
NORTHWESTERN UNIVERSITY

Learning from Limited and Imperfect Data in Cyber-Physical System

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Shichao Xu

EVANSTON, ILLINOIS

June 2023

2

© Copyright by Shichao Xu 2023

All Rights Reserved

3

ABSTRACT

Machine learning is seeping into every fabric in various practical domains such as autonomous

driving, wearable computing, and smart buildings. However, in the actual development and in-

tegration, especially when the learning-based components are frequently included as components

of large complex systems where the physical instances can be included as interactable compo-

nents, they often pose significant data challenges, including data noise, insufficient training data,

or lacking annotations, which could significantly hinder the learning process. In this dissertation,

we will introduce several approaches to tackle these challenges. In building-related cyber-physical

systems, a transfer learning-based approach is proposed to tackle the challenge of long training

time in model-free Deep Reinforcement Learning (DRL) for building HVAC control. Then we

also consider accelerating online DRL for building HVAC control with the help of heterogeneous

expert guidances. Besides, to handle the problem of HVAC control under corrupted sensor inputs,

a learning-based framework is proposed for sensor fault-tolerant building HVAC control. In the

vision task domain, we investigate the challenge of using the cross-domain unlabeled data and

weak annotator to mitigate the data insufficiency in the target domain. Moreover, we also propose

a novel approach for handling multi-label classification with unseen classes in the testing stage.

4

ACKNOWLEDGEMENTS

My Ph.D. journey has been a shining star in my life, and I will cherish every moment I spent at

Northwestern University. From the excitement of publishing my first paper to the disappointment

of receiving rejections, from the laughter-filled conversations to the moments of stress preparing

for the exams, and from the joy of hanging out around Evanston to the mixed emotions of receiving

my Ph.D. degree, I have had wonderful experiences that will stay with me forever.

I will miss the time when we gathered together and had BBQ near the beach, the food in

the Northwestern University cafeterias, the brainstorming sessions for new paper ideas, the talks,

the chats, the coffee breaks that made each day so much enjoyable. Although it’s a pity that the

pandemic prevented me from traveling around the world to attend various academic conferences,

I am grateful for the opportunities to complete internships at OPPO and Google, which broadened

my horizon and expanded future career opportunities. What I miss the most is the fantastic and

amazing people I met during my Ph.D. career. The memories, wishes, and connections I made

during the time at Northwestern University will stay with me for my next life phase.

I would like to express my deepest appreciation to my advisor and dissertation committee chair,

Prof. Qi Zhu, for his unwavering support and guidance throughout my Ph.D. journey. I can still

remember the time when I was stressed and hurry to publish a paper in my first year, Prof. Zhu

told me to slow down and explore the topics I am interested. In the later years, he taught me how to

do academic research, how to identify the future opportunities for researching, how to write paper,

how to present the idea, how to give a talk, etc. I was gradually on the right track, and qualified

for being a true Ph.D.. Prof. Zhu was always patient and willing to help me both academically and

professionally.

I am also grateful to my current and previous collaborateors, including Prof. Zheng O’Neill

5

and Dr. Yangyang Fu from Texas A&M University, Prof. Xiao Wang, Prof. Josiah Hester and

Prof. Zhaoran Wang from Northwestern University, Dr. Zhuoran Yang from Yale University, Prof.

Chao Huang from University of Liverpool, Prof. Yanzhi Wang from Northeastern University, etc.

Their valuable suggestions, ideas and expertise in their respective research areas were crucial in

helping me work on various projects.

Then I extend my thanks to the professors and tutors in the ELP department. They helped

adjust to life in Evanston during my first month in the United States and also provided services to

improve my English speaking skills during my first two years.

Moreover, I would like to express my gratitude to my colleagues at Northwestern University

who I have a good time with during my Ph.D.. They are Zhilu Wang, Shuyue Lan, Hengyi Liang,

Xiangguo Liu, Yixuan Wang, Ruochen Jiao, Lixu Wang, Payal Mohapatra, and Anthony J Goeck-

ner. It’s my great fortune to meet with these lovely people, collaborate with them on various

research works, share the ideas, and enjoy the campus life.

Besides, I am honored to have Prof. Qi Zhu, Prof. Xiao Wang, and Prof Jie Gu as my dis-

sertation committee members. Thank you for generously dedicating your time to my dissertation

committee.

Last but most importantly, I express my deepest gratitude to my family for their unwavering

support and understanding throughout my Ph.D. journey. Their love and care were instrumental in

fortifying my conviction to begin and complete my Ph.D. studies.

We gratefully acknowledge the support from Richter Memorial Fund for terminal year fellow-

ship, and also thanks Department of Energy (DOE) award DE-EE0009150 and National Science

Foundation (NSF) grants 1834701, 1839511, 1724341, 2038853, 2016240, Office of Naval Re-

search grant N00014-19-1-2496, and research awards from Facebook, Google, PlatON Network,

and General Motors.

6

Abbreviation Definition
ARX AutoRegressive models with eXogenous inputs
A3C Asynchronous Advantage Actor-Critic
BCQ Batch-Constrained Q-Learning
CQL Conservative Q-Learning
DA Domain Adaptation
DDPG Deep Deterministic Policy Gradient
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DDQN Double Deep Q-Network
FCU Fan Coil Unit
HVAC Heating, Ventilation, and Air Conditioning
LQR Linear Quadratic Regulator
MPC Model Predictive Control
ML Machine Learning
MDP Markov decision process
NLP Natural Language Processing
PPO Proximal Policy Optimization
PuL Positive-unlabeled Learning
SOTA State-Of-The-Art
SSL Semi-Supervised Learning
UDA Unsupervised Domain Adaptation
VLP Vision-Language Pretraining
VAV Variable Air Volume

ABBREVIATIONS

7

TABLE OF CONTENTS

Acknowledgments . 3

List of Figures . 13

List of Tables . 15

Chapter 1: Introduction . 17

1.1 Background and Motivation . 17

1.2 Dissertation Contributions . 20

1.2.1 Data Availability . 20

1.2.2 Data Quality . 21

Chapter 2: Addressing Data Challenges in Building HVAC Control 23

2.1 One for many: Transfer learning for building HVAC control 24

2.1.1 Background . 24

2.1.2 Related Works . 26

2.1.3 Methodology . 28

2.1.3.1 System Model . 28

8

2.1.3.2 Methodology Overview . 30

2.1.4 Experimental Results . 38

2.1.4.1 Experiment Settings . 38

2.1.4.2 Transfer from n-zone to n-zone with Different Materials and Lay-
outs . 40

2.1.4.3 Transfer from n-zone to m-zone 43

2.1.4.4 Transfer from n-zone to n-zone with Different HVAC Equipment 43

2.1.4.5 Fine-tuning Study . 44

2.1.4.6 Discussion . 45

2.2 Accelerate Online Reinforcement Learning for Building HVAC Control with Het-
erogeneous Expert Guidances . 47

2.2.1 Background . 47

2.2.2 Related Works . 50

2.2.3 Methodology . 52

2.2.3.1 System Model . 52

2.2.3.2 Our Online DRL Training Framework with Heterogeneous Ex-
pert Guidances . 54

2.2.3.3 Runtime Shielding Framework 63

2.2.4 Experimental Results . 65

2.2.4.1 Experiment Settings . 65

2.2.4.2 Evaluation of Our Online DRL Training Framework 67

2.2.4.3 Ablation Studies . 70

9

2.2.4.4 Evaluation of Our Runtime Shielding Framework 73

2.2.4.5 Experiments in Other Domains 73

2.3 Learning-based framework for sensor fault-tolerant building HVAC control with
model-assisted learning . 75

2.3.1 Background . 75

2.3.2 Related Works . 78

2.3.2.1 Addressing Sensor Faults in Buildings 78

2.3.2.2 Learning with Limited Data and Abstract Physical Model 79

2.3.3 Methodology . 80

2.3.3.1 System Model . 80

2.3.3.2 Sensor Fault-Tolerant DRL Framework 81

2.3.3.3 Model-Assisted Learning . 87

2.3.4 Experimental Results . 92

2.3.4.1 Fault Patterns and Metrics . 92

2.3.4.2 Experiment Settings . 93

2.3.4.3 Evaluation of Sensor Fault-Tolerant Framework on IID and Con-
tinuous Faults . 93

2.3.4.4 Evaluation of Model-Assisted Learning 97

Chapter 3: Addressing the Data Challenges in Vision 102

3.1 Weak Adaptation Learning–Addressing Cross-domain Data Insufficiency with Weak
Annotator . 103

10

3.1.1 Background . 103

3.1.2 Related Works . 105

3.1.2.1 Weakly- and Semi-Supervised Learning 105

3.1.2.2 Importance of Sample Quantity 105

3.1.3 Methodology . 106

3.1.3.1 Theoretical Analysis . 106

3.1.3.2 Learning Process . 112

3.1.4 Experimental Results . 116

3.1.4.1 Dataset . 116

3.1.4.2 Training Setting . 116

3.1.4.3 Baseline Experiments Setting 118

3.1.4.4 Results of Digits Recognition 119

3.1.4.5 Results of Object Recognition 120

3.1.4.6 Ablation Study . 121

3.2 Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned
Visual-Textual Features . 123

3.2.1 Background . 123

3.2.2 Related Works . 125

3.2.2.1 Conventional Multi-label Classification 125

3.2.2.2 Multi-Label Zero-Shot Classification 126

3.2.2.3 Vision-Language Pre-training (VLP) 126

11

3.2.2.4 Open-Vocabulary Learning . 127

3.2.3 Methodology . 128

3.2.3.1 Overview . 128

3.2.3.2 Dual-Modal Decoder . 130

3.2.3.3 Pyramid-Forwarding . 132

3.2.3.4 Selective Language Supervision 134

3.2.4 Experimental Results . 135

3.2.4.1 Implementation Settings . 135

3.2.4.2 Open-Vocabulary Multi-label Classification 136

3.2.4.3 Single-to-multi Label Classification 138

3.2.4.4 Additional Experiments . 139

Chapter 4: Conclusion and Future Work . 144

4.1 Summary of Key Findings and Significance . 144

4.2 Opportunities for Future Research . 145

4.2.1 Efficient Learning for Model-free DRL Building HVAC Controller 146

4.2.1.1 Decomposed Surrogate Model with Multi-Task Learning 146

4.2.1.2 Large Foundation Model for Control Tasks 147

4.2.2 Learning from Imperfect Data for Vision Tasks 148

References . 168

12

Vita . 169

13

LIST OF FIGURES

2.1 Overview of our DRL-based transfer learning approach. 29

2.2 The visualization of different buildings. 40

2.3 Fine-tuning results on four-zone building 2. 45

2.4 The visualization of different weathers. 46

2.5 Overview of our framework with heterogeneous expert guidances. 52

2.6 Overview of runtime shielding framework . 63

2.7 Comparison between our methods and baseline. 66

2.8 Figure of energy cost change during training. 70

2.9 Demonstration on lightweight building temperature for 2 days. 71

2.10 Training result for the lightweight building with an abstract physical model included. 72

2.11 Results on examples from the Gym environments. 74

2.12 Overview of our sensor fault-tolerant framework for building HAVC system. 80

2.13 Overview of our model-assisted learning . 86

2.14 Four zone building temperature under IID faults. 97

2.15 Comparison of different learning strategies on temperature prediction performance 99

14

3.1 Overview of the Weak Adaptation Learning (WAL) process. 113

3.2 The accuracy of different methods on the VisDA-C dataset. 120

3.3 The model performance under different quantities of target domain samples. 122

3.4 The model performance under different accuracy of the weak annotator. 123

3.5 Overview of our ADDS framework for multi-label classification. 128

3.6 Overview of our Dual-Modal Decoder design. 130

3.7 Overview of the Pyramid-Forwarding method. 133

15

LIST OF TABLES

2.1 Hyper-parameter setting of transfer learning for building HVAC control. 39

2.2 Transfer from single-zone to four-zone building 2. 40

2.3 Results of different methods on four-zone building 1. 42

2.4 Experiment results on four-zone building 2 and 3 42

2.5 Results on five-zone building 1 and seven-zone building 1. 43

2.6 Results comparison under different HVAC equipment. 44

2.7 Transferring between different weathers. 46

2.8 Results of testing using different boundary. 47

2.9 Hyper-parameters used in our experiments. 65

2.10 Number of episodes required to reach goal. 69

2.11 Number of epochs needed under different quantity of historical data. 71

2.12 Number of epochs needed under different control quality of historical data. 72

2.13 Comparison between two DDQN agents with runtime shielding. 75

2.14 Hyper-parameters used in our experiments. 94

2.15 Comparison on a single-zone building under IID faults. 96

16

2.16 Comparison on a four-zone building under IID faults. 96

2.17 Comparison on a single-zone building under continuous faults. 96

2.18 Comparison on a four-zone building under continuous faults. 98

2.19 Comparison of different learning strategies. 98

3.1 The accuracy of different methods on digit datasets. 119

3.2 The accuracy of different methods on the CIFAR-10 dataset. 121

3.3 Comparison on NUS-WIDE dataset for open-vocabulary multi-label classification. 137

3.4 Comparison on MSCOCO dataset for open-vocabulary multi-label classification. . 138

3.5 Comparison on single-to-multi label classification with MS-COCO dataset. 138

3.6 Comparisons of single-to-multi label classification task with NUS-WIDE dataset. . 139

3.7 Comparison on conventional multi-label classification for the MS-COCO dataset. . 140

3.8 Comparison between DM-Decoder and ML-Decoder on NUS-WIDE. 141

3.9 Full vs. single-layer Pyramid-Forwarding. 141

3.10 Comparisons of our method trained on the ImageNet-1k vs. ImageNet-21k dataset. 142

3.11 Applying other VLP models for alignment to our method on NUS-WIDE dataset. . 142

17

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Deep neural network (DNN), inspired by the connection of the neurons in the human nervous sys-

tem, is by far the most effective model among all machine learning algorithms. It demonstrates

strong representation learning ability and can handle a wide range of data modalities. Its applica-

tions are diverse and not limited to digital applications like video games [1], image rendering [2],

music composition [3], but also extend to cyber-physical systems (CPS) where the physical com-

ponents are involved, such as autonomous driving [4], high-energy physics [5], smart building [6],

agriculture [7], etc. People’s daily life has been greatly changed by the benefits brought from these

advancements, and an increasing number of researches are also made in this field which reflects its

importance and the potential benefits.

Image classification is a crucial component in many CPS systems, and its accuracy has im-

proved significantly over the years, thanks to advancements in learning algorithms, computation

hardware, and the increasing amount of training data. When we look at the typical human-designed

models with supervised learning, the previous model AlexNet [8] and VGG [9] demonstrate the

strong recognition ability of the DNN when trained on millions of accurately labeled images.

Subsequent models, such as ResNet [10], DenseNet [11], ViT [12], and Swin Transformer [13],

have outperformed human recognition ability in some specific domains. These models use con-

volutional layers or transformer blocks and heavily rely on massive amounts of training data. In

addition, there have been explorations based on unsupervised (self-supervised) learning methods,

18

including SimCLR [14] , MoCo [15], MAE [16], as well as studies that leverage information from

different modalities, such as CLIP [17], ALIGN [18], GPT-4 [19], etc. The success of these large

models heavily replies on the massive amount of training data.

Another field that has benefited greatly from neural networks is deep reinforcement learning

(DRL), which aims to learn an optimal policy from interactions with the target environment. There

are a number of successful cases in the literature which leverage DNN as the value function ap-

proximator or system state encoder, such as deep Q-learning (DQN) [1], quantile regression-DQN

(QRDQN) [20], asynchronous advantage actor-critic algorithms (A3C) [21], Deep Deterministic

Policy Gradient(DDPG) [22], Proximal Policy Optimization(PPO) [23], etc. After repeatedly tri-

als on the target environment, these methods are able to learn a good control policy from past

experiences.

However, compared to humans who possess remarkable abilities to extract knowledge and

learn from limited or noisy observations to handle complex tasks, current machine learning models

still face significant challenges when face the same scenarios. When considering machine learning

models as components of large complex systems, it is important to take into account various factors

as real-world scenarios can deviate from ideal conditions. Some models may struggle to achieve

desired performance when faced with disturbances or malicious attacks, which are common in

real-world CPS systems. Other models may require a large amount of training data, either labeled

or unlabeled, which can be challenging to obtain due to the expensive data collection process in

most of CPS systems.

In the field of building-related researches, there is a growing concern about developing HVAC

controllers with minimal effort. Since the model-based methods require sufficiently accurate phys-

ical models for optimal performance, researchers make further exploration on model-free DRL to

design the controller. For instance, the Wei et al. [6] leverage DQN methods to design the building

19

HVAC controller based on training with EnergyPlus building simulation platform. In [24], [25],

the actor-critic methods in model-free DRL are applied. However, running the experiments in

real building is time-costly, expensive and risky, it can also be inefficient to train on the building

simulation platform [26] due to its complexity. Thus, when applying model-free DRL methods to

building HVAC systems, the challenge of data insufficiency arises, leading to long training time.

For example, in [27], it took DDPG around 2.4× 104 months to achieve the best performance for

temperature control and energy management. In [28], for a multi-zone building environment, the

training time was extended to 4 × 104 months. Furthermore, the typical building HVAC systems

may also suffer from imperfect data challenge caused by corrupted sensor readings, which can lead

to performance degradation of the HVAC controller.Previous works have attempted to detect and

correct these faults using model-based methods. For instance, Papadopoulos et. al. [29] develop

their solution based on previously built complex physical building model as well as a fault model

based on the assumption that sensor faults occur in a single zone at each time. However, in real

building scenarios, modeling both the faults and the building dynamics can be difficult, making

fault prediction or correction even more challenging.

Besides, vision plays a crucial role in many CPS applications, and we also investigate the data

limitation challenge in image classification tasks. Numerous image classification researches (such

as ResNet [10], DenseNet [11], ViT [12], etc.) have been carried out with the assumption that

accurately labeled target domain data is available. However, gathering ample data samples can be

challenging in some problem domains or scenarios, such as for the training of autonomous vehicles

during extreme weather (e.g., fog, snow, hail) and natural disasters (e.g., mudflow), or for search

and rescue robots during forest fire and earthquake. In some extreme case, the target classes may

not even appear in the training dataset. Thus, how to leveraging other information source to help

the target domain learning is critically important.

20

1.2 Dissertation Contributions

In this dissertation, we explore two domains in which data limitations pose significant challenges.

In building task domain, we firstly address the challenge of long training time in model-free DRL

for building HVAC control, and then consider the HVAC control under corrupted sensor inputs.

In vision task domain, we investigate the challenge of using the cross-domain unlabeled data and

weak annotator to mitigate the data insufficiency in target domain, and also study the multi-label

classification under the zero-shot setting.

Throughout my Ph.D. career, I have made substantial contributions to addressing the challenges

of learning from limited and imperfect data in CPS systems. Specifically, I have focused on the

limitations of data availability and data quality, and have developed novel approaches that leverage

additional information sources to achieve reasonable performance for target tasks.

1.2.1 Data Availability

Chapter 2.1 addresses the challenge of slow and expensive data collection process in the real or

simulated building HVAC control application, which has hindered the use of model-free deep

reinforcement learning due to the long training time required on a physical system. Thus, we

present a transfer learning-based approach [30] to overcome this challenge, and the algorithm can

effectively transfer a DRL-based HVAC controller trained for the source building to a controller for

the target building with minimal effort and improved performance, by decomposing the design of

the neural network controller into a transferable front-end network that captures building-agnostic

behavior and a back-end network that can be efficiently trained for each specific building.

While transfer learning is quite effective when the source and target buildings share a certain

degree of similarity, it may not be feasible when there is no source building available or the target

21

building is significantly different. Thus, another efficient learning strategy is still required for the

control agent. In Chapter 2.2, we propose a unified learning framework [31] that leverages the

knowledge from domain experts in various forms to accelerate online reinforcement learning for

building HVAC control. It leverages the abstract physical models (e.g., RC-networks [32], ARX

models [33], surrogate model based on DNN) of building thermal dynamics (they are not accurate

enough for enabling training DRL or designing model-based methods with good performance, but

nevertheless contain valuable information of building dynamics), historical data collected from

existing controllers (they may not be able to train DRL controllers with good performance due to

distribution shift, but also contain useful information on building behavior), and expert rules that

reflect basic policies.

Not only for the building HVAC control applications, we also explore the data availability

limitation in vision-related tasks. In Chapter 3-2, we present an advanced technique in open-

vocabulary multi-label image classification (Open-vocabulary is a generalization of zero-shot and

weakly supervised settings and is more suitable for dealing with unseen classes). Our method [34]

is built based on the novel Dual-Modal decoder (DM-decoder) with alignment between visual and

textual features. The experiment results indicate that our method significantly outperforms the

previous methods and reach the state-of-the-art level.

1.2.2 Data Quality

In the context of data quality, we examine a scenario in building HVAC systems that could suf-

fer from various sensor faults and be susceptible to malicious attacks. Such faulty sensor inputs

may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.)

and an increase in energy consumption. So we present a learning-based framework for sensor

fault-tolerant HVAC control [35] which includes three deep learning-based components that can

22

effectively compensate for sensor faults, ensuring that the building’s temperature and other en-

vironmental requirements are met while maintaining energy efficiency. Our experiments demon-

strate that the proposed framework can significantly reduce building temperature violations under

a variety of sensor fault patterns, making it a promising solution for improving the reliability and

robustness of building HVAC control systems.

In addition, we also examine a novel scenario in the vision task, where both data availability

and quality are crucial factors to consider. In such cases, data from related domains and weak

annotators can be employed to address data insufficiency in the target domain. To be specific,

we propose weak adaptation learning (WAL) [36] approach that leverages unlabeled data from a

similar source domain, a low-cost weak annotator (which produces labels based on task-specific

heuristics, labeling rules, or other methods (albeit with inaccuracy)), and a small amount of labeled

data in the target domain to learn an accurate classifier in the target domain.

The rest of the prospectus is organized as follows. Chapter 2 contains the studies related

to building HVAC control. Chapter 2.1 introduces the methodology of transfer learning for the

building HVAC system. Chapter 2.2 shows the learning acceleration framework for DRL method

which leverages the knowledge from domain experts in various forms. Chapter 2.3 demonstrate

a learning-based sensor fault-tolerant control framework for the building HVAC control. Then

Chapter 3 includes the studies in vision tasks. Chapter 3.2 presents the weak adaptation learning

method for addressing the cross domain data insufficiency. In Chapter 3.1, the new approach for

open-vocabulary multi-label classification. We list the discussion and future directions in Chap-

ter 4.

23

CHAPTER 2

ADDRESSING DATA CHALLENGES IN BUILDING HVAC CONTROL

The building stock accounts for around 40% of the annual energy consumption in the United States,

and nearly half of the building energy is consumed by the heating, ventilation, and air conditioning

(HVAC) system [26]. In addition, the operation of HVAC systems significantly affects the physical

and mental health of building occupants, as people spend around 87% of their time indoors [30],

[37], and even higher during the COVID-19 pandemic in recent years [38]. Thus, it is critically

important to design effective HVAC control strategies that are both energy efficient and able to

maintain the desired temperature and indoor air quality for occupants.

However, data challenges always exist during building HVAC control, the typical challenges

include insufficient training data (or long training/data collection time), corrupted sensing data,

etc. Thus, in this chapter, we will introduce three topics on the data challenges in building HVAC

control,

• Transfer learning for building HVAC control: We propose a transfer learning approach that

decomposes the design of a neural network-based HVAC controller into two (sub-)networks. The

front-end network captures building-agnostic behavior and can be directly transferred, while the

back-end network can be efficiently trained for each specific building in an offline supervised

manner by leveraging a small amount of data from existing controllers. The experiments demon-

strate that our approach can effectively transfer between buildings with different sizes, numbers

of thermal zones, materials and layouts, and HVAC equipment, as well as under different weather

conditions in certain cases. It could enable fast deployment of DRL-based HVAC control with

little training time after transfer, and reduce building energy cost with minimal violation of tem-

24

perature constraints.

• Sample-efficient DRL for building HVAC control with heterogeneous expert guidances:

We propose a novel training framework to accelerate online RL for building HVAC control with

heterogeneous expert guidances, including abstract physical models, historical data, and expert

rules. These various guidances are unified in our framework via the expert functions. The exper-

iment results demonstrate that our approach can effectively reduce the DRL training time while

maintaining low energy cost and temperature violation rate. We also propose a novel runtime

shielding framework with an expert model that can further reduce the temperature violation rate

when applied to our learned DRL-based controller.

• Sensor fault-tolerant building HVAC control: We present a novel sensor fault-tolerant

learning-based framework to achieve sensor fault resilience in building HVAC control. The

framework includes three neural network-based components: a temperature predictor that esti-

mates the true indoor temperature, a selector that assesses the predictor output and the raw sensor

reading and selects one, and a DRL-based controller that generates the control signal. Then we

develop a novel learning method called model-assisted learning, which leverages the knowledge

from an abstract physical model to enable learning with a small amount of labeled data.

2.1 One for many: Transfer learning for building HVAC control

2.1.1 Background

In the literature, there is an extensive body of work addressing the control design of building

HVAC systems [39]–[42]. Most of them use model-based approaches that create simplified physi-

cal models to capture building thermal dynamics for efficient HVAC control. For instance, resistor-

capacitor (RC) networks are used for modeling building thermal dynamics in [40], [43], [44], and

Section 2.1 is based on our work published at [30].

25

linear-quadratic regulator (LQR) or model predictive control (MPC) based approaches are devel-

oped accordingly for efficient runtime control. However, creating a simplified yet sufficiently-

accurate physical model for runtime HVAC control is often difficult, as building room air tempera-

ture is complexly affected by a number of factors, including building layout, structure, construction

and materials, surrounding environment (e.g., ambient temperature, humidity, and solar radiation),

internal heat generation from occupants, lighting, and appliances, etc. Moreover, it takes signifi-

cant effort and time to develop explicit physical models, find the right parameters, and update the

models over the building lifecycle [45].

The drawbacks of model-based approaches have motivated the development of data-driven

HVAC control methods that do not rely on analyzing physical models at runtime but rather directly

making the decisions based on input data. A number of data-driven methods such as reinforce-

ment learning (RL) have been proposed in the literature, including more traditional methods that

leverage the classical Q-learning techniques and perform optimization based on a tabular Q value

function [46]–[48], earlier works that utilize neural networks [49], [50], and more recent deep rein-

forcement learning (DRL) methods [6], [24], [25], [51]–[54]. In particular, the DRL-based meth-

ods leverage deep neural networks for estimating the Q values associated with state-action pairs

and are able to handle larger state space than traditional RL methods [45]. They have emerged as a

promising solution that offers good HVAC control performance without analyzing physical models

at runtime.

However, there are major challenges in deploying DRL-based methods in practice. Given the

complexity of modern buildings, it could take a significant amount of training for DRL models

to reach the desired performance. For instance, around 50 to 100 months of data are needed for

training the models in [6], [45] and 4000+ months of data are used for more complex models [28],

[54] – even if this could be drastically reduced to a few months or weeks, directly deploying

26

DRL models on operational buildings and taking so long before getting the desired performance is

impractical. The works in [6], [45] thus propose to first use detailed and accurate physical models

(e.g., EnergyPlus [55]) for offline simulation-based training before the deployment. While such an

approach can speed up the training process, it still requires the development and update of detailed

physical models, which as stated above needs significant domain expertise, effort, and time.

To address the challenges in DRL training for HVAC control, we propose a transfer learning

based approach in this chapter, to utilize existing models (that had been trained for old buildings)

in the development of DRL methods for new buildings. This is not a straightforward process,

however. Different buildings may have different sizes, numbers of thermal zones, materials and

layouts, HVAC equipment, and operate under different ambient weather conditions. As shown later

in the experiments, directly transferring models between such different buildings is not effective.

2.1.2 Related Works

Model-based and Data-driven HVAC Control. There is a rich literature in HVAC control design,

where the approaches can generally fall into two main categories, i.e., model-based and data-

driven.

Traditional model-based HVAC control approaches typically build explicit physical models for

the controlled buildings and their surrounding environment, and then design control algorithms

accordingly [39], [40]. For instance, the work in [56] presents a nonlinear model for the overall

cooling system, which includes chillers, cooling towers and thermal storage tanks, and then devel-

ops an MPC-based approach for reducing building energy consumption. The work in [40] models

the building thermal dynamics as RC networks, calibrates the model based on historical data, and

then presents a tracking LQR approach for HVAC control. Similar simplified models have been uti-

lized in other works [41], [43], [44] for HVAC control and for co-scheduling HVAC operation with

27

other energy demands and power supplies. While being efficient, these simplified models often do

not provide sufficient accuracy for effective runtime control, given the complex relation between

building room air temperature and various factors of the building itself (e.g., layout, structure, con-

struction and materials), its surrounding environment (e.g., ambient temperature, humidity, solar

radiation), and internal operation (e.g., heat generation from occupants, lighting and appliances).

More accurate physical models can be built and simulated with tools such as EnergyPlus [55], but

those models are typically too complex to be used for runtime control.

Data-driven approaches have thus emerged in recent years due to their advantages of not re-

quiring explicit physical models at runtime . These approaches often leverage various machine

learning techniques, in particular reinforcement learning. For instance, in [6], [51], DRL is ap-

plied to building HVAC control and an EnergyPlus model is leveraged for simulation-based offline

training of DRL. In [24], [25], DRL approaches leveraging the actor-critic methods are applied.

The works in [53], [54] use data-driven methods to approximate/learn the energy consumption and

occupants’ satisfaction under different thermal conditions, and then apply DRL to learn an end-to-

end HVAC control policy. These DRL-based methods are shown to be effective at reducing energy

cost and maintaining desired temperature, and are sufficiently efficient at runtime. However, they

often take a long training time to reach the desired performance, needing dozens and hundreds of

months of data for training [6], [45] or even longer [28], [54]. Directly deploying them in real

buildings for such long training process is obviously not practical. Leveraging tools such as Ener-

gyPlus for offline simulation-based training can mitigate this issue, but again incurs the need for

the expensive and sometimes error-prone process of developing accurate physical models (needed

for simulation in this case). These challenges have motivated us to develop a transfer learning

approach for efficient and effective DRL control of HVAC systems.

Transfer Learning for HVAC control. There are a few works that have explored transfer learning

28

in buildings HVAC control. In [57], transfer learning of a Q-learning agent is studied, however only

a single room (thermal zone) is considered. The usage of a tabular table for each state-action pair in

the traditional Q-learning in fact limits the approach’s capability to handle high-dimensional data.

In [58], a neural network model for predicting temperature and humidity is learned in a supervised

manner and transferred to new buildings for MPC-based control. The approach also focuses on

single-zone buildings and requires further tuning after the deployment of the controller.

Transfer Learning in DRL. Since our approach considers transfer learning for DRL, it is worth

to note some of the work in DRL-based transfer learning for other domains [59]–[62]. For in-

stance, in [60], the distribution of optimal trajectories across similar robots is matched for transfer

learning in robotics. In [62], an environment randomization approach is proposed, where DRL

agents trained in simulation with a large number of generated environments can be successfully

transferred to their real-world applications.

2.1.3 Methodology

We present our transfer learning approach in this section, including the design of the two-subnetwork

controller and the training process. Section 2.1.3.1 introduces the system model. Section 2.1.3.2

provides an overview of our methodology. Section 2.1.3.2 presents the design of the building-

agnostic front-end (sub-)network, and Section 2.1.3.2 explains the design of the building-specific

back-end (sub-)network.

