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ABSTRACT

Wireless Resource Allocation among Cooperative Relays and

Non-cooperative Agents

Junjik Bae

This thesis focuses on resource allocation in wireless communication and networking.

Resource allocation has been studied widely, for example, to maximize the system-wide

throughput or to minimize the average delay per user. Moreover, the utility-based frame-

work is becoming an important tool for addressing fairness and Quality-of-Service (QoS)

for individual users. With this framework, therefore, we study wireless resource allo-

cation for relay extensions in a cellular network and dynamic spectrum sharing among

non-cooperative agents.

In the first part of the thesis, we study the centralized resource allocation problems

among cooperative agents. Especially, the relay extension in a cellular network is fo-

cused on, including in-band relays in IEEE 802.16j and out-of-band relays with Wi-Fi

access points. Here, the base station optimizes the time or power allocation such that
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total throughput for data traffic or total number of active users for voice traffic is maxi-

mized. For the cases considered, a significant gain for both data traffic and voice traffic

is obtained.

In the second part of the thesis, dynamic spectrum sharing with distributed resource

allocation is considered with an emphasis on the development of mechanisms and their

performance. First, we consider an “AP deployment” game in the commons model and

show that there exists a Nash equilibrium which is efficient. In addition, we address the

limitations of the commons model when interference is severe. Second, we study two

auction mechanisms for resource allocation in a peer-to-peer network: The sequential

second-price auction and the “Fallback” auction. For the sequential auction, the resource

is divided into n units and each unit is auctioned off sequentially according to a second-

price auction. The worst-case efficiency of the sequential auction is shown to be lower

bounded by 1 − e−1 for a bandwidth allocation and upper bounded by 1/n for a power

allocation. Because of the low worst-case efficiency for power allocation and the imprac-

ticality of the complete information assumption in the sequential auction, we discuss a

Fallback auction, which modifies Ausubel’s ascending auction. With an increasing con-

vex utility of one agent due to interference, we show that the Fallback auction for power

allocation achieves a stable outcome with minimum revenue to the seller in the core.
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6.5 Illustration of last inequality in (6.53). (a) Area of U2(x2(pt)).

(b) Area of U2(x2(pt)) + U3(x3(pt)) − pt · {(x2(pt) + x3(pt) − 1} −

maxx2+x3≤1{U2(x2) + U3(x3)}. 188

6.6 Illustration of last inequality in (6.54). (a) Area of U2(x2(pt)) + pt · {1−

x2(pt)}. (b) Area of maxx1+x2≤1 U1(x1) + U2(x2). 189



17

CHAPTER 1

Introduction

Resource allocation is an important research topic in wireless communication and

networking, due to the intrinsic scarcity of wireless resources and increasing demands for

them. User devices have become increasingly sophisticated and support various multi-

media applications, which require high quality-of-service (QoS). In addition, due to the

prevalence of mobile devices and the popularity of Wi-Fi, more users than ever have to

share the wireless spectrum. This necessitates highly efficient and robust schemes for

wireless resource allocation.

There are many different wireless resources, such as frequency bands, time slots, or-

thogonal codes and transmit power. One or more dimensions associated with different

resources can be allocated simultaneously depending on the technology and demand.

Example technologies include time-division multiple access (TDMA), frequency-division

multiple access (FDMA), and code-division multiple access (CDMA). In addition, or-

thogonal frequency division multiple access (OFDMA) is becoming increasingly impor-

tant since it has been adopted for various standards such as WiMax, IEEE 802.11n, and

next generation cellular systems such as IEEE 802.16m and 3GPP long term evolution

(LTE) [7, 1, 5, 9]. Contention-based random access, as in Wi-Fi, is another spectrum

sharing technology for distributed resource allocation.
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Unlike wired networks, wireless networks use a common medium. This imposes chal-

lenges on designing a wireless network and allocating resources among users in the net-

work. The common medium or spectrum is in principle open to every device, which

would like to use it. Therefore, as the number of devices increases, the usability of spec-

trum is degraded due to interference. This is called the “tragedy of the commons” [45].

To avoid the tragedy of the commons, the exclusive model for allocating spectrum with

a careful geographical spectrum plan has been adopted [32, 35]. Recently, however, a

variety of studies have demonstrated that this exclusive model imposed by the Federal

Communication Commission (FCC) in the U.S.A. has resulted in a great deal of spec-

trum lying idle [105]. To overcome the underutilization problem, two approaches for

dynamic spectrum sharing have been studied, which will be discussed later: the commons

model [116, 97, 64] and secondary spectrum markets [22, 88, 112]. Due to increasing

demand on wireless resources, and efficiencies offered by dynamic spectrum sharing, the

resource allocation problems become more important than ever.

Various resource allocation mechanisms in wireless networks can be applied depending

on the network configuration and degree of cooperation among network entities. We can

consider two classifications for resource allocation mechanisms: centralized vs. distributed

and cooperative vs. non-cooperative. In centralized resource allocation, a resource man-

ager (or “social planner”) collects all related information from users and makes a decision

on how to allocate resources among users. In distributed resource allocation, each user

in the network allocates wireless resources based on her local information. Furthermore,

users in a cooperative network work together to achieve the network’s overall objective

such as the sum of users’ throughput or minimum blocking probability. Non-cooperative
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users in a network are, on the other hand, assumed to be selfish and try to maximize

their own objective1, which might not be aligned with the system objective. An inter-

esting problem for distributed resource allocation is to determine the efficiency loss when

compared with a centralized allocation (See, for example, [95]).

In this thesis, we consider centralized resource allocation among cooperative base and

relay stations in a cellular network (Part 1), and distributed resource allocation among

non-cooperative selfish agents in the commons model, assuming a peer-to-peer network

(Part 2). The resource allocation problems considered here are solved using the framework

of utility functions.

1.1. Utility-Based Resource Allocation

Resource allocation and system optimization problems based on user utility functions

have been widely studied in communications and networks [57, 74, 63, 104]. The utility

function indicates the degree of satisfaction that an individual user derives from the

allocated resources. The user’s utility function is not necessarily aligned with system-

centric “efficiency”. For example, in a cellular network, to maximize total throughput,

the base station (BS) might allocate all of its resources to the cellular users who have good

channel gains. This, however, limits the resources available to the users with bad channel

gains. By using the utility function, a balance between system efficiency and fairness can

be obtained [58].

The utility function maps resource use (bandwidth, power, etc.) or performance cri-

teria (data rate, delay, etc.) to private values. Different utility functions can be used in

a wide range of communication models. For traditional data traffic such as file transfer

1This objective will be defined by a utility function.
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and e-mail, increasing concave utilities as a function of data rate represent the elas-

ticity of these services [63, 51]. Real-time traffic, such as Voice-over-IP (VoIP) and

multi-media video streaming, has been modeled by a step function of signal-to-noise ratio

(SNR) or signal-to-interference plus noise ratio (SINR), reflecting the assumption that

excessive delayed data does not have any value [67]. In addition, a decreasing concave

function of delay for delay-tolerant data traffic, and sigmoidal functions for a real-time

rate adaptive application, or a frame success rate with binary phase-shift keying have

been used [66, 102, 96].

The standard resource allocation problem using the utility framework can be described

by

max
q

∑
k∈K

Uk(xk(qk, q−k)),

s.t.
∑
k∈K

qk ≤ Q,

(1.1)

where q = (qk, q−k) is the resource to be allocated among a set of users K = {1, 2, · · · , K},

qk denotes the resource allocated to user k, and q−k denotes the set of resources allocated

to all users except for user k. In addition, Q is the total amount of resources (e.g.,

bandwidth or power) available in the network. Each user k ∈ K has her own utility

function Uk(xk(qk, q−k)), which represents her satisfaction with the allocated resources

(qk, q−k). Here xk(qk, q−k) can represent the QoS measurement of user k, which could be

a quantity such as the queue length, queuing delay, data rate, or SINR. For example,

consider allocating a total bandwidth of W among K users with elastic data traffic. If xk

represents data rate that user k has with allocated bandwidth wk, then Uk(xk(wk, w−k)) is
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typically an increasing concave function, which represents the user’s growing satisfaction

with increasing data rate. In an FDMA network, the data rate can be represented by the

Shannon capacity xk(wk, w−k) = rk(wk) = wk log (1 + SNR(wk)).

Problem (1.1) can be solved either in a centralized way or in a distributed manner.

The solution to the problem is called the efficient or socially optimal allocation in the

economics literature [75]. Here we assume that the radio environment does not change for

some period of time T and the optimization problem can be solved within T . (Otherwise,

we could instead consider a long-term time-average optimization problem.)

1.2. Resource Allocation in Relay-Assisted Network

In the first part of this thesis, we consider centralized utility-based resource allocation

in a relay-assisted network. Adding relays to a cellular network can potentially increase

the network capacity, extend network coverage, and reduce congestion (e.g., see [98, 17,

81, 20, 125, 86, 30, 41, 80, 118]). In [81], the authors consider a uniform placement of

in-band relays within a cell and give an upper bound on the gain for downlink throughput.

In that paper, either direct transmission from the BS to each mobile station (MS), or

transmission through the relay station (RS) is chosen depending on the transmission time

duration, assuming each MS is required to have the same throughput. In [17], cell splitting

using RSs in an interference-limited deployment is considered. The authors show that

simple in-band RSs increase system capacity and the total cost can be reduced significantly

due to the elimination of the wired backhaul. Coverage extension through multi-hop RSs

is considered in [34, 119, 30, 46]. In addition, various cooperative schemes such as

decode-and-forward, amplify-and-forward, and compress-and-forward schemes using RSs
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are studied in [62, 103, 59]. Associated advantages have motivated the introduction of

relays in emerging standards such as IEEE 802.16j [6] and 4G mobile systems [91, 5, 98].

Various relay deployment scenarios have been considered in the literature. For ex-

ample, using mobile handsets as relays in a cellular system in an ad hoc manner has

been considered. In that case, the incentive for each mobile to relay others’ data traffic

can be provided by a credit or market price [69, 23, 73]. Even though this kind of ad

hoc extension is quite flexible and does not require additional hardware investment, it is

difficult to guarantee an end-to-end QoS. In addition, it might add significant complexity

to the BS for transmission scheduling.

Instead of deploying relays in an ad hoc manner, a systematic relay deployment plan

might be more feasible in cellular networks [69, 83, 114]. One of those efforts is the

fixed relay extension of WiMax. A WiMax network uses OFDM, where the base station

controls the rate, power, and subchannel allocations to each mobile user. In addition,

time division duplex (TDD) has been adopted for downlink and uplink transmission. The

relay extension of WiMax based on the IEEE 802.16j standard assumes in-band relays,

which use the same frequency as that of the BS within a cell [2]. The resource that is

allocated between the BS and the RS is the time duration of the relay zone within a

frame. That can be optimized centrally at the BS.

Rather than deploying new cellular relays, in some cases it may be possible for a cellular

service provider to use an existing wireless LAN (WLAN) access point (AP) as a relay for

cellular traffic [114]. In that case, although the AP potentially brings additional resources

to the cellular network, those resources must be allocated across both WLAN and cellular

users. If the AP service provider is different from the cellular service provider, then for
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the latter to use the AP as a relay, a bargaining process between those two providers

can be used to find a mutually beneficial operating point with an appropriate resource

allocation.2 On the other hand, if both the cellular and the WLAN network belong to one

service provider, or are cooperative, then the optimal operating point can be computed

in a centralized manner. Depending on the operating objective, which is reflected by the

utility functions, total throughput or the total number of users served in the system can

be maximized. Both of these problems are discussed in Chapters 2 and 3.

1.3. Dynamic Resource Allocation among Non-Cooperative Agents

In the second part of this thesis, we focus on dynamic spectrum resource allocation

among non-cooperative agents. Dynamic spectrum sharing is another important issue

for future wireless networks. Until now, wireless spectrum has been divided into many

different bands and most bands have been allocated exclusively to a licensee by the Federal

Communications Commission (FCC). Exceptions include the unlicensed bands, such as

the ISM and UNII bands [3, 8]. It is, however, widely recognized that this “command

and control” model for allocating wireless spectrum results in poor utilization of spectrum

even if it might guarantee some level of QoS [87]. Outdoor spectrum measurements in

various urban areas reveal that the use of spectrum is in general very low even during the

peak time periods [70, 115]. Dynamic spectrum sharing approaches are alternatives to

this exclusive use model, which can achieve the goal of higher utilization.

Encouraged by the success of 802.11 (Wi-Fi) and the advance of cognitive radio tech-

nology, the commons model for spectrum sharing has been studied intensively [27, 56, 64].

2For example, with the complete information assumption, the Nash bargaining solution is an efficient
operating point in which the sum utility of the two service providers is maximized. Furthermore, it can
be achieved distributively [82].
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In this model, as long as certain technical requirements such as peak transmit power and

a common medium access control (MAC) protocol are satisfied, users can have access to

the common spectrum without a license. Sharing TV “white space” with low transmis-

sion power devices is an active area motivated by this direction [101, 28]. In addition,

the working group on Wireless Regional Area Networks (“WRANs”) is to develop an

IEEE 802.22 standard for a cognitive radio-based PHY/MAC/air interface for use by

license-exempt devices on a non-interfering basis in spectrum that is allocated to the TV

broadcast service [4].

In the commons model, interference management is a key issue that has to be solved.3

At a basic level this is accomplished by appropriately defining the spectrum power mask.

However, this may be inadequate depending on the configuration of the network, propa-

gation characteristics, and demand for spectrum. In [52], instead, the authors consider

a distributed power control scheme for wireless ad hoc networks and show the conver-

gence of the interference-price announcement algorithm using supermodular game the-

ory. This algorithm, however, requires truthful announcement of the interference prices

among nodes (users) in the ad hoc network. Moreover, cooperation or bargaining among

adjacent agents in a peer-to-peer network may be a viable solution to the interference

problem [40]. For example, adjacent BS owners may negotiate cross-rental agreements

for the same spectrum, or alternatively, agree to pay “interference charges” to each other,

which reflect the externality they are causing to neighboring owners. This interference

payment might induce BS owners to reduce transmission power or to use neighboring BSs

via routing, which lowers overall interference in the area.

3In fact, the main argument by opponents of the “white space” concept is the lack of interference-free
technologies.
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Another example of dynamic spectrum sharing is via secondary markets for spectrum,

as considered by the FCC [37, 38, 39]. A spectrum owner, or licensee may wish to lease

spectrum to secondary users depending on how their demand varies over the time of day,

duration of use, number of available channels, etc. This leads to the problem of designing

an efficient mechanism for allocating available wireless resources (e.g., bandwidth and/or

power) among non-cooperative agents. One way to achieve this is to allow for spectrum

to be allocated on a finer scale both in time and space, e.g., by a “real-time spectrum

market” [88, 24, 35, 60] (similar to electricity markets in [10, 53]).

Auctions are well known techniques in economics and so are a natural approach for

allocating constrained resources. An auction mechanism can be implemented through a

spectrum manager, or broker. The spectrum manager can mitigate the effects of external-

ities (e.g., interference in wireless communication) and increase the overall efficiency by

soliciting information about user utilities and channel conditions. Examples of this sce-

nario are also presented in [92, 54, 51]. Other distributed spectrum sharing mechanisms,

which do not rely on the presence of a spectrum manager, are considered in [36, 52, 111].

There are many auction mechanisms for resource allocation in the literature. The

Vickrey-Clark-Groves (VCG) mechanism is especially well known because of its incentive

compatibility among agents and the efficiency of the resulting resource allocation [109,

44, 124]. It is, however, not popular in practice because the agents are asked to submit

their utility functions to the seller and, therefore, the agents reveal too much private

information. The revenue of the seller through the VCG auction can be potentially very

low and the seller might nullify unfavorable outcomes. In addition, it cannot block a
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coalition of agents which leads to an inefficient outcome even though within the auction

mechanism each agent has a dominant strategy that leads to an efficient outcome.4

Due to these shortcomings and impracticalities of the VCG auction, we consider two

alternative auction mechanisms for wireless resource allocation. First, a sequential sec-

ond price auction is considered in which each resource unit is auctioned off sequentially

according to a second-price auction.5 Sequential auctions have been used in many appli-

cations (e.g., see [21, 126, 107, 77, 113]), since they require relatively little computation

and information exchange among the agents and the broker, compared with many other

mechanisms. In addition, sequential auctions easily accommodate scenarios in which the

agents enter and leave the market at arbitrary times, and allow the broker to allocate

resources incrementally. However, it is well known that sequential auctions do not always

achieve an efficient allocation [77].6

There is an extensive literature that investigates the properties of sequential auc-

tions [84, 47, 77, 113, 19, 49, 90, 61, 50] assuming that utilities are private informa-

tion. Since the assumption of private information complicates the analysis, those papers

restrict attention to the case of bidders with unit demands and in some cases to just

two bidders. On the other hand, abstracting away from private information allows us to

focus on the strategic implications of bidding in sequential auctions. Indeed, in work such

as [113], the efficiency loss is due to the information asymmetries and not the mechanism.

If agents in that model have full information (each with unit demand), then it can be

shown that the auction achieves an efficient outcome.

4See [13] for a more detailed discussion of these shortcoming of the VCG mechanism.
5Namely, each unit is allocated to the highest bidder, who pays the second highest bid.
6Under this mechanism, the bidders can be viewed as playing a game, in which their actions are their
bids. The auction is efficient if the equilibrium of this game maximizes the total utility of the agents.
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As a step toward the sequential auction with multiple-unit demands and private in-

formation, it is valuable to study the efficiency loss of the sequential auction due to the

mechanism itself, ignoring possible information structures. The efficiency loss of the se-

quential second price auction when used to allocate bandwidth and power among selfish

agents is the main topic in Chapter 5. Here we allow bidders to have multi-unit demands,

but for tractability we assume full information. We also note that assuming full informa-

tion is consistent with prior work, such as [55, 95], which also study the efficiency loss of

different mechanisms.

Second, we discuss the “Fallback” auction proposed in [14]. In 2004, Ausubel pro-

posed an ascending auction for multiple units of a homogeneous good and showed that

the auction yields efficient outcomes with private information [12]. In the auction, the

auctioneer announces a price and bidders respond with quantities. Each bidder “clinches”

items at the current price and the price increases until the market clears. This auction,

however, assumes that each bidder has a concave increasing utility function (or decreasing

marginal utilities) with the number of units she receives. There are wireless resource allo-

cation scenarios, however, for which the concavity of the utility function does not hold.7

One example is allocating power between two peer-to-peer interfering agents with rate

utility functions.

The Fallback auction, which modifies Ausubel’s ascending auction, is applied to the

case where one of the agents has a convex utility function due to the interference. In the

auction, the market price set by the seller can be lowered by the agent with a convex

utility function exactly once. The auction ends either when the market clears or when

7To the author’s knowledge, [42] is the only paper in which a multi-unit auction is considered with
increasing marginal utilities.
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the agent falls back to a price lower than the current price. This auction assumes private

information among all agents, and finds a stable outcome in the core. If the outcome of

the auction, namely, a set of payoffs of all agents including the seller, is in the core, then

there is no payoff improvement if a coalition of the agents deviates. This implies that the

allocation is efficient, the bidders cannot benefit from shill bids or collusion, and the seller

cannot benefit from excluding bidders [31]. Therefore this auction avoids the instability

of the VCG and Ausubel’s ascending auctions when there is an agent with an increasing

convex utility function.

1.4. Overview

This thesis discusses resource allocation in wireless networks. Chapters 2 and 3 focus

on cooperative relay networks. Due to the cooperative nature of the network, resources

such as time or bandwidth can be allocated in a centralized way to maximize the utility

of the network.

In Chapter 2, the relay extension of WiMax, or IEEE 802.16j is considered to increase

uplink capacity (network utility). A time-division duplex (TDD) frame structure for

802.16j is discussed where the resources to be allocated are time and frequency slots in

the frame. Each slot is a minimum resource allocation unit defined in the standard. To

obtain an initial assessment of capacity gains, we study a one-dimensional model of a relay-

enhanced cellular system. Time allocation within a frame is optimized to maximize the

number of voice-over-IP (VoIP) users who require a fixed transmission rate. Furthermore,

we develop a detailed system simulator based on the 802.16j standard and show that the

uplink capacity for both data and VoIP traffic increases significantly when relay stations
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are deployed in the system. Specifically, our system simulation results show that the

number of VoIP users increases from 140 per cell to 360 per cell when two RSs per sector

are deployed.

Due to the popularity of 802.11 (Wi-Fi), we consider an existing Wi-Fi AP as a relay

for cellular traffic in Chapter 3. A one-dimensional model of a cellular network with

two out-of-band APs is introduced. Assuming each user has a utility function, which

corresponds to either the Shannon rate function for data traffic or a step function for

voice traffic, the BS optimizes power allocations across both cellular and AP users to

maximize the sum of utilities over active users. Furthermore, an upper bound on the gain

from using APs as relays is obtained. Our analysis suggests that a modest gain in total

sum throughput or total number of voice users can be obtained in the scenario considered.

In addition, the coverage of the BS can be extended by using the AP.

Non-cooperative wireless networks are considered in Chapters 4, 5, and 6. The agents

in the network are assumed to be selfish and maximize their own utilities. Resources such

as a frequency band or transmit power are allocated in a distributed way among non-

cooperative agents through best response updates (Chapter 4), or by using an auction

mechanism (Chapters 5 and 6).

In Chapter 4, we consider a commons model in which a user may install an AP to serve

her own, as well as other users’ traffic. To avoid a “tragedy of the commons”, an AP owner

can provide payments to neighboring users to encourage them not to set up interfering

APs. In the resulting AP deployment game, each user decides whether or not to set up an

AP, depending on the interference level and the payments from other neighboring APs. We

show that this game is a potential game and that best response updates converge to a Nash
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equilibrium [79]. According to our analysis as well as simulation results, the density of

APs in this game at the Nash equilibrium decreases as interference becomes severe, which

leads to a large loss in efficiency. Hence, as the density of APs increases, implementing

such a commons approach becomes more difficult and other forms of spectrum sharing

may be more appropriate.

An alternative approach to dynamic spectrum sharing among non-cooperative agents

is to apply auction mechanisms. In Chapter 5, a sequential second price auction is consid-

ered for bandwidth or power allocation in a peer-to-peer network. The resource is divided

into n units of the good and each unit is auctioned off sequentially. For the bandwidth

auction, the utility function of each agent is assumed to be an increasing concave function

for the number of received bands. For the power auction, an increasing convex utility

function for a single agent is assumed due to the interference. The auction is represented

by an extended form game and the subgame perfect equilibrium is studied using back-

ward induction with the complete information assumption. In addition, the worst-case

efficiency, namely, the ratio of the sum utilities of agents in a subgame perfect equilib-

rium to the maximum sum utility, is bounded. Our analysis shows that the worst-case

efficiency among two agents is lower bounded by 1− 1/e for the bandwidth auction and

decreases as 1/n for the power auction, which n is the number of (discrete) power units

being allocated.

Motivated by the low worst-case efficiency of the power auction and the impracticality

of the complete information assumption in the sequential second-price auction, we study

the Fallback auction in Chapter 6. It is assumed that one agent has an increasing convex

utility function and the others have increasing concave utility functions, similar to the
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power auction in Chapter 5. In the Fallback auction, which is a modified version of

Ausubel’s ascending auction, the agent with a convex utility is allowed to “fall back” to

a lower price than the current auction price set by the seller. We show that this Fallback

auction selects a core outcome with the minimum revenue to the seller and, therefore, it

achieves a full information equilibrium. In addition, for the case where the VCG outcome

is in the core, this mechanism finds the VCG outcome, which is efficient and incentive

compatible.

Finally, we summarize our results and propose possible directions for future work in

Chapter 7.
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Resource Allocation among Cooperative
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CHAPTER 2

Uplink Capacity and Coverage Extension for Relay-Enhanced

OFDMA Cellular System (802.16j)

Multihop Cellular Networks (MCN) have become the subject of a considerable re-

search effort in both academia and industry. Multihop communication techniques have

traditionally been applied in the field of ad-hoc networks, where radio nodes engage in

peer-to-peer communication with other nodes by means of multihop routing. In such a

network, any node can perform packet forwarding on behalf of another node, thereby

greatly extending range and increasing robustness of the ad-hoc network. Recently, it

has been recognized that by introducing multihop communication techniques into tradi-

tional single-hop cellular networks, significant performance benefits may be also obtained.

For example, with the introduction of relay stations (RSs) into a cellular system, it be-

comes possible to break-up a long single-hop link between a base station (BS) and a

distant mobile station (MS) into a series of shorter hops. As the shorter hops are more

spectrally efficient, the overall system capacity of the MCN may increase relative to the

legacy cellular system. RSs may also provide an opportunity for connection to a shad-

owed MS, thereby improving cellular coverage, or they may also serve as an attachment

point for an MS out of communication range with the BS, thereby improving cellular

range [110, 81, 46, 26, 68].
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Recently, the IEEE 802.16j standard draft has been completed, partly encouraged by

the reported benefits of relay deployments in cellular settings, as well as the successful

and wide-spread application of multihop technologies in WLANs [2]. 802.16j is a relay-

extension of the IEEE 802.16e standard, widely known as WiMax. To estimate the

benefit associated with 802.16j, in this chapter we study the capacity and range extension

of a relay-enhanced 802.16e uplink through a first-order analysis and detailed system

simulations. Here, we define the capacity as the maximum cumulative throughput per cell

(for data traffic) or the maximum number of users with a given QoS requirement (for voice

traffic) supported by the system, under system-specific transmit power and scheduling

constraints. Hence, the system capacity determined is necessarily less than the bound

on the system capacity that may be obtained through an information-theoretic analysis.

The results are encouraging, as fairly substantial capacity gain and range extension are

observed from both analysis and simulations.

We first review the frame structure of 802.16j in Section 2.1 to understand how it

affects the uplink capacity of the system. System analysis with a one-dimensional model is

presented in Section 2.2, assuming symmetric AP deployment around the BS and uniform

user density. After we estimate the capacity gain of the relays with one-dimensional model,

the detailed system simulation setup and resource allocation schemes are presented in

Section 2.3 and 2.4. Our simulation results on voice traffic and data traffic follow.

2.1. Frame Structure of 802.16j

The IEEE 802.16j standard has extended the IEEE 802.16e frame structure to support

in-band BS-to-RS communication. A high level diagram of the 802.16j frame structure in
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TDD OFDMA PHY mode is shown in Fig. 2.1 (taken from [117]). The frame structure

supports a typical two-hop relay-enhanced communication, where some MSs are attached

to an RS and communicate with a BS via the RS, and some MSs connect directly to

the BS. Even though extensions of the frame structure to support more than two hops

have been defined by the Task Group (TG), we only consider the two-hop scenario in this

paper.

In Fig. 2.1, the horizontal dimension denotes time and the vertical dimension denotes

frequency. Frame sections in gray denote receive operation, whereas sections in white de-

note transmit operation. The multihop-relay-BS (MR-BS) and RS frames are subdivided

into Downlink (DL) and Uplink (UL) subframes to support TDD operation. Both DL

and UL subframes are further subdivided into MS and RS zones. In addition, Relay-Gap

(R-Gap) is placed between MS-zone and RS-zone, which allows RSs to switch from re-

ceive mode to transmit mode or from transmit mode to receive mode. The MS zones,

supported at both the BS and RS, are backwards compatible with the 802.16e standard.

Detailed structure of the RS zones is currently under consideration in the IEEE 802.16j

TG. The RS transmits to MSs within its coverage area in the DL MS zone and receives

control and data from the BS in the adjacent DL RS zone.

Here, we focus on UL capacity of the relay-enhanced system. A more detailed view of

the UL subframe, as modeled in the system simulator, is shown in Fig. 2.2. In the figure, a

5 ms frame length, 50/50 TDD split and 10 MHz BW are assumed. With these parameters,

there are 7 time slots and 35 frequency slots in the UL subframe, and therefore a total

of 245 OFDMA slots are available for UL scheduling. A slot is the minimum resource

allocation unit as defined in the 802.16 standard. The UL RS zone is one time slot wide
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Figure 2.1. 802.16j Frame Structure in TDD OFDMA PHY mode.

in this figure. In general, the width of this zone can vary and should be optimized with

respect to a given topology and user load.
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Figure 2.2. Detailed view of the UL subframe.

Within the UL MS zones at the BS and RS, bursts transmitted to the BS or RS are

assigned to different time/frequency slots orthogonally by a centralized scheduler at the

BS. Similar to the 802.16e UL slot allocation scheme, bursts are mapped to slots time-

wise first, before wrapping to the next frequency slot if the zone boundary is reached.

Furthermore, the 802.16e specification defines a randomized UL frequency-hopping scheme

for interference randomization. In order to capture this effect in the simulator, all burst-to-

slot assignments in the MS zone are randomly permuted prior to calculating interference.
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Note in Fig. 2.2 that the overhead associated with UL control signaling is not modeled.

In addition, it is assumed that the BS and the RS are synchronized, and bursts destined

to the BS and RS are properly time-advanced to their respective receivers. However, since

the BS and the RS are not colocated, a burst destined to the RS is not properly time-

advanced to the BS, potentially resulting in interference. For simplicity, in the current

simulation results the effects of mismatched time advances at the BS and the RS are

assumed negligible and the resulting inter-burst interference is not modeled.

