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Abstract 

The importance of understanding indoor microbial exposure is increasingly recognized, 

particularly concerning the emergence of pathogens and antimicrobial resistance. With the 

advancements of sequencing technologies, our capability of exploring indoor microbial 

communities has dramatically increased. However, huge challenges remain to translate 

sequence-based knowledge to actionable interpretations to support human health and 

environmental sustainability. Specifically, we urgently need more effective, 

untargeted surveillance methods for environmental microbiomes in healthcare facilities. We need 

to conduct more and better monitoring of tolerance to antimicrobials that were long immune 

from concern (e.g., chlorhexidine) as it is emerging in hospital environments. We also need to 

expand the toolkit for evidence synthesis studies in the field of environmental microbiomes to 

fully unleash the potential of indoor microbiome research and to reveal more generalizable 

phenomena and mechanisms.  

In this dissertation, I developed an improved metagenomics-based surveillance workflow with 

enhanced ability to handle low-biomass samples, distinguish viability, be quantitative, and 

estimate sequencing resources. The workflow not only can serve as a guidance for environmental 

surveillance practices but also enhances our understanding of surface microbiomes. I 

investigated chlorhexidine resistance in the hospital environment by combining controlled 

microcosm experiments and field surveys. My work uncovered the persistence patterns of 

chlorhexidine on indoor surfaces in response to disinfection and cleaning practices. I also found 

that chlorhexidine tolerance was widespread in a medical intensive care unit environment, and 

sinks were a dominant reservoir regarding chlorhexidine tolerance. This knowledge will help 
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improve clinical application of chlorhexidine. Additionally, I developed an R package, 

RefDeduR, that performs accurate and high-throughput reference deduplication for large datasets 

to promote broader applications of evidence synthesis research (e.g., in indoor microbiomes).  

Taken together, this dissertation enhances our knowledge of diversity and antimicrobial 

resistance in indoor microbiomes as well as improves our capability for future exploration. The 

outcomes of this dissertation will not only facilitate future research in the field, but also inform 

clinical and epidemiological surveillance, disinfection and cleaning practices, and building 

design. Ultimately these will lead to better infection prevention and health promotion.  
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R2A Reasoner's 2A agar 
BA Blood agar 

MALDI-TOF MS Matrix-assisted laser desorption/ionization time-of-flight mass 
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PCoA Principal coordinate analysis 
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MICs Minimum inhibitory concentrations 
MBCs Minimum bactericidal concentrations 
MHA Mueller-Hinton Agar 
QC Quality control 

BAM Binary alignment map 
SAM Sequence alignment map 
ORFs Complete open reading frames 
CARD Comprehensive antibiotic resistance database 

RGI Resistance gene identifier 
ARGs Antibiotic resistance genes 
RND Resistance-nodulation-cell division 
SMR Small multidrug resistance 
MFS Major facilitator superfamily 
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Glossary of Terms 

Antimicrobial: An antimicrobial is an agent that kills microorganisms or stops their growth. 
According to the microorganisms they act primarily against, antimicrobials can be classified as 
antibiotics which are used against bacteria, and antifungals which are used against fungi [1]. 

Antiseptic: Antiseptic is a germicide that is used on skin or living tissue for the purpose of 
inhibiting or destroying microorganisms. Examples include alcohols, chlorhexidine, chlorine, 
hexachlorophene, iodine, chloroxylenol (PCMX), quaternary ammonium compounds, triclosan, 
and benzalkonium chloride [2, 3]. 

Disinfectant: Disinfectant is a chemical agent used on inanimate objects (i.e., nonliving) (e.g., 
floors, walls, sinks) to destroy virtually all recognized pathogenic microorganisms, but not 
necessarily all microbial forms (e.g., bacterial endospores). The EPA groups disinfectants on 
whether the product label claims “limited,” “general” or “hospital” disinfectant [2]. Examples 
include triclosan and benzalkonium chloride. 
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Chapter 1 Introduction 

Under the One Health framework, the importance of understanding indoor microbial exposure is 

increasingly recognized [4, 5]. This importance is due in part to the fact that people in modern 

society spend the majority of their time indoors [6, 7], along with the increase in the number of 

observed associations between diseases and exposure to indoor pathogens [8-11]. In addition to 

direct exposure to pathogens, antibiotic resistance is another critical issue associated with the 

indoor microbiome. Researchers have shown that antibiotic resistance is concentrated in the built 

environment relative to outdoors [12], and that built environment factors in the home can favor 

the recurrence of antibiotic-resistant infections [13]. To promote a healthy indoor microbiome, it 

is imperative to understand indoor microbial diversity, antimicrobial resistance, and factors 

determining these phenomena.  

With next-generation sequencing technologies, numerous efforts have been made to characterize 

the indoor microbial communities, explore their ecological features, infer their public health 

impacts, and so forth (e.g., [14-18]). While these endeavors increase our understanding of indoor 

microbiomes, huge challenges remain to bridge the gap between deploying sequence-based 

knowledge and generating actionable interpretations to support human health and environmental 

sustainability. 

1.1 More effective environmental surveillance methods are needed 

Healthcare facilities are a high-priority indoor environment because their occupants are 

particularly vulnerable to infection. More effective surveillance of environmental microbiomes is 

urgently demanded in healthcare facilities, specifically concerning pathogens and the 
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development of antimicrobial resistance. Emergent evidence indicates synergy among pathogens 

and dissemination of antibiotic resistance in built environment [19, 20]. Metagenomics thus 

represents a promising surveillance technique because it is untargeted. Compared with targeted 

surveillance, untargeted methods may also identify novel or rapidly emerging pathogens and 

antibiotic resistance genes [21]. However, metagenomics-based techniques are still challenged 

by several limitations: 1) they are not powerful enough to extract valid signals out of the 

background noise for low biomass samples; 2) they do not distinguish between viable and non-

viable organisms; and 3) they do not reveal the microbial load quantitatively. An additional 

practical challenge towards a robust pipeline is the inability to efficiently allocate sequencing 

resources a priori. Assessment of sequencing depth is generally practiced post hoc, if at all, for 

most microbiome studies, regardless of the sample type. This practice is inefficient at best, and at 

worst poor sequencing depth jeopardizes the interpretation of study results. These challenges are 

both conceptual and technical in nature. They arise from the diversity of metagenomics research 

objectives and are often exacerbated by intrinsic features of low-biomass environments that need 

to be monitored.  

To address these challenges, I first discussed conceptual and technical perspectives toward 

accurate and robust environmental surveillance (Chapter 2). Viability assessment, taxonomic 

resolution, and quantitative metagenomics were covered regarding their current advancements, 

necessary precautions and directions for further development. Overall, I highlight the importance 

of building solid conceptual frameworks and identifying rational limits to facilitate the 

application of techniques. This perspective was published in Frontiers in Genetics under the title 

“Toward accurate and robust environmental surveillance using metagenomics” where I am the 
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first author. Under the guidance of this perspective, I then developed an improved workflow for 

metagenomics-based environmental surveillance (Chapter 3). Techniques were evaluated, 

optimized, and developed based on a representative microbiome sample created by aggregating 

120 surface swabs collected from a medical intensive care unit. The developed workflow is 

appropriate for low-biomass samples, distinguishes viability, is quantitative, and estimates 

sequencing resources. The research in this chapter was published in Microbiome under the title 

“An improved workflow for accurate and robust healthcare environmental surveillance using 

metagenomics” where I am the first author. 

1.2 Emerging tolerance to chlorhexidine in environmental bacteria merits more 

attention 

Chlorhexidine has been used as an antiseptic for decades with little concern for resistance. 

However, more and more cases of reduced susceptibility to chlorhexidine have been reported 

recently, raising concerns of increased resistance. The concern is magnified considering the 

dissemination of antimicrobial resistance genes in microbial communities. The hospital 

environment is a known reservoir of nosocomial pathogens and antibiotic-resistant bacteria. It 

also has a high probability of containing sublethal concentrations of antimicrobials, and this may 

promote the development or enrichment of antimicrobial tolerance [22]. Moreover, researchers 

have traced hospital outbreaks to chlorhexidine-resistant, environment-sourced strains [23]. 

Despite that, previous monitoring efforts have been largely restricted to clinical isolates, and 

scrutiny on chlorhexidine resistance in the environment is very limited.  
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In Chapter 4, I investigated chlorhexidine resistance in the hospital environment by combining 

microcosm experiments and field surveys. Employing microcosms under controlled conditions, 

persistence patterns of chlorhexidine in response to different cleaning and disinfection practices 

on 3 surface materials were investigated. Survival of 4 clinically relevant bacterial strains was 

examined under 24 h chlorhexidine exposure on surfaces in the concentration range that 

chlorhexidine persisted. To determine how widespread chlorhexidine tolerance is in situ, I 

further conducted a field survey in a medical intensive care unit (MICU), revealing both 

phenotypic and genomic indicators of chlorhexidine tolerance. A manuscript describing this 

work, on which I will be first author, is in preparation. 

1.3 Toolkit of evidence synthesis research needs to be expanded 

The copious and diverse research efforts pertaining to indoor microbial communities advance our 

overall perception of the indoor microbiome and provide a large dataset that can be used to 

develop evidence synthesis studies (e.g., systematic reviews, meta-analyses). Evidence synthesis 

studies reveal more generalizable phenomena and underlying mechanisms compared to 

individual studies. In general, they support statistically stronger exploration than individual 

analyses because they comprise increased numbers and greater diversity of subjects [24]. In 

addition, conflicting results and biases from individual studies could be resolved or reduced [25]. 

For instance, Pollet et al. pointed out that patterns apparent at one scale regarding the 

identification and distribution of microbial communities in ticks will probably collapse into noise 

when viewed from other scales [26]. However, unlike social and biomedical sciences, evidence 

synthesis research based on systematic literature reviews have not kept pace in the field of indoor 

environmental microbiology, due in part to unique challenges in the field. Because the field lacks 
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standardized terminology encoded in an ontology and encompasses diverse research topics, 

researchers usually implement broad search keywords and search multiple platforms (e.g., 

PubMed, Web of Science) to ensure the completeness of retrieved records. This results in 

undesirable duplicated records, dramatically increasing manual workload in screening without 

effective deduplication. Existing deduplication modules are often labor-intensive by themselves, 

insufficient in accuracy, and limited to certain fields or databases (primarily clinical). While still 

useful for small datasets, due to these limitations, many approaches quickly become impractical 

in the fast-growing era of big data. Already, systematic reviews take tens of weeks. It has been 

shown that a systematic review takes an average of 164 full-time equivalent days in 

environmental science [27] and 67.3 weeks for a five-person team in medical fields [28]. Any 

processes that can accelerate computation and decrease manual labor are thus valuable 

improvements. 

To remove hurdles toward broader application of evidence synthesis research (e.g., in indoor 

microbiomes), I developed an R package, RefDeduR, that performs accurate and high-

throughput reference deduplication for large datasets (Chapter 5). The pipeline is modularized 

into text normalization, three-step exact matching, and two-step fuzzy matching, making it 

highly customizable. With finely tuned text cleaning and normalization, RefDeduR’s high-

confidence exact matching process outperforms many tools, even with their fuzzy matching 

procedure included. We semi-automate the time-consuming and error-prone manual review 

process in fuzzy matching by introducing a decision-tree algorithm, making it high-throughput 

while still maintaining accuracy. Additionally, we propose to use the inflection point of the 

similarity distribution curve as the cutoff threshold, making the pipeline more practical. The tool 
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also takes into account preprints and conference proceedings, discarding them when a peer-

reviewed version is present. This is and will be increasingly important with the rise of preprint 

servers. A manuscript describing this work, on which I am the first author, is under review in 

Research Synthesis Methods with a preprint available in bioRxiv 

(https://www.biorxiv.org/content/10.1101/2022.09.29.510210v1). Additionally, users can access 

RefDeduR on GitHub (https://github.com/jxshen311/RefDeduR) and view further documentation 

and examples on the website (https://jxshen311.github.io/RefDeduR/). 

1.4 Conclusions and future directions 

Finally, based on my experience and the results of my work, I offer my perspective on the future 

of the field. Overall, I see enormous potential in the use of metagenomics as an environmental 

surveillance tool. I further offer my suggestions for how to capitalize on this potential and 

improve it for future implementation. I highlight some inconsistencies in the nascent field of 

indoor microbiome research and outline some practices that would improve these issues. With 

these and other continued advances, I am confident we will develop a deep understanding of the 

microbiology of indoor environments and successfully use this understanding to promote human 

and environmental health.
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Chapter 2 Toward Accurate and Robust Environmental Surveillance 

Using Metagenomics 

2.1 Abstract 

Environmental surveillance is a critical tool for combatting public health threats represented by 

the global covid-19 pandemic and the continuous increase of antibiotic resistance in pathogens. 

With its power to detect entire microbial communities, metagenomics-based methods stand out 

in addressing the need. However, several hurdles remain to be overcome in order to generate 

actionable interpretations from metagenomic sequencing data for infection prevention. 

Conceptually and technically, we focus on viability assessment, taxonomic resolution, and 

quantitative metagenomics, and discuss their current advancements, necessary precautions and 

directions to further development. We highlight the importance of building solid conceptual 

frameworks and identifying rational limits to facilitate the application of techniques. We also 

propose the usage of internal standards as a promising approach to overcome analytical 

bottlenecks introduced by low biomass samples and the inherent lack of quantitation in 

metagenomics. Taken together, we hope this perspective will contribute to bringing accurate and 

consistent metagenomics-based environmental surveillance to the ground. 

2.2 Introduction 

Approximately 56% of the world's population lives in urban areas (UN, 2018) and people in 

developed nations spend at least 90% of the time indoors [6, 7, 29], making built environments 

hotspots with which humans frequently interact. Understanding and monitoring fomite 

transmission is critical in infection prevention [30]. The need for environmental surveillance 
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particularly stands out given emerging issues like the covid-19 pandemic and the continuous 

increase of antibiotic resistance in pathogens. Metagenomics-based methods have shown 

promising potential to meet this need, as they can detect entire microbial communities, as 

opposed to targeted identification.  

However, there are several obstacles that we must overcome to bridge the gap between 

deploying metagenomics and generating actionable interpretations to guide infection prevention. 

Cultivation provides direct evaluation of microbial removal by revealing observable colonies, but 

this approach lacks precision [31]. Whole genome sequencing leads transmission prevention 

actions by monitoring strain-level dynamics of the targeted pathogen but is difficult to apply for 

multiple organisms simultaneously [32]. Although metagenomics dramatically expands the scope 

of detectable organisms compared with the aforementioned methods, it urgently needs the ability 

to differentiate viability, which may otherwise cause an overestimation of infection risk, and 

reveal the actual load of pathogens (i.e., be quantitative), for direct correlation with infection risk 

[33, 34]. Finally, the taxonomic resolution needs to be high enough to discriminate pathogens 

from closely related non-pathogens. 

These challenges are both conceptual and technical in nature. They arise from the diversity of 

metagenomics research objectives, and are often exacerbated by intrinsic features of low-

biomass environments that need to be monitored. Low-biomass samples are typical of built 

environment surface swabs, air, water, and rocks. Such samples are dilute, containing 

approximately 102-104 cells/mL for liquid samples [21, 35]. Moreover, these samples are usually 

limited in total cells, making it harder to obtain enough biomass. For example, when swabbing 

door handles, the biomass cannot be increased by enlarging the sampling area, which is finite. 
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Thus, special precautions are often necessary due to the low success rate of sample preparation 

and high possibility of contamination [36]. 

In this context, we focus on three critical conceptual and technical advances that need to be 

incorporated throughout the metagenomic environmental surveillance process: viability 

assessment, taxonomic resolution, and quantitation (Fig. 2.1A). 
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Fig. 2.1 
Fig. 2.1 (A) Best practices in environmental surveillance using metagenomics (with 
examples). Internal standards are added to collected samples, while external standards are run in 
parallel with samples throughout the pipeline to assure its performance. An example is provided 
for demonstration purposes. Note that the standards given in this example only have theoretical 



23 
 

   
 

potentials; more investigations are needed for benchmark and optimization. In this example, 
species level resolution is needed to distinguish S. epidermidis, S. aureus, and S. delphini. 
Assuming S. delphini is a good internal standard for Staphylococcus but not for Clostridium, in 
this case, quantitative risk assessment can only be achieved for S. epidermidis and S. aureus, but 
qualitative lesson can still be gained for C. difficile. (B) Viability assessment coupled with 
metagenomic sequencing represents an accessible way to infer infection risk. 

2.3 Viability assessment using propidium monoazide (PMA) 

Locations of environmental surveillance (e.g., built environment surfaces) harbor a significant 

proportion of dead microbes, which are captured by traditional DNA-based methods, including 

metagenomic sequencing [37]. Failure to assess viability could cause overestimation of infection 

risk. Approaches have been proposed to address this issue, with PMA treatment as a 

representative. 

PMA treatment directly assesses membrane integrity. However, viability more broadly includes 

multiple underlying features, such as replication, metabolic activity [38], and virulence. These 

phenomena are not always interchangeable. In environmental surveillance, connecting viability 

to infection risk is the most informative criterion. This also highlights the importance of 

clarifying which criteria are being evaluated in the assessment of methods (Fig. 2.1B). 

Technical challenges and optimization efforts have accompanied PMA treatment throughout its 

development [38-41]. The outcome is related to multiple factors, including experimental 

conditions (e.g., dye concentration, incubation time, light exposure time), the diversity of 

microbes (e.g., target gene length, differences in cell membranes, formation of spores), and the 

complexity of the matrix (e.g., turbidity, pH, dead cell density). Variations in these factors make 

PMA treatment seemingly unreliable. It may nevertheless be valuable for environmental 

surveillance when certain conditions are satisfied. 
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Application of PMA treatment to environmental samples has been hindered partly because these 

samples contain a diverse microbial community in a complex matrix. As pointed out by Wang et 

al., PMA-seq with a universal protocol is not feasible to quantify viability of realistic 

communities, even with E. coli controls spiked in [42]. To facilitate its application in 

surveillance, instead of insisting on differentiation of the viability for every community member, 

we should start by identifying sets of similar pathogens, as these groups will have the highest 

potential to fit in one protocol while maintaining relatively good efficiencies. Comparing this to 

the concept of pinpointing dynamic range in quantification, by sacrificing part of metagenomics’ 

randomness, viability quantification may be achieved. For example, Yang et al have tried to 

simultaneously detect three viable Salmonella enterica serovars using multiplexed PCR coupled 

with PMA treatment [43]. Analogous principles have also been applied to the development of 

reagent enhancers by focusing on Gram-negative bacteria [38]. 

Internal standards help address biases introduced by complex matrices. To that end, peroxide-

killed Campylobacter sputorum cells were spiked into chicken rinses in the quantification of 

viable Campylobacter [44] with encouraging results. Nevertheless, further progress should be 

made for widespread adoption of internal standards in risk assessment, particularly regarding the 

diversity and viable proportion of microbes forming the standard. Internal standards containing 

more than one organism are necessary to cover the diversity of the targeted microbial group, with 

different viable proportions to account for variations in PMA efficiency at different live/dead 

ratios. In routine application, once a stable relative response factor is determined for a microbe 

(or microbial group)-standard combination, the number of internal standards might be reduced. 

Creating quality control metrics, analogous to sequencing coverage and depth in metagenomics, 
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or adopting calculation schematics exemplified in [45] may also be noteworthy directions for 

future research. 

Briefly, building a well-defined and continuously polished framework that limits its usage to a 

feasible scope but also maximizes the supporting functionality paves the way towards 

implementation of PMA treatment in environmental surveillance. 

2.4 Inferring taxonomy in low-biomass metagenomes 

Short-read shotgun metagenomic analysis reveals taxonomy without the limitations of amplicon 

sequencing or culture-based methods [46]. However, low-biomass samples can be more 

susceptible to technical factors including library size, community complexity, host DNA, and 

contamination. Therefore, mitigating strategies should be carefully considered. Afterwards, 

choosing a suitable taxonomic identification method is crucial for reliable metagenome analysis 

and interpretation, particularly for preventing false over-estimation of pathogens based on 

detection of non-pathogenic relatives or under-estimation of risk from pathogens with very low 

infective doses due to limitations in detecting rare taxa. 

Differences in coverage and depth can result in differing estimates of taxonomic richness and 

diversity in identical samples, primarily at low level ranks, such as genus or species (Table 2.1) 

[47, 48]. Smaller read libraries are particularly challenged by a diminished capacity to detect rare 

taxa and accurately estimate overall taxonomic abundance of samples [49] because more abundant 

members in the metagenome have a higher likelihood of detection [50]. Additionally, the lowered 

overall information content of low coverage and depth read libraries impact the ability to identify 

low level taxonomic ranks. 
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Table 2.1 
Table 2.1 Definitions and calculations of common sequencing terms. 

