellular fitness was positively

associated with increased average chromatin packing scaling of cancer cells. We next

investigated the effects of candidate chromatin-modifying drugs to determine whether

shifting the population-wide distribution of average nuclear packing scaling to lower D

values would increase chemotherapeutic efficacy. We term such compounds Chromatin

Protective Therapies (CPTs) [5]. As cytotoxic stress response occurs within a matter of

hours after chemotherapy treatment in vitro, we selected for agents that would decrease

cellular fitness within this decision window. Specifically, we looked for CPT drugs that

decrease ⟨D⟩ within very short time scales (< 1 hour).

We found that modulating the epigenetic state of chromatin, though processes such

as deacetylation and methylation, decreased the average D distribution (Fig. 3.16A).

However, even high doses of such acetylation and methylation regulators resulted in only

modest changes in D compared to compounds that alter the physicochemical intranu-

clear environment. As chromatin is a negatively charged polymer, due to the phosphate

in the sugar-phosphate DNA backbone, altering the ionic environment is expected to

modulate DNA-histone and nucleosome-nucleosome interactions, and could thus alter

nuclear-wide chromatin structure (see Chapter 4). Here, we tested compounds such as

non-steroidal anti-inflammatory drug celecoxib, which has previously been identified to

inhibit Na+, K+, and Ca2+ channels [89], and cardiac glycoside digoxin, which sup-

presses the Na+/K+-ATPase ion pump and reduces intracellular [K+] as a side-effect
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of its activity. Overall, we determined that these drugs decreased population-wide D to

a greater extent than epigenetic modifiers (Fig. 3.16A&B). From our initial screen, we

selected a handful of compounds that acted through potentially different mechanisms to

confer a large decrease in D. We then further characterized and tested these compounds

in multiple cancer cell lines (see Chapter 3.8.7). Although CPTs modulate D in a cell

line-specific manner, there exist several “strong” CPTs, including celecoxib and digoxin,

that decreased average D for cell populations across multiple cancer cell lines (Fig. 3.16).

Next, we wanted to evaluate the increased effectiveness of chemotherapy upon

pre-treatment with compounds we identified as “strong” CPTs. To compare the effects of

chromatin modulation on chemosensitivity, we analyzed the differential effects of “strong”

CPTs, celecoxib and digoxin, as well as weaker CPTs, valproic acid (VPA) and aspirin.

Under normal growth conditions, untreated A2780 cells rapidly grew into colonies and

covered much of the imaging field. As expected, 48 hour mono-treatment with paclitaxel

resulted in about 60% cellular inhibition over the same growth period as the controls

(Fig. 3.17). Notably, combination treatment of paclitaxel with celecoxib or digoxin,

both of which rapidly decreased D, greatly enhanced the efficacy of chemotherapeutic

intervention with clearance approaching 100% (Fig. 3.16 & 3.17). Importantly, the degree

of measured decreases in D by the tested agents strongly correlated with their increased

chemotherapeutic efficacy, although efficacy varied depending on the cell line (Fig. 3.17

& 3.17). For all cell lines and chemotherapy agents tested, the co-treatment with the

chemotherapy drug and at least one “strong” CPT agent resulted in nearly 100% cancer

cell elimination, whereas relatively less elimination occurred for cancer cells co-treated

with weaker CPTs that did not modulate D as significantly.
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Figure 3.8. Lowering population-wide D with “strong” CPTs increases cell
death upon treatment with cytotoxic chemotherapy. (A) CDA model pre-
dicts that higher D populations have more cells above the survival proba-
bility threshold (1-θ) and thus more cells from the high-D population will
survive compared to the low-D population. (B) CDA model predictions
are validated by experiments assessing survival of A2780 cancer cells upon
exposure to different concentrations of chemotherapy (high-D population)
compared to A2780 cells first treated with the CPT celecoxib and then
exposed to the same concentrations of chemotherapy (low-D population).
Fitting parameter for optimization βa = 9.

3.6.3.2. Strong CPTs Increase Cell Death Upon Combination Treatment

Compared to Treatment with Chemotherapy Alone. Finally, we wanted to di-

rectly evaluate cell death upon chemotherapy treatment of a lower D cancer cell pop-

ulation, treated with the “strong” CPT celecoxib, compared to the same untreated cell
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population with higher D. The CDA model predicts that more cells from the higher D

population will survive compared to the lower D population due to their ability to upreg-

ulate certain gene(s) within a critical timeframe (Fig. 3.8A). To generate experimental

data with variable cancer cell death, we treated A2780 ovarian cancer cells with different

concentrations of paclitaxel. Model predictions were generated by optimizing the fit to

experimental cell death data for two populations with experimentally determined D dis-

tributions. Cell death for the high-D population was varied between 0 and 1 and then

used to predict cell death for the low-D populations. Model predictions match experimen-

tal data of cell death from A2780 cells treated with only paclitaxel (High D) compared

with cells treated with combination paclitaxel and celecoxib treatment (Low D) (Fig.

3.8B). The almost exponential increase of the cell death curve demonstrates that combi-

nation therapy with a CPT can improve chemotherapeutic efficacy, even in a limiting case

of moderate cell death when cells are treated with smaller doses of chemotherapy (Fig.

3.8B). Altogether, this demonstrates that modulating the initial chromatin packing state

of cancer cells influences their adaptability and can be harnessed to potentially increase

cancer cell death in response to chemotherapy treatment.
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3.7. Conclusions and Discussion

In this thesis work, we combined computational modeling with Hi-C, scRNA-seq,

and imaging modalities from our nano-ChIA platform (see Chapter 1.3) to demonstrate

the role of the disordered chromatin polymer on regulating intercellular transcriptional

heterogeneity and transcriptional malleability which, in turn, influences adaptability to

external stressors. Based on predictions from the CPMC model, which were verified

experimentally, the chromatin packing within PDs affects gene expression through three

key physical regulators: average density ϕin,0, genomic size Nd, and packing scaling D

(Fig. 3.1&3.2).

We demonstrate, both computationally and experimentally, that a crucial role of

chromatin packing is to determine the level of phenotypic plasticity within a cell popu-

lation. In particular, the scaling of chromatin packing, D, modulates both the transcrip-

tional malleability (Fig. 3.3), and the level of intercellular transcriptional heterogeneity

(Fig. 3.4). This effect is further regulated by other physical properties of chromatin.

A higher average crowding density within the nucleus suppresses the expression of ini-

tially lowly-expressed genes as D increases (Fig. 3.2G&H). The modulatory effects of

Nd are two-fold. Genes localized to domains with a larger Nd are more suppressed than

those localized to domains with smaller Nd owing to the reduced accessibility to TFs and

RNA Pol II. However, as D increases, the expression of genes associated with large Nd

is disproportionately enhanced (Fig. 3.2I). Overall, higher D, higher average chromatin

density, and lower Nd increase both transcriptional malleability and heterogeneity, with

D having a much larger effect on transcriptional divergence compared to the other two

chromatin packing properties (see Chapter 3.8.2). Using STORM-PWS colocalization, we
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even observed that the chromatin packing scaling of a PD influences the extent of active

transcription within the PD at the level of individual nuclei (Fig. 3.5).

Additionally, we established a link between the chemoevasion potential of cancer

cells and their initial chromatin packing state (Fig. 3.6&3.7). Given that increased chro-

matin packing scaling was associated with chemoresistance (Fig. 3.13), we then explored

if decreasing chromatin packing scaling could itself be a drugable target. To decrease

D, we identified several pathways, including those that governed the chemical state of

chromatin by altering epigenetic modifications and those that modified the physicochem-

ical nanoenvironment (Fig. 3.16). Remarkably, we observed that drugs that modified

the physicochemical environment (e.g., celecoxib and digoxin) had stronger effects on the

chromatin packing scaling of cancer cell populations, across multiple cells lines, compared

to drugs that modified the epigenetic state of chromatin. Additionally, the chemoadjuvant

efficacy of these agents, as determined by the inhibition when co-treated with chemother-

apy, is highly correlated with the degree to which they reduced D (Fig. 3.17). Finally,

we determined that lowering the average D of cancer cell populations increases cell death

upon exposure to the same dose of chemotherapy as higher D populations (Fig. 3.8).

Most of the existing anti-cancer drugs act via cytotoxic induction mechanisms.

This cytotoxicity might be induced through a variety of pathways, whether it is through

direct DNA damage (e.g., intercalating agents), the disruption of other cellular struc-

tures (e.g., inhibition of microtubule depolymerization), or the activation of the immune

system attacking the tumor cells. Despite the wide range of molecular targets of these

cytotoxic therapies, the primary reason why anti-cancer drugs fail is that cancer cells even-

tually develop resistance to almost all chemotherapeutic drugs. Drug resistance can occur
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through a variety of mechanisms, including reduced drug accumulation and/or increased

drug export, alterations in drug targets and signaling transduction molecules, repair of

drug-induced DNA damage, and evasion of apoptosis [217]. Furthermore, experimental

evidence has shown that tumor heterogeneity is a critical factor in primary drug-resistance

(intrinsic resistance) as well as the emergence of new stress-induced drug-resistant clones

(acquired resistance) [217, 273, 40, 39]. New gene mutations are not always necessary for

drug resistance, and a change in the expression of existing genes due to transcriptional

diversity [263] or transcriptional malleability may influence the ability of cancer cells to

directly evade apoptosis [214] or activate compensatory pathways [234].

The fact that: (1) elevated D is a hallmark of cancer cells [9, 289, 19], (2) treating

cells with chemotherapy selects for cancer cells with higher D (Fig. 3.3B&C, Fig. 3.12),

and (3) D is associated with increased phenotypic plasticity in cancer cells which is (4)

reduced upon co-treatment with a D-lowering drug agent, indicates a potentially crucial

role of chromatin packing behavior in malignancy. Collectively, these findings indicate

a means to identify the likelihood of chemoresistance to occur and to develop a novel

class of adjuvant compounds that act at the level of chromatin packing scaling. This

approach could lead to the creation of a low-cost personalized therapeutics, via screening

with live-cell PWS microscopy, that limits the adaptability of each patient’s tumor cells

to assist in chemotherapeutic clearance. From a therapeutic standpoint, while mutations

are difficult to remove from a cell population, this work suggests that limiting cancer cell

evolution might be possible pharmacologically by lowering the chromatin packing scaling

of cancer cell populations.
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Although not explored in this work, there are several additional implications of

these results on the understanding of multicellular fitness in the context of cell biology.

For example, the localization of genes into higher-order domains has been demonstrated to

be a conserved, albeit heterogeneous, process that can be disrupted in cancer [274, 82, 84].

In the context of chromatin PDs (see Chapter 2), our modeling predicts that cells would

benefit from localizing genes into larger PDs that are intended to be suppressed at baseline

but need rapid amplification if conditions change. Likewise, crowding density could be

adjusted by cells either as a preprogrammed response by changing nuclear volume or

incidentally from the retention of an extra chromosome during replication. Consequently,

this could be a mechanism linking nuclear size and density (e.g. hyperchromasia) with

differential gene expression. Interestingly, nuclear size, hyperchromasia, and abnormal

nuclear texture are some of the most ubiquitous histological markers of neoplasia, although

their etiology and functional consequences have been poorly understood [49].

In addition, this work may have implications on an open question in chromatin

biology regarding the importance of non-coding DNA. Several roles of non-coding DNA

have been illuminated, including the production of non-coding RNA and the distribution

of transcriptional regulatory motifs such as enhancers and insulators, both of which are

linked with cancer [17, 42]. In light of this work, and in relation to previously suggested

hypotheses of the role of macromolecular crowding on gene expression, one of the evolu-

tionary functions of non-coding DNA could be derived from its ability to exclude volume.

Consequently, non-coding DNA might be a critical component within the genome to de-

termine phenotypic plasticity as it contains the ability to modulate chemical transcription

reactions by influencing their free-energy and the diffusion of transcriptional reactants.
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At present, experimental validation of the CPMC model relies on the measurement

of average PD structural properties. We are currently working on developing and imple-

menting paired gene-tracking techniques, specifically CRISPR-Sirius [177], along with

live-cell PWS microscopy and SR imaging of molecular factors. Such an imaging plat-

form would enable a more precise characterization of how packing behavior at the level of

individual PDs contributes to transcriptional malleability and intercellular heterogeneity.

Although currently beyond technical abilities, relocalizing certain critical stress response

genes to PDs with different packing behavior would prove the direct relationship between

PD organization and responsiveness to cytotoxic stress.

Finally, one could also consider howD plays a role in the adaptability of cancer cells

throughout carcinogenesis, which depends on cells overcoming aberrations in metabolism,

inhospitable microenvironments, inadequate vascular supply, immune surveillance, and

acclimation to distal tissue environments during metastasis. As it could take multiple

replicative generations to develop a new useful mutation within a population for each of

these processes, cancer cells could leverage the physical properties of chromatin packing to

increase their transcriptional plasticity and acclimate to these conditions over a faster time

scale. Thus, it may be worth investigating, for example, whether cancer cells with elevated

D are better able to survive an immune response and acclimate to distant tissue sites

during metastasis by performing imaging studies using nano-ChIA on patient samples.
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3.8. Supplementary Material

3.8.1. Supplementary Tables

Parameters Description Value

[Ctot] Total concentration of transcription

complexes

[0.035 µM,350 µM]

KD Dissociation rate of Pol II in the ab-

sence of crowders

1 nm

km Transcription rate of Pol II in the

absence of crowders

1 µM−1s−1

rmin Lower length scale of chromatin

self-similarity

1 nm

L Average gene length in bp 6 kbp

r0in Radius of interaction volume for

single bp

15 nm

Nd Genomic size of chromatin PD Average for all cell types: ∼1 Mbp

Low Nd in A549 cells: 50 kbp

High Nd in A549 cells: 2 Mbp

ϕin,0 Average crowding density HT-29 cells: 0.39

A549 cells: 0.40 v/v

BJ cells: 0.31 v/v

A2780 cells: 0.39 v/v

Di Initial chromatin packing scaling Wild-type HT-29 cells: 2.7

HT-29 Arid-1a KD cells: 2.5

A549 cells: 2.66

BJ cells: 2.66

A2780 cells: 2.5

Table 3.1. Descriptions and values of CPMC model parameters. All other
parameters for the crowding model are the same as in [184].
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3.8.2. Analysis of Sensitivity Equations for D, Nd, and ϕin,0

CPMC predicts the steady-state change in the rate of expression of a cell population ex-

posed to a stressor as a function of the population’s initial chromatin packing state. Thus,

all three physical regulators of transcription determine transcriptional responsiveness, i.e.

E2/E1. We can quantify the sensitivity of the responsiveness to each of these factors for

initial chromatin packing state Di, Nd, ϕin,0 using the following analytical relations. Here,

we denote the dependence of sensitivity on average expression rate and accessible surface

as Seϵ̄ and Sepg , respectively.

Let us begin by defining the sensitivity of gene expression to D, SeD:

Seϵ̄,D =
∂lnϵ̄

∂lnD
≈ −G(ϵ̄)

[
Diln

(
rin
rmin

)
+

3−Di

Di

rmin

rin
L1/DilnL

]
(3.26)

Sepg ,D ≈ ∂lnpg
∂lnD

=
1

Di

lnNd(3.27)

SeD = Seϵ̄,D + Sepg ,D(3.28)

where rmin is the radius of the elementary unit of chromatin (i.e. the DNA bp),

rin is the radius of the transcriptional interaction volume in, and L is the length

of the gene being transcribed. For further simplification of equations, G(ϵ̄) =

κ
8ϵ̄
(σ2

ϕin
)2
(
1 +

√
1 + 16

(σ2
ϕin

)2
ϵ̄
κ

)
. Physiologically, κ exceeds physiologically relevant ranges

of transcription and can be considered as the critical rate of expression such that for

ϵ̄ < κ crowding has a significant effect on gene transcription. Overall all molecular factors

⇀
m, κ̄ ≈ 33.6µM/s, while average ϵ̄ = 1µM/s. Note that, in most cases 16

σ
ϕ2
in

≫ 1, so

G(ϵ̄) ≈ 1
2
σ2
ϕin

√
κ
ϵ̄
. Thus, G(ϵ̄) is positively correlated with σ2

ϕin
, which in turn increases

with D, and is negatively correlated with ϵ̄.
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Next, for domain size Nd:

Seϵ̄,Nd
=

∂lnϵ̄

∂lnNd

≈ −G(ϵ̄)
(
1− 3

Di

)[
1− 2ϕc

1− ϕc

]
(3.29)

Sepg ,Nd
≈ ∂lnpg
∂lnNd

= − 1

Di

(3.30)

SeNd
= Seϵ̄,Nd

+ Sepg ,Nd
(3.31)

where ϕc = ϕin,0

(
Nd

ϕin,0

)
1− 3

Di .

And finally, for average crowding ϕin,0:

Seϵ̄,ϕin,0
=

∂lnϵ̄

∂lnϕin,0

= −G(ϵ̄)
(

3

Di

− 1

)[
1− 2ϕc

1− ϕc

+
ϕin,0

L

rmin

rin

]
(3.32)

Sepg ,ϕin,0
=

∂lnpg
∂lnϕin,0

≈ 1

Di

(3.33)

Seϕin,0
= Seϵ̄,ϕin,0

+ Sepg ,ϕin,0
(3.34)

Next, we analyzed the effects of initial chromatin packing state on these sensitivity

equations within physiological ranges for varying molecular factors. We determined the

25th, 50th, and 75th percentiles of D, Nd, and ϕin,0 from ChromSTEM packing domain

analysis of unstimulated A549 lung adenocarcinoma cells (Fig. 3.9). Our analysis demon-

strates that SeD is much more sensitive to changes in D and molecular factors compared

to both SeNd
and Seϕin,0

by 1 to 2 orders of magnitude (see Chapter 3.8.2).
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Figure 3.9. Sensitivity of gene expression is greatest for chromatin packing
scaling compared to average density and genomic size of domains. (A-C)
Statistical properties of PDs from A549 cells as determined by ChromSTEM
analysis: (A) average PD chromatin density, ϕin,0, (B) genomic size of PD,
Nd, in kbp, and (C) chromatin packing scaling D. (E-G) Sensitivity of gene
expression to (E) ϕin,0, (F) Nd, and (G) D versus initial relative expression
ln(Ei)/ ¯ln(Ei as determined by the CPMC model. The three different values
for each sensitivity curve were determined from the 25th, 50th, and 75th

percentiles of PD properties determined from (A-C). Note that the range of
sensitivity values for initial lowly expressed versus initial highly expressed
genes occurs over a much greater range for SeD compared to Seϕin,0

and
SeNd

.
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3.8.3. ChromTEM Analysis of A549 and BJ cells

Figure 3.10. CVC distributions of A549 and BJ cells as measured by
ChromTEM. Analysis of ChromTEM CVC values across N=4 replicates
of differentiated BJ fibroblast nuclei and N=9 replicates of A549 lung ade-
nocarcinoma nuclei. A549 nuclei have a pooled CVC average of 0.35 while
BJ nuclei have a pooled CVC average of 0.30. These values represent the
chromatin contribution to ϕin,0.
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3.8.4. Chromatin Packing Scaling Increases in Chemoevasive and Chemore-

sistant Cancer Cells
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Figure 3.11. Chromatin packing scaling D increases in chemoevasive cells.
(A) Average population of surviving cells steadily increases over the course
of chemotherapeutic intervention with oxaliplatin in HCT116 cells. Error
bars are standard error. (B) The relative increase in D of HCT116 cell clus-
ters treated with oxaliplatin for 48 hours depends largely on the initial D
of the cluster prior to treatment, with low D clusters experiencing the most
pronounced change in D. Each point represents one cluster and error bars
are standard error. (C) Exposure of cancer cell lines to standard concentra-
tions of chemotherapeutic agents for 48 hours results in a shift in the pop-
ulation distribution of D to higher values in the surviving cells. Cells were
treated with previously reported concentrations of these chemotherapeutics
based on which chemotherapies are currently used as standard of care for a
given malignancy. Violins correspond to control A2780 cells (N = 332), pa-
clitaxel treated A2780 cells (N = 99, P = 1.1×10−3), 5-fluorouracil treated
A2780 cells (N = 147, P = 9.9 × 10−21), and oxaliplatin treated A2780
cells (N = 101, P = 2.6 × 10−35); control A2780.m248 cells (N = 259),
5-fluorouracil treated A2780.m248 cells (N = 100, P = 3.9 × 10−3), pa-
clitaxel treated A2780.m248 cells (N = 45, P = 4.7 × 10−6), and ox-
aliplatin treated A2780.m248 cells (N = 85,P = 1.5 × 10−18); control
HCT116 cells (N = 262), and oxaliplatin treated HCT116 cells (N = 289,
P = 1.7 × 10−35); control MDA-MB-231 cells (N = 128), 5-fluorouracil
treated MDA-MB-231 cells (N = 81,P = 4.1 × 10−2), oxaliplatin treated
MDA-MB-231 cells (N = 59, P = 2.8×10−5), and paclitaxel treated MDA-
MB-231 cells (N = 36,P = 4.7 × 10−5); control MES-SA cells (N = 265),
docetaxel treated MES-SA cells (N = 194, P = 2.0 × 10−2), and gem-
citabine treated MES-SA cells (N = 101, P = 4.0 × 10−13); control
MES-SA.MX2 cells (N = 203), gemcitabine treated MES-SA.MX2 cells
(N = 103, P = 7.3× 10−6), and docetaxel treated MES-SA cells (N = 106,
P = 1.7 × 10−8). Significance was determined using Student’s t-test with
unpaired, unequal variance on the average nuclear D of the treated group
against the control group within each cell line (∗∗∗P < 0.001, ∗∗P < 0.01,
∗P < 0.05). (D) Representative PWS microscopy images of control and
chemoevasive cells for each chemotherapy tested. Image pseudocolor is D,
with brighter red corresponding to higher D values. Scale bars are 15 µm.
A2780, A2780.m248, HCT116, MDA-MB-231, MES-SA, and MES-SA.MX2
were treated for 48 hours with 5-fluorouracil, paclitaxel, oxaliplatin, 5-
fluorouracil, gemcitabine, and docetaxel respectively as representatives of
all cell line and chemotherapy combinations.
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For a mutationally induced model, we utilized ovarian A2780 wild-type (WT) cells

with mutations to the TP53 DNA binding domain: A2780 TP53.m273 (A2780.m273),

A2780 TP53.m175 (A2780.m175), and A2780 TP53.m248 (A2780.m248) mutant cells.

