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ABSTRACT

Inference in Heterogeneous Networks

Yuan Li

Last two decades have seen a surge of interests in approaches that leverage network

structure in machine learning models. For many networks, not only the connections of the

network but also the network attributes, such as node attributes and dyadic attributes, are

observed. This heterogeneity in networks raises new challenges for the inference problem

in networks.

This dissertation discusses how to handle the heterogeneous networks for different ma-

chine learning applications, namely community detection, node classification, and node

representation learning. For community detection in network with node attributes, we

introduce a mathematical approach that combines topology information and nodes at-

tributes. The algorithm explores the correlation between node attributes and community

assignment, and uses the diversity of dyadic attributes induced by different types of nodes

to improve performance as well. We also study node classification problem in a transac-

tion network, where rich information of node and edge is available, within Markov random

field framework. We present a novel algorithm that automatically learns node prior and
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edge potential in the Markov random field, hence results in better classification. Finally,

we generalize deepwalk to incorporate the dyadic attributes in network representation

learning by biasing the random walk sampling procedure in deepwalk. The algorithm

learns the sampling weights in a data driven manner and constructs a proper proximity

measure based on the dyadic attributes.
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CHAPTER 1

Introduction

Graphs have become a ubiquitous data structure. Problems in many fields of scien-

tific interest, such as social networks, financial networks, recommendation systems, gene

networks, and many more can be compactly represented and modeled within a network

framework. With the increasing availability of network data, recent years have witnessed

a rapid growth in the number of network analysis techniques.

One central problem in network analysis is inference about network roles. To under-

stand the roles that nodes are playing, the key is to characterize the structural features

of the network. Most research in this area explores pure topology information about the

network data, e.g. the adjacency matrix of the observed graph. However, for many real-

world networks, metadata, such as node attributes and dyadic attributes, is available.

In other words, the networks are heterogeneous in nature. This metadata could provide

valuable information with respect to the node’s role in the network, and requires new

methodologies. Therefore, it is now of great importance to study inference problems in

heterogeneous networks, where diversity of node types and/or dyadic attributes between

nodes are observed.

In this dissertation, we try to understand how the heterogeneity, together with network

structure, affects inference in networks, and to what extent the inclusion of information

about heterogeneity improves the accuracy of making inferences. By understanding how

the node attributes and the dyadic attributes interact with the topology of the network,
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we can not only develop more efficient algorithms but also interpret our results with more

insight.

1.1. Heterogeneous networks

In this dissertation, we are focusing on two types of metadata observed in the networks:

node attributes and dyadic attributes [17]. Before introducing node attributes and dyadic

attributes, we first formalize the definition of a network as follows:

Definition 1.1. A network G = (V,E) is a collection of vertices V = {v1, v2, . . . , vn}

and edges E = {eij} with eii = 0. The adjacency matrix A of the graph G = (V,E) is a

matrix where aij = 1 if eij ∈ E, and aij = 0 otherwise.

Then we define node attributes and dyadic attributes as follows:

Definition 1.2. Node attributes for a node vi in network G = (V,E) are defined as

xvi, which are a set of variables of the individual node vi observed in the network. We

define X(V ) = {xvi}, vi ∈ V as node attributes for the network.

Node attributes provide individual level information, such as personal profiles of users

on social network.

Definition 1.3. Dyadic attributes for an edge eij in a network G = (V,E) are denoted

by xeij ; these attributes are observed for a pair of nodes vi and vj. We define X(E) =

{xei,j}, ei,j ∈ E as dyadic attributes for the network.

Dyadic attributes include but are not limited to multi-relations, distance between

nodes, functions defined for a pair of nodes. Multi-relations are different types of con-

nections between two nodes. For example, in a social network, two linked individuals
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are facebook friends and co-workers, but they do not have lunch together. Then we can

say that for all three relations we are interested in, namely facebook friends, co-workers,

having lunch together, we observed two relations between this pair of individuals. Func-

tions for a pair of nodes are usually used to describe the proximity of the nodes. For

example, the number of shared adjacent nodes between two nodes is a function defined

for a pair of nodes that reflects the proximity. When the metadata X = {X(V ), X(E)}

is provided along with the network, we define the network as G = (V,E,X), and call it

a heterogeneous network. When the metadata is not available, we define the network as

G = (V,E), and call it a homogeneous network.

1.2. Inference in homogeneous networks

The most common task of inference in homogeneous network is to find labels of nodes.

For example, in a balanced 2-way partition problem, we split the graph into two equal

size components while minimizing the number of edges between these two component.

However, the inference problems are usually intractable, and scalable algorithms must rely

on relaxations of the original inference problem. The majority of the existing algorithms

can be categorized into two groups: generative model based approaches and optimization

based approaches. In the fields of applied physics and statistics, inference problem in

network is usually put into a probabilistic framework [1] [2] [3] [4]. To infer the role of a

node, Bayesian inference is used to calculate the posterior probability of the node. While

the majority of research in the fields of applied physics and statistics assumes that there

are some underlying stochastic processes for the observed network, studies in the field

of computer science hold a different view towards the observed network. The observed
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network is treated as a fixed input in many research in computer science domain, and

the inference problem is then modeled as an optimization problem [5] [6] [68]. Instead of

using a probabilistic model to describe the relationship between node labels and network,

these approaches associate node labels and network structure via a loss function other

than likelihood function.

1.3. Challenges and opportunities of making inference in heterogeneous

networks

As discussed previously, many approaches have been developed for the analysis of

homogeneous networks by leveraging structure information, such as adjacency matrix,

in the network. For heterogeneous network, the metadata presents new challenges and

opportunities for making inference in the network.

First, when node attributes are observed, successful inference algorithm should com-

bine information about the neighborhood of the node, e.g., the adjacent nodes of the

centered node, as well as the attributes of the node. These two sources of information are

both informative with respect to the role a node plays. Second, in homogeneous networks,

a binary variable {0, 1} can represent the relation between a pair of nodes. However, the

existence of dyadic attributes in heterogeneous networks provides extra information about

the strength of the connection between a pair of nodes, and this should be considered when

making inference. Third, the attributes and the structure of the network are entangled.

For example, in a social network, people who share similar interests are more likely to

make friends and on the other hand, when two people are friends, they are more likely
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to develop similar interests in return. The interaction between attributes and topology of

the network could play an important role in some inference problems.

1.4. Thesis overview

In this dissertation, we study how to efficiently use the node attributes and the dyadic

attributes to solve inference problems in heterogeneous networks. In chapter 2, we study

community detection problem in annotated network. By realizing that the diversity of

node types gives rise to the diversity of dyadic attributes, we present an algorithm that

is advantageous due to its ability to integrate node attributes and dyadic attributes to

detect communities. From theoretical perspective, we derive the theoretical detectability

threshold and show that our algorithm can detect community all the way down to the

theoretical limits. We also test our algorithm on synthetic networks.

In chapter 3, we model fraud detection problem on a consumer-merchandise trans-

action network as a semi-supervised classification problem within Markov random field

framework (MRF). By combining belief propagation algorithm, which calculates the pos-

terior of nodes in MRF efficiently, and Bayesian optimization, which iteratively estimates

hyper parameters, such as node prior and edge potential, we develop a data driven ap-

proach that automatically leverages the transaction information to solve semi-supervised

learning problem on networks.

In chapter 4, we introduce asymmetric deepwalk that is capable of dealing dyadic at-

tributes in network representation learning. Our method is motivated by the observation

that both community detection in labeled stochastic block model and asymmetric deep-

walk are equivalent to implicit matrix factorizations. By proposing a weights updating
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procedure to bias the random walk sampling in deepwalk, we show that when choosing

the window size of our algorithm to be one, our algorithm implements labeled stochastic

block model. We also test our algorithm on synthesis data and real-world networks.

In Chapter 5, we conclude this dissertation by summarizing its contributions, as well

as suggest potential future work.
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CHAPTER 2

Community Detection in Hierarchical Networks with Node

Attributes

2.1. Introduction

Community detection is one of the critical issues for understanding social networks.

For many real-world networks (e.g. Facebook, Twitter), in addition to the pure topology

of the networks, information about node attributes is available as well. Even though

different sources of information (topology and node attributes) about social networks

can be collected, the node attributes and the structure of networks are often interpreted

separately in the research. Usually, the community detection approaches have only fo-

cused on the pure topology of the social networks, while on the other hand, the detection

of clusters has primarily relied on node attributes. The partial use of data is tremen-

dously inefficient. Sometimes, especially when the network is sparse, algorithms which

are incapable of integrating multiple data sources are often paralyzed and unsuccessful

in recovering community structure. It is of great interests to study how to leverage the

topology features and the node attributes to improve the performance of the algorithm.

Several papers address community detection with node attributes under the assump-

tion that the observed node attributes are highly correlated with community structures.

More specifically, the previous studies assume that individual nodes are more densely con-

nected and share similar node attributes within the same community, which is shown in
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Figure 2.1. Nodes attributes are correlated with community structures.
Two circles represent two communities and different colors represent dif-
ferent node attributes.

Figure 2.1. To explore the correlation between node attributes and community structure,

the two main approaches are heuristic measure-based models and probabilistic inference-

based models. The heuristic measure-based model combines topology structure and node

attributes via a heuristic function which describes the relationships between community

structures and node attributes. There are several studies that fall into this category. L.

Akoglu et al. [7] proposed a parameter-free identification of cohesive subgroups (PICS) in

attributed graphs by minimizing the total encoding costs. Y. Zhou et al. [8] proposed SA-

Cluster based on structural and attribute similarities through a unified distance measure.

The probabilistic inference-based approach usually assumes that the networks are gener-

ated by an underlying stochastic processes, hence uses probabilistic generative models to

combine both topology and attributes. J. Yang et al. [15] developed Communities from

Edge Structure and Node Attributes (CESNA) for detecting overlapping network commu-

nities with node attributes. In the CESNA model, the links are generated by process of
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BigCLAM and node attributes can be estimated by separate logistic models. B.F. Cai et

al. [10] proposed a popularity-productivity stochastic block model with a discriminative

framework (PPSB-DC) and Y.Chen et al. [11] adopted a Bayesian perspective and de-

veloped Bayesian nonparametric attribute (BNPA) model that automatically determines

the number of communities.

The above studies all assume that communities are correlated with node attributes.

This assumption agrees with the results shown by many studies: social ties are not made

randomly but constrained by social position and attributes of individuals [12] [13]. Thus,

the groups identified by community detection algorithms are correlated with other net-

work features, such as node attributes. However, some more recent studies [14] [15] have

suggested that in large real-world networks, communities and node attributes could be

uncorrelated. Therefore M. Newman and A. Clouset [16] developed an approach without

assuming correlation. Their method automatically learned whether there was a correla-

tion between the node attributes and the community assignments. When the correlation

is strong, their algorithm efficiently use information from both sources to detect com-

munity, otherwise, it only explore the topology to extract community structures. Even

though this approach does not depend on the assumption of correlation between node

attributes and community structures to recover communities, the extra gain of detection

accuracy of this algorithm when knowing the node attributes, just like other methods

mentioned above, depends on the correlation between community and node attributes.

In this dissertation we propose an approach that allows us to go beyond the correlation

between communities and node attributes. The intuition here is that node attributes not

only provide individual level information but also induce dyadic attributes, as shown in
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Figure 2.2. Edges with different dyadic attributes could convey different information on

proximity, which is especially true when there are hierarchical structures induced by node

attributes; in other words, nodes with same attributes are more densely connected to each

other even within the same community.