2.1.3 System Model

The goal of our work is to build a transferable HVAC control system that can maintain comfort-

able room air temperature within desired bounds while reducing the energy cost. We adopt a

building model that is similar to the one used in [6], an n-zone building model with a variable

29

Target building control model

∆
𝑻

A
ct

io
n

s
𝐴

Sy
st

em
 s

ta
te

𝐼

Sy
st

em
 s

ta
te

 𝐼

Weight sharing

𝐼 𝑖

∆
𝑻
𝒊

Front-end network
Back-end network

Source building control model

∆
𝑻

A
ct

io
n

s
𝐴

Sy
st

em
 s

ta
te

 𝐼

Sy
st

em
 s

ta
te

 𝐼
Weight sharing

𝐼 𝑖

∆
𝑻
𝒊

Front-end network

Back-end network

Source building

Target building

Direct copy

ON-OFF controller

Data collector
Supervised

learning

Supervised
learning

Data collector

ON-OFF controller

Control action

Control action

Collect system state
for DQN trainingWarm-up

control

Warm-up
control

Collect system state
for DQN training

Figure 2.1: Overview of our DRL-based transfer learning approach for HVAC control. We design a novel
DQN architecture that includes two sub-networks: A front-end network Q captures the building-agnostic
part of the control as much as possible, while a back-end network (inverse building network) F−1 captures
the building-specific behavior. At each control step, the front-end network Q maps the current system state
I to an intermediate state ∆T . Then, the back-end network F−1 maps ∆T , together with I , to the control
action outputs A. During transfer learning from a source building to a target building, the front-end network
Q is directly transferable. The back-end network F−1 can be trained in a supervised manner, with data
collected from an existing controller (e.g., a simple ON-OFF controller). Experiments have shown that
around two weeks of data is sufficient for such supervised training of F−1. If it is a brand new building
without any existing controller, we can deploy a simple ON-OFF controller for two weeks in a “warm-up”
process. During this process, the ON-OFF controller can maintain the temperature within the desired bounds
(albeit with higher cost), and collect data that captures the building-specific behavior for training F−1.

30

air volume (VAV) HVAC system. The system provides conditioned air at a flow rate chosen from

m discrete levels. Thus, the entire action space for the n-zone controller can be described as

A = {a1, a2, · · · , an}, where ai(1 ≤ i ≤ n) is chosen from m VAV levels {f1, f2, · · · , fm}. Note

that the size of the action space (mn) increases exponentially with respect to the number of thermal

zones n, which presents significant challenge to DRL control for larger buildings. We address this

challenge in the design of our two-subnetwork DRL controller by avoiding setting the size of the

neural network action output layer to mn. This will be explained further later.

The DRL action is determined by the current system state. In our model, the system state

includes the current physical time t, inside state Sin, and outside environment state Sout. The in-

side state Sin includes the temperature of each thermal zone, denoted as {T1, T2, · · · , Tn}. The

outside environment state Sout includes the ambient temperature and the solar irradiance (radia-

tion intensity). Similar to [6], to improve DRL performance, Sout not only includes the current

values of the ambient temperature T i
out and the solar irradiance Suni

out, but also their weather

forecast values for the next three days. Thus, the outside environment state is denoted as Sout =

{T 0
out, T

1
out, T

2
out, T

3
out, Sun

0
out, Sun

1
out, Sun

2
out, Sun

3
out}. Our current model does not consider in-

ternal heat generation from occupants, a limitation that we plan to address in future work.

2.1.3 Methodology Overview

We started our work by considering whether it is possible to directly transfer a well-trained DQN

model for a single-zone source building to every zone of a target multiple-zone building. However,

based on our experiments (shown later in Table 2.2 of Section 2.3.4), such straightforward approach

is not effective at all, leading to significant temperature violations. This is perhaps not surprising.

In DQN-based reinforcement learning, a neural network Q maps the input I = {I1, I2, · · · , In},

where Ii is the state for each zone i, to the control action output A. The network Q is optimized

31

based on a reward function that considers energy cost and temperature violation. Through train-

ing, Q learns a control strategy that incorporates the consideration of building thermal dynamics,

including the building-specific characteristics. Directly applying Q to a new target building, which

may have totally different characteristics and dynamics, will not be effective in general.

Thus, our approach designs a novel architecture that includes two sub-networks, with an in-

termediate state ∆T that indicates a predictive value of the controller’s willingness to change the

indoor temperature. The front-end network Q maps the inputs I to the intermediate state ∆T .

It is trained to capture the building-agnostic part of the control strategy, and is directly transfer-

able. The back-end network then maps ∆T , together with I , to the control action output A. It is

trained to capture the building-specific part of the control, and can be viewed as an inverse building

network F−1. An overview of our approach is illustrated in Figure 2.1.

Front-end Building-agnostic Network Design and Training

We introduce the design of our front-end network Q and its training in this section. Q is com-

posed of n (sub-)networks itself, where where n is the number of building thermal zones. Each

zone in the building model has its corresponding sub-network, and all sub-networks share their

weights. In each sub-network for thermal zone i, the input layer accepts state Ii. It is followed by

L sequentially-connected fully-connected layers (the exact number of neurons is presented later

in Table 2.1 of Section 2.3.4). Rather than directly giving the control action likelihood vector, the

network’s output layer reflects a planned temperature change value ∆Ti for each zone.

More specifically, the output of the last layer is designed as a vector O∆Ti
of length h + 2 in

one-hot representation – the planned temperature changing range is equally divided into h intervals

within a predefined temperature range of [−b, b] and two intervals outside of that range are also

considered. The relationship of the planned temperature change value ∆Ti of zone i and the output

32

vector O∆Ti
is as follows:

O∆Ti
=



< 1, 0, · · · , 0 >, ∆Ti ≤ −b,

< 0, · · · , 0, 1, 0, · · · , 0 >, −b < ∆Ti < b,

the position of 1 is at (⌊∆Ti/(2b/h)⌋))

< 0, · · · , 0, 1 >, ∆Ti ≥ b.

(2.1)

Then, for the entire front-end network Q, the combined input is I = {I1, I2, · · · , In}, and the

combined output is O∆T = {O∆T1 , O∆T2 , · · · , O∆Tn}.

It is worth noting that if we had designed the front-end network in standard deep Q-learning

model [63], it would take I as the network’s input, pass it through several fully-connected layers,

and output the selection among an action space that has a size of (h + 2)n (as there are n zones,

and each has h + 2 possible actions). It also needs an equal number of neurons for the last layer,

which is not affordable when the number of zones gets large. Instead in our design, the last layer

of the front-end network Q has its size reduced to (h + 2) ∗ n, which can be further reduced to

(h+ 2) with the following weight-sharing technique.

We decide to let the n sub-networks of Q share their weights during training. One benefit of

this design is that it enables transferring the front-end network for a n-zone source building to a

target m-zone building, where m could be different from n. It also reduces the training load by

lowering the number of parameters. Such design performs well in our experiments.

Our front-end network Q is trained with the standard deep Q-learning techniques [63]. Note

that while the output action for Q is the planned temperature change vector O∆T , the training

process uses a dynamic reward Rt that depends on the eventual action (i.e., output of network F−1),

which will be introduced later in Section 2.1.3.2. Specifically, the training of the front-end network

Q follows Algorithm 1 (the hyper-parameters used are listed later in Table ?? of Section 2.3.4).

33

First, we initialize Q by following the weights initialization method described in [64] and copy

its weights to the target network Q
′ (target network Q

′ is a technique in deep Q-learning that is

used for improving performance.). The back-end network F−1 is initialized following Algorithm 2

(introduced later in Section 2.1.3.2). We also empty the replay buffer and set the exploration rate ϵ

to 1.

At each control instant t during a training epoch, we obtain the current system state Scur = (t,

Sin, Sout) and calculate the current reward Rt. We then collect the learning samples (experience)

(Spre, Scur, ∆T , A, R) and store them in the replay buffer. In the following learning-related oper-

ations, we first sample a data batch M = (Sprime,Snext, ,) from the replay buffer, and calculate

the actual temperature change value ∆Ta from Sprime and Snext. Then, we get the planned tem-

perature change value from the back-end network F−1, i.e., p = F−1(∆Ta,Sprime). In this way,

the cross entropy loss can be calculated from the true label and the predicted label p. We then

use supervised learning to update the back-end network F−1 with the Adam optimizer [65] under

learning rate lr2.

We follow the same procedure as described in [63] to calculate the target vector v that is used

in deep Q-learning. With target vector v and input state Sprime, we can then train Q using the

back-propagation method [66] with mean squared error loss and learning rate lr1. With a period

of ∆nt, we assign the weights of Q to the target network Q
′ . The exploration rate is updated as

ϵ = max{ϵlow, ϵ−∆ϵ}. It is used for ϵ−greedy policy to select each planned temperature change

value ∆Ti:

∆Ti = {
argmax O∆Ti

with probability 1− ϵ,

random(0 to h+ 1) with probability ϵ.

(2.2)

∆T = {∆T1,∆T2, · · · ,∆Tn}. (2.3)

34

Algorithm 1 Training of front-end network Q

1: ep: the number of training epochs
2: ∆ct: the control period
3: tMAX : the maximum training time of an epoch
4: ∆nt: the time interval to update target network
5: Empty replay buffer
6: Initialize Q; set the weights of target network Q

′
= Q; initialize F−1 based on Algorithm 2

7: Initialize the current planned temperature change vector ∆T
8: Initialize previous state Spre

9: Initialize exploration rate ϵ
Epoch = 1 to ep t = 0 to tMAX , t += ∆ct

10: Scur ← (t, Sin, Sout)
11: Calculate reward R
12: Add experience (Spre, Scur, ∆T , A, R) to the replay buffer tr = 0 to LMAX

13: Sample a batch M = (Sprime,Snext, ,)
14: Calculate actual temperature change value ∆Ta

15: Predicted label p = F−1(∆Ta,Sprime)
16: Set loss L = CrossEntropyLoss(p,)
17: Update F−1 with loss L and learning rate lr2
18: Target ← target network Q

′
(Sprime)

19: Train network Q with Sprime and t mod ∆nt == 0
20: Update target network Q

′

21: O∆T = Q(Scur)
22: Update exploration rate ϵ
23: Update each ∆Ti follows ϵ−greedy policy
24: ∆T =< ∆T1,∆T2, · · · ,∆Tn >
25: Control action A← F−1(∆T, Scur)
26: Spre = Scur

The control action A is obtained from the back-end network:

A = F−1(∆T, Scur). (2.4)

Back-end Building-specific Network Design and Training

The objective of the back-end network is to map the planned temperature change vector O∆T (or

∆T), together with the system state I , into the control action A. Consider that during operation, a

35

building environment “maps” the control action and system state to the actual temperature change

value. So in a way, the back-end network can be viewed as doing the inverse of what a building

environment does, i.e., it can be viewed as an inverse building network F−1.

The network F−1 receives the planned temperature change value ∆T and the system state

I at its input layer. It is followed by L
′ fully-connected layers (exact number for experimen-

tation is specified in Table 2.1 of Section 2.3.4). It outputs a likelihood control action vec-

tor OA = {v1, v2, · · · , vn}, which can be divided into n groups. For group i, it has a one-

hot vector vi corresponding to the control action for zone i. The length of vi is m, as there

are m possible control actions for each zone as defined earlier. When OA is provided, con-

trol action A can be easily calculated by applying argmax operation for each group in OA, i.e.,

A = {argmax{v1}, argmax{v2}, · · · , argmax{vn}}.

The network F−1 is integrated with the reward function Rt:

Rt = wcostR costt + wvioR viot, (2.5)

where R costt is the reward of energy cost at time step t and wcost is the corresponding scaling

factor. R viot is the reward of zone temperature violation at time step t and wvio is its scaling

factor. The two rewards are further defined as:

R costt =− cost(F−1(∆T t−1), t− 1). (2.6)

R viot = −
n∑

i=1

max(T i
t − Tupper, 0) +max(Tlower − T i

t , 0). (2.7)

Here, cost(,) is a function that calculates the energy cost within a control period according to the

local electricity price that changes over time. ∆T t−1 is the planned temperature change value at

time t−1. T i
t is the zone i temperature at time t. Tupper and Tlower are the comfortable temperature

36

upper / lower bound, respectively.

As stated before, F−1 can be trained in a supervised manner. We could also directly deploy

our DRL controller, with transferred front-end network Q and an initially-randomized back-end

network F−1; but we have found that leveraging data collected from the existing controller of the

target building for offline supervise learning of F−1 before deployment can provide significantly

better results than starting with a random F−1. This is because that the data from the existing

controller provides insights into the building-specific behavior, which after all is what F−1 is for.

In our experiments, we have found that a simple existing controller such as the ON-OFF controller

with two weeks of data can already be very effective for helping training F−1. Note that such

supervised training of F−1 does not require the front-end network Q, which means F−1 could be

well-trained and ready for use before Q is trained and transferred. In the case that the target build-

ing is brand new and there is no existing controller, we can deploy a simple ON-OFF controller for

collecting such data in a warm-up process (Figure 2.1). While such ON-OFF controller typically

consumes significantly higher energy, it can effectively maintain the room temperature within de-

sired bounds, which means that the building could already be in use during this period. Once F−1

is trained, the DRL controller can replace the ON-OFF controller in operation.

Algorithm 2 shows the detailed process for the training of F−1. Note that the initialization of

F−1 in this algorithm also follows the weights initialization method described in [64]. We also

augment the collected training data to ensure the boundary condition. The augmenting data is

created by copying all samples from the collected data and set temperature change value ∆T to

the lowest level (< −b) while setting all control actions to the maximum level.

Once the front-end network Q is trained as in Algorithm 1 and the back-end network F−1 is

trained as in Algorithm 2, our transferred DRL controller is ready to be deployed and can operate

as described in Algorithm 3. Note that we could further fine-tune our DRL controller during the

37

Algorithm 2 Training of back-end network F−1

1: epF : the number of training epochs
2: ∆ct: the control period
3: t

′
MAX : the maximum data collection time

4: Initialize previous state Spre

5: Initialize F−1

6: Empty database M and dataset D
t = 0 to tMAX , t += ∆ct

7: Scur ← (t, Sin, Sour)
8: Control action A← run ON-OFF controller on Scur

9: Spre = Scur

10: Add sample (Scur, Spre,A) to database M
each sample u=(Scur, Spre,a) in M

11: ∆Ta ← calculate temperature difference in (Scur,Spre)
12: Add sample v = (∆Ta, Spre,a) to dataset D

each sample u=(Scur, Spre,a) in M
13: ∆Ta ← lowest level
14: a

′ ← maximum air condition level
15: Add sample v = (∆Ta, Spre,a

′
) to dataset D Epoch = 1 to epF each training batch of (∆Ta, Spre,a)

in dataset D
16: network inputs = (∆Ta, Spre)
17: corresponding labels = (a)
18: Train network F−1

19: Return F−1

operation. This can be done by enabling a fine-tuning procedure that is similar to Algorithm 1.

The difference is that instead of initializing the Q-network Q using [64], we copy transferred Q-

network weights from the source building to the target building’s front-end network Q and its

corresponding target network Q
′ . And we set ϵ = 0, ϵlow = 0, and LMAX to 3 instead of 1. Other

operations remain the same as in Algorithm 1.

38

Algorithm 3 Running of our proposed approach
1: ∆ct: the control period
2: tMAX : the maximum testing time
3: Initialize the weights of Q with the front-end network transferred from the source building (see Fig-

ure 2.1)
4: Initialize the weights of F−1 with weights learned using Algorithm 2

t = 0 to tMAX , t += ∆ct
5: Scur ← (t, Sin, Sout)
6: ∆T ← argmax Q(Scur)
7: Control action A← F−1(∆T, Scur)

2.1.4 Experimental Results

2.1.4 Experiment Settings

All experiments are conducted on a server equipped with a 2.10GHz CPU (Intel Xeon(R) Gold

6130), 64GB RAM, and an NVIDIA TITAN RTX GPU card. The learning algorithms are imple-

mented in the PyTorch learning framework. The Adam optimizer [65] is used to optimize both

front-end networks and back-end networks. The DRL hyper-parameter settings are shown in Ta-

ble 2.1. In addition, to accurately evaluate our approach, we leverage the building simulation tool

EnergyPlus [55]. Note that EnergyPlus here is only used for evaluation purpose, in place of real

buildings. During the practical application of our approach, EnergyPlus is not needed. This is

different from some of the approaches in the literature [6], [45], where EnergyPlus is needed for

offline training before deployment and hence accurate and expensive physical models have to be

developed.

In our experiments, simulation models in EnergyPlus interact with the learning algorithms

written in Python through the Building Controls Virtual Test Bed (BCVTB) [67]. We simu-

late the building models with the weather data obtained from the Typical Meteorological Year

3 database [68], and choose the summer weather data in August (each training epoch contains

39

Parameter Value Parameter Value
Front-end

network layers
[10,128,256,

256,256,400,22]
Back-end

network layers
[22*n,128,256,
256,128,m*n]

b 2 h 20
lr1 0.0003 ep 150
lr2 0.0001 epF 15

LMAX 1 wcost
1

1000
ep 150 wvio

1
1600

Tlower 19 Tupper 24
∆nt 240*15 min ∆ct 15 min
t
′
MAX 2 weeks tMAX 1 month
ϵlow 0.1

Table 2.1: Hyper-parameter setting of transfer learning for building HVAC control.

one-month data). Apart from the weather transferring experiments, all other experiments are based

on the weather data collected in Riverside, California, where the ambient weather changes more

drastically and thus presents more challenges to the HVAC controller. Different building types are

used in our experiments, including one-zone building 1 (simplified as 1-zone 1), four-zone building

1 (4-zone 1), four-zone building 2 (4-zone 2), four-zone building 3 (4-zone 3), five-zone building

1 (5-zone 1), seven-zone building 1 (7-zone 1). These models are visualized in Figure 2.2. In

addition, the conditioned air temperature sent from the VAV HVAC system is set to 10 °C.

The symbols used in the result tables are explained as follows. θi denotes the temperature

violation rate in the thermal zone i. Aθ and Mθ represent the average temperature violation rate

across all zones and the maximum temperature violation rate across all zones, respectively. µi

denotes the maximum temperature violation value for zone i, measured in °C. Aµ and Mµ are the

average and maximum temperature violation value across all zones, respectively. EP represents

the number of training epochs. The symbol 2� denotes whether all the temperature violation rates

across all zones are less than 5%. If it is true, it is marked as ✓; otherwise, it is × (which is

typically not acceptable for HVAC control).

40

Figure 2.2: Different building models used in our experiments. From left to right, the models
are one-zone building 1, four-zone building 1, four-zone building 2 , four-zone building 3, five-
zone building 1, seven-zone building 1. Compared to four-zone building 1, four-zone building
2 has different layout and wall material; four-zone building 3 has different layout, wall material,
and room size; five-zone building 1 has different number of zones, layout, and wall material; and
seven-zone building 1 has different number of zones, layout, wall material, and room size.

Source Target θ1 θ2 θ3 θ4 µ1 µ2 µ3 µ4 2� Cost
1-zone 1 1-zone 1 1.62% - - - 1.11 - - - ✓ 248.43
1-zone 1 4-zone 2 1.88% 9.43% 10.19% 14.07% 0.44 0.97 1.04 1.17 × 308.13

Table 2.2: This table shows the experiment that transfers a single-zone DQN model (trained on
one-zone building 1) to every zone of four-zone building 2. The high violation rate shows that
such a straightforward scheme may not yield good results and more sophisticated methods such as
ours are needed.

Before reporting the main part of our results, we want to show that simply transferring a well-

trained DQN model for a single-zone source building to every zone of a target multi-zone building

may not yield good results, as discussed in Section 2.1.3.2. Here as shown in Table 2.2, a DQN

model trained for one-zone building 1 works well for itself, but when being transferred directly to

every zone of four-zone building 2, there are significant temperature violations. This shows that a

more sophisticated approach such as ours is needed. The following sections will show the results

of our approach and its comparison with other methods.

2.1.4 Transfer from n-zone to n-zone with Different Materials and Layouts

In this section, we conduct experiments on building HVAC controller transfer with four-zone build-

ings that have different materials and layouts. As shown in Figure 2.2, four-zone building 1 and

four-zone building 2 have different structures, and also different wall materials in each zone with

different heat capacities. Table 2.3 first shows the direct training results on four-zone building 1,

41

and the main transferring results are presented in Table 2.4.

The direct training outcome by baselines and our approach are shown in Table 2.3. The results

include ON-OFF control, Deep Q-network (DQN) control as described in [6] (which assigns an

individual DQN model for each zone in the building and trains them for 100 epochs, with one-

month data for each epoch), DQN∗ (standard deep Q learning method with mn selections in the

last layer [69]), and the direct training result of our method without transferring. Moreover, the

DQN method is trained with 50, 100, and 150 training epochs (months), respectively, to show the

impact of training time. As shown in the table, all learning-based methods demonstrate significant

energy cost reduction over ON-OFF control. DQN∗ shows slightly higher cost and violation rate,

when compared to DQN after 150 epochs. Our approach with Algorithm 1 (i.e., not transferred)

achieves the lowest violation rate among all learning-based methods, while providing a low cost.

Table 2.4 shows the main comparison results of our transfer learning approach and other base-

lines on four-zone building 2 and four-zone building 3. ON-OFF, DQN and DQN∗ are directly

trained on those two buildings. DQN∗
T is a transfer learning approach that transfers a well-trained

DQN∗ model on four-zone building 1 to the target building (four-zone building 2 or 3). Our

approach transfers our trained four-zone building 1 model (last line in Table 2.3) to the target

building. From Table 2.4, we can see that for both four-zone building 2 and 3, with 150 training

epochs, DQN and DQN∗ provide lower violation rate and cost than ON-OFF control, although

DQN∗ cannot meet the temperature violation requirement. And the other transfer learning ap-

proach DQN∗
T shows very high violation rate. In comparison, our approach achieves extremely

low temperature violation rate and a relatively low energy cost without any fine-tuning after trans-

ferring (i.e., EP is 0). We may fine tune the controller for 1 epoch (month) after transferring to

further reduce the energy cost (i.e., EP is 1), at the expense of slightly higher violation rate (but

still meeting the requirement). More studies on fine-tuning can be found in Section 2.1.4.5.

42

Method Building EP θ1 θ2 θ3 θ4 µ1 µ2 µ3 µ4 2� Cost
ON-OFF 4-zone 1 0 0.08% 0.08% 0.23% 0.19% 0.01 0.03 0.08 0.08 ✓ 329.56
DQN[6] 4-zone 1 50 1.21% 22.72% 9.47% 20.66% 0.68 2.46 1.61 2.07 × 245.08
DQN[6] 4-zone 1 100 0.0% 0.53% 0.05% 0.93% 0.0 0.46 0.40 1.09 ✓ 292.91
DQN[6] 4-zone 1 150 0.0% 0.95% 0.03% 1.59% 0.0 0.52 0.17 1.17 ✓ 278.32
DQN∗ 4-zone 1 150 1.74% 2.81% 1.80% 2.76% 0.45 0.79 1.08 1.22 ✓ 289.09
Ours 4-zone 1 150 0.0% 0.04% 0.0% 0.03% 0.0 0.33 0.0 0.11 ✓ 297.42

Table 2.3: Results of different methods on four-zone building 1. Apart from the ON-OFF control,
all others are the training results without transferring. The training model in the last row is used as
the transfer model to other buildings in our method.

Method Building EP θ1 θ2 θ3 θ4 µ1 µ2 µ3 µ4 2� Cost
ON-OFF 4-zone 2 0 0.0% 0.0% 0.0% 0.02% 0.0 0.0 0.0 0.46 ✓ 373.78
DQN[6] 4-zone 2 50 0.83% 49.22% 46.75% 60.48% 0.74 2.93 3.18 3.39 × 258.85
DQN[6] 4-zone 2 100 0.0% 1.67% 1.23% 3.58% 0.0 0.92 0.77 1.62 ✓ 352.13
DQN[6] 4-zone 2 150 0.0% 2.52% 1.67% 4.84% 0.0 1.64 1.56 1.61 ✓ 337.33
DQN∗ 4-zone 2 150 1.16% 2.71% 2.17% 6.44% 0.61 1.11 0.77 1.11 × 323.72
DQN∗

T 4-zone 2 0 12.35% 19.10% 10.39% 23.59% 2.47 4.67 2.27 5.22 × 288.73
Ours 4-zone 2 0 0.0% 0.0% 0.0% 0.07% 0.0 0.0 0.0 0.88 ✓ 338.45
Ours 4-zone 2 1 0.09% 3.44% 1.91% 4.06% 0.33 1.04 0.96 1.35 ✓ 297.03
ON-OFF 4-zone 3 0 0.0% 0.19% 0.0% 0.0% 0.0 0.02 0.0 0.0 ✓ 360.74
DQN[6] 4-zone 3 50 0.68% 47.21% 44.61% 56.19% 0.74 3.15 2.92 3.60 × 267.29
DQN[6] 4-zone 3 100 0.34% 2.53% 2.21% 5.59% 0.01 1.18 0.85 1.18 × 342.08
DQN[6] 4-zone 3 150 0.0% 1.55% 1.68% 3.79% 0.0 1.09 1.18 1.51 ✓ 334.89
DQN∗ 4-zone 3 150 7.09% 13.85% 2.87% 2.16% 1.26 1.48 1.42 1.01 × 316.93
DQN∗

T 4-zone 3 0 13.31% 8.11% 3.18% 0.66% 1.25 3.48 2.27 0.69 × 294.23
Ours 4-zone 3 0 0.0% 0.28% 0.0% 0.0% 0.0 0.37 0.0 0.0 ✓ 340.40
Ours 4-zone 3 1 0.23% 2.74% 0.04% 0.13% 0.34 1.73 0.12 0.31 ✓ 331.47

Table 2.4: Comparison between our approach and other baselines. The top half shows the per-
formance of different controllers on four-zone building 2, including ON-OFF controller, DQN
from [6] trained with different number of epochs, the standard Deep Q-learning method (DQN∗)
and its transferred version from four-zone building 1 (DQN∗

T), and our approach transferred from
four-zone building 1 (without fine-tuning and with 1 epoch tuning, respectively). We can see that
our method achieves the lowest violation rate and very low energy cost after transferring without
any further tuning/training. We may fine tune our controller with 1 epoch (month) of training and
achieve the lowest cost, at the expense of slightly higher violation rate (but still meeting the re-
quirement). The bottom half shows the similar comparison results for four-zone building 3.

43

Method Building EP Aθ Mθ Aµ Mµ 2� Cost
ON-OFF 5-zone 1 0 0.45% 2.2% 0.24 1.00 ✓ 373.90
DQN[6] 5-zone 1 50 38.65% 65.00% 2.60 3.81 × 263.79
DQN[6] 5-zone 1 100 4.13% 11.59% 4.66 1.47 × 326.50
DQN[6] 5-zone 1 150 2.86% 10.94% 0.89 1.63 × 323.78
Ours 5-zone 1 0 0.47% 2.34% 0.33 1.42 ✓ 339.73
Ours 5-zone 1 1 2.41% 4.48% 1.02 1.64 ✓ 323.26
ON-OFF 7-zone 1 0 0.37% 2.61% 0.04 0.30 ✓ 392.56
DQN[6] 7-zone 1 50 28.14% 54.28% 2.76 3.06 × 248.38
DQN[6] 7-zone 1 100 5.19% 18.91% 1.12 1.69 × 277.87
DQN[6] 7-zone 1 150 4.48% 18.34% 1.22 1.98 × 284.51
Ours 7-zone 1 0 0.42% 2.79% 0.10 0.43 ✓ 332.07
Ours 7-zone 1 1 0.77% 1.16% 0.77 1.21 ✓ 329.81

Table 2.5: Comparison of our approach and baselines on five-zone building 1 and seven-zone
building 1.

2.1.4 Transfer from n-zone to m-zone

We also study the transfer from an n-zone building to an m-zone building. This is a difficult

task because the input and output dimensions are different, presenting significant challenges for

DRL network design. Here, we conduct experiments for transferring HVAC controller for four-

zone building 1 to five-zone building 1 and seven-zone building 1, and the results are presented

in Table 2.5. For these cases, DQN∗ and DQN∗
T cannot provide feasible results as the mn action

space is too large for them, and the violation rate does not go down even after 150 training epochs.

DQN [6] also leads to high violation rate. In comparison, our approach achieves both low violation

rate and low energy cost.

2.1.4 Transfer from n-zone to n-zone with Different HVAC Equipment

In some cases, the target building may have different HVAC equipment (or a building may have

its equipment upgraded). The new HVAC equipment may be more powerful or have a different

number of control levels, making the original controller not as effective. In such cases, our transfer

44

Method AC EP Aθ Mθ Aµ Mµ 2� Cost
ON-OFF AC 2 0 0.15% 0.23% 0.05 0.08 ✓ 329.56
DQN[6] AC 2 50 20.28% 35.56% 1.73 2.66 × 229.41
DQN[6] AC 2 100 1.25% 2.69% 0.61 1.20 ✓ 270.93
DQN[6] AC 2 150 1.49% 2.87% 0.60 1.02 ✓ 263.92
Ours AC 2 0 0.0% 0.0% 0.0 0.0 ✓ 303.37
Ours AC 2 1 2.06% 4.20% 0.97 1.30 ✓ 262.23
ON-OFF AC 3 0 0.01% 0.05% 0.22 0.88 ✓ 317.53
DQN[6] AC 3 50 2.85% 3.76% 1.37 1.90 ✓ 321.03
DQN[6] AC 3 100 0.69% 1.20% 0.53 0.99 ✓ 265.46
DQN[6] AC 3 150 0.62% 1.07% 0.47 0.65 ✓ 266.86
Ours AC 3 0 0.0% 0.0% 0.0 0.0 ✓ 316.16
Ours AC 3 1 0.84% 1.42% 0.54 0.78 ✓ 269.24

Table 2.6: Results comparison under different HVAC equipment.

learning approach provides an effective solution. Here we conduct experiments on transferring our

controller for the original HVAC equipment (denote as AC 1, which has two control levels and used

in all other experiments) to the same building with new HVAC equipment (denoted as AC2, which

has five control levels; and AC3, which has double max airflow rate and double air conditioner

power compared to AC1). The experimental results are shown in Table 2.6. We can see that our

approach provides zero violation rate after transferring, and the energy cost can be further reduced

with the fine tuning process.

2.1.4 Fine-tuning Study

After transferring, although our method has already gained a great performance without fine-

tuning, further training is still worth considering because it may provide even lower energy cost.

We record the change of cost and violation rate when fine-tuning our method transferred from

four-zone building 1 to four-zone building 2. The results are shown in Figure 2.3.

45

0.02% 0.74% 0.02% 1.53% 2.76% 2.41% 2.45%

Week

Average
violation

260

270

280

290

300

310

320

330

340

350

0 1 2 3 4 5 6

Cost

Figure 2.3: Fine-tuning results of our approach for four-zone building 2. Our approach can signif-
icantly reduce energy cost after fine-tuning for 3 weeks, while keeping the temperature violation
rate at a low level.

2.1.4 Discussion

Transfer from n-zone to n-zone with Different Weather

As presented in [57], the Q-learning controller with weather that has a larger temperature range

and variance is easy to be transferred into the environment with the weather that has a smaller

temperature range and variance, but it is much harder in the opposite direction. This conclusion

is similar to what we observed for our approach. We tested the weather from Riverside, Buffalo,

and Los Angeles, which is shown in Figure 2.4. The results show that our approach can easily be

transferred from large range and high variance weather (Riverside) to small range and low variance

weather (Buffalo and Los Angeles(LA)), but not vice versa. Fortunately, the transferring for a new

building is still not affected, because our approach can use the building models in the same region

or obtain the weather data in that region and create a simulated model for transferring.

Different Settings for ON-OFF Control

Our back-end network (inverse building network) is learned from the dataset collected by an ON-

46

Figure 2.4: The visualization of different weathers. The yellow line is the Buffalo weather, the
green line is the LA weather, the blue line is the Riverside weather, and the red lines are the
comfortable temperature boundary.

Building Source Target EP Aθ Mθ 2� Cost
4-zone 1 LA LA 150 0.68% 1.71% ✓ 82.01
4-zone 1 Buffalo Buffalo 150 0.64% 1.14% ✓ 101.79
4-zone 1 Riverside Riverside 150 0.02% 0.04% ✓ 297.42
4-zone 1 Riverside LA 0 0.0% 0.0% ✓ 105.17
4-zone 1 Riverside Buffalo 0 0.0% 0.0% ✓ 134.28
4-zone 1 LA Riverside 0 71.77% 89.34% × 158.06
4-zone 1 Buffalo Riverside 0 54.92% 81.89% × 180.20

Table 2.7: Transferring between different weathers.

47

Method Upper-Bound EP Aθ Mθ Cost
ON-OFF 23 0 0.01% 0.02% 373.78
ON-OFF 24 0 61.45% 73.69% 256.46
ON-OFF 25 0 98.56% 99.99% 208.79
Ours 23 0 0.02% 0.07% 338.45
Ours 24 0 0.02% 0.07% 338.08
Ours 25 0 0.02% 0.07% 338.08

Table 2.8: Results of testing using different boundary.

