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Abstract 

Human olfactory function is important for a myriad of behaviors, including food seeking, 

social cognition, memory, emotional regulation, and detecting environmental threats. In animal 

models, particularly dense olfactory inputs have been shown to target orbitofrontal cortex (OFC), 

a region involved in multimodal sensory integration, reward coding, and flexibly guiding our 

motivated goal-directed behaviours. Both the primary olfactory cortex and the OFC have been 

shown in animal models to have widespread connectivity with medial temporal lobe regions 

involved in learning and memory. However, the specific anatomical properties and physical 

brain mechanisms through which the olfactory-OFC system influences behavior and memory are 

not well understood. In this thesis, we have developed optimized diffusion magnetic resonance 

imaging (dMRI) techniques to image the olfactory and orbitofrontal brain areas, and we have 

used a diffusion tractography approach to map out the anatomical connectivity of the human 

lateral olfactory tracts and OFC. By providing a detailed anatomical characterization of the 

human olfactory-OFC brain networks, we provide a valuable source of information from which 

to develop mechanistic hypotheses of human olfactory system and OFC function. 

Interestingly, olfactory perceptual impairments are gaining notice as one of the earliest 

symptoms in Alzheimer’s disease (AD), suggesting that olfactory perceptual tests may be 

sensitive to dysfunction in olfactory and medial temporal lobe regions. However, the specific 

mechanisms causing olfactory perceptual impairments in the earliest stages of AD are not 

known, and there is an open question about whether detecting olfactory impairments earlier on 

may help to target preventative treatments to slow the AD progression. In this thesis, we have 

shown that performance on the NIH Toolbox Odor Identification test declines with age, and is 
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worse in elderly adults with amnestic mild cognitive impairment (aMCI) and AD compared to 

those with normal cognition (NC). We also found that scores on this same test are able to detect 

which participants have aMCI versus NC, indicating that olfactory perceptual measures are 

sensitive to the earliest stages of the AD disease process.  
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Chapter 1: Background, Specific Aims, and Research Approach 

1.1. Significance and Specific Aims 

In our daily lives, we are faced with a wide assortment of emotionally motivating stimuli 

that demand behavioural responses. However, the value of these stimuli and the contexts in 

which we encounter them are not static. Our ability to learn and remember changing contexts and 

reward contingencies allows us to respond to incoming stimuli flexibly and in a goal-directed 

manner. A critical source of motivationally salient information is the sense of smell. Olfaction is 

tightly integrated with emotion, learning, and memory, and we rely on olfactory stimuli in our 

daily environments to inform our behaviours. Olfactory sensations play a role in several goal-

directed behaviours, including food seeking and consumption, social cognition and mating 

behaviours, emotional regulation, memory encoding and retrieval, and detecting and responding 

to potential environmental threats. Strong olfactory functioning is important for adaptive 

behaviour, but unfortunately, impairments in olfactory function become more common as we 

age. Olfactory deficits are especially common in elderly adults who go on to develop amnestic 

mild cognitive impairment (aMCI) and Alzheimer’s disease (AD), and often precede severe 

cognitive and memory impairments by several years.  

From animal studies and human functional neuroimaging and lesion studies, we know 

that the ability to flexibly encode and update stimulus identity and reward values is supported by 

a part of the neocortex called the orbitofrontal cortex (OFC), located on the ventral surface of the 

frontal lobes. The OFC shares reciprocal connectivity with brain regions serving every sensory 

modality, and sends heavy outputs to visceromotor and limbic regions such as the hypothalamus, 

frontal premotor cortex, the striatum, the amygdala, and the hippocampus. It is thought to be 
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involved in multisensory integration and orchestration of motivated emotional and behavioural 

responses important for goal-directed behaviours. Olfactory inputs to the OFC are very dense 

and relatively “unprocessed” compared to the other sensory modalities. The OFC has been 

implicated in conscious odor perception and odor identification and discrimination. Olfactory 

information is first encoded in olfactory sensory neurons in the nasal epithelium, which project 

to the olfactory bulb, then to the primary olfactory cortex (including the piriform cortex), and 

from there to the OFC. The OFC thus serves as “secondary olfactory cortex”, whereas for other 

sensory modalities, the OFC receives projections from higher order unimodal and polymodal 

sensory association cortices. Additionally, the OFC and primary olfactory cortex both share 

strong reciprocal connectivity with limbic system regions important for emotional regulation, 

learning, and memory. Understanding the anatomical connectivity of the human olfactory and 

orbitofrontal brain regions is essential to understanding how these structures encode olfactory 

information and use it to influence goal-directed behaviours. There is currently a large 

knowledge gap regarding human olfactory system anatomy, olfactory and orbitofrontal 

connectivity with limbic regions, and why the functions supported by these brain regions 

deteriorate in aMCI and AD.  

While we have documented the anatomical connectivity of the lateral olfactory tracts and 

OFC in rodents and primates, these same anatomical connections have yet to be verified in the 

human brain. Post mortem data using methods such as dissection and histochemical methods 

such as silver staining are available, but they are unable to capture the full complexity of human 

olfactory system connectivity with precision. While diffusion magnetic resonance imaging 

(dMRI) is a robust tool for probing human brain connectivity and white matter properties in vivo, 
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the olfactory and OFC regions of the brain suffer from strong susceptibility artifacts due to their 

proximity to the sinus cavities, thus far preventing a thorough and accurate characterization of 

the olfactory and orbitofrontal white matter pathways. The first aim of this thesis project was 

then to develop an optimized dMRI protocol to clearly image the olfactory and orbitofrontal 

brain regions, and to characterize the cortical projections of the human lateral olfactory tracts in 

vivo. The second aim was then to characterize the gross anatomical connectivity of the human 

OFC, and to use a k-means clustering approach to parcellate this region into smaller subregions 

distinguished by unique connectivity. Aim 2 will provide a detailed, data-driven characterization 

of the intrinsic anatomical organization of the human OFC. 

The olfactory, orbitofrontal, and limbic brain regions are particularly vulnerable to age 

and neurodegenerative diseases, including aMCI and AD. Functions supported by these brain 

regions include olfactory sensory function, learning and memory, and emotional regulation, all 

of which become progressively more disrupted in the AD disease process. Olfactory impairments 

become more likely as we age, and are often one of the earliest symptoms of neurodegenerative 

disease. To perform well on an odor identification test, participants must rely on intact olfactory 

sensory functioning, cognitive functions such as working memory and recognition memory, and 

semantic functions required for naming odor sources. Simple tests of odor identification have 

been proposed as a way to identify individuals who may be at risk of developing aMCI and 

further cognitive decline. Therefore, the third aim of this thesis project was to validate the NIH 

Toolbox Odor Identification Test for a population of elderly adults (above age 65) with normal 

cognition, aMCI, and AD, and to determine how well scores on this simple test are able to detect 

individuals with aMCI compared to individuals with normal cognition in this age group.  
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1.2. Background Literature Review 

1.2.1. Mammalian Olfactory System Anatomy 

In mammals, olfactory information first reaches the brain via the olfactory bulb, a 

neuronal structure whose axons form the first cranial nerve, also called the lateral olfactory tract. 