Figure 2.2. Node attributes induce dyadic attributes

To capture this insight, we develop a new way of modeling the relationship between

attributes X, communities F, and graph G. In Figure 2.3, we illustrate several different

approaches to model the stochastic relationship between attributes X, communities F,

and graph G. Figure 2.3 (a) shows the stochastic relationship in cluster analysis, which

assumes that individuals in the same group have similar attributes. Figure 2.3 (b) shows

the way of modeling in community detection, the assumption of which is that nodes are

densely connected within the same community. When both the node attributes and the
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Figure 2.3. Ways of modeling the stochastic the relationship between node
attributes X, communities F and graph G. Circles represent latent commu-
nity assignment and squares represents observed variables. (a) schematic
diagram for modeling the relationship between node attribute X and com-
munities F in cluster analysis; (b) schematic diagram for modeling the rela-
tionship between graph G and communities F in community detection; (c)
schematic diagram for modeling the relationship among node attribute X,
communities F, and graph G in CESNA and BNPA [11] [15]; (d) schematic
diagram for modeling the relationship among node attribute X, communi-
ties F, and graph G in PPSB-DC and the approach proposed by M. Newman
and A. Clouset [10][16]; (e) schematic diagram for modeling the relation-
ship among node attribute X, communities F, and graph G in our approach

network are available, Previous research has explored two possible ways to model the

stochastic relationship. Figure 2.3 (c) shows the framework in CESNA and BNPA [11]

[15] , which assume that communities generate both the network as well as attributes.

Figure 2.3 (d) shows the alternative way of modeling the stochastic relationship: PPSB-

DC and the approach proposed by M. Newman and A. Clouset[10] [16] assume that the

communities can be predicted based on the attributes and then the network are generated

based on the communities. Mathematically, the generative model in Figure 2.3 (d) can be
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written as P (G,F,X) = P (G|F )P (F |X)P (X). It is clear that neither model will recover

community with more accuracy when attributes X and communities F are not correlated

with one another.

In this dissertation we construct a generative model that is able to capture the rela-

tionship between node attributes X and graph G, which is shown in Figure 2.3 (e). The

generative model then takes the following form: P (G,F,X) = P (G|F,X)P (F |X)P (X).

This model is motivated by the observation that the diversity of node attributes leads to

the diversity of dyadic attributes. We can then leverage these dyadic attributes to explore

the hierarchical structures in the network, which are common in many real-world networks

[18]. By leveraging the dyadic attributes to explore the local structures induced by the

node attributes, our algorithm achieves better performance. When such local structure

does not exist, our algorithm will just capture the topology information of the networks.

The resulting method has two attractive features. First, it can use the information about

node attributes in two different ways and improve the accuracy of community detection

even when node attributes and community are uncorrelated. More specifically, the algo-

rithm explores both the correlation between node attributes and community structures

and information about dyadic attributes induced by node attributes. Second, it neither

assumes correlation between community and node attributes nor existence of hierarchical

structures within community, and therefore the method is flexible enough to deal with

different situations.

Another important problem of interest is to understand the extent to which the extra

information about node attributes will improve performance, especially when communities

and node attributes are not correlated. Here we are focusing on the detectability threshold
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of community structure, which is also known as phase transitions. E. Mossel et al. [19]

proved that there exists a phase transition in the detectability of communities for two equal

size communities in the stochastic block model. S. Heimlicher et al. [21] investigated

the phase transition phenomena in the more general context of the labeled stochastic

block model and derived the corresponding detectability threshold. A. Ghasemian et

al. [22] studied the detectability threshold in the dynamic stochastic block model. In this

dissertation, we derive the detectability thresholds for community structure in hierarchical

network with node attributes.

2.2. Model

The stochastic block model (SBM) is a classic probabilistic generative model for com-

munity structure in static networks [23] [24] [25]. In this dissertation, to combine the

information about the node attributes and the network structure, we implement the mod-

eling that shown in figure 2.3 (e) within the framework of the SBM.

Before discussing the details of our way of modeling, we formally define a network with

node attributes. This is a special case of a heterogenous network where the attributes are

only observed along with nodes.

Definition 2.1. A network with node attributes is defined as G = {V (X), E}, where

V is the set of nodes and E is the set of edges in the graph. For a node vi, a set of p

random variables x1, x2, . . . , xp are observed on the node. We use vi(x) to represent the

node with node attributes x = {x1, x2, . . . , xp} and denote the attributes of node vi as xvi.

Next, we describe how to model a network with node attributes G = {V (X), E}

within the framework of the SBM. We call this model the SBM with node attributes. For
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simplicity, we assume that node attributes X can be treated as a categorical variable,

whose value is from 1 to R. Denote the number of nodes in category r by nr. To generate

the community structure, the SBM with node attributes first assigns each node to a

community (group) based on its node attributes and then generates edges between nodes.

More specifically, a node vi(r) is assigned to community k with probability qk,r. Given

the community assignments and node attributes of every nodes, we then generate the

edge between node i and node j according to a Bernoulli distribution with probability

P{ki,rvi},{kj ,rvj }, where ki is the community assignment for node i, rvi is the node attributes

for node vi. Since r is a categorical variable, to simplify the notation we denote rvi by

ri without ambiguity, and denote P{ki,rvi},{kj ,rvj } by P{ki,ri},{kj ,rj}. P{ki,ri},{kj ,rj} is the

probability of forming an edge between a node from community ki with attributes ri and

a node from community kj with attributes rj. The full likelihood of graph under the the

SBM with node attribute is

(2.1) P (E, {k}|X,α) = (
∏
i

qki,ri)(
∏
i,j∈E

P{ki,ri},{kj ,rj}
∏
i,j /∈E

(1− P{ki,ri},{kj ,rj})),

where {k} is the community assignments of the nodes and α is the parameters (qki,ri and

P{ki,ri},{kj ,rj}) in the SBM with node attributes. Since P{ki,ri},{kj ,rj} = O( 1
n
), sometimes

it is easier to work with the rescaled matrix defined by c{ki,ri},{kj ,rj} = nP{ki,ri},{kj ,rj}.

By modeling the generative process of the graph in this way, we are able to capture the

interaction between node attributes and community structure at the primary community

level and the sub-community level, which is illustrated in Figure 2.4. Figure 2.4 represents

the adjacency matrix generated by the SBM with node attributes, where white dots

represent edges. The red squares denote the community structures we aim to recover and
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the nodes within the same red square are in the same community. The green squares

denote the sub-communities induced by node attributes, and the nodes within the same

green square are in the same community and with the same node attribute.

Figure 2.4. Heat map of an adjacency matrix generated by the SBM with
node attributes, red squares represent two primary communities, green
squares represent sub-communities induced by node attributes.

For the subsequent analysis of detectability thresholds, we will focus on the choice

of uniform prior qk,r = 1
K

, since we are interested in the detectability threshold when

node attributes are not correlated with communities. We will also limit ourselves to an

algorithmically difficult case of a block model where every group k has the same average

degree conditional on the type of edge:

(2.2) cab =
nb
K

∑
K2

P{k,a},{K2,b} for all k.
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If this is not the case, the reconstruction can be achieved by labeling nodes based on their

degrees.

2.3. Detectability threshold in SBM with node attributes

The best-known rigorous detectability threshold in the SBM has been derived by

E. Mossel et al. [19]. Define the sparse partition model (SPM) , a special case of the

SBM, to be a graph where the probability of forming an edge within community is p,

and the probability of forming an edge between communities is q, and p > q > 0. We

denote the SPM of n nodes and K communities by SPM(n,K, p, q). The clustering of two

communities is solvable in polynomial time if n(p− q)2 > 2(p+ q). However, for K ≥ 3 it

is still an open problem to find a rigorous detectability threshold in the SBM. The Kesten-

Stigum (KS) threshold in statistical physics can be treated as a non-rigorous threshold for

K ≥ 3 [27] [28]. Let G be generated by SPM(n,K, p, q) and define SNR =
√
n|p−q|√

K(p+(K−1)q)
.

When SNR > 1, the clustering problem is solvable and the KS threshold can be achieved

in polynomial time. In the sparse regime, |E| = O(n), the graph generated by the SBM

is locally treelike in the sense that all most all nodes in the giant component have a

neighborhood which is a tree up to distance O(log(n)). Therefore, the threshold for the

reconstruction on a tree generated by a branching process can provide good insight into

the reconstruction on the SBM.

As mentioned before, our method is motivated by the observation that the variety

of node labels induces the diversity of dyadic attributes. To generalize the detectability

threshold to a network with dyadic attributes, we can model the generating process of
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the tree with a multi-type branching process. By defining a Markov chain on the tree, we

can derive the construction threshold on the SBM with node attributes.

Figure 2.5. An example of the multi-type branching process. There are 4
types of edges: {(a, a), (a, b), (b, b), (b, a)} induced by two types of nodes
{a, b}. The number of offsprings for each type of edge is shown in the table,
where the row name represents the parent edge the column name represent
child edge name.

To construct the multi-type branching process, we first convert node attributes to edge

labels such that we can label the edges in a branching process. More specifically, we label

an edge by the attributes of the nodes at its two ends. When an edge in the tree has dyadic
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attributes (a, b), where a is the attribute of the parent node that is closer to the root, b

is the attribute of the child node, and the values of aandb are from 1 to R, we then label

the edge as L{(a, b)}. There are R2 different types of edges. To represent the branching

process in a matrix format, we map a 2-tuple (a, b) to a scalar (a− 1) ∗R+ b so that we

can also label the edge with dyadic attributes (a, b) as L{(a− 1) ∗R+ b}. Let the R2 ∗R2

dimensional matrix D be the matrix that describes the expected number of children of the

multi-type branching process, where dij is the expected number of the type L{i} offspring

edges of a type L{j} edge. For example, when there are two types of node attributes

{a, b}, we will have four types of edges in the network: {(a, a), (a, b), (b, b), (b, a)}. The

corresponding branching process and the matrix D is illustrated in Figure 2.15. We can

see that, for example, a type (a, a) edge will give birth to type (a, a) and type (a, b) edges.

More generally, by noting that a type L{a1, b1} edge will give birth to type L{a2, b2} edges

if and only if b1 = a2, the matrix D takes following form

dij =


0, if x 6= z(2.3a)

cxy, if otherwise,(2.3b)

where x = [ i−1
R

] + 1 and y = i− [ i−1
R

] and z = j − [ j−1
R

].

When moving outward on a type L{(a, b)} edge, the K∗K stochastic transition matrix

σ that describes the transition probability associated with the edge can be defined as:

(2.4) σk1k2ab =
nb

K
P{k1,a},{k2,b}

cab
.

The largest eigenvalue for the K ∗K stochastic transition matrix σ is 1 and let the second

largest eigenvalue be λab. Define mij in the R2 ∗ R2 matrix M1 as dij ∗ λ2[ i−1
R

]+1,i−[ i−1
R

]
.
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The robust reconstruction is possible when the value of largest eigenvalue for matrix M1

exceeds 1 [20] [22].

2.4. Belief propagation

To recover the community assignments in the SBM with node attributes, we apply

Bayesian inference to learn the posterior distribution of the latent community assignments

{k} of all of the nodes in the network. For fixed parameters α, the posterior is:

(2.5) P ({k}|E,X, α) =
P (E, {k}|X,α)∑
{k′} P (E, {k′}|X,α)

.

However, the function is too complex to compute directly since
∑

k′ P (E, {k′}|X,α) runs

over exponential number of terms. Traditionally, the posterior distribution is approxi-

mated via Markov chain Monte Carlo (MCMC) methods. However, for sparse networks,

it is more desirable and efficient to use variational Bayesian inference methods [26]. The

key idea in variational Bayesian methods is to approximate the posterior distribution with

a simpler family of distribution β that minimizes Kullback-Leibler (KL) divergence to the

posterior distribution:

(2.6) Dkl(β||P ({k}|E,X, α)) = −
∑
{k}

β({k}) log
P ({k}|E,X, α)

β({k})
.