2.2. System Analysis with 1-D Model

To obtain an initial assessment of capacity gains attainable with a relay-enhanced

system, we investigate the following one-dimensional model of a cellular system (See

Fig. 2.3). The RS is placed at distance d from the BS. As in [127, 15, 16], we assume

a set of static MSs, which are uniformly and continuously distributed along the line with

density ρ. In addition, we consider a Voice-over-IP (VoIP) traffic model, in which all

active MSs transmit a voice packet of equal size within the UL subframe. A similar model

can be developed for data traffic. In the system simulation in Section 2.5, results for both

data and voice traffic are presented.

First, we consider a legacy 802.16e system with no RS deployment. Due to symmetry,

it is sufficient to consider the set of MSs on one side of the BS. Under a VoIP traffic model,

maximizing system capacity is equivalent to maximizing the number of active MSs for a

given UL subframe duration. Assuming a path-loss of 1/ra, where a is the path-loss

exponent, the bandwidth w(r) needed for a MS at distance r to transmit a voice packet
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Figure 2.3. One-dimensional model of a cell with relay stations (RSs).

of size L bits during the UL subframe duration TUL satisfies

L = w(r) · log2

(
1 + α

Pu
N0w(r)ra

)
· TUL, (2.1)

where N0 is the noise density and α is the SNR degradation factor due to various channel

and receiver impairments. We assume that each MS spreads its transmission power Pu

over the bandwidth w(r) uniformly. Here we abstract the 802.16e resource allocation

described in Section 2.1 by assuming that all bursts take up the entire subframe duration

TUL. Furthermore, the bursts can be allocated arbitrarily small bandwidth, instead of

restricting allocations in frequency to the granularity of an OFDMA slot as in Section 2.1.

Since w(r) increases monotonically as r increases, the maximum number of MSs that the

BS can support within the UL subframe duration is given by ρ · |C0|, where |C0| is the

length of the interval containing the active MSs and satisfies
∫ C0

0
ρ · w(r) dr = W , where

W is the total bandwidth of the system.

Next consider a relay-enhanced system. We assume that a MS transmits a packet to

either the BS or the RS. Simultaneous transmission to both are not considered. If the

RS receives a packet from the MS, it relays to the BS within the UL RS zone, as shown
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in Fig. 2.2. To satisfy the flow conservation constraint, the RS-to-BS link capacity should

be high enough to accommodate all the voice traffic received by the RS in the UL MS

zone. Given uniform MS density ρ, the maximization of the total number of active MSs

is equivalent to finding the region of the active MSs, C, namely,

max
C

ρ · |C|, (2.2)

subject to the total bandwidth and flow conservation constraints. Here, | · | denotes

the length of the corresponding region, where the region may consist of a set of disjoint

intervals. With the RS, the coverage set C can consist of two or more disjoint intervals Cd

and Cr, where Cd = ∪iCd,i is the union of non-overlapping intervals corresponding to the

MSs served directly by the BS and similarly, Cr corresponds to the MSs relayed by the

RS [16].

To solve the optimization problem (2.2), we first assume that the BS allocates time

γTUL for the RS zone, and subsequently optimize over γ ∈ [0, 1]. With this assumption

the constraints of the preceding optimization problem become

∫
Cd
ρ · wD(r) dr +

∫
Cr ρ · wR(x) dx ≤ W, (2.3)

ρ · |Cr| ≤ γTULRRB/L, (2.4)

where wD(r) (wR(x)) is the bandwidth needed for a MS at distance r (x) from the BS (RS)

to transmit during the UL MS zone duration (1−γ)·TUL and RRB = W ·log2

(
1 + α PRS

N0Wdb

)
is the capacity of the link between the RS and the BS. It is assumed that the path-loss
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exponent b ≤ a, as it is likely that the propagation conditions on the RS-to-BS link are

less severe than that on the MS-to-RS link.

Instead of giving detailed proof of the optimization problem (2.2) with constraints

(2.3) and (2.4), we present a graphical explanation, especially when γ is relatively small.

It can be shown that wD(r) and wR(x) are increasing functions in r and x (See in Fig. 2.4).

For given horizontal bar λ in Fig. 2.4, we assume that MSs who require the bandwidth

for a voice packet of size L less than λ are served either by the BS or the RS. The idea

for the solution of (2.2) is to serve MSs who need less bandwidth with higher priority. As

λ increases from 0 to λ′, MSs of the interval [0, r̄(λ′)] are included in Cd and MSs in the

interval [−x̄(λ′), x̄(λ′)] in Cr. Here, λ′ is obtained from the constraint (2.4) or

2ρ · wR(λ′) = γTULRRB/L, (2.5)

since we assume γ is small. As λ increases further from λ′, the RS cannot support

additional MSs and only the BS adds more MSs in Cd until the constraint (2.3) becomes

tight. For example, suppose that the constraint (2.3) is tight with λ′′ as shown in Fig. 2.4.

Then, the interval for MSs served by the BS is given by Cd = [0, d−x̄(λ′)]∪[d+x̄(λ′), r̄(λ′′)].

λ′′ can be calculated from the constraint (2.3). Similarly, we can obtain the intervals of

active users for all γ ∈ [0, 1].

We give some numerical results to illustrate the capacity gains attainable with a relay-

enhanced system. Fig. 2.5 shows the ratio of the total number of users with relaying to

that without relaying as a function of γ. The UL subframe duration is TUL = 2.2× 10−3

s, and the path-loss exponents are a = 5.0 and b = 4.2 (corresponding to Type A and

Type C models in Section 2.3). In addition, the RS is located at 0.7×|C0|. The remaining
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Figure 2.4. Graphical explanation of the optimization problem (2.2) assum-
ing γ is small. In this example, the intervals of active MSs are given by
Cr = [−x̄(λ′), x̄(λ′)] and Cd = [0, d− x̄(λ′)] ∪ [d+ x̄(λ′), r̄(λ′′)].

parameters are indicated in the caption. The maximum gain with the RS is approximately

60% to 65% at γ ≈ 0.17 to 0.3 depending on MS density. These gains are relatively

insensitive to variations of ρ over a wide range (from 40 users per km to 70 users per km).

2.3. System Simulation Setup

The preceding analysis provides a first indication of the potential capacity gains to be

achieved with a relay deployment. The analysis only considers a single-cell linear model

of a cellular system. In practice, cellular systems are deployed in two-dimensional uneven

terrain exhibiting various propagation impediments and giving rise to shadow loss and

fast fading phenomena. A system analysis, taking into account these propagation effects
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Figure 2.5. Ratio of the total number of users served with and without the
RS as a function of γ. The voice packet length is L = 544 bits including
overhead, N0 = −174 dBm/Hz and α = 0.3981, Pu = 23 dBm, and PRS =
33 dBm. The antenna gain for the MS-BS and MS-RS links is assumed to
be +10 dB, and that for RS-BS link is +25 dB.

is largely intractable, and we resort to system simulations to characterize performance of

the RS deployment in such a setting.

A custom multihop cellular system simulator capable of modeling various aspects of

the relay deployment has been developed. More specifically, the simulator includes the

following features:

(1) Correlated shadow loss model,

(2) Resource allocation procedure with the granularity of an OFDMA slot,

(3) Multi-sector per-slot interference calculations,
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(4) Power control and scheduling procedures as detailed below,

(5) Models for both VoIP and data traffic.

The simulator models a service area covered by a grid of hexagonal cells. A BS is placed

at the center of every cell with sectorized antennas, and a certain number of the RSs per

sector are placed uniformly at the same distance from the BS. The RS is assumed to be

less complex than the BS, but capable of performing decode-and-forward operations.

Fig. 2.6 shows a typical cell layout that we consider with our system simulator. In this

example, a 3-sector deployment with two RSs per sector is depicted. Each RS is deployed

at fraction a of the cell radius away from the BS. Note that identical positioning of RSs in

all cells creates a regular topology with colinear RSs and BSs. If a narrow-beam, high-gain

directional antenna is installed at a RS pointing toward its serving BS, transmissions from

this RS may create significant interference at other RSs and BSs that are colinear with

it. To mitigate this situation and to better reflect a realistic deployment scenario, RSs in

each cell, after being uniformly placed on a circle around the serving BS, are rotated by

a random angle drawn from a uniform distribution with finite support [−π
k
, π
k
], where k

is the number of relays per cell.

2.3.1. Path-loss and Shadow loss

The simulator separately models path-loss on the MS-to-BS, MS-to-RS, and RS-to-BS

links. The particular path-loss models used in this paper are defined by the IEEE 802.16j

TG in document [99]. The document defines three terrain types for suburban macro-cell:

Hilly with moderate to heavy tree densities (Type A), intermediate path-loss condition

(Type B), and flat terrain with light tree densities (Type C). For the results reported
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Figure 2.6. Example of a cell layout in the simulator.

here, Type A terrain profile is used for the MS-to-BS and MS-to-RS links and Type C

terrain profile for the RS-to-BS links. For details of the path-loss calculations, refer to

[99].

In addition, the system simulator creates a system-wide grid, which is used to evaluate

shadow loss for a particular path. A decorrelation distance and log-normal standard

deviation are specified as input parameters. When shadow loss calculations are performed

during a simulation run, the resulting values are spatially correlated and repeatable. The

technique used for shadow loss calculations is described in [89].

2.3.2. Spectrum Reuse

A number of different spectrum reuse strategies can be supported in IEEE 802.16e/j

deployments. A single spectrum reuse plan is selected for this study. It is assumed that

all cells are deployed on a single carrier (10 MHz BW) and every sector of every cell of

the system utilizes the available BW. For a three-sector system this is usually denoted
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as a 1/3/1 reuse plan. Therefore, each sector has 245 OFDMA slots available for UL as

explained in section 2.1.

2.3.3. Antenna Configuration

A 3-sector antenna configuration is considered at the BS. Sector antennas are assumed to

be ideal in the sense that antenna gain as a function of azimuth angle has a “brick wall”

characteristic with a front lobe width of the antenna pattern of 120◦. An MS is presumed

to have an omni-directional antenna. An RS is equipped with both an omni-directional

antenna used for the MS-to-RS communication and a directional antenna used for the

RS-to-BS communication with 20◦ front lobe width. A front-to-back ratio of +25 dB is

used for all antenna patterns.

2.4. Resource Allocation for Relay-Enhanced Uplink

2.4.1. MS Link Models

The MS-to-BS and MS-to-RS link models for the data traffic are obtained in the form of

link spectral efficiency (information bits per subcarrier) as a function of the receiver SINR.

A link simulator is constructed to obtain an estimate of the attainable spectral efficiency

on the MS-to-BS and MS-to-RS links in fading channel conditions. The simulator assumes

an infinitely backlogged data source and an N-channel stop-and-wait HARQ protocol at

the link-layer, thus closely modeling the 802.16e UL specifications.

For VoIP, a certain maximum packet error rate requirement is assumed (1% for the

results in this paper). Given this requirement, SINR thresholds are determined, based

on link-level simulations, for a discrete set of modulation and coding schemes (MCSs)
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supported by link adaptation procedures on the 802.16e UL MS link. Specifically, a

set of MCSs with the following spectral efficiencies is considered: 1/4, 1/2, 1, 2, and 3

information bits per subcarrier. These SINR thresholds are used in the VoIP scheduler.

2.4.2. RS Link Model

The RS-BS link is not modeled in detail in the simulator. As in Section 2.2, the spec-

tral efficiency achievable on that link, as a function of average SINR per subcarrier, is

computed by

RRB = log2(1 + α× SINR), (2.6)

whereRRB denotes the number of information bits per subcarrier and α is a factor less than

one accounting for the rate degradation. For the results in this paper, α = 0.3981 (−4dB)

is used.

2.4.3. VoIP Scheduler

The VoIP scheduler attempts to maximize the number of VoIP users served in the system.

In particular, the scheduler iteratively searches for a resource allocation solution, where

each user is assigned the most spectrally efficient MCS so that the required number of

slots for the user’s voice packet is minimized.

The scheduling procedure is initialized by assigning all users the MCS with maximum

spectral efficiency (3 bits per subcarrier), and assigning the maximum transmit power. In

each iteration of the scheduler, a user’s link SINR is updated based on the desired and

interferers’ power settings from the previous iteration subject to the MS power constraint.

Based on the updated SINR, the user is assigned the highest possible MCS such that
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the user’s link SINR is greater than or equal to the SINR threshold of the assigned

MSC. A user is considered blocked if no MCS can be found satisfying the updated SINR

condition or if the number of slots required for the assigned MCS is less than the number

of unoccupied slots in the sector.

The VoIP scheduler enforces a flow conservation constraint at each RS, as discussed

in Section 2.2. Namely, at a given RS, the number of VoIP users attached to that RS

times the VoIP packet size must be less than the per-frame throughput of that RS’s link

to the BS. If this condition is violated, a number of users assigned to the RS are blocked

until it is satisfied.

2.4.4. Data Scheduler

In the UL MS zone, the data scheduler allocates a fixed number of OFDMA slots to every

user. The slots are allocated time-wise first, as in the example of Fig. 2.2, and then their

positions are randomized throughout the UL MS zone. Following user slot assignment

and randomization, interference calculations and iterative power control procedures are

performed on the MS-to-RS and MS-to-BS links to attain target link SINRs, subject to

the transmit power constraint at the MS. Note that due to randomization, each slot of

a user allocation sees a different interference level and therefore different SINR. The link

SINR is defined as the average of the per-slot SINRs.

Upon convergence of the iterative power control procedure, the attained link SINRs

are mapped to the link spectral efficiencies obtained for the data traffic model. The per-

user link throughput (per frame) is then simply computed as the size of slots allocated

to the user times the link spectral efficiency. Similar calculations are performed to obtain
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throughput on the RS-to-BS links. Again, the flow conservation constraint at all RSs

should be satisfied. The scheduler checks at each RS whether this constraint is violated

and if so reduces the throughput on all MS-to-RS links by a faction, so that the constraint

is met with equality.

2.5. Simulation Results in Uplink Capacity

2.5.1. VoIP Capacity Results

An 8 kbps voice coder, a 20 ms voice frame duration, and a 40 Byte IP/RTP/UDP header

are assumed, resulting in a VoIP packet size of 544 bits including MAC header. Voice

activity detection is not considered. The VoIP capacity results are shown in Fig. 2.7. In

this case, the UL sub-frame is split into 4 time slots devoted to the MS zone and 3 time

slots to the RS zone. This UL subframe split is consistent with the split value analytically

predicted in Section 2.2. The curves in Fig. 2.7 display VoIP call blocking probability as

a function of user load per cell. For example, 802.16e system supports about 140 VoIP

users at 5% blocking probability. On the other hand, about 190 (360) users are supported

with one RS (two RSs) per sector. Therefore, a significantly higher user load can be

accommodated by the relay-enhanced system. The system capacity is expected to grow

with increasing number of RSs deployed per sector.

It is interesting to compare these results with capacity gains analytically predicted in

section 2.2 for a one-dimensional system. The capacity gain 65% from 1-D analysis is in

the range shown in Fig. 2.7 (between 35% gain with one RS and 100% gain with two

RS). The higher capacity gain in the simulation could be partially due to the fact that

with uniformly distributed users over the cell area, more users are concentrated around
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Figure 2.7. Blocking probability vs. the number of users per cell for voice traffic.

each RS in two dimensions than in one dimension. In addition, relay deployment is more

beneficial in a system exhibiting shadow loss effects. Recall that the analysis in Section 2.2

does not take shadow losses into account.

2.5.2. Data Capacity Results

The data capacity results are displayed in Fig. 2.8. The plot displays sum throughput

per base site as a function of the number of MSs randomly dropped in a cell. The cell

radius of 1 km is used. Throughput is displayed with no RS, 1 RS, 2 RSs deployed per

sector. The ’No RS’ curve corresponds to the performance of the 802.16e UL, with all

245 OFDMA slots available for scheduling MS-to-BS bursts. The remaining two curves
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Figure 2.8. Per-cell throughput vs. the number of users per cell for data traffic.

characterize the performance of the 802.16j uplink, with 5 slots in the time dimension

devoted to the UL MS zone and 2 slots to the UL RS zone. This particular split of

the UL subframe is determined via simulations to result in the highest cell throughput.

The data scheduler assigns 7 OFDMA slots per user in the UL MS zone. Power control

thresholds of 19 dB for the MS-to-BS and MS-to-RS link and 24 dB for the RS-to-BS link

are empirically determined for the highest cell throughput and used in the simulations.

As seen in Fig. 2.8, RS deployment with 2 RSs per sector provides a significant capacity

gain at higher user loads. For example, when there are 70 users per cell, the per-cell

throughput increases about 40 % from 6.1 Mbps with no RS to more than 8.5 Mbps with

two RSs.
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2.6. Parametric Cost Analysis of Relay Deployment

For conciseness, cost-benefit analysis of the relay deployment is performed for VoIP

capacity results only. To capture the trade-off of increased network capacity with the RS

deployment versus costs of RS installation and maintenance, the following metric of the

network cost per user is proposed:

Ck =
cb + kcr
Nk

, (2.7)

where cb denotes a BS cost, including backhaul, installation, maintenance and hardware;

cr denotes an RS cost, including installation, maintenance and hardware, but no backhaul

cost; k denotes the number of RS deployed per cell; finally, Nk denotes the number of VoIP

users at capacity accommodated with k RS per cell. Note that C0 denotes the normalized

cost per user of the 802.16e system.

To gauge cost-effectiveness of the RS solution, the following ratio is of interest:

R ≡ C0

Ck
=
Nk

N0

1

1 + k cr
cb

. (2.8)

Clearly, the RS deployment is cost-effective if the ratio R is greater than unity. Specific

to the simulation results in this paper, with N0 ≈ 144 and N6 ≈ 360 (corresponding to

5% blocking probability in Fig. 2.7), it readily follows that R ≥ 1 implies the normalized

cost of the RS relative to that of the BS needs to satisfy cr
cb
≤ 0.25.

2.7. Chapter Summary

We have investigated through both analysis and simulations the capacity gains attain-

able with a relay-enhanced wideband cellular system. Our results show that UL capacity
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for both data and VoIP traffic increases significantly when RSs are deployed in the sys-

tem (more than 40% gain for data and 100% gain for voice with two RSs). However,

these gains are realized at the cost of relay deployment in the system. Our cost analysis

attempts to capture this trade-off and indicates that the relay-enhanced cellular system

is economically viable only when the cost of the RS is relatively small (less than 25%)

compared to that of the BS. As the hardware and installation costs of the RS and BS are

expected to be similar, the cost of backhaul emerges as the primary factor driving the

cost effectiveness of 802.16j deployments, and relay-enhanced cellular systems in general.



54

CHAPTER 3

Power Allocation for Relay-Assisted Downlink Transmission

Relay extensions for cellular networks were studied in the previous chapter along with

a simple cost analysis. Due to the success and the popularity of Wi-Fi WLANs, we turn

our attention to the relay extension of cellular networks using Wi-Fi access points (APs)

as the relays. There are many possible network scenarios depending on the relationship

between the base stations (BSTs) and APs. For example, if the BST and AP are non-

cooperative, bargaining can be used to share the AP resources for relaying traffic to and

from the BST. In this chapter, however, we assume that APs cooperative with the BST,

and willingly share their resources to maximize the social welfare (sum utilities of both

BST and AP users).

Specifically, we focus on power allocation across the BST and AP for downlink trans-

missions in a relay-assisted cellular network. We consider a single cell with two relays

(AP nodes), and a static user population, and optimize the allocation of power across

cellular and AP users, in addition to the BST-AP link. We then study the corresponding

increase in rate and coverage provided by sharing AP resources. In contrast to previous

work (e.g., [80, 125, 118]) in which all AP resources are available to the BST, here we

assume that the APs are serving a separate group of (non-cellular) users. Hence serving

as a relay for cellular users requires the AP to reduce the amount of power allocated to

serving its own users.
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To obtain insight into the effect of the relay on power and rate allocations, we consider

a one-dimensional model in which cellular users are uniformly distributed along a line.

Two relay nodes are placed symmetrically on either side of BST, and serve a separate set

of users, which are uniformly distributed around the relay. This corresponds to the large

system model presented in the last chapter and in [127]. All users (both cellular and

AP) are assumed to be orthogonal in time, frequency, and/or signature space, and do not

interfere. Furthermore, the AP is assumed to use a different band from the cellular band,

so that cellular users do not interfere with non-cellular users. Also, here we consider only

the power allocation problem subject to a total power constraint. We assume that each

user receives a single unit of bandwidth (i.e., channel, time slot, or signature), and that

the total number of users does not exceed a bandwidth constraint. Finally, in the model

considered path loss is determined only by distance. Random propagation effects, such as

shadowing, are not explicitly modeled, but can be incorporated in the model by changing

the distance metric.1

For the one-cell model, we wish to allocate available BST and AP power across both

cellular and AP users, and from the BST to the AP, to maximize the total sum rate over

all users for data traffic, or to maximize the total number of active users for voice traffic.

We solve this problem for the following two scenarios: (i) the information flows to the

cellular users served by the relay are jointly encoded and transmitted from the BST to

the AP; and (ii) the preceding information flows are transmitted in parallel (separately

encoded) from the BST to the AP. Joint encoding requires less power to transmit the data

destined for relayed users from the BST to the AP, but requires that the received data at

1This change in distance metric effectively amounts to changing the distribution of users along the line.
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the AP be demultiplexed. We also give an upper bound on the increase in total sum rate

(data traffic) or in total number of users (voice traffic) provided by the AP, based on the

scenario in which the AP and BST have a wireline connection, so that the BST does not

expend any power to communicate with the AP.

3.1. System Model

The one-dimensional cellular model is illustrated in Fig. 3.1. We assume a symmetric

cell in which two APs are placed at the same distance d from the BST. As in [127], we

assume a static set of users, which are uniformly and continuously distributed along the

line. The density of the cellular users, served by the BST, is ρB, and the density of the

AP users is ρA. This corresponds to a large system limit in which the number of users

in the system tends to infinity in proportion with the available bandwidth (i.e., fixed

users per Hz). Given a finite total power constraint, the BST and AP each serve a finite

number of users. In what follows, we assume that each active user receives a fixed unit of

bandwidth, and that the corresponding number of available channels (and/or time slots

and/or signatures) exceeds the total number of active users.

We consider two different types of traffic for downlink transmission: data and voice.

For data traffic, the BST and the AP allocate the transmission power to maximize the

total sum rate over all users (both cellular and AP users) ignoring fairness considerations.

For voice traffic, on the other hand, each user requires a certain fixed data rate, and the

BST and AP allocate the transmission power to maximize the total number of active

users.
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PA(x)
A(x)P’
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PB(x) for Individual Flow Conservation
BST
max for Total flow conservationPγ

Figure 3.1. One-dimensional model of a cell with relay nodes (APs) placed
at the same distance from the BST. Depending on the flow conservation
between the BST and the AP, the power allocations at the BST are different.

3.1.1. Data Traffic

We first consider the situation in which the BST does not use the AP as a relay. From

symmetry, we only need to consider the power allocation and set of active users on one side

of the BST. Suppose that the BST transmits to a cellular user at distance r with power

PB(r). Assuming a path loss of 1/ra, where a is the path-loss exponent, the received

Signal-to-Noise Ratio (SNR) is PB(r)
N0WBra

, where N0 is the noise density, and WB is the

cellular bandwidth/user. We further assume optimal coding, so that the corresponding

rate is WB log
(

1 + PB(r)
N0WBra

)
. Similarly, the AP transmits to an AP user at distance x

with power PA(x), and the corresponding received rate is WA log
(

1 + PA(x)
N0WAxa

)
, where

WA is the AP bandwidth/user.
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We wish to select PB(r) and PA(x) to maximize the total transmission rate summed

over all users, i.e.,

max
{PB(r),PA(x)}

∫
ρBWB log

(
1 + PB(r)

N0WBra

)
dr

+

∫
ρAWA log

(
1 + PA(x)

N0WAxa

)
dx,

(3.1)

subject to total power constraints

∫
ρBPB(r) dr ≤ Pmax

BST , (3.2)∫
ρAPA(x) dx ≤ Pmax

AP . (3.3)

Note that the total number of active users served by the BST and AP, and hence the

total bandwidth, depends on the total powers Pmax
BST and Pmax

AP .2

The optimal power allocations for the preceding problem are determined by water-

filling, i.e.,

PB(r) = N0WB(raB0 − ra)+, r ∈ [0, rB0], (3.4)

PA(x) = N0WA(xaA0 − xa)+, x ∈ [−xA0, xA0], (3.5)

where rB0 = (a+1
a

PmaxBST

N0WBρB
)

1
a+1 is the BST coverage radius, xA0 = (a+1

2a

PmaxAP

N0WAρA
)

1
a+1 is the AP

coverage radius, and (x)+ = max(x, 0). Here, we assume xA0 ≤ d. The coverages of the

BST and AP obtained by water-filling are shown in Fig. 3.2. The total rates supported

by the BST and the AP summed over their own users (first and second terms in (3.1))

2The total BST power for users on both sides of the BST is then 2 · PmaxBS .
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Figure 3.2. Coverage of the BST and AP by water-filling. One-sided cov-
erage of the BST is [0, rB0] and coverage of the AP is [−xA0, xA0].

are

RB0 = a ρBWB rB0, (3.6)

RA0 = 2a ρAWA xA0, (3.7)

and the sum rate over all users on one side of BST is, therefore, R0 = RB0 +RA0.

Now we consider the case where the BST uses the AP to relay data. We assume that a

cellular user can receive data simultaneously from the BST and the AP.3 The relay poses

an additional flow constraint, namely, the total rate that the AP provides to the cellular

(relayed) users must be the same as the total rate it receives from the BST. The channel

between the BST and the AP is also assumed to be orthogonal to those used by the BST

3Although splitting data streams in this manner is more complicated than receiving data from either the
BST or the AP, this assumption simplifies the power allocation problem, and gives an upper bound on
the performance when data streams are not split.
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and the AP. The power allocation problem then becomes

max
{PB(r),P ′A(x),PA(x)}

∫
ρBWB log

(
1 + PB(r)

N0WBra

)
dr

+

∫
ρBWA log

(
1 +

P ′A(x)

N0WAxa

)
dx

+

∫
ρAWA log

(
1 + PA(x)

N0WAxa

)
dx

(3.8)

subject to the power and flow conservation constraints, where P ′A(x) is the power allocated

by the AP to a cellular user at distance x from the AP. That is, a cellular user at distance

r from the BST (x = r−d from the AP) may receive positive power allocations PB(r) > 0

and P ′A(x) > 0, corresponding to splitting the data stream between the direct path from

the BST and the relay path.

3.1.2. Voice Traffic

Because each active user receives a certain target rate for voice service, our objective is to

maximize the number of active users for a given power constraint. As in section 3.1.1, we

first study the case where the BST does not use the AP as a relay. The power needed to

transmit at rate RB to a cellular user at distance r is PB(r) = N0WB

(
e
RB
WB − 1

)
ra ≡ Bra.

The maximum number of cellular users that the BST can support with power Pmax
BS is

then ρB|C0|, where C0 is the one-sided interval containing the active users and satisfies∫ C0
0
ρBPB(r)dr = Pmax

BS , i.e.,

C0 =

(
a+ 1

ρBB
Pmax
BS

) 1
a+1

. (3.9)

Here, | · | denotes the size (i.e. Lebesgue measure) of the corresponding region.
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Similarly, assuming non-cellular and cellular users have the same path-loss exponents,

the minimum power needed by the AP to transmit at rate RA to a user at distance x is

PA(x) = N0WA

(
e
RA
WA − 1

)
xa ≡ Axa. The maximum number of non-cellular users that the

AP can support with power Pmax
AP is therefore 2ρA|D0|, where D0 = ( a+1

ρAA

PmaxAP

2
)

1
a+1 is the

one-sided AP coverage (i.e., for users at distance d+ x, with x ≥ 0).4 Therefore, without

relaying, the total number of active cellular and non-cellular users (on one side of the

BST) is ρB|C0|+ 2ρA|D0|.

Now we consider the case where the BST uses the AP to relay voice traffic to cellular

users. We assume that a cellular user receives data either from the BST directly or

through AP, but not simultaneously.5 With target rates RB and RA for BST and AP

users, respectively, the power allocation problem is then to maximize the total number of

BST and AP users served, namely,

max
{C,D}

ρB|C|+ 2ρA|D|, (3.10)

subject to the power and flow conservation constraints. Here, C and D are the regions of

active cellular and non-cellular users, respectively. It can be easily shown that D is always

a single connected interval. However, since each cellular user can receive data from either

the BST or the AP, the cellular coverage set C can consist of two or more disjoint intervals

Cd and Cr, where Cd = ∪iCd,i is the union of non-overlapping intervals corresponding to

the direct (non-relayed) cellular users and similarly, Cr corresponds to the relayed users.

4Note we are assuming that the AP coverage region is symmetric about the AP location. This will only
be the case if |D0| ≤ d, which implies PmaxAP ≤ 2ρAA

a+1 d
a+1. Otherwise the coverage would be bounded on

the left at zero (since the other users would be covered by the AP to the left of the BST).
5This is in contrast to the model for data service considered in section 3.1.1 where the BST and AP can
simultaneously transmit to a cellular user.
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We assume that Cr is one (connected) segment for simplicity even though it might not be

optimal.

