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ABSTRACT 

Integrating Activity Scheduling and Travel Choices in a Dynamic Network  

Equilibrium Framework:  Concepts, Algorithms and Application 

Hooram Halat 

The purpose of the dissertation is to develop a framework for equilibration of activity-trip 

chain demand in an integrated system of activity scheduling and travel choices within a dynamic 

network equilibrium framework. Activity-based modeling systems generate detailed activity chain 

schedules for individuals, which have to be assigned to transportation networks. Most of the 

implementations of activity-based models have been separate from the dynamic traffic assignment 

models. However, representation of detailed individual activity schedules throughout the 

assignment procedure, and capturing the resulting network performance measures in generating 

activity schedules, would lead to schedules consistent with real dynamics of transportation 

networks.  

Most of the studies on the integration of the activity-based modeling systems with dynamic 

traffic assignment systems have focused on the applications. The literature lacks a theoretical basis 

and rigorous analytical treatment for the integrated model; moreover, important mathematical 

properties of the model are not adequately investigated. This dissertation aims at bridging the gap 

by presenting a household activity schedule adjustment model coupled with dynamic traffic 

assignment, where individuals’ choices are made within a user equilibrium framework. The 

proposed framework provides achievement of faster algorithmic convergence for the integration 

of activity-based and dynamic traffic assignment models by serving as an inner adjustment 
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process. The equilibrium problem is formulated as a fixed-point equilibrium problem, which 

provides a basis for investigation of the solution properties.  

The input variables to the model are the individuals’ detailed activity schedules (obtained 

from an activity-based model) which could be translated as the time-dependent origin-destination 

demands, while the output variables are the household members’ schedules as well as path flows 

at equilibrium.  

A primary assumption is that individuals associate a disutility to their travel patterns, which 

they try to minimize. First, a household disutility term is defined as a function of 1) total travel 

cost and 2) schedule inconsistencies. Then, the problem is formulated as a fixed-point equilibrium 

problem. Next, the user equilibrium conditions are defined, and a variational inequality (VI) 

formulation is presented, and it is shown that the solution to the VI problem meets the user 

equilibrium conditions. In order to investigate the solution properties of the problem formulation, 

the continuity and monotonicity of the involved functions is explored.  

Next, a solution algorithm is proposed, and the convergence characteristics of the proposed 

algorithm are demonstrated through numerical results obtained from application of the proposed 

algorithm to a large-scale real world network.  

Further, the author addresses the issue of trip chain equilibrium in a dynamic network 

equilibrium framework. For this purpose, the author proposes a reformulation of the trip-based 

demand gap function formulation for the VI formulation of the bi-criterion dynamic user 

equilibrium (BDUE) problem. Next, a solution algorithm is proposed for solving the BDUE 

problem with daily chain of activity-trips. Then, numerical results obtained from the applied 

algorithm to both small-scale and large-scale networks in a simulation setting are presented. The 
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results suggest that recognizing the dependency of multiple trips in a chain and maintaining the 

departure time consistency of subsequent trips provide sharper drops in gap values; hence, 

convergence might be reached more quickly, as compared to when trips are considered 

independent of one another. In addition, the integrated model of schedule adjustment and dynamic 

traffic assignment is extended to incorporate the cancellation of activities. It is shown that 

incorporation of activity cancellation could improve the algorithmic convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

ACKNOWLEDGEMENT 

Pursuing my academic aspirations at Northwestern University has been an arduous, yet the 

most edifying, journey of my life thus far; a journey that seemed impossible were it not for the 

wonderful people I had on board with me. First and foremost, I would like to give my deepest 

gratitude to Hani Mahmassani for his encouraging mentorship and inspiring brilliance. His 

supervision and support rendered what I once regarded unimaginable as tangible and attainable. I 

am looking forward to our continued collaboration and everlasting friendship. 

I would like to thank Yu Marco Nie and Ian Savage for their participation in my committee 

and their valuable suggestions. I am also grateful to my Bachelor of Science mentors Hossain 

Poorzahedy, Nader Tabatabaee, Habibollah Nassiri, and Yousef Shafahi for familiarizing me with 

the field of transportation engineering, providing remarkable guidance and encouraging me to 

pursue my PhD at Northwestern University.  

Special thanks are owed to the Chicago Metropolitan Agency for Planning and Parsons 

Brinckerhoff for funding and supporting this work. I appreciate the assistance of Chicago 

Metropolitan Agency for Planning (CMAP) staff in making data available for the study, especially 

Craig Heither and Dr. Kermit Wies (now retired from CMAP). I have benefited from useful 

discussions with Dr. Peter Vovsha and Dr. Jim Hicks of PB Inc. I am also very thankful to Dr. 

Peter Vovsha for providing the software Schedule Adjustment, which is heavily used in this study. 

I am indebted to Cynthia Ross and Diana F. Marek for all their help with innumerable 

academic, administrative and personal matters. I am very thankful to Ali Zockaie, Lan Jiang and 

Omer Verbas for providing me with guidance and support as my seniors in the program. I would 

not be able to finish my studies without collaborating with numerous colleagues: Ali Zockaie, Alex 



7 
 

Xiang Xu, Meead Saberi, Andreas Frei, Charlotte Frei, Zihan Hong, Omer Verbas, Alireza 

Talebpour, Hamed Babai, Jiwon Kim, Lan Jiang, Michael Hyland, Tian Hou and Raymond Chan.  

Above all, I am exceptionally grateful to Amin Zarshenas for providing tremendous 

support during my studies. Without him, I would not have been able to finish this journey. 

Finally, I would like to express my deepest gratitude to my family. I am very thankful to 

my mother Shabnam Haditalab for her unconditional love, brilliance and putting her children’s 

education as the highest priority; my sister Nilram Halat and my brother Shervin Halat for their 

support and confidence; my father Mahoor Halat for his brilliance and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Table of Contents 

1 INTRODUCTION ...................................................................................................... 13 

1.1 Problem Description and Motivation .................................................................. 13 

1.2 Study Objectives and Contributions .................................................................... 19 

1.3 Overview ............................................................................................................. 21 

2 LITERATURE REVIEW ........................................................................................... 23 

2.1 Activity-based Models ........................................................................................ 23 

2.2 The Dynamic User Equilibrium Problem ........................................................... 25 

2.2.1 Analytical Models ......................................................................................... 26 

2.2.2 Simulation-based Models .............................................................................. 29 

2.3 Integrated ABM and DTA................................................................................... 30 

3 PROBLEM STATEMENT ......................................................................................... 34 

3.1 User Heterogeneity .............................................................................................. 34 

3.2 Household Disutility Associated with Travel Choice ......................................... 35 

3.3 Model Formulation .............................................................................................. 44 

3.3.1 The Fixed-point Equilibrium Problem .......................................................... 44 

3.3.2 Fixed-point Equilibrium Formulation ........................................................... 45 

3.4 Equivalent Gap Function:.................................................................................... 52 

3.5 Discussion of The Solution Properties ................................................................ 53 



9 
 

3.6 Summary ............................................................................................................. 56 

4 METHODOLOGY AND IMPLEMENTATION ....................................................... 58 

4.1 Introduction ......................................................................................................... 58 

4.2 Convergence Criteria........................................................................................... 60 

4.3 Algorithm ............................................................................................................ 62 

4.3.1 Schedule Adjustment Strategies .................................................................... 62 

4.3.2 Path Swap Strategies ..................................................................................... 63 

4.3.3 Steps of the Algorithm .................................................................................. 64 

4.4 Integration Components ...................................................................................... 68 

4.5 Numerical Results ............................................................................................... 70 

4.5.1 Sub-area Test Network .................................................................................. 70 

4.5.2 Chicago Full Regional Network .................................................................... 75 

4.6 Summary ............................................................................................................. 77 

5 INCORPORATION OF ACTIVITY CANCELLATION .......................................... 78 

5.1 Problem Statement .............................................................................................. 78 

5.2 Model Formulation .............................................................................................. 87 

5.3 Methodology ....................................................................................................... 90 

5.3.1 Selection Strategies ....................................................................................... 91 

5.3.2 Algorithm ...................................................................................................... 93 



10 
 

5.4 Numerical Results ............................................................................................... 95 

5.5 Summary ............................................................................................................. 98 

6 DYNAMIC NETWORK EQUILIBRIUM FOR DAILY TRIP CHAINS ............... 100 

6.1 Introduction ....................................................................................................... 100 

6.1.1 Bi-criterion Dynamic User Equilibrium ...................................................... 101 

6.1.2 Overall Framework ..................................................................................... 102 

6.2 Model Formulation ............................................................................................ 104 

6.3 Algorithm .......................................................................................................... 113 

6.4 Numerical Results ............................................................................................. 117 

6.4.1 Small-Scale Network................................................................................... 117 

6.4.2 Large-Scale Network................................................................................... 121 

6.5 Summary ........................................................................................................... 124 

7 CONCLUSION ........................................................................................................ 126 

 

 

 

 

 

 

 



11 
 

List of Figures 

Figure 1 Integrated System of ABM and DTA ................................................................. 17 

Figure 2 Time-space Network Representation ................................................................. 37 

Figure 3 Small Network Example P1: Path 1 P2: Path 2 .................................................. 55 

Figure 4 Overall Steps of the Solution Algorithm ............................................................ 62 

Figure 5 Sub-area Network Configuration ....................................................................... 71 

Figure 6 Comparison of scenarios w/-w/o Integration iteration number in DTA MSA ... 72 

Figure 7 Comparison of different selection strategies for the schedule adjustment ......... 74 

Figure 8 Chicago Full Regional Network Configuration ................................................. 76 

Figure 9 Number of Households and Travelers with Negative Activity (NA) ................. 77 

Figure 10 Time Space Network Representation ............................................................... 80 

Figure 11 Overall Steps of the Solution Algorithm .......................................................... 93 

Figure 12 Chicago Sub-area Network............................................................................... 96 

Figure 13 Number of Unrealistic Schedule Households................................................... 97 

Figure 14 Average Inconsistent Schedule Penalty............................................................ 98 

Figure 15 Simulation-based BDUE Algorithm............................................................... 113 

Figure 16 Small-scale Network Configuration ............................................................... 119 

Figure 17 Small-scale Network Gap Values When Reliability Measure Not Considered

..................................................................................................................................................... 120 

Figure 18 Small-scale Network Gap Values When Reliability Measure Is Considered 121 

Figure 19 Large-scale Network Configuration ............................................................... 122 



12 
 

Figure 20 Generalized Cost Gap Values-Different Scenarios-Chicago Full Regional Network

 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

1 INTRODUCTION 

1.1 Problem Description and Motivation 

The need to participate in activities gives rise to individuals’ demand for travel and 

resulting travel patterns. That is, individuals make decisions on activities to undertake, and then 

distribute the chosen activities spatiotemporally over the transport network. Their activity choices 

and schedules lead to activity patterns that eventually are interpreted as their travel behavior.  

As trip makers’ lifestyles change over time, their activity patterns become more intricate, 

which adds to the complexity of travel behavior forecasting, hence making the evaluation and 

prediction of impacts of various policies on the transportation system complicated. Transportation 

policies impact the demand for travel by influencing individuals’ activity participation choices and 

ways to fulfill them. This overall impact manifests itself in the form of individuals’ travel mode 

choice changes, activity rescheduling, and even destination-switching. As a result, it is essential to 

capture the behavioral mechanisms associated with activity scheduling of individuals, while 

preserving the fundamental consistency and interdependency of trip chains that comprise 

individuals’ daily activity patterns throughout traffic and route assignment procedures. In other 

words, establishing a linkage between both the supply and demand sides of transportation is 

essential.  

Traditionally, travel demand was represented as a collection of independent single-

destination one-way trips; however, transportation planners now have a better understanding of 

the nature of travel behavior, mainly through deeper insight into household interactions and 

lifestyle preferences, thus leading to increased recognition and modeling of travel demand as 

activity-induced demand.   
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Conventionally, trip-based approaches were dominantly used in transportation planning 

processes. These approaches consist of multiple steps, each of which contributes to either the 

demand side or the supply side of the transportation network. Trip-based approaches, however, 

typically fail to capture essential behavioral aspects of individual travelers. To overcome this, a 

new body of research that addresses the transportation demand side through an activity-based 

modeling framework has garnered increasing attention in practice. Activity-based modeling 

(ABM) systems recognize the mutually related decisions for sequences of trips of individuals, 

which leads to activity patterns (Ettema et al. (1993)). ABM also seeks to capture interpersonal 

and intrapersonal consistencies as well as household members’ interactions such as vehicle and/or 

task sharing. As a result, the overall aim is to provide a rather realistic basis for travel demand 

management by recognizing  the complexities in the travel behavior of individuals (Ettema et al. 

(1993); Lin et al. (2008)).  

The transportation supply (performance) side has traditionally relied on the assignment of 

vehicular trips to the network under a steady-state assumption of time-invariant origin-destination 

trip rates and associated link travel times. The importance of realistically capturing the dynamics 

of traffic spurred the introduction of dynamic (time-dependent) traffic assignment (DTA) models. 

DTA models provide a superior framework compared to static assignment models by explicitly 

capturing traffic congestion propagation, time-dependent travel demand and supply interactions, 

and the effects of traffic controls such as intelligent transportation system technologies. ABM 

approaches typically incorporate the temporal dimension as a continuum, and analyze activity 

patterns considering continuous time.  However, notwithstanding their considerable degree of 
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spatial and temporal detail, ABM models of travel demand have typically been used in conjunction 

with static assignment tools in planning practice.   

As mentioned earlier, it is essential to integrate the transportation demand and supply sides. 

Integrating ABM with DTA models, which has gained increasing attention in recent years, 

provides a modeling framework for addressing arising planning and operational challenges, as well 

as transportation policies such as road pricing. Poor representation of detailed individual activity 

patterns obtained from ABM within DTA models could lead to fundamentally biased results. In 

other words, capturing sequences of activities and their interdependence within DTA, as well as 

the detailed time-dependent network conditions within ABM, are essential steps in the integration 

of the two models, which motivates this dissertation.  

Various studies have been conducted on the integration of transportation demand and 

supply sides, however, there is no rigorous framework for the equilibration of the activity trip 

chains formulated, or accepted in the literature. Most of the studies on the integration of the 

activity-based modeling systems and dynamic traffic assignment systems have consisted of ad hoc 

applications. The literature lacks a theoretical basis and analytical foundations for the integrated 

model, and various mathematical properties of proposed models are not investigated. Lack of a 

validated platform for computing equilibrium states for activity chains of trip-makers precludes 

realizing the advantages expected from the enhanced modeling realism offered by both ABM and 

DTA models. As a result, many of the applications of demand forecasting and policy impact 

analysis suffer from the absence of a robust and rigorous underlying framework. Hence, 

development of a unified framework that integrates ABM and DTA models is significant for 

contributing to improved transportation planning strategies and analytical methodologies. 
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Network level-of-service (LOS) attributes are used by the ABM to generate activity 

schedules, which are then assigned to the underlying transportation network through the DTA 

procedure, resulting in time-dependent traffic conditions. An ideally-equilibrated network could 

be viewed as one in which the produced LOS through demand assignment replicates the LOS 

values used in generating the demand (Lin et al. (2008)). Hence, the problem of achieving an 

equilibrium state for the activity chains could be treated as a variant of a fixed-point problem, 

therefore inducing solution feasibility, existence, and uniqueness assessment challenges. In this 

regard, development of a mathematical framework, along with associated algorithms that lead to 

solution convergence, requires further research. One of the difficulties associated with the model 

formulation is determination of theoretically and fundamentally robust convergence criteria. 

Modern network equilibrium methods typically rely on minimization of a gap measure intended 

to capture the distance of a current solution from the equilibrated state. Defining and computing 

such a gap measure in the activity modeling context is not trivial. Furthermore, inclusion of 

capabilities such as activity cancellation adds to the complexity associated with the integration 

problem. Further complications arise during the assignment of detailed individual activity chains 

to the network leading to in the form of increased dimensionality of the dynamic traffic assignment 

problem, due to temporal and spatial interdependency of individual trip sequences.  

Given the dimensions of the problem and size of real-world networks addressed in practice, 

applications of such fully integrated system could be cumbersome or impractical on typical high-

end computing workstations. High implementation time and large memory requirements 

associated with applications of ABM to large-scale networks impede efficient exploitation of the 

modeling advantages that lie in an integrated system of ABM and DTA. Hence, defining a 



17 
 

surrogate gap measure consistent with the underlying rules of the ABM, yet not as comprehensive, 

helps overcome the computation and/or implementation difficulties. 

In this study, a household activity schedule adjustment model coupled with the dynamic 

traffic assignment is considered as the aforementioned surrogate measure. The surrogate gap 

measure enables faster algorithmic convergence in an integrated ABM-DTA model by creating an 

inner adjustment platform, and therefore reducing the number of times ABM has to be performed. 

Figure 1 provides a conceptual representation of the integrated framework. The combined activity 

schedule adjustment and route choice model in this study initially assumes that sequence and 

number of activities planned for travelers are fixed, so only their trip departure times, durations 

and paths are subject to adjustment. A variation of the problem is further addressed, where the 

order of activities in an individual’s preplanned activity schedule remains fixed; however, the 

number of activities could change since the individual is allowed to cancel an activity within 

his/her activity chain. 

 

Figure 1 Integrated System of ABM and DTA 
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From the conceptual standpoint, it is essential that the activity schedules generated by 

ABM account for the temporal consistency of a sequence of activities. In this regard, each activity 

start time should correspond to its prior trip arrival time, and an activity end time should 

correspond to its next activity departure time.  As a result, accounting for trip details and evaluation 

of trip time feasibilities leads to consistent individual schedules. Most of the ABM approaches do 

not explicitly control for travel time feasibilities. The individuals’ activity schedules are generated 

by ABM according to anticipated travel times, and the generated activity patterns are assigned to 

the transportation network through DTA. Trip travel times obtained from the DTA could in turn 

be used to reschedule individuals’ activities by adjusting trip departure times and activity 

durations. 

From the implementation standpoint, maintaining consistent temporal and spatial 

resolutions of the model components in the integrated system is one of the main challenges. 

Implementing a computationally feasible time interval for modeling trip departure times and 

planning of daily tours within ABM, compatible with the temporal resolution of the DTA, is 

essential. In addition, the ability to incorporate finer-grained spatial units of analysis, such as 

micro-analysis zones, within the model contributes to higher-quality results. Correct 

representations of individuals as well as compatible spatial configurations in both models are 

additional challenges of the integrated system model. Achieving a desired representation requires 

the establishment and maintenance of consistency between individual units considered in ABM 

such as individual households and persons, and the individual vehicles considered in DTA. 

Furthermore, considering individual-level time-space constraints and realistic information 

availability is essential in capturing realisms of behavioral aspects and network dynamics.  
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The aim of this dissertation is to develop a model formulation that leads to a unified 

platform to bridge, in a mutually consistent manner, the detailed individual activity sequences 

generated by ABM, and their assignment to the transportation network by DTA.  Specific study 

objectives are discussed in the next section.  

1.2 Study Objectives and Contributions 

The purpose of this dissertation is to develop a modeling framework to bridge the gap 

between ABM and DTA for individual travelers’ activity-trip chains.  The specific objectives are:   

1. To develop a model formulation for an integrated system of dynamic traffic 

assignment and activity schedule adjustment to capture the traffic network 

performance under adjustment of individuals’ activity schedules.  

2. To address the solution properties such as existence and uniqueness of the proposed 

equilibrium formulation. 

3. To develop a solution algorithm that entails the determination of theoretically-

robust convergence criteria, leading to faster algorithmic convergence. 

4. To allow for the rescheduling of individuals’ activities as well as trip cancellation 

in a way consistent with the ABM behavioral modeling framework. 

5. To develop a dynamic user equilibrium platform for the assignment of daily 

activity-trip chains of heterogeneous users, which incorporates a gap-based 

direction finding iterative procedure. 

6. To circumvent the need to store memory-intensive node-to-node time-dependent 

shortest paths so as to provide the ability to implement the dynamic user 
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equilibrium algorithm to large-scale networks, while maintaining the spatial and 

temporal dependencies of the trip sequences. 

This dissertation aims to contribute to both the theoretical concepts of an integrated 

equilibrium framework, as well as the implementation of such a framework to real-world large-

scale networks: 

1a. Unlike the existing studies in the literature, this dissertation aims at examining the 

theoretical aspects of the equilibration of activity trip chains within an integrated ABM-DTA 

system. The existing studies on this topic mostly focus on ad hoc applications of some integrated 

system, and lack a rigorous and robust theoretical framework. The problem is modeled as a fixed-

point equilibrium problem. Theoretical difficulties associated with the integrated equilibrium 

framework are stated and addressed. 

1b. This dissertation discusses and evaluates properties of the proposed model, such as 

existence and uniqueness of the solution. 

1c. A solution algorithm is devised, and convergence characteristics of the process are 

investigated. 

1d. The temporal and spatial interdependencies of activity chains are captured within a 

dynamic traffic assignment framework.  

2a. The proposed DTA model for activity trip chains of individuals is implemented on large-

scale networks, resulting in algorithmic convergence while maintaining the spatial and temporal 

interdependency of individual activity trips.  
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2b. The proposed equilibrium model of integrated DTA and activity schedule adjustment is 

implemented on both a small-scale and a large-scale network, resulting in algorithmic 

convergence.  

 

1.3 Overview 

In this chapter, the significance to both theory and practice of integrating the activity-based 

modeling approach and the dynamic traffic assignment approach is described. The purpose of the 

study and the objectives are also presented. 

Chapter 2 presents a literature review of the activity-based modeling approach and dynamic 

traffic assignment models. Furthermore, an in-depth literature review on the integration of those 

two types of models is provided. 

Chapter 3 presents the user equilibrium conditions for an integrated system of activity 

schedule adjustment and dynamic traffic assignment. Next, a variational inequality (VI) 

formulation of the equilibrium problem is presented, and it is shown that the solution to the VI 

problem formulation is equivalent to the user equilibrium conditions.  

Chapter 4 defines gap functions for the VI problem formulation and presents a solution 

algorithm for solving the equilibrium problem. The solution procedure is implemented on both a 

small-scale and a large-scale network. 

Chapter 5 extends the equilibrium model of Chapter 3 by incorporating activity/trip 

cancellation. First, the problem statement is presented, and next a solution algorithm is proposed 

and applied to a small-scale network. 
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Chapter 6 presents the dynamic network equilibrium for daily activity trip chains. A 

reformulation of the trip-based demand gap function formulation for the variational inequality 

formulation of the bi-criterion dynamic user equilibrium (BDUE) problem is presented. Next, a 

solution algorithm for solving the BDUE problem with daily chains of activity-trips is proposed. 

The solution procedure is implemented both on a small-scale and a large-scale network. 
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2 LITERATURE REVIEW 

In this chapter, a review of the studies on the integration of ABM and DTA is provided. 

The review is divided into three sections. First, a review on activity-based models is provided. The 

second section incorporates a review of the DTA models, and the third section contains the review 

of studies addressing the integrated ABM and DTA problem.  

2.1 Activity-based Models  

Capturing individuals’ activity choices, scheduling, and resulting movement patterns in 

transportation networks has been a topic of interest in various studies. The seminal work of 

Hägerstraand (1970) on time-space geography initiated a trend in analyzing human movement 

within the built environment. More sophisticated activity-based models provide a platform to 

capture individual preferences, household and spatiotemporal constraints in both activity and 

travel patterns of individuals. Activity-based approaches view travel as an activity-induced 

demand and travel behavior as a process derived from time and space constraints (Recker et al. 