The olfactory bulbs send several parallel projections along the lateral olfactory tracts to several 

different cortical regions, comprising the primary olfactory cortex. These projections have been 

most extensively characterized in rodent models, using axon tracing and histology. Several 

studies have also characterized olfactory system connectivity in the primate, using axon tracing, 

histology, antidromal stimulation, and intracranial electroencephalography. Myelin staining and 

histological approaches have been used to evaluate the projections of the olfactory bulb and 

primary olfactory cortical structures in the post mortem human brain. A handful of more recent 

studies have used neuroimaging approaches to study in vivo human olfactory system anatomical 

and functional connectivity. A comparison of olfactory bulb and primary olfactory cortical 

projections in the rat, macaque, and human will be provided here. 

 

Olfactory Bulb and Primary Olfactory Cortical Connectivity of the Rat. The projections of the 

olfactory bulb into primary olfactory cortex have been extensively characterized in the rat using 

horseradish peroxidase, as an anterograde and retrograde axon tracer (Haberly & Price, 1978a, 

1978b). The olfactory bulb sends parallel afferents to several primary olfactory cortical areas, 

including the anterior olfactory nucleus and ventral tenia tecta, the anterior and posterior piriform 

cortices, the olfactory tubercle, the anterior cortical nucleus of the amygdala, periamygdaloid 

cortex, and the lateral entorhinal area. A drawing of the relative location of these structures on 
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the ventral surface of the rat brain is provided in Figure 1.1, reproduced from Haberly & Price 

1978a. While the anterior olfactory nucleus, tenia tecta, and anterior piriform cortex were all 

found to send strong reciprocal connections back to the olfactory bulb, the lateral entorhinal area 

and the olfactory tubercle did not.  

Among the listed primary olfactory cortical areas, Haberly & Price identified a loose 

pseudo-hierarchy of connectivity in the anterior-posterior direction. Anterior primary olfactory 

regions send projections back to posterior regions, with denser projections reaching closer 

structures and more diffuse projections reaching more distal structures. Posterior structures send 

reciprocal projections back to anterior structures, with the densest projections reaching the 

closest regions. The anterior olfactory nucleus and the anterior piriform cortex were found to 

send the heaviest commissural projections through the anterior commissure. The densest 

commissural projections of the anterior olfactory nucleus reached the contralateral anterior 

olfactory nucleus, olfactory bulb, and anterior piriform cortex. The densest commissural 

projections of the anterior piriform cortex reached the contralateral posterior piriform cortex, 

cortical nucleus of the amygdala, periamygdaloid cortex, and lateral entorhinal area. Following 

retrograde tracer injections, Haberly & Price additionally identified several subcortical 

projections of the primary olfactory cortex, including the hypothalamus, diagonal band, raphe 

nuclei, locus coeruleus, ventral tegmental area, and the paraventricular and parafascicular nuclei 

of the thalamus. In another study, electrical stimulation of the rat olfactory bulb was used to 

identify olfactory projections to the thalamus (Price & Slotnick, 1983). Responses were 

measured in the mediodorsal thalamic nucleus. Retrograde axonal tracers were then placed in 

this nucleus, and led to labeled cells in the olfactory tubercle, anterior piriform cortex, posterior 
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piriform cortex, periamygdaloid cortex, and the lateral entorhinal area, indicating that these 

primary olfactory cortical regions send projections to the mediodorsal thalamic nucleus in the rat. 

The secondary olfactory cortex of the rat is comprised of three major regions, including the 

lateral orbital area, the ventrolateral orbital area, and the agranular insular area. Together, these 

regions form a rudimentary orbitofrontal cortex. These regions receive heavy reciprocal 

projections from the piriform cortex, and from the mediodorsal thalamic nucleus (Illig, 2005; 

Ray & Price, 1992). Ray & Price (1992) have suggested a “triangular” organization with 

interconnectivity between the primary olfactory regions, mediodorsal thalamic nucleus, and 

secondary olfactory regions in the orbitofrontal cortex. Additionally, electrophysiological 

recordings have revealed highly correlated neuronal activity in both the piriform cortex and the 

orbitofrontal cortex of the rat in response to odorants (Schoenbaum & Eichenbaum, 1995). 

 

Figure 1.1. Olfactory cortical structures on the 
ventral surface of the rat brain. Abbreviations: OB, 

olfactory bulb; AON, anterior olfactory nucleus; TTv, 
ventral tenia tecta; APC, anterior piriform cortex; PPC, 

posterior piriform cortex; OT, olfactory tubercle; LOT, 
lateral olfactory tract; RS, rhinal sulcus; NLOT, nucleus 

of the lateral olfactory tract; COa, anterior cortical 
nucleus of the amygdala; COp, posterior cortical nucleus 

of the amygdala; PAC, periamygdaloid cortex; LEA, 
lateral entorhinal area; MEA, medial entorhinal area. 

(Adapted from Fig. 2 of Haberly, L. B., & Price, J. L. 
(1978). Association and commissural fiber systems of 

the olfactory cortex of the rat. I. Systems originating in 
the piriform cortex and adjacent areas. Journal of 
Comparative Neurology, 178(4), 711-740.Copyright 

2004 by John Wiley and Sons, Inc.)  
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Olfactory Bulb and Primary Olfactory Cortical Connectivity of the Macaque. Carmichael, 

Clugent, & Price (1994) provide the most thorough characterization of olfactory system 

connectivity in the macaque monkey, using anterograde (fluororuby, biotinylated dextran amine, 

and 3H-leucine) and retrograde (fast blue, diamindino yellow) axonal tracers (Carmichael et al., 

1994). In this study, the olfactory bulb was found to send projections to the anterior olfactory 

nucleus, the ventral tenia tecta, the olfactory tubercle, frontal and temporal piriform cortices, the 

entopiriform nucleus, the periamygdaloid cortex, the anterior cortical amygdaloid nucleus, and 

the rostral entorhinal cortex. Each of these regions, aside from the olfactory tubercle, also sent 

reciprocal projections back to the bilateral olfactory bulbs. The density of olfactory bulb 

projections was highest for the anterior-most regions, including the anterior olfactory nucleus 

and frontal piriform cortex, and decreased in density toward more posterior regions, with the 

least dense projections sent to the periamygdaloid cortex and rostral entorhinal cortex. Figure 

1.2, adapted from Carmichael, Clugent & Price (1994), illustrates the density of olfactory bulb 

projections to primary olfactory cortical regions.  

Carmichael, Clugent & Price (1994) additionally identified several cytoarchitectural 

regions in the macaque orbitofrontal cortex that receive direct projections from the primary 

olfactory cortical regions. These include medial and central regions of the orbitofrontal cortex, 

including areas 13a, 13m, 14c, and 25, as well as agranular insular areas Iam, Iai, Ial, Iapl, and 

Iapm. The approximate location of each of these regions is illustrated in Figure 1.3, adapted 

from Ongur, Ferry & Price (2003). Each of these regions sent reciprocal projections back to 

primary olfactory cortex. Connections between the orbitofrontal cortex and primary olfactory 

cortex were organized topographically, such that more anterior primary olfactory cortical regions  
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Figure 1.2. Map of the unfolded macaque primary olfactory cortex, at the junction of the 

frontal and temporal lobes. Density of stippling corresponds to the density of olfactory bulb 
afferent projections to each of the primary olfactory cortical regions. List of abbreviations: OB, 

olfactory bulb; AON, anterior olfactory nucleus; TTv, ventral tenia tecta; TOL, olfactory 
tubercle; PC, piriform cortex; PAC, periamygdaloid cortex; CoA, cortical nucleus of the 

amygdala; NLOT, nucleus of the lateral olfactory tract; EC, entorhinal cortex. (Adapted from 
Fig. 2 of Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections 

in the macaque monkey. Journal of Comparative Neurology, 346(3), 403-434. Copyright 2004 

by John Wiley and Sons, Inc.) 