Term Definition Approach(es) Reference(s) 

Read 
library 

The number of 
reads generated 
from a single 
metagenomics 

sample 

- -  

Coverage 

The fraction of a 
metagenome 

represented by 
the read library 

  
Taxonomy-based rarefaction curve 

Read redundancy-based rarefaction curve 
[51, 52] 

Read depth 

The number of 
times a particular 
base is captured 

by a read 

𝑏𝑎𝑠𝑒	𝑥	𝑟𝑒𝑎𝑑𝑠	𝑡ℎ𝑎𝑡	𝑚𝑎𝑝	𝑡𝑜	𝑏𝑎𝑠𝑒 [53, 54] 

Mean read 
depth 

The read depth 
averaged across 
the metagenome 

assembly 

!"#$%	'#(("$	)*	#%%"'+,-	.	#/"!#0"	!"#$	,"10)2
#%%"'+,-	%34"

  [55] 

 

Low-biomass samples are especially sensitive to the presence of contaminants, as the true signal 

can be easily overwhelmed [36]. Multiple avenues of contamination exist, including sample 

preparation and DNA extraction, from either the reagents or the researchers themselves, and 

carryover between sequencing runs. Methods to reduce contamination include UV radiation and 

DNase treatment of kit reagents to specialized library preparation workflows [56-59]. 

Metagenomic samples should be accompanied with kit extraction negative controls and DNA-

spiked positive/internal controls during sequencing runs to identify sources of contamination [36, 

56, 60]. 
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Given the susceptibility of low biomass samples to contamination, special care should be taken in 

preparing appropriate controls to avoid misidentifying contaminants as true signals, as cross-

contamination can confound epidemiological or strain-tracking efforts. [61, 62]. The simplest 

approach is to remove sample reads that align to taxa found in the negative controls [63]. This can 

result in removing reads belonging to the true taxonomic composition of a sample, and especially 

problematic in instances where negative controls are contaminated by sample DNA or belong to a 

pathogen under surveillance. Other approaches include filtering sequences that fall below a 

designated relative abundance threshold or map to taxa in a contaminant database [64]. 

Approaches that remove low frequency sequences are not recommended for low biomass samples. 

Employing blank negative controls and study-specific kit negative controls could help in 

identifying genuine instances of contamination in low biomass samples and detecting kit-based 

contamination. Bioinformatics pipelines that incorporate either one or a combination of the above 

approaches have been developed to streamline identification of contaminants and/or cross-

contamination [64-66]. 

A variety of tools are available to characterize the taxonomic composition of a metagenomic 

sample and broadly follow two approaches: using reads as inputs or assembling reads and then 

using the genes/contigs as input [63, 67]. Both approaches have tools that use k-mer, alignment, 

and marker gene matching implementations. A meta-analysis of both approaches demonstrated 

that at artificially lowered read library sizes, read-based classification methods maintained their 

accuracy compared to assembly-based methods [68] because assembly-based methods rely on 

having sufficient overlapping read depths. Metagenomic samples from low-biomass environments 

with insufficient coverage (<20X read depth over the whole metagenome) may require read-based 
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taxonomic classification [46, 68]. Similarly, inherently low read depths may limit the level of 

taxonomic resolution, as strain-level analysis requires high read depth to distinguish between SNP 

variants or marker gene variants (e.g. characterizing the relatedness of strains during an outbreak 

using SNPs) [49, 69-71]. If strain-level variants are desired, merging paired-end reads or using 

sequencing technologies that generate longer reads may be necessary [69]. 

Choosing an appropriate taxonomic reference database can greatly impact the breadth of taxa 

identified [72, 73]. For example, a reference database built from gut bacteria may not identify 

environmental taxa but may be suitable for identifying gut pathogens in the environment. Many 

tools offer the option of using either precompiled or custom reference databases [63]. CAMISIM, 

a tool that simulates microbial metagenomic datasets, can be used by researchers to test different 

approaches [74].  

2.5 Quantitative metagenomics in environmental surveillance 

Conceptually, quantitative metagenomics has appeared in many ways in microbiome research, 

ranging from performing basic calculations of abundance, to normalizating metrics to these 

calculations, to the ultimate goal of absolute quantification as in qPCR [75]. 

At any level, parameters or metrics for profiling a microbial community are the basis of analysis. 

As such, selecting meaningful parameters is the first step toward quantitative metagenomics. Of 

the five parameters summarized in their review [50] (Table 2.2), Nayfach and Pollard suggested 

that cellular relative abundance and average genomic copy number are the more biologically 

meaningful and quantitative strategies. However in reality, relative abundances are more 

frequently used. For instance, quantitative metagenomics is applied in gut microbiome studies to 
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identify unique biomarkers [76, 77], to compare disease and health states [78], and to predict 

resistome [79], all of which use cellular/gene relative abundance normalized by genome/gene 

length through mapping reads to reference genomes/genes (e.g., the MetaHIT gene catalogue).  

Table 2.2 
Table 2.2 Parameters to profile microbial communities summarized by Nayfach and 
Pollard. Theoretical calculation equations are created based on our interpretation of the authors’ 
descriptions, which are also adapted to the context of environmental surveillance.  

Parameter Theoretical calculation equation 
Cellular relative 

abundance 𝐶𝑅𝐴(𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑜𝑓	𝑡𝑎𝑥𝑜𝑛	𝑥

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 

Gene relative 
abundance 𝐺𝑅𝐴(𝑥) =

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒	𝑥
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 

Average genomic 
copy number 

𝐴𝐺𝐶𝑁(𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒	𝑥

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 

𝐴𝐺𝐶𝑁(𝑥) = 𝐺𝑅𝐴(𝑥) 	× 	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑔𝑒𝑛𝑜𝑚𝑒	𝑠𝑖𝑧𝑒	(𝑖𝑛	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠) 
Cellular absolute 

abundance 𝐶𝐴𝐴(𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠	𝑜𝑓	𝑡𝑎𝑥𝑜𝑛	𝑥
𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑖𝑔ℎ𝑡/𝑎𝑟𝑒𝑎  

Gene absolute 
abundance 𝐺𝐴𝐴(𝑥) =

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒	𝑥
𝑣𝑜𝑙𝑢𝑚𝑒/𝑤𝑒𝑖𝑔ℎ𝑡/𝑎𝑟𝑒𝑎 

 

However, cellular and gene absolute abundances are the most promising parameters in 

environmental surveillance, which is predicated on the actual load of pathogens or pathogenic 

genes. Moreover, absolute abundances allow better comparisons across samples [80] and across 

taxa/genes [50, 81].  

Technically, several challenges remain to be overcome towards accurate and unbiased estimation 

of absolute abundances. It requires careful re-design of the entire study in a stringently 

quantitative framework, beginning with sample collection. Samples should be collected in an 

absolute framework (per unit volume, weight, area, etc.), and this framework should be 
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maintained throughout sample preparation. Taking surface microbiome studies as an example, 

extra considerations include the measurement and documentation of the swabbing area as well as 

volume of sampling buffer and other solutions used in the entire workflow, and the examination 

of the recovery rate where sample loss is non-negligible. Furthermore, normalization by 

genome/gene length is necessary to account for the varying representativity in sequencing a read 

from genomes/genes of different lengths.  

This is not always easy in reality. For example, the sampling area of sink biofilms is difficult to 

assess when destructive sampling is not permitted. Even if the samples are collected in a strictly 

quantitative way, other steps in the sample treatment process still need to be conducted 

quantitatively. Taking DNA extraction as an example, instructions like “transfer up to 600 µL of 

supernatant to a clean tube” destroy the quantitative chain and prevent us from calculating 

dilution factors. Accurate normalization by genome/gene length requires continuous effort in 

expanding genome/gene databases and in incorporating genome/gene normalization into 

bioinformatic pipelines [82]. In the interim, mapping reads to a set of well-studied while also 

universal (within the study scope) marker genes (e.g., 16S rRNA genes in bacteria) could serve 

as a workaround [50] but unfortunately introduces its own biases. 

Besides incorporating qPCR or flow cytometry, introducing standards has great potential to 

enhance the quantitation ability of metagenomics. In this context, internal standards outcompete 

external standards, partly because variations in sample treatment seem inevitable (e.g., shotgun 

libraries undergo equimolar normalization) and because the relationship between the amount of 

input material and the number of output reads remains obscure. Internal standards also 
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compensate for errors resulting from any non-quantitative processing steps following their 

addition. Some efforts have been made to incorporate internal standards into the metagenomic 

pipeline, such as spiking mock-community cells into the collected samples [60], adding genomic 

DNA just prior to cell lysis in DNA isolation [80, 83], and including a set of synthetic DNA 

before library preparation [84]. Despite these advances, systematic investigations are needed to 

benchmark methods, identify limitations, and validate use in various contexts. Clearly, a set of 

standards are needed to account for the complexity of samples and the diversity of targets. But 

which performs the best among mock communities, genomic DNA isolated from cultured 

microorganisms, and synthetic DNA remains unclear. Nor is it known at which step the 

standards should be added and at what dose. Moreover, when exogenous materials are hard to 

find, the standard addition method may be worth exploring [85]. Finally, the standards should be 

evaluated holistically at the pipeline level for their compatibility and functionality across 

multiple steps (e.g., PMA treatment, metagenomic sequencing). Ideally, an optimal pipeline 

should also be equipped with quality control compartments such as external standards and 

mathematical models which assess and calibrate biases [60].  

2.6 Limits of detection 

Incorporating viability assessment, adequate taxonomic resolution, and quantitation into 

metagenomics will yield invaluable insights into environmental surveillance. But perhaps more 

critical than interpreting observed data is interpreting non-detects. Ultimately, a viable signal 

must be linked to infection risk by determining the threshold load of pathogens to cause an 

infection when they are contracted from a fomite. This threshold is pathogen-specific. Thus, 
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reference values, like clinical standards for antimicrobial susceptibility testing (M100, CLSI) 

[86], as technological standards are necessary.  

Moreover, sensitivity of every step in the pipeline must be accounted for in data interpretation, as 

the overall sensitivity is determined by the lowest step. As mentioned above, features of the 

community being sampled can affect the expected breadth of coverage. Complex samples with 

many taxa, host DNA, or stochastic eukaryotic DNA (for example in surface swabs) may require 

high read library sizes to ensure sufficient breadth of coverage [73, 87]. This is especially 

important when non-target DNA can represent the majority of the reads generated, resulting in 

decreased capacity to detect rare taxa and at fine-grained resolutions. Pilot studies that assess 

coverage using taxonomy or read redundancy-based rarefaction analysis can help determine an 

appropriate library size [88]. When pathogens are rare compared to other organisms, limit of 

detection (LoD) is a crucial parameter as it determines the maximum possible load of pathogens 

when they are not detected. Given the inherent nature of metagenomic shotgun sequencing that a 

fixed total number of reads are distributed based on the relative proportion of genetic materials 

present in a batch, LoD must be approximated with the microbial community to be sequenced at a 

batch-based pace. Because of this matrix-dependent characteristic, it is impractical to get a 

universal LoD for the technique “metagenomic sequencing”. Empirically, LoD can be estimated 

relative to the least abundant but detected members in the internal standards or the sample itself. 

2.7 Discussion 

In summary, metagenomics has enormous potential in environmental surveillance of pathogens 

as it simultaneously detects multiple organisms and functional genes of interest, e.g., antibiotic 
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resistance. However, the following steps need to be taken to ensure that metagenomic data can 

practically be applied to risk assessment: 

1. Rationally address inherent conceptual limitations regarding viability. For example, PMA 
treatment assesses membrane integrity, not infectivity; but relationships can be deduced 
between intact cells and infectious organisms. 

2. Rationally address inherent limitations regarding taxonomy. For example, while almost 
all Salmonella are pathogenic, higher taxonomic resolution is needed to distinguish 
pathogenic Pseudomonas. 

3. Incorporate internal standards. Doing so will compensate for biases introduced by 
complex environmental matrices, yield quantitative results, and correct both random and 
systematic errors. 

4. Holistically integrate multiple steps in pipeline optimization. Specifically, internal 
standards can be incorporated for multiple operations including PMA treatment, 
taxonomic inference, and quantification.  

Metagenomics-based environmental surveillance has potential for developing rich datasets that 

aid surveillance. Metagenomic data can aid in linking taxa with virulence factors and antibiotic 

resistance genes. Strain-level data can further track transport of pathogens in the environment or 

reveal microbial networks of interactions among patients, employees, medical devices or 

wastewater. Promoting crucial standardizations ranging from sampling protocols to data analysis, 

curation and presentation, can not only help produce internally consistent results but also 

increase external compatibility with data generated in different studies [50] or with different 

protocols [89]. 
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Chapter 3 An improved workflow for accurate and robust healthcare 

environmental surveillance using metagenomics 

3.1 Abstract 

Background: Effective surveillance of microbial communities in the healthcare environment is 

increasingly important in infection prevention. Metagenomics-based techniques are promising 

due to their untargeted nature but are currently challenged by several limitations: 1) they are not 

powerful enough to extract valid signals out of the background noise for low biomass samples; 

2) they do not distinguish between viable and non-viable organisms; and 3) they do not reveal 

the microbial load quantitatively. An additional practical challenge towards a robust pipeline is 

the inability to efficiently allocate sequencing resources a priori. Assessment of sequencing 

depth is generally practiced post hoc, if at all, for most microbiome studies, regardless of the 

sample type. This practice is inefficient at best, and at worst poor sequencing depth jeopardizes 

the interpretation of study results. To address these challenges, we present a workflow for 

metagenomics-based environmental surveillance that is appropriate for low-biomass samples, 

distinguishes viability, is quantitative, and estimates sequencing resources. 

Results: The workflow was developed using a representative microbiome sample, which was 

created by aggregating 120 surface swabs collected from a medical intensive care unit. Upon 

evaluating and optimizing techniques as well as developing new modules, we recommend best 

practices and introduce a well-structured workflow. We recommend adopting liquid-liquid 

extraction to improve DNA yield and only incorporating whole-cell filtration when the non-

bacterial proportion is large. We suggest including propidium monoazide treatment coupled with 
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internal standards and absolute abundance profiling for viability assessment, and involving 

cultivation when demanding comprehensive profiling. We further recommend integrating 

internal standards for quantification, and additionally qPCR when we expect poor taxonomic 

classification. We also introduce a machine learning-based model to predict required sequencing 

effort from accessible sample features. The model helps make full use of sequencing resources 

and achieve desired outcomes. 

Conclusions: This workflow will contribute to more accurate and robust environmental 

surveillance and infection prevention. Lessons gained from this study will also benefit the 

continuing development of methods in relevant fields. 

3.2 Introduction 

Effective microbial surveillance in the built environment is increasingly important in infection 

prevention, given the persistence of pathogens in environmental reservoirs and their potential 

transmission to patients [90-96] (e.g., carbapenem-resistant Klebsiella pneumoniae in sink drains 

[97, 98]). Furthermore, with the emergent studies showing synergistic relationships among 

pathogens on hospital surfaces [19] and the possibility for pathogenic bacteria to acquire 

antibiotic resistance genes from non-pathogenic neighbors [20], it is necessary to expand from 

targeted surveillance to untargeted methods. Untargeted methods are advantageous in identifying 

novel or rapidly emerging pathogens [21]. Metagenomics-based techniques are the most 

promising option to achieve these goals but are currently challenged by several limitations: 1) 

they are not powerful enough to extract valid signals out of the background noise for low 

biomass samples; 2) they do not distinguish between viable and non-viable organisms; and 3) 

they do not reveal the microbial load quantitatively [50, 99]. 
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For challenge 1), adoption of appropriate negative controls has been emphasized [36, 60], along 

with various bioinformatic filtering tools to remove putative contaminants [64, 65]. While 

current efforts have largely focused on contamination prevention, increasing the biomass itself 

remains understudied [21]. Having adequate biomass is essential, as previous work has indicated 

that a small amount of starting material (i.e., DNA) has adverse impacts on the outcome 

regardless of sample processing methods [100]. In practice, methods have been adopted as 

temporary fixes, such as pooling samples from different sites or dates [101], and using wipes 

instead of swabs as sample collectors [90]. However, these workarounds are not always available 

[56]. Moreover, systematic evaluation and benchmarking of optimization strategies for 

metagenomic sample preparation remain largely unexplored.  

For challenge 2), propidium monoazide (PMA) is the most widely used viability indicator 

compatible with molecular techniques. Though intensively optimized [102], its efficacy and 

applicability in combination with metagenomics are controversial. A semi-quantitative 

systematic evaluation concluded that PMA treatment coupled with 16S rRNA gene amplicon 

sequencing (PMA-Seq) is reliable when the microbial community is not very complex, while 

uncertainties increase dramatically with complexity [103]. The uncertainties come from both 

heterogeneity of microorganisms (e.g., cell envelope structure differences, spore formation), and 

complexity of the background matrix (e.g., turbidity, salt concentration, dead cell density) [39, 

40, 99]. While the microbial communities to be surveilled have their inherent advantage of being 

low complexity, little is known about the effectiveness of incorporating PMA with multi-species 

internal standards. To be appropriately rigorous, comparisons are needed relative to standard 
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surveillance that does not consider viability (i.e., no PMA), as well as traditional methods (i.e., 

cultivation).  

For challenge 3), pitfalls of using relative abundances in microbial profiling have been widely 

indicated. Such pitfalls include but are not limited to lack of unique connections between 

biological interpretations and experimental observations and unreliable comparisons across 

samples [50, 104, 105]. Strikingly, mis-selection of analytical tools for relative abundance data 

could lead to as high as 100% false discovery rates [104]. Besides flow cytometry [106, 107], 

combing sequencing with quantitative PCR (qPCR) and including internal standards [80] are two 

major means of making quantitative estimations out of next-generation sequences. In practice, 

previously reported applications for qPCR include air and dust samples in classrooms [108]; for 

internal standards, applications include Amazon River plume [83], soil [109], and stool samples 

[110]. However, comparisons are not yet available between metagenomics coupled with qPCR 

and with internal standards using low biomass environmental samples in the immediate vicinity 

of humans (e.g., healthcare settings). 

An additional practical challenge in developing a robust pipeline with metagenomics is how deep 

one should sequence. While useful in whole genome sequencing, recommendations of coverages 

expressed by folds of genome sizes (e.g., 15X to 60X) are not readily transferable to 

metagenomic sequencing (MetaSeq), as reads do not equally distribute across members with 

substantially different abundances. Nonpareil, a redundancy-based tool, estimates and projects 

abundance-weighted average coverage for metagenomics (expressed in percentage) [52, 88, 

111]. This helps reduce erroneous interpretations out of metagenomic results. Yet expected 

coverage is still largely unpredictable before sequencing is run. Researchers usually rely on 
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previous experience of similar samples and the available budget to determine the sequencing 

effort (read size, unit: bp), which may lead to either a coverage too low, thus limiting the 

extractable information [20], or a waste of resources [90]. 

To address these challenges, we present a workflow for metagenomics-based environmental 

surveillance that is appropriate for low-biomass samples, distinguishes viability, is quantitative, 

and estimates sequencing resources (Fig. 3.1). Liquid-liquid extraction, PMA treatment equipped 

with internal standards and absolute abundance profiling, qPCR, and a machine learning-based 

model are the recommended components for the comprehensive workflow, with whole-cell 

filtration and cultivation as optional accessories. 
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Fig. 3.1 
Fig. 3.1 A workflow for metagenomics-based environmental surveillance that is 
appropriate for low-biomass samples, distinguishes viability, is quantitative, and estimates 
sequence resources. 
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3.3 Methods 

3.3.1 Sample collection, aggregation, and cultivation 

We collected 120 surface swabs from the 28-bed medical intensive care unit at Rush University 

Medical Center (RUMC) in October 2018. RUMC is a 720-bed tertiary care teaching hospital in 

Chicago, IL. Samples were collected from door sills, computer keyboards, light switches, nurse 

calls, and bed rails in 13 single-bed patient rooms, as well as door sills in 4 medication rooms, 2 

public restrooms, 1 staff-only restroom, and the communicating space of MICU (Table S3.2). 

Weighted mean area of sampled surfaces was 216 cm2. Patient rooms were selected to keep a 

relatively balanced number for both contact isolation and non-contact isolation rooms. 