(1986)). Studies on activity-based approaches have focused on capturing the spatial and temporal 

constraints in the analysis of activity demands, activity scheduling, and their connection to 

household members.  

Root and Recker (1981) proposed a theoretical model of activity scheduling by considering 

a pre-travel and a travel phase. During the pre-travel phase, they construct the activity programs 

according to anticipated travel times and activity durations. In the travel phase, they adjust the 

patterns that are inconsistent with the schedules by removing, adding, or changing the sequences 

of activities. Their proposed method is based on a utility maximization framework. They suggested 
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that the activity scheduling problem could be solved through multiple stages of utility 

maximization procedure. 

Among the pioneering simulation-based approaches to the household activity scheduling 

problem is the Simulation of Travel/Activity Responses to Complex Household Interactive logistic 

Decisions (STARCHILD) model presented by Recker et al. (1986). They consider- a detailed 

household activity agenda in their operational model system, and modeled household members’ 

detailed activity schedules. Their approach is also based on utility maximization theory involving 

individuals’ decision-making procedures. 

Ettema et al. (1993) presented an activity scheduling model based on Root and Recker's 

(1981) theoretical model. Their model treats scheduling decisions as consecutive stages of 

schedule construction and adaptation. They pointed out that their model differs from the 

STARCHILD approach in the sense that the latter requires individuals to choose among a set of 

feasible schedule patterns, while their approach is based on heuristic search to obtain a suboptimal 

solution. 

Golledge et al. (1994) develop an activity generator model “SCHEDULER”. In 

SCHEDULER, individuals are considered to initially have a mental calendar of activities from 

which the activities are chosen, and the sequence is determined by adopting a nearest neighbor 

heuristic. Then, during the mental execution, in cases where conflicts occur, the activity programs 

are adjusted by resequencing or replacing activities. 

Ettema and Timmermans (2003) explored the effects of trip departure time choice on the 

entire activity pattern. They defined marginal utility for activities as a function of time of day, and 

used the collected data on travel diaries in Voorhout (the Netherlands) to estimate the model 
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parameters, such that the difference between observed departure times and predicted departure 

times is minimized.  

Ashiru et al. (2004) presented a utility-based framework of combined activity timing and 

duration choice. They outlined a solution algorithm for the activity scheduling and time allocation 

problem. 

2.2 The Dynamic User Equilibrium Problem 

In this section, a brief overview of the dynamic user equilibrium problem is presented, 

including the two main approaches to the problem, i.e. the analytical approach and the simulation-

based approach. 

In their seminal work, Beckmann et al. (1956) proposed a mathematical formulation for 

the user equilibrium (UE) traffic assignment problem. Their work was extended to address the 

dynamics of traffic demand, path flows and users departure time choices, which led to UE dynamic 

traffic assignment. Following the terminology adopted in the literature, the term dynamic user 

equilibrium is used in this dissertation. 

Dynamic user equilibrium (DUE) models have greatly contributed to the prediction of 

dynamic traffic flow patterns, evaluation of advanced traffic control strategies, and evaluation of 

travel demand management strategies  (Abdelghany and Mahmassani (2003)). These models 

assign the time-varying origin-destination demands to transportation networks to obtain time-

varying path  flows, which follow the time-dependent generalization of Wardrop’s first principle 

(Wardrop (1952)), i.e. travelers belonging to the same origin-destination zone pair and departure 

time interval experience the same minimum travel cost along any used path, and none of the unused 

paths have a lower travel cost. The dynamic user equilibrium (DUE) problem has been studied 
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extensively, as evident by the various analytical and simulation-based models proposed to address 

the problem (Peeta and Ziliaskopoulos (2001)). Peeta and Ziliaskopoulos (2001) identified four 

classes of approaches to DTA problems: mathematical programming, optimal control, variational 

inequality, and simulation-based models, of which the first three belong to analytical approaches, 

while the last one pertains to simulation-based approaches. They discussed that the term 

“simulation-based models” could be misleading, as this term generally refers to the solution 

methodology to the analytical formulation of the mathematical problem.  

Analytical models of DUE take advantage of link/node exit functions for traffic flow 

propagation, as well as assumptions on link performance functions, such as convexity and 

continuity, to model path costs. Though analytical approaches provide a theoretically useful basis 

in terms of characteristics of the solution, such as existence and uniqueness as well as the 

satisfaction of DUE conditions, they lack proper representation of traffic flow dynamics (Peeta 

and Ziliaskopoulos (2001); Lu et al. (2009)). The simulation-based approach, however, is capable 

of representing real dynamics of network traffic flow, such as the spatial and temporal vehicle 

interactions, traffic flow propagation, and determination of link and path travel costs.  

2.2.1 Analytical Models 

2.2.1.1 Mathematical Programming Models 

 

Mathematical programming DTA models provide a discrete time formulation of the 

problem. Various studies address the DTA problem through the mathematical programming 

approach for both SO and UE cases.  
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Merchant and Nemhauser (1978) are among the pioneers who presented a mathematical 

programming formulation for the DTA problem. Their model formulation is a discrete time 

nonlinear nonconvex mathematical programming problem, and it pertains to the fixed demand 

single destination SO case of the DTA problem. A piecewise linear version of the model leads to 

a global solution. 

Carey (1987) reformulated the DTA problem as a convex nonlinear program by improving 

the model presented by Merchant and Nemhauser (1978). They presented extensions of their 

proposed model to handle multiple destinations as well as multiple commodities. The extended 

models, however, do not hold the convexity property of the original model due to “first-in first-

out” (FIFO) requirements that need to be satisfied.  

Mathematical programming formulations of DTA problems provide a mathematically 

robust basis for the problem; however, they suffer from loss of representation of traffic realism 

(Peeta and Ziliaskopoulos (2001)). In addition, the FIFO property results in non-convex constraints 

which, in DTA problem formulation, causes analytical tractability issues.  

2.2.1.2 Optimal Control Models 

 

The DTA formulations based on optimal control treat O-D demand rates and link flows as 

continuous functions of time. The constraints are similar to those of the mathematical 

programming model, except that they are continuous time constraints.   

Friesz et al. (1989) considered continuous time link-based formulations of the DTA 

problem using optimal control theory for both UE and SO cases. A main drawback of their 

approach is the lack of realistic link performance and exit functions. 
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Various studies of the DTA problem using optimal control models exist in the literature; 

most lack traffic realism in link performance and exit functions. Ran et al. (1993) formulated the 

instantaneous dynamic user optimal (DUO) traffic assignment problem using the optimal control 

theory approach. The cost functions in their model formulation are assumed to be non-negative, 

differentiable, and increasing. 

2.2.1.3 Variational Inequality Models 

 

Dafermos (1980) presented a variational inequality formulation of the static traffic network 

equilibrium. In her study, travel demand is assumed fixed for any origin-destination pair in the 

network. 

Friesz et al. (1993) suggested a continuous time VI formulation for the simultaneous route 

departure time equilibrium problem. They incorporated both the travel cost estimated by link 

performance function as well as the late/early arrival penalty into their definition of path costs. 

Existence and uniqueness properties of the solution to their proposed model could not be 

established. 

Wie et al. (1995) proposed a discrete time VI formulation for the simultaneous route 

departure time equilibrium problem. In their formulation, existence of a solution under certain 

regularity conditions is established, though the validity of these conditions is not established. 

The formulation introduced by Wie et al. (1995) is a path-based VI formulation, which 

requires computationally intensive complete path enumeration procedures. To overcome this issue, 

Ran and Boyce (1996b) formulated a link-based VI model of the problem that uses fixed departure 

times. Their model formulation is a discretized link-based VI formulation that incorporates exit 
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flow capacity constraints. They discuss the computational burden associated with the capacity and 

oversaturation constraints in applications to real networks. 

2.2.2 Simulation-based Models 

As mentioned earlier, the term “simulation-based” refers to a solution methodology rather 

than model formulation (Peeta and Ziliaskopoulos (2001)). In simulation-based models, a 

simulator is used to model dynamics of traffic flow according to traffic theoretic relationships; 

hence these models can capture traffic flow propagation more realistically than analytical models.  

Several solution algorithms are developed to solve both analytical and simulation-based 

approaches. The heuristic solution methods are of interest to this dissertation since they have been 

effective in addressing the computational challenges associated with large-scale dynamic traffic 

assignment (DTA) problems.  

One of the proposed heuristic methods is the method of successive averages (MSA), which 

has been adopted successfully by some researchers (Tong and Wong (2000)). Tong and Wong 

(2000) stated that their satisfactory computational results on a small-scale network do not 

guarantee the same trend for larger real networks.  

Another category of proposed heuristic methods applied in earlier studies (Smith and 

Wisten (1995); Huang and Lam (2002)), implements a path-swapping method that intuitively 

swaps proportions of flows from higher-cost paths to the shortest paths. The swap proportion is a 

function of the flow on the current path, the path cost difference between current path and least 

cost path, and a step size.  
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Lu et al. (2009) mentioned that the literature does not introduce a methodical approach for 

determining the step size. They emphasized the importance of choosing an appropriate step size 

for swapping the flows in achieving algorithmic convergence (Lu et al. (2009)).  

Lu et al. (2009) also reformulated the variational inequality formulation of the DUE 

problem, via a gap function, as a nonlinear minimization problem (NMP), in addition to proposing 

a column generation based optimization procedure to solve the NMP. Their solution algorithm 

incorporates a simulation-based dynamic network loading procedure, which results in time-

dependent path travel costs, and a path swapping descent direction method to solve the restricted 

NMP over a subset of feasible paths.  

2.3 Integrated ABM and DTA 

In this section a review of the attempts made at integrating the ABM and DTA is provided.  

Abdelghany et al. (2001) developed spatial micro-assignment models of travel demand in 

forms of activity-trip chains. Their model formulation addresses path choices of travelers so as to 

maintain the intermediate destinations of planned trip sequences, as well as the final destination, 

activity duration at the intermediate destinations, and departure time at the origin. 

Lam and Yin (2001) proposed a conceptual model of activity-based dynamic traffic 

assignment. Their combined model of activity and route choice encompasses a temporal elastic 

travel demand in a time dependent route choice framework. They proposed an iterative heuristic 

approach, and illustrated that the incorporation of MSA and Diagonalization methods in their 

solution algorithm tends to provide a solution to the dynamic user equilibrium problem. 

Lam and Huang (2003) presented a mathematical programming model of combined 

activity-destination and user equilibrium route choices. They assumed a single homogenous user 
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class and activity durations are considered exogenous in their modeling approach. They further 

presented a variational inequality formulation of activity-travel choices in networks with queues. 

They mentioned how their activity-destination choice model could lead to a tool for forecasting 

the time-dependent origin-destination demand. 

Zhang et al. (2005) pointed to a gap in the literature of linking activity and travel scheduling 

to traffic congestion. They proposed an integrated model of daily activity scheduling with 

bottleneck congestion. They derived a daily utility function of schedules by capturing queueing 

models; given the obtained utilities, they allowed adjustment of schedules in terms of departure 

time and activity duration. Their model considers individuals with home to work and work to home 

trips (single activity participation), and they do not explicitly capture route choices in their 

modeling approach. 

The activity chaining model presented by Kim et al. (2006) incorporates a utility model 

considering all individual activities, budget and time constraints. They adopted a sequential 

solution approach to the activity chaining problem, and then assigned the activities to the network 

through a DTA model to feed the updated time dependent path travel times back to the activity 

chaining phase. 

Ramadurai and Ukkusuri (2010) presented a joint model of activity location, participation 

time, duration and route choices in a dynamic framework. They adopted the cell transmission 

model for capturing traffic flow dynamics, and approached the dynamic user equilibrium problem 

utilizing a modification of Wardrop’s equilibrium framework. They proposed a solution algorithm, 

which they applied to a hypothetical network, to discuss the convergence characteristics of their 

modeling approach. Their model formulation does not incorporate the temporal dimension 
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associated with dynamic user equilibrium models, however, and the defined activity utilities are 

assumed to be dependent on activity durations yet independent of participation time. As discussed 

by Chow and Recker (2012) and Chow (2014), their model considers congestion as the driving 

factor in activity scheduling, and therefore fails in capturing the diverse criteria associated with 

the process of activity scheduling. 

Chow and Recker (2012) presented an inverse optimization approach to address the issue 

of parameter estimation for the household activity pattern problem (HAPP). They adopted the 

formulation proposed by Recker (1995), which views the problem of household activity pattern 

scheduling as a multi-objective variant of pickup and delivery problems with time windows. The 

adopted objective function consists of three components: the travel time between origin and 

destination nodes, the return home delay yielding from multiple sojourn tours, and a measure for 

the length of travel day. 

Dynamic Network Equilibrium Problem for Daily Activity Trip Chain 

Considering that travelers usually make multiple trips within a day, each of which 

corresponds to an activity belonging to their daily activity schedule, changing the unit of demand 

from a one-way trip to a chain of trips in traffic assignment models could play an important role 

in obtaining more accurate results (Abdelghany et al. (2001); Abdelghany and Mahmassani 

(2003)). Efficient and detail-compatible assignment of trip chains to transportation networks 

contributes substantially to improving activity-based modeling approaches and the evaluation of 

related functional and economic policies (Abdelghany et al. (2001)). 

Existing applications of DUE models to large-scale real networks mostly consider the unit 

of traffic demand either as a one-way trip or as multiple independent trips. However, individuals’ 
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travel patterns typically follow a sequence of trips linked together. As mentioned earlier, the spatial 

micro-assignment model developed by Abdelghany et al. (2001) considers travel demand in forms 

of activity-trip chains. Path choices of travelers is modeled in a way that maintains the planned 

sequence of trips’ intermediate destinations as well as the final destination, activity duration at the 

intermediate destinations, and departure time at the origin. In addition, Abdelghany and 

Mahmassani (2003) presented a temporal-spatial micro-assignment of the travel demand with 

activity-trip chains. They have expanded their spatial micro-assignment model to capture other 

travelers’ choices such as sequence of activities and departure time choice at the origin.  

The MSA method, combined with the generalized cost gap-based approach considering 

users’ heterogeneity through a bi-criterion dynamic user equilibrium model, is used in Chapter 6 

as the base model to develop a solution algorithm to consider daily chains of activity-trips in the 

dynamic user equilibrium problem.  
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3 PROBLEM STATEMENT 

In this chapter, a mathematical formulation for an integrated system of activity schedule 

adjustment and dynamic traffic assignment models is presented. First, a household disutility term 

is defined as a function of total travel cost and schedule inconsistency. Next, assuming that each 

user makes travel choices that minimize his/her experienced disutility, a user equilibrium 

framework is adopted, followed by definition of the user equilibrium conditions. In the next 

section, a variational inequality (VI) formulation is presented, and it is shown that the solution to 

the VI problem formulation satisfies the user equilibrium conditions.  

The problem formulation presented in this chapter is designed for a scenario in which 

sequence and number of planned activities are assumed fixed, meaning that only the trip departure 

times, durations and paths are subject to change. Variations of the problem will be presented in 

Chapter 5 of this dissertation. A time-space diagram of individual activity sequences and travel 

choices is depicted in Figure 2. 

3.1 User Heterogeneity 

In this dissertation, trip-makers are treated differently in terms of perception of time, and 

the measure by which they evaluate its worth (value-of-time perceptions). Given that each traveler 

comes from a specific socio-demographic background, and each trip serves a particular purpose 

(e.g. work vs. non-work trips), capturing travelers’ heterogeneity in the evaluation of travel 

decision costs, particularly during the assignment procedure, is essential (Jiang et al. (2011a); Jiang 

and Mahmassani (2013)).  

Road pricing is considered to be an effective demand management strategy to control and 

reduce traffic congestion. In forecasting toll facility usage, the willingness of a trip-maker to pay 
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a certain price to save on a specific unit of time is of great interest. The conventional traffic 

assignment models assume all trip-makers’ preferences of time savings over cost to be the same 

(Jiang and Mahmassani (2013)). However, others have suggested that VOT varies notably across 

the population of trip-makers, and thus road user heterogeneity is reflected in individual reactions 

to toll charges (Small and Yan (2001); Brownstone and Small (2005)). A typical approach in the 

estimation of travel path costs is to define a generalized cost function that consists of both out-of-

pocket cost (path toll) as well as path travel time converted into cost by multiplying it by the 

corresponding value of time (VOT). In this study, the path generalized cost (as discussed above) 

is utilized, which allows for capturing user heterogeneity. Capturing user’s heterogeneity within 

DTA models is discussed in detail in Chapter 6. 

3.2 Household Disutility Associated with Travel Choice 

A dynamic network 𝐺 =  (𝑁, 𝐴) is considered with 𝑁 as a finite set of nodes and 𝐴 as a 

finite set of directed links (𝑢, 𝑣)  ∈ 𝐴, where 𝑢, 𝑣 ∈ 𝑁. 𝜏0 denotes the earliest possible departure 

time from all origin nodes, 𝜎 as a small time interval during which no noticeable change in traffic 

conditions or travel cost happen, and 𝐾 as a large value in a way that 𝜏0 + 𝐾𝜎 covers the entire 

time period (planning horizon). The planning horizon is discretized into a set of small intervals 𝛤 =

{𝜏0, 𝜏0 + σ, 𝜏0 + 2σ, 𝜏0 + 3σ, … , 𝜏0 + 𝐾σ}. A total of 𝐻𝐻 households is assumed on the network, 

each having 𝑀(ℎℎ) members, thus leading to a total of 𝐼𝑇 individual travelers. The set 𝑗 is defined 

as the set containing the household members that make joint trips and the associated joint trips. 

Each individual is considered to belong to a user class 𝑚, and the set of user classes is denoted by 

𝑀. The set Ę = {1,2, … , IT}  contains individual travelers in the network.  
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Assuming that every household member has a set of preferred activity arrival, departure, 

and duration times, a measure of schedule inconsistency is developed to capture late or early 

arrivals (𝐿𝐴, 𝐸𝐴), departures (𝐿𝐷, 𝐸𝐷), and/or duration deviations for all activities. Associated 

with each type of schedule inconsistency are three penalty factors: a fixed penalty, 𝐹𝑃𝑖, a variable 

penalty, 𝑃𝑖, and a penalty for moving beyond a certain threshold 𝑃𝑏𝑖
. 

𝑃𝐿𝐷
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐿𝐷

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐿𝐷

𝑖,𝑚,𝑡𝑟
, 𝑃𝐿𝐷

𝑖,𝑚,𝑡𝑟)  Penalty associated with the late departure of trip 𝑡𝑟 

of traveler 𝑖 with user class 𝑚  

𝑃𝐸𝐷
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐸𝐷

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐸𝐷

𝑖,𝑚,𝑡𝑟
, 𝑃𝐸𝐷

𝑖,𝑚,𝑡𝑟)  Penalty associated with the early departure of trip 𝑡𝑟 

of traveler 𝑖 with user class 𝑚 

𝑃𝐿𝐴
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐿𝐴

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐿𝐴

𝑖,𝑚,𝑡𝑟
, 𝑃𝐿𝐴

𝑖,𝑚,𝑡𝑟)  Penalty associated with the late arrival of trip 𝑡𝑟 of 

traveler 𝑖 with user class 𝑚 

𝑃𝐸𝐴
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐸𝐴

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐸𝐴

𝑖,𝑚,𝑡𝑟
, 𝑃𝐸𝐴

𝑖,𝑚,𝑡𝑟)  Penalty associated with the early arrival of trip 𝑡𝑟 of 

traveler 𝑖 with user class 𝑚 

𝑃𝐿𝑇
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐿𝑇

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐿𝑇

𝑖,𝑚,𝑡𝑟
, 𝑃𝐿𝑇

𝑖,𝑚,𝑡𝑟)       Penalty associated with the activity duration 

lengthening of trip 𝑡𝑟 of traveler 𝑖 with user class 𝑚  

𝑃𝐸𝑇
𝑖,𝑚,𝑡𝑟: ( 𝐹𝑃𝐸𝑇

𝑖,𝑚,𝑡𝑟 , 𝑃𝑏
𝐸𝑇

𝑖,𝑚,𝑡𝑟
, 𝑃𝐸𝑇

𝑖,𝑚,𝑡𝑟)  Penalty associated with the activity duration 

shortening of trip 𝑡𝑟 of traveler 𝑖 with user class 𝑚 

𝑇𝑆𝐼𝑛
𝑖,𝑚,𝑡𝑟

 Threshold associated with the schedule inconsistency of type 𝐼𝑛 for trip 𝑡𝑟 of traveler 𝑖 

with user class 𝑚 

𝛿𝑆𝐼𝑛
𝑖,𝑡𝑟: (𝛿𝐷𝐿,𝐸

𝑖,𝑡𝑟 , 𝛿𝐴𝐿,𝐸
𝑖,𝑡𝑟 , 𝛿𝑇𝐿,𝐸

𝑖,𝑡𝑟)    Schedule inconsistency of type 𝐼𝑛 for trip 𝑡𝑟 of traveler 𝑖 with user 

class 𝑚 
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∆𝑆𝐼𝑛
𝑖,𝑚,𝑡𝑟: (∆𝐷𝐿,𝐸

𝑖,𝑡𝑟 , ∆𝐴𝐿,𝐸
𝑖,𝑡𝑟 , ∆𝑇𝐿,𝐸

𝑖,𝑡𝑟)   Inconsistent schedule penalty of type 𝐼𝑛 for trip 𝑡𝑟 of traveler 𝑖 

with user class 𝑚      

∆𝑆𝑖,𝑚,𝑡𝑟         Inconsistent schedule penalty for trip 𝑡𝑟 of traveler 𝑖 with user class 𝑚                      

∆𝑆𝐼𝑛
𝑖,𝑚,𝑡𝑟

= {
𝐹𝑃𝐼𝑛

𝑖,𝑚,𝑡𝑟 + 𝑃𝐼𝑛
𝑖,𝑚,𝑡𝑟 ∗ 𝛿𝑆𝐼𝑛

𝑖,𝑡𝑟                                                         𝛿𝑆𝐼𝑛
𝑖,𝑡𝑟 < 𝑇𝑆𝐼𝑛

𝑖,𝑡𝑟 

𝐹𝑃𝐼𝑛
𝑖,𝑚,𝑡𝑟 + 𝑃𝐼𝑛

𝑖,𝑚,𝑡𝑟 ∗ 𝛿𝑆𝐼𝑛
𝑖,𝑡𝑟 + 𝑃𝑏

𝐼𝑛
𝑖,𝑡𝑟

∗ (𝛿𝑆𝐼𝑛
𝑖,𝑡𝑟 − 𝑇𝑆𝐼𝑛

𝑖,𝑡𝑟)          𝛿𝑆𝐼𝑛
𝑖,𝑡𝑟 > 𝑇𝑆𝐼𝑛

𝑖,𝑡𝑟 
 

 

(3-1) 

∆𝑆𝑖,𝑚,𝑡𝑟 = ∑ (∆𝑆𝐷
𝑖,𝑚,𝑡𝑟 + ∆𝑆𝐴

𝑖,𝑚,𝑡𝑟 + ∆𝑆𝑇
𝑖,𝑚,𝑡𝑟)

𝑡𝑟∈𝜑′𝑖

 
(3-2) 

 

 

 

Figure 2 Time-space Network Representation 
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Other notations are as follows: 

𝑜 Subscript belonging to an origin node 

𝑑 Subscript belonging to a destination node 

𝜏           Subscript for a departure time interval 

𝑃(𝑜, 𝑑) The set of all feasible paths associated with 𝑜, 𝑑 pair 

𝑂𝐷(𝑖, 𝑡𝑟)    Function yielding the origin-destination pair associated with trip 𝑡𝑟 of individual 𝑖 

𝑝 Subscript for a path 𝑝 ∈ 𝑝(𝑜, 𝑑) 

𝑌𝑖,𝑡𝑟
𝜏,𝑝

 Binary decision variable; equal 1 if traveler 𝑖 chooses path 𝑝 at departure time interval 𝜏 

for its trip 𝑡𝑟, and 0 otherwise 

𝜑′𝑖
 The set containing trip numbers of corresponding origin destination pairs of planned trips 

of individual  𝑖: 𝜑′𝑖
= {1,2, … , 𝑇𝑅(𝑖)}, where 𝑇𝑅(𝑖) is the number of trips planned for individual 

𝑖 

𝑡𝑟 Subscript corresponding to trip number of traveler  

𝑟𝑂𝐷(𝑖,𝑡𝑟)
𝜏,𝑝

 Number of trips from 𝑜 to 𝑑 departing 𝑜 at time interval 𝜏 and assigned to path 𝑝 

𝑟          Time-dependent vector of path flows 

𝑟′         Time-dependent link flow vector 

𝐵          Time dependent link-path incidence matrix 

𝑓𝑎,𝑡(𝑟′
𝑎,𝑡) Travel time on link a at time t as a function of flow on link a at time t 

𝐺𝐶𝑜𝑑,𝑚
𝜏,𝑝

  Path generalized cost for individuals of user class 𝑚 departing path 𝑝 at departure time 𝜏  
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𝑇𝑇𝑜𝑑
𝜏,𝑝

    Experienced path travel time for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 

𝑇𝐶𝑜𝑑
𝜏,𝑝

    Experienced path travel cost for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 

 

The disutility associated with schedule/route choice of an individual traveler 𝑖 is considered as 

combined total travel cost and schedule inconsistency, as follows: 

 

∑ ∑ ∑ 𝑌𝑖,𝑡𝑟
𝜏,𝑝 ∗ 𝐺𝐶𝑂𝐷(𝑖,𝑡𝑟),𝑚

𝜏,𝑝 + ∆𝑆𝑖,𝑚,𝑡𝑟

𝑝∈𝑃(𝑂𝐷(𝑖,𝑡𝑟))𝜏∈𝛤𝑡𝑟∈𝜑′𝑖

          ∀𝑖 ∈ Ę 
(3-3) 

 

However, individuals’ activity scheduling decisions are dependent on other household members. 

