
NORTHWESTERN UNIVERSITY 

 

Quantifying Hemodynamic Compromise and Stroke Risk Using Magnetic Resonance Imaging 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE SCHOOL  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

 

for the degree 

 

DOCTOR OF PHILOSOPHY 

 

Field of Biomedical Engineering 

 

By 

 

Charles Cantrell 

 

EVANSTON, ILLINOIS 

 

December 2016 

 



2 

Abstract 

Stroke is the leading cause of death and long term disability in the industrialized world.  

With the current population aging, the number of individuals at risk of stroke along with the 

associated health care costs are anticipated to rise considerably in the coming years. 

Consequently, there is an unmet need to identify high risk patients so that prophylactic medical 

management may prevent this devastating event.  In this thesis, we discuss several magnetic 

resonance imaging (MRI) protocols that model underlying cerebral hemodynamic processes 

involved in stroke.  Specifically, with regards to ischemic stroke, we present a novel imaging 

method to measure oxygen extraction fraction and show that it correlates with hemodynamic 

compromise in patients with intracranial atherosclerotic disease.  Furthermore, we validate an 

MR technique for quantifying cerebrovascular reserve (CVR) in an animal model, and show it 

correlates with the stage of hemodynamic compromise.  Lastly, we examine hemorrhagic stroke 

and propose a new imaging metric associated with aneurysm rupture risk and wall thickness. 
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 Introduction 

1.1  Significance 

The overarching and long term goal of this volume of work is to improve the diagnosis 

and treatment of patients at risk of stroke.  There are two main types of stroke, ischemic and 

hemorrhagic, both of which are studied in this thesis.   Ischemic stroke is the result of a blood 

clot that blocks a blood vessel feeding a specific portion of the brain, consequently, reducing the 

amount of oxygen available.  Hemorrhagic stroke, on the other hand, is caused by ruptured blood 

vessels that result in brain bleeding.  Regardless of type, stroke is a devastating event.  In this 

work we present three magnetic resonance imaging (MRI) techniques that can be used to 

quantify patient stroke risk.    

Ischemic stroke is the leading cause of death and disability in the industrialized world (1) 

and accounts for approximately 87% of all strokes  (2). With the population aging, the number of 

individuals at risk for stroke along with the associated health care cost is anticipated to rise 

considerably in the coming years. Consequently, there is an unmet need to identify patients who 

are most likely to suffer an ischemic stroke so that steps can be taken to prevent this devastating 

event. Significant work has already gone into quantifying stroke risk with advanced imaging; 

however, unfortunately, there exists no widely available means for doing so.  Through positron 

emission tomography (PET), however, Dr. Colin Derdeyn and colleagues have shown that 

oxygen extraction fraction (OEF) is an independent indicator of stroke (3), with 12% 

hemispheric asymmetry indicating significant risk for a future stroke (4). OEF-PET images, 

however, require an on-site cyclotron due to the short half-life (~11 min.) of the tracer which has 
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hindered its growth outside academic environments.  Currently, fewer than 10 PET sites exist 

within the United States that can image OEF. 

Hemorrhagic stroke accounts for the remaining 13% of stroke cases.  Though fewer in 

number than ischemic stroke, risk of hemorrhage affects a substantial portion of the population.  

Some studies suggest that upwards of 6% of the general population harbors an intracranial 

aneurysm (IA) (5). While the vast majority of IAs remain dormant, approximately 30,000 rupture 

annually in the U.S. alone (5) causing devastating intracranial subarachnoid hemorrhage 

complications.  Because of the inherent treatment risks associated with microsurgical clipping or 

endovascular coil embolization and the fact that only a small fraction of IAs rupture annually 

(<2%), treatment of unruptured IAs remains controversial (6,7).  Considering, IAs account for 

nearly 85% of all hemorrhagic strokes (8), a methodology to differentiate high rupture risk is 

greatly needed in the clinical environment.  

1.2  Objectives 

The long-term goal of this research is to create and improve the diagnostic tools available 

for patients at risk of stroke.  We have done this by developing the following new MR 

acquisition, reconstruction, and post-reconstruction imaging techniques needed to quantify 

patient risk.   

1. We developed a novel MR-OEF imaging method in three steps: 

a.  We designed and implemented a cardiac gated rosette trajectory to measure 

intracranial transient susceptibility fluctuations. We show these susceptibility 

fluctuations are a consequence of altering ratios of oxygenated vs deoxygenated 
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hemoglobin throughout the cardiac cycle and correlate them with cerebral 

hemodynamic failure in patients with intracranial atherosclerotic disease.  Finally, 

we propose a vascular residue function based on the Windkessel model, which 

correlates with CVR. 

b. We created a new iterative progressive length conjugate gradient, non-linear least 

squares reconstruction algorithm to improve image quality. 

c. We created and implemented a new post-processing technique for removing static 

field inhomogeneity.  We show that using independent component analysis (ICA) 

to remove background field artifact, improves correlation with hemodynamic 

compromise.        

2. We implemented and verified a method for quantifying cerebral vascular reserve in three 

steps: 

a. We validated the accuracy of the Bookend technique in quantifying CBF in back 

to back injections of contrast agent by implementing a second injection specific 

water correction factor. 

b. We validated the technique in an animal model, and show high correlation in 

qCBF and qCVR with microspheres. 

c. We performed a retrospective study on a series of consecutive patients with 

angiographically confirmed cerebral vascular disease who underwent an ACZ 

challenge MRI perfusion study as part of their standard of care.  We show qCVR 

correlates with hemodynamic compromise. 
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3. We created a new parameter for measuring contrast leakage through an aneurysm wall, 

and show its association with rupture risk.  Furthermore, we developed a rapid method to 

determine diffusional effects using parameterization based on easily accessible ADC 

values, which may preclude the need for iterative diffusion-compensated fitting.  

1.3  Organization 

Following a discussion of pertinent underlying principles of MRI physics in Chapter 2, 

Chapter 3 will discuss cerebral autoregulation, while Chapters 4-6 will discuss the author’s 

contribution to stroke risk imaging.  An overview at the beginning of each chapter has been 

added to describe any relevant background information, the purpose for each study, and the 

author’s contribution to the volume of work.  Chapter 4 will examine MR-OEF, where we will 

discuss the rosette trajectory, the iterative PLCG reconstruction method, and the use of ICA for 

filtering background susceptibility artifact.  Chapter 5 will explore quantitative CVR, where our 

second injection correction will be presented.   Chapter 6 will explore the avenue of hemorrhagic 

stroke (aneurysm rupture), where we will discuss contrast leakage through the aneurysm wall 

and a parameterization method to reduce required computational time.  Finally, Chapter 7 will 

discuss conclusions and areas for future work.   
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 Magnetic Resonance Fundamentals 

2.1  Spin Physics 

Unlike photography or x-ray imaging where photons directly interact with the imaging 

medium, MR occurs in a roundabout manner.  In MRI, the signal is acquired from the precession 

of a bulk magnetic moment which is, in turn, converted into an image.  This magnetic moment is 

a result of a fundamental atomic property called spin.  In effect, atoms with an odd atomic 

weight spin around their axis in the presence of an external magnetic field, generating a magnetic 

dipole moment following Equation 1,      

𝝁⃗⃗ =  𝜸 𝒔⃗ (1) 

where, 𝜇⃗⃗  is the magnetic dipole moment, γ is the gyromagnetic ratio of the atom, and 𝑠⃗  is the 

angular momentum (spin) of the atom.  Table 1 shows gyromagnetic ratios and relative 

sensitivities (dependent on γ and abundance) of nuclei with non-zero magnetic moments 

abundant in the body. 

Table 1 Gyromagnetic ratios and relative sensitivities of abundant human nuclei 

Nucleus Symbol Gyromagnetic 

Ratio (MHz/T) 

Relative 

Sensitivity 

Hydrogen – 1 1H 42.575 1.000 

Carbon - 13 13C 10.705 0.016 

Fluorine - 19 19F 40.054 0.083 

Sodium – 23 23Na 11.262 0.093 

Phosphorus  -31 31P 17.235 0.066 

 

As can be seen in Table 1, in vivo imaging is most sensitive to hydrogen atoms, 1H, a 

result of the vast amounts of water present in tissue.  Consequently, in vivo MRI most commonly 
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images hydrogen, though in certain circumstances can be done with the other nuclei shown in 

Table 1. 

Bulk magnetization is the net vector effect of all the individual 1H protons in the body 

(order of 1023).  In the absence of an external magnetic field, the magnetic moments of the 1H 

protons will be randomly oriented, resulting in a bulk magnetization of M = 0.  However, in the 

presence of an external field, B0, the 1H protons orient themselves in a meaningful manner.  

Because, atoms have quantum properties, a proton’s orientation will be discrete—either parallel 

or anti-parallel to the external field.  The ratio of the number of parallel N↑ and anti-parallel N↓ 

hydrogen atoms is related to energy difference between states, ΔE, and the temperature of the 

system, T, given by Boltzmann’s Equation 2 

𝑵↑

𝑵↓
= 𝒆

∆𝑬
𝑲𝑻 (2) 

      

where K is Boltzmann’s constant.  The ratio of N↑ to N↓ hydrogen atoms provides a bulk 

magnetization M > 0.  In a laboratory environment, where T=300K, B0 = 1.5 T, there would be 

about 5 excess parallel spins per 1 million 1H protons or in 1 mL of water approximately 0.3 x 

1015 excess spins – a small but measurable amount.    

Similar to a spinning top precessing about its axis due to gravity, M has its own angular 

momentum.  Consequently, it will not simply align with B0, but rather it will precess about B0.   

This precession has angular frequency, ω0, described as the Larmor frequency, Equation 3, 

𝝎𝟎 = 𝜸𝑩𝟎 (3) 
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2.2  The Rotating Frame, Excitation and the Bloch Equations 

In order to facilitate the discussion of spin excitation, relaxation, and signal acquisition it 

is customary to work within the rotating frame of reference.  The rotating-frame rotates around 

B0 with the Larmor frequency, ω0.  Consequently, rotational frequencies occur relative to the on-

resonance frequency, ω0.  For the remainder of this thesis, we will work within the rotating frame 

unless explicitly stated otherwise.   

Excitation 

At rest, the bulk magnetization lies fully along the main magnetic field (z-axis), or M0 = 

Mz.  In order to measure the bulk magnetization, it must first be tipped away from the z-axis in a 

process called excitation.  Essentially, excitation converts, longitudinal Mz into measurable 

transverse Mxy.  Excitation is performed by playing a spinning radiofrequency (RF) pulse, B1.  

The B1 pulse is typically played at the Larmor frequency to excite only on-resonance species 

precessing with the same frequency.   The amount of transverse magnetization can be varied by 

the flip angle, α, which is a function of the the duration of the B1 field, τ. 

𝜶 = ∫𝜸𝑩𝟏(𝒕)

𝝉

𝟎

𝒅𝒕 (4) 

   

The flip angle describes the amount of the net magnetization that is flipped into the 

transverse plane.  For simplicity we estimate the RF pulse as instantaneous (occurring at t = 0).  

Let t = 0-, denote the time immediately before the RF-pulse, and t = 0+ the time immediately 

following the RF-pulse. Then the longitudinal and transverse can be written as in Equations 5 

and 6 respectively. 
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𝑴𝒛(𝟎+) = 𝑴𝒛(𝟎−) 𝐜𝐨𝐬 𝜶 − 𝑴𝒙𝒚(𝟎−) 𝐬𝐢𝐧𝜶 (5) 

𝑴𝒙𝒚(𝟎+) = 𝑴𝒛(𝟎+) 𝐬𝐢𝐧𝜶 + 𝑴𝒙𝒚(𝟎−) 𝐜𝐨𝐬 𝜶 (6) 

The transverse magnetization precesses (in the laboratory frame), across laboratory stationary 

receiver coils creating magnetic flux, which in turn induces a measurable electric current—

creating the basis of MR imaging.    

Relaxation and the Bloch Equations 

Immediately following excitation the system will begin to relax toward equilibrium.  The 

rate of this relaxation is determined by two tissue specific constants (T1, and T2). T1 relates to the 

longitudinal regrowth and is governed by the loss of excitation energy as a result of energy 

exchange between nuclei and the surrounding lattice, often referred to as “spin-lattice” 

relaxation.  T2 relates to transverse relaxation and is a result of dephasing, or the loss of 

coherence of the net magnetization, referred to as “spin-spin” relaxation.  It is important to note, 

that any process causing T1 relaxation also causes T2 relaxation—consequently, T2 will always 

be small than T1 (T2 < T1).  The relaxation process of the net magnetization is described by the 

Bloch Equation (Equation 7), where M is the net magnetization vector, B is the applied magnetic 

field (combination of B0, B1 and gradient fields), Mx, My, and Mz are the portions of the net 

magnetizations in the x, y and z directions respectively. 

𝒅𝑴

𝒅𝒕
= 𝑴 × 𝜸𝑩 −

𝑴𝒙𝒊 + 𝑴𝒚𝒋

𝑻𝟐
−

𝑴𝒛 − 𝑴𝟎

𝑻𝟏
𝒌 (7) 

To examine how T1 and T2 affect net magnetization, we solve the Bloch Equation.  

Working in the rotating frame and assuming the bulk is exposed to a constant external field such 

that ΔB0(t) = 0, and there is no applied B1, we see that the Bloch equation (along the z-axis) 

simplifies to Equation (8). 
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𝒅𝑴𝒛(𝒕)

𝒅𝒕
=

𝑴𝒛(𝐭) − 𝑴𝟎

𝑻𝟏

(8) 

The above differential can be solved to show that the regrowth of Mz occurs at an exponential 

rate described by Equation 9. 

𝑴𝒛(𝒕) = 𝑴𝟎 + [𝑴𝒛(𝟎+) − 𝑴𝟎]𝒆
−

𝒕
𝑻𝟏 (9) 

Making the same assumptions as above we can show the net magnetization in the transverse 

plane follows the differential in Equation 10. 

𝒅𝑴𝒙𝒚

𝒅𝒕
= −

𝑴𝒙𝒚

𝑻𝟐

(10) 

Equation 10 can be easily solved to show, the transverse magnetization, Mxy, decays 

exponentially (Equation 11). 

𝑴𝒙𝒚(𝒕) = 𝑴𝒙𝒚(𝟎+)𝒆
−

𝒕
𝑻𝟐 (11) 

T1 and T2 play an important role in MR imaging because they are tissue dependent (i.e. different 

tissues have different T1 and T2 values).   

In practice, another important relaxation rate comes into play, T2’.  T2’ is caused by field 

inhomogeneities which cause spin phase incoherence.  This incoherence results in exponential 

net magnetization loss in the transverse plane—killing signal. Both transverse decay terms are 

often grouped into an overall transverse relaxation rate T2*, defined by 

𝟏

𝑻𝟐
∗ =

𝟏

𝑻𝟐
′ +

𝟏

𝑻𝟐

(12) 
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2.3  Image Formation  

Measuring bulk magnetization alone does not create an image, instead we must also 

employ the use of spatial encoding.  Spatial encoding is achieved by applying magnetic gradients 

(much smaller than the B0 field).  The applied gradients vary spatially along x, y and z.  

Furthermore, by varying these gradients with time, we can traverse the frequency domain, 

referred to as k-space.  When enough frequency information is collected, an image is created by 

applying a Fourier Transform.  Each of these steps is discussed in more detail below.  

2D Slice Selection 

One method to impart spatial encoding along the z-direction is to apply a 2D slice 

selection RF excitation pulse. A 2D slice selection pulse is done by applying a z-gradient, such 

that B=B0+G·z, where G is the strength of the applied gradient.  Because the RF-pulse excites 

only spins precessing at the same frequency of the RF, the application of a z-gradient allows for 

excitation of spins only in a particular volume along z.  Furthermore, the thickness of this slice 

can be set by altering the gradient strength, G.     

Phase and Frequency Encoding 

Once spatial information is encoded along the z direction, via 2D slice selection, we must 

somehow encode along the x and y directions.  This is done by phase and frequency encoding.  

Phase encoding is typically done along the y direction by temporarily applying a y-gradient 

called the phase encoding gradient.  During the duration of the gradient, the spins will precess at 

different rates based on y-location.  After a short duration the gradient is turned off and the spins 

return to the same Larmor frequency, however, phase has been accrued based on location along 

the y-axis.   To spatially encode along the x axis a readout gradient is employed.  The readout 
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gradient is applied during signal sampling (thus the name “readout”).  In this case, the x gradient 

causes spins to have different frequencies based on location along the x-axis.  When fully 

combined (the spatial encoding along the x, y, and z directions), this acquires one line of k-space.  