Healthcare providers and visitors entering contact isolation rooms are required to wear gowns 

and gloves, which may reduce transmissions via contaminated healthcare providers. Room 

temperature and relative humidity were documented during the collection, which varied slightly 

across rooms, with the average being 23.8°C and 45%, respectively. Each sample was collected 

by 3 COPAN Nylon Flocked Swabs (Copan Diagnostics, Murrieta, CA, USA) and 1.5 mL 

Phosphate Buffered Saline with 0.02% Tween 80 (PBST), and stored at 4°C for up to 24 h prior 

to extraction, aggregation, and cultivation [112, 113]. Swabs were extracted and aggregated to 

create a representative microbiome sample [37, 113, 114]. Aliquots of this aggregation sample 

were then subjected to different processing methods (i.e., several DNA extraction methods, 

microbial community standard spike-in, PMA treatment and whole-cell filtration) to find best 

practices of the workflow (Fig. S3.1).  

To capture a large fraction of the indoor microbiome diversity, we cultured the samples with 4 

different media: tryptic soy agar (TSA), Reasoner's 2A agar (R2A), 0.1 strength R2A at 25°C, 
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and blood agar (BA) at 37°C, all supplemented with 4 mg/L itraconazole [113]. This resulted in 

233 cultivable isolates. All colonies that could be individually picked or purified were subject to 

taxonomic identification by matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS) using the VITEK® MS Mass spectrometry microbial 

identification system (BioMerieux, Marcy-l'Étoile, France) and the VITEK MS V3.2 FDA 

510(k) cleared database. Among the 233 isolates, 201 were identified. It is important to note that, 

because multiple media types were used, the number of isolates for each species identified does 

not represent the relative abundance of this species in the sample, as some species may have 

grown on multiple media. 

3.3.2 Standard addition, PMA treatment and whole-cell filtration 

All treatments were done in triplicate, including cultivation. 

Standard addition 

Aliquots were snap frozen and stored at -80 °C until further processing to maximize the integrity 

of samples and avoid degradation resulting from long-term storage at 4°C [37, 115]. Samples 

were thawed at 4°C prior to treatments. ZymoBIOMICS Microbial Community Standard (Zymo 

Research, Irvine, CA, USA) was used as both the internal standard and the external standard. As 

the internal standard, 6.50 μL Zymo community was spiked into 1 mL aggregate sample, 

following the criterion that DNA of the species with the highest abundance in the Zymo 

community approximates 1% of the total DNA in the aggregate sample [83, 116]. As the external 

standard, aliquots of the Zymo community were run in parallel with aggregate samples 

throughout the workflow to assure its performance. 
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PMA treatment 

Following standard addition, PMA treatment (Biotium, Fremont, CA, USA) with an optimized 

protocol was applied to half of the samples within each group [39, 40, 102, 117, 118]. The 

protocol was first validated by reproducing the work of Nocker et al. (2006) using Escherichia 

coli (ATCC 8739) as model strain (Fig. S3.2). E. coli was grown to the exponential phase. The 

culture was then split into two aliquots, one of which was killed by heat inactivation at 95°C for 

7 min in Eppendorf ThermoMixer shaking at 400 rpm for homogenized heating. After cooling to 

room temperature, live and heat-killed aliquots were mixed following the same ratios as in 

Nocker et al. (2006), yielding samples of 6 different expected live cell ratios. Viability of both 

live and heat-killed cultures was confirmed by spread plating onto TSA and incubating at 37°C 

overnight. Half of each constructed sample underwent PMA treatment. The results were 

evaluated by both DNA concentration ratio quantified by Quant-iT™ PicoGreen™ dsDNA 

Assay (ThermoFisher, Waltham, MA, USA) and copy number ratio by qPCR with 16S universal 

primers (341F and 534R) (Fig. S3.2). Briefly, a final concentration of 25 µM PMA was used, 

and several steps were conducted to ensure the consistency across samples and minimize 

nonspecific reactions between PMA and random sample components, including 1) adding PMA 

to tube caps and inverting all tubes simultaneously, 2) working under red light, and 3) protecting 

samples from light as much as possible before the light activation step in the PMA-LiteTM device 

(Biotium, Fremont, CA, USA). An aliquot of samples for each replicate was preserved at -80°C 

until DNA extraction, with the rest stored at 4°C for downstream filtration. 
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Whole-cell filtration 

Whole-cell filtration was conducted using EMD Millipore 25 mm Glass Vacuum Filter kit 

(MilliporeSigma, Burlington, MA, USA), 125 mL filter flask, and Gemini vacuum pump in a 

biosafety cabinet following aseptic techniques (Fig. S3.3). Notably, autoclaved tweezers were 

used to avoid possible contaminations from touching sensitive parts of the set-up. Samples were 

filtered by 100 μm nylon membrane, followed by 80 μm and 41 μm nylon membranes and 5 μm 

PVDF membrane (MilliporeSigma, Burlington, MA, USA). 1 mL PBS was added to the falcon 

tube and flask at each step to increase the sample recovery by rinsing the inner wall. The filtered 

samples were then subjected to 3-fold (relative to the volume before filtration) vacuum 

concentration with an Eppendorf Vacufuge plus. Filtered liquid samples and filter papers were 

preserved at -80°C until DNA extraction. To increase the extraction efficiency from filter papers, 

we compared 1) cutting them with scissors into 9 pieces, 2) grinding them with metal spatula 

after snap freezing in liquid nitrogen, and 3) directly putting the whole filter paper into the 

preservation tube. We finally selected the third option as this was the most operationally feasible 

way without high risk of contamination.  

3.3.3 Negative controls 

To combat the susceptibility of low-biomass samples to contamination, we included 4 types of 

negative controls along the workflow, namely, 6 negative field controls, 6 negative media 

controls, 12 negative filter controls, and 7 negative kit controls [36, 60, 99, 119]. The negative 

controls were processed in parallel with the surface samples, including metagenomic sequencing 

and bioinformatic analysis. 
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Negative field controls were collected exactly the same as surface samples, except that the swabs 

were exposed to the air without contacting targeted surfaces. One negative field control was 

collected at the beginning and the end of each sampling session. Two negative media controls 

were included in each sampling session, which were unopened media with swabs from the same 

lot. Each collected control was split into triplicate and processed along with samples [112, 120]. 

Negative filter controls were included in triplicate for each pore size by letting sterile PBST flow 

through the vacuum filtration system attached with blank filter papers. Additionally, 7 negative 

kit controls were processed across batches of DNA extractions. 

3.3.4 DNA extraction, qPCR and metagenomic sequencing 

To ensure enough DNA recovery, we performed an initial optimization on a separate set of 

surface swab samples collected from the same MICU prior to working with the aggregate sample 

(Fig. S3.4). Column-based methods were first tried due to its widespread usage in the field. We 

examined Qiagen DNeasy PowerSoil Kit with standard protocol and a modified version by 1) 

changing from vortex lysis to bead-beating lysis, 2) introducing heat incubation after bead-

beating, and 3) adding 50 μL water each time for twice in total at the elution step. DNA yields of 

both were below the limit of detection. Liquid-liquid extractions were performed afterwards for 

their high-yielding potentials. Phenol-chloroform extraction resulted in the highest yield 

(186.27±55.51 ng/μL by NanoDrop), but the purity indicated by 260/280 was not acceptable 

(1.36±0.03). Lucigen MasterPureTM Complete DNA and RNA Purification Kit also resulted in 

high yields when coupled with bead-beating and heat lysis and better purity than phenol-

chloroform extraction (260/280 1.62±0.02). We attempted to improve the purity using the 

Agencourt AMPure XP PCR Purification kit. However, we did not see a purity increase (260/280 
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1.62±0.03) and incurred a 64.70% DNA yield drop. Based on the above tests, we noticed that 

methods involving columns (Qiagen PowerSoil) or magnetic beads (Agencourt AMPure) greatly 

decreased the DNA yield. Because the primary concern for surface samples is low biomass, 

increasing DNA yield is considered more critical than bringing 260/280 to the desired range of 

1.8-2.0. Therefore, the Lucigen MasterPureTM Complete DNA and RNA Purification Kit with the 

adapted protocol was chosen for all subsequent analyses [121]. Samples were thawed at 4°C 

prior to DNA extraction and DNA concentrations were quantified by Quant-iT™ PicoGreen™ 

dsDNA Assay [122]. 

V3 region of the 16S rRNA gene was amplified in qPCR using universal primers (341F: 5’-CCT 

ACG GGA GGC AGC AG-3’, 543R: 5’-ATT ACC GCG GCT GCT GGC A-3’) [123]. The 20 

µL reaction mixture consisted of 10 µL PowerUp™ SYBR™ Green Master Mix (Applied 

Biosystems), 0.6 µL forward primer (10 µM), 0.6 µL reverse primer (10 µM), 5.0 µL DNA 

templates (pre-diluted if necessary), and 3.8 µL nuclease-free water. The reaction was run in 

technical triplicate on a QuantStudio 3 Real-Time PCR System (Applied Biosystems) with an 

initial denaturation step at 95°C for 2 min, followed by 40 amplification cycles (95°C, 15 s; 

56°C, 15 s; 72°C, 1 min) and a melting curve stage (95°C, 15 s; 60°C, 1 min; 95°C, 15 s).  No‐

template control and 5~8 standards were included in each batch to generate the standard curve 

(efficiency > 90%; R2 > 0.99). Plasmid DNA constructed by TOPO™ TA Cloning™ Kit 

(Invitrogen, Waltham, MA, USA) was used as standards. 

Extracted DNA was shipped on dry ice to the UMICH Microbiome Core (Ann Arbor, MI, USA) 

for library preparation using Nextera™ DNA Flex Library Prep Kit and paired-end 250-bp 

shotgun metagenomic sequencing on an Illumina MiSeq platform (MiSeq Reagent Kit v2). 
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Libraries were normalized at equal molarity in a 4 nM final concentration pool before 

sequencing, and for samples without enough DNA (e.g., negative controls), all available 

materials were used.  

3.3.5 Data analysis 

Sequence data processing 

KneadData (v0.6.1) was first used to clean the shotgun sequences with default parameters. Reads 

present in the human reference database (hg37_and_human_contamination) and negative 

controls were filtered out. Metaxa2 (v2.2) [124-126] coupled with SILVA 132 SSU database 

[127, 128] was chosen to generate taxonomic profiles after comparing it with MetaPhlAn2 

(v2.6.0) [129] and MetaPhlAn3 (v3.0.7) [130, 131]. The evaluation was conducted based on their 

performance on external standards and cross validation with cultivation results for untreated 

aggregate samples. Default parameters were used for all three tools. MetaPhlAn3 was ruled out 

mainly because it only generates marker genes at the species level and an average of 80.32% 

metagenome was deemed unknown for our samples. For external standards, both Metaxa2 and 

MetaPhlAn2 recognized all 8 bacteria species demonstrated in the theoretical composition, but 

MetaPhlAn2 failed to classify the 2 eukaryotic species. Moreover, it did not classify 

Pseudomonas fluorescens and barely classified Pseudomonas stutzeri from aggregate samples, 

while Metaxa2 recognized both. Though Metaxa2 included a few spurious taxa, all can be 

eliminated by removing singletons. Since the primary goal of this study was to compare 

techniques and recommend best practices, sensitivity outweighed specificity. Therefore, Metaxa2 

was selected and singletons were removed for downstream analyses. Taxa were labeled to the 

lowest classifiable level, with species level as the ultimate target [103]. Metagenomic sequencing 
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coverage for all samples was estimated by Nonpareil (v3.303) under kmer mode using default 

settings [52, 111]. 

Comparison between gene- and genome- centric approaches 

An evaluation of genome-centric analysis was based on 9 untreated aggregate samples (Table 

S3.3). We first compared Megahit (v1.0.6.1) [132] and metaSPAdes (v3.14.1) [133], and 

selected metaSPAdes as the assembly tool because it produced better-quality contigs (i.e., longer 

and fewer contigs, higher N50) as assessed using Quast (v4.4) [134]. MetaBAT2 (v1.7) [135] 

was then used to bin the contigs and reconstruct genomes, with bin quality checked by CheckM 

(v1.0.18) [136]. Each sample yielded a single high-quality bin (completeness > 92%, 

contamination < 2%). Taxonomy of the bins was subsequently assigned using GTDB-Tk (v1.7.0) 

[137]. All the 9 metagenome-assembled genomes were classified as Pseudomonas fragi. The 

genome-centric approach thus represents the least sensitive method compared with cultivation 

and gene-centric metagenomics, especially for less abundant taxa. Because the genome-centric 

method only detected 1 taxon, while cultivation and gene-centric metagenomics detected 12 and 

11 taxa, respectively (Fig. 3.4a), this approach was excluded from further analysis. 

Statistical analysis 

Statistical analyses and data visualization were conducted in R (v4.0.4) [138] with packages such 

as Nonpareil, vegan, ape, ggplot2 [139], and dplyr. Principal coordinate analysis (PCoA) based 

on Jaccard metric was performed to demonstrate beta diversity [119]. Differences between 

groups were determined by Student's T-test or ANOVA coupled with Tukey’s post-hoc test, 

depending on the number of groups under comparison. P ≤ 0.05 was defined as statistically 

significant. Significance codes are: p > 0.05 (ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), p ≤ 
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0.001 (***). Package “fitdistrplus” was implemented to find the best-fit distribution for 

Nonpareil diversity. Machine learning models were trained using the package “caret”.  

3.3.6 Availability of data and materials 

The raw shotgun metagenomic sequencing data are available in the NCBI SRA repository under 

Bioproject number PRJNA765404. Source code and supplementary data for reproducing 

analyses are available under MIT license at 

https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance. Protocols 

are available at Protocol Exchange with DOIs: 10.21203/rs.3.pex-1656/v1 (sample collection, 

extraction, and cultivation), 10.21203/rs.3.pex-1657/v1 (snap freezing), 10.21203/rs.3.pex-

1659/v1 (PMA treatment), and 10.21203/rs.3.pex-1658/v1 (DNA extraction). 

3.4 Results 

3.4.1 Liquid-liquid extraction improves the power of handling low-biomass samples 

To improve DNA yield of low biomass samples, we first compared 3 categories of extraction 

methods. Bead-beating and heat lysis followed by liquid-liquid extraction was the optimal 

method, as opposed to widely used column- and magnetic bead-based methods (“Methods”, Fig. 

S3.4) [140, 141]. Notably, no detectable DNA was recovered using Qiagen DNeasy PowerSoil 

Kit. Supplementary to the recommendation that DNA input ≥ 1 ng for Nextera Flex Library Prep 

kit, we correlated it to the practical outcome and found that DNA > 11.2 ng corresponded to raw 

reads > 1e+05 (Fig. S3.4).  

In addition to being low biomass, environmental samples of interest are usually in the immediate 

vicinity of humans, and thus often contain eukaryotic cells. These cells may compete with 
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bacteria for sequencing depth, lowering detectable resolution on bacteria, especially for low-

abundance members. Collection methods such as swabs and wipes can further recover abiotic 

debris along with biological materials, to which chemicals potentially interfering with 

downstream experiments may adsorb [123]. To address these issues, we evaluated the 

implementation of whole-cell filtration in the workflow. Four filtration steps (100, 80, 41, 5 μm) 

were conducted in descending order of pore sizes. For our samples, filtration did not exert a 

significant effect on detected proportions of bacteria (Fig. 3.2a) or eukaryotic reads (Fig. S3.5), 

according to paired t tests (p ≥ 0.05). Considering that the non-bacterial proportion of our 

samples was relatively small (~1%), filtration appears ineffective (or unnecessary) in increasing 

the bacterial proportion by excluding eukaryotic cells for samples with similar characteristics. 

Instead, most of the eukaryotic reads were human-associated and thus able to be removed in 

silico (Fig. S3.5). Moreover, we did not observe an increase in the number of rare taxa post 

filtration. Nevertheless, filtration did not negatively affect the number of recoverable taxa (Fig. 

S3.6) [142, 143]. 

As expected, filtration introduced biomass loss of ~13-44%, according to 16S rRNA gene copy 

number (Fig. 3.2b). The biomass loss may be compensated by a two-fold concentration, material 

permitting. Alternatively, the total biomass loss can be reduced in practical applications where 

one-step filtration is streamlined. Filtration did not impact the overall bacteria composition (Fig. 

3.2c), nor did it change the relative abundances of top abundant taxa (average abundance > 1%) 

(Fig. S3.7). This evidence supports the validity of using filtration to concentrate bacterial 

samples in sequencing-based experiments for profiling relative abundances. However, the 

absolute abundances would be affected disproportionately, as the extent of biomass loss varied 
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across samples (Fig. 3.2b). Therefore, when an absolute metric is of interest, the recovery rate 

needs to be rigorously measured. Bacteria retention profiles on 5 μm filters were similar to those 

of the liquid samples. However, bacterial members were not proportionally retained by filters of 

a larger pore size (100, 80, 41 μm) (Fig. 3.2d). Hence treating microbial samples with large pore-

size filters may introduce biases, even when relative abundances are used.  

Taken together, for samples whose non-bacterial proportion is small (e.g., ~1%), it is 

unnecessary to incorporate filtration to increase the bacterial fraction. Filtration is valid in 

concentrating samples. However, for low biomass samples which are low in both cell density and 

quantity, biomass loss outweighs the slight increase of bacterial signal. Instead, switching to a 

high-yield DNA extraction method, such as liquid-liquid extraction, can achieve higher folds of 

signal improvement (DNA concentration from undetectable to 18.62±1.16 ng/μL).  
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Fig. 3.2 
Fig. 3.2 Effects of sequential filtration on hospital-associated surface samples. a) Bacteria 
proportion was not significantly increased after filtration according to paired t tests. b) Biomass 
of samples with and without filtration as well as retained by filters according to 16S rRNA gene 
copy number. In a) and b), error bars represent the mean standard error of triplicates. Filter 
retention includes all biomass captured by 100, 80, 41, and 5 μm filters. Ns and ** are 
significance codes, representing p > 0.05 and 0.001 < p ≤ 0.01, respectively. A linear scale was 
used for both a) and b) because for a), a linear scale is more conservative than a log scale when 
no significant difference was concluded; for b), linear-scale biomass loss is more informative for 
metagenomic sequencing. c) Principal coordinate analysis using Jaccard distance metric among 
samples with and without filtration. d) Principal coordinate analysis based on Jaccard distance 
metric revealed that bacterial profiles retained on 5 μm filters clustered together with liquid 
samples, while those on 100, 80, and 41 μm filters were away from the major group. 
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3.4.2 PMA and cultivation improve the ability to determine viability 

We examined the efficiency of PMA treatment coupled with metagenomic sequencing (PMA-

MetaSeq) on hospital-associated surface samples with the ZymoBIOMICS Microbial 

Community spike-in as the internal standard. The Zymo community consists of 8 bacterial 

species and 2 yeasts, which presumably will function more comprehensively and accurately 

regarding bias correction and quality control than a single-species standard [40, 99, 103, 144]. 

Sequencing outcomes were compared with cultivation results for benchmarking, as cultivation is 

the gold standard for determining microbial viability.  

Absolute abundance of samples decreased after PMA treatment, indicating the depletion of non-

viable signals (Fig. 3.3c). This was further supported by the observation that 𝛂 diversity was 

lower in PMA-treated samples (Fig. 3.3a), and that inter distances between paired samples were 

larger than intra distances within each sample group (Jaccard Distance; Fig. 3.3b). We note that 

absolute abundance should be used when analyzing sequence data involving viability 

assessment, as relative abundance profile is likely distorted (Fig. 3.3c-d) [109]. Although relative 

abundance is informative in demonstrating presence/absence, it neglects the amount of overall 

biomass and thus may inflate the apparent abundance of even low-abundance organisms. While 

absolute abundance is more reflective of reality, field trials are necessary to determine whether 

absolute or relative abundance, or either, can be linked to infection or other clinical outcomes. 
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Fig. 3.3 
Fig. 3.3 Effects of PMA treatment on hospital-associated surface samples. a) PMA treated 
samples had lower α diversity based on Shannon index. b) Inter distances between paired 
samples with and without PMA treatment were larger than intra distances within each sample 
group (based on Jaccard metric). Comparisons of profiling the bacterial composition by c) 
absolute abundance and c) relative abundance. 

We calculated the efficacy of 8 spike-in bacteria [103]. The efficacy should be 1 under ideal 

conditions, given that the percentage of viable microbes in the Zymo community is negligible 

(Fig. S3.8). The efficacy equaled 1 for all taxa, suggesting that PMA treatment is effective in low 

biomass samples regardless of taxonomy. This conclusion is partly consistent with our previous 

evaluation of PMA-Seq where E. coli was spiked in [103]. 