Figure 1.3. Cytoarchitectonic divisions of 
the macaque orbitofrontal cortex. A ventral 
view of the macaque frontal lobes is shown. 

Regions highlighted in yellow received direct 
projections from the primary olfactory cortex. 

Area 25, located on the medial wall below the 
rostrum of the corpus callosum, is not shown. 

(Adapted from Fig. 2 of Öngür, D., Ferry, A. 
T., & Price, J. L. (2003). Architectonic 

subdivision of the human orbital and medial 
prefrontal cortex. Journal of Comparative 
Neurology, 460(3), 425-449.Copyright 2003 

by John Wiley and Sons, Inc.) 
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sent denser projections to more medial orbitofrontal regions, and more posterior primary 

olfactory cortical regions sent denser projections to more lateral orbitofrontal regions. The 

authors additionally performed electrophysiological recordings in anaesthetized monkeys, and 

recorded multiunit evoked action potentials in the piriform cortex, anterior olfactory nucleus, 

olfactory tubercle, and orbitofrontal cortical areas 13a, Iam, and Iapm following olfactory bulb 

stimulation. 

Similar to the rodent, evidence for indirect pathways from primary olfactory cortex to 

orbitofrontal cortex exist (Tanabe et al., 1975; Yarita et al., 1980). Using electrophysiological 

methods, Tanabe et al. (1975) identified a region of orbitofrontal cortex, termed the 

lateroposterior orbitofrontal area (LPOF), that exhibited evoked potentials following electrical 

stimulation of the olfactory bulb and following stimulation of the lateral hypothalamus. The 

authors found that LPOF activation and hypothalamic activation following olfactory bulb 

stimulation disappeared following an anterior piriform lesion, but LPOF could still be activated 

by lateral hypothalamus stimulation. The authors suggested a network of connectivity between 

the anterior piriform cortex, the lateral hypothalamus, and the LPOF region, which encompasses 

portions of areas 13, 12, and agranular insular area. In a separate study, Yarita et al. (1980) used 

electrophysiological methods to demonstrate a transthalamic olfactory pathway to the 

orbitofrontal cortex. They found that orthodromic stimulation of the olfactory bulb led to evoked 

potentials in the mediodorsal thalamic nucleus. Additionally, they found that antidromic 

stimulation of the centeroposterior portion of the orbitofrontal cortex (CPOF) led to activity in 

the same regions of the mediodorsal thalamic nucleus. The authors found that aspiration and 

electrolytic lesions to LPOF disrupted the macaques’ ability to discriminate between different 
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odors, while lesions to the CPOF left olfactory discrimination intact. Figure 1.4, adapted from 

Yarita et al. (1980), shows the extent of the LPOF and CPOF regions.   

 

 

 

Human Olfactory System Anatomy. In the human brain, establishing the precise projections of 

the olfactory bulb to primary olfactory cortex has been challenging due to methodological 

limitations. The piriform cortex, olfactory tubercle, and anterior olfactory nucleus have been 

identified using histological and immunohistochemical methods (Allison, 1954; Gottfried, 2010; 

Ongür et al., 2003a; Zhou et al., 2019). The piriform cortex is located at the junction of the 

frontal and temporal poles, and may be divided into frontal and temporal sections. The anterior 

olfactory nucleus is located at the posterior end of the olfactory sulcus, adjacent to the olfactory 

trigone. The olfactory tubercle has been identified as a cluster of cells that overlap with, but are 

histologically distinct from, the base of the nucleus accumbens (Mesulam et al., 1992). In a silver 

myelin staining study, Allison (1954) identified dense projections from the post mortem human 

olfactory bulb to the anterior olfactory nucleus, the olfactory tubercle, the frontal and temporal 

Figure 1.4. Centeroposterior and latero-
posterior orbitofrontal areas (CPOF and 
LPOF) of the macaque frontal lobe. Stippled 

region shows extent of the CPOF region implicated 
in the indirect olfactory pathway through the 

mediodorsal thalamic nucleus. Hatched region 
shows the extent of the LPOF region implicated in 

the indirect olfactory pathway through the lateral 
hypothalamus. (Adapted from Fig. 3 of Yarita, H., 
Iino, M., Tanabe, T., Kogure, S., & Takagi, S. F. 

(1980). A transthalamic olfactory pathway to 
orbitofrontal cortex in the monkey. Journal of 
Neurophysiology, 43(1), 69-85. Copyright 1980 by 

The American Physiological Society) 
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divisions of piriform cortex, and the cortico-medial amygdala nuclei. Allison noted three 

branches of the olfactory tracts, termed striae, with a medial stria reaching the olfactory tubercle, 

a small intermediate stria reaching the anterior olfactory nucleus, and the largest lateral stria 

reaching the piriform and olfactory amygdala. Allison failed to find any direct projections from 

the olfactory bulb to the entorhinal cortex.  

 Two more recent neuroimaging studies have attempted to map the projections of the 

olfactory bulb into primary olfactory cortex using diffusion magnetic resonance imaging (dMRI), 

but were unable to provide a comprehensive characterization of these projections due to 

methodological limitations, low signal, and susceptibility artifacts in these brain regions 

(Fjaeldstad et al., 2017; Milardi et al., 2017). Fjaeldstad et al. (2017) reconstructed the main 

body of the olfactory tracts, but were unable to identify the branching striae, as they used a 

tensor model that is unable to resolve multiple fiber directions within single voxels. Milardi et al. 

(2017) used a constrained spherical deconvolution model, which is able to resolve crossing 

fibers. While they successfully reconstructed the lateral striae, they were unable to reconstruct 

the intermediate or medial striae due to poor resolution and susceptibility artifacts present near 

the sinus cavities.  

Recently, we used resting state functional MRI (rs-fMRI) to evaluate the functional 

connectivity patterns of the primary olfactory cortex (Zhou et al., 2019).  Zhou et al. used a k-

means clustering approach to delineate the primary olfactory cortex into four clusters based on 

distinguishable functional connectivity patterns. The resulting four clusters, shown in Figure 1.5, 

corresponded to the anatomical boundaries of the frontal piriform cortex, temporal piriform 

cortex, anterior olfactory nucleus, and olfactory tubercle, suggesting differing functional 
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connectivity for these regions. All four regions showed strong connectivity with the posterior 

orbitofrontal cortex, the anterior insula, the hippocampus, and the amygdala. The anterior 

olfactory nucleus showed strong connectivity with extensive regions in the orbitofrontal cortex, 

and posterior hypothalamic nucleus. The olfactory tubercle showed connectivity with the medial 

prefrontal cortex, the left temporal fusiform cortex, and the ventral striatum. The frontal piriform 

cortex showed strong connectivity with the mediodorsal thalamic nucleus and the dorsal 

striatum. The temporal piriform cortex showed connectivity with the inferior frontal gyri, the 

temporal pole, the superior temporal gyri, the hippocampus, and the posterior insula. It is 

possible that the differing functional connectivity profiles of these four regions are evidence of 

differing functional roles, which may be supported by differing anatomical connections.  