The process is repeated with a different phase encoding gradient to acquire a slightly different 

line, and the process is repeated until all of k-space is acquired.  Once all of k-space is acquired, 

a new slice selecting pulse is done, and the process is repeated for each slice of interest.  When 

completed, the Fourier transform is used to convert the acquired k-space into the image domain.   

The process described above (phase and frequency encoding), is typically described as 

traversing k-space.  The phase encoding process of applying a y-gradient moves us along ky, 

while the frequency encoding moves us along kx.  The required sampling density to prevent 

wrapping artifact, where image information is improperly placed, is governed by the Nyquist 

sampling criteria Equations 13 and 14. 

∆𝒕 ≤
𝟐𝝅

𝜸|𝑮𝒙|𝑭𝑶𝑽𝒙

(13) 

∆𝑮𝒚 ≤
𝟐𝝅

𝜸𝑻𝑷𝑬𝑭𝑶𝑽𝒚

(14) 

We see that the, readout sampling interval Δt, is governed by the frequency encoding gradient 

amplitude, Gx, and the field of view, FOVx .  Similarly, the phase encoding gradient step is a 

function of the phase encoding time interval, TPE and the field of view, FOVy. 

Cartesian Sampling 

One of the most common techniques to acquire k-space is with simple Cartesian 

sampling.  Figure 2.1 is a schematic showing, on the left, how the gradients traverse through k-

space, and on the right is a pulse sequence diagram.  In Cartesian sampling, a small number of 
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lines (usually along kx) are acquired during each RF pulse (in the schematic only one is acquired 

per RF).  Then after a set amount of time after the initial RF pulse, the repetition time (TR), 

another RF is applied and a slightly lower line (along ky) of k-space is sampled.  After this is 

repeated several hundred times (depending on the resolution of the image), the entire frequency 

domain has been sampled and a simple Fourier transform creates the image. 

Non-Cartesian k-space Sampling 

Radial Sampling 

Another fairly common sampling technique is radial.  Figure 2.2 shows (a) how radial 

sampling traverses k-space and (b) a pulse sequence diagram.  Similar to Cartesian sampling, a 

Figure 2.1: Schematic of Cartesian trajectory.  (a) traversing k-space (b) pulse sequence 

diagram. 

Figure 2.2: Schematic of Radial trajectory.  (a) traversing k-space (b) pulse sequence diagram. 
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small number of lines are acquired during each RF pulse.  Consequently, multiple RF pulses are 

used (separated in time by TR).  After several hundred RF pulses, the entire frequency domain is 

sampled.  Unlike Cartesian sampling, however, both kx and ky gradients are played while the 

signal is acquired, and as a result a simple Fourier transform will not yield an image—rather, 

projection-reconstruction (for more information the reader is referred to (9,10)) or a process 

called gridding must be used. 

Gridding and Alternatives  

Non-Cartesian acquisitions require additional steps before an image can be made.  The 

most common technique is called “gridding” which maps the non-Cartesian frequency 

information onto the Cartesian Fourier domain.  One way to think about this is that as the non-

Cartesian acquisitions traverse k-space they travel around well-defined kx and ky locations.  

Consequently, in order to use a fast Fourier transform to move from the frequency domain into 

the image domain, a gridding or an energy dispersion method must be applied to take the 

sampled frequencies and map them on to the Cartesian frequency domain.  For more 

information, the reader is referred to (11-14).   

In our analysis of Oxygen Extraction Fraction (OEF), we found gridding to provide 

inadequate spatial resolution and consequently, we use an alternative approach—Conjugate 

Gradient (CG) Minimization, which is discussed in depth later in this work. 
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 Cerebral Hemodynamic Autoregulation 

In the event of damage to the hemodynamic system of the brain, an autoregulatory 

response is elicited to maintain the supply of blood and oxygen to the tissue.  Over the past 20 

years, considerable work has been done to understand the brain’s auto-regulatory systems and 

how certain deficiencies may lead to hemodynamic failure.  Derdeyn et al. (4,15) used 

radiolabeled [15O] positron emission tomography (PET) to study the progression of 

cerebrovascular disease in terms of the “stages” of hemodynamic failure.  By quantifying 

compensatory mechanisms, he found that patients with increased cerebral oxygen extraction 

fraction (OEF) distal to a carotid artery occlusion, were more likely to have a stroke within the 

next year. In similar work, Nemoto et al. developed a 3-stage model predicting hemodynamic 

failure (16).   In both models the severity of compromise (i.e., the “stage”) is reflected in changes 

in the cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen extraction fraction 

(OEF) and cerebrovascular reserve (CVR).  Along the same vein, Raichle (17), has shown that 

one of the first auto-regulatory mechanisms is the dilation of the arteriole bed, which in turn 

increases CBV.  The dilation of the arterioles reduces the vascular resistance which helps 

maintain blood flow.  However, as perfusion pressure continues to fall with disease progression, 

ultimately CBF will drop—which causes a compensatory increase in oxygen extraction.  A 

schematic of this process is shown in Figure 3.1, taken from Nemoto (16). 
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Significance of OEF and CVR 

OEF is a core component of cerebral hemodynamic health and a central contributor to the 

metabolic consumption rate of oxygen (CMRO2), defined as 𝐶𝑀𝑅𝑂2 = 𝐶𝐵𝐹 ∗ 𝐶𝑎 ∗ 𝑂𝐸𝐹, where 

Ca is the concentration of oxygen in the arterial blood.  Derdeyn et al. showed that an asymmetric 

increase in OEF is an independent indicator of stroke and stroke severity as well as an accurate 

indicator of penumbral volume (4,15).  Furthermore, OEF has been referred to as the “holy grail” 

of medical imaging because of its importance in the hemodynamic model of the brain.  

Additionally, a reliable method for imaging CVR is significant as well.  As shown in Figure 3.1, 

CVR varies linear with cerebral perfusion pressure and thus quantifiable CVR can determine 

Figure 3.1: Schematic showing progression of hemodynamic compromise. 
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patient disease stage.  While there are several ways to clinically image CBV and CBF using MR, 

the measurements of OEF and CVR are complex and are only available at advanced research 

centers, with OEF requiring an on-site cyclotron for 15O PET-imaging and CVR requiring 

multiple perfusion scans (either CT, MRI or PET) and the introduction of a physiologic 

challenge (for example CO2 or acetazolamide). One of the primary goals of this work was create 

imaging techniques for OEF and qCVR that can be used under clinical settings to quantify the 

patient’s risk of future stroke.   

Current Techniques: Penumbral Imaging 

In many patients, the risk of stroke, if properly identified, can be reduced by treatment 

with asprin/plavix. For patients who are refractory to medical management and suffer recurrent 

minor strokes, angioplasty of affected vessels is an option. In all cases, the degree of 

hemodynamic compromise can guide clinical decisions.  Currently, physicians use serveral 

imaging modalities to assess the severity of the stroke and its potential to recur or grow.  The 

most popular clinical method of examining stroke patients revolves around determining 

penumbral volume.  The penumbra contains at risk tissue and is defined as the region which 

contains live cells but has reduced oxygen availability, and is thus considered to be “salvagable 

tissue”.  Clinically, if there is a large penumbral volume, physicians administer tissue 

plasminogen activator (tPA).  tPA can cause hemorraging in upwards of 15% of patients, 

however, and is thus used sparingly.  Consequently, accurately imaging penumbral volume is 

extremely important clinically.  In most environments, the penumbra is estimated as the 

perfusion/diffusion mismatch.  Currently, this mismatch is defined by regions of elevated 

Cerebral Blood Flow (CBF) but have no diffusion abnormalities.  Recently, however, there have 



23 

been several groups questioning the accuracy of this method [19-21], making OEF and qCVR 

imaging more important than ever.    
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 Transient Susceptibility Imaging as a Measure of 

Hemodyanmic Compromise 

 
4.1  Overview 

Basic Principles of BOLD imaging and Current Techniques 

The Blood Oxygen Level Dependence (BOLD) effect is caused by the magnetic 

differences between oxygenated hemoglobin (oHb) and deoxygenated hemoglobin (dHb).  While 

oHb is diamagnetic, dHb has 2 unpaired electrons giving it paramagnetic properties.  Thus 

regions with dHb experience a slightly different magnetic field, which causes susceptibility 

shifts.  Hence, measured frequency shifts can be attributed to a change in the ratio of oHb to 

dHb.  This ratio is directly related to the OEF. As oxygen is taken up in the tissue, it is released 

from the hemoglobin and diffused into the tissue cells.Quantitative BOLD (qBOLD) is a widely 

researched OEF imaging method taking advantage of the BOLD effect.  qBOLD estimates the 

capillary bed as a series of infinite cylinders oriented uniformly across a magnetic field.  With 

this estimation, Yablonskiy et al (18,19) have created a mathematical approximation for the 

signal change caused by an oxygenating change in hemoglobin (Equation 15). 

𝑺(𝒕) = 𝒆
[(−𝑹𝟐

𝒕 ∗𝒕)∗(𝑫𝑩𝑽∗.𝟑𝟑) ∫ (𝟐+𝒖)√(𝟏−𝒖)
𝟏−𝑱𝟎(𝟏.𝟓∗𝜹𝝎∗𝒕∗𝒖)

𝒖𝟐 𝒅𝒖]
𝟏
𝟎 (15) 

where 𝛿𝜔 varies linearly with OEF, defined as (Equation 16). 

𝜹𝝎 =
𝟒

𝟑
𝜸𝝅∆𝒙𝟎 ∗ 𝑯𝒄𝒕 ∗ (𝑶𝑬𝑭 ∗ 𝑩𝟎) (16) 

The mathematical representation in Equation 15 has proven to be challenging to 

implement in the clinical environment.  Certain approximations must be made that don’t 

necessarily hold true in normal volunteers and prove even more problematic in symptomatic 
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patients with abnormal hemodynamics.  Additionally, current qBOLD techniques require a 9 

parameter fit, which is both computationally expensive as well as prone to common fitting 

artifacts/errors (e.g. local minima solutions, noise fitting, etc.).  To address these issues, we 

measure frequency shifts from Equation 16 directly, however, this method has its own 

challenges.  

OEF effects are typically large, affecting a vascular territory or oftentimes an entire 

hemisphere. The length scales associated with parenchymal OEF, coupled with the near 

uniformity of normative OEF across the brain (17) dictate the development of an imaging 

approach that is sensitive to low-spatial frequency imaging behavior. Many current susceptibility 

imaging approaches have had great success by enhancing high spatial frequency behavior to 

detail in the veins (20). However, in these techniques require removal or “normalization” of low 

spatial frequency signal to mitigate air/tissue boundaries in the auditory canals and frontal sinus 

and other sources of non-uniform local magnetic fields. Consequently, the residual phase 

resulting from geometric field inhomogeneity has been a challenge for these techniques in 

clinical translation of OEF imaging.  To address this challenge, we have developed scan protocol 

and post processing algorithm to filter out geometric field inhomogeneity and relax the spatial 

frequency requirements on susceptibility mapping by filtering through the temporal domain.  

Relevance to ICAD and Study Purpose 

Intracranial atherosclerotic disease (ICAD) (i.e., the gradual accumulation of cholesterol 

plaque in the wall of an artery) is considered the leading cause of stroke worldwide. In an 

autopsy study (n = 3,324), Baker et al (21) showed that the incidence of ICAD is 23% in people 

between 50-60 years and increases to 80% in people 80 and older, with higher prevalence in 
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Asian(22), African American and Hispanic populations(23). In symptomatic ICAD with high 

grade stenoses (70%-99%), the risk of stroke or death within 30 days is 10% in untreated 

patients.  

The prognosis of patients with symptomatic ICAD is poor even with the primary 

treatment, antiplatlet/antithrombotic medical management, carrying a risk of stroke or death of 

6% at 30 days, and 20% at 2 years (24).  Although endovascular therapies such as 

angioplasty/stenting exist (25), they are not used as a primary treatment since they carry a high 

surgical complication risk. A large (n=451) randomized trial (Stenting versus Aggressive 

Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis: SAMMPRIS), 

found the rate of stroke or death of 14% within 30 days (24). Angioplasty/stenting despite the 

risk, is utilized in the 17% of patients where aspirin/Clodipodgrel fail to prevent neurological 

decline (26).  Given the devastating and costly consequences of stroke in medically treated 

patients, there is a need for early detection of patients whose auto regulatory capacity is 

compromised leaving them at the highest risk for stroke recurrence.  

Because of the prevalence of ICAD and its association with stroke risk, we imaged 11 

consecutive ICAD patients.  The purpose of this study is to report on a MRI scan protocol that is 

sensitive to tissue oxygenation in the brains of hemodynamically compromised patients. We 

introduce cardiac gating and model the time dependence of signal changes within generalized 

linear time invariant system theory.  Temporal information allows us to directly compare 

physiologic changes resulting from neurovascular disease without the underlying magnetic field 

imperfections. We show that cardiac gated susceptibility mapping is sensitive to hemodynamic 

changes precipitated by neurovascular disease.  
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4.2  Introduction 

Ischemic stroke is the leading cause of long term disability and the 3rd leading cause of 

death in the industrialized world with approximately 20-30 percent of all strokes originating 

from intracranial disease (1). Ischemic stroke occurs when a thromboembolus obstructs a blood 

vessel feeding a specific vascular distribution of the brain reducing the oxygen availability to the 

surrounding tissue. With the United States’ current population aging, the number of individuals 

at risk for stroke along with the associated health care costs are anticipated to rise considerably in 

the coming years. Consequently, there is an unmet need to identify patients with cerebrovascular 

disease who are susceptible to ischemic stroke so that prophylactic medical management may 

prevent this devastating event. 

The benefits of MRI in the acute ischemic stroke setting has been debated with varying 

results.  The Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution II 

(DEFUSE II) trial demonstrated the benefit of using MRI selection to stratify patients for 

successful versus unsuccessful interventional therapy (27).  However, the Mechanical Retrieval 

and Recanalization of Stroke Clots Using Embolectomy (MR-RESCUE) clinical trial was unable 

to conclusively show any benefit of using MRI in the acute stroke setting (28).  Subsequently, 

the randomized controlled EXTEND-IA and SWIFT-PRIME trials confirmed the benefits of 

CTP and MR DWI-PWI imaging with standardized post-processing selection, demonstrating the 

significant benefit of mechanical thrombectomy versus IV tPA for large vessel ischemic stroke 

(29,30).  However, the current MRI paradigm of measuring PWI to identify the mismatch or a 

salvageable penumbra for patient triage is suspect to inconsistency of differentiating oligemic 

versus ischemic penumbra. We hypothesized that the addition of OEF and transient OEF 
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measurements will greatly enhance the ability of clinicians to identify the volume of “tissue at 

risk” in acute ischemic stroke patients as well as in patients with chronic impaired 

cerebrovascular reserve.  The clinical need for a fast, non-invasive imaging method for direct 

imaging of tissue oxygenation prompted the National Instistute of Health (NIH) and the National 

Institute of Neurological Disorders and Stroke (NINDS) to recommend researchers “conduct 

poststroke (acute and chronic) imaging studies to understand cerebral hemodynamics, collateral 

flow, oxygenation, and brain metabolism effects on tissue” (31).  

Our technique differs from previous techniques (19,32-36) by examining frequency 

fluctuations temporally.  While absolute frequency shifts caused by OEF are important, static 

field inhomogenieties can make it difficult to parse out the useful information.  However, by 

examining temporally spaced images we are able to see through the static “noise” and left with 

only the dynamic OEF signal.    

4.3  Materials and Methods 

This investigation was fully HIPAA (Health Insurance Portability and Accountability 

Act) compliant and was approved by Northwestern University’s IRB (Institutional Review 

Board).  All subjects provided written, informed consent. 

Theory 

Parameter Assessment by Retrevial from Signal Encoding (PARSE)    

The PARSE technique (37-39) takes advantage of a longer acquisition window to 

exacerbate R2* decay and 𝜔 shifts in the signal received by the scanner as described in Equation 

17 
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𝑺(𝒕) = ∬𝑴𝟎(𝐱, 𝐲)𝒆
−(𝑹𝟐

∗ (𝒙,𝒚)−𝒊𝝎(𝒙,𝒚))𝒕𝒆−𝟐𝝅𝒊(𝒌𝒙𝒙+𝒌𝒚𝒚)𝒅𝒙𝒅𝒚 (17) 

  

Where M0 is the initial transverse magnetization at location (x,y), R2* is the local decay rate and 

ω is the local frequency, and kx and ky are the k-space sampling points.  The PARSE acquisition 

is based on a rosette trajectory (see Figure 4.1a) to ensure frequent re-sampling of the central k-

space data and smooth gradient wave forms to minimize eddy current effects.  The rosette k-

space trajectory, kt = kf cos(ω1t)e(-iω2t), is similar to that of a spiral readout in that both spiral 

and rosette are characterized by fast oscillating frequency (1) and a slow rotating frequency 

(2).  Based on the constraints of the scanner hardware and the requirement that we re-sample 

the central k-space region, 1 was calculated as 3874.8 Hz and 2 was 1610.8 Hz.   

