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A general-purpose machine learning framework for predicting
properties of inorganic materials
Logan Ward1, Ankit Agrawal2, Alok Choudhary2 and Christopher Wolverton1

A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models
from existing materials data. While prior examples have demonstrated successful models for some applications, many more
applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based
models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our
method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of
properties, and a novel method for partitioning the data set into groups of similar materials to boost the predictive accuracy. In this
manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous
materials, such as band gap energy and glass-forming ability.
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INTRODUCTION
Rational design of materials is the ultimate goal of modern
materials science and engineering. As part of achieving that goal,
there has been a large effort in the materials science community
to compile extensive data sets of materials properties to provide
scientists and engineers with ready access to the properties of
known materials. Today, there are databases of crystal structures,1

superconducting critical temperatures (http://supercon.nims.go.
jp/), physical properties of crystalline compounds2–5 and many
other repositories containing useful materials data. Recently, it has
been shown that these databases can also serve as resources for
creating predictive models and design rules—the key tools of
rational materials design.6–12 These databases have grown large
enough that the discovery of such design rules and models is
impractical to accomplish by relying simply on human intuition
and knowledge about material behaviour. Rather than relying
directly on intuition, machine learning offers the promise of being
able to create accurate models quickly and automatically.
To date, materials scientists have used machine learning to

build predictive models for a handful of applications.13–27 For
example, there are now models to predict the melting tempera-
tures of binary inorganic compounds,21 the formation enthalpy
crystalline compounds,14,15,28 which crystal structure is likely to
form at a certain composition,5,16,29–31 band gap energies of
certain classes of crystals32,33 and the mechanical properties of
metal alloys.24,25 While these models demonstrate the promise
of machine learning, they only cover a small fraction of the
properties used in materials design and the data sets available for
creating such models. For instance, no broadly-applicable,
machine-learning-based models exist for band gap energy or
glass-forming ability even though large-scale databases of these
properties have existed for years.2,34

Provided the large differences between the approaches used in
the literature, a systematic path forward to creating accurate

machine learning models across a variety of new applications is
not clear. While techniques in data analytics have advanced
significantly, the development of routine methods for transform-
ing raw materials data into the quantitative descriptions required
for employing these algorithms is yet to emerge. In contrast, the
chemoinformatics community benefits from a rich library of
methods for describing molecular structures, which allow for
standard approaches for deciding inputs into the models and,
thereby, faster model development.35–37 What is missing are
similar flexible frameworks for building predictive models of
material properties.
In this work, we present a general-purpose machine-learning-

based framework for predicting the properties of materials based
on their composition. In particular, we focus on the development
of a set of attributes—which serve as an input to the machine
learning model—that could be reused for a broad variety of
materials problems. Provided a flexible set of inputs, creating a
new material property model can be reduced to finding a machine
learning algorithm that achieves optimal performance—a well-
studied problem in data science. In addition, we employ a novel
partitioning scheme to enhance the accuracy of our predictions by
first partitioning data into similar groups of materials and training
separate models for each group. We show that this method can be
used regardless of whether the materials are amorphous or
crystalline, the data are from computational or experimental
studies, or the property takes continuous or discrete values. In
particular, we demonstrate the versatility of our technique by
using it for two distinct applications: predicting novel solar cell
materials using a database of density functional theory (DFT)-
predicted properties of crystalline compounds and using experi-
mental measurements of glass-forming ability to suggest new
metallic glass alloys. Our vision is that this framework could be
used as a basis for quickly creating models based on the data
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available in the materials databases and, thereby, initiate a major
step forward in rational materials design.

RESULTS AND DISCUSSION
The results of this study are described in two major subsections.
First, we will discuss the development of our method and the
characterisation of the attribute set using data from the Open
Quantum Materials Database (OQMD). Next, we will demonstrate
the application of this method to two distinct material problems.

General-purpose method to create materials property models
Machine learning (ML) models for materials properties are
constructed from three parts: training data, a set of attributes
that describe each material, and a machine learning algorithm to
map attributes to properties. For the purposes of creating a
general-purpose method, we focused entirely on the attributes set
because the method needs to be agnostic to the type of training
data and because it is possible to utilise already-developed
machine learning algorithms. Specifically, our objective is to
develop a general set of attributes based on the composition that
can be reused for a broad variety of problems.
The goal in designing a set of attributes is to create a