Focusing on specific taxa (Fig. 3.4b), we observed occasions of a complete depletion for high-

absolute-abundance taxa and retention for low-absolute-abundance taxa, suggesting an effective 

viability distinction. Relative abundance for some taxa increased after PMA treatment 

(g_Pseudomonas, s_Pseudomonas psychrophila, c_Gammaproteobacteria, s_Pseudomonas 
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fragi, s_Pseudomonas koreensis, k_Bacteria), while all taxa showed a decrease in absolute 

abundance. This indicates that PMA treatment may increase the ability to detect taxa with 

majoritarily viable populations. We did not detect new taxa that were previously undetectable in 

PMA-treated samples. However, if nonviable microbes are not of interest, treating samples with 

PMA will improve the detection power for the overall community with comparable sequencing 

resources (Fig. 3.6c), as it reduced the overall 𝛂 diversity (Fig. 3.3a). 

Cross referencing between cultivation and PMA-MetaSeq was greatly impeded by their inherent 

limitations (e.g., detection limit for MetaSeq, biases with bioinformatics; viable but non-

culturable cells for cultivation). Even for PMA-untreated samples, cultivation and MetaSeq only 

agreed with each other on a small number of taxa (Fig. 3.4a). Among the 3 viable taxa confirmed 

by cultivation, viability of s_Pseudomonas fragi and s_Pseudomonas stutzeri was reflected by 

PMA-MetaSeq, while s_Pseudomonas fluorescens became undetectable after PMA treatment. 

This might imply over-depletion, but could also be because its abundance went below the 

detection limit of MetaSeq. As indicated by Barbau-Piednoir et al., less-abundant taxa were more 

likely to be eliminated (to undetectable) by PMA treatment [145]. This is consistent with our 

observation, as the abundance of s_Pseudomonas fluorescens was the smallest among the 

cultivation-confirmed taxa. Thus for low-abundance taxa, cultivation could serve as a 

supplement to sequence-based viability assessment techniques, as a small unintentional removal 

of viable cells may lead to a large presence/absence difference. Moreover, incorporating 

cultivation can expand the detection spectrum in general, and particularly for low-abundance 

taxa, due to MetaSeq’s restrictions such as detection limit and failure to distinguish closely 

related taxa. 
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Fig. 3.4 
Fig. 3.4 Performance of cultivation and PMA-MetaSeq in viability distinction of hospital-
associated surface samples. a) Venn diagram showing the detected taxa by cultivation and 
MetaSeq. Taxa detected by PMA-MetaSeq are color coded in red. Pseudomonas fragi was also 
detected in the genome-centric approach and is marked with an asterisk. b) The abundance 
change of all taxa detected under the framework of absolute abundance and relative abundance. 
Taxa in the theoretical composition of the internal standard and recovered in cultivation are color 
coded in purple and green, respectively. The Y axis follows a descending order of the average 
abundance across samples. Error bars represent the mean standard error of triplicates. 

Collectively, we emphasize the importance of using absolute abundance and demonstrate a 

successful application of multi-species internal standards in PMA-MetaSeq. PMA is effective in 

low biomass samples and can improve the detection power by eliminating irrelevant signals. 

Cultivation remains a valuable supplement to sequence-based techniques for capturing a 

comprehensive picture. 

3.4.3 Poor taxonomic classification is a major hurdle for internal standards in quantitative 

metagenomics 

Quantifying metagenomics-based abundances using internal standards has substantial benefits. 

Theoretically, addition of internal standards could compensate for errors resulting from non-
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quantitative steps [99]. E. coli is one of the most used spike-in strains, in part because it is well-

studied and easy to recover in sequencing [103]. However, ideally, we want the internal standard 

to contain a set of diverse taxa, so that it well represents the diversity in microbial communities. 

We investigated the performance of the Zymo community as the internal standard for hospital-

associated environmental samples, along with qPCR for the 16S rRNA gene.  

Unfortunately, the efficiency of implementing the Zymo standard in quantitative metagenomics 

was drastically impeded by the limited resolution of taxonomic classification. We tried two 

approaches: Metaxa2 [124-126] coupled with the SILVA 132 SSU database [128, 146] and 

MetaPhlAn3 [130, 131], which uses a collection of marker genes. The taxonomic resolution 

varied substantially across different taxa. For samples containing only the Zymo standard, 85% 

of the small subunit rRNA reads were attributable by Metaxa2, while only 48.14% of the 

metagenomes were recognized by MetaPhlAn3. Within the attributable portion, MetaPhlAn3 

performed better regarding specificity; all reads were classified at the species level, while 

Metaxa2 retained a decent amount of information at higher levels, with the ratio of genus/family-

level and species-level classifications ranging from 0.18 to 11.28. 

Foreseeably, this issue will be alleviated as reference databases and taxonomic assignment tools 

continue to advance. Currently, advantages of internal standards are mainly reflected when 

species-level identification is the major focus. For instance, clinical samples usually target 

pathogenic species whose core pangenomes are relatively well represented in databases. In this 

case, the biases from uneven representation of species can also be corrected based on the 

performance of closely related internal-standard species. However, if information at genus or 

higher levels is of consideration, internal-standard techniques become non-applicable, as we are 
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not able to distinguish internal-standard taxa from other species within the same genus (or at 

higher levels), which is the basis of making calculations and corrections. Coupling with qPCR, 

instead, is more appropriate (Fig. 3.3c). Environmental communities are typical examples where 

coupling with qPCR stands out because environmental microorganisms are not usually well 

represented at the species level. Of 87 samples in our study, strikingly, MetaPhlAn3 only 

recognized an average of 19.68% of the metagenome at the species level. The classification rate 

slightly increased to 38.40% using Metaxa2, which substantially improved to 87.24% when 

genus level was included. 

3.4.4 Accessible sample features can predict required sequencing effort 

To enable more informed decision-making before MetaSeq, we conducted a quasi-meta-analysis, 

using the limited number of existing hospital-related environmental metagenomics studies [14, 

15, 90, 94, 101, 112]. We recruited 956 shotgun samples (874 from 6 previous studies and 82 

from this study) (Table S3.1). Using these data, we linked accessible features (e.g., location, 

building, sampling method) to the required sequencing effort given a targeted coverage, 

leveraging machine learning-based models and Nonpareil (Fig. 3.6a). 

Relationships between Nonpareil diversity (Nd, unit: log-bp) and metadata features were first 

explored (Fig. 3.6a: stage one). Nd is an index measuring the complexity of a microbial 

community regarding "sequence space", which correlates with classic bin-based diversity indices 

(e.g., Shannon index) for bacteria [52, 111]. Though not passing the normality test (Shapiro-Wilk 

Test, p = 3.338e-16) [147], normal distribution was still the best-fit distribution of our dataset, 

followed by logistic distribution, upon investigation by Cullen and Frey Graph and R package 

“fitdistrplus” (Fig. 3.5a, Fig. S3.9).  Presumably, the deviation from normality will decrease as 
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sample sizes increase. For 90% of samples, Nd was within 2 orders of magnitude (15.4-20.0, 

natural log scale), suggesting a common range for hospital-associated environmental samples, 

which is valuable for reference when designing future studies. Notably, this Nd level was among 

the lowest across 6 different environments including animal hosts, fresh water, and soil (Fig. 

3.5b) [111].  

We further examined the influences of sample type (sink versus surface), sampling method and 

sample pooling on Nd. No significant difference was observed between sink and surface samples 

(Fig. 3.5c). Within sink samples, Nd was significantly different across sampling methods 

(Anova, p = 7.18e-06). Specifically, samples collected by swabs seemed to have a smaller 

diversity than those by the other methods (Tukey’s post-hoc test; samples without a clear 

collection method stated in the original paper were assigned as “Sink”). Note that even though 

sink samples are generally from the same location, the confounding effects introduced by sub-

locations (e.g., sink basin, pipe edge, p trap) cannot be ruled out. Similarly, within surface 

samples, though Nd of wipes was significantly larger than that of swabs (unpaired t-test), 

confounding effects remain (e.g., researchers tend to use wipes for large-area and high-biomass 

locations, like floors, which often contain more diverse communities) (Fig. 3.5d). Though weak, 

we noticed a trend of diversity increase after sample pooling (Fig. 3.5e), raising the alarm that 

more caution should be taken when increasing biomass by pooling samples. The practice of 

sample pooling assumes that the pooled samples share some core features, whose biomass will 

be increased past the detection limit. This may be true of certain sample types, e.g., host-

associated microbiomes, but is unlikely to be true of built-environment samples that lack a 

conserved core [114]. Further investigations are needed should more data become available, as 
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the sample size was quite limited for some groups (e.g., n(pooled monitor) = 2, n(not-pooled 

monitor) = 4). In the interim, we recommend seeking other methods, such as a high-yield DNA 

extraction, before resorting to sample pooling, as the resulting sample characteristics may be 

different from individual samples. 

 



60 
 

   
 

 
Fig. 3.5 
Fig. 3.5 Relationships between Nonpareil diversity and metadata features for hospital-
associated surface samples. a) Overall distribution of Nonpareil diversity (black) and 
distributions for individual studies. b) Interquartile range of Nonpareil diversity for microbiome 
samples from different environments. This study is color coded in orchid. Effects of c) sample 
type, d) sampling method, and e) sample pooling on Nonpareil diversity. Significance codes are 
as follows: p > 0.05 (ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), p ≤ 0.001 (***). 
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To further harness the reference potential of Nd, we built models to predict Nd from metadata 

features based on machine learning algorithms. Eight predictor variables (location, building, 

study, country, touch frequency, sample type, sampling method, sample pooling) were included 

based on data availability, MIxS-BE standards, and previous experience (Table S3.1) [112, 119, 

148]. Nd, the response variable, was first converted from a numerical variable to a nominal 

variable. Three conversion schemes were tried, with the intervals being 2.5, 1.0, and 0.5 (number 

of categories being 2, 5, 11, respectively). Random sampling was adopted to split the entire 

dataset into training and testing datasets at the ratio of 4:1. Implementing repeated cross-

validation (5 folds, 5 times) on the training dataset, 9 algorithms were examined to optimize the 

classification performance, including random forest, stochastic gradient boosting, and support 

vector machines. Algorithms were evaluated according to 4 metrics (area under curve, Kappa, 

and balanced accuracy on both training and testing datasets) [149]. Overall, no difference was 

observed among the tested algorithms. Random forest was selected due to its slightly better 

performance from a holistic perspective and capability of ranking the predictor variables. 

The model accuracy positively correlated with the interval size. At 2.5, the accuracy on the 

training dataset was as high as 87.69%, and slightly lower on the testing dataset (82.60%). The 

accuracy dropped as the classification demand rose. The mean balanced accuracy on the testing 

dataset was 64.08% and 61.38% when intervals were 1.0 and 0.5, respectively. Considering that 

Nd was converted from a continuous variable, we examined the misclassifications and found that 

most of them fell into nearby categories. We thus calculated the mean balanced accuracy ± 1 

category and observed a substantial improvement. Specifically, mean balanced accuracy of 

87.06% and 77.17% can be achieved for 5- and 11-category classifications, respectively. 
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Considering the sparsity of the currently available dataset and the challenge of multiclass 

classification, this model demonstrated a reasonable degree of accuracy, which should improve 

as sample sizes and available features grow. 

The variable importance ranking generated by random forest separated the predictor variables 

into 3 groups (Fig. 3.6b). Location, building, and study were the top 3 variables with the highest 

importance, followed by country, touch frequency, and sample type, while sample pooling and 

sampling method hardly impacted the classification. Group-wise, this ranking was generally 

consistent with the explanatory power described by linear regression (Fig. S3.10) [119]. That 

“study” ranked as one of the most important variables indicated the existence of biases towards 

individual studies in the current dataset (e.g., “batch effects” related to respective sampling, 

processing, sequencing, and analysis), which was also observed by a previous meta-analysis of 

indoor microbiota [119]. Interestingly, despite its high importance, the model performance had 

almost no drop after excluding “study” (> 95% for all conversion schemes), justifying making 

predictions without involving artificial metadata features like “study”. It is worth noting that 

importance of the other variables (e.g., building, country) was raised after this exclusion (Fig. 

S3.11). To find the features necessary for making a comparably accurate prediction, we further 

examined the performance of models after gradually reducing the number of predictor variables, 

and found that using only 2, “location” and “building”, the new model achieved 95% accuracy 

regardless of interval sizes tested. 

With Nd and metadata features connected, the required sequencing effort at a targeted coverage 

was then inferred (Fig. 3.6a: stage two). Upon fitting the data, we revealed a linear relationship 

between the natural log of estimated sequencing effort at 95% coverage (ln(LRstar)) and Nd, 
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with the equation being ln(LRstar)=1.14*Nd+1.21 (Adjusted R-squared = 0.6012, p < 2.2e-16) 

(Fig. 3.6c). This is theoretically backed up by previous findings that sequencing effort depends 

on the diversity level and the genome size, and that the latter can be ignored for most microbial 

communities, particularly bacterial communities, since the differences in genome size are usually 

no more than one order of magnitude [52]. Instructions to make calculations between sequencing 

effort and other coverage levels are provided at 

https://github.com/jxshen311/workflow_metagenomic_environmental_surveillance/tree/main/no

npareil/example_SeqEffort%26Coverage. 

 
Fig. 3.6 
Fig. 3.6 Required sequencing effort can be predicted by accessible sample features and 
targeted coverage. a) Workflow of making the prediction. b) Variable importance rankings by 
random forest. c) The natural log of estimated sequencing effort at 95% coverage is linearly 
correlated with Nonpareil diversity. 
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3.5 Discussion 

Although sequence-based environmental surveillance of microbial communities for better 

management of public health has been appealed for and utilized, best practices of the workflow 

have not been systematically studied to ensure proper interpretations of sequencing results to aid 

in infection risk assessment [50, 99]. This study introduces a well-structured and informed 

metagenomics-based workflow towards the goal of being appropriate for low-biomass, viability, 

quantification, and resource estimation. We recommend adopting liquid-liquid extraction to 

improve DNA yield and only incorporating whole-cell filtration when non-bacterial proportion is 

large. Despite its imperfection, we suggest including PMA treatment, and involving cultivation 

when demanding comprehensive profiling. We further recommend integrating internal standards 

for quantification, and additionally qPCR when we expect poor taxonomic classification. We 

also introduce a machine learning-based model to predict required sequencing effort from 

accessible sample features. The model helps make full use of sequencing resources and achieve 

desired outcomes. 

While using realistic samples in testing simulates conditions the workflow may face in practical 

applications, it comes with side effects. Our aggregation sample had a small fraction of non-

bacterial organisms (~1%). Thus, the conclusion that whole-cell filtration does not increase the 

bacterial proportion and signal of rare taxa to a statistically significant degree is probably only 

applicable to samples with similar characteristics, representing 84.90% among the 874 samples 

from hospital-related environmental studies used in the quasi-meta-analysis [14, 15, 90, 94, 101, 

112]. However, a few samples did contain a decent proportion of eukaryotes. Specifically, 132 

samples harbored more than 1% eukaryotic reads, and strikingly more than half reads were 



65 
 

   
 

attributed to eukaryotes for 20 samples. Moreover, samples collected from high-touch surfaces 

were more likely to have higher proportions of eukaryotes than low-touch surfaces and sinks. Of 

the 104 sink samples, the maximum percentage of eukaryotes was 0.1%. Therefore, filtration is 

probably unnecessary for most environmental samples (especially sink samples) and may be 

beneficial for part of high-touch surface samples (Fig. S3.12). 

Despite being semi-quantitative and entailing considerable uncertainty, involving PMA takes us 

a step closer to understanding viability, particularly for low biomass samples whose complexity 

is also relatively low [103]. Notably, the overall uncertainty comes not only from PMA treatment 

but also from the metagenomics pipeline itself, such as biases from DNA extraction kits and 

taxonomic assignment tools [60, 150]. In addition to PMA, alternative metrics have been 

proposed, including methods based on RNA (reflects active transcription), peak-to-trough ratio 

(PTR) (reflects active replication), and nuclease digestion (e.g., benzonase). As stated in a 

systematic evaluation, while 16S rRNA transcript-based amplicon sequencing semi-quantified 

viability of synthetically constructed simple communities (Escherichia coli and Streptococcus 

sanguinis), it is inappropriate for realistic complex communities [151]. PTR has been 

demonstrated as an efficacious metric to estimate microbial growth rates in both human (e.g., 

skin, fecal) and environmental (e.g., marine, sludge) datasets by several studies [152-155]. 

However, a study based on freshly collected marine prokaryotes raised concerns as they 

observed poor correlations between PTR and growth rates for most marine bacterial populations 

(r ~−0.26–0.08), except for the rapidly growing γ-Proteobacteria (r ~0.63–0.92) [156]. 

Some overlap exists between methods for viability determination and those for depleting 

eukaryotic DNA. For example, osmotic lysis followed by PMA treatment is recommended to 
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remove human DNA in saliva samples [157]. However, recommended methods depend on the 

sample type. PMA is not recommended for sputum samples, where nuclease-based methods 

(e.g., digest with benzonase) showed an equal or better performance [158]. Benzonase has also 

been applied to skin microbiome samples with desired outcomes [159]. In general, factors 

impacting method performance include percentage and composition (e.g., extracellular DNA, 

DNA in largely lysed or partially compromised cells) of targets to be removed (i.e., eukaryotes 

and dead bacteria), as well as characteristics of background matrix (e.g., viscosity). For instance, 

saliva and sputum consistently contain ≳ 90% human DNA [157, 158], while this percentage is 

very diverse for hospital-associated environmental samples (Fig. S3.12). Filtration failed to 

exclude human DNA in saliva likely because extracellular DNA was the dominant component 

rather than cells [157]. For sputum samples where cells are lysed and DNA is no longer 

protected, nucleases might be quite effective in depleting extracellular DNA, whereas PMA 

efficacy could be hindered by the viscosity of the matrix) [158]. In contrast, in environments 

where cells gradually decay due to harsh conditions (e.g., desiccation), more DNA attributable to 

dead cells would still have a partially compromised membrane; PMA, as a small molecule, may 

be more effective in penetrating the damaged cell membrane and depleting the DNA. For 

eukaryotic depletion, it may be beneficial to further unravel the underlying mechanisms 

influencing the efficacy of different methods in different sample types and characteristics.  

Nevertheless, for viability assessment, instead of focusing on this viable/dead dichotomy, 

perhaps more critically, we should keep in mind that “viability” is rather an intermediate or 

methodological term, linking surveillance results to questions of interest (e.g., which bacteria are 

infectious) [99]. In the future, it is worth exploring whether the concept “viability” in the context 
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of interest is closer to intact cell membrane, active transcription, or active replication. Moreover, 

rather than optimize one single metric, integration of multiple methods has been proposed (e.g., 

using multi-omics techniques) [160]. Pursuing viability profiles using orthogonal methods would 

plausibly enable a more comprehensive understanding, but the cost-benefit ratio may be 

considerably high for multi-omics techniques. Integrating with cultivation, instead, provides an 

affordable alternative. Notwithstanding, it remains to be investigated how to properly interpret 

results generated by a combination of methods, as inconsistencies between disparate methods are 

common. 

We applied multi-taxa internal standards and calculated PMA efficacy of spike-in taxa based on 

a reasonable assumption that the percentage of viable microbes in the Zymo community is 

negligible, resulting in a theoretical value of 1 (Fig. S3.8). While this internal standard can 

strongly reflect incomplete suppression of non-viable signals, potential toxicity of PMA might be 

underrepresented. Although no toxicity was observed at the PMA dose of our protocol in 

validation (Fig. S3.2), a customized internal-standard mixture featuring 0.5 as the designed PMA 

efficacy would be ideal for future studies [103]. As opposed to purchasing commercial products, 

we recommend utilizing the Zymo community as a reference for the taxonomic composition and 

constructing the mixture with live cultures in real-time, because viability (or membrane integrity 

when PMA is used) is difficult to maintain in manufacturing, shipping, and storage.  