From a single echo, S(t), we solve Equation 17 using an inverse estimation technique.  

To do this we employ an iterative Progressive Length Conjugate Gradient (PLCG) algorithm to 

estimate M0, R2*, and local frequency offset, δω, for each pixel location to minimize the residual 

between the observed signal and estimated signal, 𝑆̂(t), in a least squares manner (Equation 18). 

𝑬𝒓𝒓𝒐𝒓 =  ∑(𝑺(𝒕) − 𝑺̂(𝒕))
𝟐

𝒕

(18) 

In our algorithm, 𝑆̂(t) is calculated by placing the estimated M0, R2*, and δω maps into 

Equation 17.  While the conjugate gradient method theoretically produces an exact solution after 

a finite number of iterations, we found that in practice the problem is ill-posed and estimates of 

the A-orthogonal vectors were never exact (due to round off error and matrix size) and thus 

solutions were highly dependent on initial guesses.  To address this we employed an iterative 

PLCG, where our first guess was always a zero estimate.  Our algorithm begins by minimizing 
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error for a signal with 100 data points (encompassing information from TE of 9.6 ms to 9.85 ms).  

Afterwards, we progressively add data until all information is included (TE of 9.6ms to 80ms), 

where each iteration uses the solution from the previous step as its initial guess.   For each step 

the conjugate gradient algorithm is stopped when error improvement falls below 5%.  Following 

the initial PLCG we take the M0, R2*, and δω maps, and slightly perturbed them (<1%)—passing 

the perterbed images as the initial guesses for the following iteration.  We have found that this 

iterative PLCG method provides better estimations in less time than a simple CG method. A 

schematic of the reconstruction algorithm is shown in Figure 4.1b, where the CG, PLCG, and 

iterative PLCG components are represented by the green, blue and red outlines repectively.  This 

technique allows us to produce quantitative M0, R2*, and δω images from a single 80 ms 

acquisition.   

PARSE is well described here (37-41).  The primary benefits behind PARSE are the 

ability to acquire a 2D image set in a single 80 ms readout as well as its high sensitivity to local 

frequency changes because of the rosette trajectory’s re-sampling of the center of k-space.  

Furthermore, because we collect signal over a long ADC (80 ms), we are able to see phase 

accrual and R2* decay over a much longer duration than normal scans where the ADC < 3 ms.   
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OEF Calculation    

To image OEF using MRI, we take advantage of the blood oxygen level dependence 

(BOLD) effect.  The BOLD effect is caused by a magnetic shift between oxygenated hemoglobin 

(oHb) and deoxygenated hemoglobin (dHb).  While oHb is diamagnetic, dHb has 2 unpaired 

electrons giving it paramagnetic properties--causing measureable susceptibility differences 

between the two.   

Yablonskiy and others (19,35,36) have described a quantitative approach to estimating 

the BOLD signal (qBOLD).  By modelling the vasculature as a series of infinite cylinders 

randomly oriented, Yablonskiy has shown the reversible signal relaxation rate (ie. R2’) is 

proportional to the deoxygenated blood volume (DBV) given by (Equation 19)  

𝑹𝟐
′ = 𝑫𝑩𝑽 ∗ 𝜹𝝎 (19) 

Yablonskiy showed that Equation 19 is relevant for echo times (TE) outside the static 

dephasing regime—characterized by the critical time, tc.  The rosette trajectory is a multi-echo 

acquisition and consequently, has many TEs well above tc.  Thus, we ensure OEF is linearly 

Figure 4.1: OEF Rosette and Reconstruction Schematics.   (A) Rosette trajectory used in 

the PARSE acquisition.  (B) Schematic of the iterative PLCG reconstruction algorithm.  

Green, blue, and red outlines represent the CG, PLCG, and iterative PLCG components 

respectively. 



32 

proportional to δω by only analyzing data outside the static dephasing regime where TE is 

greater than the calculated critical time tc (calculated as 9.8ms (42)).  Therefore, we can calculate 

OEF as a function of δω given by:      

𝜹𝝎 =
𝟒

𝟑
𝜸𝝅∆𝒙𝟎 ∗ 𝑯𝒄𝒕 ∗ (𝑶𝑬𝑭 ∗ 𝑩𝟎) (20) 

     

where δω is the deoxyhemoglobin induced frequency shift, Δχ0 is the susceptibility difference 

between oxygenated and deoxygenated blood, Hct is the hematocrit and B0 is the magnetic field 

strength in Tesla.  By utilizing PARSE outside of the static dephasing regime, we can directly 

relate the measured δω to OEF, discussed extensively in (37). 

Independent Component Analysis for Removing Static Components   

A significant challenge of susceptibility imaging is distinguishing between physiologic 

specific signal, such as the difference between oHb and dHB, and local field inhomogeneity from 

air-tissue interfaces such as the frontal sinuses and auditory canals. To address this challenge we 

estimate and remove static field inhomogeneities using ICA. ICA is well described and widely 

used across multiple fields (43-45).  In short, ICA uses minimization of mutual information to 

solve, x=As, where x is the observed data, A is the estimated mixing matrix, and s is comprised 

of mutually independent components.  In our implementation, x is comprised of 25 temporally 

separated PARSE Free-Induction Decay (FID) signals.  A is composed of the temporal 

weightings of each of the mutually independent components and s includes the static and 

dynamic FID components. It is important to note that our implementation of ICA uses raw k-

space data and separates components based solely on signal dynamics without regard to 

anatomic queues which are known to introduce bias when selecting individual components for 
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further analysis (45). In this way we are blinded to the anatomic distribution of the dynamic 

signals that we extract.   

Cerebrovascular Reserve from δω Images  

The progression of intracranial vascular disease has been studied from an imaging 

perspective through quantifying changes in CBV, CBF, OEF and CVR.  Direct physiologic 

measurements in patients using advanced PET imaging (4,15-17), have shown the earliest 

imaging changes result from local reduction to vascular resistance and capillary dilation 

(increased CBV) which maintain CBF and OEF with normal ranges. More severe disease 

precipitates slightly diminished CBF with normal OEF, whereas the most severe disease results 

in lower CBV, CBF and increased OEF. Locally increased OEF, in particular, has been shown to 

be an independent predictor of ischemic stroke (15).   Comprehensive evaluation of OEF, CBV, 

CBF and CVR require radiolabeled tracers, respiration of CO2 or pharmacological challenges 

and the injection of an MRI contrast agent. Although CVR evaluation is complex, it is 

hypothesized that CVR varies linearly throughout the disease progression, making CVR 

evaluation a desirable imaging metric of the staging of cerebrovascular disease (4,16).  

We derive a surrogate for CVR within the system theory by modelling the dynamic 

intracranial pressure changes resulting from the cardiac cycle and dynamic changes to δω as 

observables in a linear time-invariant system. Our approach is similar in concept to a 2-element 

Windkessel model which describes flow, Q(t), and pressure, P(t), in the cardiovascular system as 

input and output signals to the system, respectively (4.2a). In the cerebral vasculature we 

hypothesis that an exponential impulse response function, 
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𝑽𝑹𝑭 ∝  
𝟏

𝑽𝒓
𝒆

−
𝒕

𝑽𝒓𝑪 (21) 

where Vr is the vascular resistance of the brain and Cv is the vascular compliance, characterizes 

the system (Derived in Appendix A).   

Here we introduce the vascular residue function (VRF), which is modelled as an 

exponential decay dependent on arteriole resistance and compliance.  As our measurements are 

taken during diastole, we would expect to see an exponential decay with time as the arterioles 

flush oxygenated blood towards the capillary bed.  

It is important to note that while the venous flow may remain relatively constant 

throughout the cardiac cycle, the pulsatility within the arteriole bed is of interest.  As the pressure 

waveform travels to the arterioles, the amount of oxygenated blood will increase resulting in a 

relative decrease in dHb in that area’s blood vessel (similar to fMRI).  It is hypothesized that in a 

diseased state, the local blood transit time differs significantly affecting the oxygenated to 

deoxygenated blood ratio.  

Healthy vs Compromised 

Raichle (17), has shown that as cerebral vasculature is compromised a series of 

compensatory effects begin to take place.  This auto-regulation helps preserve nutrient and 

oxygen supply to the brain during any type of hemodynamic compromise.  One of the first auto-

regulatory mechanisms is the dilation of the arteriole bed, which in turn increases CBV.  In our 

Windkessel model, this dilation of arterioles simultaneously decreases vascular resistance (Vr) 

and compliance (C).  Figure 4.2b shows a schematic of what might happen distal to a stenosis in 

a compromised vessel.   
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Data Acquisition 

MRI-based OEF and reactivity scans were acquired under a number of physiologic 

conditions (breath-hold challenge and neurovascular disease). We post processed images and 

compared pre/post challenge images in the case of healthy normal and interhemispheric values in 

pathology to determine the level to which dynamic images of OEF reflect different physiologic 

states. In this pilot study of a new technique, we hypothesized that the decrease in resistance and 

compliance alters (shortens) the vascular residue function (VRF), shown in Figure 4.2d, and 

should be measureable with high enough temporal resolution.  

Figure 4.2: Schematic of Windkessel Model.   (A) Schematic of the Windkessel model 

with downstream compliance, C, and resistance, R. (B) Schematic of vasculature affects 

distal to a stenosis.  In compromised vasculature, we expect to see reduced vascular 

resistance and reduced compliance.  This will result in increased CBV, decreased CBF, and 

increased OEF to compensate.  (C) Schematic showing cardiac gated acquisitions.  Rosettes 

FIDs are taken in 25 ms increments after the R-wave.  (D) Proposed vascular residual 

function (VRF).  Note that compromised tissue should have a faster decay coefficient. 
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Hypercapnia Volunteer Study 

To examine the ability of ICA-PARSE to measure transient susceptibility fluctuations, 

we scanned 4 healthy individuals under mild hypercapnia induced by a 25 second breath-hold.  A 

series of 20 rosette acquisitions was taken twice on each volunteer.  During the first series 

acquisition the volunteer was instructed to exhale and hold their breath for 25 seconds.  During 

the following series the volunteer underwent normal breathing.  ICA was performed on the 

resulting time-courses.   

To determine proper thresholding, we examined a range of cutoff values for dynamic 

component classification.  To calculate the component baseline mean, outliers (more than 2 

standard deviations from mean) were removed and then the mean of the first 7 time points was 

taken.  Dynamic components were classified as a deviation of more than between 0.1 and 2.5 

standard deviations from the baseline mean during the breath-hold.  The optimal cutoff value 

was determined as the most statistically significant difference in the number of dynamic 

components between breath hold and non-breath-hold time series, while still allowing for more 

than 2 dynamic components on average.       

Cardiac Gated Patient Protocol 

All patients enrolled in our study were scanned on 3T MR scanner (Skyra Siemens 

Medical Solutions, Malvern, PA).  Data was collected on 11 patients (M/F 5/6, <age> = 52.1 ± 

11.1).  We acquired a single slice, 5.0 mm thick, 210 mm x 210 mm FOV, 108 x 108 matrix, 

resolution = 1.94 x 1.94 x 5 mm3 2D PARSE images, with the acquired slice placed 

approximated 5mm above the ventricles.  The sequence was cardiac gated where each slice was 

acquired 25 times, at 25 ms increments from the R-trigger throughout the cardiac cycle (25ms to 
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625ms delay), see Figure 4.2c.  To allow complete longitudinal signal regrowth the repetition 

time (TR) was 5 secs.  Total scan time was approximately 2 minutes.  Four patients had 

clinically available perfusion sequences.    

Patient Recruitment 

Institutional review board approval was obtained for a prospective, HIPAA compliant 

study of symptomatic patients presenting with ischemic stroke or transient ischemic attack 

(TIA), secondary to intracranial atherosclerotic disease (ICAD) with >50% stenosis and plaques 

involving the internal carotid artery (ICA), A1-A2 anterior cerebral, M1-M2 middle cerebral, 

and P1-P2 posterior cerebral arteries (ACA, MCA, PCA) or basilar artery (BA) – see Table 1.  

Patients were identified and recruited for this study at our institution from March 2013 to May 

2015, after receiving a standard clinical head and neck MRI/MRA evaluation including 3D TOF. 

Patients were consented based upon a willingness to participate in a longitudinal study and 

ability to undergo a research MRI examination within 30 days of the ischemic event.  

Post Processing 

PARSE readouts were acquired separated by Δt = 25ms from the onset of the R-wave 

during the cardiac cycle.  Prior to image reconstruction ICA was performed on the time-series of 

Free Induction Decay (FID) data to extract and decompose the data into dynamic components.  

Components that fluctuated by more than 1.6 standard deviations (discussed in results) 

throughout the cardiac cycle were used to reconstruct the dynamic FID signal allowing us to 

create a signal no longer containing static components.  For cardiac gating the baseline mean 

measurements were measured from the end of the time series (when the patient was well into 

diastole).  The dynamic FIDs were then used to reconstruct a series of images temporally 
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separated by 25ms.  The local frequency time series of images δω(t) were used in the statistical 

testing and modelling.   

Image Reconstruction 

The PARSE k-space data were exported, reconstructed and post-processed offline using 

software developed in house using MATLAB (v 12.0, Mathworks, Natick, MA).   PARSE image 

reconstruction uses an iterative progressive length conjugate gradient, non-linear least squares 

algorithm that extracts M0, R2* and local frequency offset (δω) from the 80 ms acquisition.  

Baseline OEF values were calculated using Equation 4, taking advantage of the linear 

relationship between δω and OEF.  Similar to previous studies we assumed a constant HcT value 

of 18 ppm.   Whole brain hemispheric ROIs were automatically drawn and regions immediately 

surrounding the frontal sinuses removed.      

CVR modelling  

 For each pixel of the ICA’d frequency images, baseline δω was measured as the 

mean of the final 4 time points.  The deviation from baseline was then fit to an exponential decay 

function of the form given by Equation 22,  

𝜟𝜹𝝎(𝒕) = 𝑨𝒆−𝜷𝒕 (22) 

where according to Equation 21, β should be proportional to the inverse of vascular resistance 

and compliance.  Consequently, the β is used as a surrogate for hemodynamic compromise, 

where a faster return to baseline (or a larger β) correlates with the local VRF.  For imaging 

purposes, the inverse of β was used as a surrogate for rCVR.  
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Statistical Analysis 

Breath-Hold Analysis: 

The number of dynamic components were compared between breath-hold and non-

breath-hold time series.  The optimal cutoff value was determined as the most statistically 

significant difference in the number of dynamic components between breath hold and non-

breath-hold time series, while still allowing for more than 2 dynamic components on average. 

Hemispheric Indices:   

To remove the bias associated with ROI drawing, we employed an automated 

hemispheric algorithm.  ROIs were created using non-ICA’d M0 images.  First, a whole brain 

mask was generated—defined as .7 standard deviations above image mean.  With the whole 

brain ROI, the center of mass was generated and was then bisected using a perceptron algorithm 

to separate right and left hemisphere masks.  Mean values of OEF and β were calculated for 

affected and healthy hemispheres and a paired Student’s t-test used to test the hypothesis that 

elevated hemispheric OEF and β occur in the impaired portion of the brain.  For transient OEF, 

hemispheric values were calculated as the percentage of energy on the affected and healthy sides.  

Significance was defined as <0.05 in all statistical tests.    

4.4  Results 

Figure 4.3 a and b show the results from the volunteer breath-hold study.  Notice that the 

number of dynamic components as measured via ICA is always greater during the breath-hold 

task.  From this analysis it was determined that a fluctuation of 1.6 standard deviations (p < 

1.74e-10) from baseline was optimal.  While a cutoff of 1.85 standard deviations had a slightly 

more significant p value (p < 8.21e-14), it did not produce more than 2 dynamic components on 
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average.  Figure 4.3b shows a representative sample of component time series.  The red line 

denotes the time of the breath-hold.    