quantitative representation that both uniquely defines each
material in a data set and relates to the essential physics and
chemistry that influence the property of interest.14,17 As an
example, the volume of a crystalline compound is expected to
relate to the volume of the constituent elements. By including the
mean volume of the constituent elements as an attribute, a
machine learning algorithm could recognise the correlation
between this value and the compound volume, and use it to
create a predictive model. However, the mean volume of the
constituent elements neither uniquely defines a composition nor
perfectly describes the volumes of crystalline materials.38 Conse-
quently, one must include additional attributes to create a suitable
set for this problem. Potentially, one could include factors derived
from the electronegativity of the compound to reflect the idea
that bond distances are shorter in ionic compounds, or the
variance in atomic radius to capture the effects of polydisperse
packing. The power of machine learning is that it is not necessary
to know which factors actually relate to the property and how
before creating a model—those relationships are discovered
automatically.
The materials informatics literature is full of successful examples

of attribute sets for a variety of properties.13–16,21,32,39 We
observed that the majority of attribute sets were primarily based
on statistics of the properties of constituent elements. As an
example, Meredig et al.15 described a material based on the
fraction of each element present and various intuitive factors, such
as the maximum difference in electronegativity, when building
models for the formation energy of ternary compounds.
Ghiringhelli et al.14 used combinations of elemental properties
such as atomic number and ionisation potential to study the
differences in energy between zinc-blende and rocksalt phases.
We also noticed that the important attributes varied significantly
depending on material property. The best attribute for describing
the difference in energy between zinc-blende and rocksalt phases
was found to be related to the pseudopotential radii, ionisation
potential and electron affinity of the constituent elements.14 In
contrast, melting temperature was found to be related to atomic
number, atomic mass and differences between atomic radii.21

From this, we conclude that a general-purpose attribute set
should contain the statistics of a wide variety of elemental
properties to be adaptable.
Building on existing strategies, we created an expansive set of

attributes that can be used for materials with any number of
constituent elements. As we will demonstrate, this set is broad

enough to capture a sufficiently-diverse range of physical/
chemical properties to be used to create accurate models for
many materials problems. In total, we use a set of 145 attributes,
which are described in detail and compared against other
attribute sets in the Supplementary Information, that fall into
four distinct categories:

1. Stoichiometric attributes that depend only on the fractions of
elements present and not what those elements actually are.
These include the number of elements present in the
compound and several Lp norms of the fractions.

2. Elemental property statistics, which are defined as the mean,
mean absolute deviation, range, minimum, maximum and
mode of 22 different elemental properties. This category
includes attributes such as the maximum row on periodic
table, average atomic number and the range of atomic radii
between all elements present in the material.

3. Electronic structure attributes, which are the average fraction
of electrons from the s, p, d and f valence shells between all
present elements. These are identical to the attributes used by
Meredig et al.15

4. Ionic compound attributes that include whether it is possible
to form an ionic compound assuming all elements are present
in a single oxidation state, and two adaptations of the fractional
‘ionic character’ of a compound based on an electronegativity-
based measure.40

For the third ingredient, the machine learning algorithm, we
evaluate many possible methods for each individual problem.
Previous studies have used machine learning algorithms including
partial least-squares regression,13,29 Least Absolute Shrinkage and
Selection Operator (LASSO),14,33,41 decision trees,15,16 kernel ridge
regression,17–19,42 Gaussian process regression19–21,43 and neural
networks.22–24 Each method offers different advantages, such as
speed or interpretability, which must be weighed carefully for a
new application. We generally approach this problem by
evaluating the performance of several algorithms to find one
that has both reasonable computational requirements (i.e., can be
run on available hardware in a few hours) and has low error rates
in cross-validation—a process that is simplified by the availability
of well-documented libraries of machine learning algorithms.44,45

We often find that ensembles of decision trees (e.g., rotation
forests46) perform best with our attribute set. These algorithms
also have the advantage of being quick to train, but are not easily
interpretable by humans. Consequently, they are less suited for
understanding the underlying mechanism behind a material
property but, owing to their high predictive accuracy, excellent
choices for the design of new materials.
We also utilise a partitioning strategy that enables a significant

increase in predictive accuracy for our ML models. By grouping the
data set into chemically-similar segments and training a separate
model on each subset, we boost the accuracy of our predictions
by reducing the breadth of physical effects that each machine
learning algorithm needs to capture. For example, the physical
effects underlying the stability intermetallic compounds are likely
to be different than those for ceramics. In this case, one could
partition the data into compounds that contain only metallic
elements and another including those that do not. As we
demonstrate in the examples below, partitioning the data set
can significantly increase the accuracy of predicted properties.
Beyond using our knowledge about the physics behind a certain
problem to select a partitioning strategy, we have also explored
using an automated, unsupervised-learning-based strategy for
determining distinct clusters of materials.47 Currently, we simply
determine the partitioning strategy for each property model by
searching through a large number of possible strategies and
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selecting the one that minimises the error rate in cross-
validation tests.

