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ABSTRACT

Functional electronic materials have transformed modern society toward a highly digitized and

interconnected global community. The ever-growing demand for electronic devices with supe-

rior functionality poses a great challenge to the state-of-the-art field-effect transistors owing to the

limited charge density afforded by silicon. Materials scientists and chemists have been working

closely to identify novel microelectronic materials, yet the design and discovery of these materials

from the atomic-level is anything but trivial. With recent advances in machine learning algorithms

as well as the advent of various crystalline materials databases with both experimental and simu-

lated data, we are now able to exploit the strengths of data-driven methods in combination with ab

initio simulations to efficiently and effectively discover novel materials with desired functionality.

In this thesis, I employ a variety of techniques to address the electronic materials design chal-

lenge. Specifically, I focus on the lacunar spinel family, which exhibits a metal-insulator transition

upon structural distortion, by applying density functional theory simulations to understand the

phase-transition mechanisms and explore the materials phase space. Next, I introduce the adaptive

optimization engine (AOE), a novel materials design workflow that learns directly from chemical

compositions to realize multiple-property optimization. The AOE frees chemists from solely re-

lying on their intuition in materials design. It also enables the co-design of functional materials,

and is capable of efficiently identifying the compositions exhibiting superior functionality. Then,

I present the deepKNet, a deep neural network which learns from the momentum-space crystal

structure genome to make property classifications. The quantitative understanding of the structure-

property relationship in crystalline materials is a key step towards efficient materials design where

we optimize structure types and chemical compositions in a round-robin fashion. Lastly, I intro-

duce the symbolic regression (SR) technique and its potential applications in materials science.

This method is particularly helpful when we want to build a surrogate model mapping input fea-

tures/descriptors to the output. SR will automatically search for the best function form generated
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by genetic programming. Unlike other black-box machine learning models, SR offers improved

interpretability and insight to the quantitative model, which is invaluable to materials researchers.

I hope that my work can inspire more chemists and materials scientists with domain expertise,

i.e., synthesis, characterization, theoretical simulation, and informatics, to work collaboratively to

further unleash the power of data-driven materials design and discovery.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Functional electronic materials have dramatically transformed the society we live in over the recent

decade by enabling materials platforms for powerful computing and storage units. These technical

advances accelerate the digitization of the modern world, allowing the prevalence of smart phones,

personal computers, as well as a variety of internet-based cloud computing services. As of October

2020, almost 59% of the global population has internet access. The ever-growing market demand

for electronic devices with higher capacity and faster operation speed marks a golden era for the

development of the semiconductor industry, yet also poses a great challenge for them to realize

new devices on demand. According to Moore’s law, the number of transistors in a dense integrated

circuit doubles every two years. However, the exponential growth of computing power has come to

a bottleneck owing to the physical limitations of silicon-based transistors—the already nanoscale

transistors are not able to afford much higher charge densities, or further reduce their size before

quantum effects begin to have a significant (and unwanted) impact on their performance. The need

to find novel functional materials that outperform the current state-of-the-art silicon-based field-

effect transistors has come to the attention of chemists and materials scientists, who have been

working collaboratively to design and discover new materials from the atomic level.

However, effectively exploring the chemical space spanned by the multi-dimensional chemical

compositions and crystal structure types, is anything but trivial. To date, most materials scientists

rely much upon their chemical intuition as well as experience from years of hard work to find

new materials. This intuition-driven discovery has its own success in identifying new electronic

materials, yet it has become more challenging to keep up with the fast-growing market demand. It

is usually highly time- and resource-consuming to propose, simulate, synthesize, and characterize
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the properties of a new material even in the most advanced laboratories in the world. Moreover,

the time-lag between the discovery of a new material and its commercialization could be 20 years

or more, owing to the complex design, synthesis, optimization, and production processes involved

[1]. Therefore, there is an urgent need for scientists to find a more effective and efficient materials

discovery workflow.

During the recent decade, as more general materials databases (e.g., AFLOWLIB [2], Materials

Project [3], Open Quantum Materials Database [4], etc.) become available to the public, materi-

als informatics gained popularity among materials scientists. The open-access databases alleviate

the strong requirement of domain expertise in materials research, which allows young and less-

experienced researchers to quantitatively understand the relationships between crystal structure,

chemical composition, and materials properties, and make inferences to realize new materials by

design. Meanwhile, the statistical models built to solve materials science problems offer us a novel

way of understanding materials physics—from a statistical perspective. In fact, researchers have

made remarkable achievements using statistical analysis to decode the structure-property relation-

ship within a variety of materials families, and helped accelerate the discovery of novel functional

materials [5, 6, 7].

In response to the 2011 Materials Genome Initiative (MGI) launched by former President

Obama in an effort to double the pace of advanced-materials discovery, manufacture, and com-

mercialization, my graduate research is focused on accelerating the design and discovery of novel

functional electronic-transition materials. Specifically, I have been working towards the develop-

ment of an integrated and data-driven materials discovery workflow incorporating ab initio theoret-

ical simulations, statistical learning, as well as optimization theory, in order to effectively identify

electronic materials with superior functionality by design.

http://www.aflowlib.org/
https://materialsproject.org
https://materialsproject.org
http://oqmd.org
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1.2 Statement of Research Goals

The goal of my graduate studies is to understand, design, and discover new materials exhibiting

metal-insulator transitions (MITs) using ab initio simulations and statistical learning approaches.

MIT materials could switch between the metallic and insulating states controlled by external stim-

uli (e.g., temperature, strain, etc.), which are ideal candidate materials for novel transistors. The

main hypotheses that my research is based on include (1) MITs can be reformulated into micro-

scopic structure distortions and symmetry-breaking responses; and (2) we can use a combination

of theoretical modeling and machine-learning methods to capture the intimate correlation between

crystal structure, chemical compositions, and materials properties of interest, which could then

inform us about regions of phase space where promising materials may exist. More specifically,

my work focuses on:

(i) Understanding the metal-insulator transition mechanisms using ab initio simulations;

(ii) Identifying new MIT materials with superior functionality and synthesizability;

(iii) Decoding the crystal structure-property relationship using statistical learning methods; and

(iv) Developing data-driven materials discovery workflow and novel learning algorithms to un-
derstand materials physics.

1.3 Thesis Organization

This thesis is organized into eight chapters. Chapter 1 here introduces my motivation and research

goals. Chapter 2 provides some basic research background information on concepts and termi-

nology used throughout this thesis, including physics of metal-insulator transition materials—our

primary target materials system; basics of first principles simulations from both theory develop-

ment and computational deployment perspectives; and last, general concepts and commonly used

machine learning models in materials informatics research. Starting from Chapter 3, I present some

detailed research projects relevant to the thesis topic. Chapter 3 is about utilizing ab initio density

functional theory simulations to understand the metal-insulator transitions within the lacunar spinel
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family with formula unit GaM4Q8 (M = V, Mo, Nb, Ta; Q = S, Se). Here I describe how different

exchange-correlation functionals would impact property predictions on the lacunar spinels. Then,

I discuss the complex phase space spanned by the multiple metastable transition-metal cluster ge-

ometries. In Chapter 4, I identify the most promising metal-insulator transition materials within

the complex lacunar spinel family using featureless adaptive optimization. In this work, I not only

identified 12 novel complex lacunar spinels, which simultaneously exhibit high resistive switching

ratio and synthesizability, but also introduced a robust adaptive optimization engine (AOE). The

AOE learns directly from chemical compositions to achieve multiple-property optimization tasks.

This work enables the co-design of functional electronic materials from limited physical under-

standing and data availability. Chapter 5 presents a novel deep neural network, the deepKNet,

which learns from the 3D crystal structure genome to classify multiple materials properties. This

work reveals the intimate correlation between crystal structure and properties (including electronic

band gap, elasticity, and thermodynamic stability). I also demonstrate that machine learning ap-

proaches could not only be used to make useful predictions or generate new crystal structures, but

also help us gain more insights in materials physics from a statistical perspective. In Chapter 6, I

introduce genetic programming-based symbolic regression (GPSR) and its potential applications

in materials research. GPSR could automatically generate the function form, i.e., the mathemat-

ical expression, mapping the features to our target property. GPSR is free from the pre-defined

function form or statistical distribution as in other conventional machine learning models, which

makes it a helpful tool for materials scientists to understand the mathematical relationship between

physical variables and system response. In Chapter 7, I briefly conclude my research projects by

summarizing the scientific problems I met and how I resolved them through various approaches.

Lastly, Chapter 8 is an exciting outlook where I discuss ideas for building an integrated materials

discovery workflow by exploiting the strengths of multiple techniques I used and developed during

my research. I hope that in the near future, we will be able to utilize this workflow to make more

contributions to the materials research community.
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CHAPTER 2

RESEARCH BACKGROUND

I start by introducing some fundamental background knowledge before proceeding to the detailed

research projects. I describe three different domains most relevant to my research goals: (1) in-

troduction to the metal-insulator transition materials, which are the primary target materials of my

research; (2) density functional theory simulations on crystalline materials with periodic boundary

conditions; and (3) basic ideas of machine learning and their applications in materials research.

2.1 Metal-Insulator Transition Materials

2.1.1 Definition

Metal-insulator transition materials, later referred to as MIT materials, belong to a unique family of

condensed-matter crystalline materials exhibiting abrupt changes in its electrical conductivity upon

various external stimuli (e.g., temperature change, electric pulse, applied pressure, etc.). Although

the change in electrical resistivity upon temperature change is ubiquitous in almost all known

materials, here we only consider materials with a large resistive switching ratio (e.g., > 102) and a

change of sign in dρ/dT (i.e., temperature coefficient of resistance) associated with (structural or

magnetic) phase transitions.

To date, we only have knowledge about O(101) materials exhibiting MIT, most of them being

transition-metal oxides and chalcogenides [8]. The wealth of electronic states afforded by these

compounds originates from coupling interactions among atomic-scale structural, electronic, and

magnetic degrees of freedom [9, 10, 11, 12]. As the d-orbital occupancy of the transition metal

cation in these materials increases, one encounters band insulators (d0 for titanates), Mott-Hubbard

insulators with t2g occupancy (d1 titanates), competing t2g – eg orbital occupancies (for manganites

and ferrites), and charge transfer insulators with eg occupancy (nickelates) [13]. Cation valence,
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correlation effects, orbital physics, and dimensionality imprint structural distortions to the size,

shape, and connectivity of the basic metal-ligand polyhedral building units [14]. These distortions

alter the hybridization between the localized transition-metal d states and the highly polarizable

ligand p orbitals, which ultimately determine the MIT characteristics. Figure 2.1(a) shows some

selected MIT materials, where the vertical bars indicate the range of accessible resistivity from the

metallic to insulating state. Figure 2.1(b) provides a few mechanisms behind the MITs.

2.1.2 Applications

MIT materials have garnered much research interest from the materials community over the recent

decades owing to their potential to complement state-of-the-art silicon-based field-effect transis-

tors. Metal-insulator transitions in dn (0 < n < 10) transition-metal compounds that are triggered

by an applied gate bias, by charge accumulation or depletion, or by the application of a strain gen-

erated in a piezoelectric layer [15], enable fundamentally new alternatives to traditional switching

devices [16, 17].

For instance, lacunar spinel GaTa4Se8 and GaV4S8 exhibit both volatile and non-volatile re-

sistive switching behavior upon electric pulse [18], which makes them ideal candidates for Re-

sistive Random Access Memory (RRAM) materials. Pb(Zr,Ti)O3 thin films are typically used in

Ferroelectric Random Access Memory (F-RAM) [19]. With the capability to maintain the high

resistivity state (off state) without supplying a voltage, these non-volatile memory materials could

safely keep the digital information with lower energy consumption. Thermally-driven MIT mate-

rials such as VO2, on the other hand, respond to changes in the environmental temperature, and

have additional applications in thermal camouflage [20, 21].

The collective response of a correlated-electron system results in device characteristics that

cannot be achieved with traditional semiconductors. And the various responses of the MIT ma-

terials to different external stimuli enable us to develop materials adaptive to a variety of end

environments.
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Figure 2.1: (a) The range in resistivity accessible by switching (indicated by the vertical bar
length) and transition temperature for a variety of MIT materials, emphasizing the chemical and
compositional complexity. No materials operate above room temperature with a ∼ 105 change
in resistivity. (b) Relationship between local structural distortions and the physical interactions
in transition-metal oxides exhibiting MITs. These structural signatures can serve as proxies from
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2.1.3 Challenges

Although MIT materials may have a promising future in microelectronic devices as well as many

other applications, it remains a grand challenge for us even to identify one novel MIT material,

either from existing materials databases or from de novo design. This challenge mainly originates

from the diversity of existing MIT materials across multiple structure types as well as chemical

compositions. As shown in Figure 2.1(b), subtle structural distortions of various kinds associ-

ated with different elements determine the MITs together. These features make it challenging to

formulate discovery models to predict these phase transitions.

Another key challenge for the practical realization of novel MIT materials is developing sys-

tems which display MITs that respond to realizable external stimuli, i.e., practically achievable

strains or voltages. This will require going beyond existing materials and crystal structures to new

classes of MIT compounds, which necessitates tackling more complex structures and/or chemistries.

Such materials must possess the needed functionality of (i) high off-state resistivity to support low-

power operation, and (ii) large change in resistivity at or above room-temperature for multi-state

computation (Mott transistors) or for reconfigurable and purposefully transient electronics.

Moreover, although existing general materials databases have an order of 105 compounds, we

still only have very limited knowledge about MIT materials. Typically, when a material is a priori

unknown to be a MIT material, simulating the phase transitions using ab initio approaches to

identify MIT will be challenging. Lastly, in practice, we are often faced with multiple requirements

for the new material to fulfill, e.g., functionality, synthesizability, and stability. The co-design of

multiple properties for MIT materials with desired properties also leaves us with much room for

improvement.
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2.2 Ab Initio Electronic Structure Theory

2.2.1 Theory

While most objects we see or interact with are mostly at visible length scale, e.g., cell phones,

cars, etc., the systems that condensed-matter physicists and chemists typically focus on occur at

the angstrom scale (1 Å= 10−10 m). Many existing solutions to help us visualize and analyze

these microscopic molecules or crystal structures utilize diffraction-based methods, e.g., X-ray

diffraction, neutron scattering, etc., yet knowing their structures alone does not necessarily help

us fully understand their physical properties. Therefore, theorists have approached this challenge

by proposing first principles electronic structure methods to formally describe how electrons are

organized in materials.

At the atomic scale, Newtonian mechanics is insufficient to describe the particle interactions.

We have to take quantum mechanical effects into consideration. For any quantum system, the

many-body Schrödinger equation (Equation 2.1) governs its wave function |Ψ〉.
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|Ψ〉 = E |Ψ〉 (2.1)

where i and I account for all electrons and nuclei in the system, respectively. Although there

are many post–Hartree–Fock algorithms (e.g., configuration interaction [22], matrix product state

[23], coupled cluster [24], etc.) that solve this second-order partial differential equation to obtain

the many-body wave function, they are typically used only to accurately simulate small molecules.

For extended systems like crystalline materials with periodic boundary conditions, the number of

electrons becomes too large to be tractable.

An alternative way to solve for the ground state wave function is by using the density functional

theory (DFT). In the DFT framework, instead of working with the coordinates of all N electrons,
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DFT only requires the total electron density function ρ(r), which significantly reduces the number

of variables from 3N to 3. Based on the two fundamental theorems proposed by Hohenberg and

Kohn, which states that (1) the energy of the ground state is uniquely determined by the electron

density function; and (2) by minimizing the system’s energy according to the electron density, we

can obtain the ground state energy E0. The total energy can be expressed as

E[n] =

∫
drn(r)Vn(r) +

1

2

∫
drdr′ n(r)n(r′

)

|r− r′|

−
∑
i

∫
drφ∗i (r)

∇2

2
φi(r) + Exc[n] (2.2)

where n represents the electron density, which is a function of the position vector r, and φ is the

single-particle wave function. The first term in Equation 2.2 accounts for the N -electron poten-

tial energy from the external field, the second term describes the electron-electron interactions, the

N -electron kinetic energy comes as the third term, and the last term is the exchange-correlation en-

ergy (Exc). Since the exact function form of the exchange-correlation potential (Vxc) is unknown,

various approximations have been developed to describe Exc in different solid-state systems. In

Chapter 3, I discuss how different exchange-correlation potentials influence materials property

simulations. By targeting the electron density function, this theory essentially seeks for the map-

ping between the electron density and the total energy, hence the name—density functional theory.

2.2.2 Computational simulation

Although DFT is elegant in its simplicity, there is still a gap between theory (Equation 2.2) and

executable software for us to carry out the simulations. Admittedly, the development of quan-

tum mechanical theory is quite fascinating, but the deployment and transformation from theory to

computer programs is also a work of art, which reveals the beauty of human intelligence. Classic

computer systems can always be broken down to operations on combination of bits (i.e., 1 and

0), but how do we manipulate the bits to solve Equation 2.2? We will not go too deep into the
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mathematics here, in a nutshell, we first define the Hilbert space spanned by the basis functions,

e.g., Gaussian-/Slater-type atomic orbitals in a molecule or a set of plane waves in Fourier space

for solid-state systems; then, we construct the Hamiltonian operator within this Hilbert space, and

lastly solve for the eigenvalue and eigenvector pairs of the Hamiltonian, from which we will ob-

tain the ground state energy and wave function (or electron density function). In computational

simulations, all we consider is how electrons reside within the system, since once we know the

ground state electron density function or electronic wave function, then in principle we can derive

any ground state property we are interested in.

Let us take another look at Equation 2.2, which explicitly contains the electron density term

n(r). This leads to a paradox—we solve this equation to obtain the ground state electron density

function and total energy, but we need to know the electron density function beforehand so as to

solve this equation. The paradox leads to the famous self-consistent-field (SCF) method, where we

start with an initial guess of the electron density distribution, plug it in to solve Equation 2.2, then

obtain the updated electron density. This iterative procedure continues until the energy difference

between two consecutive iterations are smaller than a pre-defined threshold. Equipped with modern

supercomputer clusters, chemists and materials scientists are able to use the SCF-based algorithms

to successfully simulate many different chemical systems from molecules to crystals.

However, the exact mathematical expression of the exchange-correlation energy term Exc in

Equation 2.2 is not known (i.e., no analytical expression), and scientists have developed many

different functionals to achieve a balance between accuracy and computational efficiency. The

effect of different functionals on materials properties is later discussed in detail in Chapter 3. To

date, DFT is the most widely adopted theoretical approach to quantitatively study the electronic

structure of crystalline materials.
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2.2.3 Limitations

The major limitations of utilizing DFT to understand condensed-matter systems originate from

both the theory itself as well as technical challenges. Owing to the fact that we do not know the

exact mathematical form of the exchange-correlation term in Equation 2.2, various approxima-

tions have to be made for this significant interaction term. Generally speaking, there is a tradeoff

between simulation accuracy and computational power consumption—the more accurate results

we want to obtain, the more sophisticated functional we need to use (e.g., HSE06 hybrid func-

tional), which will increase the computational expenses. Taking magnetism and relativistic effects

into consideration, which are usually important for heavy-transition-metal compounds that we are

interested in, would only make DFT simulations more complex. Physicists have been trying to de-

velop new theoretical frameworks (e.g., the density matrix renormalization group algorithm [25],

Green’s function [26], quantum Monte Carlo [27], etc.) to overcome these challenges, although

the search for new mathematics and physics to solve this problem is far from being an easy task.

With the advent of high-performance computing clusters equipped with start-of-the-art CPUs

and GPUs, simulations of many large materials systems have been made possible. However, it

is important to realize that theorists develop the numerical models (i.e., what approximations to

make) based on the current computational power limit. If more advanced computing tools, e.g.,

quantum computers, become available in the near future, the community may develop new the-

ories adapted to those systems, without having to consider many time complexity and storage

constraints.

However, even if we have unlimited computational power as well as a perfect analytical solu-

tion to Equation 2.1 or Equation 2.2, it would still not be enough. We need to realize that there is

a gap between theoretical models and real-world materials systems. In theoretical modeling, we

typically assume a perfect and clean system. For instance, we assume that crystal structures are

infinite periodic systems, without any local defect or inhomogeneity. In reality, experimentalists

obtain finite-sized crystals (or even in powder form), which may contain many defects or impuri-
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ties. Besides, it is almost impossible to find a truly isolated system that does not interact with the

surrounding environment. Temperature and pressure, for instance, could have significant impacts

on the physical properties of materials. While there are methods to incorporate these external

effects, theoretical modeling will always be, strictly speaking, imperfect. Just as the statistician

George Box said, “all models are wrong, but some are useful”. It is important to keep in mind the

theoretical model limitations while conducting research, and we should constantly seek for better

solutions to existing problems.

2.3 Machine Learning in Materials Science

The research topics about machine learning (ML), or in general artificial intelligence (AI), first

originated from the computer science research society. The astounding performance of convo-

lutional neural networks on image classification tasks marked a new era of AI research. AI has

achieved remarkable advances in a large variety of applications in the academic as well as indus-

trial world. I will not give a comprehensive tutorial on ML or AI in this thesis, instead, I will

present a brief tour in ML, followed by some of my ML-related projects to solve materials science

and chemistry domain challenges in later chapters.

2.3.1 State-of-the-art machine learning algorithms

A widely quoted definition of ML by Dr. Tom Mitchell states, “A computer program is said to

learn from experience E with respect to some class of tasks T and performance measure P if its

performance at tasks in T , as measured by P , improves with experience E.” [28] In other words,

machine learning models learn from existing data to accomplish some tasks with some perfor-

mance metric, and is supposed to do better as it becomes more experienced. The most commonly

seen and widely used ML models belong to the supervised learning category [29, 30], where the

goal of the model is to predict the results (target property) as accurately as possible from the input

features (could be either numerical or categorical, or a mixture of both). Based on the nature of
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the task, supervised learning can be further categorized into regression and classification, where

the goal of regression is to predict a continuous variable (typically denoted as ŷ), while that for

classification models is to classify input data into different categories. Some commonly used re-

gression models include linear regression, Gaussian processes regression, kernel ridge regression,

etc. [31, 32]. Random forest, gradient boosting tree, and support vector machine, are widely used

for classification tasks [33, 34]. A common practice for machine-learning practitioners is to apply

multiple learning algorithms on the dataset, and choose the best-performing model for production.

While supervised learning is most widely used for industrial applications, the learning process

of humans is more “unsupervised”, especially at a young age. There are a variety of machine

learning methods that learn directly from data without labels, then perform clustering or other

density evaluation tasks. This family of algorithms belong to the unsupervised learning regime,

and is also very useful for many real-world applications such as customer behavior analysis [35,

36]. Reinforcement learning, the third general category of ML algorithms, has gained popularity

over the recent years owing to the capability of making consistent improvement over training [37].

The main idea behind this learning algorithm is to reward the model when it performs well for a

given task, and let the model learn how to react to different scenarios based on previous experience.

This is particularly useful when the state space of a problem is inaccessibly large, e.g., Go, where

hard-coded instructions are difficult to establish. Through reinforcement learning, many computer

robots are able to beat the top human teams in a number of well-known strategy video games. For

instance, OpenAI Five [38] and AlphaStar [39] are computer bots that can beat top professional

human players in Dota2 and StarCraft video games, respectively.

As the AI research society evolves over time, the deep learning community gradually started to

play a dominant role while deeply influencing many other research domains. The great success of

deep learning algorithms was first demonstrated by their superior performance in computer vision

[40] and natural language processing applications [41, 42]. The former has already been widely

used in modern autonomous vehicles, and the latter could help us analyze lengthy text files, or help

https://openai.com/projects/five/
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
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make the search engine more intelligent. Deep learning is powerful for being able to learn from a

huge amount of data and make generalized predictions on new input. In other words, it can achieve

a balance between bias and variance through its complex non-linear transformation and decision-

making layers. In fact, it has been shown that AI-driven models could outperform humans easily in

a number of applications including Go (AlphaGo) [43], protein structure prediction (AlphaFold2)

[44], and machine translation (GPT-3) [45].

2.3.2 Applications of machine learning in materials science

In response to the call from the Materials Genome Initiative (MGI) to integrate data-driven methods

to double the pace of advanced-materials design and discovery, materials research has evolved

and adapted to a more data-intensive environment. Chemists and materials scientists typically

rely much upon their chemical intuition to determine which material family is more “interesting”

and should be prioritized for careful examinations. This method has a strong requirement on

domain expertise. Moreover, there are a thousand Hamlets in a thousand people’s eyes, it is hard to

devise a standard metric to judge the chemical intuition. Machine learning models provide a viable

solution to this problem. With the same dataset and model settings, two researchers from the

opposite side of the Earth should be able to obtain the same statistical results. In recent scientific

publications in both chemistry and materials science journals, we see an increasing amount of

ML applications to predict materials properties and guide experimental synthesis or computational

simulations. For example, machine-learned exchange-correlation functionals have been developed

as an alternative to other physics-based DFT functionals [46]; the symbolic regression technique

has been introduced to solve materials science problems with automatic function form generation

(see Chapter 6). More applications of ML in chemistry and materials science can be found in the

review paper in Ref [47].

Machine learning models could not only make predictions on either regression or classification

tasks, but are also able to generate novel molecules or crystal structures. Materials discovery is

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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in general a grand challenge without an effective solution that is universally agreed upon yet. Re-

cent advances in generative adversarial network (GAN) and variational autoencoder (VAE) provide

some feasible solutions to this problem [48, 49]. The central idea is to compress materials represen-

tation into a low-dimensional latent vector, by sampling from this latent space then reconstructing

new structures through the decoder, we will potentially be able to identify novel structures. This

method is fundamentally different from conventional intuition-driven methods where we only ex-

plore the vicinity of the known materials space. If the latent space could effectively represent the

materials of interest, then the sampling technique could generate new structures “orthogonal” to

the known materials space.

Another emerging research field in materials informatics involves the concept of active learn-

ing. Instead of adopting the conventional “frequentist statistics” view, active learning algorithms

typically take a “Bayesian statistics” view. Specifically, rather than relying on a batch of existing

training data (> 102), active learning models start from a relatively small number of initial data

(≈ 101) and sequentially update the model as more data become available to the model. This

sequential learning strategy is suitable for chemistry and materials research since humans also

learn science in a sequential manner—we learn from previous experience to infer our next steps

in a linearized scientific method. The Bayesian approach also has the advantage of uncertainty

quantification, where we can have a better idea of how much we could trust the model predic-

tions. Later in Chapter 4, I will present a project using multi-objective Bayesian optimization for

functional materials design.

2.3.3 Challenges

The goal of data-centric chemists is typically not to develop new ML algorithms, instead, we

mainly focus on transforming chemistry and materials science problems into the ML realm. Con-

structing the interface between two different research domains is non-trivial. Featurization of

materials systems, for instance, requires much domain knowledge as well as feature engineering
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skills. Apart from directly using physical properties (e.g., atomic mass, cell volume) as features,

(multi)graph representation of molecules and solid-state materials have become more prevalent

since they could effectively capture the connectivity and complex interactions within the systems

[5, 50]. In fact, selection of features or materials descriptors is key to achieving ML-solutions to

our domain problems. The mutual information between the descriptors and target properties, i.e.,

how much information can be learned from the provided features to make the prediction, deter-

mines the upper limit of the statistical learning model performance. Just like using a higher kinetic

energy cutoff in DFT simulations or including more atomic orbitals in Hartree–Fock simulations

would yield more accurate results, selecting appropriate features to represent molecules or crystals,

plays a deterministic role in materials informatics research.

Data availability is also a problem which prevents wider application of ML to materials science

problems. Although more general materials databases have become publicly available, researchers

typically have their unique target materials family. Information provided by the databases may

be limited for some specific materials families (e.g., the lacunar spinel family). Conventional ML

models exhibit better generalizability when more training data is available, which is quite often out

of reach in chemistry research. Meanwhile, most existing materials databases use DFT-simulated

physical properties using generalized gradient approximations with onsite Coulomb interactions

for correlated systems. These simulated properties may not be accurate since DFT assumes 0 K

environment under vacuum, with an approximated exchange-correlation functional.

Besides, the statistical nature of ML could also introduce some difficulty in model interpreta-

tions. Many ML models, especially deep neural networks, are famous black-box models whose

interpretability is either vague or nearly impossible. After those non-linear activation functions

and normalization operations, we could barely visualize or understand how the model connects the

input features to the final output. To make it even worse, the classification model output is a statis-

tical distribution over several classes, which is not a deterministic value like solving an analytical

function. Therefore, we sometimes find it hard to understand how the model makes those predic-
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tions, and how much we can trust them. In Chapter 5, I will present some model interpretation

work on a novel deep neural network for materials property classification tasks.
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CHAPTER 3

UNDERSTANDING METAL-INSULATOR TRANSITIONS IN LACUNAR SPINELS

This chapter is composed of sections from Ref [51], which has been adapted with permission.

Recent publications have also been updated throughout. This work was written in collaboration

with Dr. Danilo Puggioni. © Copyright 2019 American Physical Society.