For instance, they may adjust their departure time in a manner consistent with other members who 

are participants of a joint trip. Hence, it is essential that the disutility is attributed to the whole 

household, leading to the following definition of household disutility for every household ℎℎ:  

∑ ∑ ∑ ∑ 𝑌𝑖,𝑡𝑟
𝜏,𝑝 ∗ 𝐺𝐶𝑂𝐷(𝑖,𝑡𝑟),𝑚

𝜏,𝑝 + ∆𝑆𝑖,𝑚,𝑡𝑟

𝑝∈𝑃(𝑂𝐷(𝑖,𝑡𝑟))𝜏∈𝛤𝑡𝑟∈𝜑′𝑖

𝑀(ℎℎ)

𝑖=1

 (3-4) 

 

Conditions and Constraints: 

The decision variable 𝑌𝑖,𝑡𝑟
𝜏,𝑝

 should satisfy the following conditions: 

               
(3-5) 



40 
 

∑ ∑ 𝑌𝑖,𝑡𝑟
𝜏,𝑝

𝑝∈𝑃(𝑂𝐷(𝑖,𝑡𝑟))

= 1

𝜏∈𝛤

    ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

𝑌𝑖,𝑡𝑟
𝜏,𝑝 = 𝑌𝑖′,𝑡𝑟′

𝜏,𝑝
      ∀𝑗 ∈ 𝐽, ∀(𝑖, 𝑡𝑟) ∈ 𝑗, ∀(𝑖′, 𝑡𝑟′) ∈ 𝑗 (3-6) 

𝑌𝑖,𝑡𝑟
𝜏,𝑝 ∈ {0,1}       ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖, 𝜏 ∈ 𝛤 (3-7) 

 

Equation (3-5) ensures that all trips are assigned exactly one path and a single departure time. 

Equation (3-6) maintains the consistency of travel choices of travelers who have joint trips, and 

constraint (3-7) restricts the decision variable to be a binary variable taking values 0 or 1.  

The travel/route decisions of all individuals in the network result in path flows, which in turn yield 

the path travel times and generalized costs indicated below: 

 

∑ ∑ 𝑌𝑖,𝑡𝑟
𝜏,𝑝

𝑡𝑟∈𝜑′𝑖

𝐼𝑇

𝑖=1

=  𝑟𝑜𝑑
𝜏,𝑝                                  ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝

∈ 𝑃(𝑜, 𝑑) 

(3-8) 

𝑟′ = 𝐵. 𝑟 (3-9) 

𝑇𝑇𝑜𝑑
𝜏,𝑝 = ∑ 𝑓𝑎,𝑡(𝑟𝑎,𝑡

′ )
(𝑎,𝑡)∈(𝑝,𝜏)

                       ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝

∈ 𝑃(𝑜, 𝑑) 

(3-10) 

𝐺𝐶𝑜𝑑,𝑚
𝜏,𝑝 = 𝛼(𝑚) ∗ 𝑇𝑇𝑜𝑑

𝜏,𝑝 + 𝑇𝐶𝑜𝑑
𝜏,𝑝            ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝

∈ 𝑃(𝑜, 𝑑), 𝑚 ∈ 𝑀 

(3-11) 
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Equation (3-8) yields the flow on route 𝑝 and departure time 𝜏, which is dependent on decision 

variables 𝑌𝑖,𝑡𝑟
𝜏,𝑝

 of all travelers in the network. Equation (3-9) converts the dynamic path flows to 

dynamic link flows. Equation (3-10) relates the time dependent path travel times to the dynamic 

link flows. In equation (3-10), (𝑎, 𝑡) represents links (𝑎) that belong to the path (𝑝), and associated 

link departure times (𝑡), which starting from the first link’s departure time (𝜏) are dynamically 

updated for each subsequent link through the addition of previous links dynamic travel time to (𝜏). 

Equation (3-11) contains the definition of time dependent path generalized costs, which captures 

the heterogeneity of users. The following notations are also defined: 

𝐷𝑒𝑝𝑖
𝑡𝑟   Adjusted departure time of trip 𝑡𝑟 of individual 𝑖 

𝐴𝑖
𝑡𝑟        Desired arrival time of trip 𝑡𝑟 of traveler 𝑖  

𝐷𝑖
𝑡𝑟       Desired departure time of trip 𝑡𝑟 of traveler 𝑖  

𝑇𝑖
𝑡𝑟 Desired duration of activity following trip 𝑡𝑟 of traveler 𝑖  

𝑇𝑖
𝑡𝑟𝑀𝑖𝑛

    Minimum duration of activity following trip 𝑡𝑟 of traveler 𝑖 

In addition, the following scheduling constraints are defined for ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖
: 

𝐷𝑒𝑝𝑖
𝑡𝑟 ≥ 𝜏 ∗ ∑ 𝑌𝑖,𝑡𝑟

𝜏,𝑝

𝑝∈𝛲(𝑂𝐷(𝑖,𝑡𝑟))

      ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖
, 𝜏 ∈ 𝛤 

 

(3-12) 

𝐷𝑒𝑝𝑖
𝑡𝑟 ≥ 𝐷𝑒𝑝𝑖

𝑡𝑟−1 + ∑ ∑ 𝑌𝑖,𝑡𝑟−1
𝜏,𝑝 ∗ 𝑇𝑇𝑖,𝑡𝑟−1

𝜏,𝑝

𝑝∈𝛲(𝑂𝐷(𝑖,𝑡𝑟))𝜏∈𝛤

+ 𝑇𝑖
𝑡𝑟𝑀𝑖𝑛

     ∀𝑖

∈ Ę, 𝑡𝑟 > 1 ∈ 𝜑′𝑖
 

 

(3-13) 

𝐷𝑒𝑝𝑖
𝑡𝑟 ≥ 0       ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖

      (3-14) 



42 
 

 

Inequality (3-12) ensures that the value of 𝐷𝑒𝑝𝑖
𝑡𝑟 is as large as the selected departure time 𝜏. 

Inequality (3-13) ensures that the subsequent trips of a traveler (𝑖) have temporal consistencies, i. 

e. no trip departs earlier than the previous trip. Constraint (3-14) defines the feasible set for the 

departure time variable. 

In order to simplify the equations, a new term is defined to represent the travel time that a traveler 

experiences on path 𝑝:  𝐸𝑇𝑇𝑖
𝑡𝑟 = ∑ ∑ 𝑌𝑖,𝑡𝑟

𝜏,𝑝
∗ 𝑇𝑇𝑖,𝑡𝑟

𝜏,𝑝
𝑝∈𝛲(𝑂𝐷(𝑖,𝑡𝑟))𝜏∈𝛤  

 

𝛿𝑆𝐿𝐴
𝑖,𝑡𝑟 = {

𝐷𝑒𝑝𝑖
𝑡𝑟 + 𝐸𝑇𝑇𝑖

𝑡𝑟 − 𝐴𝑖
𝑡𝑟           𝐷𝑒𝑝𝑖

𝑡𝑟 + 𝐸𝑇𝑇𝑖,𝑡𝑟 ≥ 𝐴𝑖
𝑡𝑟

0                                                𝐷𝑒𝑝𝑖
𝑡𝑟 + 𝐸𝑇𝑇𝑖,𝑡𝑟 < 𝐴𝑖

𝑡𝑟           

 ∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-15) 

𝛿𝑆𝐸𝐴
𝑖,𝑡𝑟 = {

𝐴𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟 + 𝐸𝑇𝑇𝑖
𝑡𝑟          𝐴𝑖

𝑡𝑟  ≥  𝐷𝑒𝑝𝑖
𝑡𝑟 + 𝐸𝑇𝑇𝑖,𝑡𝑟

0                                               𝐴𝑖
𝑡𝑟 <  𝐷𝑒𝑝𝑖

𝑡𝑟 + 𝐸𝑇𝑇𝑖,𝑡𝑟
            

∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-16) 

𝛿𝑆𝐿𝐷
𝑖,𝑡𝑟 =   {

𝐷𝑒𝑝𝑖
𝑡𝑟 − 𝐷𝑖

𝑡𝑟                           𝐷𝑒𝑝𝑖
𝑡𝑟 ≥ 𝐷𝑖

𝑡𝑟

0                                                𝐷𝑒𝑝𝑖
𝑡𝑟 < 𝐷𝑖

𝑡𝑟           

∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-17) 

𝛿𝑆𝐸𝐷
𝑖,𝑡𝑟 =   {

𝐷𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟                           𝐷𝑖
𝑡𝑟 ≥ 𝐷𝑒𝑝𝑖

𝑡𝑟

0                                                𝐷𝑖
𝑡𝑟 < 𝐷𝑒𝑝𝑖

𝑡𝑟           

∀𝑖 ∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-18) 
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𝛿𝑆𝐿𝑇
𝑖,𝑡𝑟

= {
𝐷𝑒𝑝𝑖

𝑡𝑟+1 − 𝐸𝑇𝑇𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟 − 𝑇𝑖
𝑡𝑟      𝐷𝑒𝑝𝑖

𝑡𝑟+1 − 𝐸𝑇𝑇𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟 ≥ 𝑇𝑖
𝑡𝑟

0                                                               𝐷𝑒𝑝𝑖
𝑡𝑟+1 − 𝐸𝑇𝑇𝑖

𝑡𝑟 − 𝐷𝑒𝑝𝑖
𝑡𝑟 < 𝑇𝑖

𝑡𝑟           ∀𝑖

∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-19) 

𝛿𝑆𝐸𝑇
𝑖,𝑚,𝑡𝑟

= {
𝑇𝑖

𝑡𝑟 − 𝐷𝑒𝑝𝑖
𝑡𝑟+1 + 𝐸𝑇𝑇𝑖

𝑡𝑟 + 𝐷𝑒𝑝𝑖
𝑡𝑟         𝐷𝑒𝑝𝑖

𝑡𝑟+1 − 𝐸𝑇𝑇𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟 ≥ 𝑇𝑖
𝑡𝑟

0                                                                    𝐷𝑒𝑝𝑖
𝑡𝑟+1 − 𝐸𝑇𝑇𝑖

𝑡𝑟 − 𝐷𝑒𝑝𝑖
𝑡𝑟 < 𝑇𝑖

𝑡𝑟       ∀𝑖

∈ Ę, 𝑡𝑟 ∈ 𝜑′𝑖 

(3-20) 

 

Equations (3-15) to (3-20) define the schedule inconsistency terms as functions of trip departure 

time.  

 In this section, a disutility function associated with travel patterns of individual travelers is 

defined. Assuming that each traveler makes travel choices that minimize the experienced disutility, 

a user equilibrium framework is adopted in the next section based on the following conceptual 

framework: In the real world, individuals plan their activity schedules, and make travel choices to 

accomplish their activity sequences, but the plan may not be executed as intended due to 

congestion, accidents, transit delays, etc. As a result, individuals try to make adjustments to their 

activity/travel choices to minimize the associated disutility. The adjustment process continues until 

no further improvement can be achieved, meaning that the system has reached an equilibrium state. 

Therefore, at the equilibrium state, no traveler can decrease his or her disutility by switching paths 

or departure times (schedule) associated with his or her trips. In the next section, the user 

equilibrium problem is formulated based on this defined disutility for travelers. 
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3.3 Model Formulation 

3.3.1 The Fixed-point Equilibrium Problem 

Various transportation network problems have been examined using variations of the fixed-

point problem formulation. Cantarella (1997) formulated the equilibrium assignment problem as 

a fixed-point problem. Cascetta and Postorino (2001) proposed a fixed-point modeling approach 

to the origin-destination demand estimation problem. Fixed-point formulations are particularly 

useful when there is no analytical form of the function available, evaluations of the function are 

computationally expensive, or the problem size is large. Furthermore, they provide a basis for 

solution algorithms as well as analysis of problem properties such as solution existence and 

uniqueness (Dennis Jr and Schnabel (1996); Kelley (2003); Bierlaire and Crittin (2006)). Dennis 

Jr and Schnabel (1996) provided a comprehensive discussion of fixed-point formulations. They 

stated that problems with more than 50 variables are considered large size problems, and finding 

a solution for them without having a proper starting point, or mild nonlinearity, is not guaranteed. 

Moreover, Dennis Jr and Schnabel (1996) mentioned that fixed-point problems are complex 

phenomena often captured by computer simulation models rather than closed form analytical 

functions, leading to the unavailability of derivatives. In addition, there are problem instances that 

have high computational costs associated with their function evaluations, requiring efficient 

algorithms.  

Several approaches have been proposed for solving systems of nonlinear equations, or 

equivalently, fixed-point problems. Iterative approaches have been widely used in solving fixed-

point problems. These approaches start with an initial point 𝑠0 and update the point at each iteration 

by moving towards a direction aimed at approaching convergence. Newton’s method is among the 
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most widely used solution methods for this class of problems. However, Newton’s method requires 

the evaluation of first order derivatives, which is not feasible in problems with large number of 

unknowns or when computational evaluations of the derivatives are expensive or unavailable 

(Dennis Jr and Schnabel (1996); Kelley (2003); Bierlaire and Crittin (2006)). To overcome this 

problem, variations of Newton’s method, such as quasi-Newton and Inexact Newton methods 

provide alternative approaches without the need to compute derivatives. Quasi-Newton methods 

consider the linear approximation of the function. One of the shortcomings of quasi-Newton 

methods is that their convergence ability is limited by proximity of the initial starting point to the 

optimal solution. Inexact Newton methods find the direction at each iteration rather than 

approximating the derivatives. Existing approaches to solve Inexact Newton formulations mostly 

use Krylov iterative linear methods. Krylov-Newton methods eliminate the need for matrix-matrix 

products by building each iteration through matrix-vector products as discussed by Kelley (2003). 

Bierlaire and Crittin (2006) stated that although Krylov-Newton methods provide a robust 

theoretical basis, they do not provide a good platform for problems with noisy functions. 

3.3.2 Fixed-point Equilibrium Formulation 

In this dissertation, equilibrium is defined as the state at which no household can improve 

their utility by adjusting their trip departure time, activity duration and/or route choice. The 

disutility as defined in the previous section is to be minimized for each traveler. Hence, the problem 

can be conceptually formulated as a fixed-point equilibrium problem in the closed, bounded, and 

convex path flow space 𝛺: 
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𝑟∗ = 𝑅(𝑆𝐴 (𝑆𝑃(𝐶(𝑟∗)))) (3-21) 

Where, 

𝑟∗ Vector of optimal path flows 

𝐶 Vector of path costs 

𝑆𝑃 Vector of schedule penalties 

𝑆𝐴 Vector of adjusted schedules 

𝑅 Route assignment operator   

 𝑟∗ is the equilibrium dynamic path flow vector obtained from dynamic traffic assignment. The 

path cost function 𝐶 is a function of vector of dynamic path flows 𝑟, and produces time dependent 

path generalized costs (or travel times). As discussed earlier, individuals are assumed to associate 

a schedule disutility based on their travel costs, and as a result, adjust their activity schedules in 

terms of departure times and activity durations to reduce the experienced disutility.  𝑆𝑃 is the 

vector of schedule penalties (schedule disutility) that is considered to be a function of dynamic 

path costs. 𝑆𝐴 is the schedule adjustment function, which yields as output the vector of desired trip 

departure times, arrival times and activity durations for all activities of travelers. The route 

assignment operator 𝑅(𝑠) produces as output the flow on every path at each departure time 

interval, based on adjusted users’ schedules. Given the size and dynamics associated with 

transportation networks, simulation tools take the lead in appropriately capturing the behavioral 

realisms that lie within transportation phenomena. Therefore, a state-of-the-art dynamic traffic 

simulation and assignment tool can be used to capture the time dependent path flows and path 

costs.  
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 The user equilibrium conditions are defined next. A set 𝜓𝑖  is considered for each individual 

𝑖, which is the set of all the feasible schedule and path combinations for the entire trip chain of the 

traveler. In this section, each schedule and path combination is denoted by (𝑠, 𝑝), where 𝑠 denotes 

a feasible schedule, including departure times for each trip and activity durations for each activity, 

and 𝑝 represents a feasible path. Note that here (𝑠, 𝑝) does not represent a schedule and path for a 

single trip of the individual; rather, it captures the entire chain of trips of the traveler. 𝑈𝑖
(𝑠,𝑝)(𝑋) is 

defined as the disutility for individual 𝑖 associated with travel pattern (𝑠, 𝑝) under a feasible travel 

pattern assignment of X to all travelers in the network. 𝑈𝑖
∗(𝑋) is the minimum disutility calculated 

for traveler 𝑖, where travelers are assigned by travel pattern X into the network. This disutility is 

associated with the optimal travel pattern (𝑠, 𝑝)∗ of individual 𝑖. 

 

𝑈𝑖(𝑋) = (𝐶𝑖(𝑋) + 𝑆𝑃𝑖(𝑋)) (3-22) 

 

User Equilibrium Conditions: 

𝑋𝑖
(𝑠,𝑝)

×(𝑈𝑖
∗(𝑋) − 𝑈𝑖

(𝑠,𝑝)(𝑋)) = 0        ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖 (3-23) 

 

𝑈𝑖
∗(𝑋) ≤ 𝑈𝑖

(𝑠,𝑝)(𝑋)                     ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖 (3-24) 

 

∑ 𝑋𝑖
(𝑠,𝑝)

= 1(𝑠,𝑝)∈𝜓𝑖             ∀𝑖 ∈ Ę (3-25) 

 

𝑋𝑖
(𝑠,𝑝)

= {0,1}                      ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖 (3-26) 
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Equation (3-22) defines experienced disutility of traveler i under travel pattern assignment X for 

all travelers in the network as the sum of travel cost and schedule inconsistency penalties. Equation 

(3-23) states that if a certain travel pattern is assigned to a traveler, it is the optimal pattern. 

Similarly, if the disutility associated with the travel pattern is larger than the optimal disutility, 

then the travel pattern should not be selected for the traveler at the equilibrium condition. 

Inequality (3-24) constrains the optimal disutility of a traveler (𝑖) to be less than or equal to all 

possible disutilities associated with feasible travel patterns of the individual i. Equation (3-25) 

enforces that exactly one single travel pattern should be assigned to an individual traveler (𝑖), and 

condition (3-26) restricts the variable (𝑋𝑖
(𝑠,𝑝)

) to be a binary variable. The feasible set constructed 

by the equations (3-25) and (3-26) is denoted by 𝛯. 

 The author now defines a variational inequality (VI) formulation satisfying the user 

equilibrium state conditions. It is further shown that finding a solution to the equilibrium problem 

is equivalent to finding the solution to the VI problem. 

Variational Inequality Formulation: find a feasible travel pattern assignment vector 𝑋∗ 

such that the inequality defined by inequality (3-27) holds for all 𝑋 in the feasible set (𝛯) defined 

by equations (3-25) and (3-26). 

 

(𝑆𝑃 + 𝐶)(𝑠,𝑝)∗ . (𝑋 − 𝑋∗) ≥ 0 (3-27) 

 

𝑈(𝑋∗) ∘ (𝑋 − 𝑋∗) ≥ 0 (3-28) 

 

Proof of Equivalency 

Rewriting equation (3-23) by multiplying 𝑋 by each disutility term in the parentheses and 

moving the second term on the left side to the right side: 
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𝑋𝑖
(𝑠,𝑝)∗

×𝑈𝑖
∗(𝑋∗) = 𝑋𝑖

(𝑠,𝑝)∗

×𝑈𝑖
(𝑠,𝑝)(𝑋∗)      ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖  (3-29) 

 

 In inequality (3-24) one could multiply both sides by the nonnegative term 𝑋: 

 

𝑋𝑖
(𝑠,𝑝)

×𝑈𝑖
∗(𝑋∗) ≤ 𝑋𝑖

(𝑠,𝑝)
×𝑈𝑖

(𝑠,𝑝)(𝑋∗)                ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖  (3-30) 

 

 Subtracting 𝑈𝑖
∗(𝑋∗)×𝑋𝑖

(𝑠,𝑝)∗

 from both sides of the equation (3-30), and substituting it on 

the right side using equation (3-29): 

 

𝑈𝑖
∗(𝑋∗)×𝑋𝑖

(𝑠,𝑝)
− 𝑈𝑖

∗(𝑋∗)×𝑋𝑖
(𝑠,𝑝)∗

≤ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)
−

𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)∗

   ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖  

 (3-31) 

 

 Adding both sides over all individuals, their path choices, and possible schedules: 

∑ ∑ 𝑈𝑖
∗(𝑋∗)×𝑋𝑖

(𝑠,𝑝)
− 𝑈𝑖

∗(𝑋)×𝑋𝑖
(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

 

≤ ∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×(𝑋𝑖

(𝑠,𝑝)
− 𝑋𝑖

(𝑠,𝑝)∗

)

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

 

(3-32) 

 

[∑ 𝑈𝑖
∗(𝑋∗)× ∑ (𝑋𝑖

(𝑠,𝑝)
− 𝑋𝑖

(𝑠,𝑝)∗

)

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

]

≤ ∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×(𝑋𝑖

(𝑠,𝑝)
− 𝑋𝑖

(𝑠,𝑝)∗

)

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

 

(3-33) 
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 According to equation (3-25) the left side of inequality (3-33) is zero, therefore the defined 

user equilibrium conditions yield the VI formulation. Now we need to prove that the solution to 

the VI formulation satisfies the user equilibrium conditions defined by ((3-23)-(3-26)). Since 𝑋∗ 

is restricted to be from the feasible set 𝛯, it already meets the conditions in equations (3-25) and 

(3-26). Therefore, we need to prove that the solution to the VI problem meets the conditions in 

equation (3-23) and inequality (3-24).  