 

 

 

Figure 1.5. K-means clustering of the 
human primary olfactory cortex into 

four regions, corresponding to the 
anterior olfactory nucleus (AON), 

olfactory tubercle (TUB), frontal 
piriform (PirF) and temporal piriform 

(PirT). (Reproduced from Zhou, G., 
Lane, G., Cooper, S. L., Kahnt, T., & 

Zelano, C. (2019). Characterizing 
functional pathways of the human 

olfactory system. Elife, 8, e47177. 
under Creative Commons License 

(https://creativecommons.org/licenses/

by/4.0/legalcode)).  
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1.2.2. Primate and Human Orbitofrontal Cortex Anatomy and Function 

The orbitofrontal cortex (OFC) refers to the neocortex located on the ventral surface of 

the frontal lobes, just above the eye orbits. The OFC receives inputs from brain areas involved in 

every sensory modality, including olfactory, gustatory, visual, auditory, somatosensory, 

viscerosensory, and limbic inputs. Outputs from the OFC target diverse limbic, premotor, and 

visceromotor regions, including the hippocampus, hypothalamus, lateral prefrontal cortex, and 

the striatum. The OFC is thus situated to serve a complex functional role in behaviour, and has 

been implicated in multimodal sensory integration, representation of motivationally salient 

memories, flexible updating of reward values for specific stimuli based on context and 

experience, visceromotor and emotional regulation, and coordinating adaptive goal-directed 

behaviour (Howard & Kahnt, 2021; Rudebeck & Rich, 2018; Stalnaker et al., 2015; Wallis, 

2012). The specific connectivity of the human OFC and the precise mechanisms by which it 

carries out its various functional roles to coordinate behaviour are not well understood. In the 

present section, I present a summary of the human and primate OFC cytoarchitectural 

organization, a detailed description of primate OFC anatomical connectivity identified with axon 

tracing and electrophysiological methods, and descriptions of the major white matter fibers and 

functional connectivity of the human OFC identified with in vivo dMRI and fMRI methods. 

Additionally, I present a summary on the olfactory-specific anatomy and function of the OFC.  

 

Anatomical Connectivity of the Orbitofrontal Cortex. The macaque and human OFC have both 

been divided into several cytoarchitecturally-distinct regions, with a numbering system that 

denotes likely homologues across species  (Carmichael & Price, 1994; Mackey & Petrides, 2010; 
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Ongür et al., 2003a; Petrides & Pandya, 2002).  The major regions identified in both the macaque 

and human include area 10 comprising the ventral frontal poles, area 11 just posterior to area 10, 

area 47/12 along the lateral side, area 13 in the center, area 14 along the medial side forming 

gyrus rectus, and the agranular insular region along the posterior side, bordering the frontal 

operculum of the insula. These regions are then further subdivided based on morphological 

differences observed with different histological techniques. These regions are shown above on a 

drawing of the macaque OFC in Figure 1.3, and below outlined on the human OFC in Figure 

1.6, adapted from Ongur et al., (2003).  

 

 The white matter connectivity of the OFC has been extensively studied in the macaque 

using axonal tracing techniques. The macaque OFC has widespread connectivity with sensory 

and premotor brain regions, and receives input from every sensory modality (Carmichael & 

Price, 1995b). Visual inputs to OFC are heaviest in area 12l and arise from ventral temporal lobe 

area TE, along the ventral and lateral surfaces of the temporal lobe. This region is considered a 

homologue of human Brodmann areas 20-21, and consists of visual association cortex involved 

in object recognition, along the ventral visual stream, or “what” pathway. Auditory inputs are 

Figure 1.6. Cytoarchitectonic 
divisions of the human 
orbitofrontal cortex. Ventral view 

of the human frontal lobes with 
temporal lobes resected. 

(Reproduced from Fig. 2 of Öngür, 
D., Ferry, A. T., & Price, J. L. 

(2003). Architectonic subdivision of 
the human orbital and medial 

prefrontal cortex. Journal of 
Comparative Neurology, 460(3), 

425-449. Copyright 2003 by John 

Wiley and Sons, Inc.) 
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heavies to OFC areas 12o, 13a, and Iai, arising from the superior temporal gyrus and parainsular 

cortex in the limiting sulcus. These regions correspond to secondary auditory cortex and auditory 

association cortex, and encompass regions near what is considered to be Wernicke’s area in the 

human. Heavy somatosensory inputs reach OFC area 12m, arising from areas SII, 7a, 7b, 

opercular areas 1-2, the anterior inferior parietal lobule, posterior granular insula, and parts of 

area 3b. These regions correspond to human analogues in primary (areas 1-3) and secondary 

somatosensory cortex (SII), parietal cortical regions involved in visuomotor coordination (area 7 

and inferior parietal lobule), and posterior insular regions involved in proprioception and 

interoception. Gustatory and viscerosensory inputs reach primary gustatory cortex (area G noted 

in Figure 1.3) and agranular insular areas Iapm and Ial via the ventroposterior medial thalamic 

nucleus, which serves as a relay from the nucleus of the solitary tract. Area G then sends further 

projections to OFC area 13l. Olfactory inputs from primary olfactory cortex to the OFC are 

numerous, and reach areas 13a, 13m, 13l, Iam, Iapm, Iai, Ial, and Iapl. Much of the lateral OFC, 

including areas 11l, 12r, 12m, 12l, 12o, 13m, and 13l, receive premotor inputs from dorsal area 

6, corresponding to the supplementary eye field, and ventral area 6. Area 12l, which receives 

visual inputs, receives the heaviest premotor projections from the supplementary eye fields, 

while area 12m, which receives somatosensory inputs, receives the heaviest premotor projections 

from ventral area 6.  

 Limbic connectivity with the macaque OFC was also extensively characterized by 

Carmichael & Price in a separate study (Carmichael & Price, 1995a). The authors found heavy 

reciprocal connections between the amygdala and OFC, with the densest connections in areas 

14r, 14c, 11m, 13b, 13a, Iam, Iapm, Ial, 12o, and 12l. Connectivity with the amygdala was 
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heaviest along the posterior, medial, and lateral borders of OFC, and relatively sparse in central 

and rostral orbital areas. The subiculum, part of the hippocampal formation, was found to have a 

substantial projection to OFC areas 10o, 11m, 13a, 13b, 14r, and 14c. Areas 13a, 13b and 11m 

were found to send some reciprocal projections back to the subiculum. Several regions of 

parahippocampal cortex share reciprocal connectivity with the OFC. The parahippocampal gyrus 

shared reciprocal connectivity with the medial-most regions of the OFC, areas 14r, 14c, 11m, 

and 13a. The entorhinal cortex was found to share connectivity with medial regions 14r, 14c, 

11m, 13b, and 13a, as well as agranular insular regions Iam, Iapm, Ial, and Iai. The agranular 

insular regions of OFC tended to share connectivity with the rostral (olfactory) portion of the 

entorhinal cortex, while medial OFC regions were connected with more caudal portions of 

entorhinal cortex. Perirhinal cortex shared connectivity with OFC regions just lateral to those 

connected with entorhinal cortex, including areas 11m, 13b, 13a, 13m, and 13l, as well as with 

the agranular insular areas Iam, Iapm, Iai, and Ial. The OFC also shares widespread connectivity 

with the anterior cingulate cortex and the temporal pole. Medial areas 14r, 14c, 11m, 13a, and 

13b, and lateral areas 12o and 12r shared strong connectivity with the anterior cingulate cortex. 