In the sparse graph regime, the |E| = O(n), the graph is locally treelike. Inspired by

this observation, we restrict posterior P ({k}|E,X, α) to

(2.7) β({k}) =

∏
ij∈E βij(ki, kj)∏
i βi(ki)

di−1
,
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where βi(ki) is the one-node belief, which obeys
∑

ki
βi(ki) = 1, and βij(ki, kj) is the

two-node belief, which obeys
∑

kj
βij(ki, kj) = βi(ki). It has been shown [30] that β({k})

is exact for a single-connected graph (a tree), and can be efficiently calculated by a belief

propagation algorithm. For sparse graphs, we shows that BP is an optimal algorithm in

the sense that it can reach the detectability thresholds for the SBM with node attributes.

When parameters α are unknown, we can apply expectation-maximization algorithm

to calculate the posterior distribution iteratively while estimating parameters for each

iteration.

To write the belief propagation equation, we define the conditional marginal proba-

bility, denoted as ψi→jki
, which is the probability that node vi belongs to group ki in the

absence of node vj. We can compute the messenger from vi to vj as:

(2.8) ψi→jki
=

1

Zi→j qkiri
∏
l∈∂i\j

[
∑
kl

cAil

{kl,rl},{ki,ri}(1−
c1−Ail

{kl,rl},{ki,ri}

n
)ψl→iki

],

where Ail is the (i, l)th element in the adjacency matrix for the graph generated by a SBM

with node attributes, ∂i denotes all the nodes connected to vi and Zi→j is a normalization

constant ensuring ψi→jki
to be a probability distribution. The marginal probability ψiki can

be calculated as:

(2.9) ψiki =
1

Zi
qkiri

∏
l∈∂i

[
∑
kl

cAil

{kl,rl},{ki,ri}(1−
c1−Ail

{kl,rl},{ki,ri}

n
)ψl→iki

],

where Zi is a normalization constant ensuring ψiki to be a probability distribution. In

the SBM with node attributes, we have interactions between all pairs of nodes, which

implies that we have n(n − 1) messengers to update for one iteration. To reduce the
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computational complexity to O(n), we follow previous work [4]. At the cost of making

O( 1
n
) approximation to the messenger, the messenger from vi to vj can be calculated as:

(2.10) ψi→jki
= ψiki ,

when there is no edge between vi and vj. To calculate the messenger on edges, we introduce

an external field such that the messenger from nodes vi to vj on a pair of connected nodes

can be approximated as:

(2.11) ψi→jki
=

1

Zi
qkirie

−hkiri
∏
l∈∂i

[
∑
kl

c{ki,ri},{kl,rl}ψ
l→i
ki

],

where the external field hkiri can be defined as:

(2.12) hkiri =
1

n

∑
l

∑
kl

c{ki,ri},{kl,rl}ψ
l
kl
.

It is worth noting that ψi→jki
= qkiri is a fixed point, a local optimal solution, to equation

(2.6).

2.5. Phase transitions in BP and simulations

In this section, we will study the stability of the fixed point under random perturba-

tions. As discussed above, in the sparse regime, the graph generated by the SBM with

node attributes is locally treelike. Here consider such a tree with d levels, and define a node

at level i as mi. On a single leave md, the fixed point is perturbed as ψmd
kmd

= qkmd
rmd

+εmd
kmd

,

where εmd
kmd

is i.i.d. random variable. Then the influence of the perturbation on the leaf

md to the root m0 can be calculated as:

(2.13) εm0 =
∏
{ab}

T dabab ε
md ,



34

where dab is the number of type L{(a, b)} edges on the path from the leave md to the root

m0 and T ab is the transfer matrix for type L{(a, b)} edges. By following the calculation

in [4], the transfer matrix can be defined as:

(2.14) T k1k2ab = qk1a(kσ
k1k2
ab − 1).

As d → ∞, and dab → ∞, εm0 ≈
∏

all{ab} υ
dab
ab ε

md , where υab is the largest eigenvalue for

T ab. Now let us consider the variance at root m0 induced by the random perturbation on

all leaves at level d. Since the influence of each leaf is independent, the variance of the

root can be written as:

(2.15) V ar(εm0) =
∑

all the path (r∼md)

∏
{ab}

υ2dabab V ar(εmd).

When the variances on leaves are amplified exponentially, the fixed point is unstable

and the BP algorithm is able to recover the community structures with high probability,

otherwise the perturbation on leaves will vanish and the fixed point is stable under BP

algorithm. From equation (2.15), when εmd is i.i.d., to determine the phase transition

in BP, it is sufficient to calculate Zd =
∑

allthepath(r∼md)

∏
all{ab} υ

2dab
ab . This calculation

can be done by viewing this summation as a weighted multi-type branching process. By

constructing a multi-type branching process with Poisson distribution with mean cab if

the parent-child edge in the corresponding multi-type branching process belongs to type

L{(a, b)}, the expected values of the variance at level d can be calculated as:

(2.16) E(Zd|m0) = 1TMd
2 em0 ,

where the (i, j)th element of M2 is cijυ
2
[ i−1

R
]+1,i−[ i−1

R
]
, em0 is an R2-dimensional unit vector

with the rth element equal to 1, and r is the node attribute type of the root node m0.
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When the largest eigenvalue of M2 exceeds 1, the fixed point of BP is unstable and the

community is detectable. Since λab = υab, it turns out that M1 = M2, which implies that

when the reconstruction of community is possible, BP is able to detect the community

structure. Therefore, BP is an optimal algorithm in the sense that it can reach the

detectability threshold in the SBM with node attributes.

Next, we calculate the detectability thresholds for the SBM with node attributes

under two circumstances: using the information about node attributes, or ignoring the

node attributes. We should notice that when node attributes and community structures

are uncorrelated, all previous approaches fail to use information about node attributes and

only extract information from the topology of the network. For the illustrative purposes, in

the following discussion, we will limit ourselves to the case where communities are of equal

size and node attributes are uncorrelated with community assignments. Mathematically,

this implies that nr = n
R

, qki,ri = 1
K

, and C{ki,ri},{kj ,rj} takes the following forms

(2.17) c{ki,ri},{kj ,rj} =



a if ki = kjand ri = rj

b if ki = kjand ri 6= rj

c if otherwise,

where a ≥ b ≥ c. For the SBM with node attributes, the community is detectable if and

only if

(2.18) ξ1 =
(a− c)2

a+ (K − 1)c
+ (R− 1)

(b− c)2

b+ (K − 1)c
> KR.
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For the SBM ignoring information about node attributes, the community is detectable if

and only if

(2.19) ξ2 =
(a+ (R− 1)b−Rc)2

a+ (R− 1)b+ (K − 1)Rc
> KR.

By noticing that

(2.20)
ξ1
ξ2
− 1 = (f1 − f2)2/f2 + (f1 − f2)2/(1− f2),

where f1 = (a− c+ cK)/(a− c+ cK+ (R−1)(b− c+ cK)) and f2 = (a− c)/(a− c+ (R−

1)(b − c)). Since 0 ≤ f1, f2 ≤ 1, equation (2.20) is the Pearson’s chi-square divergence

between f1 and f2, hence ξ1 ≥ ξ2. So far, we have shown that, even in the situation

where the observed node attributes are uncorrelated with communities, including node

attributes into model will give us more information about communities.

We conduct the following simulation to verify the phase transition in BP. For sim-

plicity, considering only two communities and two types of nodes, we generate a series

of graphs by the SBM with node attributes for 4000 nodes and various choice of (a, b, c)

when controlling average degree to be 5. We use η = a
b

to represent different choices of

(a, b) and ε = c
b

to represent the strength of communities. When ε = 0 the clusterings

are maximally strong while at ε = 1 the clusterings are weak. The performance of the

algorithm is measured by the overlap metric, a normalized accuracy metric introduced

by [4]. A large value of overlap implies good performance.

In Figure 2.6, we plot overlap against ε for different values of η, and for each curve we

use a vertical dashed line in the same color as its corresponding detectability threshold.

Figure 2.6 shows that BP can recover communities that are positively correlated with
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Figure 2.6. Overlap as a function of ε for various values of η. Dash lines
mark the theoretical detectability thresholds for the choice of (ε, η).

true communities all the way down to the detectability thresholds for various choice of

(ε, η). The algorithm has larger overlap with smaller ε.

In Figure 2.7, we compare our algorithm with the algorithm proposed by M. Newman

and A. Clouset [16] in the synthetic network with η = 3.5. Since there is no correlation

between community and node attributes, the algorithm proposed by M. Newman and A.

Clouset tends to ignore the information carried by node attributes. It is no surprise that

their algorithm can only recover meaningful community down to the detectability thresh-

old ξ2 derived in equation (2.19), represented by the blue dashed line in figure 4. In the
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Figure 2.7. Comparison between the performance of our algorithm (algo-
rithm 1) with the performance of the algorithm in [16] (algorithm 2).

same setting, our algorithm can detect community all the way to the detectability thresh-

old ξ1 derived in equation (2.18), represented by the red dash line. The fact that our algo-

rithm does better when there is hierarchical structures induced by node attributes in com-

munities suggests that in hierarchical networks we should model the stochastic relationship

among node attributes, community and graph as P (G,F,X) = P (G|F,X)P (F |X)P (X)

to capture information about node attributes and dyadic attributes induced by node

attributes.
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2.6. Conclusion

In this dissertation, we propose the SBM with node attributes to model the stochastic

relationship among node attributes, community and graph. Our model leverages both

the information about the correlation between the node attributes and the community

structures, and the information about the dyadic attributes induced by node attributes

to recover community, hence leads to better performance in the hierarchical networks.

We have derived a theoretical detectability threshold for the SBM with node attributes,

which coincides with phase transition in BP. We also conduct a numerical analysis of

the phase transition in BP. When restricted to the SBM of two symmetric communities

and two types of nodes, we compared our algorithm with the algorithm proposed by M.

Newman and A. Clouset. The result is sufficient to illustrate how the information about

node attributes affects detectability even when the node attributes are not correlated with

communities.

A natural extension will include edge contents and dynamic settings into the model.

Our approach can be applied to this case by including different type of edges (temporal

edges and static edges) into the multi-branching process. On the theoretical front, it has

been conjectured [19] that, for K ≥ 5, there is a regime that the clustering problem is

solvable but not in polynomial time. Emmanuel Abbe and Colin Sandon [29] developed a

non-efficient algorithm shown to break down KS threshold at K = 5 in SBM. As a future

work, we will try to develop an algorithm that can break down the detectability threshold

in our model for large numbers of groups.
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CHAPTER 3

Graph Mining Assisted Semi-supervised Learning for

Fraudulent Cash-out Detection

3.1. Introduction

Financial fraud has been increasing with the prevalence of modern technologies, re-

sulting in hundreds of billions of dollars of loss each year [32] [33]. There are many types

of financial fraud and credit card fraud alone costs financial institutions billions of dollars

annually [34].

Fraudulent cash-out is a new type of credit card fraud appearing in China, which

involves the use of credit cards at point-of-sales (POS) machines and third-party online

payment systems. Before discussing what is a fraudulent cash-out transaction, we will first

introduce the mechanism of a standard credit card transaction. There are three parties

in a typical credit card transaction: a cardholder (consumer), a merchant, and the bank

issuing the credit card. In a normal transaction, the cardholder gets products or services

from the merchant, and in return, the merchant receives fund from the bank, then the

bank posts the transaction on the cardholder’s account and requires the cardholder to

payback later. However, in fraudulent cash-out transactions, merchants and cardholders

collude to game the bank system and obtain illegal gains from the bank. More specifically,

in a typical fraudulent cash-out transaction, a merchant with POS machines fabricates

fictitious transactions for a cardholder. Therefore, rather than receiving goods in the
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transaction, the cardholder receives cash directly from the merchant instead. During

the process, the merchant usually takes a small percentage of the total transaction as

commission fee, while the cardholder enjoys an interest free “loan” for a period of up to

56 days while avoiding the need to pay high-interest payments on legal cash advances on

their credit card. Moreover, by engaging in a fraudulent cash-out, a cardholder can obtain

funds up to his/her credit limit, unlike cash advances, which typically have lower ceilings.