 The VI formulation can be stated as follows by expanding inequality (3-28): 

 

∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

− ∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

≥ 0 

 

(3-34) 

 𝑈𝑖
∗(𝑋) is defined as the minimum disutility for each traveler i over all possible travel 

patterns (s,p): 

 

𝑈𝑖
∗(𝑋) = 𝑀𝑖𝑛(𝑠,𝑝) 𝑈𝑖

(𝑠,𝑝)(𝑋∗) ≤ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)         ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖 (3-35) 

  

(𝑠^, 𝑝^) is defined as the following: 

 

(𝑠^, 𝑝^) = 𝐴𝑟𝑔𝑚𝑖𝑛 (𝑠,𝑝)𝑈𝑖
(𝑠,𝑝)(𝑋∗)     ∀𝑖 ∈ Ę (3-36) 

  

Based on (𝑠^, 𝑝^) definition the travel pattern assignment 𝑋′ is defined that satisfies 

constraints (3-25) and (3-26) with the following specification: 

 

𝑋𝑖
(𝑠,𝑝)′

= {
0      (𝑠, 𝑝) ≠ (𝑠^, 𝑝^)

1      (𝑠, 𝑝) = (𝑠^, 𝑝^)
  ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖 (3-37) 
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Therefore 

𝑋𝑖
(𝑠,𝑝)′

× (𝑈𝑖
(𝑠,𝑝)(𝑋∗) − 𝑈𝑖

∗(𝑋)) = 0          ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖  (3-38) 

  

Multiplying 𝑋𝑖
(𝑠,𝑝)′

by each of the two terms in the parenthesis, we get:  

 

𝑋𝑖
(𝑠,𝑝)′

×𝑈𝑖
(𝑠,𝑝)(𝑋∗) = 𝑋𝑖

(𝑠,𝑝)′

×𝑈𝑖
∗(𝑋)       ∀𝑖 ∈ Ę, (𝑠, 𝑝) ∈ 𝜓𝑖  (3-39) 

   

Now substituting the right side of equation (3-39) in the expanded VI formulation of (3-

34), which is valid for each feasible X (such as 𝑋′): 

 

∑ ∑ 𝑈𝑖
∗(𝑋)×𝑋𝑖

(𝑠,𝑝)′

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

− ∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

≥ 0 

 

(3-40) 

 Rearranging the summation in the first term, we get: 

 

∑ 𝑈𝑖
∗(𝑋)× ∑ 𝑋𝑖

(𝑠,𝑝)′

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

− ∑ ∑ 𝑈𝑖
(𝑠,𝑝)(𝑋∗)×𝑋𝑖

(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

≥ 0 

 

(3-41) 

 As 𝑋′ is a feasible travel pattern assignment based on (3-25), ∑ 𝑋𝑖
(𝑠,𝑝)′

(𝑠,𝑝)∈𝜓𝑖  can be 

assumed as 1. Similarly, as 𝑋∗ is a feasible travel pattern assignment, this value based on (3-25) 

can be substituted by ∑ 𝑋𝑖
(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖  for each traveler i.  
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∑ ∑ (𝑈𝑖
(𝑠,𝑝)(𝑋∗) − 𝑈𝑖

∗(𝑋))×𝑋𝑖
(𝑠,𝑝)∗

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

≤ 0 

 

(3-42) 

 All the terms in the summation in inequality (3-42) are nonnegative based on our 𝑋∗ 

definition and Equation (3-35). Therefore the inequality (3-42) can be held if and only if 

(𝑈𝑖
(𝑠,𝑝)(𝑋∗) − 𝑈𝑖

∗(𝑋)) ×𝑋𝑖
(𝑠,𝑝)∗

= 0.  

 Based on Lu (2007) and Patriksson (2013) a function 𝐺 needs to satisfy two conditions to 

be defined as a gap function for any VI formulation. The two conditions are as follows: 

𝐺(𝑋) ≥ 0      ∀ 𝑥 ∈ Ξ   
 

𝐺(𝑋∗) = 0 
 

 In the next section, the author defines such gap function for the presented VI formulation 

in this study. 

3.4 Equivalent Gap Function: 

 

𝐺(𝑋) = ∑ ∑ 𝑋𝑖
(𝑠,𝑝)

∗ (𝑈𝑖
(𝑠,𝑝)(𝑋) − 𝑈𝑖

∗(𝑋))

(𝑠,𝑝)∈𝜓𝑖

𝐼𝑇

𝑖=1

 (3-43) 

In the gap function presented above, 𝑋𝑖
(𝑠,𝑝)

 is either zero or one since it belongs to the 

feasible set Ξ. Also, 𝑈𝑖
∗(𝑋) is the minimum disutility at any feasible 𝑋, thus it is always smaller 

than or equal to 𝑈𝑖
(𝑠,𝑝)(𝑋). As a result, the defined gap function is greater than or equal to zero. 

Assuming 𝑋∗ as the solution to the VI problem, and since it satisfies condition (3-23), 𝐺(𝑋∗) is 

zero. Moreover, 𝑋 belongs to Ξ, therefore the defined gap function meets the user equilibrium state 

conditions defined by (3-23) to (3-26). The defined gap function can be interpreted as a measure 
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to evaluate distance between the optimal state and any feasible state, minimization of which would 

result in the equilibrium state. 

3.5 Discussion of The Solution Properties 

 

KAKUTANI’S Fixed-point Existence Theorem.  

According to Cantarella (1997), an upper semi-continuous point to set map 𝜓(𝑥) defined 

over a compact convex and non-empty set 𝑋 with {𝑦 = 𝜓(𝑥)} ⊆ 𝑋, ∀𝑥 ∈ 𝑋, 𝑎𝑛𝑑 {𝑦 = 𝜓(𝑥)} non-

empty, closed and convex, has at least one fixed-point in set 𝑋: ∃𝑥∗ ∈ 𝑋: 𝑥∗ = 𝜓(𝑥). 

BROUWER’S Fixed-point Existence Theorem.  

According to Cantarella (1997), a continuous function 𝜓(𝑥) defined over a compact 

convex and non-empty set 𝑋 with 𝜓(𝑥) ⊆ 𝑋, ∀𝑥 ∈ 𝑋 has at least one fixed-point in set 𝑋: ∃𝑥∗ ∈

𝑋: 𝑥∗ = 𝜓(𝑥) 

According to the fixed-point existence theorems, in order for the above fixed-point 

formulation to have solution(s), all the defined functions or maps have to be continuous (or upper 

semi-continuous).  

Continuity in Vector Space 

A function 𝑦 = 𝜓(𝑥)   𝑅𝑛 → 𝑅𝑛 is continuous at 𝑥0 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝜖𝑅𝑛 if and only if: 

lim
𝑥→𝑥0

𝜓(𝑥) = 𝑦0   

Where, 𝑦0 = (𝑦1, 𝑦2, … , 𝑦𝑁)𝜖𝑅𝑛 

In other words, if the limits exist when approaching 𝑥0 from all feasible directions in 

Cartesian space, and if their values are equal to the function value, the function is continuous. 



54 
 
Lemma 1. The vector of path costs is in general a discontinuous function of path flow 

vector. 

Discontinuity of the path cost function for general traffic conditions is discussed in detail 

by Alibabai (2011). Although the path cost function is a discontinuous function of the path flow 

vector in general (Alibabai (2011)), Cantarella (1997) states that the path cost function is 

continuous if the costs do not tend to infinity, even when flows are close to or higher than 

capacities.  

Lemma 2. The vector of schedule penalties is a discontinuous function of the vector of path 

costs.  

The vector of schedule penalties is a discontinuous function of path costs if at a  𝐶 = 𝐶∗ it 

follows the following form: 

𝑆𝑃(𝐶) = {
𝑆𝑃               𝐶 = 𝐶∗ 

𝑆𝑃 + ∆         𝐶 = 𝐶∗ ± 𝛿
 

Example Consider an individual traveler making trips 1 and 2 (Figure 3). Assume a 

disutility measure for the traveler as a simplified function of late arrival. The penalties associated 

with the disutility function are assumed to be 𝐹𝑃𝐿𝐴
𝑖 = 0.5, 𝑃∗

𝐿𝐴
𝑖 = 0.02, 𝑃𝐿𝐴

𝑖 = 0.01. We assume 

path travel time value of the first trip at departure time 8:00 (𝐷1
1 = 8: 00) is 30 𝑚𝑖𝑛, and for the 

second trip at 10:00 (𝐷1
2 = 10: 00) is 20 𝑚𝑖𝑛. If the traveler has a preferred arrival time of 8:30 to 

activity 2, a maximum late arrival of 5 𝑚𝑖𝑛, and a preferred arrival time of 10:20 to activity 3, the 

optimal schedule would be obtained at (𝐷1
1 = 8: 00, 𝐷1

2 = 10: 00). Now approaching the path cost 

of path 1 at departure time 𝐷1
1 from the right, the result is the following schedule penalties: 

 



55 
 

𝑆𝑃(𝐶) = { 0                           𝐶1 = 30 
0.5 + 0.01 ∗ 𝛿                           𝐶1 = 30 + 𝛿 

 

 

 

 

Figure 3 Small Network Example P1: Path 1 P2: Path 2 

As it can be seen in the above example, the vector of individuals schedule penalty is a 

discontinuous function of the vector of path costs.   

According to Lemmas 1 and 2, the existence of a solution for the proposed fixed-point 

equilibrium formulation cannot be guaranteed. If solution(s) exist(s), the uniqueness of it is 

dependent on the monotonicity of the involved functions. The following is a brief evaluation of 

the monotonicity of the above functions. 

Monotonocity 

Definition: A vector function is considered monotone if increasing the value of any of the 

elements in the function input does not lead to decrease in the value of any of the output elements. 

Lemma 3. The vector of path costs is not a pointwise monotone function of the path flow 

vector. 

One might define a continuous form for the vector of path costs as a function of the path 

flow vector. However, as discussed by Alibabai (2011), it can be shown that the vector of path 

travel times (cost) is not generally a monotonous function of the path flow vector.  

1 2 3
P 1 P 2



56 
 
Lemma 4. The vector of schedule penalties is a nonmonotonic function of the vector of 

path costs.  

Consider an individual traveler making trips 1 and 2 (Figure 3). We assume a disutility 

measure for traveler as a simplified function of late and early arrival. The penalties associated with 

the disutility function are assumed to be 𝐹𝑃𝐿𝐴
𝑖 = 0.5,  𝑃∗

𝐿𝐴
𝑖 = 0.02, 𝑃𝐿𝐴

𝑖 = 0.01, 𝐹𝑃𝐸𝐴
𝑖 = 0.3,

𝑃∗
𝐸𝐴

𝑖 = 0.01, 𝑃𝐸𝐴
𝑖 = 0.01. We assume path travel time value of first trip of traveler at departure 

time 8:00 is 25 𝑚𝑖𝑛, and for the second trip at 10:00 is 20 𝑚𝑖𝑛. If the traveler has a preferred 

arrival time of 8:30 to activity 2, a maximum late arrival of 5 𝑚𝑖𝑛, and a preferred arrival time of 

10:20 to activity 3, the optimal schedule will be obtained at (𝐷1
1 = 8: 00, 𝐷1

2 = 10: 00). Now 

approaching the path cost of path 1 at departure time 𝐷1
1 from the right, results in the following 

schedule penalties: 

𝑆𝑃(𝐶) = {

0.31   𝐶1(𝐷1
1) = 29

0.00   𝐶1(𝐷1
1) = 30

0.51   𝐶1(𝐷1
1) = 31

 

 

According to Lemmas 3 and 4, one cannot guarantee the uniqueness of the solution for the 

equilibrium problem presented in this chapter. 

 

3.6 Summary 

In this chapter, the author aimed to provide a robust conceptual and mathematical 

framework for the integration of ABM and DTA. For this purpose, a framework was proposed that 

provides an inner adjustment process for an ABM-DTA integrated model (surrogate gap). The 
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proposed surrogate measure captures the individuals’ activity scheduling and travel choices in a 

dynamic network equilibrium framework. A user equilibrium framework for the path and schedule 

choices of individual travelers was defined for this purpose. A variational inequality formulation 

was presented as the variant formulation of the equilibrium problem, and it was shown that the 

solution to the VI formulation meets the user equilibrium conditions. Further, the equivalent gap 

function for the VI formulation was defined to provide a gap-based solution approach. In the end, 

the solution properties of the proposed fixed-point problem formulation are explored through an 

analysis of continuity and monotonocity of some of the involved functions. It is shown that there 

is no guarantee that a solution exists for the problem due to discontinuity of the functions. 

Moreover, the nonmonotonocity of the functions are shown through examples, which leads to the 

fact that there might be multiple solutions for the problem, provided that a solution exists. 

However, the solution to the problem, as well as its convergence characteristics, can be shown 

numerically, and are presented in the next chapter.. 
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4 METHODOLOGY AND IMPLEMENTATION 

In this chapter, a solution algorithm is proposed for the problem stated in Chapter 3. First, 

two gap functions are defined, and then a solution approach is presented, the objective of which is 

to minimize the defined gaps.  

4.1 Introduction 

The problem formulation presented in Chapter 3 is a combinatorial problem, where every 

individual faces a choice set consisting of routes and departure times. In a network with multiple 

feasible paths between each origin-destination pair as well as departure time intervals, the size of 

such choice set 𝜓𝑖 is very large. In particular, the size grows to infinity in a continuous setting. 

Additionally, the constraints imposed by the interdependencies of household members and the 

spatial and temporal interdependencies of trip chains add to the complexity of the problem. Hence, 

we decouple the problem into two sub-problems of dynamic traffic assignment and household 

activity schedule adjustment, and we approach the problem from a network equilibrium 

perspective. 

The utility resulting from the assignment of an activity plan to the traffic simulator would 

differ from the estimated utility of the activity plan in a non-equilibrium state. Therefore, the 

difference between individual experienced utilities and corresponding minimum possible values 

can be used as a gap measure to assess the convergence pattern. Two gap measures, one for the 

supply side and the other for the demand side, are defined as follows: 

On the supply side: 
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∑ ∑ ∑ ∑ ∑ 𝑟𝑜𝑑,𝑚
𝜏,𝑝  [𝐺𝐶 𝑜𝑑,𝑚

𝜏,𝑝 (𝛼, 𝑟) − 𝐺𝐶∗
𝑜𝑑,𝑚
𝜏 ]

𝑝∈𝑝(𝑜,𝑑)

𝑀

𝑚=1

𝛵

𝜏=1𝑑∈𝐷𝑜∈𝑂

 

(4-1) 

 

On the demand side: 

 

∑ ∆𝑆𝑖

𝐼𝑇

𝑖=1

 

(4-2) 

 

As mentioned earlier, most of the existing solution methods to fixed-point formulations require 

computations of derivatives, or involve computationally intensive procedures of finding search 

directions. In problems of large sizes, such as the problem in this study, either with significant 

noise or when there is no closed form defined, such methods should be avoided. In the problem 

presented here, both the vector of feasible schedules and the set of feasible paths include a large 

number of variables. Therefore, the author adopts a descent direction method to solve the problem. 

The descent direction method starts from an initial feasible solution, and iteratively updates the 

solution by moving towards a direction identified to reduce the objective function value. An 

appropriate step size is also incorporated in the updating procedure to overcome the fluctuations. 

In order to evaluate the convergence characteristics of the descent direction method, one has to 

prove that the adopted direction strictly decreases the objective function at every iteration. 

However, such proof requires evaluation of the derivatives, which is computationally burdensome 

in the problem presented in this study. Moreover, the existence of high levels of temporal and 

spatial correlations within the problem of activity scheduling in a dynamic network equilibrium 

framework makes the computation of derivatives very difficult. Therefore, one might not be able 
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to provide a mathematical proof of convergence of the algorithm for the problem. However, the 

convergence characteristics could be illustrated through analytical results. 

A bi-level solution approach to the problem is adopted, where the lower-level schedules 

are treated as fixed, and only path assignments get updated, while the upper-level schedule 

adjustments take place with the paths, thus travel times remain unchanged.  

4.2 Convergence Criteria 

The objective in this chapter is to obtain consistent schedules with realistic travel times, which 

are affected by the decisions of all system users. To obtain this consistency, the planned schedule 

is compared with the experienced (simulated) one, so as to reduce the gap between them. At the 

beginning of each day, individuals decide their planned daily trip chain schedule based on 

anticipated travel time. The daily trip chain schedule consists of a set of travel decisions made by 

different agents. These decisions include activities, destinations, departure time, transportation 

mode and route decisions. However, due to congestion and pricing, the experienced travel time 

may be different from the expected travel time, which would lead to an experienced schedule 

which is different from the planned one. To obtain a better travel experience, individuals could 

modify their schedule based on the updated travel time by changing departure time, activity 

duration and maybe routes. Then this modified schedule is fed into the DTA models to get an 

updated travel time, which leads to new schedule.  

Two different measures to represent the inconsistency between planned and experienced 

utilities are considered in this chapter to monitor the speed of convergence. The first gap measure 

is the inconsistent schedule penalty, as defined in the objective function (3-2). Another important 

measure of inconsistency between planned and experienced schedules is the number of households 
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with unrealistic schedules. Individuals plan their daily schedules based on anticipated travel times 

in the network. However, in the presence of congestion, experienced travel times might be longer 

than they anticipate. In some cases, travelers can accommodate these fluctuations in travel time by 

shortening activity durations. However, in some cases, travel times might be so long that the 

travelers cannot reach the destination of their current trip before their next planned trip starts, 

unless they could have unrealistic negative activity duration. In those cases, the schedule with 

negative activity duration is flagged as unrealistic. The number of households with unrealistic 

schedules is selected as a measure of inconsistency, as it reveals the impact of the experienced 

travel times on the planned schedules. As the number of households and individuals with 

unrealistic schedules decreases, the gap between planned travel times and experienced travel times 

is also likely decreasing. 

In addition to schedule inconsistency measures, the DTA relative gap is defined to track 

the performance of the mesoscopic simulation model, and the integration convergence in terms of 

travel time. The DTA relative gap is the relative difference between the generalized cost of the 

actual path and the optimal path from the last iteration, where the generalized cost includes 

monetized travel time (using value of time), and travel cost in terms of tolls.  

  

𝐷𝑇𝐴 𝑟𝑒𝑙𝑎𝑡𝑡𝑖𝑣𝑒 𝑔𝑎𝑝 =
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡
 

(4-3) 

In the next section, the proposed solution algorithm is presented in Figure 4, followed by 

description of adopted strategies and steps of the algorithm. 



62 
 

4.3 Algorithm 

 

Figure 4 Overall Steps of the Solution Algorithm 

4.3.1 Schedule Adjustment Strategies 

To select households for schedule adjustment, different selection strategies are proposed. 

Note that if we keep changing the schedule of all households in each iteration, in addition to 
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computational difficulties, there might be continual fluctuations in some users’ schedules, possibly 

resulting in diverging solutions between iterations. 

1. Unrealistic-only method: This selection method adjusts the schedules just for households 

with unrealistic schedules as defined in the research framework section. 

2. Random selection method: This selection method, in addition to all households with 

unrealistic schedules, adjusts other households randomly with a certain probability. 

Therefore, at each iteration, the household with a realistic schedule might be selected for 

the schedule adjustment with a probability of [
𝐵𝑒𝑡𝑎

1+𝑙𝑒𝑣𝑒𝑙 2 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
]. 

3. Penalty-based method: This selection method selects households based on the ratio of each 

household’s total inconsistent schedule penalty to the maximum inconsistent schedule 

penalty of the whole population. Households with higher total inconsistent schedule 

penalties have a higher chance of being selected for the schedule adjustment in this method. 

The probability of being adjusted is equal to: 

[
𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑

′
𝑠 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

(1+𝑙𝑒𝑣𝑒𝑙 2 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟)×𝑀𝑎𝑥 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦×𝑏𝑒𝑡𝑎2
]. Note that Beta2 is a user 

specified input parameter, which is used to control the number of households selected. 

4.3.2 Path Swap Strategies  

 In the first iteration of the integration, the roadway simulator finds the least generalized 

cost paths for all vehicles; these paths are then stored throughout the integration. In higher 

iterations of equilibrium, the roadway simulator only swaps the stored simulated paths to the 

optimal path, for the probabilistically selected individuals based on the generalized cost gap. Two 
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route swap strategies are proposed and tested, and the details of these strategies are described as 

follows. 

 

1. All travelers with global MSA strategy. This strategy incorporates the iteration number into 

the MSA factor. It swaps the simulated path to the optimal path for all individuals with a 

probability of  [
𝐷𝑇𝐴 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑎𝑝

𝐷𝑇𝐴 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟+𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
]  

2. All travelers without global MSA strategy. This strategy does not consider the integration 

iteration number when calculating the MSA factor. Therefore, it swaps the simulated path 

to the optimal path for all individuals with a probability of [
𝐷𝑇𝐴 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑎𝑝

𝐷𝑇𝐴 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟+1
] 

In the remainder of this section, we denote the DTA iteration number by 𝑛𝐷𝑇𝐴and the 

integration iteration number by 𝑛𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛. 

4.3.3 Steps of the Algorithm 

 

Step 0: Travelers’ trip itineraries obtained from the ABM model according to anticipated time 

dependent travel times, set 𝑛𝐷𝑇𝐴 = 1, and  𝑛𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 = 1 

Step 1: Load the activity-trip chain demand to the road network using a dynamic traffic assignment 

and simulation tool (DYNASMART) (Jayakrishnan et al. (1994); Mahmassani (2001); Halat et al. 

(2016)) to obtain an initial vector of path flows 𝑟𝑛𝐷𝑇𝐴 

Step 2: Find the search direction (Auxiliary paths) by performing the time dependent least 

generalized cost path finding  



65 
 

Step 3: Calculate the route choice probability, update the traveler’s path by switching travelers’ 

path to newly found least cost paths, and update the path flows 𝑟𝑛𝐷𝑇𝐴+1 (MSA-based gap reduction 

method) 

 𝑅𝑜𝑢𝑡𝑒 𝑆𝑤𝑎𝑝 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦: 
1

1+ 𝑛𝐷𝑇𝐴
∗

(experienced generalized path cost−least generalized path cost)

experienced generalized path cost
  

Or 

𝑅𝑜𝑢𝑡𝑒 𝑆𝑤𝑎𝑝 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦: 
1

1+ 𝑛𝐷𝑇𝐴+ 𝑛𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
∗

(experienced generalized path cost−least generalized path cost)

experienced generalized path cost
  

Step 4: If the average relative gap < threshold, or IterationDynasmart =Max IterationDynasmart, go to 

step 5; otherwise go to step 1  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝 =
(experienced generalized path cost − least generalized path cost)

experienced generalized path cost
 

Step 5: Load the demand to the network using a multimodal dynamic traffic assignment and 

simulation tool (NU-Trans) (Verbas et al. (2015); Verbas et al. (2016))  

Step 6: Perform the time dependent least cost hyper path finding algorithm 

Step 7: Update path assignments (MSA-Based Gap Reduction Method) 

Step 8: If the average relative gap < threshold, or IterationNU-Trans =Max Iteration NU-Trans, go to step 

8; otherwise go to step 5 

Step 9: Select the households for schedule adjustment adopting a selection strategy described 

earlier coupled with the MSA factor 
1

1+𝑛𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
 

Step 10: Find the optimal schedules, and adjust the schedules of the selected households (MSA 

Based Gap Reduction Method) 

Step 11: If the average inconsistent schedule penalty<threshold, stop; otherwise go to step 1  
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First, starting from a feasible desired schedule obtained from an ABM model, a dynamic 

network loading and simulation is performed. Then, a least generalized cost path finding procedure 

is performed to find the set of least cost paths, and update the path flows given a particular step 

size. The resulting time-dependent network conditions are obtained from the simulation of updated 

path flows. An optimal schedule-finding procedure is performed in the next level to find the set of 

feasible optimal schedules given the dynamic network conditions. An appropriate step size is used 

to modify the schedules of the selected subset of the households with certain deviations from their 

preferred schedule.  