OFF control with low temperature violation rate. In practice, it is flexible to determine the actual

temperature boundaries for ON-OFF control. For instance, the operator may set the temperature

bound of ON-OFF control to be within the human comfortable temperature boundary (what we use

for our method) or just the same as the human comfortable temperature boundary, or even a little

out of boundary to save energy cost. Thus, we tested the performance of our method by collecting

data under different ON-OFF boundary settings. Results in Table 2.8 shows that with different

boundary settings, supervised learning can stably learn from building-specific behaviors.

2.2 Accelerate Online Reinforcement Learning for Building HVAC Control with Heteroge-

neous Expert Guidances

2.2.1 Background

From the previous section, we know that a major difficulty in adopting DRL-based methods for

building HVAC control is that it could take a long time to train the RL agent in practice during

building operation. For instance, it may take more than 100 months of training to reach conver-

gence for the Q-learning based methods [6], [70], and around 500 months of training for the DDPG

algorithm to converge on a laboratory building model [54]. In [27], DDPG is used for temperature

control and energy management, and it takes around 2.4 × 104 months to reach the best perfor-

Section 2.2 is based on our work published at [31].

48

mance. In [28], the training time is almost 4 × 104 months in a multi-zone building environment.

Clearly, such long training time would make it impossible to adopt DRL in practice for building

control. While developing a detailed simulation model (e.g., in EnergyPlus) and conducting the

training via simulation may help avoid this issue, the development of the simulation model itself is

difficult and costly (in terms of both time and expertise), just as in the model-based methods.

Thus, researchers have been trying to improve the training efficiency for DRL-based building

HVAC control. In previous section [30], a transfer learning approach is proposed to extract and

transfer the building-agnostic knowledge from an existing DRL controller of a source building to a

new DRL controller of a target building, and only re-train the building-specific components for the

new DRL controller. The work in [71] also leverages transfer learning, but for heat pump control

in microgrid. However, the effectiveness of the transfer learning-based methods strongly relies on

the similarity between the target building and the transferred building, and may not be feasible

when they do not share many similarities. There are also a few studies on the application of offline

reinforcement learning for building HVAC control, where historical data on existing controllers are

leveraged to train new RL-based controllers. For instance, the work in [72] conducts conservative

Q-learning (CQL) to train controllers for maintaining the room temperature setpoint. The problem

of such offline RL methods, however, is that the learned agents’ performance strong depends on

the quality of the historical data. And they tend to perform poorly due to the distributional shift

between the historical data and the learned policy, and may have limited improvement even with

fine tuning via online training [73].

In this section, to address the above challenge in DRL training efficiency, we propose a unified

framework that leverages the knowledge from domain experts in various forms to accelerate

online RL for building HVAC control. This is motivated by the observation that in established

domains such as building control, there is extensive domain expertise, represented in various forms

49

such as 1) abstract physical models (e.g., RC-networks [32] or ARX models [33]) of building

thermal dynamics – they are not accurate enough for enabling training DRL or designing model-

based methods with good performance, but nevertheless contain valuable information of building

dynamics, 2) historical data collected from existing controllers – they may not be able to train DRL

controllers with good performance due to distribution shift, but also contain useful information on

building behavior, and 3) expert rules that reflect basic policies. We believe that leveraging these

domain expertise can help accelerate the online RL process. In particular, our framework first

learns expert functions from existing abstract physical models and from historical data via offline

RL, and then combines those with expert rules to generate an integrated expert function, which

will then be used to drive online RL with prior-guided learning and policy initialization from

expert function distillation.

Moreover, to further improve the learned DRL-based controller’s capability in keeping room

temperature within the comfortable range, we propose a novel runtime shielding framework

with an expert model. Instead of combining the temperature violation and the energy cost as the

optimization objective (like during the DRL training), the framework considers the comfortable

temperature range as constraints and tries to adjust the DRL-based controller’s output for meeting

the temperature constraints during runtime. More specifically, the expert model takes the system

state as input and predicts the next-step indoor temperature and worst-case indoor temperature

in the next few steps. Based on such prediction, the framework iteratively adjusts the controller

output for meeting the temperature constraints. The runtime framework provides a general design

for reducing temperature violation rate, where various controllers can be incorporated. In this

case, when our proposed DRL-based controller is incorporated into it, significant reduction in

temperature violation rate can be observed in experiments.

50

2.2.2 Related Works

Transfer Learning for HVAC Control: One way to speed up RL is to transfer the learned policy

between different buildings. For instance, the work in [30] reduces the DRL training time by re-

designing the learning objective and decomposing the neural network to a building-agnostic sub-

network and a building-specific sub-network. The building-agnostic sub-network can be directly

transferred from an existing DRL controller of a source building, and only the building-specific

sub-network needs to be (re)-trained on the target building. This can reduce the DRL training

time from months/years to weeks. The approach in [71] utilizes the direct policy transfer between

different houses with the same state/action space for heat pump control in microgrids. The work

in [74] applies the transfer learning to a PPO-based controller for smart home to reduce the training

cost. The main limitations of these approaches is that the effectiveness of the transfer strongly relies

on the similarity between the source and the target buildings. When the buildings are not similar

or not operating in similar environment, the transfer may have poor performance [30].

Offline Reinforcement Learning: Another way to accelerate online RL is through offline RL, by

leveraging historical data collected under existing control policies. Recent offline RL works focus

on two aspects: offline policy optimization, and offline policy evaluation. The former aims to learn

an optimal policy for maximizing a notion of cumulative reward, while the latter is intended to

evaluate the accumulated reward (or the value function) of a given policy. For offline policy opti-

mization in particular, a major challenge is that the agent cannot directly explore the environment.

And the error (called extrapolation error [75]) that is caused by selected actions not contained in

the historical dataset could occur and propagate during the training. This is one of the reasons that

limits the effectiveness of existing offline RL approaches for building HVAC control [72]. The

approaches that address this challenge mainly utilize regularization or constraint-based methods to

51

help the policy stay near to the existing actions in the historical dataset. For instance, the batch-

constrained Q-learning (BCQ) approach [75] restricts its action space to make the learned behavior

similar to the actions in the historical dataset. The work in [76] penalizes divergence between the

prior learned from the historical dataset and the Q-network policy using KL-control. The approach

in [77] learns the policy by filtered behavioral cloning, which utilizes critic-regularized regression

to filter out low-quality actions. And other related investigations can be found in [78]–[83]. From

the prior experiments, we notice that not all offline RL algorithms can be chosen for building the

expert function. The method like TD3+BC [83] may not always provide a good value estimation

for the given states, as it only aims to make the learned policy closer to the behavior in the offline

dataset and tend to overestimate the Q-value. So in this work, we use historical data as one of the

expert guidance and conduct offline RL to build an expert function. We leverage the idea from [84]

to estimate the value function from historical dataset because of its effectiveness, by directly set-

ting regularization on the Q-function and generating the Q-value estimation in a conservative way

to reduce overestimation.

Shielding Methods for Learning-Based Systems: Shielding methods typically first check a

pre-defined shield and then adjust the control action accordingly by looking one step or a few

steps ahead. For instance, to ensure safety, model predictive shielding [85], [86] leverages a

backup control policy to override the learning policy when unsafe scenarios are predicted to hap-

pen. In the Simplex architecture [87], the high-assurance controller acts as a shield to the high-

performance controller for improved system safety and performance. However, most shielding-

based approaches rely on a fully-known environment model to synthesize a shield, which does not

apply to our problem setting here where we focus on model-free building HVAC control. More-

over, shielding methods may also degrade the overall performance [88]. In this paper, we propose

a novel runtime model-free shielding framework for the learned DRL-based controller. The frame-

52

work does not require knowing the system dynamics, does not affect the training stage, is agnostic

to the learned controller design, and as experiments show, can effectively reduce temperature vio-

lation rate while maintaining low energy cost.

2.2.3 Methodology

Historical data 𝐷ℎ

Expert
function ℎ𝑜

(s, a, r, s’)

Expert
function ℎ𝑢

Expert
function ℎ

ℒ𝑠𝑢𝑟

Environment

෩ℳ = 𝒮,𝒜, 𝒫, ǁ𝑟, ෤γ

max
𝑎

𝑄 𝑠, 𝑎

𝑈𝑠 = 𝑎 𝑎 ∈ 𝑓𝑟𝑢𝑙𝑒 𝑠 , 𝑎 ∈ 𝒜

Expert rules

Expert functions
mixing

Expert
guidance

Deep Q-network

Transfer dataset

DRL agent

s, r, s’

a

Agent from
expert model

෡ℳ = 𝒮,𝒜,𝒫𝑢, 𝑟, γ

Expert model

Offline RL

+min
𝑄

ξ𝐸𝑠𝑡∼𝐷
log෍

𝑎
exp 𝑄 𝑠𝑡, 𝑎𝑡

−𝐸𝑎𝑡∼π 𝑎𝑡 𝑠𝑡 𝑄 𝑠𝑡, 𝑎𝑡

Agent for offline
RL

Neural Networks
Abstract

physical model

Temperature
constraints

Runtime
shielding

Figure 2.5: Overview of our online DRL training framework with heterogeneous expert guidances.
The framework includes the following major components: (1) An expert function hu learned from
an expert model, which can be an abstract physical model or a neural network with its parameters
determined from historical data. (2) Another expert function ho learned from offline RL based on
historical data. (3) An integrated expert function h generated by combining hu and ho as well as
expert rules. (4) Application of prior-guided learning and policy initialization from expert function
distillation based on h.

2.2.3 System Model

We use the building model with the fan-coil system from [70], which is extended from a single-

zone commercial building with manipulable internal thermal mass. The internal air is conditioned

53

by an idealized fan coil unit (FCU) system, and the fan airflow rate is chosen from multiple discrete

levels {f1, f2, · · · , fm} (which can be viewed as m control actions; f1 is to turn off the cooling

system, and fm is to run it at full speed.). There are two different working modes in this system:

the occupied time (daily from 7 am to 7 pm), and the unoccupied time (rest of the day). The

HVAC system will run in a low-power mode during the unoccupied time for the energy-saving

purpose (with the cooling system almost turned off). And the setting of comfortable temperature

bound is different in these two modes. The system conducts control with a period of ∆t. Each

training episode contains two days of data, so there are 2880
∆t

control steps in each episode. Other

experiment-related settings can be found in experimental results section. The system state contains

the following elements:

• Current physical time t,

• Indoor air temperature T in
t ,

• Outdoor air temperature T env
t ,

• Solar irradiance intensity qsunt ,

• Power consumption during the current control interval Pt,

• Outdoor air temperature forecast in the next three control steps {T env
t+1 , T

env
t+2 , T

env
t+3}, and

• Solar irradiance intensity forecast in the next three control steps {qsunt+1 , q
sun
t+2 , q

sun
t+3}.

One thing to note is that we add one additional variable in the implementation to the system

state design, which is the remainder after dividing the current physical time t by 24 ∗ 60 ∗ 60. This

is to help the RL agent figure out the time position within one day (morning, noon, afternoon, etc.),

and may help it reach better performance as observed in our preliminary experiments.

54

2.2.3 Our Online DRL Training Framework with Heterogeneous Expert Guidances

As stated in introduction section, to accelerate online DRL for HVAC control, we propose a unified

framework that leverages heterogeneous expert guidances including abstract physical models, his-

torical data, and expert rules. Figure 2.5 shows the overview of our framework design. Specifically,

the framework includes the following major components:

• An expert function hu learned from an expert model. The expert model could be an abstract

physical model developed by domain experts (commonly exists in building domain), or in case

such physical model is not available, a neural network with its parameters determined from

historical data (but different from offline RL; more details later).

• Another expert function ho learned via offline RL on historical data that was collected using

existing controllers.

• An integrated expert function h by combining hu and ho as well as expert rules.

• Application of prior-guided learning and policy initialization from expert function distillation

based on h.

The detailed flow of our approach is in Algorithm 4. Next, we will first explain the underly-

ing DRL algorithm we use, and then introduce the details of each component in our approach to

improve DRL efficiency with heterogeneous expert guidance.

Underlying DRL algorithm: Similarly as in recent works [6], [30], [70], we utilize double Deep

Q-learning (DDQN) [89] as the underlying DRL algorithm for our framework and also the baseline

method for comparison in our experiments. We choose DDQN mainly for its convenience in

leveraging the value function and the good performance it has shown for HVAC control in those

recent works, but our expert-guidance approach can also be applied to improve the efficiency for

other DRL algorithms.

55

Algorithm 4 Our Online DRL Training Framework with Heterogeneous Expert Guidances
1: nep1, nep2: number of training epochs
2: nmax: maximum training time of an epoch
3: ntar: time interval to update target network
4: Randomly initialize Q-network Q
5: Learn expert function hu from expert model using Algorithm 5
6: Learn expert function ho from offline RL using Algorithm 6
7: Generate integrated expert function h from hu, ho and expert rules, following Equation (2.17)
8: Calculate initialization dataset Dy

init by hu, ho
9: Train Q-network Q by loss function Linit

Epoch = 1 to nep2

10: Reset building environment Env t = 0 to nmax

11: Select action at using epsilon-greedy
12: st, st+1, rt ← Env.execute(at)
13: Update λ← λ0 + (1− λ0) tanh(αλ((Epoch− 1) ∗ nmax + t))
14: r̃t = rt + (1− λ)γEs′∼P (·|s,a)[h(s

′
)], γ̃ = λγ

15: Add transition (st, st+1, at, r̃t) to replay buffer
16: Randomly sample a batch B = (S , S

′
, A , R) from replay buffer

17: Update Q-network Q with B and γ̃
18: Update target network Q

′
with interval ntar

We assume that the next state of the building HVAC system only relies on the current system

state, and thus HVAC control can be treated as a Markov decision process (MDP). As stated in

system model section, the state s = (t, T in
t , T env

t , qsunt , Pt, T
env
t+1 , T

env
t+2 , T

env
t+3 , q

sun
t+1 , q

sun
t+2 , q

sun
t+3). The

discrete action space A contains the normalized air flow rate (0 to 1) with m − 1 intervals. The

reward is designed with consideration of indoor temperature violation and energy cost, as shown

below:

rt = α · ϵt + β · ct, (2.8)

where ϵt represents the temperature violation for the current time step, ct is the energy cost for the

current time step, and α, β are the scaling factors. More specifically, ϵt is defined as:

ϵt = max (T in
i − Tupper, 0) + max (Tlower − T in

i , 0), (2.9)

56

where Tupper is the upper bound of a given comfortable temperature range (which could be based

on standards such as ASHRAE [90] or OSHA [91]) and Tlower is the lower bound. Moreover:

ct = ptPt, (2.10)

where pt is the energy price at time t, and Pt is the power consumption during the current control

interval at time t.

The goal of the DRL is to minimize total energy cost while maintaining indoor temperature

within the comfortable temperature range. The loss function LQ for updating the Q-network is:

LQ = E(st,at,s
′
t)∼D

[
(rt + γmax

at+1

Q
′
(st+1, at+1)−Q(s, a))2

]
, (2.11)

where st, st+1 ∈ S , at ∈ A, Q is the Q network and Q
′ is the target Q network. Then, the

components introduced in the rest of this section will generate expert functions to provide prior

guidance and policy initialization for this underlying DRL algorithm.

Learning Expert Function hu from Expert Model: An expert function hu can be learned through

an expert model. In many cases, such expert model already exists in the form of an abstract

physical model for the building thermal dynamics, e.g., an ARX or RC-networks model. While

these abstract models are typically not accurate enough to enable good performance for DRL or

model-based methods, they can be effectively leveraged to generate an expert function.

If an abstract physical model is not available, we can build a neural network as the expert

model, with its parameters decided from historical data collected under existing control policy, as

in Algorithm 5 (Line 5 in Algorithm 4) and described below.

We denote the historical dataset as Dh, with n data samples. For each data sample (x, y) ∈

Dh, let input x = {t, T in
t , T env

t , qsunt , Pt, T
env
t+1 , T

env
t+2 , T

env
t+3 , q

sun
t+1 , q

sun
t+2 , q

sun
t+3 , a} as defined in system

57

Algorithm 5 Learning Expert Function from Expert Model
1: nep1: number of training epochs
2: nmax: maximum training time of an epoch
3: ntar: time interval to update target network
4: Randomly initialize Q-network Qu

5: Prepare input samples and corresponding labels {x∗, y∗} from historical dataset Dh for training an
expert model

6: Train expert model Envu using dataset {x∗, y∗} and loss function Lu Epoch = 1 to nep1

7: Reset building environment Env t = 0 to nmax

8: Select action at using epsilon-greedy
9: st, st+1, rt ← Envu.execute(at)

10: Add transition (st, st+1, at, rt) to replay buffer RBh

11: Randomly sample a batch B = (S , S
′
, A , R) from RBh

12: Update Q-network Qu with B and γ̃
13: Update target network Q

′
u with interval ntar

14: Set expert function hu using Qu

model section and a ∈ A, and let output label y = {T in
t+1}. The neural network-based expert

model consists of mu fully-connected layers. All hidden layers are followed by a GELU activation

function [92], and are sequentially connected (the detailed layer setting will be specified later in

Table 2.9 of experimental results section). As different variables may not be in the same order of

magnitude (e.g., t can be 1000 times larger than T in
t), we normalize the input x and the output

label y. The preprocessed input and output can be written as x∗ = x−xl

xh−xl
, y∗ = y−yl

yh−yl
, where xh and

xl are the upper bound and lower bound of the variable x, and yh and yl are the upper and lower

bound of the variable y. We then train the expert model with a mean square error loss function

Lu =∥ y∗ − y∗pred ∥2, (2.12)

where y∗pred is the network prediction for the normalized y. When we apply this expert model after

model training, we obtain the prediction of y by reversing the operation of previously-mentioned

normalization step. It may not be necessary to predict the entire system state, e.g., the environment

58

temperature T out
t and solar irradiance qsunt may be obtained from weather forecast.

Once we have the expert model, either in the form of an abstract physical model or a neural

network, the expert function hu can be viewed as a prior guess of the optimal value function in

the building HVAC control task and can be learned via DRL. More specifically, we define an MDP

problem M̂ = (S,A,Pu, r, γ) where the definitions of state S, action spaceA and reward function

r are the same as defined at the beginning of underlying DRL algorithm section . Pu is from the

expert model. We then apply DDQN on M̂ and obtain a trained Q-network Q. And the expert

function hu can be set up as:

hu(s) = max
a

Q(s, a), (2.13)

where s is the state and a is the control action.

Learning Expert Function ho from Offline RL: Another type of expert function ho can be learned

from the historical data via offline RL, as shown in Algorithm 6 (Line 6 in Algorithm 4). We lever-

age some of the techniques from conservative Q-learning (CQL) [84] because of its effectiveness

in reducing a large number of hyper-parameters.

Algorithm 6 Learning Expert Function from Offline RL
1: nep1: number of training epochs
2: nmax: maximum training time of an epoch
3: ntar: time interval to update target network
4: Randomly initialize Q-network Qo

Epoch = 1 to nep1 t = 0 to nmax

5: Randomly sample a batch B = (S , S
′
, A , R) from Dh

6: Update Q-network Qo with B and γ̃ following Equation 2.15
7: Update target network Q

′
o with interval ntar

8: Set expert function ho using the learned Q-networks Qo

First, we build an offline RL model based on DDQN, but with different Q-network updating

rules as the DRL presented in the beginning of underlying DRL algorithm section. Compared with

59

Equation (2.11), we add an extra regularization term:

Lreg = min
Q

Est∼D

[
log

∑
at

exp(Q(st, at))− Eat∼π(at|st) [Q(st, at)]

]
, (2.14)

where st ∈ S and at ∈ A. Q is the Q-network, and D is the dataset produced by the behaviour pol-

icy π. In the equation, the first part log
∑

at
exp(Q(st, at)) describes a penalty term for minimizing

the Q-value of the action produced by current policy on the states in the historical dataset. It helps

learn a smaller and more conservative Q-value estimator. The second term −Eat∼π(at|st)[Q(st, at)]

counts average Q-value in the state-action pairs in the historical dataset and maximizes it to push

the current learned policy closer to the behavior policy in the historical dataset.

Then the policy updating is changed as follows:

Loff =
1

2
E(st,at,s

′
t)∼D

[
(rt + γmax

at+1

Q
′
(st+1, at+1)−Q(st, at))

2

]
+ ξLreg, (2.15)

where st, st+1 ∈ S, ξ is a mixing coefficient, and Q
′ is the target Q-network. With enough training

iterations, the offline RL agent can provide a good expert function ho following the same procedure

as in Equation (2.13).

Note that we observe that not all offline RL algorithms can be a suitable choice for our frame-

work. For example, approaches like TD3+BC [83] may not always provide a good value estimation

for the given states. We suspect that this may be due to two factors. One is related to the reward

design, as the value function estimation in some offline RL algorithms is sensitive to the scale of

the accumulated reward. The other is that because algorithms like TD3+BC only add regulariza-

tion on the actor updating and do not set constraints on the Q function, which could enlarge the

error in estimating the (Q-)value function when combined with possible numerical issues.

Generating Integrated Expert Function h from hu, ho and Expert Rules: The expert function

60

hu learned from the expert model and the expert function ho learned via offline RL tend to per-

form differently because of the complexity of the system dynamic and the sufficiency of the data.

Moreover, the accuracy of their Q-value estimation can vary at different states depending on the

data distribution within the historical dataset. Thus, it is a natural thought to form an ensemble of

the two. And the ensemble of multiple expert functions calculated in different ways can further

reduce the overestimation of Q-values through a conservative way, which we will introduce in this

section later.

To begin with, after having hu and ho, we can combine them with expert rules to generate an

integrated expert function h. The expert rules are often set by domain experts or building operators

based on past experience and domain expertise. They do not provide an optimized control action

for a given state, but instead offer suggestions that could be viewed as guidance or soft constraints

– e.g., not turning on the cooling system when the indoor temperature is below the lower bound of

the comfortable temperature range by certain threshold. Formally, we define that the expert rules

frule can generate an action candidate set Us for each state:

Us = {a|a ∈ frule(s), a ∈ A)}. (2.16)

We can then generated an integrated expert function h based on Us, hu and ho (Line 7 in

Algorithm 4). Specifically, we apply a pessimistic ensemble strategy for selecting the value func-

tion estimation among different expert functions, and only choose corresponding actions from the

expert rules’ action candidate set Us. Thus, the integrated expert function h can be formulated as:

h(s) = min
i
(max
a∈Us

Qi(s, a)), (2.17)

where Qi is the Q-value estimation from expert functions i. Note that this is a general formulation

61

that can unify multiple expert functions – e.g., we may have more than one abstract physical models

that provide multiple hu expert functions.

Prior-guided Learning: Once we have the integrated expert function h, we can use it to guide the

underlying DRL with prior-guided learning. There are several algorithms that could guide online

RL with a single prior policy, such as HuRL [93] and JSRL [94]. Our framework is flexible in

choosing those and we select HuRL [93] in our implementation. In the original HuRL, the Q-

value estimation in the RL agent is guided by a simple heuristic function that is learned from the

Monte-Carlo regression. In our work, we instead leverage the integrated expert function h from

above. By dynamically changing a mixing coefficient λ that controls the trade-off between the bias

from the expert function h and the complexity of a reshaped MDP, we are able to accelerate the

DRL training with a shortened MDP horizon. Specifically, given the state space S, action space

A, reward function r that are mentioned at the beginning of underlying DRL algorithm section,

as well as the transition dynamics of the building HVAC system P and a discount factor γ, we

consider an MDPM = (S,A,P , r, γ). We use the learned integrated expert function h as a prior

guess for the optimal value function ofM. Thus our online DRL can be described as a reshaped

MDP M̃ = (S,A,P , r̃, γ̃), where λ is a mixing coefficient,

r̃ = r + (1− λ)γEs′∼P(·|s,a)[h(s
′
)], (2.18)

and

γ̃ = λγ, (2.19)

which is shown at Line 14 in Algorithm 4.

Policy Initialization from Expert Function Distillation: In the above section, we use the inte-

grated expert function h to reshape the reward function and shorten the MDP horizon. In addition,

62

we can also speed up the DRL training through better initialization, by leveraging the expert func-

tions for determining the initial policy (Lines 8 and 9 in Algorithm 4).

Specifically, we initialize the deep Q-network through knowledge distillation [95] on the expert

functions. The first step is to extract the knowledge from multiple expert functions (hu and ho in

our case) to a dataset Dinit. We set the input dataset as Dx
init and the corresponding label set as

Dy
init. In setting Dx

init, we utilize all the unlabeled historical data, which only contain the system

state. And the corresponding labels are calculated in a way that is similar to the strategy introduced

earlier for integrating expert functions. That is, suppose we have nh expert functions, then

Dy
init = {y|y = (q1, q2, · · · , qm)}, (2.20)

qj = min
i
(Qi(s, fj)), (2.21)

where s ∈ Dx
init, j ∈ [1 · · ·m], i ∈ [1 · · ·nh]. As the expert functions we utilize are not as accu-

rate as of the optimal (Q-) value function, we further add two mixing coefficients λα
init, λ

β
init for

balancing the relative size of the Q value from different actions. So the new definition of Dy
init is

Dy
init = {y|y = (

q1 + (λα
init − 1)µq

λα
initλ

β
init

,
q2 + (λα

init − 1)µq

λα
initλ

β
init

, · · · , qm + (λα
init − 1)µq

λα
initλ

β
init

)}, µq =

∑m
j=1 qj

m
,

(2.22)

where the definition of qj(j ∈ [1 · · ·m]) remains the same. Then the next step is to train the deep

Q-network of our DRL agent by using the obtained dataset Dinit. As we consider a regression task,

we apply the mean square error as the loss function

Linit = ∥ y − ypred ∥2, y ∈ Dy
init, (2.23)

where ypred is the deep Q-network prediction. We obtain the network weight initialization by

63

training for ninit epochs. Moreover, with such policy initialization, we can use a smaller learning

rate to tune the deep Q-network in the later DRL stages.

2.2.3 Runtime Shielding Framework

Expert modelDRL agent

Temperature
constraints

Indoor temperature

prediction 𝑇𝑡+1
𝑝

Worst case indoor
temperature

prediction

𝑇𝑡+2
𝑤𝑝
, 𝑇𝑡+3

𝑤𝑝
, … , 𝑇𝑡+𝑘

𝑤𝑝

Action
𝑎𝑡 = 𝑎𝑡 +/− Δ𝑎

Action 𝑎𝑡

Environment

෩ℳ = 𝒮,𝒜, 𝒫, ǁ𝑟, ෤γ

(s, a, r, s’)

Historical data 𝐷ℎ

Building dynamics

𝑡, 𝑇𝑡
𝑖𝑛, 𝑇𝑡

𝑒𝑛𝑣 , 𝑞𝑡
𝑠𝑢𝑛, 𝑃𝑡

Weather prediction
𝑇𝑡+1
𝑒𝑛𝑣 , … , 𝑇𝑡+3

𝑒𝑛𝑣 , 𝑞𝑡+1
𝑠𝑢𝑛, … , 𝑞𝑡+3

𝑠𝑢𝑛

System states

predict

Iterate p times until meet constraints

Figure 2.6: Overview of our runtime shielding framework for reducing temperature violation rate.
The framework includes two major components: 1) the learned DRL agent (by our online DRL
training framework as introduced earlier) that produces the control action based on the current
system state, and 2) an expert model for predicting indoor temperature in future steps, based on a
neural network with its parameters determined from historical data. More specifically, the expert
model takes the current system states and proposed action from the DRL agent as input, and pre-
dicts the indoor temperature for the next step and the worse-case indoor temperature for the next
few steps. Based on such predictions, the control action may be adjusted iteratively to meet the
temperature constraints.

As shown in the previous sections, while the training of our DRL agent considers both the

temperature violation and the energy cost in the reward function design, there is no explicit enforc-

ing of the constraints on comfortable temperature range. Similarly for many other learning-based

64

(and model-based) controllers, there is no explicit enforcing of the temperature constraints on the

control actions, which may lead to constant temperature violations. Thus, in this work, we propose

a novel runtime shielding framework to help HVAC controllers meet temperature constraints. The

framework does not affect the controller training process and is agnostic to the controller design.

Figure 2.6 shows the overview of our runtime shielding framework, which integrates the HVAC

controller – in this case, the DRL-based controller trained by our proposed online framework un-

der heterogeneous expert guidances – with an expert model that predicts future indoor temperature

based on the system states and the control input. The expert model is trained from the histori-

cal data collected from the building environment, similarly as the one used in our online training

framework but with different goal and output. More specifically, during runtime, the learned DRL

agent proposes a control action at for the current time t. The expert model for temperature predic-

tion takes the proposed control action at from the DRL agent and the system states st as input, and

outputs the indoor temperature prediction that includes not only the temperature prediction for the

next time step T p
t+1 but also the worst-case temperature prediction from time t+2 to t+ k, named

as Twp
t+2, . . . , T

wp
t+k.

In particular, at time t + i (2 ≤ i ≤ k), the expert model predicts the worst cases regarding

both the temperature upper bound and the temperature lower bound as follows: (1) Based on the

predicted temperature at time t + i − 1 and the worst-case control action for temperature lower

bound at time t+ i− 1, which is awp,l
t+i−1 = 0, the expert model will predict the indoor temperature

at time t + i, named Twp,l
t+i . This is a worst-case prediction of the temperature lower bound, i.e.,

at = max(at−∆a, 0), if Twp,l
t+i < Tlower. (2) On the other hand, based on the predicted temperature

at time t+i−1 and the worst-case control action for temperature upper bound at time t+i−1, which

is awp,u
t+i−1 = m−1, the expert model will predict the indoor temperature at time t+ i, named Twp,u

t+i .

This is the worst-case prediction of the temperature upper bound, i.e., at = min(at +∆a,m− 1),

65

Parameter Value Parameter Value

Expert-
model

[len(s ∈ S),
256,256,256,

256,256,256,2]

Deep Q-
network

[len(s ∈ S),
256, 256, 256,

256, 51]
m 51 ∆t 15 mins
γ 0.99 α 1.0

Tlower

(occupied)
22 °C

Tupper

(occupied)
26 °C

Tlower

(unoccupied)
12 °C

Tupper

(unoccupied)
30 °C

β 100.0 mu 7
ξ 1.0 n 5760

Table 2.9: Hyper-parameters used in our experiments.

if Twp,u
t+i > Tupper. Then, the comfortable temperature range will serve as the constraints against

which these temperature predictions are checked. If the predictions are out of the range, the current

proposed control action at will be iteratively adjusted until the temperature constraints are met or

the iteration number reaches p. Moreover, if such change for the proposed control action based on

the prediction of time t+i makes the previous temperature predictions (i.e., T p
t+1, Twp

t+2, . . . , T
wp
t+i−1)

violate the temperature constraints, we will discard the result, stop next worst-case predictions, and

use the results from time t+ i− 1.

2.2.4 Experimental Results

2.2.4 Experiment Settings

We conduct our experiments on a Ubuntu 20.04 OS server equipped with NVIDIA RTX A5000

GPU cards. Docker [96] is utilized for the environment configuration, with Python 3.7.9 and learn-

ing framework Pytorch 1.9.0. All neural networks are optimized through the Adam optimizer [65].