Figure 4.4 shows an example of pre and post ICA images.  Figure 4.4a-b show images 

from a healthy volunteer during the breath-hold task.  Figure 4.4c-d show images from a patient 

with a right ICA stenosis for several times following the R-wave trigger.  For both 4.4 a and c, 

notice the pre-ICA images show little to no temporal fluctuation; the ICA images (b and d), 

however, show easily identifiable temporal perturbations.  In Figure 4.4b, notice the large 

increase in BOLD signal toward the anterior portion of the brain.  While it is known that a 

breath-hold causes hyper-capnea that can be seen during BOLD imaging, it is difficult to know 

for sure what is causing the increase signal seen during breath-hold.   In Figure 4.4d, notice the 

Figure 4.3 ICA cutoff analysis.   (A) Graph showing the number of dynamic components 

automatically generated based on the ICA cutoff values.  Note, as expected, the number of 

dynamic components is always larger for breath-hold data.  Based on this result we used a 

cutoff of 1.6 standard deviations in the cardiac gated study. (B) Representative time-

courses of static and dynamic components.  The red bar represents the known period of 

breath-hold.   
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early flush and subsequent flow out of signal, showing sensitivity to intra-arterial pressure 

waveform.    

Across the 11 patients, average frequency change across the head was 23.35 ± 5.73 Hz 

which correlates to an average OEF of 48.63 ± 11.92 %.  Our previous work showed 11 control 

subjects gave a frequency change of 17.6 ± 3.75 Hz corresponding to an average whole brain-

slice OEF of 36.66 ± 7.82%, displaying excellent with normative PET literature values.  

Figure 4.4 Representative OEF images before and after ICA.   (A, B) Breath-Hold.  

Arrows represent time of breath-hold.  (C-D) Cardiac-gated from patient with a right ICA 

stenosis.  (A) and (C) show pre-ICA images, with (B) and (D) post-ICA.  Notice the pre-

ICA images show little to no temporal fluctuation, however, post-ICA images show easily 

identifiable temporal perturbations.   
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Table 2 shows calculated mean hemispheric OEF, transient OEF and β values for each 

patient.  Table 2 also shows symptomatic side of the angiographically confirmed stenosis 

location.   

Figure 4.5: Mean hemispheric OEF, transient OEF, and β values.  Mean hemispheric 

OEF, transient OEF, and β values for the 11 patients imaged.  Both transient OEF and β 

show significance. Error bars represent standard deviations. 

Table 2: Relevant patient information alongside baseline OEF, transient OEF, and β 

values. 
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Figure 4.5 shows mean hemispheric OEF, transient OEF, and β values for the 11 patients 

imaged.  Hemispheric OEF was elevated on the affected hemisphere (50.34 ± 12.13 % vs 46.93 

± 12.34 %), but failed to reach significance (p < .0796).  Transient OEF showed greater 

distinction between healthy and compromised tissue (0.56 ± 0.067 vs 0.44 ± 0.067 arb.) with a 

significant p value (p < .0195).  β values showed additional information, with hemispheric 

significance (10.72 ± 3.48 10-3ms-1, 9.69 ± 3.51 10-3ms-1; p < .037). 

Figure 4.6 shows the results of our study in two representative patients, with each row 

representing data collected from different patients.  Figure 4.6(a,f) are clinically acquired CBF 

slices corresponding to the MR-PARSE acquisition slice.  Figure 4.6(b,g) are the corresponding 

Mean Transit Time (MTT) images.  Please note, that for Patient 1, MR-Perfusion was performed 

while Patient 2 had CT-Perfusion.  Figure 4.6(c,h) are the representative frequency offset 

images, windowed and leveled to clearly show the frontal sinus interference .  Figure 4.6(d, i) are 

the frequency offset images after ICA, and (e,j) are relative CVR maps generated by taking the 

inverse of β from the Windkessel model.  For the patients shown, the transient OEF scores were 

0.71/0.29 and 0.52/0.48 (Affected vs Healthy), respectively.  In patient 1, the hemispheric 

asymmetry is most clearly seen in the pre-ICA images but easily discerned post-ICA.   
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4.5  Discussion 

We found that dynamic signal analysis of δω images improve the detection of 

hemodynamic compromise in patients with confirmed ICAD.  By modeling physiologic signals 

acquired with MRI within the context of an LTI system we have proposed a new method of 

measuring rCVR.  

The proposed transient PARSE MR-OEF technique has many unique advantages over 

available PET methods.  First, MR is relatively inexpensive when compared to PET counterparts.  

Secondly, the proposed method could easily be added to current MR stroke protocols.  Third, this 

Figure 4.6 Representative OEF images, generated for 2 patients.  The top row shows 

results for a patient with a right M1 stenosis, while the bottom row shows results for a 

right A2 stenosis.  Notice that in the first patient, the CBF is mildly reduced and the MTT 

is markedly prolonged in the right MCA territory and subsequently exhibits increased 

transient OEF in that region, while the bottom patient shows largely symmetrical results, 

with little difference between affected and healthy sides.  (A, F) Clinically acquired CBF. 

(B, G) Mean Transit Time (MTT).  (C, H) Frequency offset images, δω, window/level 

was chosen to clearly show the frontal sinus interference (D, I) Transient OEF Images.  

(E, J) Relative CVR maps generated by taking the inverse of β from the Windkessel 

model.  For the patients shown, the transient OEF scores were 0.71/0.29 and 0.52/0.48 

(Affected vs Healthy), for the top and bottom rows, respectively.   
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technique is non-invasive and easily implemented on currently available hardware across 

multiple platforms.  And finally, MR is much more accessible than PET, especially OEF as PET-

OEF requires an on-site cyclotron due to the short half-life of [15O] water label.   

While previous work has found that direct measurement of local frequency changes with 

PARSE agree with physiologic expectations measured by PET, static MR-PARSE is not without 

its limitations.  Background static field inhomogeneities have the potential to be measured as 

local frequency shifts—artificially elevating OEF values.  Previous work has largely relied on 

shimming techniques to minimize these effects.  However, variations in vendor shimming 

subtleties, focal deposition of iron, and patient air-tissue variations surrounding the sinuses can 

cause incorrect static OEF measurements.  We have sought to address these issues in a novel 

way—by looking for temporal fluctuations and thus seeing through any static affect that may 

shift the BOLD signal. 

Our initial studies attempted to use breath-hold measurements to gain temporal “task” 

measurements.  However, we failed to see how such a technique would be used clinically.  First, 

hyper-capnea should affect the BOLD signal uniformly, regardless of the underlying 

hemodynamic compromise.  Second, breath-hold tasks are complicated by patient ability and 

head motion.  Figure 4 shows a dramatic change in frequency offset, however, this change may 

be caused by head-motion resulting in the new slice being slightly closer to the frontal sinus—

and the air-tissue interface causing a frequency offset that aligns temporally with the breath-hold.  

Even beyond patient motion, breath hold tasks are notoriously difficult for hemodynamically 

compromised patients to perform.  It is for these reasons we switched to a cardiac-gated PARSE 

acquisition.  Figure 4.4 shows very clearly, however, that the proposed ICA methodology 
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removes the static components.  While Figures 4.4a and c show clear static sinus and earhole 

inhomogeneity, Figures 4.4b and d do not.    

The proposed Windkessel model was developed to model changes in the BOLD signal 

that might be measured throughout the cardiac cycle.  One major assumption in developing the 

model is that our measurement takes place after the arrival of the pressure wave form.  Our first 

acquisition begins 25 ms after the R-wave trigger.  With a 25 ms plus gradient delay and image 

averaging over 80 ms, we estimate our first temporal image to occur at roughly 60 to 75 ms, after 

the R-wave trigger.  Given the pressure wave velocity of roughly .5 cm/ms and a relatively direct 

shot from the aorta toward the brain, we’d expect the pressure wave to reach the brain between 

30 and 60 ms after the R-wave. 

The arrival of the pressure wave will move blood into the arteriole bed.  The pulsatility of 

arteries and arterioles is well documented and can further be visualized by the flow of CSF out of 

the brain to offset increased volume.  In a hemodynamically compromised patient the vasculature 

auto-regulates (reducing resistance) to help maintain blood flow (and thus, oxygen and nutrients) 

to tissue.  We provide evidence to suggest that in a diseased state, with the vascular resistance 

reduced, the blood transit time is, as well, reduced.  The presented results suggest the proposed 

method, with temporal resolution of 25 ms, is suitably able to measure these temporal variations.  

 It is well documented by Raichle, Derdeyn and others, that hemodynamic stress affects 

perfusion parameters(4,15-17).  They have shown that patients entering stage II of hemodynamic 

failure would exhibit increased CBV, decreased CBF and elevated OEF.  Most of the patients 

examined in our study were symptomatic, and we hypothesize that we are measuring affects 

around stage II of hemodynamic failure.   
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Limitations 

Several limitations were identified in this study.  First and foremost, as can be seen in 

Figures 4.4 and 4.6, the spatial resolution as defined by the point spread function for the PARSE 

method is poor when compared to anatomic or perfusion imaging.  We felt, however, that in 

order to see the VRF during the cardiac cycle, that acquisition speed was paramount.  With this 

in mind we utilized PARSE--both proton density and phase information for a complete slice can 

be acquired in 80 ms.  This temporal speed allowed us to cardiac-gate images and still create a 

sequence with clinically acceptable table time (<2 minutes).  It is also important to note here that 

Derdeyn showed hemispheric OEF differences predicted stroke risk; and thus, for the proposed 

use as a predictor of stroke risk, low resolution is more than adequate.  We are exploring 

methods to improve resolution of the image, and this is an active area of research within our 

group.  We were also limited by a rather small sample size (n = 11), as well as data being 

collected from a single center—exposing us to biases in patient population.  In future studies we 

hope to include more patients and follow them longitudinally as their diseases progress.  

4.6  Conclusion 

In this pilot study, we present the first evidence of an MR-based OEF and CVR technique 

that requires no contrast.  We have found that MR-PARSE has detectable sensitivity to 

frequency shifts induced by transient alterations in de-oxyhemoglobin through the cardiac cycle 

in ICAD patients with greater than 50% stenosis.   Furthermore, we have shown that through the 

use of ICA, transient OEF and β are significant predictors of hemispheric compromise.  Our 

approach to quantify transient BOLD fluctuations due to cerebrovascular reactivity represents a 

new and simple, non-contrast approach to stratifying patients toward therapies to prevent stroke. 
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 Validation of Quantitative Cerebral Vascular Reserve 

using MRI 
 

5.1  Overview  

Basic Principles MR-Perfusion 

In dynamic susceptibility contrast (DSC) – MRI an intravascular contrast agent is 

injected into the blood and monitored as it passes through the vasculature.  The contrast agent 

causes susceptibility differences between the blood and surrounding tissue.  By analyzing the 

tracer kinetics during the first pass, one can compute cerebral blood flow (CBF), cerebral blood 

volume (CBV), and mean transit time (MTT). These measures are clinically useful in the 

assessment of hemodynamic compromise as well as tumor angiogenesis and a host of other 

neurovascular diseases.  

The most common tracer used is gadolinium (Gd).  Within the brain, the blood brain 

barrier ensures Gd remains within the vasculature.  As a result, the high concentration of Gd in 

the microvasculature creates susceptibility interfaces which result in signal dephasing causing 

𝑇2-shortening and ultimately signal loss. It has been shown, that the T2 relaxation rate varies 

linearly with the Gd tissue concentration Equation 23 

∆𝑹𝟐(𝒕) ∝ 𝑪𝒕(𝒕) (23) 

Because of the linear relationship between T2 and contrast concentration, cerebral perfusion 

images are 𝑇2
∗ -weighted.  One common method is to employ a 𝑇2

∗ -weighted gradient echo 

sequence, which has a signal equation given by Equation 24,   
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𝑺(𝒕) = 𝑺(𝒕𝟎) [𝟏 − 𝒆
−

𝑻𝑹
𝑻𝟏(𝒕)] 𝒆

−
𝑻𝑬

𝑻𝟐(𝒕) (24) 

 

where S(t0) is the baseline signal and TE and TR the echo and repetition times.  Notice that the 

longitudinal and transverse relaxation rates are shown as a function of time—as they both 

shorten with contrast concentration changes.  In perfusion sequences, TR is approximately 50 

times longer than TE, as a result the signal enhancement caused by T1 shortening is 

overwhelmed by T2 effects.  Consequently, the T1 term can be dropped from Equation 24, and 

we can estimate Gd concentration as a function signal Equation 25,   

𝑪𝒕(𝒕) =  −𝒌 ∙ 𝐥𝐨𝐠

𝑺(𝒕)
𝑺(𝒕𝟎)

𝑻𝑬
(25)

 

where k is the linear constant relating concentration to T2.  By using the above equation, one can 

determine contrast concentration during the first pass simply by measuring signal intensity.  

Consequently, by imaging through time, concentration time curves can be measured and tracer 

kinetics determined.  In perfusion imaging, the contrast bolus is modeled as 

𝑪𝒕(𝒕) = 𝑨𝑰𝑭(𝒕) ⊗ 𝒉(𝒕) (26) 

where AIF is the arterial input function and h(t) is the transport function—which describes the 

probability distribution function of the transit times through the voxel.  In MR, Ct and AIF are 

measured and transport function is determined by deconvolution.  In turn, CBF, CBV and MTT 

are calculated using Equations 27 through 29. 

𝑪𝑩𝑭 = 𝐦𝐚𝐱(𝒉(𝒕)) (27) 
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𝑪𝑩𝑽 =
∫𝑪𝒕(𝝉)𝒅𝒕

∫𝑨𝑰𝑭(𝝉)𝒅𝒕
(28) 

𝑴𝑻𝑻 =
𝑪𝑩𝑽

𝑪𝑩𝑭
(29) 

 

Importance of CVR 

In the event of damage to the hemodynamic system of the brain, an autoregulatory 

response is elicited to maintain the supply of blood and oxygen to the tissue.  By quantitatively 

measuring the magnitude of the autoregulatory response, the severity of the hemodynamic 

impairment can be defined.  In this study, we propose a method of accurately measuring 

quantitative cerebrovascular reserve, which has been hypothesized to vary linearly with cerebral 

perfusion pressure.  We propose a technique for serial quantitative measurements of CBF and 

validate this in both human and canine models.  Finally, we show that qCVR can clearly 

distinguish between stages of hemodynamic compromise in patients with occulusive vessel 

disease.   

5.2  Introduction 

Viability of brain tissue is dependent on the ability of the vasculature to provide ample 

oxygen and nutrients.  In patients with chronic cerebrovascular disease, the ability to maintain 

blood flow (and thus oxygen and nutrients), is diminished.  In an attempt to maintain nutrient 

supply, the brain has several auto-regulatory pathways.  The initial response (autoregulatory 

vasodilation) reduces vascular resistance to maintain blood flow.  As cerebral perfusion pressure 

(CPP) continues to drop, the reduction in vascular resistance is no longer sufficient to maintain 

blood flow.  With the reduction in blood flow, the tissue is forced to remove more from the 
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passing blood (increase oxygen extraction).  This juncture of decrease blood flow and increased 

extraction is often referred to as “misery perfusion” (46).        

The progression of intracranial vascular disease has been studied from an imaging 

perspective through quantifying changes in CBV, CBF, OEF and CVR.  Direct physiologic 

measurements in patients using advanced PET imaging (4,15-17), have shown the earliest 

imaging changes (Stage I) result from local reduction to vascular resistance and capillary dilation 

(increased CBV) which maintain CBF and OEF within normal ranges.  More severe disease 

precipitates elevated CBF with normal OEF (Stage II), whereas the most severe disease results in 

lower CBV, CBF and increased OEF (Stage III). Previous to this body of work, comprehensive 

quantifiable evaluation of OEF and CVR could only be performed using radio labelled PET 

tracers. Although CVR evaluation is complex, it is hypothesized that it varies linearly throughout 

the disease progression, making widely available quantification of CVR a desirable imaging 

metric for cerebrovascular disease staging (4,16).  

In this study, we develop a method to accurately quantitate CVR using current MRI-

protocols.  We show that the use of a WCF specific to the second injection allows for accurate 

quantification of CBF and validate this in both human and canine models.  Finally, we show that 

qCVR can clearly distinguish between stages of hemodynamic compromise in patients with 

angiographically confirmed occulusive vessel disease.   