For example, in a fraudulent cash-out transaction, a merchant may fabricate a transaction

of selling two laptops for 3000 dollars to a cardholder whose cash advance limit is only 600

dollars. However, instead of obtaining two laptops, the cardholder receives 2900 dollars

cash from the merchant, which is far more than his/her cash advance limit. On the other

hand, in this transaction, the bank transfers 3000 dollars to the merchant without realizing

the cardholder has cashed-out almost 3000 dollars, and without collecting corresponding

interests payments. A schematic diagram of fraudulent cash-out is shown in Figure 3.1.

In this dissertation, we are especially interested in detecting fraudulent merchants so that

financial institutions can regulate these merchants directly.

Fraudulent cash-out has wide reaching consequences in financial institutions and card-

holders. It costs financial institutions millions of dollars annually. Traditional detection

approaches rely on manual techniques which are inefficient and not scalable. Data min-

ing based fraud detection algorithms, by recognizing patterns in transactions, have been

proven to be useful in many real-world cases [35]. However, fraudulent activities also

have been evolved to game the detection algorithms [36]. As such, the detection methods

must improve accordingly.
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Figure 3.1. The schematic diagram of fraudulent cash-out. Solid line rep-
resents the process of a normal transaction and dash line represents the
process of fraudulent cash-out. [31]

There are many obstacles to these improvements and innovations of fraudulent de-

tection algorithms. First, there is a dearth of scholarly publications on credit card fraud

[37] due to the difficulties for academics to obtain credit card transaction data. Without

so little literature, it is difficult to exchange ideas among academics or make innovations.

Second, the transaction data is complex by its nature. Even though fraud detection can
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be considered as a classification problem in machine learning, there is an imbalanced

number of fraudulent and legitimate transactions, and different costs for misclassification.

Another difficulty with analysis of the transaction dataset is that perpetrators, both the

cardholder and merchant, usually carry more than one fraudulent cash-out fraud [38].

Instead of analyzing these frauds independently, a successful method should integrate the

information.

Previous studies on data mining-based fraud detection can be categorized into four

types [39]:

• Supervised learning methods, such as logistic regression, SVM, as well as neural

networks [40] [41] [42] are applied on the labeled data.

• Hybrid methods that combines supervised learning methods in sequential fashion

for the labeled data [43],[44].

• Semi-supervised learning methods that generalize machine learning algorithms,

such as SVM, to the partially labeled data[45] [46].

• Unsupervised learning algorithms relying on graph mining and link analysis have

been proven successful in detecting anomalies in the unlabeled data [47]. How-

ever, graph mining approaches are under-rated in fraud detection research [48].

To detect fraudulent merchants in our problem, inspired by the fact that two parties,

both merchants and consumers, collude on the fraudulent cash-out transaction, it is natu-

ral to model the fraud detection problem as a semi-supervised node classification problem

in a bipartite network. More specifically, in this dissertation, we model the detection

problem within the Markov random field (MRF) framework, which is discussed in section
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3.3, and study how to combine the topology of the network and the information of transac-

tion patterns to detect fraudulent merchants. In the previous studies [55] [56], the MRFs

were also applied to solve the node classification problem in bipartite networks where the

reputation scores of one party and the partial labels of another party were available. The

reputation score was first calculated in a supervised learning manner independently of the

assumption of the MRF model and then used to construct node potentials in the MRF.

The parameters of edge potentials in the MRF were predetermined by the researchers’

domain knowledges instead of being estimated by a data-driven method. However, in

our problem, neither the reputation score nor the domain knowledge of edge potential

is available. To handle these challenges, we hybridize Belief Propagation (BP), which

works well in solving inference problem in unlabeled networks, and Bayesian optimiza-

tion, which is used to learn parameters in the MRF, to develop a robust semi-supervised

learning method. More specifically, our algorithm tunes the prior for nodes and estimate

parameters of edge potential in the MRF by applying Bayesian optimization under the

semi-supervised learning settings. Therefore, the algorithm infers the labels of the un-

known nodes without requiring any prior knowledge or reputation scores of nodes. The

algorithm complements existing fraud detection algorithms when any prior knowledge of

node or reputation score is available. Our main contributions are as followings:

• Formulating the fraudulent cash-out detection problem as a graph mining and

semi-supervised learning problem, where transaction information is embedded in

edge potential.

• Using both the labeled and unlabeled data to develop a robust algorithm. Bayesian

optimization is applied in the algorithm to tune the parameters in the MRF. Our
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method leverages the information about the network and the information about

the labeled data, and therefore performs well.

• Evaluating our algorithm on JingDong (JD) Finance dataset. The performance

shows that our algorithm is efficient, effective and scalable.

3.2. Data

The performance of the model is evaluated with real-world data from JD Finance.

JD is one of the largest business to consumer (B2C) platforms in China with 1.6 billion

transactions and 222.6 million active users in 2016. The data is stored and analyzed

on JD’s server. All sensitive fields in the data is encrypted and no personal identifiable

information is accessible. A summary of the experiment data is shown in Table 3.1.

The degree distribution of transactions for consumers and shops are shown in Figure

3.2 a and Figure 3.2 b correspondingly. The log-log plot suggests that the number of

transactions has a heavy-tailed distribution. Like many other real-world networks, the

degree distribution for shops exhibits the power law property. A summary of descriptive

statistics of the data is shown in Table 3.1. Some sensitive statistics are marked as NA.

Table 3.1. Descriptive Statistics of the experiment data

labeled Unknown Sum

User NA NA 230238

Merchant 7582 193707 201289

Transaction 0 2913471 2913471
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Figure 3.2. (a) Distribution of number of transactions for consumer (log-
log). (b) Distribution of number of transactions for shop

3.2.1. Transaction

JD provides purchase-on-credit service for its consumers since Feb, 2014. The credit-card-

like service enables consumers to purchase products on JD without instant payment and

to repay the bill later. We use the terms cardholder and consumer interchangeably in

different contexts. We obtained data on a sample of 2.91 million of offline purchase-on-

credit transactions of JD users. Data on the transaction contains userID, merchantID,

transaction amount, and trade status (succeeded or rejected). These transactions were

made by 230, 238 users at 201, 289 shops. The data we present in this paper is only from

a small proportion of all JD’s transactions. In the practical application of the model, JD

Finance will use its complete dataset.



47

3.2.2. labeled data

Users in the dataset are marked as fraudulent or unknown, while merchants are labeled

as good, fraudulent or unknown. Both the fraudulent consumers and the fraudulent

merchants are confirmed and marked by JD’s agents manually. The agents are trained

professionally to identify suspicious transactions and make phone calls to confirm. The

marked fraudulent users usually have suspicious online behaviors. Notably, no users are

marked as good users. This is because in China, the credit score system has not been

well developed yet and the cost of delinquency for cardholder is relatively low. As a

consequence, it is hard to tell whether a good consumer will turn into a fraudulent one in

the near future. However, on the other hand, the cost of making fraudulent transactions

for a shop with a good reputation is much higher. Therefore we are confident in labeling

shops with a good reputation as good in the sampled data.

3.3. Method

In this section, we formalize the fraudulent cash-out detection problem into a semi-

supervised network learning problem and discuss the methodology.

3.3.1. Problem statement

After introducing our goal and dataset, we formally define our problem as follows. Given:

• An undirected bipartite Graph G = (Vc, Vs, E) where vertices ic in the set Vc,

represents consumers and vertices js in set Vs represents shops, and E corresponds

to the transactions among Vc and Vs.
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• The binary label X ∈ {−1, 1} observed over a subset V l
s of Vs and label X = 1

over a subset V l
c of Vc, where X = 1 corresponds to fraudulent status

• The frequency of transactions between vertices ic and vertices js and the amount

associated with the transactions.

Output: marginal probability P (Xjs = 1) for vertices js in Vs, or the probability of a shop

involved in fraudulent cash-out transaction.

In general, the task of labeling vertices in a graph is NP-hard. The MRF model

provides an attractive theoretical model for this problem. In detail, we can model the

joint probability of vertices as

(3.1) P{X} =
1

Z

∏
js∈Vs

φ(Xjs)
∏
ic∈Vc

φ(Xic)
∏
i,j∈E

ψicjs(Xic , Xjs),

where the compatibility function ψicjs is also called the edge potential, the function φ is

the node potential, and Z is a normalization constant. More specifically, node potential

φ(Xic) and φ(Xjs) reflect our prior guesses of consumer ic and shop js being fraudulent,

and ψicjs(Xic , Xjs) reflects the strength of homophily effects. To be more specific, math-

ematically, homophily implies that the value of ψicjs(Xic , Xjs) is larger when Xic = Xjs .

The inference problem in a network is still NP-hard [49] even under the assumption of

the MRF model. However recent developments of the Belief propagation (BP) algorithm

can be used to solve the inference problem on graph in several different domains [50] [51]

[52], including our context, where we are able to label vertices by passing messengers

along the edges. Mathematically, the messenger is updated by the following rules. The

belief passed from a consumer to a shop takes the following form
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(3.2) micjs(Xjs) =
∑
Xic

φ(Xic)ψicjs(Xic , Xjs)
∏

ks∈∂ic\js

mksic(Xic),

where ∂ic\js represents the neighbors of consumer ic except shop js and the messenger

can be understood as consumer ic’s belief of what state shop js should be. Similarly, the

belief passed from a shop to a consumer takes the form of

(3.3) mjsic(Xic) =
∑
Xjs

φ(Xjs)ψjsic(Xjs , Xic)
∏

kc∈∂js\ic

mkcjs(Xjs).

Then our belief of consumer ic is updated as

(3.4) bic(Xic) = Kicφ(Xic)
∏
js∈∂ic

mjsic(Xic),

and our belief of shop js is updated as

(3.5) bjs(Xjs) = Kjsφ(Xjs)
∏
ic∈∂js

micjs(Xjs),

where Kic , Kjs are normalizing constants.

In our problem, several modifications of the BP algorithm are needed to incorporate

dyadic attributes such as transaction frequency and transaction amounts in the semi-

supervised learning setting. Several studies [53] [54] tried to address the semi-supervised

learning problem in generative approach. One commonly adopted method is to redefine

the overall log likelihood function by putting different weights on the labeled and unlabeled

data. The resulting algorithm that maximizes this redefined function is robust against

incorrect model assumptions. However, in the MRF, due to the compatibility function

φicjs , it is unclear how to assign different weights to labeled and unlabeled data in the log
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likelihood function. Some research [55] [56] proposed methods that directly absorb the

information of labeled nodes into the MRF model , but their approach suffers when the

generative model is not accurate.

In our paper, we use the labeled data in a different way. To the best of our knowledge,

under the MRF model assumption, all the algorithms for fraud detection or anomaly

detection choose the parameters in potential functions arbitrarily or by some domain

knowledge. However, with the presence of partially labeled data, we develop a method

that achieves better performance by estimating parameters in potential functions from the

labeled data. In the next part, we discuss how to relax our model assumption to make

our method more robust and how to apply Bayesian optimization to tune the parameters

in node potentials and edge potentials.

3.3.2. Adaption of belief propagation algorithm

This section details how to incorporate transaction information and observed labels to

achieve our objective of detecting fraudulent cash-out.