We use the building simulation tool in [70] to simulate the behavior of single-zone commercial

buildings, with an OpenAI-Gym [97] interface. We model two buildings as defined in the Building

66

0.25

0.20

0.15

0.45

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 50 100 150 200 250

Training Episodes

((a)) DDQN

0.25

0.20

0.15

0.45

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 20 40 60 80 100 120
Training Episodes

((b)) DDQN+Expert Model

0.25

0.20

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 20 40 60 80 100 120
Training Episodes

0.15

0.45

((c)) DDQN+Offline RL

0.25

0.20

0.15

0.45

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 20 40 60 80 100 120
Training Episodes

((d)) DDQN+Expert
Model+Offline RL

0.25

0.20

0.15

0.45

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 20 40 60 80 100 120
Training Episodes

((e)) DDQN+Expert
Model+Offline RL+Expert Rules

0.25

0.20

0.15

0.45

0.40

0.30

0.35

V
io

la
ti

o
n

 R
at

e

0 20 40 60 80 100 120
Training Episodes

((f)) DDQN+Expert
Model+Offline RL+Expert

Rules+Init

Training Episodes
0 50 75 125 150 175

V
io

la
ti

o
n

 R
at

e

0.0

0.1

0.2

0.3

0.4

25 100 200

((g)) DDQN, heavyweight building
Training Episodes

0 50 75 125 150 175

0.025

0.050

0.100

0.150

0.200

V
io

la
ti

o
n

 R
at

e

25 100 200

0.075

0.125

0.175

0.225

((h)) DDQN+Expert Model+Offline RL+Expert
Rules+Init, heavyweight building

Figure 2.7: Figure 2.7(a) to Figure 2.7(f) show the comparison between our online DRL training
framework (in different settings with various techniques included) and the standard DDQN method
on the lightweight building. The x-axis shows the training episodes. The y-axis shows the temper-
ature violation rate. Figure 2.7(a) shows the training process under the standard DDQN method.
About 212 episodes are needed to reach a violation rate of 0.2. Figure 2.7(b), Figure 2.7(c), Fig-
ure 2.7(d), and Figure 2.7(e) show the results when we gradually add an expert model that gen-
erates expert function hu, offline RL that generates expert function ho, an expert rule, and policy
initialization based on expert functions, respectively. And we can observe the improvement on the
required episodes step by step. Figure 2.7(f) shows the training process when we apply all of our
techniques with only 24 episodes are needed to reach the violation rate of 0.2, an 8.8X improve-
ment over standard DDQN. Then Figure 2.7(g) and Figure 2.7(h) show the comparison between
our approach with all techniques included (right) and the standard DDQN baseline (left) on the
heavyweight building with larger thermal capacity.

67

Energy Simulation Test validation suite [98]: one is with a lightweight construction (known as

Case600FF) and the other is with a heavyweight construction (known as case900FF). Both build-

ings have the same model settings except that the wall and floor construction have either light

or heavy materials. The floor dimensions are 6m-by-8m and the floor-to-ceiling height is 2.7m.

There are four exterior walls facing the cardinal directions and a flat roof. The walls facing east-

west have the short dimension. The south wall contains two windows, each 3m wide and 2m

tall. The use of the building is assumed to be a two-person office with a light load density. The

lightweight building is assumed to be located at Riverside, California, USA, and the heavyweight

building is assumed to be located at Chicago, Illinois, USA. The weather data for different loca-

tions are obtained from the Typical Meteorological Year 3 database [68]. In addition, the various

parameters and hyper-parameters mentioned in the previous sections are listed in Table 2.9.

2.2.4 Evaluation of Our Online DRL Training Framework

We first apply our proposed online RL framework with heterogeneous expert guidances to building

HVAC control and demonstrate its effectiveness in accelerating the DRL training, in particular for

the standard DDQN algorithm. We repeat each experiment 4 times and show the average results.

Comparison with Standard DDQN on Training Efficiency: Figure 2.7 demonstrates the temper-

ature violation rate of the trained controller under different approaches for the lightweight building

with weather data from Riverside. Temperature violation rate is one of the main objectives for

DRL. It is defined as the percentage of the time the indoor temperature is outside of the comfort-

able temperature zone, similarly as used in [6], [30], [35], [70].

Figure 2.7(a) shows the training process of the standard DDQN, and the model needs about

212 episodes to reach a violation rate at around 20% for this building from [70] (20% may

seem high, but it is due to the limitation of this particular building and its cooling-only HVAC

68

system; more explanation on this later with Figure 2.9). Figure 2.7(b) shows the training process

when we add a neural network-based expert model that generates the expert function hu. About

68 episodes are needed to reach the same violation rate. Figure 2.7(c) shows the training process

when we add offline RL that generates the expert function ho, and about 78 episodes are needed

to reach the violation rate of 20%. Figure 2.7(d) shows the results when we apply both expert

functions hu and ho, but without the expert rules. We can see that about 40 episodes are needed.

Figure 2.7(e) shows the results when we integrate the two expert functions hu and ho, as well as

an expert rule f using the method introduced in Equation 2.17 . f is defined as follows: when

the indoor temperature is below 22°C, the control action is suggested to be set within the set

of {f0, f1, f2, f3}; if the indoor temperature is above 27°C, the control action is suggested to be

set within the set of {fm−3, fm−2, fm−1, fm}. We can see that the number of episodes needed is

about 36. Finally, Figure 2.7(f) shows the training process when we apply all of our proposed

techniques, including integrating the expert functions from expert model and offline RL as well

as the expert rules, using the integrated expert function to guide DRL training, and conducting

policy initialization with the expert functions. We can see that now only 24 episodes are needed

to reach the same violation rate as the standard DDQN, an 8.8X reduction in training time.

Table 2.10 summarizes the above number of episodes required to reach the violation rate of 0.2 for

the standard DDQN baseline and our approach with various techniques included.

For further evaluation, we also conduct experiments on the heavyweight building with weather

data from Chicago. In this set of experiments, the major change of the parameters is that the scaling

factor β is set to 1.0 in Equation (2.5). This is because that the average energy consumption of this

HVAC system is much higher than that of the previous building, and we need to re-balance the

energy cost and the temperature violation in the reward design. Figure 2.7(g) and Figure 2.7(h)

shows the comparison between our approach and the standard DDQN. And the experiments show

69

Method Number of Episodes
DDQN 212
DDQN+Expert Model 68
DDQN+Offline RL 78
DDQN+Expert Model+Offline RL 40
DDQN+Expert Model+Offline RL

36
+Expert Rules
DDQN+Expert Model+Offline RL

24
+Expert Rules+Init

Table 2.10: Number of episodes required to reach the violation rate of 0.2 for the standard DDQN
baseline and our online DRL training framework with various techniques included (the last line
being our approach with all techniques in Algorithm 4).

that the number of episodes needed to reach a violation rate of 5% is reduced from 160 to 80. The

improvement, while still significant, is much less than the lightweight building. We suspect that

this may be due to the quality of the historical data and plan to investigate it further in future work.

Energy Cost and Other Details: Besides temperature violation rate and the number of episodes

for reaching the goal of violation rate below 0.2 (i.e., training efficiency), we also assess the energy

cost of the learned controllers during our experiments. We observed that different methods, includ-

ing the standard DDQN baseline and our approach with various techniques included, achieve very

similar energy cost for the learned controllers – in fact within 1% for both the lightweight building

and the heavyweight building we tested.

Figure 2.8 shows the normalized energy cost of our approach with all techniques included for

the lightweight building with weather data from Riverside. We can observe that the energy cost

quickly decreases to a lower value within 5 to 10 epochs and slightly fluctuates in the later training

epochs.

Figure 2.9 illustrates the building temperature over 2 days, under the controller learned with

our approach with all techniques included, for the lightweight building with weather data from

70

Training Episodes

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

C
o

st

Figure 2.8: Normalized energy cost during training for our approach with all techniques included
for the lightweight building with weather data from Riverside.

Riverside. We can see that the temperature violation rate is around 20%. It is relatively high

because some violations are very hard to avoid for this particular building. Specifically, the HVAC

system is set to only work during the occupied hours (from 7am to 7pm) and the comfortable

temperature range is much more strict during that time (22°C to 26°C) compared to during the

unoccupied time (12°C to 30°C) [70]. This makes it almost impossible to meet the comfortable

temperature range early in the morning since the HVAC system only provides cooling. We can see

that after the early morning hours, the temperature is controlled well within the comfortable range

by our controller.

2.2.4 Ablation Studies

Impact of the Historical Data Quantity: We are interested in knowing how the quantity of the

historical data may affect the performance of our approach. We conduct a series of experiments that

have the quantity of the historical data chosen from {5760, 2880, 1440, 720} (i.e., from 2 months

of data to 7.5 days of data). The results are shown in Table 2.11. We can observe that the training

becomes faster as the quantity of the historical data becomes larger, as what we would expect.

Impact of the Control Quality of Historical Data: We also study the performance of our ap-

71

Simulation Step (15 minutes per step)

Te
m

p
er

at
u

re
 (
°C

)

0 25 50 75 100 125 150 175
10

15

20

25

30

35

40

Figure 2.9: An illustration of the lightweight building temperature over 2 days under the controller
learned from our approach with all techniques included. The red lines bound the comfortable
temperature range. The blue line is the outdoor temperature in Riverside, CA. The green line is the
indoor temperature under the learned controller.

#Samples 720 1440 2880 5760
#Episodes 116 78 62 24

Table 2.11: The number of epochs needed by our approach (with all techniques included) for
reaching the violation rate of 20% for the lightweight building, under different quantity of the
historical data.

proach under different levels of control quality of the historical data. Previously we directly use

the historical data collected from an existing controller on the target building. To study different

control quality of such historical data, we choose to take random actions with a probability of p

– intuitively, higher p values implies more random control and hence worse quality. Table 2.12

shows the results. Our approach performs better with a smaller p, i.e., when our approach learns

from historical data based on more reasonable control actions.

The Usage of Abstract Phyiscal Model: In addition, we also try to utilize an abstract physical

72

p 1.0 0.8 0.4 0.2 0.0
#Episodes 110 104 88 60 24

Table 2.12: The number of epochs needed by our approach (with all techniques included) for
reaching the violation rate of 20% for the lightweight building, under different control quality of
the historical data.

model, i.e., the ARX model from [35], as the expert model to generate hu, instead of learning

a neural network. The training process is shown in Figure 2.10. About 64 episodes are needed

to reach the same violation rate, more than the case where the expert model is a neural network

learned from historical data. We think that this is due to the simplicity of the ARX model, and

plan to investigate the performance of other abstract physical models in future. Nevertheless, it

still provides considerable improvement over the standard DDQN.

Training Episodes
0 20 40 60 80 100

V
io

la
ti

o
n

 R
at

e

0.15

0.20

0.25

0.30

0.35

0.40

120

Figure 2.10: Training result for the lightweight building when the expert model in our approach
(with all techniques included) is constructed from an abstract physical model.

73

2.2.4 Evaluation of Our Runtime Shielding Framework

For evaluating our proposed runtime shielding framework, in particular its capability in further

reducing the temperature violation rate for our learned DDQN-based DRL controller, we conduct

experiments on the heavyweight building. The expert model predicts the indoor temperature for the

next step and the worst-case indoor temperature for another step ahead. We consider two DDQN

agents – agent 1 is coarsely trained and agent 2 is the final model after additional training (the same

one shown in Figure 2.7(h)).

From the results shown in Table 2.13, we can observe that while the temperature violation rate

of agent 1 is quite high, our runtime shielding framework can decrease it by more than 3X (from

26.56% to 7.81%), with only slight increase in energy cost. For agent 2, which has a much lower

temperature violation rate than agent 1 given the additional training, our runtime shielding frame-

work can still reduce the violation rate substantially, from 4.17% to 3.65%, with slight reduction

on energy cost as well. These results demonstrate the effectiveness of our shielding framework

in reducing temperature violation rate while keeping similar energy cost, for controllers with

varying qualities. Note that further improvement on temperature violation rate for this particular

system is challenging, due to the limitation on its cooling-only HVAC system (i.e., there is always

a short period in the early morning when the indoor temperature is below the desired lower bound

and the HVAC system has just started, as shown in Figure 2.9).

2.2.4 Experiments in Other Domains

We believe that our approach of leveraging existing domain expertise in DRL training may be ex-

tended to other domains of cyber-physical systems. Thus, we conduct initial exploration outside of

the building domain, on a few examples from the Gym [99] environment, to assess our approach’s

general applicability. Figure 2.11 shows the comparison between our approach and the standard

74

((a)) Acrobot ((b)) CartPole

((c)) MountainCar ((d)) Pendulum

Figure 2.11: Results on examples from the Gym environments.

75

Method Temperature Violation Rate (%) Energy Cost
DDQN agent 1 26.56 1.60
DDQN agent 1 + Runtime Shielding 7.81 1.68
DDQN agent 2 4.17 2.07
DDQN agent 2 + Runtime Shielding 3.65 1.94

Table 2.13: Comparison between two DDQN agents (trained by our online DRL training frame-
work to different degrees) and when they are incorporated into our runtime shielding framework,
in both temperature violation rate and energy cost.

DDQN baseline. We observe that our approach is able to significantly improve the learning effi-

ciency and/or performance on some examples (particularly CartPole) but not others (Pendulum in

particular). We think that in these cases the final results can be significantly affected by the quality

of the generated expert functions. Apart from the factor of offline data quality, another key factor

is the difficulty of constructing a good expert model from the historical data. Compared with the

accuracy of predicted system states, the accuracy of the terminate condition in each step can have a

larger influence in some tasks. However, the terminate condition is always fixed in building HVAC

control (run for certain steps) and we can even utilize the prior knowledge from the building do-

main combined with the offline data to help construct the expert model. These factors make the

building HVAC control an idea application for our approach.

2.3 Learning-based framework for sensor fault-tolerant building HVAC control with model-

assisted learning

2.3.1 Background

In the last two sections, we mention that the model-free building HVAC control may facing data

insufficiency and suffer from long training time. On the other side, imperfect sensing data may

Section 2.3 is based on our work published at [100].

76

also affect the building’s performance and reliability. To be specific, in HVAC systems, sensors, in

particular temperature sensors, play a vital role in collecting real-time environment condition and

facilitating HVAC applications. However, temperature sensors are not always in normal working

condition, due to passive faults and active cyber-attacks. Passive sensor faults such as sensor bias

and sensor drifting over a long time contribute more than 25% to the variable air volume (VAV)

terminal unit faults [101]. Cyber-attacks on HVAC control systems (i.e., corruption of tempera-

ture sensor readings to affect critical control programs) are becoming possible due to increasing

connectivity of buildings to external networks for supporting remote management and cloud-based

analytics. For example, Building Automation and Control Networks (BACnet) [102], the most

popular communication protocol for buildings, has been reported to have multiple vulnerabilities

that can be used to launch cyber-attacks on building control systems [103]. Moreover, HVAC sys-

tems still need to provide services when under faults or attacks, as diagnosing the problems and

fixing the sensors often takes a significant amount of time. This highlights the increasing need for

developing HVAC controls that can tolerate sensor faults and cyber-attacks and increase system

resilience.

There are a number of works in the literature related to sensor fault-tolerant control for building

energy systems. Ma and Wang [104] proposed a fault-tolerant model predictive control strategy to

provide resilient operation of a building chiller plant system under typical faults such as condenser

water supply temperature sensor bias. Yang et. al. [105] presented an online fault-tolerant control

strategy for fixed bias faults in the supply air temperature sensor. The sensor faults are detected by

using a pre-trained support vector regression (SVR) model. [106] employed a rule-based method

(e.g., using sensor reading from the nearest zone) to mitigate the zone air temperature sensor

reading spikes. The work in [29] built a physical model for a multi-zone building and with zone air

temperature sensor faults, and assumed that only one thermal zone would be affected by the sensor

77

fault at a time. Faults in sensors other than temperature sensors are also studied for tolerant control

design. Wang et. al. [107] applied a neural network model to detect and compensate outdoor air

flow rate sensor faults, and provided a fault-tolerant control strategy to regain the control of outdoor

air flow rate. However, the above literature has the following limitations: 1) simple assumptions

in terms of fault occurrences are used: for instance, [29] assumed that only one thermal zone

would be affected by the zone air temperature sensor fault at a time, which is often not the case

in practice; 2) studies were mostly designed for passive faults such as fixed sensor bias [104],

[105], [108], and might not be applied to active attacks that only last for a short duration but with

high intensity; 3) significant efforts are required to obtain an accurate online state predictor, such

as detailed physics-based models or SVR model, for fault detection in the fault-tolerant control.

Therefore, how to provide resilient control for HVAC systems under abnormal sensor readings still

remains an open challenge.

In this section, we develop a learning-based sensor fault-tolerant control framework for build-

ing HVAC systems with novel deep neural network-based learning techniques. Specifically, our

framework includes three major components. First, as the raw sensor readings of the indoor tem-

perature may be faulty, a neural network-based temperature predictor is designed based on histor-

ical sensor data to provide an alternative estimation of the true temperature. Then, both proposals

of the indoor temperature (raw sensor reading and the temperature predictor output) are sent to a

neural network-based selector, which assesses the two temperature proposals with consideration

of the historical trend and selects one deemed more trustworthy. Finally, a deep reinforcement

learning (DRL) based HVAC controller takes the chosen temperature as the current system state

and applies control actuation. These learning-based techniques together provide a robust HVAC

control framework that can maintain desired temperature and reduce energy consumption under

sensor faults.

78

While our machine learning based techniques can remove the need for developing detailed and

costly building physical models, they face their own challenges in training data availability. In

particular, for a new building, we may have to wait for months to collect enough data for training

the learning-based components. To address this challenge, we propose a model-assisted learning

approach that helps the learning components extract knowledge from an abstract physical model

and only requires a limited amount of additional labeled data collected from real buildings for

training. There are a number of abstract physical models available in the literature [40], [109].

They require much less effort to develop than the accurate physical models (e.g., those used in En-

ergyPlus [110]). While they alone are often not accurate enough for building HVAC control, their

capturing of the underlying physical laws can guide the learning process for the neural network-

based components and significantly improve the learning effectiveness.

2.3.2 Related Works

2.3.2 Addressing Sensor Faults in Buildings

There has been a number of works in the literature addressing sensor faults in buildings. In [111],

a fault detection method based on correlation analysis was proposed for detecting sensor bias or

complete failure. [112] proposed a neural network-based strategy with clustering analysis to detect

sensor faults in the HVAC system and diagnose the sources. [113] presented an online strategy

based on the principal component analysis (PCA) to detect, diagnose and validate sensor faults in

centrifugal chillers. More investigations can be found in [114]–[119]. However, these works focus

on fault detection and diagnosis, not fault-tolerant control.

There are some existing works for sensor fault-tolerant control in building energy systems, such

as [29], [104]–[108]. For instance, Gunes et. al. [106] followed the model-based design paradigm

and used rule-based methods to mitigate the negative effect of specific sensor faults. Papadopoulos

79

et. al. [29] built a complex physical model for building, and designed a fault model based on the

assumption that sensor faults occur in a single zone at each time. Jin and Du [108] used principal

component analysis, joint angle method and compensatory reconstruction to detect, isolate and

reconstruct the fixed bias fault in supply air temperature sensors. However, as we outlined in

the introduction, the above studies have significant limitations in the usage of simple or restricted

assumptions, the focus on only passive faults with fixed sensor bias, and the need of significant

efforts for obtaining an accurate online state predictor (e.g., with detailed physics-based models

or SVR model). In contrast, our learning-based approach provides resilient control in broader and

more practical cases.

2.3.2 Learning with Limited Data and Abstract Physical Model

When dealing with a limited amount of labeled data in training, techniques such as weakly super-

vised learning [120], [121] and semi-supervised learning [14], [122], [123] are often considered.

However, in our case, even obtaining unlabeled data from real building operations could be a long

process. Thus, we leverage the information from abstract physical models such as those in [40],

[109] to reduce the data needed for training. This approach is in principle related to model distilla-

tion techniques [95], [124] that distill the physical model into a neural network and then fine-tune

the network with available labeled data. However, unlike in the case for those approaches (which

focus on domains such as computer vision), there is not enough unlabeled data in the realistic data

distribution that can be fed into the model for distillation in our problem. Thus, we propose model-

assisted learning to overcome this difficulty, by leveraging abstract physical models to generate

better initial points for model find-tuning.

80

Place

State S

𝑇𝑡
𝑝𝑟𝑒

Sensors

𝑇𝑡
𝑖𝑛

Historical raw sensor data

𝑆𝑡−𝑘
𝐴𝑡−𝑘

…
𝑆𝑡−3
𝐴𝑡−3

𝑆𝑡−2
𝐴𝑡−2

𝑆𝑡−1
𝐴𝑡−1

𝑝𝑙1 𝑝𝑙2

Selector

Feature 𝐹1 + +

Result 𝑃

Deep Q-
Network

Historical raw
sensor data

A
ctio

n
 A

DRL controller

Temperature predictor

Figure 2.12: Overview of our sensor fault-tolerant framework for building HAVC system. There
are three main components: two modules providing indoor temperature proposals on the left, a
selector in the middle, a DQN-based HVAC controller on the right. The temperature proposals
consist of the raw sensor reading T in

t and the current temperature prediction T pre
t that comes from

the learned temperature predictor, which leverages the historical sensor data. The proposal selector
provides a classification result to choose between the predictor output and the raw sensor value.
Then, the DRL controller takes the selected indoor temperature proposal and calculates the corre-
sponding control action.

2.3.3 Methodology

2.3.3 System Model

We adopted a multi-zone building model with the fan-coil system from [6], [30], where there is a

building with n thermal zones, and a fan-coil system is equipped to provide the conditioned air at

a given supply air temperature T air for each thermal zone. The airflow rate in each zone is chosen

from multiple discrete levels {f1, f2, · · · , fm}, and corresponding to m control actions ai for each

zone i. With all n thermal zones, the control action set is denoted as A = {a1, a2, · · · , an}. In this

paper, we denote the current physical time as t, the ambient temperature, indoor temperature for

zone i, and the control action at time t as T out
t , T in(i)

t , At, respectively, and we set T in
t = {T in(i)

t |i ∈

81

1 · · ·n}. The system sends current states (indoor and ambient temperatures) to the HVAC system

with a period of ∆ts (which is the simulation period on building simulation platform), and the

building HVAC controller provides the control signal (supply airflow rates) with a period of ∆tc

(i.e., the control period).

2.3.3 Sensor Fault-Tolerant DRL Framework

Fig. 2.12 depicts the overview of our sensor fault-tolerant DRL framework. It includes three parts:

the first part on the left is a neural network-based temperature predictor for providing an alter-

native estimation (rather than the raw sensor reading) of the indoor temperature, the second part

in the middle is a proposal selector that assesses the temperature proposals from the raw sensor

reading T in
t and the temperature prediction T pre

t and selects one, and the third part on the right is a

DRL-based HVAC controller. With the design of the predictor and the selector, the DRL controller

receives a refined indoor temperature reading as part of its inputs and can maintain a stable perfor-

mance against sensor faults or attacks. The details of each module are introduced in the following

sections. This predictor and selector design enable us to leverage the raw sensor readings when

they are not faulty, which is especially useful when the temperature predictor does not provide ac-

curate estimation because of the training data availability (As we will introduce in the later section,

the selector has more augmented training data than the predictor to ensure its accuracy). Note that

all the modules are trained individually and assembled into the framework after training.

Temperature Predictor:

The temperature predictor aims to provide an indoor temperature prediction for the current step

based on the historical sensor readings with possible faults and other system states. Note that we

mark the current system state as St, where St = (t, T in
t , T out

t).

82

Firstly, the temperature predictor is a neural network that consists of five fully-connected lay-

ers. Except for the last layer, all layers are filtered by a ReLU activation function, and all fully-

connected layers are sequentially connected (detailed neuron number settings can be found later in

Table 2.14 of Section 2.3.4). In the test stage of the temperature predictor, the network takes the

historical states aligned with the historical control actions (airflow rate) as the data inputs at time t

, and then outputs a current indoor temperature prediction value T pre
t .

The training data for the predictor network is collected by running a straightforward ON-OFF

controller on the building HVAC system for several days (in experiments we use 8 days). For new

buildings, this could be done during the first several days of their operation, in which case we may

assume that the data collected over this short period of time has not been polluted by sensors faults

or attacks. And we get a (state, action) sequence from (S1, A1) to (SL, AL). For the convenience

of supervised training, we select data sequences

{⟨(St−k, At−k), (St−k+1, At−k+1), · · · , (St−1, At−1)⟩}

with length k and t ∈ [k + 1, L] from the historical data. These sequences are chosen with an

interval v, which means that t ∈ [k+1, L] is selected in the format k+1, k+v+1, k+2v+1, · · · . The

collected data set is used as the training data inputs of the neural network, with the corresponding

label St for each data sequence. Then, we train the neural network based on the loss function Lpre

as

Lpre =∥ (T pre
t + T pre

ofs)− T in
t ∥2, (2.24)

where T pre
t is the temperature prediction at time t from the network’s output, T pre

ofs is an estimated

offset for bringing the absolute mean value of the neural network’s output close to zero, which

lowers the difficulty for the neural network learning through the given data sequences (it is a fixed

83

hyper-parameter; setting can be found in Table 2.14 later). T in
t is the actual indoor temperature,

which is the ground truth label. After finishing training, the predictor can take the historical system

states containing the raw sensor reading to generate the temperature prediction. We should men-

tion that these historical system states in the test stage may contain faulty sensor readings, so we

also include some faulty sensor reading in the training data for temperature prediction. The design-

ing of this training strategy using historical data with slightly faults is inspired by our preliminary

experiments, which indicated that adding slightly faulty sensor reading to the training data could

increase the performance on temperature predictions, compared to training with non-faulty data or

data with high frequency faulty data. In other words, for enhancing the robustness of the temper-

ature prediction, in the historical system states, we utilize the historical indoor temperature under

the independent and identically distributed (IID) faults with occurring probability Ppre. IID faults

here mean that the fault can happen at each individual simulation step with probability Ppre. If the

fault occurs, it uniformly selects a random number from [T out
l , T out

u], which is the upper and lower

boundary of the ambient temperature, to replace the original indoor sensor temperature reading.

And the temperature predictor takes benefit from randomized faults in the reading, which leads to

a more robust output. Note that we set Ppre to a small value as the ability of the neural network for

tolerating the input noise is limited. While some small noises in the training data may enhance the

network robustness, larger noises may negatively impact the training, making it harder to converge

and reducing the overall performance.

Temperature Proposal Selector:

The temperature proposal selector aims to choose the best candidate from the indoor temperature

proposals and send it to the DRL controller for further control steps. We train this module in a

self-supervised way, where all the training labels are generated automatically and the objective is

84

to distinguish between the normal data and the faulty data. Apart from the comparison between the

normal and faulty, we also make the comparison among the faulty data and indicate which one is

closer to the actual temperature value. This extra comparison further boosts the proposal selector

and helps it address the scenarios with inaccurate temperature proposals.

The temperature proposal selector module is made of a neural network that consists of eight

layers. The selector firstly takes the historical system state and the historical control actions ⟨

(St−k, At−k), (St−k+1, At−k+1), · · · , (St−1, At−1) ⟩ as the part of the network input. Then this

historical information will be sent to the first network layer. Including the first layer, there are four

sequentially connected one-dimensional convolutional layers with the ReLU activation function

on the bottom of the network. The output feature of these layers is two-dimensional in each data

sample, and we convert it to a one-dimension feature vector F1. Then the rest of the network inputs

are two selected indoor temperature proposals, the raw sensor reading pl1 and the temperature

prediction value pl2, and they will be concatenated with the feature vector F1. The motivation

of the network design here is that the historical states are the sequential data that have temporal

locality, thus we choose one-dimensional convolutional layers to extract their feature. As the

temperature proposals are another type of data, we concatenated the previous feature with these

temperature proposals and fused them using the fully connected layers. As shown in Fig. 2.12, four

fully-connected layers receive features vector F1 and with those two selected temperature proposals

pl1, pl2 (note that the first three of them have RuLU activation function). The last fully-connected

layer has two neurons, which will be sent to a softmax layer and output a binary classification

result by selecting the index with the maximum output value.

Furthermore, the construction of the training data used for the temperature proposal selector

differs from the previous module. The historical system state St−i(i ∈ [1, k]) and the historical

control actions At−i(i ∈ [1, k]) are selected from the simulation data which is the same as in

85

Section 2.3.3.2. The data in the two indoor temperature proposals contain both normal and faulty

data. So the training data consists of three types:

• Training data: ⟨ historical system states St−i, control actions At−i, (i ∈ [1, k]), normal tempera-

ture, faulty temperature ⟩.

Label: (1, 0).

• Training data: ⟨ historical system states St−i, control actions At−i, (i ∈ [1, k]), faulty tempera-

ture, normal temperature ⟩.

Label: (0, 1).

• Training data: ⟨ historical system states St−i, control actions At−i, (i ∈ [1, k]), faulty tempera-

ture, faulty temperature ⟩.

Label: 1 is assigned to the value that is closer to the normal temperature. The other is assigned

with 0.

Similar to the data construction strategy in the temperature predictor module, the historical sys-

tem states we utilize include the faulty sensor readings. Specifically, for enhancing the robustness

of the temperature proposal selector, we use the historical system states under the independent and

identically distributed (IID) faults with occurring probability Psel. Besides, during constructing

these data-label pairs, we sample the faulty temperature three times for each normal temperature

value in the first and second kind of data-label pair. For the last kind of data-label pair, we sample

the faulty temperature data four times for each historical sequence. All faulty temperature readings

come from the IID faults. Finally, we learn the temperature proposal selector network through the

cross-entropy loss function. The learning rate lrsel and training epochs lsel are set as in Table 2.14

later.

86

Model-assisted SSL

Φ

Θi

Θi
′

Abstract model 𝑴

Random
batch i

𝐿𝑀𝑆𝐸

Model-
assisted SSL

tasks

Φ𝑖𝑛𝑖𝑡

Φ𝑓𝑖𝑛 Model-assisted RU

Figure 2.13: Overview of our model-assisted learning for training with a limited amount of la-
beled data and an abstract physical model, where the algorithm consists of two stages – model-
assisted self-supervised learning (model-assisted SSL) and model-assisted redirected updating
(model-assisted RU). The former stage creates auxiliary learning tasks from the abstract model,
and the latter stage extracts knowledge leveraging the random batch from the physical model and
explores a better updating direction. Then we get the final model through fine-tuning based on the
pre-trained model from the previous two stages.

DRL-based Controller for Building HVAC System:

Because the thermal zone temperature in the next time step only relies on the observation of the

current system state, the building HVAC control can be treated as a Markov decision process. We

use a DQN-based DRL method that takes the current state SDRL
t as inputs, which contain

• Current physical time t,

• Current indoor air temperature T in
t ,

• Current ambient air temperature T out
t ,

• Current solar irradiance intensity Sunt,

• Weather forecast in the next three time steps.

The weather forecast includes ambient temperature and solar irradiance intensity T out
t+1, · · · , T out

t+3,

Sunt+1, · · · , Sunt+3, which helps the network capture the trend of the environment. The deep

Q-network Q provides the Q-value estimation of current control actions. The algorithm takes the

87

control action with the maximum Q-value and sends it to the HVAC system.

Furthermore, the goal of this DRL controller is to minimize total energy cost while maintaining

indoor temperature within a comfort temperature bound [Tl, Tu]. The reward function Rt collected

from the control steps is designed accordingly as

Rt = α ·Rc + β ·Rv (2.25)

Rc = −cost(t− 1, At−1) (2.26)

Rv = −
n∑

i=1

max(Tl − T
in(i)
t , 0) + max(T

in(i)
t − Tu, 0) (2.27)

where α and β are the scaling factors. Rc is the reward of energy cost, Rv is the reward of tem-

perature violation with respect to comfort temperature bound [Tl, Tu]. cost(t − 1, At−1) is a price

function that gives the money cost of the HVAC system from control time t− 1 to t under control

action At−1. It is designed based on the local electricity price. Following the definition of the

reward function, the update of deep Q-network is defined as

Qt+1(S
DRL
t , At) = Qt(S

DRL
t , At) + η0(Rt+1

+ γmax
At+1

Qt(S
DRL
t+1 , At+1)−Qt(S

DRL
t , At)))

(2.28)

where η0 is the learning rate for the deep Q-network, and γ is the decay factor of the accumulative

reward.

2.3.3 Model-Assisted Learning

Our sensor fault-tolerant framework has three modules that require neural network training. The

performance of a learning model is typically strongly correlated with the amount of available la-

beled data. However, collecting labeled data from real building operations takes significant amount

88

of time, which often leads to the problem of training data insufficiency. With the techniques in [57],

[58], the training time and the required data of the DRL control module can be substantially re-

duced. With the special training data construction strategy introduced in Section 2.3.3.2, the selec-

tor also has sufficient data for training. Thus, we focus our effort on the possible data insufficiency

issue for the temperature predictor. We develop a novel model-assisted learning method to com-

bine a limited number of accurately-labeled data DL with the knowledge we can gain from an

abstract physical model M for the training, as shown in Fig. 2.13.