3.1.3. Joint Coding vs. Individual Coding

We investigate two different techniques for coding the streams transmitted from the BST

to the AP for the relayed users. Joint coding assumes that the BST jointly encodes all

of the data destined for relayed users, and transmits the resulting stream to the AP. The

AP then decodes and demultiplexes the individual data flows. In that case, the total rate

from the BST to the AP is equal to the sum rate of the flows from the AP to relayed

users. In the second technique, individual coding, data flows, which are to be relayed by

the AP, are transmitted in parallel from the BST to the AP. The AP then decodes the

packets for each data flow separately. Hence the code rate used by the BST to transfer the

data to the AP is the same as that used by the AP to transmit to the relayed user. Joint

coding generally requires less power for the BST-AP link than individual coding, but is

more complex, since the relayed users must be multiplexed at the BST and demultiplexed

at the AP.
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3.2. Data Traffic

3.2.1. Joint Coding

The BST aggregates and jointly encodes the data destined for relayed users, and transmits

this to the AP. The rate optimization problem is then to maximize (3.8) subject to

∫
ρBPB(r) dr + γPmax

BST ≤ Pmax
BST , (3.11)∫

ρAPA(x) dx+

∫
ρBP

′
A(x) dx ≤ Pmax

AP , (3.12)

WBA log
(

1 +
γPmaxBST

N0WBAdb

)
=

∫
ρBWA log

(
1 +

P ′A(x)

N0WAxa

)
dx,

(3.13)

where WBA is the bandwidth between the BST and the AP, and γPmax
BST , where γ ∈ [0, 1],

is the BST power allocated to the relay channel. Also, the path-loss exponent between

the BST and the AP is b, which can differ from the direct path-loss exponent a. That is,

through proper placement of the AP, it may be the case that b < a. The first and second

constraints are the total power constraints for the BST and the AP, respectively. The last

constraint is for the aggregate flow rate conservation.

To solve this optimization problem, we decompose it into two separate optimization

problems. Namely, we first assume that the AP allocates power αPmax
AP , to relayed users,

where α ∈ [0, 1], and subsequently optimize over α. With this assumption the problem

decomposes into two independent power allocation problems for the BST and AP. Namely,

the AP problem is

AP: max
{PA(x)}

∫
ρAWA log

(
1 + PA(x)

N0WAxa

)
dx (3.14)
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subject to ∫
ρAPA(x) dx ≤ (1− α)Pmax

AP (3.15)

and the BST problem is

BST: max
{PB(r),P ′A(x)}

∫
ρBWB log

(
1 + PB(r)

N0WBra

)
dr

+

∫
ρBWA log

(
1 +

P ′A(x)

N0WAxa

)
dx

(3.16)

subject to (3.11), (3.13), and

∫
ρBP

′
A(x) dx ≤ αPmax

AP . (3.17)

The optimum power allocation for the AP problem is water-filling and the total rate

is RA(α) = 2a ρAWAxA(α), where xA(α) =
(
a+1
2a

(1−α)PmaxAP

N0WAρA

) 1
a+1 is the AP coverage radius

for its own users. If the portion of the BST power allocated to the relay, γ, is fixed, then

for the BST problem the optimal PB(r) and P ′A(x) at the BST and the AP, respectively,

are also water-filling distributions. Therefore, the BST problem reduces to finding the

γ∗(α), which maximizes the total rate from the BST, i.e.,

max
γ

RB(α, γ) = a ρBWB rB(γ)

+ min
{
WBA log

(
1 +

γPmaxBST

N0WBA db

)
, 2a ρBWA xR(α)

}
,

(3.18)

where rB(γ) =
(
a+1
a

(1−γ)PmaxBST

N0WBρB

) 1
a+1 is the coverage radius of the BST for direct trans-

missions, and xR(α) =
(
a+1
2a

αPmaxAP

N0WAρB

) 1
a+1 is the coverage radius for relayed users mea-

sured from the AP. Since the total rate for relayed users from the BST to the AP,

WBA log
(

1 +
γPmaxBST

N0WBAdb

)
, increases monotonically with γ, and is zero for γ = 0, the BST
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rate simplifies to

max
γ∈[0,γ•]

RB = a ρBWB rB(γ) +WBA log
(

1 +
γPmaxBST

N0WBAdb

)
, (3.19)

where γ• satisfies

WBA log
(

1 +
γ•PmaxBST

N0WBAdb

)
= 2a ρBWAxR(α) (3.20)

if the solution is in [0, 1]. Otherwise, γ• = 1. Since RB is a concave function of γ, it is

straightforward to solve for the optimal value, γ∗(α), given α. Finally, joint optimization

of the AP and BST power allocations is achieved by searching for the optimal α ∈ [0, 1],

i.e.,

max
α

R = RA(α) +RB(γ∗(α)). (3.21)

A relatively simple upper bound on the total transmission rate with the relay can be

obtained by assuming that the BST does not require any power to transmit data flows to

the AP, which are destined for relayed users. This might correspond to the situation in

which the BST and AP are co-located, or are connected by a wired line. In that case, the

BST serves cellular users with density ρB, and the AP serves both its users and cellular

users together with density ρB + ρA. The total transmission rate is therefore

RWL = a ρBWB

(a+ 1

a

Pmax
BST

N0WBρB

) 1
a+1

+ 2a (ρB + ρA)WA

(a+ 1

2a

Pmax
AP

N0WA(ρB + ρA)

) 1
a+1
,

(3.22)

and the relative rate increase is

RWL

R0

=
1 + 2(1 + ρA

ρB
)

a
a+1 (WA

WB
)

a
a+1 (

PmaxAP

PmaxBST
)

1
a+1

1 + 2( ρA
ρB

)
a
a+1 (WA

WB
)

a
a+1 (

PmaxAP

PmaxBST
)

1
a+1

. (3.23)
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If ρA = ρB, WA = WB, and Pmax
AP = Pmax

BST , then this becomes RWL/R0 = (1 + 2
2a+1
a+1 )/3,

and for a = 5 this evaluates to a 52.1% gain from using the relay. If the AP does not have

its own users to serve (ρA = 0), then this ratio becomes

RWL

R0

= 1 + 2
(WA

WB

) a
a+1
(Pmax

AP

Pmax
BST

) 1
a+1
. (3.24)

Hence if WA = WB, Pmax
AP = Pmax

BST , then the relay can at most triple the total rate,

independent of the path loss exponents and the density of cellular users.

3.2.2. Individual Coding

The BST individually encodes all data destined to the relayed users and transmits these

individual streams in parallel to the AP. Assuming the AP allocates power αPmax
AP to the

relayed users, we can again decompose the optimization problem (3.8) into two separate

problems. The AP problem is still given by (3.14) and (3.15). The BST problem now

becomes

BST: max
{PB(r),PB(x),P ′A(x)}

∫
ρBWB log

(
1 + PB(r)

N0WBra

)
dr

+

∫
ρBWB log

(
1 + PB(x)

N0WBdb

)
dx

(3.25)

subject to (3.17), ∫
ρBPB(r) dr +

∫
ρBPB(x) dx ≤ Pmax

BST , (3.26)

and

WB log
(

1 + PB(x)
N0WBdb

)
= WA log

(
1 +

P ′A(x)

N0WAxa

)
, (3.27)
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where PB(x) is the BST power allocated for relayed data to a cellular user at distance x

from the AP. Hence, when a cellular user at distance r from the BST (x = r− d from the

AP) receives data from both the direct and relay path, we have PB(r) > 0, PB(x) > 0,

and P ′A(x) > 0.

To simplify our discussion of this case, we will assume in the rest of this section

that WA = WB = W , i.e. the AP and the BST have the same bandwidth/user. With this

assumption, the individual flow conservation constraint (3.27) is reduced to PB(x)
db

=
P ′A(x)

xa
.

We first consider the solution when b = a, i.e. the path loss exponent between the BST

and the AP is the same as the direct path loss exponent. We then consider the general

case where b < a.

3.2.2.1. Equal path-loss exponents. For any fixed rate R, the power required for the

BST to transmit at that rate over the direct path to a user at distance r is proportional to

ra. With equal path loss exponents, the power required for the BST to transmit at that

rate over the relay path to the same user is proportional to da, with the same constant

of proportionality. Hence, it is clear that under the optimal power allocation, the BST

will not send any relayed data to a cellular user at distance r < d (but it may send direct

data). On the other hand, for the users at distance r > d, using the relay channel is

beneficial to the BST because it can save the power. Recall that rB0 was defined to be

the BST coverage radius without relaying. For a given α, the solution to BST problem

can be classified into two cases depending on if rB0 ≤ d or rB0 > d.

Case 1: rB0 ≤ d. In this case, the coverage radius of BST without relaying does not

extend beyond the AP location, and so even when the AP can be used for relaying, it

will not benefit the BST. It follows that the solution to the BST problem will be to only
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use direct channels, i.e. to set PB(x) = 0 for all x and PB(r) is again given by the water-

filling allocation in (3.4). For any α, the maximum total rate achieved by the BST is

RB(α) = RB0, where RB0 is given in (3.6). Since this does not depend on α, clearly it is

optimal to set α = 0, when optimizing the total rate. Therefore, the AP solution is also

the same as in the no-relay case.

Note that the condition rB0 ≤ d is equivalent to Pmax
BST ≤ a

a+1
N0ρBWda+1, and this

case will arise when the BST power is small enough, or equivalently when the user density

ρB is large enough.

Case 2: rB0 > d. When the coverage radius of the BST extends beyond the AP, the

BST can increase its throughput by using the relay path. Note that for a given data

rate, the BST requires the same power to transmit at that rate to any user via the relay

path. Hence, the power allocation to the relayed users is determined by the AP power

constraint (3.17) and the individual flow constraint (3.27). To characterize the resulting

power allocation, we consider the following Lagrangian for the BST problem:

L(PB(r), PB(x)) =

∫
ρBW log

(
1 +

PB(r)

N0Wra

)
dr

+

∫
ρBW log

(
1 +

PB(x)

N0Wda

)
dx

− λ1

(∫
ρBPB(r) dr +

∫
ρBPB(x) dx− Pmax

BST

)
− λ2

(∫
ρBPB(x)

xa

da
dx− αPmax

AP

)
,

(3.28)

where λ1 and λ2 are Lagrange multipliers corresponding to the constraints in (3.26) and

(3.17), respectively. Note that we have used the individual flow constraint (3.27) to
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express P ′A(x) in terms of PB(x). The corresponding first order optimality conditions are

∂L

∂PB(r)
=

W

N0Wra + PB(r)
− λ1 =0, (3.29)

∂L

∂PB(x)
=

W

N0Wda + PB(x)
− λ1−λ2

xa

da
=0. (3.30)

Clearly, under the optimal solution, the BST power constraint will be tight. Suppose

that the AP power constraint (3.17) is not tight. Then λ2 = 0 and the resulting power

allocations are

PB(r) = N0W
(
raB − ra

)+
, (3.31)

PB(x) =

 N0W
(
raB − da

)+
, x ≥ 0,

0, x < 0,
(3.32)

where rB =
(

1
N0λ1

)1/a
is the coverage radius of the direct channel. To satisfy the BST

power constraint (3.26), it must be that rB ≤ d, but in this case, since by assumption

rB0 > d, this will result in the BST not using all of its power. Hence, λ2 > 0 and the AP

power constraint must be tight. Therefore, the optimal power allocations at the BST are

PB(r) =N0W
(
raB − ra

)+
, (3.33)

PB(x) =


N0Wda

( raB
da

1+λ2N0
ra
B
da
xa
− 1
)+

, x ≥ 0,

0, x < 0,

(3.34)

where rB (λ1) and λ2 are chosen so that the power constraints are tight. The resulting

coverage of relayed users measured from the AP is xR =
(

1
λ2N0

(
1 − da

raB

))1/a

, and the



70

solution to the BST problem is

RB(α) = a ρBWB rB

+

∫ xR

0

ρBWB log
( raB

da

1 + λ2N0
raB
da
xa

)
dx.

(3.35)

As in Section 3.2.1, the rates of the BST and AP can then be jointly optimized by searching

for the optimal α∗ ∈ [0, 1].

3.2.2.2. Unequal path-loss exponents. Now we consider the case where b < a, i.e.

the channel between the BST and AP has a lower path-loss exponent than the direct

channel. This case can be solved using the same approach as in the previous section.

Therefore, we omit the arguments except for pointing out the main differences.

First note that the power required by the BST to send at any fixed rate R to a user at

distance r over the direct channel is still proportional to ra. However, if the BST sends at

rate R to this user over the relay path, the power is now proportional to db. Hence, the

BST would like to use the relay channel to send data to users at distance greater than

d1 = db/a < d. In other words, when rB0 > d1, the solution to the BST problem uses

the relay. Second, note that to efficiently utilize the AP power, the users nearest the AP

will receive relay traffic. A result of this is that when the AP power for relaying is small

enough, the cellular users which are served may be divided into two disjoint intervals.

Specifically, the BST may transmit directly to all users in [0, d1], then there may be a gap

in service, and the AP may then continue serving users in a small radius around it.
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3.3. Voice Traffic

3.3.1. Joint Coding

The optimization problem in this case is to maximize (3.10) subject to

∫
Cd
ρBPB(r) dr + γPmax

BS ≤ Pmax
BS , (3.36)

2

∫
D
ρAPA(x) dx+

∫
Cr
ρBP

′
A(x) dx ≤ Pmax

AP , (3.37)

WBA log

(
1 +

γPmax
BS

N0WBAdb

)
= RBρB|Cr|, (3.38)

C = Cd ∪ Cr, Cd ∩ Cr = ∅, γ ∈ [0, 1] (3.39)

where γ is a variable to be optimized, which indicates the fraction of BST power allocated

to the relay channel. The AP power allocation for a relayed cellular user at distance x

from the AP is P ′A(x) = N0WA

(
e
RB
WA − 1

)
|x|a = A′|x|a. Constraints (3.36) and (3.37) are

the total power constraints for the BST and AP, respectively, and (3.38) is the total flow

rate conservation.

Similar to Section 3.2, we first assume that the AP allocates power αPmax
AP for relayed

cellular users, where α ∈ [0, 1], and subsequently optimizes over α. Then the problem

decomposes into two independent optimization problems for the BST users and the AP

users. Given α, the AP optimization problem is to maximize the number of active non-

cellular users. The solution is 2ρA|D(α)|, where |D(α)| = ( a+1
ρAA

(1−α)PmaxAP

2
)

1
a+1 . The BST

optimization problem is to maximize the coverage of the cellular users |C(α)| for given

density ρB.
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To solve the BST optimization problem, we first write constraints on the interval

containing relayed users, which follow from the AP power allocation αPmax
AP and the BST

power allocation γPmax
BS . Denote the interval of relayed users by [d + x, d + x̄], where

x ≥ −d. Given x, from (3.37) x̄ ≤ x̄A(x), where x̄A(x) is the value of x̄ that satisfies

∫ x̄

x

ρBP
′
A(x) dx = αPmax

AP . (3.40)

Likewise, from (3.38), we have x̄ ≤ x̄B(x), where

x̄B(x) = x+
WBA

RBρB
log

(
1 +

γPmax
BS

N0WBAdb

)
. (3.41)

Combining these, we must have that

x̄ ≤ x̄(x) ≡ min{x̄A(x), x̄B(x)}. (3.42)

Given α and γ, to maximize the total coverage this bound will be met with equality.

The BST allocates (1 − γ)Pmax
BS for the direct-path cellular users. Consider the two

possible inequalities ∫ d+x

0

ρBPB(r) dr ≷ (1− γ)Pmax
BS . (3.43)

The left side of the inequality is the BST power required to activate users in the interval

[0, d+ x]. This can be rewritten as

x ≷ x̃ =

(
a+ 1

ρBB
(1− γ)Pmax

BS

) 1
a+1

− d, (3.44)

where [0, d + x̃] is the largest interval of users which can be served directly by the BST

given the available power. For a given interval of relayed users [d + x, d + x̄], if x > x̃,
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then there is a gap between the cellular users served directly by the BST and the cellular

users served by the AP. The total cellular user coverage is then

C(γ, α, x) = d+ x̃+ x̄− x. (3.45)

If x ≤ x̃, then there is no gap in the coverage of cellular users. That is, the BST power

needed to activate users in [0, d+x] is less than (1−γ)Pmax
BS . Hence, there will be a second

interval of cellular users served directly by the BST given by [d+ x̄, C(γ, α, x)], where

C(γ, α, x) =
[
(d+ x̃)a+1 + (d+ x̄)a+1 − (d+ x)a+1

] 1
a+1 (3.46)

is the total cellular coverage.

Given α, the BST optimization problem reduces to optimizing x, which determines

the interval of relayed users, and γ, i.e.,

C(α) = max
0≤γ≤1

max
x≥−d

C(α, γ, x). (3.47)

Finally, the maximum total number of users served by both the BST and AP is given by

max
0≤α≤1

ρB|C(α)|+ 2ρA|D(α)|. (3.48)

Although we are unable to obtain a closed-form solution to the preceding optimization

problem, we can follow the approach in Section 3.2 to derive a closed-form upper bound

on the total number of users served by the BST and the AP. Namely, we assume that the

connection between the BST and the AP is “free”, i.e., does not require any expenditure
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of power. In that case, the intervals of users served by the BST and the AP have lengths

|CWL,∞| =
(
a+ 1

ρBB
Pmax
BS

) 1
a+1

+ 2

(
a+ 1

2
Pmax
AP

) 1
a+1

×
( ρB
A′1/a

+
ρA
A1/a

)− 1
a+1 ρB

A′1/a
,

(3.49)

|DWL,∞| =
(
a+ 1

2
Pmax
AP

) 1
a+1 ( ρB

A′1/a
+

ρA
A1/a

)− 1
a+1 1

A1/a
(3.50)

provided that the distance d between the BST and the AP is large enough so that there is

no coverage overlap between the users directly served by the BST and the relayed users.

The relative increase in the total number of users due to the addition of the relay is then

ρB|CWL,∞|+ 2ρA|DWL,∞|
ρBC0 + 2ρAD0

=
1 + 2

(
PmaxAP

2
1

PmaxBS

) 1
a+1
(
B1/a

A′1/a
+ ρA

ρB

B1/a

A1/a

) a
a+1

1 + 2
(
ρA
ρB

) a
a+1
(
B
A

PmaxAP

2
1

PmaxBS

) 1
a+1

.

(3.51)

If the AP does not have a separate set of non-cellular users to serve (ρA = 0), then this

ratio becomes

ρB|CWL,∞|+ 2ρA|DWL,∞|
ρBC0 + 2ρAD0

= 1 + 2

(
B

A′
Pmax
AP

2

1

Pmax
BS

) 1
a+1

. (3.52)

Even with a wired connection between the BST and the AP, the preceding bound is not

tight unless the distance d between the BST and AP is large enough so that the intervals

covered by BST and AP do not overlap. With small d this bound can be improved by

optimizing the total number of users served over x and α as before, assuming that the
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BST-AP link requires no power consumption (since the BST-AP link requires no power,

we no longer have to optimize over γ).

3.3.2. Individual Coding

Assuming the AP allocates power αPmax
AP to the relayed users, we can again decompose

the optimization problem (3.10) into two separate problems. The AP problem is still the

same as the one for total flow rate conservation. The BST problem for given user density

ρB now becomes maximizing the cellular user coverage |C| = |Cd|+ |Cr| subject to

∫
Cd
ρBPB(r) dr +

∫
Cr
ρBPB(d) dx ≤ Pmax

BS , (3.53)

∫
Cr
ρBP

′
A(x) dx ≤ αPmax

AP . (3.54)

Note in this case, (3.53) combines the BST power constraint and the individual flow

constraint; namely, PB(d) = Bda is the power required from the BST to deliver each

relayed flow to the AP. As before, Cd and Cr are also constrained to be disjoint sets.

3.3.2.1. Equal path-loss exponents. We consider the case where b = a. Then for a

cellular user at distance r < d, the BST will not receive any power savings by using the

relay. Therefore, if the BST power Pmax
BS is less than ρBB

a+1
da+1, the BST will not use the

relay even when α > 0. In this case, the total coverage is C(α) = C0 = ( a+1
ρBB

Pmax
BS )

1
a+1 < d.

However, if Pmax
BS > ρBB

a+1
da+1, using the relay reduces the power needed by the BST. Again,

denote the interval of relayed users by [d+x, d+ x̄]. Given x and α, x̄ is again constrained

by x̄ ≤ x̄A(x), where xA(x) is the value of x̄ that satisfies (3.40). The following proposition

shows that when the relay is used, the optimal relay user interval starts at x = 0.
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Proposition 1. Given AP power αPmax
AP and b = a, if Pmax

BS > ρBB
a+1

da+1, then the

optimal relay user interval is given by [d, d+ x], where x ≤ xA(0).

Proof. See Section 3.6. �

3.3.2.2. Unequal path-loss exponents. Now we consider the case where b < a. Then

the power required by the BST to transmit directly to a user at distance r at rate RB

is PB(r) = Bra and the power required by the BST to transmit a relayed packet to the

AP for this user is PB(d) = Bdb. Hence, the BST can save power by using the relay if

r > d1 = db/a. When the BST power is small enough so that it can only serve users at

distance less than d1, it will not use the relay. As its power increases, it will begin to serve

the relayed users. Initially, the set of relayed users will lie in a symmetric interval around

the AP. Given AP power αPmax
AP , let [d −∆, d + ∆] be the largest symmetric interval of

relayed users that can be supported around the AP, where ∆ = ( a+1
ρBA′

αPmaxAP

2
)

1
a+1 . As the

BST power further increases, the resulting coverage will follow two possible evolutions,

depending on whether or not d−∆ ≥ d1, and they are shown in Figure 3.3. On the left is

the case where d−∆ ≥ d1. In this case the relay always serves a symmetric set of cellular

users, and as the BST power increases, it will eventually serve some users to the right

of the relayed set. On the right is the case where d − ∆ < d1. In this case, when there

is sufficient relayed traffic, the relayed set is not symmetric, but extends further in the

positive direction. This is because the users to the left are served directly by the BST.

For the former case (d −∆ ≥ d1), the coverage as a function of the BST power is given

in Table 3.1 and for the latter case (d−∆ < d1) in Table 3.2.
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Figure 3.3. Cellular user coverage as a function of Pmax
BS . On the left is the

case where d−∆ ≥ d1 and on the right is the case where d−∆ < d1.

Table 3.1. Cellular coverage as a function of Pmax
BS when b < a and d−∆ ≥ d1.

BST Power Pmax
BS BST coverage |C(α)|

A 0 < Pmax
BS ≤

ρBB
a+1

da+1
1 |C(α)| = |C0| =

(
a+1
ρBB

Pmax
BS

) 1
a+1

B Pmax
BS ≤

ρBB
a+1

da+1
1 + ρBBd

b · 2∆ |C(α)| = d1 +
PmaxBS −

ρBB

a+1
da+1
1

ρBBdb

Pmax
BS ≤ Pmax

BS (critical)
C

= ρBB
a+1

(d−∆)a+1 + ρBBd
b · 2∆

|C(α)| =
{
a+1
ρBB

(
Pmax
BS − ρBBdb · 2∆

)} 1
a+1

+ 2∆

D Pmax
BS > Pmax

BS (critical) |C(α)| − See (3.55) and (3.56)

In Table 3.1, Pmax
BS (critical) represents the minimum power such that when Pmax

BS >

Pmax
BS (critical), the BST serves users to the right of the relayed interval. In this case, the
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Table 3.2. Cellular coverage as a function of Pmax
BS when b < a and −∆ <

d1 − d

BST Power Pmax
BS BST coverage |C(α)|

A 0 < Pmax
BS ≤

ρBB
a+1

da+1
1 |C(α)| = |C0| =

(
a+1
ρBB

Pmax
BS

) 1
a+1

B Pmax
BS ≤ Pmax

BS (critical)
= ρBB

a+1
da+1

1 + ρBBd
b {x̄A(d1 − d)− (d1 − d)} |C(α)| = d1 +

PmaxBS −
ρBB

a+1
da+1
1

ρBBdb

D Pmax
BS > Pmax

BS (critical) |C(α)| − See (3.55) and (3.56)

cellular coverage as a function of x becomes

|C(α, x)| =
[
a+ 1

ρBB
Pmax
BS + (d+ xA(x))a+1

− (a+ 1)db(xA(x)− x)− (d+ x)a+1

] 1
a+1

,

(3.55)

where x is constrained to be no smaller than max{−∆, d1 − d}. Therefore, the optimal

cellular coverage for a given α is

|C(α)| = |C(α,min{x∗, ẋ})|, (3.56)

where x∗ and ẋ are obtained by solving ∂|C(α,x)|
∂x
|x=x∗ = 0 and |C(α, ẋ)| = d + xA(ẋ),

respectively. The optimal number of cellular and AP users can then be found by searching

for the optimal α∗ ∈ [0, 1].

3.4. Numerical Results

3.4.1. Data Traffic

We give some numerical results to illustrate the gains from relaying under the two

flow conservation constraints. First, we consider the total flow constraint. Fig. 3.4

shows the ratio of the total rate with relaying to that without relaying as a function
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of the distance between the BST and the AP. The simulation parameters are Pmax
BS =

36 dBm, Pmax
AP = 20 dBm,WB = WA = 30 Khz,WBA = 1 MHz, ρB = ρA = 50 users/Km

and N0 = 10−20 Watt/Hz. Without using the AP as a relay, the (one-sided) radius and

(one-sided) throughput for the BST are respectively given by rB0 = 758.9 m and RB0 =

9.49×106 nats/sec when the pathloss exponent between BST and users is a = 5. Similarly,

the radius and throughput for the AP are xA0 = 365.9 m and RA0 = 9.15× 106 nats/sec.

By using the AP as a relay, the total throughput of the system increases by ∼ 11% when

the pathloss exponents a = b = 5 and by ∼ 40% when a = 5 and b = 4, as shown in

Fig. 3.4. As expected, the better channel between the BST and the AP improves the

total throughput significantly. In this case, the wire-line upperbound from (3.23) is 1.406,

which is approached when the AP is moved towards to the BST.

Overall, however, the total transmission rate is not much improved with relaying,

especially when the AP is relatively far from the BST. This is due to our objective of

maximizing the total rate. Users closest to the BST, who do not use the relay, contribute

the most to the total rate, and, due to the water-filling power allocation, receive most

of the power. However, using a relay in this setting can improve the coverage and the

rate allocation of cellular users farther away from the BST. This is illustrated in Fig. 3.5,

which shows the rate distribution of cellular users with and without relaying under the

total flow constraint when the distance between the BST and AP is 0.7× rB0. It can be

seen that the relay improves the rate of the users near the AP while the rates of users

near the BST are only slightly reduced.

Figures 3.6 and 3.7 show the corresponding plots under individual flow constraints.

The same trends can be observed. Comparing these with the total flow constraint, it can
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Figure 3.4. Ratio of total data rate with and without relaying as a function
of distance between the BST and AP under total flow conservation.

be seen that the gain in total rate is less under this constraint. However, from Fig. 3.7,

the increase in coverage is greater in this case (∼ 30%).

3.4.2. Voice Traffic

The required rates for the voice application are assumed to be RB = RA = 30 Kbps.

The other parameters are the same as those used for data traffic. Without relaying, the

coverage of the BS and the AP are |C0| = 365.2 m and |D0| = 176.1 m with a = 5.

First, we consider total flow rate conservation. Fig. 3.8 shows the ratio of the total

number of users (BST+AP) with relaying to that without relaying as a function of distance

d between the BST and the AP. Two different path-loss scenarios are considered: a =
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Figure 3.5. Rate distribution of cellular data users with and without relay-
ing as a function of distance from the BST under total flow conservation
(a = 5 and b = 4).

5, b = 4 and a = b = 5. For each case the ratio of the total number of cellular users is also

shown (BST only). Note there is clearly an optimal location of the relay for maximizing

each of these ratios. When the path-loss exponent b between the BST and the AP is

the same as the path-loss exponent a between the BST and each user, the increase in

the total number of active users with the relay is relatively moderate (less than ∼ 21.5%

when a = b = 5). As the path-loss between the BST and the AP improves, however, the

ratio of the total number of users with/without relaying increases more significantly. The

relay achieves more than a 37.9% increase in total number of users served when a = 5 and

b = 4. In this case the cellular users served increase by more than 95.6%. (This is offset
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Figure 3.6. Ratio of total data rate with and without relaying as a function
of distance between the BST and AP under individual flow conservation.

by a decrease in the number of AP users.) It follows that the increase in the total number

of cellular users is larger than 95.6% when the AP only serves as a relay (i.e., ρA = 0).

The upper bound we obtained by assuming the wired connection between the BST and

the AP (equation (3.51)) is 1.384, which is very close to the gain shown with a = 5 and

b = 4. The loss due to the power consumption on the link between the BST and the AP

is small in this example (38.4 % vs. 38.9%). This is partially because we only consider

one AP. In a two dimensional model that has more APs, the loss due to the BST-AP link

should be larger.