This approach allows us to capture: 

 Individual schedule consistency: Activity start time should correspond to the preceding trip 

arrival time and activity end time should correspond to the following trip departure time.  

In the existing ABMs, certain steps have been made to ensure a partial consistency between 

departure and arrival times, as well as duration at the entire-tour level. The proposed 

approach in this study, however, allows one to include trip details, and control for 

feasibility of travel times within the tour framework. Certain attempts to incorporate trip 

departure time choice in a framework of trip chains have been made within DTA models, 

DYNASMART in particular. However, these attempts were limited to the tour level only, 

and also required a simplified representation of activity duration profiles. This constraint 

was specifically addressed in the course of the current study by developing a schedule 

adjustment algorithm and corresponding software module.  

 Physical flow process properties: These “hard” constraints apply to the network loading 

and flow propagation aspects in DTA procedures.  Physical principles, such as 
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conservation of vehicles at nodes, are adhered to strictly (e.g. no vehicles should simply be 

lost or otherwise disappear from the system). Thus, travel times that are used to equilibrate 

the schedule are fully consistent with the DTA network state. 

 Equilibrium travel times: Travel times between activities in the schedule generated by the 

demand model should correspond to realistic network travel times for the corresponding 

origin, destination, departure time, and route generated by the traffic simulation model with 

the given demand. While most of the ABMs include a certain level of demand-supply 

equilibration, they are limited to achieving stability in terms of average travel times. There 

is no control for consistency within the individual daily schedule. The challenge is to 

couple this constraint with the previous one, i.e. ensure individual schedule continuity with 

equilibrium travel times.  This is addressed in the current study by monitoring schedule 

inconsistency in the equilibration.     

 Realistic activity timing and duration: Activities in the daily schedule have to be placed 

according to behaviorally-realistic temporal profiles. Each activity has a preferred start 

time, end time, and duration formalized as a utility function with multiple components. In 

the presence of congestion and pricing, travelers may deviate from the preferred temporal 

profiles (including even cancel or change order of activity episodes). However, this 

rescheduling process should obey utility-maximization rules over the entire schedule and 

cannot be effectively modeled by simplified procedures that adjust departure time for each 

trip separately.  None of the existing operational ABMs explicitly control for activity 

durations, although some of them control for entire-tour durations, or the duration of the 

activity at the primary destination.  DTA models that incorporate departure time choice 
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have been bound to a simplified representation of temporal utilities and limited to trip 

chains in order to operate within a feasible dimensionality of the associated choices when 

combined with the dynamic route choice. This constraint expresses consistency between 

activity start and end times as controlled by the schedule adjustment module.                         

4.4 Integration Components 

The major components used to implement the integration of DTA and schedule adjustment 

modules are a roadway simulator (DYNASMART), a transit simulator (NU-TRANS), a schedule 

adjustment module, and the Tour Processor.  

DYNASMART performs the roadway simulation and dynamic traffic assignment. It 

models the evolution of traffic flows in a traffic network resulting from the decisions of individual 

travelers seeking to fulfill a chain of activities at different locations in a network, over a given 

planning horizon. Each DTA run consists of an outer loop and an inner loop. In the outer loop, the 

time dependent shortest paths (TDSP) are calculated, and an initial traffic assignment and 

simulation is performed. Once the outer loop is completed, the inner loop swaps the simulated 

paths of selected travelers to optimal paths found among the existing paths of the last outer 

iteration. This method reaches the user equilibrium faster than generating new paths at each 

iteration, as the shortest path calculation is time consuming. The overall framework of 

DYNASMART on activity trip chains is discussed in depth in Chapter 6 of this study. 

NU-TRANS is a multi-modal transit network analysis and evaluation tool. With its three 

main components, it is capable of finding a multi-modal, time-dependent least cost hyperpath (i.e. 

optimal strategy) for a transit passenger with a given origin, destination, departure time and user-

specific attributes. Additionally, it assigns passengers probabilistically to an elementary path 
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derived from the optimal strategy, and simulates pedestrians, bicyclists, passengers and transit 

vehicles second-by second on a large-scale transit network. More details on the transit simulator 

used in this study (NU-TRANS) can be found in (Verbas et al. (2015); Verbas et al. (2016)). 

The Tour Processor rearranges the ABM output into vehicle trip chains subsequently 

loaded onto the highway and transit networks by DYNASMART and NU-TRANS, respectively.  

The Tour Processor takes the information from ABM as the input file, and reorganizes them into 

the format required by the multi-modal microsimulation. It also takes care of data transfers inside 

the multi-modal microsimulation between the NU-TRANS and DYNASMART (such as stop 

specific dwell times, park-and-ride and kiss-and-ride intermediate transit destinations, experienced 

travel time of buses, etc.). The schedule adjustment module is called by the Tour Processor to 

generate new travelers’ activity schedules based on the simulated travel time.  

The schedule adjustment module adjusts the individual activity-travel schedules (activity 

start and end times, or equivalently trip arrival and departure times) generated by the ABM based 

on the individual simulated travel times produced by DYNASMART and NU-TRANS, to ensure 

the schedule consistency for each person and household. For each household, the total schedule 

inconsistent penalty is calculated as described in Section 3.2. This penalty is used as the objective 

function of the Individual Schedule Adjustment Model. 

The DTA Gap in DYNASMART and NU-TRANS is defined as the difference between the 

generalized cost of the actual path and the optimal path, calculated based on the latest traffic 

simulation.  

A methodology and solution algorithm was introduced in Sections 4.1 to 4.4. As was discussed 

in Chapter 3, the existence or uniqueness of a solution to the equilibrium problem defined in this 
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dissertation are not guaranteed. However, the algorithmic convergence of the proposed solution 

method could be demonstrated through numerical results. In the next section, the above 

methodology, including different schedule adjustment strategies, are applied for the integration on 

a test network as the case study. Note that the above-mentioned convergence criteria are 

incorporated to assess these different strategies. Further, the author aims to represent the 

convergence characteristics and applicability of the proposed solution algorithm to large-scale 

real-world networks through numerical results. 

4.5 Numerical Results 

4.5.1 Sub-area Test Network 

The network considered in this chapter is the Chicago sub-area network (Figure 5), which 

is extracted from the Chicago full regional network. There are 13 freeways, 334 arterials, 137 

nodes, and 57 traffic analysis zones (TAZ) in the network. The simulation runs start at 3:00 AM 

and lasts for 24 hours. A total of 84,954 travelers from 34,170 households are considered for the 

simulation. Each simulated traveler has at least one activity in its schedule, and the maximum 

number of activities considered here is 21. The results presented here for the sub-area test network 

are based on 10 iterations, with the MSA factor of  1 1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁄  for the schedule adjustment 

and 1
1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑇𝐴 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁄ for the DTA module. For more detailed discussion of the 

numerical convergence under various MSA strategies, we refer the reader to Xiang (Alex) Xu ( 

2017). 

 



71 
 

 
 

Figure 5 Sub-area Network Configuration 

 

To show the effects of different MSA factors, two runs are set up for 10 iterations of the 

integrated framework. Both runs calculate the schedule adjustment probability based on the 

random selection method: (1) households with unrealistic schedules are selected with 100% chance 

(2) other households are selected randomly with a probability of 25% in the first iteration of level 

2 integration. This probability decreases with the MSA factor for higher iterations. The first 

scenario considers both DTA iteration number and integration (global) iteration number to 

calculate the MSA factor for the roadway simulator, while the second scenario only considers the 

DTA iteration number. The number of households selected for the schedule adjustment is similar 

in these two scenarios.  
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(a) Number of households with modified schedule  

 

(b) Average inconsistent schedule penalty 

 

(c) Number of households with unrealistic schedules 

Figure 6 Comparison of scenarios w/-w/o Integration iteration number in DTA MSA 
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Figure 6(a) and 6(b) compare the performance of the two scenarios in terms of the number 

of households, subject to schedule adjustment and the average inconsistent schedule penalty, 

respectively. Figure 6(c) compares the other gap measure, the number of households with 

unrealistic schedules. All measures decrease faster and have a smaller final value in the first 

scenario wherein the MSA factor includes the integration iteration number. Based on the findings 

in Figure 6, the MSA factor that includes the iteration number of integration is selected for the 

subsequent numerical results. 
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(a) Number of households with modified schedule  

 

(b) Average inconsistent penalty 

 

(c) Number of households with unrealistic schedules 

 
Figure 7 Comparison of different selection strategies for the schedule adjustment 
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Figure 7 compares the performance of three schedule adjustment selection strategies. The 

unrealistic-only method adjusts the schedule for households with unrealistic schedules. The 

random selection method, in addition to households with unrealistic schedules, selects other 

households randomly with a probability of 25% in the first iteration. The penalty-based method 

selects households with unrealistic schedules with 100% probability and other households with a 

probability calculated based on the inconsistent schedule penalty. Figure 7(a) shows that the 

unrealistic-only method selects the least number of households at each iteration, while the random 

method selects the most. Although the three methods select a different number of households, the 

number of households with unrealisic schedules are reduced in similar patterns (see Figure 7(b)). 

The final values in all three scenarios are close to each other. However, the penalty-based method 

generates greater and faster reduction in the average inconsistent schedule penalty, as shown in 

Figure 7(c). This shows that defining two convergence measures helps to distinguish these 

different strategies. Based on this figure, we select the penalty-based approach for the numerical 

results on the large-scale network presented in the next section. 

4.5.2 Chicago Full Regional Network 

In this section, the applicability of the proposed solution algorithm to a large-scale network, 

namely the Chicago full regional network, is presented. The network is displayed in Figure 8; it 

covers part of Illinois, Indiana, and Wisconsin, and is bound by Lake Michigan to the east. There 

are 1400 freeway corridors including I-90, I-94, I-55, I-80, etc., as well as 36,722 arterials. The 

network has 13,093 nodes, 40,443 links and 1,961 traffic analysis zones (TAZ). A total of 

2,262,300 travelers are considered, each having at least one trip in their itineraries. The simulations 

start at 3:00 AM, and last for 24 hours. Note that our focus here is to show the applicability of the 
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algorithm to large-scale networks, meaning we do not aim to analyze different MSA factors or 

household selection strategies.  

 

Figure 8 Chicago Full Regional Network Configuration 

 

 

Figure 9 represents variations of a measure of gap with the iteration number. The 

represented measure is the number of households/travelers with unrealistic schedules (negative 

activities), where one or more of their trip travel times are so long that they cannot accommodate 

it by shortening their activity duration. As can be seen, both the number of travelers and number 

of households with unrealistic schedules decrease as the iteration number increases. 
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Figure 9 Number of Households and Travelers with Negative Activity (NA) 

 

4.6 Summary  

In this chapter a solution algorithm was proposed for the equilibrium problem defined in 

Chapter 3. The proposed algorithm was performed on two networks of different sizes, and it was 

shown that the adopted methodology results in reduction in the gap measures (algorithmic 

convergence). The next chapter provides a variation of the equilibrium problem addressed in 

Chapters 3 and 4, by allowing individuals to cancel (remove) and activity from their preplanned 

activity chains.   
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5 INCORPORATION OF ACTIVITY CANCELLATION 

In this chapter, the disutility and equilibrium models presented in Chapter 3 are extended 

through the incorporation of activity/trip cancellation. Unlike the problem presented in Chapter 3, 

the number of activities/trips of a given individual is dynamic; however, the order of the activities 

remains fixed. In other words, individuals have a set of preplanned activities, which they do not 

wish to reorder, but can cancel (remove) one activity from their preplanned activity chain. The 

presentation in this chapter follows the same general structure as the previous chapter.  Many 

details and steps are similar; however, they are repeated here for completeness. 

5.1 Problem Statement 

A dynamic network is considered, where 𝜏0 is assumed as the earliest possible departure 

time from all origin nodes, 𝜎 as a small time interval during which no noticeable change in traffic 

conditions happens, and 𝐾 as a large value in a way that 𝜏0 + 𝐾𝜎 covers the entire planning 

horizon. The planning horizon is considered to be discretized into a set of smaller intervals 𝛤 =

{𝜏0, 𝜏0 + σ, 𝜏0 + 2σ, 𝜏0 + 3σ, … , 𝜏0 + 𝐾σ}. A total of 𝐻𝐻 households is assumed to comprise the 

network, each having 𝑀(ℎℎ) members, resulting in total of 𝐼𝑇 individual travelers. The set 𝑗 is 

defined as the set containing the household members that make joint trips and the associated joint 

trips, and the set Ę = {1,2, … , IT} comprises individual travelers in the network. In the formulation 

presented in this section, our assumption is that no loops exist in the traveler’s agenda. 

It is assumed that each household member 𝑖 has a set of preferred activity arrival 𝐴𝑖
𝑜𝑑, 

departure 𝐷𝑖
𝑜𝑑, and duration time 𝑇𝑖

𝑜𝑑for each trip from 𝑜 to 𝑑 within his/her agenda. The author 

associates measures of schedule inconsistency, capturing the early (𝐸)  or late (𝐿) 

arrivals/departures to/from and/or duration deviations, for all activities. Associated with each type 



79 
 

of schedule inconsistency, three penalty factors are considered: a fixed penalty (𝐹𝑃𝑖), a variable 

penalty (𝑃𝑖), and penalty for above a certain threshold (𝑃𝑏𝑖
).  

 

𝑃𝐿𝐷
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐿𝐷

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐿𝐷

𝑖,𝑚,𝑜𝑑
, 𝑃𝐿𝐷

𝑖,𝑚,𝑜𝑑)  Penalty associated with the late 

departure of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚  

𝑃𝐸𝐷
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐸𝐷

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐸𝐷

𝑖,𝑚,𝑜𝑑
, 𝑃𝐸𝐷

𝑖,𝑚,𝑜𝑑)  Penalty associated with the early 

departure of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚 

𝑃𝐿𝐴
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐿𝐴

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐿𝐴

𝑖,𝑚,𝑜𝑑
, 𝑃𝐿𝐴

𝑖,𝑚,𝑜𝑑)  Penalty associated with the late 

arrival of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚 

𝑃𝐸𝐴
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐸𝐴

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐸𝐴

𝑖,𝑚,𝑜𝑑
, 𝑃𝐸𝐴

𝑖,𝑚,𝑜𝑑)  Penalty associated with the early 

arrival of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚 

𝑃𝐿𝑇
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐿𝑇

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐿𝑇

𝑖,𝑚,𝑜𝑑
, 𝑃𝐿𝑇

𝑖,𝑚,𝑜𝑑)       Penalty associated with the activity 

duration lengthening of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚  

𝑃𝐸𝑇
𝑖,𝑚,𝑜𝑑: ( 𝐹𝑃𝐸𝑇

𝑖,𝑚,𝑜𝑑, 𝑃𝑏
𝐸𝑇

𝑖,𝑚,𝑜𝑑
, 𝑃𝐸𝑇

𝑖,𝑚,𝑜𝑑)  Penalty associated with the activity 

duration shortening of trip form 𝑜 to 𝑑 of traveler 𝑖 with user class 𝑚 

𝑇𝑆𝐼𝑛
𝑖,𝑚,𝑜𝑑

 Threshold associated with the schedule inconsistency of type 𝐼𝑛 for trip form 𝑜 to 

𝑑 of traveler 𝑖 with user class 𝑚 

𝛿𝑆𝐼𝑛
𝑖,𝑜𝑑: (𝛿𝐷𝐿,𝐸

𝑖,𝑜𝑑, 𝛿𝐴𝐿,𝐸
𝑖,𝑜𝑑, 𝛿𝑇𝐿,𝐸

𝑖,𝑜𝑑)    Schedule inconsistency of type 𝐼𝑛 for trip from 𝑜 to 𝑑 of 

traveler 𝑖 with user class 𝑚 

∆𝑆𝐼𝑛
𝑖,𝑚,𝑜𝑑: (∆𝐷𝐿,𝐸

𝑖,𝑜𝑑, ∆𝐴𝐿,𝐸
𝑖,𝑜𝑑, ∆𝑇𝐿,𝐸

𝑖,𝑜𝑑)   Inconsistent schedule penalty of type 𝐼𝑛 for trip from 𝑜 

to 𝑑 of traveler 𝑖 with user class 𝑚      
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∆𝑆𝑖,𝑚,𝑜𝑑         Inconsistent schedule penalty for trip from 𝑜 to 𝑑 of traveler 𝑖 with user class 

𝑚                      

∆𝑆𝐼𝑛
𝑖,𝑚,𝑜𝑑

= {
𝐹𝑃𝐼𝑛

𝑖,𝑚,𝑜𝑑 + 𝑃𝐼𝑛
𝑖,𝑚,𝑜𝑑×𝛿𝑆𝐼𝑛

𝑖,𝑜𝑑                                                         𝛿𝑆𝐼𝑛
𝑖,𝑜𝑑 < 𝑇𝑆𝐼𝑛

𝑖,𝑜𝑑 

𝐹𝑃𝐼𝑛
𝑖,𝑚,𝑜𝑑 + 𝑃𝐼𝑛

𝑖,𝑚,𝑜𝑑×𝛿𝑆𝐼𝑛
𝑖,𝑜𝑑 + 𝑃𝑏

𝐼𝑛
𝑖,𝑜𝑑

×(𝛿𝑆𝐼𝑛
𝑖,𝑜𝑑 − 𝑇𝑆𝐼𝑛

𝑖,𝑜𝑑)          𝛿𝑆𝐼𝑛
𝑖,𝑜𝑑 > 𝑇𝑆𝐼𝑛

𝑖,𝑜𝑑 
 

 

 

(5-1) 

∆𝑆𝑖,𝑚,𝑜𝑑 = ∆𝑆𝐷
𝑜𝑑 + ∆𝑆𝐴

𝑜𝑑 + ∆𝑆𝑇
𝑜𝑑

 

A time space diagram of individual activity sequences and travel choices is 

depicted in Figure 10.  

 

   (5-2) 

 

Figure 10 Time Space Network Representation 

 

Other notations are as follows: 



81 
 

𝑜 Subscript belonging to an origin node 

𝑑 Subscript belonging to a destination node 

𝜏           Subscript for a departure time interval 

𝑜0         Subscript denoting origin of the first trip  

𝑑0         Subscript denoting destination of the last trip  

𝑃(𝑜, 𝑑)   The set of all feasible paths associated with 𝑜, 𝑑 pair 

𝑝 Subscript for a path 𝑝 ∈ 𝑝(𝑜, 𝑑, ) 

𝑡𝑟 Subscript corresponding to trip 𝑡𝑟 of traveler  

𝑇𝑅(𝑖) Number of trips of traveler 𝑖  

 𝜑𝑖  The set containing feasible origin destination pairs (in a predefined order, i.e. activities can 

only be skipped for cancellation purposes) associated with planned trips of individual 𝑖 

𝑋𝑖,𝑜𝑑
𝜏𝑝

    Binary decision variable equal 1 if traveler 𝑖 chooses to have a trip from 𝑜 to 𝑑 on path 𝑝 

at departure time interval 𝜏, and 0 otherwise 

𝑟𝑜𝑑
𝜏,𝑝

     Number of trips from 𝑜 to 𝑑  departing 𝑜 at time interval 𝜏 and assigned to path 𝑝 

𝑟          Vector of path flows 

𝑟′         Link flow vector 

𝐵          Link-path incidence matrix 

𝑓𝑎,𝑡(𝑟′
𝑎,𝑡) Travel time on link a at time t as a function of flow on link a at time t 

𝐺𝐶𝑜𝑑,𝑚
𝜏,𝑝

  Path generalized cost for individuals of user class 𝑚 departing path 𝑝 at departure time 𝜏  

𝑇𝑇𝑜𝑑
𝜏,𝑝

  Experienced path travel time for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 



82 
 

𝑇𝐶𝑜𝑑
𝜏,𝑝

  Experienced path travel cost for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 

∆𝑈𝑖  Disutility function of traveler i associated with deviations from preferred schedule 

We define the following scheduling equations for ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖: 

The disutility associated with the schedule/route choice of an individual traveler 𝑖 can be 

considered as the summation of travel cost and schedule inconsistency as follows: 

 

∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝 ×𝐺𝐶𝑜𝑑,𝑚

𝜏,𝑝 + 𝑋𝑖,𝑜𝑑
𝜏,𝑝 × ∆𝑆𝑖,𝑚,𝑜𝑑

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑜𝑑∈𝜑𝑖

         ∀𝑖 ∈ Ę (5-3) 

 

However, individuals’ activity scheduling decisions are dependent on other household 

members. For instance, they may adjust their departure time in a manner consistent with other 

members who are participants of a joint trip. Hence, it is essential that the disutility be attributed 

to the whole household, leading to the following definition of household disutility for every 

household ℎℎ:  

∑ ∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝 ×𝐺𝐶𝑜𝑑,𝑚

𝜏,𝑝 + 𝑋𝑖,𝑜𝑑
𝜏,𝑝 ×∆𝑆𝑖,𝑚,𝑜𝑑

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑜𝑑∈𝜑𝑖

𝑀(ℎℎ)

𝑖=1

  (5-4) 

 

 

The decision variable 𝑋𝑖,𝑡𝑟
𝜏,𝑝

 should satisfy the following conditions: 

 

0 ≤ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤

≤ 1       ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 
(5-5) 

                  
(5-6) 
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𝑇𝑅(𝑖) − 1 ≤ ∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑜𝑑∈𝜑𝑖

≤ 𝑇𝑅(𝑖)       ∀𝑖 ∈ Ę 

 

∑ ∑ ∑ 𝑋𝑖,𝑜0𝑑
𝜏,𝑝

𝑝∈𝑃(𝑜0,𝑑)

= 1

𝜏∈𝛤𝑜0𝑑∈𝜑𝑖

          ∀𝑖 ∈ Ę  

 

(5-7) 

 

∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑜𝑑∈𝜑𝑖

− ∑ ∑ ∑ 𝑋𝑖,𝑑𝑤
𝜏,𝑝

𝑝∈𝑃(𝑑,𝑤)𝜏∈𝛤𝑑𝑤∈𝜑𝑖

= 0         ∀𝑑 ∈ 𝛯𝑖 

 

(5-8) 

 

∑ ∑ ∑ 𝑋𝑖,0𝑑0

𝜏,𝑝

𝑝∈𝑃(𝑜,𝑑0)

= 1

𝜏∈𝛤𝑜𝑑0∈𝜑𝑖

       ∀𝑖 ∈ Ę  

 

(5-9) 

 

𝑋𝑖,𝑜𝑑
𝜏,𝑝 = 𝑋𝑖′,𝑜𝑑

𝜏,𝑝
    ∀𝑗 ∈ 𝐽, ∀(𝑖, 𝑜𝑑) ∈ 𝑗, ∀(𝑖′, 𝑜𝑑) ∈ 𝑗 

 

(5-10) 

 

𝑋𝑖,𝑜𝑑
𝜏,𝑝 ∈ {0,1}   ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖, 𝜏 ∈ 𝛤 

 

(5-11) 

 

Inequality (5-5) ensures that all trips by the individual are assigned at most one path. Due 

to the author’s assumption on allowing at most one of the traveler’s trips to be cancelled, there 

should be exactly one path assigned to trips that are not cancelled, and a maximum of 𝑇𝑅(𝑖) − 1 

paths assigned to traveler 𝑖. Equation (5-6) ensures that a traveler has at most one cancelled trip, 

and all the other trips of the traveler are assigned exactly one path. Equation (5-7) enforces that a 

traveler has exactly one trip out of the origin of the first trip in the traveler’s trip chain, with exactly 

one path assigned to it. Equation (5-8) ensures the connectivity of the consecutive trips of the 

traveler, where 𝛯𝑖 is the set including all destination nodes in the travel agenda of traveler 𝑖. 
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Equation (5-9) enforces that a traveler has exactly one trip to the final destination, with exactly 

one path assigned to it. Equation (5-10) maintains the consistency of travel choices of travelers 

who have joint trips. Equation (5-11) restricts the decision variable to be a binary variable, which 

only takes values 0 or 1.  