In this chapter, we perform systematic density functional theory (DFT) calculations to assess

the performance of various exchange-correlation potentials Vxc in describing the chalcogenide

GaM4Q8 lacunar spinels (M=Mo, V, Nb, Ta; Q=S, Se). We examine the dependency of crystal

structure (in cubic and rhombohedral symmetries), electronic structure, magnetism, optical con-

ductivity, and lattice dynamics in lacunar spinels at four different levels of Vxc: the local density

approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid with

fractional Fock exchange. We find that LDA underperforms the Perdew-Burke-Ernzerhof (PBE)

and PBE revised for solids (PBEsol) GGA functionals in predicting lattice constants as well as

reasonable electronic structures. The performance of LDA and GGAs can be improved both quan-

titatively and qualitatively by including an on-site Coulomb interaction (LDA/GGA+U ) with a

Hubbard U value ranging from 2 eV to 3 eV. We find that the PBE functional is able to produce a

semiconducting state in the distorted polar R3m phase without on-site Coulomb interactions. The

meta-GGA functional SCAN predicts reasonable lattice constants and electronic structures; it ex-

hibits behavior similar to the GGA+U functionals for small U values of 1 eV to 2 eV. The hybrid

functional HSE06 is accurate in predicting the lattice constants, but leads to a band gap greater

than the experimental estimation of 0.2 eV [18, 52] in this family. All of the lacunar spinels in the

cubic phase are metallic at these levels of band theory, however, the predicted valence bandwidths

are extremely narrow (≈0.5 eV). The DFT ground states of cubic vanadium chalcogenides are

found to be highly spin-polarized, which contrast previous experimental results. With spin-orbit
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coupling (SOC) interactions and a Hubbard U value of 2 eV to 3 eV, we predict a semiconducting

cubic phase in all compounds studied. SOC does not strongly impact the electronic structures of

the symmetry-brokenR3m phase. We also find that these Vxc potentials do not quantitatively agree

with the available experimental optical conductivity of GaV4S8; nonetheless, the LDA and GGA

functionals correctly reproduce its lattice dynamical modes. Our findings suggest that accurate

qualitative and quantitative simulations of the lacunar spinel family with DFT requires careful at-

tention to the nuances of the exchange-correlation functional and considered spin structures. Last,

we perform inelastic neutron scattering simulations on GaNb4Se8 and GaTa4Se8 to further explore

their complex phase space spanned by the multiple geometries of the transition-metal cluster. Our

simulated results qualitatively agree with recent experimental observations, where we find addi-

tional diffraction peaks appear after the symmetry-lowering structural phase transition. We also

successfully identify the ground state (space group P212121) with lowest energy and find it exhibit

dynamic stability in both compounds. We also find there are multiple metastable competing phases

accessible through minor lattice distortions from the cubic phase in both GaNb4Se8 and GaTa4Se8.

3.1 Introduction

The lacunar spinel family GaM4Q8 (M = Mo, V, Nb, Ta; Q = S,Se) have garnered attention for

decades owing to their fascinating properties, which include metal-insulator transitions [53], the

capability to host skyrmion lattices [54], and multiferroism [55]. GaV4S8 and GaMo4S8 are the

most well studied materials in this family; they exhibit Jahn-Teller-type structural phase transi-

tions at ≈40 K upon cooling, followed by spontaneous magnetic ordering below their Curie tem-

peratures TC [56]. The multiple phase transitions – metallic-to-insulating and paramagnetic-to-

ferromagnetic – connecting distinct physical states make these transition-metal compounds ideal

candidate materials for novel electronic platforms [52].

After decades of continuous studies on various properties of the lacunar spinel compounds,

the mechanism of these phase transitions as well as the proper theoretical approaches to describe
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various electronic states are still unclear. For instance, while the vanadium and molybdenum com-

pounds can undergo symmetry-lowering structural phase transitions at low temperature [57, 58,

59], the niobium and tantalum lacunar spinels remain in the high-symmetry cubic phase over a

broad temperature range [60]. One of the possible reasons for this behavior in the family may

be attributed to variations in the strength of electron-electron interactions [57], since electron-

correlation effects are expected to be stronger in 3d rather than 5d transition metals. However,

there is also evidence that local structural distortions in lacunar spinel compounds could lead to in-

sulating states even in the absence of strong correlation [61, 62]. In addition, a number of members

within the lacunar spinel family exhibit interesting resistive-switching behavior [18], making them

potential materials for resistive random-access memory (RRAM) materials. Much of the literature

attributes the aforementioned features to the special tetrahedral transition-metal clusters within the

unit cell [63]; yet, how and why it supports all of these properties remains to be agreed upon [64,

65, 56]. In order to have a better understanding of the structure-property relationships among the

lacunar spinels, a qualitative and possibly quantitative investigation of electron-correlation effects

and structural distortions within these materials is needed.

Density functional theory (DFT) simulations are widely used in solid-state materials research

owing to the efficiency and accuracy they achieve by replacing the original many-electron in-

teraction problem with an auxiliary independent-particle problem through a suitably constructed

exchange-correlation potential (Vxc). Because DFT simulations can capture the interplay of struc-

tural effects on electron-electron interactions and its dependence on determining the ground state,

it is an ideal method to study the lacunar spinels with many internal atomic, spin, and orbital

degrees-of-freedoms. However, no available Vxc can provide the exact description of exchange

and correlation, which necessitates benchmarking both common and state-of-the-art density func-

tionals against available experimental data. To that end, it becomes possible to identify the optimal

functional for describing and predicting properties in the lacunar spinel family.

In this work, we systematically benchmark the performance of DFT Vxc functionals in describ-
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ing the lacunar spinel family at four rungs of “Jacob’s ladder”, specifically the local density approx-

imation (LDA), the generalized gradient approximation (GGA) as implemented by Perdew-Burke-

Ernzerhof (PBE) and PBE revised for solids (PBEsol), the meta-GGA functional SCAN, and the

hybrid functional HSE06. Our aim is to identify the best description of the lacunar spinel family

from first-principles DFT simulations and where compromises on performance are made so as to

facilitate future studies and predictions (see Chapter 4). To that end, we investigate the functional

dependency of lattice parameters, magnetism, electronic structures, optical properties, and lattice

dynamics in both the cubic and Jahn-Teller distorted rhombohedral phases. Our main conclusion is

that GGA and higher level Vxc functionals are more reasonable than LDA in predicting almost all

properties assessed. The GGA functionals with an on-site Coulomb interaction (GGA+U ) value

of U ≈ 2 eV quantitatively improves functional performance for the electronic structures of the

rhombohedral phases. Spin-orbit coupling (SOC) interactions lift orbital degeneracies in the elec-

tronic structures of the cubic phases and enable a semiconducting phase to emerge with Hubbard U

values ranging from 2 eV to 3 eV. However, SOC does not significantly impact the electronic struc-

tures of the rhombohedral phase, where orbital symmetry is already broken by lattice distortions.

SCAN and HSE06 are able to predict accurate lattice parameters, but HSE06 leads to band gaps

significantly larger than experimental estimations. Our findings suggest that the predicted physical

properties of the lacunar spinel family are highly Vxc functional dependent. Therefore, it is impor-

tant to benchmark different Vxc performance on properties of interest before further studies. It is

likely that the coupling of internal degrees of freedom in lacunar spinels, e.g., local cluster distor-

tion, intra- and inter-cluster electronic and magnetic interactions, underlie the observed fascinating

behavior as well as our reported high sensitivity to Vxc in this materials family.
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Figure 3.1: (a) Derivation of the cubic phase lacunar spinel AM4Q8 from an ideal spinel structure,
some anions are hidden in the figure to facilitate visualization of the M4 cluster formation. (b) The
primitive cell of AM4Q8 in both cubic and rhombohedral phases, with the interaxial rhombohedral
angle αrh, intra-cluster metal-metal-bond angle θm. (c) M4 cluster connectivity in the cubic phase,
they occupy the four octahedral holes created by the A cations. (d) Schematic phase diagram of la-
cunar spinels exhibiting multiple phase transitions. (Key: FM=ferromagnetic, PM=paramagnetic).
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Table 3.1: Experimental Jahn-Teller (TJT) and Curie (TC) transition temperatures and unit cell
volumes (V) for the distorted R3m vanadium and molybdenum lacunar spinels. The vanadium
(molybdenum) chalcogenides exhibit acute (obtuse) angluar distortions away from the ideal cubic
60◦. θm and αrh are obtained at temperatures below TJT, and no significant structural changes have
been observed around TC.

Compound TJT (K) TC (K) αrh (◦) θm (◦) VF 4̄3m
cell (Å3) VR3m

cell (Å3) Ref.
GaV4S8 44 12.7 59.6 58.4 225.6 224.3 [55], [66]
GaV4Se8 41 17.5 59.6 57.7 260.7 259.6 [67]
GaMo4S8 45 19.5 60.5 61.6 230.1 230.0 [58], [66]
GaMo4Se8 45 23 60.6 61.4 263.3 262.2 [59]

3.2 Materials and Methods

3.2.1 Crystal structure, electrical, and magnetic properties

The crystal structure of the lacunar spinel, also referred to as an A-site deficient spinel (AM4Q8), is

derived from the regular spinel (AM2Q4 composition) by removing one of the interpenetrating FCC

A-site sublattices as depicted in Figure 3.1(a). Upon removing half of the A-site cations occupying

the tetrahedral holes in the regular spinel, the space group loses inversion symmetry, reducing in

symmetry from Fd3̄m to F 4̄3m (space group no. 216). The structure then also undergoes addi-

tional internal displacements and spontaneous strains: the previously equidistant M-M network

breaks into isolated tetrahedral transition-metal clusters with chalcogenide ligands [M4Q4]5+. In

order to quantitatively describe the internal degrees of freedom in the crystal structure, we define

αrh as the interaxial angle of the rhombohedral unit cell, and θm as the M2-M1-M3 angle centering

the apical metal atom along the C3v axis of the M4 cluster, as shown in Figure 3.1(b).

At room temperature, all lacunar spinels studied here exhibit cubic F 4̄3m symmetry with

αrh = θm = 60◦. GaV4S8, GaV4S8, GaMo4S8, and GaMo4Se8, however, undergo symmetry-

lowering structural Jahn-Teller (JT) transitions at ≈40 K from F 4̄3m to R3m (space group no.

160) [57, 58, 59], followed by spontaneous magnetic ordering at a lower Curie temperature TC

(Figure 3.1(d)). These displacive distortions lead to a unit cell of slightly different volume, lattice

parameters, and rhombohedral angle αrh. The geometry of the metal cluster within the unit cell is
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also distorted away from its cubic structure and the θm angle deviates from the ideal cubic value

(60◦). The experimental crystallographic data for the distorted vanadium and molybdenum lacu-

nar spinels are tabulated in Table 3.1, where we also provide the Jahn-Teller and Curie transition

temperatures.

The lacunar spinels are reported to be narrow-bandwidth semiconductors with ≈0.2 eV band

gaps that vary with temperature [56, 52, 55]. Early work showed that the valence bands mainly

consist of transition-metal d orbitals [68]. Since the transition-metal M4 clusters are relatively

distant from each other with about 4 Å inter-cluster separation (Figure 3.1(c)), the low-energy va-

lence electronic structure can be described using a molecular orbital (MO) diagram for the cluster

(Figure 3.2). In the cubic phase, the valance bands are triply degenerate with t2 symmetry. V,

Nb, and Ta chalcogenide lacunar spinels all exhibit t12 occupancies whereas Mo exhibits t52 filling,

indicating susceptibility to a first-order Jahn-Teller distortion. After the Jahn-Teller structural dis-

tortion, the triply degenerate t2 orbital splits into two sets of orbitals, a1 and e. The relative energy

of the two sets of orbitals is occupancy-dependent; the a1 orbital is more stable in the vanadium

compounds whereas the e orbitals are preferentially stabilized in the molybdenum compounds.

In addition to these structural transitions, the vanadium and molybdenum compounds show

spontaneous magnetic ordering at TC when in the rhombohedral phase. GaV4S8 is also reported to

have a complex magnetic phase diagram at low temperature [54]. The effective local magnetic mo-

ment in both the paramagnetic and ferromagnetic phases corresponds to approximately 1 unpaired

electron per unit cell, and is mostly localized about the transition-metal cluster [56] rather than on

the individual atomic sites comprising the cluster. GaNb4S8, GaNb4Se8, GaTa4Se8 are paramag-

netic at ambient conditions with effective magnetic moments of 1.76µB, 1.6µB, and 0.7µB per

cluster [69, 60]. No structural phase transition or spontaneous magnetic ordering are reported in

these compounds down to 1.6 K [60].

Last, we note that the family of materials is also often referred to as Mott insulators owing to the

large distance between transition-metal clusters [56] and not typically because of strong electron-
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Figure 3.2: Valence molecular orbital diagrams of GaV4S8 and GaMo4S8. The valence t2-
symmetry orbitals are triply degenerate in the cubic phase. The orbital degeneracy is lifted by
the accompanied Jahn-Teller distortion with a distortion sense that stabilizes and leads to filling of
either the a1 (GaV4S8) or e (GaMo4S8) orbitals based on orbital occupancy of the metals forming
the cluster. The dotted lines indicate the Fermi level in the distorted phases, whereas in the cubic
phase the Fermi level intersects the triply degenerate valence bands.
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electron interactions [61] although they likely play some role. The semiconducting behavior is

typically attributed to variable range hopping (VRH) conduction [57] among these separated metal

clusters. Nonetheless, the microscopic mechanisms behind the semiconducting nature, as well as

the multiple phase transitions, are still under active investigation [55, 70].

3.2.2 Exchange-correlation functionals

We use exchange-correlation potentials (Vxc) at four different levels of approximation to assess

the structure and properties of the chalcognide lacunar spinels. The functionals examined in-

clude LDA, GGA as implemented by Perdew-Burke-Ernzerhof (PBE) [71], and PBE revised for

solids (PBEsol) [72], meta-GGA functional SCAN as implemented by Sun et al. [73], and Heyd-

Scuseria-Ernzerhof hybrid functional HSE06 [74]. The Vxc in LDA is not derived from first princi-

ples, but from Monte Carlo simulations of the uniform electron gas. The functional solely depends

upon the local electron density in space and usually provides a good approximation for simple

materials (including metals) with electronic states that vary slowly in space. However, the LDA

potentials decay rapidly for finite systems while the true exchange-correlation potential has sig-

nificant non-local contributions; this behavior often leads to overestimation of the binding energy

[75] and underestimation of lattice constants in solids [76].

To improve on the LDA, GGA functionals that take the gradient of electron density∇n(r) into

consideration have been developed. The PBE and PBEsol functionals improve the binding energy

by roughly an order of magnitude, but have a general tendency to overestimate lattice constants

[76]. Since LDA and GGA functionals are well-known to be unable to predict the insulating state

of Mott insulators [77] with strong correlations and nonlocal exchange, the beyond DFT method,

DFT+U , is typically used to account for such interactions among the localized d electrons. The on-

site Coulomb interaction term U favors the on-site occupancy matrix towards fillings that are fully

occupied or fully unoccupied and hence a more localized electronic structure within the correlated

manifold. Here, we use the GGA functionals PBE and PBEsol with on-site Coulomb interaction
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(GGA+U ) and U values of 1.0, 2.0 and 3.0 eV on the the M-metal sites using the formalism

introduced by Dudarev et al. [78] to assess the effect of electron correlation in the M4 clusters. The

range of U values is based on results from previous computational studies [79, 80, 69] and our

own preliminary assessments, where we focused on reasonable band gap and magnetic moment

predictions.

It comes naturally from the previous two rungs of Jacob’s ladder that the second-order deriva-

tive of the electron density should be considered. Meta-GGA functionals are essentially an ex-

tension to GGAs whereby the Laplacian of the electron density ∇2n(r) is also considered. In

practice, the kinetic energy density τ(r) =
∑Nocc

i=1
1
2
|∇ψi(r)|2 is used, where the summation runs

over the occupied Kohn-Sham orbitals ψi(r). The recently developed meta-GGA functional SCAN

(strongly constrained and appropriately normed semi-local density function) fulfills all known con-

straints required by the exact density functional, and is reported to have achieved remarkable ac-

curacy for systems where the exact exchange-correlation hole is localized around its electron [73].

Hybrid DFT functionals incorporate a portion of exact exchange interaction from Hartree-

Fock (HF) theory with that of a local or semi-local density functional. The semi-empirical hybrid

functional B3LYP has been widely used for finite chemical systems and has shown more accurate

results in thermochemical and electronic properties [81, 82]. In periodic solid state systems, one

route to incorporate an exact exchange interaction is by means of range separation. In the range

separated HSE06 hybrid functional, the short-range (SR) exchange interaction consists of partial

contributions from exact exchange and the PBE functional. The long-range (LR) part of the Fock

exchange term is replaced by that from the semi-local PBE functional. The correlation term from

PBE is used in the HSE06 hybrid functional. The resulting exchange-correlation energy expression

is

EHSE06
xc =

1

4
EHF,SR
x +

3

4
EPBE,SR
x + EPBE,LR

x + EPBE
c .

The inclusion of exact-exchange interactions in hybrid functionals also partly fixes the self-

interaction problem in pure DFT functionals, and can provide accurate descriptions of lattice pa-
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rameters, bulk moduli and band gaps in periodic systems [83, 84, 85].

3.2.3 Computational details

We perform DFT simulations as implemented in the Vienna Ab initio Simulation Package (VASP)

[86, 87]. The projector augmented-wave (PAW) potentials [88] are used for all elements in our cal-

culations with the following valence electron configurations: Ga (3d104s24p1), Mo (4s24p64d55s1),

V (3s23p63d44s1), Nb (4s24p64d45s1), Ta (5p65d46s1), S (3s23p4), and Se (4s24p4). Based on con-

vergence test with respect to k-point meshes in reciprocal space and plane wave basis set cutoff

energies, we use a Γ-centered 6 × 6 × 6 mesh with a 500 eV kinetic energy cutoff. For HSE06

calculations, we use a 4 × 4 × 4 k-point mesh and a 400 eV kinetic energy cutoff due to the high

computational cost and convergence difficulties for the spin-polarized calculations. Since the la-

cunar spinels are small-gap semiconductors, we employ Gaussian smearing with a small 0.05 eV

width. For density-of-state calculations, we use the tetrahedron method with Blöchl corrections

[89].

We perform full lattice relaxations with different DFT functionals until the residual forces on

an individual atom are less than 1.0 meVÅ−1. The experimental crystal structures of the lacu-

nar spinels GaV4S8, GaV4Se8, GaMo4S8, GaMo4Se8, GaNb4S8, GaNb4Se8, and GaTa4Se8 are

obtained from the Inorganic Crystal Structure Database (ICSD) [90] and used as initial inputs

for these geometry relaxations. GaTa4S8 is not included here since the structure is not experi-

mentally reported. Both high-temperature cubic and low-temperature rhombohedral phases are

investigated for all target compounds. Crystal structures of the rhombohedral phase of Nb and Ta

compounds are obtained by making a small displacement to their cubic atomic positions along the

symmetry-lowering pathway (i.e., from F 4̄3m to R3m), followed by DFT structural relaxations.

All experimental and DFT-relaxed crystal structures are available electronically at Ref. [91].

The effect of on-site Coulomb interactions on the crystal structures is also investigated at the

LDA and GGA functional level. Since the lacunar spinels exhibit various magnetic properties, we
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also initialize the calculations with multiple possible magnetic configurations for the lattice relax-

ations. This is a necessary process owing to the multiple metastable spin configurations accessible.

The magnetic configuration with the lowest energy is reported as the DFT ground state and used to

compare with other functional results. Spin-orbit interactions are also considered in our electronic

structure simulations owing to their potentially significant impact on the orbital structure of 4d

and 5d transition metals [92]. For spin-orbit coupling (SOC) calculations, we use the fully-relaxed

crystal structures from the aforementioned non-SOC simulations. The magnetic moment is set to

be 1µB per formula unit along the (111) direction for both the cubic and rhombohedral phases.

Zone center (k = 0) phonon frequencies and eigendisplacements for both the cubic and rhom-

bohedral phases of GaV4S8 (within primitive cells) are obtained using the frozen-phonon method

with pre- and post-processing performed with the Phonopy package [93]. Inelastic neutron scat-

tering simulations are implemented using the dynamic structure factor simulator provided by the

Phonopy package. 3.2 million randomly and independently generated sampling points with uni-

form distribution within the sampling space are used to simulate the experimentally observed in-

elastic neutron scattering patterns. These results are generated using our own in-house code at

Ref. [94].

3.3 Results and Discussions

3.3.1 F 4̄3m cubic phase

Lattice parameters

The crystal structures of the lacunar spinels with cubic symmetry are fully relaxed with DFT using

the different Vxc potentials. Figure 3.3 shows the volumetric error for the DFT ground state unit

cell volume relative to the experimental room temperature data. For molybdenum and vanadium

compounds, we report the cell volumes of ferromagnetic spin structures with magnetic moments

of 1µB and 5µB per formula unit, respectively. The niobium and tantalum compounds are non-

magnetic at all DFT functionals levels. See Section 3.3.1: Magnetism for the detailed descriptions
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Figure 3.3: Relative error in the unit cell volume of the cubic phase at different levels of DFT. PS is
an abbreviation for the PBEsol functional and the number in parenthesis is the value of the on-site
Coulomb interaction used in the GGA+U method.

of the magnetic moment configurations.

In general, the LDA and PBEsol functionals underestimate the lattice parameters, while PBE

predicts larger lattice constants compared with experimental data. LDA has relatively larger devia-

tions (4 % or higher) compared with the GGA results, it is a well-known problem that LDA tends to

underestimate the lattice constants. We also check the effect of on-site Coulomb interactions (LDA

and GGA+U ) on lattice parameters with U values up to 3 eV. With increasing on-site Coulomb

interaction strength, we find the lattice parameters follow a monotonic increasing trend for both

the LDA and GGA functionals. We only show the trend for PBEsol in Figure 3.3 owing to its

similarity with the others. Therefore, a reasonable Hubbard U value could quantitatively improve

the lattice parameter predictions in the LDA and PBEsol functionals.

Interestingly, the vanadium compounds exhibit cell volumes that are the most sensitive to the

choice of the U value among the lacunar spinels. For instance, the difference in volumetric error

induced by U = 3.0 eV is less than 2 % in GaMo4S8, but that difference is almost 8 % in GaV4S8.

The highly spin-polarized electronic state used for the vanadium compounds may be a possible
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cause of the different sensitivity on the on-site Coulomb interactions.

GGA functionals with U < 3.0 eV generally predict reasonable cubic lattice constants with

less than 4 % error in the cell volumes. The meta-GGA functional SCAN and hybrid functional

HSE06 have smaller errors in predicting lattice constants, which give less than 2% error for all 7

compounds studied here. Considering the high computational cost of structural relaxations with

HSE06, SCAN should be preferred over HSE06 for lattice parameter estimation unless one requires

a specific accuracy requirement or improved forces.

These results suggest that most of the DFT functionals are able to predict reasonable cubic

phase crystal structures in the lacunar spinel family with less than 4 % error in the volumes. Gen-

erally, we recommend using GGA functionals with a tunable Hubbard U value of 1 eV to 3 eV for

lattice parameter predictions. SCAN and HSE06 give more accurate lattice constants compared

with lower-level functionals, while SCAN is preferable based on a compromise between accuracy

and efficiency.

Magnetism

Experimentally, the vanadium and molybdenum compounds exhibit paramagnetism above their

Curie temperatures and exhibit spontaneous magnetic ordering at low temperature [56]. The mag-

netically ordered phases can host multiple fascinating magnetic states, including ferromagnetism

and complex spin textures (e.g., skyrmion lattices) [54]. Those complex magnetic structures are

not considered here. The niobium and tantalum compounds show very weak magnetism and do not

exhibit spontaneous magnetic ordering down to 1.6 K [60]. Since the transition-metal clusters are

relatively far from each other with a distance of around 4 Å, the inter-cluster magnetic interactions

are expected to be quite small. Here we use a ferromagnetic spin configuration on all metal sites

within the cluster to model the magnetically ordered phases.

From our DFT simulations, different transition-metal clusters are able to hold various magnetic

configurations. For the molybdenum compounds, we are only able to stabilize one ferromagnetic
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Table 3.2: Energy differences (in eV/f.u.) of different magnetic configurations compared with
non-magnetic calculations for the cubic phase. Eσ denotes the energy of the highly-polarized
state with 5µB or 7µB per formula unit. An ‘–’ indicates that the state was not stable. PS is an
abbreviation for the PBEsol functional and the number in parenthesis is the value of the on-site
Coulomb interaction used in the GGA+U method.

GaV4S8 GaV4Se8

Eσ Eµ=1µB Eσ Eµ=1µB

LDA – – – –
LDA+U(1.0) – 0.005 -0.172 -0.007
LDA+U(2.0) -0.404 -0.008 -0.68 0.06
LDA+U(3.0) -0.946 -0.03 -1.264 -0.051
PBEsol – -0.001 -0.072 -0.008
PS+U(1.0) -0.305 -0.014 -0.562 -0.028
PS+U(2.0) -0.823 -0.035 -1.123 –
PS+U(3.0) -1.641 – -2.174 –
PBE -0.095 -0.010 -0.327 -0.022
SCAN -0.875 -0.049 -1.196 -0.064
HSE06 -1.355 0.005 -1.742 -0.092

configuration in the cubic phase which corresponds to 1µB per primitive cell. The magnetic mo-

ments are evenly distributed about the four molybdenum atoms in the Mo4 cluster with negligible

contributions from other atomic species. In contrast, the vanadium compounds show numerous

stable magnetic configurations (Table 3.2). Apart from the same ferromagnetic configuration as

in the molybdenum compounds, we also find a highly spin-polarized state in the cubic phase. To

the best of our knowledge, the electronic structures of this state has not been reported before. Re-

cent neutron diffraction studies show that there is one single spin distributed across the V4 cluster

instead of residing on a single vanadium ion [95].

In the highly spin-polarized state, the magnetic moment could be 5µB or 7µB per formula unit

(f.u.), depending on the DFT functional used. The spin-moments are evenly distributed about the

transition-metal cluster, with approximately 1.25µB localized on each vanadium atom. This state

is significantly lower in energy than the ferromagnetic configuration with 1µB per formula unit in

our DFT simulations.

In several cases, we are not able to stabilize some of the magnetic configurations for vanadium
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compounds (indicated by ‘–’ in Table 3.2). For example, LDA only converges to non-magnetic

configurations, and PBE+U = 2.0 eV cannot stabilize the state with 1µB per cluster. In cases

where both states can be stabilized, however, the more strongly spin-polarized state is always

significantly more stable than the other two configurations (Table 3.2). We also observe a trend that

the highly polarized state is more favored with larger on-site Coulomb interaction or with higher

level DFT functionals. In addition, the µ = 1µB state is usually energetically closer to the non-

magnetic state than the highly spin-polarized state. These ground state magnetic configurations

are also sensitive to the V4 cluster volume, which we show varies with different levels of DFT

functional (Figure 3.4). A larger V4 cluster usually supports a higher magnetic moment, while a

smaller volume leads to reduced or quenched moments. Our findings show that local structure and

magnetic moments are correlated with each other and should be assessed carefully because both

depend on the choice of exchange-correlation functional. A recent study utilizing dynamical mean-

field theory simulations showed similar results, where the significance of electron correlations in

describing the MO Mott physics and structural properties of GaV4S8 is also reported [96].

There is also evidence that local cluster distortions still exist above the Jahn-Teller temperature

[97], and that the symmetry-broken V4 cluster could lead to different magnetic configurations that

are in better agreement with experimental results [79]. Why this occurs is attributed to the physics

of the distorted phase described next. To that end, we suggest high-resolution detection methods

(e.g., pair distribution function) be used to probe the local structures of cubic phase lacunar spinels.

Last, the niobium and tantalum compounds are always non-magnetic in our calculations, re-

gardless of the initial magnetic configuration or choice of DFT functional. This may be a conse-

quence of strong but geometrically frustrated antiferromagnetic interactions in the cubic Nb4 and

Ta4 clusters [69] or due to a reduction in the on-site Hund’s interactions, which drives moment

formation, from the greater hybridization from the extended 4d and 5d orbitals.
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Figure 3.4: The volume of the tetrahedral V4 cluster with different DFT functionals and their cor-
responding ground state magnetic moment per formula unit. The white area shows non-magnetic
results. The light-shaded and dark-shaded areas correspond to states with 5µB and 7µB mag-
netic moments, respectively. PS is an abbreviation for the PBEsol functional and the number in
parenthesis is the value of the on-site Coulomb interaction used in the GGA+U method.
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Figure 3.5: DFT-PBE ground state band structures and density of states (DOS) of the cubic lacunar
spinels within a primitive cell. The Fermi level (EF ) is indicated by a broken line. The gray shaded
areas in the DOS panels correspond to the total electronic density of states. The second and third
rows show results with SOC included, as indicated in the rightmost column. The orange curve in
the DOSs represent the contribution from the transition-metal cluster.

Electronic structures

We next use the relaxed cubic crystal structure and ground state magnetic configuration of each

compound and examine the electronic structure (Figure 3.5). According to the idealized charge

distribution in Ga3+[M4X4]5+X2−
4 , the number of electrons per V4, Nb4, and Ta4 cluster is 7 (since

they are in the same column of the periodic table) while there are 11 electrons for a Mo4 cluster;

these electrons fill the cluster orbitals depicted in Figure 3.2.

We selectively show the electronic structures of GaV4S8, GaMo4S8, GaNb4Se8, and GaTa4Se8

in Figure 3.5 because their S/Se counterpart compounds with the same transition-metal cluster

exhibit similar band properties. From our PBE-DFT band structures and projected DOSs for the
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molybdenum, niobium, and tantalum compounds (Figure 3.5 a[1,3,4]), we find six valence bands

mainly consisting of transition-metal d-orbital character with relatively small contribution from the

anion p orbitals. The triply degenerate band (t2 MO symmetry) is higher in energy than the doubly

(e MO) and singly (a1 MO) degenerate bands. The band degeneracy and ordering agree well with

the cluster MO descriptions of the low-energy electronic structure in these compounds.