3.3.2.1. Transaction information. Transactions between consumers and shops are

categorized into different types based on their amount. Then we model the edge po-

tential between ic and js in the MRF as following:

(3.6) ψicjs(Xic , Xjs) =
1

1 + e
∑p

k=1 αkXicXjs
mkXicXjs

,

where p is the number of all possible types of transactions, mkXicXjs
is the number of kth

type transactions between vertices ic and js, and αkXicXjs
is the parameter that indicates

homophilic relation among shops and consumers for the kth type of transaction.
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3.3.2.2. Consumers label. In the MRF model, the known label can be directly formu-

lated into the generative model. More specifically, for the known-fraudulent consumers,

we freeze their node potential φ(Xic = 1) to be 1, so the message passed from a known-

fraudulent consumer ic to a shop js takes the following form

(3.7) micjs(Xjs) = ψicjs(Xic = 1, Xjs)
∏

ks∈∂ic\js

mksic(Xic = 1),

where ∂ic represents the neighbors of consumer ic. Then the marginal probability for a

known fraudulent consumer ic, by applying BP, is 1. In practice, to make our algorithm

more robust, it is desirable to relax the model and set the node potential for labeled

consumer as

φ(ic ∈ V l
c ) =


βlc, for Xic = 1(3.8a)

1− βlc, for Xic = −1(3.8b)

and the node potential for unlabeled consumer as

φ(ic ∈ Vc\V l
c ) =


βuc , for Xic = 1(3.9a)

1− βuc , for Xic = −1(3.9b)

where βuc < βlc < 1. These parameters are estimated by applying Bayesian optimization.

3.3.2.3. Shops label. Labeled shops are used to estimate parameters αkXicXjs
for edge

potentials and parameters (βuc , β
l
c) for consumer node potentials. Both the potentials of

the unlabeled shops and labeled shops are set to be 0.5. Note here we do not estimate

parameters for shop node potentials for reasons discussed in section 3.4.6. Next, to esti-

mate parameters, we minimize a user defined loss function over labeled shops by tuning

edge potentials and consumer potentials with Bayesian optimization [57]. The choice of

the loss function is discussed in section 3.4.2. Our approach offers two advantages. First,
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by tuning parameter in the MRF, our algorithm efficiently uses the information carried

by different types of transactions thus achieves good performance. Second, instead of

putting extreme value 0 or 1 for labeled shops and consumers, the shop potentials and

consumer potentials are trained relatively neutral to avoid the undesirable chain reaction

that changes beliefs dramatically.

3.3.3. Estimation of parameters

In our algorithm, parameters in edge potentials and node potentials are estimated by the

following procedures.

• First, given a set of parameters (αkXicXjs
, βuc , β

l
c), by applying BP, the marginal

probability of a shop js being fraudulent is obtained.

• Then we calculate the value of a loss function L(js|js ∈ V l
s ) over all labeled shops

based on the obtained marginal probability. The choice of the loss function L is

discussed in details later.

• Last, Bayesian optimization is used to minimize the loss function L by finding

the optimal solution to the following optimization problem:

(3.10) (αkXicXjs
, βuc , β

l
c) = argmin

αkXicXjs
,βu

c ,β
l
c

L(js|js ∈ V l
s ).

Note that after applying BP, no explicit expression of the loss function L can be obtained

in terms of (αkXicXjs
, βuc , β

l
c), therefore Bayesian optimization [23] is used to find the

optimal solution. It seems plausible to estimate parameters for shop node potentials as
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well, but this approach results in an unstable algorithm. More details are discussed in

section 3.4.6.

An alternative approach is expectation-maximization (EM) algorithm [58]. More

specifically, we try to maximize the marginal likelihood of observed labels:

P{Xic , Xjs |ic ∈ V l
c , js ∈ V l

s }

=
∑
{S}

1

Z

∏
js∈Vs

φ(Xjs)
∏
ic∈Vc

φ(Xic)
∏
i,j∈E

ψicjs(Xic , Xjs)
(3.11)

with respect to {S}, α, β, where {S} is the set of all possible joint states of the unlabeled

consumer ic ∈ Vc\V l
c and unlabeled shop js ∈ Vs\V l

s , α is the set of parameters in edge

potential, and β is the set of parameters in node potential. In the E step, by applying

BP, we maximize P{Xic , Xjs|ic ∈ V l
c , js ∈ V l

s } with respect to {S} and calculate the

optimal q{S} ,where q{S} is the distribution for {S}, and in the M step, holding q{S}

constant, we maximize P{Xic , Xjs|ic ∈ V l
c , js ∈ V l

s } with respect to α, β. We iterate

these two steps until the parameters converge. The EM algorithm is designed to find

parameters corresponding to a local maximum of the likelihood function, but when the

likelihood function is not correctly specified, the good performance of EM algorithm is

not guaranteed. In our paper, we prefer the more robust algorithm that maximizes a goal

oriented loss function L by applying Bayesian optimization to the EM algorithm.

3.4. Experiments and results

In this section, we evaluate our algorithm with a bipartite consumer-shop network.

The raw data is collected from JD Finance. The network consists of all 230, 238 consumers

and 201, 289 shops, and 2.91 million transactions among them. We show that our algo-

rithm effectively detects fraudulent shops by passing beliefs along the bipartite network
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and estimating edge potentials iteratively. We also evaluate the influences of multiple

factors, including the parameter settings for edge potentials and node potentials, number

of sampled nodes and choice of loss functions. One-fourth of the labeled vertices are used

for testing, and the rest are used as training data. Without specification, all true positive

rates (TPR) provided in this paper are measured at 5% false positive rate (FPR).

3.4.1. Experiment setup

In the basic experimental setup, multiple initial guesses for the parameters are generated

to prevent local optimal solutions. Bayesian optimization is conducted for each initial

guess and returns a respective set of estimated parameters. The set of parameters leading

to the smallest loss function is chosen as the optimal solution. The algorithm attains an

average TPR of 92.47% over 10 random 4-fold cross validations as shown in Figure 3.3. To

create a smooth ROC curve, 10, 000 of threshold values are generated such that vertices

with higher posterior probability than the thresholds are classified as fraudulent shops.

The ROC curve, AUC (area under the curve) of ROC, precision-recall curve, and TPR are

used to measure the performance of the algorithm. Figure 3.4 shows the precision-recall

curve for shops achieved by our algorithm. The F1-score, 2 precision·recall
precision+recall

, can be calculated

corresponding to the different choice of threshold value. The highest F1-score achieved in

Fig.4 is 0.8955, where the corresponding precision is 0.8962 and the corresponding recall

is 0.8947.
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Figure 3.3. ROC curve for shops. Dark red line is the average ROC curve
over 10 experiments and light red lines are ROC curves for each experiment.

3.4.2. Comparison between different loss function

In this section, we discuss the choice of loss function in equation (3.10). In the context

of fraud detection, goal driven approaches are sometimes desirable, therefore we tune the

parameters in the MRF by either maximizing the TPR or AUC of ROC or by minimizing

deviance.
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Figure 3.5 shows the performance of our algorithm with different choices of loss func-

tion. Interestingly, the algorithm converges to the same set of parameters for all three loss

functions in all 10 experiments when allowing Bayesian optimization to run a sufficient

number of iterations. In each experiment, we randomly choose three-fourth of nodes as

training data and remaining one-fourth as testing data. The performance of the algorithm

with these optimal parameters is represented by dark bars in Figure 3.5. One possible

Figure 3.4. Precision-Recall curve for shops. Dark red line is the average
Precision-Recall curve over 10 experiments and light red lines are Precision-
Recall curves for each experiment.
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Figure 3.5. A comparison of different loss function. Dark bars represent the
performances of the algorithms after running sufficient number of iterations
of Bayesian optimization, and light bars represent the performances of the
algorithms after running 30 iterations of Bayesian optimization. The per-
formances are measured in Deviance, TPR and AUC. (a) The performance
of algorithms that maximize TPR; (b) The performance of algorithms that
minimize TPR; (c) The performance of algorithms that maximize AUC.

reason is that when conducting Bayesian optimization, parameters are restricted and the

optimal solution obtained by Bayesian optimization is on the boundary. Relaxation of

some restrictions could lead to different optimal parameters for different loss function;

but since the algorithm has already achieved a good accuracy, it is not our primary in-

terest to run Bayesian optimization over a larger parameter space. On the other hand,

although the algorithm converges to the same set of parameters, it converges to the set

of optimal parameters with different rates under different loss functions. In all of the

10 experiments, the algorithm that maximizes AUC is always the fastest to converge to

the optimal parameters. In real-world application, we would prefer to limit the maximal

number of iterations in the Bayesian optimization. If we limit our optimization to 30

iteration, using AUC as the loss function (shown in Figure 3.5 c) achieves good average
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Figure 3.6. ROC curves of the algorithms under different edge potential
models. Red line corresponds to our model. Dark blue and light blue lines
correspond to two parsimonious models used in previous studies [56],[59].

performance among all three different measures and the variances are small. When TPR

(shown in Figure 3.5 a) is chosen as the loss function, the performance of the algorithm

is relatively unstable with respect to the deviance of the results. When deviance has

been minimized, the algorithm has poor performance with respect to TPR. Hence in our

algorithm, we maximize AUC over the labeled shops to tune the parameters in the MRFs.
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3.4.3. Impact of edge potentials

Most previous research on fraud detection and malware detection heavily relies on the

information of reputation scores of nodes and simply models edge potential as a function

of node labels to incorporate homophily effect. This parsimonious way of modeling ig-

nores information of dyadic attributes pertaining to edges, and therefore leads to poor

perforamce when the prior information of nodes is not available. In our algorithm, edge

potentials are modeled in a more sophisticated way as shown in equation (3.6). Figure

3.6 shows the performance of the algorithm under different edge potential models. The

more sophisticated model outperforms the parsimonious one in all three measurements.

The results indicate that dyadic attributes, such as frequency of transaction and amount

of transaction, carry extra information about the strength of homophily effect, hence

should be included into the edge potentials. For example, when a consumer is making

a transaction with a fraudulent merchant, the amount of the transaction will, to some

degree, indicate whether this transaction is fraudulent or not. Another advantage of our

model is that by modeling different types of transactions, we can understand which type

of transaction is more likely to be fraudulent, and financial institutions would use this

information to regulate fraudulent merchants.

3.4.4. Impact of the node potentials

As discussed in the previous section, to make our algorithm more robust, the priors for

labeled fraudulent consumers and unlabeled consumers are set to be βuc , β
l
c and determined

by Bayesian optimization. When sampling different numbers of labeled nodes to train the

model, the corresponding optimal βlc falls in the range [0.6, 0.7], which is in contrast with
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the choice of assigning known-fraudulent node a prior equal to 1 in the MRF model. We

hypothesized that this is because that a small portion of the labeled nodes are outliers

and can’t be modeled accurately by the MRF. When assigning these nodes priors based

on a Markov random fields model, their neighbors are influenced by the strong priors and

therefore wrongly labeled. Therefore, by tuning node potentials, our algorithm avoids

this undesirable chain reaction and achieves better TPR.

3.4.5. Impact of the number of labeled nodes

We run a series of experiments to test the impact of the number of labeled nodes. In

each experiment, we randomly select 0%, 10%, 25%, 50% or 100% labeled consumers and

Table 3.2. Impact of the number of labeled nodes when shop potentials are
set to be 0.5

Pm = 10% Pm = 25% Pm = 50% Pm = 100%

Pc = 0% 0.9114 0.9033 0.8967 0.9127

Pc = 10% 0.9156 0.9036 0.8965 0.9099

Pc = 25% 0.9237 0.9116 0.9086 0.9288

Pc = 50% 0.9250 0.9123 0.9196 0.9148

Pc = 100% 0.9012 0.9008 0.9071 0.9248

Table 3.3. Impact of the number of labeled nodes when shop potentials are estimated

Pm = 10% Pm = 25% Pm = 50% Pm = 100%

Pc = 0% 0.7960 0.8815 0.9196 0.9306

Pc = 10% 0.8055 0.9195 0.9108 0.9206

Pc = 25% 0.9163 0.9227 0.9226 0.9271

Pc = 50% 0.8362 0.9047 0.9225 0.9305

Pc = 100% 0.8570 0.9092 0.9313 0.9348



61

10%, 25%, 50% or 100% labeled shops as labeled nodes and treat the rest nodes as un-

knowns. Table 3.2 shows that our algorithm is robust to the number of labeled nodes.