Virtually the entire OFC shares connectivity with the temporal pole, and is topographically 

organized. Caudal and central areas of OFC (Iam, Ial, 13m, 13a, and 13b) shared the heaviest 

connectivity with ventromedial temporal pole. Lateral and rostral areas of OFC (12o, 12l, 12m, 

10o, and 14r) shared the heaviest connectivity with the dorsolateral temporal pole. Areas 11m 

and 11l had heaviest connectivity with the central regions of the temporal pole, and areas 14c 

and Iai received projections from the entire extent of the temporal pole.  
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 Additional projections linking macaque OFC with various subcortical structures have 

been described, including the striatum, hypothalamus, and thalamus. The macaque OFC shares 

strong, topographically organized connectivity with the ventral striatum, an important structure 

linking limbic and motor systems (Ferry et al., 2000; Haber et al., 1995; Haber & Knutson, 

2010).  Medial OFC area 14 shared the densest connectivity with the medial ventral striatum, 

central area 13 shared the densest connectivity with the lateral ventral striatum, and lateral area 

12 shared dense connectivity with the nucleus accumbens. These cortico-striatal connections are 

critical to reinforcement learning and reward processing, and are heavily regulated by 

dopaminergic inputs from the ventral tegmental area and substantia nigra (Haber & Knutson, 

2010). The caudal orbitofrontal cortex (areas 13a, 12o, and Iai in particular) send strong 

projections to the lateral hypothalamus (Öngür et al., 1998; Rempel-Clower & Barbas, 1998). 

The caudal orbitofrontal cortex, along with the ventromedial prefrontal cortex and (to a lesser 

extent) the anterior insula, provide strong inputs to the hypothalamus and are thought to help 

regulate its autonomic function. The macaque OFC receives input from several thalamic nuclei, 

including the midline, anteromedial, anteroventral, ventral anterior, paracentral, central medial, 

ventroposterior medial, and mediodorsal nuclei (Cavada et al., 2000). The inputs from the 

mediodorsal thalamic nucleus are the largest and most studied (Giguere & Goldman-Rakic, 

1988; Ray & Price, 1992; Yarita et al., 1980). The mediodorsal nucleus is thought to serve as an 

olfactory thalamic relay in the “indirect” pathway between primary olfactory cortex and OFC  

(Yarita et al., 1980). Additionally, the mediodorsal nucleus serves as the thalamic node in the 

limbic cortico-striato-thalamo-cortical loop, involving the OFC and the ventral striatum (Haber 

& Knutson, 2010). Portions of caudal OFC likely receive gustatory information via projections 
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of the ventroposterior medial thalamic nucleus (Carmichael & Price, 1995b). Additionally, many 

of the same regions of OFC that received inputs from the subiculum (14r, 13a, 13b, and 11m) 

also received inputs from the anteromedial thalamic nucleus, which is heavily connected to the 

subiculum and thought to be involved in memory and head positioning in spatial navigation 

(Carmichael & Price, 1995a).  

 Several major white matter structures have been identified as having connectivity with 

the human OFC, and have been delineated using dMRI methods. These include the uncinate 

fasciculus, the inferior fronto-occipital fasciculus, the orbito-polar tract, the extreme capsule, the 

fornix, the cingulum, amygdala fibers, and ventral striatal fibers (Croxson et al., 2005; Heather 

Hsu et al., 2020; Thiebaut de Schotten et al., 2012). Temporal pole connectivity with the OFC 

via the uncinate fasciculus has been described in the human brain using Klingler (freeze-and-

break) dissection methods, as well as dMRI methods (Ebeling & Cramon, 1992; Leng et al., 

2016; Thiebaut de Schotten et al., 2012). An additional white matter pathway of special interest 

is the inferior fronto-occipital fasciculus, which has been described in the human brain using 

both Klingler dissection and dMRI, but is noticeably absent from the primate brain (Catani & 

Thiebaut de Schotten, 2008; Martino et al., 2010; Thiebaut de Schotten et al., 2012). This 

human-specific fiber pathway appears to connect anterior orbitofrontal cortex and frontal pole 

with the posterior fusiform gyrus, superior parietal lobe, and anterior occipital cortex, and may 

carry visual and semantic inputs to the orbitofrontal cortex. 

Medial-Lateral Organization of the Orbitofrontal Cortex. Based on intrinsic connectivity 

between OFC subregions, the macaque OFC can be subdivided into a medial network and a 

lateral network (Carmichael & Price, 1996). Regions in the medial network include areas Iai, 
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14c, 14r, 11m, 10o, and 10m; regions in the lateral (orbital) network include areas 12l, 12m, 12r, 

11l, 13l, Ial, Iapm, Iam, 13m, and 13b.  Regions within the medial network are highly 

interconnected with each other, and regions in the lateral network are highly interconnected, but 

there are relatively few connections between medial regions and lateral regions. Two central 

OFC regions, 13a and 12o, shared strong connectivity with both the medial and lateral networks, 

and may serve to coordinate activity between them. There are also noticeable differences in the 

connectivity of the medial and lateral networks with the rest of the brain. Lateral network regions 

tend to be the target of heavy sensory inputs, and receive inputs from every sensory modality and 

from premotor regions. Medial network regions, in contrast, receive few direct sensory inputs, 

but send heavy outputs to limbic and visceromotor regions, including the hypothalamus, 

hippocampus, cingulate gyrus, and ventromedial prefrontal cortex. In a more recent study, 

Cerliani et al. (2017) performed a diffusion tractography-based parcellation of 5 ex vivo macaque 

frontal lobes (3 left and 2 right hemispheres) (Cerliani et al., 2017). They measured ipsilateral 

cortico-cortical connectivity for each frontal lobe voxel (connectivity with subcortical gray 

matter regions was not assessed). Voxels were sorted into clusters based on a principal 

component analysis, and they consistently identified 11 principal components in each 

hemisphere. Two of these subdivisions covered the OFC; one was comprised of medial area 14, 

parts of area 10, and the ventromedial prefrontal cortex (vmPFC), while the other was comprised 

of lateral areas 11, 12, 13, and parts of area 10. The lateral OFC cluster that they identified 

shared connectivity with dorsolateral prefrontal cortex (dlPFC), the posterior cingulate, the 

precuneus, dorsal parietal cortex, and medial, lateral, ventral, and polar temporal cortex. The 
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medial OFC cluster that they identified had less widespread connectivity, but reached the 

anterior cingulate and the anterior temporal pole. 