The DFT ground state electronic structures of the vanadium compounds, however, are signifi-

cantly different from the other chalcogenides in the lacunar spinel family (Figure 3.5 a2). All six

valence bands in the spin-up channel (green bands) are fully occupied, while only the lower part

of the spin-down channel is partially occupied. The triply degenerate spin-down bands are shifted

≈1 eV above the Fermi level. Interestingly, the metastable magnetic state with 1µB per cluster ex-

hibits band dispersions that are more similar to the rest of the family (Figure 3.6) and the magnetic

moment of 1µB agrees better with experimental results. It remains unknown whether this DFT

ground state in the cubic phase is stable and experimentally accessible; further low-temperature

neutron-based scattering measurements, for example, could be used to probe the existence of this

spin configuration.

We next quantitatively assess the impact of different Vxc as well as on-site Coulomb interactions

on the electronic structures by defining two parameters, γ and ∆, as shown in Figure 3.6, which

describe the key features in the band structure. γ corresponds to the energy difference between

different spin-channels of the triply degenerate valence band at the Γ point. ∆ quantifies the

magnitude of the splitting among the triply-degenerate minority-spin bands at the X point, k =

(1/2, 0, 1/2), near EF . The values of γ and ∆ for the chalcogenide lacunar spinels at different

levels of DFT theory are tabulated in Table 3.3. For the non-magnetic Nb and Ta compounds, we

only report ∆.

All of the cubic phase lacunar spinels are metallic from band theory without considering spin-

orbit interactions. Figure 3.5 shows that the Fermi level, EF , is always located within the valence

bands, regardless of the magnetic configuration or DFT functional. Specifically, the cubic phase
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Figure 3.6: DFT-PBE band structure and DOS of metastable cubic GaV4S8 with 1µB per formula
unit. We define γ as the exchange splitting between different spin channels and ∆ as the splitting
of the three valence bands at the X-point. Here, those bands are located approximately at EF and
EF + 0.3 eV.
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Table 3.3: Electronic band splitting of the triply degenerate bands in the cubic lacunar spinels at
different levels of DFT. γ quantifies the splitting between the two spin channels. ∆ is the value
of band splitting among triply degenerate bands at the X point in momentum space near EF . For
the vanadium compounds, these values are tabulated for different spin-magnetic moment states
separately. An ‘–’ indicates that the state was not stable.

compound LDA PBEsol PBE PBE+U(1.0) PBE+U(2.0) SCAN HSE06
GaMo4S8 γ 0.09 0.15 0.16 0.22 0.28 0.22 0.56

∆ 0.69 0.65 0.55 0.55 0.55 0.59 0.67
GaMo4Se8 γ 0.11 0.14 0.16 0.22 0.29 0.22 0.52

∆ 0.50 0.48 0.38 0.39 0.40 0.44 0.52
GaV4S8 γ – – 1.13 1.58 2.01 1.76 3.1
(5µB) ∆ – – 0.48 0.44 0.33 0.43 0.46
GaV4S8 γ – 0.12 0.23 0.32 – 0.37 0.95
(1µB) ∆ – 0.52 0.41 0.40 – 0.43 0.55
GaV4Se8 γ – 1.07 1.17 1.65 2.60 1.82 3.2
(5µB) ∆ – 0.42 0.36 0.34 0.20 0.35 0.51
GaV4Se8 γ – 0.20 0.23 0.34 – 0.40 0.81
(1µB) ∆ – 0.37 0.30 0.28 – 0.31 0.41
GaNb4S8 ∆ 0.88 0.82 0.69 0.71 0.71 0.73 0.86
GaNb4Se8 ∆ 0.63 0.59 0.50 0.52 0.53 0.55 0.66
GaTa4Se8 ∆ 0.74 0.71 0.60 0.63 0.63 0.65 0.69
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V and Mo compounds are predicted to be half-metals as only one spin channel crosses the Fermi

level whereas the other spin-channel is fully gapped. In either group VB or VIB transition-metal

compounds, there is an odd number of electrons in three degenerate bands (Figure 3.2). For the

low spin-polarized states with 1µB magnetic moment per formula unit, we then find that the Fermi

level crosses this set of triply degenerate bands and metallicity is protected by the F 4̄3m crystal

symmetry. Here the splitting of these triply degenerate valence bands throughout the Brillouin

zone is quite small; although the ∆ value is functional dependent, it does not exceed 0.7 eV. There

is also a small trend of increasing splitting between different spin channels (γ) with higher levels

DFT functionals. We attribute this to the more accurate exchange interactions captured with the

more advanced functionals.

The flat valence bands derived from these cluster orbitals lead to large effective masses, and

these electrons should be highly localized in real space. This is in agreement with the fact that the

transition-metal clusters are far from each other within the unit cell, and the electrons are highly

localized within the cluster. One of the possible conduction mechanisms for the lacunar spinels is

through variable-range hopping (VRH) [57]. It is for the same reason that these compounds have

been called “Mott insulators” [56].

For the highly-polarized magnetic state in the vanadium compounds, γ is much larger than

∆, which makes it different from the rest of the family. In this case, the ∆ term may not be

that important since the triply degenerate band is no longer the highest occupied band. The two

bands crossing the Fermi level are the a1 and e orbitals in the spin-down channel. It is therefore

possible to obtain a semiconducting state by shifting the e-symmetry orbitals to higher energy and

fully occupying the a1 orbital. Indeed, we find such a state in GaV4Se8 using the SCAN functional,

where the band gap is approximately 60 meV. Whether this highly-polarized state is experimentally

accessible, however, remains unclear.

We next report results with SOC included in our simulations. The band structures and DOSs

with the PBE functional are shown in Figure 3.5 b[1-4]. Orbital degeneracy is partly broken com-
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pared with the non-SOC band structures. The broken symmetry here is vital for reproducing a

semiconducting state since it enables further orbital splitting by increasing electron-electron inter-

actions. Figure 3.5 c[1-4] show the electronic structures with PBE+SOC and a U value of 3.0 eV,

where all four compounds exhibit a small but finite band gap. It is interesting to note that both

SOC and on-site Coulomb interactions are necessary in order to produce a semiconducting cu-

bic phase for all compounds studied. Intuitively, SOC serves the purpose of symmetry-breaking

in the highly-symmetric cubic phase while on-site Coulomb interactions localize electrons and

increase repulsion between bands, which eventually lead to a semiconducting state in the cubic

lacunar spinels. Although the electron-correlation effect (modeled by the Hubbard U ) is typically

considered more important in 3d transition metals, spin-orbit interactions are more significant in

5d transition metals. Indeed, the lacunar spinel compounds investigated, which include transition

metals from the 3d, 4d, and 5d rows, exhibit similar yet non-identical behaviors. This behavior

could be the outcome of competing SOC and on-site Coulomb interactions within these transition-

metal cluster systems. It has been shown that spin-orbit coupling effect within the lacunar spinel

system could lead to exciting physics (e.g., spin-orbital entangled molecular jeff states [92, 98]).

Our findings in the cubic phase lacunar spinels indicate that different DFT functionals, as well

as various internal electron-electron, spin-orbital interactions, can lead to qualitatively different

interpretations of their electronic and magnetic properties. Therefore, extra care in the exchange-

correlational functional selection should be taken before pursuing extensive DFT simulations on

this family.

3.3.2 R3m distorted phase

Lattice parameters

In this section, we investigate the DFT functional dependency of properties in the distorted rhom-

bohedral phase. Since only molybdenum and vanadium compounds are reported to exhibit Jahn-

Teller-type structural distortions, we benchmark the Vxc performance in predicting lattice param-
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Figure 3.7: Relative error of the rhombohedral unit cell volume at different levels of DFT. PS is
an abbreviation for the PBEsol functional and the number in parentheses is the value of the on-site
Coulomb interaction used in the LDA/GGA+U method.

eters against available experimental data of GaV4S8, GaV4Se8, GaMo4S8, and GaMo4Se8. In all

cases, we use a ferromagnetic spin configuration with 1µB magnetic moment per unit cell in our

structural relaxations; see Section 3.3.2: Magnetism for a detailed discussion of the magnetic mo-

ment configurations.

The Jahn-Teller structural phase transition reduces the crystal symmetry from space group

F 4̄3m to R3m and occurs with a change in unit cell volume. The relative error of the fully relaxed

unit cell volumes for the molybdenum and vanadium compounds are shown in Figure 3.7. Here,

we observe a similar trend as found in the cubic phase. The LDA and PBEsol functionals underes-

timate the ground state lattice volume, while LDA shows larger deviations from the experimental

data. Moreover, structural relaxations of the rhombohedral phases of GaV4S8 and GaMo4S8 with

LDA converge to non-magnetic cubic structures, regardless of the initial magnetic moment config-

urations. LDA is able to stabilize a ferromagnetic configuration in the rhombohedral phase only

with on-site Coulomb interactions (LDA+U ).
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PBE overestimates the lattice constants of all four compounds. With increasing value of the

on-site Coulomb interactions, the lattice parameters also increase slightly. In the rhombohedral

phase, the cell volume of vanadium compounds is not as sensitive to the Hubbard-U value as in the

cubic phase, presumably because the electronic structure is semiconducting in the R3m symmetry.

SCAN and HSE06 functional again perform quite well with regard to the lattice parameters with

less than 2% error.

Internal degrees of freedom

The occupied Wyckoff sites of the transition metals also split upon the transition into the rhom-

bohedral phase, leading to one apical site [M1 in Figure 3.1(b)] along the C3v distortion axis and

three basal atoms [M2, M3, M4 in Figure 3.1(b)] forming a plane perpendicular to the C3v axis.

The Wyckoff positions of the transition metals in GaMo4S8 and GaV4S8 with R3m symmetry

(space group no. 160) after structural relaxation with different exchange-correlation functionals

are tabulated in Table 3.4. The selenide compounds show similar functional dependencies and

are not shown here. In general, the changes in Wyckoff positions with respect to functional are

quite small. However, we find that the z1 value in GaV4S8 has a significantly higher functional

dependency over that in GaMo4S8 (Figure 3.8). Both increasing the value of U as well as going to

higher levels of exchange-correlation functionals favor larger structural distortions in GaV4S8, i.e.,

keeping the apical V atom far away from the center of the tetrahedral transition-metal cluster. The

z1 Wyckoff position of the Mo atoms is also largely insensitive to the choice of the DFT functional,

possibly owing to the reversed distortion in GaMo4S8, where steric effects might prohibit further

distortion.

After the structural phase transition, both the rhombohedral angle αrh and bond angle θm in the

transition-metal cluster diverge from the cubic 60◦, leading to a greater number of internal degrees

of freedom in the distorted phase. The latter is correlated with the change in occupied Wyckoff

sites of the transition metals. We record these internal bond angles of the four lacunar spinels after
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Table 3.4: Wyckoff positions of the transition metals in rhombohedral GaMo4S8 and GaV4S8 after
structural relaxation with different DFT functionals. The z value of the 3a and 9b sites in space
group no. 160 are labeled z1, z2, respectively. PS is an abbreviation for the PBEsol functional and
the number in parenthesis is the value of the on-site Coulomb interaction used in the GGA+U
method.

GaMo4S8 GaV4S8

3a (z1) 9b (x) 9b (z2) 3a (z1) 9b (x) 9b (z2)
experimental [66] 0.4014 0.1956 0.2023 0.3910 0.1937 0.2013
LDA 0.3982 0.1960 0.2022 0.3944 0.1946 0.1998
PBEsol 0.4012 0.1951 0.2012 0.3913 0.1969 0.2005
PS+U(1.0) 0.4014 0.1950 0.2011 0.3877 0.1966 0.2005
PS+U(2.0) 0.4015 0.1949 0.2010 0.3856 0.1958 0.2005
PS+U(3.0) 0.4016 0.1948 0.2010 0.3834 0.1951 0.2008
PBE 0.4020 0.1956 0.2009 0.3888 0.1972 0.2005
SCAN 0.4029 0.1962 0.2006 0.3852 0.1963 0.2004
HSE06 0.4025 0.1959 0.2007 0.3839 0.1956 0.2005

Figure 3.8: The 3a (z1) Wyckoff position in rhombohedral GaMo4S8 and GaV4S8 at different Vxc.
The gray dashed lines correspond to the experimental values. PS is an abbreviation for the PBEsol
functional and the number in parenthesis is the value of the on-site Coulomb interaction used in
the GGA+U method.
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Table 3.5: The unit cell rhombohedral angle αrh (in degrees) for the R3m phases and the corre-
sponding apical bond angle θm (in degrees) for the transition-metal cluster at different levels of
DFT functional. PS is an abbreviation for the PBEsol functional and the number in parenthesis is
the value of the on-site Coulomb interaction used in the GGA+U method.

GaMo4S8 GaMo4Se8 GaV4S8 GaV4Se8

αrh θm αrh θm αrh θm αrh θm
experimental 60.47 61.60 60.57 61.43 59.62 58.38 59.56 57.72
LDA 60.00 60.00 60.78 62.76 60.00 60.00 59.55 57.71
PBEsol 60.70 62.29 60.80 62.91 59.56 57.67 59.33 56.59
PS+U(1.0) 60.75 62.50 60.81 63.00 59.28 56.39 59.20 56.00
PS+U(2.0) 60.76 62.59 60.81 63.06 59.16 55.91 59.09 55.60
PS+U(3.0) 60.77 62.66 60.81 63.12 58.99 55.26 58.87 54.75
PBE 60.73 62.53 60.79 63.07 59.36 56.62 59.26 56.09
SCAN 60.76 62.80 60.84 63.27 59.21 55.72 59.12 55.47
HSE06 60.77 62.74 60.79 63.15 59.05 55.38 58.94 55.04

structural relaxation using different DFT functionals; the results are shown in Table 3.5.

Almost all DFT functionals (except for LDA) predict similar results for αrh compared with the

experimental data, but in general they give larger local metal-cluster distortions. θm values are 1∼2

degrees larger than experimentally reported in the molybdenum compounds, whereas the vanadium

compounds show a similar but reversed trend in θm, i.e., 1∼2 degrees smaller. This agreement

is reasonable, and the difference in internal coordinates compared with experiment might come

from low-resolution experimental characterization [61]. It is also possible that the structural phase

transition is incomplete at low temperature [58]. We also find a minor trend that higher-level

functionals, as well as larger Hubbard-U values, favor larger structural distortions. Since our DFT

simulations are performed at 0 K, while lab characterizations are performed at finite temperature,

our results are more likely to capture the correct ground state structure where thermal expansion

effects are small.

It is interesting to note that the vanadium and molybdenum compounds show reversed struc-

tural distortions across the phase transition. This can be explained from the valence MO diagram

in Figure 3.2. In the cubic phase, there is either 1 electron (GaV4S8) or 5 electrons (GaMo4S8) in

the valence t2 orbitals. Such electronic configurations are Jahn-Teller active, whereby a structural
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distortion accompanied by orbital-degeneracy lifting could further stabilize the system. Owing

to the different electron occupations in the vanadium and molybdenum compounds, their favored

electronic configurations require a reversed ordering of the a1 and e orbitals. Therefore, the spon-

taneous structural distortion permits each compound to lift its orbital degeneracy and achieve its

favored electronic configuration.

We now summarize the structural benchmark assessment of the cubic and rhombohedral phases.

We recommend using the GGA+U method for lattice structure relaxations with a Hubbard-U value

of approximately 2 eV to 3 eV. LDA functional should be used with on-site Coulomb interactions

for both cubic and rhombohedral phases. The SCAN functional is another reasonable choice that

predicts accurate lattice structures. Structural relaxations with HSE06 give very accurate lattice

constants, but its high computational costs may be prohibitive if only trying to obtain reasonable

crystal structures.

Magnetism

We find that the DFT ground state of both the molybdenum and vanadium compounds in the dis-

torted R3m structure are ferromagnetic with 1µB per formula unit. (Simulation of the complex

magnetic phase diagram of lacunar spinels is out of the scope of this work, readers with interest

should refer to Refs. [54, 55, 99, 100, 101, 102, 103, 104].) In the molybdenum compounds, the

magnetic moment is evenly distributed about all four Mo atoms, which is the same as what we

found in the cubic phase. In the vanadium compounds, however, the apical V atom along the C3v

symmetry axis has a large local magnetic moment. The other three basal V atoms have relatively

smaller moments that are anti-aligned to the apical spin. This results in a ferrimagnetic configu-

ration in the V4 cluster, giving a net-magnetic moment of 1µB per formula unit. For instance, in

the rhombohedral phase of GaV4S8 with the PBE functional, the magnetic moment on the apical

V atom is 1.3µB while the three basal V atoms contribute each −0.1µB. Thus, the net-magnetic

moment in one formula unit of GaV4S8 is 1µB. Some DFT functionals (e.g., PBE+U(1.0)) are
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able to stabilize a ferromagnetic configuration in GaV4S8 similar to that of GaMo4S8, i.e., evenly

distributed, but this magnetic configuration is less energetically favorable compared with the fer-

rimagnetic configuration. We report properties of the rhombohedral phase vanadium compounds

using the ferrimagnetic configuration in the remainder of this chapter. A recent work that used

random-phase approximation correctly reproduced the ground state of GaV4Se8 and explored the

coupling between magnetism and structure [62].

Electronic structures

Next, we examine the electronic structures of rhombohedral GaV4S8, GaMo4S8, GaNb4Se8, and

GaTa4Se8, because there is evidence that symmetry-breaking in the transition-metal clusters with-

out distortion of the lattice parameters could lead to different magnetic configurations [79]. Such

small local distortions may also be challenging to detect with low-resolution characterization tech-

niques; for that reason, we hypothesize that the niobium and tantalum-based lacunar spinels could

also exhibit a distorted rhombohedral phase. Therefore, we slightly distort the cubic niobium and

tantalum lacunar spinel structures along the symmetry-breaking pathway, and use these geometries

as the initial structure for structural relaxations. The structural relaxation settings using different

DFT functionals are similar to those used for the cubic phase.

Figure 3.9 a[1-4] presents the electronic band structures and projected DOSs of these four

compounds. The triply degenerate valence bands in the cubic phase split into two sets of orbitals

with a1 and e symmetry. In the molybdenum compounds, the minority spin a1 orbital shifts to

higher energy, above the Fermi level, such that five valence electrons occupy the three majority

spin orbitals and the minority e orbitals. The vanadium, niobium, and tantalum compounds exhibit

different orbital occupations and structural distortions; the a1 orbital is further stabilized to lower

energy relative to the other five orbitals, and the only one valence electron occupies the a1 orbital.

Remarkably, we find that the PBE functional is able to open up a small band gap without any

on-site Coulomb interactions in the distorted phase GaV4S8 and GaMo4S8. For GaNb4Se8 and
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Figure 3.9: DFT-PBE ground state band structures and density of states (DOS) of the rhombohe-
dral R3m lacunar spinels. The second and third rows show simulation results with SOC. Color
representation is the same as that in Figure 3.5.

GaTa4Se8, the lowest conduction band (minority a1) barely touches the Fermi level. However, LDA

predicts an unreasonable metallic ground state for these compounds. This finding indicates that

the structural distortion alone is sufficient to lift the orbital degeneracy and open a semiconducting

gap without strong electron-correlation effect—apparently the additional electron density gradient

in Vxc through the enhancement factor provides an improved description. In other words, the

rhombohedral lacunar spinels may not be strictly described as “Mott” insulators. Our findings

confirm the importance of local structural distortions on electronic structures in lacunar spinels

[61].

Meanwhile, different GGA functionals qualitatively describe the rhombohedral electronic struc-

tures differently. For instance in GaV4S8, PBEsol predicts a metallic state, while PBE opens a small

gap of 0.09 eV. In GaMo4S8, PBEsol gives a very small band gap of 0.02 eV while PBE predicts a
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band gap of 0.13 eV, which is much closer to the experimentally estimated value of 0.2 eV. There-

fore, DFT-GGA simulations on this family of compounds should be performed with extra caution

with attention focused on the role of the enhancement factor in reducing the self-interaction er-

ror [105]. We recommended that when using the PBEsol functional to simulate the electronic

structures of the lacunar spinels, a slightly larger (∼1 eV) Hubbard U value is used than that for

PBE.

Figure 3.9 b[1-4] shows the electronic structures with the PBE functional and SOC. The effect

of including SOC is similar to that in the cubic phase; orbital degeneracy is lifted, but the over-

all band structures remain similar. Figure 3.9 c[1-4] shows the effect of now adding a Hubbard

on-site Coulomb interaction of 2.0 eV. All four compounds now exhibit a clear band gap, where

the conduction band is pushed to higher energy owing to stronger electron-electron interactions.

Interestingly, we find that SOC does not seem to play a decisive role in predicting reasonable

electronic structures in the rhombohedral phase, whereas the GGA functional alone could predict

qualitatively correct behavior. It is possible that SOC plays a less significant role here since crys-

tal symmetry is already broken in the rhombohedral phase, unlike in the highly symmetric cubic

phase. Our findings here support our previous hypothesis about the roles of SOC and electron-

correlation effect in producing semiconducting phases.

Figure 3.10 shows the different band gaps predicted using different DFT functionals. The de-

creasing band gap in the V-Nb-Ta series from 3d to 5d agrees well with our physical intuition,

where electron-correlation effects are expected to decrease. The reason why molybdenum com-

pounds show large band gaps might be caused by different orbital occupations – more valence

electrons lead to larger orbital repulsion, which pushes the conduction band to a higher energy

level, leading to a larger band gap. We also observe a higher functional rather than compositional

dependency on the band gap. With an increasing Hubbard-U value, the band gap increases mono-

tonically. Since a larger on-site Coulomb interaction effectively increases the repulsion between

bands with the same spin, it results in a larger gap between the highest occupied and lowest unoc-
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Figure 3.10: DFT-functional dependence of the electronic band gaps for lacunar spinels in the
rhombohedral R3m structure.

cupied bands.

We also observe an interesting similarity in Figure 3.8 and Figure 3.10, where the functional

dependency of the Wyckoff position 3a (z1) in GaV4S8 is similar to the trend in the band gap.

A larger structural distortion in GaV4S8 also leads to a higher electronic band gap. GaMo4S8

however, does not exhibit such correlated properties. The distinct behaviors of the Mo and V

compounds indicate rather different relationships between the structural distortion and the ground

state electronic structures. Niobium and tantalum compounds have relatively smaller band gaps

compared with vanadium and molybdenum ones, which is consistent with experimental estimation

of band gaps. It is also clear that including SOC has a negligible effect on ground state band gap

in all four compounds studied here.

SCAN predicts band gaps close to the experimentally suggested 0.2±0.1 eV value [52], whereas

HSE06 finds approximately a 1.0 eV band gap for the vanadium and molybdenum chalcogenides,
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Figure 3.11: Effect of on-site Coulomb interactions (U values of 0.0, 1.0, 2.0, and 3.0 eV) and the
amount of exact exchange interactions in the hybrid HSE functional (EX values of 0.05, 0.1, 0.2,
and 0.25) on the electronic structures of rhombohedral R3m GaMo4Se8. EX = 0.25 corresponds
to the standard amount of exact exchange in HSE06. The band structure panel on the left is
obtained using the PBE functional.

and around 0.7 eV for the niobium and tantalum compounds. Since the hybrid functionals partially

correct the self-interaction problem in DFT, it is expected to predict more accurate band gaps than

lower rung functionals. The larger portion of non-local and range-separated exact exchange in-

teractions included in HSE06, however, might also destroy the balance within the transition-metal

cluster, causing the large deviations in the band gaps of the lacunar spinels. It has also been re-

ported that the ferromagnetic ground state is determined by the symmetric exchange interactions

[79], which could possibly explain the different behaviors of HSE06 from lower-level functionals.

More careful experimental characterization of the distorted phase band gaps is required to have a

better understanding of which Vxc performs the best.

We next examine the effect of the on-site Coulomb interactions and exact exchange interactions

on the electronic structures of rhombohedral GaMo4Se8 (Figure 3.11). The band structure and DOS

of GaMo4Se8 using the PBE functional with Hubbard-U values of 0.0, 1.0, 2.0, and 3.0 eV are

shown in the first five panels. The four panels starting from the right of Figure 3.11 correspond to

the DOS obtained using the HSE06 functional with different portions of exact exchange included

as indicated in parenthesis. In general, we observe very similar DOS for the occupied bands.
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The three valence bands in the spin-up channel are slightly shifted to lower energy relative to the

Fermi level, EF with either larger U values or larger amounts of exact exchange. The orbitals

beneath these valence orbitals, approximately located at −1 eV, are always lower in energy in

our HSE06 calculations. Because the HSE06 functional treats all orbitals on the same footing,

these lower energy orbitals are also ‘corrected’ in a self-consistent manner, whereas the on-site

Coulomb interaction through the +U correction basically forces integer occupancy among only

the correlated orbitals.

In addition, we find an increasing trend in the band gap with larger U values or greater con-

tributions of exact exchange to Vxc. We find that U = 1.0-2.0 eV leads to very similar electronic

structures obtained with HSE06 with 5-10 % exact exchange. Our findings here suggest that a

GGA+U functional could be used as an alternative method to study electronic structures in lacu-

nar spinels by reproducing the low-energy electronic structure obtained from a hybrid functional

but at lower computational cost. The limitation is that lower lying orbitals that may be of inter-

est are not corrected and therefore cannot exactly reproduce the results of the hybrid functional.

Based on our simulation results, we do not suggest using HSE06 functional for electronic structure

simulations in the lacunar spinel family.

Optical conductivity

We compute the optical conductivity of the ferrimagnetic rhombohedral phase GaV4S8 and com-

pare our DFT results with the experimental data [70] in Figure 3.12. The experimental data shows

the first optical transition occurs at≈2,700 cm−1 (black symbols), corresponding to an approximate

0.33 eV optical band gap. The optical conductivity then plateaus at approximately 800 Ω−1 cm−1

for higher frequencies. Our DFT simulations are able to semi-qualitatively capture the plateau

structure, but do not quantitatively reproduce the optical conductivity. With increasing values of

U , the plateau shifts to higher frequency and this behavior coincides with a larger optical gap as

expected from the aforementioned band gap dependencies on the exchange-correlation functional.
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Figure 3.12: DFT calculated optical conductivity of GaV4S8 in the rhombohedral R3m structure
compared with the experimental values obtained from Ref. [70].

SCAN functional performs similar to PBE with U = 1.0-2.0 eV. PBE with U = 2.0 eV gives an

optical gap closest to the experimental value. We note that because DFT is a single-particle ground

state theory, it may not be the optimal tool to study excited state properties, such as optical con-

ductivity. More accurate simulations, for example, could be pursued by solving the Bethe-Salpeter

equation using the GW quasiparticle energies [106].

Lattice dynamics

Last, we investigate the exchange-correlation functional dependency on the phonon frequencies in

GaV4S8. We present our computed normal mode frequencies for both the cubic and rhombohedral

phase with different functionals in Figure 3.13: LDA, PBE, PBE+U = 1.0 eV, and SCAN. These

calculated values are compared with the experimental Raman/IR frequencies at 80 K reported in

Ref. [107], which appear in the first column of Figure 3.13. Note that the LDA results for the
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Figure 3.13: Phonon frequencies of GaV4S8 in the cubic (left panel) and rhombohedral (right
panel) phase with different DFT functionals. The experimental data from Ref. [107] is reproduced
in the first column labeled ‘Raman/IR’.
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rhombohedral phase are not shown, because the R3m structure is unstable at the LDA level.

We find that the cubic phase phonon frequencies generally agree well with the experimen-

tal IR/Raman characterization data. LDA and PBE perform reasonably well in reproducing the

phonon frequencies. However, with PBE+U = 1.0 eV, we find a significant decrease in the

frequency of the lowest T2 phonon mode. The same behavior is also obtained with the SCAN

functional. Interestingly, this T2 mode mainly corresponds to the distortion of the transition-metal

cluster along the symmetry-breaking pathway. This could be evidence of electron-phonon coupling

induced structure instability [64]. Although no Raman/IR data is available for the rhombohedral

phase, we still see the same phonon mode softening with functional choice upon going from PBE

to SCAN. The major difference between different functionals is at low-frequency, where the vi-

brational modes are mainly related to the transition-metal (V4) clusters. Our finding here suggests

that lattice dynamics in the lacunar spinels also have non-negligible functional dependency. More

experimental (temperature-dependent) data, however, is required to ascertain the functional that

best reproduces the lattice dynamical properties.

3.3.3 Exploring the phase space

In this section, we further explore the structural phase space of GaNb4Se8 and GaTa4Se8. From the

previous analysis, we found that minor structural distortions of the transition-metal clusters could

play a deterministic role on their physical properties. However, the interatomic distances (e.g.,

Ta-Ta distance) within the transition-metal clusters are approximately 3 ∼ 4 Å, and only the av-

erage microscopic distortions are observed using conventional experimental scattering techniques

(e.g., X-ray diffraction). To that end, we utilize a combination of experimental inelastic neutron

scattering (INS) measurements and computational simulations to take a closer look at the local

geometries. Compared with X-rays, the wavelengths of neutrons fit better with the length scale

of interatomic distance, therefore they serve as a better detector to accurately probe the atomic

distributions.
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Figure 3.14: (a) The crystal structure of GaM4Se8 (M = Nb, Ta) with highlighted transition-metal
cluster M4. The ligands (Se anions) of the clusters are not shown here. (b) The GaTa4Se8 F 4̄3m
phase phonon dispersion and density of states (DOS) using the PBE functional. Phonon modes
with imaginary eigenvalues are displayed within the negative frequency region. Experimental
inelastic neutron scattering (INS) patterns of GaTa4Se8 collected at (c) 5 K, and (d) 100 K. DFT-
simulated INS patterns of GaTa4Se8 with (c) space group P212121, and (d) space group F 4̄3m.
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Figure 3.15: Subgroups of the space group F 4̄3m accessible through a single irreducible represen-
tation order parameter.