Abstract Physical Model: Here we introduce the abstract physical model we used in experi-

ments for model-assisted learning. The mass and energy conservation law for a building zone is

presented in Equation (2.29), where the left of the equation represents energy changes in the zone,

the first term at the right represents the introduced HVAC energy to the zone, and the second term

at the right is the thermal load in the zone. The thermal load q̇l is related to many building system

and control parameters such as envelope constructions, internal heat gains, zone air temperature

setpoints, etc., which eventually leads to a nonlinear differential equation to solve. For simplifi-

cation, an abstract model for the zone air temperature dynamics is derived as in Equation (2.30).

This model explicitly relates zone air temperature to system thermal inertia (e.g., historical zone

air temperatures), zonal supply air mass flowrate ṁ, outdoor air temperature T out and estimated

modeling error term e. T̂ and T are the predicted and measured temperature, respectively. m is the

zone air thermal mass. ṁ is the zonal supply air mass flowrate. Cp is the zone air specific heat. e

represents an error term. Superscripts sa, and out are the supply air, and outdoor air, respectively.

α, β, and γ are identified coefficients observed from the given short-term historical data.

mCp
dT

dt
= ṁCp(T

sa − T) + q̇l (2.29)

89

T̂t+1 = αTt + βṁt+1 + γT̂ out
t+1 + et+1 (2.30)

et+1 =
L−1∑
j=0

T̂t−j − Tt−j

L
(2.31)

Model-assisted Learning Algorithm: Our model-assisted learning consists of two stages: model-

assisted self-supervised learning (called model-assisted SSL) and model-assisted redirected updat-

ing (called model-assisted RU). To begin with, we realize that the biggest challenge in this learning

scenario is that we do not have enough training data (even unlabeled data), which makes the typical

semi-supervised or weakly supervised learning methods not applicable. However, one available re-

source that we can leverage is the human-designed abstract physical models for buildings. While

they may not accurately describe the building dynamics, they do reflect some of the fundamental

physical laws for the system. By ‘extracting’ these physical laws, we can significantly improve

the learning process and reduce the need for training data. In brief, we utilize the abstract physical

model for generating sampled states sequences in both the model-assisted SSL stage and model-

assisted RU stage, and we will explain it in the following paragraphs.

Specifically, for each element u in the neural network input s, we can define its range based on

its physical meaning. Then considering the range for all the elements in s, we can define a space H

that contains all s in its range combinations and s ∈ H . Note that H is a space that is much larger

than the actual data distribution for network inputs, which means that many unrealistic cases that

will never happen in the real world might still occur when sampling from H .

In model-assisted learning process, a required step is to collect enough samples from data

space H . However, we notice that the input size of the neural network (temperature predictor),

(2 + 2n)k, is large. Taking n = 4, k = 20 for example, the sampling is on a 200-dimensional

continuous data space, which is too expensive for simple uniform sampling. Thus, we only sample

the first historical state uniformly among that sub-space of size 2+2n, and then feed that historical

90

state to the physical model M to predict the next historical state. Then we generate the latter

historical states by repetitively applying the previous historical states to the physical model. In this

way, we can collect the sample sequences of length k and form an input data set D. We then divide

D into mini-batches and call them random batches {x|x ⊂ D}, and we denote the batch size of

x as b. With the random batch, we can design the steps in model-assisted SSL and model-assisted

RU.

In the first stage of model-assisted SSL, we aim to construct auxiliary learning tasks from the

abstract model M to decide an pre-trained weights for the neural network. The sampled data

d ∈ x ⊂ D is a simulated states sequence based on the abstract physical model M , and the time

length of the sequence is k. And we create k auxiliary learning tasks based on the input sequence

d. Specifically, for auxiliary task i, it is a regression task. The corresponding training data is

{(di, yi)|di equals to d except that the indoor temperature in d at time step i is set to −1, yi is the

value of indoor temperature in d at time step i, d ∈ x ⊂ D}. In other word, we try to predict the

missing state generated by the abstract model. The training step last for lMSi
epochs with batch

size as bMS and learning rate as η0. In auxiliary task i, we also need to edit the original neural

network with some changes. We keep the first three fully-connected layers but add two extra fully-

connected layers (individually for each task i) following the third layer. The newly added layers

will provide the output for task i. This means that we share the feature extraction layers among all

the auxiliary learning tasks, and those tasks will help the neural network leverage the relation of

variables in the states sequence for constructing pre-trained weights. The model-assisted SSL will

be conducted for lMS epochs, and we start from the randomly initialized neural network weights

Φinit. The auxiliary learning tasks are run in order from tasks 1 to k in each epoch, and then we

get a pre-trained weight Φ for our next stage.

In the second stage of model-assisted RU, we target on redirecting the updating direction when

91

extracting the knowledge from the abstract model. In each update step i, we start from the current

network weights Φi (the initial weights in this stage is Φ0 = Φ), and select a random batch x and

apply the abstract model M on them to get the corresponding labels y. Next, we are able to get a

new model Θi by updating the parameters on Φi using the random batch x and its corresponding

labels y, which follows the equation

Θi = Φi − η2∇Φi
LMSE(Φi), (2.32)

where LMSE is the mean square error loss and η2 is the learning rate. The training lasts for niter

iterations, and uses a new sampling data batch for each iteration.

Next, we employ accurately labeled data DL to further fine-tune the model Θi from the last

step by lft epochs, and update to the model weights Θ′
i, as described in the following equation

Θ
′

i = Θi − η3∇Θi
Ltarget(Θi), (2.33)

where Ltarget is the loss function for the target task and η3 is the learning rate for this step.

Looking back to what we have done in this stage, we first use the random batch x to distill

the physical model M as a further pre-trained model for the current step, and then we fine-tune

the model using the accurately labeled data. The final performance of model Θ′
i should reflect the

quality of the initial update from Φi to Θi, which depends on the corresponding random batch x

and the abstract model M ’s output knowledge y. Ltarget shows a reference value considering the

improvement brought by the Equation (2.32), while Θ
′
i − Φi provides a better updating direction

for the current knowledge extraction step compared to the Equation (2.32). Thus, we determine

92

the true updating step for the initial model Φi as

Φi = Φi − η1(Θ
′

i − Φi) (2.34)

Following this updating steps for niter iterations, we then use all the accurately labeled data DL

to fine-tune the extracted model Φi to achieve our target model Φfin. The fine-tuning step has the

learning rate η3 by lft epochs.

2.3.4 Experimental Results

2.3.4 Fault Patterns and Metrics

Fault Patterns: We consider two types of fault patterns for the indoor sensors in every thermal

zone in our experiments. Both patterns could be caused by passive faults or cyber attacks.

• In the first type of faulty sensor readings, we postulate that the fault happens at each time step

with a probability p1. Note that the fault can happen in each simulation step, not only on the

control steps. If the fault occurs, it uniformly selects a random number from [T out
l , T out

u] (which

is the upper and lower boundary of the ambient temperature in our experiments) to replace the

original sensor temperature reading. We call this type of faults the IID faults because they have

the same probability, same distribution, and independent at each time step.

• For the second type of faulty sensor reading, the fault happens at each time step with a probability

p2. The difference between it and the former one is that the second fault will last for ϖ simulation

steps and not always happens individually among the time period. Thus this type of fault can

cause larger damage to the system than the first one. And we call it continuous faults.

93

Metrics for Evaluation: We evaluate the sensor fault-tolerant temperature control results based

on the average indoor temperature violation rate θi for each thermal zone i and the total energy

cost for running the HVAC system. We evaluate the performance of model-assisted learning on

the temperature prediction task with a four-zone building. The measurement for the predictor is

based on the normalized root mean square error (NRMSE) between the prediction and the actual

temperature value.

2.3.4 Experiment Settings

The experiments are run on an Ubuntu OS server equipped with NVIDIA TITAN RTX GPU cards.

The learning algorithm implementations are based on the Pytorch framework. The Adam opti-

mizer [65] is utilized for all neural networks’ training. We use the EnergyPlus [110] simulation

tool to simulate the behavior of real buildings. Note that this is only for experimentation purpose.

In practice, our tool will be deployed directly on real buildings with the modules trained on the

data collected from those buildings. Moreover, the interaction between the building simulations

in EnergyPlus and the Pytorch learning algorithms is implemented through the Building Controls

Virtual Test Bed (BCVTB) [67]. We use a single-zone building and a 4-zone building as the target

buildings for conducting our experiments, and the building simulation utilizes the summer weather

data in August at Riverside, California, USA, which is obtained from the Typical Meteorological

Year 3 database [68]. The hyper-parameter settings mentioned in the previous sections are shown

in Table 2.14.

2.3.4 Evaluation of Sensor Fault-Tolerant Framework on IID and Continuous Faults

This section shows the performance of our sensor fault-tolerant framework and its comparison

with a standard DQN controller. The experiments are conducted on a single-zone building and a

94

Parameter Value Parameter Value
Temperature-

proposal-
selector layers

[2+2n,512,256,
256, 128,256,
256,256,2n]

DQN layers

Tl

[9+n,50,100,
200,400,16]

20 °C
Predictor-

layers
[(2+2n)k,512,256,

256,256,256,n]
Tu

Ppre

24.4 °C
0.1

T pre
ofs 22 Psel 0.3
lft 3 α 1e-3
β 6.25e-4 bMS 40
η0 1e-3 η1 1e-4
η2 1e-6 η3 1e-3
L 5760 k 20
∆ts 1 min ∆tc 15 min
T out
l 10 °C T out

u 40 °C
v 2 lrsel 1e-4
lsel 50 T air 10 °C
m 2 η0 0.003
γ 0.99 b 32

lMSi 3 lMS 2

Table 2.14: Hyper-parameters used in our experiments.
four-zone building under different sensor fault patterns.

Against IID Faults We first study how much the sensor fault-tolerant framework can protect the

control performance from the IID faults. The IID faults happen individually at each simulation step

with the probability p1, and we test the case where p1 is chosen from [0, 0.1, 0.2, 0.4, 0.6, 0.8]. The

model is first tested on a single zone building. Table 2.15 shows the results comparison between

the standard DQN controller (DQN) and our sensor fault-tolerant framework (FTF). We can see

that the typical DQN controller’s performance significantly deteriorates when facing the IID faults,

as the heavily faulty sensor data nearly paralyzed the normal function of the neural network. The

problem gets worse with the fault occurring probability p1 becomes larger. For our sensor fault-

tolerant framework, the average temperature violation rate remains very low under varying degree

of IID faults (72.8% to 86.2% reduction in violation rate when compared with standard DQN

under fault probability from 0.1 to 0.8). Moreover, even with our approach’s much more robust

95

control, the energy cost does not increase much compared to the non-faulty case, which shows the

cost-effectiveness of our sensor fault-tolerant approach.

We also tested our framework on a 4-zone building against the IID faults, and Table 2.16 shows

its comparison with the standard DQN. θ1 to θ4 are the temperature violation rate for each of the

4 thermal zones. Again, we can clearly see that our approach can maintain the violation rate at

a low level under varying level of sensor faults, and can significantly outperform the standard

DQN (73.0% to 92.2% reduction in violation rate under fault probability from 0.1 to 0.8). It is

also worth mentioning that when there is no fault, our framework will not introduce additional

overhead. Finally, Fig. 2.14 also provides a visualization of the temperature change on the 4-zone

building under IID faults with p1 = 0.4 with/without the sensor fault-tolerant framework, and

we can clearly see the effectiveness of our framework in keeping the temperature within comfort

bound under faults.

Against Continuous Faults We then evaluate our approach against continuous faults. Similar

to what we have shown in the previous section, the model is tested on a single-zone building

and a four-zone building, with the probability p2 set to 0.2(single-zone), 0.1(four-zone) and ϖ

selected from 0 to 5. The comparison between our approach and the standard DQN is presented

in Table 2.17 and Table 2.18. The temperature violation rates in the tables are all higher than

the previous section under the same fault probability, which indicates that the continuous faults

can cause more damage than the IID faults. As shown in the table, the standard DQN controller

drastically increases the violation rate for 4× to 26× for single zone and 9× to 115× for four-zone

under continuous faults. In comparison, our approach can effectively maintain the violation rate at

a low level (12.5% to 89.1% reduction for single zone and 73.0% to 86.6% reduction for four-zone

in violation rate when compared with the standard DQN under fault time ϖ from 1 to 5).

96

p1 0 0.1 0.2 0.4 0.6 0.8

DQN
θ 0.38 1.03 1.32 4.99 9.88 17.86
Cost 235.19 241.20 237.64 228.50 226.40 223.81

FTF
θ 0.39 0.28 0.18 0.39 1.29 2.46
Cost 247.60 247.30 248.17 250.74 254.81 265.52

Table 2.15: Comparison between standard DQN controller and our sensor fault-tolerant framework
(FTF) on a single-zone building under IID faults. p1 is the fault occurring probability. θ is the
average indoor temperature violation rate (%).

p1 0 0.1 0.2 0.4 0.6 0.8

DQN

θ1 0.0 0.04 3.32 9.47 22.03 21.66
θ2 0.12 1.32 5.79 20.58 35.50 40.79
θ3 0.11 0.40 4.46 11.55 19.94 24.66
θ4 0.43 4.27 15.62 34.90 47.84 50.42
Cost 257.79 246.17 228.01 205.60 192.24 184.84

FTF

θ1 0.0 0.0 0.0 0.35 7.12 8.91
θ2 0.17 0.31 0.17 0.0 0.96 1.87
θ3 0.03 0.34 0.15 1.18 5.65 6.35
θ4 0.39 0.98 0.74 2.46 5.67 6.58
Cost 257.82 257.48 265.23 298.18 314.52 316.53

Table 2.16: Comparison between standard DQN controller and our sensor fault-tolerant framework
(FTF) on a four-zone building under IID faults. p1 is the fault probability. θi is the avg. indoor
temperature violation rate (%) in thermal zone i.

ϖ 0 1 2 3 4 5

DQN
θ 0.38 1.32 2.74 3.83 6.66 9.73
Cost 235.19 237.64 232.48 232.16 229.21 225.79

FTF
θ 0.39 0.28 0.30 0.95 2.86 4.82
Cost 247.60 247.30 248.14 245.93 244.10 242.88

Table 2.17: Comparison between standard DQN controller and our sensor fault-tolerant framework
(FTF) on a single-zone building under continuous faults. The fault lasts for ϖ steps. θ is the avg.
indoor temperature violation rate (%).

97

Figure 2.14: 4-zone building temperature under IID faults with p1 = 0.4 without FTF (above) and
with FTF control (below).

2.3.4 Evaluation of Model-Assisted Learning

In this section, we conduct experiments on the model-assisted learning algorithm and demonstrate

its improvement in the performance of the temperature predictor module. Note that the data only

contains non-faulty data in this section for avoiding other factors that may affect the evaluation,

which means that there is no sensor fault in both training and testing.

We employ an abstract physical model introduced in Section 2.3.3.3 for a four-zone building.

98

ϖ 0 1 2 3 4 5

DQN

θ1 0.0 0.04 3.02 5.27 8.07 10.96
θ2 0.12 1.32 4.71 11.51 15.32 20.58
θ3 0.11 0.40 3.57 5.89 10.00 12.63
θ4 0.43 4.27 13.24 24.48 26.98 31.52
Cost 257.80 246.17 229.04 219.30 212.56 207.90

FTF

θ1 0.0 0.0 0.0 0.0 0.0 0.23
θ2 0.17 0.31 0.88 1.77 2.94 5.32
θ3 0.03 0.34 0.17 0.82 0.82 1.95
θ4 0.39 0.98 1.18 2.92 4.31 7.54
Cost 257.82 257.48 267.24 267.21 265.26 257.55

Table 2.18: Comparison between standard DQN controller and our sensor fault-tolerant framework
(FTF) on a four-zone building under continuous faults. The fault lasts for ϖ steps. θi is the avg.
indoor temperature violation rate (%) in thermal zone i.

Amount of data 360 720 1440 2880 5760
Labeled data only 2.86e-2 1.97e-2 1.17e-2 8.71e-3 6.02e-3
Distillation+Fine-tuning 2.85e-2 1.81e-2 1.13e-2 9.76e-3 6.55e-3
Model-assisted SSL 1.56e-2 1.03e-2 7.83e-3 5.01e-3 4.13e-3
Model-assisted RU 1.54e-2 1.19e-2 8.79e-3 6.42e-3 3.56e-3
Model-assisted learning 1.15e-2 9.94e-3 5.72e-3 2.29e-3 1.98e-3

Table 2.19: Comparison of different learning strategies on temperature predictor performance. The
first line shows training with labeled data only. The second line shows the distillation approach as
in [95]. The third line shows using only the first stage (model-assisted SSL) of our model-assisted
learning approach, and the fourth line shows only using the second stage (model-assisted RU). The
last line shows using both stages, i.e., our model-assisted learning approach.

99

Figure 2.15: Comparison of different learning strategies on temperature prediction performance,
including Labeled data only (blue line), Distillation+Fine-tuning (orange line), Model-assisted
SSL and RU (green & yellow line), Model-assisted learning (purple line). We can observe from
the figure that Model-assisted learning only requires around 1400 data samples to reach the Nor-
malized RMSE of using Labeled data only with 5760 samples, i.e., only needs 1/4 of the labeled
data by leveraging the abstract physical model via our approach.

The abstract model itself has the temperature prediction value with Normalized RMSE at 3.7e-2.

Then if we only use the accurately labeled data collected from the building to train the neural

networks in the temperature predictor module, which is shown in the first line in Table 2.19 (the

model named Labeled data only), we can see that the Normalized RMSE remains at the relatively

high level, e.g., 2.0e-2 for 1440 data samples, and 1.8e-2 for 2880 data samples. More labeled data

leads to more accurate model prediction. The maximum amount of available data is 5760 samples

for the simulation of eight days.

In addition to model-assisted learning, we also test another idea for leveraging the abstract

physical model M to gain better performance, i.e., using the abstract physical model to set ini-

100

tial weights for a neural network, so the network may cost less training data for reaching higher

accuracy as it searches from a better initial point. The related technique for obtaining this initial

value is model distillation [95]. However, as mentioned earlier, choosing the data to feed the neural

network is challenging for distillation. Here we use the same sampling approach as proposed in

Section 2.3.3.3, i.e., sampling from data space H and feeding the samples x to the abstract phys-

ical model M . Then we get the corresponding data pair (x,y), and train the network using (x,y)

with learning rate η2 for niter iterations (a new sampling data batch for each iteration). Next, we

fine-tune this newly trained model with learning rate η3 in lft epochs on the accurately labeled

data. The model obtained in this way is named as Distillation + Fine-tuning (which is shown in

the second line of the Table 2.19).

Finally, we apply our proposed model-assisted learning to leverage the abstract physical model.

To understand how much each stage contributes to the final performance, we add the results of

only applying one of the two stages, which are the third line (Model-assisted SSL) and fourth

line (Model-assisted RU) of Table 2.19, respectively. And when combining both, the result is our

Model-assisted learning, as in the last line.

We can observe from the table that, when the available sample is limited (360, 720, 1440),

the building dynamics directly extracted by Distillation + Fine-tuning method can help reduce the

Normalized RMSE. However, those extracted knowledge is only an inaccurate estimation, and the

bias it brings prevents the model from achieving better result when there is more available labeled

data (2880, 5760). On the other side, both stages in our Model-assisted learning approach can

make good use of the abstract model and reduce the Normalized RMSE among all cases. When

combing the two together, with the same amount of labeled data, our Model-assisted learning

can achieve significantly better results than using only labeled data or distillation method. Such

effectiveness is also visualized in Figure 2.15 – it plots the same results as Table 2.19, but we

101

can clearly see that for the same level of performance, our Model-assisted learning approach only

requires about 1/4 of the labeled data.

102

CHAPTER 3

ADDRESSING THE DATA CHALLENGES IN VISION

In the previous chapter, we addressed the issue of data limitations in building HVAC control ap-

plications. In this chapter, we shift our focus to another important application, namely image

classification. Image classification plays a crucial role in many cyber-physical systems, such as

autonomous vehicle [4], agriculture [7], surgery [125], manufacturing [126], etc. To be specific,

we mainly introduce two topics on the data insufficiency and data imperfection in image classifi-

cation tasks,

• Weak Adaptation Learning: Addressing the challenge of data insufficiency in target domain,

we propose a novel approach called weak adaptation learning (WAL). Our approach leverages

unlabeled data from a similar source domain, limited number of labeled target domain data, and

a low-cost weak annotator. Our approach includes a theoretical analysis on the error bound of

the trained classifier and a multi-stage WAL method that improves the classifier accuracy by

lowering such error bound.

• Open Vocabulary Multi-Label Classification: In the case of extreme data insufficiency,

target domain data may be entirely unavailable. To address this challenge, we developed an

open-vocabulary multi-label classification framework capable of making predictions on unseen

classes. In our approach, we present DM-Decoder, a novel transformer decoder for facilitating

the fusion of the semantics from dual-modal information source. We also design the Pyramid-

Forwarding method, a new adaptation technique that enables the framework to handle high-

resolution images beyond the scope of the training data while reducing the computational cost

of the vision transformer.

103

3.1 Weak Adaptation Learning–Addressing Cross-domain Data Insufficiency with Weak

Annotator

3.1.1 Background

It’s common sense that having a large number of data samples with accurate labels could enable

effective supervised learning methods for improving classification accuracy. But it may be diffi-

cult to collect many data samples in some problem domains or scenarios, such as for the training

of autonomous vehicles during extreme weather (e.g., fog, snow, hail) and natural disasters (e.g.,

mudflow), or for search and rescue robots during forest fire and earthquake. One possible solution

to such problem of data unavailability is using data from other similar domains to train the target

domain model and then fine-tune it with limited target domain data, i.e., through domain adapta-

tion. Taking the aforementioned cases as examples, while there may not be much data in hailing

weather, we could collect data in days with heavy rain; while it may be difficult to find images dur-

ing earthquakes for large parts of America, we could collect images in Japan, where earthquakes

occur more often in a different environment. However, obtaining a large amount of high-quality

labeled data in these source domains could still be challenging and costly.

To address the above data insufficiency challenges across domains, we consider leveraging low-

cost weak annotators that can automatically generate large quantity of labeled data based on certain

labeling rules/functions, task-specific heuristics, or other methods (which may be inaccurate to

some degree). More specifically, our approach considers the following setting for classification

problems: There is a small amount of data samples with accurate labels collected for the target

domain, which is called target domain data or target data in this paper for simplicity. There is also

a large amount of unlabeled data that can be acquired from a similar but different source domain

Section 3.1 is based on our work published at [36].

104

(i.e., there exists domain discrepancy), which is called source (domain) data in this paper. Finally,

there is a weak annotator that can produce weak (possibly inaccurate) labels on data samples. Our

objective is to learn an accurate classifier for the target domain based on the labeled target data, the

initially-unlabeled source data, and the weak annotator.

The problem we are considering here is related but different from Semi-Supervised Learning

(SSL) [127]–[129] and Unsupervised Domain Adaptation (UDA) [130]–[133]. In the setting of

SSL, the available training data consists of two parts – one has accurate labels while the other is

unlabeled, and the two parts are drawn from the same distribution in terms of training features.

This is different from our problem, where there exists domain discrepancy across the source and

target domains. The objective of UDA is to adapt a model to perform well in the target domain

based on labeled data in the source domain and unlabeled data in the target domain. This is again

very different from our problem, where the source domain data is initially unlabeled and assigned

with inaccurate labels by a weak annotator, while the target domain data has labels but its quantity

is small. Another related field is Positive-unlabeled Learning (PuL) [134], [135], an approach

for sample selection. The training data of PuL also consists of two parts – positive and negative

data, and the task is to learn a binary classifier to filter out samples that are similar to the positive

data from a large amount of negative data. However, the current PuL approaches usually conduct

experiments in a single data set rather than multiple domains with feature discrepancy.

To solve our target problem, we first develop a theoretical analysis on the error bound of a

trained classifier with respect to the data quantity and the weak annotator performance. We then

propose a Weak Adaptation Learning (WAL) method to learn an accurate classifier by lowering

the error bound. The main idea of WAL is to obtain a cross-domain representation for both source

domain and target domain data, and then use the labeled data to estimate the classification er-

ror/distance between the weak annotator and the ideally optimal classifier in the target domain.

105

Next, all the data is re-labeled based on such estimation of weak annotator classification error.

Finally, the newly-relabeled data is used to learn a better classifier in the target domain.

3.1.2 Related Works

3.1.2 Weakly- and Semi-Supervised Learning

Weakly Supervised Learning is a large concept that may have multiple problem settings [120].

The problem we consider in this paper is related to the incomplete supervision setting that is often

addressed by Semi-Supervised Learning (SSL) approaches. Standard SSL solves the problem of

training a model with a few labeled data and a large amount of unlabeled data. Some of the

widely-applied methods [127], [128], [136], [137] assign pseudo labels to unlabeled samples and

then perform supervised learning. And there are works that address the noises in the labels of

those samples [138]–[140]. Our target problem is related to SSL with inaccurate supervision, but

is different since we consider the feature discrepancy between the (unlabeled) source data and the

(labeled) target data – a case that occurs often in practice but has not been sufficiently addressed.

Positive-unlabeled Learning (PuL) is usually regarded as a sub-problem of SSL. Its goal is to

learn a binary classifier to distinguish positive and negative samples from a large amount of unla-

beled data and a few positive samples. Several works [134], [135] can achieve great performance

on selecting samples that are similar to the positive data, and there are also works using samples

selected by PuL to perform other tasks [141], [142].

3.1.2 Importance of Sample Quantity

The training of machine learning models, especially deep neural networks, often requires a large

amount of data samples. However, in many practical scenarios, there is not sufficient training

data to feed the learning process, degrading the model performance sharply [100], [143], [144].

106

Many approaches have been proposed to make up for the lack of training samples, e.g., data re-

sampling [145], data augmentation [146], metric learning and meta learning [147]–[150]. And

there are works [147], [151]–[153] conducting theoretical analysis on the relation between training

data quantity and model performance. These analyses are usually in the form of bounding the

prediction error of the models and provide valuable information on how the sample quantity of

training data affects the model performance. In our work, we also perform a theoretical analysis

on the error bound of the trained model, with respect to not only the data quantity but also the

performance of the weak annotator.

3.1.3 Methodology

3.1.3 Theoretical Analysis

Problem Definition and Formulation

We consider the task of classification, where the goal is to predict labels for samples in the target

domain. Two types of supporting data can be accessed for training the model – source domain

data and target domain data. The source domain data samples are initially unlabeled and come

from a joint probability distribution Qs. They can be labeled by a weak annotator hw (which

may be inaccurate) and denoted as Ds = {(xs, ys)i}Ns
i=1, where Ns is the number of source data

samples. The target domain data Dt = {(xt, yt)i}Nt
i=1 consists of Nt samples collected from the

target distribution Qt. Note that Qt may be different from QS . And we use Qs
X , Qs

Y and Qt
X , Qt

Y

to represent the marginal distributions of the source and target domains, respectively. Moreover,

as stated before, we consider the case where there is only a small amount of target domain data,

i.e., Nt ≪ Ns. Our goal is to learn an accurate classifier for the target domain. The classifier is

initialized from a parameter distribution H, which denotes the hypothesis parameter space of all

possible classifiers.

107

In the following analysis, we will define the classification risk of a classifier and then derive its

bound. According to the PAC-Bayesian framework [154], [155], the expected classification risk of

a classifier drawn from a distribution Q that depends on the training data can be strictly bounded.

Let hΘ denote a learned classifier from the training data, and its parameter Θ is drawn fromQ. We

consider that the prior parameter distribution H over the hypothesis is independent of the training

data. And given a δ with the probability ≥ 1− δ over the training data set of size m, the expected

error of hΘ can be bounded as follows [156]:

L(hΘ) ≤ L̂(hΘ) +

√
L̂(hΘ) · Ω + Ω

Ω =
2
(
KL(Q∥H) + ln m

δ

)
m− 1

(3.1)

Here L(hΘ) is the expected error of h over parameter Θ, and L̂(hΘ) is the empirical error com-

puted from the training set (L̂(hΘ) = 1
m

∑m
i=1 L(xi, yi), where L denotes the loss of a single

training sample). In Eq. (3.1), KL(Q∥H) represents the Kullback-Leibler (KL) divergence be-

tween parameter distribution Q and H. For any two distributions p, q, the specific form of their

KL divergence is KL(p∥q) = −E[p · ln q
p
]. In most cases of mini-batch training, the training loss

L̂(hΘ) is much smaller than Ω, and thus we can get a further bound as follows [151]:

L(hΘ) ≤ L̂(hΘ) + 4

√(
KL(Q∥H) + ln 2m

δ

)
m

(3.2)

Then if we denote the model parameters of h before the training that are drawn fromH as Θp,

the KL divergence can be written as KL(Q∥H) = −E[Θ · (lnΘp − lnΘ)]. As aforementioned,

hΘ is trained with the training data set from hΘp , and we consider that the training is optimized

by gradient-based method. Thus, we can formulate that Θ = Θp +∇(L̂(hΘp)). Here we omit the

learning rate to simplify the formula.

The PAC-Bayesian error bound is valid for any parameter distributionH that is independent of

the training data, and any method of optimizing Θp dependent on the training set [151]. Therefore,

108

in order to simplify the problem, we instantiate the bound as setting H to conform to a Gaussian

distribution with zero mean (µH = 0) and VarH = σ2
H variance. This simplification is the same

as previous PAC-Bayesian works [151], [157]. We further assume that the parameter change of

the overall model during training can also be regarded as conforming to an empirical Gaussian

distribution. This Gaussian distribution is independent of model parameters if we regard the pa-

rameter updates induced by gradient back-propagation as accumulated random perturbations, i.e.,

each training sample corresponds to a small perturbation [157]. And we denote the mean and the

variance of a single training sample as follows:

µ ≜ E [∇ΘpL(x, y)]

σ2 ≜ E
[
(∇ΘpL(x, y)− µ)(∇ΘpL(x, y)− µ)T

] (3.3)

Then, the specific formula of KL divergence to any two Gaussian distributions p ∼ N (µ1, σ
2
1),

q ∼ N (µ2, σ
2
2) is written as follows:

KL(p, q) = ln
σ2

σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(3.4)

Theorem 1. For a classifier parameter distribution H ∼ N (0, σ2
H) that is independent of the

training data with size m, and a posterior parameter distribution Q learned from the training

data set, if we assume Q ∼ N (µQ, σ
2
Q) and consider Θp, Θ as drawn from H, Q respectively

(Θ = Θp + ∇(L̂(hΘp))), the KL divergence of Q and H is bounded with symbols defined in

Eq. (3.3) as follows:

KL(Q∥H) ≤
σ2

m
+ µ2

2σ2
H

(3.5)

The detailed proof of Theorem 1 is presented in our paper [36]. With the above risk definition,

the risk of h with respect to the target data distribution Qt is

Rt(h) = E(x,y)∼QtL(h(x), y) = L(hΘ)∼Qt (3.6)

109

Besides, we define the Classification Distance of two classifiers h1 and h2 under the same domain

distribution P as

CD∼P(h1,h2) = Ex∼PL(h1(x),h2(x)) (3.7)

Moreover, the Discrepancy Distance of two domains is defined as in [158]: ∀h1,h2, the discrep-

ancy distance between the distributions of two domains P,Q is

DD(P,Q) = sup
h1,h2∈H

|CD∼P(h1,h2)− CD∼Q(h1,h2)| (3.8)

For further analysis, we also define two operators in a parameter distributionH:

• ⊕: ∀h1,h2 ∈ H, and ∀x ∈ P, a new classifier h3 = h1 ⊕ h2 can be acquired by conducting

operator ⊕ on h1 and h2, and h3(x) = h1(x) + h2(x).

• ⊖: ∀h1,h2 ∈ H, and ∀x ∈ P, a new classifier h3 = h1 ⊖ h2 can be acquired by conducting

operator ⊖ on h1 and h2, and h3(x) = h1(x)− h2(x).