Continuous advancement of internal standards for quality control, as well as quantification and 

other features, is still one of the major hotspots in method optimization. A suitable internal 

standard should well balance representation and recognizability. Good representation means that 

the workflow impacts the spike-in and targeted microbes comparably (because of their 
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similarity). Good recognizability means that the spike-in can be easily distinguished from the 

targets. In this study, the Zymo community was selected due in large part to its representation, as 

it spans broadly the phylogenetic tree. Previous studies have selected internal standards based on 

a similar principle. For instance, the Zymo community and a 10-species mock community were 

chosen for gastrointestinal and stool samples, respectively [161, 162]. Peroxide-killed 

Campylobacter sputorum was used to quantify viable thermotolerant Campylobacter [44]. These 

internal standards are prone to be confounded with targets, thus posing challenges for 

bioinformatics to accurately identify and quantify taxa. To obtain good recognizability, exotic 

materials are sought. In the aforementioned example, the researchers chose 10 species that were 

generally absent from the stool of healthy individuals. The same criterion was followed by 

another gut microbiome study in which microbes from hypersaline environments, soil, and plants 

were utilized [110], as well as a study on Amazon River plume to which genomic DNA from 

Thermus thermophilus HB8 was applied [83]. Finding a completely exotic species is more 

challenging for environmental surveillance whose subjects are influenced by both human and 

environmental activities. As a potential solution, artificial DNA have been developed to ensure 

differentiation from the targets. Previous reports included sets of synthetic DNA, 16S rRNA 

genes, and chimeric DNA fragments, implemented in different venues of metagenomic and 

amplicon sequencing [109, 163, 164]. However, whether these exogenous (or even artificial) 

standards’ behavior resembles that of the targets remains questionable. By and large, more 

systematic evaluation and optimization are needed to foster the development of internal-standard 

techniques that better balance representation and recognizability, or at least make their pros and 
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cons quantitatively accessible, both in general and for specific contexts. For example, it will be 

beneficial to conduct data-driven meta-analyses and curate databases to further inform the field. 

Though the classification models performed well from a practical perspective, their accuracy 

with small intervals still merits improvement. Building a hierarchical classification model might 

be beneficial, as we observed a drastic increase in the accuracy when the interval size was 

enlarged. It is also likely that the available dataset is not good enough to train a model with very 

high accuracy. For example, there is clear evidence that the data were biased by the disparate 

sample sizes between studies. Moreover, we only managed to collect 7 common metadata 

features (excluding “study”) without involving a substantial number of missing values, which 

raises the question of whether what we achieved has already reached the theoretical plateau of 

explanatory power of these features. If this is the case, standardized reporting of more high-

quality metadata should be further promoted. Additionally, since normal distribution was the 

best-fit distribution of the current dataset, with seemingly missing pieces in the middle (Fig. 

3.5a), fitting data into known distributions may be more explanatory as large sizes of data 

become accessible.  

3.6 Conclusions 

This study presents an improved workflow towards accurate and robust healthcare environmental 

surveillance using metagenomics. The workflow is appropriate for low-biomass samples, 

distinguishes viability, is quantitative, and enables estimation of necessary sequencing resources. 

We recommend liquid-liquid extraction, propidium monoazide treatment coupled with internal 

standards and absolute abundance profiling (e.g., using qPCR), and a machine learning-based 
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model for sequencing depth calculation. In addition, whole-cell filtration and cultivation may be 

valuable under particular circumstances.  

This metagenomics-based environmental surveillance workflow is particularly useful in infection 

prevention and disinfection assessment. Although we focus on microbial surveillance of built 

environments, especially hospital-associated surfaces, the workflow developed in this study can 

be adapted to other contexts with similar characteristics. For example, the multifaceted lessons 

learned from this study will benefit the continuing development of microbiome-based clinical 

testings from body sites (e.g., skin), such as methods to increase low-biomass signals and 

determine viability [21]. Moreover, the experience gained in overcoming challenges unique to 

environmental microbiomes (e.g., quantitative metagenomics with poor taxonomic 

classifications) is also useful to studies on other environments, such as wastewater and air. 
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3.7 Supplementary information 

3.7.1 Supplementary figures 

 
Fig. S3.1 Experimental pipeline for assessing and optimizing techniques in sample 
treatments. 
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Fig. S3.2 a) Experimental pipeline and b) result of the PMA validation experiment. We 
want to acknowledge Servier (https://smart.servier.com/) for providing the following icons 
(licensed under CC-BY 3.0): microtube-closed-blue, falcon-50ml-pink, and petri-dish-yellow. 
Colors of the first two icons were changed to adapt to our needs. 
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Fig. S3.3 Schematic of the whole-cell filtration workflow. 

 

 
Fig. S3.4 a) DNA yields (quantified by NanoDrop) of low-biomass surface-associated samples 
extracted by different methods. Extraction kits marked with α are column-based, with β are 
magnetic bead-based, and with γ use liquid-liquid extraction. b) Practical relationship between 
reads number and submitted DNA input.  
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Fig. S3.5 Effects of whole-cell filtration on detected proportions of a) overall eukaryota 
reads, b) eukaryotes unassociated to humans, and c) human−associated reads. Significance 
was determined by paired t-tests with BH corrections. 

 
Fig. S3.6 Whole-cell filtration did not have a significant impact on a) the overall number of 
recoverable taxa, b) the detectable number of locally abundant taxa or c) moderate taxa. 
Significance was determined by paired t-tests with BH corrections. Locally abundant, rare, and 
moderate taxa were defined as taxa with a representation of ≥1%, <0.01%, and < 1% & ≥ 
0.01% within a sample. 
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Fig. S3.7 Relative abundance of the top abundant taxa (average abundance > 1%) for 
samples with and without filtration. 
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Fig. S3.8 Biomass reduction with PMA treatment for samples (with and without internal 
standards spiked in) and external standards, according to a) DNA quantity and b) 16S 
rRNA gene copy number. Significance was determined by paired t tests with BH corrections. 
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Fig. S3.9 a) Cullen and Frey graph showing the distance from theoretical distributions to 
the observation. b) Fit for the normal distribution. c) Fit for the logistic distribution. 
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Fig. S3.10 Ranking of variables based on their explanatory power according to the R-
squared value of a linear regression model. 

 

 
Fig. S3.11 Variable importance rankings with and without the variable "study" based on 
random forest classifications. 
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Fig. S3.12 a) Distribution of the percentage of eukaryotic reads among 874 samples from 
hospital-related environmental studies. b) Surface samples, especially c) high-touch surface 
samples are more likely to contain higher proportions of eukaryotic reads. d) Distribution of the 
percentage of eukaryotic reads among 763 samples from high-touch surfaces. Note that the 
percentage of eukaryota reads may be underestimated because we did not know whether these 
fastq files accessed from databases had been processed with tools like kneaddata or not. 

3.7.2 Supplementary tables 

Table S3.1 Dataset of hospital-related environmental metagenomic samples used in the 
machine learning models. 

File: Table S3.1_prediction_dataset.xlsx 

Table S3.2 Sample collection details. 

File: Table S3.2_sampling_condition.xlsx 

Table S3.3 Statistics of the genome-centric approach. 

File: Table S3.3_genome-centric_approach_statistics.xlsx
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Chapter 4 Hospital environments harbor chlorhexidine tolerant bacteria 

potentially linked to chlorhexidine persistence in the environment 

4.1 Abstract 

Background: While chlorhexidine has been used as an antiseptic for decades with little concern 

for resistance, growing numbers of cases of reduced susceptibility to chlorhexidine are leading to 

growing concern. Chlorhexidine resistance has even been associated with resistance to clinical 

antibiotics and healthcare-associated infection outbreaks. The concern is magnified considering 

the possible dissemination of antimicrobial resistance genes. However, scrutiny of chlorhexidine 

resistance is still very limited and largely restricted to clinical isolates. While the hospital 

environment is known to harbor nosocomial pathogens and antibiotic-resistant bacteria, 

systematic evaluations of chlorhexidine resistance in the hospital environment is lacking.  

Results: We investigated chlorhexidine resistance in the hospital environment by combining 

controlled microcosm experiments and field surveys. Our study revealed that chlorhexidine 

decreased in concentration while persisting on indoor surfaces. Surface materials and 

disinfection and cleaning practices impacted the patterns of chlorhexidine persistence. Ex situ, 

we found that clinically relevant bacteria could survive 24 h chlorhexidine digluconate (CHG) 

exposure on surfaces in the concentration range commensurate with CHG persistence. In situ, we 

found that CHG tolerance was widespread in a medical intensive care unit (MICU) environment. 

Particularly, we highlight that sinks were a critical reservoir regarding the absolute bioburden, 

CHG tolerance, and bacteria with exceedingly high CHG minimum inhibitory concentrations (≥ 

512 μg/mL). Additionally, we encourage more attention to indoor air as a transport mechanism 
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for resistant organisms, as evidenced by their presence on doorsills. We also found efflux to be 

the dominating antimicrobial resistance mechanism, especially RND efflux pumps. 

Conclusions: Chlorhexidine remains an effective antiseptic at its application concentration (2%) 

in most cases. However, the study highlights the importance of active monitoring of its resistance 

development, particularly in the previously neglected surrounding environment. The study 

advances our understanding of chlorhexidine persistence on indoor surfaces, the resistance 

profile of environmental isolates in a MICU, as well as potential resistance mechanisms of 

environmental bacteria. Moreover, this study will contribute to improving clinical application of 

chlorhexidine, establishing potential antiseptic stewardship, and preventing antibiotic-resistant 

infections in healthcare facilities. 

4.2 Introduction 

The emergence of resistance to antimicrobials is a critical concern in healthcare settings, severely 

limiting our ability to prevent and treat antibiotic-resistant infections. Chlorhexidine digluconate 

(CHG) has been used as a topical antiseptic both to disinfect the skin of the patient and the hands 

of the healthcare providers in the medical intensive care units (MICU). It acts against a wide 

array of bacteria by disrupting phospholipids in the cell membrane of bacteria [165], and has 

been used for decades with little concern for resistance. While daily bathing with CHG for 

patients has served as an effective routine for infection prevention at therapeutic doses [31, 166, 

167], exposure of hospital-associated bacteria to sublethal concentrations of chlorhexidine can 

lead to reduced susceptibility to chlorhexidine and other clinically-important antibiotics (e.g., 

erythromycin, clindamycin) [22]. Such conditions are likely met in the patients’ surrounding 
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environment post application of CHG, in part due to its degradation by heat, light, and other 

chemicals [168-170].  

Recently, decreased susceptibility to CHG has been observed in various bacterial taxa (e.g., 

Acinetobacter spp., Pseudomonas spp., Enterobacter spp., and Enterococcus spp.), including 

important pathogens (e.g., Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus 

[MRSA]), as has cross-resistance to colistin, raising concerns about unintended consequences of 

CHG application in healthcare settings [171]. Studies have obtained good correlations between 

chlorhexidine and antibiotic susceptibility in both minimum inhibitory concentrations (MICs) 

and minimum bactericidal concentrations (MBCs) among Gram-negative bacteria, and MBCs 

among Gram-positive bacteria [172]. Reports of hospital infection outbreaks attributable to 

chlorhexidine resistance are also emerging (e.g., Serratia marcescens outbreaks [23, 173-175]). 

The concern is magnified considering the inductive effect of widely used antimicrobial 

chemicals (e.g., triclosan, CHG) on the dissemination of antibiotic resistance genes [176, 177], 

and the possibility that mobile antibiotic resistance elements could transfer from environmental 

microbes to human pathogens. In a veterinary hospital, multi-drug resistant Serratia isolates with 

similar resistance profiles were detected from animals and chlorhexidine solutions 

(environmental sources) used across the hospital. Furthermore, the authors identified an IncHI2 

multi-drug resistance plasmid that is shared by these Serratia isolates and an Enterobacter 

hormaechei strain previously recovered from the hospital environment, with the plasmid’s 

transferring capability confirmed by conjugation experiments [23]. 

Triclosan, a widely used antimicrobial precedent to chlorhexidine, has largely been phased out, 

in part due to extensive research demonstrating its promotion of antibiotic resistance [171, 177, 
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178]. However, the research scrutiny on chlorhexidine is still very limited. Existing studies about 

chlorhexidine resistance are largely restricted to human subjects (e.g., clinical isolates from 

patients, especially those on the WHO priority list of antibiotic-resistant bacteria), while little 

attention has been paid to the surrounding environment, which can serve as a source of 

antibiotic-resistant bacteria and hospital-acquired infections. To date, chlorhexidine 

susceptibility of environmental microbes is only sporadically reported, and these reports are 

often associated with outbreak tracing [23, 179-181], while systematic surveillance is lacking. 

We systematically studied chlorhexidine resistance in the built environment by combining 

controlled microcosm experiments and field surveys. Using controlled microcosm experiments, 

we revealed chlorhexidine persistence patterns on plastic, metal, wood surfaces under common 

disinfection and cleaning practices. We found that the application of peracetic acid induced 

immediate reduction of CHG on surfaces. After 24 h, CHG concentrations decreased 

significantly on metal surfaces and cleaned or disinfected plastic and wood surfaces. Applying 

bacterial cultures on CHG-containing surfaces, we found that clinically relevant bacteria can 

survive 24 h CHG exposure on surfaces in the range of concentrations at which CHG persists. 

We further conducted a field survey in a MICU and investigated how widespread CHG tolerance 

was in situ. Despite CHG primarily being applied to patient skin, chlorhexidine tolerance was 

identified in multiple spatially distinct locations in the MICU. Particularly, sinks were a critical 

reservoir regarding the absolute bioburden, CHG tolerance, and bacteria with exceedingly high 

CHG MICs (≥ 512 μg/mL). Moreover, indoor air deserves more attention in addition to high-

touch surfaces as a transport mechanism for resistant organisms. Efflux was the dominant 

antimicrobial resistance mechanism in the environmental isolates, especially RND efflux pumps. 
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4.3 Methods   

4.3.1 Chlorhexidine persistence on surfaces 

We investigated the chlorhexidine persistence on 3 surface materials commonly found in hospital 

(laminate wood, plastic [high-density polyethylene; HDPE], metal [stainless steel]) in response 

to 6 different cleaning practices a hospital surface typically experiences (no cleaning, clean with 

water, disinfect with ethanol, bleach, peracetic acid, or benzalkonium chloride) (Fig. S4.1). 

Experimental setup 

Each surface was cut into 48 4”×8” coupons and divided into 1”×1” sections by drawing 

markers. The coupons were UV sterilized for 15 minutes before applying 2% chlorhexidine 

digluconate (CHG) solution (w/v, Sigma-Aldrich, St. Louis, MO, USA). The concentration 2% 

was selected to represent commercial CHG wipes used in patient bathing [182, 183]. We first 

folded a Kimwipe (Kimberly-Clark, Irving, TX, USA) in half 3 times to get a square about 

2”×2” and 8 layers thick. We then pipetted 1 mL CHG onto the Kimwipe and wiped in a zigzag 

pattern along the long axis of the surface, such that the whole surface was covered after 5 passes. 

Wiping was repeated with a second Kimwipe from the opposite direction. Once the surface 

dried, an initial CHG measurement was taken in triplicate, representing 0 min. Each 1”×1” 

section was swabbed using a nonsterile cotton swab premoistened in 0.8 mL deionized water. 

The swabbing was conducted with consistent pressure and speed in 2 directions (up and down, 

left and right) for 15 s total. The swab was then stored in the deionized water for extraction and 

CHG concentration measurement. 
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Simulated cleaning practices were applied on CHG-containing surfaces using the same wiping 

technique. A group of surfaces without cleaning served as baseline controls. The wiping 

solutions included deionized water, 70% ethanol (Decon Laboratories, King of Prussia, PA, 

USA), 10% bleach (Clorox, Oakland, CA, USA), 0.2% peracetic acid (Sigma-Aldrich, St. Louis, 

MO, USA), and 0.26% benzalkonium chloride (MP Biomedicals, Santa Ana, CA, USA; C8-18) 

[184]. The CHG concentrations were measured in triplicate at 5 additional timepoints (10 min, 1 

h, 3 h, 6 h, and 24 h) following the same method. The coupons were kept in light-proof 

compartments when not being wiped or swabbed. This was repeated for each disinfectant and 

each surface for a total of 8 replicates. 

Swab extraction and CHG concentration measurement 

CHG on swabs was extracted into water following an adaptation of CDC’s Swab Extraction 

Method [114, 185]. The Falcon tube was vortexed at maximum speed for 1 min and shaken at 

180 rpm and 25 °C for 10 min, followed by careful squeezing against the tube wall and removal 

of the swab. CHG concentration was determined by a previously reported colorimetric assay 

with modifications [31, 186, 187]. We mixed 500 μL CHG solution with 500 μL 

hexadecyltrimethylammonium bromide (0.01 g/mL in deionized water, Sigma-Aldrich, St. 

Louis, MO, USA) and 200 μL sodium hypobromite (Aqua Solutions, Deer Park, TX, USA). 

Absorbance of the mixture was measured at 262 nm using a spectrophotometer (). 

Determination of CHG recovery rates from surfaces by swab sampling 

We examined the CHG recovery rates from different surface materials using the same swabbing 

technique and accounted for these rates in calculating the CHG concentration on surfaces. After 

UV sterilization, we pipetted 100 μL 2% CHG onto a 1”×1” square for a total of 10 replicates 
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each surface type. Additionally, 100 μL 2% CHG was directly pipetted onto a swab to 

investigate the recovery rate of the swab extraction.  

4.3.2 Viability assay of bacterial isolates on CHG-containing surfaces 

We tested the survival of bacterial isolates on plastic surfaces after exposure to different 

concentrations of CHG for 24 h in triplicate. Four bacterial isolates (Escherichia coli [ATCC 

25922], Klebsiella pneumoniae [ATCC 13883], Klebsiella variicola [20-20012], and 

Staphylococcus aureus [ATCC 29213]) were selected as model strains. Klebsiella variicola was 

an in-house strain obtained from our collaborator at Rush University. Plastic was selected as a 

representative surface because it is a common material of equipment in the immediate vicinity of 

patients and healthcare workers (e.g., bedrail, nurse call, keyboard, mouse). Five different CHG 

concentrations (31.00, 15.50, 3.10, 0.31, 0 [positive control] μg/cm2) were tested to cover the 

range of CHG persisting on surfaces under disinfection and cleaning. 

To prepare bacterial inocula, the second passage of the stock culture were grown at 37°C to the 

late exponential phase and harvested at 3000 rpm for 1 min. The pellet was then resuspended in 

phosphate-buffered saline (PBS). The bacterial cell density in the inocula was determined by 

spread plating. To prepare surface coupons, HDPE plastic was cut into 2”×2” squares, UV 

sterilized for 15 min, and placed in a petri dish. CHG was applied to the center 1”×1” of the 

coupon by pipetting 100 μL solution and spreading evenly with the pipette tip. Subsequently, 

100 μL isolate suspension was applied using the same technique [123]. An additional coupon 

inoculated with 100 μL PBS was included as the negative control. Surfaces were kept in dark at 

room temperature.  
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After 24 h, bacteria were sampled from surfaces and the surviving numbers were counted. Each 

surface was first dry swabbed for 5 s and wet swabbed twice for 7.5 s each time after rinsing in 1 

mL PBS. Finally, the swab was squeezed against the tube wall to expel any residual liquid [123]. 

Samples were diluted and 100 μL of each dilution was spread plated onto TSA plates. The plates 

were incubated at 37°C for 24 hours to count the colonies. 

4.3.3 Field survey in a Medical Intensive Care Unit 

Sample collection 

We collected 219 swab samples from 7 different locations (e.g., bedrails, nurse calls, doorsills, 

keyboards, light switches, sink; Table S4.4, Table S4.5) in the MICU at Rush University Medical 

Center over 2 sampling events (February and July, 2018) (Fig. S4.2), including negative field 

controls and negative media controls. The MICU was selected because patients there are likely to 

have highly resistant infections and be highly susceptible to infection, which gives this 

environment a higher probability but also a lower threshold for acceptable risk of containing 

antibiotic-resistant organisms. Sampling locations were selected to capture a variety of surfaces 

reflecting different ways in which people interact with the surface [17] and time-integrated 

aggregates of what was in the air (i.e., doorsills) [188]. Sites were further selected to facilitate 

comparison with other hospital surveillance studies [189] and to keep a relatively balanced 

number of samples from each touch frequency group. Touch frequency categorization included 

bedrail and nurse call as high-touch, keyboard as medium-touch, and light switch as low-touch 

surfaces. Doorsills and sinks were labeled as themselves. Touch frequency designations were 

based on anecdotal evidence from experienced personnel and prior evidence from the literature 

[190-193]. 
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Swabbing was conducted following CDC’s Environmental Surface Sampling Swab Contact 

Method. Briefly, we used three sterile Nylon Flocked Dry Swabs (COPAN Diagnostics) 

premoistened with PBS to increase the recovery of biomass. Surfaces were swabbed in their 

entirety three times with consistent pressure and speed. Each time, we rotated the swabs and 

switched their order. Swabs were stored in 15 mL tubes with PBS and transferred to the lab on 

ice within 24 hours for immediate processing. Temperature, relative humidity, isolation level, 

and patient mobility for each patient room were recorded. The surface area of each sampling 

location was measured (Table S4.6).  