The travel/route decisions of all individuals in the network result in path flows, which in 

turn yield the path travel times and generalized costs: 

∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝

𝑜𝑑∈𝜑𝑖

𝐼𝑇

𝑖=1

=  𝑟𝑜𝑑
𝜏,𝑝                              ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝 ∈ 𝑃(𝑜, 𝑑) (5-12) 

 

𝑟′ = 𝐵. 𝑟 

 

(5-13) 

 

𝑇𝑇𝑜𝑑
𝜏,𝑝 = ∑ 𝑓𝑎,𝑡(𝑟𝑎,𝑡

′ )
(𝑎,𝑡)∈(𝑝,𝜏)

                      ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝 ∈ 𝑃(𝑜, 𝑑) 

 

(5-14) 

 

𝐺𝐶𝑜𝑑,𝑚
𝜏,𝑝 = 𝛼(𝑚) ∗ 𝑇𝑇𝑜𝑑

𝜏,𝑝 + 𝑇𝐶𝑜𝑑
𝜏,𝑝            ∀ 𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷, 𝜏 ∈ 𝛤, 𝑝

∈ 𝑃(𝑜, 𝑑), 𝑚 ∈ 𝑀 

 

(5-15) 

 

Equation (5-12) relates the flow on route 𝑝 and departure time 𝜏 to decision variables 𝑋𝑖,𝑡𝑟
𝜏,𝑝

 

of all travelers in the network. Equation (5-13) yields the dynamic link flows, and equation (5-14) 

defines the dynamic path travel time as dependent on the dynamic link flows. In equation (5-14), 

(𝑎, 𝑡) consists of the links (𝑎) that belong to the path (𝑝) as well as the associated link departure 

times (𝑡), which for each link is defined by the addition of previous links’ dynamic travel times to 

the first link’s departure time (𝜏).  
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𝐷𝑒𝑝𝑖
𝑡𝑟    Adjusted departure time of trip 𝑡𝑟 of individual 𝑖 

𝐴𝑖
𝑜𝑑        Desired arrival time of the trip from 𝑜 to 𝑑 of traveler 𝑖  

𝐷𝑖
𝑜𝑑       Desired departure time of the trip from 𝑜 to 𝑑 of traveler 𝑖  

𝑇𝑖
𝑜𝑑 Desired duration of activity at  𝑑  following the trip from 𝑜 to 𝑑 of traveler 𝑖  

𝑇𝑖
𝑡𝑟𝑀𝑖𝑛

    Minimum duration of activity following trip 𝑡𝑟 of traveler 𝑖 

 

Additionally, the following scheduling constraints are defined for ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖: 

 

𝐷𝑒𝑝𝑖
𝑜𝑑 ≥ 𝜏× ∑ 𝑋𝑖,𝑜𝑑

𝜏,𝑝

𝑝∈𝛲(𝑜,𝑑)

      ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖, 𝜏 ∈ 𝛤 

 

(5-16) 

 ∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝 ×(𝐷𝑒𝑝𝑖

𝑜𝑑 + 𝑇𝑇𝑖,𝑜𝑑
𝜏,𝑝 + 𝑇𝑖

𝑜𝑑𝑀𝑖𝑛
)

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑜𝑑∈𝜑𝑖

 

≤ ∑ ∑ ∑ 𝑋𝑖,𝑜𝑑
𝜏,𝑝 × 𝐷𝑒𝑝𝑖

𝑑𝑤

𝑝∈𝑃(𝑜,𝑑)𝜏∈𝛤𝑑𝑤∈𝜑𝑖

    ∀𝑖 ∈ Ę, ∀𝑑 ∈ 𝛯𝑖 

(5-17) 

 

𝐷𝑒𝑝𝑖
𝑜𝑑 ≥ 0              ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

 

(5-18) 

 

For the sake of simplicity, a new term is introduced to represent the travel time that a 

traveler experiences on path 𝑝:  𝐸𝑇𝑇𝑖
𝑜𝑑 = ∑ ∑ 𝑋𝑖,𝑜𝑑

𝜏,𝑝 ∗ 𝑇𝑇𝑖,𝑜𝑑
𝜏,𝑝

𝑝∈𝛲(𝑜𝑑)𝜏∈𝛤  

Inequality (5-16) enforces that 𝐷𝑒𝑝𝑖
𝑡𝑟 be as large as the selected departure time 𝜏. 

Constraint (5-17) ensures the temporal consistency of the subsequent trips of a traveler (𝑖), i. e. no 



86 
 

trip can depart earlier than its previous trip. Constraint (5-18) restricts the departure time variable 

to be nonnegative. 

𝛿𝑆𝐿𝐴
𝑖,𝑜𝑑 = {

𝐷𝑒𝑝𝑖
𝑜𝑑 + 𝐸𝑇𝑇𝑖

𝑜𝑑 − 𝐴𝑖
𝑜𝑑           𝐷𝑒𝑝𝑖

𝑜𝑑 + 𝐸𝑇𝑇𝑖,𝑜𝑑 ≥ 𝐴𝑖
𝑜𝑑

0                                                𝐷𝑒𝑝𝑖
𝑜𝑑 + 𝐸𝑇𝑇𝑖,𝑜𝑑 < 𝐴𝑖

𝑜𝑑               

 ∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-19) 

𝛿𝑆𝐸𝐴
𝑖,𝑜𝑑 = {

𝐴𝑖
𝑜𝑑 − 𝐷𝑒𝑝𝑖

𝑜𝑑 + 𝐸𝑇𝑇𝑖
𝑜𝑑          𝐴𝑖

𝑜𝑑  ≥  𝐷𝑒𝑝𝑖
𝑜𝑑 + 𝐸𝑇𝑇𝑖,𝑜𝑑

0                                               𝐴𝑖
𝑜𝑑 <  𝐷𝑒𝑝𝑖

𝑜𝑑 + 𝐸𝑇𝑇𝑖,𝑜𝑑
           

∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-20) 

𝛿𝑆𝐿𝐷
𝑖,𝑜𝑑 = {

𝐷𝑒𝑝𝑖
𝑜𝑑 − 𝐷𝑖

𝑜𝑑                            𝐷𝑒𝑝𝑖
𝑜𝑑 ≥ 𝐷𝑖

𝑜𝑑

0                                                𝐷𝑒𝑝𝑖
𝑜𝑑 < 𝐷𝑖

𝑜𝑑             

∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-21) 

𝛿𝑆𝐸𝐷
𝑖,𝑜𝑑 = {

𝐷𝑖
𝑜𝑑 − 𝐷𝑒𝑝𝑖

𝑜𝑑                           𝐷𝑖
𝑜𝑑 ≥ 𝐷𝑒𝑝𝑖

𝑜𝑑

0                                                𝐷𝑖
𝑜𝑑 < 𝐷𝑒𝑝𝑖

𝑜𝑑             

∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-22) 

𝛿𝑆𝐿𝑇
𝑖,𝑜𝑑

= {
𝐷𝑒𝑝𝑖

𝑑𝑤 − 𝐸𝑇𝑇𝑖
𝑜𝑑 − 𝐷𝑒𝑝𝑖

𝑜𝑑 − 𝑇𝑖
𝑜𝑑          𝐷𝑒𝑝𝑖

𝑑𝑤 − 𝐸𝑇𝑇𝑖
𝑜𝑑 − 𝐷𝑒𝑝𝑖

𝑜𝑑 ≥ 𝑇𝑖
𝑜𝑑

0                                                                    𝐷𝑒𝑝𝑖
𝑑𝑤 − 𝐸𝑇𝑇𝑖

𝑜𝑑 − 𝐷𝑒𝑝𝑖
𝑜𝑑 < 𝑇𝑖

𝑜𝑑        

∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-23) 

𝛿𝑆𝐸𝑇
𝑖,𝑜𝑑 =

= {
𝑇𝑖

𝑜𝑑 − 𝐷𝑒𝑝𝑖
𝑑𝑤 + 𝐸𝑇𝑇𝑖

𝑜𝑑 + 𝐷𝑒𝑝𝑖
𝑜𝑑         𝐷𝑒𝑝𝑖

𝑡𝑟+1 − 𝐸𝑇𝑇𝑖
𝑡𝑟 − 𝐷𝑒𝑝𝑖

𝑡𝑟 ≥ 𝑇𝑖
𝑡𝑟

0                                                                    𝐷𝑒𝑝𝑖
𝑡𝑟+1 − 𝐸𝑇𝑇𝑖

𝑡𝑟 − 𝐷𝑒𝑝𝑖
𝑡𝑟 < 𝑇𝑖

𝑡𝑟        

∀𝑖 ∈ Ę, 𝑜𝑑 ∈ 𝜑𝑖 

(5-24) 
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 Equations ((5-19)-(5-24)) represent the schedule inconsistency terms, which are defined as 

functions of departure times. 

 In this section, a disutility function associated with an individual’s travel pattern is defined. 

Assuming each individual traveler as a user who makes travel choices to minimize experienced 

disutility, a user equilibrium framework is adopted in the next section based on the following 

conceptual framework stated in Chapter 3, which is reiterated here. In the real world, individuals 

make travel choices to participate in a sequence of activities. However, when executed, their travel 

experience may not be consistent with the planned schedules due to congestion, accidents, transit 

delays, etc. As a result, they try to minimize the associated disutility by making adjustments to 

their activity/travel choices. They continue the adjustment process until they cannot achieve any 

further improvement, meaning that the system reaches an equilibrium state. Therefore, an ideally-

equilibrated network can be viewed as the one in which individuals’ planned schedules will be 

replicated when executed. In other words, at the equilibrium state, none of the travelers are able to 

decrease their disutility by changing departure times (schedule) or switching paths associated with 

their trips. In the next section, a user equilibrium problem formulation is presented based on the 

defined disutility. 

5.2 Model Formulation 

 

The equilibrium problem can be conceptually formulated as a fixed-point equilibrium 

problem in the closed, bounded, and convex path flow space 𝛺: 

 

𝑟∗ = 𝑅(𝐴𝐶(𝑆𝐴 (𝑆𝑃(𝐶(𝑟∗))))) (5-25) 
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𝑟∗  Vector of optimal path flows 

𝐶  Vector of path costs 

𝑆𝑃   Vector of schedule penalties 

𝑆𝐴   Schedule adjustment operator 

𝐴𝐶  Activity cancellation function 

𝑅  Path assignment operator  

  

𝑟∗ represents the equilibrium dynamic path flow vector obtained from the dynamic traffic 

assignment model. The path cost function 𝐶 produces time-dependent path generalized costs (or 

travel times) and is a function of the vector of dynamic path flows 𝑟. 𝑆𝑃 is the vector of schedule 

penalties (schedule disutility) and is considered to be a function of dynamic path costs. 𝑆𝐴 is the 

schedule adjustment function, which produces the vector of desired trip departure times, arrival 

times, and activity durations for all activities of travelers. 𝐴𝐶 is the activity cancellation operator, 

which applies a particular selection strategy in choosing the travelers as well as the trips to be 

cancelled, resulting in updated activity sequences for the selected travelers. Path assignment 

operator 𝑅 yields the flow on all paths at each departure time interval based on adjusted travelers’ 

schedules.  

Problem Challenges 

 Since the existence of a solution for a fixed-point formulation depends on continuity of the 

functions, there is no guarantee that a solution exists for this problem formulation. That is, the 

problem formulation presented here comprises an activity cancellation function, which leads to 

discontinuities; thus, the problem might not have any solution. 
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As mentioned earlier, an ideally-equilibrated network can be viewed as one in which 

individuals’ planned schedules will be replicated when executed. Hence, one might approach the 

equilibrium problem by attempting to minimize the gap between the experienced travel patterns 

and optimal/desired paths and schedules. In this problem formulation, every user faces a choice 

set of departure times and routes. The existence of multiple feasible departure times and paths 

connecting each origin-destination pair makes the size of the choice set considerably large. 

Moreover, the size of the choice set grows to infinity in a continuous setting. In addition, 

complexities arise due to constraints imposed by the interdependencies of household members as 

well as the spatial and temporal interdependencies of trip chains, which have to be taken into 

account in the dynamic user equilibrium assignment of trip chains to the transportation network. 

Hence, we break the problem into two sub-problems and we define two gap measures, one for the 

dynamic traffic assignment and one for the household activity schedule adjustment problem.  

∑ ∑ ∑ ∑ ∑ 𝑟𝑜𝑑,𝑚
𝜏,𝑝  [𝐺𝐶 𝑜𝑑,𝑚

𝜏,𝑝 (𝛼, 𝑟) − 𝐺𝐶∗
𝑜𝑑,𝑚
𝜏 ]

𝑝∈𝑝(𝑜,𝑑)

𝑀

𝑚=1

𝛵

𝜏=1𝑑∈𝐷𝑜∈𝑂

 

(5-26) 

 

∑ ∆𝑆𝑖

𝐼𝑇

𝑖=1

 

(5-27) 

 

 

A network equilibrium framework is adopted in approaching the problem, which is 

discussed in the following section. 
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5.3 Methodology 

 

As mentioned earlier, the solution approaches to fixed-point formulations often involve 

derivative computations or require computationally burdensome direction-finding search 

procedures. In large size problems, ones with noisy functions, or when there is no closed form 

defined, such as in this study, these solution approaches should be avoided. Therefore, a descent 

direction method is adopted to solve the problem. As discussed in Chapter 4, the descent direction 

method is based on the following framework: starting from an initial feasible solution, the solution 

gets iteratively updated by moving towards a direction that results in reductions in the objective 

function. In order to overcome the fluctuations, an appropriate step size is also incorporated in the 

updating procedure. Evaluations of the convergence characteristics of the descent direction method 

involve proving that the objective function strictly decreases at every iteration given the adopted 

direction. However, derivative evaluations are required in performing such a proof, which as 

discussed earlier is computationally intensive for the current problem. Moreover, the existence of 

high levels of temporal and spatial correlations within the problem of activity scheduling in a 

dynamic network equilibrium framework makes the evaluation of derivatives very difficult. 

Therefore, providing a mathematical proof of the convergence characteristics of the algorithm 

might not be possible. However, the analytical results provide a sufficient platform for presenting 

convergence characteristics. 

In the proposed approach, first the activity agendas are treated (sequence, number and 

duration of activities) as fixed, so only the path assignments are updated. Next, schedule 

adjustments and trip cancellations are performed, with the paths remaining unchanged. In other 
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words, having obtained a feasible desired schedule from an ABM model, a dynamic network 

loading and simulation is performed. Then, a least generalized cost path finding procedure is 

executed to find the set of least-cost paths. The path assignments are then updated using a step 

size, and trip chains are simulated according to newly assigned paths to obtain the resulting time-

dependent network conditions. Given the dynamic network conditions, an optimal schedule-

finding procedure is performed to find the set of feasible optimal schedules (trip departure times). 

A subset of the households is then selected according to their deviations from preferred schedules 

and, using an appropriate step size, the schedules are updated. The selected subset of households 

whose schedules could not be improved through departure time adjustments is analyzed for 

possible adjustments through trip cancellation. Note that not all activities/trips of an individual 

(household member) are considered cancellable. For instance, trips to/from home are not 

cancellable. In addition, each selected individual is restricted to have at most one cancelled 

activity.  

5.3.1 Selection Strategies 

 At the beginning of the day, individual travelers make travel plans according to anticipated 

network conditions (travel times). In the presence of congestion, accidents, or transit delays, they 

might experience travel patterns inconsistent with their planned schedules, which results in making 

schedule adjustments in order to minimize their disutility. In some instances of schedule 

inconsistency, users can adjust their schedules by shortening the activity durations. However, there 

might be instances of significantly long travel times, which do not allow the completion of the 

current trip before the subsequent trip’s planned start time. In other words, these travelers should 

be able to have unrealistic negative activity durations to be able to accommodate the activity in 
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their schedule (as discussed in Chapter 4). In this chapter, the terms travelers with unrealistic 

schedules or negative activity (NA) duration are used to represent the latter instance of 

inconsistency. In the household selection approach for schedule (trip departure time) adjustments, 

all the households with unrealistic schedules are selected. In addition, a penalty-based method (as 

discussed in Chapter 4) is implemented to probabilistically select from the rest of the households. 

The number of households and travelers with unrealistic schedules also provides a measure of gap 

for the evaluation of convergence characteristics of the approach.  

Once schedule adjustment is performed on all the households in the selected subset for 

schedule adjustment, the next step is to find the households whose inconsistent schedules could 

not be adjusted by departure time modifications. This group of households is referred to as non-

adjustable households in this chapter. The non-adjustable households’ cancellable activities are 

then evaluated to find the activities to be cancelled. Two strategies are considered for trip selection. 

First, the latest arrival approach (LAA) involves choosing the cancellable activity/trip with the 

latest arrival time to be cancelled. Second, the total penalty approach (TPA) involves choosing the 

cancellable activity/trip that, if cancelled, the traveler experiences the least total schedule penalty 

as compared to the other cancellation scenarios.  

In the next section, the proposed algorithm is illustrated in Figure 11. 
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5.3.2 Algorithm 

 
Figure 11 Overall Steps of the Solution Algorithm 

 

Step 0: Travelers’ trip itineraries obtained from the ABM model according to anticipated 

time dependent travel times, set 𝑛𝐷𝑇𝐴 = 1, and  𝑛 = 1 
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Step 1: Load the activity-trip chain demand to the road network using a dynamic traffic 

assignment and simulation tool (DYNASMART) (Jayakrishnan et al. (1994); Abdelghany et al. 

(2001); Halat et al. (2016))  to obtain an initial vector of path flows 𝑟𝑛𝐷𝑇𝐴 

Step 2: Find the search direction (auxiliary paths) by performing the time-dependent least 

generalized cost path finding  

Step 3: Calculate the route choice probability, and update the traveler’s path by switching 

travelers’ path to the newly found least cost paths, update the path flows 𝑟𝑛𝐷𝑇𝐴+1 (MSA-based gap 

reduction method) 

 𝑅𝑜𝑢𝑡𝑒 𝑆𝑤𝑎𝑝 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦: 
1

1+ 𝑛𝐷𝑇𝐴
∗

(experienced generalized path cost−least generalized path cost)

experienced generalized path cost
  

Step 4: If the average relative gap < threshold, or IterationDynasmart =Max IterationDynasmart, 

go to step 5; otherwise go to step 1 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝 =
(experienced generalized path cost − least generalized path cost)

experienced generalized path cost
 

Step 5: Load the demand to the network using a multimodal dynamic traffic assignment 

and simulation tool (NU-Trans) (Verbas et al. (2015); Verbas et al. (2016))  

Step 6: Perform the time-dependent least-cost hyperpath-finding algorithm 

Step 7: Update path assignments (MSA-Based Gap Reduction Method) 

Step 8: If the average relative gap < threshold, or IterationNU-Trans =Max Iteration NU-Trans, 

go to step 8; otherwise go to step 5 
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Step 9: Select the households with unrealistic schedules (negative activity duration), and 

calculate the schedule adjustment probability for other households using the ratio of inconsistent 

penalty to maximum inconsistent penalty, coupled with the MSA factor 
1

1+𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

Step 10: Find the optimal schedules, and adjust the schedules of the selected households 

(MSA Based Gap Reduction Method) 

Step 11: Among the selected households for schedule adjustment, find the households with 

inconsistent schedules, meaning those that could not be modified through departure time and 

duration adjustments (non-adjustable households) 

Step 12: Apply a trip selection strategy on the selected households for activity cancellation 

to find the trip to be cancelled, and cancel the trip 

Step 13: If the average inconsistent schedule penalty<threshold, stop; otherwise go to step 

1 

5.4 Numerical Results 

 

The network considered in this chapter is the Chicago sub-area network (Figure 12), which 

is extracted from the Chicago full regional network. There are 13 freeways, 334 arterials, 137 

nodes, and 57 traffic analysis zones (TAZ) in the network. The simulation runs start at 3:00 AM, 

and last for 24 hours. A total of 76,499 travelers from 34,144 households are considered for the 

simulation. Each simulated traveler has at least one activity in its schedule, and the maximum 

number of activities considered here is 21. The results presented here for the sub-area test network 

are based on 10 iterations, and the MSA factor of  1 1 + 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁄  for the schedule adjustment, 

and 1 1 + 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑇𝐴
⁄ for the DTA module. 
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Figure 12 Chicago Sub-area Network 

 

At the beginning of the simulation, the road network simulator (DYNASMART) runs for 

4 DTA iterations to obtain equilibrated path assignments. The details on trip chain equilibrium in 

a dynamic traffic assignment framework are discussed in Chapter 6 of this study. At the higher 

iterations, however, the road network simulator is performed for only one DTA iteration. In order 

to achieve better convergence, the MSA factor is applied in calculating the schedule adjustment 

and path swapping probabilities. The schedule adjustment probability is calculated based on a 

penalty-based method as follows: (1) households who have unrealistic schedule are selected with 

100% chance while (2) other households are selected according to a probability calculated based 

on the ratio of the household’s total inconsistent schedule penalty to the maximum inconsistent 

schedule penalty of the entire population. This probability decreases with the MSA factor for 

higher iterations accordingly. Two activity selection scenarios for cancellation (latest arrival 
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approach (LAA), and total penalty approach (TPA)) are considered (as discussed earlier in this 

chapter), and the results are compared to a scenario that no activity cancellation (demarcated as 

the None scenario) occurs. Figure 13 and Figure 14 represent variations of the two gap measures 

with the increase in the iteration number. The number of households with unrealistic schedules is 

depicted in Figure 13. It is evident that this gap measure decreases as the iteration number increases 

for both scenarios that include activity cancellation. A decreasing trend for the scenario with no 

cancellation can be observed as well; however, there are some fluctuations in this decreasing 

pattern. Figure 14 represents the variations of the average inconsistent schedule penalty with an 

increase in the iteration number. This gap measure also has a decreasing trend for LAA and TPA 

scenarios, and the decreasing trend for the None scenario is associated with fluctuations. In 

addition, the TPA strategy tends to have faster convergence compared to the LAA scenario.  