Justification for large attribute set
The main goal of our technique is to accelerate the creation of
machine learning models by reducing or eliminating the need to
develop a set of attributes for a particular problem. Our approach
was to create a large attribute set, with the idea that it would
contain a diverse enough library of descriptive factors such that it
is likely to contain several that are well-suited for a new problem.
To justify this approach, we evaluated changes in the performance
of attributes for different properties and types of materials using
data from the OQMD. As described in greater detail in the next
section, the OQMD contains the DFT-predicted formation energy,
band gap energy and volume of hundreds of thousands of
crystalline compounds. The diversity and scale of the data in the
OQMD make it ideal for studying changes in attribute perfor-
mance using a single, uniform data set.
We found that the attributes which model a material property

best can vary significantly depending on the property and type of
materials in the data set. To quantify the predictive ability of each
attribute, we fit a quadratic polynomial using the attribute and
measured the root mean squared error of the model. We found
the attributes that best describe the formation energy of
crystalline compounds are based on the electronegativity of the
constituent elements (e.g., maximum and mode electronegativity).
In contrast, the best-performing attributes for band gap energy
are the fraction of electrons in the p shell and the mean row in the
periodic table of the constituent elements. In addition, the
attributes that best describe the formation energy vary depending
on the type of compounds. The formation energy of intermetallic
compounds is best described by the variances in the melting
temperature and number of d electrons between constituent
elements, whereas compounds that contain at least one nonmetal
are best modelled by the mean ionic character (a quantity based
on electronegativity difference between constituent elements).
Taken together, the changes in which attributes are the most
important between these examples further support the necessity
of having a large variety of attributes available in a general-
purpose attribute set.
It is worth noting that the 145 attributes described in this paper

should not be considered the complete set for inorganic materials.
The chemical informatics community has developed thousands of
attributes for predicting the properties of molecules.35 What we
present here is a step towards creating such a rich library of
attributes for inorganic materials. While we do show in the
examples considered in this work that this set of attributes is
sufficient to create accurate models for two distinct properties, we
expect that further research in materials informatics will add to the
set presented here and be used to create models with even
greater accuracy. Furthermore, many materials cannot be
described simply by average composition. In these cases, we
propose that the attribute set presented here can be extended
with representations designed to capture additional features such
as structure (e.g., Coulomb Matrix17 for atomic-scale structure) or
processing history. We envision that it will be possible to construct
a library of general-purpose representations designed to capture
structure and other characteristics of a material, which would
drastically simplify the development of new machine learning
models.

Example applications
In the following sections, we detail two distinct applications for
our novel material property prediction technique to demonstrate
its versatility: predicting three physically distinct properties of
crystalline compounds and identifying potential metallic glass
alloys. In both cases, we use the same general framework, i.e., the

same attributes and partitioning-based approach. In each case, we
only needed to identify the most accurate machine learning
algorithm and find an appropriate partitioning strategy. Through
these examples, we discuss all aspects of creating machine-
learning-based models to design a new material: assembling a
training set to train the models, selecting a suitable algorithm,
evaluating model accuracy and employing the model to predict
new materials.

Accurate models for properties of crystalline compounds
DFT is a ubiquitous tool for predicting the properties of crystalline
compounds, but is fundamentally limited by the amount of
computational time that DFT calculations require. In the past
decade, DFT has been used to generate several databases
containing the T= 0 K energies and electronic properties of ~ 105

crystalline compounds,2–5,48 which each required millions of hours
of CPU time to construct. While these databases are indisputably-
useful tools, as evidenced by the many materials they have been
used to design,3,49–54 machine-learning-based methods offer the
promise of predictions at several orders of magnitude faster rates.
In this example, we explore the use of data from the DFT
calculation databases as training data for machine learning
models that can be used rapidly to assess many more materials
than what would be feasible to evaluate using DFT.

Training data. We used data from the OQMD, which contains the
properties of ~ 300,000 crystalline compounds as calculated using
DFT.2,3 We selected a subset of 228,676 compounds from OQMD
that represents the lowest-energy compound at each unique
composition to use as a training set. As a demonstration of the
utility of our method, we developed models to predict the three
physically distinct properties currently available through the
OQMD: band gap energy, specific volume and formation energy.

Method. To select an appropriate machine learning algorithm for
this example, we evaluated the predictive ability of several
algorithms using 10-fold cross-validation. This technique randomly
splits the data set into 10 parts, and then trains a model on 9
partitions and attempts to predict the properties of the remaining
set. This process is repeated using each of the 10 partitions as the
test set, and the predictive ability of the model is assessed as the
average performance of the model across all repetitions. As shown
in Table 1, we found that creating an ensemble of reduced-error
pruning decision trees using the random subspace technique had
the lowest mean absolute error in cross-validation for these
properties among the 10 ML algorithms we tested (of which, only
4 are listed for clarity).55 Models produced using this machine
learning algorithm had the lowest mean absolute error in cross-
validation, and had excellent correlation coefficients of above 0.91
between the measured and predicted values for all three
properties.
As a simple test for how well our band gap model can be used