Error Bound Analysis

Let hos and hot denote the ideal classifiers that perform optimally on the source data and target

data, respectively:

hos = argminh∈QR
s(h), hot = argminh∈QR

t(h) (3.9)

In our approach, we design a classifier that learns the discrepancy between the weak annotator

and the ground truth (details will be introduced in Section 3.1.3), and we denote it as d drawn from

Q. Thus, we can get a model that is the product of conducting the aforementioned ⊕ operator on

h and d, i.e., h ⊕ d. Here h is designed for approximating the weak labels. And for the risk of

h⊕ d, we can obtain the following relation:

Theorem 2. For all L1 (Mean Absolute Error [159]), L2 (Mean Squared Error [160]) and their

110

non-negative combination loss functions (Huber Loss [161], Quantile Loss [162], etc.), the clas-

sification risk of aforementioned h⊕ d can be formulated as follows:

Rt(h⊕ d) = EQt
X
L(h⊕ d,hw ⊕ hot ⊖ hw)

≤ EQt
X
L(h,hw) + EQt

X
L(d,hot ⊖ hw)

(3.10)

Please refer to our paper [36] for detailed proof of Theorem 2. Then if we consider that the training

loss L̂(h) (which equals the average loss of all training samples) is hardly influenced by the sample

quantity, and it is the same for the discrepancy between two domains [163], we can split the error

bound of h ⊕ d into two parts, where one part, denoted as ∆, is not influenced by the sample

quantity and the other is related to the sample quantity. According to Eq. (3.2), these two parts can

be written as follows (the detailed derivation of inequalities starting from Eq. (3.10) can be found

in our paper [36]):

Rt(h⊕ d) = EQt
X
L(h⊕ d,hw ⊕ hot ⊖ hw)

≤ ∆+ 4

√
KLd

Nt

+ 4

√
KLh

Ns

+ 12

√
ln 2Nt

δ

Nt

+ 8

√
ln 2Ns

δ

Ns

where ∆ = 2L̂t(h
w) + L̂t(d) + L̂s(h)

+ L̂s(h
w) +DD(Qt

X ,Qs
X)

(3.11)

Here KLd and KLh denote KL divergences between trained d, h and H respectively. According

to Theorem 1, this KL divergence term is influenced by the training, especially impacted by the

sample quantity. We will discuss the insights obtained from this error bound in the next section,

and then introduce our weak adaptation learning process that is inspired by those insights.

111

Observation from Error Analysis

Based on the error bound derived in Eq. (3.11), we can put efforts into the following ideas in our

approach to improve the classifier performance in the target domain:

• Performance of annotator (2L̂t(h
w) + L̂s(h

w)): The supervision provided by the weak anno-

tator can guide the model to better target the given task. Ideally, we want hw to produce more

accurate labels for both source and target data, reducing 2L̂t(h
w) and L̂s(h

w) simultaneously.

Practically though, we may just be able to make the annotator perform better on the source

domain and cannot do much with the target domain.

• Discrepancy between domains (DD(Qt
X ,Qs

X)): Designing loss to quantify the discrepancy

between the source and target domains is well studied in Domain Adaptation. In our approach,

we propose a novel inter-domain loss (called Classified-MMD) to minimize DD(Qt
X ,Qs

X), as

introduced later.

• Quantity of source and target samples (Ns, Nt): First, the learning of d needs the supervision

of the ground truth, and thus we can only use the labeled target data to train d. Then, in our

method, h is designed to approximate the weak annotator, and therefore it may see enough that

we just use the source data to train h. However, to further reduce KLh according to Theorem 1,

we also use target samples to train h, which increases the sample size of training data. Moreover,

since the sample quantity of source data is much larger than that of target data (i.e., Nt ≪ Ns),√
KLd/Nt in Eq. (3.11) dominates over

√
KLh/Ns, and in the case of δ ≤ 2/e, 12

√
ln 2Nt

δ
/Nt

also strictly dominates over 8
√
ln 2Ns

δ
/Ns. As the result, the terms influenced by a few target

samples dominates the overall error risk. Therefore, directly applying h⊕d to the target domain

will still be impacted by the insufficient samples. However, note that h ⊕ d can produce more

accurate labels for the source data than the weak annotator. Therefore, we add a final step in our

learning process that utilizes re-labeled source data and conducts supervised learning with such

112

augmentation.

3.1.3 Learning Process

In this section, we present the detailed process of our weak adaptation learning (WAL) method,

which is designed based on the observations from the above error bound analysis. The overview

of our WAL process is shown in Figure 3.1. The designed network consists of three parts –

(Φ0,Φ1,Φ2). Φ0 can be seen as a shared feature network for both source and target data, using

typical classification networks such as VGG, ResNet, etc. Φ1 consists of three fully-connected

layers that follow the output of Φ0. And we denote the combination of Φ0 and Φ1 as F1. Φ2 con-

sists of two fully-connected layers that follow the output of Φ0. The combination of Φ0 and Φ2 is

denoted as F2. The workflow of our method is shown in Algorithm 7.

Algorithm 7 The workflow of Weak Adaptation Learning.
1: Initialize parameters of network components Φ0,Φ1,Φ2.
2: Obtain dataset D from the source and target data with the help of weak annotator hw.
3: Train F1 = Φ1 ◦ Φ0 using D, with loss function following equation L = LKL + αLcmmd.
4: Fix the parameters of Φ1 and use F2 = Φ2 ◦Φ0 to fit the distance of the optimal classifier for target data

hot and the weak annotator hw with the target data.
5: Generate a new dataset using both source and target data. The new labels are calculated by ynew =

hw(x) + Φ2(h
w(x), Φ0(x)).

6: Initialize parameters of Φ0,Φ1,Φ2.
7: Fix Φ2 and train F1 using the new dataset. The loss function follows L = LKL + αLcmmd.
8: Output classifier F1.

Stage 1: The first goal we step on is to obtain a common representation for both the source

and target data, which helps us encode the inputs while mitigating the domain discrepancy in the

feature representation. We gather all the unlabeled source data and the target data without their

labels and use weak annotator hw to assign a label for each data sample xi and ywi = hw(xi). We

denote the dataset obtained in this way as D = {(x, yw)i}Ns+Nt
i=1 . Then we fix Φ2 and only consider

the left part of the network, which is F1 = Φ1 ◦ Φ0. It is normally trained by supervised learning

113

D
a

ta

D
a

ta
𝐿
=
𝐿
𝐾
𝐿

+
𝛼
𝐿
𝑐𝑚

𝑚
𝑑

S
o

u
rc

e
 d

o
m

a
in

T
a

rg
e

t
d

o
m

a
in

W
e
a
k

a
n
n
o
ta
to
r

Φ
0

Φ
1

T
a

rg
e

t
d

o
m

a
in

D
is

ta
n

ce

D
a

ta

D
a

ta

L
a

b
e

l

𝐿
=
𝐿
𝐾
𝐿

+
𝛼
𝐿
𝑐
𝑚
𝑚
𝑑

𝐿
𝑀
𝑆
𝐸

S
o

u
rc

e
 d

o
m

a
in

W
e
a
k

a
n
n
o
ta
to
r

Φ
0

Φ
1

Φ
2

St
ag

e
1

: O
b

ta
in

 a
 c

o
m

m
o

n
 r

ep
re

se
n

ta
ti

o
n

 f
o

r
so

u
rc

e
an

d
 t

ar
ge

t
d

at
a

St
ag

e
2

: E
st

im
at

e
th

e
cl

as
si

fi
ca

ti
o

n
 d

is
ta

n
ce

 b
y
Φ
2

D
a

ta

D
a

ta

N
e

w

La
b

e
l

𝐿
=
𝐿
𝐾
𝐿

+
𝛼
𝐿
𝑐
𝑚
𝑚
𝑑

𝐿
=
𝐿
𝐾
𝐿

+
𝛼
𝐿
𝑐𝑚

𝑚
𝑑

S
o

u
rc

e
 d

o
m

a
in

T
a

rg
e

t
d

o
m

a
in

W
e
a
k

a
n
n
o
ta
to
r

Φ
0

Φ
1

T
a

rg
e

t
d

o
m

a
in

D
a

ta

D
a

ta

N
e

w

La
b

e
l

𝐿
=
𝐿
𝐾
𝐿

+
𝛼
𝐿
𝑐𝑚

𝑚
𝑑

S
o

u
rc

e
 d

o
m

a
in

W
e
a
k

a
n
n
o
ta
to
r

Φ
0

Φ
1

Φ
2

St
ag

e
4

: L
e

ar
n

 t
h

e
n

ew
 c

la
ss

if
ie

r
b

as
ed

 o
n

 t
h

e
n

ew
 d

at
a

se
t

St
ag

e
3

:
C

al
cu

la
te

th
e

n
ew

 d
at

a
se

t
b

as
ed

 o
n

 t
h

e
cl

as
si

fi
ca

ti
o

n
 d

is
ta

n
ce

an
d

 t
h

e
w

e
ak

 la
b

el

Figure 3.1: Overview of the Weak Adaptation Learning (WAL) process. The designed network
architecture is divided into three components Φ0,Φ1,Φ2 and the algorithm has four stages. First,
we use a combined loss function to learn a cross-domain representation in Φ0 for both source and
target data samples. Then, in Stage 2, Φ2 estimates the classification distance between the weak
annotator and the ideally optimal one in the target domain. A new re-labeled dataset is generated
in Stage 3, and then used in Stage 4 to learn the desired classifier.

114

using the dataset D for ep1 training epochs, and uses the following loss function:

L = LKL + αLcmmd (3.12)

In this loss function, there are two loss terms and the hyper-parameter α is a scaling factor to

balance the scale of two loss functions (we set it as 0.0001 in our experiments). The first term LKL

is the Kullback-Leibler (KL) divergence loss, stated as follows:

LKL = KL(y1pre∥yw)

= KL(Φ1 ◦ Φ0(x)∥hw(x))

(3.13)

where y1pre is the output prediction value of F1 and yw is the corresponding weak label produced

by the weak annotator hw. The second term Lcmmd aims to mitigate the domain discrepancy of the

source and target domain at the feature representation level in the neural networks. Based on the

basic MMD loss introduced by [164], we further change it into the version with data labels. We

call this loss function as Classified-MMD loss (corresponding to the subscript cmmd), which is

defined as:

Lcmmd =
1

M
·

M∑
i=1

∥ 1

|D(S,i)
X |

∑
xs∈D(S,i)

X

F1(xs)

− 1

|D(T,i)
X |

∑
xt∈D(T,i)

X

F1(xt)∥
(3.14)

where M is the number of classes, DX is the data from the produced dataset D without labels, and

D
(S,i)
X is the source data selected from DX with argmax(yw) = i. Then, we utilize target data with

its accurate labels to continue to train the network component F1 under the loss function LKL for

ep2 training epochs, which helps further fine-tune the feature we learned through accurate labels

of the target data.

115

Stage 2: After finishing training in Stage 1, the next step is to estimate the distance of the

optimal classifier for target data hot and the weak annotator hw. We estimate this distance through

available target data with accurate labels. We adopt the parameters trained from Stage 1 and train

network component F2 = Φ2◦Φ0 using the target data Dt. For an input data sample x, it is brought

into both Φ0 and the weak annotator as their input. And then Φ2 takes the output feature of Φ0(x)

and hw(x) as input feature (these two features are concatenated as the input feature of Φ2). For

data sample (xt, yt) ∈ target dataset Dt, the learning of F2 uses the following classifier discrepancy

loss function:

LMSE = ∥ Φ2(h
w(xt),Φ0(xt))− (yt − hw(xt)) ∥2 (3.15)

The network is trained for ep3 training epochs.

Stage 3: The third step is to generate a new dataset Dnew through the obtained network F2

above. Specifically, we collect data x from both source data and target data, and we re-label these

data based on the weak annotator and F2 obtained from the previous steps:

Dnew = {(x, ynew)|x ∈ DX ,

ynew = hw(x) + Φ2(h
w(x),Φ0(x))}

(3.16)

Stage 4: In the last step, we focus on F1 = Φ1 ◦ Φ0 again. We fix the parameters of network

component Φ2 and train F1 using the new dataset Dnew obtained in Stage 3. To avoid introducing

feature bias from the previous steps, we clean all previous network weights and re-initialize the

whole network before training. The training lasts for ep4 epochs, and the loss function for this step

is L = LKL+αLcmmd, which is the same as the function in Stage 1. Finally, we get the final model

F1 as the desired classifier.

To sum up, in Stage 1, we learn the model h with the help of the weak annotator to decrease

the empirical loss L̂s(h), and the CMMD loss will reduce the term DD(Qt
X ,Qs

X). Stage 2 uses

116

a new classifier d to learn the classification distance corresponding to the term L̂t(d). The Stage

3 uses the annotator and the learned d to give more accurate labels than those given solely by the

annotator. Then in Stage 4, the model is trained by the relabeled data, making both L̂s(h) and

DD(Qt
X ,Qs

X) be further decreased.

3.1.4 Experimental Results

3.1.4 Dataset

The experiments are conducted on three application scenarios, the digits recognition with do-

main discrepancy (SVHN[165], MNIST[166] and USPS[167] digit datasets), object detection with

domain discrepancy (VisDA-C[168]), and object detection without domain discrepancy (CIFAR-

10[169]).

3.1.4 Training Setting

All experiments are conducted on a server with Ubuntu 18.04 LTS with NVIDIA TITAN RTX

GPU cards. The implementation is based on the Pytorch framework. The scaling factor α in our

algorithm is set to 1e − 4. The learning rate is selected from [1e-1, 1e-2, 1e-3, 1e-4, 1e-5], for

the value with the best performance in experiments. The training epochs are empirically set as

multiples of 10 and are selected for each experiment. We pre-run each experiment to determine

the epoch value and stop training when the performance does not increase in the next 20 epochs to

prevent over-fitting. We get weak annotators in different performance by applying early stop for

the training.

In the digit experiments, the training epochs in each training step is chosen as: ep1 = 90,

ep2 = 90, ep3 = 40, ep4 = 180. The learning rate for experiment M→ S is set to 1e − 4 and for

other experiments set to 1e− 5. Training batch size is set to 128. For the baseline Bt, it is trained

117

for 90 epochs, and the learning rate is 1e − 5 (1e − 4 for M → S). For Bf1 , it is trained on the

source data with weak labels for 90 epochs and on the target data for 90 epochs, and the learning

rate is 1e− 5 (1e− 4 for M→ S). For Bf2 , it is trained on the source data with weak labels for 90

epochs and on the target data for 90 epochs, and the learning rate is 1e − 5 (1e − 4 for M→ S).

Moreover, image augmentation techniques (provided by Torchvision.Transform) are applied for

baselines Bt, Bf1 , Bt2 , and our approach. Other baselines use their original augmentation setting.

We use the function in the Pytorch vision package for the implementation, and the images may be

rotated from −3 to 3 degree, or changed to gray-scale with a probability of 0.1.

In the VisDA-C experiments, the training epochs in each training step is chosen as: ep1 = 90,

ep2 = 90, ep3 = 40, ep4 = 180. The learning rate for experiment is set to 1e − 5. Training batch

size is set to 128. For the baseline Bt, it is trained for 90 epochs, and learning rate is 1e − 5. For

Bf1 , it is trained on the source data with weak labels for 90 epochs and on the target data for 90

epochs, and the learning rate is 1e − 5. For Bf2 , it is trained on the source data with weak labels

for 90 epochs and on the target data for 90 epochs, and the learning rate is 1e − 5. The image

augmentation techniques are also applied for baselines Bt, Bf1 , Bt2 , and our approach. Other

baselines use their original augmentation setting. We similarly use the function in the Pytorch

vision package for the implementation, and the images may be rotated from −3 to 3 degree, or

changed to gray-scale with a probability of 0.1, or horizontally flipped with a probability of 0.5.

In the CIFAR-10 experiments, the training epochs in each training step is chosen as: ep1 = 40,

ep2 = 30, ep3 = 70, ep4 = 70. The learning rate is set to 1e − 3. Training batch size is set to

128. For the baseline Bt, it is trained for 70 epochs, and the learning rate is 1e − 3. For Bf1 , it is

trained on the source data with weak labels for 30 epochs and on the target data for 40 epochs, and

the learning rate is 1e− 3. For Bf2 , it is trained on the source data with weak labels for 30 epochs

and on the target data for 40 epochs, and the learning rate is 1e − 3. The image augmentation

118

techniques are still applied to baselines Bt, Bf1 , Bt2 , and our approach. We use the function in

the Pytorch vision package for the implementation, and the images are horizontally flipped with a

probability of 0.5.

3.1.4 Baseline Experiments Setting

We conduct comparison experiments with the following baselines. Baseline Bwa is the perfor-

mance of the weak annotator chosen in the experiments in the target domain. Baseline Bt is train-

ing F1 only with target data. Baseline Bf1 is a fine-tuning result. It takes the same model as F1 and

first uses source domain data and weak labels generated by the weak annotator to train it. Then it

uses target domain data to fine-tune the last three layers. Baseline Bf2 is also a fine-tuning result.

The difference is that instead of fine-tuning the last three layers, it trains all network parameters.

As introduced before, our problem is related to the Semi-Supervised Learning (SSL) and the

Semi-Supervised Domain Adaptation (SSDA). For SSL, although we can replace the unlabeled

data with samples drawn from another domain instead of the target domain, we cannot find a good

way to incorporate the weak annotator into SSL methods for fair comparison with our approach.

For SSDA, we were able to extend it to our setting for comparison. Specifically, we add 1,000 un-

labeled target samples (plus 1,000 labeled target samples, and this setting will be changed accord-

ingly in digits recognition to keep consistent settings) to meet the semi-supervised requirement,

and we apply weak annotator to produce weak labels instead of accurate ones for source data. We

compare our approach with the following SSDA baselines: FAN [170], MME [171], ENT [172],

S+T [148], [173]. Note that to the best of our knowledge, there is no previous work with exactly

the same problem setting as ours. The above changes aim at making the comparison as fair as

possible. Another thing that is worth to mention is that most SSDA methods conduct adaptation

on the ImageNet pre-trained models, which introduces a lot of irrelevant data information from

119

the ImageNet dataset. Thus, we disable the pre-training and only allow training with the available

data.

3.1.4 Results of Digits Recognition

We evaluate our methods on the digit recognition datasets: SVHN (S), MNIST (M),and USPS (U).

According to the results shown in Table 3.1, when the weak annotator performs much worse than

the model learned only from the provided target data Bt (Bwa = 73.28% on M→ U, 73.28% on S

→ U and 76.41% on S→ M), its corresponding baseline Bf1 is also lower than Bt, and only the

second fine-tuning method Bf2 is better than or competitive with Bt. This indicates that the feature

learned from the source domain data and with weak labels introduce data bias, and this bias can be

mitigated when the parameters from the front layers are fine-tuned by the target data.

Overall, we can clearly see that with 15,000 source domain data, limited number of labeled

target domain data (second line), and a weak annotator, our method can outperform all the baselines

in Table 3.1 with 80.00% on M→ S, 95.99% on M→ U, 96.36% on S→ U and 97.24% on S→

M.

Method M→ S(%) M→ U(%) S→ U(%) S→M(%)
#samples 1000 300 300 1000
Bwa 59.06 73.28 73.28 76.41
Bt 61.14 89.20 89.27 94.79
Bf1 55.68 84.58 77.24 80.41
Bf2 77.92 94.10 94.92 95.52
S+T 65.70 93.67 91.21 96.21
ENT 67.89 92.62 92.02 96.42
MME 65.92 93.07 91.32 95.64
FAN 68.48 93.78 92.38 96.51
Ours 80.00 95.99 96.36 97.24

Table 3.1: The accuracy of different methods on digit datasets.

120

3.1.4 Results of Object Recognition

The results of various methods on the VisDA-C dataset are presented in Figure 3.2. In this task,

we utilize the synthetic images as the source domain dataset, and the real-world images as the

target domain dataset. And we can see from the table that the performance of the network trained

only with the target data is merely 32.86%. Then, when the weak annotator is provided, it can

help two fine-tune baselines Bf1 and Bf2 reach 27.67% and 35.03% respectively. As for the SSDA

baselines, all of them perform very badly, and they are provided with more target samples with no

labels. The best SSDA methods FAN can only achieve 32.99%. Our method can provide a result

of 40.83%, which again exceeds all baselines above.

27.02

32.86

27.67

35.03

21.56

31.51 31.39

32.99

40.83

20

25

30

35

40

45

M
A

P
 (

%
)

Figure 3.2: The accuracy of different methods on the VisDA-C dataset. The number is measured
in percentage.

Moreover, we also test on the scenario without domain discrepancy using the CIFAR-10 dataset.

We randomly select 10,000 data samples from the dataset as the source data and another 1,000 sam-

ples as the target data. The result is included in Table 3.2. As we can see, when the weak annotator

121

is given at 48.96% accuracy, the model trained only with the target data can reach 30.46%, while

our method nearly doubles the performance and hits 61.71%, which exceeds all other baselines.

Method plane mobile bird cat deer dog frog horse ship truck mAP(%)
Bwa 43.18 65.68 28.13 25.93 29.00 46.15 83.91 41.76 72.12 51.06 48.96
Bt 19.08 63.39 03.03 30.16 25.77 22.60 46.11 50.85 23.61 25.74 30.46
Bf1 57.38 77.53 38.46 33.51 45.27 33.17 73.33 58.29 57.67 60.20 52.97
Bf2 44.19 80.00 38.02 41.97 47.15 24.30 78.14 55.06 89.35 38.19 53.49
Ours 65.52 82.61 39.79 48.45 57.36 43.60 67.39 65.32 70.42 78.89 61.71

Table 3.2: The accuracy of different methods on the CIFAR-10 dataset with 10 classes (without
domain discrepancy). The number is measured in percentage. The accuracy of each class is from
column 2 to column 11. The mean precision is shown in the last column.

3.1.4 Ablation Study

We also study how the quantity of target domain samples and the performance of the weak anno-

tator affect the overall performance of our method. To reduce the impact of domain discrepancy

when we study these two factors, we conduct the ablation study on CIFAR-10.

Sample Quantity of Target Samples As presented in Figure 3.3, the horizontal axis indicates

the number of target domain data, and the vertical axis shows the performance of our model using

the corresponding number of target domain samples. When keeping the weak annotator the same

as Section 3.1.4.5 and fixing the sample quantity of the source data as 10,000, the precision of the

model grows as the number of target domain data increases. And it will gradually get saturated

when there is enough target domain data. This saturation phenomenon can be explained as the

second derivative of
√

KL/N and
√
ln 2N

δ
/N for N is positive while the first derivative is negative.

And according to the curve, we can observe that the performance improvement when the target data

is less than the source data is relatively higher than the case when there is more target data. The

reason for this can be found in our theoretical analysis, i.e., when the sample quantities of source

122

and target data become closer, terms impacted by the quantity of target data will not dominate over

the error bound.

Figure 3.3: The performance of our learned model under different quantities of target domain
samples.

Performance of Weak Annotator Figure 3.4 shows the curve of how the performance of our

model changes with respect to the precision of the weak annotator. As shown in the figure, when

the weak annotator performs the worst with accuracy of 23.79%, our model can reach 42.29%,

which is a relatively significant improvement. And as the precision of the weak annotator in-

creases, our model performs better accordingly. Interestingly, the improvement curve in Figure 3.4

is approximately linear, which demonstrates that it is reasonable to linearly add the terms of the

weak annotator in the error bound.

123

Figure 3.4: The performance of our learned model under different accuracy of the weak annotator.

3.2 Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-

Textual Features

3.2.1 Background

In previous section, we consider the scenario when the data in target domain is limited, then we

incorporate the target domain data with unlabeled source data and as a weak annotator. But in

some applications, the user need to make prediction on a wide range of classes, and the target class

set might be not available in the training dataset in an extreme case.

Previously, this setting usually refers to as multi-label zero-shot learning where unseen labels

may occur during testing. The related methods are often created based on label correlations [174],

[175], which try to identify potential relations among the labels within the image to facilitate clas-

sification, usually, through building a label graph. Moreover, some methods [176], [177], including

the previous state-of-the-art (SOTA) method ML-Decoder [178], create label embeddings solely

from the words or assign learnable embeddings for each label instead of indirectly creating and

Section 3.2 is based on our work at [34].

124

learning from the graph relation, allowing for more sophisticated outcomes. One of the mostly

used label embeddings is Word2Vec [179], which is created from pretraining tasks with external

textual datasets (target label classes can be seen during pre-training). Then by extracting local

discriminative features according to different label embeddings, the model outputs the per-class

probability. However, these models only focus on the connection between the words, and the

generalization of the learned mapping (from image to seen label) to the target mapping (from im-

age to unseen label) is still challenging. The leveraging of the word embedding also blocks the

model from handling phase/sentence labels, which also exist in practice and are very challenging

to address.

In [180], the Open-Vocabulary setting is introduced, which is a generalization of zero-shot and

weakly supervised settings and is more suitable for dealing with unseen classes. While the target

classes are not known during training, it can be any subset of the entire language vocabulary in the

pretraining tasks (e.g., contrastive learning on image-caption dataset). It is proved to be quite effec-

tive in some computer vision tasks, such as object detection [181] and object segmentation [182].

In this setting, instead of using costly annotations for classification datasets, the Vision-Language

Pretraining (VLP) model trained on image-caption datasets can be utilized to help build the connec-

tion between the visual and textual embeddings and provide more flexibility in algorithm design.

Thus instead of classic zero-shot setting, we adopt the open-vocabulary setting for our method.

On the other side, current VLP models are not silver bullets and present new challenges. Prac-

tical VLP models are usually trained with fixed low-resolution images for reducing the computa-

tional cost of large-scale data sources. The input resolution for the model adapted from those VLP

models will be restricted. Besides, identifying whether a label exists in the image from their em-

beddings is also challenging, as the measurement based on simply comparing the cosine similarity

can lead to an uncertain threshold (which is typically different for different images and objects.)

125

Thus, in this section, we develop a novel approach for open-vocabulary multi-label classifica-

tion that significantly outperforms previous methods and provides the new state-of-the-art (SOTA)

performance. In three classification tasks – open-vocabulary multi-label, single-to-multi label,

and conventional multi-label – our approach provides significantly higher mean Average Precision

(mAP) than prevoius methods. More specifically, to overcome the challenges in previous meth-

ods, we propose an open-vocabulary multi-label classification framework ADDS (Aligned Dual

moDality ClaSsifier) based on the aligned visual and textual embeddings. The framework includes

a novel DM-decoder (Dual-Modal decoder) design, which leverages the dual modality to enhance

transformer decoder layers by progressively fusing visual embeddings with textual information

and developing richer semantic understanding. It also includes a Pyramid-Forwarding method

to adapt the model pre-trained on lower image resolutions to higher resolution images without

re-training.

3.2.2 Related Works

3.2.2 Conventional Multi-label Classification

Conventional multi-label classification, which aims to classify multiple objects, scenes, or concepts

in a given image, is generally a more challenging task than the typical single-label classification. It

has been studied in the literature by various approaches. The first group of methods is based on the

region of interest. And in previous works such as [183]–[186], multi-label classification is solved

by locating each object in the image or capturing the attention map and then performing single-

label classification on it. However, these methods often suffer from issues like coarse discovered

regions, heavy computation costs, some concepts or scenes being hard to localize, and some re-

gions containing duplicate concepts. Another group of methods is based on label correlations.

They try to identify the potential relations among the labels within the training images to facilitate

126

classification [187]–[189]. For instance, the method in [187] splits the feature representation into

category semantics-specific representations and applies a graph neural network to explore the in-

teractions among them. Some previous multi-label zero-shot learning methods also share a similar

idea with conventional multi-label classification, which will be discussed in the next section.

3.2.2 Multi-Label Zero-Shot Classification

Some of the methods for conventional multi-label classification claim that they can also address

zero-shot classification, such as [178], [183]. There are also other previous works [190]–[195].

Generally speaking, many papers in recent years try to capture the unseen labels by exploring the

connections between the labels. For instance, Akata et al. [191] consider each class as an embed-

ding in the space of attribute vectors, and then introduce a function measuring the compatibility

between an image and a label embedding to determine the correct classes. The work in [192] stud-

ies the image-word relevance by estimating the principal direction for an image, which is based

on the assumption that the word vectors of relevant labels for a given image can rank ahead of

the irrelevant labels along a principal direction in the word vector space. The most recent paper

in multi-label zero-shot learning is [178], which employs Word2Vec to generate the label text em-

bedding and solely relies on the relation between the text features for learning. However, due to

a lack of supervision on the visual information during the textual embedding learning, the learned

mapping between the image and text is hard to be generalized to unseen data space.

3.2.2 Vision-Language Pre-training (VLP)

The vision language pre-training learns the semantic correspondence between image and language

by pretraining on large-scale data with different tasks. In the literature, some works such as Vi-

sualBERT [196], Unicoder-VL [197], and ViLT [198] extract image tokens from the interest re-

127

gions, combine them with language tokens together as the inputs, and fuse the information by

the transformer in the early stage. Other works such as Contrastive LanguageImage Pre-training

(CLIP) [17], Self-supervision meets Language-Image Pre-training (SLIP) [199], Bootstrapping

Language-Image Pre-training (BLIP) [200], and Triple Contrastive Learning (TCL) [201] first ex-

tract the deep features of the image and the text individually, and then conduct modality interaction

after the feature extraction. In this paper, we mainly maintain the alignment of the visual and tex-

tual embeddings through CLIP [17], which is built on the cosine similarity between the image and

text embedding pairs and trained with a large and noisy dataset. Moreover, later in Section 3.2.4.4,

we also introduce experiments on using other VLP models such as BLIP [200] and SLIP [199].

3.2.2 Open-Vocabulary Learning

VLP models enable a strong connection between images and corresponding textual information by

learning from large-scale training corpora. Incorporating VLP models into model design has made

arbitrary text label prediction possible, and numerous related applications have benefited from it. In

recent years, open-vocabulary object detection [180], [202]–[205] and open-vocabulary semantic

segmentation [182], [206], [207] have become increasingly popular. Zareian et al. [180] firstly

propose Open-Vocabulary object Detection (OVD) and connect it with image-text pretraining. Gao

et al. [202] leverage the localization ability of the VLP model to generate pseudo bounding-box

labels for training the open-vocabulary object detector. Besides, Gu et al. [203] further distill

the knowledge from a VLP model into a two-stage open-vocabulary object detector. When VLP

models are leveraged for visual-semantic alignments on pixel-level information, Ma et al. [182]

are able to make the zero-shot transfer to segment novel categories. In this paper, we utilize

the CLIP model to keep the visual-semantic alignments to achieve open vocabulary multi-label

classification.

128

3.2.3 Methodology

3.2.3 Overview

A
ir

p
la

n
e

This photo contains

B
e

d

C
h

ai
r

D
ra

w
er

La
m

p

…

⊕

Text Tower

Selective language
supervision

Image Tower

x6

…
…

Bed: 0.9

Airplane: 0.7

Drawer: 0.5

Chair: 0.2

Lamp: 0.3

……

……

……

Pyramid-Forwarding

Sh
ar

ed

M
ap

p
in

g

Label
embeddings

Alignment
Image

embeddings
Image

embeddings
…Image

embeddings

Stacking

D
M

-D
ec

o
d

er

D
M

-D
ec

o
d

er

D
M

-D
ec

o
d

er

Level 0

Level 1

Level 2

Figure 3.5: Overview of our ADDS framework for multi-label classification. Text labels with
prompts are fed into a text tower to get the textual embedding. Images are first processed by a
Pyramid-Forwarding module and then fed into an image tower to get the visual embeddings, which
are aligned with the textual embedding and stacked on the token size dimension. Then the textual
embedding (after a selective language supervision module) and the stacked visual embeddings are
fused by six layers of DM-decoders with the initial query from textual embedding and the initial
key/value from visual embeddings. After a shared mapping among all labels, the network outputs
the probability for each label class.

In this section, we present the details of our ADDS method for multi-label classification. As

shown in Figure 3.5, our method receives both the image ximg ∈ RH×W×3 and the class names

Xlbl ⊂ {natural language words} as the inputs, where Xlbl contain words of potential labels for

identifying the objects (tree, apple, computer, . . .), scenes (sea, sky, underground, . . .) or concepts

(small, red, . . .). Then the classes names Xlbl are combined with prompts such as “This photo

129

contains @” and “This is a @ photo”, where @ ∈ Xlbl, and fed through a text tower to get the

textual (class) embedding. The image input is fed through the Pyramid-Forwarding module, whose

output images are then fed through an image tower to get the visual (image) embedding. The

visual embedding is aligned with textual embedding, and then stacked and forwarded to the DM-

decoder, whose outputs are mapped to per-class probabilities via a shared fully-connected layer.