5.3  Methods 

First, we performed back to back perfusion scans on a cohort of 10 volunteers, to 

examine the effect of a second injection on perfusion quantification.  We then compared MR-

qCVR in canines against the perfusion gold standard—microspheres.  Finally, we performed an 
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IRB approved, retrospective review of patients undergoing an MRI perfusion with ACZ 

challenge exam at our institution.  In each case, perfusion was quantified using a previously 

reported DSC-MRI pulse sequence (SCALE-PWI (47-49)).  Volunteer Study:   To examine the 

effects of a second injection of gadolinium, ten volunteers were imaged twice using a 

quantitative DSC perfusion MRI (SCALE-PWI).  A different water correction factor was fit 

using the ratio of T1s for the first and second injection.  Canine Experiment:  Following 

successful demonstration of quantitative perfusion values for both first and second injections, a 

canine experiment was performed to compare MR-qCBF and MR-qCVR values against 

microspheres.  5 canines were examined under resting state and CO2 elevation.  Patient Data: A 

series of sixteen consecutive patients with angiographically confirmed cerebral vascular disease 

who underwent an ACZ challenge MRI perfusion study as part of their standard of care were 

retrospectively selected.  Cerebral perfusion was quantified using a previously reported DSC 

perfusion MRI pulse sequence (SCALE-PWI(47-49)).  The stage of hemodynamic compromise for 

each patient was examined.   

Theory 

It has been shown that steady state CBV (CBVSS) (48), measured by parenchymal T1 

changes (before and post T1 shortening contrast injections) normalized to blood, will predictably 

underestimate true blood volume due to intra-to-extravascular water exchange(48,50,51).  Previous 

work has shown that CBVSS in white matter (WM) can be adequately measured as a ratio of T1 

changes (Equation 30, evaluated in %) and thus quantified CBVWM can be given by Equation 31  

(48,49).    
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𝑪𝑩𝑽𝑺𝑺𝑾𝑴 = 

(
𝟏

𝑻𝟏
𝑷𝒐𝒔𝒕 −

𝟏
𝑻𝟏

𝑷𝒓𝒆)
𝑾𝑴

(
𝟏

𝑻𝟏
𝑷𝒐𝒔𝒕 −

𝟏
𝑻𝟏

𝑷𝒓𝒆)
𝑩𝒍𝒐𝒐𝒅

∗  𝟏𝟎𝟎 (30) 

𝒒𝑪𝑩𝑽𝑾𝑴 = 𝐖𝐂𝐅(𝚫𝑹𝟏,𝑩𝒍𝒐𝒐𝒅) ∗
(𝟏 − 𝑯𝒄𝒕𝑳𝑽)

𝝆(𝟏 − 𝑯𝒄𝒕𝑺𝑽)
∗ 𝑪𝑩𝑽𝑺𝑺𝑾𝑴 (31) 

where WCF is the water correction factor, ρ is average brain voxel density and HctLV and HctSV 

are the hematocrit levels in large and small vessels, respectively.  The WCF fit to empirical data, 

for each injection, as a function of blood ΔR1 and is defined by Equation 32.  

𝐖𝐂𝐅(𝚫𝑹𝟏,𝑩𝒍𝒐𝒐𝒅) = 𝑨(𝜟𝑹𝟏,𝑩𝒍𝒐𝒐𝒅
𝟐 ) + 𝑩(𝚫𝑹𝟏,𝑩𝒍𝒐𝒐𝒅) + 𝑪 (32) 

Once qCBVWM is determined, whole brain qCBV and qCBF are calculated using the ratio of 

quantitative to relative values as shown in Equations (33 through 36).  To account for 

vasodilation or vasoconstriction, second injection calculations include the ratio of steady state 

CBV between first and second injections. Subscript numbers represent injection number.  

𝒒𝑪𝑩𝑽𝟏 = 𝒓𝑪𝑩𝑽𝟏 ∗  
𝒒𝑪𝑩𝑽𝑾𝑴,𝟏

𝒓𝑪𝑩𝑽𝑾𝑴,𝟏

(33) 

𝒒𝑪𝑩𝑭𝟏 = 𝒓𝑪𝑩𝑭𝟏 ∗  
𝒒𝑪𝑩𝑽𝑾𝑴,𝟏

𝒓𝑪𝑩𝑽𝑾𝑴,𝟏

(34) 

𝒒𝑪𝑩𝑽𝟐 = 𝒓𝑪𝑩𝑽𝟐 ∗  
𝒒𝑪𝑩𝑽𝑾𝑴,𝟐

𝒓𝑪𝑩𝑽𝑾𝑴,𝟐
∗
𝑪𝑩𝑽𝑺𝑺𝑾𝑴,𝟐

𝑪𝑩𝑽𝑺𝑺𝑾𝑴,𝟏

(35) 

𝒒𝑪𝑩𝑭𝟐 = 𝒓𝑪𝑩𝑭𝟐 ∗  
𝒒𝑪𝑩𝑽𝑾𝑴,𝟐

𝒓𝑪𝑩𝑽𝑾𝑴,𝟐
∗
𝑪𝑩𝑽𝑺𝑺𝑾𝑴,𝟐

𝑪𝑩𝑽𝑺𝑺𝑾𝑴,𝟏

(36) 

CVR is then calculated a ratio of qCBF values taken before and after a vascular 

challenge.  In the case of humans the challenge was an injection of Acetazolomide, while for 

canines increased CO2 was used.  In both cases, quantitative CVR measurements (in %) were 

calculated using Equation 37.   
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𝒒𝑪𝑽𝑹 =  
𝒒𝑪𝑩𝑭𝑷𝒐𝒔𝒕−𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆 − 𝒒𝑪𝑩𝑭𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆

𝒒𝑪𝑩𝑭𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆
∗ 𝟏𝟎𝟎 (37) 

 

Validation of Quantification in Multiple Injections: Volunteer Data 

To examine the effects of a second injection of gadolinium on measured quantitative 

perfusion values, ten volunteers were imaged twice using a quantitative DSC perfusion MRI 

(SCALE-PWI (47-49)).  One volunteer was removed from analysis due to a failed second injection.  

All patients were imaged back to back using a 1.5T (Espree, Siemens) MR scanner with the 

following parameters: TR/TE = 1,090/34 msec, matrix size = 128 x 128, FOV = 220 mm x 220 

mm, for an in-plane resolution of 1.72 mm, flip angle = 20°, Slice thickness = 5 mm, 

acceleration factor = 2, with 13 slices.  Total perfusion scan time was 1 minute 47 seconds.  A 

single dose injection (0.1 mmol/kg body weight) of Gd-DTPA (Magnevist Berlex, Princeton, NJ) 

was followed by a 15 mL saline flush, at 4 mL/s.  The second DSC-MRI scan was taken five 

minutes after the completion of the first using the same parameters described above.  It is 

important to note, that volunteers did not undergo any physiologic challenge.     

A different water correction factor was fit as a function of blood ΔR1 using the T1 values 

from the first and second injections separately.  For each injection, whole brain qCBV and qCBF 

maps were calculated and co-registered using Statistical Parametric Mapping version 12 

(SPM12).  Co-registration took place after quantification to prevent interpolation before 

deconvolution.  First and second injection quantitative values were then compared voxel-by-

voxel utilizing a linear model to determine the slope, intercept, r2 and p-value.   
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Validation of Quantitative MR-Perfusion: Canine Data 

Following successful demonstration of quantitative perfusion values for both first and 

second injections, a canine experiment was performed to compare MR-qCBF and MR-qCVR 

values against microspheres.  Animal care guidelines of the University of Chicago were 

followed. Five mongrel dogs (20-30 kg) were studied at baseline and under physiologic stress 

(vasodilation) induced by CO2 respiration. On the second day of the study animals underwent 

permanent endovascular occlusion of the M1 segment of the Middle Cerebral Artery (MCA). 

Here we present the results in of the physiologic challenge and imaging validation studies. 

Briefly, following induction, animals were anesthetized (1.5-2.0% isoflurane) and ventilated. 

Cardiac rhythm, end-tidal CO2 (ETCO2), glucose, body temperature, hematocrit and arterial 

pressure were maintained within physiologic range. Imaging studies were performed 

immediately before and during physiologic stress. This study was designed to validate MRI-

based physiologic perfusion imaging against reference standard neutron capture microsphere 

tissue perfusion.   

MRI Scan Protocol  

All MRI images were acquired on a 3 Tesla human magnet (Achieva, Philips Healthcare, Best, 

Netherlands). Animals were placed in the head first, prone position within a 15 channel receive-

only head coil. Diffusion Weighted MRI (DWI) (field of view (FOV)=140x140mm, matrix = 

128x128, number of excitations (NEX)=1, repetition time(TR)/echo time (TE) 192-2131/71, B-

values= 0,1000 s/mm2, Slice thickness (ST)=3 mm) was acquired on day 1 to rule out recent 

infarct, on day 2 DWI was acquired at 1, 1.5, 2, 3, and 4 hours post MCAO. Images of cerebral 

perfusion where quantified using a previously reported calibration technique which used pre-and 
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post-contrast T1 maps to calculate parenchymal T1 changes (47-49). This approach acquires a 2D 

inversion recovery (FOV/Matrix =220/88, Slice Thickness= 6 mm, a single 2D slice) with 

variable delay time and the Look-Locker equation and EPI readout (LL-EPI) to quantify T1 

values within the image. The LL-EPI is coregisgtered with a DSC perfusion scan (FOV/matrix= 

220 mm/88, single-shot, EPI, Fat Saturation, Nslices=5, Thickness= 6, TR/TE=25/335, 200 time 

points), taken concurrently with an injection (3 ml @ 2 ml/sec Gd followed by 20 cc @ 2cc/sec 

Saline Flush) of a gadolinium-based contrast agent (Multihance, Bracco, Princeton, NJ).   

Microsphere Injection Protocol:  

Microsphere injections were performed by hand with the animal stationary in the magnet. 

Each injection consisted of a 4 ml injection of 107 of neutron captured microspheres injected into 

the left ventricle of the heart over a period of 10 seconds by a neurointerventional radiologist 

(Dr. Gregory Christoforidis, MD, PhD). Reference blood draws were collected from a catheter 

placed in the abdominal aorta which was connected to a MRI compatible Harvard pump (PHD 

2000, Instech, Plymouth Meeting, PA) set to withdraw with calibrated syringes (Monoject 20mL, 

Medtronic, Minneapolis, MN). Blood draws of 10 ml/min for 2:00 min yielded 20 ml of blood 

for analysis.  Each blood withdraw was initiated 10 seconds prior to the microsphere injections 

which began once a flow of blood was observed into the withdraw tubes. Microspheres 

containing Gold, Samerium, Lutecium and Lanthium were used for baseline, hypercapnia, post-

occlusion I and post Occlusion II, respectively. In addition to the brain, both kidneys were 

excised and analyzed to serve as an internal reference for normative perfusion. Upon completion 

of the microsphere injection, a contrast enhanced quantitative MR-perfusion scan was collected.  

Carbon Dioxide Challenge Protocol:  
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Transient hypoxia was induced through respiration of carbogen gas (5% CO2/95% O2).  

End Tidal CO2 (ETCO2) was available throughout the experiment.  To undergo hemodynamic 

challenge, animals breathed carbogen until a target ETCO2 of 60 mmHg was achieved. When the 

targeted levels were reached, an arterial blood sampling of CO2 was acquired from the 

Abdominal Aorta and microspheres were infused. Arterial blood gas was calculated with a point-

of-care unit (Epoc, Alere, Overland Park, KS) within 1 minute of withdrawl. A post-hoc analysis 

revealed a calibration error between the   InVivo monitoring of ETCO2 and the reference value 

arterial CO2 ascertained from the abdominal aorta, which resulted CO2 elevation (Figure 5.1).  

All analyses are done using calibrated CO2 values.   

Microsphere Analysis  

Figure 5.1: ETCO2 was Calibrated to Arterial Blood Sampling.  End Tidal CO2 of 

respiration was calibrated to invasive sampling of blood directly from the abdominal Aorta. 

Since targeted hypercapnia of 60 mmHg was determined by ETCO2, physiologic 

hypercapnia was considerable higher than the targeted values of 60 mmHg 
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Upon completion of these imaging experiments the animal was returned to the vivarium 

and allowed to recover will full access to food and water. On Day 2 a terminal experiment to 

study ischemia in a permanent occlusion of the middle cerebral artery was performed. Upon 

completion of Day 2, animals were sacrificed for post-mortem analysis.  After the animals were 

sacrificed, brains were surgically excised, sectioned, photographed, weighed and allowed to dry 

prior to microsphere counting. Brains were section into three coronal slices (Anterior, Middle, 

Posterior) and each slice sectioned into 9 sub-regions (inferior, middle, superior, right and three 

regions going center out and basal regions, Figure 5.2. 

Microsphere counting was performed by BIOPAL (BioPhysics Assay Laboratory, Inc). A 

report of perfusion for each tissue sample, its reported weight (in g) as well as raw microsphere 

counts were reported. The general principle underlying neutron activation is that an incident 

neutron is captured by an atomic nucleus forming a radioactive nucleus. An ideal radioactive 

nucleus would be short-lived and emit a gamma-ray during the decay process (52).  The energy 

Figure 5.2: Example of sectioned animal brain.  Shows a sample brain (A) slice and (B) 

sectioned into 9 sub-regions (inferior, middle, superior, right and three regions going center out 

and basal regions 
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of the gamma-ray is discrete and distinct for each stable atom. High-resolution detection 

equipment is used to identify and measure the emitted gamma-ray. The number of emitted 

gamma rays is directly proportional to the total mass of the parent isotope allowing for 

proportional counting of the deposited spheres. Spheres counted in the calibrated (i.e. known 

blood withdraw rate) blood sample gives a reference for quantitative normalization of counts to 

perfusion.    

MRI and Microsphere Registration:  

A graphical user interface was developed to allow for registration of microsphere laden 

tissue samples to the MRI perfusion images, Figure 5.3. A stainless steel holder designed for the 

sectioning of canine brains was used to create coronal sections with thicknesses equal to that of 

the 2D MRI slices used to measure perfusion. The user interface allowed for slice-by-slice 

comparison of MRI and photographs of the brain sections. Regions of interest were manually 

drawn and validated by an interventional neuroradiologist to ensure proper registration of 

microsphere samples and MRI images. The means and standard deviations for MR-qCBF within 

each ROI were calculated and compared to microsphere values.   
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Patient Data 

 A series of 16 consecutive patients with angiographically confirmed cerebral vascular 

disease who underwent an ACZ challenge MRI perfusion study as part of their standard of care 

were retrospectively selected.  Cerebral perfusion was quantified using a previously reported 

DSC perfusion MRI pulse sequence (SCALE-PWI(47-49)).  All patients were imaged in the clinic 

using a 1.5T (Avanto, Siemens) MR scanner with the following parameters: TR/TE = 1,090/34 

msec, matrix size = 128 x 128, FOV = 220 mm x 220 mm, for an in-plane resolution of 1.72 mm, 

flip angle = 20°, Slice thickness = 5 mm, acceleration factor = 2, with 15 slices.  A single dose 

injection (0.1 mmol/kg body weight) of Gd-DTPA (Magnevist Berlex, Princeton, NJ) was 

followed by a 15 mL saline flush, at 4 mL/s.   

After the first DSC-MRI acquisition, the patient was immediately injected with 1000 mg 

of ACZ.  The second DSC-MRI scan was then performed approximately five minutes after the 

Figure 5.3: Screenshot from Graphical User Interface.  Screen shot from the graphical 

user interface developed to allow for registration of microsphere laden tissue samples to the 

MRI perfusion images. 
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completion of the first using the same parameters described above.  qCVR maps were generated 

by comparing baseline qCBF with challenged qCBF as described in Equation 37.  Regions of 

interest (ROIs) around compromised areas were then drawn and disease stage was determined by 

a neuroradiologist using the resulting qCBV, qCBF and qCVR images.  Mean and standard 

deviation of qCVR values comparing impaired vs non-impaired ROIs were calculated and 

analyzed.  Significance was considered to be p < 0.05.      

Image Post-Processing 

For each subject, the time series images were automatically reconstructed on the scanner.  