for discovering new materials, we simulated a search for
compounds with a band gap within a desired range. To evaluate
the ability of our method to locate compounds that have band
gap energies within the target range, we devised a test where a
model was trained on 90% of the data set and then was tasked
with selecting which 30 compounds in the remaining 10% were
most likely to have a band gap energy in the desired range for
solar cells: 0.9–1.7 eV.56 For this test, we selected a subset of the
OQMD that only includes compounds that were reported to be
possible to be made experimentally in the ICSD (a total of 25,085
entries) so that only band gap energy, and not stability, needed to
be considered.
For this test, we compared three selection strategies for finding

compounds with desirable band gap energies: randomly selecting
nonmetal-containing compounds (i.e., without machine learning),
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using a single model trained on the entire training set to guide
selection, and a model created using the partitioning approach
introduced in this manuscript. As shown in Figure 1, randomly
selecting a nonmetal-containing compound would result in just
over 12% of the 30 selected compounds to be within the desired
range of band gap energies. Using a single model trained on the
entire data set, this figure dramatically improves to ~ 46% of
selected compounds having the desired property. We found the
predictive ability of our model can be increased to ~ 67% of
predictions actually having the desired band gap energy by
partitioning the data set into groups of similar compounds before
training. Out of the 20 partitioning strategies we tested, we found
the best composite model works by first partitioning the data set
using a separate model trained to predict the expected range, but
not the actual value, of the band gap energy (e.g., compounds
predicted to have a band gap between 0 and 1.5 eV are grouped
together), and then on whether a compound contains a halogen,
chalcogen or pnictogen. Complete details of the hierarchical
model are available in the Supplementary Information. By
partitioning the data into smaller subsets, each of the individual
machine learning models only evaluates compounds with similar
chemistries (e.g., halogen-containing compounds with a band gap
expected to be between 0 and 1.5 eV), which we found enhances
the overall accuracy of our model.

Once we established the reliability of our model, we used it to
search for new compounds (i.e., those not yet in the OQMD) with a
band gap energy within the desired range for solar cells:
0.9–1.7 eV. To gain the greatest predictive accuracy, we trained
our band gap model on the entire OQMD data set. Then, we used
this model to predict the band gap energy of compositions that
were predicted by Meredig et al.15 to be as-yet-undiscovered
ternary compounds. Out of this list of 4,500 predicted compounds,
we found that 223 are likely to have favourable band gap
energies. A subset with the best stability criterion (as reported in
ref. 15) and band gap energy closest to 1.3 eV are shown in
Table 2. As demonstrated in this example and a recent work by
Sparks et al.,57 having access to several machine learning models
for different properties can make it possible to rapidly screen
materials based on many design criteria. Provided the wide range
of applicability of the machine learning technique demonstrated
in this work and the growing availability of material property data,
it may soon be possible to screen for materials based on even
more properties than those considered here using models
constructed based on several different data sets.

Locating novel metallic glass alloys
Metallic glasses possess a wide range of unique properties, such as
high-wear resistance and soft magnetic behaviour, but are only
possible to create at special compositions that are difficult to
determine a priori.58 The metallic glass community commonly
relies on empirical rules (e.g., systems that contain many elements
of different sizes are more likely to form glasses59) and extensive
experimentation to locate these special compositions.55 While
searches based on empirical rules have certainly been successful
(as evidenced by the large variety of known alloys,60) this
conventional method is known to be slow and resource-
intensive.61 Here, we show how machine learning could be used

Figure 1. Performance of three different strategies to locate
compounds with a band gap energy within a desired range:
randomly selecting nonmetal-containing compounds, and two
strategies using the machine-learning-based method presented in
this work. The first machine learning strategy used a single model
trained on the computed band gap energies of 22,667 compounds
from the ICSD. The second method a model created by first
partitioning the data into groups of similar materials, and training a
separate model on each subset. The number of materials that were
actually found to have a band gap within the desired range after 30
guesses was over 5 times larger when using our machine learning
approach than when randomly selecting compounds. Error bars
represent the 95% confidence interval.

Table 2. Compositions and predicted band gap energies of materials
predicted using machine learning to be candidates for solar cell
applications

Composition Eg (eV)

ScHg4Cl7 1.26
V2Hg3Cl7 1.16
Mn6CCl8 1.28
Hf4S11Cl2 1.11
VCu5Cl9 1.19

Abbreviations: DFT, density functional theory; OQMD, open quantum
materials database.
Compositions represent the nominal compositions of novel ternary
compounds predicted by using methods developed in ref. 15. Band gap
energies were predicted using a machine learning model trained on DFT
band gap energies from the OQMD2 using methods described in this work.