TP53 mutations are present in over 95% of high-grade serous epithelial ovarian carci-

noma (HGS EOC) and missense mutations at these codons (R273, R175, and R248) are

the most predominant in HGS EOC patients. Additionally, these are gain-of-function mu-

tations resulting in interactions between TP53 and the cohesin complex protein, Rad21,

suggesting that they would be associated with alterations in chromatin structure. Under

normal growth conditions, D was significantly higher in the A2780.m248 and A2780.m175

subclones than the A2780 WT line while D in the A2780.m273 subclone matched the WT

line (Fig. 3.12A&B). When median survival time for HGS EOC patients with these mu-

tations was compared using The Cancer Genome Atlas (TCGA) data, we found a strong

correlation between median survival and D for each hot-spot mutation (Fig. 3.12C).

Patients with the M273 mutation had the longest median survival (84.1 months) while

patients with the M248 had the worst median survival (33.6 months) and those with the

M175 mutation had an intermediate survival (62.1 months). While all these mutations

produce a gain of function interaction with Rad21, their effect on chromatin packing

scaling was inversely associated with the median patient survival duration.

Next, we explored whether inductive resistance in cell line models was likewise

associated with increased chromatin packing density scaling D. To test this relationship,

we utilized a uterine leiomyosarcoma line MES-SA with a mitoxantrone resistant MES-

SA/MX2 subclone (MES-SA.MX2), which displays constitutive atypical topoisomerase

II and MDR1 activity. Similar to the TP53 mutationally induced resistance models,
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we observed that D was significantly increased in the MES-SA.MX2 resistant subclone

compared to the MES-SA WT cell line (Fig. 3.14). As these results indicated that in-

creased chromatin packing scaling correlates with patient prognosis and chemotherapeutic

resistance, we hypothesized that chemotherapeutic intervention would confer a selection

advantage on the population resulting in the surviving, chemoevasive population display-

ing increased D relative to the initial population that is maintained in cells with stable

chemoresistance. Consequently, these findings confirmed that a convergence between both

chromatin packing density scaling D and chemoevasion was cancer cell line and drug inde-

pendent with cytotoxic intervention selecting for an increasingly heterogeneous chromatin

packing state.
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Figure 3.12. Chromatin packing scaling D increases with selective resis-
tance to chemotherapy. (A) Representative PWS microscopy images of
ovarian carcinoma A2780 wild-type (WT), and TP53-mutant A2780.m273
(M273), A2780.m175 (M175), and A2780.m248 (M248) cells. Arrows in-
dicate representative nuclei. Scale bars, 10 mum. Pseudo-color: D.
(B) Under normal growth conditions, D remained similar to the WT
in the A2780.m273 subclone and increased in the A2780.m248 subclone
(P = 1.0 × 10−59) relative to the WT A2780 cells. (C) Analysis of TCGA
data for high-grade serious epithelial ovarian carcinoma patients revealed
a strong correlation between median survival (as reported by TCGA) and
D (as measured by PWS). (D) Representative PWS microscopy images of
leiomyosarcoma MES-SA and mitoxantrone resistant MES-SA/MX2 deriv-
ative (MX2) cells. Arrows indicate representative nuclei. Scale bars, 10
mum. Pseudo-color: D. (E) Under normal growth conditions, D was in-
creased in the MES-SA.MX2 chemoresistant subclone (P = 3.1 × 10−30)
compared to the sensitive MES-SA subclone. Significance was determined
using Student’s t-test with unpaired, unequal variance on the average nu-
clear D of the mutant subclone against the WT within each cell line
(∗∗∗P < 0.001). N = 1877 A2780, N = 309 M273, N = 237 M175,
N = 1321 M248, N = 836 MES-SA, and N = 558 MX2 cells.
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3.8.5. Supplementary Analysis for Transcriptional Malleability and Hetero-

geneity

Figure 3.13. Increased transcriptional malleability for higher D cells is
a generalizable phenomenon. The transcriptional malleability coefficient

δ =
E2,b/E1,b

E2,a/E1,a
was determined from additional bulk RNA-seq experiments

on A2780 cells and TP53 mutated clone A2780.m248 cells along with pro-
pranolol, another D-lowering compound. PWS measurements showed a 2%
decrease in D in A2780 cells after propranolol treatment for 16 hours and
a ∼5% decrease in D in m248 cells treated separately with celecoxib and
then propranolol for 16 hours. (A) Transcriptional malleability in A2780
cells treated with propranolol to lower D. All treatment conditions include:
control, 16 hour propranolol, 16 hour paclitaxel, and 16 hours paclitaxel
plus celecoxib. (B&C) δ tested in m248 cells treated with (B) celecoxib and
(C) propranolol as D-lowering compounds for 16 hours. All treatment con-
ditions include control, 16 hours celecoxib/propranolol, 16 hours paclitaxel,
16 hours paclitaxel plus celecoxib/propranolol. All results are based on the
expression data at t = 16 hours. Error bars represent the standard error
of δ for all genes within each quantile. There are three biological replicates
for every condition.
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Figure 3.14. Transcriptional heterogeneity is increased in high-D cells. (A)
Spread of pairwise Euclidean distance was calculated between cells in each
condition for genes associated with DNA repair pathways that are upregu-
lated in 48 hour paclitaxel treated cells. (B) Coefficient of variation (COV)
across treatment populations of genes grouped by control expression levels
normalized by control COV. Genes were first binned into groups of ∼100
genes (80 quantiles total) each based on relative control expression, which
are assumed to be exposed to roughly similar molecular regulators of tran-
scription. The expression of these genes was averaged within each cell.
COVj = σ2

Ei
/µEi

was calculated over all average expression levels of cells
in treatment condition i for genes in control expression quantile j and each
non-control condition was normalized to COV calculated for each bin in the
control condition.
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3.8.6. Effect of Decision Time on CDA Model

Figure 3.15. Decision time Tcrit influences relationship between average
packing scaling and, ⟨D⟩, and death probability, θ. Decision times were
varied over commonly observed times to observe signs of apoptosis (5− 10
hours) and up to 24 hours.
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3.8.7. Identifying CPTs Across Multiple Cell Lines and Treatment Conditions

To determine the specificity of compound mechanisms of action for a given cell line,

we tested five potential CPT agents of varying strength that could alter either histone

modifications or the nuclear ionic content on nine additional cancer cell lines: ovarian

cancer (A2780.m248, and OVCAR-8), pancreatic cancer (AsPC-1, and L3.6pl), colon

cancer (HCT116), mesothelioma (M9K), breast cancer (MDA-MB-231), and leiomyosar-

coma (MES-SA, and MES-SA.MX2) (Fig. 3.16C). For drugs impacting histone modi-

fications, we tested valproic acid (VPA), which was identified in our initial screen as a

moderate strength CPT that could potentially act through its role as an HDAC inhibitor,

as well as 9-ING-41, which is a selective GSK-3 inhibitor. 9-ING-41 was chosen because

chemotherapy treatment increased variations in GSK-3β expression in MDA-MB-231 cells

and GSK-3β preferentially localizes to the nucleus in human cancer cells. Additionally,

GSK-3β has previously been shown to play an important role in histone modifications

involved in NFκB regulation [213]. For drugs that potentially alter nuclear ionic content

through ion channel inhibition, the two strongest CPTs in the initial screen, celecoxib

and digoxin, were chosen. We observed varying decreases in D in as little as 30 minutes

(Fig. 3.16C). Of note, each compound had a slightly different effect in the ten cell lines.

VPA, which was a moderate CPT in A2780, had a stronger effect on A2780.m248 cells

than celecoxib. Digoxin, which was the strongest CPT in A2780, A2780.m248, and MDA-

MB-231 cells, was not as effective at decreasing D compared to celecoxib in MES-SA and

MES-SA.MX2 cells.
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Figure 3.16. Strong CPT agents can decrease chromatin packing scaling D
independent of cancer cell line. (A) Drug treatments on A2780 cells caused
varying levels of decrease in D. Violin plots correspond to A2780 cells
treated with control (N = 360), insulin regulator metformin (N = 195, P =
7.9×10−2), HDAC inhibitor valproic acid (N = 234, P = 1.4×10−11), beta-
blocker metoprolol (N = 156, P = 674×10−6), seratonin reuptake inhibitor
sertraline (N = 157, P = 3.7×10−10), anti-oxidant green tea extract EGCG
(N = 276, P = 4.1 × 10−15), beta receptor agonist propranolol (N =
111, P = 1.4 × 10−8), HDAC inhibitor resveratrol (N = 271, P = 1.8 ×
10−43), non-steroidal anti-inflammatory drug celecoxib (N = 132, P =
7.0 × 10−34), and cardiac glycoside digoxin (N = 572, P = 8.3 × 10−86).
Significance was determined using Student’s t-test with unpaired, unequal
variance on the average nuclear D of each treated group against the control
group (∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05). (B) Representative PWS
microscopy images of control and CPT treated cells. Image pseudocolor is
D, with brighter red corresponding to higher D values. Scale bars are 15
µm. A2780 cells were treated for 30 minutes with celecoxib and digoxin. (C)
A 30-minute treatment with select CPT compounds decreases population-
wide D in the nine different cell lines tested. Violin plots correspond to
control A2780.m248 cells (N = 125), celecoxib-treated A2780.m248 cells
(N = 36, P = 9.3× 10−3), valproic acid-treated A2780.m248 cells (N = 51,
P = 4.9 × 10−8), and digoxin-treated A2780.m248 cells (N = 91, P =
1.5×10−8); control AsPC-1 cells (N = 107), and 9-ING-41-treated AsPC-1
cells (N = 111, P = 1.1 × 10−14); control HCT116 cells (N = 64), 9-
ING-41-treated HCT116 cells (N = 85, P = 9.0 × 10−10), aspirin-treated
HCT116 cells (N = 130, P = 9.0 × 10−23), and celecoxib-treated HCT116
cells (N = 75, P = 5.79 × 10−35); control L3.6pl cells (N = 150), and 9-
ING-41-treated L3.6pl cells (N = 163, P = 1.6× 10−19); control M9K cells
(N = 191), and 9-ING-41-treated M9K cells (N = 224, P = 1.1 × 10−27);
control MDA-MB-231 cells (N = 89), celecoxib-treated MDA-MB-231 cells
(N = 86, P = 5.6×10−4), and digoxin-treated MDA-MB-231 cells (N = 83,
P = 1.2 × 10−10); control MES-SA cells (N = 314), digoxin-treated MES-
SA cells (N = 342, P = 1.7 × 10−5), and celecoxib-treated MES-SA cells
(N = 275, P = 1.5×10−29); control MES-SA.MX2 cells (N = 227), digoxin-
treated MES-SA.MX2 cells (N = 252, P = 1.3 × 10−30), and celecoxib-
treated MES-SA cells (N = 216, P = 8.8× 10−55); control OVCAR-8 cells
(N = 65), and 9-ING-41-treated OVCAR-8 cells (N = 82, P = 4.2× 10−7).
Significance was determined using Student’s t-test with unpaired, unequal
variance on the average nuclear D of the treated group against the control
group within each cell line (∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05).
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Figure 3.17. Inhibition of cancer cells by chemotherapy increases upon ad-
dition of “strong” CPTs. To examine the relationship between cell death
and initial chromatin packing scaling experimentally, we focused on three
complementary methods for assessing cell survival – cell coverage analysis
using transmission microscopy, which provided information on total pop-
ulation viability, automated cell counting paired with dead and apoptotic
cell stains, and flow cytometry measurement of live cell caspase 3/7 stain-
ing, which captured the relative induction of apoptosis. Altogether, these
measures provided quantifiable information on cell inhibition as well as
percentage viability for each population. Mild CPTs, which cause a rel-
atively smaller decrease in D (valproic acid and aspirin) are less effective
at improving chemotherapeutic efficacy than “strong” CPTs (celecoxib and
digoxin). Error bars are standard error. Significance was determined using
Student’s t-test with unpaired, unequal variance on the inhibition of the
co-treated group against the chemotherapy treated group within each cell
line (∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05).
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CHAPTER 4

The Physicochemical Intranuclear Environment Modulates

Structure and Charge of DNA and Chromatin
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4.1. Introduction

DNA, the biological material that contains our genetic information as a unique

sequence of nucleotides, is a highly charged polyelectrolyte due to the negative charge it

carries from its phosphate diester backbone [35]. As a polyelectrolyte, the structure, con-

formations, and also charge of DNA will change depending on the bulk physicochemical

environment, including the electrolyte environment, pH, and average polyelectrolyte den-

sity. While the behavior of DNA in dilute electrolyte solutions is widely studied and fairly

well understood, the behavior of DNA in denser environments is far less characterized.

A prototypical and biologically relevant example is chromatin, the macromolecular

assembly of DNA and histone proteins that are compacted and packed into the eukaryotic

cell nucleus.1 Chromatin is a negatively charged system, where positively charged residues

of the histone proteins only partially mitigate the highly negative charge of the phosphates

in the DNA backbone [95, 183]. Chromatin itself is relatively densely packed inside the

cellular nucleus, with volume fractions ranging from 12% to 52% [212]. Our computational

modeling has demonstrated the direct relationship between chromatin packing, transcrip-

tion, and phenotypic plasticity of cancer cells (see Chapter 3). Experimentally, we have

determined that drugs which influence the intracellular physicochemical environment,

such as celecoxib and digoxin, have a larger influence on modulating chromatin packing

behavior and increasing chemotherapeutic efficacy than other drugs, even those that mod-

ulate the epigenetic state of chromatin (Fig. 3.15,3.16). Additionally, intracellular ion

concentrations can be altered in diseases such as cancer and the extracellular environment

can also become acidic, potentially modulating intracellular pH [220, 228, 79, 137]. Thus,

1Note that DNA is also densely packed in the histone-less bacterial nucleus [11].
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we want to determine key biophysical mechanisms that can be used to predictably mod-

ulate chromatin structure and function, and our hypothesis is that the physicochemical

environment is one such mechanism. Here, we shall formulate a theoretical approach to

appropriately describe the effects of the physicochemical environment on systems that

represent DNA and chromatin in non-dilute, denser systems.

Experimental methods, including single-molecule studies in dilute systems, have

determined that structural properties, ranging from DNA persistence length to com-

paction of chromatin at the ∼Mbp scale, are highly dependent on both the strength

and composition of the bulk electrolyte environment [20, 309, 310]. Modulating Mg2+

concentration has even been shown by Tanase et al. to influence differentiation effi-

ciency in mouse embryonic stem cells [120]. Additionally, recent experimental advances

have facilitated a more complete characterization of the ionic atmosphere surrounding

DNA, including Anomalous X-ray Scattering [60] and, more recently, Inductively Cou-

pled Plasma Mass Spectrometry (ICP-MS) [94, 93, 95]. These techniques demonstrate a

strong dependence of DNA charge screening on ion type and strength [94].

However, experiments are also unable to concomitantly measure structure and

charge of DNA and chromatin systems, making it even more difficult to establish princi-

ple mechanisms of action. Additionally, such experiments are either performed in dilute,

ex vivo systems, which are not relevant to dense physiological conditions of DNA packed

in a nucleus, or in vitro cellular models, making it difficult to disentangle the charge

screening effects of ions on DNA and chromatin from other effects due to signaling and

enzymatic action. Recent work by Zinchenko et al. observe coil-globule phase transitions

of λ-DNA in only monovalent electrolyte environments when external crowders are added
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to solution, further pointing to the importance of properly accounting for dense intranu-

clear environments when considering the effects of the electrolyte environment on DNA

structure [311, 309].

Flexible polyelectrolyte solutions containing both monovalent ions as well as multi-

valent ions have been extensively studied using theoretical and computational approaches

encompassing density functional theory, Poisson-Boltzmann approaches, scaling theory,

and simulations [256, 122, 37, 211, 267, 172, 114, 304]. Specifically, DNA in solution has

received considerable attention. For example, both MD simulations [172] and theoretical

arguments [34] have predicted collapse of extended DNA in the presence of multivalent

counterions induced by ion condensation. In general, and especially for dense systems,

theoretical approaches make certain assumptions about the chain-statistics. For example,

they use lattice chains or assume Gaussian chain-statistics [122, 123] or assume specific

three-dimensional structures of polyelectrolyte chain conformations [37, 267, 10]. On the

other hand, MD simulations allow for a more explicit study of the conformations of DNA.

However, the inherent tradeoff in simulations between computational feasibility and level

of detail is a current barrier for a more complete understanding of charge regulation

mechanisms in physiologically dense systems (see Chapter 1.4.2).

Here, we present a theoretical MT model to first study a DNA-like polyelectrolyte

brush of phosphates and then a chromatin-like system. This study is performed in

both dilute conditions and at higher densities, all of which include the chemical equilib-

rium between the protonated, deprotonated, and ion-condensed states of the chargeable

DNA-phosphates and histone amino acids. Importantly, the theory does not assume the
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charged state of the DNA-phosphates and amino acid residues a priori, but rather pre-

dicts the position-dependent state of charge. The theory is based on a molecular statistical

thermodynamic approach that has previously been developed to predict thermodynamic

and structural properties of end-tethered polymers and weakly ionizable polyelectrolytes

[201, 100]. Predictions of the MT have been found to agree with experimental observa-

tions for relevant biological systems [189, 254, 299, 278, 269, 239, 291, 156]. Importantly,

MT takes as input a representative set of polymer chains and calculations determine the

probability of each conformation under specific environmental conditions.