 The medial-lateral organization of the OFC has also been shown in human resting-state 

functional connectivity studies (rs-fMRI) (Kahnt et al., 2012; Kahnt & Tobler, 2017). Kahnt et 

al. (2012) used k-means clustering to sort OFC voxels based on their resting state functional 

connectivity with the rest of the brain. For K=2, they identified one medial-posterior OFC cluster 

and one cluster in antero-lateral OFC. The medial-posterior cluster showed strong functional 

connectivity with the ventromedial prefrontal cortex, the superior frontal gyrus, the inferior 

parietal cortex, the middle and inferior temporal cortex, the posterior cingulate, the precuneus, 

the ventromedial striatum, the parahippocampal gyrus, and the temporal pole. The antero-lateral 

cluster shared strong connectivity with the inferior and middle frontal gyri, the inferior parietal 

cortex, the inferior temporal gyrus, the medial superior frontal gyrus, and the dorsal striatum. For 

K=6, the authors identified a medial cluster along gyrus rectus, a posterior-central cluster 

corresponding roughly to area 13, a central OFC cluster, and three lateral OFC clusters along the 

rostro-caudal extent of lateral OFC. The medial cluster showed strongest functional connectivity 

with the inferior parietal cortex, anterior middle and inferior temporal gyri, medial prefrontal 

cortex, posterior cingulate cortex, medial temporal cortex, and the temporal pole. The posterior-

central cluster showed strongest functional connectivity with the hypothalamus, basal forebrain, 

ventral striatum, and parahippocampal gyrus. The central cluster had strong functional 

connectivity with the anterior insula, the left ventrolateral prefrontal cortex, the anterior cingulate 

cortex, and the dorsal and ventral striatum. The three lateral clusters showed strongest functional 

connectivity with lateral prefrontal cortex, the middle and inferior temporal cortex, the medial 
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superior frontal gyrus, and the supplementary motor area. Kahnt & Tobler (2017) further 

discovered that suppressing dopaminergic inputs to OFC by administering the D2 receptor 

antagonist amisulpride disrupts the organization of these clusters. Figure 1.7 illustrates the 

macaque medial and lateral networks based on white matter connectivity patterns, adapted from 

Carmichael & Price (1996), as well as the 2- and 6-cluster rs-fMRI solutions in the human OFC, 

adapted from Kahnt et al. (2012). 

 

   
 

Figure 1.7 Medial and lateral networks of the orbitofrontal cortex. Left panel: Diagram 

of the Medial prefrontal network and Lateral (Orbital) prefrontal network of the macaque 
OFC, based on anatomical connectivity patterns of OFC subregions. (Reproduced from Fig. 

19 of Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital andial 
prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 371(2), 179-207. 

Copyright 1998 by John Wiley and Sons, Inc.). Right panel: K-means parcellation of the 
human orbitofrontal cortex based on resting-state fMRI connectivity profiles, for K=2 (top) 

and K=6 (bottom). (Reproduced from Fig. 3 of Kahnt, T., Chang, L. J., Park, S. Q., Heinzle, 
J., & Haynes, J. D. (2012). Connectivity-based parcellation of the human orbitofrontal 
cortex. Journal of Neuroscience, 32(18), 6240-6250. under Creative Commons License 

(https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode)).  
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Rostro-Caudal Organization of the Orbitofrontal Cortex. The human and primate OFC has 

distinct cytoarchitectural features and connectivity patterns that vary along the rostro-caudal 

dimension (Carmichael & Price, 1994; Ongür et al., 2003a). In both humans and primates, more 

rostral regions of the OFC, including areas 10, 11, and 47/12, are characterized by granular 

cortex, with a dense granule cell layer (layer IV). More caudal regions, including the agranular 

insula, are characterized by agranular cortex, with a very sparse granule cell layer and a larger 

layer V. Central region of OFC, including areas 13 and 14, exhibit dysgranular cortex with a 

present, but not dense, granule cell layer. In general, cortico-cortical projections of the OFC tend 

to match in terms of granularity, in that more granular cortical regions project to rostral granular 

OFC, and less granular neocortical regions and paleocortical regions project to central 

dysgranular and caudal agranular OFC (Cavada et al., 2000; Kringelbach & Rolls, 2004). 

Granular OFC receives the densest visual, somatosensory, and auditory inputs, while agranular 

OFC receives the densest olfactory, gustatory, and visceral inputs.  

 

The Olfactory Orbitofrontal Cortex. The orbitofrontal cortex of the rat and macaque serves as 

“secondary olfactory cortex”, receiving direct projections from primary olfactory cortex 

(Carmichael et al., 1994; Carmichael & Price, 1995b; Haberly & Price, 1978a, 1978b), and 

indirect projections from primary olfactory cortex via the mediodorsal nucleus of the thalamus 

(Potter & Nauta, 1979; Price & Slotnick, 1983; Tanabe et al., 1975; Yarita et al., 1980). While 

the macaque OFC receives inputs from every sensory modality, and is involved in multimodal 

sensory integration, the olfactory information reaching the OFC is relatively “unprocessed” 

compared to the visual, auditory, and somatosensory information. Pathways relating to these 
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senses are routed through secondary, tertiary, and association regions before reaching the OFC, 

whereas olfactory inputs come directly from primary olfactory cortex, placing the OFC only 

three synapses away from the site of olfactory sensory transduction in the nasal epithelium 

(Carmichael & Price, 1995b; Cavada et al., 2000). The secondary olfactory regions of the 

macaque OFC are also somewhat segregated from the regions first reached by other sensory 

modalities. Olfactory inputs to the OFC reach more posterior-medial agranular cortical regions 

that share strong connectivity with limbic and visceral structures, while the visual, auditory, and 

somatosensory inputs to the OFC reach more antero-lateral granular cortex that is further 

removed from limbic and visceral regions (Carmichael & Price, 1995a, 1995b; Kringelbach & 

Rolls, 2004). Thus, olfactory inputs are uniquely situated to quickly influence visceral, 

emotional, and memory processes regulated by the OFC.  

Several human lesion studies have found that right orbitofrontal cortical lesions disrupt 

conscious odor perception, odor discrimination, and odor naming, although autonomic responses 

to odorants may be preserved (Jones-Gotman & Zatorre, 1993; W. Li et al., 2010; Potter & 

Butters, 1980). Additionally, in vivo human neuroimaging studies have implicated the OFC in 

odor detection and identification (Gottfried & Zald, 2005; Sobel et al., 1998; Zatorre & Jones-

Gotman, 1991), odor discrimination (Bowman et al., 2012), flexible experience-based odor 

reward value and identity representation (Howard et al., 2015; Howard & Kahnt, 2017; W. Li et 

al., 2006), and expected future olfactory reward outcomes (Howard et al., 2020; F. Wang et al., 

2020). The human OFC has also been shown to flexibly alter its responding to specific odorants 

depending on experience, including in olfactory habituation (W. Li et al., 2006) and devaluation 

(O’Doherty et al., 2000) paradigms. The human OFC is likely critical for generating our 



 
 

39 

olfactory perceptual experiences, as well as modifying them following learning and in response 

to our current internal motivational states.  

 

1.2.3. Diffusion Magnetic Resonance Imaging and Tractography 

Diffusion magnetic resonance imaging (dMRI) is currently the only method available for 

investigating the structure of in vivo white matter pathways. This method uses magnetic 

gradients to measure the Brownian motion of water (diffusion) through brain tissue. The 

diffusion signal intensity depends inversely on the magnitude of water displacement measured 

along a particular axis through the tissue. In the cerebrospinal fluid (CSF) there are no organized 

cell structures, so the diffusion signal is weak and isotropic (equal in magnitude along every 

axis). In the gray matter, approximately spherical cell bodies are packed together and provide 

some impediment to diffusion. The diffusion signal in the gray matter will be slightly stronger, 

but still isotropic. In the white matter, myelinated axons are organized into myelinated fibers 

with a particular orientation. Diffusion will be greater along the length of the fibers compared to 

perpendicular directions, leading to anisotropic diffusion. Thus, the diffusion signal will be 

weakest along the axis that most closely matches the orientation of the local white matter fibers, 

and stronger in perpendicular directions. By measuring diffusion along many different axes, and 

then rendering a 3D model of water displacement within each voxel, we can estimate 

microstructural properties of the tissue and the trajectory of the white matter fibers in each voxel 

(Basser et al., 1994; Basser & Pierpaoli, 1996). An illustration of these concepts is provided in 

Figure 1.8, adapted from Rokem et al. (2017).  
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Data Acquisition and Imaging Artifacts. In order to estimate the 3D shape of diffusivity in each 

voxel, a separate diffusion-weighted image volume will need to be created for each measured 

diffusion direction. Measuring more directions provides greater angular resolution and improves 

our ability to model crossing and curving white matter fibers, but it increases the total scan time. 