That is, given the input {ximg, Xlbl}, our model outputs ppred = [p1, p2, . . . , pk], where pi ∈ [0, 1],

k = |Xlbl|.

Compared with previous works [177], [178] where the label embedding is learned from limited

observations, or based on Word2Vec [178] or even randomly initialized matrix [178], a major dif-

ference of our approach is that our model is constructed based on the alignment between visual and

textual embeddings. This is not only helpful for conventional multi-label classification, but also

critical for boosting the performance of open-vocabulary multi-label classification. Specifically,

in our setting, the training data contains the images {x(img,seen)} and the labels X(lbl,seen). The

objective is to learn a classifier g to make predictions on an unseen image x(img,unseen) with unseen

categories X(lbl,unseen), i.e., g(x(img,unseen), x(lbl,unseen)) ∈ {0, 1}, g() = 1 if x(img,unseen) contains

object/scene/concept x(lbl,unseen), and g() = 0 otherwise. Inspired by VLP, we build the visual-

semantic alignment with the help of the pre-trained model from CLIP. Specifically, we employ the

vision transformer (ViT) [12] network architecture as the image encoder fimg and the multi-layer

transformer as the text encoder flbl, with the parameters of both encoders from CLIP. They are all

frozen during training to maintain the alignment (may lead to worse results if unfreeze). Next, we

will introduce the major components in our ADDS method in details.

130

𝑓𝑖𝑚𝑔(𝑥𝑖𝑚𝑔)𝑓𝑙𝑏𝑙(𝑥𝑙𝑏𝑙)

𝑄𝑙𝑏𝑙 𝐾𝑖𝑚𝑔 𝑉𝑖𝑚𝑔

Add
& norm

q

out

vk

Multi-head
attention

v

k

M
u

lti-h
ead

atten

tio
n

o
u

t

q

dropout

FFNs dropout

Add
& norm

Add
& norm

Add
& norm

Add
& norm

Figure 3.6: Overview of our Dual-Modal Decoder design.

3.2.3 Dual-Modal Decoder

The typical practice of aligned visual and textual embeddings in multi-label classification is to

measure their cosine similarity. Given the visual embedding Eimg from an image and a textual

embedding Elbl from a specific label, whether this image contains the label is determined by the

calculated similarity score s = cos(
Eimg

|Eimg | ,
Elbl

|Elbl|
) and a threshold η. Usually, the image is deemed

to contain the label if s > η.

In practice, η can be different when considering different images and labels, which presents a

131

significant challenge. Inspired by ML-Decoder [178], this challenge can be mitigated by turning

into a binary classification task with adding decoder layers. After the visual and textual feature

extraction steps, a single layer cross-attention (we omit the description of the fully-connected layer,

dropout, and layer normalization for space reason) is the choice for querying the textual embedding

from the visual embedding to determine the per-class probability. However, we observe some

issues when we stack decoder layers similarly as in [178]:

• The model performance will often decrease after stacking more than 3 decoder layers.

• The key and value inputs are always the same from the visual embedding. As the output of

the cross-attention layer is a weighted sum of its value input, the outputs of decoder layers

in different levels are actually in the same (or close) semantic level and all from the same

visual embedding.

To address these issues, we redesign the decoder module, with two major differences from

the previous method in [178], as shown in Figure 3.6 and Equation (3.17). Specifically, we add

an additional multi-head cross-attention layer MultiHdAttn2 and use the visual embedding Vimg

to query the output Q5
mid from the previous cross-attention layer MultiHdAttn1, instead of using

the textual embedding as the query (MultiHdAttn1 utilizes the textual embedding to query the

visual features). The output Q5
mid contains the weighted sum of image tokens’ embedding guided

by the textual information, so we can redistribute them back to each image tokens’ embedding

through MultiHdAttn2, to further enhance the visual embedding according to the correlation of

Q5
mid with the key inputs. Then after adding and normalization, the key and value input for the next

decoder layer are refined by the textual information. Moreover, apart from the original skipping

structures, we add an additional skipping connection from the query input to the query output,

which is transformed by addition and normalization.

132

Formally, we denote the input query, key, value as Qlbl, Kimg, Vimg, and the block’s output

query, key and value for the next block as Q
′

lbl, K
′
img, V

′
img. We output Q′

lbl only if it is the last

layer. We denote DP as the dropout layer, and FFN1,FFN2 as the fully-connected layer. Then,

each new decoder block can be formulated as:

Q1
mid = LayerNorm(Qlbl + DP(Qlbl)),

Q2
mid = MultiHdAttn1(Q

1
mid, Kimg, Vimg),

Q3
mid = LayerNorm(Q2

mid +Q1
mid),

Q4
mid = DP(FFN1(ReLU(FFN2(Q

3
mid)))),

Q5
mid = LayerNorm(Q4

mid +Q3
mid),

Q
′

lbl = LayerNorm(Q5
mid +Qlbl),

V 1
img = MultiHdAttn2(Vimg, Q

5
mid, Q

5
mid),

V
′
img = LayerNorm(V 1

img + Vimg),

K
′
img = V

′
img.

(3.17)

3.2.3 Pyramid-Forwarding

A major challenge for using pre-trained models learned from large-scale datasets (e.g., the VLP

models) is that they are often trained on low-resolution images (e.g., 224x224 or 336x336) due to

the limitation of computational resources (training time, memory usage, etc.). Thus the extracted

features are often not compatible with higher-resolution images. We could consider downsampling

the higher-resolution input images to lower resolution, but that will lose significant local features.

Conducting fine-tuning on higher-resolution images might slightly reduce the incompatibility with

extracted features, but we still face several challenging questions: 1) Does the model support

training on arbitrary scale images? 2) How much fine-tuning data are available to maintain the

133

D
o

w
n

-s
am

p
le

 ½

D
o

w
n

-s
am

p
le

 ½

Level 0Level 1Level 2

Image Tower

Image embeddings

….

Filtering (optional)

Image embeddings

Figure 3.7: Overview of the Pyramid-Forwarding method.

model’s generalization ability? 3) How long or how well the model should be trained to avoid

overfitting on the fine-tuning dataset?

To address these challenges, we propose Pyramid-Forwarding, a resolution-compatible method

that enables deploying a pre-trained model trained from low-resolution images on high-resolution

images without retraining. This method applies to many pre-trained image decoders, and below

we use the ViT [12] pre-trained on SImg×SImg resolution images as an example. It will be applied

on SImg ∗ d × SImg ∗ d target images (d is a positive integer), and our method helps reduce the

134

computation cost from O(d4 · c) to O(d2 · c), where c is a constant for all resolutions.

Specifically, given a pre-trained model with SImg × SImg resolution and an image of size

SImg ∗ d × SImg ∗ d, Pyramid-Forwarding constructs log(d) + 1 levels. First we assume that

log(d) is an integer, and we will discuss the non-integer case later. In level i ∈ [0 . . . log(d)], the

image is resized to SImg ∗ 2i × SImg ∗ 2i and split into (i + 1) × (i + 1) patches, as visualized

in Figure 3.7. Then these patches are fed into the image encoder (usually wrapped into the batch

dimension for parallel processing on GPUs) to obtain the feature tokens. In ViT, these tokens are

stacked on the token dimension and then feed into the decoder, and the computation cost on the

SImg ∗ d× SImg ∗ d image is actually O((d2)2) = O(d4) times more than the SImg × SImg image

because of the self-attention layer. However, with Pyramid-Forwarding, this computation cost is

reduced to 1 + 22 + 42 + · · · + (2log(d))
2
= O(d2). If log(d) is not an integer, the size of the top-

level image will be changed to So
Img, and we allow the divided patches to be overlapped with their

neighborhoods, while the total number of patches in this level i is still (i+ 1)2. In addition, the

computation cost of Pyramid-Forwarding can be further reduced by disposing the image patches

from the non-bottom levels i ∈ [1 . . . log(d)], which provides a trade-off between the accuracy

and the computational cost. A special case that works well is when each non-bottom level only

contains the token embedding corresponding to the [CLS] token in ViT. It significantly reduces

memory usage while moderately degrades the performance, when compared with the complete

design.

3.2.3 Selective Language Supervision

As the label classes can be object/scene/concept names that are selected from the natural language,

the total number of the labels can be extremely large (e.g., 1k in ImageNet-1k, 21k in ImageNet-

21k, or even more). This presents a challenge in the training stage – if we feed all the labels into

135

the network, it is a heavy burden on the inference speed and the memory usage. Thus we propose

a selective language supervision method that utilizes the positive labels and part of the negative

labels selected during the network training, and consider the data distribution of the positive and

negative samples for reducing data imbalance.

Specifically, given multi-label L = {l1, l2, . . . , lk} from the training batch B with k classes in

total, Spos = {i|li = 1, li ∈ L,L ∈ B}, and Sneg = {1, 2, . . . , k} − Spos. Then the selected label

set for batch B training is

S
′
= Spos ∪ Sslt, (3.18)

where elements in Sslt is randomly selected from Sneg. |Sslt| = min(α ∗ |Spos|, k − |Spos|), where

α is a hyper-parameter balancing the number of positive and negative samples (we choose α = 3

in our experiments if not mentioned specifically). Note that the selective language supervision is

only utilized in experiments with large label set (e.g., the ImageNet-21k dataset).

3.2.4 Experimental Results

3.2.4 Implementation Settings

Our code is implemented in PyTorch 1.10.2. All experiments are conducted on a server cluster

running Ubuntu 18.04.6 and equipped with NVIDIA V100 GPUs. We conduct the experiments

on NUS-WIDE [208], MS-COCO [209], ImageNet-1k [210], and ImageNet-21k [211] datasets.

All models are optimized by the Adam optimizer [65]. The learning rate is set as 3× 10−4 for all

models trained on 224×224 and 336×336 images, and as 1×10−4 for all models trained on images

larger than 336× 336. We test the input resolution of the images on 224× 224, 336× 336, 448×

448, 640× 640, 1344× 1344, and they are specified in each experiment. We adopt the ViT [12] as

the image encoder and use CLIP [17] pre-trained weights. The output of ViT is [bs, nt, l], where

136

bs = 56 is the batch size, nt is the number of output tokens from the vision transformer, and l is

the embedding length determined by the type of the vision transformer. All image and text towers

in our method are fixed during the training. The model is trained for 40 epochs, and the weight

decay is 10−4. Our model applies the loss function ASL from [212], which is also used in the most

recent multi-label classification works [177], [178].

3.2.4 Open-Vocabulary Multi-label Classification

In open-vocabulary multi-label classification, we first show our results on the NUS-WIDE dataset

in Table 3.3. The marking ‘uf’ means unfreezing the backbone network and ‘f’ means freezing the

backbone network, and both markings are only used when ML-Decoder is switched to the same

backbone as our model. To begin with, we use image-encoder ViT-B-32 and its corresponding text

encoder with CLIP pre-trained weights. Using 224×224 input images, our ADDS method already

achieves a 36.56% mAP, 5.46 points higher than the previous SOTA method ML-Decoder with

TresNet-L as the backbone network architecture and trained on 448× 448 input images. Then we

use image-encoder ViT-L-336 and its corresponding text encoder with CLIP pre-trained weights

on 336 × 336 images. The result further improves to a 39.01% mAP, 7.9 points higher than ML-

Decoder (which uses higher resolution images than both of our first two settings). Finally, our

result can reach 42.67% when trained on 448 × 448 images. We also show that when we use the

same backbone network architecture ViT-L-336 and the same pretraining weights (with freezing

or unfreezing the backbone) for ML-Decoder, our ADDS method still shows significant advantage

(i.e., 39.01% mAP over 33.7% mAP for 336 × 336 images; note that ML-Decoder cannot be

trained with 448 × 448 images for ViT-L-336 as it does not support input resolutions different

from the original model resolution). Overall, the results in Table 3.3 clearly demonstrate that

our approach provides significant improvement over previous methods on open-vocabulary

137

multi-label classification.

Method Type mAP(%) F1 (k=3) F1 (k=5)
CONSE zsl 9.4 21.6 20.2
LabelEM zsl 7.1 19.2 19.5
Fast0Tag zsl 15.1 27.8 26.4
One Attention per Label zsl 10.4 25.8 23.6
One Attention per Cluster (M=10) zsl 12.9 24.6 22.9
LESA zsl 19.4 31.6 28.7
BiAM zsl 26.3 33.1 30.7
Generative ML-ZSL zsl 25.7 32.8 29.3
SDL zsl 25.9 30.5 27.8
ML-Decoder (TresNet-L, 448x448) zsl 31.1 34.1 30.8
ML-Decoder (ViT-L-336, uf, 336x336) zsl 16.6 16.2 17.8
ML-Decoder (ViT-L-336, f, 336x336) zsl 33.7 31.0 32.1
ADDS

ov 36.56 34.22 36.65
(ViT-B-32, 224x224)
ADDS

ov 39.01 36.96 39.28
(ViT-L-336, 336x336)
ADDS

ov 42.67 38.27 40.49
(ViT-L-336, 448x448)

Table 3.3: Comparison of different methods on open-vocabulary multi-label classification for the
NUS-WIDE dataset. In the Type column, zsl means the zero-shot learning setting, ov means the
open-vocabulary setting. Our ADDS method provides significantly better results than previous
methods, including CONSE [190], LabelEM [191], Fast0Tag [192], One Attention per Label [193],
One Attention per Cluster (M=10) [194], LESA [194], BiAM [195], Generative ML-ZSL [213],
SDL [176], and ML-Decoder [178].

Moreover, Table 3.4 shows the experimental results on the MSCOCO dataset. We make the

data splitting in the following way: after sorting the class names in increasing alphabetical order,

we select the first 65 classes to be the seen classes, and the rest 15 classes to be the unseen classes.

The results show that our ADDS method can achieve much better results than the original ML-

Decoder (59.18% vs. 30.69%), and when using the same backbone network, it still significantly

outperforms the ML-Decoder (54.52% vs. 43.84%; note that ML-Decoder cannot take 448×448

images with ViT-L-336 as backbone).

138

Method
Input

mAP(%) F1(k=3)
Resolution

ML-Decoder (ViT-L-
336, f)

336x336 43.84 35.08

ML-Decoder (ViT-L-
336, uf)

336x336 43.75 17.09

ML-Decoder (TresNet-
L)

448x448 30.69 16.69

ADDS (ViT-L-336) 336x336 54.52 51.52
ADDS (ViT-L-336) 448x448 59.18 77.34

Table 3.4: Comparison on MSCOCO dataset for open-vocabulary multi-label classification.

3.2.4 Single-to-multi Label Classification

With overlapped classes
Model Backbone mAP(%) F1(k=3) F1(k=5)
ML-Decoder TResNet-L 41.60 17.80 17.80
ADDS ViT-B-32 59.27 45.88 45.88
ADDS ViT-L-336 67.10 50.86 50.86

Without overlapped classes
Model Backbone mAP(%) F1(k=3) F1(k=5)
ML-Decoder TResNet-L 38.37 6.90 6.90
ADDS ViT-B-32 64.32 30.90 30.90
ADDS ViT-L-336 69.60 33.16 33.16

Table 3.5: Comparison on single-to-multi label classification. Models are trained on ImageNet-1k
and tested on MS-COCO. Our method greatly outperforms ML-Decoder.

We compare our approach with the previous method ML-Decoder in an extreme case of open-

vocabulary multi-label classification, where models are trained on the single-label ImageNet-1k

dataset and tested on the multi-label MS-COCO and NUS-WIDE datasets. We show two cases,

depending on whether the testing dataset contains the overlapped classes with ImageNet-1k or

not. The results are shown in Tables 3.5 and 3.6. Our approach greatly outperforms ML-Decoder,

despite our model uses lower-resolution images (224× 224 for ViT-B-32 backbone and 336× 336

for ViT-L-336 backbone) than ML-Decoder (448 × 448). This again shows that our approach

139

With overlapped classes
Model Backbone mAP(%) F1(k=3) F1(k=5)
ML-Decoder TResNet-L 14.15 7.07 7.30
ADDS ViT-B-32 27.34 20.39 20.39
ADDS ViT-L-336 31.07 24.69 24.69

Without overlapped classes
Model Backbone mAP(%) F1(k=3) F1(k=5)
ML-Decoder TResNet-L 13.19 6.26 6.27
ADDS ViT-B-32 26.96 16.07 16.07
ADDS ViT-L-336 30.66 19.18 19.18

Table 3.6: Comparisons of single-to-multi label classification task which is trained on ImageNet-
1k and tested on NUS-WIDE dataset. Our method shows the SOTA performance.

greatly outperforms previous methods in single-to-multi label classification.

3.2.4 Additional Experiments

Conventional Multi-label Classification

Apart from the open-vocabulary multi-label classification, we are also curious about how our

model works on conventional multi-label classification. We conduct experiments on the MS-

COCO dataset, and the results are shown in Table 3.7. We run a few variations of our approach

and compare them with a number of baselines. We first use the ViT-L backbone [12] to test on

224 × 224 resolution images. We observe that our approach achieves an mAP of 89.82%, which

is 5.6 points higher than the previous SOTA method ML-Decoder [178] on 224 × 224 images.

We then switch to a larger image encoder ViT-L-336 for image resolution of 336 × 336. Our ap-

proach achieves an mAP of 91.76%, which is even better than what ML-Decoder can achieve on

higher-resolution images of 640×640. And when we train our model with ViT-L-336 on 640×640

images, the mAP reaches 93.41%, 2.0 points higher than ML-Decoder at the same resolution. With

Pyramid-Forwarding, our model can also be deployed efficiently on an even higher resolution of

140

Model Backbone
Input

mAP(%)
Resolution

ML-GCN ResNet101 448x448 83.0
KSSNET ResNet101 448x448 83.7
SSGRL ResNet101 576x576 83.8
MS-CMA ResNet101 448x448 83.8
ASL TResNet-L 448x448 88.4
Q2L TResNet-L 448x448 89.2
ML-Decoder TResNet-M 224x224 84.2
ML-Decoder TResNet-L 448x448 90.1
ML-Decoder TResNet-XL 640x640 91.4
ML-Decoder ViT-L-336 (uf) 336x336 88.5
ML-Decoder ViT-L-336 (f) 336x336 90.6
ADDS ViT-L 224x224 89.82
ADDS ViT-L-336 336x336 91.76
ADDS ViT-L-336 640x640 93.41
ADDS ViT-L-336 1344x1344 93.54

Table 3.7: Comparison on conventional multi-label classification for the MS-COCO dataset.
Our ADDS approach shows significant improvement over previous methods, including ML-
GCN [214], KSSNET [215], SSGRL [187], MS-CMA [186], ASL [212], Q2L [177], and ML-
Decoder [178].

1344 × 1344 with the model ViT-L-336 pre-trained on 336 × 336 resolution, and our approach

can achieve an mAP of 93.54% (with much less computational cost than pre-training a model on

1344× 1344 images).

Ablation Study: Effectiveness of DM-Decoder

We validate the effectiveness of our Dual-Modal decoder (DM-Decoder) design. In particular, we

conduct the open-vocabulary multi-label classification experiments on NUS-WIDE. We replace

the DM-Decoder in our approach with the decoder layer in the previous SOTA ML-Decoder under

various number of stacking layers. The image resolution is 336 × 336, and all image encoder is

chosen as ViT-L-336. As shown in Table 3.8, DM-Decoder significantly outperforms the decoder

design in ML-Decoder in almost all cases, showing its effectiveness.

141

Model mAP(%) F1 (k=3) F1 (k=5)

ADDS+ML-Decoder×1 36.15 32.45 35.50
ADDS+ML-Decoder×3 36.35 31.33 34.89
ADDS+ML-Decoder×6 36.34 29.83 33.56
ADDS+DM-Decoder×1 36.88 32.95 35.48
ADDS+DM-Decoder×3 38.68 34.46 37.50
ADDS+DM-Decoder×6 39.01 36.96 39.28

Table 3.8: Comparison between DM-Decoder and ML-Decoder on NUS-WIDE for open-
vocabulary multi-label classification.

Ablation Study: Full Pyramid-Forwarding vs. Single-layer Pyramid-Forwarding

We then evaluate the effectiveness of Pyramid-Forwarding by comparing the results of using only

a single layer of Pyramid-Forwarding versus using full Pyramid-Forwarding on MS-COCO. We

choose this dataset since it has higher resolution and more suitable for comparing on different

resolutions. In Table 3.9, the second column shows the level index in Pyramid-Forwarding. The

first line shows the result of using the model on 336 × 336 images without Pyramid-Forwarding.

The second line shows the model with Pyramid-Forwarding on 1344× 1344 images, but only with

the level of highest resolution (third level) and cutting into 16 patches. The third line shows the

model with full Pyramid-Forwarding on 1344×1344 resolution images. We can see that using full

Pyramid-Forwarding cannot provides much more performance boost.

Model Level
Image

mAP(%)
Resolution

ADDS [0] 336x336 91.76
ADDS [2] 1344x1344 91.79
ADDS [0,1,2] 1344x1344 93.54

Table 3.9: Full vs. single-layer Pyramid-Forwarding.

Ablation Study: Impact of the Number of Training Classes

We claim that increasing the number of available training classes can benefit the single-to-multi

label classification, and we validate this through training our model (on ViT-L-336) with the selec-

142

tive language supervision technique on the ImageNet-21k dataset. For a fair comparison, we filter

out the overlapped classes with NUS-WIDE in ImageNet-1k, and we select the first 15k classes

in ImageNet-21k without the overlapped classes with NUS-WIDE. We select 100 images for each

class, so that the selected dataset contains 1.3M images which is the same level as ImageNet-1k

(1.3M). The result of training on ImageNet-1k is shown on the first line of Table 3.10, and the sec-

ond line shows the result of ImageNet-21k. With the number of available training classes becomes

15 times than before, the model mAP increases 6.9 points.

Train Dataset Backbone mAP(%) F1(k=3) F1(k=5)
ImageNet-1k ViT-L-336 31.02 24.98 24.98
ImageNet-21k ViT-L-336 37.92 39.82 40.39

Table 3.10: Comparisons of our method trained on the ImageNet-1k vs. ImageNet-21k dataset (fil-
ter the overlapped classes with NUS-WIDE) and tested on the NUS-WIDE dataset, with 336x336
resolution and ViT-L-336 backbone.

Image/Text
Backbone

Image
mAP(%)

Encoder Resolution
BLIP ViT-L(COCO) 384x384 2.52
BLIP ViT-L 224x224 35.15
SLIP ViT-L 224x224 34.15

Table 3.11: Applying other VLP models for alignment to our method on NUS-WIDE open-
vocabulary multi-label classification task.

Experiments with Other VLP Models

Finally, we are also curious about how other VLP models perform under our method. We consider

two examples BLIP [200] and SLIP [199]. They both have the contrastive loss similar to CLIP to

ensure an alignment between the visual and textual features. In the second line of Table 3.11, the

BLIP model with its ViT-L image encoder on 224 × 224 images shows a good result of 35.15%.

SLIP in the third line shows similar performance. However, when we use a BLIP model that is fine-

tuned on MS-COCO without the contrastive loss to ensure the alignment, the mAP quickly goes

143

down to 2.52%. This strongly shows that the correlation between visual and textual embedding

plays an important role in providing the performance boost, instead of the image or text encoder

itself.

144

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Summary of Key Findings and Significance

This dissertation delves into the challenges of learning from limited and imperfect data in two

different applications for cyber-physical systems.

In the building HVAC control task, we first address the slow and expensive process of collecting

data from real and simulated building environments. To circumvent the long training time of a

model-free DRL agent, we propose a transfer learning-based approach that can effectively transfer

a DRL-based HVAC controller trained for a source building to a controller for a target building with

minimal effort and improved performance. We show that by manually filtering out the building-

specific behavior as much as possible, we are able to transfer the control policy which contains

building-agnostic behaviour between buildings and largely reduce the training time of the DRL

controller.

Since the source building might not be available or the similarity between two buildings can be

pretty large, we then explore the setting when the knowledge from domain experts in various forms

(including abstract physical models, historical data, and expert rules) is available. We design a

unified framework for incorporating this expert information through different expert functions. The

combined expert function can be viewed as strong prior to the control policy, and the final result

shows that our learning framework can effectively accelerate the online DRL training process.

In addition to addressing the challenge of insufficient data, we also tackle the issue of data

corruption in building HVAC systems. Temperature sensors in buildings are vulnerable to faults

145

and malicious attacks, leading to incorrect temperature readings. To address this issue, we propose

a learning-based framework for sensor fault-tolerant HVAC control. Before the DRL controller

stage, the framework attempts to mitigate faulty readings by generating temperature predictions

and selecting between the sensor reading and its prediction. The experiment results show that it

can significantly reduce building temperature violations under a variety of sensor fault patterns

while maintaining energy efficiency.

In the image classification task, we addressed the issue of insufficient target domain data by

leveraging unlabeled source data and a low-cost weak annotator as the additional information.

Through theoretical analysis, we have revealed the error bound of the trained classifier and its

connections with the performance of weak annotators, domain discrepancy, and the quantity of

source and target samples. Then we propose Weak Adaptation Learning, which learns a more

accurate classifier in the target domain by incorporating the information from unlabeled source

data and a low-cost weak annotator. Our results demonstrate the effectiveness of our approach and

its potential for improving image classification accuracy with limited target domain data.

In addition, we make exploration on the data limitation challenge when the target classes do not

exist in the training set. We develop an open-vocabulary multi-label classification framework based

on visual-semantic alignment. The experiments show that our method significantly outperforms

the previous SOTA methods in open-vocabulary multi-label classification, single-to-multi-label

classification, and conventional multi-label classification task.

4.2 Opportunities for Future Research

We will show some applicable directions on the topic of learning from limited and imperfect data

in cyber-physical systems.

146

4.2.1 Efficient Learning for Model-free DRL Building HVAC Controller

One of the challenges the building HVAC control faced is still how to build a building HVAC

controller with minimal cost. The model-based methods need a sufficiently accurate physical

model for runtime HVAC control while model-free methods suffer from data insufficiency and

need a long training time to reach a desired performance. The possible approaches are to leverage

the extra information, such as historical data, expert models, to build a strong prior for the control

model.

4.2.1 Decomposed Surrogate Model with Multi-Task Learning

There’s a direction which considers the sustainability and interpretability by decomposing a large

model into several sub-models. Considering a complex system including various components, we

want to build a neural network (or other ML models) to make predictions on the next step system

state (e.g., indoor temperature). This is a crucial component for many model-based controllers and

some model-free methods. Note the inputs (current and previous system states, control actions) as

Oin, and the prediction output as Oout. Then the final prediction can be represented or relies some

indicators in the system (they can be some intermediate observations or hidden variables), let’s call

them v1, v2, v3, v4, . . . , vk. These variables can have their own dependence, and we mark each set

of dependents with a task number. For example, in task 1, v1 depends on Oin; in task 2, in task 2,

v2 depends on v1 and part of Oin; in task 3, v4 depends on v1, v2, v3 and part of Oin; . . . These tasks

are built based on the domain knowledge and each task can be captured by an independent neural

network. The training process consists of multiple tasks, including every single task, a combination

of some tasks that have a direct dependency, the end-to-end training on all tasks. Then the surrogate

model (prediction model) is decomposed into several sub-tasks through domain knowledge, the

task complexity for each component is much lower than the overall prediction task and becomes

147

easier to be learned. Besides, the interpretability of the model prediction is enhanced, as we can

observe from the generated hidden variables to figure out the inference process. Moreover, when

there are changes in the building dynamics, we can validate the effectiveness of each network

component and only update the neural networks that are inconsistent with the currently collected

data. It ensures the sustainability of the model.

4.2.1 Large Foundation Model for Control Tasks

The current trend in solving common vision and language tasks is to build models based on existing

large pre-trained models, and leverage the fine-tuning or prompting techniques to adapt them to the

target domain. For instance, there are lots of human-designed networks in vision tasks, and they

are usually pre-trained with large datasets for being used as the backbone model in a wide range

of vision tasks. The typical works including ResNet [10], ViT [12], MoCo [15], etc. In the NLP

task domain, the pre-train models like BERT [216], GPT-2 [217], GPT-3 [218], RoBERTa [219]

are frequently used for text classification, question answering, sentiment analysis, etc. There are

also some Vision and Language Pre-Trained Models, such as CLIP [17], ALIGN [18], BLIP [200],

GPT-4 [19] for handling the cross-modality tasks. When these models are used in NLP tasks as a

backbone network, their weights are usually fixed or with little changes. So in most cases, only a

small set of target data is needed for making adaptation to the target domain. In the control task

domain, exploration on this direction is still at the initial stage. There’s only a few works, such as

the recently proposed generalized pre-training framework SMART [220], for control tasks. How

to build these large foundation models for control tasks and then adapting to building-related task

domains is still an open question.

148

4.2.2 Learning from Imperfect Data for Vision Tasks

The recent advances in vision tasks (including language tasks) have led to the widespread use of

large pre-trained models. The methods based on large pre-trained models usually have significantly

better performance than previous methods, and they usually require much less training data to reach

a desired performance. Thus, when we consider explorations on data limitations in vision tasks,

we need to take this factor into account. There are several directions that we think could be useful

in this domain. For instance, an applicable direction is to explore scenarios where large pre-trained

models cannot be applied. This may be due to resource limitations, such as on mobile or wearable

devices, or with privacy concerns, where users may not want to upload data to a service provider.

In such cases, we can either choose to avoid using the large pre-trained model and then create the

solution for data limitation, or explore the way of leveraging large pre-trained models under the

resource constraints (e.g., combined with cloud computation, or with model compression, etc.)

149

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[2] A. Tewari, O. Fried, J. Thies, et al., “State of the art on neural rendering,” in Computer
Graphics Forum, Wiley Online Library, vol. 39, 2020, pp. 701–727.

[3] D. Eck and J. Schmidhuber, “A first look at music composition using lstm recurrent neural
networks,” Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, vol. 103, p. 48, 2002.

[4] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving:
Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58 443–58 469,
2020.

[5] D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and its application to lhc physics,”
Annual Review of Nuclear and Particle Science, vol. 68, pp. 161–181, 2018.

[6] T. Wei, Y. Wang, and Q. Zhu, “Deep reinforcement learning for building hvac control,” in
Proceedings of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[7] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Com-
puters and electronics in agriculture, vol. 147, pp. 70–90, 2018.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Advances in neural information processing systems, vol. 25,
2012.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

150

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convo-
lutional networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4700–4708.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[13] Z. Liu, Y. Lin, Y. Cao, et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 10 012–10 022.

[14] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in International conference on machine learning, PMLR,
2020, pp. 1597–1607.

[15] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised
visual representation learning,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 9729–9738.

[16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scal-
able vision learners,” arXiv preprint arXiv:2111.06377, 2021.

[17] A. Radford, J. W. Kim, C. Hallacy, et al., “Learning transferable visual models from natural
language supervision,” in International Conference on Machine Learning, PMLR, 2021,
pp. 8748–8763.

[18] C. Jia, Y. Yang, Y. Xia, et al., “Scaling up visual and vision-language representation
learning with noisy text supervision,” in International Conference on Machine Learning,
PMLR, 2021, pp. 4904–4916.

[19] OpenAI, Gpt-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

[20] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional reinforcement
learning with quantile regression,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[21] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous methods for deep reinforcement
learning,” in International conference on machine learning, PMLR, 2016, pp. 1928–1937.

https://arxiv.org/abs/2303.08774

151

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[24] Z. Zhang, A. Chong, Y. Pan, C. Zhang, S. Lu, and K. P. Lam, “A deep reinforcement learn-
ing approach to using whole building energy model for hvac optimal control,” in BPAC
and SimBuild, vol. 3, 2018, pp. 22–23.

[25] G. Gao, J. Li, and Y. Wen, “Energy-efficient thermal comfort control in smart buildings via
deep reinforcement learning,” arXiv preprint arXiv:1901.04693, 2019.

[26] U. DoE et al., “Buildings energy data book,” Energy Efficiency & Renewable Energy De-
partment, vol. 286, 2011.

[27] L. Yu, W. Xie, D. Xie, et al., “Deep reinforcement learning for smart home energy man-
agement,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2751–2762, 2019.

[28] L. Yu, Y. Sun, Z. Xu, et al., “Multi-agent deep reinforcement learning for hvac control
in commercial buildings,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 407–419,
2020.