Herein, we would like to address the effects of charge regulation on DNA-like and

chromatin-like systems with varying densities. We first focus our study on end-tethered

loops of phosphates, as DNA experiences many topological constraints in the nucleus, in-

cluding CTCF-cohesin-induced looping, interactions with nuclear lamins, and DNA wrap-

ping around histone proteins to form nucleosomes [251, 62, 118, 113]. Such constraints are

expected to make the DNA polymer more flexible, which is usually very rigid in its double-

stranded form. Additionally, we further simplify the system by only explicitly modeling

the DNA-phosphates, which are the only chargeable molecule of double-stranded DNA.

Related questions to be studied involve the effects of physiologically relevant monovalent

versus divalent cations on these charge regulation mechanisms, and how these effects are

modulated by bulk density. Specifically, we focus on the effects of the most prevalent

intracellular monovalent (K+ and Na+) and divalent (Mg2+) cations [171]. From our

simpler phosphate loop system, we also determine physiologically relevant constants for

phosphate-ion condensation, which are difficult to determine experimentally, before in-

creasing the complexity of our system to chromatin. Next, we extend our MT approach



255

to characterize the effects of monovalent cations on the charge and structure of single

nucleosomes and nucleosome arrays under varying bulk densities. To our knowledge, this

is the first study that considers the variable charge of phosphates and amino acids and

variable local pH to investigate the effects of the physicochemical environment on DNA

and chromatin in dense systems via charge regulation mechanisms.
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4.2. Theoretical Approach

4.2.1. Molecular Theory

Here, we investigate a DNA-like and a chromatin-like system. First, we model an end-

tethered polyelectrolyte brush composed of DNA-phosphates in contact with an aqueous

solution for both dilute and non-dilute conditions (Fig. 4.1). We then increase the

complexity of the system and model a chromatin-like system of both single nucleosomes

and 8-mer nucleosome arrays (Fig. 4.2).

The reservoir of our polymeric system is characterized by a given pH and contains

monovalent KCl and NaCl as well as divalent MgCl2 salt at given concentrations. The

salts are assumed to be completely dissociated. These salts were chosen because they

are the most prevalent intracellular ions [171]. The pH is adjusted by adding either

HCl or NaOH to the system. The DNA-phosphates are assumed to be in one of six

chemical states: deprotonated (P–), protonated (PH) or condensed with K+, Na+, or

Mg2+ counterions. The following chemical reactions are explicitly included in the theory

for both the phosphate loop and chromatin-like systems

PH P– + H+,(4.1)

P– + Na+ PNa,(4.2)

P– + K+ PK,(4.3)

P– + Mg2+ PMg+,(4.4)

2P– + Mg+ P2Mg,(4.5)
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Figure 4.1. Description of phosphate loop system. (A) Representation of
an end-grafted planar layer of loops, where each monomer has the chemical
properties of the phosphate molecule of DNA. Phosphate loops are com-
posed of 100 monomers. Our system explicitly contains the most prevalent
intracellular or intranuclear ions, including Na+, K+, Mg2+, and Cl− as
well as water, OH− and H+ to account for charge regulation effects of ions
and acid-base equilibrium. We consider both (B) dilute and (C) denser
systems that are more relevant to physiological DNA concentrations in the
nucleus. The bulk density of the system is determined by the grafting den-
sity σ, which controls spacing between the graft-points of the loops. Note
(B) & (C) are example conformations and a large range of conformations
are considered for MT calculations.

The differences in the effects of cations on the charge regulation of phosphates are

influenced by a combination of the explicitly defined volumes of the ions, their mechanisms

of binding, and the binding strength (i.e., ∆G

d ) of the ion condensation reactions. The

condensed states for monovalent cations are denoted as PNa, PK. For Mg2+, there are

two condensed states representing 1:1 binding, PMg+, and 2:1 binding, P2Mg, of the

phosphates with the divalent cations. The last reaction, the 2:1 binding, or ion bridging
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Figure 4.2. Description of chromatin-like system for (A) single nucleosomes
and (B) 8-mer nucleosome arrays. Our chromatin system also explicitly
contains the most prevalent intracellular ions, including Na+, K+, and Cl−

as well as water, OH− and H+ to account for charge regulation effects of
ions and acid-base equilibrium. (A) Rendering of single, tailless nucleosome
that is coarse-grained to the molecular level from the human 1KX5 crystal
structure [61]. Elementary units of histones include basic, acidic, and neu-
tral amino acids and basic units of DNA are represented by the 3SPN model
[88], where each nucleotide is represented by one sugar, one phosphate, and
one nucleobase. (B) Rendering of an example conformation for the 8-mer
nucleosome chain system composed of 8 nucleosomes connected by linker
DNA. The density of this system is controlled by the box size, which is an
input into the MT calculations.

reaction, does not occur directly but via P– + PMg+ P2Mg. However, these reactions

are thermodynamically equivalent. We have not considered the formation of ion pairs

involving multiple divalent cations and phosphates simultaneously. Thus, monovalent

cations can only bind with one phosphate, while divalent cations can form additional ion

bridges with a stochiometry of two phosphates to one Mg2+ ion.
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Additionally, for the chromatin-like systems, we include the acid-base equilibrium

of chargeable amino acid residues of the histone proteins

RCOOH RCOO– + H+,(4.6)

ROH RO– + H+,(4.7)

RNH +
2 RNH + H+,(4.8)

RNH +
3 RNH2 + H+,(4.9)

RSH RS– + H+,(4.10)

where Eq. 4.6 refers to acid-base equilibrium for aspartic acid (Asp) and glutamic acid

(Glu), Eq. 4.7 refers to acid-base equilibrium for the acidic tyrosine (Tyr) residue, Eq. 4.8

refers to acid-base equilibrium for the basic arginine (Arg) and histidine (His) residues, Eq.

4.9 refers to acid-base equilibrium for the basic lysine (Lys) residue, and Eq. 4.10 refers

to acid-base equilibrium for the basic cystein (Cys) residue. Explicitly incorporating

these mechanisms of ion pairing provides a clearer understanding of charge regulation

mechanisms which occur in DNA-like and chromatin-like systems.

Molecular Theory (MT) is a statistical-thermodynamics approach with a free en-

ergy functional that explicitly takes into account the conformations of the polymer chains

and the size, shape, and charge of all molecular species in the system. The free energy

describing the polyelectrolyte of interest in contact with an aqueous electrolyte solution
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has a number of distinct contributions, which can be summarized as follows

F = −TSconf − TSmix + Fchem

+Felect + Eelect,solv + EVdW + Erep.(4.11)

The first contribution (Sconf) is related to the conformational entropy of the phos-

phate/chromatin chains. The second term encompasses the mixing or translational en-

tropy of the mobile ions and solvent (Smix). The next three contributions stem from the

acid-base chemical equilibrium of the phosphates and amino acids and the counterion

condensation of phosphates (Fchem), the electrostatic interaction energy (Felect), and the

electrostatic solvation energy of the charged ionic species (Eelect,solv). The next term en-

compasses the effective Van der Waals, or hydrophobic interactions, among the units of

the system. For all calculations in this work, effective Van der Waals interactions are

assumed to be zero as DNA and chromatin are highly charged polyelectrolytes, so hy-

drophobic effects are expected to be small compared to electrostatic and osmotic effects.

The last term, Erep accounts for the steric repulsions, or excluded volume interactions,

among all molecular species.

For the sake of brevity, we discuss here only the two most salient features of

the free energy: namely, the conformational entropy and the free energy contribution

pertaining to the acid-base equilibrium and ion condensation. The other terms, such as

the translational entropy of solvent and mobile ions as well as the electrostatic energy

terms have been discussed in previous works and are briefly discussed in Chapter 4.6.1.

A complete description of the free energy functional, including the explicit free energy
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contributions related to electrostatics interactions and excluded volume are presented in

the supporting material as well as in references [100, 200].

−TSconf describes the conformational entropy of the polyelectrolyte chains and is

given by

(4.12) − Sconf

kB
=
∑
g

∑
α

Pg(α) lnPg(α)

Here Pg(α) is the probability of chain conformation α that is end-tethered to location rg.

Since Pg(α) represents a probability distribution function (p.d.f.) over all conformations,∑
α Pg(α) = 1 for all graft points. Note that there is only one fixed conformation repre-

senting the single nucleosome, but there are 100,000s of 8-nucleosome chromatin chains

input into the 8-mer MT chromatin calculations and tens of millions of loop conformations

input into the phosphate loop MT calculations.

Pg(α) is the central quantity of the theory, because once its value is established,

we can compute any structural and thermodynamic quantity of interest related to the

polyelectrolyte system. For example, given Pg(α), we can calculate the number density

of phosphates for our loop system for each position in the lattice −→r

(4.13) ⟨ρDNA−P (
−→r )⟩ =

∑
α

P (α)n(α;−→r )vDNA−P

for n(α;−→r ) the number of elementary units (e.g., DNA-phosphates) from conformation

α that can be found in volume element [−→r ,−→r +
−→
dr] and vDNA−P the volume of each

elementary unit. The polyelectrolyte volume fraction can also be calculated using the

relation ⟨ϕDNA−P (
−→r )⟩ = ⟨ρDNA−P (−→r )⟩

δ3
for lattice size δ. For our phosphate loop system the
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elementary units are DNA-phosphates. This formalism can be extended to our chromatin-

like system where the densities (ρ), volumes (v), and volume fractions (ϕ) can be calculated

for each of the different types of elementary units as detailed in Tables 4.1 & 4.2 (Fig.

4.2)).

Here, a representative set of conformations, generated using MD simulations, are

input into the MT. Chain generation is described in greater detail in Chapters 4.2.2 &

4.6.2. Observe that the internal excluded volume interaction of the phosphate loops and

chromatin elements are explicitly accounted for, as MD simulations were performed such

that all chains are self-avoiding. The intermolecular excluded volume interactions, Erep,

are represented by a mean-field treatment. Specifically, we assume that the system is

incompressible at every position:

(4.14) ⟨ϕpoly(
−→r )⟩+ ϕw(

−→r ) +
∑
k

ϕk(
−→r ) = 1.

where ϕpoly(
−→r ) represents the position-dependent volume fraction occupied by the poly-

electrolyte (phosphates for the phosphate loop system or all elementary units from Tables

4.1 & 4.2 for the chromatin system), ϕw(
−→r ) represents the position-dependent volume

fraction occupied by water, and ϕk(
−→r ) represents the position-dependent volume fraction

occupied by mobile ions. These volume packing constraints are enforced through the in-

troduction of the Lagrange multipliers π(−→r ) since these are constraints, they are formally

not part of the Helmholtz free energy. Note that, although MT is a mean-field approach,

the explicit inclusion of polymer conformations implies that intra-chain correlations are

considered.
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For the phosphate loop system, the term Fchem, describes the chemical free energy

associated with (de)protonation of the phosphates and the ion condensation of K+, Na+,

and Mg2+ ions.

(4.15) βFchem =

∫
d3r⟨ρDNA−P (

−→r )⟩
[

fP−(−→r )(ln fP−(−→r ) + βµ

P−)

+ fPH(
−→r )(ln fPH(

−→r ) + βµ

PH)

+ fPNa(
−→r )(ln fPNa(

−→r ) + βµ

PNa)

+ fPK(
−→r )(ln fPK(

−→r ) + βµ

PK)

+ fPMg+(
−→r )(ln fPMg+(

−→r ) + βµ

PMg+)

+
1

2
fP2Mg(

−→r )(ln 1

2
fP2Mg(

−→r ) + βµ

P2Mg)

− 1

2
(fP2Mg(

−→r ))(ln⟨ρDNA−P (
−→r )⟩vw − 1)

]
+

∑
k∈{H+,OH−,Na+,K+,Mg2+,Cl−}

βµ

k

∫
d3rρk(

−→r ).

Here, fP−(−→r ) is the fraction of phosphate acid residues that are charged or deproto-

nated at position −→r , fPH(
−→r ) is the fraction of neutral, protonated phosphate acids, and

fPNa(
−→r ), fPK(

−→r ), fPMg+(
−→r ) are the fraction of phosphate acids that are condensed with

Na+, K+, and Mg2+, respectively. Lastly, fP2Mg(
−→r ) is the fraction of phosphate groups

that form a Mg2+ bridge, i.e., a complex of two phosphates and one Mg2+ counterion.

Complexes involving multiple ions and phosphates are not considered.
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For the chromatin-like systems, where we have so far only considered monovalent

cations, we also include the (de)protonation of amino acid residues:

(4.16)

βFchem =

∫
d3r⟨ρDNA−P (

−→r )⟩
[
fP−(−→r )(ln fP−(−→r )+βµ


P−)+fPH(
−→r )(ln fPH(

−→r )+βµ

PH)

+ fPNa(
−→r )(ln fPNa(

−→r ) + βµ

PNa) + fPK(

−→r )(ln fPK(
−→r ) + βµ


PK)
]

+

∫
d3r⟨ρAA−Asp(

−→r )⟩
[
fAsp−(

−→r )(ln fAsp−(
−→r )+βµ


Asp−)+fAspH(
−→r )(ln fAspH(

−→r )+βµ

AspH)

]
+

∫
d3r⟨ρAA−Glu(

−→r )⟩
[
fGlu−(−→r )(ln fGlu−(−→r )+βµ


Glu−)+fGluH(
−→r )(ln fGluH(

−→r )+βµ

GluH)

]
+

∫
d3r⟨ρAA−Tyr(

−→r )⟩
[
fTyr−(

−→r )(ln fTyr−(
−→r )+βµ


Tyr−)+fTyrH(
−→r )(ln fTyrH(

−→r )+βµ

TyrH)

]
+

∫
d3r⟨ρAA−Arg(

−→r )⟩
[
fArg−(

−→r )(ln fArg−(
−→r )+βµ


Arg−)+fArgH(
−→r )(ln fArgH(

−→r )+βµ

ArgH)

]
+

∫
d3r⟨ρAA−His(

−→r )⟩
[
fHis−(

−→r )(ln fHis−(
−→r )+βµ


His−)+fHisH(
−→r )(ln fHisH(

−→r )+βµ

HisH)

]
+

∫
d3r⟨ρAA−Lys(

−→r )⟩
[
fLys−(

−→r )(ln fLys−(−→r )+βµ

Lys−)+fLysH(

−→r )(ln fLysH(−→r )+βµ

LysH)

]
+

∫
d3r⟨ρAA−Cys(

−→r )⟩
[
fCys−(

−→r )(ln fCys−(
−→r )+βµ


Cys−)+fCysH(
−→r )(ln fCysH(

−→r )+βµ

CysH)

]
+

∑
k∈{H+,OH−,Na+,K+,Cl−}

βµ

k

∫
d3rρk(

−→r ).

Here, fAsp−(
−→r ), fGlu−(−→r ), fTyr−(

−→r ), fArg−(
−→r ), fHis−(

−→r ), fLys−(−→r ), and fCys−(
−→r ) are

the fraction of amino acid residues that are charged or deprotonated at position −→r and

fAspH(
−→r ), fGluH(

−→r ), fTyrH(
−→r ), fArgH(

−→r ), fHisH(
−→r ), fLysH(−→r ), and fCysH(

−→r ) are the

fraction of neutral, protonated amino acids.
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Free energy minimization results in a system of nonlinear coupled integro-

differential equations, whose unknowns are (1) the osmotic pressure, or Lagrange multi-

pliers that enforce the incompressibility constraint Erep, π(
−→r ), and (2) the electrostatic

potential, ψ(−→r ). Through discretization of the system, the integro-differential equations

are transformed into a set of non-linear algebraic equations whose solution can be itera-

tively obtained using standard numerical methods [115]. Thus, minimization of the total

free energy results in a set of equations that determine the probability of every input

conformation, α. These equations self-consistently determine the probability distribution

function Pg(α), the density profiles of all molecular species, the charged states of the phos-

phates, the charged states of the amino acids, and other relevant quantities (see Chapter

4.6.1).

4.2.2. Polymer Models

The MT requires, as input, a set of chain conformations that are representative of our

polyelectrolyte system.

Here, we opted for a relatively simplified model of DNA. Our model incorpo-

rated topological constraints via end-tethered loops to account for biophysical mecha-

nisms which increase DNA flexibility in the eukaryotic nucleus. The elementary units of

this system are phosphates, the only chargeable molecule of the dsDNA system. To ac-

complish this, we represent 100 phosphate monomers as a loop with fixed end monomers

(Fig. 4.1). To generate a large set of conformations we performing MD simulations us-

ing GROMACS. To obtain a representative sample of the conformational space of these

end-tethered loops, ranging from completely extended to completely collapsed, it was
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necessary to perform biased sampling via introduction of an external bias potential (Fig.

4.15).

For the single nucleosome conformation of the chromatin-like system, there is only

one conformation input into the MT. The 1KX5 crystal structure [61], composed of 147 bp

of DNA wrapped around a canonical histone protein, was coarse-grained at the molecular

level using the AICG protocol [165] for amino acid residues and the 3SPN model [88] for

DNA nucleotides. For the 8-mer nucleosome array system, conformations were generated

using the 1CPN model of chromatin [159], which is coarse-grained at the nucleosome level.

Next, molecular detail, at the level of AICG and 3SPN, was reintroduced to the 1CPN

conformations (Fig. 4.16).
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4.3. Divalent Cations More Effectively Modulate Structure and Charge of

Phosphate Loop Systems than Monovalent Cations Due to Ion Bridging

Reactions

4.3.1. Effects of Monovalent Cations on Phosphate Loops Under Dilute Con-

ditions

We begin our study by characterizing the influence of monovalent cations on phosphate

loops for a more dilute system with very low bulk density, determined by a very low

grafting density between phosphate loops, σ (Fig. 4.1B). Each monomer of the loop sys-

tem represents one DNA-phosphate, a strong acid with a pKa = 1 (Fig. 4.1). Unless

otherwise noted, all MT calculations in this text are run for bulk pH = 7.4, which rep-

resents physiological pH. Thus, at physiological pH the phosphates are expected to be

almost completely deprotonated and, hence, there will be a large amount of electrostatic

repulsions within the phosphate loop system, even for dilute systems. There are several

mechanisms available to reduce the unfavorable electrostatic repulsions in the system,

which are all accounted for within the MT. Polymer stretching increases the distances

between charged phosphates of neighboring loops and between neighboring monomers

in the same loop. This vertical stretching thus decreases the charge density of the sys-

tem, consequently reducing electrostatic repulsions. However, there is a physical limit to

chain stretching and this mechanism might be unable to completely mitigate electrostatic

repulsions between charged nearest neighbor phosphates within the same loop. Chain

stretching also results in a loss of conformational entropy of the polyelectrolyte chains

and, hence, is entropically unfavourable.
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Additionally, counterions can reduce electrostatic repulsions through two mecha-

nisms. First, positively charged counterions can localize in close proximity to the neg-

atively charged phosphates within the loop layer (Fig. 4.1B&C). This counterion con-

finement effect increases electrostatic screening of phosphates, and thus reduces overall

electrostatic repulsions. Secondly, ions can physically bind to phosphates. This ion pair-

ing, or ion condensation, reaction neutralizes the negatively charged phosphates by chem-

ically altering their charged state, and thus reducing the charge density of the system

(Fig. 4.1B&C). However, like polymer stretching, both ion confinement and condensa-

tion come with an entropic cost. Namely, the loss of mixing entropy of ions and water

molecules. Ion condensation also results in a loss of mixing entropy, as water is replaced

with confined ions. Similar to ion condensation, acid-base equilibrium can also poten-

tially decrease the net amount of charged phosphates. Shifting the acid-base equilibrium

towards its protonated state decreases the number of phosphates in the deprotonated

state. This mechanism is opposed by the chemical work required to perform this chemical

reaction, which is determined by the free energy of the reaction and the local proton

concentration. At physiological pH, acid-base equilibrium is expected to have a relatively

small contribute to charge neutralization compared to ion condensation since phosphate

pKa = 1. It is nevertheless taken into account in the theoretical formulation. Overall, the

system will need to balance the opposing enthalphic and entropic interactions in order to

minimize the free energy. Consequently, a balance between the various opposing chemical

and physical interactions will determine the resulting structure and amount of charge of

the phosphate loop system.
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One of the parameters that influences this equilibrium is the free energy difference

between bound and unbound ions, or the standard Gibbs reaction free energy, ∆G

d .