Common models used to approximate 3D diffusivity include the tensor model (Alexander et al., 

2007; Basser et al., 1994), and the constrained spherical deconvolution (CSD) model (Tournier et 

al., 2007, 2008, 2012).  

Several considerations must be taken into account to improve data quality and to avoid 

artifacts. Common artifacts in dMRI data include image blurring, susceptibility artifacts, and 

motion artifacts. Blurring artifacts result from both signal loss, as the diffusion signal decreases 

during acquisition time, and from partial volume effects, where a voxel may contain two or more 

different tissues that have differences in magnetic properties. Susceptibility artifacts, which 

appear as stretching, warping, or hyperintensities in the image, are also a direct result of large 

differences in magnetic properties between neighboring tissue types. Susceptibility artifacts are 

particularly problematic when imaging the OFC and olfactory brain areas, which sit adjacent to 

air-filled sinus cavities. The rather large difference in magnetic susceptibility between the brain 

tissue and the sinus cavity leads to artifacts so severe that the data from these regions is often 

uninterpretable. Ensuring a short echo time (the time elapsed between exciting the tissue with a 

radiofrequency (RF) pulse and reading out the resulting signal in the RF coil) during scanning is 

imperative to preserving signal in these regions, and can reduce the severity of blurring and 

susceptibility artifacts. In addition, dMRI protocols are particularly sensitive to subject motion 

since the acquisition of several direction-weighted volumes is required. Excessive motion will 
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make co-registration of the final images difficult, and the fitted 3D diffusion model may be noisy 

or corrupted.  

 

 

 

Figure 1.8. Diffusion magnetic resonance imaging and tractography. Top row; A. An 

electron micrograph of the human optic nerve, a highly myelinated bundle of axons, and a 
cartoon illustration of the anisotropic diffusion in the nerve, with water more easily traveling 

along the length of the nerve than in perpendicular directions. B. Two diffusion-weighted 
volumes, measuring water diffusion along the axis illustrated in the adjacent spheres. Note 

how when the measured diffusion direction matches the trajectory of the optic radiation 
(outlined on the diffusion-weighted volumes in white), the voxels within that white matter 

pathway are dark (low signal). When the measured diffusion direction is perpendicular to the 
optic radiations, the voxels within that region are bright (high signal). Bottom row; A. An 

axial brain slice showing fractional anisotropy in the white matter. B. The diffusion signal, 
fitted tensor, and fitted CSD fiber orientation distribution function for a voxel with crossing 

white matter pathways (top row, green) and a voxel with only one white matter pathway 
(bottom row, blue). C. Top, two user-defined seeding regions. Bottom, Streamlines generated 

using tractography starting from each seeding region, overlaid on a map of CSD fiber 
orientation distribution functions. (Reproduced from Rokem, A., Takemura, H., Bock, A. S., 

Scherf, K. S., Behrmann, M., Wandell, B. A., ... & Pestilli, F. (2017). The visual white matter: 
The application of diffusion MRI and fiber tractography to vision science. Journal of 
Vision, 17(2), 4-4. under Creative Commons License 

(https://creativecommons.org/licenses/by/4.0/legalcode)).  
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Tractography and Connectivity Measures. Once the 3D diffusion signal is approximated in each 

voxel, tractography algorithms can trace the probable trajectories of white matter fibers through 

the brain. Specific seeding regions, or starting points, may be defined by the user. Tractography 

algorithms then trace a continuous path from voxel to voxel based on the primary direction(s) of 

diffusion, and give streamlines as output. In deterministic algorithms, the direction of largest 

diffusion magnitude is always chosen; thus, given the exact same seeding region and tracking 

parameters, the exact same streamlines will be output every time. Probabilistic algorithms 

instead choose a direction based on a gaussian distribution around the largest diffusion 

direction(s), and will produce different streamlines every time. Deterministic algorithms are 

more conservative and less prone to false positives, and are better for reliably reconstructing the 

core trajectories of major white matter pathways with little noise. Probabilistic algorithms are 

better when the exact trajectory of white matter fibers is unknown. They can be used to model 

the entire possible spread of a white matter bundle’s trajectory and cortical endpoints, but will 

likely include many false positives (Jeurissen et al., 2019; Tournier et al., 2012).  

 The most commonly used diffusion model is the tensor model (Alexander et al., 2007; 

Basser et al., 1994). This model can be fit with as few as six diffusion-weighted directions, and is 

thus very time efficient. The diffusion signal is modeled by a tensor with three orthogonal 

eigenvectors. The primary eigenvector λ1 is assigned to the direction with the least restricted 

diffusion (lowest diffusion signal). The eigenvectors λ2 and λ3 are then assigned to the two 

orthogonal axes of λ1. The tensor will be approximately sphere shaped in regions with isotropic 

diffusion, and cigar shaped in regions with a single major diffusion direction. The tensor model 

is useful for characterizing the local tissue microstructure, but falls short when performing 
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tractography, as it is incapable of modeling multiple white matter orientations within a single 

voxel. It is estimated that up to 90% of white matter voxels contain crossing fibers at 2.4mm 

resolution (Jeurissen et al., 2013). Fewer measured diffusion directions also means reduced 

angular resolution, so modeling curving fibers may be impeded.  

 Higher order models, such as constrained spherical deconvolution (CSD), have been 

developed to address the crossing fiber problem in tractography (Jeurissen et al., 2013; Tournier 

et al., 2007, 2008, 2012). CSD approximates a 3D fiber orientation density function (fODF), 

which allows for multiple diffusion directions to be modeled within a single voxel. This model 

more accurately accounts for crossing and curving white matter fibers, and reduces the incidence 

of jumping fibers. For instance, when tracking with the tensor model, if one of two crossing 

fibers has a higher degree of myelination or fasciculation, then its orientation will dominate the 

local signal. Streamlines approaching the crossing point from the smaller fiber structure will 

“jump” onto the more fasciculated fiber’s path, producing anatomically inaccurate streamlines. 

In contrast, fODFs account for multiple fiber directions, and will enable streamlines tracking 

across the intersection. To properly fit a CSD model, however, a large number of diffusion 

directions is required, usually between 40 and 90 directions.  