Results for the individual flow conservation constraint are shown in Fig. 3.9. This

figure is very similar to that with total flow conservation. In this case, the gains are lower

due to the increasing power needed for the BST-AP link. For example, in the case of
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Figure 3.7. Rate distribution of cellular data users with and without relay-
ing as a function of distance from the BST under individual flow conserva-
tion (a = 5 and b = 4).

a = 5, b = 5, the maximum percentage increase in the total number of users served is

about 7.4% (vs.∼ 21.5% in the total flow case). On the other hand, with a = 5, b = 4, the

maximum percentage increase is about the same (37.8% with the individual flow constraint

vs. 37.9% with the total flow constraint). In these examples the gain from joint encoding

is, in general, very small and may not warrant the additional implementation complexity

required.

3.5. Chapter Summary

We have considered a one-dimensional cellular model with two APs placed symmetri-

cally at a fixed distance from the BST and have studied the gain from using the APs as



84

Figure 3.8. Ratio of the total number of voice users served under total flow
conservation as a function of distance between the BST and AP.

relays. In addition to relayed traffic, we have assumed that each AP has its own customers

to serve. We considered two different flow conservation models depending on whether or

not the relay traffic is multiplexed when sent to the AP.

For data traffic, we have studied the maximum total rate for the downlink without

considering fairness. Our results show that under both flow constraints, the total trans-

mission rate increases by at most 40%, where the most significant gains are with the

total flow conservation model and small traffic density for the relay. Moreover, each relay

scheme alters the cellular user rate distribution by slightly reducing the rate of users near

the BST and increasing the rate of users near the relay. In addition, the BST coverage

can be extended by using the relay.
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Figure 3.9. Ratio of the total number of voice users served under individual
flow conservation as a function of distance between the BST and AP.

For voice traffic, the gain in total number of active users has been studied. When the

sets of active users are optimized, the total number of cellular users increases significantly

under both flow rate conservation schemes, but at the cost of reducing the AP users. This

corresponds to a coverage extension of the cellular network. Our numerical results show

that the total number of active users increases by ∼ 38% when the distance between the

BST and the AP is optimized.
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3.6. Supplement: Proof of Proposition 1

First consider the case when

ρBB

a+ 1
da+1 < Pmax

BS ≤
ρBB

a+ 1
da+1 +

∫ xA(0)

0

ρBPB(x) dx =
ρBB

a+ 1
da+1 + ρBBd

axA(0). (3.57)

Then the direct channel user coverage is |Cd(α)| = d (or interval [0, d]), and the relayed

user coverage is |Cr(α)| =

“
PmaxBS −

ρBB

a+1
da+1

”
ρBBda

. The interval for the relayed cellular users

is, therefore, [d + x, d + x + Cr(α)], where x ∈ [0, x̂]. The upper bound x̂ can be

calculated from xA(x̂)− x̂ = Cr(α). As Pmax
BS increases from ρBB

a+1
da+1, x̂ decreases. When

Pmax
BS = ρBB

a+1
da+1 + ρBBd

axA(0), x̂ = 0 and the relayed interval becomes [d, d + xA(0)].

Therefore, the optimal relay user interval is [d, d + x], where x ≤ xA(0), and the cellular

user coverage is

|C(α)| = |Cd(α)|+ |Cr(α)| = d+

(
Pmax
BS −

ρBB
a+1

da+1
)

ρBBda
. (3.58)

Next consider the case where Pmax
BS > ρBB

a+1
da+1+ρBBd

axA(0). The relayed user interval

becomes [d+ x, d+ x] = [d+ x, d+ xA(x)], where x ∈ [0, ẋ]. Here, we obtain ẋ from

∫ d+ẋ

0

ρBPB(r) dr +

∫ xA(ẋ)

ẋ

ρBPB(x) dx = Pmax
BS . (3.59)

The total cellular user coverage including the relayed users is, then, calculated by

∫ d+x

0

ρBPB(r) dr +

∫ xA(x)

x

ρBPB(x) dx+

∫ |C|
d+xA(x)

ρBPB(r) dr = Pmax
BS , (3.60)
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or

|C(α, x)|a+1 =
a+ 1

ρBB
Pmax
BS + (d+ xA(x))a+1

− (a+ 1) da (xA(x)− x)− (d+ x)a+1.

(3.61)

It can be shown easily that ∂|C(α,x)|a+1

∂x
≤ 0 for all x ∈ [0, ẋ] as long as a ≥ 1. Therefore,

the optimal relayed user interval for given α is [d, d+xA(0)] and the cellular user coverage

is given by

|C(α)| =
[
a+ 1

ρBB
Pmax
BS + (d+ xA(0))a+1 − (a+ 1) da xA(0)− da+1

] 1
a+1

. (3.62)
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Part 2

Resource Allocation among Non-cooperative

Agents
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CHAPTER 4

Incentives and Resource Sharing in Spectrum Commons

So far we have considered wireless resource allocation in cellular networks with co-

operative relays and studied the maximization of the social welfare. Now we shift our

focus and consider resource allocation among non-cooperative agents. In that case, there

arise important issues such as developing efficient distributed mechanisms for resource

allocation and estimating the efficiency loss if the allocation mechanism is not efficient.

Here we consider a commons model for spectrum sharing in which users may install

access points (APs) to serve their own as well as other users’ traffic.1 In the latter case, the

AP owner may receive a payment for this [72]. One concern with such a model is that as

the density of APs increases, the users may eventually suffer a “tragedy of the commons,”

because of increasing interference [45]. It has been suggested that it is enough to lightly

regulate the commons to mitigate the tragedy. Schemes such as etiquette protocols,

restricted design of devices and bargaining amongst users have been proposed [97, 64].

In this paper we model the effect of regulation in reduced form through a shared rate.

Namely, an AP owner can provide payments to neighboring users to encourage them not

to set up interfering APs. This payment may take the form of providing discounted service

and/or providing a share of revenue to potential interferers.

1Although this work is motivated by 802.11 systems, here “Access Point” could refer to other types of
systems sharing a common band.
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Given such a scheme, we study a game theoretic model, which reflects user behavior.

In this game, each user decides whether or not to set up an AP, which operates on a

particular (single) band. If a user sets up an AP, she provides payments to each neighbor

who does not and suffers a disutility depending on the number of interfering APs. On the

other hand, if a user does not set up an AP, she receives payments from each neighbor

that does. Clearly, if the payments are large enough, the user may decide not to set up

an AP and thereby reduce interference. For a given model of the agents’ payoffs, we show

that the resulting game is a potential game and that best response updates converge to a

Nash equilibrium of the game.

A game is called a potential game if all players in the game change their strategy

as if they jointly optimize a common objective function, i.e., a potential function [79].

Potential games have been used to model various network resource allocation problems,

including distributed power control [122, 48, 120], non-cooperative routing in wired

networks [11], and multihoming of users to APs in WLANs [100].2

Using the potential function of the AP deployment game, we analyze the Nash equi-

librium under various assumptions. First, we assume that users are located on a two-

dimensional lattice and that interference only comes from the nearest APs. This models

a situation where either the density of APs or transmission power of each AP is relatively

low. In this case, we show that Nash equilibria exist in both pure and mixed strategies

and that at least one Nash equilibrium achieves the socially optimal density of APs with

the appropriate payment. We then account for interference from outside of the nearest

neighbors. Our results suggest that as the transmission power increases relative to the

2Other related work, in which a game theoretic approach is used to analyze the performance of ad hoc
networks (including IEEE 802.11), is presented in [106, 121, 25, 108, 36].
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node density, implementing such a commons approach becomes more difficult and other

forms of spectrum sharing (e.g. a secondary market) may be more appropriate.

4.1. The Model

Consider a two-dimensional L1×L2 lattice. Every lattice point has a selfish agent who

decides whether she sets up an AP or not. Namely, agent lij at lattice point (i, j) chooses

a strategy yij ∈ Yij, based on interference and the shared data rate from the nearest APs.

This shared data rate among nearest neighbors is the regulatory measure we introduce

and is discussed later in detail. The strategy space Yij of agent lij is Yij = {0, 1}, where

yij = 1 if agent lij decides to set up an AP and yij = 0 if she decides not to set up an

AP. If both agents lkl and lij set up their own APs, the inference from lkl to lij is given

by Ikl→ij. On the other hand, if agent lij decides not to set up the AP, then she shares

rate γkl→ij from agent lkl’s AP, assuming agent lkl sets up the AP.3 This rate sharing can

be justified by the fact that agent lij is more likely to set up an AP if there is no rate

sharing resulting in increased interference to agent lkl. If the rate degradation from this

interference is severe enough, then agent lkl has an incentive to share her rate with agent

lij. For tractability we assume that the nodes are placed at lattice points in the plane,

and that rate sharing occurs only between nearest neighbors in the lattice.4 Therefore,

γkl→ij = 0 if lkl is not in the set of agent lij’s nearest neighbors, Hij.
5

3We assume payoff functions that are linear in rate and so this rate sharing can be equally viewed as a
transfer payment.
4We can relax this assumption and allow rate sharing between non-neighboring agents. This relaxation,
however, increases the total amount of information that an agent should know before she makes a decision,
and may not be practical.
5Depending on the boundary condition, the set of nearest neighbors, Hij can be different. For a periodic
boundary condition in a two-dimensional (torus) lattice, considered in Section 4.3, the set of nearest
neighbors of agent l11 is given by H11 = {(1, 2), (1, L1), (2, 1), (L2, 1)}. Without the periodic boundary
condition H11 = {(1, 2), (2, 1)}.
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The payoff function of agent lij depends on her own strategy as well as those of other

agents. Here, we restrict attention to the following payoff function. If agent lij decides to

set up her own AP given the other agents’ decisions, her payoff becomes

πAij(yij = 1, y−ij) = R− C −
∑

kl∈{L1×L2}

ykl · Ikl→ij

−
∑
kl∈Hij

(1− ykl) · γij→kl,
(4.1)

where R is the total rate generated from her own AP and C is the fixed cost for setting

up the AP. y−ij denotes the set of decisions of all agents except agent lij. This payoff

function can be motivated by viewing R as the total rate an agent can achieve over a

coverage area if there are no interferers, and Ikl→ij as the reduction in coverage caused

by each interfering AP. Of course, assuming this linear relation is a simplification, but it

provides a tractable model that captures the key interaction among agents. On the other

hand, if agent lij decides not to set up her own AP, then she shares the rate from the APs

in her nearest neighborhood Hij and her payoff becomes

πNij (yij = 0, y−ij) =
∑
kl∈Hij

ykl · γkl→ij. (4.2)

Note that we can write the payoff function of agent lij as the following:

πij(yij, y−ij) = yij · πAij + (1− yij) · πNij . (4.3)

For the preceding payoff functions, we consider a non-cooperative game Γ(π11, · · · , πL1L2)

among agents in the lattice. In this game, given fixed actions for all other agents, a ra-

tional agent decides whether or not to set up an AP as follows. If πAij ≥ πNij , then agent
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lij sets up the AP at her lattice point. Otherwise, she chooses to share the rate from

the APs in the nearest neighborhood instead of setting up her own AP. We show later

that this game Γ is a potential game under certain conditions. This allows us to assert

the existence of a Nash equilibrium and characterize the efficiency of Nash equilibria as a

function of the amount of rate sharing.

No coordination or no regulatory measure among agents can be represented by γkl→ij =

0. Without rate sharing, agent lij’s payoff if she decides not to set up the AP becomes

πij(0, y−ij) = 0 from (4.2). Therefore, an agent is encouraged to set up her own AP unless

interference from other APs is so large that her payoff with the AP is negative. This

can lead to a situation where a large number of agents in the lattice set up the APs and

experience severe interference. As we see later in Section 4.5, the payoffs of all agents can

become very low, especially when the density of agents is high. This is an example of the

“tragedy of the commons” [45].

4.1.1. Model Limitations

Here we briefly discuss the limitations associated with the preceding model, which is

analyzed in subsequent sections. First, we assume that the wireless nodes are placed

in a lattice, whereas in practice the agents are likely to be randomly distributed over

the geographic area of interest. The regular spacing of nodes in a lattice implies that

the interference externality imposed by each active node on its nearest neighbor is the

same. This enables us to characterize properties of the AP deployment game, such as

the existence of equilibria along with the associated efficiency, with a single shared rate.6

6Also, in Section 4.4 we show that the AP deployment game on a lattice is a potential game with different
shared rates across the network.
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Of course, the shared rate (or equivalently, a transfer payment) scheme can be applied

to more general configurations of AP nodes, but then it is likely that different payments

would be needed to prove similar results. Such an analysis would be significantly more

complicated than that presented here.

The second simplifying assumption is that each AP in the lattice uses the same set

of frequencies. Namely, if an agent decides to set up an AP, then she transmits over the

entire band. Our model therefore does not directly account for the possibility of using

dynamic channel assignment schemes to avoid interference, such as those proposed for

IEEE 802.11 in [65, 78, 71, 94]. (An alternative interpretation of our model is that

the particular band considered has already been assigned to each AP by such a channel

assignment algorithm, and that the transfer payment scheme is subsequently being used

to mitigate interference within that band.)

Finally, as discussed earlier, the payoff depends linearly on the interference. A more

accurate model might account for the degradation due to interference by computing the

received SINR at each node. The linear payoff assumed here facilitates tractability while

providing insight into the benefits of using transfer payments for more realistic scenar-

ios. We also point out that although we initially consider rate sharing between nearest

neighbors in the lattice, we relax this assumption in Section 4.2 and show that the AP

deployment game is a potential game if rates are shared between non-neighboring agents.

However, that increases the total amount of information that an agent needs to make a

decision.
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4.2. Potential Games

We begin by giving some background on potential games. These are a class of games

with several desirable properties, which we will exploit. First, pure Nash equilibrium

strategies exist (assuming finite strategy sets) and are relatively easy to compute using a

potential function. Second, in these games, a Nash equilibrium can be justified as being

the outcome of a boundedly rational learning process such as best response updates.

Let Γ(π1, π2, . . . , πn) be a game with a finite number of players. The set of players is

N = {1, 2, . . . , n}, the set of strategies of player i is Yi, and the payoff function of player

i is πi : Y → R, where Y = Y1 × Y2 × · · · × Yn is the set of strategy profiles. A function

P : Y → R is a potential function for Γ if for every i ∈ N and for every y−i ∈ Y−i

πi(x, y−i)− πi(z, y−i) = P (x, y−i)− P (z, y−i) (4.4)

for every x, z ∈ Yi, where Y−i is the Cartesian product of the strategy space of all players

except player i.

Definition A game Γ is called a potential game if it admits a potential function.

Namely, a game is considered a potential game if the improvement of the player’s payoff

by changing her strategy can be expressed in terms of the potential function, which is the

same for all players. This definition leads to the following Lemma.

Lemma 2 ([79]). Let P be a potential function for Γ(π1, π2, . . . , πn). Then the equi-

librium set of Γ(π1, π2, . . . , πn) coincides with the equilibrium set of Γ(P, P, . . . , P ). That
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is, y ∈ Y is an equilibrium point for Γ if and only if for every i ∈ N

P (y) ≥ P (x, y−i) for every x ∈ Yi. (4.5)

Corollary 3 ([79]). Every finite potential game possesses a pure-strategy equilibrium.

Lemma 2 and Corollary 3 show the existence of a Nash equilibrium and how to compute

it using the potential function.

In the potential game with a finite set of strategies, the Nash equilibrium can be

reached by best response updates [79]. Best response updates of the game Γ(π11, · · · , πL1L2)

are described by the following. At time t+ 1, an agent lij is randomly selected among all

agents in the lattice L1×L2 and she chooses her strategy, which maximizes her payoff for

given strategies of the other agents at time t. Namely, agent lij chooses the best response

yij(t+ 1) according to

yij(t+ 1) = arg max
yij∈Yij

πij(yij, y−ij(t)). (4.6)

Initial strategies yij(0) for all agents are randomly chosen. This best response at time

t + 1 is repeated for t = 0, 1, 2, . . . with a randomly selected agent. Note that agent lij’s

best response yij(t) at time t might be different from her best response yij(t
′) at time

t′ 6= t. For the AP deployment game, changing actions in this way is reasonable when the

fixed cost C is small enough.

Lemma 4. In every finite potential game, a Nash equilibrium can be reached by best

response updates.



97

The following Lemma will be useful when we discuss the mixed Nash equilibrium in

the potential game considered later.

Lemma 5 ([79]). Let Γ be a finite game. Then Γ is a potential game if and only if

the mixed extension of Γ is a potential game.

4.3. Periodic Boundary Condition with Nearest Neighbor Interference

Initially we study the game discussed in Section 4.1, assuming a periodic boundary

condition for the lattice L1 × L2
7, namely, L1 + 1 = 1 and L2 + 1 = 1. Then the set

of the nearest neighbors of (1, 1), for example, is H11 = {(1, 2), (1, L2), (2, 1), (L1, 1)}.

This assumption simplifies our analysis by removing boundary effects. (In Section 4.4 we

consider a game without this periodic boundary condition.) Furthermore, we assume that

interference comes only from the nearest neighbor APs. This nearest neighbor interference

models a situation where either the density of APs or transmission power of each AP is

relatively low. Therefore,

Ikl→ij =

 I, (k, l) ∈ Hij,

0, (k, l) /∈ Hij,
(4.7)

7The resulting lattice is also called a torus-lattice.
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where I is a constant, which represents the interference level between two neighboring

APs. The payoff function (4.3) for agent lij, then, is given by

πij(yij, y−ij)

= yij ·

R− C − ∑
kl∈Hij

ykl · I −
∑
kl∈Hij

(1− ykl) · γ


+ (1− yij) ·

 ∑
kl∈Hij

ykl · γ


= yij ·

R− C − ∑
kl∈Hij

ykl · I −
∑
kl∈Hij

γ


+
∑
kl∈Hij

ykl · γ.

(4.8)

For the time being, we assume that the shared rate from the AP of each agent lkl ∈ Hij

to each agent lij is γkl→ij = γ. Namely, it is the same for all agents in the lattice.

Let ΓPBNN denote the resulting game under these assumptions.

Lemma 6.

P (y11, y12, . . . , yL1L2)

= (R− C)

(
L1∑
i=1

L2∑
j=1

yij

)
−

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γ


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(4.9)

is a potential function for ΓPBNN .
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The proof of this follows by noting that for given y−ij,

πij(y
′
ij, y−ij)− πij(yij, y−ij)

= P (y′ij, y−ij)− P (yij, y−ij),

(4.10)

for all yij, y
′
ij ∈ Yij and all agents in the Lattice L1×L2. Therefore, according to Definition

4.2, ΓPBNN is a potential game with the potential function P given by (4.9).

On the other hand, the social welfare is the sum of the payoffs of all agents and is

not affected by the shared rate γ since it is an exchange between two agents. The social

welfare of all agents in the L1 × L2 lattice is, therefore, given by

SW (y11, y12, . . . , yL1L2)

= (R− C)

(
L1∑
i=1

L2∑
j=1

yij

)
−

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(4.11)

We next compare a Nash equilibrium strategy with a strategy, which maximizes the social

welfare and discuss the efficiency loss at the Nash equilibrium.

4.3.1. Pure Nash Equilibrium

The first-order derivative of the potential function (4.9) is given by

∂P

∂yij
= (R− C)−

∑
kl∈Hij

γ −
∑
kl∈Hij

ykl · I. (4.12)

Note that ∂P
∂yij

does not depend on yij. If the strategy space is restricted to {0, 1} for

all agents, the best response of agent lij for ∂P
∂yij

> 0 ( ∂P
∂yij

< 0) is yij = 1 (yij = 0).

By Lemma 4, best response updates of randomly selected agents converge to a Nash
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equilibrium. In a similar way, if ∂SW
∂yij

> 0 (∂SW
∂yij

< 0), then yij = 1 (yij = 0) to maximize

the social welfare given by (4.11).

Let HA
ij be the set of nearest neighbors of agent lij which set up an AP. Then from

(4.12) it can be seen that agent lij’s action in a Nash equilibrium is to set up an AP if

R− C −
∑

kl∈Hij γ

I
> |HA

ij | (4.13)

and not to set up an AP when

R− C −
∑

kl∈Hij γ

I
< |HA

ij |. (4.14)

The agent is indifferent when equality holds. For ΓPBNN ,
∑

kl∈Hij γ = 4γ for all lij, and

so the preceding threshold on the number of neighbors is

Hth =
R− C − 4γ

I
. (4.15)

There are 5 cases of interest for this quantity.

4.3.1.1. 0 < Hth < 1. In this case, an agent will set up an AP in a Nash equilibrium

only if none of her neighbors does. For fixed R− C, this is true if γ and I satisfy R− C − 4γ − I · 0 > 0,

R− C − 4γ − I · 1 < 0.
(4.16)

In addition, we assume γ ≤ I. Otherwise, an agent would always prefer having a neigh-

boring AP over sharing the rate. Similarly, the following conditions must hold if an

agent sets up an AP to maximize social welfare, assuming there is no AP in the nearest
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neighborhood:  R− C − 2I · 0 > 0,

R− C − 2I · 1 < 0.
(4.17)

4.3.1.2. 1 < Hth < 2. In this case, an agent will set up an AP in a Nash equilibrium

only if no more than one of her neighbors sets up an AP. γ and I must satisfy R− C − 4γ − I · 1 > 0,

R− C − 4γ − I · 2 < 0.
(4.18)

The analogous conditions for maximizing social welfare must hold: R− C − 2I · 1 > 0,

R− C − 2I · 2 < 0.
(4.19)

4.3.1.3. 2 < Hth < 3. An agent will set up an AP in a Nash equilibrium only if no more

than two neighbors set up APs. For this case, γ and I must satisfy R− C − 4γ − I · 2 > 0,

R− C − 4γ − I · 3 < 0,
(4.20)

and to maximize social welfare, R− C − 2I · 2 > 0,

R− C − 2I · 3 < 0.
(4.21)

For the remaining two cases (3 < Hth < 4 and Hth > 4), similar conditions for the

potential function P and the social welfare SW can be obtained easily and we omit them

here.
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Figure 4.1. Maximum number of APs allowed in the nearest neighbors for
pure Nash equilibrium and the feasible region for Interference I and shared
rate γ.

Figures 4.1 and 4.2 summarize these cases. Figure 4.1 shows the values of I and γ for

pure strategy Nash equilibria to exist in each case. These values lie in one of five regions;

each region is labeled with the maximum number of neighboring APs for which an agent’s

best response will be to set up an AP (e.g., region 0 corresponds to case 0 < Hth < 1).

Figure 4.2 shows the values of I and γ for the socially optimum solution to have the same

structure.

Proposition 7. Consider the game ΓPBNN with the set of strategies Yij = {0, 1}. For

given interference level I, there exist a set of γ such that a Nash equilibrium achieves the

optimal social welfare.

For example, if I ≥ R−C
2

, a set of γ, which satisfies the conditions of the potential

function for the case 0 < Hth < 1 induces a Nash equilibrium which might correspond

to the optimal strategy. On the other hand, if I ∈ [R−C
4
, R−C

2
], a set of γ, which satisfies

the conditions of the potential function in case 2 < Hth < 3, might generate a Nash
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Figure 4.2. Maximum number of APs allowed in the nearest neighbors for
the optimal social welfare and the feasible region for interference I and
shared rate γ.

equilibrium in which there exists an AP with two APs in the nearest neighborhood. This

Nash equilibrium cannot be socially optimal.

The AP deployment game may not have a unique Nash equilibrium. Consider a 3× 3

lattice with the periodic boundary condition as an example. If γ and I are such that no AP

in the nearest neighborhood Hij is allowed when agent lij sets up an AP (0 < Hth < 1),

then there exists only one Nash equilibrium with three APs in the lattice. Namely, three

among nine agents decide to set up APs at the Nash equilibrium. On the other hand, if

up to two APs are allowed in the nearest neighborhood (2 < Hth < 3), then there exist

two Nash equilibria with either 5 or 6 APs in the lattice.
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4.3.2. Mixed Nash Equilibrium

We next consider the mixed extension of the potential game ΓPBNN . In this game, each

agent lij can be viewed as having strategy space Yij = [0, 1], where an action yij ∈ Yij can

be viewed as the probability that lij sets up an AP. An agent’s payoff is then the expected

value of (4.3) with respect to the actions chosen by every other agent. Since the payoff is

linear in the action, it can be seen that the first-order derivative of the potential function

is given by (4.12) and the second-order derivative is given by

∂2P

∂yij∂ykl
=

 −I, (k, l) ∈ Hij,

0, (k, l) /∈ Hij.
(4.22)

Since the Hessian of the potential function P is negative semi-definite, P is a concave

function with a unique global maximum. In addition, ∂P
∂yij

=
∂πij
∂yij

for all agents lij ∈

L1 × L2. Therefore, the best response updates of agents in the potential game reach this

global maximum of the potential function, which corresponds to the unique mixed Nash

equilibrium. This gives the following proposition.

Proposition 8. ΓPBNN has a unique mixed strategy Nash equilibrium, which is sym-

metric.

The mixed extension of ΓPBNN can be interpreted as a game in which all agents install

an AP, but only use it a fraction of the time, indicated by yij. Individual agents do not

coordinate their usage.
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Assume each agent chooses the same strategy, namely, y11 = y12 = · · · = yL1L2 = y.

We can then rewrite the potential function as

P (y) = (L1 · L2){(R− C − 4γ)y − 2Iy2}, (4.23)

and so

∂P (y)

∂y
= (L1 · L2){(R− C − 4γ)− 4Iy}. (4.24)

It follows that the mixed Nash equilibrium strategies are given by yNE
ij = yNE for all

agents, where

yNE =


0, R−C−4γ

4I
< 0,

1, R−C−4γ
4I

> 1,

R−C−4γ
4I

, otherwise.

(4.25)

Similarly, assuming symmetric strategies, the social welfare8 and its first-order deriv-

ative are given by

SW (y) = (L1 · L2){(R− C)y − 4Iy2}, (4.26)

and

∂SW (y)

∂y
= (L1 · L2){(R− C)− 8Iy}. (4.27)

8The social welfare function is also concave since its Hessian is given by

∂2SW

∂yij∂ykl
=
{
−2I, (k, l) ∈ Hij

0, (k, l) /∈ Hij

and is negative semi-definite.
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Figure 4.3. Interference I and shared rate γ for mixed Nash equilibrium
and social optimum.

It follows that the social welfare is maximized if yij = y∗ for all lij, where

y∗ =


0, R−C

8I
< 0,

1, R−C
8I

> 1,

R−C
8I

, otherwise.

(4.28)

Figure 4.3 shows the values of I and γ corresponding to different mixed Nash equilibria

and the optimal social welfare. In the overlapped region where yNE = 1 and y∗ = 1, the

mixed Nash equilibrium achieves the optimal social welfare. In general, however, the

social welfare at the Nash equilibrium does not correspond to the optimal social welfare.

We consider the efficiency of the Nash equilibrium for three possible ranges of I next.

4.3.2.1. I ∈ [0, R−C
8

]. As we can see from Figure 4.3, for given interference I ∈ [0, R−C
8

],

the mixed strategy Nash equilibrium is yNE = 1 and the probability for setting up an

AP to achieve the optimal social welfare is y∗ = 1. Therefore, the efficiency at the Nash

equilibrium, defined by the ratio of the social welfare at yNE vs. at y∗ is given by

ε =
SW (yNE = 1)

SW (y∗ = 1)
= 1, (4.29)
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regardless of γ ∈ [0, I].

4.3.2.2. I ∈ [R−C
8
, R−C

4
]. In this case, there are two possible regions depending on the

shared rate γ. If 0 ≤ γ ≤ R−C−4I
4

, then the Nash equilibrium strategy is yNE = 1, whereas

the optimal probability is y∗ = R−C
8I

. The efficiency is then given by

ε =
SW (yNE = 1)

SW (y∗ = R−C
8I

)
=

16I

(R− C)
− 64I2

(R− C)2
, (4.30)

and, therefore, the efficiency does not depend on the shared rate γ. If R−C−4I
4

≤ γ ≤ I,

then the Nash equilibrium strategy and the optimal probability are yNE = R−C−4γ
4I

and

y∗ = R−C
8I

, respectively, and the efficiency is

ε =
SW (yNE = R−C−4γ

4I
)

SW (y∗ = R−C
8I

)

= 4

{
R− C − 4γ

R− C
−
(
R− C − 4γ

R− C

)2
}
.

(4.31)

Since R−C−4I
4

≤ γ ≤ I, the range of the efficiency for given I is εmin ≤ ε ≤ 1, where εmin

is given by (4.30).

4.3.2.3. I ∈ [R−C
4
,∞]. Similarly, there are two possible regions depending on the shared

rate γ. If 0 ≤ γ ≤ R−C
4

, the efficiency is given by (4.31) and the range is 0 ≤ ε ≤ 1. On

the other hand, if R−C
4
≤ γ ≤ I, the efficiency is ε = 0 because yNE = 0.

Proposition 9. For any R, C, and I, there exists a γ so that the unique mixed

strategy Nash equilibrium of ΓPBNN is efficient.
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If the interference level is I ∈ [0, R−C
8

], then the mixed strategy Nash equilibrium is

efficient for any γ ≤ I. If I > R−C
8

, then the rate sharing should be γ = R−C
8

to have an

efficient Nash equilibrium.