This quantity is determined by the dissociation equilibrium constant, pKd, of the ion

condensation chemical reaction. The dissociation constants or, conversely, the binding

constants of the ion condensation reactions have not been properly established in the

both the experimental and computational literature. Here, to determine physiologically

relevant ion binding constants, we performed calculations with parameter scans over ion

binding constants. We then indirectly compared our results with experiments performed

under dilute conditions to determine physiologically relevant ion binding constants, which

were subsequently employed to study denser systems.

We begin by determining the effects of ion binding by only consideringNa+ binding

and acid-base equilibrium in a dilute system (σ = 0.0002nm−2) with negligible interac-

tions between neighboring loops. Over a range of bulk [Na+] = 10− 500mM concentra-

tions, we performed a parameter scan of ∆G

d (PNa) from 1 to 6 kBT . We considered

this range of binding free energies to be reasonable given our previous studies involving

ion condensation of Na+ with acetate, a slightly weaker polyelectrolyte with pKa = 4

[221, 200]. All MT calculations were performed in three-dimensions. The system lattice

was discretized into three-dimensional cubic cells of size δ = 0.65nm and the segment

length of monomers was lseg = 0.34nm, similar to the size of DNA-phosphates. 3D

calculations were performed to assess the effects of lateral heterogeneity.

We characterized the effects of a varying electrolyte environment on both the

structure and charged state of the phosphate loop layer, which are inherently linked.



270

Figure 4.3. The influence of monovalent cations on structure and charge
of dilute phosphate loop system depends on ion binding strength. The
influence of increasing Na+ concentration on (A) average height ⟨h⟩ in
nm and (B) average fraction of charged phosphates, fP−, is dependent on
strength of ion binding ∆G


d (PNa) for dilute systems of σ = 0.0002nm−2,
physiological bulk pH = 7.4 and no K+ orMg2+. Physiological monovalent
salt concentration of 150mM is denoted by the dotted grey line.

Specifically, we investigated these effects on the average height of the system, the ex-

tent to which the phosphate loop extends in the z-direction, and the average fraction of

negatively charged phosphates. The height is defined as twice the first moment of the

DNA-phosphate volume fraction:

(4.17) ⟨h⟩ = 2⟨z⟩ = 2

∫
d3rz⟨ϕDNA−P (

−→r )⟩∫
d3r⟨ϕDNA−P (

−→r )⟩

Note that ⟨ϕDNA−P (
−→r )⟩ is dependent on the p.d.f. Pg(α) for each input conformation α.

For the same grafting density, a smaller height signifies a more compact, less elongated

polymer layer. The average fraction of phosphates that carry negative charges (⟨fP−⟩), is



271

given by

(4.18) ⟨fP−⟩ =
∫
d3rfP−(−→r )⟨ρDNA−P (

−→r )⟩∫
d3r⟨ρDNA−P (

−→r )⟩
.

A lower ⟨fP−⟩ signifies increased charge neutralization due to ion condensation of coun-

terions.

The height decreases slightly with both increasing bulk [Na+] and ∆G

d (PNa)

for our dilute system. With increasing Na+ concentration the electrostatic repulsions

between monomers in the same chain are reduced and the polymer conformations may

adopt less extended states, as indicated by the slightly decreased average height of the

polymer layer (Fig. 4.3A).

Additionally, increasing Na+ concentration increases the amount of Na+ binding.

This reduces the negative charges in the system, as indicated by a decrease in the average

fraction of charged phosphates. The ion-pairing also contributes to a smaller layer thick-

ness, i.e., a shorter height. This charge neutralization effect is highly dependent on the

value of ∆G

d (PNa).

Larger Na+ binding constants result in a greater decrease in charge for increas-

ing bulk [Na+], while smaller ∆G

d (PNa) = 1 − 2 kBT are only marginally sensitive to

changes in bulk [Na+] (Fig. 4.3B). Notably, we do not observe an appreciable difference

of sensitivity of height to changes in bulk [Na+] for varying ∆G

d (PNa) (Fig. 4.3A), in-

dicating the larger charge neutralization effects of greater Na+ binding do not necessarily

correlate with structural changes.

Next, we examined the effects of ion binding on the electrolyte environment of

the phosphate loop system, by characterizing the counterion distribution surrounding the
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Figure 4.4. Ionic atmosphere depends on Na+ binding strength and con-
centration. (A) For bulk [Na+] = 10mM , fraction of excess ions con-
tributed by free versus bound ions to total normalized excess ions, βNa+ .
Here, increasing ion binding G


d (PNa) results in increasing Na+ ion con-
densation and decreasing free ions undergoing ion confinement. The total
ion cloud encompassing the phosphate loop system remains the same. (B)
βNa+ is more sensitive to increasing Na+ concentration for lower G


d (PNa).
Physiological monovalent salt concentration of 150mM is denoted by the
dotted grey line. (C) Fraction of phosphates that are bound to Na+

fPNa and bound to K+ fPK changes as K+ concentration increases for
G


d (PNa) = G

d (PK) = 3 kBT and fixed bulk [Na+] = 50mM . fPK sur-

passes fPNa around bulk [K+] = 50mM , which is equal to bulk [Na+] in
this system. Inset Fraction of phosphates that are negatively charged fP−

decreases with increasing bulk [K+].

phosphate loop layer. Recently, ion counting of inductively coupled plasma mass spec-

troscopy (ICP-MS) experiments have probed the attraction of counterions to negatively

charged DNA [241, 231, 306]. ICP-MS can determine the total number of excess ions

observed in a system with DNA versus bulk solutions. These excess ions are composed

of both condensed counterions and counterions contained in the cloud that surrounds a

charged molecule or particle via ion confinement. For varying bulk ion concentrations,

Gebala et al. have experimentally measured β+, which is the normalized excess ion den-

sity, or the fraction of charge neutralization that arises from localization and condensation

of positively charged counterions. Total β+ is defined as the sum of the ion excess of all
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positively charge counterions i+,i.e., β+ =
∑

i+ βi+ and

(4.19) βi+ =
qi+Γi+

NDNA−P |qDNA−P |
with Γi+ =

∫
d3r
(
ρi+(

−→r )− ρbulki+

)
where Γi+ is the number of excess counterions of type i in the DNA solution compared to

the bulk solution, NP−DNA is the total number of DNA-phosphate molecules, and qP−DNA

is the number of charges per DNA-phosphate molecule.

The ion excess includes both the density of bound and unbound free ions. A value

of βi+ close to 0 indicates that you will find a similar concentration of counterions close

to the DNA system as compared to the bulk solution. On the other hand, a βi+ close

to 1 indicates that counterions have a very high preference to be localized to, and even

condensed with, DNA while negatively charged coions (i.e. Cl−) are expelled from the

DNA system. A high value of β+ is indicative of strong electrostatic interactions and a

more negative electrostatic potential. Note the sum of normalized excess ions over all

cations i+ and anions j− should equal to 1 to maintain overall charge neutrality of the

system, i.e.
∑
β+ + β− = 1 [94, 95].

Importantly, our MT calculations can differentiate between excess counterions that

are bound and condensed on DNA-phosphates and counterions that are free and experi-

encing ion confinement, while ion counting experiments can only measure the combined

value of excess ions. For lower bulk [Na+] = 10mM as measured in Gebala et al. [95],

we find that the total normalized excess ions, βNa+ , is relatively insensitive to changes

in Na+ binding strength, ∆G

d (PNa) (Fig. 4.4A). However, the normalized fraction of

condensed ions substantially increased from close to 0 to 0.4 when varying ∆G

d (PNa)

between 1−6 kBT , while normalized free excess ions decreased by a similar absolute range
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(Fig. 4.4A). Additionally, the Gebala et al. report measured βNa+ = 0.85 for a DNA sys-

tem under similar environmental conditions as our 3D MT calculations, which varied from

βNa+ = 0.845 − 0.868 within the given range of binding energies G

d (PNa) considered

(Fig. 4.3A). Given the matching of experimental results for DNA with 3D MT calcula-

tions of phosphate loops, we demonstrate our calculations for a simplified phosphate loop

system are able to fairly accurately represent the ionic environment of DNA.

Calculations performed at this low salt concentration of bulk [Na+] = 10mM

where βNa+ is only slightly sensitive to changes to G

d (PNa) did not allow us to determine

ion binding constants that would be physiological based on ion counting experiments.

As a next step, we determined how ion binding strength influences sensitivity of total

normalized excess ions to increasing concentrations of Na+. Notably, for 3D calculations,

we observe a variation in the behavior of excess ions, βNa+ as a function of increasing bulk

[Na+] that depends on G

d (PNa) (Fig. 4.4B). For lower G



d (PNa) = 1− 3 kBT , there is

a monotonic decrease in βNa+ with increasing bulk [Na+] (Fig. 4.4B). Higher G

d (PNa)

exhibits nonmonotonic behavior, first decreasing up until [Na+] = 100−200mM and then

increasing (Fig. 4.4B). For our 3D calculations, we see a similar sensitivity of βNa+ to

bulk [Na+] for G

d (PNa) = 3 kBT to G


d (PNa) = 6 kBT and this behavior for these lower

ion binding constants is very similar to that determined by Gebala et al. via IC-PMS

experiments under similar ranges of bulk [Na+] [94]. As G

d (PNa) = 3 kBT is very similar

to the binding constant obtained for the ion pair of Na+ and acetate [221, 200], and is

within the physiological range determined by comparison to ion counting experiments, a

value of 3 kBT for G

d (PNa) will be used for the rest of this study.
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Finally, we wanted to determine physiological binding constants for the most preva-

lent intracellular monovalent cation, K+. ICP-MS measurements demonstrated similar

excess ion environments for Na+ and K+ under equal concentrations of both ions, de-

spite differences in ionic size [93]. Na+ has a radius rNa+ ≈ 0.101nm and K+ is slightly

larger, with a radius of rK+ ≈ 0.138nm, which the MT explicitly takes into account. If

Na+ and K+ have similar binding constants, i.e., G

d (PNa) = G


d (PK) = 3 kBT , then,

according to ion counting observations, the bound fraction of Na+ should be compara-

ble to the bound fraction of K+ when the concentrations of both ions are equal. For

bulk [Na+] = 50mM , varying bulk [K+] = 10 − 275mM we see a clear transition be-

tween predominance of bound fraction of Na+ (fPNa) versus bound K+ (fPK) at bulk

[K+] = 50mM , indicating our MT calculations also show no preference for Na+ versus

K+ binding when ion binding energies for both ions are equal (Fig. 4.4C). Thus, MT

calculations performed in the following sections ahve G

d (PNa) ∼ G


d (PK) = 3 kBT ,

which we estimate to be physiologically relevant to our phosphate loop system.

Overall, there is a large dependence of structural (i.e., height) and charged state

(i.e., average negatively charge fraction of phosphates) of the polymer system on the ion

binding constant G

d (PNa), which also determines sensitivity to changes in Na+ concen-

tration, predominantly for the charged state. Here, we found that the most prevalent

monovalent cations, Na+ and K+ have G

d ≈ 3 kBT , indicating relatively weak ion bind-

ing for the concentrations of monovalent cations studied under dilute conditions.
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4.3.2. Charge Regulation Effects of Monovalent Cations in Dense Systems

Next, we investigated the effects of monovalent ion binding on the phosphate loop system

under non-dilute conditions.

Figure 4.5. Effects of monovalent salt on average phosphate loop height
and charge depends on bulk density. The effect of K+ concentration on
(A) the average height ⟨h⟩ in nm and (B) the average charged fraction of
phosphates ⟨fP−⟩ of the phosphate loop layer varies depending on grafting
density σ, which determines the bulk density. Higher σ has a larger height
and a lower charged fraction of phosphates that are both less sensitive to
changes in monovalent cations. Physiological intracellular [K+] = 150mM
is denoted by the grey dotted line.

The bulk [K+] concentration was varied from 10mM − 500mM to determine the

effects of monovalent cations on the structure and charge of phosphate loops for a lower

density (σ = 0.05nm−2) and a higher density (σ = 0.10nm−2) system.2 Both average

height and charged fraction of phosphates are relatively insensitive to changes in bulk [K+]

up to ≈ 100mM , which is close to combined physiological K+ and Na+ concentration

of 150mM (Fig. 4.5A&B). After [K+] = 100mM , both height and charge decrease

2Although the bulk densities are different both systems are non-dilute.
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with increasing bulk [K+], however the exact behavior is dependent on bulk density (Fig.

4.5A&B). The higher density system (σ = 0.10nm−2) has a larger height than the lower

density system (σ = 0.05nm−2) (Fig. 4.5A). There is increased polymer stretching for

higher density systems to account for increased intra-chain interactions due to decreased

distance between end-grafted loops. Additionally, the higher density system has a lower

fraction of charged phosphates (Fig. 4.5B). The increase in grafting density results in a

higher charge density of negatively charged phosphates that are electrostatically repelling

each other. Consequently, an increased binding of K+ to phosphates occurs to reduce the

number of charged phosphates within the denser polymer layer. Notably, both the height,

and especially the charged fraction, for the higher density system (σ = 0.10nm−2) are

less sensitive to changes in monovalent salt concentration compared to the lower density

system (σ = 0.05nm−2) (Fig. 4.5A&B). The fact that the average charged fraction does

not change appreciably for bulk [K+] concentrations ranging over an order of magnitude

indicates almost maximal K+ binding even at the lowest [K+] (Fig. 4.5B).

These trends are consistent when varying ion binding strength of K+, G

d (PK),

demonstrating their general validity (Fig. 4.18). Contrary to the trends observed in our

dilute system (Fig. 4.3), increases in K+ ion binding strength result in a decreased sen-

sitivity of height to increasing bulk [K+] (Fig. 4.2,4.18). The average fraction of charged

phosphates, ⟨fP−⟩, is also less sensitive to increases in monovalent salt for higher ion bind-

ing strengths, especially for the higher σ = 0.10nm−2 case (Fig. 4.18). These effects are

caused by maximal K+ binding at lower cation concentrations for these denser systems,

which is augmented by increased ion binding strength. Altogether, this demonstrates that
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increasing K+ concentration beyond average physiological monovalent cation concentra-

tions compacts phosphate loops and slightly decreases average system charge, and that

this sensitivity is highly dependent on system density.

Figure 4.6. Bulk density influences phosphate density distribution for
monovalent salt conditions. (A-B) 3D isosurface plot of DNA-phosphate
volume fraction, ⟨ϕDNA−P ⟩ for a phosphate loop system with (A) σ =
0.05nm−2 and (B) σ = 0.10nm−2. Loop centers are indicated by yel-
low regions with higher volume fractions of DNA-phosphates. Resolution
is 0.65nm x 0.65nm x 0.65nm.(C&D) Average distribution of phosphate
volume fraction in the z-direction up to z = 5nm for (A) σ = 0.05nm−2

and (B) σ = 0.10nm−2. Lines represent the average over the entire system
(Average; Blue Line), the average over the centers of all 16 graft points
(Loop Center; Orange Line), and the average over “between loop” regions
that are equidistant from graft points (Between Loops; Purple Line).
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Next, we examined the three-dimensional distribution of relevant structural and

chemical quantities under physiological monovalent salt [K+] = 150mM for different

grafting densities. Fig. 4.6A&B) visualized the 3D distribution of DNA-phosphate volume

fraction ⟨ϕDNA−P ⟩, which ranges from 0.1 − 0.6 within the phosphate loop layer, with

the highest volume fractions surrounding the graft points of phosphate loops. Visually,

the figure demonstrates a distinct phosphate density distribution for the lower density

(σ = 0.05nm−2) compared to the higher density (σ = 0.10nm−2) system, (Fig. 4.6A&B).

This is further corroborated by quantitatively analyzing phosphate density distribution

in different regions of the lateral plane and comparing this to the average density in

the z-direction as show in Figures 4.6C&D. Loop center and between loop regions are

compared with z-plane averages, as indicated by Fig. 4.18. Higher σ, indicating that

phosphate loops are closer together, also results in a larger spread in phosphate density

further away from the plane due to chain stretching, verifying our previous observations

of increased height for higher density systems (Fig. 4.5A, Fig. 4.6). The higher density

system also appears more compact in the horizontal plane, where each phosphate loop is

relegated to a smaller area. Interestingly, the differences between ⟨ϕDNA−P ⟩ for the center

of the loop compared to the average of the system and the area between phosphate loops

is larger for the less dense system (σ = 0.05nm−2) (Fig. 4.6C&D).

As polyelectrolyte structure is coupled with charged state, we next examined the

influence of phosphate density on the three-dimensional distribution of electrostatic po-

tential and local pH (Fig. 4.7, Fig. 4.8). MT explicitly considers H+ ions and acid-base

equilibrium and is therefore able to account for variable local (i.e., position-dependent)

pH, or variable local proton concentration. As expected, an increase in phosphate loop



280

Figure 4.7. Bulk density influences electrostatic potential for monovalent
salt conditions. 3D isosurface plot of electrostatic potential ψ in units of
mV , for a 4x4 phosphate loop system with (A) σ = 0.05nm−2 and (B) σ =
0.10nm−2. Loop centers are dark purple regions with lower electrostatic
potential due to the negative charges of DNA-phosphates. Resolution is
0.65nm x 0.65nm x 0.65nm. (C&D) Average distribution of electrostatic
potential in the z direction up to z = 5nm for (A) σ = 0.05nm−2 and
(B) σ = 0.10nm−2. Lines represent the average over the entire system
(Average; Blue Line), the average over the centers of all 16 graft points
(Loop Center; Orange Line), and the average over “between loop” regions
that are equidistant from graft points (Between Loops; Purple Line). At
large enough values of z, electrostatic potential will reach ≈ 0mV .

grafting density (i.e., higher σ) at the surface correlates with an overall more negative

electrostatic potential. Due to the increased charge density, the negative electrostatic
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potential permeates further into the electrolyte solution above the phosphate loop layer

for the denser system (Fig. 4.7A&B). Increasing grafting density also results in a decrease

in local pH closer to the polymer layer, resulting from an increase in local [H+] to miti-

gate the highly negative electrostatic potential (Fig. 4.8A&B). Although there is also an

osmotic component influencing local pH that increases with increasing phosphate density,

the electrostatic potential has a much larger contribution to increasing this local proton

concentration.

Next, we compared average values (Blue) of electrostatic potential and pH to those

at the centers of loop graft points (Orange) and the areas between loops (Purple) to

quantitatively assess lateral fluctuations in the xy-plane. At the z-plane closest to the

graft point, the electrostatic potential decreases to ≈ −84mV within the loop centers.

For lower bulk density σ = 0.05nm−2 the average reaches ≈ −41mV and the between

loop region reaches ≈ −46mV , while for higher bulk density σ = 0.10nm−2 the average

reaches ≈ −54mV and the between loop region reaches ≈ −33mV (Fig. 4.7C&D). All

three curves merge and go to 0mV for large enough z, the Loop Center, Between Loops,

and Average curves remain different for larger z for the lower σ = 0.05nm−2 system (Fig.

4.7C&D).

A similar trend can be seen when we examine pH (Fig. 4.8C&D). Additionally, the

range of the observed decrease in local pH close to the graft points is also not predicted

by averages in the lateral direction. Local pH decreases to pH = 6.4 for σ = 0.05nm−2

in 3D, but averaging over xy-plane in 3D results in pH = 6.6 (Fig. 4.8A&C). Although

these differences may appear small, they represent significant differences in local proton

concentration, as [H+] = 10−pH .
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Altogether, like the distribution of phosphate density, the electrostatic potential

and local pH at loop centers and between loops diverges more for lower system densities

σ = 0.05nm−2 closer to the planar surface (i.e., z = 0), indicating a larger degree of lateral

heterogeneity (Fig. 4.7C&D, Fig. 4.8C&D). The calculations demonstrate that systems

with higher bulk density have lower average electrostatic potentials with a smaller degree

of lateral fluctuations due to the fact that higher density systems have a more negative

charge density (Fig. 4.7). Higher density systems have loops with highly charged phos-

phates that are closer together, which homogenizes the electrostatic potential compared

to lower density systems that have areas between loops with less negative electrostatic

potential.