 

 

 
Figure 13 Number of Unrealistic Schedule Households 
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Figure 14 Average Inconsistent Schedule Penalty 

 

5.5 Summary  

 

In this chapter, a disutility associated with schedule inconsistency and total travel time of 

each individual traveler was defined. Then, assuming that each individual makes travel choices to 

minimize his/her disutility, a user equilibrium framework was adopted. Next, a fixed-point 

equilibrium model formulation was presented for the equilibrium problem, followed by the 

definition of the gap function. A heuristic solution algorithm incorporating an MSA-based gap 

minimization approach was then adopted. The integrated model presented in this chapter starts 

with a preplanned activity agenda (obtained from an ABM model), which consists of activity 

locations, sequences, desired departure times, and durations. The agendas are executed using 

dynamic traffic assignment and simulation tools. Given the dynamic network conditions, an 

optimal schedule-finding procedure was adopted to find the set of feasible optimal schedules (trip 

departure times). A subset of the households was then selected according to deviations from their 

preferred schedules, and using an appropriate step size, their schedules were modified. The 

selected subset of households whose schedules could not be improved through departure time 
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adjustments was analyzed for possible adjustments through trip cancellation. Strategies for 

selecting household members to have cancelled activities and selecting activities for cancellation 

were discussed. The two tested activity-selection strategies for cancellation resulted in better 

numerical convergence compared to the scenario where none of the activities were cancelled. Also, 

the TPA represented faster convergence compared to the LAA. The author’s objective here was to 

show the improvement in algorithmic convergence due to incorporation of activity cancellation. 

The author did not aim at optimizing the convergence; therefore, there could be other strategies 

that would result in better convergence.  
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6 DYNAMIC NETWORK EQUILIBRIUM FOR DAILY TRIP CHAINS 

As mentioned earlier, the efficient and detail-compatible assignment of trip chains to 

transportation networks contributes substantially to the application of activity-based modeling 

approaches, as well as the evaluation of various functional and economic policies (Abdelghany et 

al. (2001)). Since the unit of traffic demand is considered to be either a one-way trip or multiple 

independent trips in most of the existing applications of dynamic network equilibrium models, 

capturing the daily activity-trip chains within dynamic traffic assignment models requires further 

attention. 

This chapter includes the development of a simulation-based dynamic network traffic 

equilibrium model and algorithm for the assignment of activity-trip chains demand.  The trip chain 

of each individual trip-maker is defined by the departure time at the origin, sequence of activities 

in a pre-specified order, activity locations, including intermediate destinations and the final 

destination, and the activity duration at each of the intermediate destinations.  The equilibrium 

problem in this chapter could also be viewed as a variation of the fixed-point equilibrium problem; 

however, the choice dimensions are different than the ones in the previous chapters. Compared to 

the problems addressed in the previous chapters, neither rescheduling nor cancellation of activities 

are allowed.  

6.1 Introduction 

Travel demand analysis and forecasting in practice takes advantage of activity-based 

approaches to generate travel patterns of individuals. An individual activity schedule consists of a 

sequence and timing of activities, as well as details such as the activity purpose, location, duration, 

and the transportation mode to the activity. The behavioral aspects that influence planning of 
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activity sequences by trip-makers are studied extensively in the demand forecasting arena; 

however, the assignment of the constructed activity schedules to transportation networks requires 

further scrutiny.  

Applications of dynamic network equilibrium models have mostly considered the unit of 

traffic demand either as a one-way trip or as multiple independent trips. However, individuals’ 

travel patterns typically follow a sequence of trips chained together with intervening activities at 

intermediate destinations. The intricate nature of trip sequences adds to the complexity of the path 

assignment procedure in real network applications, in terms of memory and time requirements. 

Spatial and temporal dependencies between subsequent trips necessitate time- and memory-

consuming calculations and storage of node-to-node time-dependent least generalized cost path 

trees, which is not feasible given the size of actual networks and today’s technology. The proposed 

algorithm in this chapter circumvents the need to store memory-intensive node-to-node time-

dependent shortest paths by implementing a destination-based time-dependent least generalized 

cost path finding algorithm, while maintaining the spatial and temporal dependencies of the 

subsequent trips.  

 

6.1.1 Bi-criterion Dynamic User Equilibrium  

As discussed in previous chapters, the adopted approach in the estimation of travel path 

costs is defining a generalized cost function that consists of both 1) an out of pocket cost (path toll) 

and 2) a path travel time converted to cost by multiplying it by the corresponding value-of-time 

(VOT). As a result, the process of finding the least generalized cost path may result in different 

paths for travelers with different values of time. In the literature of network equilibrium, 



102 
 

heterogeneity is considered either by treating users as discrete classes, each of which is associated 

with a VOT range (Yang et al. (2002); Han and Yang (2008)), or by treating VOT as a random 

variable with a probabilistic distribution across users (Leurent (1993)). Lu et al. (2008) developed 

a bi-criterion dynamic user equilibrium (BDUE) model that takes into account users’ heterogeneity 

by assuming VOT as a continuously distributed random variable across the users. In order to 

generate the extreme efficient path set in their solution algorithm, a bi-criterion time dependent 

least generalized cost path set algorithm is applied, and the set of breakpoints corresponding to 

different user classes is determined. In this chapter, the bi-criterion dynamic user equilibrium 

(BDUE) model presented by (Lu et al. (2008)) is applied. Again, to account for users’ 

heterogeneity, path cost is treated as a generalized path cost function defined by both path toll and 

weighted path travel time by traveler’s VOT. 

6.1.2 Overall Framework 

The author has proposed a reformulation of the trip-based demand gap function 

formulation for the variational inequality formulation of the bi-criterion dynamic user equilibrium 

BDUE problem. Next, a solution algorithm is proposed for solving the BDUE problem for daily 

chain of activity-trips. Implementation of the proposed algorithm for very large networks 

circumvents the need to store memory-intensive node-to-node time-dependent shortest path trees 

by implementing a destination-based time-dependent least generalized cost path-finding 

algorithm, while maintaining the spatial and temporal dependencies of subsequent trips. Then, 

numerical results obtained from the applied algorithm to both small-scale and large-scale networks 

in a simulation setting are presented. The results suggest that recognizing the dependency of 

multiple trips of a chain and maintaining the departure time consistency of subsequent trips provide 
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sharper drops in gap values; hence, the convergence could be achieved faster (compared to when 

trips are considered independent of each other). 

In addition, a planning horizon segmentation procedure is implemented to facilitate 

calculations of the time-dependent least generalized cost path trees. The planning horizon 

(typically one day for activity-based model) can be divided into segments of varying lengths, and 

different least generalized time interval lengths can be considered for different segments. The least 

generalized time interval length is a period of simulation time in which the variations in travel 

costs can be neglected.  The segmentation procedure is particularly of value in large-scale DTA 

models with long simulation horizons, in which the time-dependent least generalized cost path 

(TDLGCP) tree calculation times could be extremely high. To overcome the substantial TDLGCP 

calculation times of large-scale networks, one could choose shorter least generalized time interval 

lengths to find the time-dependent least cost path trees of the peak hours compared to non-peak 

hours such as midnight, and hence reduces calculation times substantially.  

The overall procedure performed here is an iterative dynamic traffic simulation, via a 

dynamic traffic simulator (DYNASMART) (Jayakrishnan et al. (1994); Mahmassani (2001)), and 

a dynamic traffic assignment algorithm (discussed later in this chapter). First, the individuals’ daily 

chains of activities are loaded onto the network by a dynamic network loading procedure, then the 

trip sequences are simulated using the prevailing travel times. Next, the simulated trips are 

evaluated for route swaps using a user equilibrium dynamic traffic assignment model, for which 

the proposed solution algorithm is presented in the course of this dissertation. The aforementioned 

steps continue till the convergence criterion is satisfied, or a pre-specified maximum number of 

iterations is reached.  
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6.2 Model Formulation 

Consider a time-dependent network 𝐺 =  (𝑁, 𝐴) with 𝑁 as a finite set of nodes and 𝐴 as a 

finite set of directed links (𝑖, 𝑗)  ∈ 𝐴, where 𝑖, 𝑗 ∈ 𝑁.  Assuming 𝑡0 as the earliest possible 

departure time from all origin nodes, 𝜎 as a small time interval during which no noticeable change 

in traffic conditions or travel cost happens, and 𝑀 as a large value in a way that 𝑡0 + 𝑀𝜎 covers 

the entire time period (planning horizon). The planning horizon is discretized into a set of small 

intervals 𝛤 = {𝜏0, 𝜏0 + σ, 𝜏0 + 2σ, 𝜏0 + 3σ, … , 𝜏0 + 𝑀σ}. Other notations are as follows: 

 

𝑜 Subscript belonging to an origin node 

𝑑 Subscript belonging to a destination node 

𝜏           Subscript for a departure time interval 

𝛼 Continuously distributed value of time 𝛼 = [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] 

𝑚 Subscript for a vehicle class  

𝑝𝑚(𝑜, 𝑑, 𝑡)  The set of all feasible paths for vehicles of class 𝑚 belonging to 𝑜, 𝑑, 𝜏 triplet 

𝑝 Subscript for a path 𝑝 ∈ 𝑝𝑚(𝑜, 𝑑, 𝜏) 

𝑟𝑜𝑑𝑝
𝜏       Number of trips from 𝑜 to 𝑑 departing 𝑜 at time interval 𝜏 and assigned to path 𝑝 

𝑟            Path flow vector  

𝛺 The feasible set of path flow vector 

𝐺𝐶𝑜𝑑𝑝
𝜏,𝑚

  Experienced path travel cost from 𝑜 to 𝑑 at departure time interval 𝜏 for a specific VOT 

(class 𝑚) assigned to path 𝑝 

𝑇𝑇𝑜𝑑𝑝
𝜏,𝑚

  Experienced path travel time for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 
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𝑇𝐶𝑜𝑑𝑝
𝜏,𝑚

  Experienced path travel cost for trips from 𝑜 to 𝑑 at departure time interval 𝜏 assigned to 

path 𝑝 

𝛱𝑜𝑑
𝜏,𝑚

 Least travel cost from 𝑜 to 𝑑 at departure time interval 𝜏 for a specific VOT  

𝑣 Subscript corresponding to a vehicle  

𝑉 Number of vehicles in the network  

𝑡𝑟 Subscript corresponding to trip 𝑡𝑟 of vehicle  

𝑇𝑅(𝑣) Number of trips for vehicle 𝑣 

𝑏𝑖𝑛(𝑣, 𝑡𝑟)  Function yielding the associated 𝑜, 𝑑, 𝜏, 𝑚, 𝑝 to trip 𝑡𝑟 of vehicle 𝑣 with class 𝑚 

𝑥(𝑣, 𝑡𝑟)  Binary variable equal to 1 if 𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝), and 0 otherwise 

𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟) Experienced path travel cost for trip 𝑡𝑟 of vehicle 𝑣  

𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗  Least path travel cost for trip 𝑡𝑟 of vehicle 𝑣 

 

As discussed earlier, the experienced generalized cost of travelers who depart from origin 𝑜 to 

destination 𝑑 along path 𝑝 and have VOT 𝛼 follows the following formulation: 

 

𝐺𝐶𝑜𝑑𝑝
𝜏 (𝛼) = 𝑇𝐶𝑜𝑑𝑝

𝜏 + 𝛼×𝑇𝑇𝑜𝑑𝑝
𝜏

 (6-1) 

 

Lu et al. (2009) reformulated the DUE problem via a gap function as a non-linear 

minimization problem. In this chapter, a gap function for the VI formulation of the BDUE problem 

with chains of activity-trips is presented. Multiple trips of a vehicle are characterized by the 

sequence of activities, activity durations, locations of intermediate destinations, and the location 

of the final destination. In the equilibrium framework presented here, the order of locations and 
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durations of activities are known a priori, and the routes and trip departure times are adjusted 

accordingly. As presented in Jiang and Mahmassani (2013), the flow pattern 𝑟∗ as the solution to 

the BDUE problem is equivalent to finding the solution to the following variational inequality 

formulation: 

 

∑ ∑ ∑ ∑ ∑ 𝐺𝐶 𝑜𝑑𝑝
𝜏,𝑚

𝑝∈𝑝(𝑜,𝑑,𝑡)𝑚

𝑀

𝑚=1𝜏∈𝛤𝑑∈𝐷𝑜∈𝑂

(𝛼, 𝑟∗)×[𝑟𝑜𝑑𝑝
𝜏,𝑚(𝛼) − 𝑟𝑜𝑑𝑝

𝜏,𝑚(𝛼)⋇] ≥ 0 

 

 

(6-2) 

 

 

∀𝑟𝑚(𝛼) ∈ 𝛺𝑚(𝛼), 𝑎𝑛𝑑 ∀𝛼 ∈ [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] 

 

Adopting the formulation suggested in Lu et al. (2009) the equivalent gap function for the above 

formulation will be formulated as: 

 

 

∑ ∑ ∑ ∑ ∑ 𝑟𝑜𝑑𝑝
𝜏,𝑚 [𝐺𝐶 𝑜𝑑𝑝

𝜏,𝑚

𝑝∈𝑝(𝑜,𝑑,𝑡)𝑚

𝑀

𝑚=1𝜏∈𝛤𝑑∈𝐷𝑜∈𝑂

(𝛼, 𝑟) − 𝛱𝑜𝑑
𝜏,𝑚] 

 

(6-3) 

 

 

To consider a daily chain of activity-trips, the gap function proposed in this chapter is as follows: 
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∑ ∑ 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)

𝑇𝑅(𝑣)

𝑡𝑟=1

𝑉

𝑣=1

− 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗  

 

(6-4) 

 

Now it is demonstrated that the above proposed gap function for the VI formulation of BDUE 

problem is equivalent to the gap function presented in Lu et al. (2009) under the following 

assumption. 

Assumption: 

The trip departure time interval of every trip by a traveler maintains the same time interval as the 

trip departure time obtained from the traffic simulation. In other words, each trip is assumed to 

depart its origin at the assigned (simulated) time interval, meaning that assignment of paths with 

less travel times to the previous trips of the chain does not change the departure time interval of 

the current trip, and this shift in departure time interval is neglected.                        

 

∑ ∑ 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)

𝑇𝑅(𝑣)

𝑡𝑟=1

𝑉

𝑣=1

− 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗ = 

∑{(𝐺𝐶𝑏𝑖𝑛(𝑣,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(𝑣,2)(𝛼, 𝑟)

𝑉

𝑣=1

+ ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑇𝑅(𝑣))(𝛼, 𝑟)) − 

 

(6-5) 
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 (𝐺𝐶𝑏𝑖𝑛(𝑣,1)
∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(𝑣,2)

∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑇𝑅(𝑣))
∗ (𝛼, 𝑟))}

= (𝐺𝐶𝑏𝑖𝑛(1,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(1,2)(𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(1,𝑇𝑅(1))(𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(2,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(2,2)(𝛼, 𝑟) + … + 𝐺𝐶𝑏𝑖𝑛(2,𝑇𝑅(2))(𝛼, 𝑟)

+ … + 𝐺𝐶𝑏𝑖𝑛(𝑉,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(𝑉,2)(𝛼, 𝑟)

+ … + 𝐺𝐶𝑏𝑖𝑛(𝑉,𝑇𝑅(𝑉))(𝛼, 𝑟)) − (𝐺𝐶𝑏𝑖𝑛(1,1)
∗ (𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(1,2)
∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(1,𝑇𝑅(1))

∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(2,1)
∗ (𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(2,2)
∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(2,𝑇𝑅(2))

∗ (𝛼, 𝑟)  + ⋯

+ 𝐺𝐶𝑏𝑖𝑛(𝑉,1)
∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(𝑉,2)

∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑉,𝑇𝑅(𝑉))
∗ (𝛼, 𝑟)) 

 

For any given (𝑜, 𝑑, 𝜏, 𝑚, 𝑝): 

 

𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼, 𝑟) = 𝐺𝐶𝑜𝑑𝑝
𝜏,𝑚      ∀𝑣, 𝑡𝑟 ∈ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))} 

 

𝑥(𝑣, 𝑡𝑟) = {
0           ∀𝑣, 𝑡𝑟 ∉ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))}

1           ∀𝑣, 𝑡𝑟 ∈ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))}
 

 𝑟𝑏𝑖𝑛(𝑣,𝑡𝑟) = ∑ ∑ 𝑥(𝑣, 𝑡𝑟)

𝑇𝑅(𝑣)

𝑡𝑟=1

𝑉

𝑣=1

 

 

→  𝑟𝑜𝑑𝑝
𝜏,𝑚 =  𝑟𝑏𝑖𝑛(𝑣,𝑡𝑟)                      ∀𝑣, 𝑡𝑟 ∈ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))} 

 

(6-6) 
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→  𝑇𝑜𝑡𝑎𝑙 𝐺𝐶 =  𝑟𝑏𝑖𝑛(𝑣,𝑡𝑟)×𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼, 𝑟)  ∀𝑣, 𝑡𝑟

∈ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))} 

 

𝑇𝑜𝑡𝑎𝑙 𝐺𝐶 = ∑ 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼, 𝑟)

∀𝑣,𝑡𝑟∈{𝑣,𝑡𝑟|(𝑏𝑖𝑛(𝑣,𝑡𝑟)=(𝑜,𝑑,𝜏,𝑚,𝑝))}

= 𝑟𝑜𝑑𝑝
𝜏,𝑚×𝐺𝐶𝑜𝑑𝑝

𝜏,𝑚    ∀𝑜, 𝑑, 𝜏, 𝑚, 𝑝 

 (6-7) 

  

𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗ (𝛼, 𝑟) = 𝛱𝑜𝑑

𝜏,𝑚                   ∀𝑣, 𝑡𝑟 ∈ {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))}  (6-8) 

 

 

∑ 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗ (𝛼, 𝑟)

∀𝑣,𝑡𝑟∈{𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))}

= 𝑟𝑜𝑑𝑝
𝜏,𝑚×𝛱𝑜𝑑

𝜏,𝑚          ∀𝑜, 𝑑, 𝜏, 𝑚, 𝑝 

 

 

(6-9) 

Therefore, it is shown that under the above assumption, the gap measures for independent trips 

and daily chains of activity-trips are identical. However, if the shift in departure time interval due 

to the path swap of previous trips is taken into account, the (𝑜, 𝑑, 𝜏, 𝑚, 𝑝) of a given (𝑣, 𝑡𝑟) might 

face a change in τ due to the assignment of paths with different travel times to any of vehicle 𝑣 

trips ∈  {1 … 𝑡𝑟 − 1}. Therefore, here it is shown that in this case, the gap measure for the daily 

trip chain is different from the trip-based gap measure, which calls for a modified approach. 

Consider the following notations: 
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𝑇𝑣,𝑡𝑟 Assigned trip time for trip 𝑡𝑟 of vehicle 𝑣 

𝑡𝑣,𝑡𝑟 Planned departure time interval of trip (𝑡𝑟) of vehicle (𝑣) 

𝑡′𝑣,𝑡𝑟 Updated departure time interval of trip (𝑡𝑟) of vehicle (𝑣) 

𝑏𝑖𝑛′(𝑣, 𝑡𝑟) Associated (departure time updated) 𝑜, 𝑑, 𝜏′, 𝑚, 𝑝 to trip 𝑡𝑟 of vehicle 𝑣 with class 𝑚  

 

𝑡′𝑣,𝑡𝑟 = ( ∑ 𝑇𝑣,𝑡𝑟

𝑡𝑟−1

𝑡𝑟=1

 )/(𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ)    ∀𝑣 = 1, . . , 𝑉, ∀𝑡𝑟 = 2, . . , 𝑇𝑅(𝑣) 

 

 

        (6-10) 

𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗ = 𝐺𝐶𝑏𝑖𝑛′(𝑣,𝑡𝑟)

∗ = 𝛱𝑜𝑑
𝜏′,𝑚 ≠ 𝛱𝑜𝑑

𝜏,𝑚  ∀𝑣, 𝑡𝑟 ∈ {𝑣, 𝑡𝑟|𝑡′𝑣,𝑡𝑟 ≠ 𝑡𝑣,𝑡𝑟}          (6-

11) 

 

∑ ∑ 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)

𝑇𝑅(𝑣)

𝑡𝑟=1

𝑉

𝑣=1

− 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)
∗ = ∑ ∑ 𝐷𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)

𝑇𝑅(𝑣)

𝑡𝑟=1

𝑉

𝑣=1

− 𝐷𝐺𝐶𝑏𝑖𝑛′(𝑣,𝑡𝑟)
∗ = 

 

         (6-

12) 

 

 ∑{(𝐺𝐶𝑏𝑖𝑛(𝑣,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(𝑣,2)(𝛼, 𝑟)

𝑉

𝑣=1

+ ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑇𝑅(𝑣))(𝛼, 𝑟)) − (𝐺𝐶𝑏𝑖𝑛(𝑣,1)
∗ (𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(𝑣,2)
∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑇𝑅(𝑣))

∗ (𝛼, 𝑟))} = 
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(𝐺𝐶𝑏𝑖𝑛(1,1)(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(1,2)(𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛(1,𝑇𝑅(1))(𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(2,1)(𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(2,2)(𝛼, 𝑟) + … + 𝐺𝐶𝑏𝑖𝑛(2,𝑇𝑅(2))(𝛼, 𝑟) + … + 𝐺𝐶𝑏𝑖𝑛(𝑉,1)(𝛼, 𝑟)

+ 𝐺𝐶𝑏𝑖𝑛(𝑉,2)(𝛼, 𝑟) + … + 𝐺𝐶𝑏𝑖𝑛(𝑉,𝑇𝑅(𝑉))(𝛼, 𝑟)) − (𝐺𝐶𝑏𝑖𝑛(1,1)
∗ (𝛼, 𝑟)

+ 𝐺𝐶
𝑏𝑖𝑛′(1,2)
∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶

𝑏𝑖𝑛′(1,𝑇𝑅(1))
∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛(2,1)

∗ (𝛼, 𝑟) + 𝐺𝐶
𝑏𝑖𝑛′(2,2)
∗ (𝛼, 𝑟)

+ ⋯ + 𝐺𝐶
𝑏𝑖𝑛′(2,𝑇𝑅(2))
∗ (𝛼, 𝑟)  + ⋯ + 𝐺𝐶𝑏𝑖𝑛(𝑉,1)

∗ (𝛼, 𝑟) + 𝐺𝐶
𝑏𝑖𝑛′(𝑉,2)
∗ ′(𝛼, 𝑟) + ⋯

+ 𝐺𝐶
𝑏𝑖𝑛′(𝑉,𝑇𝑅(𝑉))
∗ (𝛼, 𝑟)) = 

 

∑ ∑ ∑ ∑ ∑ 𝑟𝑜𝑑𝑝
𝜏,𝑚 [𝐺𝐶 𝑜𝑑𝑝

𝜏,𝑚

𝑝∈𝑝(𝑜,𝑑,𝑡)𝑚

𝑀

𝑚=1𝜏∈𝛤𝑑∈𝐷𝑜∈𝑂

] − 

(𝐺𝐶𝑏𝑖𝑛(1,1)
∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛′(1,2)

∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛′(1,𝑇𝑅(1))
∗ (𝛼, 𝑟) 

+𝐺𝐶𝑏𝑖𝑛(2,1)
∗ (𝛼, 𝑟) + 𝐺𝐶𝑏𝑖𝑛′(2,2)

∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶𝑏𝑖𝑛′(2,𝑇𝑅(2))
∗ (𝛼, 𝑟) + ⋯ 

+𝐺𝐶𝑏𝑖𝑛(𝑉,1)
∗ (𝛼, 𝑟) + 𝐺𝐶

𝑏𝑖𝑛′(𝑉,2)
∗ (𝛼, 𝑟) + ⋯ + 𝐺𝐶

𝑏𝑖𝑛′(𝑉,𝑇𝑅(𝑉))
∗ (𝛼, 𝑟)) ≠  

 

∑ ∑ ∑ ∑ ∑ 𝑟𝑜𝑑𝑝
𝜏,𝑚 [𝐺𝐶 𝑜𝑑𝑝

𝜏,𝑚

𝑝∈𝑝(𝑜,𝑑,𝑡)𝑚

𝑀

𝑚=1𝜏∈𝛤𝑑∈𝐷𝑜∈𝑂

(𝛼, 𝑟) − 𝛱𝑜𝑑
𝜏,𝑚] 

 

As it is shown here, the gap function proposed by Lu et al. (2009) ignores the shift in 

departure time interval due to the path swap of previous trips. Therefore, a trip-chain-based 

formulation of the gap function is proposed here, and in order to address the aforementioned issue, 

which is called temporal inconsistency in this chapter, a solution algorithm is proposed.  
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 The adopted approach is the simulation-based approach developed in Lu et al. (2009) for 

solving the DUE problem , in which they reformulated the DUE problem via a gap function as a 

non-linear minimization problem (NMP). They solved the NMP by a column generation-based 

approach, which augments the subset of extreme efficient or non-dominated paths in the outer 

loop, and solves the restricted NMP defined by a subset of feasible paths by a path-swapping 

descent-direction method in the inner loop. The general framework for the simulation-based 

BDUE algorithm is shown in Figure 15. The proposed solution algorithm in this section 

corresponds to steps 2, 3, and 4 of the flowchart in Figure 15. 
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6.3 Algorithm 

 

Figure 15 Simulation-based BDUE Algorithm 

The outer loop applies a bi-criterion time-dependent least generalized cost path 

(BTDLGCP) algorithm to construct the extreme efficient path set, and obtain the breakpoints 
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corresponding to various VOT ranges. In the proposed solution algorithm, the parametric analysis 

method (PAM) presented by Mahmassani et al. (2005)  is implemented at each outer iteration for 

a single destination zone, all the origin zones, and all the departure time intervals. For each vehicle 

that has at least one trip to that single destination zone, the BTDLGCP associated with that trip’s 

origin zone, departure time interval, and corresponding to the VOT subinterval that the vehicle’s 

VOT belongs to, is stored. The procedure continues until all destination zones, origin zones, and 

departure time intervals are covered. Hence, all trips of a single vehicle are associated with a least 

generalized cost path obtained from PAM. 