Swab extraction 

Biomass on swabs was extracted into PBS following an adaptation of CDC’s Swab Extraction 

Method and [114]. Briefly, the Falcon tubes with swabs inside were vortexed at maximum speed 

for 10 s, shaken at 180 rpm and 25 °C for 10 min, and then vortexed again for 10 s, followed by 

careful squeezing against the side of the tube and removal of the swabs (Fig. S4.3). 

Sample cultivation and initial screening 

The samples were then subjected to cultivation and screening following a protocol modified 

from [194] (Fig. S4.4). Inocula were diluted to obtain between 30 and 300 colonies per plate. 100 

µL of inoculum was spread plated on tryptic soy agar supplemented with 4 mg/L itraconazole 

(TSAI) and incubated at 25˚C for 4 days. When observable growth was detected, morphologies 

of colonies were characterized using standardized ontologies for streamlined analysis, and a 

representative number of colonies belonging to each morphology type were picked and stored in 

glycerol at -80˚C. These plates were then replica plated onto blood agar and chlorhexidine agar 

plates for initial screening [195]. Chlorhexidine agar plates contained 10.56 µg/mL chlorhexidine 
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(equivalent to 18.75 µg/mL CHG, Sigma-Aldrich, St. Louis, MO, USA). Staphylococcus aureus 

ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Pseudomonas putida 56A10 (in-

house ID) [196] were used as negative control strains in this chlorhexidine screening process. 

The chlorhexidine concentration was selected for initial tolerance screening because it was 

reported as the minimum effective concentration associated with significantly decreased colony 

counts of Gram-positive bacteria on the skin of patients who were bathed daily with CHG in the 

MICU. In addition, all the patient skin isolates recovered in the study had MICs below 18.75 

µg/mL CHG [31]. 

Antimicrobial susceptibility testing 

We used a simplified agar dilution method to confirm chlorhexidine tolerance observed in the 

initial screen [197]. All steps were strictly followed except that the inoculum was not standardized 

to 104 CFU per 5- to 8-mm diameter spot. Briefly, agar dilution plates with different concentrations 

of CHG (0, 4, 8, 16, 32, 64, 128, 256, 512 μg/mL) were made with Mueller-Hinton Agar (MHA; 

Sigma-Aldrich, St. Louis, MO, USA) and chlorhexidine digluconate solution (20% w/v, Sigma-

Aldrich, St. Louis, MO, USA). Each isolate was first inoculated from frozen stock in 100 µL TSB 

in a sterile 96-well clear round-bottom not-treated microplate (Corning, NY, USA) and incubated 

at 37 °C for 24 h, yielding F1. F1 was subcultured in 100 µL TSB with a 96-pin microplate 

replicator (transfers 1 µL inoculum each pin, Boekel Scientific, Feasterville-Trevose, PA, USA) 

and incubated for another 24 h, yielding F2. F2 was inoculated onto surfaces of the agar dilution 

plates in triplicate with the 96-pin replicator, starting from the lowest concentration to the highest. 

MICs were determined after incubating the plates at 37 °C for 20 h. Negative controls and 2 quality 

control (QC) strains were included in every batch. The 2 QC strains were both MRSA with CHG 
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MICs 1-2 and 8 µg/mL, respectively. The QC strains were obtained from our collaborator at Rush 

University, whose MICs were validated by them and the CDC. 

Because no consensus on standardized clinical breakpoints is available for chlorhexidine [198], 

we discuss chlorhexidine resistance based on epidemiological cut-off values proposed by 

previous studies (Table S4.3) [171, 199, 200]. The values were defined as the upper limit of the 

normal MIC distribution for a given antimicrobial and wild-type species. Clinical implications of 

these values are unclear, but they are considered helpful in resistance monitoring. In this study, 

CHG was used for MIC measurements, and chlorhexidine MICs were used as a general term for 

MICs reported by previous studies where the chemical was not explicitly stated. 

4.3.4 Genomic exploration of isolates recovered in the MICU 

Whole genome sequencing 

We selected 43 putative Pseudomonas isolates based on morphology recovered from the first 

sampling event for whole genome sequencing. Out of the 43 isolates, 27 were from the sinks, 9 

from the doorsills, 5 from the bedrails, 1 from the light switch, and 1 from the nurse call. Whole 

genome sequencing was conducted by the Broad Institute using a fluorescent dye-based method 

followed by paired-end short-read (2×150 bp) sequencing on an Illumina HiSeq platform as 

previously described [196].  

Genome assembly 

The Binary Alignment Map (BAM) files were first converted to Sequence Alignment Map 

(SAM) files using SAMtools v1.10.1 [53]. The quality profiling, read filtering, red pruning, and 

adaptor trimming were performed using Fastqc v 0.11.5. Genomes were assembled using 
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SPAdes v3.14.1 [201] and assembly quality statistics obtained using QUAST v 5.0.2 

(https://github.com/ablab/quast). The taxonomic assignment was performed using two 

algorithms: autoMLST (https://automlst.ziemertlab.com/analyze) and KmerFinder 3.2 

(https://cge.cbs.dtu.dk/services/KmerFinder/). The inconsistencies in results were resolved using 

GTDB-Tk 2.0.0.  

Identification of antimicrobial resistance genes 

The complete open reading frames (ORFs) were first predicted with Prodigal v2.6.3. The 

predicted protein sequences were then analyzed based on the reference data from the 

Comprehensive Antibiotic Resistance Database (CARD, v3.2.2) and antibiotic resistance genes 

extracted using the Resistance Gene Identifier (RGI, v5.2.1, https://card.mcmaster.ca/) [202, 

203]. 

4.3.5 Statistical analysis 

Statistical analyses and data visualization were conducted in R (v4.0.4) [138] with packages such 

as ggplot2 [139], and dplyr [204]. Differences between groups were determined by t-tests with 

the BH adjustment. p ≤ 0.05 was defined as statistically significant. Significance codes are as 

follows: p > 0.05 (ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), 0.0001 < p ≤ 0.001 (***), 

and p ≤ 0.0001 (****). 
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4.4 Results and Discussion 

4.4.1 Chlorhexidine persists on surfaces under disinfection and cleaning 

We investigated the chlorhexidine persistence on 3 common types of hospital surfaces (laminate 

wood, plastic [high-density polyethylene; HDPE], metal [stainless steel]) in response to 

interactions with 6 typical cleaning practices (no cleaning, clean with water, disinfect with 

ethanol, bleach, peracetic acid, or benzalkonium chloride) (Fig. 4.1, Fig. S4.1). 

We first explored the CHG recovery rates from different surface materials in sampling and 

measurement, and the CHG transfer rates from the Kimwipe to the surfaces in application (Table 

S4.1, Table S4.2). When we directly applied CHG onto swabs, 85.46% was recovered in the 

measurement. For the tested surfaces, metal had a comparably high recovery rate (83.04%), 

indicating that almost all the CHG on a metal surface can be collected by swabbing. In contrast, 

plastic and wood both retained CHG in sampling, with recovery rates of 69.79% and 55.58%, 

respectively. Upon wiping, we found that only 0.13-0.20% CHG was transferred onto the 

surfaces. In comparison to the recovery rates from surfaces by swab sampling, the transfer rates 

showed an opposite trend across surface materials. While metal had the highest recovery rate in 

sampling, it captured the least CHG in application. Furthermore, the values were within the 

range that disinfectants released from ready-to-use Towelettes [205], validating that our 

application technique mimics the usage of commercial disinfectant Towelettes.  

Overall, CHG persisted on surfaces, displaying subtle differences in persistence patterns across 

surface materials and cleaning practices. We investigated the immediate impact of wiping a 

surface on the CHG persistence by comparing the CHG concentrations at 0 and 10 min (i.e., 0.17 
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h) using one-tailed paired t-tests. Wiping with peracetic acid had the largest immediate impact, 

although only the difference on plastic surfaces was statistically significant (p = 0.01). This is 

supported by previous evidence that chlorhexidine can be inactivated at a low pH and in the 

presence of anionic molecules [206-208]. In contrast, none of the other disinfectants tested are 

known to have interactions with chlorhexidine that will result in its degradation. Benzalkonium 

chloride and ethanol have been shown to have synergistic or additive antimicrobial properties 

when applied with chlorhexidine, indicating that their interaction will not cause chlorhexidine 

degradation [209-213]. 

The longevity of chlorhexidine on a surface in response to cleaning and disinfection was 

examined by comparing the concentrations at 10 min and 24 h using one-tailed paired t-tests. 

When wiping was not conducted, the amount of CHG did not decrease on wood and plastic 

surfaces, whereas a significant decrease was observed on metal surfaces. Moreover, across all 

different cleaning practices, the decrease patterns were similar to that of no wiping on metal 

surfaces. However, compared with no wiping, cleaning plastic or wood surfaces with water or 

disinfectants induced a significant reduction of CHG concentrations after 24 h. Our findings are 

consistent with previous indications that chlorhexidine degradation might be catalyzed by metals 

and that chlorhexidine is unstable under acidic and alkaline conditions (pH 3.5 to 6.5 and pH > 

8.5) [214]. 
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Fig. 4.1 
Fig. 4.1 Concentration of chlorhexidine digluconate on surfaces over time in response to 
cleaning and disinfection.   

4.4.2 Clinically relevant bacteria can survive 24 h CHG exposure on surfaces  

We examined the survival of 4 clinically relevant bacterial isolates (Escherichia coli, Klebsiella 

pneumoniae, Klebsiella variicola, Staphylococcus aureus) on plastic surfaces after exposure to 

CHG for 24 h. Plastic was selected as a representative surface because it is a common material of 

equipment in the immediate vicinity of patients and healthcare workers (e.g., bedrail, nurse call, 

keyboard, mouse). Five concentrations (31.00, 15.50, 3.10, 0.31, 0 μg/cm2) were tested to cover 

the range of CHG persisting on surfaces under disinfection and cleaning. 

After 24 h, bacteria survived on CHG-containing surfaces across all tested concentrations for 

Klebsiella variicola, Escherichia coli, and Staphylococcus aureus (6.10×102 – 1.28×106 CFU/cm2, 
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log10 reduction ranging from 0.08 to 2.84). Although much fewer Klebsiella pneumoniae survived 

at 15.5 and 31 μg/cm2 CHG, it is possible that >17 (around the scale of 102) CFU/cm2 will survive 

at CHG concentrations of 8.4-11.5 μg/cm2 (range of CHG persisting on plastic surfaces). These 

raise concerns about potential development of antimicrobial resistance in bacteria on surfaces that 

possibly harbor chlorhexidine residue (e.g., hospital environments where patients are bathed with 

CHG). 

 
Fig. 4.2 
Fig. 4.2 Cultivable bacteria (CFU/cm2) after 24 h exposure to CHG on plastic surfaces. 

4.4.3 Sink is a critical reservoir for highly CHG-tolerant bacteria in MICU 

Our microcosm experiments indicated that the environment may serve as a reservoir for CHG- or 

antibiotic-resistant bacteria. To determine how widespread CHG tolerance is in situ, we further 

conducted a field survey in a MICU. Cultivation yielded a total of 1415 isolates of 345 different 

phenotypic morphologies (Fig. S4.5), of which 306 isolates (21.6%) were confirmed to grow at 

18.75 µg/mL CHG at 25 °C. These isolates were described as CHG tolerant in this study. 
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Additionally, 203 isolates (14.3%) were suspected to grow, and all the 509 isolates (36.0%) were 

subjected to antimicrobial susceptibility testing to determine their MICs to CHG. 

Unit area surface bioburden in the MICU is significantly associated with touch and cleaning 

frequencies. The rarely cleaned doorsills had significantly higher bioburden than high-touch 

bedrails and nurse calls, followed by medium-touch keyboards (unpaired t-tests, log10 scale) 

(Fig. 4.3a). This trend remained considering the absolute bioburden in the entirety of the surfaces 

(Fig. S4.6). The absolute bioburden of the low-touch light switches was the lowest. However, 

they displayed the highest unit area bioburden among dry surfaces. This is probably due to the 

high uncertainty induced by switches’ small area. No effect of sampling seasons and patient 

room isolation status (contact isolation or not) was observed (Fig. S4.7). 

Despite chlorhexidine primarily being applied to patient skin, chlorhexidine tolerance was 

identified in multiple spatially distinct locations within the MICU. The percentages of bacteria 

exhibiting tolerance to 18.75 µg/mL CHG at 25 °C were not significantly different among dry 

surfaces (Fig. 4.3b). Most bacteria on dry surfaces were not CHG tolerant, with the mean 

percentages ranging from 0% (keyboards inside patient rooms, light switches in the hallway) to 

13.2% (nurse calls). Doorsills were the only dry surfaces where bacteria with CHG MICs higher 

than 18.75 µg/mL at 37 °C were detected (Fig. 4.3c, 32 µg/mL - 1 isolate, 64 µg/mL - 4 isolates). 

There was also a slight trend of a subpopulation of doorsill samples harboring high proportions 

of CHG tolerant bacteria (3 out of 59 samples had percentages >90%). As biomass on doorsills 

indicates what is circulating in the air [215-217], we suggest increasing assessments on the 

indoor air, especially regarding its potential as a transport mechanism for resistant organisms 

(e.g., chlorhexidine resistance). 
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Sinks are a critical reservoir both regarding the absolute bioburden (Fig. S4.6) and CHG 

tolerance (Fig. 4.3b). The absolute bioburden and the proportion of CHG-tolerant bacteria from 

sink were significantly higher than all the dry surfaces to a great extent (p ≤ 0.0001), indicating 

that water availability is an impactful factor. Its impact on antimicrobial adaptation is probably 

stronger than other factors such as touch frequency in the built environment. Moreover, 37 

bacterial isolates with high MICs were detected from sink drains in patient rooms, medication 

rooms, and communication space (128 µg/mL - 17 isolates, 256 µg/mL - 10 isolates, 512 µg/mL 

- 10 isolates) (Fig. 4.3c). Of the bacterial isolates tolerant to 18.75 µg/mL CHG at 25 °C from the 

sinks, 70.6% (127 out of 180 isolates) were β-hemolytic (a highly predictive indication of 

pathogenicity [218]), including these with high MICs (24 out of 29 isolates, Fig. 4.3d). The 

prevalent detection of CHG-tolerant bacteria and potential pathogens in sinks is concordant with 

previous observations that hospital sink drains serve as a reservoir for nosocomial pathogens and 

antibiotic-resistant bacteria [219-221]. With previous evidence showing that microbes can be 

transmitted from sink to patients [98], our findings further emphasize the importance of sinks in 

preventing healthcare-associated infections and combatting antimicrobial resistance. 
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Fig. 4.3 
Fig. 4.3 Chlorhexidine tolerance and bioburden of bacteria in a MICU. a) Unit area 
bioburden of bacteria across different touch frequencies on dry surfaces. CFU stands for colony 
forming unit. To avoid mis-interpreting data with small colony counts, we empirically set the 
limit of quantification (LOQ) of our culture efforts as colony counts = 3. Values below this 
threshold was recoded as half of LOQ (i.e., 1.5). b) Proportion of bacteria tolerant to 18.75 
µg/mL CHG at 25 °C across different touch frequencies on dry surfaces and sink. The proportion 
of sink samples was significantly higher than that of all the other touch groups according to 
unpaired t-tests (p ≤ 0.0001 for all comparisons). Of the bacterial isolates growing at 18.75 
µg/mL CHG at 25 °C, distribution of c) their CHG MICs at 37 °C and d) the corresponding 
blood hemolysis status. 
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As MICs are naturally expected to vary between species, a rigorous comparison of CHG MICs 

necessitates taxonomic classification and is thus not yet possible for all our isolates. 

Nevertheless, bacteria isolated in our study had CHG MICs near the high end of the historical 

records (especially those from sinks) [171, 172, 222-227]. This somewhat contrasts with existing 

observations in the literature. A meta-analysis concluded that there was no evidence of increased 

Minimum Bactericidal Concentration (MBC) to chlorhexidine over time for clinical and 

laboratory isolates of common surgical site infection-causing microbes (e.g., Enterobacteriales, 

Staphylococci, Streptococci, Pseudomonas, Acinetobacter) [222]. A three-armed cluster 

randomized decolonization trial found no increase of chlorhexidine resistance in the antiseptic 

bathing groups among 790 bacterial isolates from clinical samples of patients in ICU [198]. 

However, a recent review showed an increased resistance to chlorhexidine over time for 

Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii [223]. 

Although no population level resistance increase was detected for Escherichia coli, Enterobacter 

faecalis, Staphylococcus aureus, or Candida albicans [223], subpopulations with reduced 

susceptibility were identified for E. faecalis and C. albicans. While it is not yet clear whether our 

isolates represent a dramatic increase in tolerance compared to previously observed clinical 

isolates, our results strongly suggest that the MICU environment harbors relatively CHG-tolerant 

cultivable organisms. 

Chlorhexidine resistance surveillance efforts were rarer in environmental sourced isolates than 

clinical, animal, laboratorial isolates, and the MICs of environmental isolates were generally 

considered lower. The highest MICs of the reported environmental isolates included 2 µg/mL for 

A. baumannii from the drain [228], 18.4 µg/mL for E. coli from the drain [228], 8 µg/mL for E. 
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faecalis from the dust in pig breeding facilities [180] and municipal, poultry, livestock, hospital 

sewage [181], 78.2 µg/mL for P. aeruginosa (3 isolates: 1 from the laundry siphon at a 

household yard, 1 from the tables and handrail in an ICU cubicle, 1 from the hand wash in an 

ICU hall) [179], and 16 µg/mL for E. faecium from municipal sewage [181]. In addition, 

although MIC was not measured, a S. marcescens strain was isolated from chlorhexidine 

solutions used in a veterinary hospital in 2017, indicating that extremely chlorhexidine resistant 

bacteria could persist in hospital environments sporadically [23]. Unfortunately, this isolate was 

not preserved, impeding further examination of its resistance mechanism (e.g., whether its 

resistance was heritable or just transient). Furthermore, chlorhexidine solutions have been linked 

to S. marcescens outbreaks in both human [174, 229] and veterinary [23, 173] hospitals. The 

paucity of data precludes a systematic evaluation of chlorhexidine tolerance in environmental 

isolates, but what data are available indicate that environmental isolates may be comparably 

tolerant than their clinical counterparts (e.g., as observed for P. aeruginosa). 

Taken together, we highlight the need for more environmental surveillance of chlorhexidine 

resistance. Particularly, in addition to high-touch surfaces, sinks and indoor air deserve more 

attention in monitoring and intervention in the context of antimicrobial resistance and 

transmission of organisms in the hospital. 

4.4.4 Efflux is the dominating antimicrobial resistance mechanism in our isolates 

Of the 43 bacterial isolates that were whole genome sequenced, 19 unique species were 

identified, with Cupriavidus pauculus, Micrococcus luteus, and Stenotrophomonas maltophilia 

being the 3 most frequently isolated species (Fig. S4.8). Alarmingly, S. maltophilia is an 

emerging global opportunistic pathogen associated with multidrug resistance. S. maltophilia 
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exhibits resistance to a wide range of antibiotics, including β-lactam antibiotics, macrolides, and 

cephalosporins. Nosocomial infections associated with S. maltophilia are of particular concern to 

immunocompromised patients due to their high fatality/case ratio [230]. C. pauculus is reported 

to be associated with intravascular catheter-related bloodstream infections [231]. While M. luteus 

is often thought to be non-hazardous to humans, there have been cases of M. luteus bloodstream 

infections [232]. 

Among these isolates, we detected 89 unique antibiotic resistance genes (ARGs), belonging to 30 

unique ARG families, 41 drug classes, and 6 antibiotic resistance mechanisms (Fig. 4.4a). An 

ARG family is a group of ARGs with similar ontological relationships [202].  adeF, qacG, and 

qacJ were the 3 major ARGs identified, with 75 hits, 34 hits, and 24 hits respectively. Antibiotic 

efflux was found to be the dominant resistance mechanism (associated with 86.03% ARGs), 

followed by antibiotic inactivation (7.82%), target replacement (3.35%), and target protection 

(2.79%) (Fig. 4.4a-b). Four efflux gene families were identified (i.e., resistance-nodulation-cell 

division [RND], small multidrug resistance [SMR], major facilitator superfamily [MFS], ATP-

binding cassette [ABC] efflux pump systems), and RND efflux pump is dominating regarding 

the detection frequency (96 hits). Moreover, SMR and RND efflux pumps were the 2 most 

prevalent ARG families across different species (identified in 11 and 10 out of 14 listed species, 

respectively; Fig. 4.4c). Three or more efflux pump systems were detected in 4 species, 

indicating potential multidrug resistance.  
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Fig. 4.4 
Fig. 4.4 Genetic profiles of antibiotic resistance for 43 environmental isolates. a) Major 
ARGs and associated resistance mechanisms identified in 43 bacterial isolates recovered from 
the MICU environment. Only the top 14 ARGs with number of hits greater than 2 were shown. 
b) Distribution of antibiotic resistance mechanisms out of 265 ARG hits. Note that one ARG can 
sometimes be associated with multiple resistance mechanisms. c) Distribution of ARG families 
across species. Only ARG families present in more than 1 species were shown.  