Finally, we examined the effects of random compared to regular grafting patterns

(Fig. 4.19). MT calculations demonstrate that, although there are large differences in

DNA density distribution in the lateral plane (Fig. 4.19 A&B), average system properties,

including dependence of height and average charged fraction of phosphates, are very

similar between the different grafting patterns (Fig. 4.19 C&D). Thus, the trends observed

from calculations performed with homogeneously grafted loops are expected to remain for

heterogeneously grafted systems.

In conclusion, structural and electrostatic/chemical properties of the phosphate

loop system are very much dependent on bulk density, and thus the effects of system den-

sity on charge regulation are integral to take into consideration. These properties are also

highly heterogeneous in three-dimensional space, and the extent of lateral heterogeneity

decreases for higher grafting densities compared to more dilute conditions.
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Figure 4.8. Bulk density influences local pH under monovalent salt condi-
tions. 3D isosurface plot of local pH(−→r ) = −log10[H+](−→r ), for a 4x4 loop
system with (A) σ = 0.05nm−2 and (B) σ = 0.10nm−2. Loop centers
are dark purple regions with lower local pH resulting from a higher local
density of H+ attracted by the negative phosphate charges. Resolution is
0.65nm x 0.65nm x 0.65nm. (C&D) Average distribution of electrostatic
potential in the z direction up to z = 5nm for (A) σ = 0.05nm−2 and (B)
σ = 0.10nm−2. Lines represent the average over the entire system (Aver-
age; Blue Line), the average over the centers of all 16 graft points (Loop
Center; Orange Line), and the average over “between loop” regions that
are equidistant from graft points (Between Loops; Purple Line). At large
enough values of z, pH will reach bulk levels of pH = 7.4.
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4.3.3. Effects of Divalent Cations on Phosphate Loops Under Dilute Condi-

tions

After characterizing the effects of monovalent cations on phosphate loops, we turned to

study charge regulation of divalent cations. Due to their multivalent nature, they are

expected to increase charge neutralization of strong polyelectrolyte systems. Mg2+ is

the most prevalent intracellular multivalent cation, with total [Mg2+] ≈ 10 − 20mM

[244]. However, the majority of Mg2+ remains complexed with intracellular components,

predominantly ATP and free [Mg2+] ≈ 0.5mM [106].

We began our study by estimating the physiological 1:1 Mg2+ binding and its

effects on the charge and structure of phosphate loops by performing a parameter scan

over ∆G

d (PMg+). ∆G


d (PK) = ∆G

d (PNa) = 3 kBT as determined in the previous

section. A relatively low ion bridging energy of ∆G

d (P2Mg) = 7 kBT was chosen to

better evaluate the effects of 1:1 binding alone. As our previous estimates of excess Na+

ions from our 3D MT calculations matched well with ion counting experiments, we used

results from ion counting experiments analyzing the competition between Na+ andMg2+

to estimate physiological 1:1 Mg2+ binding with phosphate [95]. Here, we performed

MT calculations under bulk physiological pH = 7.4 with bulk [NaCl] = 25mM and

[MgCl2] = 2.5mM to compare to relevant ion counting experiments. Note that bulk

[Na+] = 10[Mg2+]. The normalized excess ions for Na+ decreases with increased 1:1

Mg2+ binding energy, ∆G

d (PMg+), indicating replacement of a predominantly Na+

cloud with that ofMg2+ (Fig. 4.9A). The ionic environment surrounding phosphate loops

is very sensitive to changes in 1:1 Mg2+ binding. A lower 1:1 binding energy, comparable

to that of Na+ and K+ (∆G

d (PMg+) = 3 kBT ), results in a two-fold increase in Na+
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excess ions compared toMg2+. Notably, even at these lowerMg2+ binding concentrations,

there is still a 5x increase in bulk [Mg2+] compared to bulk [Na+] in the phosphate loop

system compared to their relative concentrations in bulk solution. A higherMg2+ binding

(∆G

d (PMg+) > 6 kBT ) results in an increased prevalence of excess Mg2+ compared to

excess Na+ cations, despite Na+ concentration being an order of magnitude higher in the

bulk solution (Fig. 4.9A). From a theory standpoint, Mg2+ is preferred over monovalent

cations because the more highly charged Mg2+ cation screens electrostatics to a greater

extent than monovalent cations for the same loss of translational entropy due to ion

confinement and ion condensation. This effect is especially high for more dilute systems.

Ion counting measurements performed under similar environmental conditions

demonstrate that the normalized excess cations (βi+), which include both free and bound

ions, for Na+ and Mg2+ are equivalent, despite the concentration of Mg2+ being ten-fold

lower than [Na+] in the bulk solution [95]. Normalized excess ions for Na+ are equal

to that for Mg2+ around ∆G

d (PMg+) = 6 kBT , making it a reasonable estimate for

physiological 1:1 Mg2+ binding (Fig. 4.9A).

Increasing the ion bridging free energy ∆G

d (P2Mg) from 7 kBT to 11 kBT in-

creases the fraction of phosphates in Mg2+ bridges, which slightly decreases the critical

ion bridging coefficent ∆G

d (PMg+), where the excess ions for Na+ crosses Mg2+, to

∆G

d (PMg+) ≈ 5 kBT (Fig. 4.20). However, under these conditions the fraction of

phosphates in ion bridges fP2Mg becomes non-negligible (Fig. 4.20), and ion counting

experiments with stiffer linear DNA under dilute conditions would not be expected to

form significant ion bridges.
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Notably, our estimates for 1:1 Mg2+ binding are quite similar to 1:1 binding of

divalent Ca2+ to acetate despite having slightly different chemical properties [221, 200].

Based on extrapolation of ion dissociation measurements from acetate and formate, Sigel

and Sigel [266] also estimate a 1:1Mg2+ binding with phosphate of approximately pKd ≈

1, which has subsequently been employed to study interactions betweenMg2+ and nucleic

acids employing atomistic MD simulations [271]. A standard Gibbs reaction free energy

∆G

d (PMg+) = 6 kBT is equivalent to a dissociation equilibrium constant pKd ≈ 0.87,

which is similar to that estimated by Sigel and Sigel [266]. This again validates that our

MT model of phosphate loops is able to recapitulate key features of DNA with a much

simpler representation.

Figure 4.9. Effects of 1:1 Mg2+ binding on phosphate loop system under
dilute conditions. All calculations are performed for bulk pH=7.4, [Na+] =
25mM , [Mg2+] = 2.5mM , σ = 0.0002nm−2 (i.e., dilute conditions).
(A) Normalized excess ions, βi+ , for Na

+ and Mg2+ versus ∆G

d (PMg+).

(B) Average height of loop layer (in nm) versus bulk [Mg2+] for varying
∆G


d (PMg+). Shaded grey region extends from 0.5mM , the estimated
intracellular free Mg2+ concentration, to 10mM , the estimated total in-
tracellular [Mg2+] [244, 106]. (C) Average fraction of phosphates with a
negative charge (P−), in a protonated state (PH), bound to 1Mg2+ cation
(PMg+), or bound to 1 Na+ cation (PNa) for ∆G


d (PMg+) = 6 kBT and
varying bulk [Mg2+].
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Next, in our dilute system, we investigated the effects of Mg2+ binding on

phosphate loop structure and charge over a large range of bulk Mg2+ concentration

[Mg2+] = 10−5 − 100mM , to explore the effects of 1:1 Mg2+ binding at above and

below estimated intracellular free [Mg2+] = 0.5mM . All calculations were performed

under physiological monovalent salt conditions to account for competition between mono-

valent K+ and Na+ and divalent Mg2+. Although exact values are dependent on ion

binding strength, the height of the phosphate loop system is sensitive to changes in bulk

[Mg2+] after ∼ 0.1mM (Fig. 4.9B). Overall, Mg2+ reduces phosphate loop height by

approximately 1.5nm between bulk [Mg2+] = 0.1 − 100mM , while Na+ reduces phos-

phate loop height by a similar amount over higher bulk [Na+] = 10−500mM (Fig. 4.3A,

Fig. 4.9B). Height is also dependent on ∆G

d (PMg+), with larger binding strengths

compacting phosphate loops at lower bulk [Mg2+] (Fig. 4.9B).

Finally, we investigated how varyingMg2+ concentration for bulk [Na+] = 25mM

and physiological 1:1 Mg2+ binding influences the charged state of the phosphate loop

system. Phosphates exhibit a preference for binding to Mg2+ compared to Na+ even at

low [Mg2+] = 0.1mM , which is 250 times smaller than bulk [Na+] = 25mM (Fig. 4.9C).

Additionally, the negatively charged fraction of phosphates decreases from ∼0.86 to ∼0.47

from bulk [Mg2+] = 0.1−100mM (Fig. 4.9C)). This is a much greater effect than for Na+

under physiological ∆G

d (PNa) = 3 kBT , where the charged fraction of phosphates ranges

from ∼0.91 to ∼0.79 for bulk [Na+] = 10− 500mM (Fig. 4.3B, Fig. 4.9C). Additionally,

the single Mg2+ bound fraction of phosphates (fPMg+) begins increasing from 0.0 around

bulk [Mg2+] = 0.01mM and reaches ∼0.51 around bulk [Mg2+] = 100mM (Fig. 4.9C).

When bulk [Mg2+] is equal to bulk [Na+] = 25mM , bound Mg2+ fraction is ∼ 53x
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greater than the fraction of phosphates bound with Na+ (Fig. 4.9C). Altogether, this

demonstrates that, even when only considering 1:1 Mg2+ binding to phosphate, Mg2+ is

able to more efficiently compact and neutralize the charge of phosphate loops compared

to monovalent cations due to its increased valency.

4.3.4. Effects of Ion Bridging on Phosphate Loops in Dense Systems

Ion bridging occurs when one multivalent cation binds and neutralizes two negatively

charged phosphates. A previous MT study demonstrated that end-tethered poly(acrylic

acid) brushes collapse in the presence of a critical Ca2+ concentration due to the for-

mation of ion bridges between monomers [200]. Similar experimental studies by Tirrel

and coworkers demonstrated experimentally and computationally that synthetic poly-

electrolyte brushes can collapse or contract in electrolyte environments that contain di-

and or multivalent ions. [37, 36, 124, 304] Likewise MD simulations [124] and Flory-like

free energy approaches [78] also demonstrate the possibility of collapse of polyelectrolyte

brushes in multivalent ion solutions. Thus, we hypothesize thatMg2+ will induce collapse

of phosphate loops via ion bridging between phosphates, which is especially important to

neutralize charges in denser systems.

Here, we determine the effects of Mg2+ bridging on the structure and charge of

dense phosphate loop systems. First, we investigated the effects of varying bulk [Mg2+]

and ∆G

d (P2Mg), or the ion bridging free energy, on the average height of the phosphate

loop layer. Calculations were performed using the physiological binding constants for K+,

Na+, and 1:1 Mg2+ binding obtained in the previous sections and for physiological bulk
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pH = 7.4, higher bulk density (σ = 0.10nm−2), and physiological bulk [K+] = 140mM

and [Na+] = 10mM .

The average height of the phosphate loop system is much more sensitive to lower

bulk Mg2+ concentrations compared to monovalent counterions under similarly dense

conditions (Fig. 4.10A, Fig. 4.5A). Additionally, the change in height is notably larger,

varying by 3nm with Mg2+ bridging reactions (Fig. 4.10A), while varying over only

approximately 1.5nm when only considering 1:1 Mg2+ binding alone in dilute systems

(Fig. 4.9B) and < 0.5nm for varying [K+] for similar bulk densities (Fig. 4.5A). Complete

collapse of phosphate loops is observed after bulk [Mg2+] = 10mM , the total estimated

concentration of intracellularMg2+, for all ion bridging free energies (Fig. 4.10A). Such a

collapse can be inferred by the insensitivity of the height to changes in bulk [Mg2+] above

a certain threshold, indicating a saturation that is not seen when considering 1:1 Mg2+

or monovalent cation binding alone. The collapse of the phosphate loop layer is observed

at lower bulk [Mg2+] concentrations for higher ion bridging free energies, ∆G

d (P2Mg)

(Fig. 4.10A). Systems with lower average density σ = 0.05nm−2 are more sensitive to

bulk [Mg2+], although the range over which they are most sensitive is similar to higher

density systems (Fig. 4.10, Fig. 4.22).

To determine a physiologically relevant free energy of Mg2+ bridging, we combine

several different experimental observations for dsDNA and chromatin, which we expect

to be largely influenced by the chemical behavior of phosphates. Under more dilute

conditions, dsDNA self-assembly and attraction between dsDNA strands as well as in-

termolecular association of chromatin arrays have been shown to occur at concentrations

of Mg2+ in the several millimolar range [172, 121, 230, 259, 260, 209]. Denser systems
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are expected to increase ion bridging to account for higher charge densities. Addition-

ally, Engelhardt and colleagues determined that heterochromatin remains compacted in

isolated nuclei, e.g., a denser system, for [Mg2+] ≥ 2mM [76]. Altogether, this points

to the prevalence of ion bridging reactions, resulting in compaction of DNA and phos-

phate loops, around several mM of bulk [Mg2+]. Thus, ∆G

d (P2Mg) ≈ 14 kBT could

be estimated as physiological a physiological ion bridging coefficient as the bulk [Mg2+]

versus height curve for this value of ∆G

d (P2Mg) best represents these experimental find-

ings (Fig. 4.10A). Similar to the effects of system density on the influence of K+, less

dense systems (σ = 0.05nm−2) are even more sensitive to changes in bulk [Mg2+] for

physiological ion bridging energies (Fig. 4.22A).

To better understand the effects of ion bridging on the ion cloud surrounding

phosphate loops, we determined the contribution to total excess Mg2+ ions of the free,

1:1, and 2:1 bound Mg2+ fractions for the critical [Mg2+] = 2mM . As the ion bridging

free energy becomes stronger, both the free Mg2+ and the 1:1 bound Mg2+ fractions

decrease, the 2:1 bound Mg2+ fraction increases and the total normalized excess Mg2+,

βMg2+ remains fairly insensitive to changes in bulk [Mg2+] (Fig. 4.10B). Notably, the

“tipping point” for Mg2+ to be predominantly found in an ion bridge with phosphates

compared to in a free or 1:1 bound state occurs right before our estimate of physiological

∆G

d (P2Mg) = 14 kBT , for critical [Mg2+] = 2mM (Fig. 4.10B). Total βMg2+ is higher

for denser systems (Fig. 4.10B) compared to more dilute systems (Fig. 4.9A) indicating

a larger Mg2+ cloud to compensate for an increased charge density.
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Figure 4.10. Ion bridging has a large influence on structure and charge of
dense phosphate loop systems. All calculations were performed for higher
bulk density (σ = 0.10nm−2), bulk pH = 7.4, physiological monovalent
cations (bulk [K+] = 140mM , bulk [Na+] = 10mM), ∆G


d (PNa) =
G


d (PK) = 3 kBT , and ∆G

d (PMg+) = 6 kBT . (A) Average height (in

nm) of phosphate loop layer for varying bulk [Mg2+]. Each colored line
represents different ion bridging free energies, ∆G


d (P2Mg). Higher ion
bridging results in a stronger loop collapse for lower bulk [Mg2+]. Shaded
region represents physiologically relevant intracellular concentrations of free
Mg2+. (B) Normalized excess Mg2+ cations split into total, βMg2+ , 1:1
Mg2+-phosphate pair, 2:1Mg2+-phosphate pair, and freeMg2+ for varying
∆G


d (P2Mg). (C) Fraction of phosphates with a negative charge (P−),
bound to Na+ (PNa), bound toK+ (PK), bound in a 1:1Mg2+-phosphate
pair, or Mg2+ forming an ion bridge between two phosphates (P2Mg) for
∆G


d (P2Mg) = 14 kBT . (D-E) Electrostatic potential, ψ, in units of mV
for (D) lower, 0.1mM and (E) upper, 10mM , bounds of free Mg2+ with
physiological ion bridging, ∆G


d (P2Mg) = 14 kBT .

Next, we examined how the chemical state of DNA-phosphates is modulated

by changes in bulk [Mg2+] for physiological ion bridging free energy. There is a dra-

matic decrease of average negatively charged phosphates, ⟨fP−⟩, after approximately bulk
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[Mg2+] = 0.01mM (Fig. 4.10C), which occurs an entirely one order of magnitude lower

than when only considering 1:1 Mg2+ binding in dilute systems where ⟨fP−⟩ attenuates

around bulk [Mg2+] = 1mM (Fig. 4.9C). This corresponds to a sharp increase of Mg2+-

phosphate ion bridges around similar bulkMg2+ concentrations (Fig. 4.10C). The largest

changes in the chemical state of phosphates occur between bulk [Mg2+] = 0.01− 1mM ,

which correspond to the largest changes in the average height of the phosphate loop sys-

tem (Fig. 4.10A&C). Increasing bulk [Mg2+] also substantially decreases the fraction

of K+ and Na+ ions bound to phosphates, while 1:1 Mg2+-phosphate binding increases

to a much lesser extent, indicating a large preference for ion bridging compared to 1:1

binding (Fig. 4.10C). Such an increased fraction of phosphates in ion bridges compared

to ion pairs with monovalent cations can also be explained by considering entropic versus

electrostatic components of the free energy. Ion bridging is an energetically much more

efficient way to neutralize charges than 1:1 Mg2+ and Na+ and K+ ion binding, as all

ion condensation reactions reduce the translational entropy of ions. Thus, monovalent

cation binding is replaced by ion bridging reactions when bulk Mg2+ concentrations are

approximately 4 orders of magnitude smaller than total bulk monovalent cation concen-

trations (crossover occurs at [Mg2+] ≈ 0.001mM while total monovalent concentration

is 150mM). For less dense systems (σ = 0.05nm−2), although the absolute values of

fractions of phosphates in certain chemical states are shifted (i.e., for lower [Mg2+] there

is a higher fraction of negatively charged phosphates), similar to trends observed with the

average height, the overall range where the charged state is most sensitive to changes in

bulk [Mg2+] remains the same (Fig. 4.10C, Fig. 4.22B).
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Finally, we examined the 3D electrostatic potential distribution for ranges of free

[Mg2+] that may be relevant to observed intracellular fluctuations (Fig. 4.10D-E). Al-

though difficult to determine exactly, it is estimated that total intracellular [Mg2+] ≈

10mM , while free [Mg2+] ≈ 0.5mM , although free Mg2+ can vary significantly between

cells and within the cell cycle [244, 106, 181]. For a lower bound of bulk [Mg2+] = 0.1mM ,

the electrostatic potential centered around loop graft points is highly negative and even

permeates above in the z direction beyond the phosphate loop layer (Fig. 4.10D). How-

ever, for an upper bound of bulk [Mg2+] = 10mM , the phosphate loop system becomes

nearly charge neutral, with decreased lateral fluctuations in electrostatic potential (Fig.

4.10E). Analyzing the 3D distribution of phosphate density and local pH, we see that

increasing bulk [Mg2+] between these lower to upper bounds results in more compacted

phosphate density and a higher pH closer to the bulk value of 7.4, with more diminished

lateral fluctuations (Fig. 4.23).