When only a small fraction of the labeled data is sampled and used as input, our

algorithm still performs decently. For ground truth nodes, our algorithm recovers the

labels of fraudulent shops with 91.14% accuracy when controlling TPR at 5%, given only

10% labeled shops as input. We hypothesize that even though only a small fraction of

nodes is labeled, the average geodesic distance between a node and its nearest labeled

node is small. For example, in a random graph whose average degree is 10, when given

1% labeled data, the average geodesic distance between a node and its nearest labeled

node is around 2 (by some simple calculations). This fact suggests that a small fraction

of labeled nodes would provide more information than we thought. BP will efficiently use

the information of network topologies therefore results in an effective algorithm. However,

as [55] pointed out, there should be at least one labeled node in each local community;

otherwise belief propagation is unable to infer the node’s label.

3.4.6. Impact of the estimation of parameters for shop node potentials

Our algorithm does not estimate parameters for shop node potentials. Instead, shop node

potentials are set to be 0.5. It might sound plausible to estimate the parameters for shop

node potentials. However, a direct application of Bayesian optimization always yields

trivial degenerate solutions where prior for fraudulent shop is 1 and prior for good shop

is 0. This is because the loss function is defined over the labeled shops. To overcome this

problem, we need an extra procedure to estimate those parameters. More specifically,

instead of conducting 4-fold cross validation, we have to spare another one-fourth of the
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data to determine the parameters. We evenly divide the labeled data into four parts. The

first one-half of the labeled data is used to calculate the posterior distributions for the

rest of the nodes, both labeled and unlabeled nodes. Then we estimate the parameters

in the MRF by minimizing the loss function for the third parts of labeled nodes with

Bayesian optimization. The last one-fourth of the data is used for cross-validation. When

building a less biased model, less data is available to estimate the parameters, which

reflects the trade-off between bias and variance. As shown in Table 3.3, when using all of

the labeled data as input, the algorithm that estimates extra parameters for shop node

potentials outperforms the original algorithm, but its performance deteriorates sharply

as the number of labeled nodes decreases. To obtain a more robust algorithm, we choose

not to estimate the parameters for shop node potentials.

3.5. Conclusion and future work

In this study, we propose an algorithm that infers the network by graph mining and

semi-supervised learning. We carefully use the node’s label in the bipartite network and

combine the dyadic attributes into our model. We evaluate the efficiency of our algorithm

with JD data set.

3.5.1. Conclusion

We have the following observations:

• Our algorithm is efficient. We achieve 92% TPR while controlling FPR at 5%

level in JD dataset. The algorithm is scalable. In a sparse network, the total
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complexity of Belief propagation is O(n) and since our parameter space is rel-

atively small, the total complexity after applying Bayesian optimization is still

O(n).

• Our algorithm sheds light on regulation for the fraudulent merchants. It is of-

ten the case that the fraudulent merchants conduct fraudulent transactions as

well as legal business. By eliminating high risk transactions and keeping safe

transactions, financial institutions can maximize their capital gains.

• Our algorithm is robust even if only a small number of nodes are labeled. In

the real-world, ground truth is hard to obtained. Our algorithm provides an

attractive way to use the limited observed labels.

3.5.2. Future work

• In the current model, edge potential is not a function of node degree. When

the degree distribution follows power law, which is often the case in real world

network, it might be more desirable to correct the edge potential with node

degree.

• When parameter space grows, tuning parameters for edge potential and node

potential could be computationally expensive by simply applying Bayesian opti-

mization. A fast optimization algorithm would be needed.

• In practice, how to allocate the budget of labeling nodes in a network is an

important question. The naive strategy to randomly sample nodes from the

network and labels them is inefficient. Better strategy should take advantage of

the network structure.
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• This algorithm can be developed into an ensemble approach. In our framework,

it is possible to incorporate the information collected by other existing fraud

detection algorithms into the node potentials. However, the optimal way to

incorporate this information remains unclear.
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CHAPTER 4

Network Representation Learning with Dyadic Attributes

4.1. Introduction

Network representation learning, also known as node embedding or network embed-

ding, aims to find low dimensional vector representations for nodes in high dimension

networks. Figure 4.1 shows an example of network representation learning. The input

data is a graph with two communities, which is shown in Figure 4.1 (a). Ideally we can

map the graph to nodes in a low dimensional vector space such that two communities are

well separated in the vector space, which is shown in Figure 4.1 (b).

Network data is ubiquitous nowadays: social networks, recommendation systems, bi-

ological pathways and etc. With the increasing power of tracing, collecting, recording

data online and the advancements of technology in the scientific field, such as biology,

meteorology, connections between individual units have been discovered and studied, and

we realize that many problem in these domains can be readily modeled as networks. For

different real-world applications in networks, researchers usually develop machine learn-

ing methods tailored for the specific problems. The key part in these machine learning

methods is to extract topology information from the network data and incorporate this

information into downstream machine learning models. Traditionally, the network fea-

tures are hand engineered, e.g., the graph statistics[60], and features that summarize local

structures[61], which are inflexible, and cannot adapt by themselves during the training.
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Figure 4.1. Example of network representation learning

More recently, much research shifted to learning low dimensional representation that

capture the structural information of the graph. Network embedding methods can be

categorized into two groups[77]: linear embedding, and nonlinear embedding, as shown

in Figure 4.2. Approaches in the first category includes methods based on principle com-

ponent analysis and multidimensional scaling. However, network data is often highly

nonlinear, and to explore the nonlinear structure, most approaches focus on direct en-

coding, which maps nodes in a high-dimensional network directly to vectors in a low-

dimensional vector space. For direct encoding in homogeneous network, there are two
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Figure 4.2. Classification of network embedding

major approaches, which are described in section 4.2. Matrix factorization-based algo-

rithms aim to find embeddings whose inner product approximates network structures,

as we explain in section 4.2.1.1. Another surging trend in direct encoding embedding

algorithms, random walk-based embedding, is adapted from natural language processing

(NLP) to network data. The details are discussed in section 4.2.1.2. To understand the

similarity between language and network, one can view the development and maintaining

of connections in social network as a ”social language”. Therefore, it is no surprise that

some recent successful algorithms in network embedding, such as deepwalk, and node2vec
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[62] [63] are based on the skip− gram [64], which is a NLP model for word embedding.

More specifically, these network embedding methods automatically learn the representa-

tion from short random walks sampled over the network by treating the random walks as

sentences in NLP. A number of recent studies generalize the encoder in direct embedding

by designing encoders that rely on local neighborhood of a node [71] [72].

However, existing network embedding methods primarily focus on homogeneous net-

works and only leverage the pure structural information. For social networks, and some

other real-world networks, there almost always exists information about node attributes

and dyadic attributes [17]. For example, we could obtain user profiles as well as infor-

mation on interactions (e.g., different types of relations, frequency of communications)

among users on social networks. These attributes are often very informative for inferring

the role of a node. A few studies [66] [67] address the problem of integrating node at-

tributes into network embedding, and some researchers have studied network embedding

for multi-layer networks [74]. However, it remains unclear how to efficiently use dyadic

attributes to improve the network embedding. In this paper, we propose asymmetric

deepwalk, which generalizes deepwalk [62] to networks with dyadic attributes by allowing

the random walk to choose among the next nodes with adaptively constructed unequal

probabilities. We also show that the asymmetric random sampling procedure in our al-

gorithm has a specific probabilistic meaning in the sense that the asymmetric deepwalk

efficiently implements the labeled stochastic block model (LSBM) [21] to solve commu-

nity detection problems for multi-layer networks. We also test our algorithm on both the

synthetic and real-world datasets.
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4.2. Related work

The majority of network embedding methods can be evaluated in an encoder- decoder

framework [68], which puts various methods on equal conceptual footing. Intuitively, a de-

coder tries to recover topology information, such as local structure of graph neighborhoods

and global positions of nodes, in the network from encoded embeddings. Mathematically,

the encoder (ENC) is a function,

(4.1) V → Rd

that maps nodes vi in the n-dimensional network to zi in a d-dimensional vector space,

where d� n. The decoder (DEC), in the problem of network embedding, more specifically

the pairwise decoder, is a function,

(4.2) Rd ×Rd → r

that takes two embeddings zi and zj as input, and maps to a real valued graph statistic.

For example, the pairwise decoder may predict whether there is an edge between two

nodes in the network or the inner product of the embeddings. This decoding process is

designed to properly reconstruct a user-defined pairwise proximity measure, S(G), in the

original graph, such that a user-specified empirical loss function,

(4.3) L =
∑

(vi,vj)∈D

l(DEC(zi, zj), sij(vi, vj))

is minimized over the training node pairs D. For example, we could simply use the

adjacency matrix as the proximity measure and define the decoder to be the inner product

of embeddings, which is DEC(zi, zj) = zTi zj and choose loss function to be L = ||ZTZ −
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S(G)||22. Then this approach finds embeddings that factorize the adjacency matrix under

L2-norm.

4.2.1. Homogeneous Network Embedding

We first introduce this encoder-decoder framework and its applications to homogeneous

network. Essentially, most of these network embedding methods are unsupervised learn-

ing approaches to nonlinear dimensionality reduction of the high dimensional networks

that preserve some local properties. Distinguished by the choice of proximity measure,

deterministic or stochastic, these embedding methods can be categorized into matrix

factorization-based approaches and random walk-based approaches. Further details are

discussed in the following two sections.

4.2.1.1. Matrix Factorization-based approaches. One early matrix factorization-

based approach, proposed in 2002 [6], is geometrically motivated and inspired by spectral

graph theory. Later, more methods for representation learning [69][70] [73] in networks

primarily focused on matrix factorization based approaches. One methodological compo-

nent common to all of these methods is use of inner product decoders, DEC(zi, zj) = zTi zj.

With this inner product decoder, the strength of connection between two nodes is repre-

sented by the dot product of the two embedded vectors. Different matrix factorization-

based methods based on different choices of proximity measure (adjacency matrix or

powers of adjacency matrix or Jaccard neighborhood overlaps) try to minimize a loss

function of the same form,

(4.4) L = ||ZTZ − S(G)||22,
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Figure 4.3. The random-walk based methods sample a large number of
fixed-length random walks starting from each node, vi. The embedding
vectors are then optimized so that the dot-product between two embed-
dings, zi and zj, is (roughly) proportional to the probability of visiting vj
on a fixed-length random walk starting from vi. [68]

where Z is the embedding matrix for all the nodes in the network and S is the pairwise

proximity measure matrix. The intuition behind these matrix factorization-based methods

is simply that the inner products of low dimension embeddings should approximate a

deterministic proximity measure matrix.

4.2.1.2. Random walk-based approaches. Many recent successes in network embed-

ding are inspired by the skip− gram model [64], which is originally designed for learning

representations of words. More specifically, given a fixed text corpus, the skip − gram

model learns the distributed representations of words by maximizing a likelihood function,

which we will describe soon. Drawing on the correspondence between nodes in a network

and words in a text corpus, and correspondence between random walks in the network

and sentences in the text corpus, deepwalk [62] and node2vec [63] use the skip − gram

model to map the word-context concept into a network and learn the representations of

nodes in a homogeneous network.
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Mathematically, random walk-based approaches try to estimate the likelihood of ob-

serving a set of 2t nodes Nt(w) = {vw−t, . . . , vw−1, vw+1, . . . , vw+t} in the neighborhood of

node vw in a random walk sample,

(4.5) Pr({vw−t, . . . , vw−1, vw+1, . . . , vw+t}|vw).