 

In the next step, beginning from the first trip (𝑡𝑟=1) of a given vehicle (𝑣), the generalized 

cost of the stored least generalized cost path for that trip (𝑡𝑟) is compared with the experienced 

generalized cost of the path of the corresponding 𝑜, 𝑑, 𝜏, 𝑚. If the experienced generalized cost 

exceeds the least generalized cost, a probabilistic choice rule is applied to decide whether trip 𝑡𝑟 

of vehicle 𝑣 path should be updated or not. A route swap decision is made using the proportional 

difference between the experienced path cost and the least path cost, namely the relative gap, i.e. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ−𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑙𝑒𝑎𝑠𝑡 𝑐𝑜𝑠𝑡 𝑝𝑎𝑡ℎ

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ
. 

 

In addition, a step size is chosen according to the Method of Successive Averages (MSA) to 

account for the effects of least-cost path flow updates of the previous iterations. The chosen MSA 

factor in here is 
1

(1+𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)
. 
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If the trip is to be assigned a new path, the 𝑡𝑟 trip of the vehicle 𝑣 would be assigned to the 

least generalized cost path. The same procedure is applied to trip 𝑡𝑟 + 1; however, the assigned 

𝑜, 𝑑, 𝜏, 𝑚 to trip 𝑡𝑟 + 1 is evaluated for a possible update based on the departure time shift caused 

by new path(s) assigned to any of trip(s) {1,2, . . 𝑡𝑟}. In cases where trip (𝑡𝑟 + 1)’s departure time 

interval is shifted due to new assigned paths to one or more of the previous trips (e.g. trips 

1, 2 … 𝑡𝑟 − 1), an alternative vehicle (𝑣’) with a trip (𝑡𝑟′) with departure time interval equal to trip 

𝑡𝑟 + 1 of vehicle 𝑣’s updated (shifted) departure time interval is found. The experienced 

generalized cost of the trip (𝑡𝑟) of vehicle 𝑣 is compared with the least generalized cost of the 

alternative vehicle (𝑣’) and trip (𝑡𝑟′) associated with 𝑜, 𝑑, 𝜏′, 𝑚. The procedure continues until all 

trips by the vehicle are taken care of. In cases where there is no alternative vehicle found, the 

vehicle’s trip might maintain its experienced path, or be assigned the least generalized cost path 

associated with 𝑜, 𝑑, 𝜏, 𝑚. The details of the solution algorithm are as follows: 

Step 0: 𝑑 = 1 

Step 1: Implement PAM for destination (𝑑) 

Step 2: 𝑜 = 1 

Step 3: 𝜏 =  1 

Step 4: 𝑚 =  1 

Step 5:  ∀(𝑣, 𝑡𝑟) ∈  {𝑣, 𝑡𝑟|(𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝))} Store the bi-criterion least 

generalized path associated with (𝑏𝑖𝑛(𝑣, 𝑡𝑟) = (𝑜, 𝑑, 𝜏, 𝑚, 𝑝)) 

Step 6: 𝑖𝑓 𝑚<total number of users’ classes for 𝑜, 𝑑, 𝜏, 𝑚 = 𝑚 + 1, and go to Step 5 

 𝑒𝑙𝑠𝑒, 𝑚 = 1 , and go to Step 7 

Step 7: 𝑖𝑓 𝜏<total number of assignment intervals, 𝜏 = 𝜏 + 1, and go to Step 5 
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 𝑒𝑙𝑠𝑒, 𝜏 = 1 , and go to Step 8 

Step 8: 𝑖𝑓 𝑜<total number of origins, 𝑜 = 𝑜 + 1, and go to Step 5 

 𝑒𝑙𝑠𝑒, 𝑜 = 1 , and go to Step 9 

Step 9: If 𝑑<total number of destinations, 𝑑 = 𝑑 + 1, and go to Step 2 

If 𝑑=total number of destinations, go to Step 10 

Step 10:  𝑣 = 1, 𝑡𝑟 = 1 

Step 11:            𝑖𝑓 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼, 𝑟) > 𝛱𝑜𝑑
𝜏,𝑚 ⇒ 𝑆𝑤𝑎𝑝𝑃𝑟𝑜𝑏 =

1

1+𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∗

 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼,𝑟)−𝛱𝑜𝑑
𝜏,𝑚

 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼,𝑟)
    

 𝑒𝑙𝑠𝑒 𝑆𝑤𝑎𝑝𝑃𝑟𝑜𝑏 = 0 

Step 12:   Draw a random number 

Step 13:   𝑖𝑓 𝑆𝑤𝑎𝑝𝑃𝑟𝑜𝑏 > 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 ⇒ 

    Assign the time dependent least generalized cost path to trip (𝑡𝑟) of vehicle (𝑣)  

                  𝐸𝑙𝑠𝑒, keep the experienced path 

Step 13: Update departure time interval for 𝑡𝑟+1 as 𝜏’ 

Step 14: 𝑖𝑓 𝑡𝑟 < 𝑇𝑅 (𝑣), 𝑡𝑟 = 𝑡𝑟 + 1 

 𝑒𝑙𝑠𝑒,  𝑣 = 𝑣 + 1, 𝑡𝑟 = 1, and go to Step 11 

Step 15: 𝑖𝑓 𝜏’ ≠ 𝜏, find a vehicle (𝑣’) with a trip (𝑡𝑟’) with departure time (𝜏’), and 

go to Step 16, 

𝑒𝑙𝑠𝑒,  ’ = 𝑣, 𝑡𝑟′ = 𝑡𝑟 ⇒ 𝜏′ = 𝜏 , and go to Step 11 

Step 16: 𝑖𝑓 𝐺𝐶𝑏𝑖𝑛(𝑣,𝑡𝑟)(𝛼, 𝑟)>𝛱𝑜𝑑
𝜏′,𝑚

, assign the least generalized cost path of trip (𝑡𝑟’) 

of vehicle (𝑣’) to trip (𝑡𝑟) of vehicle (𝑣) , and go to Step 13 
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The next section includes results from applying the proposed method. First, a comparison 

of the convergence measure trend is presented for two cases, i.e. when the departure time 

inconsistency is ignored and when the departure time inconsistency is incorporated in the model. 

The proposed solution algorithm can be applied to large-scale networks by aggregating origin and 

destination nodes to zones to overcome the time- and memory-demanding least-cost path 

calculation procedure.  

6.4 Numerical Results 

The Chicago full regional network is considered for the performance evaluation of the 

proposed method. The static network is prepared by Chicago Metropolitan Agency for Planning 

(CMAP). This static network (originally in TransCAD) is transformed into the DYNASMART 

format. While this network will be used for the final evaluation and analysis, a sub-network is 

extracted from this network for testing purposes. The extracted sub-network, referred to as the sub-

area test network, is a small-scale network. The general specifications of these networks are 

presented in the following sub-sections. The demand uses a format based on daily trip chains, and 

is obtained from CT-RAMP Activity-Based Model (ABM). A total of 2,000,481 vehicles are 

simulated by DYNASMART on the Chicago full regional network, with 4,864,686 trips, and 

156,492 vehicles are considered for the sub-area test network, which has a total of 287,705 trips. 

Note that the demand for the full Chicago network is based on a 25 % sample. 

6.4.1 Small-Scale Network 

The sub-area test network is a small-scale network extracted from the Chicago full regional 

network. Figure 16 represents the sub-area test network. This network consists of 13 freeways, 

334 arterials, 137 nodes, and 57 traffic analysis zones (TAZ). The simulation runs start at 3:00 
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AM, and last for 24 hours. There are 156,492 vehicles loaded to the network at different time 

intervals, and the total number of trips planned for all vehicles is 287,705. Note that in this network, 

a portion of loaded vehicles is related to external demand (by passing vehicles in the extracted 

network). These vehicles do not have trip chains, and their role is to provide enough congestion in 

such a small network as the background traffic. Each simulated vehicle has at least one activity in 

its schedule, and the maximum number of activities considered here is 21. The results presented 

here for the sub-area test network are based on 6 outer loop iterations including 2 inner loop 

iterations, and the MSA factor of  1 1 + 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁄  . 

First, the author considers how the departure time consistency of subsequent trips affects 

convergence of the solution algorithm in the subarea test network. The first case presented in 

Figure 17 represents the results from a scenario in which there is no reliability measure involved 

in the generalized cost function. In other words, individuals; risk-taking/aversion behaviors 

towards unreliable travel time paths are not captured differently. Figure 18 demonstrates results 

from the same network settings as the previous case, except that the reliability measure is 

incorporated. The reliability measure primarily captures individuals’ risk-aversion behaviors in 

terms of their willingness to pay an extra toll or experience larger average travel time to avoid the 

paths with unreliable travel times. In order to capture the reliability, the model presented by (Jiang 

et al. (2011b)) is implemented and tested on both the small-scale and large-scale networks. Note 

that, in this model, a linear relation between the average travel time and standard deviation of travel 

time per unit of distance is used to estimate travel time unreliability. 

Figure 17 and Figure 18 display the gap values with respect to both outer and inner loop 

iterations. There are 6 outer loop iterations, demarcated with black triangles, and two inner loops 
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following each outer loop, and these are demarcated by red squares. As can be observed in both 

figures, the gap values drop more rapidly when temporal consistency of trips during the 

equilibrium procedure is captured. In addition, according to Figure 17 (b) and Figure 18 (b), the 

gap trends resulting from outer loops show a descending pattern with an increase in the iteration 

number, whereas when temporal consistency is ignored, a chaotic pattern is observed in the gap 

values from outer loop iterations as is shown in Figure 17 (a) and Figure 18 (a). There are some 

fluctuations in the patterns presented in Figure 18 due to including reliability measures in 

calculations of path costs. 

 

Figure 16 Small-scale Network Configuration 

 

The main purpose of the sub-area network extraction is to perform several tests, which the 

general settings for our final evaluations and analysis on the full network are based on. Various 
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combinations of scenario settings considered are: number of inner loop iterations, number of outer 

loop iterations, the step size (MSA factor), and reliability related scenarios. According to our test 

runs, the following settings are chosen for the Chicago full regional network: 

 

Number of outer loop iterations:  4 

Number of inner loop iterations:  2 

MSA factor:     1 1 + 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁄   

  

a) Gap Values for Outer and Inner Loop Iterations 

Departure Time Inconsistency 

b) Gap Values for Outer and Inner Loop Iterations 

Departure Time Consistency 

Figure 17 Small-scale Network Gap Values When Reliability Measure Not Considered  
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a) Gap Values for Outer and Inner Loop Iterations 

Departure Time Inconsistency 

b) Gap Values for Outer and Inner Loop Iterations 

Departure Time Consistency 

Figure 18 Small-scale Network Gap Values When Reliability Measure Is Considered  

6.4.2 Large-Scale Network 

Figure 19 represents the Chicago full regional network, which is a large-scale network. The 

network covers a part of state of Illinois, Wisconsin, and Indiana, and is bound by Lake Michigan 

to the east. This network consists of 1,400 freeway corridors including I-90, I-94, I-55, I-80, etc., 

and 36,722 arterials. The network has 13,093 nodes, 40,443 links and 1,961 traffic analysis zones 

(TAZ). Traffic flow models used for the arterials and freeways of the network are based on 

calibrated single- or dual-regime modified Greenshields models. The simulated traffic signal 

setting used for the signalized intersections is a multi-phase actuated traffic signal control model 

with maximum green time (Gmax) of 72 seconds and minimum green time (Gmin) of 6 seconds. 

The current network also includes 144 tolled links with a fixed price. The location of these tolled 

links is shown in Figure 19. 
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Figure 19 Large-scale Network Configuration 

 

The simulation horizon for the Chicago full regional network starts at 3:00 AM, and lasts 

for 24 hours. There are 2,000,481 vehicles loaded onto the network at different time intervals 

throughout the simulation horizon, and the total number of trips planned for all vehicles is 

4,864,686. Each simulated vehicle has at least one activity in its schedule, and the maximum 

number of activities considered here is 22. Three sets of runs are performed for the full regional 

network, for which the results are shown in Figure 20. The first two sets include reliability 

measures, and they differ in the MSA factor used within inner loop iterations. The first case has 

the MSA factor of 𝟏
(𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝑰𝒏)⁄ , whereas the second case incorporates the MSA factor of 

𝟏
𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏⁄ , where 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝑰𝒏 is the counter for the inner loop iterations, and 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 is the 

counter for the outer loop iterations. 
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In addition, 6 time segments are considered, which cover the entire planning horizon (24 

hours). The time segments are applied in the least generalized cost tree calculations. Each segment 

has a different least generalized cost time interval length. Using different least generalized cost 

time intervals for different time periods of the 24-hour simulation horizon significantly reduces 

the computation effort required to calculate the least generalized cost trees. In this approach, finer 

time intervals are used for AM and PM peak-hour periods, while coarser time intervals are 

employed during the mid-night or mid-day time periods. For the Chicago full network application, 

the least generalized cost path-finding calculation time is improved by a factor of seven using the 

modified approach instead of the standard approach.   For the simulation runs presented in this 

paper, 6 time segments are considered with the following start times: 3:00 AM, 6:00 AM, 10:00 

AM, 2:00 PM, 8:00 PM, and 10:00 PM. The least generalized cost time interval lengths are 30, 

10, 20, 10, 30, and 300, respectively. 
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a) Gap Values for Outer and Inner Loop 

Iterations-Reliability-Inner Loop MSA 

Factor:  

𝟏
𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝑰𝒏

⁄  

b) Gap Values for Outer and 

Inner Loop Iterations-

Reliability-Inner Loop MSA 

Factor: 𝟏 𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏⁄   

c) Gap Values for Outer and Inner 

Loop Iterations-No Reliability- Inner 

Loop MSA Factor: 𝟏 𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏⁄   

Figure 20 Generalized Cost Gap Values-Different Scenarios-Chicago Full Regional Network 

 

Figure 20 includes the gap values resulting from the applied iterative algorithm to the 

Chicago full regional network. Decreasing trends in the gap values can be observed as the number 

of iterations increases. Both the outer loop iterations and inner loop iterations of all 3 scenarios 

demonstrate converging patterns in the gap values. Comparing Figure 20 (a) with Figure 20 (b) 

shows a slight sharper drop in the gap values when the chosen inner loop MSA factor is 

𝟏
𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏⁄  compared to 𝟏

𝟏 + 𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝑰𝒏
⁄ . However, the difference in their speed of 

convergence is not significant, and this pattern cannot be generalized to other networks, since there 

is no systematic way of determining the optimal step size. 

6.5 Summary 

In this chapter, the variational inequality formulation of the gap-based BDUE problem was 

formulated for a daily chain of activity-trips. It was shown that the proposed gap function 

formulation in this chapter is equivalent to the gap function formulation in the existing literature, 

if the departure time interval of each trip within a chain is assumed independent of the other trips 

departure time interval. However, accounting for the temporal consistency of trips during the path 

assignment procedure could lead to different gap function formulations. In order to capture the 

temporal inconsistency among interdependent trips in a chain, an appropriate solution algorithm 

is proposed, which is also applicable to large-scale networks.  
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The main contribution of the proposed approach is to consider the departure time interval 

inconsistency in the gap-based formulation of the dynamic user equilibrium problem for the daily 

chain of activity-trips. Furthermore, the traffic simulator utilized here considers the daily trip 

chains, and loads the network based on the trip sequences and activity durations. Also, user 

heterogeneity is considered by applying a bi-criterion dynamic user equilibrium formulation. In 

addition, different scenarios in terms of considering the travel time reliability measure are tested. 

Last but not least, the proposed formulation and solution algorithm are modified for large-scale 

network implementations. For this end, a continuous simulation horizon, along with the segmented 

route assignment intervals, are considered. In each of these segments, different least generalized 

cost time interval lengths are used to improve the computational complexity.  

The numerical results section develops the devised algorithm on a test sub-area network, 

and then implements it on a large-scale network of Chicago. The results demonstrate successful 

application of the methodology for the dynamic user equilibrium problem with a daily chain of 

activity-trips. This application shows that, by considering the inconsistency in departure time 

intervals, there is noticeable improvement in the convergence of the proposed algorithm. The 

developed solution algorithm for the dynamic user equilibrium provides an appropriate dynamic 

traffic assignment tool to be used in ABM-DTA integrated systems, which are considered only by 

few planning agencies nowadays. 
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7 CONCLUSION 

In this dissertation, the author aimed at providing a robust mathematical framework for the 

equilibration of activity trip chains. For this purpose, a framework was proposed that provides an 

inner adjustment platform for an ABM-DTA integrated model (surrogate gap). The proposed 

surrogate measure captures individuals’ activity scheduling and route choices in a dynamic 

network equilibrium framework. Such a surrogate measure is, in particular, beneficial to planning 

agencies because it helps overcome the high implementation time and large memory requirements 

associated with applications of a fully-integrated system of ABM and DTA to large-scale 

networks.  

First, a user equilibrium framework for the path and schedule choices of individual 

travelers was defined, followed by the presentation of a variational inequality formulation as the 

variant formulation of the equilibrium problem. It was shown that the solution to the VI 

formulation meets the user equilibrium conditions. The equivalent gap function for the VI 

formulation was defined accordingly to provide a gap-based solution approach. In addition, the 

solution properties of the proposed fixed-point problem formulation were explored through the 

analysis of continuity and monotonocity of some of the involved functions. It was shown that there 

is no guarantee that a solution exists for the problem, due to discontinuity of the functions. 

Moreover, the non-monotonocity of the functions was shown through examples, which means that 

there might be multiple solutions for the problem, given that a solution exists.  

Given the problem size and computational expenses involved with real-world networks, a 

heuristic solution approach, which involves an MSA based gap minimization procedure, was 

proposed. Convergence criteria are defined, and strategies for selecting households that adjust their 



127 
 

activity schedules are discussed. The proposed solution approach is successfully implemented and 

tested on a small-scale and a large-scale network, and the numerical results illustrate the 

convergence of the algorithm in terms of the defined gap function. In other words, despite the fact 

that solution existence and uniqueness cannot be guaranteed analytically, the efficient convergence 

of the proposed solution algorithm is demonstrated through numerical results.  

Furthermore, the proposed fixed-point equilibrium model formulation is extended to 

incorporate the cancellation of activity/trips. Strategies for selecting households to have cancelled 

activities as well as activity selection strategies for cancellation, are discussed.  

Lastly, the dynamic user equilibrium problem for the daily activity-trip chains is addressed. 

Spatial and temporal dependencies of subsequent trips necessitate the time- and memory-

consuming calculations and the storage of node-to-node time-dependent least generalized cost path 

trees, which is not feasible given the size of actual networks and today’s technology. The proposed 

algorithm circumvents the need to store memory-intensive node-to-node time-dependent shortest 

path trees for large-scale networks by implementing a destination-based time-dependent least 

generalized cost path finding algorithm, while maintaining the spatial and temporal dependencies 

of subsequent trips. 

Future work on this topic can include incorporation of activity reordering, as well as mode 

choice in the model development and application.  

Other contributions of this dissertation are as follows: 

 In the existing ABMs, certain steps have been made to ensure a partial consistency between 

departure and arrival times, as well as duration at the entire-tour level. The proposed 

approach in this study, however, allows one to include trip details, and control for 
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feasibility of travel times within the tour framework. Certain attempts to incorporate trip 

departure time choice in a framework of trip chains have been made within existing DTA 

models. However, these attempts were limited to a tour level only, and also required a 

simplified representation of activity duration profiles. This constraint was specifically 

addressed in the course of the current study by developing a schedule-adjustment algorithm 

and software module.  

 Physical principles, such as conservation of vehicles at nodes, which apply to network 

loading and flow propagation aspects in DTA procedures, are adhered to strictly (e.g. no 

vehicles should simply be lost or otherwise disappear from the system). Thus, travel times 

that are used to equilibrate the schedule are fully consistent with the DTA network state. 

 Travel times between activities in the schedule, generated by the demand model, 

correspond to realistic network travel times for the corresponding origin, destination, 

departure time, and route generated by the traffic simulation model with the given demand. 

While most of the ABMs include a certain level of demand-supply equilibration, they are 

limited to achieving stability in terms of average travel times. There is no control for 

consistency within the individual’s daily schedule. The challenge is to couple this 

constraint with the previous one, i.e. ensure individual schedule continuity with 

equilibrium travel times.  This is addressed in the current study by monitoring schedule 

inconsistency in the equilibration.     

 The rescheduling process of individuals obeys utility-maximization rules over the entire 

schedule and is not modeled by simplified procedures that adjust departure time for each 

trip separately. None of the existing operational ABMs explicitly control for activity 
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durations, although some of them control for entire-tour durations; or the duration of the 

activity at the primary destination. DTA models that incorporate departure time choice 

have been bound to a simplified representation of temporal utilities, and moreover limited 

to trip chains in order to operate within a feasible dimensionality of the associated choices 

when combined with the dynamic route choice. This constraint expresses consistency 

between activity start and end times as controlled by the schedule adjustment module.                         
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