We would like to point out that the mechanism for the observed collapse is the

large free energy associated with ion bridge formation. The energy gained upon the

chemical reaction of ion bridging is so substantial that the system wants to form as many

ion bridges as possible, resulting in increased phosphate compaction. This free energy

gain for sufficiently strong ion bridging is enough to overcome the loss of conformational

entropy associated with polymer brush collapse. Concomitantly, the system decreases

its charge and the electrostatic repulsions decrease, as demonstrated by Fig. 4.10C-E,

further facilitating the collapse of the phosphate loop layer. Finally, MT calculations

also demonstrate that system properties are much more sensitive to changes in [Mg2+]

than changes in pH, indicating that changes in bulk pH do not have a significant charge
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regulation effects for our phosphate loop system compared to the electrolyte environment

and average phosphate density (Fig. 4.24), although there are significant fluctuations in

local pH (Fig. 4.23C&D). Altogether, our results show that phosphate loop structure and

charge are both highly sensitive to the divalent Mg2+ cation due to its ability to form ion

bridges between phosphates.
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4.4. The Bulk Monovalent Electrolyte Environment, pH, and System

Density Influence Charge and Structure of Chromatin

4.4.1. Determining the Influence of Monovalent Cations on the Charged State

of Single Nucleosomes

After estimating physiologically relevant ion condensation free energies for DNA-

phosphates and investigating the differences between monovalent and divalent cation

environments in our simpler phosphate loop system, we extended our MT approach to

investigate chromatin. We began our chromatin study by characterizing the effects of the

monovalent electrolyte environment on the charged state and ion cloud of single nucle-

osomes (Fig. 4.11A). Comparing the total charge of the yeast nucleosome (1ID3) [295]

to that of the human nucleosome (1KX5) [61], we determined that the charge of both

nucleosomes is sensitive to changes in [Na+], especially around physiological monovalent

salt concentration of 150mM (Fig. 4.11B). However, the yeast nucleosome carries a much

larger negative charge than the human nucleosome. Although there is > 60% homology

between the human and yeast nucleosome core particles [295], changes in key amino acid

residues, especially on the surface of the histone subunits, seem to have a non-neglibile

influence on total nucleosome charge (Fig. 4.11B).

Next, we determined how the ionic environment influences the ion cloud of the

human and yeast nucleosomes. Notably, we calculated a total excess Na+ of βNa+ = 0.78

for [Na+] = 10mM and physiological pH (Fig. 4.11C). This value is very similar to the

βNa+ = 0.85± 0.019 determined from ion counting experiments of nucleosomes under the

same environmental conditions [95], although MT calculations were performed on tailless
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Figure 4.11. Monovalent electrolyte environment influences charge and ex-
cess ions in distinct ways for yeast versus human nucleosomes. All calcula-
tions were performed for bulk pH = 7.4 and bulk [K+] = [Mg2+] = 0mM .
(A) Rendering of single nucleosome in solution. Na+ counterions shield
the negative electrostatic potential of the nucleosome by either binding and
changing the charged state of the DNA-phosphates or being localized in
close proximity to the nucleosome in the free state via ion confinement.
(B) Comparing total nucleosome charge versus [Na+] for human (1KX5)
and yeast (1ID3) nucleosomes. In general, yeast nucleosomes carry a more
negative charge than human nucleosomes. (C&D) Total excess ions (βNa+),
fraction of bound excess Na+, and fraction of free Na+ versus bulk [Na+]
for (C) human and (D) yeast nucleosomes.

nucleosomes whereas experiments were performed on canonical nucleosomes with histone

tails.
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We then compared the sensitivity of total, bound, and free excess Na+ ions to

[Na+] for human and yeast nucleosomes (Fig. 4.11C&D) as well as DNA-phosphate

loops (Fig. 4.25) and observed several key differences. Both the total and free excess

Na+ cations monotonically decrease with increasing [Na+] for the phosphate loop system

(Fig. 4.25). However, the free and total excess Na+ ions for the human nucleosome first

increase with increasing [Na+], up until physiological monovalent cation concentration

of ∼ 150mM , and then decrease (Fig. 4.11C). The yeast nucleosome remains almost

insensitive to changes in [Na+] up until [Na+] ≈ 100mM , and then begins to decrease

as well (Fig. 4.11D). There is also increased Na+ binding for both nucleosome systems

compared to the phosphate loop system, and there is even more bound Na+ for the

yeast compared to the human nucleosome (Fig. 4.11C&D, Fig. 4.25). This observation

can be explained by the fact that wrapping the DNA around histone proteins increases

the charge density of DNA-phosphates, which requires extra charge neutralization via

ion condensation of Na+ counterions. The overall different behavior between phosphate

loops and nucleosomes indicates the increased complexity of the chromatin system, which

is composed of highly negatively charged phosphates as well as neutral, acidic, and basic

amino acid residues, all of which influence how chromatin responds to changes in the

electrolyte environment.

4.4.2. Bulk pH and Ion Condensation Modulate Charge of Single Nucleosome

and Nucleosome Chain Chromatin Systems

Next, we investigated the effects of bulk pH on the charged state of our two chromatin

systems, the single nucleosome (Fig. 4.2A) and the 8-mer nucleosome chain (Fig. 4.2B).
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Figure 4.12. Influence of bulk pH and ion condensation on the charge of
chromatin systems. All calculations were performed for [K+] = 140mM ,
[Na+] = 10mM , and [Mg2+] = 0mM . (A) The three-dimensional distri-
bution of electrostatic potential of the single nucleosome system for bulk
pH = 7.4. Regions with more negative electrostatic potential, occupied
by negatively charged phosphates and acidic amino acids, are in pink and
regions with more positive electrostatic potential, occupied by basic amino
acids, are in green. (B) Charge per nucleosome (Qchr(e)/#nuc) versus
bulk pH for single nucleosome and 8-mer nucleosome chain systems with
and without ion condensation to DNA-phosphates. Range of bulk pH en-
compasses approximately ±1.0 from physiological pH.

At the single nucleosome level, note that the electrostatic potential is heterogeneously

distributed (Fig. 4.12A). The charged state of the system is dependent on the bulk pH

due to the acid-base equilibrium of the histone protein amino acid residues (Table 4.2).

However, like most biological systems, total nucleosome charge is only slightly sensitive

to bulk pH around physiological pH (Fig. 4.12B), although the chromatin system is still

more sensitive to changes in bulk pH for this range compared to the phosphate loop system

(Fig. 4.24). Notably, the average charge per nucleosome of the 8-mer nucleosome array

system is much more negative than for the single nucleosome within this pH range (Fig.

4.12B). This points to the large effects of linker DNA on the total charge of the chromatin
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system, as linker DNA connects nucleosomes in the 8-mer array but is not part of the

single nucleosome. Note that, for the same total charge, the charge density of wrapped

DNA is higher compared to linker DNA. Additionally, ion condensation by monovalent

K+ and Na+ cations substantially neutralizes the charge of both systems, underlying the

importance of ion binding in the charge regulation of chromatin (Fig. 4.12B).

4.4.3. Monovalent Electrolyte Environment and Bulk Density Modulate

Charge and Structure of Chromatin Chains

Finally, we investigated the effects of monovalent cations on our 8 nucleosome chromatin

chain system for lower and higher bulk density systems (Fig. 4.13A). The average charge

per nucleosome is sensitive to [K+], especially around physiological monovalent cation con-

centrations of ∼ 150mM (Fig. 4.13B). Higher bulk density systems have a slightly less

negative average charge for lower [K+], but this difference becomes negligible around phys-

iological monovalent concentrations (Fig. 4.13B). Note that, although the total charge

for the lower and higher bulk density systems seems similar, due to osmotic pressure from

surrounding chromatin chains, higher density systems are more compacted (Fig. 4.14B)

and thus have a higher charge density.

The sensitivity of the counterion cloud to changes in bulk [K+] is more distinct

for the two systems (Fig. 4.13C). Below physiological [K+] = 150mM , there is a larger

observable difference between lower bulk density and higher bulk density systems for

the total excess K+ counterions, (Fig. 4.13C). Remember that normalized excess ions,

βK+ increases when there is a larger difference between cation concentration in the bulk

solution and that of the chromatin solution, and is indicative of a more negative system
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Figure 4.13. Influence of monovalent electrolyte conditions and bulk density
on charged state and of 8-mer nucleosome arrays. All calculations were per-
formed for physiological bulk pH = 7.4 and bulk [Na+] = [Mg2+] = 0mM .
(A) Calculations were performed for lower density (3 µM) and higher den-
sity (19 µM) systems where concentration was determined by the number
of chains within a given box size. (B&C) Influence of K+ on charged state
and ion cloud of 8-mer system. (B) Average charge per nucleosome and (C)
total excess K+, βK+ , versus bulk [K+] for lower density (Blue) and higher
density (Orange) systems. Physiological monovalent cation concentration
∼ 150mM is denoted by grey dotted line.

charge. At lower [K+] < 150mM , the higher bulk density system has a more negative

total charge per nucleosome Fig. 4.13B), and thus a highly negative charge density. Thus,

a relatively larger concentration of K+ compared to the lower bulk [K+] is localized to

the counterion cloud surrounding the chromatin chain to reduce electrostatic repulsions in



301

the higher density system (Fig. 4.13C). As bulk K+ concentration increases, the relative

difference in excess total K+ between the chromatin system and bulk solution decreases

for the high density system (Fig. 4.13C), as the system becomes relatively more charge

neutral (Fig. 4.13B). For both lower and higher bulk density systems, total excess K+

becomes relatively insensitive to changes in [K+] ≥ 150mM .

Next, we studied the influence of monovalent cations and system density on struc-

tural parameters of the chromatin chain, such as radius of gyration,
√

⟨R2
g⟩, the average

spacing between nucleosomes, and the bond angle between neighboring nucleosomes (Fig.

4.14). Radius of gyration indicates the location of the highest concentration of mass of

the chromatin chain.

A larger radius of gyration represents a more elongated chain and a smaller radius

of gyration represents a more compacted chain. There are much larger differences between

the radius of gyration of lower versus higher bulk density systems compared to changes

induced by [K+] (Fig. 4.14B). The higher density system is more compacted, indicated

by a lower radius of gyration, and is relatively insensitive to changes in [K+] (Fig. 4.14B).

This observed larger-scale compaction is due to osmotic pressure from neighboring chains,

which increases with system density. As the charge density also increases with bulk system

density, the charge neutralization effects of increasing [K+] within this range (Fig. 4.13B)

are not sufficient to further compact the higher density system. On the other hand, the

lower density system is more sensitive to changes in [K+] < 150mM (Fig. 4.14B)

Finally, we investigated the effects of bulk system density and electrolyte environ-

ment on more local descriptors of chromatin chain structure. Specifically, we determined

the pairwise spacing between neighboring nucleosomes and the bond angles between three
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connected nucleosomes and averaged these properties across the chromatin chain. As ob-

served with the radius of gyration, there are large differences in average nucleosome spac-

ing and bond angles for lower and higher bulk system densities, with lower density systems

being more sensitive to [K+] (Fig. 4.14C&D). Notably, both of these “local” structural

parameters are more responsive to changes in [K+] < 150mM especially compared to

the radius of gyration, which is a more “global” descriptor of chromatin structure (Fig.

4.14C&D). Higher bulk density systems have smaller nucleosome spacing, which further

decreases with increasing [K+] (Fig. 4.14C). Again, the higher bulk density system is

relatively less responsive to changes in [K+] due to its highly negative charge density.

Thus, decreasing spacing between nucleosomes via charge regulation of K+ is not as no-

ticeable compared to the lower density system (Fig. 4.14C). Additionally, higher bulk

density systems have larger bond angles (Fig. 4.14D). Increasing bond angles reduces

electrostatic repulsions between neighboring nucleosomes and between highly negatively

charged linker DNA for these higher density systems (Fig. 4.14D). Interestingly, increas-

ing bulk K+ concentration seems to compactify chromatin chains (Fig. 4.14B&C) while

increasing bond angles (Fig. 4.14D), potentially unveiling a conserved mechanism for

increasing chromatin compaction.

Overall, bulk K+ has a non-negligible effect on the charge regulation of chromatin

chains, which is modulated further by bulk density. Structural elements of the chromatin

chain, including the radius of gyration, nucleosome spacing, and bond angles, are more

sensitive to [K+] for lower density systems, although this sensitivity tapers off around

physiological monovalent salt concentration ∼ 150mM . This indicates that the structural
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effects of K+ are “saturated” above this concentration, although the effects on the system

charge are still highly sensitive to increases in [K+].
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Figure 4.14. Influence of monovalent electrolyte conditions and bulk den-
sity on structure of 8-mer nucleosome arrays. Calculations were performed
for lower density (3 µM) and higher density (19 µM) systems where con-
centration was determined by the number of chains within a given box size.
All calculations were performed for physiological bulk pH = 7.4 and bulk
[Na+] = [Mg2+] = 0mM . (A) Rendering of example conformation for
8-mer nucleosome array system with bond angle and nucleosome spacing
explicitly denoted. (B-D) Influence of bulk [K+] on chromatin structure
depends on bulk system density (Blue: lower bulk density, Orange: higher

bulk density). (B) Radius of gyration (in nm),
√

⟨R2
g⟩, representing the

spread of the chromatin chain, (C) average nucleosome spacing (in nm) de-
termined by averaging pairwise distance between neighboring nucleosomes
(as in A), and (D) bond angle (in degrees) determined by three neighboring
nucleosomes (as in A). For (B-D) physiological monovalent cation concen-
tration ∼ 150mM is denoted by grey dotted line.
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4.5. Conclusions and Discussion

In this thesis work, we have examined the charge regulation mechanisms of the

bulk electrolyte environment, pH, and system density, on the charge and structure of two

strong polyelectrolyte systems. To accomplish this, we employed an MT approach that

is able to accurately represent the chemical, or charged, state along with the structural

state of polyelectrolytes, and is thus able to investigate charge regulation in physiologically

dense systems such as the nucleus. In addition, it is computationally feasible to perform

parameter scans over many bulk environmental conditions using this theoretical approach.

First, we studied the behavior of a simpler polyelectrolyte brush system consisting

of DNA-phosphate loops (Fig. 4.1). We characterized the effects of monovalent and diva-

lent cations on the structure and charge of these phosphate loop systems for both dilute

and dense environmental conditions. Non-dilute phosphate loop systems are sensitive to

changes in Na+ and K+ concentrations around physiological monovalent ion concentra-

tions (Fig. 4.3, Fig. 4.5). We find that for non-dilute systems, 20-30% of the phosphates

carry condensed counterions, and this ion pairing increases with system density (Fig. 4.5).

However, higher density systems are less sensitive to changes in the monovalent electrolyte

environment due to the high charge density within these system.

Additionally, we see a large degree of lateral heterogeneity in phosphate density

distribution, electrostatic potential, and local pH of our phosphate loop system. This

is exemplified by Fig. 4.6, Fig. 4.7, and Fig. 4.8. Thus, the bulk density primarily

determines the charge density and the charge regulation of our phosphate loop systems,

however local fluctuations in phosphate density also play a non-negligible role.
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Notably, we were able to mechanistically distinguish between the effects of diva-

lent and monovalent cations and quantitatively determine the importance of ion bridging

reactions between two phosphates and one divalent Mg2+ cation. Although 1:1 Mg2+

binding has a larger influence on the charge and thickness of phosphate loop layers than

monovalent Na+ andK+ cations (Fig. 4.9), the ability of divalent ions to form ion bridges

has a more profound impact on charge and thickness of phosphate loop layers (Fig. 4.10).

Ion bridging for physiologically relevant intracellular ranges of Mg2+ concentrations re-

sult in increased charge neutralization and collapse of the phosphate loops (Fig. 4.10).

Our preliminary study with the phosphate loop system allowed us to fully characterize

the effects of charge regulation of the physiochemical environment on strongly negative

phosphate systems before increasing the complexity of the system to represent chromatin.

We extended our MT approach for the simplified phosphate loop system to study

charge regulation of the more complex chromatin-like system for both single nucleosomes

and chromatin chains composed of 8 nucleosomes (Fig. 4.2). In our chromatin-like sys-

tem, the elementary units for DNA were phosphates, sugars, and nucleobases and for

histones were amino acids. Employing our simpler phosphate loop system, we were able

to determine physiologically relevant free energies for phosphate-ion condensation reac-

tions, which we used to study the effects of the bulk monovalent electrolyte environment,

pH, and system density on chromatin. Both the charge and counterion cloud of our single

nucleosome systems are sensitive to changes in monovalent cation concentration, although

the exact behavior of yeast and human nucleosomes is distinct (Fig. 4.11). Additionally,

the charge of our chromatin-like system is sensitive to changes in bulk pH, the charge

regulation effects of monovalent ion condensation are even larger (Fig. 4.12). Our 8-mer
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nucleosome array system also has a larger negative charge per nucleosome than the single

nucleosome system due to the addd effects of linker DNA (Fig. 4.12). Finally, the sen-

sitivity of the structure of chromatin-like chains to changes in [K+] is highly dependent

on bulk density. The radius of gyration, average nucleosome spacing, and bond angles

of higher density systems are, in general, less sensitive to [K+] for higher bulk density

systems due to their increased compaction and more negative charge density (Fig. 4.13

&, Fig. 4.14). In general, “local” structural parameters (e.g., average nucleosome spacing

and bond angle) are more sensitive to changes in the monovalent electrolyte environment

than “global” descriptors (e.g., radius of gyration.

We would like to highlight the novelty of these computational results. Previous

atomistic MD simulations have uncovered the effects of the electrolyte environment on

system charge, nucleosome unwrapping, and the ion cloud surrounding chromatin [183,

297]. However, the limitations of such computationally intensive simulations prevent

scanning over many environmental conditions, especially for denser system, and have

mostly been performed for single nucleosomes. Less accurate coarse-grained simulations

have investigated the effects of the electrolyte environment on, for example, the persistence

length and the inter-nucleosome interactions of chromatin chains [159, 104]. However,

the representation of electrostatics (see Chapter 1.4.2) and a more robust understanding

of how system density influences the structure and charge of chromatin systems, have

not been thoroughly studied. Here, we present a large-scale study on phosphate-like

loops, a simple representation of DNA, and chromatin-like nucleosomes and chains which

characterize the effects of charge regulation over many different environmental conditions.

Overall, we quantitatively determine that bulk system density has a large effect on the
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charge regulation of the electrolyte environment on DNA and chromatin structure, with

substantial fluctuations in local charge and pH in three-dimensions that are not taken

into consideration with coarse-grained simulation techniques.

There are also several limitations of our methodology we would like to discuss.

Firstly, we are modeling a simplified representation of DNA-phosphates as loops. Each

monomer only has one chargeable site to represent the chemical behavior of one phos-

phate and thus does not completely represent the DNA system. However, we believe

the effects of divalent cations due to their ion bridging mechanisms are generalizable.

For example, previous MT calculations examining the effects of Ca2+ concentration on

a polyelectrolyte layer of poly(acrylic acid) have demonstrated that ion bridging of di-

valent Ca2+ with two acetate monomers results in collapse of the polyelectrolyte layer

under specific environmental conditions [200], similar to the one observed here for the

phosphate loop system. That MT study used as input linear chains generated from a

rotational isomeric state (RIS) model and acetate, which is a weaker acid than phosphate

[200], demonstrating that the effects of ion bridging are at least substantial for acids with

a pKa < 4. Additionally, previous experimental and computational studies have demon-

strated the importance of divalent cations on the structure of dense brushes of strong

polyelectrolytes. For example, Langevin simulations have been used to explore the effects

of ions on polymer brushes [304, 107], and both simulations and Atomic Force Microscopy

(AFM) experiments demonstrate lateral inhomogeneities induced by multivalent cations

[304].

Interestingly, our study has found that the Mg2+, (i.e., divalent) electrolyte envi-

ronment has large effects on charge and structure of DNA with a “tipping point” around
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estimated concentrations of free intracellular Mg2+ [244, 106]. Also of note is that strong

ion bridging reactions are not always guaranteed, but depend on divalent ion concen-

tration, ion bridging binding free energy, and bulk system density. By comparing MT

calculations to experimental observations, we determine that ion bridging is not only

strong in our phosphate loop system, but also has a very consequential influence on the

overall charge and structure of the system.

An additional consideration is that MT is a mean-field approach that treats elec-

trostatics interactions in a mean-field manner (see 4.6.1). Thus, if short-range charge-

charge correlations are large enough, the electrostatic interactions are not as accurately

represented by MT. To compensate for this limitation, we explicitly include short-range

charge-charge correlations by representing them as ion binding reactions [100]. This is an

intuitive way of reintroducing these short-range correlations into our system and has the

additional advantage that it does not require detailed knowledge of ion-phosphate and

ion-ion interactions. For example, the dynamics of Mg2+ solvation shells are estimated

to be long-lived and are thus difficult to account for in atomistic simulations of DNA

solution with Mg2+[41].