From the phonon analysis results discussed in the previous section, we found multiple phonon

modes with imaginary eigenvalues (shown in the negative frequency region in Figure 3.14(b))

throughout the entire first Brillouin zone. Since the average ground state crystal structure of

GaNb4Se8 and GaTa4Se8 is still unclear (unlike GaV4S8 or GaMo4S8 with the R3m ground state),

we distort the F 4̄3m phase crystal structure along the imaginary phonon modes at selected k-

points. For degenerate modes, we also searched through some linear combinations of the modes to

sample as many reasonable subgroup structures as possible, derived from the cubic phase. With the

distortions initialized from the phonons modes, we use DFT simulations to fully relax the crystal

structures. Most of the candidate structures are able to maintain their space group after the relax-

ation; the results are tabulated in Table 3.6. The subgroups of the space group F 4̄3m accessible

through a Landau-type transition (single irreducible representation order parameter) are illustrated

in Figure 3.15.

Interestingly, both GaNb4Se8 and GaTa4Se8 adopt P212121 symmetry as the ground state struc-

ture, which is significantly more stable than the cubic phase. This phase was suggested to be the

ground state by our experimental collaborators Julia Zuo and Dr. Stephen Wilson at the University

of California, Santa Barbara; however, we were not able to identify this phase from phonon dis-
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Figure 3.16: Inelastic neutron scattering (INS) patterns collected within |Q| range 7–9 Å−1.
GaTa4Se8 experimental INS patterns collected at (a) 5 K, and (b) 100 K. DFT-simulated INS pat-
terns of GaTa4Se8 with (c) space group P212121, and (d) space group F 4̄3m. DFT-simulated INS
patterns of GaNb4Se8 with (e) space group P212121, and (f) space group F 4̄3m.
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Table 3.6: A summary of phase space exploration results in GaNb4Se8 and GaTa4Se8 using DFT
simulations. “Experimental” means this phase is suggested by our experimental collaborators, not
identified from distorting soft phonon modes. ∆E is the energy difference between the specified
phase and the cubic phase (a negative number means this phase is more stable). In the “Phonon”
column, “stable” means there are no imaginary phonons (either acoustic or optical) at 0 K. An “–”
means data is not available.

Compound Space group k−point ∆E (meV/f.u.) Phonon
F 4̄3m – 0 unstable
P212121 Experimental -29 stable
C2221 X (1/2, 0, 1/2) -21 unstable

GaNb4Se8 Pmn21 X (1/2, 0, 1/2) -20 stable
P 4̄21m Experimental -20 unstable
Imm2 Γ (0, 0, 0) -12 –
P 4̄m2 X (1/2, 0, 1/2) -9 –
R3m L (1/2, 1/2, 1/2) 50 –

F 4̄3m – 0 unstable
P212121 Experimental -42 stable
P 4̄21m Experimental -38 stable
Cm L (1/2, 1/2, 1/2) -33 –

GaTa4Se8 Pmn21 X (1/2, 0, 1/2) -31 stable
Cc L (1/2, 1/2, 1/2) -27 –

C2221 X (1/2, 0, 1/2) -25 unstable
P 4̄m2 X (1/2, 0, 1/2) -14 –
R3m Γ (0, 0, 0) -1 –
R3m L (1/2, 1/2, 1/2) 49 –

tortions. We later found that P212121 is a subgroup of F 4̄3m associated with the X (1/2, 0, 1/2)

reciprocal point, and the suitable phonon should transform as irreducible representation X5 with

order parameter (a,0,b,0,c,0). In order to validate this, we simulate the inelastic neutron scattering

patterns of GaNb4Se8 and GaTa4Se8 in both F 4̄3m and P212121 phases. The corresponding ex-

perimental data is collected at 5 K and 100 K, respectively. The results are shown in Figure 3.14

and Figure 3.16.

In general, the simulated INS agree qualitatively with the experimental data. Since it is well-

known that the PBE functional overestimates the lattice parameters, it is reasonable to see that the

phonon frequencies are overall red-shifted (i.e., having lower frequencies than the experimental
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values). The most significant discovery is the peak splitting shown in Figure 3.16[a-d]. The F 4̄3m

phase on the right has higher symmetry, and we observe one single peak around 15 meV. However,

on the left side with P212121 symmetry, the simulated INS (Figure 3.16(c)) reveals two peaks (the

one on the left is slightly merged into the right one). Our current understanding is that the peak

splitting could be attributed to the breaking symmetry from the cubic phase to the P212121 phase,

where the interatomic distances of Nb4 and Ta4 clusters change after the distortions. The peak

splitting is more obvious in the experimental data, which supports the structural phase transitions

observed in these two compounds upon cooling.

The INS patterns of GaNb4Se8 are also shown in Figure 3.16[e, f], we notice that the relative

intensities varies a lot from the Ta compound. The origin of these differences is still under active

investigation by our team.

3.4 Conclusions

In conclusion, LDA underperforms the other functionals and we recommended to use it only with

on-site Coulomb interactions added. The GGA functionals (PBE and PBEsol) perform reasonably

well, and the results can be quantitatively improved with on-site Coulomb interactions explicitly

added. The meta-GGA functional SCAN is another alternative choice that works well and does

not require extra parameterization. Last, the hybrid functional HSE06 predicts accurate lattice

structures, but leads to a large electronic band gap in the low-temperature rhombohedral phase.

Owing to its high computational cost as well as large deviation in electronic structure predictions,

we do not recommend using this hybrid functional for the lacunar spinel family.

All exchange-correlation functionals predict reasonable lattice constants in both the cubic and

rhombohedral polymorphs of the chalcogenide lacunar spinels. For electronic structure simula-

tions, the cubic phase is always metallic from band theory and exhibits a narrow transition-metal-

derived bandwidth at the Fermi level. Spin-orbit interactions are necessary to predict a semicon-

ducting state in the cubic phase, but not in the rhombohedral phase, at the DFT level. At the LDA
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and GGA level, on-site Coulomb interactions of 2 eV to 3 eV are recommended to obtain quantita-

tively improved results. We also found that the PBE functional without on-site Coulomb interac-

tions could predict stable semiconducting states for the rhombohedral phase. Our results obtained

with SCAN are similar to PBE+U(2.0) and thus can be safely used in simulations. We also find

a highly spin-polarized DFT ground state in GaV4S8, which differs from available experimental

data, motivating additional investigations of the magnetic order. We found that the single-particle

DFT simulations of the optical conductivity do not give a quantitatively satisfying description of

GaV4S8; more sophisticated methods such as with the GW method may be necessary to treat the

excited state properties in the lacunar spinels. The LDA and PBE functional, however, perform

well in predicting cubic phase phonon frequencies in GaV4S8.

Our INS simulations qualitatively agree with the experimental data, supporting the view that

the transition-metal clusters adopt multiple configurations when compete to give the global ground

state (P212121) for GaNb4Se8 and GaTa4Se8. The cluster geometry could influence the intrinsic

electronic structures and magnetic interactions, hence determine the different physical properties

observed under different conditions. Our findings here provide a possible explanation to some

of the fascinating physical properties observed in the lacunar spinel family (e.g., Skyrmion lat-

tice, resistive-switching, etc.). Since INS is a diffraction-based characterization technique, whose

results are ensemble averaged, we suggest using a local probing method (e.g., pair distribution

function) to reveal more details about the interatomic distances of the transition-metal clusters.
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CHAPTER 4

FEATURELESS ADAPTIVE OPTIMIZATION ACCELERATES FUNCTIONAL

ELECTRONIC MATERIALS DESIGN

This chapter is adapted with permission from Ref. [108]. The work was performed and written in

collaboration with Akshay Iyer. © Copyright 2020 American Institute of Physics.

Electronic materials exhibiting phase transitions between metastable states (e.g., metal-insulator

transition materials with abrupt electrical resistivity transformations) are challenging to decode.

For these materials, conventional machine learning methods display limited predictive capabil-

ity due to data scarcity and the absence of features impeding model training. In this chapter,

we demonstrate a discovery strategy based on multi-objective Bayesian optimization to directly

circumvent these bottlenecks by utilizing latent-variable Gaussian processes combined with high-

fidelity electronic structure calculations for validation in the chalcogenide lacunar spinel family.

We directly and simultaneously learn phase stability and band gap tunability from chemical compo-

sition alone to efficiently discover all superior compositions on the design Pareto front. Previously

unidentified electronic transitions also emerge from our featureless adaptive optimization engine.

Our methodology readily generalizes to optimization of multiple properties, enabling co-design of

complex multifunctional materials, especially where prior data is sparse.

4.1 Introduction

Upon traversing a critical temperature, the electrical resistivity of a metal-insulator transition

(MIT) material can change by orders of magnitude [109]. Athermal approaches may also trig-

ger the electronic transitions, including (chemical) pressure, variable carrier-densities, and applied

electromagnetic fields. The transformations can be used to encode, store, and process informa-

tion for beyond von-Neumann microelectronics and overcome performance limits of conventional
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field-effect transistors [110] for advanced logic/memory technologies [111]. Because macroscopic

MITs occur in materials with diverse chemistries and structures (Figure 4.1(a)), various micro-

scopic mechanisms – electron-lattice interactions, electron-electron interactions, or a combination

thereof – lead to large variations in critical temperatures and accessible resistivity changes [112,

113]. This diversity exacerbates the efficient discovery and optimization challenge of achieving

multiple property requirements to outperform silicon-based devices [114], including stability, large

reversible resistivity changes (≈105), and above room-temperature operation.

The aforementioned complexity is ubiquitous in formulating atomic scale materials chemistry

and macroscopic functionality relationships to guide property optimization. Presently, the principal

solution relies on a better understanding of the underlying materials physics. Numerous data-

driven machine learning models, however, have shown promising results in deciphering nonlinear

relationships between materials structure and properties when sufficient training data is available

[47, 115, 5, 116, 117]. The predictive performance (error and efficiency) of these approaches is

limited by the quality and quantity of the data, typically > O(102), which poses a severe challenge

to MIT materials design owing to the relatively small size of available dataset of ≈ O(101). The

suitability of the machine learning model is determined by the input dimensionality and dataset

size, which for high dimensional inputs necessitates large datasets and complex models for good

predictive performance.

A number of sequential materials design strategies have recently emerged [118, 119, 120, 121]

to rescue the lack of data problem. Mostly being based on the Bayesian approach, these methods

utilize knowledge extracted from existing data to infer properties of unknown materials following

a step-by-step discovery manner. This sequential optimization method fits well with the regular

materials discovery procedure both experimentally and computationally, since property evalua-

tions are usually time and effort consuming (e.g., synthesis and simulations). Nevertheless, these

sequential learning models typically rely on numerical materials descriptors (features) whose se-

lection may be informed by domain knowledge or trial-and-error approaches. For MIT materials
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Figure 4.1: Metal-insulator transition materials and design objectives for the lacunar spinel family.
(a) The range in resistivity accessible (length of bar) across the MIT and transition temperature for
a variety of MIT materials. (left inset) The crystal structure of GaTa4Se8. (right inset) Candidate
elements on each site of the lacunar spinel structure. (b) DFT-simulated phonon dispersion curves
of GaMo4S8 in the rhombohedral ground state, the blue curve corresponds to the Jahn-Teller ac-
tive cluster distortion mode. (inset) The transition-metal cluster with a single apical Ma atom and
three basal Mb atoms. The arrows indicate displacements characterizing the Jahn-Teller active
phonon mode. The intra-tetrahedral cluster angle θm formed by Mb1-Ma-Mb2. (c) Electronic band
structures and projected density of states (DOS in units of states/eV/spin/f.u.) of GaMo4S8 in its
(right) semiconducting ground state and (left) metallic metastable phase with θm. The two R3m
phases are connected by the Jahn-Teller-type structural distortion with a F 4̄3m intermediate state.
(insets) Molecular orbital diagrams of the Mo4 cluster with different local geometries. (d) Design
Objective 1 with the definition of decomposition enthalpy change and the graphical decomposition
pathways of two lacunar spinels for demonstration. The DFT-simulated temperature-dependent
log ratio of the resistivity in the insulating and metallic phases of lacunar spinels, including ex-
perimentally known compounds and newly discovered compositions, serves as design Objective 2.
DFT band gaps specified in parentheses.
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systems which lack of microscopic understanding in how different compositions influence the

phase transitions, this leads to ambiguity in feature formulation for discovery of MIT materials

from structure and composition alone rather than through effective Hamiltonians [113].

What could we do when there is little data available while the governing materials physics is

not abundantly clear? Here we demonstrate a generic strategy to overcome the data scarcity as well

as the feature engineering problems. We utilize multi-objective Bayesian optimization (MOBO)

with latent-variable Gaussian processes (LVGP) to simultaneously optimize the band gap tunabil-

ity and thermal stability in a family of candidate MIT materials – the lacunar spinels (introduced in

the next section). With the goal to identify the optimal compositions, among hundreds of possible

chemical combinatorics with both high functionality as well as synthesizability, we successfully

retrieved all 12 superior compositions on the Pareto front by searching through a small fraction of

the total design space. Notably, the chemical compositions (i.e., element on each crystallographic

site) are all the model requires to guide this discovery procedure. No handcrafted features are re-

quired in this method, hence featureless learning, making our methodology easily generalizable to

other materials design problems. We also showcase how this model could offer helpful guidance

on making better decisions towards the optimal design—selecting the next candidate compound

to synthesize or simulate. Our adaptive optimization engine (AOE) frees researchers from exclu-

sively relying on their chemical intuition, which can require an entire career to accumulate, and is

particularly valuable when the research budget is limited.

4.2 Materials Design Objectives

The complex lacunar spinel family AMaMb
3Q8 with trivalent main group A, transition metal M,

and chalcogenideQ ions demonstrate the complexity active in MIT materials design. The structure

comprises transition-metal clusters (TMC) with Ma and Mb cations at the apical and basal positions

of the tetrahedra (Figure 4.1(b) inset). Although there are hundreds of possible elemental combina-

tions on the four lattice sites in the crystal structure (Figure 4.1(a)), only tens of the lacunar spinels
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have been experimentally reported [52, 66]. For example, GaV4S8 (Ma=Mb=V) exhibits a MIT

[53], exotic spin textures [54], and multiferroism [97] while GaVTi3S8 shows negative magne-

toresistance and half-metallic ferromagnetism [122]. Most lacunar spinels are narrow-bandwidth

semiconductors in their ground states [56, 52]; these electronic properties are governed by distor-

tions of the local TMC from the ideal Td geometry [61], which manifest as low-frequency phonons

as shown for GaMo4S8 (Figure 4.1(b), blue curve). Jahn-Teller-type distortions, which correspond

to elongation along the [111] direction alter the TMC geometry, are particularly important; they

transform the insulating GaMo4S8 ground state into a metastable metallic phase (Figure 4.1(c)).

The MIT arises from a redistribution of electrons among the structure-driven orbital hierarchy

(Figure 4.1(c) insets). We can further use ab initio molecular dynamics (AIMD) simulations to

determine the MIT temperature and validate the phase transition. Furthermore, these phases host

low energy electronic structures, discernible from the projected density of states (pDOS) in Fig-

ure 4.1(c), that arise from the different Ma and Mb sites. This capability to exhibit distinct and

tunable electronic phases poses a challenge in the design of lacunar spinels from physics-based

models while also making them an ideal system for MIT performance optimization.

In pursuit of novel MIT materials with superior performance, we specifically seek lacunar

spinels that exhibit high thermodynamic stabilities and large resistivity-switching ratios, which we

formulate as two design objectives for our materials discovery task. We reduce the approximately

O(103) compositional space to 270 candidates that maintain a 1 Ma to 3 Mb ratio. (AMa
2Mb

2Q8

compositions are excluded as they remove the C3v symmetry fundamental to the MIT; Cr is also

excluded from occupying the Mb site, because it destabilizes the cluster [123].) In addition, al-

though there have been several attempts to make mixed-anion lacunar spinels [124, 99], we only

focus on the transition-metal clusters in this work since they dominate the valence bands. This

design space extends the known composition space that have been experimentally synthesized;

therefore, it is important to determine the crystal stability, i.e., whether the selected chemical com-

bination forms a thermodynamically stable lacunar spinel structure. To that end, we define the
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first design objective as the decomposition enthalpy change (∆Hd, Figure 4.1(d)), and use density

functional theory (DFT) simulations to evaluate formation energies (see Appendix Section A.1).

Materials with larger ∆Hd are expected to be more synthesizable [125] and stable during operation,

making it a useful filter to prioritize compounds for subsequent theoretical analysis and synthetic

processing. The second design objective is the ground state band gap (Eg). We use it as a proxy for

the resistivity-switching ratio since Eg is positively correlated with the resistivity change between

different electronic states (Figure 4.1(d)). A larger Eg also allows for greater band-gap tunability

through control over the C3v distortion, which is a desirable feature for programmable electronics.

Importantly, because Eg is small for most MIT materials, stability is expected to be lower and

more difficult to achieve than that of nonpolymorphous compounds with majority ionic or covalent

bonding [126].

4.3 Adaptive Optimization Engine (AOE)

The nonlinear responses of both design objectives bring severe challenges to compound optimiza-

tion beyond those amplified by chemical combinatorics using data-driven models. We overcome

these obstacles by implementing a cyclic adaptive optimization engine shown in Figure 4.2, which

consists of four iterative tasks (vide infra): property evaluation, aggregation of data (in a repos-

itory), featureless learning, and composition optimization. Beyond returning a predictive model

capable of predicting properties from compositions alone, our iterative AOE leverages earlier ap-

proaches [118, 119, 120] to deliver materials with superior performance by design of composition-

based solutions. In contrast to single objective design which often has a unique solution, mul-

tiobjective design aims to uncover the Pareto front—a set of non-dominated designs where no

individual objective can be improved without deterioration in other objectives. In other words, the

Pareto front represents the optimal trade-offs that can be achieved amongst competing objectives.

There is no relative importance of multiple objectives in the process of identifying the Pareto front,

which simply offers the designer several options from which to select the subset of compositions
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(EMI) value. The model accounts for uncertainty with the 95% confidence interval shown as the
shadowed area around the new compositions (the green symbols). In the lower left inset, the green
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objectives are discovered, forming the Pareto front, or computational resources expire.
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for further investigation and development. Since the designer’s preference may be subjective or

informed by other criteria, herein we present only the framework for Pareto front discovery and its

comprising compositions.

The AOE has the important advantage of bypassing the feature engineering procedure as in

conventional ML methods; it learns properties directly from the chemical composition at each site

(i.e., A, Ma, Mb, Q). Gaussian Process (GP) is ideally suited for this problem, because (a) it

interpolates data and hence is ideal for surrogating deterministic responses such as DFT results,

and (b) it provides a principled statistical representation for uncertainty quantification, which is

essential for Bayesian optimization. Latent-variable methods provide a fundamentally different

approach to modelling categorical design variables by alleviating the need for handcrafted features

(see Appendix Section A.2). It transforms categorical variables (i.e., elemental compositions) into

a continuous numerical space. Utilizing these approaches in the AOE, we achieve featureless

learning and then perform composition optimization under the multiple objectives through latent-

variable Gaussian processes (LVGP).

We start the MIT-materials AOE for the lacunar spinel family through an initial design of

experiment (DoE) consisting of four experimentally known compounds within the family (i.e.,

GaMo4S8, GaV4S8, GaNb4Se8, and GaTa4Se8) and eight new compositions generated by dis-

cretized Latin Hypercube Design (LHD) [127] (Figure 4.3). This procedure ensures a variety

of elemental combinations within the initial DoE set, where each candidate element will appear at

least once, so that the model has knowledge about different elemental contributions to the design

objectives.

Next, we use high-fidelity DFT simulations to evaluate ∆Hd and Eg (see Appendix Sec-

tion A.1). This is the most resource-intensive step among the four tasks; therefore, it is desirable to

iterate through the AOE (property evaluation) step as few times as possible. Although it is applica-

tion dependent, AOE can be terminated if a compound with target properties is discovered or the

budget (computational/experimental) has been exhausted. Then, we create a data repository that
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contains entries for both composition and the evaluated properties. Unlike other ML methods, we

do not rely on a large number of existing data at either the onset or later in the learning process.

We then construct a LVGP model by mapping the elemental compositions (e.g., Al, Ga, In) into

a two-dimensional (2D) latent space (Figure 4.2, lower right inset) where the relative positions of

elements are obtained using maximum likelihood estimation (MLE). This latent space representa-

tion enables us to construct Gaussian process surrogate models for the unknown underlying design

objectives, ∆Hd and Eg, as a function of composition. The MOBO step then begins and we use

the LVGP models to predict ∆Hd and Eg of the unexplored compositions in our design space;

we choose the next candidate composition for evaluation using the expected maximin improve-

ment (EMI, see Appendix Section A.2) as the acquisition function, which quantitatively describes

the performance gain compared against the compositions at the current Pareto front. The EMI is

defined in such a way that both objectives have equal weighting, and the objective properties are

normalized with respect to the current min-max values (see Appendix Section A.2 for details). This

acquisition function considers both exploration of compositions with high uncertainty (Figure 4.2,

shaded ellipses, lower left inset) as well as exploitation of candidates with high performance gain.

The composition with highest EMI is then selected for DFT simulation (property evaluation), at

which point another AOE cycle commences.

The aforementioned iterative optimization procedure progresses and explores the available de-

sign space. One new lacunar spinel composition is evaluated and added to repository after each

AOE iteration. The LVGP models are also updated in each iteration as more knowledge becomes

available. Owing to the high computational cost of the property evaluation process, we terminate

the optimization process after searching through 1/3 of the entire design space. In order to validate

the effectiveness of this method, we ultimately evaluated ∆Hd and Eg with DFT calculations of

all 270 compositions within the design space by expending approximately 3× 106 CPU hours.
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Figure 4.4: The results of adaptive optimization on the lacunar spinel family. (a), Upper panel:
Evolution of the highest expected maximin improvement (EMI, blue line) and percentage of true
Pareto front compounds identified (green line) as a function of iteration number. Results of the
first 60 iterations are shown here. The red asterisks represent sampling points where a true Pareto
front design is successfully identified. Lower panel: The moving average of absolute error in the
predicted Eg and ∆Hd values for a compound selected by the acquisition function for property
evaluation. (b), The distribution of initial design of experiment and the first 60 evaluated com-
pounds. Compounds evaluated in earlier stages have darker colors. True Pareto front designs are
marked with red stars. (c), Distribution of Bayesian optimization-sampled elemental compositions
for the first 60 iterations. (d, e), Latent space representation of elemental composition at different
crystal structure sites in the ∆Hd and Eg surrogate model, respectively. Results obtained after 60
iterations.
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4.3.1 AOE performance

Figure 4.4(a) displays the results of the AOE. We successfully identify all 12 materials at the true

Pareto front within 53 iterations (red asterisks, upper panel)—compositions and objective-related

properties are enumerated in Table 4.1. Combined with the 12 compounds from our initial DoE,

we explored less than 25% of the entire design space before identifying all lacunar spinels on

the Pareto front. Interestingly, Pareto-front compositions are mostly found with high EMI values,

showing that our model makes beneficial recommendations on which composition to evaluate next.

High prediction uncertainty likely explains why a Pareto-front composition is not identified for

some iterations with a large EMI. The EMI values reduce to nearly zero after all Pareto front

compositions are identified (blue, upper panel) since all candidates not sampled are dominated by

the Pareto front compounds. We also show the absolute error in the LVGP-predicted ∆Hd (pink)

and Eg (orange) values of the evaluated composition at each iteration to further demonstrate the

effectiveness of our model (Figure 4.4(a)). We find a general decreasing trend in error and therefore

better model predictability as it becomes aware of more composition-property knowledge.

Figure 4.4(b) shows the history of composition explored by the AOE for the first 60 iterations.

The initial DoE sets are relatively scarcely distributed away from the true Pareto front (marked

as red asterisks), yet the model explores regions far from that covered by the DoE sets and is

able to identify 75% of Pareto front compositions within the first 40 iterations. First, we begin

to understand this performance by examining the distribution of elements sampled by the MOBO

(Figure 4.4(c)). Our model does not exhibit much compositional bias upon sampling elements for

the A site; however, it shows clear preferences for choosing certain elements on other sites. V and

Mo are sampled more frequently on the basal Mb site, while Nb and Ta are less favored on the

apical Ma site. Se is also preferred over S and Te for the Q site.

Then we examine the 2D latent space representations for both design objectives obtained after

60 iterations of AOE (Figure 4.4(d) and (e)). The relative positioning of elements in the latent

space reflects correlations in their influence on properties; elements in close proximity exhibit
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similar impact. Interestingly, different transition metals exhibit distinct correlation patterns across

various sites and objective properties. This variation leads us to conclude that (i) the transition

metals contribute to stability and band gap in different and unexpected ways, and (ii) the lack of

any resemblance in element positioning in the site-dependent latent spaces, except for the Ma site,

to the periodic table indicates that chemical-intuition-based MIT design within the lacunar spinels

is highly nontrivial. For example, chromium is located far from the other elements in the Ma latent

space, indicating that its influence on properties is distinct. Indeed, Cr-containing compounds have

significantly lower Eg and higher ∆Hd (Figure 4.5).

The aforementioned performance is robust as revealed by our multi-trial results (Figure 4.6(a)),

where we find the AOE successfully identifies 90 % of the true Pareto-front compositions by ex-

ploring 30 % of the design space with different initial DoE sets. Since LHD is inherently random,

repeating the DoE procedure will lead to another randomly generated DoE set. Therefore, we use

this method to run multiple trials of AOE with different DoE sets. The size of DoE is another pa-

rameter for the designer to select in the AOE framework. Since the computational budget is often

the bottleneck in discovery, the designer must allocate it wisely between the DoE and AOE. We

investigated this problem using a set of four DoE sizes: 6, 12, 18, and 24, because there are six

elements admissible at the Ma site (Figure 4.6(b)). In each case, the computational budget is fixed

to 40 and 60 simulations and they are split between DoE size and AOE iterations. For example,

40 simulations can be split into DoE of size 6 and 34 iterations of AOE whereas a DoE of size 12

corresponds to 28 iterations of AOE, etc. Here, the four known gallium based compounds were

not explicitly included in the DoE. We find that using a small DoE to initialize AOE (conversely,

allocating more simulations to the AOE) is advisable, as its uncertainty guided exploration is more

likely to discover Pareto compositions (Figure 4.6(b)).

Single-objective Bayesian optimization on both band gap (Eg) and stability (∆Hd) are also

performed using Expected Improvement acquisition criterion [128], as shown in Figure 4.6(b, c),

respectively. Unsurprisingly, the model shows much higher efficiency in identifying the optimal
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Table 4.1: DFT-evaluated ground state properties of the Pareto front compounds. NOI is the
number of iterations taken to discover the compound during the adaptive optimization process.
Values of ∆Hd > 0 (units of eV f.u.−1) indicate an endothermic reaction occurs and the stable
compound disfavors decomposition. Eg is the DFT band gap in eV. νJT is the frequency (THz) of
the Jahn-Teller-type phonon involving the TMC. P is the electric polarization in µC cm−2. The
value of θm in the insulating ground state and transition type, Type I (MIT) or Type II (SIT), are
also specified.

Compound NOI ∆Hd Eg νJT P θm Type
InWV3S8 4 0.09 0.58 5.83 0.56 65.0 II
AlCrV3Se8 8 3.17 0.19 3.77 1.87 56.4 II
InMo4Se8 14 -0.69 0.62 4.55 1.08 63.4 I
InWMo3Se8 19 -0.99 0.63 4.43 0.24 63.8 I
InCrV3S8 20 2.59 0.40 4.75 0.28 56.6 II
AlCrV3S8 21 2.63 0.39 5.81 1.02 57.0 II
InCrV3Se8 25 3.10 0.22 3.45 0.58 56.0 II
InTaMo3Se8 28 -0.88 0.62 4.25 1.38 54.8 II
AlTaV3Se8 38 0.56 0.56 3.90 0.15 57.3 I
AlV4Se8 47 1.06 0.46 4.08 2.80 54.9 I
InNbMo3Se8 49 -0.66 0.59 4.44 0.75 55.2 II
GaV4Se8 53 1.18 0.44 4.09 2.37 55.0 I

composition than in the multi-objective task, where less than 10 % of the entire design space is

explored. We also notice that the model is always able to quickly infer the compound with highest

stability, as depicted by the steep curve in Figure 4.6(c). Intuitively, thermodynamic stability is

straightforward to linearize from elemental reference states whereas the band gap is determined

by the valence electronic structure and multiple interactions. Therefore, it might be easier for the

model to decode the relationship between composition and stability, while learning the band gap

dependency requires accumulating more knowledge.

4.3.2 Pareto compound analysis

We use DFT simulations to examine the properties of the identified Pareto-front compositions, fo-

cusing on ∆Hd, Eg, and the Jahn-Teller active phonon νJT involved in the MIT (Table 4.1). We find

most Pareto-front compositions consist of two different cations on the Ma and Mb site, only three

have Ma = Mb, with 75 % of the optimized materials being selenides. GaV4Se8 is the only Pareto
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space.
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front compound previously synthesized, and verified to exhibit resistive-switching behavior under

an applied electric pulse [18]. All compounds exhibit R3m symmetry and are dynamically stable

in their ground state (νJT > 0). The phonon frequencies of the selenides, including νJT are lower

than those of the sulfides. All of the designed lacunar spinels also exhibit semiconducting gaps

with semilocal exchange-correlation and static Coulomb interactions and exhibit nonzero electric

polarizations. Compositions with larger band gaps tend to have lower stability as determined by

∆Hd: 2/3 are stable (∆Hd > 0, indicating decomposition is endothermic), whereas four of the

12 compounds comprising Mo have small values of ∆Hd < 0, which could nonetheless be stable

and synthesizable [125, 129]. Typically, highly ionic materials with large electronic band gaps

are also quite stable (e.g., NaCl). However, we find a clear trade-off between these two properties

for the Pareto front compositions. One possible reason is because all of these candidate materials

are small-gap semiconductors (with Eg < 0.65 eV) due to metal-metal and semiconvalent bonding

while also being polymorphous; therefore, these lacunar spinels are unlikely to follow the gen-

eral trend. In addition, Figure 4.5 shows that the transition metals contribute to Eg and ∆Hd in

quite different ways, which could lead to this functionality-stability trade-off. The AOE, however,

does not posses knowledge of chemistry beyond the lacunar spinel family; yet, it is able to resolve

the ∆Hd-Eg relationship regardless of whether there is a trade-off or positive correlation. These

findings reinforce the effectiveness of this model.