4.4. Generalization

In this section, we generalize the previous results. First, we relax the constraint on

the same shared rate γ among all agents in the lattice and allow this rate to be different.

The shared rate from the AP of agent lkl to agent lij is denoted by γkl→ij. Assuming

γkl→ij = γij→kl,
9 we can show that the potential function is now given by

P (y11, y12, . . . , yL1L2)

= (R− C)

(
L1∑
i=1

L2∑
j=1

yij

)
−

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γkl→ij


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

ykl · I

 .

(4.32)

Second, we can remove the periodic boundary condition and consider edge effects in

the lattice. We can still show that the game is a potential game with the potential function

in (4.32). Note that Hij does not always contain 4 nearest neighbors as with the periodic

boundary condition. In addition, if mixed strategy Nash equilibria are considered (as in

9If this condition does not hold, (4.32) is no longer a potential function.
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Section 4.3.2), the potential function (4.32) can be simplified to

P (x, y, z)

= (R− C)L2 − 4(L− 2)2γx− 12(L− 2)γy − 8γz

− 2(L2 − 5L+ 6)Ix2 − 4(L− 2)Ixy

− 4(L− 3)Iy2 − 8Iyz,

(4.33)

where x ∈ [0, 1] is the strategy of an agent who has 4 nearest neighbors, y ∈ [0, 1] is

that of an agent who has 3 nearest neighbors, and z ∈ [0, 1] is that of an agent who has

2 nearest neighbors. Here, we assume L1 = L2 = L for simplicity. Since the potential

function (4.33) is a concave function, the mixed Nash equilibrium can again be found

easily.

Finally, we can include interference from APs beyond the nearest neighbors. This

might be relevant when the density of APs increases or the transmission power of each

AP increases relative to the node density. Assuming interference only depends on the

distance between two APs, interference from the AP of agent lkl to the AP of agent lij is

given by

Ikl→ij =
I

|(k, l)− (i, j)|a
, (4.34)
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where a is the path-loss exponent. Note that Ikl→ij = Iij→kl. The potential function of

the game is then given by

P (y11, y12, . . . , yL1L2)

= (R− C)

(
L1∑
i=1

L2∑
j=1

yij

)
−

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈Hij

γkl→ij


− 1

2

L1∑
i=1

L2∑
j=1

yij

 ∑
kl∈{L1×L2}

ykl · Ikl→ij

 .

(4.35)

Here, we are still assuming that rate sharing is only between nearest neighbors. As

discussed in Section 4.1, we can relax this constraint. The social welfare function is the

same as in (4.11) except that the interference from the APs beyond the nearest neighbors

is included. As we will see in Section 4.5, if interference is severe, then an agent is less

likely to set up her own AP at a Nash equilibrium even when γ > 0 and this reduces the

sum of the agents’ payoffs in the lattice. This suggests that as interference becomes severe

due to an increase in AP density, implementing such a commons approach becomes more

difficult and other forms of spectrum sharing (e.g., a secondary market) may be more

appropriate.

4.5. Simulation Results

We now present Matlab-simulation results to illustrate properties of the AP deploy-

ment game. We begin with a game with periodic boundary conditions and nearest neigh-

bor interference, as in Figure 4.4. The strategy space of an agent in the game is Yij = {0, 1}

for all agents lij. Figure 4.5 shows one realization of the convergence of best response up-

dates to a pure Nash equilibrium with parameters L1 = L2 = 100, R = 10, C = 3, I = 1.6
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Figure 4.4. Agents in the lattice decide whether or not to set up their own
APs. Here we only consider interference from the nearest neighbor APs.

and γ = 0.7. Initial decisions of agents in the lattice are randomly chosen. At each it-

eration, all agents in the lattice are randomly ordered and sequentially choose their best

response. Therefore, during one iteration in Figure 4.5, 100×100 = 104 agents make their

decisions.

The above parameters allow up to two nearest APs at a pure Nash equilibrium, which

corresponds to the case 2 < Hth < 3 in Section 4.3.1.3. As we can see easily, the optimal

configuration with these parameters is to have a chess board-like deployment of APs in the

lattice, so that there is no AP in the nearest neighborhood when a user sets up her own

AP. Therefore, the average number of APs per agent (per lattice point) at the optimal

configuration is 0.5 with the average payoff per agent 10−3
2

= 3.5. On the other hand, in

the commons model without shared rate (γ = 0), every selfish agent in the lattice sets

up her own AP. This reduces the average payoff per agent to 10 − 3 − 4 × 1.6 = 0.6,
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Figure 4.5. Game in the lattice with a periodic boundary condition. L1 =
L2 = 100, R = 10, C = 3, I = 1.6 and γ = 0.7. (a) Average number of APs
per agent (b) Average payoff per agent for different decisions.

which is substantially lower than the payoff at the optimal configuration. As discussed in

Section 4.1, this outcome can be viewed as an example of the “tragedy of the commons”.

Now we consider the shared rate γ = 0.7. From Section 4.3, this allows up to two

APs in the nearest neighborhood at a Nash equilibrium. The Best response updates of

agents in the game converge to a Nash equilibrium with a more desirable average payoff

per agent. After a transition period, Figure 4.5 shows that the average number of APs

per agent converges to ∼ 0.527 and the average payoff per agent to ∼ 3.1, which are closer

to the socially optimal configuration of APs. In addition, it shows the average payoff per

agent with and without an AP. We achieve this near optimality simply by introducing

rate sharing among agents.

Note that the Nash equilibrium is not unique as we discussed before and the final

results (average number of APs and average payoff per agent) may be different at each
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Figure 4.6. Histogram of average number of APs and average payoff per
agent at Nash equilibrium. Total number of simulation runs is 1000. L1 =
L2 = 100, R = 10, C = 3, I = 1.6 and γ = 0.7.

simulation run. With a large lattice size, however, these differences are relatively small.

We simulated 1000 times with the same parameters and our results (See Figure 4.6) show

that average of the average number of APs and the average payoff per agent over 1000

realizations are 0.5287 (standard deviation 0.0011) and 3.1254 (standard deviation 0.0116)

respectively. However, this does not mean we sampled all possible Nash equilibria in the

simulation. In fact, we did not realize the optimal density of 0.5 even though it is possible

with the chosen parameters.

Figure 4.7 shows one realization of the average number of APs and the average payoff

per agent as a function of the shared rate γ. If we consider many realizations of the

simulation, each point in the figure should be replaced by a distribution such as Figure 4.6.

The overall trend of the figure with mean values, however, will be the same. From the

figure, we can see that over a wide range of γ, the average payoff per agent is close to the

optimal value.
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Figure 4.7. Average number of APs and average payoff per agent at a Nash
equilibrium as a function of the shared rate γ. Every point in the Figure
is one particular realization. Other parameters are the same (L1 = L2 =
100, R = 10, C = 3, I = 1.6).

Now we remove the periodic boundary condition from the game. Agents at the edge of

the lattice have fewer nearest neighbors and this encourages them to set up the APs. One

realization shows that the average APs per agent increases to ∼ 0.546. The average payoff

per agent does not change much. We further generalize this game and include interference

from the APs beyond the nearest neighbors. As we expect, fewer agents decide to set up

their own APs due to excessive interference. If the path-loss exponent in (4.34) is assumed

to be a = 4, then the average number of APs per agent is ∼ 0.475 (average payoff per

agent ∼ 2.15). With the path-loss exponent a = 3, the average number of APs per agent

becomes ∼ 0.357 (average payoff per agent ∼ 1.30).

As interference increases, more agents decide not to set up an AP even though there are

no APs available with which she can share the rate. This configuration with relatively low

density of APs in the lattice is close to the optimal configuration with severe interference.
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Our calculations in Section 4.7 show that the optimal density of APs per agent is ∼ 0.424

when a = 4 and ∼ 0.330 when a = 3. However, even if the shared rate scheme achieves the

near optimal configuration, the overall average payoff per agent becomes small because

of the commons model itself. When interference becomes severe, a frequency-division

scheme with some frequency reuse factor might increase the average payoff substantially

compared to the commons model.

4.6. Chapter Summary

We have considered a game theoretic model of a spectrum commons where non-

cooperative users in a lattice decide whether or not to set up their own APs. A simple

regulatory measure, rate sharing, is proposed to mitigate the tragedy of the commons. We

have shown that the AP deployment game on a lattice is a potential game and that there

exist pure and mixed Nash equilibrium. Moreover, by choosing the shared rate appropri-

ately, we achieve a Nash equilibrium in the game, which is efficient. However, with pure

strategies other inefficient equilibria may also exist. The potential game was also extended

to the case where interference comes from the APs beyond the nearest neighbors. The

density of APs in the lattice decreases at the Nash equilibrium as interference becomes

severe. This result suggests that as interference becomes severe due to the increase in AP

density, implementing such a commons approach becomes more difficult and other forms

of spectrum sharing (e.g., a secondary market) may be more appropriate.

4.7. Supplement: Optimal Density of APs in 2-D lattice

We would like to compute the optimal density of APs in two-dimensional lattice even

when there exists interference from APs beyond the nearest neighbors. This is, however,
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difficult because of the integer optimization nature of the problem. Here we solve the

problem approximately by applying mean-field theory, which was originally introduced in

the context of statistical physics [93].10

We consider infinite two-dimensional lattice, namely L1 and L2 →∞ to apply mean-

field theory. This implies that the approximation can be used only when the lattice size

is relatively large. Assuming interference only depends on the distance between two APs,

interference from the AP of a lattice site (k, l) to the AP of a lattice site (i, j) is given

by 1/ra as in (4.34), where r = |(k, l) − (i, j)| is the distance between two APs. Since

interference decreases as 1/ra, we ignore interference from the APs at distance r > Dm,

where Dm is called an effective interference radius and defined later.

A contribution of a particular lattice site (i, j) to the social welfare is given by

SWij = (R− C) yij − yij

 ∑
|kl−ij|=D1

ykl · ID1

+
∑

|kl−ij|=D2

ykl · ID2 + · · ·+
∑

|kl−ij|=Dm

ykl · IDm

 ,

(4.36)

where Dn is the distance of n-th nearest neighbors from the site (i, j) and IDn = I
|Dn|a

is interference from the n-th nearest neighbor AP. Here interference from the nearest

neighbor AP is given by I. The social welfare of the entire lattice is obtained by SW =∑
i

∑
j SWij. As an approximation we replace sum of interference from all the APs at

10We can obtain the exact solution for the optimal density of APs for a one-dimensional lattice.
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distance r ≤ Dm in the second term of (4.36) by its mean value, or

Hm ≡

〈 ∑
|kl−ij|=D1

ykl · ID1 + · · ·+
∑

|kl−ij|=Dm

ykl · IDm

〉

=< y > ·

(
m∑
n=1

NDn · IDn

)
,

(4.37)

where < · > represents an ensemble average and NDn is the number of nearest neighbor

APs at distance Dn. Hm should be determined in such a way that it leads to a self-

consistent solution of the statistical problem. Then, (4.36) is represented by

SWij = (H −Hm) · yij, (4.38)

where H = R− C. Since yij ∈ {0, 1}, the ensemble average of the strategy is given by

< y > = 1× Prob(SWij = H −Hm)

+ 0× Prob(SWij = 0)

=
eβ(H−Hm)

1 + eβ(H−Hm)

(4.39)

from statistical physics, where β is a temperature parameter and it is inversely propor-

tional to temperature [93]. From (4.37) and (4.39), we can compute Hm and < y >.

The parameter β →∞ to obtain an average number of APs per user < y >opt when the

optimal social welfare is achieved. The parameter β →∞ means that temperature of the

physical system goes to absolute zero. Then the system reaches the ground state, which
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is the optimal social welfare in the case considered here. The solution is given by

< y >opt=

 1,
∑m

n=1 NDn · IDn ≤ H,

HPm
n=1NDn ·IDn

,
∑m

n=1 NDn · IDn > H.
(4.40)

We consider the same example as in Section 4.5. If we assume a = 4 and m = 10,

then the total interference within the effective interference radius D10 is
∑10

n=1 NDn ·IDn =

16.530. The average density of APs per user with the optimal social welfare is, then, given

by < y >opt= 7/16.5307 = 0.424. This is close to ∼ 0.475, which is obtained by simulation

in Section 4.5. With a = 3, the average density of APs per user is < y >opt= 0.330

(∼ 0.357 from simulation). The total interferences with m = 10 and m = 30 are not

much different (16.530 vs. 16.565), and therefore this justifies the assumption of the

effective interference radius Dm.
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CHAPTER 5

Sequential Second Price Auction as a resource allocation

mechanism

One dynamic spectrum sharing method among non-cooperative agents based on a

commons model was studied in the previous chapter. In this chapter, we consider an

auction mechanism, the sequential second price auction, for dynamic spectrum sharing

and examine its efficiency when each user has full information about the other users’

utilities.1 In the sequential second price auction, the resource is divided into n identical

units, and each unit is auctioned off sequentially. Assuming full information, the auc-

tion can be viewed as an extended form game, and we investigate the subgame perfect

equilibrium through backward induction and lower bound its efficiency. Although having

full information may not be true in practice, it makes the corresponding game relatively

tractable. In addition, it provides substantial insight into advantages and shortcomings

of the mechanism.

For two users and an arbitrary number of resource units, our results show that the

sequential second price auction has a unique allocation among two users in a subgame

perfect equilibrium.2 We characterize the worst-case efficiency loss of this equilibrium for

the case where each agent has a concave utility for the spectrum resource, and the case

1This is in contrast to previous work in which the utilities are assumed to be private, and bidders have
unit demand [77, 113].
2See Section 5.2 for a precise definition of the equilibrium concept we use.
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where one agent has a concave utility and the other agent has a convex utility. The former

case models the bandwidth auction, while the latter can arise in the power auction, when

a user bids to reduce interference.

We also present simulation results for the efficiency loss when the two users’ channel

gains are randomly generated. The utility function for each user is the maximum achiev-

able (Shannon) rate, where interference is treated as background noise. The results show

that except for a small fraction of realizations, the equilibrium allocation is efficient. Fur-

thermore, we show that lower bound of the worst-case efficiency for the bandwidth auction

increases due to constraints on the marginal utilities imposed by logarithmic properties

of the Shannon rate function.

For more than two users, each with a concave utility function, we show that the auction

has at least one pure strategy equilibrium. Furthermore, the equilibrium allocation may

not be unique. Hence, some coordination of the users may be required to decide on a

particular outcome. This makes characterizing the efficiency loss more difficult. Numerical

results show that the empirical distribution of the efficiency for the bandwidth auction

with three users is stochastically better than that with two users. This suggests that the

worst-case efficiency loss is attained with two users.

5.1. Spectrum Sharing Model

We consider a model for spectrum sharing among k users, where each user consists of

a distinct transmitter-receiver pair. As in [36, 52], we model this as a k-user Gaussian

interference channel with frequency flat fading. The channel gain between user i’s trans-

mitter and user j’s receiver is denoted by hij. Each transmitter has an average power
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constraint P , and the total available bandwidth is W Hz. We further assume that each

transmitter uses an optimal (capacity achieving) code, where the received interference is

treated as background noise (i.e., no interference cancellation is used).

We focus on two spectrum sharing techniques: frequency division multiplexing (FDM)

and spread-spectrum signaling with frequency-flat power allocations across the entire

band.3 With FDM, each user i receives bandwidth Wi, where
∑

jWj = W , and achieves

rate

ri(Wi) = Wi log(1 + hiiP
N0Wi

), (5.1)

where N0 is the power spectral density of the additive noise. With full spreading, user i

receives power Pi ∈ [0, P ] and achieves rate

ri(Pi, P−i) = W log(1 + hiiPi
N0W+

P
j 6=i hjiPj

), (5.2)

where P−i is the vector of powers of all users except i. Each agent is endowed with a

utility function, Ui(ri), which is increasing and concave.

Assume that agent 1 is initially using the spectrum with a given bandwidth or power

allocation, and agents 2, . . . , k want to share this spectrum. The spectrum manager

divides the appropriate resource into n units and re-allocates these units among the k

agents. In the FDM case, each resource unit represents a frequency band of W/n Hz.

The manager either re-allocates a unit to some agent i or lets agent 1 continue to use

that unit. Let uis be agent i’s marginal utility for receiving her s-th unit, i.e., uis =

3More generally, the users could each pick a power allocation over frequency; our choices represent two
specific classes of power allocations. Restricting ourselves to these classes simplifies resource allocation.
Furthermore, for many choices of channel gains, the optimal power allocation is in this set [36].



122

Ui(ri(sW/n)) − Ui(ri((s − 1)W/n)). From (5.1), it follows that the marginal utilities of

each agent are decreasing, i.e. ui1 ≥ . . . ≥ uin.

In the full-spread case, the manager allows each agent i 6= 1 to continue transmitting at

its current power, Pi, and only allocates the power of agent 1 (P1 = P ) among all agents.

Each allotted unit represents a power increment of P/n. A unit allocated to agent 1 allows

her to increase her transmission power, whereas a unit allocated to agent i 6= 1 decreases

the power assigned to agent 1, thereby reducing agent i’s interference. Agent 1’s marginal

utility for the s-th unit is u1
s = U1(r1(sP/n, P−1)) − U1(r1((s − 1)P/n, P−1)), which is

again decreasing in s. On the other hand, the marginal utility for agent i 6= 1 depends on

how many units she receives as well as how many units agent 1 receives (which increases

her interference).4 For two agents, given that agent 2 receives s units at the end of the

auction, agent 1 must receive n− s units. Therefore, agent 2’s marginal utilities are given

by u2
s = U2(r2(P2, (n − s)P/n)) − U2(r2(P2, (n − s + 1)P/n)), which is not necessarily

decreasing in s. For example, if U2(r2) is linear, then u2
s is increasing in s.5 Here, we

focus on the case of two agents, which corresponds to the case where a node has only one

dominant interferer. For more than two agents, agent i 6= 1’s marginal utilities can not

be written in terms of only her allocation, which complicates the analysis.6

4Note in the bandwidth allocation, the marginal utilities of one agent do not depend on how many units
any other agent receives.
5Indeed user 2’s marginal utilities may be neither increasing nor decreasing for all s. In general this
depends on the utility, the choice of channel gains and the power levels. A necessary condition for the
marginal utilities to be increasing or decreasing can be given in terms of the utility’s coefficient of relative
risk aversion, as in [52].
6In particular for more than two agents whenever an agent i 6= 1 is allocated a unit, it decreases the
interference for all agents j 6= 1 thus providing agents an incentive to “free-ride” on each other.
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5.2. Sequential Second-Price Auction

For a given spectrum sharing technique, we consider the case where each of the n

resource units is allocated among k agents via a sequential second-price auction. In this

auction, the units are allocated sequentially in n rounds. In round m ≤ n, each agent

submits a bid for the m-th unit. The auctioneer allocates this unit to the agent with the

largest bid and charges that agent the second largest bid. We refer to this as a bandwidth

(power) auction in the FDM (full-spread) case.

This mechanism can be viewed as an extended form game with a balanced k-ary game

tree. Each decision node in the game tree designates a state of the world, where a certain

quantity of goods (resource units) are allocated to agents 1, . . . , k. Let s = (s1, . . . , sk)

denote such an allocation. Since the goods are homogeneous, the decision nodes with the

same allocation are indistinguishable and the game tree can be replaced with a directed

graph G = (V,E), where V = {s ∈ [1, . . . , n]k|
∑k

i=1 si ≤ n} (see Fig. 5.1). A node s ∈ V

represents the outcome of the (
∑k

i=1 si)-th round, in which agent i has been allocated

si. For
∑k

i=1 si < n, each node s has directed edges to k children (s1, . . . , si + 1, . . . , sk),

i = 1, . . . , k; the i-th edge corresponds to agent i winning the current round. The auction

begins at the root node (0, . . . , 0).

Let uij denote the marginal utility of agent i for the j-th unit. Agent i’s total utility

for receiving si units is
∑si

j=1 u
i
j. Let H designate the set of observable bidding histories.

A strategy σi : V ×H → <+ is a function mapping states of the allocation and observable

histories to bids. The strategy set of an agent is the set of all such functions. The outcome

path of a strategy profile {σ1, . . . , σk} is a directed path δ = {s1, . . . , sn} in G such that if

st+1
i = sti + 1 and st+1

j = stj for j 6= i then σi(s
t,Γt) ≥ σj(s

t,Γt), for all j 6= i, where Γt is
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the bidding history of the first t units.7 The total payment of agent i along the path δ is

Pi(δ) =
∑n

t=1 pi(s
t), where for each st ∈ δ, pi(st) = max{σj(st,Γt) : j 6= i} if st+1

i = sti + 1

and pi(s
t) = 0, otherwise.

We consider two types of bidding strategies: myopic and sophisticated. A myopic

bidding strategy maximizes the immediate payoff during each round. Hence, myopic

agents bid their marginal utilities in each round, i.e., σi(s
t,Γt) = uk

sti+1
. When all agents

have decreasing marginal utilities, myopic bidding results in an efficient outcome.8 This

strategy may be an equilibrium depending on the information structure of the extended

form game (i.e., the strategy may be rationalized [85]). For example, if the agents do not

know the number of units on the market or the marginal utilities of the other agents, it

may be rational to myopically bid every round under the belief that the current round is

the terminal round.9 We will see, however, that under full information myopic bidding is

generally not a dominant strategy.

A sophisticated bidding strategy maximizes an agent’s payoff over final or expected

final outcomes. The ability to make inferences about the final outcome requires that the

agent be sufficiently informed about the preferences and strategies of the other agent.

Here, we assume full information, i.e., each agent knows the number of units being sold,

bidding histories, and the marginal utilities of the other agents.

7In the case of ties, any tie-breaking rule that allocates the good to one of the agents can be used.
8This is not always the case if at least one agent has increasing marginal utilities.
9If there are no restrictions on the agent’s beliefs then virtually any bidding strategy can be rational-
ized [85].
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5.3. Analysis for Two Agents

We consider the sequential second price auction with k = 2 agents and an arbitrary

number of resource units. First we characterize the outcome of this auction with sophisti-

cated bidding and full information. As we discussed in Section 5.2, this auction is viewed

as a 2-ary game tree. Since all agents know when the last unit is being sold, regardless of

the bidding history, the last round of the auction is a standard second-price auction for

the n-th good. (The valuations for this good will, of course, depend on the outcomes of

the previous rounds). Hence it is a weakly dominant strategy for the agents to bid their

marginal utilities on the last round.10 Since those valuations are common knowledge, all

agents know beforehand the allocation and payments in the last round. Depending on

who wins the unit in the penultimate round, however, the last round auction in which

both agents participate is different. There are two possible auctions in the last round:

one when agent 1 wins and the other when agent 2 wins in the penultimate round. Thus,

we can think of the penultimate round as an auction over the right to participate in one

of those two auctions in the last round. Since the payoffs of each one of those auctions is

common knowledge, we can think of the penultimate round as a second-price auction with

valuation equal to payoff difference between those two auctions. It is therefore a weakly

dominant strategy in the penultimate round to bid the payoff difference associated with

the outcomes of the two auctions in the last round.

We can proceed in this way inductively until we reach the root. This shows that

sophisticated bidding is the only strategy that survives iterative elimination of weakly

10A strategy is weakly dominant for an agent if no other strategy gives that agent a larger pay-off, for
any choice of strategies for the other agents.
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dominated strategies.11 This does not rule out other equilibria and in fact there may

exist other Nash equilibria with higher payoffs for both agents (if, for example, they

conspire against the seller). However, those equilibria must rely on unreliable threats and

commitments. We eliminate those equilibria from consideration by focusing on subgame

perfect equilibria that survive the iterative elimination of weakly dominated strategies.12

This discussion is summarized in the following theorem.

Theorem 10. With two fully informed agents, the sophisticated bidding equilibrium

is the only subgame perfect equilibrium that survives iterative elimination of weakly dom-

inated strategies.

We define the equilibrium path to be the outcome path when both agents use a so-

phisticated bidding strategy, and the sequential allocation to be the allocation at the

terminal node of the equilibrium path. From the previous discussion if all agents apply

a sophisticated bidding strategy, all equilibria have the same equilibrium path, and the

same (unique) sequential allocation.

Example: Consider a sequential auction with n = 2 units. Figure 1 (c) shows the

directed graph G with each node labeled by the allocation (s1, s2). Assume that u1
1 =

u1
2 = 5, u2

1 = 4 and u2
2 = 1. Since agent 1 values each unit more than agent 2 values any

unit, the efficient allocation is to give both units to agent 1.

Now let us derive the outcome under sophisticated bidding in this example. Assume

the game reaches node v = (1, 0), so that the agents bid for the one remaining unit, given

that the first unit has gone to agent 1. (See Fig. 1 (a).) In this stage it is weakly dominant

11In other words all strategies which are weakly dominated are removed from consideration [85].
12A subgame perfect equilibrium is a refinement of the concept of Nash equilibrium with the restriction
that agents cannot make non-credible threats [85].
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Figure 5.1. Example of the sequential auction with k = 2 agents and n = 2
resource units. (a) and (b) show the values of each node and (c) shows the
equilibrium path.

for the agents to bid their valuations, i.e., agent 1 bids u1
2 = 5 and agent 2 bids u2

1 = 4.

The auctioneer then allocates the unit to agent 1 and charges her a price of 4. Hence

the value of node v = (1, 0) to agent 1 is u1
1 + (u1

2 − u2
1) = 6, where u1

1 is the value from

winning the first unit and u1
2 − u2

1 is the surplus for winning the second unit. The value

of v = (1, 0) to agent 2 is 0. Similarly, the value of v = (0, 1) is 4 to either agent. Given

these values, the agents can optimize their bids for the first unit. In particular, agent 1

bids her valuation, which is 6− 4 = 2, and agent 2 bids 4− 0 = 4. It follows that agent 2

wins the first unit and pays 2. Therefore the equilibrium path is δ = {(0, 0), (0, 1), (1, 1)},

i.e., each user receives one unit. Note that δ does not terminate in an efficient allocation.

In what follows, we characterize the efficiency loss of this equilibrium.
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5.3.1. Efficiency Bound With Decreasing Marginal Utilities

Given n resource units and two agents, let (l, n − l) denote the efficient allocation, and

(l′, n− l′) denote the sequential allocation. The worst-case efficiency is defined by

η(n) = min
{u1
i },{u2

i }

∑l′

i=1 u
1
i +

∑n−l′
i=1 u

2
i∑l

i=1 u
1
i +

∑n−l
i=1 u

2
i

. (5.3)

That is, the worst-case is with respect to the marginal utilities. We refer to 1 − η(n) as

the worst-case efficiency loss. The next theorem characterizes η(n) when each agent has

decreasing marginal utilities, as in the bandwidth auction from Section 5.1.

Theorem 11. In a two-agent sequential second-price auction with decreasing marginal

utilities η(n) ≥ 1− e−1.

In other words, the worst case efficiency loss is bounded by e−1. Moreover, it can

be shown that η(n) decreases with n, and the bound 1 − e−1 is asymptotically tight as

n→∞.

5.3.1.1. Worst-Case Utility Profiles. To prove Theorem 11, we first show the worst-

case efficiency assuming the marginal utilities of the agents have a particular form. Sub-

sequently, we show that this is also the worst-case efficiency over all possible marginal

utilities.

Definition Agent 1’s marginal utilities are dominant if u1
1 ≥ . . . ≥ u1

n ≥ u2
1 ≥ . . . ≥ u2

n.

We will also refer to this as a dominant utility profile. Agent 1’s marginal utilities are flat

dominant if u1
1 = . . . = u1

n ≥ u2
1 ≥ . . . ≥ u2

n.

The efficient allocation for a dominant utility profile is to assign all units to agent

1. In the sequential allocation, however, agent 2 may receive up to n − 1 units and this
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induces the efficiency loss. We denote by η′(n) the worst-case efficiency in an auction with

n goods when the agents are constrained to having a flat dominant utility profile.

To get some insight, we examine first an example with n = 2 goods and k = 2 agents

with a flat dominant utility profile. Without loss of generality, we assume u1
1 = u1

2 = 1

for agent 1 and u2
1 = b1, u

2
2 = b2 for agent 2. Note that 1 ≥ b1 ≥ b2. Using backward

induction as discussed in the previous example, the value of node v = (1, 0) is [2− b1, 0].

Similarly, the value of node v = (0, 1) is [1− b2, b1]. Given these values, agent 1’s bid for

the first unit is (2− b1)− (1− b2) = 1− b1 + b2 and agent 2’s bid for the first unit is b1. If

1− b1 + b2 > b1, then agent 1 wins the first unit and pays b1. In this case, the sequential

allocation is (2, 0) and there is no efficiency loss. On the other hand, if 1− b1 + b2 < b1,

the sequential auction reaches the terminal node (1, 1) and the efficiency of the auction

becomes 1+b1
1+1

. This is shown in Figure 5.2. Here, for δ = {(0, 0), (0, 1), (1, 1)} to be

equilibrium path we require that  1 > b1 > b2,

1− b1 + b2 < b1.
(5.4)

It is easy to see that the lower limit of 1+b1
2

subject to (5.4) is approached when b1 = 1/2+ε

and b2 = 0, and so η′(2) = limε→0
1+b1

2
= 3/4. Note that when the worst-case efficiency

occurs, both δ1 = {(0, 0), (0, 1), (1, 1)} and δ2 = {(0, 0), (1, 0), (2, 0)} are equilibrium paths

with final values of [1, 0] at the root node v = (0, 0).