There are several different methods to obtain the ion binding free energies of these

ion condensation reactions, both experimental and computational. Experimental meth-

ods are preferred, but due to the complex chemical nature of DNA-phosphates and their

strong acidic behavior, ion binding free energies between phosphate and counterions have

not been robustly determined in the experimental literature.3. In principle, atomistic

MD simulations could be used to obtain the ion-binding free energies. Observe that such

3Even pKa = 1 of phosphate is an estimate and, although this acid-base equilibrium constant has been
cited in the literature [35], exact experiments have not been reported.
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atomistic simulations provide detailed information regarding, for example, ion-DNA local-

ization, but can have varying results due to the inherent difficulty in implementing correct

force fields to represent ion-phosphate and ion-ion interactions [151, 44, 226]. Although

recent advances in experimental methods have facilitated a more complete characteriza-

tion of the ionic atmosphere surrounding DNA [60, 94, 93, 95] to better parametrize the

force-fields of MD simulations [303], such approaches may still incorrectly predict trends

which are not observed experimentally. For example, modeling of DNA nucleotides by

Panteva et al. incorrectly predicted a size dependence of cation occupancy of DNA that

was later disproven by ICP-MS measurements [219, 93]. Additionally, we have previ-

ously employed such atomistic simulation methods to determine ion binding constants

of poly(acrylic acid), but find that these values are sensitive to water models and force

fields [221]. To avoid these potential pitfalls, here we obtain binding free energies, which

are needed as input for the MT calculations, by performing parameter scans over ion

binding constants to determine physiologically relevant binding of K+, Na+, and Mg2+

counterions and then comparing to experimental observations of DNA charge [95, 94] and

structure [76, 259, 260].

Future directions for our chromatin study include investigating the effects ofMg2+

as well as additional physiologically prevalent multivalent cations, such as trivalent Sper-

midine (Spd3+) and tetravalent Spermine (Spm4+), both of which have even higher va-

lency than Mg2+. Comparing yeast and human nucleosomes, we demonstrated that the

amino acid composition of histones determines charge regulation at the level of nucleo-

somes. As there is crystallography data available, it could be interesting from an evolution-

ary perspective to characterize the charge regulation of the physicochemical environment
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on the nucleosomes of other organisms, including archaea. We could also quantify the ef-

fects of histone variants (e.g., H2A.Z) on these charge regulation effects. In our chromatin

studies, we have not included the histone tails, which have been shown experimentally and

computationally to play an important role in salt-induced chromatin compaction [259, 7].

An important future direction would also be to add histone tails to our chromatin chain

system and investigate the effects of the physicochemical environment on structure and

charge for different chemical modifications (e.g., acetylation, methylation). Finally, we

are currently modeling a system in equilibrium. However, chromatin, and most biolog-

ical systems, are nonequilibrium systems. Thus, we could extend our equilibrium MT

approach to model a nonequilibrium system where, for example, ion concentrations are

in flux, using approaches previously developed in the Szleifer group [279].
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4.6. Supplementary Material

4.6.1. Theoretical Approach

The −TSmix in the free energy (Eq. 4.11) corresponds to the mixing or translational

entropy of the solvent (water) and the mobile ionic species

(4.20) − TSmix

kB
=
∑
k

∫
d3rρk(

−→r )(ln ρk(−→r )vw − 1).

The index k runs over all the different types of mobile species: the water molecule, cations

(Na+,K+,Mg2+), anion (Cl–), proton (H+), and hydroxyl ion (OH–). The variable ρk(
−→r )

corresponds to the number density of mobile species k and vw is the volume of a water

molecule, which is used as the unit of volume.

For the Fchem free energy term in Eq. 4.11, the variable µ

i corresponds to the

standard chemical potential molecule of type i. The first and third terms within the Eq.

4.15 describe the entropy of the deprotonated charged state (P−) and protonated state

(PH), respectively. The second and fourth terms in Eq. 4.15 correspond to the standard

chemical potential of the charged and uncharged state, respectively. The subsequent

terms in the equation have an identical meaning and pertain to the enthalpic and entropic

contribution arising from the ion-condensation of Na+ and K+. The factor of half in front

of fP2Mg(
−→r ) occurs because the density of P2Mg complexes is 1

2
fP2Mg(

−→r )⟨ρP (−→r )⟩ since

the Mg2+ ion bridge consists of two phosphate. The second to last line describes the

reduction in entropy associated with the reduction of the number of phosphate states as

ion bridges are formed.



313

The Felect term in the free energy functional describes the electrostatic contribution

to the free energy and is given by

(4.21) Felect =

∫
d3r

[
⟨ρq(−→r )⟩ψ(−→r ) +

1

2
ϵ0ϵw(∇rψ(

−→r ))2
]
.

In this electrostatic functional ϵ0 and ϵw correspond to the dielectric permittivity of vac-

uum and the dielectric constant of water, respectively. ψ(−→r ) is the electrostatic potential

and ⟨ρq(−→r )⟩ is the total charge density. Variation of the above functional with respect to

the electrostatic potential yields the Poisson equation. Here, it should be noted that local

electrostatic potential ψ(−→r ) is coupled with osmotic pressure π(−→r ). Additionally, the

Poisson Equation, charge density and electrostatic potential are replaced by the thermo-

dynamic averages as a consequence of the mean-field approximation. Hence, fluctuations

and short range electrostatic correlations are not considered directly. However, we repre-

sent physical processes which occur due to shorter range electrostatic interactions using

a chemical equilibrium approach, which provides an intuitive way of introducing electro-

static ‘correlations’ and short range electrostatic interactions at a mean-field level.

The total charge density is the sum of the charge density of all charged mobile ions

and the charge density of the chargeable polyelectrolyte residues. For example, for the

phosphate loop system

(4.22) ⟨ρq(−→r )⟩ =
∑
i

eziρi(
−→r ) + e[(−1)fP−(−→r ) + fPMg+(

−→r )]⟨ρP (−→r )⟩.



314

Here, the summation runs over all charged mobile ions Na+,K+,Mg2+,Cl–,H+,OH– with zi

corresponding to their valency. e is the unit of charge. The second term is the net charge

number density of the phosphate residues.

The total free energy is minimized with respect to the p.d.f. (Pg(α)) as well as the

number density of all species, ρi(
−→r ), the fraction of the different states the chargeable

residues can be found, fk(
−→r ), and varied with respect to the electrostatic potential, ψ(−→r ),

under the constraints of incompressibility and the fact that the system is in contact

with a bath of cations, anions, protons, and hydroxyl ions. A Lagrange multiplier is

introduced to enforce that the sum over all states of chargeable residues equals one to

ensure conservation.

Minimization of the free energy yields the following expression for the local volume

fraction of the solvent

(4.23) ϕw(
−→r ) = ρw(

−→r )vw = exp(−βπ(−→r ))vw,

while the density of the ions (for a given ion γ) reads

(4.24) ργ(
−→r ) = 1

vw
exp
(
βµγ − βµ


γ − βπ(−→r )vγ − βψ(−→r )zγe
)
.
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For the phosphate loop system, minimization of the free energy with respect to the

different states of the phosphate residue, fP−(−→r ), fPH(
−→r ), fPNa(

−→r ), and fPK(
−→r )

fP−(−→r )
fPH(

−→r )
= e−β∆G


PHe−β∆Gsolv
PH (−→r ) e

−βπ(−→r )∆vPH

ρH+(−→r )vw
,(4.25)

fP−(−→r )
fPNa(

−→r )
= e−β∆G


PNae−β∆Gsolv
PNa(

−→r ) e
−βπ(−→r )∆vPNa

ρNa+(
−→r )vw

,(4.26)

fP−(−→r )
fPK(

−→r )
= e−β∆G


PKe−β∆Gsolv
PK (−→r ) e

−βπ(−→r )∆vPK

ρK+(−→r )vw
,(4.27)

The variable ∆G

i is the standard reaction free energy change of either the acid-base

equilibrium reaction of the acid or the dissociation equilibrium reaction of the metal-

ion pairs (e.g., PNa, PK). Here, ∆vi corresponds to the difference in volume between

the products and reactants. This formalism can be extended for each of the elementary

chargeable units of the chromatin-like system.
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4.6.2. Input Polymer Models

4.6.2.1. Phosphate Loop System.

Figure 4.15. Biased sampling for chain generation of coarse-grained DNA-
phosphate loops. (A) VMD renderings of examples of Collapsed (C) and
Extended (E) conformations from GROMACS MD simulations performed
with a bias potential. (B-C) Bias potential Vbias in units of kJ/mol versus
z (in nm). This is a two-well potential that biases the MD trajectory to-
wards both more collapsed (C) and more extended (E) states to increase
the conformational space of the loops. (D-E) Distribution of (D) the max-
imum z value (in nm) and (E) height (in nm) for all conformations in all 8
production runs. Here, height is calculated as 2⟨z⟩.
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4.6.2.2. Chromatin-like System. For the chromatin system, sizes of elementary units

were determined by calculating the average minimum distances between neighboring

amino acid residues in the single nucleosome system for amino acids and between phos-

phates, sugars, and nucleobases for a sample of 3SPN simulations. Segment lengths (lseg)

and chemical behavior of each nucleobase are shown in Tables 4.1 & 4.2. Volumes of each

elementary unit were calculated assuming each unit is a sphere with volume V = 4
3
π
( lseg

2

)3
.

Additionally, for chromatin-level MT calculations, three amino acids from the cen-

tral nucleosome are fixed to the center of the box and rotations are performed around

these fixed points to increase the conformational space of the 1CPN MD simulations.

DNA unit lseg(nm) Chemical Behavior

Adenine (A) 0.333 nm Neutral

Thymine (T) 0.438 nm Neutral

Cytosine (C) 0.41 nm Neutral

Guanine (G) 0.283 nm Neutral

Sugar (S) 0.414 nm Neutral

Phosphate (P) 0.3 nm Acidic (pKa = 1)

Table 4.1. Properties of DNA units of chromatin-like system.
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Amino Acid Residue lseg(nm) Chemical Behavior

Alanine (Ala) 0.484 nm Neutral

Arginine (Arg) 0.484 nm Basic (pKa = 12.1)

Asparagine (Asn) 0.484 nm Neutral

Aspartic acid (Asp) 0.484 nm Acidic (pKa = 3.71)

Cysteine (Cys) 0.484 nm Acidic (pKa = 8.14)

Glutamine (Gln) 0.484 nm Neutral

Glutamic acid (Glu) 0.484 nm Acidic (pKa = 4.15)

Glycine (Gly) 0.484 nm Neutral

Histidine (His) 0.484 nm Basic (pKa = 6.04)

Isoleucine (Ile) 0.484 nm Neutral

Leucine (Leu) 0.484 nm Neutral

Lysine (Lys) 0.484 nm Basic (pKa = 10.67)

Methionine (Met) 0.484 nm Neutral

Phenylalanine (Phe) 0.484 nm Neutral

Proline (Pro) 0.484 nm Neutral

Serine (Ser) 0.484 nm Neutral

Threonine (Thr) 0.484 nm Neutral

Tyrosine (Tyr) 0.484 nm Acidic (pKa = 10.1)

Valine (Val) 0.484 nm Neutral

Table 4.2. Properties of amino acid residues of chromatin-like system.
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Figure 4.16. Conformations for 8 nucleosome chromatin-like system were
generated by first performing 1CPN MD simulations [159] and then re-
introducing molecular detail. Elementary units of DNA are sugars, phos-
phates, and nucleobases, as represented by the 3SPN model of DNA [88].
Elementary units of histones are amino acid residues where coarse-graining
was performed using the AICG method [165]. A total of ∼125,000 such
conformations were input into the chromatin-level MT of 8-mer chains.
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4.6.3. Additional Supplementary Figures

Figure 4.17. Effect of monovalent cations for dense phosphate loop systems
depends on ion binding strength for lower (σ = 0.05nm−2) and higher
(σ = 0.10nm−2) bulk densities under non-dilute conditions. Compared to
dilute systems, 1D and 3D calculations are more comparable for the (A&B)
height of loop system and (C&D) average charged fraction of phosphates.
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Figure 4.18. Indices for average z analysis: domain center versus between
loop regions for (A) σ = 0.05nm−2 and (B) σ = 0.10nm−2. “Loop center”
regions are represented by orange X’s and “between loop” regions are rep-
resented by purple dots and are equidistant from loop centers on the planar
lattice.
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Figure 4.19. Effects of random compared to homogeneous grafting of phos-
phate loops. (A-B) 3D isosurface plot of DNA-phosphate volume fraction,
ϕDNA−P for a phosphate loop system with (A) regular and (B) random graft-
ing patterns for higher bulk density (σ = 0.10nm−2), bulk [K+] = 150mM ,
bulk [Na+] = [Mg2+] = 0mM and physiological bulk pH = 7.4. Random
grafting is achieved by shifting each homogeneously grafted loop by a ran-
dom value generated from a random seed. Loop center are indicated by
regions with higher phosphate volume fractions. (C) Height and (D) aver-
age charged fraction of phosphates have a similar dependence on changes
in [K+] for homogeneously and randomly grafted systems indicating that,
although there are differences between the two systems in the xy plane,
their average properties are very similar.
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Figure 4.20. Effects of 2:1 Mg2+ binding on charge regulation of 1:1 Mg2+

binding in dilute systems for bulk pH = 7.4, bulk [Na+] = 25mM ,
bulk [Mg2+] = 2.5mM , bulk [K+] = 0mM , and dilute bulk density
(σ = 0.0002nm−2). (A) Normalized excess ions, βi+ , for Na

+ and Mg2+

versus ∆G

d (PMg+) for ∆G


d (P2Mg) = 11 kBT (higher ion bridging). (B-
C) Fraction of each chemical state depends on 1:1 Mg2+ binding coefficient
∆G


d (PMg+) for (B) ∆G

d (P2Mg) = 7 kBT (lower ion bridging) and (C)

∆G

d (P2Mg) = 1 kBT (higher ion bridging).
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Figure 4.21. Influence of ion bridging coefficient on charged fraction for
higher bulk density (σ = 0.10nm−2), bulk pH = 7.4, and physiological
monovalent cations (bulk [K+] = 140mM , bulk [Na+] = 10mM) corre-
sponding to Fig. 4.10A. Each line represents different ion bridging coeffi-
cients, ∆G


d (P2Mg).
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Figure 4.22. Effects of system density on charge regulation of Mg2+ via
ion bridging. All calculations performed for higher bulk density (σ =
0.10nm−2), bulk pH = 7.4, and physiological monovalent cations (bulk
[K+] = 140mM , bulk [Na+] = 10mM). (A) Average height (in nm) versus
[Mg2+] for lower (σ = 0.05nm−2) compared to higher σ = 0.10nm−2 graft-
ing densities and physiological ion bridging ∆G


d (P2Mg) = 14 kBT . (B)
Fraction of phosphates with a negative charge (P−), bound to Na+ (PNa),
bound to K+ (PK), bound in 1:1 fashion toMg2+ cation, orMg2+ forming
an ion bridge between two phosphates (P2Mg) for ∆G


d (P2Mg) = 14 kBT
and lower bulk density (σ = 0.05nm−2) compared to Fig. 4.10C.
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Figure 4.23. 3D distribution of DNA-phosphate density and local pH for
lower and higher bounds of physiological Mg2+. All calculations performed
for higher bulk density (σ = 0.10nm−2), bulk pH = 7.4, and physiologi-
cal monovalent cations (bulk [K+] = 140mM , bulk [Na+] = 10mM), and
physiological ion bridging ∆G


d (P2Mg) = 14 kBT . (A&B) Distribution of
phosphate volume fraction, ϕDNA−P for (A) lower bulk [Mg2+] = 0.1mM
and (B) higher bulk [Mg2+] = 10mM . As bulk [Mg2+] increases, the phos-
phate density distribution becomes compacted and more localized closer
to the planar surface (i.e., towards smaller z values). (C&D) Local pH
distribution for (C) lower bulk [Mg2+] = 0.1mM and (D) higher bulk
[Mg2+] = 10mM . As [Mg2+] increases, pH becomes more homogenous
and closer to bulk pH values (i.e. lower local [H+]).
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Figure 4.24. Dependence of phosphate loop structure and charge on bulk
pH compared to bulk [Mg2+]. (A) Average height (in nm) and (B) average
charged fraction of phosphates for bulk pH ranging from 1 to 10 with varying
bulk [Mg2+]. Although these properties are sensitive to bulk pH at very
low pH, they remain stable above pH ≈ 2.

Figure 4.25. Excess ionic environment of dilute phosphate loop system un-
der monovalent cation conditions for dilute bulk density (σ = 0.0002nm−2),
bulk [K+] = [Mg2+] = 0mM and bulk pH = 7.4. (A) Representation of
dilute phosphate loop system in a solvent with Na+ cations that shield
negative phosphate charges in both the free and the bound state. (B) Total
excess ions (βNa+), fraction of bound excess Na+, and fraction of free Na+

for phosphate loop system.
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CHAPTER 5

Summary of Thesis Work and Future Outlook
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5.1. Major Conclusions

Employing a combination of nanoimaging modalities from our nano-ChIA platform

(Chapter 1.3), genome mapping and RNA sequencing techniques, and several computa-

tional models, this thesis aims to identify and characterize several key aspects of chromatin

structure and function in a realistic nuclear environment (Fig. 5.1).

In Chapter 2, we begin by employing high-resolution ChromSTEM and live-cell

PWS microscopy to identify the existence of chromatin packing domains (PDs) (Fig. 2.1,

Fig. 2.8, Fig 2.4), fundamental units of higher-order chromatin structure identified with

polymer physics-based mass scaling analysis (Fig. 1.5). These PDs are spatially sepa-

rable and have heterogeneous statistical packing properties, including chromatin packing

scaling (D), average chromatin volume concentration (CVC), and size (Rf ), and distinct

morphological properties related to accessibility of transcriptional machinery (Fig. 2.2,

Fig. 2.3). The existence of PDs and characterization of their properties was determined

in both A549 lung adenocarcinoma cells and differentiated BJ fibroblasts (Fig. 2.9, Fig.

2.10) indicating they are a generalizable higher-order structure of chromatin organization

in human cells.

The packing scaling of PDs was also determined to have several functional impli-

cations. The spatial distribution of D and its nuclear average over time are heritable

across cell division (Fig. 2.12, Fig. 2.13). There is also a general inverse relationship

between contact probability scaling and chromatin packing scaling, indicating a potential

connection between a statistical descriptor of genome connectivity and chromatin packing

behavior (Fig. 2.5, Fig. 2.6, Fig. 2.13, Fig. 2.14).
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Figure 5.1. Summary of thesis work to determine underlying principles
of chromatin structure and function. Chapter 2 identifies the existence
of chromatin PDs and that statistical chromatin organization can be de-
scribed by the SR-EV model of chromatin. (Left) ChromSTEM tomo-
gram of chromatin mass density distribution with PD centers marked with
crosses. (Right) SR-EV-like rendering of chromatin PDs (red, green, blue)
each with distinct statistical packing properties separated by low density
chromatin (in grey) representing the SR-EV backbone. Chapter 3 de-
termines that the initial chromatin packing state of cells determines their
ability to survive cytotoxic stressors. Specifically, high-D cancer cells are
more likely to upregulate critical stress response genes upon exposure to
chemotherapy, allowing them to survive chemotherapeutic stress. Chapter
4 characterizes the effects of the physicochemical environment on DNA-like
and chromatin-like systems. (Left) The ability of divalent Mg2+ (green
cations) to form ion bridges between two phosphates allows for increased
charge neutralization and compaction of these loop systems. These effects
are dependent on average system density, determined by grafting density σ.
(Right) The bulk monovalent electrolyte environment, pH, and system den-
sity influence the charge and structural parameters, including bond angle,
nucleosome spacing, and radius of gyration, of chromatin.