Table 1. Comparison of the ability of several machine learning algorithms to predict properties of materials from the OQMD

Machine learning algorithm

Linear regression Reduced-error pruning tree (REPTree) Rotation forest46+REPTree Random subspace55+REPTree

Property
Volume (Å3 per atom) 1.22 0.816 0.593 0.563
Formation energy (eV per atom) 0.259 0.126 0.0973 0.0882
Band gap energy (eV) 0.202 0.0701 0.0643 0.0645

Abbreviations: DFT, density functional theory; OQMD, Open Quantum Materials Database.
Data represents the mean absolute error in a 10-fold cross-validation test of a single model trained on the properties predicted using DFT of 228,676 crystalline
compounds.
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to accelerate the discovery of new alloys by using known
experimental data sets to construct predictive models of glass-
forming ability.

Data. We used experimental measurements taken from ‘None-
quilibrium Phase Diagrams of Ternary Amorphous Alloys,’ a
volume of the Landolt–Börnstein collection.32 This data set
contains measurements of whether it is possible to form a glass
using a variety of experimental techniques at thousands of
compositions from hundreds of ternary phase diagrams. For our
purposes, we selected 5,369 unique compositions where the
ability to form an amorphous ribbon was assessed using melt
spinning. In the event that multiple measurements for glass-
forming ability were taken at a single composition, we assume
that it is possible to form a metallic glass if at least one
measurement found it was possible to form a completely
amorphous sample. After the described screening steps, 70.8%
of the entries in the training data set correspond to metallic
glasses.

Method. We used the same set of 145 attributes as in the band
gap example and ensembles of Random Forest classifiers62

created using the random subspace technique as the machine
learning algorithm, which we found to be the most accurate
algorithm for this problem. This model classifies the data into two
categories (i.e., can and cannot form a metallic glass) and
computes the relative likelihood that a new entry would be part
of each category. For the purposes of validating the model, we
assume any composition predicted to have a 450% probability of
glass formation to be a positive prediction of glass-forming ability.
Using a single model trained on the entire data set, we were able
to create a model with 90% accuracy in 10-fold cross-validation.
As a test of the ability of our method to predict new alloys, we

removed all entries that contained exclusively Al, Ni and Zr (i.e., all
Al–Ni–Zr ternary compounds, and any binary formed by any two
of those elements) from our training data set and then predicted
the probability of an alloy being able to be formed into the
amorphous state for the Al–Ni–Zr ternary system. As shown in
Figure 2a, it is possible to form amorphous ribbons with melt
spinning in one region along the Ni–Zr binary and in a second,
Al-rich ternary region. Our model is able to accurately predict
both the existence of these regions and their relative locations
(see Figure 2b), which shows that models created using our

method could serve to accurately locate favourable compositions
in yet-unassessed alloy systems.
We further validated the ability of our models to extrapolate to

alloy systems not included in the training set by iteratively using
each binary system as a test set. This procedure works by
excluding all alloys that contain both of the elements in the
binary, training a model on the remaining entries and then
predicting the glass-forming ability of the alloys that were
removed. For example, if the Al–Ni binary were being used as a
test set, then Al50Ni50 and Al50Ni25Fe25 would be removed but
Al50Fe50 and Al50Fe25Zr25 would not. This process is then repeated
for all 380 unique binaries in the data set. We measured that our
model has an 80.2% classification accuracy over 15,318 test entries
where 71% of entries were measured to be glasses—in contrast to
the 90.1% measured in 10-fold cross-validation with a similar
fraction of glasses in the test set. We also found that by training
separate models for alloys that contain only metallic elements and
those that contain a nonmetal/metalloid it is possible to slightly
increase the prediction accuracy to 80.7%—a much smaller gain
than that observed in the band gap example (23%). Overall, this
exclusion test strongly establishes that our model is able to
predict the glass-forming ability in alloy systems that are
completely unassessed.
To search for new candidate metallic glasses, we used our

model to predict the probability of glass formation for all possible
ternary alloys created at 2 at% spacing by any combination of
elements found in the training set. Considering that the data set
included 51 elements, this space includes ~ 24 million candidate
alloys, which required ~ 6 h to evaluate on eight 2.2 GHz
processors. To remove known alloys from our prediction results,
we first removed all entries where the L1 distance between the
composition vector (i.e., xH; xHe; xLi; ¼h i) of the alloy and any
amorphous alloy in the training set was o30 at%. We then found
the alloys with the highest predicted probability of glass formation
in each binary and ternary. Eight alloys with the highest
probability of glass formation are shown in Table 3. One top
candidate, Zr0.38Co0.24Cu0.38, is particularly promising considering
the existence of Zr-lean Zr–Co and Zr–Cu binary alloys and Zr–Al–
Co–Cu bulk metallic glasses.63 To make the ability to find new
metallic glasses openly available to the materials science
community, we have included all of the software and data
necessary to use this model in the Supplementary Information and
created an interactive, web-based tool(http://oqmd.org/static/
analytics/glass_search.html).