Here vi represents the ith node in a random walk sample. To simplify the calculation and

make the problem tractable, a local independence assumption is taken. More specifically,

we factorize the likelihood into the following form:

(4.6) Pr({vw−t, . . . , vw−1, vw+1, . . . , vw+t}|vw) =
∏

vj∈Nt(w)

Pr(vj|vw),

where Pr(vj|vw) is the conditional probability of observing node vj in the neighborhood

of vw in a random walk sample. Since the goal is to find a low-dimensional vector repre-

sentations for nodes, we can further model Pr(vj|vw) as a softmax unit, which takes the

following form:

(4.7) Pr(vj|vw) =
exp(Φ(vj) · Φ(vw))∑

vk∈V exp(Φ(vk) · Φ(vw))
,

where Φ is the encoder function that maps a node vi to a vector zi. When modeling

Pr(vj|vw) as a softmax unit, we implicitly assume DEC(zi, zj) =
exp(zi·zj)∑

vk∈V
exp(zi·zj) , which

recovers the conditional probability Pr(vj|vw). Then it is natural to choose #(vj, vw),

the frequency of co-occurrence of node pair vj, vw in the random walk, as a proximity

measure. When defining the proximity measure and decoder function as above, random

walk-based approaches learn the embedding by minimizing the cross entropy:

(4.8) L = −
∑

all{vi,vj}

#(vi, vj)log(DEC(zi, zj)).
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Figure 4.3 illustrate the mechanism of random walk based-algorithms. This class of net-

work embedding methods captures high order interactions in network data and measures

the proximity of the network in a more flexible manner, which leads to superior perfor-

mance in some real-world settings [65].

4.2.2. Extensions: handling edge labels

The generalization of Homogeneous Network Embedding to heterogeneous networks with

node attributes is relatively straightforward because both the embedded nodes and at-

tributes of the nodes are in vector spaces and defined over nodes. The general strategy

for handling node attributes is to develop different encoders for nodes with different at-

tributes. However, to deal with dyadic attributes, different techniques are required.

In the encoder-decoder framework, one possible way to handle multi-relations, which is

a type of dyadic attribute, is by doing tensor factorization instead of matrix factorization

[74]. More specifically, for a multilayer network, where within the kth layer Ak, the edges

are of the same type, a bilinear form

(4.9) DECk(zi, zj) = (ZTRkZ)i,j

is used to approximate Ak. The parameter Rk transfers the embeddings such that the

inner product of transferred embeddings approximate the kth layer Ak . To not overfit

the model, certain regularizations are required, e.g., R is constrained to be diagonal. The

latent representation Z can be obtained by minimizing the following loss function:

(4.10) L =
∑
k

||Ak − ZTRkZ||2F +Reg(Z,R),

where Reg(Z,R) is a regularization function over Z and R.
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These regularized decoder functions, defined on each layer, enable us to capture the

inherent structures in the multilayer network. However there are several limitations of

the tensor factorization based-approaches. First, they can only handle multi-relations in

the network. For continuous dyadic attributes pertaining to an edge, discretization is

required to apply tensor based-approaches, and valuable information could be lost in this

process. Another drawback of tensor factorization based approaches is that they can not

capture the higher order interaction in network when using the meta data. To address

these issues, we propose an algorithm that generalizes deepwalk to networks with dyadic

attributes.

4.3. Our framework

In this section, we discuss how to improve node embedding for some of its most

common applications, namely clustering, community detection, and node classification by

leveraging dyadic attributes. For all of these tasks, we are aiming to label nodes. More

specifically, for clustering and community detection, we label nodes by their clusters or

communities, and for node classification, we label nodes by their classes. In this section,

we first introduce the asymmetric deepwalk algorithm. To justify the way of sampling

the asymmetric random walk, we then show that our algorithm implements a labeled

stochastic block model to detect community for multi-layer networks.
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4.3.1. Asymmetric deepwalk

Before discussing the details of our methodology, we formally define a network with dyadic

attributes. This is a special case of a heterogeneous network where the attributes are only

associated with hedges.

Definition 4.1. A network with dyadic attributes is defined as G = {V,E(X)}, where

V is the set of nodes and E is the set of edges in the graph. For an edge, eij ∈ E, between

node vi and node vj, a set of p random variables x1, x2, . . . , xp are observed on the edge.

We use eij(x) to represent the edge with dyadic attributes x = {x1, x2, . . . , xp} and denote

the attributes pertaining to edge eij as xeij .

When x only contains one categorical variable, the network with dyadic attributes

is equivalent to a multi-layer network, which is usually used to describe multiple social

relations. However, networks with dyadic attributes are more general than multi-layer

networks, since social relations are just one type of dyadic attribute, and other dyadic

attributes are continuous measures on pairs of nodes, similarities, and distance. From a

mathematical perspective, networks with dyadic attributes are more general since they

allow multiple continuous random variables presenting in x. We should also distinguish

dyadic attributes from edge weights in a network. To be more specific, the weight associ-

ated with an edge is, to some extent, a measure of proximity. When biasing a random walk

on a weighted network, we could simply sample the next node with the unequal probabil-

ity proportional to the weight between the current node vi and next node vj. However,

when given a set of variables x1, x2, . . . , xp, we need to establish proper weights based

on X first for all of the edges in a data driven manner, and then bias our random walk.
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Previous literature has not explained how to estimate the weights given G = {V,E(X)},

and we now describe how to do so.

To gain some insights into the asymmetric random walk sampling procedure, we first

introduce a highly important quantity p(xeij) which tells us how often we should select

edge eij(x) in the asymmetric sampling process. When having oracle knowledge of the

node labels in the network, p(xeij) can be calculated in the following way. For each edge

eij in the network G = {V,E(X)}, Define Yeij = 1 when the two nodes vi and vj have

the same label, and Yeij = 0 otherwise. Then p(xeij) = P (Y = 1|xeij) is the probability

of observing two nodes connected by edge eij(x) and having the same label.

When oracle knowledge of the node labels is not available, we can estimate p(xeij) in

an iterative manner. For clustering and community detection, this process is very much

like the updating of parameters in belief propagation algorithm for stochastic block model

[4]. More specifically, we use deepwalk to get initial guess of network embedding for a

network with edge attributes, and then estimate the label for each node. With these

estimated labels, we are able to estimate p(xeij) as p̂(xeij), hence to update sampling

weights on edges. Next, we bias the random walk by sampling next nodes proportional to

sampling weights, and get new embedding for the network. Repeating the above process

iteratively until weights converge, we obtain the desired embedding. For semi-supervised

classification problems, we should use both the known node labels and estimated node

labels to calculate p(xeij) . In our algorithm, we update the weights on edges with following

rules,

(4.11) weightij(t+ 1) = weightij(t) + ρ(t)
p(xeij)

1− p(xeij)
,
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Figure 4.4. Weights updating procedure. The schematic diagram shows the
updating of probability of sampling next node vj from current node vi. Here
p(greendashed) = 0.7, p(bluesolid) = 0.9.

where ρ(t) is a decay factor, and sample next node proportional to the weight on the edge.

Figure 4.4 illustrates the weights updating procedure in our algorithm. The probability of

jumping from current node vi, denoted by red, to the next node vj evolves as we updating

weights on different types of edges. In Figure 4.4, blue edges are more informative than

green edges since p(blue) = 0.9 while p(green) = 0.7. Therefore, our algorithm puts more

weights on blue edges after learning blue edges are more informative. There are several

advantages of this weight updating procedure. On one hand, when the updated weights
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on certain type of edges are too large, and followed by an undesirable embedding, p(x) for

that specific edge will decrease and pull the weights back. On the other hand, weightij(t)

stabilizes the probability of sampling edges from one iteration to another.

After introducing network with dyadic attributes and the quantity p(xeij), we formally

propose asymmetric deepwalk for network embedding with dyadic attributes, which is

shown in Algorithm 1.

Algorithm 1 Asymmetric deepwalk(Input = (V,E(X)))

1: Sample(0)← unbiased random walk sampling
2: Embedding(0)← theskip− gram(Sample(0)) . find initial embedding by running

unbiased deepwalk
3: function weight(Embedding(t) (V,E(X)))
4: Calculate p(xeij) . based on the dyadic attributes X, and Embedding(t) ,

calculate the probability of observing two nodes connected by eij(x) are in the same
group

5: weightij(t+ 1)← weightij(t) + ρ(t)
p(xeij )

1−p(xeij )
. for each edge, update its weight

6: return weight(t+ 1)

7: Sample(t+ 1)← biased random walk sampling with weights weight(t+ 1)
8: Embedding(t+ 1)← theskip− gram(Sample(t+ 1))
9: Run line 3 to line 8 till weight converges

return Embedding(final)

4.3.2. Asymmetric deepwalk implements LSBM

In this section, we first show that asymmetric deepwalk is equivalent to an implicit matrix

factorization because the skip−gram model used in deepwalk is equivalent to an implicit

matrix factorization. Then we prove that the inference problem in LSBM is equivalent to

the same implicit matrix factorization.

4.3.2.1. the skip − gram as matrix factorization. The skip − gram model embeds

both words and their contexts into a low-dimensional vector space Rd, resulting in the
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featured word and context matrices W and C. The rows of matrix W are desired feature

representation for the words, while matrix C is ignored. Some researchers [75] suggested

that it was instructive to look into the matrix M = W · CT . Viewed in this way, the

skip− gram model is a factorization of an implicit matrix M into two smaller matrix W

and C, and so is the deepwalk algorithm. Now the key question is how to characterize

the matrix M .

It turns out that the skip− gram with softmax factorizes the matrix M :

(4.12) Mij = log
#(vi, vj)

#(vi)
,

which is the log-transformation of the emperical conditional probability of observing node

vj in the neighborhood of node vi.

One key observation is that, for random walk based methods, the decoders prefer to

recover frequent nodes pair (vi, vj) accurately while allowing more error for infrequent node

pairs, since the objective function of the algorithm weights different node pair differently.

4.3.2.2. Asymmetric deepwalk as matrix factorization. When setting t, the radius

of neighborhood Nt(v) in the random walk sample, to be 1 and sampling the next node

with probability proportional to the odds p(xeij)/(1−p(xeij), the asymmetric deepwalk is

equivalent to a matrix factorization, where the matrix being factorized takes the following

form, after replacing entry where #(ij) = 0 with 0:

(4.13) Mij = Aij[log
p(xeij)

1− p(xeij)
− log

∑
k∈∂i

p(xeik)

1− p(xeik)
+ log2],

where ∂i is the neighborhood of node vi. In a relatively dense network, log
∑

k∈∂i
p(xeik )

1−p(xeik )

converges to a positive constant, denoted by logWtotal, due to central limit theorey.
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4.3.2.3. Partition of LSBM as matrix factorization. We first introduce the labeled

stochastic block model (LSBM) for community detection. For the illustrative purpose,

we focus on the simple but non-trivial stochastic block model with two equal size blocks

studied in [21].

Definition 4.2. Labeled stochastic block model with two blocks: n nodes are split

evenly into two blocks, and any two nodes are related with an edge with probability a
n

if

they belong to the same block, with probability b
n

otherwise. For each edge eij, a label Lij

taking value in a finite set L is observed. When node vi and vj are in the same block, Lij

is drawn from distribution {µ(l)}l∈L, otherwise, Lij is drawn from distribution {ν(l)}l∈L.