Although the ground states of these materials are all semiconducting, we find two different

electronic transitions upon traversing the ideal TMC geometry (θm = 60◦): the expected (Type

I) metal-to-insulator transition and an unexpected (Type II) semiconductor-to-insulator transition

(SIT). Figure 4.7(a) shows the changes to the electronic structure for the MIT lacunar spinels

AlTaV3Se8 and InWMo3Se8 with the insulating state (lower panel) always lower in energy than

the metastable metallic phase (upper panel) after the Jahn-Teller-type distortion (θm 6= 60◦, Ta-

ble 4.1). The pDOS of these compounds show that the metallic state in the Type I transition arises

from cluster distortion-triggered orbital ordering and occupancy changes, similar to the mecha-



101

0

2

4

6

8

lo
g 1

0(
/

0)

200 250 300 350 400 450 500
Temperature (K)

0

2

4

6

8

lo
g 1

0(
/

0)

0

0.2

0.4

0.6

0.8

En
er
gy
 (e

V/
f.u
.)

54 56 58 60 62 64 66
Cluster angle (degree)

0

0.2

0.4

0.6

Ba
nd
 g
ap
 (e

V)

(a)

InCrV3S8 InWV3S8

(b)

(c)

InNbMo3Se8 InTaMo3Se8

D
O
S

D
O
S

D
O
S

0
0.2
0.4
0.6
0.8

En
er
gy
 (e

V/
f.u
.)

InTaMo3Se8 ground state
InTaMo3Se8 metastable phase
InWMo3Se8 ground state
InWMo3Se8 metastable phase

54 56 58 60 62 64 66
Cluster angle (degree)

0

0.2

0.4

0.6

Ba
nd
 g
ap
 (e

V)

0
2
4
6
8

lo
g 1

0(
/

0)

InTaMo3Se8 ground state
InTaMo3Se8 transition state
InTaMo3Se8 metastable phase

200 250 300 350 400 450 500
0
2
4
6
8

lo
g 1

0(
/

0)

InWMo3Se8 ground state
InWMo3Se8 metastable phase

0
2
4
6
8

lo
g 1

0(
/

0)

InTaMo3Se8 ground state
InTaMo3Se8 transition state
InTaMo3Se8 metastable phase

200 250 300 350 400 450 500
Temperature (K)

0
2
4
6
8

lo
g 1

0(
/

0)

InWMo3Se8 ground state
InWMo3Se8 metastable phase

Ma spin up
Ma spin down
Mb spin up
Mb spin down

-1 -0.5 0 0.5
Energy (eV)

-1 -0.5 0 0.5
Energy (eV)

AlTaV3Se8 InWMo3Se8

Figure 4.7: DFT-simulated electronic properties of selected lacunar spinel compositions at the
Pareto front. (a) The projected electronic density-of-states (DOS) of AlTaV3Se8, InWMo3Se8,
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corresponding metallic, semiconducting, and intermediate states.
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nism depicted in Figure 4.7(b). However, the metallic states are different owing to the chemistry

of the metals comprising the TMCs. We also find that the basal Mb site plays a more decisive role

near the Fermi level with minor contribution from the apical Ma site. The Ma site on the other

hand, plays an active role in the Jahn-Teller-active phonon owing to differences in atomic mass

(Table 4.1). The remaining lacunar spinels in Figure 4.7(a), InNbMo3Se8, InTaMo3Se8, InCrV3S8,

and InWV3S8, exhibit a Type II transition. The lower and upper panel show their ground and

metastable state pDOS, respectively. Interestingly, some compounds undergo singlet formation

and transform into a nonmagnetic phase (e.g., InNbMo3Se8) while others remain ferromagnetic

after the cluster distortion (e.g., InCrV3S8) owing to competition between spin-pairing and mag-

netic interactions [130].

Last, we model the switching process and resistivity upon structural distortion for InWMo3Se8

(Type I) and InTaMo3Se8 (Type II) by modulating the amplitude of the νJT atomic displacements

for each material in both the (insulating) ground and (metallic or semiconducting) metastable

states. The DFT-simulated energy and corresponding band gap at different cluster angles (θm)

are shown in Figure 4.7(b). Both compounds show first-order transitions. Owing to the small

changes in the TMC geometry required for switching, readily available external stimuli could be

used to trigger the transitions [131, 53, 132]. The simulated DC resistivity of InWMo3Se8 and

InTaMo3Se8 clearly shows the promising functionality of these newly discovered compositions

in the lacunar spinel family (Figure 4.7(c)). Since we successfully identify all 12 Pareto-front

compositions by searching through less than 25% of the design space, our work demonstrates the

efficiency of featureless adaptive materials discovery for electronic materials design. The feature-

less AOE is particularly useful when data availability and physical understanding of the target

materials system is limited at either the atomic or microstructural scale.
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4.4 Discussion and Outlook

Our multiple property objectives of high stability and large insulating band gaps were achieved by

using Bayesian optimization (BO) for MIT materials-composition design without explicitly con-

structing features (descriptors) via latent-variable Gaussian process implemented in our adaptive

optimization engine. We successfully identified all 12 Pareto-front lacunar spinel compositions by

searching through less than 25% of the design space. Since the Utopian composition with both

high functionality and stability (i.e., the upper right corner of Figure 4.4(b)) cannot be realized, the

Pareto front illustrates the trade-offs among objectives. This information is beneficial to materi-

als scientist as it aids in the selection of candidate materials to further investigate or deploy. The

selection rules will depend on the designer’s preferences and whether to favor one property over

others as well as their willingness to compromise. Specifically, for the lacunar spinel family, it is

known that experimental synthesis of high-quality single crystals is challenging. For those with

different transition metals on the apical Ma and basal Mb site compounds, it is hard to guarantee

uniform orientation of the apical atom across the entire crystal (i.e., they might be randomly ori-

ented). Therefore, we report the steps needed to identify all Pareto designs to quantify our model

efficiency. Because these materials have garnered much research attention in recent years owing

to the richness of their fascinating physical behaviors (e.g., MITs, skyrmion lattices, and super-

conductivity), we anticipate the newly identified lacunar spinels will be pursued experimentally in

search of these phenomena. It is more reasonable to starting with making Pareto designs with 1:4:8

stoichiometry (e.g., InMo4Se8) which are easier to synthesize and have large insulating phase band

gaps.

Although we have seen an increasing emphasis on using Bayesian optimization for materials

design, previous work relied heavily upon handcrafted features, which is a challenging task, or

single objective optimization. The former usually requires either knowledge of influential fea-

tures based on theory and literature or large datasets to perform sensitivity analysis and correlation

analysis to identify features that influence properties of interest. In the lacunar spinel MIT mate-
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rials design, the scientific community is limited by chemical intuition as well as large datasets to

identify appropriate features. This hinders the application of traditional BO implementations for

MIT design. The propensity to use features arises mainly due to a lack of accurate and efficient

machine learning methods to model categorical inputs. Here we showed LVGP can circumvent

feature identification by directly modelling elements as categorical variables. The mapping of the

categorical variables into low-dimensional quantitative latent variables provides an inherent order-

ing for the categories and physics-based dimensionality reduction. Like conventional Gaussian

process models, the LVGP model provides uncertainty quantification, which is crucial for employ-

ing the BO strategy for material composition optimization. LVGP enables featureless learning and

subsequently featureless BO, making it a generic step forward in machine learning and materials

design.

The AOE we demonstrated is theoretically more efficient than evolutionary algorithms for

identifying the Pareto frontier in a complex, combinational design space. Although designing

materials under a single criterion is more efficient, such efforts may not meet the requirements of

deployment. For lacunar spinels investigated here, maximizing Eg exclusively leads to an unstable

composition while maximizing ∆Hd exclusively leads to a composition with a small bandgap. In

contrast, MOBO identifies the Pareto front to delineate the trade-off between materials properties

and allows the designer to choose compositions for detailed study. In this context, the need to per-

form more iterations of MOBO within the AOE is justified. Indeed, it is typically not the sole goal

to find all Pareto front designs, but rather to identify the best candidates within a limited research

budget. The AOE clearly provides an efficient way to minimize the effort towards a better design

by suggesting the next experimental design.

Similar to forward materials design demonstrated here, inverse materials design [133] can be

cast as an optimization problem and tackled via the AOE framework. Although forward design

is achieved with the objective of maximizing the desired properties, inverse design can be accom-

plished by redefining the objective as the minimization of the difference between the predicted and
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target properties. The design space, i.e., the choice of admissible elements, must be defined ap-

propriately to ensure the target properties are achieved. To that end, our work advances materials

innovation for forward and inverse design of both inorganic (as shown herein) and organic mate-

rials, such as identification of new quantum materials, design of protein sequence in biomaterials,

and monomer sequence in polymeric materials. It is particularly useful when data availability and

physical understanding of the target materials system is limited at either the atomic or microstruc-

tural scale. This methodology could be further extended to mixed-variable optimization problems,

e.g., co-design of composition and chemical stoichiometry through doping, which we are now

actively developing.
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CHAPTER 5

LEARNING THE CRYSTAL STRUCTURE GENOME FOR PROPERTY

CLASSIFICATION

Materials property predictions have improved from advances in machine learning algorithms, de-

livering materials discoveries and novel insights through data-driven models of structure-property

relationships. Nearly all available models rely on featurization of materials composition, how-

ever, whether the exclusive use of structural knowledge in such models has the capacity to make

comparable predictions remains unknown. Here we employ a deep neural network (DNN) model,

deepKNet, to learn structure-property relationships in crystalline materials without explicitly

considering chemical compositions. The focus is on classification of crystal systems, mechan-

ical elasticity, electrical behavior, and phase stability. The deepKNet model utilizes a three-

dimensional (3D) momentum space representation of structure from elastic X-ray scattering theory

in a manner that includes rotation and permutation invariance. We find that the spatial symmetry

of the 3D point cloud, which reflects crystalline symmetry operations, is more important than the

point intensities contained within for making a successful metal-insulator classification. In con-

trast, the intensities are more important for predicting bulk moduli. Our findings here are also

supported by learning from simulated neutron diffraction patterns, in comparison. We find learn-

ing the materials structure genome in the form of a chemistry-agnostic DNN demonstrates that

some crystal structures inherently host high propensities for optimal materials properties, which

enables the decoupling of structure and composition for future co-design of multifunctionality.

5.1 Introduction

One of the most frequently used phrases in materials research is “structure-property relationships.”

It forms the cornerstone of forward and inverse system-level-based materials design [134, 135],
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and it is principally used in two modalities: (1) to exclusively describe relationships for a single

material family, such that the composition is fixed, and dependencies arise from processing-based

microstructural changes, or (2) to explicitly describe effects arising from changes in composi-

tion, which inadvertently contracts the full “structure-composition-property” relationship phrase

despite chemical dependencies dominating structural changes. Admittedly, both atomic structure

and chemistry mutually determine materials properties (Figure 5.1(a)). The intimate interwoven

description of what defines a material – the elemental species involved and the crystallographic

structure the atoms adopt once bonded together given a fixed ratio – and which physical prop-

erties can “live” in various structures pose a challenge for novel materials design and discovery.

With the absence of theoretical or statistical guidance, materials scientists need to search through

a combinatorial space spanned by both chemical compositions as well as structure types [136].

Despite the key role chemistry plays in physical properties, condensed-matter physicists have

harnessed effective theoretical models, e.g., Hubbard, Heisenberg, and Fu-Kane models, etc.,

based on different interactions, orbital symmetries, and topologies to describe the electronic and

magnetic phases of materials without explicitly encoding material composition. The premise re-

lies on recognition that the low-energy electrons comprising atoms interact on a lattice, which may
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map onto a (portion of a) known crystal structure. Even with modern computational simulations,

e.g., those based on density functional theory (DFT), chemical information is only included in the

form of atomic orbitals at each crystallographic site and their corresponding atomic numbers to

provide a potential for the electrons to interact. To that end, we pose the following question: Is it

possible to marginalize compositional information and understand to what extent crystal structure

exclusively determines materials properties?

In this chapter, we address this question using a statistical learning-based method, leveraging

open access to numerous materials databases [3, 4, 2, 137] and recent advances in materials in-

formatics tools [47, 138, 115, 139]. Many machine learning (ML) models exploiting these data

have successfully predicted materials properties: local connectivity-based models [140] and graph

neural networks [5, 50, 141] have achieved DFT-level performance, and have helped accelerate the

discovery of novel functional materials [7, 142]. Here, we learn the materials structure-property

relationship from crystal structure alone – without use of chemical composition as illustrated in

Figure 5.1(a) – to predict a variety of properties including crystal system, elasticity, metallicity,

and stability. This approach is unique from existing materials informatics models, which typi-

cally utilize both structural and compositional information as features. We use a momentum-space

representation of crystal structures in the form of simulated X-ray diffraction (XRD) patterns to

generate a three-dimensional (3D) point cloud, which serves as a unique structural fingerprint of

each material. We then construct and train a deep neural network (DNN), which is invariant under

rotation and permutation operations on the input 3D XRD patterns, to learn different materials

properties. By concealing and perturbing information in the 3D point cloud fed to the DNN, we

ascertain that crystal structure plays a decisive role in materials elasticity and metallicity, but it is

comparatively less important in determining phase stability. Our findings reveal the correlations

among crystal structures and different materials properties, which could enable co-design of ma-

terial function by prioritizing optimization of crystal structure or composition to achieve desired

performances.
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5.2 Methodology

5.2.1 Materials representation

A perfect crystal under periodic boundary conditions in real space is mathematically described as

the convolution of its Bravais lattice (BL) and the atomic structure of the asymmetric unit (motif)

within the unit cell (Figure 5.1(b)). Owing to the periodicity in real space, materials scientists

typically use diffraction-based methods (e.g., X-ray or neutron scattering) to determine the crystal

structures. The process of X-ray diffraction is the mathematical equivalence of a Fourier transform

(F); it converts the real-space crystal structure into momentum space and forms a new reciprocal-

space lattice exhibiting intensities dependent on the so-called structure factor (F ) as:

F(BL ∗motif) = F(BL) · F(motif)

= (reciprocal lattice) · Fhkl (5.1)

where ∗ and · are the convolution and product operations, respectively, and h k l are integer labels of

the reciprocal lattice points that correspond to the Miller indices for lattice planes in real space. The

aforementioned real-space convolution relationship then becomes a product between the reciprocal

lattice and structure factor Fhkl. The physical observable from XRD is the diffraction intensities

Ihkl (real), not the structure factors Fhkl (complex). Rather, Ihkl is proportional to the square

modulus of the structure factor |F |2 = F ∗hkl · Fhkl, where ∗ is the complex conjugate, and

Fhkl =
1

Vcell

N∑
j=1

fj(ghkl)e
2πi(ghkl·rj) , (5.2)

which serves as the Fourier series coefficients of the real space periodic electron density ρ(r)

derived from atoms located at rj in the unit cell. The atomic scattering factors for atom j at

reciprocal point ghkl are

fj(ghkl) =

∫
drj ρ(rj)e

2πi(ghkl·rj) . (5.3)
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Given the intensity Ihkl encodes atomic structure and electron density information, we pro-

pose to utilize it as a 3D momentum space representation for predicting physical properties of

crystalline materials without explicit compositional features. The diffraction intensity values re-

flect the number of electrons associated with an ion or element in a material. Owing to the phase

problem in crystallography – the complex phase factor is lost upon calculating the square modu-

lus of Fhkl – reconstructing the original electron density function through a direct inverse Fourier

transform, however, is not feasible. Chemical composition identification is then nearly impossi-

ble for our model. The spatial distribution of diffraction intensities, however, are unique to each

material as they depend on crystal symmetries of the atomic structure1. Therefore, we use the

intensity distribution as the structural signature from which to learn materials properties. Since the

mapping function from the diffraction intensity Ihkl to the target materials properties is unknown

(Figure 5.1a, purple arrow), we use DNNs to decode the structure-property relationship as they are

ideal candidates for function approximation. Owing to the fact that existing experimental meth-

ods typically access a 2D slice of the full 3D diffraction patterns, and not all experimental XRD

patterns are readily available in open databases, we simulate the full 3D patterns using a modified

version of the XRD calculator implemented in Pymatgen [143].

We retrieve materials data from the Materials Project database [3] (using data retrieved on

January 20, 2021). In order to ensure the quality of data, we consider only materials with cross-

reference labels in the Inorganic Crystal Structure Database (ICSD) database [144]. After filtering

based on this constraint, we obtained a dataset comprising 48,524 materials with the following

specified properties: crystal system, bulk modulus (B), shear modulus (G), electronic band gap

(Eg), and energy above the convex hull (EH). All materials properties utilized herein were simu-

lated using DFT by the Materials Project. Since not all properties are available for every compound

in the database, the total number of materials for each classification task differs (Table 5.1). We as-

signed thresholds in Table 5.1 for the different classification tasks to ensure physically meaningful

1It is possible to artificially make two materials exhibit identical diffraction patterns, but we only consider materials
in equilibrium states
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class boundaries (e.g., metal and insulator), and to maintain a balanced dataset.

For each material, we first construct its conventional standard cell using the DFT-relaxed crystal

structure reported by the Materials Project (Figure 5.1(b))2, and then simulate its 3D XRD pattern

using Cu Kα radiation (λ = 1.5418 Å). Under our kinematic approximation, only reciprocal lattice

points (h k l) within the limiting sphere of radius 4π/λ exhibit finite diffraction intensity while the

intensity in the remainder of momentum space is strictly zero (Figure 5.1(c)). The initial features

for each material then comprise a set of {[hi, ki, li, Ii] | i ∈ [1, n]} diffraction points, where n is

the total number of points within the limiting sphere. Since the shape and size of the reciprocal

lattice vary from material to material, as they are dependent on the crystalline symmetry and real

space lattice constants, each compound exhibits (1) a unique diffraction point (ghkl) density, (2)

configuration of these points within the limiting sphere, and (3) intensity values of these points.

Therefore, we further convert the h k l indices of the diffraction pattern to Cartesian coordinates

using the reciprocal lattice vectors. We also take the natural log of the intensity values, ln(1+I), to

bring all features to a similar scale. Implementation details are available in Appendix Section B.1.

Since each material has a different diffraction point density within the limiting sphere, we

define a fixed number of ghkl points n to featurize all compounds. We discuss the impact of n on

model performance later. Note that n is a variable from which we can learn materials physics; it is

not a machine learning hyperparameter. We specifically consider four different n values, which is

determined by the range of Miller indices included in the feature set:

• Reciprocal basis vectors (1 0 0), (0 1 0), (0 0 1), n = 3 points;

• Miller indices h k l ∈ {1̄, 0, 1}, n = 27 points;

• Miller indices h k l ∈ {2̄, 1̄, 0, 1, 2}, n = 125 points; and

• Miller indices h k l ∈ {3̄, 2̄, 1̄, 0, 1, 2, 3}, n = 343 points.

2A primitive standard cell can also be used with comparable performance, however, we report results using the
conventional cell because it is easier for symmetry analysis from a human perspective
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For instance, in the n = 125 case, we include all combinations of h k l within {2̄, 1̄, 0, 1, 2}, for a

total of 125 points, into the feature set. The point cloud representation of some common crystals

are shown in Figure 5.2, from which we can see the diversity in point density, shape, and diffraction

intensity across different materials. All diffraction points beyond the considered index range are

eliminated, and hence invisible to the model. For materials with less than n diffraction points

available within the limiting sphere, which occurs for a compound with a small unit cell, we pad

the 3D point cloud with dummy points of all zeros to match the size. After this data pre-processing

step, all materials should have a feature set defined by an n× 4 array, with n rows and 4 columns:

[x, y, z, I], which represent the Cartesian coordinates and the log diffraction intensity, respectively.

This crystalline material representation is in the form of point cloud—an unordered set of

points distributed in high-dimensional space. Since the orientation of the reciprocal lattice basis

is arbitrary, and the set of points do not follow a specific order, swapping the order of two points

should not have any impact on material properties. This behavior is different from pixels in an

image. Therefore, our model should be invariant under both 3D rotation and permutation opera-

tions on the input points. In order to enforce the rotation and permutation invariance of our model,

we apply random 3D rotation and random shuffling of the point sequence of each material before

feeding them to the model. Specifically, we use 3 randomly and independently generated Euler

angles within the range [−1
4
π, 1

4
π] for the crystal system classification task, while we use [−π, π]

for all physical property classification tasks. The justification for selecting different ranges of the

Euler angles is explained later (vide infra). To make the classification tasks more challenging, we

not only apply the aforementioned data augmentation to the training set, but also to the valida-

tion and test sets to demonstrate the robustness of the model. Therefore, the model never sees the

same representation of a material twice, yielding an effectively infinitely sized dataset. In addition,

we show later that the performance of the model for property predictions on the test dataset is

independent of the random 3D rotations and point permutations.

We split the dataset into training, validation, and test sets, with ratios of 0.6, 0.2, and 0.2,
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(a)

(c)

(b)

(d)

Figure 5.2: The simulated X-ray diffraction patterns of select crystals with corresponding space
group. The gray spheres represent the limiting sphere of radius 4π

λ
. Only diffraction points with

Miller indices within {2̄, 1̄, 0, 1, 2} are shown here. The intensity of the origin (0 0 0) is calcu-
lated as the total electron density within cell. This point cloud representation of crystal structures
simultaneously displays rotation and permutation invariance.
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respectively. The validation set is used to select the optimal combination of hyperparameters. We

report the model performance on the test set containing materials that the model has never seen.

Since our goal is to understand materials physics using a DNN as an information extractor, we

train each model on 3 randomly and independently generated training-validation-test datasets, and

report the mean value performance metric on the test set to reduce the variance of results.

5.2.2 Network architecture

Learning from 3D point-cloud data is an active area of computer-vision research. Owing to the

rotation and permutation invariance requirements of our Ihkl point-cloud representation, most con-

ventional ML models cannot be directly applied to our learning problem. For instance, conven-

tional 2-dimensional convolutional neural networks (CNNs), which are the most prevalent network

structure for 2D image classification tasks [145], are robust against object translations; however,

permutation of the input data (e.g., swapping pixels of an image) could break down the network.

Existing solutions to this problem include PointNet [146], multi-view CNN [147], and some other

CNN variants [148, 149]; however, these tend to focus on object detection/classification and seg-

mentation learning tasks.

Here we demand more from the neural network model, which goes beyond the 3D computer

vision problem—the analogue of which would be identifying the 1 among 7 crystal systems a

material belongs to by knowing how atoms are arranged in a unit cell. The features we use for the

materials-property classification tasks include not only positional data (i.e., Cartesian coordinates),

but also the diffraction intensity as the fourth dimension. Thus, the input features together contain

information about the cell shape, cell size, symmetry, and electron density. This information is all

simultaneously embedded within the sparse distribution of diffraction points in momentum space.

To that end, the DNN needs to learn the patterns of different material properties (e.g., metals

and insulators) using their structural fingerprints, and not only identify structural patterns given

structural features [150].
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Figure 5.3: The deepKNet architecture. Multiple 1D convolutional layers with filter size 1×1 are
applied to extract the position-intensity relationship from the simulated diffraction data. The shape
of feature and intermediate tensors are indicated in parenthesis and n is the number of diffraction
points considered. Operations in this step do not involve point-point communications; therefore,
permutation invariance is preserved. Then, a symmetric function is used to pool the crystal fea-
ture vector from all diffraction points. Here, the max pooling function is used, but others also
work. Lastly, multi-layer perceptrons are used to eventually make the classification decision. See
Appendix Section B.2 for details of model hyperparameter selection.

The network architecture capable of solving this problem is elegant in its simplicity as depicted

in Figure 5.3. Inspired by PointNet, we use 1-dimensional (1D) convolutional layers with filter size

1 × 1 to extract features from the primitive point cloud data. Each feature column, i.e., Cartesian

coordinates and intensity, is treated as one input channel, and the filters convolve over all points

in each channel, then are summed over the input channels to obtain newly learned output chan-

nels. After a few layers of 1D convolution, the model learns the position-intensity relationship of

different points, whose output features should be invariant to rotation of the Cartesian coordinates

of input points (e.g., distance to origin). This step only involves operations within each individual

point. No point-point communications are made (owing to the size of filter being 1 × 1), hence

preserving permutation invariance. Now, the learned material representation becomes a tensor of

shape (n, m), where m is a hyperparameter indicating the number of embedding dimension. (We

use m = 1024 for all classification tasks.)

After obtaining the hidden point features from the 1D convolutional layers, we apply a sym-

metric function to aggregate information from all points. We find that the max pooling function
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works well in all our tasks, and this operation safely preserves permutation invariance, because

it does not involve point indexing. In addition, we also tried a self-attention-based pooling algo-

rithm, and found that the performance gain is negligibly small (e.g., ROC-AUC value from 0.910

to 0.915 for metal-insulator classification, and from 0.950 to 0.957 for bulk modulus classification)

while the model size becomes several times larger than using the max pooling function. Therefore,

although knowing that max pooling is not the only working method for information aggregation,

we use this pooling function for all our classification tasks. It also enables physically meaningful

model interpretation since it allows us to know which points contribute to the pooled crystal feature

vector (vide infra). Multi-layer perceptrons are then used after the pooling layer and eventually the

model will make a multi-class prediction from the input point cloud representation. We apply

batch normalization to all convolutional and fully connected layers. Other network structures that

can deal with 3D equivariance[151] are also viable solutions to our problem, but we find that the

performance bottleneck mainly originates from the input features rather than the network.

To compare the physical knowledge learned by the network, we use the same network structure

(with different parameters) to learn all target properties. Details of hyperparameter selection are

given in Appendix Section B.2. Model performance in all classification tasks is based on averaging

over three independent runs with different data splits.

5.3 Results and Discussion

5.3.1 Learning crystal systems

We begin our initial assessment of the learning capability of deepKNet using a simple computer

vision task: crystal-system classification. The objective is to predict the correct crystal system for a

material given only the XRD pattern. Because hexagonal and trigonal cells have identical conven-

tional cell shapes, i.e., a = b 6= c;α = β = 90◦ and γ = 120◦, we combine these classes together

as one, which leads to a total of 6 classes: cubic, tetragonal, orthorhombic, hexagonal/trigonal,

monoclinic, and triclinic. Since the crystal systems are uniquely defined by the real space lattice
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vectors, we should only need to provide the model with n = 3 diffraction points, corresponding to

the reciprocal lattice basis vectors. We also mask the diffraction intensity information for this task

by removing the fourth dimension of each point, making it invisible to the model.

The deepKNet model achieves excellent performance with an accuracy of 0.98 on the test

set. We find that many of the misclassifications are caused by the difference in threshold of “equiv-

alence.” For instance, the model has difficulty differentiating tetragonal from orthorhombic cells

when the ratio of two lattice parameters are approximately unity. See Appendix Section B.3 for

additional analysis of the crystal-system classification. Furthermore, we tolerate the less-than-

perfect accuracy after recognizing the network is not fully rotation-invariant for the crystal-system-

classification task. Here, the Euler angles are constrained between [−1
4
π, 1

4
π] rather than using

completely arbitrary rotation angles spanning 2π, because the network architecture we use works

best with certain spatial orientations of the points. The PointNet-like model in deepKNet has dif-

ficulty in finding a principal axis and canonicalizing the input when utilizing large rotation angles

[146]. Nonetheless, deepKNet is able to “visualize” the shape of the 3D point cloud representa-

tion regardless of random 3D rotations. Interestingly, the physical properties considered in the next

section are completely immune to such random 3D rotations, which is reasonable as the properties

are scalar quantities.

Next, we ask a more challenging question—is it possible to distinguish between materials ex-

hibiting trigonal and hexagonal cells? We find that given only the three reciprocal lattice basis

vectors without diffraction intensity values, the model achieves an area under the receiver oper-

ating characteristic curve (ROC-AUC, later referred to as AUC) of 0.87. However, once we un-

mask the diffraction intensity of the three points, the AUC value increases to 0.94. As we further

increase the number of diffraction points (with intensity) from n = 3 → 27, deepKNet perfor-

mance significantly improves. It distinguishes between the trigonal and hexagonal systems with

an AUC = 0.97. The results here primarily show that the diffraction intensity I plays a signifi-

cant role for our classification model, which is an advantage of using 3D features over projected
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2D patterns [150]. The amount of momentum space knowledge (n) plays a secondary role and is

explored in more detail next. Therefore, we always include the diffraction intensity information in

the remaining classification tasks.

5.3.2 Learning properties

We next train deepKNet to learn materials properties by learning hidden patterns within the 3D

point cloud data based on crystal structure. The four materials properties we target are metallicity,

bulk modulus, shear modulus, and thermodynamic stability. The classifications involve: separating

compounds without (metals) from those with (insulators) a 0 K gap Eg in the electronic structure

at the DFT level, distinguishing stiff compounds with bulk modulus (B) greater than 100 GPa, or

shear modulus (G) larger than 50 GPa, from flexible compounds, and identifying thermodynami-

cally stable materials with EH < 10 meV atom−1, respectively.