Next, in Chapter 2, we introduce the Self-Returning Excluded Volume (SR-EV)

polymer model, an extension of the Self-Returning Random Walk (SRRW) statistical

model. Like the SRRW model, the SR-EV has heterogeneous step sizes to represent

the heterogeneous mass density distribution of chromatin (Fig. 2.21). SRRW/SR-EV

statistics are determined by the folding parameter, α, which modulates the number of

self-returning steps to increase self-connectivity within domains (Fig. 2.21). Tree-like

domains are interconnected by a sparsely packed backbone structure (Fig. 2.21). Unlike

SRRW, the SR-EV model satisfies the principle of excluded volume and is a linear folded

chain (Fig. 2.15).
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We determined that statistical changes induced by the heat shock response, as

measured by PWS microscopy and Hi-C, were recapitulated by changing just the α fold-

ing parameter of SR-EV. Such relevant properties include: (1) an increase in average

chromatin packing scaling (Fig. 2.16, Fig. 2.17A), (2) a decrease in short-range and an

increase in long-range contacts (Fig. 2.18), and (3) a decrease in number of domains

(Fig. 2.19). In addition, the SR-EV was able to represent the heterogeneity of chromatin

packing at the level of individual conformations (Fig. 2.17B). Altogether, the morphology

and branching structure of domains is re-organized in the heat shock case as represented

by Fig. 2.20. The fact that these large-scale statistical changes in chromatin packing

and connectivity upon heat stress can be represented by a simple model, with only one

tuning parameter, indicates that the representation of chromatin as an SR-EV polymer

is a generalizable feature.

In Chapter 3, we developed a computational model, the chromatin packing macro-

molecular crowding (CPMC) model, that considers the crowding-mediated effects (see

Chapter 1.4.4) of statistical chromatin PD structure (Fig. 3.1), thus modeling tran-

scription in the context of a realistically crowded nuclear environment. Specifically, we

determined the influence of PD descriptors chromatin packing scaling (D), genomic size

(Nd, related to Rf ), and average chromatin density (ϕin,0, related to CVC) on large-scale

gene expression patterns (Fig. 3.2). Chromatin packing scaling was identified as a strong

determinant of phenotypic plasticity of cancer cells in response to chemotherapy, which

was validated using nanoimaging and scRNA-seq techniques. Here, phenotypic plastic-

ity encompasses transcriptional malleability (the average change in gene expression) and
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intercellular heterogeneity (the range of functional states in a cell population) (Fig. 3.3,

Fig. 3.4, Fig. 3.13, Fig. 3.14).

We then developed the Chromatin-Dependent Adaptability (CDA) model, an ex-

tension of CPMC, to predict cell survival in response to cytotoxic stressors from the initial

chromatin packing state. Employing our CDA modeling, PWS imaging, and cell viability

measurements, we determined that cancer cells with PDs that have higher average D are

able to better upregulate genes beyond a potential critical threshold in order to survive

chemotherapy (Fig. 3.6, Fig. 3.7). Indeed, chemotherapy was found to select for cells

with increased average D (Fig. 3.3B&C, Fig. 3.11, Fig. 3.12) and lowering the average

D of cell populations increased the effectiveness of chemotherapy to induce cell death, as

predicted by CDA (Fig. 3.8, Fig. 3.16, Fig. 3.17). Notably, drug agents that are thought

to alter the physicochemical environment of the cell by modulating ion channel activity

had a larger effect on decreasing average D and increasing effectiveness of chemotherapy

compared to other drugs, even ones that influenced epigenetics (Fig. 3.16, Fig. 3.17). As

a next step, we wanted to determine principle biophysical mechanisms that predictably

alter chromatin packing in order to be able to modulate cellular adaptability.

In Chapter 4, we developed a Molecular Theory (MT) approach to characterize

the effects of the physicochemical environment, including bulk chromatin density, ions,

and pH, on the structure and charge of chromatin. We began by modeling a simplified

phosphate loop system to represent the chemical behavior of DNA (Fig. 4.1). Due to their

ability to form ion bridges between two phosphates, Mg2+ has a much larger influence on

physical compaction and charge neutralization of dense phosphate loop systems compared

to monovalent cations, and these effects occur within physiologically relevant ranges of
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free intracellular [Mg2+] (Fig. 4.5, Fig. 4.10, Fig. 4.23). The charge regulation effects of

the electrolyte environment are also strongly influenced by average system density, with

strong local fluctuations in phosphate density, electrostatic potential, and pH (Fig. 4.5,

Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.18, Fig. 4.19, Fig. 4.21, Fig. 4.22). Physiologically

relevant ion condensation free energies for K+, Na+, and Mg2+ were determined by per-

forming parameter scans for our phosphate loop system and comparing MT calculations

to experimental observations (Fig. 4.3, Fig. 4.4, Fig. 4.9, Fig. 4.10).

Next, we expanded our MT approach to model a chromatin-like system. Com-

paring the behavior of yeast and human nucleosomes to our phosphate loop system, we

demonstrated that amino acid composition modulates the sensitivity of the nucleosome

charge and ionic environment to changes in monovalent salt concentration (Fig. 4.11, Fig.

4.25). Additionally, the electrostatic potential of chromatin is more sensitive to bulk pH

fluctuations than the DNA-like phosphate loop system due to the acid-base equilibrium

of acidic and basic amino acid residues, although ion condensation reactions have larger

charge regulation effects (Fig. 4.12). The structure and charge of chromatin chains is mod-

ulated by a combination of bulk system density and the bulk electrolyte environment (Fig.

4.13, Fig. 4.14). Local structural parameters, including nucleosome spacing and bond an-

gle, are still sensitive to changes in bulk monovalent ion concentrations even for higher

density systems, although this sensitivity is diminished for concentrations > 150mM , i.e.,

the physiological concentration of monovalent cations (Fig. 4.14).



335

5.2. Future Work

Results from this thesis work open up several key questions. Firstly, what are

the major mechanisms underlying PD formation, maintenance, and heritability. We have

observed that inhibition of transcriptional elongation significantly alters PD structures

and their average packing scaling [167]. Thus, transcription itself could play a role in

modulating chromatin packing structure. More extensive studies employing genetic ma-

nipulation, such as auxin-inducible degron (AID) systems [206] and CRISPR interference

(CRISPRi) [229], could be employed in the future to test which biophysical mechanisms

are most important for PD structural stability. CRISPRi is a high-throughput platform,

so many pathways related to transcription (e.g., RNA Pol II subunits, topoisomerase,

Mediator complex), loop extrusion (e.g., CTCF and cohesin subunits), and other relevant

pathways could be targeted at once. Here, PWS microscopy could be employed as a phe-

notypic readout to determine which biophysical mechanisms have the largest influence on

PD structure.

After these mechanisms have been identified, the more tunable AID system could

degrade specific target proteins and be used for more complex studies. For example, the

heritability analysis performed in Fig. 2.11 & Fig. 2.12 could be employed to investigate

how perturbing PD structure influences heritability. Specifically, we would investigate

whether the perturbed structure caused by genetic manipulation is still inherited across

cell division or if PD structure between parent and progeny cells is no longer correlated.

Such studies could help to discern fundamental mechanisms that contribute to the heri-

tability of PD packing behavior. Additionally, ChromSTEM experiments combined with

the polymer physics-based analysis described in Chapter 2 could further probe changes in
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statistical and morphological PD structure upon genetic perturbation. Finally, Hi-C ex-

periments could be performed to assess how the perturbation influences TAD structures,

and then compare these to changes observed in PD structures using PWS microscopy and

ChromSTEM.

Additionally, modifications to the SR-EV model could help probe which biophysical

mechanisms are most necessary for domain maintenance. We could introduce forces by

adding external proteins which can reversibly modify chromatin either chemically (e.g.,

epigenetic modifiers such as HDACs) or topologically (e.g., nuclear lamins, CTCF-cohesin

proteins). MD simulations could be performed until equilibrium is reached to determine

the minimal amount of biophysical mechanisms necessary to maintain statistical behavior

of tree domain structures over time.

Another question stemming from this thesis work involves the contributions of

molecular (e.g., RNA Pol II and TF concentrations) compared to physical regulators of

transcription (e.g., chromatin packing scaling) on transcriptional plasticity, specifically

in response to chemotherapy. Currently, our CPMC and CDA models both assume that

molecular regulators of transcription do not change significantly after stimulation with

cytotoxic stressors such as chemotherapy. The heat shock response discussed in Chapter

2.3.3 could be an interesting model to answer this question. This stress response increases

D of cancer cells, thus modulating the initial chromatin packing state, and has well-

defined molecular mechanisms of action. The transcriptional response of heat shock is

regulated by the TF heat shock factor 1 (HSF1) [231], which would be expected to alter

the molecular regulators of transcription upon heat shock. Interestingly, HSF1 is also

implicated in chemoresistance [140]. We could potentially expose WT and HSF1-KD cells



337

to heat stress and then expose these sensitized cell populations to cytotoxic chemotherapy.

Next, we would experimentally determine the cell survival benefit of pre-acclimation to

heat stress, which would alter the average chromatin packing behavior before exposure

to chemotherapy. These experiments would be performed for WT cells, which, upon heat

stress, would increase molecular regulators of HSF1 and stress response genes potentially

related to chemoevasion, and HSF1-KD cells. We can then compare these experimental

observations to CPMC predictions to evaluate differences in cell survival to cytotoxic

stress that can be attributed to changes in the initial chromatin packing state of cell

populations.

If we combined these heat experiments with CRISPR-Sirius, we could also track

heat shock-related genes and determine if they become localized to PDs with higher D

after repeated exposure to heat shock. Such an observation would indicate that increas-

ing the packing scaling surrounding stress response genes is a cellular stress response

mechanism.

SR-EV could also be employed to better answer this complex question. If we

explicitly add transcriptional machinery to the SR-EV model, which is able to represent

statistical chromatin structure in both control and heat shock states, then we could predict

transcriptional responsiveness to external stimulation by combining SR-EV simulations

with the CPMC model. We could then deconvolute if experimentally observed changes in

transcription, as assessed by RNA-seq, could be explained mostly be the rearrangements

in chromatin structure due to heat shock, or if we also need to account for changes in

molecular regulators.
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Finally, we would like to characterize the effects of the physicochemical environ-

ment on statistical chromatin packing within PDs. Preliminary in vitro experiments are

being performed to investigate the influence of the electrolyte environment on chromatin

packing in live cells. Our MT results on phosphate loop systems point to the increased

effects of Mg2+, the most prevalent intracellular divalent cation, on DNA structure com-

pared with monovalent cations K+ and Na+. We are currently performing experiments

with Mg2+ chelators, monitoring changes in ion concentrations using fluorescent dyes,

and tracking changes in chromatin packing using live-cell PWS microscopy. Chelation is

performed using BAPTA, a widely available divalent cation chelator, and APDAP, which

has a much higher affinity for Mg2+ compared to Ca2+ and other divalent cations [290].

Changes in chromatin packing will be compared to changes observed upon K+ pertur-

bation with valinomycin, a K+ ionophore, to experimentally quantify the differences in

modulation of chromatin packing by monovalent versus divalent cations. Future exper-

iments could involve more precisely tracking changes in ion concentrations after cation

chelation using mass spectrometry-based techniques (i.e., ICP-MS), conducting Chrom-

STEM experiments before and after modulation of the electrolyte environment to deter-

mine corresponding changes in chromatin packing with higher resolution, and measuring

consequent changes in transcription after K+ and Mg2+ chelation using RNA-seq.

As there is a fundamental limit to the system size we would feasibly be able to

study with molecular-level MT, we could investigate the effects of the physicochemical

environment on larger-scale chromatin packing due to the by developing a multi-scale

MT approach. First, we could determine the total charge of multiple nucleosomes under

different environmental conditions using our current chromatin-level MT approach with
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molecular-level coarse-graining. Next, we could reduce the detail of our system by coarse-

graining our input chains at the level of multiple nucleosomes. For example, we could

generate different conformation sets of SR-EV polymers with different folding parameters

and determine which α is the most stable (e.g., has the lowest system free energy) under

certain environmental conditions. The size, packing scaling, and average density of SR-

EV domains will change with varying α [120], making it an interesting parameter to study

with our MT approach. We could even explicitly include transcription reactions into our

MT representation of the chromatin system and combine this with our crowding-based

model of transcription to model how changes in the physicochemical environment directly

contribute to changes in gene expression via crowding-mediated effects.

Along with advancing experimental techniques and computational methodologies,

our knowledge of the chromatin is constantly evolving. The chromatin system has many

degrees of freedom due to the overall complexity of nuclear processes acting on it. In-

terdisciplinary approaches, involving close collaborations from experts in different fields,

are necessary to help disentangle this complexity. Experiments should inform theory and

theory should, in turn, inform experiments to help us better understand fundamental

rules that control chromatin structure and function in a realistic nuclear environment.
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[123] R. Israëls, F. A. M. Leermakers, G. J. Fleer, and E. B. Zhulina. Charged polymeric
brushes: Structure and scaling relations. Macromolecules, 27(12):3249–3261, 1994.

[124] N. E. Jackson, B. K. Brettmann, V. Vishwanath, M. Tirrell, and J. J. de Pablo.
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes.
ACS Macro Letters, 6(2):155–160, 2017.

[125] S. Janke. Fractals in molecular biophysics. t. gregory dewey. The Quarterly Review
of Biology, 74(4):512–512, 1999.

[126] G. C. Jayson, E. C. Kohn, H. C. Kitchener, and J. A. Ledermann. Ovarian cancer.
The Lancet, 384(9951):1376–1388, 2014.

[127] R. Jessel, S. Haertel, C. Socaciu, S. Tykhonova, and H. A. Diehl. Kinetics of
apoptotic markers in exogeneously induced apoptosis of el4 cells. J Cell Mol Med,
6(1):82–92, 2002.

[128] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold. Genome-wide mapping of
in vivo protein-dna interactions. Science, 316(5830):1497–502, 2007.

[129] S. E. Johnstone, A. Reyes, Y. Qi, C. Adriaens, E. Hegazi, K. Pelka, J. H. Chen,
L. S. Zou, Y. Drier, V. Hecht, N. Shoresh, M. K. Selig, C. A. Lareau, S. Iyer,
S. C. Nguyen, E. F. Joyce, N. Hacohen, R. A. Irizarry, B. Zhang, M. J. Aryee, and
B. E. Bernstein. Large-scale topological changes restrain malignant progression in



353

colorectal cancer. Cell, 182(6):1474–1489.e23, 2020.

[130] R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao. Genome-wide identification
of in vivo protein-dna binding sites from chip-seq data. Nucleic acids research,
36(16):5221–5231, 2008.

[131] Y. Joti, T. Hikima, Y. Nishino, F. Kamada, S. Hihara, H. Takata, T. Ishikawa, and
K. Maeshima. Chromosomes without a 30-nm chromatin fiber. Nucleus, 3(5):404–
10, 2012.

[132] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin, M. Wall,
A. Lappala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick, Y. Sugita, and K. Y.
Sanbonmatsu. Scaling molecular dynamics beyond 100,000 processor cores for large-
scale biophysical simulations. Journal of computational chemistry, 40(21):1919–
1930, 2019.

[133] C. Kadoch and G. R. Crabtree. Mammalian swi/snf chromatin remodeling com-
plexes and cancer: Mechanistic insights gained from human genomics. Sci Adv,
1(5):e1500447, 2015.

[134] R. S. Kalman, A. Stawarz, D. Nunes, D. Zhang, M. A. Dela Cruz, A. Mohanty,
H. Subramanian, V. Backman, and H. K. Roy. Biophotonic detection of high order
chromatin alterations in field carcinogenesis predicts risk of future hepatocellular
carcinoma: A pilot study. PLoS One, 13(5):e0197427, 2018.

[135] C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang,
J. F. McMichael, M. A. Wyczalkowski, M. D. M. Leiserson, C. A. Miller, J. S.
Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael, and
L. Ding. Mutational landscape and significance across 12 major cancer types. Na-
ture, 502(7471):333–339, 2013.

[136] L. Kane, I. Williamson, I. M. Flyamer, Y. Kumar, R. E. Hill, L. A. Lettice, and
W. A. Bickmore. Cohesin is required for long-range enhancer action. bioRxiv, page
2021.06.24.449812, 2021.

[137] Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, and
Y. Baba. Acidic extracellular microenvironment and cancer. Cancer cell inter-
national, 13(1):89–89, 2013.

[138] N. Khanna, Y. Hu, and A. S. Belmont. Hsp70 transgene directed motion to nuclear
speckles facilitates heat shock activation. Curr Biol, 24(10):1138–44, 2014.



354

[139] N. Khanna, Y. Zhang, J. S. Lucas, O. K. Dudko, and C. Murre. Chromosome
dynamics near the sol-gel phase transition dictate the timing of remote genomic
interactions. Nature Communications, 10(1):2771, 2019.

[140] J. A. Kim, S. Lee, D. E. Kim, M. Kim, B. M. Kwon, and D. C. Han. Fisetin,
a dietary flavonoid, induces apoptosis of cancer cells by inhibiting hsf1 activity
through blocking its binding to the hsp70 promoter. Carcinogenesis, 36(6):696–706,
2015.

[141] J. S. Kim, V. Backman, and I. Szleifer. Crowding-induced structural alterations of
random-loop chromosome model. Phys Rev Lett, 106(16):168102, 2011.

[142] J. S. Kim and I. Szleifer. Crowding-induced formation and structural alteration of
nuclear compartments: insights from computer simulations. Int Rev Cell Mol Biol,
307:73–108, 2014.

[143] J. S. Kim and A. Yethiraj. Crowding effects on protein association: Effect of inter-
actions between crowding agents. The Journal of Physical Chemistry B, 115(2):347–
353, 2011.

[144] K. H. Kim and C. W. M. Roberts. Targeting ezh2 in cancer. Nature Medicine,
22(2):128–134, 2016.

[145] M. S. Kim, Y. R. Kim, N. J. Yoo, and S. H. Lee. Mutational analysis of dnmt3a
gene in acute leukemias and common solid cancers. Apmis, 121(2):85–94, 2013.

[146] N. Klein Kyle, A. Zhao Peiyao, X. Lyu, T. Sasaki, A. Bartlett Daniel,
M. Singh Amar, I. Tasan, M. Zhang, P. Watts Lotte, S.-i. Hiraga, T. Natsume,
X. Zhou, T. Baslan, D. Leung, T. Kanemaki Masato, D. Donaldson Anne, H. Zhao,
S. Dalton, G. Corces Victor, and M. Gilbert David. Replication timing maintains
the global epigenetic state in human cells. Science, 372(6540):371–378, 2021.

[147] A. Kleppe, F. Albregtsen, L. Vlatkovic, M. Pradhan, B. Nielsen, T. S. Hveem, H. A.
Askautrud, G. B. Kristensen, A. Nesbakken, J. Trovik, H. Wæhre, I. Tomlinson,
N. A. Shepherd, M. Novelli, D. J. Kerr, and H. E. Danielsen. Chromatin organisation
and cancer prognosis: a pan-cancer study. The Lancet Oncology, 19(3):356–369,
2018.

[148] V. J. A. Konda, L. Cherkezyan, H. Subramanian, K. Wroblewski, D. Damania,
V. Becker, M. H. R. Gonzalez, A. Koons, M. Goldberg, M. K. Ferguson, I. Waxman,
H. K. Roy, and V. Backman. Nanoscale markers of esophageal field carcinogenesis:
potential implications for esophageal cancer screening. Endoscopy, 45(12):983–988,



355

2013.

[149] R. D. Kornberg and Y. Lorch. Twenty-five years of the nucleosome, fundamental
particle of the eukaryote chromosome. Cell, 98(3):285–94, 1999.

[150] N. Korolev, D. Luo, A. P. Lyubartsev, and L. Nordenskiöld. A coarse-grained dna
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D. Carnevali, J. AlHaj Abed, A. Granados, R. Sebastian-Perez, F. Sottile, J. Solon,
C. T. Wu, M. Lakadamyali, and M. P. Cosma. Transcription-mediated supercoiling
regulates genome folding and loop formation. Mol Cell, 81(15):3065–3081.e12, 2021.
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single-molecule megabase-long chromatin under the influence of macromolecular
crowding. Biophys J, 114(10):2326–2335, 2018.

[310] A. Zinchenko, N. V. Berezhnoy, S. Wang, W. M. Rosencrans, N. Korolev, J. R. C.
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