The reason we study community detection problem lies in the close relation between

embedding and community detection: both problems aim to find low-dimensional rep-

resentations of networks. To recover the community in the LSBM, one approach is to

maximize the following likelihood function:

LogP (G,L|σ) =
1

2

∑
eij∈E

[log
aµ(Lij)

bν(Lij)
σiσj + log(

abµ(Lij)ν(Lij)

n2
)]

+
1

2

∑
eij 6∈E

[log
1− a/n
1− b/n

σiσj + log((1− a/n)(1− b/n))],

(4.14)

where σi ∈ {−1, 1}, is the community assignment for node vi. The above equation can be

simplified under the constraint
∑

i σi = 0. Then to get the maximal likelihood estimator

of community assignment σ is equivalent to the following optimization problem [76],

max
σ

∑
eij∈E

log[
a(1− b/n)µ(Lij)

b(1− a/n)ν(Lij)
]σiσj

s.t.
∑
i

σi = 0, σ ∈ {−1, 1}n.
(4.15)
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Viewing log[
a(1−b/n)µ(Lij)

b(1−a/n)ν(Lij)
] as a weight function w(Lij) defined over edge eij and the edge

type Lij, the above problem is then equivalent to finding a minimum bisection on the

weighted graph, where the weight is defined by the specific weight function w(l) =

log[a(1−b/n)µ(l)
b(1−a/n)ν(l) ].

Define Wij = Aijw(Lij), where A is the adjacency matrix for the graph G. Equation

(4.15) can be view as the Hadamard product between weight matrix W and a low rank

matrix Y . More specifically, we can recast the optimization problem in the LSBM as

max
Y

<W,Y >

s.t. Y = σσT and Yii = 1.

(4.16)

The intuition here is to find a matrix Y to reconstruct W , and large Wij enforces a better

reconstruction of weights on edge eij while small Wij allows more error. Note that

(4.17) Wij = Aij[log
p(Lij)

1− p(Lij)
+ log

1− b/n
1− a/n

],

where p(l) = aµ(l)
aµ(l)+bν(l)

, is the probability of observing two nodes linked by type l edge

being in the same community. When two edges, namely edge 1 and edge 2, are of different

types, and edge 1 is more informative in the sense p(le1) > p(le1), the above optimization

problem penalizes the error on reconstruction of weight on edge 1 more than the error on

edge 2 by log
p(le1 )(1−p(le2 ))
p(le2 )(1−p(le1 ))

. So far, we have shown that community detection problem in

the LSBM is equivalent to factorizing a weighted matrix.

By realizing that p(Lij) in the LSBM is just p(xeij) when modeling LSBM in the

framework of network with dyadic attributes, we find that Mij is just a shift of Wij by a

constant amount. This observation implies that asymmetric deepwalk implements LSBM
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to recover node label for community detection since the constant will be canceled out in

softmax function.

4.4. Experiments on synthetic data and real-world data

Figure 4.5. 2-D PCA of embeddings. Figure a and b are corresponding
to model with parameter (0.03, 0.06, 0.03). a is 2-D PCA of embeddings
learned by deepwalk, and b is 2-D PCA of embeddings learned by our
algorithm. Figure c and d are corresponding to model with parameter
(0.04, 0.025, 0). c is 2-D PCA of embeddings learned by deepwalk, and d is
2-D PCA of embeddings learned by our algorithm.

We first test our algorithm on networks generated by the LSBM. For each experiment,

we are interested in recovering two equal size communities among 400 nodes. In the first

two experiments, we construct two different types of edges: non-informative edges, and

informative edges. The non-informative edge randomly connects two nodes no matter
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Figure 4.6. 2-D PCA of embeddings. Figure a and b are corresponding
to model with parameter (0.04, 0.03, 0.04, 0.02). a is 2-D PCA of embed-
dings learned by deepwalk, and b is 2-D PCA of embeddings learned by
our algorithm. Figure c and d are corresponding to model with parameter
(0.025, 0.02.0.025, 0.01). c is 2-D PCA of embeddings learned by deepwalk,
and d is 2-D PCA of embeddings learned by our algorithm.

the community assignments, while the informative edge tends to link nodes in the same

community more often. Mathematically, the graph is generated by the following rules:

(4.18) P (AEno
ij = 1) = α,

where P (AEno
ij = 1) is the probability of observing non-informative edge between node vi

and node vj, and

P (AEin
ij = 1) =


β1, for vi, vj in the same community(4.19a)

β2, for vi, vj in different community,(4.19b)
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Table 4.1. Accuracy of deepwalk, RESCAL, asymmetric deepwalk

Experiment deepwalk[62] RESCAL[74] asymmetric deepwalk weight ratio

1 0.82 0.94 0.93 1.6

2 0.72 1.00 1.00 14837.0

3 0.82 0.89 0.89 1.3

4 0.62 0.71 0.80 1.1

where P (AEin
ij = 1) is the probability of observing informative edge between node vi and

node vj. To simplify notation, we name the model generated by the above process as

the model with parameter (α, β1, β2). We test our algorithm on two different parame-

ter settings, which are model with parameter (0.03,0.06,0.03) and model with parameter

(0.04,0.025,0). Next we allow both two types of edges to be informative, therefore we

need four parameters to describe the model, namely (α1, α2, β1, β2). Here α1 is the prob-

ability of observing type 1 edge between two nodes in the same group and α2 is the

probability of observing type 1 edge between two nodes from different groups. β1 and β2

are defined in the same manner. We also test our algorithm on two different parameter

settings, which are model with parameter (0.04,0.03,0.04,0.02) and model with parameter

(0.025,0.02,0.025,0.01).

A summary of experiment results are shown in Table 4.1. The first column is the accu-

racy of community detection after embedding network with deepwalk, the second column

is the accuracy by running the tensor factorization based algorithm: RESCAL[74] , and

the third column is the accuracy achieved by asymmetric deepwalk. Asymmetric deepwalk

outperforms deepwalk in all of the experiment settings. To visualize this improvements,

we plot 2-D PCA for embeddings in different experiments, which are shown in Figure 4.5

and Figure 4.6. From these figures, we can tell that after incorporating information of
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Table 4.2. Accuracy of deepwalk, asymmetric deepwalk on networks with
continuous attributes

Experiment deepwalk[62] asymmetric deepwalk

1 0.83 0.94

2 0.66 0.82

dyadic attributes, the quality of embedding improves significantly, since the overlapped

area between two clusters, marked by navy and orange, decreases dramatically. We are

also interested in the ratio between weights on two different types of edges, which tells us

the relative importance of the edges. We also compare the performance of our algorithm

with the performance of RESCAL. For the first three experiments, these two algorithms

achieve similar accuracies, however for the last experiment, where the edge density is the

lowest, asymmetric deepwalk has better performance.

Another advantage of our algorithm is its ability to handle continuous dyadic at-

tributes, which is the very ability those tensor factorization based algorithms lack. To

conduct the experiment, we first generate the two types of edges: less informative edges

and more informative edges. For the less informative edge, the dyadic attribute is drawn

from the uniform distribution U(0, 1) and for more the informative edge, the edge at-

tribute is drawn from the uniform distribution U(0.9, 1). The results are shown in Table

4.2. When generating edges with parameter (0.03, 0.03, 0.06, 0.03), our algorithm im-

proves the accuracy from 0.83 to 0.94 , compared with deepwalk. When generating edges

with parameter (0.025, 0.02, 0.025, 0.01), our algorithm improves the accuracy from 0.66

to 0.82.

We also test our algorithm on a real-world graph, called the AUCS dataset [78].

In this graph, the multiple layers in the social network represent relationships between
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61 anonymized employees of a University department. The self-reported group labels

are treat as ground truth in our analysis. Since there are 8 groups, we adopt purity

as the criterion to evaluate the community detection. More specifically, define the k

communities recovered by our algorithm as Ω = {w1, w2, ..., wk} and the ground truth

classes as C = {c1, c2, ..., ck}, where wi is the set of nodes in group i estimated by our

algorithm and ci is the set of nodes of label i in the ground truth classes. The purity is

defined as:

(4.20) purity(Ω, C) =
1

N

∑
k

max
j
|wk ∩ cj|,

where N is the total number of nodes in the network.

For the AUCS dataset, our algorithm achieves an average purity of 0.79 over 30 runs,

while deepwalk achieves an average purity of 0.76. With p-value equal to 0.0028, we are

confident that our algorithm outperforms deepwalk. Compared with deepwalk, our algo-

rithm samples edges with certain attributes, such as lunch, and leisure more frequently,

while samples less informative edges from Facebook layer less frequently, hence has a bet-

ter performance. The performance of RESCAL on AUCS dataset is disappointing , with

the purity of 0.49. The failure of RESCAL is due to its incapability of handling higher

order interactions.

4.5. Conclusion

In this dissertation, we propose a novel method that is able to handle the dyadic

attributes for network embedding problem. We first lay the theoretical foundation for

our weight updates process by showing that the asymmetric deepwalk is equivalent to

solving the community detection problem in the labeled stochastic block model. Then we
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test our algorithm on the synthetic data and, compare our algorithm with deepwalk and

RESCAL. Our algorithm significantly outperforms deepwalk, and for some experiment

settings, it has better performance than RESCAL. We also test and compare asymmetric

deepwalk with deepwalk and RESCAL on a real-world network called AUCS dataset.

Our algorithm achieves the best performance among all three algorithms. Compared

with tensor factorization based algorithms, our algorithm is able to capture higher order

interactions in network and hand both discrete and continuous dyadic attributes, therefore

it can be applied in many more real-world problems. Another attractive character of our

algorithm is the interpretability. The weights updated during the training process have

specific probabilistic meaning: the importance of an edge is measured by the odds of two

nodes having the same label and two nodes having different labels. In this sense, dyadic

attributes provide extra information of proximity of nodes, and our algorithm successfully

captures it. Since the weights updating process has specific probabilistic meaning, it is

also possible to incorporate our previous knowledge about the edge attributes into the

inference.

In this dissertation, we only discussed the application of network embedding for com-

munity detection problems. Our algorithm has the potential to be generalized and used

to solve semi-supervised classification problems on networks. For semi-supervised classi-

fication problem, one potential advantage of asymmetric deepwalk is that our algorithm

could automatically adjust the edge weights based on the node labels, which enables us

to learn the embedding in a more data driven way.
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CHAPTER 5

Conclusion

In this dissertation, we shed lights on how information about heterogeneity network

is used to infer the role of a node in the network and use that insights to improve perfor-

mances of algorithms. In the concluding chapter, we summarize our main contributions

and discuss future directions.

5.1. Main contribution

This dissertation makes the following contributions:

• In chapter 2, we obtain key insights into the threshold for hierarchical network

with node attributes, and develop a novel algorithm that integrates the node

labels and the dyadic attributes induced by node labels to recover community

assignments, hence achieves better performance.

• In chapter 3, we develop an efficient algorithm that combines information about

node attributes and dyadic attributes by estimating parameters, and calculating

posterior distribution for Markov random field (MRF) model in a semi-supervised

learning setting. By applying Bayesian optimization, this algorithm is the first

data driven MRF model that solves inference problem in a network under semi-

supervised learning settings, as prior works rely on domain knowledge to deter-

mine the parameters in MRF.
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• In chapter 4, we develop a direct encoding embedding algorithm that is capable

of handling heterogeneous network with dyadic attributes. We also prove that

our machine learning algorithm solves the statistical inference problem in the

labeled stochastic block model. Therefore, the algorithm makes improvements in

both embedding and interpretability to previous direct embedding methods for

networks with dyadic attributes.

5.2. Future work

• Higher- order motifs. This dissertation discusses the use of node attributes and

dyadic attributes for the inference problem in network. It is well-known that,

for complex networks, higher-order structural motifs provide essential informa-

tion about the structure and function of the network, and developing algorithms

that are able to incorporate higher-order motif as well as their attributes is an

important future direction.

• Temporal network. This dissertation focuses on inference problem in static het-

erogeneous network, while many real world applications involves highly dynamic

networks. The presence of temporal edges raises new challenges to inferring node

roles, and extending algorithms to dynamic setting will expand the usefulness to

more exciting application domains.
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