Figure 2. (a) Experimental measurements of metallic glass-forming ability in the Al–Ni–Zr ternary, as reported in ref. 34. Green circles (AM)
mark compositions at which it is possible to create a fully-amorphous ribbon via melt spinning, blue squares (AC) mark compositions at which
only a partially-amorphous ribbon can be formed, and red crosses (CR) mark compositions where it is not possible to form any appreciable
amount of amorphous phase. (b) Predicted glass-forming ability from our machine learning model. Points are coloured based on relative
likelihood of glass formation, where 1 is the mostly likely and 0 is the least. The model used to make these predictions was developed using
the methods outlined in this work, and was not trained on any measurements from the Al–Ni–Zr ternary or any of its constituent binaries.
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CONCLUSIONS
In this work, we introduced a general-purpose machine learning
framework for predicting the properties of a wide variety of
materials and demonstrated its broad applicability via illustration
of two distinct materials problems: discovering new potential
crystalline compounds for photovoltaic applications and identify-
ing candidate metallic glass alloys. Our method works by using
machine learning to generate models that predict the properties
of a material as a function of a wide variety of attributes designed
to approximate chemical effects. The accuracy of our models is
further enhanced by partitioning the data set into groups of
similar materials. In this manuscript, we show that this technique is
capable of creating accurate models for properties as different as
the electronic properties of crystalline compounds and glass
formability of metallic alloys. Creating new models with our
strategy requires only finding which machine learning algorithm
maximises accuracy and testing different partitioning strategies,
which are processes that could be eventually automated.64 We
envision that the versatility of this method will make it useful for a
large range of problems, and help enable the quicker deployment
and wider-scale use machine learning in the design of new
materials.

MATERIALS AND METHODS
All machine learning models were created using the Weka
machine learning library.44 The Materials Agnostic Platform for
Informatics and Exploration (Magpie) was used to compute attributes,
perform the validation experiments and run searches for new
materials. Both Weka and Magpie are available under open-source
licenses. The software, training data sets and input files used in this work
are provided in the Supplementary Information associated with this
manuscript.

ACKNOWLEDGEMENTS
This work was performed under the following financial assistance award
70NANB14H012 from U.S. Department of Commerce, National Institute of Standards
and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). In
addition, AA and AC were supported in part by the following grants: DARPA SIMPLEX
award N66001-15-C-4036; NSF awards IIS-1343639 and CCF-1409601; DOE award
DESC0007456; and AFOSR award FA9550-12-1-0458. LW was partially supported by
the Department of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program.

CONTRIBUTIONS
CW conceived the project, and jointly developed the method with LW, AA and AC.
LW wrote all software and performed the necessary calculations with help and
guidance from AA and AC. LW led the manuscript writing, with contributions from all
other authors.

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES
1. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the

Inorganic Crystal Structure Database (ICSD): accessibility in support of materials
research and design. Acta Crystallogr. Sect. B Struct. Sci. 58, 364–369 (2002).

2. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the
accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).

3. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and
discovery with high-throughput density functional theory: the open quantum
materials database (OQMD). JOM 65, 1501–1509 (2013).

4. Jain, A. et al. Commentary: the materials project: a materials genome approach to
accelerating materials innovation. APL Mater. 1, 011002 (2013).

5. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository
from high-throughput ab initio calculations. Comput. Mater. Sci. 58,
227–235 (2012).

6. Kalidindi, S. R. & De Graef, M. Materials data science: current status and future
outlook. Annu. Rev. Mater. Res. 45, 171–193 (2015).

7. Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big-deep-smart data in imaging for
guiding materials design. Nat. Mater. 14, 973–980 (2015).

8. Rajan, K. Materials informatics: the materials ‘gene’ and big data. Annu. Rev.
Mater. Res. 45, 153–169 (2015).

9. Rajan, K. Materials informatics. Mater. Today 8, 38–45 (2005).
10. Lookman, T., Alexander, F. J. & Bishop, A. R. Perspective: codesign for materials

science: an optimal learning approach. APL Mater. 4, 053501 (2016).
11. Mulholland, G. J. & Paradiso, S. P. Perspective: Materials informatics across the

product lifecycle: Selection, manufacturing, and certification. APL Mater. 4,
053207 (2016).

12. Agrawal, A. & Choudhary, A. Perspective: Materials informatics and big data:
Realization of the ‘fourth paradigm’ of science in materials science. APL Mater. 4,
053208 (2016).

13. Srinivasan, S. & Rajan, K. ‘Property phase diagrams’ for compound semi-
conductors through data mining. Materials (Basel) 6, 279–290 (2013).

14. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of
materials science: critical role of the descriptor. Phys. Rev. Lett. 114,
105503 (2015).

15. Meredig, B. et al. Combinatorial screening for new materials in unconstrained
composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

16. Kong, C. S. et al. Information-theoretic approach for the discovery of design rules
for crystal chemistry. J. Chem. Inf. Model. 52, 1812–1820 (2012).

17. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure
representations for machine learning models of formation energies. Int. J.
Quantum Chem. 115, 1094–1101 (2015).

18. Schütt, K. T. et al. How to represent crystal structures for machine learning:
towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

19. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating
materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).

20. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation
potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev.
Lett. 104, 136403 (2010).

21. Seko, A., Maekawa, T., Tsuda, K. & Tanaka, I. Machine learning with systematic
density-functional theory calculations: application to melting temperatures of
single- and binary-component solids. Phys. Rev. B 89, 054303 (2014).

22. Hou, Z.-Y., Dai, Q., Wu, X.-Q. & Chen, G.-T. Artificial neural network aided design of
catalyst for propane ammoxidation. Appl. Catal. A Gen. 161, 183–190 (1997).

23. Sumpter, B. & Noid, D. On the design, analysis, and characterisation of materials
using computational neural networks. Annu. Rev. Mater. Sci. 26, 223–277 (1996).

24. Bhadeshia, H. K. D. H., Dimitriu, R. C., Forsik, S., Pak, J. H. & Ryu, J. H. Performance
of neural networks in materials science. Mater. Sci. Technol. 25, 504–510 (2009).

25. Chatterjee, S., Murugananth, M. & Bhadeshia, H. K. D. H. δ TRIP steel. Mater. Sci.
Technol. 23, 819–827 (2007).

26. Hautier, G. in Prediction and Calculation of Crystal Structures. (eds Atahan-Evrenk, S.
& Aspuru-Guzik, A.) 139-179 (Springer International Publishing, 2014).

27. Yang, L. & Ceder, G. Data-mined similarity function between material composi-
tions. Phys. Rev. B 88, 224107 (2013).

28. Deml, A. M., Hayre, R. O., Wolverton, C. & Stevanovic, V. Predicting density
functional theory total energies and enthalpies of formation of metal-nonmetal
compounds by linear regression. Phys. Rev. B 93, 085142 (2016).

29. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J. & Ceder, G. Predicting crystal
structures with data mining of quantum calculations. Phys. Rev. Lett. 91,
135503 (2003).

Table 3. Compositions of candidate metallic glass alloys predicted
using a machine learning model trained on experimental
measurements of glass-forming ability

Alloy composition
Zr0.38Co0.24Cu0.38 Hf0.7Si0.16Ni0.14
V0.16Ni0.64B0.2 Hf0.48Zr0.16Ni0.36
Zr0.46Cr0.36Ni0.18 Zr0.48Fe0.46Ni0.06
Zr0.5Fe0.38W0.12 Sm0.22Fe0.54B0.24

These alloys were predicted to have the highest probability being able to
be formed into an amorphous ribbon via melting spinning out of 24
million candidates.

General-purpose machine-learning framework
L Ward et al

6

npj Computational Materials (2016) 16028 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



30. Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by
merging data mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).

31. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic
substitutions for the discovery of new compounds. Inorg. Chem. 50,
656–663 (2011).

32. Dey, P. et al. Informatics-aided bandgap engineering for solar materials. Comput.
Mater. Sci. 83, 185–195 (2014).

33. Pilania, G. et al. Machine learning bandgaps of double perovskites. Sci. Rep. 6,
19375 (2016).

34. Kawazoe, Y., Yu, J. Z., Tsai, A. P. & Masumoto T (eds). Nonequilibrium Phase
Diagrams of Ternary Amorphous Alloys. (Springer-Verlag, Berlin, Germany, 1997).

35. Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors (Wiley-VCH
Verlag GmbH, 2000).

36. Ruiz-Blanco, Y. B., Paz, W., Green, J. & Marrero-Ponce, Y. ProtDCal: a program to
compute general-purpose-numerical descriptors for sequences and 3D-structures
of proteins. BMC Bioinformatics 16, 162 (2015).

37. Mauri, A., Consonni, V., Pavan, M. & Todeschini, R. Dragon software: an easy
approach to molecular descriptor calculations. Match Commun. Math. Comput.
Chem. 56, 237–248 (2006).

38. Denton, A. R. & Ashcroft, N. W. Vegards law. Phys. Rev. A 43, 3161–3164 (1991).
39. Villars, P., Cenzual, K., Daams, J., Chen, Y. & Iwata, S. Data-driven atomic envir-

onment prediction for binaries using the Mendeleev number. J. Alloys Compd.
367, 167–175 (2004).