We now define a class of subgame perfect equilibrium paths along which agent 2

consumes the first n− j units and agent 1 consumes the remaining j units in that order.
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Figure 5.2. The subgame perfect equilibrium path which leads to efficiency
loss in the sequential auction with n = 2 goods and the following flat
dominant utility profile: u1

1 = u1
2 = 1 for agent 1 and u2

1 = b1, u2
2 = b2 for

agent 2. The set of constraints required are 1 > b1 > b2 and 1−b1 +b2 < b1.

Later, we show that this type of equilibrium path gives the worst-case efficiency for a flat

dominant utility profile.

Definition A node on an equilibrium path is a “kink” if immediately prior to that node

(on the equilibrium path) one agent wins and immediately following the other agent wins.

Definition A profile of marginal utilities is said to have the subgame kink property if (1)

each path that corresponds to a subgame perfect equilibrium of the entire game has at

most one kink, and (2) each path that corresponds to an equilibrium path for a subgame

starting at any node not on a path in (1) has zero kinks.

Definition The subgame perfect equilibrium is called a subgame kink when the profile

of marginal utilities has the subgame kink property.

The following lemma shows that we can find a flat dominant utility profile such that

the subgame perfect equilibrium with n units is a subgame kink.



131

Figure 5.3. An example of a subgame kink equilibrium path resulting in
the sequential allocation (j, n − j). There, edges which are part of the
equilibrium path of a subgame kink are indicated by a directional solid
lines, and off-equilibrium edges are dashed.

Lemma 12. For any allocation (j, n− j) in a n-unit auction, there is a flat dominant

utility profile with the subgame kink property.

Proof. The following profile of marginal utilities has the subgame kink property with

the sequential allocation (j, n− j): u1
1 = · · · = u1

n = 1 for agent 1 and u2
i = 1− j

n−i+1
+ εi, i = 1, · · · , n− j,

u2
i = 0, i = n− j + 1, · · · , n,

(5.5)

for agent 2. Note that εi → 0+ for all i. Backward induction verifies this results in a

subgame kink. �

By studying the bids of the agents along the subgame perfect equilibrium path, we

come up with the marginal utilities. A detailed explanation is presented in Section 5.7.1.

Note that all the sequential allocations (i, n − i) for i = j, · · · , n are possible with the
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marginal utilities in (5.5). In addition, it can be shown that the following relations among

the marginal utilities of agent 2 hold:

n− n · b1 = (n− 1)− (n− 1) · b2 = · · · = (j + 1)− (j + 1) · bn−j = j. (5.6)

Lemma 13. For n = 2, the worst-case efficiency among the flat dominant utility

profiles is achieved by one with the subgame kink property.

Proof. We have shown that the worst-case efficiency with n = 2 is given by a flat

dominant utility profile with u1
1 = u1

2 = 1, u2
1 = 1/2 and u2

2 = 0 and this profile has the

subgame kink property as shown in Figure 5.2. �

For given b ≤ 1, let h′′(n, b) be the worst-case efficiency in a n-unit auction among all

flat dominant utility profiles with the subgame kink property and for which b1 ≤ b (i.e.

agent 2’s marginal utility for the first unit is no greater than b). For example, for n = 2,

if b < 1
2
, then h′′(2, b) = 1, while for b ≥ 1

2
, h′′(2, b) = 3/4. Note that the first case is

achieved when agent 2 has marginal utilities b1 = b2 = 0, which satisfy Lemma 12 with

j = 2; the second case is achieved by the marginal utilities b1 = 1
2

and b2 = 0 (Lemma 12

with j = 1).

Lemma 14. For all n, h′′(n, b) is achieved by one of the marginal utilities in Lemma 12.

Proof. Proof is by induction on n. As shown above, Lemma 14 is true for n = 2.

Assume it is true for n − 1 and consider the worst-case efficiency of a subgame kink for

n units. If the first unit goes to agent 1, we are done since the only subgame kink is for

agent 1 to win everything, which corresponds to the marginal utilities in Lemma 12 for

j = n.
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If the first unit goes to agent 2 with a marginal utility of b1 < b, then the worst-

case efficiency on the subtree from the node (0, 1) must be given by h′′(n − 1, b1). By

the induction hypothesis this is achieved on the subtree by a set of marginal utilities

b2, b3, . . . , bn given by Lemma 12 for some j. Furthermore, the worst-case efficiency is

(b1 + (n− 1) · h′′(n− 1, b1))/n.

If b2, . . . , bn satisfy Lemma 12 for some j and n − 1 units, then, in particular, b2 =

1 − j
n−1

. At the root node of the n-unit auction, for agent 2 to win the first unit in a

subgame kink, it must be that 1− (n− 1) · b1 + (n− 1) · b2 < b2, or

n · (1− b1) < (n− 1) · (1− b2). (5.7)

By combining this inequality with b2 = 1 − j
n−1

, it can be seen that in the worst-case

efficiency it should be that b1 = 1− j
n
, which corresponds to Lemma 12. �

Lemma 15. For all n and b ≤ 1,

1 + (n− 1)h′′(n− 1, b)

n
≥ h′′(n, b). (5.8)

Proof. Suppose h′′(n−1, b) is achieved when agent 1 receives j units. From Lemma 14,

it follows that this is achieved by the marginal utilities in Lemma 12 and so 1− j
n−1

< b.

Consider the marginal utilities from Lemma 12 for n units where agent 1 receives j+1

units and note that

1− j + 1

n
< 1− j

n− 1
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so that this marginal utility will satisfy b1 < b. Let h̃(n, b) denote the efficiency achieved

with this marginal utility. It can be seen that

n− n · h̃(n, b) =

n−(j+1)∑
i=1

j + 1

n− i+ 1

≥
(n−1)−j∑
i=1

j

(n− 1)− i+ 1

= (n− 1)− (n− 1) · h′′(n− 1, b),

or

1 + (n− 1) · h′′

n
≥ h̃(n, b) ≥ h′′(n, b).

The bound then follows from noting that h′′(n, b) must be no greater than h̃(n, b). �

Corollary 16. Amongst all the flat dominant utility profiles with the subgame kink

property, the worst-case efficiency is h′′(n, 1), where h′′(n, 1) can be obtained explicitly

from Lemma 12 and is given by

η′′(n) ≡ h′′(n, 1) = min
j∈[1,··· ,n]

{
1− j

n

n−1∑
i=j

1

i+ 1

}
. (5.9)

Now we are ready to prove the worst-case efficiency of the sequential auction with a

flat dominant utility profile. For given b ≤ 1, let h′(n, b) be the worst-case efficiency in

a n-unit auction among all flat dominant marginal utilities for which b1 ≤ b. Note that

η′(n) = h′(n, 1).

Theorem 17. For all n, h′(n, b) is achieved by one of the marginal utilities in Lemma 12,

i.e., h′(n, b) = h′′(n, b). Especially when b = 1, then η′(n) = η′′(n).
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Proof. We prove this by induction on n. From Lemma 13, it is true for n = 2.

Suppose it is true for n − 1 and consider a n-unit auction with a given constant b. Let

b1 ≤ b be agent 2’s marginal utility in the worst-case. If the first unit goes to agent 1, then

by induction the equilibrium for the worst-case from (1, 0) is a subgame kink with the

efficiency h′′(n − 1, b1). Suppose that agent 2 wins the second unit, then the worst-case

efficiency would be

1 + (n− 1) · h′′(n− 1, b1)

1 + n− 1
≥ h′′(n, b1), (5.10)

from Lemma 15. If agent 1 wins the second unit, then by induction, the subgame starting

at (1, 0) has no kinks, and so h′(n, b) = 1, which is trivially assumed by the marginal

utilities in Lemma 12 for j = n.

On the other hand, if the first unit goes to agent 2, by induction we have a subgame

kink from the node (0, 1) for any marginal utility of b1 due to Lemma 14. Now we have

to show that the subtree starting from the node (1, 0) is a line with no kinks for the

worst-case efficiency with n units. Given agent 2 wins the first unit in the worst-case,

b2, . . . , bn must satisfy Lemma 12 and we have b2 = 1 − j
n−1

for some j. Suppose that

the subtree starting from the node (1, 0) in the worst-case is not a line. Then it must be

that b1 < 1− j
n
. Otherwise, we could lower b1 to this value and get the subgame kink in

Lemma 12 with a lower efficiency. Furthermore, if this subtree is not a line, it must be

that for some m < n, at node (n−m, 0), m · (1− b1) < (m− 1) · (1− b2). However, this

can only be true if b1 > 1− j
n
, which contradicts the above. Therefore, the subtree from

the node (1, 0) is a line with no kinks for the worst-case efficiency. �
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n Marginals j∗ η(n)
2 1, 1 ; 1/2 + ε1, 0 1 3/4
3 1, 1, 1 ; 2/3 + ε1, 1/2 + ε2, 0 1 13/18
4 1, 1, 1, 1 ; 1/2 + ε1; 1/3 + ε2, 0, 0 2 17/24
...

...
...

...
∞ 1- 1

e
Table 5.1. Marginal utilities and corresponding worst-case efficiency
achieved by two user the sequential auction for given n.

From Corollary 16 and Theorem 17, the worst-case efficiency of the sequential auction

with the flat dominant utility profile η′(n) is given by (5.9), which converges to 1 − e−1

as n→∞.

In Section 5.7.2, we show that a flat dominant utility profile achieves the worst-case

efficiency, so that η(n) = η′(n). That completes the proof of Theorem 11.

Table 5.1 shows the marginal utilities that give the lowest efficiency η(n), which is also

shown. As can be seen, η(n) is decreasing with n. As n→∞, these quantities approach

the bound from Theorem 11.

5.3.2. Efficiency Bound With Increasing/Decreasing Marginal Utilities

We now assume that agent 1 has increasing marginal utilities, while agent 2’s marginal

utilities are decreasing. As noted previously, this may arise in the full-spread case due to

interference.

Theorem 18. If the marginal utilities of one agent are decreasing and the other’s

increasing, then η(n) ≤ 1
n
.

Proof. Consider the following marginal utilities: u1
1 = a, u1

2 = · · · = u1
n = ε and

u2
1 = · · · = u2

n−1 = 0, u2
n = b with b > a+nε and ε small. If the sequential auction reaches
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(0, n − 1), then agent 1 bids a for the last unit and agent 2 bids b. Hence, agent 2 wins

the unit and pays a. The value of (0, n − 1) to agent 2 is therefore b − a. By backward

induction, the value of (0, 1) to agent 2 is b−(n−1) a− (n−2)(n−1)
2

ε, assuming agent 2 wins

all n− 1 units after the first unit. Similarly, the value of (1, 0) to agent 1 is a+ (n− 1) ε.

The sequential outcome is inefficient if agent 2’s value of (0, 1) is less than agent 1’s value

of (1, 0), i.e., if b < n a + (n−1)n
2

ε. In that case, the efficiency of the sequential auction

outcome is given by

a+ (n− 1) ε

b
>
a+ (n− 1) ε

n a+ (n−1)n
2

ε
.

Letting a→∞ and/or ε→ 0, the efficiency approaches 1
n
. �

This theorem shows that under Theorem 11 when one agent has increasing marginal

utilities the worst-case efficiency can go to zero as the number of goods increases.

5.3.3. Efficiency with Constrained Marginal Utilities

As indicated in the preceding sections, the marginal utilities that achieve the worst-case

efficiency in each case are quite special. With additional constraints on the marginal

utilities, we expect the worst-case efficiency to increase. Here we illustrate this for n = 2

goods.

First, we consider decreasing marginal utilities for both agents, and assume that u1
2 =

λ1u
1
1 and u2

2 = λ2u
2
1, where λ1 < 1 and λ2 < 1. In this case, it can be shown that the

sequential allocation is not efficient if and only if u1
1 > λ1u

1
1 > u2

1 > λ2u
2
1 or u2

1 > λ2u
2
1 >

u1
1 > λ1u

1
1. The worst-case efficiency with these constrained marginal utilities is given by

η(2;λ1, λ2) =
2 + λ1 − λ2

(1 + λ1) · (2− λ2)
, (5.11)
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where
u2
1

u1
1
< λ1 < 1 and 0 < λ2 < 1. Note that η(2;λ1, λ2) ≥ 3/4, which is equal to the

bound given in Table 5.1, i.e. restricting the marginal utilities in this way decreases the

efficiency loss. As λ1 → 1 and λ2 → 0, this bound holds with equality.

For the case in which one agent has decreasing marginal utilities and the other has

increasing marginal utilities, we let u1
2 = λ1u

1
1, and u2

2 = λ2u
2
1, where λ1 < 1 and λ2 > 1.

In this case, any ordering of marginal utilities can lead to an inefficient allocation. Hence

all orderings must be considered to compute the worst-case efficiency. As an example,

assume that λ2u
2
1 > u2

1 > u1
1 > λ1u

1
1. Then the worst-case efficiency is given by

η(2;λ1, λ2) =
2− λ1 + λ2

(2− λ1) · (1 + λ2)
, (5.12)

where 0 < λ1 < 1 and 1 < λ2 < 2. Here we have η(2;λ1, λ2) ≥ 2/3, and equality holds

as λ1 → 0 and λ2 → 2. Again, restricting the marginal utilities increases the worst-case

efficiency.

5.4. Simulation Results

In this section we present simulation results for two-user bandwidth and power auc-

tions. For these results we randomly place two transmitters and receivers within a given

region, as illustrated in Fig. 5.4. Specifically, user 1’s transmitter is uniformly placed

within a circle of radius d0 = 50m centered at user 2’s receiver. This captures the sce-

nario in which a user experiences a single dominant interferer. User 1’s receiver is then

randomly placed within a circle of radius d0 centered at user 1’s transmitter, and similarly,

user 2’s transmitter is randomly placed within a circle of radius d0 centered at user 2’s

receiver. Given these locations, we set each channel gain hij = l−4
ij where lij is the distance
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Figure 5.4. Simulation scenario in which the location of the transmitter
T1 is uniformly distributed within a circle centered at R2, and R1 and
T2 are placed at random locations within circles centered at T1 and R2,
respectively. (l11 ≤ d0, l22 ≤ d0 and l12 ≤ d0)

between transmitter i and receiver j. For a given allocation a user’s utility is assumed

to be the rate given by (5.1) or (5.2), with W = 25 MHz, and N0 = −174 dBm/Hz. In

the bandwidth auction, W is divided into n units of W/n Hz and both users transmit

using power Pi = Pmax = 10−6 watts. In the power auction, we assume that P2 = Pmax

and P1 = n1Pmax/n, where again Pmax = 10−6 watts. Both users spread over the entire

bandwidth W .

5.4.1. Bandwidth Auction

We first show results for the bandwidth auction with n = 2 units. We define the worst

possible efficiency for a given realization as the ratio of minimum sum utility to maximum

sum utility over the three possible bandwidth allocations. Figure 5.5 shows the empirical
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Figure 5.5. Empirical PDF of the worst possible efficiency of the sequential
bandwidth auction with two agents and n = 2 units.

probability distribution function (PDF) for the worst possible efficiency over 104 simula-

tion runs. This shows that without an appropriate resource allocation mechanism, the

efficiency can be very low.

Figure 5.6 shows the empirical cumulative distribution function (CDF) of the efficiency

of the sequential equilibrium. Curves are shown for different values of n. For n = 2

this figure shows a substantial improvement in efficiency relative to the worst possible

allocation in Figure 5.5. For n = 2, the lowest efficiency is 0.844, and the auction achieves

an efficient allocation for more than 80% of the realizations. The lowest efficiency is

significantly higher than the worst-case efficiency of 3/4 given in Section 5.3.1. This is

due to the nature of the rate utility function, which constrains the possible marginal
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utilities as in Section 5.3.3. Here, each agent i’s utility function has the form Ui(s) =

s(W/2) log2(1 + 2βi
s

), where βi = |hii|2Pi
N0W

. For the parameters used in the simulation it

follows that βi ∈ [1.6,∞). The resulting marginal utilities satisfy the constraints in

Sect. 5.3.1, with λi ∈ [.45, 1]. From (5.11), the worst-case efficiency occurs when λ1 = 1

and λ2 = 0.45, which gives η(2; 1, 0.45) = 0.82, only slightly less than the observed lowest

efficiency.

As n increases, Figure 5.6 shows that the smallest observed efficiency increases from

0.844 when n = 2 to 0.914 when n = 20. This is in contrast to the results in Table 5.1,

which show that the worst-case efficiency decreases with n. The observed increase is due

to the fact that as n increases, the specific marginal utilities, which achieve the worst-case

efficiency, are much less likely to occur. However, the fraction of realizations for which

the full efficiency is achieved decreases as n increases. In part, this is simply due to the

increase in number of possible outcomes (allocations) with n.

5.4.2. Power Auction

Figure 5.7 shows the PDF of the worst possible efficiency for the power auction with

n = 2 units. Figure 5.8 shows the CDF of the efficiency of the sequential allocation for

different values of n. Unlike the bandwidth auction, the smallest efficiencies observed in

the simulations are close to 1/n, as predicted by Theorem 18. (For example, with n = 2

the smallest observed efficiency is 0.575.) Because of the interference, the marginal utility

of the second unit for agent 2 can be very large relative to the marginal utility of the first

unit, which leads to the worst-case efficiency. For n = 2 the sequential power auction



142

Figure 5.6. Empirical CDFs of the efficiency of the two-user sequential allo-
cation for the bandwidth auction with different n. The transmitted power
P = 10−6 watts and d0 = 50 m.

still achieves the efficient allocation for more than 85% of the realizations. This fraction

decreases as n increases.

Finally, we remark that our results for both the power and bandwidth auctions only

indicate efficiency loss relative to the maximum utility for that mechanism. Further

results comparing the efficiency across mechanisms show that in addition to having lower

efficiency loss, the bandwidth auction typically achieves a higher sum utility than the

power auction.
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Figure 5.7. Empirical PDF of the worst possible efficiency for the power
auction with two users and n = 2 units.

5.5. Sequential second price auction for three or more agents

Next we turn to the case where k > 2 agents are participating in the bandwidth auc-

tion.13 The main question we address is whether or not the auction has an equilibrium.14

In a single unit second-price auction, existence of an equilibrium follows from the unique-

ness of dominant strategies for all agents. From Theorem 10, a similar argument applies

for a two agent sequential auction, namely there is a unique dominant subgame perfect

strategy for each agent. However, with k > 2 agents, we will show by example that one or

more agents may not have a unique dominant strategy. Hence, it is plausible that there

13As discussed in Section 5.1, due to the interdependence of the utility functions, the power auction with
more than two agents is not considered.
14Note that this game has infinite strategy spaces and discontinuous pay-off functions, hence classical
equilibria existence theorems may not apply.
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Figure 5.8. Empirical CDF of the efficiency of the sequential equilibrium
for the two-user power auction with different values of n.

exist no equilibria (as in first price auctions with full information) or a multiplicity of

pure and mixed strategy equilibria. Our main result is to show the existence of at least

one pure strategy equilibrium.

Consider sophisticated bidding for k > 2 agents in an n-unit auction. As in the two

agent case, the last round of the auction is identical to a standard second price auction for

the n-th good, and so it is a dominant strategy for all agents to bid their marginal utilities.

Given full information, all agents again know the allocations and payments on the last

round. Hence, we can think of the penultimate round as a second price auction over the

right to participate in one of k possible auctions in the last round whose valuations are

known.
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In the two agent auction at each node the choice is between two possible sub-auctions.

An agent’s valuation for one sub-auction over the other is captured by the difference in

payoffs between them. Since any sub-auction has a unique equilibrium path, the valuations

of the sub-auctions and hence the sophisticated bids are well defined. With k > 2 agents,

even in the penultimate auction, the choice may be between k alternative second price

auctions for which some or all of the agents have different payoffs. Each agent may then

have several non-dominated strategies, and as the next example shows, there may be

multiple sub-game perfect equilibria. If the equilibrium is not unique, the valuation of

the penultimate round may depend on the choice of equilibrium. The same applies, of

course, to any node further up the game tree. We therefore define a sophisticated bidding

strategy as a strategy that, for each node of the game tree, maximizes the agent’s payoff

over final outcomes for a given equilibrium strategy on each of the subtrees. In other

words, an agent chooses a sophisticated strategy that subsumes some choice of equilibria

on the subtrees and maximizes expected payoff for the corresponding valuations.

5.5.1. Example

Figure 5.9 shows an example of a sequential second price auction with three agents and

three units which has multiple inefficient equilibria. The marginal utilities of all three

units are 10 for agent 1 and 9, 1 and 0 for agents 2 and 3. Since the last round is a

second price auction, bidding marginal utility is a equilibrium on each of the final round

subtrees. Using these values, in the subtree of the penultimate round corresponding to

the allocation of the first unit to agent 1 we get the values [21, 0, 0], [11, 9, 0] and [11, 0, 9]
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of the second unit being allocated to agents 1, 2 and 3, respectively.15 This implies that

bidding 10 for agent 1 and 9 for agents 2 and 3 are dominant strategies. The value of this

subtree is therefore [12, 0, 0]. In the penultimate round corresponding to the allocation

of the first unit to agent 2 we get the values [11, 9, 0], [1, 9, 10] and [9, 9, 9]; hence, the

dominant bids are 2, 9, 1 (since agent 1 knows that agent 2 loses regardless of agent 1’s

bid) and the value is [9, 9, 7]. By symmetry, the value of the third penultimate subtree is

[9, 7, 9].

Turning to the first round, it follows that agent 1 has a dominant bid of 3 while the two

other agents have a choice between 2 and 9. In this case agents 2 and 3 must coordinate

to avoid simultaneously bidding high or low thus the pure strategy equilibria bids for this

round are 3, 2, 9 and 3, 9, 2. There also exists a mixed strategy where both agents 2 and

3 flip a fair coin and decide between 2 and 9.

5.5.2. Existence

To show that there exists at least one equilibrium with k > 2 agents, we define a second

price bidding mechanism which is a generalization of a second price auction.

Definition A k-second price bidding mechanism is a k-agent mechanism with action

profiles in <k+ and a finite outcome set {A1, . . . , Ak} where the valuation of agent i for

Aj is aij ∈ < and ajj ≥ aji for any i 6= j. The outcome as a function of the actions

(b1, . . . , bk) is given by ν(b1, . . . , bk) = Ai when bi = maxj bj and the payment in this case

is pi(b1, . . . , bk) = maxj 6=i bj and pj(b1, . . . , bk) = 0 for j 6= i.

It is easy to see that this reduces to a second price auction if aji = 0 for j 6= i.

15Here each component denotes the corresponding value for that agent.
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Figure 5.9. Example of a directed graph G representing an auction with
k = 3 agents and n = 3 units. Each node on the graph is labeled with the
value of the subtree rooted at that node. The edges are labeled with the
valuation of the resource unit to the corresponding agent. The two solid
paths correspond to the two pure strategy equilibria.

Lemma 19. A second price bidding mechanism has at least one pure strategy equilib-

rium that survives iterated elimination of dominant strategies.

Proof. For each agent i let Bi = {aii − aij : j 6= i}, the set of valuation differences

between outcomes, βi = minBi. Without loss of generality, b1 = a1
1 − a1

2 = max∪iBi,

namely the largest valuation gap is between the valuations of agent 1 for the outcomes

A1 and A2.

We show that if b2 = maxB2 > maxi>2 βi then the bidding profile (b1, b2, β3, . . . , βk)

is an equilibrium. With this profile the outcome is A1 with p1(b1, b2, β3, . . . , βk) = b2 and

pi(b1, b2, β3, . . . , βk) = 0 for i > 1. Agent 1’s payoff is then a1
1 − b2. The only deviation of

agent 1 that would change the outcome is to bid below b2 which, by the assumption on
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b2, would give the outcome A2. Agent 1’s payoff in this case is a1
2 and the difference is

a1
2 − a1

1 + b2 = b2 − b1 < 0 from the maximality of b1. If agent i > 1 bids above b1, then

her payoff is aii− b1 compared to ai1 at A1, hence by deviating she would gain aii− b1− ai1

which, again by the maximality of b1, is negative. Thus, no agent can make a positive

gain from deviating.

If b2 = maxB2 < maxi>2 βi then w.l.o.g. β3 > b2. By induction there exists a pure

strategy equilibrium for the k−1 bidding mechanism derived from excluding agent 2. The

base of the induction follows since for two agents trivially it must be that b2 > maxi>2 βi.

Since we are removing one of the agents in the new game, the new sets of valuation

differences are subsets of the previous Bi’s. This implies that their minimal elements

β′i satisfy β′i ≥ βi, and therefore agent 3 bids above b2. If agent 3 is not the highest

bidder in the new game, or if at least two agents are bidding above b2, then taking the

equilibria bids in the new game and letting agent 2 bid b2 would give the same allocation

and payments as in the k-agent game. Since b2 is the maximal gain agent 2 could obtain

from changing the outcome, she has no incentive to bid above b2. Any profitable deviation

for the other agents would be a profitable deviation in the new game contradicting the

choice of bids as an equilibrium. If agent 3 is the highest bidder in the new game and the

second highest bid is below b2 then the same argument shows that adding agent 2 to the

equilibrium profile in the new game would not change the bidding incentives of the agents

apart from agent 3. Since a3
3 − a2

3 > β3 > b2, it follows that agent 3 has no incentive

to deviate either. Thus we get a pure strategy equilibrium for the k agent mechanism.

These strategies are not dominated hence this equilibrium survives iterated elimination

of dominant strategies.
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If maxB2 = maxi>2 βi then the outcome depends on the tie breaking rule used in the

auction. For any reasonable rule, such as random choice, a pure strategy equilibrium can

be constructed in a similar manner. �

Theorem 20. The multi-agent sequential second price auction has a pure strategy

equilibrium.

Proof. An induction on the depth of the game tree of a sequential second price auction

shows that each round of the sequential auction is strategically equivalent to a second

price bidding mechanism where the valuations of the subtrees depend on the choice of

equilibrium outcome of the bidding mechanism on the subtree. �

5.5.3. Efficiency loss

We conclude this section with a few comments about the worst-case efficiency for k > 2

agents. First we note that the worst-case efficiency will not increase as the number of

users increase. This follows from the fact that we can always select the marginal utilities

of the additional users to be arbitrarily small. In fact for n = 2 goods and an arbitrary

number of users with decreasing marginal utilities it can be shown that the worst-case

efficiency is exactly the same as in the k = 2 case (i.e. it is 3/4). Figure 5.10 shows

simulation results for the bandwidth auction with k = 3 agents and n = 2 and n = 5

goods. The parameters are the same as those in Section 5.4. For comparison the results

to k = 2 agents are also shown. It can be seen that the efficiency with k = 3 agents is

stochastically larger than that with k = 2 agents for both n = 2 and n = 5. A likely

explanation for this is that with randomly placed agents the probability of a “bad” choice

of marginal utilities arising decreases as the number of agents increase.
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Figure 5.10. Empirical CDFs of the efficiency of the sequential allocation
for the bandwidth auction with k = 2 and k = 3 users and n = 2 and n = 5
goods.

5.6. Chapter Summary

We have considered a sequential second price auction for allocating n units of band-

width or power among non-cooperative wireless devices. This mechanism is relatively

simple and requires little information exchange among users, which may make it attrac-

tive for dynamic bandwidth or power allocation among secondary users who wish to share

spectrum with the primary user (spectrum owner or licensee). Our main analytical re-

sults characterize the worst-case efficiency of the subgame perfect equilibrium for two

users with full knowledge of bidding histories and user utilities. For a bandwidth auction

(decreasing marginal utilities), the worst-case efficiency decreases with n and converges
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to 1 − e−1. For the power auction, where one user has decreasing marginal utilities and

the other has increasing marginal utilities, the worst-case efficiency bound is no greater

than 1/n.

Although the worst-case efficiency loss due to sophisticated bidding can be significant,

simulation results with randomly placed users show that with the rate utility function,

the sequential auction typically gives the efficient allocation. Furthermore, when the

equilibrium is inefficient, the efficiency loss is typically less than the worst-case efficiency

loss. This is due to the rate utility function, which places constraints on the ratios of

marginal utilities for the successive units being auctioned.

For more than two users, we show that the sequential second price auction still has

a pure strategy equilibrium. In this case, however, the equilibrium may not be unique

and so some coordination of the users may be needed to decide on a particular outcome.

Assuming a particular equilibrium, simulation results show that for the bandwidth auction

the efficiency typically improves when the number of agents increases from 2 to 3.

5.7. Supplement: Proof of Lemma 12 and Theorem 11

5.7.1. Marginal utilities of the agents in Lemma 12

Without loss of generality, we consider the following flat dominant utility profile: u1
1 =

· · · = u1
n = 1 for agent 1 and u2

i = bi for agent 2. Note that 1 ≥ b1 ≥ b2 ≥ · · · ≥ bn.