First, we examine the impact of the total number of diffraction points (n) on model performance

for each classification task (Figure 5.4(a)). For all tasks, we find that as more diffraction points

become visible to the model, the performance of the classifier initially improves significantly (from

n = 3→ 27→ 125). The performance then plateaus after 125 points with negligible performance

gain using 343 diffraction points. Figure 5.4(a) also reveals that the electrical and mechanical

properties are predicted with better quality than the thermodynamic properties. This behavior is

reasonable given the importance of composition and chemical identity to material stability [152].

Thus we conclude that limited stability information can be learned from crystal structure alone.

Figure 5.4(a) also makes it clear that the reciprocal lattice vectors are available (n = 3) produce

distinct baseline performances among the properties examined. Specifically, the metal-insulator

classifier achieves an AUC of 0.80, a value often considered as an “effective” model performance.

These 3 diffraction points indicate the model only has knowledge about the crystal system and

cell volume, which we validated using a simple random forest model (Appendix Section B.4). Al-

though we typically compare the AUC value of a binary classifier with 0.5 as baseline, here we
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Figure 5.4: Model performance in multiple classification tasks. (a) ROC-AUC values in four bi-
nary classification tasks with a different total number n of diffraction points visible to the model
as described in the Methods. ROC curves with n = 343 for the (b) metal-insulator classification,
(c) bulk modulus classification, (d) shear modulus classification, and (e) thermodynamic stability
classification. Model performance using the original diffraction dataset (dark coloring, ϕ1), ran-
domly scaled intensity (light coloring, ϕ2), and only systematic absence information (gray, ϕ3) are
shown in the insets.

emphasize in the case of metal-insulator classification one should assess the performance of the

model with 0.8 rather than 0.5. This comparison with an AUC of 0.8 is what is expected based

on minimal knowledge fed to the ML models, and it is unlikely to provide significant insights to

facilitate materials design. Moreover, in most ML work, the baseline (i.e., worst-case model per-

formance) is rarely discussed, yet it is quite important for researchers to understand the difficulty

of such predictive tasks.

Next, we focus on understanding the model performance on the metal-insulator and bulk and

shear moduli classifications—what exactly does the model learn from the diffraction patterns?

DNN model interpretability is a known problem owing to the nonlinear activation functions and

complex network structures. To that end, we choose another route to understand the model perfor-
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mance. Instead of “opening the black-box”, we make perturbations to the input features to form

new datasets ϕi, and examine the response as quantified with the true and false positive rates and

ROC-AUC values for each classification task using the same DNN architecture (Figure 5.4(b-e)).

We assign the original diffraction data as ϕ1. It contains information pertaining to the crystal

lattice parameters (position of diffraction points), crystal symmetry (spatial distribution of rela-

tive diffraction intensity), and electron density (diffraction intensity values). These are the input

features from which we determine the relative contributions in the final decision-making of the

deepKNet model.

To separate the diffraction intensity values from their spatial symmetry, we generate a random

multiplier uniformly sampled within the range (0, 1] for each material during each training epoch,

and then scale all of its diffraction intensity values with this multiplier before feeding them to the

model. Different materials will have different random multipliers, but all diffraction points within

the same material will be scaled by the same multiplier. The randomly scaled diffraction patterns

correspond to the dataset ϕ2, and would preserve the spatial symmetry (i.e., relative intensities)

of the diffraction points, but the model would not be able to rely on the absolute values of the

intensities, which are related to the electron density and atomic numbers. In addition, we also

examined whether the model is learning from systematic absence information in the dataset, i.e.,

h k l combinations that have zero intensity, to make predictions. Datasetϕ3 is obtained by replacing

all non-zero diffraction intensity values with unit intensity, Ihkl = 1, while all others remain Ihkl =

0.

Figure 5.4(b-e) present the model performance with different perturbations to the input diffrac-

tion patterns. We find that the metal-insulator classifier is significantly more robust against random

scaling of the intensity values than other classifiers, where it is still able to achieve AUC = 0.91

with random intensities (see ϕ2 in Figure 5.4(b)). The performance of the bulk modulus and shear

modulus classifiers reduce from 0.95 to 0.89, and from 0.88 to 0.81, respectively. These changes

are statistically meaningful (Appendix Section B.5). Notably, we achieve a truly composition-free
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model after random scaling of the materials diffraction intensity values. The model completely

loses information about atomic number and electron density in this case, but it is still aware of

which ghkl points are symmetric and their spatial distributions. Our findings here suggest that the

metal-insulator classifier relies mostly on the spatial symmetry of the diffraction patterns, while the

elasticity-property classifiers depend more on the absolute intensities, which encode the electron

density.

All models exhibit inferior performance with only systematic absence information, as indicated

by the gray curves (ϕ3 in Figure 5.4(b-e)). The results here are reasonable, because we lose some

symmetry information as all finite diffraction intensity values become unit intensity. We conclude

that the model learns distinct patterns for different target materials properties, and is able to cap-

ture the physically meaningful features (e.g., spatial symmetry of diffraction patterns) to learn the

materials structure genome and make property predictions.

5.3.3 Model interpretation

We now partially open the black box of the DNN model to further understand how it classifies

metals from insulators. We plot the distribution of critical points both with normalized interplanar

dhkl spacings and in the limiting sphere that contribute to the final crystal feature vector of 6 well-

known materials (Figure 5.5). In order to facilitate visualization, we choose a small model which

uses n = 125 diffraction points as input and 32-dimensional crystal feature embeddings. This small

model has AUC = 0.89, which is acceptable for use in model interpretation. Larger models will

have better performance, yet more complicated classification rules. The model correctly predicts

the metallicity of all 6 crystals with high confidence. The complete list of Miller indices of the

critical points are provided in Appendix Section B.6.

We consistently find an important critical point at large d-spacing, which corresponds to the

(001) reciprocal basis vector and for the cubic systems presented defines the lattice shape and cell

volume. The model also requires more information from the lattice planes with smaller interplanar
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Figure 5.5: Distribution of critical diffraction points with normalized interplanar dhkl spacings of a
few common insulators (NaCl, SiO2, Al2O3) and metals (Cu, Ag, Au). The d-spacings are normal-
ized to facilitate comparison across different materials. The critical points in the limiting sphere
(the gray sphere) are those that contribute to the final crystal feature vector after max pooling,
and are marked with blue for insulators, and red for metals, respectively. Non-critical points are
represented with light gray points.
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distances, which correspond to higher h k l indices, as seen by the clustering of critical points.

This is reasonable because such points provide information about interplanar interactions as these

distances, which are governed by orbital hybridization and attractive and repulsive electostatic

contributions. In addition, we find all 6 materials exhibit at least one “gap” in the d-spacing

distribution. The critical point distribution of Cu and Ag are almost identical. Although Au and

NaCl exhibit the same space group as Cu and Ag (i.e., Fm3̄m), their distributions are different. A

thorough understanding of the model prediction mechanism remains difficult at this time owing to

the complicated decision rules underlying the deep neural network. Interestingly, the model learns

the operation of spatial parity. It recognizes inversion symmetry inherent to the XRD patterns

(Friedel’s law), since it only contains an average of 2 duplicate points with inversion symmetry in

the final critical point set, e.g., (2 2 2) and (2̄ 2̄ 2̄).

5.3.4 Model limitations

Since we do not explicitly have elemental composition information in the XRD patterns, we expect

the model to have difficulty making predictions on materials from the same family, i.e., with similar

crystal structures yet different compositions and various properties. To that end, we examine the

model performance on the ABO3 perovskite family (Table 5.2). All compounds listed here were

removed from the training and validation dataset for this classification task.

Overall the model performs poorly in classifying metals from insulators in the perovskite fam-

ily. We find the model tends to predict all trigonal (R3c and R3̄c) and orthorhombic Pnma com-

pounds to be insulators. The model in general exhibits low confidence scores in predicting most

of the perovskite materials, which is reasonable since minor structural distortions in these materi-

als could drive metal-to-insulator transitions [153], while the change in diffraction patterns might

be indistinguishable to the model. The model also makes significantly more insulator predictions

than metals in this family, whereas the true labels are more balanced. The model performance in

the perovskite family is reasonable since undoubtedly chemistry and interactions among different
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Table 5.2: Model performance for select materials in the perovskite family. ‘M’ and ‘I’ labels
indicate metal and insulator, respectively. The score is the probability associated with the predicted
class, indicating how confident the model is on that prediction.

Compound Space group True label Prediction Score
LiNbO3 R3̄c I I 0.72
LiOsO3 R3̄c M I 0.56
LaNiO3 R3̄c M I 0.56
LaCoO3 R3̄c M I 0.57
LiNbO3 R3c I I 0.70
LiOsO3 R3c M I 0.56
LiTaO3 R3c I I 0.71
NdNiO3 Pnma M I 0.61
YNiO3 Pnma M I 0.54
CaFeO3 Pnma M I 0.75
SrRuO3 Pnma M I 0.62
CaTiO3 Pnma I I 0.78
NdNiO3 P21/c I M 0.83
YNiO3 P21/c I I 0.54
CaFeO3 P21/c I I 0.77
SrFeO3 Pm3̄m M M 0.73
SrTiO3 Pm3̄m I M 0.64

microscopic electronic, spin, and orbital degrees-of-freedom play a significant role in determining

materials properties. Although the perovskite famility poses a challenge to deepKNet, the poor

performance is expected since we designed this task to reveal the limitations of only using struc-

tural information to predict materials properties. The aforementioned model performance across

many structure types still uncovers that metals and insulators exhibit distinct XRD patterns, and

our model is able to capture those difference effectively.

5.3.5 Learning from neutron diffraction data

We now use neutron scattering (ND) patterns to represent crystal structures, rather than the XRD

patterns to further assess whether the model can distinguish atomic species from diffraction inten-

sity information. Neutrons interact with the nuclei via the nuclear strong force, whose interaction

can be approximated by a short-ranged Fermi pseudopotential. Since the Fermi pseudopotential is
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a delta function, whose strength is parameterized by the scattering length b, the neutron form factor

is Q-independent in momentum space, which is the main difference between neutron and X-ray

scattering (Equation 5.3). In addition, the neutron scattering lengths are nonmonotonic across the

periodic table and differ even between isotopes of the same element. Therefore, the model cannot

learn the total electron density in the same way as from the XRD patterns.

We perform the same series of classification tasks and make identical perturbations to the in-

tensities, corresponding to data ϕi, described before using the ND patterns as input (Figure 5.6).

The overall performance using ND and XRD features are quite similar for all four classification

tasks, although the model learns relatively less from the ND patterns. A significant performance

loss occurs for ϕ1 and ϕ2 for both bulk and shear moduli (e.g., AUC drops from 0.95 to 0.9 for bulk

modulus) when going from the XRD to ND models, which supports our previous hypothesis that

the electron density plays an active role in determining elastic properties. This suggests the model

is exclusively making predictions based on the cell shape, volume, and crystal symmetry informa-

tion. That being said, we learn that metals and insulators do look different from a crystal structure

perspective. We also notice that ϕ3 from the XRD and ND data remains identical throughout all

classification tasks. This behavior is expected because with ϕ3, the model only has information

about whether a point has finite diffraction intensity due to crystal symmetry constraints, regardless

of the scattering probe used. By comparing the results from XRD and ND, we are more confident

that crystal structure alone plays a significant role in determining the electronic and elastic proper-

ties of crystalline materials, while it is less important for thermodynamic stability.

5.4 Conclusions and Outlook

In conclusion, we use DNN models to show the intimate correlation between crystal structure and

materials metallicity and elasticity. We learn from both XRD and ND patterns that crystal symme-

try plays a significant role in determining electronic band gaps, while electron density contributes

more to elastic properties. Stability, however, is strongly composition-dependent and therefore



127

(a) (b)

(d)(c)

Figure 5.6: Comparison of model performances using X-ray diffraction (fully shaded bars) and
neutron diffraction (striped bars) patterns as input features for (a) metal-insulator, (b) bulk mod-
ulus, (c) shear modulus, and (d) thermodynamic stability classification tasks. ROC-AUC curves
with n = 343. ϕ1 through ϕ3 represent the same input perturbations as in Figure 5.4. Only neutron
diffraction data is annotated since the XRD values are the same as reported in Figure 5.4. The
standard deviation of the reported AUC values are tabulated in Appendix Section B.5.
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our model exhibits poor performance in predicting this thermodynamic response. These findings

impart a better understanding of the role of crystal structures in functional properties.

The motivation and objective behind our structure-based DNN is fundamentally different from

other existing materials informatics models (e.g., the crystal graph convolutional neural network

[5]). For conventional informatics or machine learning tasks, researchers typically first obtain

some data, then construct a learning model, and at last make some predictions using the trained

model. This is an engineering-driven task, whose goal is to predict some target properties as accu-

rate as possible. In other words, a “perfect model” is expected. However, we made a new attempt

here – we make perturbations on physically meaningful input data, and use the neural network as

information extractor, so that we can learn some distilled materials physics from different system

responses. Instead of focusing on prediction accuracy, our goal here is to find the upper and lower

bounds of system response and understand the governing factors of materials systems. The moti-

vation behind this is more about understanding materials physics rather than building a predictive

model. The question still remains whether we could apply similar input perturbations (to decouple

these entangled factors such as structure and composition) on other materials descriptors in order

to learn more materials physics. It is worth more investigation.

Moreover, if we have the exact Fourier series expansion of the periodic electron density func-

tion in real space, it would be possible to construct a sophisticated enough DNN model to learn the

functional that maps ground state electron density to materials properties. However, this would re-

quire us to obtain orders of magnitude more number of points instead of only a few hundred, which

is currently impractical. Based on our current understanding of the deepKNet, the network ar-

chitecture is not learning the functional mapping, but mainly making predictions based on spatial

symmetry and electron density information hidden in the diffraction patterns. In other words, it is

performing complex pattern recognition rather than learning the underlying functional relationship

and mathematical structure of materials. This fact may be a result of performing classification tasks

rather than regression modeling. We suspect that learning the density functional mapping using a
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regression DNN model is possible, but requires a large neural network of unknown architecture.

Lastly, our work here not only reveals some interesting correlation between crystal structure

and materials properties, but also demonstrates the capability of DNNs beyond making accurate

property predictions. They are also valuable in advancing our materials-physics understanding

through statistical analysis. This makes DNNs complementary methods to theoretical modeling

and physics-based simulations.
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CHAPTER 6

SYMBOLIC REGRESSION IN MATERIALS SCIENCE

This chapter is adapted with permission from Ref. [154]. The work was performed and written in

collaboration with Dr. Nicholas Wagner. © Copyright 2019 Materials Research Society.

In this chapter, we showcase the potential of symbolic regression as an analytic method for

use in materials research. First, we briefly describe the current state-of-the-art method, genetic

programming-based symbolic regression (GPSR), and recent advances in symbolic regression

techniques. Next, we discuss industrial applications of symbolic regression and its potential appli-

cations in materials science. We then present two GPSR use-cases: formulating a transformation

kinetics law and showing the learning scheme discovers the well-known Johnson-Mehl-Avrami-

Kolmogorov (JMAK) form, and learning the Landau free energy functional form for the displacive

tilt transition in perovskite LaNiO3. Finally, we propose that symbolic regression techniques

should be considered by materials scientists as an alternative to other machine-learning-based re-

gression models for learning from data.

6.1 Motivation

6.1.1 Era of big data in materials science

Modern scientists perpetuate the scientific process embodied by the works of Tyco Brahe, Johannes

Kepler, and Isaac Newton in the heliocentric revolution. Brahe was the observationalist. He took

extensive, precise measurements of the position of planets over time. Kepler was the phenome-

nologist. From Brahe’s measurements, he derived concise analytical expressions that describe the

motion of the solar system in a succinct manner. Last, Newton was the theorist. He realized the

mechanism behind the apple falling from the tree is the same as that underlying planets traveling

around the sun, which could be formulated into a universal law (Newtonian gravitational law). All



131

three scientific modalities are vital in making scientific discoveries: data acquisition (Brahe), data

analysis (Kepler), and derivation from first-principles (Newton).

With recent advances in computer science, theoretical modelling, and experimental instrumen-

tation, materials scientists have in many ways created a “mechanical Brahe” and marched into a

new era of big data. Datasets of materials information, obtained from advanced characterization

techniques [155, 156, 157], combinatorial experiments [158, 159, 160], high-throughput first-

principles simulations [161, 162], literature mining [163, 164], and other techniques, are created

at a faster rate every day with less and less human labor. All of this data enables new opportunities

to construct novel laws of phenomenological behavior for systems that previously lacked them.

Inspired by the Materials Genome Initiative (MGI) [1], the materials community is working

collaboratively towards making digital materials data accessible to others. Multiple materials

databases such as Materials Project [3], OQMD [4], AFLOWLIB [2], OMDB [137], AiiDA [165],

Citrination and NOMAD, provide public access to millions of materials data points. Accessibil-

ity to an immense amount of materials data paves way for the next step of “automating Kepler”

in the discovery of governing laws in materials processing-structure-properties-performance rela-

tionships, which could advance materials discovery, development, and technology innovation.

Since one of the fundamental research objectives of materials science and engineering is to de-

liver new materials with optimal performance under specified constraints, it is essential to under-

stand how and which features govern the functionality. In other words, which degrees-of-freedom

(or parameters) and their corresponding intrinsic relationships (or dependencies) to the material

properties should be optimized. However, the multi-scale nature of materials science [159], e.g.,

from atomic-scale crystal structure to complex mesoscale domain structures and bulk mechani-

cal properties or from femotosecond laser probes to hour-long recrystallization reactions, makes

it particularly challenging to study many hierarchical relationships of different materials families.

Given such a high-dimensional parameter space (e.g., chemical composition, crystal structure, ex-

ternal conditions, etc.), materials scientists often explore a finite subspace of all the factors that

https://materialsproject.org
http://oqmd.org
http://www.aflowlib.org/
https://omdb.mathub.io/
http://www.aiida.net/
https://citrination.com
https://nomad-coe.eu/
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govern materials properties and performance. In addition, the available data is typically sparsely

distributed. Although, access to a large materials database relieves, in part, the limited-data prob-

lem, there is an urgent need for a robust data-processing protocol to help discern governing laws

in materials science and to deliver designer materials and synthesis/processing procedures.

6.1.2 An alternative to machine-learning methods

Much of the burgeoning field of materials informatics focuses on the aforementioned challenges.

Machine learning (ML) models are currently the tools of choice for uncovering these physical laws.

Although they have shown some promising performance in predicting materials properties [166],

typical parameterized machine learning models are not conducive to the next stage of generalizing

across domains—the ultimate goal of “automating Newton.”

It is important to note that Newton’s challenge was somewhat made easier, because Kepler’s

laws were parsimonious yet predictive. In a modern context, ML models can be predictive but

their descriptions are often too verbose (e.g., deep-learning models with thousands of parameters)

or mathematically restrictive (e.g., assuming the target variable is a linear combination of input fea-

tures). Such black-box models have become more prevalent in modern materials science research;

however, the interpretability of such models have always been a problem. Although there is a large

body of work on data visualization and model understanding to address these issues, those subjects

will be out of the scope of this perspective (see Ref. [167] for a review).

In this chapter, we focus on an alternative to machine-learning models: symbolic regression.

Symbolic regression simultaneously searches for the optimal form of a function and set of pa-

rameters to the given problem, and is a powerful regression technique when little if any a-priori

knowledge of the data structure/distribution is available.

Figure 6.1 shows the relative popularity of machine learning and symbolic regression in dif-

ferent research domains. We use data from the “Web of Science Core Collection” database in this

analysis [168]. Among all publications whose topics are related to machine learning or symbolic
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Figure 6.1: Relative contribution from different research domains to scientific journals related to
machine learning and symbolic regression. Shaded panels indicate a 20% level of the research
domain, emphasizing an opportunity in materials science. (inset) The trend in number of related
publications on a natural logarithmic scale (ordinate) related to machine learning, machine learning
and materials science, and symbolic regression, with respect to time.

regression, over 50% of the contributions come from the computer science research community,

while multidisciplinary engineering is second. Social science and physical science each makes less

than 20% of the contribution to the total number of publications. These two techniques are not so

popular in materials science research, as the relative contribution is almost negligible compared to

other research domains.

It is not surprising to see a dominant contribution from computer science in both the machine

learning and symbolic regression communities, since it is where these techniques were born. It is

interesting to notice that symbolic regression is relatively more popular than machine learning in

social science research. One possible reason for this trend is that social science problems typically
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do not have a (known) physically motivated governing equation as in many physical sciences,

where for example, Newtonian equations-of-motion, Schrodinger equation, etc. can be written

formally. Symbolic regression arises naturally as a problem solver since it has the potential to find

an appropriate functional form from social science data sets, e.g., questionnaire results, behavior

patterns, etc.

We also report the trend in the number of publications (in a natural logarithm scale) in the fol-

lowing research domains [Figure 6.1(inset)]: machine learning, application of machine learning in

materials science, and symbolic regression. All three domains exhibit a rapid (almost exponential)

growth rate, whereas the number of machine-learning-related publications is orders of magnitude

larger than the other two. The trend of symbolic regression applications in materials science is not

shown here since the base number is too small; nonetheless, it also reveals a potential previously

underappreciated research domain. For materials science problems, one is often also presented

with the problem of unknown relationships among many variables. Symbolic regression presents

an opportunity then to help in the formulation of structure-property relationships derived from

these variables.

In this chapter, we encourage materials scientists and engineers to utilize symbolic regression

techniques in solving their domain problems. To facilitate a better understanding of the utility and

application of symbolic regression, we next introduce the genetic programming-based symbolic re-

gression (GPSR) method and describe current research frontiers in symbolic regression. Next, we

discuss several industrial applications of symbolic regression and propose potential uses in materi-

als science. In addition, we present how GPSR can learn the Johnson-Mehl-Avrami-Kolmogorov

(or Avrami) equation to describe recrystallization kinetics, as well as the Landau free energy ex-

pansion describing the structural phase transition in LaNiO3. Last, we conclude with some open

challenges in materials research that may benefit from symbolic-regression methods.
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6.2 Symbolic Regression and Current State-of-the-art Methods

6.2.1 Genetic programming-based symbolic regression (GPSR)

Symbolic regression is a method of finding a suitable mathematical model to describe observed

data [169]. In conventional regression techniques, one optimizes parameters for a particular model

provided as a starting point to the algorithm. For instance, a linear regression model is based

on the assumption that the relationship of the dependent variables and regressor is linear [170];

an artificial neural network (ANN) is a nonlinear model which relies on a predefined network

infrastructure such as neuron connections and activation function (e.g., sigmoid, softmax function).

In symbolic regression, however, no such a-priori assumptions on the specific form of the

function is required. Instead, one provides a mathematical expression space containing candidate

function building blocks, e.g., mathematical operators, state variables, constants, analytic func-

tions, and then symbolic regression searches through the space spanned by these primitive build-

ing blocks to find the most appropriate solution. In other words, both model structures and model

parameters are optimized in symbolic regression. Since there is no need for a predefined function

form, optimization algorithms used in symbolic regression are different from conventional analyt-

ical/numerical optimization methods (e.g., conjugate gradient, Newton-Raphson method). In this

section, we briefly introduce one of the most prevalent methods used in symbolic regression by

means of genetic programming.

Genetic programming (GP) was developed by J.R. Koza [171] as a specific implementation

of genetic algorithms (GA) [172], which are often utilized in the materials community for atomic

structure prediction [173, 174, 175]. The idea is to evolve the solution of a given problem following

Darwin’s theory of evolution and to find the fittest solution after a number of generations. Instead of

using strings of binary digits to represent chromosomes as in GA, solutions in GP are represented as

tree-structured chromosomes with nodes and terminals. Figure 6.2a shows a chromosome example

of the mathematical function 1 + exp(−x1). The tree consists of a set of interior nodes with
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Figure 6.2: Tree-structure chromosome representation of computer programs in genetic program-
ming. (a) parent1 (1 + exp(−x1)); (b) parent2 (kx5/

√
x2

2 + 4); (c) child of genetic crossover
operation (1+exp(−

√
x2

2 + 4)); and (d) child of subtree mutation operation (x7−0.5+exp(−x1)).
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mathematical operations (+,×, exp) and terminal nodes with variables (x1) and constants (±1). A

depth-first search can be used to traverse the tree to get the final mathematical expression of each

individual solution.

The structure of a chromosome tree is not necessarily binary; its structure depends on the num-

ber of arguments the mathematical operator takes. For demonstration purposes, we only introduce

simple operators that are either unary or binary. Users of GP could include a variety of functions

suitable for their target problems. A large number of trees will be generated based on specified

user settings and evaluated throughout the GP process. Each tree represents a potential solution

of the problem. The way new trees are generated from the initial mathematical building blocks

is a unique feature of GP since it mimics the natural evolution of Earth’s ecosystem, i.e. through

artificial sexual recombination and a natural selection process.

Figure 6.3 illustrates the process by which a solution of the symbolic regression problem is

obtained using genetic programming. The procedure starts with a set of randomly generated initial

terminal nodes (variables, constants) and functions, forming individual trees with different sizes

and structures (Figure 6.2(a-d)). These fundamental building blocks come from a user-defined in-

put set. This starting population typically has a large variety of tree structures due to the random

process, which facilitates further exploration of the variable space and reduces the potential risk of

being trapped in local minima. The initialization process terminates once the number of individuals

reaches a user-defined population size, where the natural selection process then comes into play.

The “fitness” of each individual solution in the initial population is then evaluated by comparing

their function output with the true value from the data set. This fitness value describes how well the

program performs in terms of solving the problem. The common error metrics used include mean

squared error (MSE), root-mean squared error (RMSE), etc. Then GP evolves the current gener-

ation by randomly applying genetic operations to individuals, e.g., crossover and mutation. One

or more individuals from the current generation will be selected as parent(s) based on the fitness

score, typically the higher the score, the larger probability to be selected for reproduction. Such
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Figure 6.3: Genetic programming flowchart depicting the iterative solution-finding process.
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a selection rule agrees with the “survival-of-the-fittest” rule since good features are more likely to

be inherited by the next generation, which is the essential step towards the optimal solution.

The genetic crossover operation takes two winners of the selection process as parents to breed

their offspring. For instance, the two structures in Figure 6.2(a) and (b) are taken as parents. The

crossover operator then randomly takes a subtree from parent (b) and substitutes another random

subtree in parent (a) with that from (b). One possible offspring from the crossover operator is

illustrated in Figure 6.2(c). Crossover is usually the dominant operation in the recombination

process. Figure 6.2(d) is an example of an offspring from the mutation operation. The mutation

operator only takes one parent structure, and randomly substitutes a subtree with another randomly

generated structure; in case (d), the constant 1 is mutated to (x7 − 0.5). Although this operation is

more aggressive compared to the crossover operation, since it adds randomness to the system, it is

important to have a finite chance of mutation to introduce new variations, e.g., new constants and

new features, and avoid being trapped in local minima.

The third category of genetic operations is reproduction, which duplicates the selected program

and directly inserts its offspring to the next generation. It guarantees that some of the current

generation will be preserved by the next generation, and partially protects the similarity between

two generations. Detailed definitions and implementations of each genetic operation can vary from

case to case, but the main features should be the similar to what we described here.

The newborns are then added to the next generation after each genetic operation, until the

new population size reaches the specified set number. Then the new generation goes through

the fitness evaluation and natural selection process again until the fitness value reaches a certain

criteria or the maximum number of generations is reached. After termination of GP, the surviving

individuals are expected to be highly evolved to adapt to the problem-dependent selection rule.

More comprehensive descriptions of GP can be found in Koza’s original paper [171].
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6.2.2 Advances in symbolic regression

Since Koza introduced the idea of GP in 1992, there have been significant efforts made to improve

the performance of the original GPSR algorithm. The major problems to overcome in GPSR

include:

(i) Non-deterministic optimization. It is not guaranteed that the performance of the descendent

generations will be better than their parents.

(ii) Difficulty in finding the proper constants. Since the way GP generates constants is random,

either in the initial input set or those brought into the population by mutations, there is no

effective way to obtain the ideal coefficients as in other numerical regression methods.

(iii) Limited capability to preserve good components of the equation due to the fitness evaluation

method. The fitness is evaluated based on the complete structure of an individual. Having a

good feature in a subbranch does not necessarily lead to better individual performance, thus

good equation components may get lost in the next generation.

We summarize some of the most popular alternative methods to conventional GPSR in Table 6.1

and discuss their similarities as well as the differences in four aspects, namely program represen-

tation, fitness evaluation, optimization method, and the solution form.

Multiple regression genetic programming (MRGP) [176] improves the program evaluation pro-

cess by performing multiple regression on subexpressions of the solution functions. Instead of

evaluating the fitness of each individual solution as a whole, MRGP decouples its mathematical

expression tree into subtrees. The fitness of the solution is evaluated based on the best linear com-

bination of these subtree structures. A least angle regression (LARS) algorithm is used to solve the

linear regression problem here. Such a fitness evaluation scheme places more emphasis on finding

good components even though it might only be a partial solution. For instance, the individuals

that contain a correct form of a subtree structure of the correct solution (if known) are more likely

to survive the natural selection process and pass these good features to the descendents. MRGP
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essentially decouples the current basis functions to find the best solution in an enlarged space at the

vicinity of the original GP space. Indeed, this feature may be well-suited for multi-scale materials

problems where modeling of systems across different length/time-scale is desired [177]. While

some subexpressions capture relationship among variables within each scale, the final symbolic

regression solution assembles models across the scale and returns the multi-scale model.