The images were then accordingly de-identified (for patient studies), and post processed using 

in-house software developed in MATLAB (Mathworks, Natick, Massachusetts), using a Dell 

XPS 8500 (16 GB of RAM, Intel i7-3770 CPU @ 3.4 GHz).  Standard deconvolution analysis 

was used(53,54).  AIF, sagittal sinus, and white matter were automatically segmented as described 

in (47-49).  A water correction factor was fit for each scanner and injection number.  Quantitative 

CBV and CBF values were calculated using Equations 33 through 36.  Quantitative CVR was 

then calculated after coregistration of perfusion images.  Coregistration for all human subjects 

was done using Statistical Parametric Mapping version 12 (SPM12).  Co-registration took place 

after quantification to prevent interpolation before deconvolution.  No coregistration was done 

for canines.  CVR was computed as a percentage difference between pre and post ACZ qCBF 

values Equation 37. 
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5.4  Results 

Validation of Quantification in Multiple Injections: Volunteer Data 

 Volunteer data shows strong correlation between quantitative perfusion measurements 

between first and second injections.  Figure 5.4 shows WCF curves fit to empirical data (blue 

represents first injection data, red shows second injection).  For volunteer data (all 1.5T Espree 

data), A1 = 0.07175, B1 = 0.0335, C1 = 0.1, A2 = 0.17076, B2 = 0.0001, C2 = 0.00, where 

subscripts represent injection number.  Table 3 shows slope, intercept, correlation, and p-values 

for qCBF-1st injection vs qCBF-2nd injection for each patient.  Notice that the majority of slopes 

are close to unity and all correlations are higher than 0.90 (r2 > 0.90).  Table 4 shows the same 

data for qCBV-1st vs qCBV-2nd for each patient.  Figure 5.5 shows combined data for (A) qCBF 

and (B) qCBV.  Each blue point represents a single voxel value, with the x-axis representing 1st 

injection values, and the y-axis showing 2nd injection data.  Notice both show high correlation (r2 

> 0.92) and near unity slopes for both qCBF and qCBV. 
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Figure 5.4: WCF curves fit to empirical data. Here blue represents first injection 

data and red shows second injection.  Each dot represents data from one volunteer. 

Figure 5.5: First and Second Injection Show High Correlation.  Shows combined data 

for (A) qCBF and (B) qCBV.  Each blue point represents a single voxel value, with the x-

axis representing 1st injection values, and the y-axis showing 2nd injection data. 
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Table 3: Correlation between qCBF-1st injection vs qCBF-2nd injection for each 

patient 

Table 4: Correlation between qCBV-1st injection vs qCBV-2nd injection for each 

patient 
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Validation of Quantitative MR-Perfusion: Canine Data 

Figure 5.6 shows representative qCBF and qCVR maps for the animal study.  Baseline 

imaging was performed at CO2 = 32 mmHg, while challenge was imaged at CO2 = 64 mmHg.  

Notice that there is a substantial increase in qCBF in the cortical regions of the brain—resulting 

in qCVR reaching 200% in some regions.  Figure 5.7 shows high correlation between MR-qCVR 

and microsphere qCVR (slope = 0.9684, intercept = 38.1833, r2 = 0.66).   Each blue dot 

represents 1 region while the red line shows the linear model fit.   Furthermore, MR-qCBF 

showed high correlation with microsphere numbers (slope = 0.93511, intercept = 15.28, r2 

= .4547).     

 

 

Figure 5.6: representative qCBF and qCVR maps for the animal study.  Baseline imaging 

was performed at CO2 = 32 mmHg, while challenge was imaged at CO2 = 64 mmHg. 
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Patient Data 

 For all patient data (1.5T Avanto data) the WCF was empirically fit with coefficients, A1 

= 0.02175, B1 = 0.2125, C1 = 0.1, A2 = 0.02176, B2 = 0.5935, C2 = 0.01, where subscripts 

represent injection number.  Patient data show strong distinction between disease stage Figure 

5.8.  In Figure 5.8, the rows represent different patients with varying hemodynamic failure.  The 

columns show pre and post ACZ qCBF maps an qCVR from left to right.  Figure 5.9 shows a 

comparison between qCVR from non-impaired regions and impaired regions, the p-value was 

generated with a paired t-test.  qCVR is significantly reduced in the impaired region compared to 

the healthy region (-13.1957 ± 7.8411 vs 9.4943 ± 7.744, p < 0.0015).      

Figure 5.7: Linear regression shows high correlation between MR-qCVR and 

microsphere qCVR. 
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Figure 5.8:  Representative qCBF and qCVR maps for the patient study.  Patients 

chosen to show a range of hemodynamic compromise. The rows represent disease stage.  

The columns show pre and post ACZ qCBF maps an qCVR from left to right. 

Figure 5.9: Comparison between qCVR shows significant reduction in impaired 

regions. 
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5.5  Discussion 

In this study we found that serial quantitative DSC-MRI measurements allowed for 

accurate MR-qCVR calculations when compared to the microsphere reference standard.  

Volunteer data showed that measurements made from first and second injections were highly 

correlated (qCBF: slope = 0.94381, intercept = 2.7679, r2 = 0.921; qCBV: slope = 097432, 

intercept = 0.12191, r2 = 0.923).  While one volunteer showed an outlying slope (slope = 0.66418 

for volunteer 5), the others were within 20% of unity.  Further examination shows the failure of 

volunteer 5 was the result in aberrant CBVssWM as a result of aberrant values within the WM 

mask.  Upon removal of these outlying voxels, the slope improved to 0.89244.       

Previous work validated the Bookend approach by quantifying CBF against PET data in 

patients with cerebrovascular disease (55).  In this study, we show that correcting the second 

injection (with a WCF2nd and CBV dilation correction), allows for serial quantitation of both 

CBF and CBV.  By applying this to an animal model, we showed data displayed high correlation 

between qCBF numbers and excellent linearity correlation between MR-qCVR and qCVR 

measured via microspheres.  Furthermore, absolute qCBF (measured by both microspheres and 

MR) during both baseline and challenge matched well with previously reported data (56).  Taken 

in concert this validates the serial Bookend MR approach for qCVR proposed in this study. 

Lastly, we retrospectively applied this method to 16 consecutive patients with 

angiographically confirmed cerebral vascular disease who underwent an ACZ challenge MRI 

perfusion study as part of their standard of care.  We found qCVR in non-impaired tissue to be 

9.49 ± 7.7%, slightly lower than previously reported CVR from ACZ challenge, which is 
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approximately 20 – 30%(57,58).  This slight discrepancy is probably due to the fact that all our 

patients had some level of vascular impairment.  

Recent work by Kawano et. al, has shown a negative correlation between MTT and CVR 

(59) in patients with Moyamoya disease.  This is an interesting avenue for future study.  All 

measurement techniques of CVR require some form of challenge (usually either ACZ or CO2 

inhalation).  These challenges are not without risk, and thus any surrogate measurement would 

be clinically beneficial.  Quantitative CVR may improve such analysis, and the correlation 

between MTT and CVR is a currently being researched within our group.                      

5.6  Conclusions 

We present the first evidence of a method to accurately quantitate CVR using current 

MRI-protocols.  We show that the use of a WCF specific to the second injection allows for 

accurate quantification of CBF and validate this in a canine model.  Finally, we show that qCVR 

can clearly distinguish between stages of hemodynamic compromise.   
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 Ktrans Diffusion 

6.1  Overview 

Studies suggest that between 2-6% of the general population harbors an intracranial 

aneurysm (IA). While the vast majority of IAs remain dormant, approximately 30,000 rupture 

annually (5) causing devastating intracranial subarachnoid hemorrhage complications.  Because 

of the inherent treatment risks associated with microsurgical clipping or endovascular coil 

embolization and the fact that only a small fraction of IAs rupture annually (<2%), treatment of 

unruptured IAs remains controversial (6,7).  Consequently, a methodology to differentiate IAs 

with high rupture risk is greatly needed in the clinical environment.   

Currently, the rupture risk and thus surgical intervention is determined by either patient 

specific (age, hypertension, smoking, alcohol/drug abuse, past or family history of aneurysmal 

subarachnoid hemorrhage) and/or aneurysm specific risk factors primarily related to anatomy 

such as size, location, or morphology (e.g. irregular contour (60) and daughter sacs (61)) as 

determined by CTA, MRA, or DSA imaging.  Recently, however, several investigators have 

postulated new risk stratification paradigms, in which IA risk may be affected by local gene 

expression in the vascular wall such as the production of matrix metalloproteinases (MMP-2, 

MMP-9), ultimately thinning and remodeling the aneurysm wall to increase the rupture risk (62).  

This line of inquiry requires more direct evaluation of the wall with novel imaging biomarkers of 

wall instability and inflammation (62-68). In a recent study, it was hypothesized that thinner IA 

walls showed higher DCE-MRI wall permeability (i.e. ktrans and vl) and were predictive of 

aneurysm wall stability (63).  However, Ktrans and vl were derived from the standard Tofts-Kety 

permeability model (69) that assumes microscopic tracer permeability through capillaries and 



71 

into a tissue bed. The original Tofts model does not address contrast-extravasation through the 

aneurysm wall, which may better represent a macroscopic manifestation of microscopic capillary 

permeability. In particular, pharmacokinetic parameters provided by the Tofts model may reflect 

both contrast uptake into an inflamed aneurysm wall and the passive diffusion of contrast 

through a pathologically thinned wall into the cerebral spinal fluid (CSF). Without the spatial 

resolution required to directly image the IA wall typically measuring 20-100 microns, an 

alternative approach to modeling the signal changes associated with pharmacokinetics of the 

aneurysm wall is required.  

6.2  Introduction 

The leakage of gadolinium based contrast agents has long been used as a clinical tool that 

reflects pathophysiology in cancers. The Standard Tofts model (69,70) applied to Dynamic 

Contrast Enhanced (DCE) MRI describes the transport of contrast from the intravascular to 

extravascular space that is reflective of microstructural tissue changes. In particular, Tofts 

modelling has been shown to reflect angiogenesis (71-75). Clinical translation of the Tofts model 

has been wildly successful and yields actionable information in tumor aggressiveness and 

response to anti-angiogenic chemotherapies (74,76,77). However, kinetic modelling of DCE 

images can yield anomalously high values of the factional volume of extravascular extracellular 

space (ve) and contrast agent permeability rate (ktrans)in some cases (78). This has prompted study 

by several researchers to improve upon the standard Tofts Model. For example, incorporating 

intravascular signal (69) and diffusional transport of contrast agent (78,79) have been developed 

and show significantly altered calculated parameters.  
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Unfortunately, the computational complexity of diffusion correcting ktrans is costly. Some 

direct models take between 1 minute and up to several hours per pixel of computing time (78). 

One goal of this work is to compare the accuracy of optimized, long chain diffusion correction 

with a parameterization of diffusion leakage derived from simulations.  The development of an 

easily implementable approximation to the Pellegrin model (79) has the potential to allow more 

widespread use of the proposed improvements on the Tofts model. Furthermore, prior studies of 

diffusional correction to ktrans  were performed in tumors (78), where leakage and diffusion occur 

within the same voxel creating the potential for mixed-effects in the modelling.  

In this study, we evaluate the diffusional transport term in the modified Tofts model in a 

unique application, that of intracranial aneurysm (IA). The Standard Tofts model has been shown 

to be clinically significant a predictor of rupture risk in intracranial aneurysms and is currently 

being evaluated as a metrics where by ktrans reflects the thickness of an aneurysm wall (63). For 

the purpose of understanding diffusional transport corrections to the Tofts model, brain 

aneurysms represent an ideal physiologic milieu: the aneurysm wall serves as a single distinct 

source of contrast through surface extravasation at the aneurysm dome, the leakage occurs 

directly into tissue which is characterized by low background leakage due to the presence of an 

intact blood brain barrier, and local diffusion of the brain parenchyma is well understood through 

extensive study of Apparent Diffusion Coefficient (ADC).  These three factors allow us to 

separate diffusion transport from nominal ktrans “leakage” and to study these two effects 

separately in vivo.  

Previous work by Fluckiger (78) and Pellerin (79) demonstrated that estimating kinetic 

parameters in the presence of passive contrast diffusion improved physiologic representation and 
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reduced the likelihood of returning unphysical ve values, especially in poorly perfused regions.  

We apply a diffusion compensated Tofts model (DC-Tofts) to analyze contrast kinetics at the 

surface of an IA wall. By incorporating the effects of passive diffusion within the parenchyma, 

the DC-Tofts model may more accurately represent contrast kinetics at the surface of an IA wall, 

and the macroscopic phenomena of contrast agent leakage into or through it. The purpose of this 

study was to quantify diffusion compensated IA wall permeability (ktrans,ve), and to develop a 

rapid method to determine diffusional effects using parameterization based on easily accessible 

ADC values.  

6.3  Methods 

We performed a mathematical simulation of our diffusion compensated Tofts model in 

the setting of an IA which we model as a local source of contrast. Next, we compared diffusion-

corrected to uncorrected values in a study of human IAs.  We then propose a parameterization of 

the diffusion corrected rate constant (ktrans
DC) as a function of tissue specific diffusion rate (D), 

ktrans and fractional plasma volume (vp). Finally, we perform a re-analysis of an existing dataset 

(first reported in (63)) to determine if diffusion corrected kinetic parameters improve the risk 

identification of aneurysms.  This investigation was HIPAA (Health Insurance Portability and 

Accountability Act) compliant and was approved by the local IRB (Institutional Review Board) 

at our institution.   All subjects provided written informed consent. 

Theory 

Permeability Modeling 

The Tofts Model is well known and used frequently in a variety of research and clinical 

settings.  It describes the vascular delivery and distribution of a tracer into the extracellular 
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volume and has been used with great success to quantify the leakage of gadolinium-based 

contrast agents in solid tumors with notoriously leaky vasculature (neovascularity).  Since an 

intact blood brain barrier (within healthy brain tissue) restricts the distribution of contrast, the 

Tofts model can be used to quantify the leakage rate through a compromised blood brain barrier 

(72,73,76,80).  While pathological tissue enhancement is adequately explained by leakage of 

tumor neovasculature, the presence of contrast enhancement in necrotic centers which lack a 

blood supply is less understood.  

A similar problem arises when considering the Tofts model to explain contrast uptake 

into and across the aneurysm wall.  In IA patients, their vasculature (barring the aneurysm) is 

largely unaffected—suggesting the blood brain barrier is intact and thus contrast enhancement 

should be minimal.  However, as was previously shown (63), contrast can be readily observed 

beyond the compromised and thinned IA walls.  Consequently, we have applied the DC-Tofts 

model to account for contrast extravasation through the vascular lumen and aneurysm wall into 

the CSF as well as diffusion from higher concentrated regions towards lower concentrations. 

The permeability-limited Modified Tofts Model (69) quantifies the kinetics of a tracer 

leaking through a semi-permeable membrane with the following relationship:  

𝐂(𝐭) = 𝒌𝒕𝒓𝒂𝒏𝒔 ∫ 𝒆−𝒌𝒆𝒑(𝒕−𝝉)𝑪𝒑(𝝉)𝒅𝝉
𝒕

𝟎

+ 𝒗𝒑𝑪𝒑(𝒕) (38) 

          

with ktrans
 dictating the tracer transfer rate from the intravascular into the extracellular 

extravascular space with units of min-1, kep = ktrans/ve in units (min-1) describing the ratio of the 

transfer rate (ktrans) to the fractional volume of tracer (ve), Cp(t) the intravascular tracer 
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concentration, that is, the Arterial Input Function (AIF), C(t) is the voxel tracer concentration and 

vp the fractional plasma volume. 

The diffusion-corrected model improves on the Tofts model by including a diffusion term 

when calculating the changes in concentration as a function of time—modeled by Equation 39 

(78,79) 

𝒅𝑪𝑫(𝒕)

𝒅𝒕
= 𝒌𝒕𝒓𝒂𝒏𝒔𝑪𝒑(𝒕) − 𝒌𝒕𝒓𝒂𝒏𝒔

𝑪𝒊(𝒕)

𝒗𝒆𝒊
+ ∑

(
𝑫𝒊 + 𝑫𝑵

𝟐 )

𝒂𝟐
(
𝑪𝑵(𝒕)

𝒗𝒆𝑵
−

𝑪𝒊(𝒕)

𝒗𝒆𝒊
)

𝑵

(39) 

 

where a is the in plane voxel length, CD is the diffusion compensated tracer concentration, D is 

the voxel specific diffusion constant, and C is the measured concentration.  The subscript i refers 

to the voxel of interest while N refers to the adjacent neighbors (a total of 4 neighbors are 

included along the 2D plane). 

Since IAs are surrounded by the pial surface of the cerebral cortex, remote from white 

matter with its well-known and complex diffusion function, we are able to reduce the 

computational complexity of the solution by approximating the diffusion rate (D) to be uniform 

in the extravascular space and replace (Di + DN)/2 in Equation 2 with a single parameter, D.  We 

are then left with Equation 40.  