We find a set of constraints such that the marginal utilities above have the subgame

kink property with the sequential allocation (j, n− j) through the backward induction as

shown in Figure 5.11. At node (0, n− 1), agent 1 bids 1 and agent 2 bids bn for the last

unit. Agent 1 wins the last unit and pays bn. Therefore, the values of node (0, n − 1)
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Figure 5.11. Subgame kink property of the marginal utilities considered
with sequential allocation (j, n− j)

become 1 − bn for agent 1 and
∑n−1

i=1 bi for agent 2, namely, [1 − bn,
∑n−1

i=1 bi]. Similarly,

the values of node (1, n− 2) are [2− bn−1,
∑n−2

i=1 bi]. Given these values, now we calculate

the values of node (0, n− 2). Agent 1 bids (2− bn−1)− (1− bn) = 1− bn−1 + bn and agent

2 bids bn−1 for the second last unit. Since we assume that the marginal utilities have the

subgame kink property, agent 1 wins the second last unit at this node. This implies that

1− bn−1 + bn > bn−1, or

bn−1 <
1 + bn

2
, (5.13)

and the values of node (0, n− 2) become [2− 2bn−2,
∑n−2

i=1 bi].

We apply this procedure repeatedly to the straight-line paths where agent 1 wins the

units. First, we consider the straight-line with the sequential allocation (i, n − i) where

i ≤ j. We can show that the values of node (0, n − i) become [i − i · bn−i+1,
∑n−i

s=1 bs]

for 1 = 1, · · · , j. Second, for the straight-line path with i > j, the values of node (1, i)
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become [i − (i − 1) · bn−i+1,
∑n−i

s=1 bs] for i = j + 1, · · · , n − 1 and [n − (n − 1) · b1, 0] for

i = n. The following constraints are obtained similar to (5.13). bn−i+1 <
1+(i−1)·bn−i+2

i
, i = 2, · · · , j

bn−i+1 <
1+(i−2)·bn−i+2

i−1
, i = j + 1, · · · , n,

(5.14)

Now we consider the equilibrium path where agent 2 wins the units. At node (0, n−

j− 1), agent 1 bids {j + 1− j · bn−j − (j− j · bn−j+1)} = 1− j · bn−j + j · bn−j+1 and agent

2 bids bn−j for the (n− j)-th unit. From the equilibrium path considered here,

pn−j ≡ 1− j · bn−j + j · bn−j+1 < bn−j, (5.15)

or

bn−j >
1 + j · bn−j+1

j + 1
. (5.16)

Therefore, agent 2 wins the n− j-th unit and pays pn−j = 1− j · bn−j + j · bn−j+1. Note

that (5.15) can be rearranged such that

(j + 1)− (j + 1) · bn−j < j − j · bn−j+1. (5.17)

The values of node (0, n − j − 1) becomes [j − j · bn−j+1,
∑n−j

s=1 bs − pn−j]. Similarly, at

node (0, n− j − 2), the following inequality

pn−j−1 ≡ 2− (j + 1) · bn−j−1 + j · bn−j+1 < bn−j−1 + bn−j − pn−j (5.18)

holds and the values of the node (0, n−j−2) become [j−j ·bn−j+1,
∑n−j

s=1 bs−pn−j−1−pn−j].

The payment of agent 2 for (n − j − 1)-th unit is pn−j−1. (5.18) can be rearranged such
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that

(j + 2)− (j + 2) · bn−j−1 < j − j · bn−j+1 + bn−j − pn−j. (5.19)

We repeat this until the backward induction reaches the root node. The values of the

root node (0, 0) is [j − j · bn−j+1,
∑n−j

s=1 bs− ps], where the payment of agent 2 for the s-th

unit is given by

ps ≡ n− j − s+ 1− (n− s) · bs + j · bn−j+1 < bs +

n−j∑
k=s+1

{bk − pk}, (5.20)

where s = 1, · · · , n− j − 1. The rearrangement of (5.20) is given by

(n− s+ 1)− (n− s+ 1) · bs < j − j · bn−j+1 +

n−j∑
k=s+1

{bk − pk}. (5.21)

The marginal utilities of the agents in Lemma 12 are obtained by setting bs = ps or

bs =
1 + (n− s) · bs+1

n− s+ 1
(5.22)

for s = 1, · · · , n− j and bs = 0 for s = n− j + 1, · · · , n.

5.7.2. Proof of Theorem 11

Suppose that u1
1 ≥ . . . ≥ u1

n and u2
1 ≥ . . . u2

n, and let (l, n − l) denote the efficient

allocation. After auctioning m (≤ n) units, the sequential game reaches a decision node

where either agent 1 or agent 2 obtains her efficient allocation (l for agent 1 or n− l for

agent 2). For that agent the marginal utilities of the remaining units must be smaller

than that for the other agent. (See Figure 5.12.) Up to this decision node, there is no

loss in efficiency. Any efficiency loss in the final allocation procures in the subgame tree
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rooted at this decision node. Therefore, the efficiency loss of the full game tree cannot

be larger than the efficiency loss of this subgame tree. Since the utility profile associated

with the subgame tree is dominant, the worst-case efficiency must always correspond to

a dominant utility profile.

We now show that changing a dominant utility profile to a flat dominant profile can

only decrease efficiency. Given a dominant utility profile, if we replace the marginal

utilities of the first agent with ū1
1 = . . . = ū1

n = u1
n, then we must have the sequential

allocation (s̄, t̄) satisfies s̄ ≤ s. Hence this change in utility profile can only decrease

efficiency. �
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Figure 5.12. Marginal utilities of two agents. n1 (n2) is the number of units
that agent 1 (2) obtains along the sequential auction. (l, n−l) is the optimal
allocation and (s, t) is the sequential allocation. The shadowed region shows
the efficiency loss.
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CHAPTER 6

An Efficient Dynamic Auction for Convex Utility

In the previous chapter, we considered a sequential second price auction for allocating

wireless resources and determined its worst-case efficiency. For the power auction, where

one of the agents has a convex utility function, the worst-case efficiency decreases to zero

as the number of units increases. In addition, we have assumed complete information

among the agents. The impracticality of the complete information assumption as well

as the low worst-case efficiency of the power auction leads us to design a new auction

mechanism. The main difficulty is the convexity of the agent’s utility function in the

power auction since most auctions in the literature assume that the utilities of the agents

are increasing concave.

Here, we study a new dynamic auction proposed in [14], which achieves the efficient

outcome for the case where one agent and only one agent has a convex utility function in

the scenario considered.1 This dynamic auction, called a Fallback auction, is a modification

of Ausubel’s ascending auction for multiple units and assumes private information among

the agents. We show that the Fallback auction finds a core outcome with minimum

revenue to the seller or the auctioneer, which maximizes the “incentive” for the agents

to report truthfully.2 As discussed later, the core outcome is necessary for stability of

1As briefly discussed in Chapter 5, the analysis becomes complicated if there is more than one agent with
a convex utility function due to the “free-rider” problem [29].
2As we show later, this does not mean that the Fallback auction is incentive compatible.
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Figure 6.1. Interference channel with two transmitter-receiver pairs

the auction. Moreover, the Fallback auction achieves efficient resource allocation with

truthful biddings, which implies that it has a full information equilibrium.

6.1. Spectrum Sharing Model

We consider a model with K agents, where each agent is represented by a distinct

transmitter-receiver pair. An example of two such agents is shown in Figure 6.1. Let

agent 1 be the primary agent so that agents 2, . . . , K are the secondary agents. As in

[51], we assume that the utility derived by each agent i is a function of that agent’s

received Signal-to-Interference and Noise Ratio (SINR) given by

γi(q) =
qihii

σ2 +
∑

j 6=i qjhji
, (6.1)

where q = {qi} is the vector of transmission powers across all agents, σ2 is the noise power

and hji is the channel gain from agent j’s transmitter to agent i’s receiver. The externality

that agent j causes agent i is due to the interference term qjhji in this expression. Letting

Ui(γi) denote agent i’s utility, an efficient allocation of power q maximizes
∑

i Ui(γi).
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We assume that the primary user transmits at a fixed power q1 and is guaranteed

that the interference from the secondary users does not exceed a given level qmax. The

spectrum manager’s task is then to allocate this total received power at the primary

user’s receiver through the auction such that the total power of the secondary users is

constrained to satisfy
∑K

i=2 qihi1 ≤ qmax. We also allow the primary user to participate in

this auction. Each unit of power the primary user is allocated corresponds to a reduction

in the total interference it sees, i.e. if it receives q′1 units of power, its total interference

becomes qmax − q′1. Let x1 =
q′1

qmax
and xi = qihi1

qmax
, represent the normalized resources

allocated to each agent, so that the resource constraint can be written as
∑K

i=1 xi ≤ 1.

The utility function Ui(γi) is assumed to be a monotonic increasing concave function

of γi for all i. However, it is more useful to consider this as a function of xi. For each

agent i ≥ 2, we assume that the interference from the primary user is much larger than

the interference from any secondary user, so that

γi(xi) ≈
xi

qmaxhii
hi1

σ2 + q1h1i

, (6.2)

in which case clearly Ui(xi) is also a monotonically increasing concave function of xi.
3 On

the other hand, for agent 1, we have

γ1(x1) =
q1h11

σ2 + qmax(1− x1)
, (6.3)

3If there is more than one secondary user and the interference from the other secondary users is not
negligible, once again users may free ride.
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in which case U1(x1) is an increasing function of x1. Moreover, U1(x1) is a convex function

of x1 if the following relation holds:

d2U1(x1)

dx2
1

=
h11q1(qmax)2

(σ2 + qmax(1− x1))3

{
d2U1

dγ2
1

γ1 + 2
dU1

dγ1

}
> 0, (6.4)

or equivalently, if the coefficient of relative risk aversion, −γ1U ′′1 (γ1)

U ′1(γ1)
, is less than 2 for all

γ1.

6.2. Ausubel’s Ascending Auction

We describe an auction setting, which captures key features of power allocation de-

scribed in the previous section. A seller wishes to allocate one unit of a divisible good

among K agents. Agent i obtains utility Ui(x) from consuming x ≤ 1 units of the good.

Utilities are assumed to be private and quasi-linear with derivative ∂Ui(x)
∂x

= ui(x). When

all Ui(x) are concave, Ausubel’s ascending auction can be used to allocate one unit of

good [12]. In this auction, truthful bidding is a dominant strategy that leads to an ex

post perfect equilibrium and the VCG outcome is obtained. On the other hand, if one of

the agents has a convex utility function, then Ausubel’s auction cannot be applied and

a ‘Fallback’ auction is proposed in the following section. Here, we describe Ausubel’s

ascending auction in detail. For convenience we initially assume all Ui(x) to be strictly

concave.

If p is the per unit price of the good, strict concavity of Ui(x) implies that

xi(p) = arg max
0≤x≤1

Ui(x)− p · x (6.5)
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is unique for any price p. Call xi(p) agent i’s demand at price p. Notice that xi(p) is

continuous and strictly decreasing. In addition, xi(0) = 1 and xi(p) → 0 as p → ∞ are

assumed.

Initially the price is set to 0 and increases continuously. At each price p, bidder i is

asked to report xi(p). We assume that each agent reports truthfully. We show later that

Ausubel’s auction encourages truthful reporting. Whenever the sum of demands from all

agents is larger than supply (one unit of good), namely,
∑n

i=1 xi(p) > 1, the auctioneer

or the seller increases the price. The auction terminates when the market clearing price

p∗ is reached, which satisfies
∑n

i=1 xi(p
∗) = 1. Notice that the existence of such a price

follows from the the fact that xi(p) is continuous and decreasing.

As the price increases from p to p + ∆p, each agent i clinches, i.e., is allocated the

additional quantity ∆Ci(p) = Ci(p + ∆p) − Ci(p) with the payment p · ∆Ci(p) to the

seller. Here, Ci(p) = max{0, 1 −
∑

j 6=i xj(p)} is the total clinched quantity of agent i at

price p. If p−i is the market clearing price when agent i is excluded, it is easy to see that

Ci(p) = 0 for p ≤ p−i. Hence, the total payment of agent i for the clinched quantity Ci(p)

is the following:

PAA
i (p) =

∫ p

0

ρ
dCi(ρ)

dρ
dρ = −

∫ p

p−i
ρ
d(
∑

j 6=i xj(ρ))

dρ
dρ. (6.6)

Notice that p−i ≤ p∗ and, therefore, xj(p
−i) ≥ xj(p

∗) for all j 6= i.

When Ausubel’s ascending auction ends with the market clearing price p∗, the final

allocation of one unit of good among agents is socially optimal, namely, maximizes the

sum of all agents’ utilities. Now we show that the total payment PAA
i (p∗) of agent i after

the auction ends is the same as the VCG payment. The VCG payment for agent i is given
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by

PVCG
i =

∑
j 6=i

{
Uj(xj(p

−i))− Uj(xj(p∗))
}
. (6.7)

Using information revealed from the agents during the auction and the first-order condi-

tion uj(xj(p)) = p for all j, the VCG payment becomes

PVCG
i =

∑
j 6=i

∫ xj(p
−i)

xj(p∗)

uj(x)dx = −
∑
j 6=i

∫ p∗

p−i
uj(xj(ρ))

dxj
dρ

dρ

= −
∑
j 6=i

∫ p∗

p−i
ρ
dxj
dρ

dρ = −
∫ p∗

p−i
ρ
d(
∑

j 6=i xj)

dρ
dρ,

(6.8)

which is the same as the payment (6.6) at price p∗. Therefore, the ascending auction

with concave utilities generates the VCG outcome. Moreover, reporting xi(p) truthfully

at given price p is incentive compatible for all agents [43].

So far we have not considered the demand of an agent appropriately in (6.5). When

the auctioneer asks agent i to report her demand at the current price, we assume that

each agent reports xi(p) that maximizes Ui(x)− p · x. However, this ignores the fact that

agent i has already clinched Ci(p) ≥ 0 with the payment PAA
i (p) by the time the price in

the auction has reached p. Therefore, she only pays for the additional amount of demand

x′i −Ci(p) at the unit price p, where x′i is agent i’s demand that maximizes the following

payoff πi(x, p):

πi(x, p) = Ui(x)− p ·max{x− Ci(p), 0} −
∫ p

0

ρ
dCi(ρ)

dρ
dρ. (6.9)

As we can see, x′i(p) = xi(p). This is because the payment of an agent does not depend

on her bidding strategy (demand). This is the main reason why truthful reporting of
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demand is incentive compatible in the ascending auction. Note that concavity of the

utility function means that xi(p) ≥ Ci(p) throughout the auction. Algorithm 1 describes

the ascending auction.

Algorithm 1 Alg1 (p, x1, x2, . . . , xK): Ausubel’s Ascending Auction

Initialization:
p← 0 ; xi, x

−
i ← 1 for i = 1, . . . , K

Dynamic:
while

∑K
i=1 xi > 1 do

p← p+ ∆p
Ask each agent her demand xi for given price p.
xi ← max{xi, 1−

∑
j 6=i x

−
j },

Ci ← max{0, 1−
∑

j 6=i xj}, C
−
i ← max{0, 1−

∑
j 6=i x

−
j },

Pi ← Pi + p · (Ci − C−i ),
x−i ← xi for i = 1, . . . , K

end while
Return (x1, . . . , xK) and (P1, . . . , PK)

6.3. Fallback Auction

We now present the Fallback auction. The Fallback auction modifies Ausubel’s as-

cending auction to adapt to the presence of a single agent with a non-concave utility

function, henceforth, called agent 1. All other agents have strictly concave utilities. In

this case there may be no price p such that
∑K

i=1 xi(p) = 1. The difficulty arises because

x1(p), while non-increasing, may have discontinuities. Namely, there may be a price pt

such that limp↗pt
∑K

i=1 xi(p) > 1 and
∑K

i=1 xi(p) < 1 for all p > pt. This means there is

an excess supply when the auction reaches the price p > pt. In addition, x1(p) = 0 for all

p > pt because of the non-concavity of her utility function. Hence, agent 1’s demand at a

price p > pt is less than what she has clinched. In Ausubel’s ascending auction an agent

is not allowed to relinquish her clinch. Therefore, if agent 1’s utility is convex, her surplus
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is forced to be zero or negative, creating an incentive to deviate from truthful reporting

of her demand.

The Fallback auction surmounts this difficulty by allowing only agent 1 to relinquish

some of the units she has clinched. If a fallback price (defined below) is reached and agent

1 has clinched some amount of the good, we allow agent 1 to choose a smaller quantity

clinched earlier and the auction terminates. The relinquished units from agent 1 must

then be reallocated to other agents. On the other hand, if
∑K

i=2 xi(p) > 1 at the fallback

price, then agent 1 could not have clinched anything. She then falls back to a price p < pt

with x1 = 0. All of the good may not be allocated when agent 1 falls back, in which case

the auction continues without agent 1 until it reaches the market clearing price.

Definition pt is called a fallback price if limp↗pt
∑K

i=1 xi(p) > 1 and x1(p) = 0 for all

p > pt.

To understand what occurs at the fallback price, suppose that agent 1 decides to fall

back at some price pt. At this price agent 1 is free to choose any quantity clinched

earlier, i.e., C1(p′) where p′ < pt. Agent 1’s payoff from choosing C1(p′) would be

U1(C1(p′)) −
∫ p′
p−1 ρ

dC1(ρ)
dρ

dρ. Clearly, she would choose the price p′ that maximizes her

payoff. Depending on whether C1(pt) > 0 or C1(pt) = 0, the auction follows one of two

different paths after agent 1 falls.

6.3.1. Case I: pt ≥ p−1

If the fallback price pt is higher than the market clearing price p−1 without agent 1, then

C1(pt) > 0. Therefore, agent 1 chooses a price p < pt, which maximizes her payoff and

the auction ends. This motivates the following definition.
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Definition The price

p∗ = arg max
pt≥p≥p−1

[
π1(p) = U1(C1(p))−

∫ p

p−1

ρ
dC1(ρ)

dρ
dρ

]
(6.10)

is called the security price.

The security price is the price, which maximizes agent 1’s payoff π1 when she falls

back. Therefore, the following equality holds at the fallback price:

π1(pt) = π1(p∗), (6.11)

where π1 is the payoff that agent 1 would receive if she were allocated her entire demand

x1(pt).4 Note that in the definition of the security price, the payoff maximization could

be taken over the interval [p−1, pt]. If the Fallback auction terminates at a fallback price,

namely p∗ = pt, then the auctioneer allocates the quantity xi(p
∗) to each agent i ≥ 2 and

the amount 1−
∑

i≥2 xi(p
∗) to agent 1.

Once the auction ends, the payment that agent 1 makes for the allocation C1(p∗) is

PFB
1 =

∫ p∗

p−1

ρ
dC1(ρ)

dρ
dρ, (6.12)

and the payment that agent i ≥ 2 makes is

PFB
i = pt · lim

p↗pt
xi(p)−

∫ pt

p∗
ρ
dxi
dρ

dρ

= pt · lim
p↗pt

xi(p) + Ui(xi(p
∗))− Ui(xi(pt)).

(6.13)

4If p > pt, π1(p) < π1(p∗). Otherwise, agent 1 would not fall back because she expects better payoff at
price p > pt. See an example in Section 6.4 for further explanation.
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The payment consists of two terms. The first term is her demand multiplied by the

fallback price pt and the second term is the increase in agent i’s utility for the quantity

re-allocated to her when agent 1 falls back. Since the gain from reallocation is the same as

the payment, agent i > 0 is indifferent to whether she gets additional quantity relinquished

from agent 1.

6.3.2. Case II: pt < p−1

Since the sum demand of all agents except agent 1 is
∑K

i=2 xi(p) > 1 at the fallback price,

agent 1 could not have clinched any quantity, namely, C1(p) = 0. Therefore, agent 1

falls back to any price p < pt with no allocation. Since
∑K

i=2 xi(p) > 1 after agent 1’s

fallback, the auction continues without agent 1 from the fallback price pt until it reaches

the market clearing price p−1. The market clearing price exists because all agents in the

auction have concave utility functions.

The allocation of agent 1 is x1 = 0 once the auction ends, and the payment of agent 1

is PFB
1 = 0. On the other hand, agent i 6= 1’s allocation is xi(p

−1). For allocation xi(p
−1)

of agent i ≥ 2, Ci(p
t) = max{0, 1−

∑
j 6=1,i xj(p

t)} is obtained with the unit price pt right

after agent 1 falls back. The corresponding payment is then

PFB
i = pt · Ci(pt) + lim

p↘pt

∫ p−1

p

ρ
dCi(ρ)

dρ
dρ. (6.14)

A pseudo-code description of the complete Fallback auction is given in Algorithm 2.
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Algorithm 2 Fallback Auction

Initialization:
fallback flag down ; p← 0 ; xi, x

−
i ← 1 for i = 1, . . . , K

Dynamic:
while

∑K
i=1 xi > 1 and fallback flag down do

p← p+ ∆p
ask each agent her demand xi for price p.
xi ← max{xi, 1−

∑
j 6=i x

−
j }

Ci ← max{0, 1−
∑

j 6=i xj}, C
−
i ← max{0, 1−

∑
j 6=i x

−
j },

Pi ← Pi + p · (Ci − C−i ),
ask agent 1 if p is secure.
if ’yes’ then
x∗i ← xi for i = 2, . . . , K
P ∗1 ← P1

end if
if xi, x

−
i ≥ x∗i then

Pi1 ← Pi1 + p ·max{0, x−i − xi} for i = 2, . . . , K
end if
if agent 1 request fallback, then

Fallback flag up
if C1 > 0 then
P1 ← P ∗1
Pi ← p · xi + Pi1 for i = 2, . . . , K
xi ← x∗i for i = 2. . . . , K

x1 ← 1−
∑K

i=2 x
∗
i

end while;
else
x1 = 0; P1 = 0;
(x2, . . . , xK , P2, . . . , PK) = Alg1(p, x2, . . . , xK) call Ausubel’s algorithm
end while;

end if
end if
x−i ← xi for i = 1, . . . , K

end while
Return (x1, . . . , xK) and (P1, . . . , PK)
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6.4. Examples

In this section, we illustrate the Fallback auction with examples. We consider a

divisible good with unit quantity, as assumed in Section 6.3, and extend this auction to

the case where there are multiple units of an indivisible good to be auctioned off.

6.4.1. Divisible Good

Example Consider the allocation of one unit of a divisible good among three agents with

the following utility functions:

U1(x1) =
1

3
x3

1 +
11

10
x1, (6.15)

U2(x2) = 2x2 − x2
2, (6.16)

U3(x3) = 2x3 − x2
3. (6.17)

VCG Outcome: The efficient allocation is the solution to the following maximization

problem:

max
1

3
x3

1 +
11

10
x1 + 2x2 − x2

2 + 2x3 − x2
3 (6.18)

s.t. x1 + x2 + x3 = 1 ; x1, x2, x3 ≥ 0 (6.19)

Since agents 2 and 3 have identical concave utilities, the solution should be x2 = x3 = 1−x
2

and x1 = x. The maximization problem is then equivalent to

max
0≤x≤1

1

3
x3 +

11

10
x+ 2

{
2(

1− x
2

)− (
1− x

2
)2

}
, (6.20)
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which gives the optimal allocation x1 = 0.1127 and x2 = x3 = 0.44365. Moreover, the

VCG payments of all agents can be calculated easily and are given by PVCG
1 = 0.1191 and

PVCG
2 = PVCG

3 = 0.6184.

Fallback Outcome: Agent 1 has a convex utility function and her demand is x1(p) = 1

until she falls back to her security clinch. Agents 2 and 3 demand the quantities for which

their marginals exceed the price, i.e., x2(p) = x3(p) = 1− p
2
. If 0 ≤ p ≤ 1, the sum of the

demands for any two agents exceeds the supply and therefore no agent clinches anything.

For 1 ≤ p ≤ 2, the total demand of agents 2 and 3, x2(p) + x3(p) = 2− p drops below 1,

and agent 1 clinches C1(p) = p − 1. This continues until either agent 1 falls back or the

price reaches p = 2 at which point the demands of agents 2 and 3 drop to zero and the

market clears. The clinch rate in this interval is constant, namely, ∂C1(ρ)
∂ρ

= 1.

If agent 1’s demand (x1(p) = 1 due to convexity of utility function) is satisfied without

fallback, the expected payoff at price p < pt would therefore be

π1(p) = U1(x1(p))− p · {x1(p)− C1(p)} −
∫ p

1

ρ
∂C1(ρ)

∂ρ
dρ

=
43

30
− p · (2− p)−

∫ p

1

ρ dρ =
1

2
p2 − 2 p+

29

15
.

(6.21)

On the other hand, the payoff of agent 1 with her actual clinch is given by

π1(p) = U1(C1(p))−
∫ p

1

ρ
∂C1(ρ)

∂ρ
dρ

=
(p− 1)3

3
+

11

10
(p− 1)− p2

2
+

1

2
.

(6.22)
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The security price is then obtained by

p∗ = arg max{π1(p) : s.t. 1 ≤ p ≤ 2}

=
3−
√

0.6

2
= 1.1127.

(6.23)

The Fallback auction, therefore, has the following dynamics. As the price rises above

p = 1, agent 1 begins to clinch. Her payoff increases until p = p∗, at which π1(p∗) = 0.0054.

As the auction continues, however, the security price of agent 1 remains p∗ = 1.1127 since

the surplus decreases with p > p∗. The price continues to increase until it reaches the

fallback price pt. At this price, π1(pt) = π1(p∗), or

1

2
· (pt)2 − 2 · pt +

29

15
= π1(p∗) = 0.0054, (6.24)

which gives the fallback price pt = 1.6202. Once agent 1 falls back to the allocation at

the security price, the auction terminates and the final allocations among the agents are

x1(p∗) = p∗ − 1 = 0.1127, (6.25)

x2(p∗) = 1− p∗

2
= 0.44365, (6.26)

x3(p∗) = 1− p∗

2
= 0.44365. (6.27)
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Table 6.1. Marginal valuations of three agents A, B and C.

1 2 3
A 0 0 7
B 4 2 0
C 4 1 0

At the fallback price, the demands of agent 2 and 3 are x2(pt) = x3(pt) = 1− pt

2
= 0.1899

and the payments of the agents when the auction ends are then:

PFB
1 =

∫ p∗

1

ρ
∂C1(ρ)

∂ρ
dρ = 0.1191, (6.28)

PFB
2 = 2 x2(p∗)− (x2(p∗))2 − 2x2(pt) + (x2(pt))2 + pt · x2(pt) = 0.6543, (6.29)

PFB
3 = 0.6543. (6.30)

Note that the final allocation of the Fallback auction is same as that of the VCG auction.

Moreover, the payment of agent 1 is the same for both auctions. However, PFB
i 6= PVCG

i

for i = 2, . . . , K. Therefore, the Fallback auction is not incentive compatible. Later, in

Section 6.5, we show that the Fallback auction is a core-selecting auction [31].

6.4.2. Indivisible Goods

Example (Case I in Section 6.3) Suppose we wish to allocate Allocate three units of an

indivisible good among three agents with marginal valuations given in Table 6.1.

VCG outcome: The efficient allocation is xA = 0, xB = 2, xC = 1 with the following

VCG payments: PVCG
A = 0, PVCG

B = 3, PVCG
C = 1.
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Table 6.2. Fallback Dynamics

xA xB xC C1

0 ≤ p < 1 3 2 2 0
1 ≤ p < 2 3 2 1 0
p = 2 3 1 1 1

2 < p < 2.5 3 1 1 1
p = 2.5 F 1 1 ∗

Table 6.3. Marginal valuations of three agents A, B and C.

1 2 3
A 0 0 9
B 5 3.4 1.1
C 4.3 3.1 0.5

Fallback outcome: For 0 ≤ p < 1, A bids for 3 units, B and C bid for 2 units. For

1 ≤ p < 2, agent A bids for 3 units, B for two, and C for one.5 So far, no agent has

clinched unit. At p = 2, B reduces demand to one and A clinches to 3− (1 + 1) = 1 with

p = 2. Since A pays 2 for one unit, she can pay up to 5 for the other two units. Therefore,

the demand of agent A remains 3 until p reaches 2.5. When the price becomes p = 2.5,

agent A decides to fall back to the security quantity x∗A = 0 and relinquishes one unit to

agent B with the price she paid. Since agents B and C ask for one unit, respectively, at

the fallback price p = 2.5, the final allocation becomes xB = 1 + 1 = 2 and xC = 1. The

payments of agents with the Fallback auction are PFB
A = 0, PFB

B = 2.5× 1 + 2 = 4.5 and

PFB
C = 2.5× 1 = 2.5.

Example (Case II in Section 6.3) Suppose we wish to allocate three units of an indivisible

good among three agents with marginal valuations given by Table 6.3.

5We assume that an agent does not ask for the unit when the marginal value of the unit is the same as
the current price.
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Table 6.4. Fallback Dynamics

xA xB xC C1 C2 C3

0 ≤ p < 3 3 2 2 0 0 0
p = 3 F 2 2 0 1 1

3 < p < 3.1 2 2 0 1 1
p = 3.1 2 1 0 2 1

VCG outcome: The efficient allocation among all three agents is xA = 0, xB = 2, and

xC = 1 with the following VCG payments: PVCG
A = 0, PVCG

B = 4.7, PVCG
C = 1.1.