40. Callister, W. D. Materials Science and Engineering: An Introduction (Wiley, 2007).
41. Seko, A., Takahashi, A. & Tanaka, I. Sparse representation for a potential energy

surface. Phys. Rev. B 90, 024101 (2014).
42. Rupp, M., Tkatchenko, A., Müller, K.-R., Lilienfeld, V. & Anatole, O. Fast and

accurate modeling of molecular atomization energies with machine learning.
Phys. Rev. Lett. 108, 58301 (2012).

43. Pyzer-Knapp, E. O., Simm, G. N. & Aspuru-Guzik, A. A Bayesian approach to cali-
brating high-throughput virtual screening results and application to organic
photovoltaic materials. J. Mater. Chem. 2, 303 (2015).

44. Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explor. Newslett. 11,
10 (2009).

45. King, D. Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10,
1755–1758 (2009).

46. Rodríguez, J. J., Kuncheva, L. I. & Alonso, C. J. Rotation forest: a new classifier
ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619–1630 (2006).

47. Meredig, B. & Wolverton, C. Dissolving the periodic table in cubic zirconia: data
mining to discover chemical trends. Chem. Mater. 26, 1985–1991 (2014).

48. Jain, A. et al. A high-throughput infrastructure for density functional theory
calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

49. Curtarolo, S. et al. The high-throughput highway to computational
materials design. Nat. Mater. 12, 191–201 (2013).

50. Kirklin, S., Meredig, B. & Wolverton, C. High-throughput computational screening
of new Li-ion battery anode materials. Adv. Energy Mater. 3, 252–262
(2013).

51. Gautier, R. et al. Prediction and accelerated laboratory discovery of previously
unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015).

52. Chen, H. et al. Carbonophosphates: a new family of cathode materials for Li-ion
batteries identified computationally. Chem. Mater. 24, 2009–2016 (2012).

53. Liu, M. et al. Spinel compounds as multivalent battery cathodes: a systematic
evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2014).

54. Yang, K., Setyawan, W., Wang, S., Buongiorno Nardelli, M. & Curtarolo, S. A search
model for topological insulators with high-throughput robustness descriptors.
Nat. Mater. 11, 614–619 (2012).

55. Ho, T. K. The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998).

56. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction
solar cells. J. Appl. Phys. 32, 510 (1961).

57. Sparks, T. D., Gaultois, M. W., Oliynyk, A., Brgoch, J. & Meredig, B. Data mining our
way to the next generation of thermoelectrics. Scr. Mater. 111, 10–15 (2015).

58. Wang, W. H., Dong, C. & Shek, C. H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44,
45–89 (2004).

59. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys.
Acta Mater. 48, 279–306 (2000).

60. Löffler, J. F. Formation of bulk metallic glasses and their composites. MRS Bull. 32,
624–628 (2007).

61. Ding, S. et al. Combinatorial development of bulk metallic glasses. Nat. Mater. 13,
494–500 (2014).

62. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
63. Wada, T., Zhang, T. & Inoue, A. Formation and high mechanical strength of bulk

glassy alloys in Zr-Al-Co-Cu system. Mater. Trans. 44, 1839–1844 (2003).
64. Thornton, C., Hutter, F., Hoos, H. H. & Leyton-Brown, K. in Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. (ACM, New York, NY, 2013).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the npj Computational Materials website (http://www.nature.com/npjcompumats)

General-purpose machine-learning framework
L Ward et al

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2016) 16028

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A general-purpose machine learning framework for predicting properties of inorganic materials
	Introduction
	Results and Discussion
	General-purpose method to create materials property models
	Justification for large attribute set
	Example applications
	Accurate models for properties of crystalline compounds
	Training data
	Method

	Locating novel metallic glass alloys

	Figure 1 Performance of three different strategies to locate compounds with a band gap energy within a desired range: randomly selecting nonmetal-containing compounds, and two strategies using the machine-learning-based method presented in this work.
	Table 2 Compositions and predicted band gap energies of materials predicted using machine learning to be candidates for solar cell applications
	Table 1 Comparison of the ability of several machine learning algorithms to predict properties of materials from the OQMD
	Outline placeholder
	Data
	Method


	Figure 2 (a) Experimental measurements of metallic glass-forming ability in the Al&#x02013;Ni&#x02013;Zr ternary, as reported in ref.
	Conclusions
	Materials and Methods
	This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). In addition, AA and AC w
	ACKNOWLEDGEMENTS
	Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and�design. Acta Crystallogr. Sect. B Struct. Sci. 58, 364&#x02013;369 (2002).Kirkl
	Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and�design. Acta Crystallogr. Sect. B Struct. Sci. 58, 364&#x02013;369 (2002).Kirkl
	REFERENCES
	Table 3 Compositions of candidate metallic glass alloys predicted using a machine learning model trained on experimental measurements of glass-forming ability