4.4.5 Limitations and future directions 

One enduring limitation in the field of chlorhexidine susceptibility studies is unstandardized 

reporting of MICs. For example, the type of chlorhexidine chemicals (e.g., chlorhexidine 

digluconate, chlorhexidine acetate) used in MIC assays was often not reported, impeding reviews 

and meta-analyses [222]. Consequently, existing reviews and meta-analyses usually did not 

normalize MICs to one chemical type. This reduces the accuracy of comparisons between our 

findings and previous observations. 

We tested chlorhexidine persistence on surfaces using a controlled microcosm experiment. While 

this is informative in mechanistic exploration, further investigation of chlorhexidine 

a) c)

b)
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concentrations in situ is needed to better understand the fate of chlorhexidine in the environment 

(e.g., both local hospitals and downstream wastewater treatment plants). 

We will sequence the isolates to further identify the taxonomy of the isolates, confirm their 

pathogenicity, and explore their genomic resistance mechanisms. With this information 

accounted, we will compare our findings to historical records. The ARGs detected are restricted 

to those represented in CARD, and thus novel genes will not be identified. In the future, it is 

worth further exploring chlorhexidine resistance mechanisms in our isolates with functional 

metagenomics [233]. It would also be beneficial to confirm the function of these putative 

resistance genes via knockouts or cloning, as well as assessing cross-resistance to medically 

relevant antibiotics. 

In addition to current cross resistance investigations which mostly focus on a few strains, larger 

scale surveillance of relationships between chlorhexidine tolerance and broader antimicrobial 

resistance is needed. Ideally, studies should use isolates recovered in situ and test in a similar 

environment (e.g., on surfaces rather than in rich media).  

While our findings indicate that sinks and indoor air may serve as reservoirs for CHG-resistant 

or pathogenic bacteria, more efforts are needed to lead our findings to a quantitative assessment 

of infection risk. Due to the lack of identification of the taxonomy for all isolates, detection of a 

pathogen in our study provides limited information about its load. It remains to be investigated 

whether the pathogens and antimicrobial-resistant bacteria we cultivated are metabolically active 

or dormant in situ. The number of bacteria that humans are actually exposed to when interacting 

with the built environment (e.g., using the sink) must also be investigated.  
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Furthermore, to evaluate chlorhexidine resistance in the built environment holistically, studies in 

other building types should be carried out in the future (e.g., homes, athletic facilities, veterinary 

facilities) to address the question: Are our findings concerning chlorhexidine-tolerant bacteria 

unique to the MICU where we collected samples, to hospitals where chlorhexidine is intensively 

used, or do they apply widely to other built environments? 

Finally, critical evaluation of chlorhexidine use as part of an integrated strategy for healthcare-

associated infection prevention should be undertaken, leading to antiseptic stewardship [171]. 

Combining lessons learned in healthcare settings with broader built environments, the antiseptic 

stewardship could ultimately be expanded to different aspects of human life.  

4.5 Conclusion 

Our study revealed that chlorhexidine decreased in concentration while persisting on indoor 

surfaces. Surface materials and disinfection and cleaning practices impacted the patterns of 

chlorhexidine persistence. Ex situ, we found that clinically relevant bacteria could survive 24 h 

CHG exposure on surfaces in the concentration range that CHG persisted. In situ, we found that 

CHG tolerance was widespread in MICU environment. Particularly, we highlight that sinks were 

a critical reservoir regarding the absolute bioburden, CHG tolerance, and bacteria with 

exceedingly high CHG MICs (≥ 512 μg/mL). Additionally, we encourage more attention to 

indoor air as a transport mechanism for resistant organisms, as evidenced by their presence on 

doorsills. We also found efflux to be the dominant antimicrobial resistance mechanism in the 

sequenced environmental isolates, especially RND efflux pumps. 
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Chlorhexidine remains an effective antiseptic at its application concentration (2%) in most cases. 

However, the trend of increased and widespread resistance cannot be ignored, and we should 

actively monitor the resistance development, particularly in the previously neglected surrounding 

environment. 

This study advances our understanding of chlorhexidine persistence on indoor surfaces, the 

resistance profile of environmental isolates in a MICU, as well as potential resistance 

mechanisms of environmental bacteria. Moreover, this study will contribute to the improvement 

of clinical application of chlorhexidine and the prevention of antibiotic-resistant infections in 

healthcare facilities. 

4.6 Supplementary information 

4.6.1 Supplementary figures 

 

 
Fig. S4.1 a) Experimental workflow examining the chlorhexidine persistence on surfaces in 
response to different cleaning practices. b) Schematic of experiment representing one replicate. 
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Fig. S4.2 a) Floor plan of the Medical Intensive Care Unit at Rush. b) Swabbed locations. 

 

 
Fig. S4.3 Swab extraction process 

 

a) b) 
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Fig. S4.4 Cultivation and screening pipeline. TSAI is tryptic soy agar (TSA) supplemented 
with 4 mg/L itraconazole. TSA+CHX is TSA containing 10.56 µg/mL chlorhexidine (equivalent 
to 18.75 µg/mL CHG). 

 

  

Fig. S4.5 a) Distribution of the number of isolates recovered from cultivation. b) 
Distribution of the number of unique morphology types. A and B are two different sampling 
events. 

A|370

B|1045

A|71 B|24034 

a) b) 
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Fig. S4.6 Absolute bioburden of bacteria (log10CFU) in the entirety of the surfaces and by 
swabbing the beginning end of the sink pipe. The bacteria CFUs were not normalized by 
sampling area. Differences between groups were determined by unpaired t-tests with the BH 
adjustment. 

 

  
Fig. S4.7 No effect of sampling seasons and patient room isolation status (contact isolation 
or not) was observed. a) Unit area bioburden of bacteria across 2 sampling seasons on different 
surfaces. b) Unit area bioburden of bacteria across different patient room isolation levels on 
surfaces. c) Bacteria proportion growing at 18.75 µg/mL CHG at 25 °C across different patient 
room isolation levels. 
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Fig. S4.8 a) Distribution of unique species identified. b) Distribution of CHG MICs across 
different species. CHG MICs of 39 environmental isolates were measured by broth 
microdilution method, with those of 4 isolates not tested because the morphological screening 
did not pass. Isolates of the same species may show different MIC values. Each MIC group may 
contain multiple unique species.  

 

4.6.2 Supplementary tables 

Table S4.1 Recovery rate of CHG on different surface materials. The recovery rate measured 
for surfaces was the integrative rate, representing the overall impacts of swabbing on surfaces, 
extracting CHG from the swab, and all the loss in the process. 

Surface CHG applied 
(μg) 

CHG recovered 
(μg) 

CHG recovered 
(%) 

Standard 
Deviation (%) 

Wood 2000 1111.56 55.58 12.86 

Metal 2000 1660.87 83.04 9.13 

Plastic 2000 1395.81 69.79 4.42 

Swab 2000 1709.28 85.46 12.50 
 

a) b)
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Table S4.2 Transfer rate of CHG from Kimwipe to surfaces by wiping.  

Surface CHX 
transferred (μg) 

Standard 
Deviation (μg) 

CHX 
transferred (%) 

Standard 
Deviation (%) 

Wood 81.96  27.52  0.2049  0.0688  

Metal 53.87  15.39  0.1347  0.0385  

Plastic 72.64  20.23  0.1816  0.0506  
 

Table S4.3 Epidemiological cut-off value for CHG resistance. 

Bacterial genus/species 

Epidemiological 
cut-off value for 
CHG resistance 
(MIC; μg/mL) Citation 

E. coli 64 

[171] 

K. pneumoniae 64 
Enterobacter spp. 16 
Salmonella spp. 32 
P. aeruginosa 50 

S. aureus 8 

Staphylococci 

4 (resistance or 
reduced 

susceptibility) [199] 
E. faecium 32 

[171] E. faecalis 64 
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Table S4.4. Sampling locations within the MICU at Rush University Medical Center 

Main 
occupant Main Space Type 

Associated Space type 
(Space Type Used for 

Mark) 
Sampling location 

Patient 

Patient room 
Patient room 

 

Doorsill inside 
Keyboard inside  

Light switch inside 
Nurse Call  

Bedrail (left-hand side)   
Sink drain inside 

Communicating space 
Doorsill outside 

Keyboard outside 
Light switch outside 

Healthcare 
worker 

Medication room Medication room 
 

Doorsill inside 
Sink drain 

Communicating space Doorsill outside 

Staff-only restroom Staff-only restroom 
 

Doorsill inside 
Sink drain 

Communicating space Doorsill outside 

All 

Communicating space Communicating space 
Doorsill inside 
Doorsill outside 

Sink drain 
Communicating space Public restroom 

 

doorsill inside 

Public restroom doorsill outside 
sink drain 

 

Table S4.5. List of Abbreviations  

Sampling location Abbreviation  Space type Abbreviation 
Doorsill inside DI Patient room PT 
Keyboard inside  KI Medication room MD 
Light switch inside SI Staff-only restroom ST 

Nurse Call  CALL Communicating 
space 

CM 

Bedrail (left-hand 
side)   BR Public restroom PB 

Sink drain SINK   
Doorsill outside DO   
Keyboard outside KO   
Light switch outside SO   
  



112 
 

   
 

Table S4.6. Surface area of sampling locations 

Location Area (cm2) Location Area (cm2) Specification Location Area (cm2) 
Patient Room Medication room Public restroom 

BR 552.18 DI 128.52 PB_1 DI 111.59 
CALL 130.98 DO 128.52  DO 111.59 

DI 195.58 Staff-only restroom PB_2 DI 10.19 
DO 195.58 DI 111.59  DO 112.11 
KI 384.59 DO 111.59    
KO 384.59 Communicating space    
SI 6.06 DI 19.02    
SO 6.06 DO 190.35    
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Chapter 5 RefDeduR: A text-normalization and decision-tree aided R 

package enabling accurate and high-throughput reference deduplication 

for large datasets 

5.1 Abstract 

As the scientific literature grows exponentially and research becomes increasingly 

interdisciplinary, accurate and high-throughput reference deduplication is vital in evidence 

synthesis studies (e.g., systematic reviews, meta-analyses) to ensure the completeness of datasets 

while reducing the manual screening burden. Existing tools fail to fulfill these emerging needs, 

as they are often labor-intensive, insufficient in accuracy, and limited to clinical fields. Here, we 

present RefDeduR, a text-normalization and decision-tree aided R package that enables accurate 

and high-throughput reference deduplication. We modularize the pipeline into text 

normalization, three-step exact matching, and two-step fuzzy matching processes. We also 

introduce a decision-tree algorithm, consider preprints when they co-exist with a peer-reviewed 

version, and provide actionable recommendations. Therefore, the tool is customizable, accurate, 

high-throughput, and practical. RefDeduR provides an effective solution to perform reference 

deduplication and represents a valuable advance in expanding the open-source toolkit to support 

evidence synthesis research. 

5.2 Introduction 

As research becomes increasingly interdisciplinary, searching multiple platforms (e.g., PubMed, 

Web of Science) is vital to ensure the completeness of retrieved datasets in evidence synthesis 
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studies, especially for systematic reviews and meta-analyses [234]. This makes reference 

deduplication a key step between search and screening [235]. Deduplication is usually accessible 

as a module in multiple tools along the evidence synthesis pipeline, including search platforms 

(e.g., Ovid), reference management software (e.g., EndNote, Zotero, synthesisr), and screening 

assistance tools (e.g., Covidence, Rayyan, Metta [235], SRA-DM [236], revtools [237]). Despite 

wide availability, existing modules are often labor-intensive, insufficient in accuracy, and limited 

to certain fields or databases (primarily clinical), probably because deduplication is only one 

element among their multiple functions. While still useful for small datasets, due to these 

limitations, many approaches quickly become impractical in the fast-growing era of big data. 

Already, systematic reviews take tens of weeks. It has been shown that a systematic review takes 

an average of 164 full-time equivalent days in environmental science [27] and 67.3 weeks for a 

five-person team in medical fields [28]. Any processes that can accelerate computation and 

decrease manual labor are thus valuable improvements. 

To address these challenges, we developed an R package, RefDeduR, specializing in reference 

deduplication. The pipeline is modularized into text normalization, three-step exact matching, 

and two-step fuzzy matching, making it highly customizable. With finely tuned text cleaning and 

normalization, RefDeduR’s high-confidence exact matching process outperforms many tools, 

even with their fuzzy matching procedure included. We semi-automate the time-consuming and 

error-prone manual review process in fuzzy matching by introducing a decision-tree algorithm, 

making it high-throughput while still maintaining accuracy. Additionally, we propose to use the 

inflection point of the similarity distribution curve as the cutoff threshold, making the pipeline 

more practical. The tool also takes into account preprints and conference proceedings, discarding 
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them when a peer-reviewed version is present. This is and will be increasingly important with the 

rise of preprint servers. Last but not least, as a free open-source package, RefDeduR is highly 

interoperable with other software (including both commercial and open-source), will support the 

development of future tools (just like the various packages RefDeduR is built upon [237-241]), 

and more broadly will contribute to the prosperity of the evidence synthesis field. 

Users can access RefDeduR on GitHub (https://github.com/jxshen311/RefDeduR) and view 

further documentation and examples on the website (https://jxshen311.github.io/RefDeduR/). 

Below, we demonstrate the functionality of RefDeduR with an example pipeline (see Fig. 5.1 for 

a flowchart of the recommended pipeline with key functions listed). 
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Fig. 5.1 
Fig. 5.1 A flowchart of RefDeduR’s recommended pipeline with key functions listed. 
Functions are italicized to differentiate from the non-italicized descriptions. Processes involving 
manual review are marked with an asterisk. Refer to R documentation of each function and the 
tutorial (https://jxshen311.github.io/RefDeduR/articles/RefDeduR_tutorial.html) for more 
details. 
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5.3 Functionality with an example pipeline 

5.3.1 Example dataset 

The example dataset contains all bibliographic records (n = 6384) retrieved in a systematic 

review on indoor surface microbiome studies. We conducted the systematic search on 2022-01-

10 through 3 platforms, and 1268, 3386, and 1733 records were retrieved from PubMed, Scopus, 

and Web of Science, respectively. The search terms consist of 4 key concepts: 1) indoor, 2) 

bacterial community/microbiome, 3) sequence-based, and 4) surface. Table 5.1 summarizes the 

number of records with missing values for relevant fields. 

Table 5.1 
Table 5.1 Number of records with missing values for relevant fields 

Field title author journal abstract year DOI 
Number of records 
with missing values 0 3 50 8 20 221 

 

5.3.2 Module 1: Text normalization 

Transliterate non-ASCII characters 

Before reading bibliographic files (usually BibTeX or RIS format) into data frames (the standard 

format for R datasets), we transliterate non-ASCII characters to the ASCII format using the 

function norm_transliteration. The default transliteration process includes: (1) 

transliterate common Greek letters to their names (e.g., “α” to “alpha”, “β” to “beta”) and (2) 

transliterate accented characters to ASCII equivalents (e.g., “á” to “a”, “ä” to “a”). Users can also 

perform transliteration based on customized rules or any other rules supported by 

stringi::stri_trans_general. 
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The transliteration increases the chance of successful deduplication by exact matching (Module 

2). Additionally, it reduces noise when partitioning the dataset by the first two letters 

of first_author_last_name_norm at the fuzzy matching step (Module 3). For example, 

a record titled “Carriage and population genetics of extended spectrum β-lactamase-producing 

Escherichia coli in cats and dogs in New Zealand” sometimes has the title “Carriage and 

population genetics of extended spectrum beta-lactamase-producing Escherichia coli in cats and 

dogs in New Zealand”. Author names “Álvarez-Fraga, L. and Pérez, A.” are sometimes written 

as “Alvarez-Fraga, L. and Perez, A.”. 

Read bibliographic file into a data frame 

We leverage function read_bibliography from the R package revtools [237] to read the 

transliterated bibliographic file (we recommend using BibTeX; see Github tutorial for reasons) 

into a data frame. 

Text cleaning and normalization 

Before deduplication, we perform multiple finely tuned text cleaning steps on the dataset. Text 

cleaning includes not only standard text normalization such as converting letters to lowercase, 

but also tailored operations in response to patterns we observed, such as removing trademark 

“(TM)” in title, removing English stop words in journal, and removing publisher/citation 

information in abstract (norm_ functions, e.g., norm_title). Furthermore, we extract helper 

columns which we will use downstream (e.g., journal_initialism and 

first_author_last_name_norm). While the functions responsible for normalizing 

individual columns facilitate flexibility, a wrapper function, norm_df, is also provided to 

streamline the process. This function takes a data frame as the input and performs all 
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normalization operations required in the downstream reference deduplication. Similarly, finer 

text normalization increases the probability of successful deduplication at the exact matching 

stage, where both accuracy and confidence are assured. 

5.3.3 Module 2: Deduplicate by exact matching 

Following text normalization, we deduplicate by exact matching based on (1) normalized DOI 

(coded as doi_norm), (2) title, and (3) normalized title (title_norm) in order. DOI is 

chosen as the first metric because it is decisive (i.e., single selectivity). However, deduplication 

efficacy is limited by its medium/low applicability due to missing values. Hence, title is then 

employed, as it is high in both selectivity and applicability. Selectivity of a field equals 1 – (1/the 

number of unique field values). A field with high selectivity is one whose values are shared by 

only a limited number of records. A decisive field is a special case, where any non-null value is 

unique [235]. Applicability equals the number of non-null values divided by the number of total 

records, meaning that a high applicability field has few null values. 

We use the function dedu_exact to automatically identify and remove duplicates. The user 

specifies one or multiple fields of the dataset according to which deduplication is conducted. If 

multiple fields are specified, deduplication will be performed one-by-one in order. Only records 

with non-null values will be investigated and the most recent version will be retained at removal. 

We recommend using dedu_exact for high-confidence fields such as normalized DOI and 

title. 

Since completeness is crucial in evidence syntheses, we prioritize specificity over sensitivity for 

RefDeduR, and thus introduce a verification mechanism for fields that the user might consider 
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less confident. Exemplified in the recommended pipeline, we use dup_find_exact to locate 

potential duplicates according to normalized title and check the outcome based on 

first_author_last_name. If the detected duplicate sets have different values in the 

verification field (in this case, first_author_last_name), they will be output for manual 

review. Typically, the number of duplicate sets requiring manual review is small at this step 

(e.g., in the example dataset, only 1 set needs to be reviewed). Note that incorporating the 

verification mechanism for normalized title is particularly conservative. If verification is not 

needed, the user can incorporate normalized title into dedu_exact. Moreover, although not 

included in the standard pipeline, the user can utilize the functions to further search for 

duplicates by exact matching other fields, such as normalized abstract. 

5.3.4 Module 3: Deduplicate by fuzzy matching 

Once we remove all duplicates by the high-confidence exact matching processes, we proceed to 

fuzzy matching. Fuzzy matching is performed by calculating string similarity based on 

Levenshtein edit distance. 

Two major practical challenges of making the fuzzy-matching process both accurate and high-

throughput are (1) to choose a sensible cutoff threshold for the similarity score and (2) to reduce 

burden of manual review and accelerate the step. In RefDeduR, we propose two strategies to 

address these challenges. For challenge 1, we examine the similarity distribution plots and use 

the inflection point of the curve as the cutoff threshold. This value serves as a starting point to 

further finely-tune the threshold (discussed in more detail below). For challenge 2, we introduce 

a decision tree that incorporates multiple fields (e.g., title, author, year, journal, first author) to 

semi-automate the “manual review” step (illustrated in Fig. S5.1). This is especially helpful for 
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large datasets, in which case the number of duplicate sets requiring manual review could be 

unfeasibly high (e.g., revtools outputs ~1,400 duplicate sets for manual confirmation when 

treating this example dataset). Moreover, in addition to ensuring that the most recent record is 

retained at duplicate removal, we recognize the increasing prevalence of preprints and 

conference proceedings and remove them as well when co-existing with a peer-reviewed version. 