Fallback outcome: For 0 ≤ p < 3, A bids for 3 units, B bids for 2 units, and C bids for

2 units. At p = 3, A falls back to a price p′ < 3 with no clinch. The auction continues

without agent A from the current price p = 3. Since B’s demand is 2 units, C clinches one

unit at price p = 3. Similarly, B clinches one unit at this price. When the price reaches

p = 3.1, the demand of C becomes 1 unit, B clinches an additional unit and the auction

ends. The final allocation of the Fallback auction is xA = 0, xB = 2, and xC = 1, and the

payments of the agents are PFB
A = 0, PFB

B = 3 + 3.1 = 6.1, PFB
C = 3.

6.5. Fallback Auction as a Core-Selecting Auction

As shown in Section 6.4, the final allocation of the Fallback auction is the same as that

of the VCG auction, which maximizes the sum utilities of the agents. This is only possible

when agents reveal their demand truthfully. However, the payments of all agents except

agent 1 are not the VCG payments, and therefore sincere bidding (truthful reporting) is

not a dominant strategy [75]. Instead, we prove that the Fallback auction with truthful

bidding leads to a core allocation with minimum total payment of all agents to the seller.

This is stated on the following Theorem.
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Theorem 21. When all agents but one have concave utility functions, the Fallback

auction has a full information equilibrium in the core.

The proof relies on concepts from [31], which we repeat here. The seller is denoted as

player 0, and the bidders as agents i = 1, . . . , K. The set of all players including the seller

is denoted by N . Agent 1 has an increasing convex utility U1(x1) ≥ 0 and agent i 6= 1

has an increasing concave utility Ui(xi) ≥ 0. One unit of a divisible good is allocated

to the agents through the Fallback auction. In addition, we assume Ui(0) = 0. For any

coalition S, an assignment {xi} is feasible for coalition S, written {xi} ∈ F (S), if (1)∑
i∈S xi ≤ 1 and (2) for all i, if i /∈ S or 0 /∈ S, then xi = 0. Namely, a bidder can have

a non-zero assignment when coalition S forms only if that bidder and the seller are both

in the coalition. The coalition value or characteristic function is defined by

w(S) = max
x∈F (S)

∑
j∈S

Uj(xj). (6.31)

If the payment of the auction Pj is made to the seller by each agent j, then the associated

payoffs are given by
∑K

j=1 Pj for the seller and πj = Uj(xj) − Pj for each bidder j. The

payoff profile is individually rational if πj ≥ 0 for all j. An imputation is a feasible,

non-negative payoff profile. An imputation is in the core if it is efficient and unblocked:

Core(N , w) =

{
π ≥ 0 |

∑
j∈N

πj = w(N ) and
(
∀S ⊆ N

) ∑
j∈S

πj ≥ w(S)

}
. (6.32)

Now we consider the Fallback auction. If the Fallback auction terminates with the

fallback flag down, the final allocation among the agents is the same as that of Ausubel’s

ascending auction assuming that agent 1 does not exist. It is easy to prove that the
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Fallback auction in this case is the core-selecting auciton. We, therefore, assume the

algorithm terminates with the fallback flag up, and prove that we obtain an equilibrium

outcome in the core. The following proof is for the case when pt ≥ p−1. We present the

proof for the case when pt < p−1 in Section 6.7.2. This can be done in several steps. First,

we show that the resulting allocation of the Fallback auction is efficient under truthful

bidding. Second, for two agents, the VCG outcome is obtained, i.e., the payments of all

agents are the same as the VCG payments. From a standard argument (see for example

[13] or [33]), it follows that bidding truthfully is an ex-post perfect equilibrium. Finally,

we show that for K > 2, the truthful bidding outcome of the Fallback auction lies in the

core and minimizes the seller’s payoff. From [18], the bidding strategies of the agents

according to a truncation profile is a full information equilibrium.6

Lemma 22. Assuming truthful bidding among agents, the allocation of the Fallback

auction is efficient.

Proof. We show that x2(p∗), . . . , xK(p∗) and x1(p∗) = 1 −
∑

i≥2 xi(p
∗) are solutions

to the following maximization problem Π:

max U1(x1) +
K∑
i=2

Ui(xi) (6.33)

s.t.
K∑
i=1

xi = 1

xi ≥ 0 ∀i ∈ N \ {0}.

6A report ûj is a truncation report if and only if there exists some α ≥ 0 such that for all xj ∈ Xj ,
ûj(xj) = uj(xj)− α. A set of ûj is a truncation profile.
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For given Q ∈ [0, 1], consider the following problem:

F (Q) = max
K∑
i=2

Ui(xi) (6.34)

s.t.
K∑
i=2

xi = Q

xi ≥ 0 ∀i ∈ N \ {0, 1}.

There is a Lagrange multiplier p that corresponds to the market clearing price such that

Q units are distributed among the agents N \ {0, 1}. Therefore, F (Q) =
∑K

i=2 Ui(xi(p)).

For example, when Q = 1, the corresponding Lagrange multiplier is p−1. Now problem

Π can be reformulated as

max
p≥p−1

U1(1−
∑
i≥2

xi(p)) +
∑
i≥2

Ui(xi(p)). (6.35)

The objective function can be expressed as

U1(1−
∑
i≥2

xi(p)) +
∑
i≥2

∫ p

p−1

ui(xi(ρ))
dxi(ρ)

dρ
dρ

= U1(C1(p))−
∫ p

p−1

ρ
dC1(ρ)

dρ
dρ,

(6.36)

and this is maximized by the security price p∗ (See Definition 6.3.1). �

Lemma 23. Suppose K = 2 and agent 1 has an increasing convex utility function.

Then truthful bidding is an ex post perfect equilibrium of the Fallback auction that charges

the VCG payment to each agent.
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Proof. When the fallback flag is up, the payment of agent 1 is

PFB
1 =

∫ p∗

0

ρ
dC1(ρ)

dρ
dρ =

∫ p∗

p−1

ρ
dC1(ρ)

dρ
dρ

= U2(x2(p−1))− U2(x2(p∗)),

(6.37)

which is by definition the VCG payment. Moreover, the payment of agent 2 is given by

(6.13).

PFB
2 = pt · lim

p↗pt
x2(p) + U2(x2(p∗))− U2(x2(pt)). (6.38)

From the definition of the fallback price, π1(x1(pt), pt) = π1(x1(p∗), p∗). Namely,

U1(1)− pt · (1− C1(pt))−
∫ pt

0

ρ
dC1(ρ)

dρ
d ρ

= U1(C1(p∗))−
∫ p∗

p−1

ρ
dC1(ρ)

dρ
d ρ,

(6.39)

or

U1(1)− pt · x2(pt) = U1(x1(p∗)) +

∫ pt

p∗
ρ
dC1(ρ)

dρ
d ρ

= U1(x1(p∗)) + U2(x2(p∗))− U2(x2(pt)).

(6.40)

Here, we use the following facts in the auction: x1(pt) = 1 and C1(pt) = 1 − x2(pt).

Therefore, the payment of agent 2 becomes

PFB
2 = U1(1)− U1(x1(p∗)) = U1(x1(p−2))− U1(x1(p∗)), (6.41)

which is exactly the VCG payment for agent 2. For K = 2, the Fallback auction with

truthful bidding achieves the efficient allocation with VCG payments. From [43], any

incentive compatible, individually rational and efficient mechanism must charge VCG
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payments. Therefore, for K = 2, truthful bidding is an ex post perfect equilibrium of the

Fallback auction that generates the VCG outcome. �

In [31], Day and Milgrom argue that core-selecting auctions that minimize the seller’s

payoff maximize incentives for truthful reporting and they produce the Vickrey outcome

when it lies in the core. Theorem 3 in [31], especially, shows that a truncation report

is a full information equilibrium. For a given α ≥ 0, a truncation report for agent i

corresponds to an α-truncation of her true utility, i.e. Ui(xi) − α. The following Lemma

states that the Fallback auction minimizes the seller’s payoff, and the payoffs of all agents,

including the seller, lies in the core.

Lemma 24. For K > 2, if all agents bid truthfully, the Fallback auction finds an

imputation in the core with minimum payoff to the seller.

Proof. See Section 6.7.1. �

Corollary 25. The bidding strategies of agents according to the profile of πi trun-

cations of Ui(xi) for i = 1, 2, . . . , K are a full information equilibrium in the Fallback

auction.

Proof. The allocation of the Fallback auction with truthful bidding is a bidder op-

timal allocation according to [31]. Therefore, the bidding strategy of agent i according

to the profile of πi truncations of Ui(xi), or Û(xi) = Ui(xi) − πi, is a full information

equilibrium in the Fallback auction (See Theorem 3 in [31].) It only remains to prove

that the Fallback auction with Ûi(xi) gives the same allocation as with Ui(xi). As the unit

price increases from 0, agent i asks for the quantity xi = arg max0≤xi≤1 Ûi(xi) − p · xi =
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arg max0≤xi≤1 Ui(xi)−πi−p ·xi. Therefore, each concave agent asks for the same quantity

as if it were responding with the true utility except for the fact that at a certain price p̃,

demand suddenly becomes zero. Hence we need to show that p̃ ≥ pt ≥ p∗ for all concave

agents, which can be easily done since πi = Ui(xi(p
t))− pt · xi(pt) for ∀i ∈ N \ {0, 1}. �

The bidding strategies of agents according to the profile of πi truncations of Ui(xi) for

all i is, therefore, a full information equilibrium in the Fallback auction and this leads to

the efficient outcome.

6.6. Chapter Summary

We studied an auction model motivated by spectrum sharing in which there is one

bidder with a non-concave valuation and K − 1 bidders with concave valuations. For this

setting we presented the Fallback auction, a dynamic ascending auction which has a full

information equilibrium in the core. For K = 2 agents, this produces the VCG outcome;

for K > 2 agents, the auction outcome is the core allocation with minimum revenue to

the seller. This auction dynamically elicits information from the agents to determine an

efficient outcome. It would be of interest to determine if this is a minimal amount of

information that must be elicited for obtaining such an outcome.

6.7. Supplement: Proof of Lemma 24 and Additional Discussion

6.7.1. Proof of Lemma 24

6.7.1.1. The payoff profile is in the core. We prove that the payoff profile of the

Fallback auction is in the core if each agent bids truthfully. In this case, the payment of
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each agent is shown by (6.12) or (6.13). For agent 1,

PFB
1 =

∫ p∗

0

ρ
dC1(ρ)

dρ
dρ =

∫ p∗

p−1

ρ
dC1(ρ)

dρ
dρ

=
K∑
l=2

Ul(xl(p
−1))−

K∑
l=2

Ul(xl(p
∗)),

(6.42)

and for agent i ≥ 2,

PFB
i = pt · xi(pt) + Ui(xi(p

∗))− Ui(xi(pt)). (6.43)

Note that the payment of agent 1 is the VCG payment. The payoffs of all players in the

Fallback auction are, therefore, given by

π1 = U1(x1(p∗))− PFB
1

=
K∑
l=1

Ul(xl(p
∗))−

K∑
l=2

Ul(xl(p
−1))

(6.44)

for agent 1,

πi = Ui(xi(p
∗))− PFB

i = Ui(xi(p
t))− pt · xi(pt) (6.45)

for agent i ≥ 2, and

π0 =
K∑
l=1

PFB
l

=
K∑
l=2

Ul(xl(p
−1)) +

K∑
l=2

{
pt · xl(pt)− Ul(xl(pt))

} (6.46)
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for the seller. In addition, from the Fallback price condition (6.11), we have the following

equality:
K∑
l=1

Ul(xl(p
∗)) = U1(1) +

K∑
l=2

{
Ul(xl(p

t))− pt · xl(pt)
}
. (6.47)

Note that
∑K

l=2 P
FB
l = U1(1)− U1(x1(p∗)).

From Lemma 22, the Fallback auction is efficient with truthful bidding, namely,∑
l∈N πl = w(N ). Now we have to prove that

∑
l∈S πl ≥ w(S) for any coalition S ⊂ N .

To do this, a set S ′ which has one agent i 6= 1 and the seller is considered. Then, we

would like to prove

π0 + πi =
K∑
l=2

Ul(xl(p
−1)) +

∑
j 6=1,i

{
pt · xj(pt)− Uj(xj(pt))

}
≥ w(S ′) (6.48)

or
K∑
l=2

Ul(xl(p
−1)) ≥ Ui(1) +

∑
j 6=1,i

{
Uj(xj(p

t))− pt · xj(pt)
}
. (6.49)

Here, w(S ′) = Ui(1). Since p−1 is the market clearing price among all concave agents, it

maximizes sum utilities of all concave agents, or
∑K

l=2 Ul(xl(p)). Agent 1 starts to clinch

when p > p−1 in the Fallback auction and this implies pt ≥ p−1. Hence, (6.49) is evident.

For example, Figure 6.2 shows the case where K = 3 and i = 2. In a similar way, for a

set S ′′ with any number of concave agents, we can prove that
∑

l∈S′′ πl ≥ w(S ′′).

Now we consider a set Ŝ, which includes agent 1. If this set has only agent 1 with

the seller, then π0 + π1 = U1(1) = w(Ŝ). Therefore, we consider a set Ŝ with at least one

concave agent along with agent 1 and the seller. Then we have to prove

π0 + π1 +
∑

l∈ bS\{0,1}
πl = U1(1) +

∑
l∈ bS\{0,1}

{
Ul(xl(p

t))− pt · xl(pt)
}
≥ w(Ŝ). (6.50)
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Figure 6.2. Illustration of (6.49) when K = 3 and i = 2. (a) Area of∑3
l=2 Ul(xl(p

−1)). (b) Area of U2(1) + U3(xt3)− pt · x3(pt).

At the fallback price pt, the expected gain of agent 1 is the same as the total loss of

agent 1 from the security price p∗ up to the fallback price pt, and this is shown in Figure

6.3. The sum demand of all concave agents at price p in this Figure is obtained by

D(N\{0, 1}) =
∑K

l=2 xl, where xl = arg max Ul(xl) − p · xl. For the Fallback auction,

the sum demand of all concave agents in the coalition Ŝ is D(Ŝ\{0, 1}) ≤ D(N\{0, 1}).

Figure 6.4 shows the sum demand D(Ŝ\{0, 1}) and optimal sum utilities when K = 4 and

Ŝ = {0, 1, 2}. In the figure, pt is the fallback price of the auction with all agents K, and

hence, is the same as in Figure 6.3. This shows that the area of U1(1)+U2(x2(pt))−pt·x2(pt)

is larger than the area of w(Ŝ). In a similar way, we can prove (6.50) for any coalition

with agent 1. Therefore, the payoff profile of the Fallback auction is in the core when

agents report their demands truthfully.

6.7.1.2. Minimum payoff for the seller. Next we prove that the payoff to the seller

is minimized over all payoff profiles in the core. This is easily shown. Since, PFB
1 =
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Figure 6.3. Fallback price condition. The forward expected gain of agent 1
is the same as the total loss of agent 1 from the security price p∗ up to the
fallback price pt.

∑
∈Si

ix
~

tP

1x
(a)

∑
∈Si

ix
~

tP

1x
(b)

Figure 6.4. Illustration of (6.50) when K = 4 and Ŝ = {0, 1, 2}. (a) Area

of U1(1) + U2(x2(pt))− pt · x2(pt). (b) Area of w(Ŝ).
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∑n
l=2 Ul(xl(p

−1)) −
∑K

l=2 Ul(xl(p
∗)) is the VCG payment of agent 1, and this is the min-

imum payment that agent 1 can have. In addition,
∑K

l=2 P
FB
l = U1(1) − U1(x1(p∗)).

Namely, the sum payment of all concave agents is also the disutility that they impose on

agent 1, and this is also the minimum sum payment they all can make. Therefore, the

seller’s payoff π0 =
∑K

l=1 P
FB
l is the minimum in the core of the Fallback auction.

6.7.2. Fallback Auction when pt < p−1

Lemma 26. Assuming truthful bidding among agents, the allocation of the Fallback

auction is efficient.

Proof. The final allocation of the Fallback auction is x1 = 0 and xi = xi(p
−1) for all

i 6= 1. (In addition,
∑K

l=2 xl(p
−1) = 1.) By increasing agent 1’s allocation to x1 = δ and

decreasing xi = xi(p
−1)− δ for any i 6= 1, we reduce the sum utility because U1(δ) < pt · δ

and Ui(xi(p
−1))−Ui(xi(p−1)−δ) > pt ·δ. Therefore, the allocation of the Fallback auction

is efficient. �

Lemma 27. Suppose K = 2 and agent 1 has an increasing convex utility function.

Then truthful bidding is an ex post equilibrium of the Fallback auction that charges the

VCG payment to each agent.

Proof. Since agent 2 gets x2 = 1, we only need to prove that the payment of agent

2 is PFB
2 = U1(1). We have pt · 1 = U1(1) from the fallback condition, and this is what

agent 2 pays with demand x2 = 1. Therefore, for K = 2 truthful bidding is an ex-post

perfect equilibrium of the Fallback auction that generates the VCG outcome. �
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Lemma 28. For K > 2, if all agents bid truthfully, the Fallback auction finds an

imputation in the core with minimum payoff to the seller.

Proof. First, we prove that the payoff profile is in the core if each agent bids truthfully.

In the case where pt < p−1, the payment of agent 1 is PFB
1 = 0 and the payoff is π1 =

U1(0) − PFB
1 = 0. The payment of agent i 6= 1 is given by (6.14) and the payoff is

πi = Ui(xi(p
−1))− PFB

i . In addition, the seller’s payoff is given by π0 =
∑K

i=1 P
FB
i . From

the fallback condition, U1(1) = pt · 1.

We consider a coalition S = {0, 1, · · · , K}. Then,

π0 + π1 =
K∑
i=2

PFB
i

≥
K∑
i=2

pt · (1−
∑
l 6=1,i

xl(p
t)) + pt ·

{∑
l 6=1,i

(xl(p
t)− xl(p−1))

}

= pt ·

{
1 +K − 2− (K − 2) ·

K∑
l=2

xl(p
−1)

}

= pt = U1(1),

(6.51)
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where
∑K

l=2 xl(p
−1) = 1. Here, we assume that Ci(p

t) = max{0, 1 −
∑

l 6=1,i xl(p
t)} =

1−
∑

l 6=1,i xl(p
t) to make the analysis simple. Also,

π0 + π2 =
K∑

i 6=1,2

PFB
i + U2(x2(p−1))

= pt ·
{

1− x2(pt)
}

+ U2(x2(pt))

+ (K − 3) ·
K∑
l=2

{
Ul(xl(p

t))− Ul(xl(p−1))
}

≥ pt ·
{

1− x2(pt)
}

+ U2(x2(pt))

≥ U2(1).

(6.52)

Similarly, we can prove that π0 + πl ≥ Ul(1) for l = 3, . . . , K. Next we consider the

following.

π0 + π2 + π3 =
K∑

i 6=1,2,3

PFB
i + U2(x2(p−1)) + U3(x3(p−1))

= pt ·
[
1− {x2(pt) + x3(pt)}

]
+ U2(x2(pt)) + U3(x3(pt))

+ (K − 4) ·
K∑
l=2

{
Ul(xl(p

t))− Ul(xl(p−1))
}

≥ pt ·
[
1− {x2(pt) + x3(pt)}

]
+ U2(x2(pt)) + U3(x3(pt))

≥ max
x2+x3≤1

U2(x2) + U3(x3).

(6.53)

The last inequality is illustrated in Figure 6.5. Moreover, we can prove that the payoff

profile of a set S with any number of concave agents is in the core. Finally, we consider

the payoff profile of a set with agent 1 and any number of concave agents. For example,
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with agent 1 and agent 2,

π0 + π1 + π2 =
K∑

i 6=1,2

PFB
i + U2(x2(p−1))

= pt ·
{

1− x2(pt)
}

+ U2(x2(pt))

+ (K − 3) ·
K∑
l=2

{
Ul(xl(p

t))− Ul(xl(p−1))
}

≥ pt ·
{

1− x2(pt)
}

+ U2(x2(pt))

≥ max
x1+x2≤1

U1(x1) + U2(x2).

(6.54)

The last inequality is illustrated in Figure 6.6.

Second, we show that the sum of the payments to the seller is the minimum over

all possible payoff profiles in the core. The minimum unit price at which the seller is

willing to sell the good is pt since agent 1 will buy the entire unit with this price (fallback

condition). Therefore, the payoff of the seller should satisfy π0 ≥ pt · 1. With this, we can

rewrite the core condition without agent 1:

π′0 +
∑

j∈S\{0,1}

πj ≥ w(S)− pt, (6.55)

for any S ⊆ N . The seller’s payoff is redefined as π′0 = π0 − pt. The ascending auction

with only concave agents generates the minimum revenue to the seller. Therefore, the

seller’s payoff is minimized among all payoff profiles in the core.

�
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Figure 6.5. Illustration of last inequality in (6.53). (a) Area of U2(x2(pt)).
(b) Area of U2(x2(pt)) + U3(x3(pt)) − pt · {(x2(pt) + x3(pt) − 1} −
maxx2+x3≤1{U2(x2) + U3(x3)}.
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Figure 6.6. Illustration of last inequality in (6.54). (a) Area of U2(x2(pt))+
pt · {1− x2(pt)}. (b) Area of maxx1+x2≤1 U1(x1) + U2(x2).
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CHAPTER 7

Conclusions

In this thesis, we have studied resource allocation in wireless communication networks

using a utility function framework. A utility function can reflect the degree of satisfaction

of individual users in the network, and makes it possible to allocate the constrained

resources such that appropriate trade-offs among system efficiency, fairness and QoS,

are obtained. Depending on the degree of cooperation among users in the network, two

methods for the resource allocation problem are investigated: centralized vs. distributed.

In Chapters 2 and 3, we studied centralized time and power allocation in a cellular network

with a relay extension and showed that the relay offers significant gains in capacity.

Chapters 4, 5, and 6 focused on distributed resource allocation mechanisms for dynamic

spectrum sharing, and their associated efficiencies. In the commons model considered

in Chapter 4, interference management using rate sharing among users was formulated

as a potential game and the efficiency of the game at a Nash equilibrium was studied.

In Chapter 5, a sequential second-price auction was applied to bandwidth and power

allocation, and the worst-case efficiency was obtained using backward induction in the

extended form game of the sequential auction. In Chapter 6, the modified ascending

auction, i.e., the Fallback auction, which can be applied to the case where one of the

agents has an increasing convex utility function, was analyzed.

In Chapter 2, we analyzed the uplink capacity gain in a cellular network with dedicated

fixed relays such as in the IEEE 802.16j standard. The relays are assumed to use the
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same frequency as the base station and the optimized resource is time within the frame

allocated to the relay. Our first-order analysis, as well as detailed system simulations,

show that with two relays deployed in the system, uplink capacity increases more than

40% for data and more than 100% for voice. These gains are, however, realized at the

cost of relay deployment in the system, such as associated hardware and its installation.

Relay extension using Wi-Fi access points was considered in Chapter 3 as an attempt

to exploit existing Wi-Fi nodes. In that scenario, the relays use a different frequency band

from the base station (out-of-band relay). Assuming one unit of bandwidth is assigned

to each user, we have studied the power allocation at the base station, which maximizes

total throughput for data traffic or the total number of active users for voice traffic.

We assumed a linear model of a single cell site with two access points (relays) located

symmetrically around a base station. In addition to relay traffic, we assumed that the

access point has its own customers to serve, which means that if the access point relays

data for cellular users, it must reduce the resources available for its own users. We studied

two different flow conservation constraints, which correspond to whether or not the relay

traffic from the base station is jointly encoded.

Our results show that under both flow constraints, the total transmission rate of data

traffic increases by around 40% for the case considered. Moreover, each relay scheme

alters the cellular user rate distribution by slightly reducing the rates of users near the

base station and increasing the rates of users near the relay. Similarly, for voice traffic,

when the sets of active users are optimized, the total number of cellular users increases

significantly under both flow rate conservation schemes, but at the cost of reducing the

access point users. This corresponds to extending the coverage of the cellular network.
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Even though the relay increases the throughput and the coverage of the base station

as shown in Chapters 2 and 3, a key assumption is that the relay is cooperative. Namely,

it should be willing to share resources with the base station. If the base station and

the relay do not belong to the same service provider, relay cooperation can be achieved

with an agreement on usage of relay resources, for example, through a bargaining process.

Recently, the Nash bargaining solution concept has received some attention in wireless

applications [123, 76]. We can apply this solution concept for bargaining with an ap-

propriate relay model. If both the base station and the relay have complete information

about each other’s utility function, then it can be shown that the Nash bargaining solution

maximizes the social welfare. An interesting research topic may be to analyze bargaining

protocols between the base station and the relay with incomplete information.

Switching from centralized resource allocation among cooperative agents to decen-

tralized methods, we focused on the development of allocation mechanisms and their

efficiency. For dynamic spectrum allocation among non-cooperative agents, the commons

model and secondary spectrum market have been considered. In Chapter 4, access point

deployment was considered in a commons model framework. Interference is managed

through a rate sharing scheme among users, which is formulated as a potential game.

With various boundary conditions, we showed that there exist pure and mixed Nash equi-

libria, and by choosing the shared rate appropriately, an efficient Nash equilibrium can

be achieved. However, as the density of users increases, local rate sharing is insufficient

for adequately managing interference among users. Hence, spectrum markets become

attractive for dynamic spectrum sharing.
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Auction mechanisms have been considered for a secondary spectrum market. In Chap-

ter 5, we studied a sequential second-price auction for allocating n units of bandwidth or

power among non-cooperative wireless devices. This mechanism is relatively simple and

requires little information exchange among users, which may make it attractive for dy-

namic bandwidth or power allocation among secondary users who wish to share spectrum

with the primary user (spectrum owner or licensee). Our main analytical results charac-

terize the worst-case efficiency of the subgame perfect equilibrium for two users with full

knowledge of bidding histories and user utilities. For a bandwidth auction (decreasing

marginal utilities), the worst-case efficiency decreases with n and converges to 1 − e−1.

For the power auction, where one user has decreasing marginal utilities and the other has

increasing marginal utilities, the worst-case efficiency is upper bounded by 1/n.

Although the worst-case efficiency loss due to sophisticated bidding can be significant,

simulation results with randomly placed users show that with the rate utility function, the

sequential auction typically achieves the efficient allocation. Furthermore, even when the

equilibrium is inefficient, the efficiency loss is typically less than the worst-case efficiency

loss. This is due to the rate utility function, which places constraints on the ratios of

marginal utilities for the successive units being auctioned.

For more than two users, we showed that the sequential second-price auction still has

a pure strategy equilibrium. In that case, however, the equilibrium may not be unique

and some coordination of the users may be needed to decide on a particular outcome.

Assuming a particular equilibrium, simulation results show that for the bandwidth auction

the efficiency typically improves when the number of agents increases from 2 to 3. We

suspect that this conclusion can be generalized, namely, the worst-case efficiency for any
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number of agents might be bounded by that for k = 2 agents. In fact, an exhaustive search

for the worst-case efficiency with k = 3 agents and n = 3 units of good has shown that

the worst-case efficiency is the same as that for k = 2 agents. Completely characterizing

the efficiency with an arbitrary number of goods and agents is an open problem.

We applied the sequential second-price auction to the scenario where the total number

of agents in the auction is fixed. It might be interesting to extend it to the scenario where

agents enter and leave the system at arbitrary times. That more accurately reflects

spectrum sharing in a wireless communications network. Moreover, in the absence of full

information about other users’ utilities, each user may attempt to strategize bidding by

assuming a distribution over those utilities. Computing equilibria and efficiency loss in

that case is another open problem, although in general less information seems more likely

to encourage bidding according to marginal utilities, which leads to an efficient allocation

in the bandwidth auction. Extensions to joint power and bandwidth auctions are also

interesting possibilities for future work.

In Chapter 6 we studied the Fallback auction motivated by spectrum sharing in which

the resource is a potential user’s power, so that there is one bidder with a convex utility

function, and n− 1 bidders with a concave utility function. We showed that the Fallback

auction is a core-selecting auction, which minimizes the seller’s revenue. Those charac-

teristics minimize the incentive for bidders to misreport bids and collude. At the same

time, the seller cannot benefit from excluding bidders. In the case with k = 2 agents, the

VCG outcome is in the core and the Fallback auction achieves the VCG outcome, which

makes the auction incentive compatible even when there is an agent with a convex utility

function. On the other hand, for k > 2 agents, the VCG might not be in the core, so
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that the Fallback auction is not incentive compatible. From [31], however, the auction

provides “optimal” incentives for truthful reporting and this leads to a full information

equilibrium.

The Fallback auction dynamically elicits information from agents to determine an

efficient outcome. It would be of interest to determine if this is the minimal information

that must be elicited for obtaining such an outcome. In the spectrum sharing model we

presented there was only one agent with a convex utility function. It would also be of

interest (for spectrum sharing and other applications) to extend these ideas to scenarios

in which multiple users have convex utility functions.

Another interesting related challenge is the free rider problem. The free rider problem

occurs when there is an externality such as interference. For example, when agent A buys

agent B’s power to reduce her own interference, it would also benefit agent C (the free

rider) who happens to be close to agent B. This may induce agents to buy less power even

when the interference is severe. It may be useful to investigate the free rider problem in

the context of spectrum sharing and explore possible options to reduce its effect.
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