[29] P. M. Papadopoulos, V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Distributed de-
sign of sensor fault-tolerant control for preserving comfortable indoor conditions in build-
ings,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 688–695, 2018.

[30] S. Xu, Y. Wang, Y. Wang, Z. O’Neill, and Q. Zhu, “One for many: Transfer learning for
building hvac control,” in Proceedings of the 7th ACM international conference on systems
for energy-efficient buildings, cities, and transportation, 2020, pp. 230–239.

[31] S. Xu, Y. Fu, Y. Wang, et al., “Accelerate online reinforcement learning for building hvac
control with heterogeneous expert guidances,” in Proceedings of the 9th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 2022,
pp. 89–98.

[32] C. Lombard and E. Mathews, “Efficient, steady state solution of a time variable rc network,
for building thermal analysis,” Building and Environment, vol. 27, no. 3, pp. 279–287,
1992.

152

[33] K. Yun, R. Luck, P. J. Mago, and H. Cho, “Building hourly thermal load prediction using
an indexed arx model,” in Energy and Buildings, 2012.

[34] S. Xu, Y. Li, J. Hsiao, C. Ho, and Z. Qi, “A dual modality approach for (zero-shot) multi-
label classification,” arXiv preprint arXiv:2208.09562, 2022.

[35] S. Xu, Y. Fu, Y. Wang, Z. O’Neill, and Q. Zhu, “Learning-based framework for sensor
fault-tolerant building hvac control with model-assisted learning,” in Proceedings of the
8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 2021, pp. 1–10.

[36] S. Xu, L. Wang, Y. Wang, and Q. Zhu, “Weak adaptation learning: Addressing cross-
domain data insufficiency with weak annotator,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2021, pp. 8917–8926.

[37] N. E. Klepeis, W. C. Nelson, W. R. Ott, et al., “The national human activity pattern sur-
vey (nhaps): A resource for assessing exposure to environmental pollutants,” Journal of
Exposure Science & Environmental Epidemiology, vol. 11, no. 3, pp. 231–252, 2001.

[38] B. Huang, Y. Zhu, Y. Gao, et al., “The analysis of isolation measures for epidemic control
of covid-19,” Applied Intelligence, vol. 51, no. 5, pp. 3074–3085, 2021.

[39] S. Salakij, N. Yu, S. Paolucci, and P. Antsaklis, “Model-based predictive control for build-
ing energy management. i: Energy modeling and optimal control,” Energy and Buildings,
vol. 133, pp. 345–358, 2016.

[40] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincentelli, “Model-based hierarchical op-
timal control design for hvac systems,” in Dynamic Systems and Control Conference,
vol. 54754, 2011, pp. 271–278.

[41] T. Wei, Q. Zhu, and N. Yu, “Proactive demand participation of smart buildings in smart
grid,” IEEE Transactions on Computers, vol. 65, no. 5, pp. 1392–1406, 2015.

[42] Y. Yang, S. Srinivasan, G. Hu, and C. J. Spanos, “Distributed control of multi-zone hvac
systems considering indoor air quality,” arXiv preprint arXiv:2003.08208, 2020.

[43] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli, “Handling model un-
certainty in model predictive control for energy efficient buildings,” Energy and Buildings,
vol. 77, pp. 377–392, 2014.

153

[44] M. Maasoumy, M. Razmara, M. Shahbakhti, and A. S. Vincentelli, “Selecting building
predictive control based on model uncertainty,” in 2014 American Control Conference,
IEEE, 2014, pp. 404–411.

[45] T. Wei, S. Ren, and Q. Zhu, “Deep reinforcement learning for joint datacenter and hvac load
control in distributed mixed-use buildings,” IEEE Transactions on Sustainable Computing,
pp. 1–1, 2019.

[46] E. Barrett and S. Linder, “Autonomous hvac control, a reinforcement learning approach,”
in Machine Learning and Knowledge Discovery in Databases. Springer, 2015.

[47] B. Li and L. Xia, “A multi-grid reinforcement learning method for energy conservation
and comfort of hvac in buildings,” 2015, pp. 444–449.

[48] D. Nikovski, J. Xu, and M. Nonaka, “A method for computing optimal set-point schedules
for HVAC systems,” in REHVA World Congress CLIMA, 2013.

[49] P. Fazenda, K. Veeramachaneni, P. Lima, and U.-M. O’Reilly, “Using reinforcement learn-
ing to optimize occupant comfort and energy usage in hvac systems,” JAISE, pp. 675–690,
2014.

[50] G. T. Costanzo, S. Iacovella, F. Ruelens, T. Leurs, and B. J. Claessens, “Experimental
analysis of data-driven control for a building heating system,” Sustainable Energy, Grids
and Networks, vol. 6, pp. 81–90, 2016.

[51] Z. Zhang and K. P. Lam, “Practical implementation and evaluation of deep reinforcement
learning control for a radiant heating system,” in Proceedings of the 5th Conference on
Systems for Built Environments, 2018, pp. 148–157.

[52] Y. Li, Y. Wen, D. Tao, and K. Guan, “Transforming cooling optimization for green data
center via deep reinforcement learning,” IEEE transactions on cybernetics, vol. 50, no. 5,
pp. 2002–2013, 2019.

[53] A. Naug, I. Ahmed, and G. Biswas, “Online energy management in commercial build-
ings using deep reinforcement learning,” in 2019 IEEE International Conference on Smart
Computing (SMARTCOMP), IEEE, 2019, pp. 249–257.

[54] G. Gao, J. Li, and Y. Wen, “Deepcomfort: Energy-efficient thermal comfort control in
buildings via reinforcement learning,” IEEE Internet of Things Journal, 2020.

154

[55] D. B. Crawley, C. O. Pedersen, L. K. Lawrie, and F. C. Winkelmann, “Energyplus: Energy
simulation program,” ASHRAE, vol. 42, 2000.

[56] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, “Model predictive con-
trol for the operation of building cooling systems,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 3, pp. 796–803, 2012.

[57] P. Lissa, M. Schukat, and E. Barrett, “Transfer learning applied to reinforcement learning-
based hvac control,” SN Computer Science, vol. 1, 2020.

[58] Y. Chen, Z. Tong, Y. Zheng, H. Samuelson, and L. Norford, “Transfer learning with deep
neural networks for model predictive control of hvac and natural ventilation in smart build-
ings,” Journal of Cleaner Production, vol. 254, p. 119 866, 2020.

[59] Y. Zhan and M. E. Taylor, “Online transfer learning in reinforcement learning domains,”
in 2015 AAAI Fall Symposium Series, 2015.

[60] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant feature spaces to
transfer skills with reinforcement learning,” ICLR, 2017.

[61] F. L. Da Silva and A. H. R. Costa, “A survey on transfer learning for multiagent reinforce-
ment learning systems,” Journal of Artificial Intelligence Research, vol. 64, pp. 645–703,
2019.

[62] I. Akkaya, M. Andrychowicz, M. Chociej, et al., “Solving rubik’s cube with a robot hand,”
arXiv:1910.07113, 2019.

[63] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep reinforce-
ment learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[64] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1026–1034.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[66] I. Goodfellow, Y. Bengio, and A. Courville, “6.5 back-propagation and other differentiation
algorithms,” Deep Learning, pp. 200–220, 2016.

155

[67] M. Wetter, “Co-simulation of building energy and control systems with the building con-
trols virtual test bed,” Journal of Building Performance Simulation, vol. 4, no. 3, pp. 185–
203, 2011.

[68] S. Wilcox and W. Marion, “Users manual for tmy3 data sets,” 2008.

[69] T. Hester, M. Vecerik, O. Pietquin, et al., “Deep q-learning from demonstrations,” in AAAI,
2018.

[70] Y. Fu, S. Xu, Q. Zhu, and Z. O’Neill, “Containerized framework for building control per-
formance comparisons: Model predictive control vs deep reinforcement learning control,”
in Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, 2021, pp. 276–280.

[71] P. Lissa, M. Schukat, M. Keane, and E. Barrett, “Transfer learning applied to drl-based heat
pump control to leverage microgrid energy efficiency,” Smart Energy, vol. 3, p. 100 044,
2021.

[72] J. Schepers, R. Eyckerman, F. Elmaz, W. Casteels, S. Latré, and P. Hellinckx, “Autonomous
building control using offline reinforcement learning,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, Springer, 2021, pp. 246–255.

[73] A. Nair, M. Dalal, A. Gupta, and S. Levine, “Accelerating online reinforcement learning
with offline datasets,” arXiv preprint arXiv:2006.09359, 2020.

[74] X. Zhang, X. Jin, C. Tripp, D. J. Biagioni, P. Graf, and H. Jiang, “Transferable reinforce-
ment learning for smart homes,” in Proceedings of the 1st International Workshop on Re-
inforcement Learning for Energy Management in Buildings & Cities, 2020, pp. 43–47.

[75] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without
exploration,” in International Conference on Machine Learning, PMLR, 2019, pp. 2052–
2062.

[76] N. Jaques, A. Ghandeharioun, J. H. Shen, et al., “Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog,” arXiv preprint arXiv:1907.00456, 2019.

[77] Z. Wang, A. Novikov, K. Zolna, et al., “Critic regularized regression,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7768–7778, 2020.

156

[78] Y. Guo, S. Feng, N. Le Roux, E. Chi, H. Lee, and M. Chen, “Batch reinforcement learning
through continuation method,” in International Conference on Learning Representations,
2020.

[79] X. Chen, Z. Zhou, Z. Wang, C. Wang, Y. Wu, and K. Ross, “Bail: Best-action imitation
learning for batch deep reinforcement learning,” Advances in Neural Information Process-
ing Systems, vol. 33, pp. 18 353–18 363, 2020.

[80] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Benchmarking batch deep rein-
forcement learning algorithms,” arXiv preprint arXiv:1910.01708, 2019.

[81] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective on offline rein-
forcement learning,” in ICML, PMLR, 2020.

[82] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, re-
view, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[83] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforcement learning,”
NeurIPS, 2021.

[84] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline rein-
forcement learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 1179–
1191, 2020.

[85] S. Li and O. Bastani, “Robust model predictive shielding for safe reinforcement learning
with stochastic dynamics,” in 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2020, pp. 7166–7172.

[86] O. Bastani, S. Li, and A. Xu, “Safe reinforcement learning via statistical model predictive
shielding.,” in Robotics: Science and Systems, 2021, pp. 1–13.

[87] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D. Stoller, “Neural sim-
plex architecture,” in NASA Formal Methods: 12th International Symposium, NFM 2020,
Moffett Field, CA, USA, May 11–15, 2020, Proceedings 12, Springer, 2020, pp. 97–114.

[88] Y. Wang, C. Huang, Z. Wang, Z. Yang, and Q. Zhu, “Joint differentiable optimization and
verification for certified reinforcement learning,” arXiv preprint arXiv:2201.12243, 2022.

[89] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-
learning,” in AAAI 2016, 2016.

157

[90] B. W. Olesen and G. S. Brager, “A better way to predict comfort: The new ashrae standard
55-2004,” 2004.

[91] U. S. D. of Labor, Osha technical manual (otm) section iii: Chapter 2, 2021.

[92] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint arXiv:1606.08415,
2016.

[93] C.-A. Cheng, A. Kolobov, and A. Swaminathan, “Heuristic-guided reinforcement learn-
ing,” NeurIPS, 2021.

[94] I. Uchendu, T. Xiao, Y. Lu, et al., “Jump-start reinforcement learning,” arXiv preprint
arXiv:2204.02372, 2022.

[95] G. Hinton, O. Vinyals, J. Dean, et al., “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[96] D. Merkel, “Docker: Lightweight linux containers for consistent development and deploy-
ment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[97] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

[98] R. Judkoff and J. Neymark, “International energy agency building energy simulation test
(bestest) and diagnostic method,” Feb. 1995.

[99] G. Brockman, V. Cheung, L. Pettersson, et al., Openai gym, 2016. eprint: arXiv:1606.
01540.

[100] S. Xu, Y. Fu, Y. Wang, Z. O’Neill, and Q. Zhu, Learning-based framework for sensor fault-
tolerant building hvac control with model-assisted learning, 2021. arXiv: 2106.14144
[eess.SY].

[101] J. Qin and S. Wang, “A fault detection and diagnosis strategy of vav air-conditioning sys-
tems for improved energy and control performances,” Energy and buildings, vol. 37, no. 10,
pp. 1035–1048, 2005.

[102] H. M. Newman, BACnet: The Global Standard for Building Automation and Control Net-
works. Momentum Press, 2013.

arXiv:1606.01540
arXiv:1606.01540
https://arxiv.org/abs/2106.14144
https://arxiv.org/abs/2106.14144

158

[103] D. G. Holmberg and D. Evans, BACnet wide area network security threat assessment. US
Department of Commerce, National Institute of Standards and Technology, 2003.

[104] Z. Ma and S. Wang, “Fault-tolerant supervisory control of building condenser cooling wa-
ter systems for energy efficiency,” HVAC&R Research, vol. 18, no. 1-2, pp. 126–146, 2012.

[105] X.-B. Yang, X.-Q. Jin, Z.-M. Du, B. Fan, and Y.-H. Zhu, “Optimum operating performance
based online fault-tolerant control strategy for sensor faults in air conditioning systems,”
Automation in Construction, vol. 37, 2014.

[106] V. Gunes, S. Peter, and T. Givargis, “Improving energy efficiency and thermal comfort of
smart buildings with hvac systems in the presence of sensor faults,” in 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, IEEE, 2015, pp. 945–
950.

[107] S. Wang and Y. Chen, “Fault-tolerant control for outdoor ventilation air flow rate in build-
ings based on neural network,” Building and Environment, vol. 37, no. 7, pp. 691–704,
2002.

[108] X. Jin and Z. Du, “Fault tolerant control of outdoor air and ahu supply air temperature in
vav air conditioning systems using pca method,” Applied Thermal Engineering, 2006.

[109] M. Toub, C. R. Reddy, M. Razmara, M. Shahbakhti, R. D. Robinett III, and G. Aniba,
“Model-based predictive control for optimal microcsp operation integrated with building
hvac systems,” Energy Conversion and Management, vol. 199, p. 111 924, 2019.

[110] D. B. Crawley, L. K. Lawrie, C. O. Pedersen, and F. C. Winkelmann, “Energy plus: Energy
simulation program,” ASHRAE journal, vol. 42, no. 4, pp. 49–56, 2000.

[111] Z. Du, B. Fan, J. Chi, and X. Jin, “Sensor fault detection and its efficiency analysis in
air handling unit using the combined neural networks,” Energy and Buildings, vol. 72,
pp. 157–166, 2014.

[112] Z. Du, B. Fan, X. Jin, and J. Chi, “Fault detection and diagnosis for buildings and hvac
systems using combined neural networks and subtractive clustering analysis,” Building
and Environment, vol. 73, pp. 1–11, 2014.

159

[113] S. Wang and J. Cui, “Sensor-fault detection, diagnosis and estimation for centrifugal chiller
systems using principal-component analysis method,” Applied Energy, vol. 82, no. 3, pp. 197–
213, 2005.

[114] J. Liu, M. Zhang, H. Wang, W. Zhao, and Y. Liu, “Sensor fault detection and diagnosis
method for ahu using 1-d cnn and clustering analysis,” Computational intelligence and
neuroscience, vol. 2019, 2019.

[115] M. S. Mirnaghi and F. Haghighat, “Fault detection and diagnosis of large-scale hvac sys-
tems in buildings using data-driven methods: A comprehensive review,” Energy and Build-
ings, p. 110 492, 2020.

[116] V. Reppa, P. Papadopoulos, M. M. Polycarpou, and C. G. Panayiotou, “A distributed ar-
chitecture for hvac sensor fault detection and isolation,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 4, pp. 1323–1337, 2014.

[117] J. C. da Silva, A. Saxena, E. Balaban, and K. Goebel, “A knowledge-based system ap-
proach for sensor fault modeling, detection and mitigation,” Expert Systems with Applica-
tions, vol. 39, no. 12, pp. 10 977–10 989, 2012.

[118] J. Fonollosa, A. Vergara, and R. Huerta, “Algorithmic mitigation of sensor failure: Is sensor
replacement really necessary?” Sensors and Actuators B: Chemical, vol. 183, pp. 211–221,
2013.

[119] W. Kim and S. Katipamula, “A review of fault detection and diagnostics methods for build-
ing systems,” Science and Technology for the Built Environment, vol. 24, no. 1, pp. 3–21,
2018.

[120] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National science review,
vol. 5, no. 1, pp. 44–53, 2018.

[121] Y.-Y. Sun, Y. Zhang, and Z.-H. Zhou, “Multi-label learning with weak label,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 24, 2010.

[122] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and semi-supervised
learning of a deep convolutional network for semantic image segmentation,” in Proceed-
ings of the IEEE international conference on computer vision, 2015, pp. 1742–1750.

[123] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis lectures
on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130, 2009.

160

[124] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,” arXiv preprint arXiv:1606.07947,
2016.

[125] D. A. Hashimoto, G. Rosman, D. Rus, and O. R. Meireles, “Artificial intelligence in
surgery: Promises and perils,” Annals of surgery, vol. 268, no. 1, pp. 70–76, 2018.

[126] R. Rendall, I. Castillo, B. Lu, et al., “Image-based manufacturing analytics: Improving the
accuracy of an industrial pellet classification system using deep neural networks,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 180, pp. 26–35, 2018.

[127] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko, “Semi-supervised learn-
ing with ladder networks,” arXiv preprint arXiv:1507.02672, 2015.

[128] W. Dong-DongChen and Z.-H. WeiGao, “Tri-net for semi-supervised deep learning,” in
International Joint Conferences on Artificial Intelligence, 2018.

[129] J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as semi-supervised
learning,” in International Conference on Learning Representations, 2019.

[130] R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adaptation: Unsupervised domain
adaptation without source data,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 9641–9650.

[131] J. Dong, Y. Cong, G. Sun, B. Zhong, and X. Xu, “What can be transferred: Unsupervised
domain adaptation for endoscopic lesions segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 4023–4032.

[132] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 11, no. 5, pp. 1–46, 2020.

[133] J. Dong, Y. Cong, G. Sun, and D. Hou, “Semantic-transferable weakly-supervised endo-
scopic lesions segmentation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 10 712–10 721.

[134] R. Kiryo, G. Niu, M. C. d. Plessis, and M. Sugiyama, “Positive-unlabeled learning with
non-negative risk estimator,” arXiv preprint arXiv:1703.00593, 2017.

[135] X. Chen, W. Chen, T. Chen, et al., “Self-pu: Self boosted and calibrated positive-unlabeled
training,” in International Conference on Machine Learning, PMLR, 2020, pp. 1510–1519.

161

[136] F. Perez, R. Lebret, and K. Aberer, “Weakly supervised active learning with cluster anno-
tation,” arXiv preprint arXiv:1812.11780, 2018.

[137] S. Belharbi, I. Ben Ayed, L. McCaffrey, and E. Granger, “Deep active learning for joint
classification & segmentation with weak annotator,” in Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, 2020, pp. 3338–3347.

[138] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari, “Learning with noisy labels.,” in
NIPS, vol. 26, 2013, pp. 1196–1204.

[139] A. Ghosh, N. Manwani, and P. Sastry, “Making risk minimization tolerant to label noise,”
Neurocomputing, vol. 160, pp. 93–107, 2015.

[140] T. Liu and D. Tao, “Classification with noisy labels by importance reweighting,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 38, no. 3, pp. 447–461,
2015.

[141] Y. Xu, Y. Wang, H. Chen, et al., “Positive-unlabeled compression on the cloud,” arXiv
preprint arXiv:1909.09757, 2019.

[142] M. R. Loghmani, M. Vincze, and T. Tommasi, “Positive-unlabeled learning for open set
domain adaptation,” Pattern Recognition Letters, vol. 136, pp. 198–204, 2020.

[143] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems,
2017, pp. 4080–4090.

[144] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,”
Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[145] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Experimental perspectives on learn-
ing from imbalanced data,” in Proceedings of the 24th international conference on Machine
learning, 2007, pp. 935–942.

[146] S. Pouyanfar, Y. Tao, A. Mohan, et al., “Dynamic sampling in convolutional neural net-
works for imbalanced data classification,” in 2018 IEEE conference on multimedia infor-
mation processing and retrieval (MIPR), IEEE, 2018, pp. 112–117.

[147] T. Cao, M. Law, and S. Fidler, “A theoretical analysis of the number of shots in few-shot
learning,” arXiv preprint arXiv:1909.11722, 2019.

162

[148] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A closer look at few-shot
classification,” in International Conference on Learning Representations, 2019.

[149] E. Triantafillou, T. Zhu, V. Dumoulin, et al., “Meta-dataset: A dataset of datasets for learn-
ing to learn from few examples,” in International Conference on Learning Representations,
2019.

[150] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance in federated learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 10 165–
10 173.

[151] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring generalization
in deep learning,” in Advances in neural information processing systems, 2017, pp. 5947–
5956.

[152] R. Amit and R. Meir, “Meta-learning by adjusting priors based on extended pac-bayes
theory,” in International Conference on Machine Learning, PMLR, 2018, pp. 205–214.

[153] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey
on few-shot learning,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–34, 2020.

[154] D. A. McAllester, “Some pac-bayesian theorems,” Machine Learning, vol. 37, no. 3, pp. 355–
363, 1999.

[155] P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien, “Pac-bayesian theory meets bayesian
inference,” in Proceedings of the 30th International Conference on Neural Information
Processing Systems, 2016, pp. 1884–1892.

[156] D. McAllester, “Simplified pac-bayesian margin bounds,” in Learning theory and Kernel
machines, Springer, 2003, pp. 203–215.

[157] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks,” in International Conference on Learning
Representations, 2018.

[158] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation: Learning bounds and
algorithms,” arXiv preprint arXiv:0902.3430, 2009.

[159] S. Kassam, “Quantization based on the mean-absolute-error criterion,” IEEE Transactions
on Communications, vol. 26, no. 2, pp. 267–270, 1978.

163

[160] R. F. Gunst and R. L. Mason, “Biased estimation in regression: An evaluation using mean
squared error,” Journal of the American Statistical Association, vol. 72, no. 359, pp. 616–
628, 1977.

[161] C. Yi and J. Huang, “Semismooth newton coordinate descent algorithm for elastic-net
penalized huber loss regression and quantile regression,” Journal of Computational and
Graphical Statistics, vol. 26, no. 3, pp. 547–557, 2017.

[162] R. Koenker, “Quantile regression for longitudinal data,” Journal of Multivariate Analysis,
vol. 91, no. 1, pp. 74–89, 2004.

[163] Y. Luo, Z. Wang, Z. Huang, and M. Baktashmotlagh, “Progressive graph learning for open-
set domain adaptation,” in International Conference on Machine Learning, PMLR, 2020,
pp. 6468–6478.

[164] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion:
Maximizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.

[165] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in
natural images with unsupervised feature learning,” 2011.

[166] L. Deng, “The mnist database of handwritten digit images for machine learning research
[best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[167] J. J. Hull, “A database for handwritten text recognition research,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550–554, 1994.

[168] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko, “Visda: The visual
domain adaptation challenge,” arXiv preprint arXiv:1710.06924, 2017.

[169] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”
2009.

[170] T. Kim and C. Kim, “Attract, perturb, and explore: Learning a feature alignment network
for semi-supervised domain adaptation,” in European Conference on Computer Vision,
Springer, 2020, pp. 591–607.

[171] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, “Semi-supervised domain adapta-
tion via minimax entropy,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 8050–8058.

164

[172] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Pro-
ceedings of the 17th International Conference on Neural Information Processing Systems,
2004, pp. 529–536.

[173] R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained softmax loss for discrimina-
tive face verification,” arXiv preprint arXiv:1703.09507, 2017.

[174] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. F. Wang, “Multi-label zero-shot learning with
structured knowledge graphs,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 1576–1585.

[175] J. Lu, L. Du, M. Liu, and J. Dipnall, “Multi-label few/zero-shot learning with knowledge
aggregated from multiple label graphs,” arXiv preprint arXiv:2010.07459, 2020.

[176] A. Ben-Cohen, N. Zamir, E. Ben-Baruch, I. Friedman, and L. Zelnik-Manor, “Semantic
diversity learning for zero-shot multi-label classification,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 640–650.

[177] S. Liu, L. Zhang, X. Yang, H. Su, and J. Zhu, “Query2label: A simple transformer way to
multi-label classification,” arXiv preprint arXiv:2107.10834, 2021.

[178] T. Ridnik, G. Sharir, A. Ben-Cohen, E. Ben-Baruch, and A. Noy, “Ml-decoder: Scalable
and versatile classification head,” arXiv preprint arXiv:2111.12933, 2021.

[179] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-
tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[180] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang, “Open-vocabulary object detection
using captions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 14 393–14 402.

[181] Y. Du, F. Wei, Z. Zhang, M. Shi, Y. Gao, and G. Li, “Learning to prompt for open-
vocabulary object detection with vision-language model,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 084–14 093.

[182] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin, “Open-vocabulary image segmentation,” arXiv
preprint arXiv:2112.12143, 2021.

165

[183] H. Yang, J. Tianyi Zhou, Y. Zhang, B.-B. Gao, J. Wu, and J. Cai, “Exploit bounding box
annotations for multi-label object recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 280–288.

[184] Z. Wang, T. Chen, G. Li, R. Xu, and L. Lin, “Multi-label image recognition by recurrently
discovering attentional regions,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 464–472.

[185] B.-B. Gao and H.-Y. Zhou, “Learning to discover multi-class attentional regions for multi-
label image recognition,” IEEE Transactions on Image Processing, vol. 30, pp. 5920–5932,
2021.

[186] R. You, Z. Guo, L. Cui, X. Long, Y. Bao, and S. Wen, “Cross-modality attention with
semantic graph embedding for multi-label classification,” in Proceedings of the AAAI con-
ference on artificial intelligence, vol. 34, 2020, pp. 12 709–12 716.

[187] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, “Learning semantic-specific graph represen-
tation for multi-label image recognition,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 522–531.

[188] M. Shi, Y. Tang, X. Zhu, and J. Liu, “Multi-label graph convolutional network representa-
tion learning,” IEEE Transactions on Big Data, 2020.

[189] J. Ye, J. He, X. Peng, W. Wu, and Y. Qiao, “Attention-driven dynamic graph convolutional
network for multi-label image recognition,” in European conference on computer vision,
Springer, 2020, pp. 649–665.

[190] M. Norouzi, T. Mikolov, S. Bengio, et al., “Zero-shot learning by convex combination of
semantic embeddings,” arXiv preprint arXiv:1312.5650, 2013.

[191] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-embedding for image classi-
fication,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 7,
pp. 1425–1438, 2015.

[192] Y. Zhang, B. Gong, and M. Shah, “Fast zero-shot image tagging,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016, pp. 5985–5994.

[193] J.-H. Kim, J. Jun, and B.-T. Zhang, “Bilinear attention networks,” Advances in neural in-
formation processing systems, vol. 31, 2018.

166

[194] D. Huynh and E. Elhamifar, “A shared multi-attention framework for multi-label zero-shot
learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 8776–8786.

[195] S. Narayan, A. Gupta, S. Khan, F. S. Khan, L. Shao, and M. Shah, “Discriminative region-
based multi-label zero-shot learning,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 8731–8740.

[196] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert: A simple and
performant baseline for vision and language,” arXiv preprint arXiv:1908.03557, 2019.

[197] G. Li, N. Duan, Y. Fang, M. Gong, and D. Jiang, “Unicoder-vl: A universal encoder for
vision and language by cross-modal pre-training,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, 2020, pp. 11 336–11 344.

[198] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer without convolution
or region supervision,” in International Conference on Machine Learning, PMLR, 2021,
pp. 5583–5594.

[199] N. Mu, A. Kirillov, D. Wagner, and S. Xie, “Slip: Self-supervision meets language-image
pre-training,” arXiv preprint arXiv:2112.12750, 2021.

[200] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-image pre-training for
unified vision-language understanding and generation,” arXiv preprint arXiv:2201.12086,
2022.

[201] J. Yang, J. Duan, S. Tran, et al., “Vision-language pre-training with triple contrastive learn-
ing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2022, pp. 15 671–15 680.

[202] M. Gao, C. Xing, J. C. Niebles, et al., “Open vocabulary object detection with pseudo
bounding-box labels,” in Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part X, Springer, 2022, pp. 266–282.

[203] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary object detection via vision and
language knowledge distillation,” arXiv preprint arXiv:2104.13921, 2021.

[204] M. A. Bravo, S. Mittal, and T. Brox, “Localized vision-language matching for open-vocabulary
object detection,” in Pattern Recognition: 44th DAGM German Conference, DAGM GCPR

167

2022, Konstanz, Germany, September 27–30, 2022, Proceedings, Springer, 2022, pp. 393–
408.

[205] W. Kuo, Y. Cui, X. Gu, A. Piergiovanni, and A. Angelova, “F-vlm: Open-vocabulary ob-
ject detection upon frozen vision and language models,” arXiv preprint arXiv:2209.15639,
2022.

[206] C. Ma, Y. Yang, Y. Wang, Y. Zhang, and W. Xie, “Open-vocabulary semantic segmentation
with frozen vision-language models,” arXiv preprint arXiv:2210.15138, 2022.

[207] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin, “Scaling open-vocabulary image segmentation
with image-level labels,” in Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVI, Springer, 2022, pp. 540–557.

[208] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: A real-world web
image database from national university of singapore,” in Proceedings of the ACM inter-
national conference on image and video retrieval, 2009, pp. 1–9.

[209] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in context,” in
European conference on computer vision, Springer, 2014, pp. 740–755.

[210] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, Ieee, 2009, pp. 248–255.

[211] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k pretraining for
the masses,” arXiv preprint arXiv:2104.10972, 2021.

[212] E. Ben-Baruch, T. Ridnik, N. Zamir, et al., “Asymmetric loss for multi-label classification,”
arXiv preprint arXiv:2009.14119, 2020.

[213] A. Gupta, S. Narayan, S. Khan, F. S. Khan, L. Shao, and J. van de Weijer, “Generative
multi-label zero-shot learning,” arXiv preprint arXiv:2101.11606, 2021.

[214] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label image recognition with graph
convolutional networks,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 5177–5186.

168

[215] Y. Liu, L. Sheng, J. Shao, J. Yan, S. Xiang, and C. Pan, “Multi-label image classification
via knowledge distillation from weakly-supervised detection,” in Proceedings of the 26th
ACM international conference on Multimedia, 2018, pp. 700–708.

[216] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[217] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[218] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[219] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[220] Y. Sun, S. Ma, R. Madaan, R. Bonatti, F. Huang, and A. Kapoor, “Smart: Self-supervised
multi-task pretraining with control transformers,” arXiv preprint arXiv:2301.09816, 2023.

169

VITA

Shichao Xu was born in 1996 in China. He received his undergraduate degree from Shanghai Jiao

Tong University (ACM Honors Class) in 2018, advised by Prof. Liqing Zhang in the Center for

Brain-like Computing and Machine Intelligence. He received the Ph.D. degree from Northwestern

University in 2023. His research works focus on learning from limited or imperfect data, and

explore the area of computer vision, multi-model, and control applications using machine learning

techniques under the practical settings.

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Dissertation Contributions
	Data Availability
	Data Quality

	Addressing Data Challenges in Building HVAC Control
	One for many: Transfer learning for building HVAC control
	Background
	Related Works
	Methodology
	Experimental Results

	Accelerate Online Reinforcement Learning for Building HVAC Control with Heterogeneous Expert Guidances
	Background
	Related Works
	Methodology
	Experimental Results

	Learning-based framework for sensor fault-tolerant building HVAC control with model-assisted learning
	Background
	Related Works
	Methodology
	Experimental Results

	Addressing the Data Challenges in Vision
	Weak Adaptation Learning–Addressing Cross-domain Data Insufficiency with Weak Annotator
	Background
	Related Works
	Methodology
	Experimental Results

	Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-Textual Features
	Background
	Related Works
	Methodology
	Experimental Results

	Conclusion and Future Work
	Summary of Key Findings and Significance
	Opportunities for Future Research
	Efficient Learning for Model-free DRL Building HVAC Controller
	Learning from Imperfect Data for Vision Tasks

	References
	Vita