To improve the computational efficiency, we divide this process into 2 parts: (1) order the 

records and compare only between the adjacent rows, and (2) perform pairwise comparisons 

between records within the same group after partitioning.  

Part 1: order + adjacent 

First, we calculate string similarity between adjacent rows for columns title_norm and 

abstract_norm using the function simi_order_adj. By default, the dataset is ordered 

alphabetically by title_norm before calculation, but the user may choose another field. 

Second, we plot similarity distributions of title_norm and abstract_norm by 

plot_simi_dist (Fig. 5.2) to choose cutoffs. The plots suggest a cutoff score of 0.7 or 0.6 

for the title and 0.3 for the abstract. For demonstration purpose, we use 0.7 and 0.3 here. The 

selected cutoffs are then passed to dup_find_fuzzy_adj to locate potential duplicates. The 

function outputs 2 data frames: (1) the input data frame with match column added and (2) a 

data frame listing id of duplicate pairs (id_dup_pair_adj). The decision tree is introduced 

next to semi-automate the “manual review” process. The function decision_tree_adj 

generates and adds decisions to id_dup_pair_adj. There are 3 possible levels of decisions: 

duplicate, not duplicate, and check. If the decision is not duplicate, the match column will be 
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modified. To ensure a high accuracy, especially a low false positive rate, check is kept in the 

decision tree to signal manual confirmation. Finally, we deduplicate accordingly for different 

scenarios. For the duplicate, we remove duplicates directly by dup_rm_adj. For the check, we 

leverage revtools::screen_duplicate, leading to a graphical interface to interactively 

screen the duplicate pairs [237]. 

 
Fig. 5.2 
Fig. 5.2 Distribution of string similarity scores of the example dataset based on a) 
normalized title and b) normalized abstract. Sensible cutoffs to begin with are marked by red 
arrows. 

Part 2: partition + pairwise 

We further deduplicate according to pairwise string similarity between all records within the 

same partitioned group. Following procedures similar to those in part 1, we first calculate string 

similarity for columns title_norm and abstract_norm using the function 

simi_ptn_pair. The difference is that we partition the dataset rather than order it. We 

recommend using the first two letters of first_author_last_name_norm as the 
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partitioning metric, but the user has the flexibility to choose another parameter (e.g., year). We 

found the default metric more efficient than year for datasets that are skewed towards recent 

years. This is probably the case for many evidence synthesis studies, as the literature tends to 

grow exponentially. In addition, with the prevalence of preprints, partitioning by year becomes 

less accurate. Because the dataset is partitioned, results are now stored in lists as opposed to data 

frames in part 1. Likewise, we then locate potential duplicates by 

dup_find_fuzzy_pairwise. The cutoff thresholds can be inherited from part 1. To avoid 

over-deleting unique records, we suggest tightening the cutoff of abstract similarity to 0.7 (or 

0.6) in this step, as opposed to 0.3 in part 1, where the risk is mitigated by the more restricted 

ordering. Decision tree is applied subsequently by decision_tree_pairwise and we can 

call dup_screen_pairwise to output the duplicate pairs that are labeled as check for 

manual review. Finally, we call dup_resolve_pairwise to resolve the check decisions to 

either duplicate or not duplicate accordingly and remove duplicates by dup_rm_pairwise. 

We recommend using the inflection point as a data-driven threshold selection method based on 

the assumption that duplicates constitute a relatively small portion of the total after text 

normalization and exact matching. Thresholds from previous deduplication methods are largely 

empirical or anecdotal. For example, litsearchr uses “titles that are more than 95% similar, or 

abstracts that are more than 85% similar” but does not provide a theoretical basis for these 

cutoffs [242]. Compared with thresholds inherited from previous experience, this method is more 

quantitative. However, the selection of cutoff thresholds is based on visual observation of the 

distribution curves and does not actually need to be very precise. For example, the end result is 

not impacted by using 0.7 or 0.6 for the first threshold (Table S5.1). Instead, numbers around 
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that area all work similarly, partly due to the buffering functionality of the decision tree. 

Generally, a larger similarity score leads to higher specificity and may cause false negatives, 

while a smaller similarity score leads to higher sensitivity and may cause false positives. 

Regardless, all the 8 scenarios we tested had accuracy ≥ 99.94% (Table S5.1; title similarity: 0.7 

~ 0.5; abstract similarity: 0.7 ~ 0.3). Specifically, the recommended schemes (S1 & S2) resulted 

in 0 false positive and 1 false negative. If the cutoff of abstract similarity was not raised to 0.7 

(or 0.6) in part 2 (i.e., still used 0.3, S3 & S4), all duplicates would be identified at the cost of 

having 4 false positives. Towards the conservative direction, if 0.7 (or 0.6) was used throughout 

the procedures for both title and abstract similarity (S5 & S6), a false positive rate of 0 was 

maintained, and the number of false negatives was slightly increased to 3 for 0.7 and 2 for 0.6. 

Lowering the thresholds to 0.55 or 0.5 caused both false positives and false negatives (S7 & S8), 

but none exceeded 2. 

5.3.5 Export the deduplicated dataset 

We can leverage write_bibliography from R package revtools [237] to export the 

deduplicated data frame into a BibTeX or RIS file. Alternatively, R packages synthesisr 

(https://CRAN.R-project.org/package=synthesisr) and RefManageR (https://CRAN.R-

project.org/package=RefManageR) also contain similar functions. 

5.4 Discussion 

5.4.1 Benchmarking  

We benchmarked RefDeduR against existing tools using the example dataset. After manual 

curation, 3828 records were retained in the unique subset among the raw dataset with 6384 
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records (Table S5.2). With this manually curated dataset as the benchmark set, deduplication 

performance was then assessed between March and September 2022. We considered 

deduplication modules from a variety of tools along the evidence synthesis pipeline, including 

search platforms (Ovid), reference management software (EndNote X20 v20.2, Zotero v6.0.9, 

Mendeley desktop v1.19.8 and synthesisr v0.3.0), and screening assistance tools (Covidence, 

Rayyan, Metta [235], SRA-DM [236], and revtools v0.4.1 [237]). Ovid, Metta, and SRA-DM 

were excluded after a preliminary examination because their functionality was restricted to 

clinical databases. Deduplication of the dataset was then performed for the other software. We 

used default settings for Endnote X20, Covidence, Zotero, Mendeley and Rayyan, and chose the 

highest-performance scenario for revtools and synthesisr since they provided multiple options in 

their documentation. Version information is not available for Covidence and Rayyan but the 

operation date as well as other details are described at 

https://github.com/jxshen311/RefDeduR_benchmark. 

Quantitative evaluation was not obtained using Mendeley or Rayyan due to the lack of an option 

to automatically resolve detected duplicates. Mendeley desktop found 1457 sets of duplicates. 

Rayyan detected 3369 potential duplicates out of the raw dataset. Both are unfeasibly labor 

intensive with manual resolution as the only option. Moreover, according to the official 

announcement, Mendeley desktop has been discontinued and will be gradually replaced by the 

web-centric version, Mendeley Reference Manager, which does not currently support reference 

deduplication. Mendeley desktop also had a worse performance than Covidence in a previous 

comparison study based on a smaller dataset (n = 3130), which can be used as an indirect 

indicator [243]. While Rayyan claims that it automatically detects and resolves 100% duplicate 
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articles, none of the flagged duplicates were automatically deleted in the example dataset. 

Despite failure to make a quantitative comparison, we uploaded the dataset that had gone 

through RefDeduR’s deduplication for Rayyan to further perform deduplication. It found 8 

duplicates, all of which were deemed false positives by manual review. This indicates that 

Rayyan has no higher sensitivity and lower specificity than RefDeduR.  

The remaining tools were evaluated quantitatively. We first identified false positives and false 

negatives, and then calculated accuracy, sensitivity, and specificity accordingly as described 

previously (Table S5.3) [243]. All these tools except Zotero support automatic resolution, for 

which user-developed scripts are available as interim workarounds. For example, a developer 

with the user name “marcelparciak” posted a Java script that automates the clicking of "Merge X 

items" button for 100 times with a second waiting time in between on the Zotero forum 

(https://forums.zotero.org/discussion/40457/merge-all-duplicates). Although in practice, the 

script stopped frequently (after ~ 10 clicks) and required a manual restart, we resolved all 

duplicates after approximately a day. 

RefDeduR deduplicated the dataset to 3829 records, with only one record missed in comparison 

to the benchmark set, while all the other tools missed substantially more duplicate records for 

exclusion (i.e., false negatives) (Fig. 5.3). Notably, with only the exact matching module, 

RefDeduR has already outperformed all the benchmarked tools, possibly due to the optimized 

text normalization. All the tools had 100% specificity for the example dataset except revtools 

(99.97%), which mis-identified one record as duplicate (i.e., false positive). This is surprising for 

Endnote and Zotero since their specificity was previously reported to be only 89% and 99%, 

respectively [243]. This means 208 and 20 false positives out of a dataset with 3130 references. 
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It is possible that the software has enhanced their deduplication capability since this previous 

study that used Endnote X9 and was conducted between December 2018 and January 2020. 

Alternatively, variation between the two benchmark sets may also contribute to the different 

outcomes. In contrast to searching 3 platforms (PubMed, Scopus, and Web of Science) in our 

study, the benchmark set in the previous study was retrieved from Ovid only and was mostly 

clinically focused. 

 
Fig. 5.3 
Fig. 5.3 Comparison of deduplication performance between RefDeduR and existing tools. 
Performance of intermediate compartments is also displayed for RefDeduR. Default settings 
were used for Endnote X20, Covidence, and Zotero. The tools offering multiple options (e.g., 
revtools and synthesisr) are represented by the highest-performance one. Except revtools, all the 
other tools have 0 false positives (FP) (i.e., 100% specificity) for the example dataset. 
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RefDeduR balances risk of misidentification and manual burden via modularizing the entire 

process and combining the automatic decision-tree algorithm with the attenuated manual review. 

In contrast, the other tools rely heavily on users to check the flagged duplicates by design, thus 

limiting their robustness. Following the recommended pipeline of RefDeduR, only 3 duplicate 

sets needed to be reviewed before achieving the manually assured result (1 in the exact matching 

step and 2 in part 1 of the fuzzy matching step). However, the user had to screen 1460 duplicate 

sets for revtools and 556 for synthesisr. The numbers of duplicate sets requiring manual review 

were not disclosed by Endnote X20, Covidence, and Zotero. Nevertheless, they were 

approximated to be 974, 1228, and 1265 assuming all were duplicate pairs. In addition, because 

of the decision tree, RefDeduR’s manual workload is less susceptible to the change of fuzzy-

matching thresholds. For instance, after lowering the similarity threshold from 0.7 to 0.6, 22 

more duplicate sets were inputted into the decision tree (from 35 to 57), while the manual 

workload only increased by 6 (from 2 to 8) (Table S5.1). 

5.4.2 General recommendations, potential limitations, and future directions 

We recommend following the example pipeline when using RefDeduR, but users are offered the 

flexibility to build a custom pipeline. For example, if the user is satisfied with the number of 

output records, they may stop after the exact-matching module or part 1 of the fuzzy-matching 

module, since these modules are substantially faster (< 1 min) than part 2 of the fuzzy-matching 

module (~20 min for an exhaustive similarity calculation). Alternatively, combining the 

RefDeduR’s intermediate or final output with other tools (e.g., Rayyan, revtools) could be a 

reassuring operation to further increase the possibility of achieving a desired outcome. In this 

way, the heavy manual review burden of these tools could also be relieved. For instance, using 
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RefDeduR’s intermediate output from part 1 of the fuzzy-matching module as the input for 

Rayyan led to only 10 duplicates for manual review, as opposed to 3369 if the raw dataset was 

inputted.  

Future versions of RefDeduR will further expand automated matching to focus on accuracy 

without increasing the burden on the user. For example, the decision tree could be expanded to 

include more fields (e.g., volume, issue and page). Due to the difficulty of obtaining a manually 

confirmed unique dataset, RefDeduR was only benchmarked using one dataset at this stage. 

Although synthetic datasets do not fully reflect the complexity of real-world datasets, we will 

further examine the performance of RefDudeR using mock datasets. We will continue improving 

the tool as more data become available. For instance, it is interesting to further explore the 

impact of threshold selection on software performance and the efficacy of training machine 

learning models for duplicate classification. 

In conclusion, RefDeduR provides an effective solution to perform reference deduplication and 

represents a valuable advance in expanding the open-source toolkit to support evidence synthesis 

research. It will also support the development of future tools, just like the packages RefDeduR is 

built upon (e.g., revtools). 

5.5 Data availability 

Users can access RefDeduR on GitHub (https://github.com/jxshen311/RefDeduR) and view 

further documentation and examples on the website (https://jxshen311.github.io/RefDeduR/). A 

step-by-step tutorial is available at 

https://jxshen311.github.io/RefDeduR/articles/RefDeduR_tutorial.html. Source code, 



130 
 

   
 

supplementary data, and additional descriptions about the benchmarking analysis are available at 

https://github.com/jxshen311/RefDeduR_benchmark. 

5.6 Supplementary information 

5.6.1 Supplementary figures 

 
Fig. S5.1 A detailed illustration of the decision tree used in fuzzy-matching processes. 
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5.6.2 Supplementary tables 

Table S5.1 Comparison of RefDeduR's performance for different similarity thresholds. 

 

Table S5.2 A complete list of the manually curated benchmarking dataset. 

File: Table S5.2_manually_curated_benchmarking_dataset.xls 
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Table S5.3 Performance statistics of different tools. The performance metrics include false 
positives, false negatives, accuracy, sensitivity, and specificity. 

Method 
Unique 

references 
retained 

Duplicates 
flagged FP FN Accuracy 

(%) 
Sensitivit

y (%) 
Specificit

y (%) 

Endnote 
X20 4437 1947 0 609 90.46 76.17 100 

Zotero 3854 2530 0 26 99.59 98.98 100 
Covidence 3928 2456 0 100 98.43 96.09 100 

revtools 3855 2529 1 28 99.55 98.9 99.97 
synthesisr 3846 2538 0 18 99.72 99.3 100 
RefDeduR 3829 2555 0 1 99.98 99.96 100 
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Chapter 6 Conclusions 

The diverse research presented in this dissertation enhances our knowledge of diversity and 

antimicrobial resistance in indoor microbiomes as well as improves our capability for future 

exploration. By developing improved techniques and investigating previously overlooked areas, 

my work contributes to linking the understanding of indoor microbiomes to the promotion of 

human health and environmental sustainability. 

In Chapter 2, I discussed 3 critical conceptual and technical aspects that need to be incorporated 

throughout the metagenomic environmental surveillance process (i.e., viability assessment, 

taxonomic resolution, and quantitation). I highlight the importance of building solid conceptual 

frameworks and identifying rational limits to facilitate the application of techniques. I also 

propose the usage of internal standards as a promising approach to overcome analytical 

bottlenecks introduced by low biomass samples and the inherent lack of quantitation in 

metagenomics. In addition, I emphasize that the field should promote crucial standardizations 

ranging from sampling protocols to data analysis, curation, and presentation, to increase internal 

consistency and external compatibility [50, 89].  

Subsequently, in Chapter 3, I developed an improved and easily followable workflow for 

metagenomics-based environmental surveillance. Best practices were suggested in this well-

structured workflow. Briefly, I recommend adopting liquid-liquid extraction to improve DNA 

yield and only incorporating whole-cell filtration when the non-bacterial proportion is large. I 

suggest including propidium monoazide treatment coupled with internal standards and absolute 

abundance profiling for viability assessment, and involving cultivation when demanding 



134 
 

   
 

comprehensive profiling. I further recommend integrating internal standards for quantification, 

and additionally qPCR when we expect poor taxonomic classification. I also introduce a machine 

learning-based model to predict required sequencing effort from accessible sample features. The 

model helps make full use of sequencing resources and achieve desired outcomes. This 

metagenomics-based environmental surveillance workflow is particularly useful in infection 

prevention and disinfection assessment. Although I focus on microbial surveillance of built 

environments, especially hospital-associated surfaces, the workflow developed in this study can 

be adapted to other contexts with similar characteristics. Moreover, the experience gained in 

overcoming challenges unique to environmental microbiomes (e.g., quantitative metagenomics 

with poor taxonomic classifications) is also useful to studies on other environments, such as 

wastewater and air. 

In Chapter 4, I investigated chlorhexidine resistance in the hospital environment by combining 

controlled microcosm experiments and field surveys. The study revealed that chlorhexidine 

decreased in concentration while persisting on indoor surfaces. Surface materials and 

disinfection and cleaning practices impacted the patterns of chlorhexidine persistence. Ex situ, I 

found that clinically relevant bacteria could survive 24 h chlorhexidine digluconate (CHG) 

exposure on surfaces in the concentration range commensurate with CHG persistence. In situ, I 

found that CHG tolerance was widespread in a MICU environment. Particularly, I highlight that 

sinks were a critical reservoir regarding the absolute bioburden, CHG tolerance, and bacteria 

with exceedingly high CHG minimum inhibitory concentrations (≥ 512 μg/mL). Additionally, I 

encourage more attention to indoor air as a transport mechanism for resistant organisms, as 

evidenced by their presence on doorsills. We also found efflux to be the dominating 
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antimicrobial resistance mechanism, especially RND efflux pumps. This chapter advances our 

understanding of chlorhexidine persistence on indoor surfaces, the resistance profile of 

environmental isolates in a MICU, as well as potential resistance mechanisms of environmental 

bacteria. Moreover, this chapter will contribute to the improvement of clinical application of 

chlorhexidine and the prevention of antibiotic-resistant infections in healthcare facilities. 

In Chapter 5, I developed an R package, RefDeduR, that performs accurate and high-throughput 

reference deduplication for large datasets to promote broader applications of evidence synthesis 

research (e.g., in indoor microbiomes). RefDeduR is text-normalization and decision-tree aided. I 

modularize the pipeline into text normalization, three-step exact matching, and two-step fuzzy 

matching processes. I also introduce a decision-tree algorithm, consider preprints when they co-

exist with a peer-reviewed version, and provide actionable recommendations. Therefore, the tool 

is customizable, accurate, high-throughput, and practical. RefDeduR provides an effective 

solution to perform reference deduplication and represents a valuable advance in expanding the 

open-source toolkit to support evidence synthesis research. 

Based on my results, I believe it is worth aiming at the following aspects in future research.  

1. Indoor microbiome research benefits from better experimental, computational, and 

presentational standards. Experimentally, continuous advancement of internal standards 

for quality control, as well as quantification and other features, is still one of the major 

hotspots in method optimization. Computationally or analytically, we should continue 

creating quality control metrics. For instance, in companion with internal standards, 

evaluation metrics are needed. They might be analogous to sequencing coverage and 
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depth in metagenomics, or calculation schematics exemplified in [45]. For rigor and 

reproducibility, more standardized and detailed reporting is required in various sub-areas, 

such as high-quality metadata (e.g., sampling location, sampling methods, sampling date) 

and the type of antimicrobial chemicals used in MIC assays (e.g., chlorhexidine 

digluconate or chlorhexidine acetate). 

2. In addition to optimizing techniques, concepts should be paired with applicational 

contexts and reevaluated as perceptions grow. For example, it is worth exploring whether 

the concept of “viability” in the context of interest is closer to intact cell membrane, 

active transcription, or active replication. For viability assessment, instead of focusing on 

this viable/dead dichotomy, perhaps more critically, we should keep in mind that 

“viability” is rather an intermediate or methodological term, linking surveillance results 

to questions of interest (e.g., which bacteria are infectious) [99]. 

3. It is beneficial to curate indoor microbiome databases, comprising metadata features, 

sequences, diversity and antimicrobial resistance profiles, etc. Such high-quality 

databases will profoundly facilitate the implementation of artificial intelligence 

technologies to decipher complex and high-dimensional microbiome data. They will also 

aid in systematic reviews and meta-analyses. Moreover, organized knowledge and 

recommendations in the databases will inform future research design. 

4. More and larger scale investigations are essential to expand our knowledge to 

previously neglected areas (e.g., chlorhexidine tolerance in environments), and to provide 

high-quality data points in evidence synthesis and database curation. 
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5.  It remains to be investigated how to properly interpret results generated by a 

combination of methods. Given the complexity, high dimensionality, and noise of 

microbiome data, combining multiple and ideally orthogonal techniques is usually 

desired. Consequently, interpretating inconsistencies between disparate methods is an 

imminent challenge to overcome. 

Through this dissertation and future research efforts, I hope that our understanding of the 

microbial systems underlying human and environmental health will be continuously advanced, 

and better risk assessment, decision making, intervention strategies will be continuously 

developed to promote human health and environmental sustainability.
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