Geometric semantic genetic programming (GSGP) [178] evaluates the semantic performance

of a computer program instead of the syntax performance as in conventional GPSR. While still

using a rooted-tree structure to represent computer programs, GSGP focuses on its semantics,

i.e. the behavior of a program. For instance, add(x1, x1) is equivalent to mul(2, x1) in semantic

space, but quite different in terms of syntax. It is reasonable to care more about the behavior of

the program than how the function appears. By representing each program in a high-dimensional

semantic space, the fitness evaluation is rather straightforward; one only needs to measure the

distance of the program from the target point in that space. The closer a program is to the target

point, the better performance it has in solving the given problem. Interestingly, the offspring of

two parent vectors in semantic space lies between its parents in the semantic space; therefore, the

offspring should be at least no worse performing than the poor-performing parent. Optimizing

program semantics rather than syntax further frees symbolic regression from specific function

forms, potentially making SR more efficient [178].

Cartesian genetic programming (CGP) [179] has a more sophisticated design than conventional

GP. Here, a computer program is represented as a directed acyclic graph, which may be visualized

as a two-dimensional grid of nodes. Each node owns a set of genes that determines the input-

output and mathematical function that the node performs; the whole set of genes of the computer

programs form its genotype. Decoding the genotype leads to the phenotype, i.e., the function form

of the computer programs. The genotype-phenotype mapping is a unique feature of CGP which

makes it closer to the real natural process.

GP-RVM [180] is an alternative GP method that combines Kaizen programming and a rele-
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vance vector machine (RVM) algorithm to solve symbolic regression problems. Kaizen program-

ming (KP) is a collaborative version of genetic programming, where individuals work together

with each other to solve the problem. The solution of a Kaizen process is a linear combination of

GP individuals, and thus the fitness evaluation is based on a group of individual partial solutions

instead of an individual program as a complete solution. RVM is a Bayesian kernel method that

could extract important basis functions from the basis set without the prior knowledge to set a

threshold and automatically deals with singularity. GP-RVM leverages advantages from both evo-

lutionary algorithm and Bayesian kernel methods: the former mainly explores the parameter space

while the latter extracts basis functions to build and solve for the optimal solution function within

that space.

Evolutionary polynomial regression (EPR) [181] hybridizes the parameter estimation used in

conventional numerical regression methods with the evolutionary optimization scheme in GPSR.

EPR first explores the function space using genetic algorithms, then performs linear regression

(e.g., least squares) to optimize the coefficients of each mathematical building block. Although

EPR specifically uses polynomial expansions for the form of the functions, the solution is not

necessarily a simple polynomial function since the transformed variables used in the polynomial

expansion could be nonlinear functions of independent input variables. Such a hybrid method

improves the stochastic GPSR method moving it towards a more deterministic approach although

the computational cost may be relatively higher. In fact, the polynomial form of the expressions

could make EPR suitable for materials design or multiobjective optimization purposes. Since the

analytical gradient and Hessian of the solution can be evaluated, materials scientists may have

more insights regarding the system and know what parameters to tune in order to achieve optimal

design.

Fast function extraction (FFX) [182] is an efficient way to find good basis functions and solve

for the best solution within the space it spans. The first step in FFX is to generate a large num-

ber of candidate basis functions built from input variables and other predefined variables. The
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evolutionary optimization scheme is not involved in FFX, instead, a pathwise regularized learning

technique is used to identify the best coefficients and basis functions for the solution. Then, mod-

els obtained from the previous step are assessed based on the validation data set as well as their

model complexity in order to identify the best solution. FFX is more efficient compared to other

GP-based methods due to the deterministic optimization technique. Materials scientists could first

use FFX to see whether the input function/variable basis is sufficient for their research problem,

before further investigation using symbolic regression methods (either FFX or other variants).

The performance of some of the recently developed symbolic regression techniques has been

assessed against popular machine learning methods [183], and it is reported that symbolic re-

gression performs considerably well compared to state of the art ML algorithms with regards to

predictive accuracy. However, the two methods do not simply exist in competition to one another.

We also observe a trend of more hybridization between conventional ML algorithms and genetic

programming in symbolic regression solvers [184, 185, 186, 187]. These advances have enabled

symbolic regression to be used for solving real-world problems, which we will discuss in the fol-

lowing section.

6.3 Applications of Symbolic Regression

Although it seems that equations obtained from first principles (e.g., the Schrödiner equation) and

empirical observations (e.g., the 18-electron rule [188]) are quite contradictory to each other, we

see quite often that they symbiotically work together in solving real-world problems. For instance,

both ab initio and experimental data have been used to develop effective interatomic force fields

[189] or exchange-correlation functionals [190]. In fact, symbolic regression has the potential to

serve as the bridge connecting experimental data to first principles. Schmidt et al. demonstrated

that symbolic regression is capable of predicting connections between dynamics of subcomponents

of the system and distill natural laws from experimental data [191]. Moreover, symbolic regression

provides researchers with analytic equations, which expectably would have better interpretability
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over the raw data and potentially other black-box models. The equations could reveal how the

dependent variable (system output) responds to multiple independent variables (system input), as

well as the relationships between independent variables of the underlying function. We show this

later in Section 6.3.3.

Common motivations underlying the use of GPSR for complex problem solving include when

the system in question is not effectively modelled by a linear model. Existing multiple linear

regression models are much faster and are already easy to interpret. GPSR is best used for systems

with complex interactions between observable variables for which the form of which is not known

beforehand—a situation common in materials science and engineering.

In addition, a GPSR approach could be useful for design optimization purposes. Although

the evolutionary search process is a black box, the final solution is analytical, which potentially

contains important information (e.g., regarding the gradient or Hessian) about relationships be-

tween the design variables and objectives. There is also need for multi-objective optimization

such as finding the Pareto optimal combination of model performance and complexity in various

domains—it is here that the symbolic regression technique has shown to be effective and inter-

pretable [192]. We next describe some applications of symbolic regression in various science and

technology domains.

6.3.1 Industrial applications

GPSR has been applied to a wide variety of problems in fields outside of materials science and

chemistry. Most prominently featured in the popular press was work published by Schmidt and

Lipson in Science [191], which showed GPSR could discover Hamiltonians and Lagrangians for

systems of simple harmonic oscillators and double pendulums. Reports of using GPSR for real

world systems, however, have been published since Koza’s origination of the idea in the early

1990s and continue today.

Arkov et al. [193] used GPSR to identify equations governing gas turbine engines under mul-
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tiple optimization conditions. Berardi et al. [194] used GPSR to find easy to interpret models

for pipe failures in a UK water distribution system. Bongard and Lipson [195] applied GPSR

to generate symbolic equations for nonlinear coupled dynamical systems in mechanics, ecology,

and systems biology. The authors also emphasized that their symbolic models are easier to inter-

pret than numerical models, which makes understanding more complex systems easier for future

applications.

Cai et al. [196] identified correlation equations from experimental heat transfer measurements

using GPSR with a sparsifying constraint. The authors’ predicted correlations had lower percent-

age error than models developed graphically and numerically, albeit with more formula complexity

than those traditional methods. Can and Heavey [197] applied GPSR to develop metamodels for

predicting throughput rates in industrial serial production lines. McKay, Willis and Barton devel-

oped steady-state models for a vacuum distillation column and a chemical reactor [198].

La Cava et al. [199] applied GPSR to identify nonlinear governing equations of wind tur-

bines. The Pareto front from their paper is reproduced in Figure 6.4. The Pareto front illustrates

the trade-off between their model complexity as defined by the number and type of operations in

the equation and the normalized variance in the prediction error. La Cava and other authors [200]

also tested modifying standard GPSR with features from epigenetics, such as passive structure,

phenotypic plasticity, and inheritable gene regulation. These researchers demonstrated their mod-

ifications improved the performance over standard GPSR by finding compact dynamic equations

for synthetic data from nonlinear ordinary differential equations as well as real-world systems, e.g.,

cascaded tanks, a chemical distillation tower, and an industrial wind turbine. GPSR has also been

applied to testing the efficient market hypothesis [201], formulating the synchronization control in

oscillator networks [192], identifying the structure of helicopter engine dynamics [202], real-time

runoff forecasting in France [203] and Singapore [204], designing circuits [179], predicting solar

power production [205], finding dynamical equations for metabolic networks [206] in both cases

where a starting model was known and from scratch, modelling global temperature changes [207],
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Figure 6.4: Example Pareto front showing trade-off between solution complexity and variance
accounted for (VAF). Reproduced with permission from La Cava et al. [199].
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and synthesizing second-order coefficient insensitive digital filter structures [208].

The existing uses of GPSR within chemistry are more extensive than that for materials science.

We refer the reader to the review by Vyas, Goel, and Tambe [209] for further details. Some key

studies with relevance to materials science are summarized here: Langdon and Barrett developed a

model for oral bioavailability of a small molecule given a few hundred data points from expensive

experiments [210]. Their model based on chemical descriptors showed promise for rapid drug

screening, but had difficulty generalizing to novel molecules. Vyas et al. [211] also discovered

structure-property relationships for drug absorption using GPSR. Here, they demonstrated R2 val-

ues comparable to those achieved with artificial neural networks and support vector regression.

Barmpalexis et al. [212] performed a multiobjective optimization using GPSR. They found a func-

tion mapping levels of 4 polymers to three different properties of a pharmaceutical release tablet

that was more predictive than a shallow neural network. Last, Muzny, Huber, and Kazakov built a

correlation model for the viscosity of hydrogen as a function of temperature and pressure [213].

6.3.2 Opportunities in materials science

Materials science has many potential areas where GPSR can be applied for the same reasons it find

use in other disciplines. Nonlinear systems are abundant in materials science. Changes in materials

properties occuring in response to structural, composition, and other external perturbations are fre-

quently nonlinear in proximity to phase transitions or for large stimuli. For instance, changing the

concentration of oxygen vacancies in a transition metal compound by an atomic percent can alter

its ionic or electronic conductivity by orders of magnitude [214, 215]. The dynamical behavior of

materials performance as a function of time is also of broad interest and technological importance,

e.g., corrosion of nickel cathodes under different conditions [216]. These are the areas where a

dynamical multivariable model would be ideal to understand the correlation among the variables

and assist optimization of materials properties, e.g., corrosion resistance.

Frequently, materials scientists look for relationships (f ) among multiple variables with the



149

aim to find some closed-form expression such as y = f(X), where y is the objective value and

X are a set of variables. These equations are typically expressed in differential form, e.g., the

Schrödinger equation (i~ d
dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉) or Newton’s second law (F = mdv

dt
). It has been

shown that symbolic regression can generate ordinary nonlinear partial differential equations for

nonlinear coupled dynamical systems [195, 217] as well as approximate ordinary differential equa-

tions [218]. Meanwhile, it is also often of desire to find conservation laws in physical systems.

The ability to unearth conservation laws with symbolic regression goes beyond the aim of mate-

rials property predictions and helps researchers establish insight into the materials systems they

study [191, 219]. In fact, we do not necessarily need a rigorous expression of natural laws in every

case; sometimes an approximation with a simple yet effective expression serves well for the re-

search purpose [220]. Symbolic regression could potentially balance the trade-off between model

accuracy and simplicity, and might even help scientists discover new equations that redefine our

understanding of functional materials in the same way those of Hall and Petch and Harper and

Dorn changed our understanding of the mechanical properties of metals or as more recently how

Berry phases and topological band theory changed our understanding of electronic structures.

As we mentioned earlier, materials properties and performance are affected by phenomena

that involve multiple length scales. Most theoretical models are formulated to be optimal at a

particular length scale. However, recent emphasis has been placed on multiscale and hiearchical

modeling in the materials science community [221, 222, 177], and there is an increased need

for effective, descriptive and predicative, multiscale models. Symbolic regression techniques are

potential solutions to this challenge by directly searching for the interactions among variables

operating and passing between multiple spatial and temporal scales. Another possible approach is

to utilize existing simulation methods within each length scale, while using symbolic regression to

find the suitable coupling interactions between scales, i.e. connecting models of different scales.

Other applications of GPSR in materials and molecular systems are in areas where supervised

machine learning has already demonstrated usefulness in providing new insight or solutions. While
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machine learning has produced many impressive results [166, 159, 223], it is commonly under-

stood that ML models exhibit a trade-off between performance on prediction metrics and the abil-

ity to explain the predictions of a model due to the complexity of state-of-the-art models like deep

neural networks or gradient boosted decision trees. GPSR offers a middle ground with comparable

performance but with the added ability to read and directly interpret the output function.

GPSR is also well-suited to the development of new descriptors [224] for materials proper-

ties. By combining features in a manner best suited to fitting data, new features are created that

can be used as proxies for the property in question. This is also a common application of com-

pressed sensing [225, 226]. Compressed sensing differs from GPSR in that while GPSR uses GP

to iteratively evolve a solution, compressed sensing tries to enumerate as many combinations of

primary features as possible and then use sparsifying operators to find a small dimensional subset

that correlates with the target.

Materials scientists are not just interested in making predictions. They also want to identify the

controlling features of a property and what role each feature plays; they want to understand which

degrees-of-freedom to design or optimize to achieve targeted properties. Given some desired prop-

erties as objectives and the relevant variables, there are a number of numerical algorithms available

for performing optimization [227], but they typically require some a-priori knowledge of the math-

ematical relationships within the system. The symbolic equations derived from GPSR offer insight

into which microscopic or macroscopic knobs to turn for the design of desired functionality, such

as corrosion resistance in steels [228].

Some novel ideas include targeting physical variables for which we do not know the proper

mathematical expressions. For instance, the exchange-correlation functional used in density func-

tional theory, or the correlation function for the viscosity of normal hydrogen [213]. Contraindi-

cated material property pairs such as ferromagnetism and ferroelectricity or optical transparency

and electrical conductivity would be interesting areas to pursue in search for routes to decouple or

circumvent perceived coexistence incompatibilities. In these cases, GPSR could provide candidate
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representations of these terms, where our physical knowledge can be used to filter meaningful re-

sults. One advantage of using symbolic regression is that the balance between model accuracy and

complexity is tunable with GPSR settings, e.g., stopping criteria, penalty on individual size, etc.

This advantage is particularly evident when designing with constraints or optimizing for perfor-

mance. The recommendations coming from the learned symbolic equations are more actionable

than learned functions only optimized for test set accuracy since they are rigorously made to use

fewer terms.

6.3.3 Use cases in materials science

Discovering the Johnson-Mehl-Avrami-Kolmogorov equation

We now show how to use genetic programming-based symbolic regression to learn the Johnson-

Mehl-Avrami-Kolmogorov (JMAK), hereafter, Avrami equation. The Avrami equation quanti-

tatively describes the growth kinetics of phases in materials at constant temperature. Here, we

specifically study the recrystallization process of copper, the original experimental data was ob-

tained from Ref. [229]. We expect the form of the function to be

y = 1− exp(−ktn) ,

where the phase fraction of transformation y is a function of time t. The coefficients k and n are

unknown and change with respect to temperature and other environmental conditions.

We use GPSR as implemented in gplearn [230] to predict the relationship between fraction

transformed y and time t. The hyper-parameters used in GPSR are listed in Table 6.2. When the

population size is divided by the tournament factor, one obtains the number of individuals com-

peting for reproduction each round. The parsimony coefficient regularizes the size of individuals

by penalizing over-sized structures. We include operations of addition, subtraction, multiplication,

negation, and the natural exponential function into the function set. The power function is not
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Table 6.2: List of hyper-parameters used in GPSR to learn the Avrami equation. Grid search
method is used to find the optimal hyper-parameters from the top three parameter sets.

Parameter Values
population size {2000, 5000}
tournament factor {100, 500}
parsimony coefficient {0.001, 0.005}
max generation 20
constant range (-1, 1)
function set {add, sub, mul, neg, exp}
crossover probability 0.7

included since it easily causes numerical overflow or invalid operations (e.g., power(-1, 0.5)). In

general, this can be an issue when evaluating power-law dependent phenomena such as electrical

transport equations. Working with log transforms of the original variables may be a more sta-

ble approach. Crossover operations dominate the genetic operations with a 70% probability to be

applied; the other 30% chance corresponds to mutation operations (e.g., point mutation, subtree

mutation, etc.). Additional details concerning the usage of gplearn are given in its documenta-

tion.

Data preprocessing is an essential step in machine learning before feeding data into the solver.

Conventional preprocessing methods include shifting data to be zero-centered, and scaling data to

unit standard deviation. However, the conventional preprocessing methods are not ideal choices

in our case. Zero-centered shifting is not applicable to either the phase fraction transformed (y)

or time (t) since we want to obtain the exact function form of the Avrami equation. Furthermore,

scaling the time frame would only change the constant k in the Avrami equation. Here, we scale

time from 0 to 10 for all data sets so that the constant t lies in the range [-1, 1]. The y values remain

unchanged as the experimental data range over [0, 1].

We take the experimental copper recrystallization data at temperatures 135◦C, 113◦C, and

102◦C as input and scale the time variable before performing regression. Since the experimen-

tal data only contains several points at each temperature (less than 10), we also take data points

from interpolated lines and perform symbolic regression on the interpolated data for comparison.



153

0

20

40

60

80

100

experimental

interpolation

GPSR

0

20

40

60

80

100

fr
a

c
ti
o

n
 c

ry
s
ta

lli
z
e

d
 (

%
)

0 2 4 6 8 10

time (seconds)

0

20

40

60

80

100

0 2 4 6 8 10

time (seconds)

(a)

(c)

(e) (f)

(d)

(b)

Figure 6.5: GPSR prediction and performance with different data sets. Left panels correspond to
the direct experimental data while right panels use interpolated experimental data (a) 135◦C ex-
perimental data, (b) 135◦C extrapolated data, (c) 113◦C experimental data, (d) 113◦C extrapolated
data, (e) 102◦C experimental data, and (f) 102◦C extrapolated data.

An ideal dataset is also generated, where y values are directly calculated as 1− exp(−0.6t2). The

optimal k and n values in each data set are obtained from numerical fitting using Scipy, given

the form of the Avrami function. Ideally GPSR should be able to recover the correct function form

as well as k and n constants for all data sets.

The best individual after 20 generations of evolution is collected for each hyper-parameter

setting. Finally we manually pick the optimal individual with closest function form and constants

to the Avrami equation within each data set. Our parameter fitting and GPSR evolution results are

shown in Table 6.3 and Figure 6.5.
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Gplearn successfully recovers the relationship between time (t) and fraction transformed (y)

in most cases. With the ideal input data, gplearn evolves almost a perfect form of the Avarmi

function as well as the constants (see the first row of Table 6.3). The performance on the raw

experimental and interpolated data are generally worse than the ideal case but still reasonable. In

most cases the exponential function form and polynomial function of t are both recovered. One

source of error is the lack of the power function in function set, which was intentionally omitted as

non-integer powers of variables cannot be correctly represented here. Rather, polynomial functions

are used as an approximation. With the limited choice of mathematical functions, GP produces

results that are very close semantically but exhibit different syntax.

We see in multiple cases GPSR produces functions of the exp[− exp(Θ)] form, where the

expected function form is 1 − exp(Θ). Here we introduce a mathematical trick to show their

equivalence. The functions ex and 1 + x are called equivalent infinitesimals because

lim
x→0

ex ∼ 1 + x .

In our case, the exponent − exp(Θ) quickly reaches zero when Θ (ideally having the form −ktn)

becomes more negative; therefore, the equivalent infinitesimal relationship holds and the predicted

form of the function is equivalent to the expected one appearing in the Avrami expression. Based

on this example, we encourage professional materials researchers, who are novice data scientists,

to perform careful analysis of GPSR results when making the final interpretation of the obtained

model.

In real-world applications where the actual function form in unknown, the exact syntax of

GPSR results may not matter. There are potentially many cases where GPSR would produce

semantically similar/equivalent functions that vary in their syntax, i.e. different function form.

Considering the trade-off between model accuracy and complexity, in some cases it might be a

virtue to find a simple approximated solution instead of using rigorous but complex relationships

among multiple variables.
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The GPSR result from the 102◦C experimental data set (Figure 6.5(e)), turns out to be a linear

relationship and deviates significantly from the original data. The poor result may be caused by

the relatively small slope of the original data and the insufficient number of available data points.

Taking the model performance and complexity into consideration, we find that the linear relation-

ship survives due to its simple form. With interpolated data as input, functions evolved from GPSR

agree better with the Avrami equation, as shown in Figure 6.5(f). Therefore, having more training

data could improve the performance of GPSR, which also applies to other data-driven methods.

Interestingly, the performance of GPSR can also be improved by transforming (or simplifying)

the mathematical expression. We compare results of directly training y ∼ t relationships with

(1−y) ∼ t, where in the latter case the target value 1−y is the percentage of copper untransformed.

The results are shown in the last column of Table 6.3: The transformed functions show improved

performance since we have already performed the subtraction function for the model. GPSR not

only successfully recovers the exponential form of the equation, but also finds constants closer to

the numerical fitting values.

Learning Landau free energy expansion

Next, we present a slightly more complicated case with two variables. The model we studied

is the Landau free energy expansion for the cubic-to-rhombohedral structural phase transition in

perovskite LaNiO3, where the free energy G of the system is expanded in powers of an order

parameter θ as

G(θ, T ) = G0(T ) + κ(T − TC)θ2 + λθ4 , (6.1)

where κ and λ are temperature-independent coefficients and θ is the angle of rotation about the

[111] direction. This rotation angle of the corner-connected NiO6 is the order parameter for

the displacive transition. The parameters we used are obtained from ab initio DFT simulations

[231], where κ = 1.696 meV 10−3 K/(◦)2, λ = 0.0171 meV/(◦)4, and TC is estimated to be

2.057 (103 K). We use 103 K as the unit for temperature so that the constants are brought into a
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smaller range.

In this case, we set the temperature T and order parameter θ as the input variables, and the

free energy change G(θ, T ) − G0(T ) as the output. We uniformly sampled 11 temperature points

between [0, 1] (103 K), and 100 order parameter points within range [-20◦, 20◦]. The corresponding

value for the change in free energy is calculated from Equation 6.1 using the parameters reported in

the literature. A population size of 10,000 is used, with tournament size 25, parsimony coefficient

0.02, and constant range [-2.0, 2.0]. In order to simplify the problem, we only consider addition,

subtraction, and multiplication operations in our search. Other settings are the same to those in the

Avrami case.

The best individual after 15 generations of evolution has the function form

G(θ, T ) = G0(T ) + 1.983(T − T ′

C)θ2 + 0.0165θ4 + ξ , (6.2)

where T ′
C = 1.894 + 8.32× 10−3T 2, and ξ = (−1.72T 2 + 1.214T − 0.24)θ − 1.334. The GPSR-

learned coefficients are quite close to the reported values, especially for the quartic term. This is

probably because the penalty for a larger deviation in the leading (quartic) term is much higher

than others. For the quadratic term of θ, GPSR successfully captured the coupling term Tθ2 and

its coefficient, but also an unexpected biquadratic T 2θ2. It should not have a strong impact on the

function owing to its small coefficient (8.32× 10−3).

The Landau free energy with respect to the order parameter is plotted in Figure 6.6. We find

that GPSR results (filled symbols) agree well with the DFT-derived Landau free energy function

not only within the training region, i.e., with T = 0, 500 and 1, 000 K, but also reasonably well

beyond it. The dashed red line in Figure 6.6 with T = 3, 000 K is not included in training the

GPSR, yet the model reproduces both the shape and the correct global minimum position very

well. However, the predicted function contains other coupling terms not present in Equation 6.1.

These extra terms in ξ destroy the symmetry of the function, i.e., the free energy expansion is an

even function by symmetry. This would become an issue especially when T is large, as we can
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Figure 6.6: Landau free energy G for perovksite LaNiO3 as a function of the order parameter
θ at different temperatures. Both solid and dashed lines are calculated using Equation 6.1 with
coefficients reported in Ref. [231]. Only solid lines are used during the training. The filled
symbols correspond to GPSR predicted results using Equation 6.2.

see a minor shift to positive θ values occurs for the red filled symbols in Figure 6.6. Again, the

model may need more data to learn the correct even function form. In general, GPSR does an

excellent job in learning the relationship between temperature and the order parameter without any

knowledge of the physical system. Our results here also reveal the potential to perform effective

feature selection using GPSR, where the insignificant variables (features) could be approximated

or ignored in post-processing (e.g., terms with negligibly small coefficients).

The purpose of these two use cases for learning the Avrami equation and Landau free energy

expansion with GPSR is to show the potential of its application in materials science problems.

Although these are relatively simple examples, the understanding and approaches applied could
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be generalized and utilized to solve real-world challenges. Apart from both function analysis

and data pre-processing mentioned previously, hyper-parameter tuning is also an essential step

to obtain the optimal solution. A grid-search scheme to search the hyper-parameter space (e.g.,

population size, number of generations, regularization, etc.) is recommended since the optimal

settings differ from case to case. The grid-searching process can be exhausting, but it might also

be rewarding. Comparing the results from different hyper-parameter settings could provide insight

into the functional form of the optimal solution, especially if components of a particular function

appears multiple times in the solution set.

The real challenge, however, is that very often materials science problems cannot be repre-

sented using regular functions (analytic and single-valued). A simple example would be to un-

derstand how different chemical compositions affect materials properties [232]. This problem

originates from the inability to differentiate in the chemical space and is out of the scope of this

prospective. It remains an open question in the materials research community.

6.4 Summary

Symbolic regression has shown competitive performance to other machine learning-based regres-

sion models in various research domains. While there are some shortcomings of the current state-

of-the-art GPSR, e.g., high computational cost, non-deterministic optimization, there are numerous

active research efforts focusing on improving the performance of symbolic regression to expand

its use in real-world applications. The ability of symbolic regression to distill natural laws from

data sets with high-dimensional parameter space makes it an ideal technique for materials science

research, since these researchers typically face sparse data sets with multiple variables. Freed

from having a fixed form of equations, symbolic regression can potentially reveal the significant

interactions among physical variables.
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CHAPTER 7

CONCLUSIONS

In this thesis, I employed a variety of computational and data-driven techniques to address the

functional electronic-transition materials design challenges. Specifically, in Chapter 3, I focused

on the (complex) lacunar spinel family, which is an ideal materials platform for next-generation

electronics. However, the origin behind these fascinating physical properties remains unclear. Al-

though there has been numerous experimental measurements performed to understand the mech-

anism governing the phase transition, there are relatively few computational/theoretical studies

on these materials. Moreover, owing to the existence of transition-metal clusters in the lacunar

spinels, the quantum state of the system is likely to be sensitive to local structural changes as well

as inter/intra-cluster electronic interactions. I systematically investigated with density functional

theory (DFT) the exchange-correlation functional dependency of several physical properties in the

lacunar spinel family: crystal structures, electronic structures, magnetism, optical conductivity,

and lattice dynamics. Our findings show that the GGA functional with on-site Coulomb interac-

tion (GGA+U ) of 1∼2 eV could quantitatively describe the lacunar spinels—no dynamical strong

correlation effects are required. The meta-GGA functional SCAN and hybrid functional HSE06

also give results consistent with experimental data, but at much higher computational cost. The

LDA functional is not recommended owing to its relatively large error. We also find the vana-

dium and molybdenum compounds are not Mott insulators in the low-temperature phase, and all

compounds in the cubic phase are metallic from band theory. From the cubic phase phonon anal-

ysis, we started to understand the complex phase space of lacunar spinels spanned by the multiple

metastable transition-metal cluster geometries. My findings in this project pave the way for fu-

ture computational studies in transition-metal cluster compounds, and facilitate the design of novel

compositions within the lacunar spinel family. In fact, I made a hypothesis that by controlling the
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geometry of the transition-metal cluster through external stimuli, one could effectively trigger an

MIT within the complex lacunar spinel family. This idea led to the project described in Chapter 4.

In Chapter 4, I presented a novel featureless adaptive optimization engine (AOE). The AOE

learns directly from chemical compositions alone to predict target materials properties for opti-

mization, hence bypassing the feature construction step necessary to conventional machine learn-

ing models. This method is particularly suitable when prior knowledge of a particular material

family is scarce, and for limited research budgets. I demonstrated the effectiveness of this new

methodology on the complex lacunar spinel family, where all superior compositions on the de-

sign Pareto front have been identified by searching over less than 25% of the entire design space.

The AOE could be easily generalized to other materials design tasks owing to its featureless nature,

which also enables the co-design of functional materials. Hopefully, the AOE could help accelerate

the pace of functional materials design and discovery in the near future.

Chapter 5 presented the deepKNet, a deep neural network (DNN) which learns from the

crystal structure alone to make property classifications. “Structure-property relationships” is one

of the most frequently used phrases in the materials research community, yet in most cases we

are actually discussing “structure-composition-property relationships.” However, having a quan-

titative understanding to what extent crystal structures alone determine the materials properties,

could facilitate novel materials design and discovery by optimizing structure and compositions

separately. Although numerous statistical learning models have been developed to decode the

structure-property relationship of crystalline materials, most of them explicitly include chemical

composition in the feature set. Would it be possible to marginalize compositional information for

generic solid-state materials and quantitatively study the correlation between crystal structure and

materials properties? I presented a feasible solution to this question by utilizing a novel DNN that

learns directly from the momentum space structure genome to predict multiple materials proper-

ties. Specifically, X-ray diffraction (XRD) patterns in the form of discrete 3-dimensional (3D)

scattering points within momentum space were used as the only input features for the model to
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successfully accomplish multiple tasks: crystal system, elasticity, metallicity, and stability clas-

sifications. I designed the neural network architecture to be robust against multiple invariance

requirements inherent in the 3D XRD patterns. I found that different materials properties have var-

ious dependencies on crystal structures; I learned that crystal symmetry plays a significant role in

determining the metallicity of a material, whereas electron density information contributes more to

elastic properties. Materials stability prediction, on the other hand, is more chemical-composition

relevant; thus, the structure-based model is inferior to other DNNs that learn from compositional

features. I also visualize the decision-making process of the metal-insulator classifier, and iden-

tified some trends for materials with similar crystal structures. This work demonstrates the feasi-

bility to use DNN models to help scientists understand materials physics (more science oriented)

rather than only building predictive models (more engineering oriented). Our findings here also

emphasize the significance of crystal structures to certain materials properties, which could poten-

tially help decouple the structural and compositional optimization processes in functional materials

design tasks.