𝒅𝑪𝑫(𝒕)

𝒅𝒕
= 𝒌𝒕𝒓𝒂𝒏𝒔𝑪𝒑(𝒕) − 𝒌𝒕𝒓𝒂𝒏𝒔

𝑪𝒊(𝒕)

𝒗𝒆𝒊
+ ∑

𝑫

𝒂𝟐
(
𝑪𝑵(𝒕)

𝒗𝒆𝑵
−

𝑪𝒊(𝒕)

𝒗𝒆𝒊
)

𝑵

(40) 
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To solve for the concentration time-courses in each voxel we integrate and include the 

plasma concentration term, Equation 41.  Note that this is the same as Equation 1, but we have 

added a new “diffusion term” defined as the 3rd term (Bolded) in:  

𝑪𝑫𝑪(𝐭) = 𝒌𝒕𝒓𝒂𝒏𝒔 ∫ 𝒆−𝒌𝒆𝒑(𝒕−𝝉)𝑪𝒑(𝝉)𝒅𝝉
𝒕

𝟎

+ 𝒗𝒑𝑪𝒑(𝒕) + ∫ ∑
𝑫

𝒂𝟐
(
𝑪𝑵(𝝉)

𝒗𝒆𝑵
−

𝑪𝒊(𝝉)

𝒗𝒆𝒊
)

𝑵

𝒅𝝉
𝒕

𝟎

 (41) 

Simulation 

 To examine the effects of partial volume averaging and contrast diffusivity on contrast 

kinetics, we performed a 2D computer simulation.  A single slice was used for simulations 

because the slice thickness in the DCE-MRI patient experiments was four times greater than in-

plane resolution.  Consequently, we estimated the inter-plane diffusion of contrast to be 

negligible compared to in-plane diffusion.   

The simulated aneurysm model consisted of 3 different compartments—intravascular 

blood, vessel wall, and interstitial tissue (Figure 6.1a-b).  The concentration of contrast in the 

blood was modeled with a population-averaged AIF derived from clinically collected aneurysm 

patient information (shown in Figure 6.1d).  Simulated vessel wall and tissue compartment 

permeabilities (ktrans
true, vetrue, vptrue), distribution volumes, and diffusion rates (Dtrue) were 

allowed to vary within known physiologically realistic ranges (63,78) (Table 5).  With the known 

kinetic parameters and the population averaged AIF, we generated a 512x512 parametric image 

of contrast concentration which was allowed to evolve over time, C(x,y,t).  The concentration 

time courses were convolved with a 2D Gaussian kernel (full width half maximum (FWHM) = 

2.73 mm) and resampled onto 64 x 64 matrix to match the in-plane experimental imaging 

resolution 0.58 mm x 0.58 mm, where the vessel wall width was estimated to be 50-550 microns 
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(81-83).  Next we converted concentration curves into signal intensities (84) then added Rician 

noise to the signal time courses to create a uniform signal-to-noise ratio of SNR ~ 6.0.  Finally, 

signal curves were converted back to concentration time course which were then fit to determine 

ktrans, ve, and vp values for both the Tofts model and the DC-Tofts model (examples shown in 

Figure 1e). 

To examine how inputs parameters affected each model, ktrans and ktrans
DC were studied at 

varying distances from the vessel wall.  Model variations are also shown in histograms of ktrans - 

ktrans
DC.   
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Figure 6.1: Simulation Schematic.   (A) Schematic of leakage out of aneurysm and 

diffusion out toward area of low concentrations.  Regions of darker green represent higher 

concentrations (B) Schematic of simulated environment.  (C) Flow chart of diffusion 

compensated method.  Blue outline represents the typical Toft’s method.  The Green 

outline highlights the diffusion compensation addition.  Red outline is complete proposed 

method.  (D)  Patient averaged AIF used in simulations.  (E)  Simulated concentration 

curves for a single voxel.  Dots represent noisy data, lines represent model fits.  Blue 

represents standard Tofts model, while Red represents DC-Tofts. 

Table 5: Simulation value Ranges 
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Patient Data 

All in vivo data in this study were collected prospectively between July 2011 and July 

2013 on consecutive patients with unruptured IAs reporting for neurointerventional consultation 

at our institution.  These collected data were initially published in (63).  Major exclusion criteria 

included typical contraindications to MR imaging: pregnancy, contrast allergy, renal 

insufficiency, presence of MR incompatible implants, and prior IA treatment. 

Imaging Protocol  

Twenty-six cerebral aneurysms in 24 patients were imaged on a 3T (Trio, Siemens) MR 

scanner. To localize the IA for DCE imaging volume placement, a 3D time of flight (TOF) MRA 

sequence was acquired. DCE-MRI was performed using a single dose (0.1 mmol/kg) bolus 

injection of T1-shortening contrast agent (Magnevist, Berlex; Wayne, NJ).  The following image 

parameters were used: TR/TE=2.84 ms/0.8 ms, matrix= 128x128 - 384x384, FOV = 190-220 

mm, and 12-24 partitions placed to adequately cover the IA, resulting in voxel dimensions 

between 0.58 x 0.58 x 2.0 mm and 1.48 x 1.48 x 5.0 mm.  T1 weighted images were acquired 

using a standard multi-phase 3D-gradient recalled echo (GRE) pulse sequence every 10 second 

for approximately 8 minutes.  Partial Fourier was employed to increase temporal resolution to 5 

seconds.  Pre-contrast T1 values (T1,0) of the tissue, used to estimate contrast concentrations, were 

found by varying the flip angle (α= 5°, 10, 12, 15, 20, 25) and solving the spoiled gradient echo 

equation (63,85,86).   

Post Processing 

All permeability modeling and post-processing analyses were performed using in-house 

software developed in MATLAB (Mathworks, Natick, Massachusetts).  Using a Dell XPS 8500 
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(16 GB of RAM, Intel i7-3770 CPU @ 3.4 GHz) computational time for contrast kinetic 

parameters was less than 10 minutes per slice. 

Tofts Modeling 

Kinetic modelling was performed in manually drawn large ROIs which contained the IA, 

a segment of the parent artery and the adjacent parenchyma.  For every voxel within the ROI 

(including intra-vascular voxels) a Levenberg-Marquardt curve fit was utilized to find the ktrans , 

ve, and vp in Equation 1 that best fit the measured signal C(t). 

Diffusion-Compensated Modeling 

Direct voxel-by-voxel fitting of Equation 2 is heavily dependent on neighborhood values 

and thus any direct solution requires iterative fitting of diffusion coefficient, D and kinetic 

parameters, ktrans, ve, and vp for each voxel location.  It has been previously shown that for even 

relatively small coverage, any direct solution becomes too computationally expensive (79).   

Consequently, we constrain the solution set to allow for faster implementation.  First, as in 

previous work, D is not used as a free parameter (79).  We instead assume a constant value for 

the diffusion rate (D = 1.0 x 10-3 mm2/s for all model comparisons and risk analyses) across the 

whole brain.  By assuming a constant diffusion rate, we can first solve for the diffusion term in 

Equation 4 and subsequently solve for the kinetic terms using a Levenberg-Marquardt algorithm 

with the diffusion term fixed at the value determined above.  D was fixed at 1.0 x 10-3 mm2/s to 

be slightly higher than white and grey matter values (0.7 and 0.9 respectively (87)).  This was 

done because large vessels of the brain are surrounded by cerebral spinal fluid (CSF) which on a 

whole will increase the diffusion coefficient of the voxel.  We examined the fidelity of this 
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assumption by re-calculating in vivo data varying D from 0.2 to 2.5 x 10-3 mm2/s (discussed 

below).    

Concentration maps at each time point are allowed to diffuse in increments of time.  

Because the image temporal resolution is roughly 5 secs, we use 5 “diffusion steps”, enabling us 

to compute diffusion every Δt = 1 second (similar to (79)).  During the diffusion calculations, ve 

for each voxel was estimated as standard Tofts modelling, ve.  For each voxel and time point t we 

subtract the diffusion term from each side of Equation 4 and generate diffusion-compensated 

concentration curves.  We then utilized the same Levenberg-Marquardt algorithm described 

above to solve for diffusion corrected kinetic parameters, ktrans,DC, ve-DC, and vp-DC.  A schematic of 

the work flow is shown in Figure 6.1c. 

Contrast Leakage through Aneurysm Wall  

To investigate contrast leakage through the IA wall versus uptake and retention of 

contrast within the IA wall, we compared the probability density function (PDF) and cumulative 

density function (CDF) of (ktrans – ktrans
DC) between simulated and patient data.    Simulated data 

were created over a wide range of Dtrue (Table 1).  Best and worst fitting distributions were 

determined based on the Sum Square Error (SSE) between simulated and patient CDFs.   

Model Comparisons  

Several methods were used to compare the Toft’s model with the diffusion compensated 

model using different regions of interests (ROIs).  To remove any bias introduced by user-

defined selection of kinetic parameters, kinetic parameters were automatically selected to include 

only voxels with corresponding vp smaller than 0.8 (vp < 0.8) were considered in evaluation.  
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This approach ensures that voxels with DCE signal of greater than 80% from partial volume 

averaging between the parenchymal signal and intravascular signal (i.e. inside the parent artery 

and/or IA) are removed. 

For all direct voxel-by-voxel comparison of ktrans and ve values, a large ROI was placed 

on a single slice containing the IA.  The ROI was placed in a manner to fully encompass the 

aneurysm as well as all surrounding healthy vasculature.  To examine how ktrans and ve differed at 

the IA wall only, voxels within the large ROI with vp values between 0.5 and 0.8 were used (0.5 

< vp < 0.8).  Surrounding tissue was classified by vp values between 0.01 and 0.5 (0.01 < vp < 

0.8).  In each case, we utilized a linear model to determine the r2 and p-value between the DCE-

parameters (ktrans, ve) of each model. 

To investigate model differences as a function of distance from the aneurysm wall, we 

binned permeability parameters based on vp.  Again, high vp was considered to be close to the 

aneurysm wall.  The means and standard deviations of each bin were calculated and analyzed. 

Mean ktrans and ve values were also measured adjacent to the wall of a healthy parent 

artery in each patient and compared against mean ktrans and ve values adjacent to the aneurysm 

wall.  For both the healthy artery and the IA wall, ROIs were 5 voxels wide surrounding and 

outside the structure of interest.  Average ktrans and ve measurements from the aneurysm wall 

were compared with the parent artery values which served as internal controls (i.e. non-disease 

values) using a Student’s unpaired t-test to determine if the DCE measurements were 

significantly different.  Average permeability parameters were also compared on an inter-model 

basis using a Student’s unpaired t-test.  In all cases, statistical significance was defined at the 5% 

level.  
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DC Model Analysis and Parameterization 

To dramatically reduce post-processing time, we utilized a homogeneous constant D = 

1.0 x 10-3 mm2/s.  To examine the fidelity of this assumption, we re-analyzed in vivo data 

varying D from 0.2 to 2.5 x 10-3 mm2/s.  For each D, mean ktrans
DC and veDC values were 

calculated adjacent to the aneurysm wall (0.5 < vp < 0.8).  Ktrans
DC and veDC were then fit as 

functions of diffusion constant, D, and ktrans. 

We next investigated parameterizing ktrans
DC as a function of tissue specific D, ktrans and 

vp.  To do this we used the large ROI including both surrounding tissue and the aneurysm wall 

and fit Equation 3 for parameters a, b, c and d, by minimizing the sum square difference between 

the long chain ktrans
DC and the parameterized k̂trans

Corr . 

𝒌̂𝑪𝒐𝒓𝒓
𝒕𝒓𝒂𝒏𝒔 = 𝒌𝒕𝒓𝒂𝒏𝒔 + 𝒂(𝒗𝒑 − 𝒃)

𝟐
+ 𝒄√𝑫 + 𝒅𝒗𝒑𝑫 (42) 

To analyze the predictive value of ktrans
DC parameterization, while preventing over-fitting, 

we performed a Leave One Out Cross Validation (LOOCV) study.  In the LOOCV analysis, 

patient specific constants (ai, bi, ci, and di) were fit using Equation 42.   

[𝒂𝒊, 𝒃𝒊, 𝒄𝒊, 𝒅𝒊] =  𝐚𝐫𝐠𝐦𝐢𝐧
[𝒂,𝒃,𝒄,𝒅]

∑(𝒌𝑫𝑪
𝒕𝒓𝒂𝒏𝒔 − 𝒌̂𝑪𝒐𝒓𝒓

𝒕𝒓𝒂𝒏𝒔)
𝟐

𝒏≠𝒊

(43) 

For example, because this study included 23 saccular aneurysms, patient specific 

constants (ai, bi, ci, and di) were fit using data from the other 22 aneurysms.  For each patient, we 

then calculated k̂trans
Corr and compared it to the long-chain ktrans

DC with a linear model.  

Correlation and Bland Altman graphs for both surrounding tissue and the aneurysm wall were 

generated.  
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Clinical Consequence of Diffusion Compensation 

To determine the clinical benefits of the DC-Tofts model, rupture risk was evaluated 

using mean values of DCE permeability parameters calculated in automatically drawn ROIs 

containing voxels adjacent to the aneurysm wall.  ROIs were placed on a single slice containing 

the aneurysm where the highest ktrans values were observed.  Aneurysm wall was defined as 

regions with vp values between 0.5 and 0.8 (0.5 < vp < 0.8).  To examine only the regions of 

highest ktrans, the ROI was refined to only include the highest 25% of wall values.    

Statistical Analysis and Risk Classification 

Using previous published methodology (63), IAs were classified into high-risk and low-

risk categories using two size-independent risk assessment paradigms. In clinical risk paradigm 

A, high-risk aneurysms were those that presented with neurological symptoms relevant to the 

aneurysm’s location (headaches, mass effect, cranial neuropathy); asymptomatic aneurysms were 

low risk. In risk paradigm B, high-risk aneurysms harbored one of the following three 

imaging/anatomic properties: (1) multilobulated dome or blebs as defined by DSA or CTA, (2) 

presentation with multiple IAs, or (3) posterior circulation location; all others were defined as 

low-risk. Size indices were not used to define the risk profile for any aneurysm in Group A or B. 

Univariate regression analyses were performed for groups A, B and AB (which was 

defined as A or B).  High and low risk groups were compared against patient age, sex, aneurysm 

size, ktrans, and (ktrans – ktrans
DC).  Multivariable logistic regression analysis was also performed to 

evaluate independent predictors of risk in the aforementioned risk paradigms/groups.  In all risk 

analyses, only saccular aneurysms (n = 23) were examined. Significance was defined as <0.05 in 

all statistical tests.  
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6.4  Results 

Simulations 

Simulations (Figure 6.2) were performed comparing Tofts model results versus diffusion 

compensated results with respect to environmental diffusion constant Dtrue, wall thickness, and 

ve_true.  Diffusion compensation tended to increase ktrans values close to the wall, while slightly 

reducing them further from the wall.  Both close to the wall and in the surrounding tissue, ktrans
DC 

was closer to true simulated ktrans
true (represented by the black line).  The bottom row shows 

probability distributions of (ktrans – ktrans
DC) in the 1000 simulations which clearly show that the 

diffusion constant Dtrue has a dramatic effect in (ktrans – ktrans
DC), while both width and ve have 

little effect.  A larger diffusion constant means that contrast will diffuse faster and further away 

from the wall.  Without correcting for this effect the Tofts model will underestimate the amount 

of contrast near the source (aneurysm wall), and overestimate it in healthy tissue. 
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Figure 6.2:  Simulated Results.  Simulations show ktrans is predominately affected by 

diffusion constant Dtrue while minimally affected by ve_true and wall thickness.  The top row 

represents, ktrans values on the y-axis vs distance from vessel wall on the x-axis.  The solid 

blue lines represent Tofts model results, while the dotted red lines are diffusion compensated 

results.  The dots shown are mean ktrans from 1000 simulations.  Black lines show ktrans
true 

values.  Notice diffusion compensation tends to increase ktrans values close to the wall, while 

slightly reducing them further from the wall.  In both cases moving ktrans
DC closer to true 

values.  The bottom row shows the probability distributions in (ktrans – ktrans
DC) in the 1000 

simulations.  Note diffusion constant Dtrue, has a drastic effect in (ktrans – ktrans
DC) while wall 

thickness and ve_true have little effect. 
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Contrast Leakage through Aneurysm Wall  

Figure 6.3 shows probability (a,b) and cumulative (c,d) distribution functions of (ktrans – 

ktrans
DC) for measured data (represented in blue) and simulated data.  Simulated data was done 

over a wide range of values for Dtrue.  The best and worst fitting distributions are shown, red 

represents simulation results from Dtrue = 2.0 x 10-3 mm2/s (Best fit with SSE = 0.128).  Green 

represents simulation data from Dtrue = 0.01 x 10-3 mm2/s (Worst fit with SSE = 1.440).  

Considering, previously published data show diffusion coefficients within the brain vary from 

approximately 0.6 to 2.7 x 10-3 mm2/s (low end white matter to CSF) (87), these results taken in 

concert suggest contrast is actively leaking through the aneurysm wall and diffusing outward. 

Figure 6.3:  Simulated data suggests contrast leakage through the aneurysm wall.   

Probability (A,B) and cumulative (C,D) distribution functions of (ktrans – ktrans
DC) for 

measured data (represented in blue) and simulated data.  Red represents simulation results 

from Dtrue = 2.0 x 10-3 mm2/s.  Green represents simulation data from Dtrue = 0.01 x 10-3 

mm2/s.   



88 

Model comparisons 

Correlation between voxel-wise DCE parameters of both models are high.  Measured 

ktrans and ve values from both models are shown to be highly correlated. (kTrans: r2 = 0.821, slope = 

1.02, intercept = 0.009, p < 0.0001; ve: r2 = 0.723, slope = 0.797, intercept = 0.014, p < 0.0001).  

Figure 6.4a and d show correlation between models in surrounding tissue. (kTrans: r2 = 0.851, slope 

= 1.00, intercept = 0.008, p < 0.0001; ve: r2 = 0.718, slope = 0.827, intercept = 0.012, p < 

0.0001).  Figure 6.4b and e show measured ktrans and ve values from both models adjacent to the 

aneurysm wall.  We see a divergence at the wall between the models, but correlation remains 

high (ktrans: r2 = 0.761, slope = 1.067, intercept = 0.0165, p < 0.0001; ve: r2 = 0.717 slope = 0.682, 

intercept = 0.013, p < 0.0001). 

Figure 6.4c and f, show model divergences as a function of distance from aneurysm wall.  

Error bars show standard deviation around mean binned values.  Though noisy, ktrans-ktrans
DC 

clearly shows divergence near the wall fluctuating from -0.071 to 0.013 as vp decreases from 0.8 

to 0.01. Though more subdued, ve-veDC also shows a clear trend decreasing from 0.011 to -0.002 

as vp decreases from 0.8 to 0.01.         
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Figure 6.5 shows a comparison between ktrans values in Tofts and DC-Tofts models from 

healthy vessels and aneurysm walls, p-values were generated with a Student’s unpaired t-test.  In 

both models, the healthy vessels show minimal ktrans divergence (Tofts vs DC-Tofts), 0.0284 ± 

0.018 vs 0.0224 ± 0.015, (p < 0.2337).  Near the aneurysm wall however, DC-Tofts was 

significantly higher (Tofts vs DC-Tofts), 0.127 ± 0.053, 0.183 ± 0.064, (p < 0.0060).  In each 

model, the difference between the healthy vessel wall and aneurysm wall was significant (p << 

0.001). 

Figure 6.4:  A comparison of Tofts and DC-Tofts models shows high correlation between 

the models.  Divergence between methods tended to occur near aneurysm wall.  All images 

show the line of unity for visual purposes.  The reported correlation coefficients (r2) are from a 

linear regression (line not shown.)  (A and D) pixels from surrounding tissue.  (D and E) show 

pixel comparisons near the aneurysm wall.  (C and F) show model divergence as a function of 

distance from the wall.    
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Figure 6.6 shows representative images from patients with small, medium, and large 

aneurysms.  Images were chosen to demonstrate the broad range of wall permeability values, 

Figure 6.5: Paired t-test shows significance between models.  Ktrans
DC shows a statistically 

significant increase near the aneurysm wall, while ktrans
DC near healthy vessels is slightly 

reduced though not significant. 

Figure 6.6: Permeability images demonstrate a broad distribution of kinetic values.  

Representative images chosen from patients with small, medium, and large aneurysms.  (A, B, 

and C) show ktrans, ktrans
DC, and (ktrans – ktrans

DC) respectively.  (D, E, and F) show ve, veDC, and 

(ve – veDC). 
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both among subjects and within a single IA.  Figure 6.6a, b, c, d, e, and f represent ktrans, ktrans
DC, 

(ktrans – ktrans
DC), ve, veDC, and (ve – veDC), respectively. 

DC Model Analysis and Parameterization 

Diffusion constant, D, used in the DC-Tofts model affects ktrans
DC values near the 

aneurysm wall, with ktrans
DC = ktrans + 0.0511 √D (95% CI 0.0453 – 0.0568), Figure 6.7a.  

Consequently, previous studies may have under estimated absolute ktrans, when a contrast point 

source is present (i.e. aneurysm wall, leaky tumor vs. necrotic core, etc.).  While D affected 

measured ktrans
DC, it did not affect univariate significance in determining risk (Group A: p = 

0.2561 – 0.7139, Group B: p = 0.0232 – 0.0422, Group AB: p = 0.0170 – 0.0295).  Figure 6.7b 

shows veDC near the aneurysm wall varies linearly with D, veDC = ve – 0.0107*D (95% CI 0.0088 

– 0.0127). 

Figure 6.8 shows the results of the LOOCV analysis.  Figure 6.8a, shows ktrans
DC - ktrans as 

a function of vp and D.  The dots shown are binned means and the surface shown is the fit 

generated by Equation 42 where (a = 0.2511, b = 0.333, c = 0.01428 and d = 0.02364). As seen 

before the two models tend to diverge near the aneurysm wall (high vp) and as D increases 

ktrans
DC tends to be higher near the wall but lower in the surrounding tissue.    Figures 6.8b 

through 6.8e show correlation and Bland Altman alaysis between ktrans
Corrected and ktrans

DC both in 

the surrounding tissue and near the aneurysm wall.  ktrans
Corrected shows very high correlation with 

ktrans
DC (surrounding tissue: r2 = 0.911, slope = 0.96149, intercept = 0.01445; wall: r2 = 0.899, 

slope = 1.0573, intercept = 0.0031).  
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Figure 6.7: Permeability parameters vary with post-processing constant D.  ktrans
DC near 

the aneurysm wall grows with D with ktrans
DC = ktrans + 0.0511*√D.  (B) Shows veDC varies 

linearly near the aneurysm wall, veDC = ve – 0.0107*D.       

Figure 6.8:  LOOCV shows the DC model parameterization improves ktrans correlation.   
(A) Shows ktrans

DC - ktrans as a function of vp and D.  Dots shown are binned means and the 

surface shown is the fit generated by Equation 5. (B and C) Show high correlation between 

ktrans
Corrected and ktrans

DC both in the surrounding tissue and near the aneurysm wall.  (D and E) 

Bland Altman analysis comparing ktrans
Corrected and ktrans

DC in surrounding tissue and at the 

wall. 
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Patient Demographics 

In total 26 aneurysms in 22 patients (<age> = 58.4 ± 11.3 years, age range 30-82 years), 

13 women (<age> = 58.8 ± 12.9 years, range 30-76) and 9 men (<age> = 59.3 ± 8.9, range 39-

82) were included in the study. There was no significant difference between men and women in 

age (p<0.92) or IA size (p<0.20). All IAs were unruptured at time of imaging. 

Association with Rupture Risk 

Table 6 shows the results of univariate and multivariate logistic regression comparing 

patient age, sex, aneurysm size as well as ktrans and (ktrans – ktrans
DC)  in their ability to predict pre-

determined and size-independent high risk saccular IAs in Group A, B, and AB (A or B). Size, 

ktrans, and (ktrans – ktrans
DC) showed significant univariate relationships (p<0.05). While ktrans was 

closer to significance in Group A, (ktrans – ktrans
DC) was more significant in Group B and Group 

AB.   
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6.5  Discussion 

We found that in DCE-MR permeability examination of IAs, the inclusion of a diffusion 

term in the Toft’s model significantly changes the calculation of contrast kinetics when compare 

to standard Tofts modelling. Through simulation we presented evidence of contrast agent 

leakage through the IA wall.  Finally, we have shown that a simple estimation of diffusion 

effects based on readily available ADC tissue values provide a computationally efficient estimate 

of diffusional transport in MRI (i.e. of ktrans
DC as a function of tissue specific D, ktrans and vp). 

Globally, the both Tofts and DC-Tofts models generate highly correlated ktrans and ve 

values.  However, we see that near the aneurysm wall, the two models diverge.  In Figure 6.4, we 

noted the greatest difference between the methods as the diffusion compensated model tended to 

Table 6: Results of univariate and multivariate risk analysis. 
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generate higher values for ktrans
DC

 near the aneurysm, while away from the wall ktrans
DC tended to 

be slightly lower than Toft’s model estimates.  This phenomenon is a direct consequence of 

contrast diffusing away from a boundary source, the aneurysm wall, into the extra cellular 

matrix. 

The original Tofts model does not address contrast-extravasation through the aneurysm 

wall, which may better represent a macroscopic manifestation of microscopic capillary 

permeability. In particular, kinetic parameters provided by the Tofts model may reflect both 

contrast uptake into an inflamed aneurysm wall and the passive diffusion of contrast through a 

pathologically thinned wall into the CSF. Without the spatial resolution required to directly 

image the IA wall typically measuring 20-100 microns, an alternative approach to modeling the 

signal changes associated with pharmacokinetics of the aneurysm wall is required.  Previous 

work hypothesized that thinner IA walls showed higher DCE-MRI wall permeability (i.e. ktrans 

and ve) (63).  In that study, however, ktrans and ve, were derived from the standard Tofts model, 

preventing the authors from addressing whether contrast was taken up within the wall or if the 

contrast was leaking through the wall and in turn diffusing away.  We examined uptake versus 

diffusion in Figure 6.3.  Visually, it is very clear that data simulated with negligible diffusion 

does not match our patient data.  Conversely, however, there is clearly a strong association 

between measured and diffusion (Dtrue = 2.0 x 10-3 mm2/s) data.  These results imply that in 

addition to contrast uptake within the wall, some portion of the contrast must also diffuse 

through the compromised vasculature and vessel wall.   

The univariate and multivariate regression models, show (ktrans – ktrans
DC) to be an 

independent indicator of rupture risk, as defined by imaging/anatomic metrics (Group B and 
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AB).  Interestingly, (ktrans – ktrans
DC) did not show significance in distinguishing risk groups in 

symptomatic patients (Group A).  This may be because symptomatic patients are more likely to 

have active inflammation in the aneurysm wall due to wall remodeling.  Active inflammation 

will result in more contrast uptake within the wall, and possibly less leakage through the wall, 

which may explain why symptomatic presentations correlated more highly with ktrans
 than with 

(ktrans – ktrans
DC).   

Our results taken in concert suggests that the difference between the standard and DC 

models may quantifying contrast leakage through the wall, implying that (ktrans – ktrans
DC) may be 

a more accurate measure of wall thickness than ktrans alone.  Consequently, any future study 

investigating IA remodeling and wall thickness should include both ktrans and ktrans
DC as potential 

markers. 

Limitations 

Several limitations were identified in this study.  First, in order to reduce computation we 

estimated a homogenous diffusion constant D.  Though we analyzed the effects of different D 

estimates, we did not investigate a spatially varying diffusion constant (more representative of 

tissue heterogeneity).  Future work is still required, however, the proposed parameterization of 

the diffusional effect may allow for the use of ADC values to represent tissue heterogeneity.  

Secondly, we were limited in our patient data acquisition with a relatively small sample size as 

well as having data collected from a single institution.  Finally, unlike true tissue perfusion and 

luminal arterial measurements, no readily available reference standard existed for ktrans that were 

within the scope for this work.   
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6.6  Conclusion 

In this pilot study, we present the first evidence of diffusion compensated DCE-MRI 

modeling of contrast permeability in IAs and propose a parameterization of diffusional effects on 

ktrans.  A comparison of measured against simulated data suggests contrast leakage occurs across 

the pathologically compromised aneurysm wall into the CSF.  Finally, we show that the diffusion 

compensated wall permeability (ktrans – ktrans
DC) may provide an additional bioimaging marker to 

characterize the rupture risk of IAs in addition to ktrans modeling of contrast permeability and 

uptake into an inflamed aneurysm wall.  
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 Conclusions 

7.1  Conclusions 

In this dissertation, we presented an MR-based OEF and CVR technique that requires no 

contrast.  We have showed that MR-PARSE has detectable sensitivity to frequency shifts 

induced by transient alterations in de-oxyhemoglobin through the cardiac cycle in ICAD patients 

with greater than 50% stenosis.   Furthermore, we demonstrated that through the use of ICA, 

transient OEF and β are significant predictors of hemispheric compromise.  Our approach to 

quantify transient BOLD fluctuations due to cerebrovascular reactivity represents a new and 

simple, non-contrast approach to stratifying patients toward therapies to prevent stroke. 

We presented evidence of a method to accurately quantitate CVR using current MRI-

protocols.  We showed that the use of a WCF specific to the second injection allows for accurate 

quantification of CBF, validated this in a canine model and showed that qCVR can clearly 

distinguish between stages of hemodynamic compromise.   

Finally, we presented evidence of diffusion compensated DCE-MRI modeling of contrast 

permeability in IAs and proposed a parameterization of diffusional effects on ktrans.  A 

comparison of measured versus simulated data suggested contrast leakage occurs across the 

pathologically compromised aneurysm wall into the CSF.  Additionally, we showed that the 

diffusion compensated wall permeability (ktrans – ktrans
DC) may provide a supplementary 

bioimaging marker to characterize the rupture risk of IAs in addition to ktrans modeling of 

contrast permeability and uptake into an inflamed aneurysm wall.   

 



99 

7.2  Future Work 

This body of work shows clear progress toward quantifying stroke risk, however, much 

work remains.  For example, the transient susceptibility MR-OEF technique provides a novel 

tool for stroke imaging, however, there continues to be multiple avenues for improvement.  First, 

image quality remains poor.  In order to image temporally through the cardiac cycle, a fast 

acquisition was required.  For this work we used a rosette trajectory, because of its acquisition of 

frequency information in 80 ms.  However, the image reconstruction remains lacking and 

consequently, the image quality is relatively poor.  Redesigning the pulse sequence from ground 

up with image quality and speed in mind is an active area of research.  One potential design 

method would implement the forward-backward-forward (FBF) rosette.  Furthermore, only 11 

patients were imaged, and consequently more data needs to be acquired to confirm our results.  

One area that we are working on is canine imaging.  Canines provide us with known 

hemodynamic compromises and reference standard microsphere qCVR data. 

In this work we showed evidence of MR-qCVR which shows high correlation with the 

microsphere gold standard.  This is an exciting finding.  While relative CVR has been around 

clinically for some time, no quantitative method is available.  Consequently, work is needed to 

determine the exact benefits of quatification. It has been proposed by Nemoto (16) that CVR 

linearly relates to hemodynamic failure, consequently, qCVR may become the standard for 

staging hemodynamic compromise.  Such a technique may assist clinicians identify patients at 

high risk for stroke.  

Finally, the use of ktrans
DC as an additional tool when assessing rupture risk and contrast 

leakage is another intriguing finding.  We hypothesize, the difference between the Tofts model 
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and the diffusion compensated model, correlates with the amount of contrast leaking through the 

aneurysm wall.  This leakage in turn should correlate with wall thickness and rupture risk.  

Future work that directly measures aneurysm wall thickness and compares it to ktrans
DC is needed.  

However, if we are correct, such a finding could be a game changer.  Being able to accurately 

predict rupture risk can stratify patients into surgical cohorts.  Furthermore, imaging wall 

thickness can inform surgeons to problematic regions. 
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 Appendices 

9.1  Appendix A: 

Our derivation of the vascular residue function (VRF) is similar in concept to a 2-element 

Windkessel model which describes flow, Q(t), and pressure, P(t), in the cardiovascular system as 

input and output signals to the system, respectively.  We begin with flow continuity, which 

requires 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑄𝑖𝑛(𝑡) − 𝑄𝑜𝑢𝑡(𝑡) 

with V equal to blood volume and Q the corresponding flow.  Qout is related to pressure by the 

downstream vascular/capillary resistance, 

𝑄𝑜𝑢𝑡(𝑡) =  
𝑃(𝑡)

𝑅
 

where P is the pressure drop across the resistance bed.  With compliance defined as the change in 

volume due to a change in pressure (dV/dP), we can solve to get     

𝑄(𝑡) =
𝑃(𝑡)

𝑅
+ 𝐶

𝑑𝑃(𝑡)

𝑑𝑡
 

By estimating Q(t) as an impulse function we can solve P(t) during diastole. 

𝑃(𝑡) = 𝑃0𝑒
−𝑡/𝑅𝐶 

Then by taking the derivative of above equation, we can solve for the change in blood volume 

with time during diastole.  

𝑑𝑉(𝑡)

𝑑𝑡
=

𝑃0

𝑅
𝑒−𝑡/𝑅𝐶 = 𝑉𝑅𝐹 
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In the more realistic setting where Q(t) is not an impulse function, the dynamic BOLD signal we 

acquire becomes  

𝑄(𝑡) ∗ 𝑉𝑅𝐹 = 𝛥𝛿𝜔(𝑡) 

Where Δδω(t), the fluctuation from baseline δω, is equal to Q(t) convolved with the tissue 

specific VRF. 

 