Lastly, in Chapter 6, I introduced the symbolic regression (SR) technique and its potential

applications in materials science. The critical problem that we solve using SR is to find the math-

ematical function form mapping the experimental observations to materials properties of inter-

est. Connecting a quantitative numerical relationship with interpretability is vital for chemists and

materials scientists to understand the underlying materials systems. SR does not require any pre-

defined function form or numerical relationship, yet it can automatically learn the most appropriate

expression through genetic-programming based algorithms.
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CHAPTER 8

OUTLOOK — TOWARDS AN INTEGRATED MATERIALS DISCOVERY WORKFLOW

In the last chapter, I would like to share some ideas about automating an integrated materials design

and discovery workflow. From the previous chapters, one can learn some basic ideas regarding the

strength and weakness of various materials research techniques—ab initio simulations, Bayesian

optimization, deep neural networks, and symbolic regression. A nice strategy should fully exploit

their strength while avoiding the weakness. To that end, I present an iterative materials discovery

workflow as depicted in Figure 8.1.

We learn from both Chapter 4 and Chapter 5 that different materials properties have various

dependencies on crystal structure and compositions. For instance, thermodynamic stability is more

composition-dependent, while metallicity is more relevant to the crystal symmetry. Therefore, we

avoid the simultaneous optimization of both composition and structures, instead, we can iteratively

optimize these two variables. Specifically, the deepKNet could be applied to a large number of

candidate crystal structures (e.g., artificially generated structures from various databases), it will

be able to provide a reasonable (e.g., O(101)) number of top candidate materials that could exhibit

metal-insulator transitions (MITs) in my research context. Then, we can use high-fidelity ab initio

density functional theory simulations to validate whether these top candidates could exhibit MITs

as predicted. If we identify a new MIT material, we can search through different chemical com-

positions within the same crystal structure (since we know crystal structure plays a decisive role in

metallicity) for more MIT materials, possibly with better functionality.

Next, the adaptive optimization engine (AOE) proposed in Chapter 4 could identify the most

promising materials compositions from within the design space, so that we do not have to enu-

merate all possible chemical compositions for the target crystal system of interest. With the new

crystal compositions fed to the structure-based deepKNet, the network can give each candidate a
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Towards an Iterative Exploration of Novel Functional Materials

Over the recent decade, functional electronic materials design and discovery
have shifted away from chemical-intuition-based towards data-driven synthesis
and simulation. Numerous machine learning models have been developed to
successfully predict materials properties and generate new crystal structures.
Most existing approaches, however, rely much upon physical insights to construct
handcrafted features (descriptors) which are not always readily available. For
novel materials with sparse prior data and insufficient physical understanding,
conventional machine learning models display limited predictability. In this talk, I
will address this challenge by introducing an adaptive optimization engine for
materials composition optimization, where feature engineering is not explicitly
required. We will go through a use case where I applied multi-objective Bayesian
optimization with latent-variable Gaussian processes to accelerate the design of
electronic transition materials. In the second part, I will present a quantitative
study on the structure-property relationship in crystal systems enabled by deep
neural networks. The model which learns the structural genome could identify
intrinsically similar structures in Fourier space. At last, these two methods could
coordinate with each other towards an iterative exploration of novel functional
materials, as depicted by the following figure.

BYTEDANCE DRUG DISCOVERY RESEARCH COLLOQUIUM PRESENTS

Yiqun Wang

Ph.D. Candidate
Department of Chemistry 
Northwestern University

Structure 
prototype

Novel 
compositions

Figure 8.1: An iterative functional materials discovery workflow consists of featureless compo-
sition optimization and structural genome sequencing subroutines. We sequentially update the
compositions and crystal structures in a round-robin fashion.

classification score (e.g., probability of being a metal-insulator transition material), and we could

further filter out the promising candidates. In fact, this workflow could be easily generalized to

solve materials discovery challenges beyond the metal-insulator transition compounds.

Of course, experimental synthesis, characterizations and validations are the last yet most vital

step before we announce the success of any computational materials discovery project. Through-

out the years, I witnessed more chemists and materials scientists collaborating with computational

scientists and statisticians to utilize data-driven models for their domain challenges. These projects

typically involve experimentation, theoretical modeling, computational simulation, and statistical

learning. I believe this is in general a good trend, that we have started using sophisticated tech-

niques to deal with complicated materials discovery challenges. I am honored to be able to make

novel contributions to this research endeavor.
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56. Pocha, R., Johrendt, D. & Pöttgen, R. Electronic and structural instabilities in GaV4S8 and
GaMo4S8. Chemistry of Materials 12, 2882–2887 (2000).

57. Sahoo, Y & Rastogi, A. Evidence of hopping conduction in the V4-cluster compound
GaV4S8. Journal of Physics: Condensed Matter 5, 5953 (1993).

58. Francois, M et al. Structural phase transition in GaMo4S8 by X-ray powder diffraction.
Zeitschrift für Kristallographie-Crystalline Materials 196, 111–128 (1991).

59. François, M et al. Structural phase transition in GaMo4Se8 and AlMo4S8 by X-ray powder
diffraction. Zeitschrift für Kristallographie-Crystalline Materials 200, 47–56 (1992).

60. Abd-Elmeguid, M. et al. Transition from Mott Insulator to Superconductor in GaNb4Se8

and GaTa4Se8 under High Pressure. Physical Review Letters 93, 126403 (2004).

61. Sieberer, M, Turnovszky, S, Redinger, J & Mohn, P. Importance of cluster distortions in the
tetrahedral cluster compounds GaM4X8 (M= Mo, V, Nb, Ta; X= S, Se): Ab initio investiga-
tions. Physical Review B 76, 214106 (2007).

62. Schueller, E. C. et al. Modeling the structural distortion and magnetic ground state of the
polar lacunar spinel GaV4Se8. Physical Review B 100, 045131 (2019).

63. Le Beuze, A, Loirat, H, Zerrouki, M. & Lissillour, R. Tetrahedral Clusters of GaMo4S8-
Type Compounds: A Metal Bonding Analysis. Journal of Solid State Chemistry 120, 80–89
(1995).

64. Rastogi, A. et al. An electron-phonon contribution to the stoner enhancement in GaMo4X8

compounds. Journal of Low Temperature Physics 55, 551–568 (1984).

65. Rastogi, A. & Wohlfarth, E. Magnetic Field-Induced Transitions in the Mo4 Cluster Com-
pounds GaMo4S8 and GaMo4Se8 Showing Heavy Fermion Behaviour. Physica Status Solidi
(b) 142, 569–573 (1987).

66. Powell, A. V. et al. Cation Substitution in Defect Thiospinels: Structural and Magnetic
Properties of GaV4−xMoxS8 (0 ≤ x ≤ 4). Chemistry of Materials 19, 5035–5044 (2007).



170

67. Fujima, Y, Abe, N, Tokunaga, Y & Arima, T. Thermodynamically stable skyrmion lattice
at low temperatures in a bulk crystal of lacunar spinel GaV4Se8. Physical Review B 95,
180410 (2017).

68. Shanthi, N & Sarma, D. Electronic structure of vacancy ordered spinels, GaMo4S8 and
GaV4S8, from ab initio calculations. Journal of Solid State Chemistry 148, 143–149 (1999).

69. Pocha, R., Johrendt, D., Ni, B. & Abd-Elmeguid, M. M. Crystal structures, electronic
properties, and pressure-induced superconductivity of the tetrahedral cluster compounds
GaNb4S8, GaNb4Se8, and GaTa4Se8. Journal of the American Chemical Society 127, 8732–
8740 (2005).

70. Reschke, S et al. Optical conductivity in multiferroic GaV4S8 and GeV4S8: Phonons and
electronic transitions. Physical Review B 96, 144302 (2017).

71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
Physical Review Letters 77, 3865 (1996).

72. Csonka, G. I. et al. Assessing the performance of recent density functionals for bulk solids.
Physical Review B 79, 155107 (2009).

73. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed
semilocal density functional. Physical Review Letters 115, 036402 (2015).

74. Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice param-
eters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal
of Chemical Physics 123, 174101 (2005).

75. Van de Walle, A & Ceder, G. Correcting overbinding in local-density-approximation calcu-
lations. Physical Review B 59, 14992 (1999).

76. Haas, P., Tran, F. & Blaha, P. Calculation of the lattice constant of solids with semilocal
functionals. Physical Review B 79, 085104 (2009).

77. Paier, J. et al. Screened hybrid density functionals applied to solids. The Journal of Chemical
Physics 124, 154709 (2006).

78. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss
spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B
57, 1505 (1998).

79. Zhang, J. et al. Magnetic properties and spin-driven ferroelectricity in multiferroic skyrmion
host GaV4S8. Physical Review B 95, 085136 (2017).



171

80. Müller, H., Kockelmann, W. & Johrendt, D. The magnetic structure and electronic ground
states of Mott insulators GeV4S8 and GaV4S8. Chemistry of materials 18, 2174–2180 (2006).

81. Tirado-Rives, J. & Jorgensen, W. L. Performance of B3LYP density functional methods for
a large set of organic molecules. Journal of Chemical Theory and Computation 4, 297–306
(2008).

82. Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydrox-
ylated and reduced rutile TiO2 (110) surfaces. Physical Review Letters 97, 166803 (2006).

83. He, J. & Franchini, C. Screened hybrid functional applied to 3d0 → 3d8 transition-metal
perovskites LaMO3 (M= Sc–Cu): Influence of the exchange mixing parameter on the struc-
tural, electronic, and magnetic properties. Physical Review B 86, 235117 (2012).

84. Hummer, K., Harl, J. & Kresse, G. Heyd-Scuseria-Ernzerhof hybrid functional for calculat-
ing the lattice dynamics of semiconductors. Physical Review B 80, 115205 (2009).

85. Ramzan, M., Li, Y., Chimata, R. & Ahuja, R. Electronic, mechanical and optical properties
of Y2O3 with hybrid density functional (HSE06). Computational Materials Science 71, 19–
24 (2013).

86. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcula-
tions using a plane-wave basis set. Physical Review B 54, 11169 (1996).

87. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave
method. Physical Review B 59, 1758 (1999).
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APPENDIX A

ADAPTIVE OPTIMIZATION ENGINE (AOE) IMPLEMENTATION DETAILS

A.1 Density Functional Calculation Details

We perform density functional theory (DFT) simulations as implemented in the Vienna Ab ini-

tio Simulation Package (VASP) [86, 87]. The projector augmented-wave (PAW) potentials [88]

are used for all elements in our calculations with the following valence electron configurations: Al

(3s23p1), Ga (3d104s24p1), In (4d105s25p1), V (3s23p63d44s1), Nb (4s24p64d45s1), Ta (5p65d46s1),

Cr (3s23p63d54s1), Mo (4s24p64d55s1), W(5s25p65d56s1), S (3s23p4), Se (4s24p4), and Te(5s25p4).

We use exchange-correlation potentials as implemented by Perdew-Burke-Ernzerhof (PBE) [71].

The effect of on-site Coulomb interactions (PBE+U ) is considered with a U value of 2.0 eV for all

6 transition metals. Previous studies have shown that such settings could nicely capture the com-

plex electronic structures within the lacunar spinel family [51, 92]. Numerous spin configurations

are evaluated to ensure the global ground state is achieved and that those states are consistent with

available experimental magnetic data [233]. Spin-orbit interactions (SOI) are not considered in our

calculations. Although it has been shown that SOI leads to interesting molecular jeff states [92],

this order does not strongly affect the size of the ground state electronic band gaps, even 5d transi-

tion metals lacunar spinels [51]. A Γ-centered 6×6×6 k-point mesh with a 500 eV kinetic energy

cutoff is used. We employ Gaussian smearing with a small 0.05 eV width. For density-of-state

calculations, we use the tetrahedron method with Blöchl corrections [89]. Electric polarizations

along the [111] direction are simulated using the Berry phase method [234].

The crystal structures of the existing lacunar spinels are obtained from our previous DFT stud-

ies [91], structures of new compositions are obtained by replacing the elements on the correspond-

ing crystallographic sites from existing structures. We perform full lattice relaxations until the

residual forces on each individual atom are less than 1.0 meVÅ−1. The DFT-relaxed crystal struc-
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tures of the Pareto front compositions are available at Ref. [235]. We initialize the relaxation with

various magnetic moment configurations, the converged configuration with the lowest energy is

reported as the DFT ground state. Zone center (k = 0) phonon frequencies and eigendisplace-

ments are obtained using the frozen-phonon method with pre- and post-processing performed with

the Phonopy package [93]. The decomposition pathways are automatically generated using Grand

Canonical Linear Programming [236] from the Open Quantum Materials Database [237].

Resistivity simulations are performed using electronic structures computed from VASP as pre-

viously described, but with an increased 24 × 24 × 24 k-point mesh and the BoltzTrap2 package

[238]. We also assume that all Ma sites have the same orientation within the crystal. In order to

validate this model, we simulated a 2× 2× 2 supercell of InNbMo3Se8 with one Nb atom oriented

in a different direction from the other seven. We find that the ground state Eg as well as ∆Hd

exhibit negligible changes from the homogeneous description. We also compared the change in

properties with the anti-ferromagnetic spin configuration using a doubled simulation cell with the

ferromagnetic ground state. As before, we find there are no significant changes in the aforemen-

tioned properties. These results are reasonable because the local structure of the TMC dictates the

low-energy band structure near the Fermi level.
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A.2 Multi-objective Bayesian Optimization Theory

Conventional Gaussian process (GP) modelling has been developed for only quantitative design

variables and the associated correlation functions cannot handle categorical variables. To overcome

this limitation, LVGP maps each categorical variable to a 2D Cartesian latent space [239, 240],

establishing a numerical representation for different categories. With this mapping, the covariance

model over categorical design variables can be any standard GP covariance model for quantitative

variables, e.g., the Gaussian correlation function. In the AOE, two independent LVGP models

with Gaussian correlation function are fit at each iteration to predict Eg and ∆Hd, respectively. In

each LVGP model, categorical variablesA, Ma, Mb andQ are represented by a 2D numerical latent

variable vector to evaluate their correlation. Note that each categorical variable resides in its unique

latent space. For the LVGP model predicting Eg, let zA = [zA1 , z
A
2 ] denote the latent variable

for the A site. Similarly, zMa , zMb , and zQ denote the latent variables for Ma, Mb and Q site,

respectively. Then, the Gaussian correlation (ρ) between Eg of two compounds, e.g., GaMoV3S8

and AlNbW3Se8, is:

ρ
(
EGaMoV3S8
g , EAlNbW3Se8

g

)
= exp

(
−‖zGa − zAl‖2

2 − ‖zMo − zNb‖2
2

−‖zV − zW‖2
2 − ‖zS − zSe‖2

2

)
(A.1)

where ‖.‖2 represents the Euclidean 2-norm. This procedure is used to compute the correlation

matrix for properties of all evaluated compositions. The positioning of latent variables zA, zMa ,

zMb , and zQ in their corresponding latent space are estimated via MLE as described in Ref. [239].

The LVGP model for ∆Hd also utilizes the 2D latent variable representation κA, κMa , κMb , and

κQ as previously defined to evaluate the correlation ρ(∆HGaMoV3S8
d ,∆HAlNbW3Se8

d ) in a similar

manner.

The multi-objective Bayesian optimization starts from considering the lacunar spinel family
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AMaMb
3Q8 with A ∈ {Al,Ga,In}, Ma ∈ {V, Nb, Ta, Cr, Mo, W}, Mb ∈ {V, Nb, Ta, Mo, W} and

Q ∈ {S,Se,Te}. The design space (C) comprises 270 compounds, each compound is represented

by four design variables A,Ma,Mb and Q with three, six, five, and three choices, respectively. Our

objective is to maximize Eg and ∆Hd, which is represented in standard optimization formulation

as:

min
c∈C
−Eg(c),−∆Hd(c) . (A.2)

Starting from the initial dataset, the AOE evaluates new candidate compounds by gauging their

improvement in the design objectives. Here, we use the expected maximin improvement (EMI)

metric [241] to guide the adaptive sampling framework. The Maximin Improvement (IM ) for

compound c is:

IM(c) = min
ci∈CPF

{
max

(
Ẽg(c)− Ẽg(ci), ∆̃Hd(c)− ∆̃Hd(ci), 0

)}
(A.3)

where CPF is the current set of Pareto front compositions. To facilitate the comparison in Equa-

tion A.3, we scale the value of each design objective P using the scheme P̃ (·) = (P (·) −

Pmin)/(Pmax − Pmin) where Pmax and Pmin are the maximum and minimum value of property

observed so far. By scaling the properties, we ensure all design objectives are comparable and

viewed equally. The EMI of compound c is defined as the expected value of IM :

EMI(c) = E[IM(c)] . (A.4)

We evaluate the EMI through Monte Carlo sampling with 500 trials. At each AOE iteration,

the EMI is calculated for all compositions that are not yet present in the data repository. The

composition with largest EMI will be sampled next in property evaluation and then added to the

data repository.
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APPENDIX B

DEEPKNET IMPLEMENTATION DETAILS

B.1 X-ray and Neutron Diffraction Simulations

We use a modified version of the X-ray diffraction (XRD) simulator as implemented in the open-

source software Pymatgen to generate the input features for the deepKNetmodel [143]. Specif-

ically, we consider all diffraction points within the limiting sphere of radius 4π/λ, where λ =

1.5406 Å is the X-ray wavelength (Cu Kα in this case). The atomic form factors f(s) are calcu-

lated using tabulated data to simulate the Fourier-transformed real-space atomic electron density

function ρ(r):

f(s) = Z − 41.78214 · s2 ·
n∑
i=1

aie
−bis2 , (B.1)

where Z is the atomic number, s = sin θ
λ

and sin θ = λ
2dhkl

(Bragg condition). The ai and bi

coefficients are n fitting parameters for each element provided by Pymatgen. We then calculate

Fhkl =
N∑
j=1

fje
2πighkl·rj (B.2)

Ihkl =
1

V 2
cell

F ∗hklFhkl (B.3)

where j runs over all atoms within the unit cell and Vcell is the conventional unit cell volume.

Lorentz polarization and Debye-Waller factor are not considered in our simulation. Owing to the

large values of the diffraction intensity, we take the natural logarithm of each Ihkl, i.e. Ĩhkl =

ln(Ihkl + 1) to bring the intensity values within the range (0, 1].

For neutron scattering, Equation B.1 becomes a constant for each element (more specifically,

for each isotope), which is independent of the momentum space position vector. The tabulated

neutron scattering lengths are obtained from the Pymatgen package [143]. We then calculate the
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neutron diffraction (ND) patterns as before using Equation B.2 and Equation B.3, after obtaining

the neutron scattering lengths.
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B.2 Hyperparameter Optimization

The hyperparameters we considered for the model are tabulated in Table B.1. Note that the num-

ber of diffraction points n is considered as a variable instead of a hyperparameter of the model.

We use a greedy approach to optimize each of these hyperparameters and take the average re-

sults from two randomly and independently generated training, validation, and test datasets. The

reported data was generated using 1D convolutional layers with filter size 1 × 1 and filter chan-

nels [4, 64, 128, 256, 512, 1024], the max pooling function, and multi-layer perceptions with hidden

layer size [1024, 512, 256, 256, k], where k is the number of output class. However, we find that

the model performance on all classification tasks to be less dependent on the hyperparameters than

the input perturbations. In other words, the same neural network architecture could capture most

of the materials information, and increasing the number of model parameters does not significantly

improve the model performance.

Table B.1: Hyperparameters explored in construction of deepKNet.

Hyperparameter Values
number of convolution layers 3, 4, 5
convolution channels 64, 128, 256, 512, 1024
dimension of hidden crystal feature vector 256, 512, 1024
number of fully-connected layers 3, 4, 5
size of fully-connected layers 128, 256, 512, 1024
pooling max, self-attention
number of self-attention layers 0, 2, 4
optimizer SGD, Adam
initial learning rate 0.01, 0.001
dropout 0, 0.2, 0.4
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B.3 Crystal System Classification

Before we learn the physical properties of materials using deepKNet, we first test whether the

network architecture could learn to distinguish different crystal systems using the XRD patterns.

This simple computer vision task is an important prerequisite before we analyze the structure-

property relationship data. If the model is unable to recognize the crystal systems from structural

input data, then we may not trust it in making property predictions.

We have a total of 48,524 crystal structures from seven crystal systems for this classification

task (Table B.2). The dataset is available from the authors upon reasonable request. With only

3 reciprocal basis vectors visible to the model, we obtain an accuracy of 0.988 without random

3D rotations. As we check the misclassified crystals, we find most of the incorrect predictions are

caused by very minor differences in lattice parameters (e.g., 89.9◦ and 90◦, or 10.7 Å and 10.8 Å),

and the threshold of “equivalence” can make a difference in model predictions. However, the

overall performance is very impressive, thus we can trust the model in further property learning

tasks.

Table B.2: Distribution of structures by crystal system.

Crystal System Number of Structures
cubic 6,899
tetragonal 6,983
orthorhombic 12,289
hexagonal 4,811
trigonal 3,898
monoclinic 11,120
triclinic 2,524

Once we turn on random 3D rotations with Euler angle between [−π, π], the accuracy de-

creases to 0.83. We suspect that the significant performance loss originated from the model failing

to identify the “principal axis” of the crystal, which is possibly a limitation of the PointNet-like

network architecture. After we reduce the rotation angle to be [−1
4
π, 1

4
π], we regain an accuracy

of 0.98. Interestingly, we later find the property classification tasks are completely immune to the
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range of random 3D rotations. It is reasonable since the crystal orientation does not matter to the

scalar materials properties we examine.

In addition, we could also successfully distinguish trigonal cells from hexagonal cells using the

deepKNet. We obtain an AUC value of 0.94 with 3 diffraction points, 0.97 with 27 diffraction

points, and 0.98 with 125 diffraction points as input. This is an advantage of using 3D diffraction

patterns compared with 2D projected versions.
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B.4 Baseline Performance for the Metal-Insulator Classification

We find that using only 3 reciprocal basis vectors as input, the metal-insulator classifier is able to

achieve an AUC of 0.8. Typically, a binary classifier with AUC 0.8 can be considered as “effective.”

Our finding here shows that metallicity has a strong dependency on the cell shape and volume. In

order to validate this discovery, we build a simple random forest classifier using scikit-learn

[242] with only two features: the conventional standard cell volume (numerical variable) and the

crystal system (categorical variable). The dataset we use is identical to the metal-insulator classi-

fication task using the deepKNet, where 20% of data is used as the test set, and others are used

for training and validation purposes. We use grid search with 4-fold cross validation to select the

hyperparameters of the random forest model, as shown in Table B.3. We take the average AUC

value of 3 independent runs with different training-validation-test split, and finally obtain an AUC

of 0.8, which is identical to the deepKNet model performance.

Our findings here establish the baseline performance of the metal-insulator classification. With

only the primitive features of cell volume and crystal system (without any further feature engineer-

ing), we obtain an AUC of 0.8. Therefore, materials scientists should be comparing the classifica-

tion performance with 0.8 instead of 0.5. We acknowledge the fact that determining the metallicity

of a new material is not a trivial task, yet from existing materials databases, the baseline perfor-

mance of a metal-insulator classifier is quite high. It remains challenging to interpret whether we

really learned some new materials physics or rather learned the database statistics.

Table B.3: Hyperparameters explored in the random forest classifier using the scikit-learn
package. The selected hyperparamter used to generate the results are bolded.

Hyperparameters Values
number of estimators 100, 120, 150
criterion gini, entropy
maximum depth 6, 8, 12
maximum number of features None, sqrt, log2
maximum number of leaf nodes None, 30, 50
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B.5 Standard Deviation of Property Learning Tasks

Table B.4 shows the standard deviations for each property classification task from 3 randomly and

independently generated training-validation-test datasets.

Table B.4: Standard deviations from 3 randomly and independently generated training-validation-
test datasets for different property classification tasks. Features labeled XRD and ND correspond
to X-ray diffraction and neutron diffraction, respectively.

Classification Task Feature ϕ1 ϕ2 ϕ3

metal-insulator XRD 0.001 0.002 0.009
ND 0.001 0.001 0.005

bulk modulus XRD 0.003 0.014 0.019
ND 0.006 0.004 0.003

shear modulus XRD 0.002 0.015 0.008
ND 0.006 0.005 0.005

stability XRD 0.005 0.004 0.009
ND 0.003 0.024 0.005
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B.6 XRD Critical Points of Selected Materials

To help us understand how the deepKNet differentiates metals from insulators, we use a small

model to facilitate model interpretation. We use 125 diffraction points (Miller indices within range

{2̄, 1̄, 0, 1, 2}) for all materials and 32-dimensional crystal feature embedding for the metal-

insulator classification task. The convolutional layer dimensions are [4, 8, 16, 32, 32, 32] and the

fully-connected layer dimensions are [32, 32, 16, 16], respectively. The critical points of each

material as shown in Figure 5.5 of the Chapter 5 are enumerated below. Since the same point may

contribute to more than one hidden crystal feature, the number of unique critical points could be

less than the embedding dimension.

Critical points of NaCl:

(0 0 0) (0 0 1̄) (1̄ 1̄ 0) (1 1̄ 0) (0 2 0)

(0 0 2) (0 2̄ 0) (2 0 1) (1 0 2) (0 1 2)

(0 2̄ 1) (1̄ 0 2̄) (2 2 0) (0 2 2) (0 2 2̄)

(0 2̄ 2) (2̄ 0 2) (2 1 2̄) (1 2̄ 2̄) (2̄ 2̄ 2)

Critical points of SiO2:

(0 0 0) (0 0 1̄) (1̄ 1̄ 1) (1 1̄ 1) (1̄ 1 1̄)

(1̄ 0 2̄) (1 2̄ 0) (0 2̄ 1) (1̄ 2̄ 0) (1 1 2)

(1 1̄ 2) (0 2 2̄) (2̄ 0 2) (2 2̄ 0) (2 1 2)

(2̄ 2̄ 1̄) (2 1 2̄) (1 2̄ 2̄) (2̄ 1̄ 2) (2 2 2)

(2̄ 2̄ 2)

Critical points of Al2O3:
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(0 0 0) (0 0 1̄) (0 0 2̄) (2 1̄ 1̄) (2̄ 2̄ 2)

(1 0 1) (1 1̄ 1) (0 1 2̄) (2̄ 1̄ 2) (2 2 0)

(2 0 2̄) (1 0 2) (2 2 2) (0 1 2) (2̄ 2 2̄)

(1 1̄ 2)

Critical points of Cu:

(0 0 0) (0 0 1̄) (0 1̄ 0) (1 0 1) (0 1 1)

(1 1 1) (1̄ 1̄ 1) (1̄ 1̄ 1̄) (1 1̄ 1) (2 0 0)

(1 0 2̄) (2 2 0) (0 2 2) (0 2 2̄) (0 2̄ 2)

(2̄ 0 2) (2 1 2) (2 2̄ 1̄) (1 2̄ 2̄) (2̄ 2̄ 2)

(2̄ 2̄ 2̄)

Critical points of Ag:

(0 0 0) (0 0 1̄) (1 0 1) (1̄ 1̄ 0) (1 1 1)

(1̄ 1̄ 1̄) (1 1̄ 1) (1̄ 1̄ 1) (2 0 0) (1 0 2̄)

(2 2 0) (0 2 2) (2 2̄ 0) (0 2 2̄) (2̄ 0 2)

(2 1 2) (1 2̄ 2̄) (2 2̄ 1̄) (2̄ 1 2) (2 2 2)

(2̄ 2̄ 2̄) (2̄ 2 2) (2̄ 2̄ 2)

Critical points of Au:

(0 0 0) (0 0 1̄) (1 0 1) (0 1 1) (1̄ 1̄ 0)

(1 1 1) (1̄ 1̄ 1̄) (1 1̄ 1) (1̄ 1̄ 1) (2 0 0)
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(0 0 2) (1 0 2̄) (0 2 2̄) (2̄ 0 2) (2 1 2)

(2 2̄ 1̄) (1 2̄ 2̄) (2̄ 1 2) (2 2 2) (2̄ 2̄ 2̄)

(2 2 2̄) (2̄ 2 2) (2̄ 2̄ 2)
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B.7 Critical Point Distribution from Neutron Diffraction Data

We also train a small network using neutron diffraction data to interpret how the model distin-

guishes metals from insulators. We use ND data with n = 125 diffraction points and deepKNet

with a 32-dimensional hidden crystal vector, i.e., the same as that described in the manuscript.

The model performance is quite poor with an AUC of 0.84. It misclassifies NaCl as metal. Inter-

estingly, Figure B.1 shows the critical point distributions are quite different from the XRD model

appearing in Figure 5.5.
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Figure B.1: Distribution of neutron diffraction critical diffraction points with normalized inter-
planar dhkl spacings of a few common insulators (NaCl, SiO2, Al2O3) and metals (Cu, Ag, Au).
The critical points in the limiting (gray) sphere are those that contribute to the final crystal feature
vector after max pooling, and are marked with blue for insulators, and red for metals, respectively.
Non-critical points are represented with light gray points.
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