 

Interpreting Microstructure Data. One important application of the tensor model is the 

characterization of microstructural tissue properties. Four main measures can be calculated based 

on the tensor eigenvalues. Mean diffusivity is the average magnitude of diffusion along the three 

eigenvectors. Axial diffusivity is the magnitude of the largest eigenvector along the primary 

direction of diffusion, and radial diffusivity is the average magnitude of diffusivity along the two 
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smaller orthogonal eigenvectors. Fractional anisotropy is a scalar value between zero and one 

that represents the variability in diffusion magnitude between the three eigenvectors (Rokem et 

al., 2017). These measures correlate with properties of the underlying tissues, and can be used to 

characterize differences between subject groups, such as patients versus a control group. Mean 

diffusivity is dependent on the tissue type contained within the voxel. Typically, CSF has high 

mean diffusivity, gray matter has low mean diffusivity, and white matter has intermediary values 

(Pierpaoli et al., 1996). Within a white matter fiber group, decreasing axial diffusivity and 

increasing radial diffusivity has been associated with demyelination (Klawiter et al., 2011; Song 

et al., 2005). Fractional anisotropy is highest in voxels containing a large number of fibers that 

are all oriented in the same direction, such as the midline of the corpus callosum. It is correlated 

with myelination thickness and fiber density, and is lower in areas with large numbers of 

crossing fibers (Basser & Pierpaoli, 1996). Local fractional anisotropy values are known to 

change when anatomical changes take place, but the direction of change is dependent on the 

local tissue environment (Beaulieu et al., 1996; Frank, 2002). For example, in a voxel containing 

crossing fibers from both the corpus callosum and the corticospinal tract, the fractional 

anisotropy will be fairly low. If the corpus callosum degenerates, then the fractional anisotropy 

will increase as the diffusion signal becomes dominated by the corticospinal tract. However, for 

a voxel at the midline of the corpus callosum, the fractional anisotropy will decrease since there 

are no other competing fiber pathways, and the diffusion signal at this location is entirely 

dependent on the callosal fibers. Taken together, these four measures can provide a picture of the 

underlying white matter integrity, and can help to pinpoint regions whose properties correlate 

with individual perceptual differences (Allen et al., 2015; Dietrich et al., 2015; Genc et al., 2011; 
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Miao et al., 2013; D. Wang et al., 2013), practice and learning of behavioral tasks (Bengtsson et 

al., 2005; Blumenfeld-Katzir et al., 2011; Hofstetter et al., 2013; Sampaio-Baptista et al., 2013; 

Thomas & Baker, 2013), or regions with white matter or axonal degeneration (Duan et al., 2015; 

Hanekamp et al., 2021; Ogawa et al., 2014; Roosendaal et al., 2009; Yeatman et al., 2012). 

 

1.2.4.  Olfactory Perceptual Decline in Aging, aMCI, and AD 

The olfactory system is profoundly affected by aging and dementia (Doty & Kamath, 

2014; Mobley et al., 2014; Murphy, 2019). Only 6% of adults aged 50-59 exhibit olfactory 

impairments, but for adults aged 65-80, over 50% show deficits in olfactory functioning, and 

over 75% adults over age 80 are affected (Albers et al., 2015; Doty & Kamath, 2014). They are 

often unaware of their declining olfactory function, but the loss of olfactory perceptual acuity is 

associated with increased incidence of depression (Negoias et al., 2010) and overall higher 

mortality risk (Pinto et al., 2014; Wilson et al., 2011), with much of the difference attributable to 

odor-related incidents, such as failing to detect a gas leak or ingesting spoiled food. Olfactory 

deficits are even more profound in elderly adults who go on to develop amnestic mild cognitive 

impairment (aMCI) and Alzheimer’s disease (AD) (Albers et al., 2020; Devanand et al., 2015; 

Djordjevic et al., 2008; Murphy, 2019; Wilson et al., 2007). Elderly adults with aMCI and AD 

are found to have impaired odor memory (Albers et al., 2020; Nordin & Murphy, 1996), perform 

poorly on odor identification tasks (Lafaille-Magnan et al., 2017; Wilson et al., 2007, 2011; 

Woodward et al., 2017), and have higher odor detection thresholds relative to cognitively normal 

adults (Doty et al., 1987; Murphy et al., 1990). Olfactory impairments have also been associated 

with carrying the apolipoprotein E (APOE) gene ε4 allele, a gene associated with an increased 
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risk for developing cognitive impairment and Alzheimer’s disease (Handley et al., 2006; 

Josefsson et al., 2017; Oleson & Murphy, 2015; Olofsson et al., 2010). Olfactory impairments 

often precede the onset of more severe cognitive symptoms by a year or more (Bacon et al., 

1998; Roberts et al., 2016; Schubert et al., 2008; Wilson et al., 2007). Simple olfactory 

identification tests may prove to be useful tools for early detection aMCI and AD.  

 

Predictive Olfactory Perceptual Measures. Odor identification, odor memory, and odor detection 

threshold tests have been evaluated for their ability to detect and predict aMCI and AD (Murphy, 

2019). Measuring pure olfactory ability is a difficult task, however. Olfactory identification and 

odor memory tests require intact olfactory sensory functioning, attention to the task, working 

memory, episodic memory, recognition memory, and semantic processes necessary to name an 

odor. Odor threshold tests are also quite a bit longer and more intensive than odor identification 

or memory tasks, and will require sustained attention and working memory over a longer testing 

period. However, the intricate links between olfaction, cognition, and memory may work in our 

favor, as simple olfactory identification tests may be used to probe for potential deficits across a 

broad range of cognitive functioning. 

Odor threshold tests involve many trials arranged in a staircase procedure where a 

participant must identify a low-concentration target odorant amidst a set of “blank” distractor 

odors. Odor threshold tests have been found to predict which APOE ε4 carriers with aMCI* will 

be diagnosed with AD in the next year (Bacon et al., 1998). (*Called “Questionable AD” here; 

recruited participants had mild memory impairments but were still able to live independently.) 

Higher olfactory detection thresholds have also been shown to correlate with the severity of AD 
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symptoms (Doty et al., 1987; Murphy et al., 1990). Odor recognition memory tasks typically 

begin with exposure to a set of odorants, followed by a series of trials where participants must 

identify which odorants they have encountered already amidst additional new distractor odorants. 

Participants with aMCI* were also shown to have poor odor recognition memory (Nordin & 

Murphy, 1996). In a separate study, participants with AD were shown to perform worse than 

healthy controls on an odor memory test. These effects were stronger for APOE ε4 carriers. 

However, performance on a visual memory test was not significantly different depending on 

diagnosis or genotype (Gilbert & Murphy, 2004). 

Odor identification tests are the simplest tests to administer. Each trial involves only a 

single odorant and a set of picture, word-form, or verbal multiple-choice response options that 

the participant must choose from to name the odorant. Several studies have found that odor 

identification is impaired in aMCI (Djordjevic et al., 2008; Nordin & Murphy, 1996; Roalf et al., 

2017), and even worse in AD (Albers et al., 2015; Doty et al., 1987; Oleson & Murphy, 2015; 

Woodward et al., 2017).  It has been estimated that 85-90% of patients with AD are impaired on 

olfactory identification tests (Woodward et al., 2017). Woodward et al. (2017) evaluated the 

ability of the University of Pennsylvania Smell Identification Test (UPSIT) to classify 

participants by healthy cognition, aMCI, and AD.  They found that the UPSIT had a sensitivity 

and specificity of 74% and 71% for detecting aMCI compared to healthy controls, and a 

sensitivity and specificity of 88% and 71% for detecting AD compared to healthy controls. 

Several longitudinal studies have found that poor performance on odor identification tests 

predicts conversion from healthy cognition to aMCI, and from aMCI to AD (Roberts et al., 2016; 

Schubert et al., 2008; Wilson et al., 2007). Wilson et al. (2007), as part of the Rush Memory and 
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Aging Project, found that in a retirement home population of 589 participants (mean age 79.9) 

who were cognitively healthy at baseline, there was a 50% increase in risk for developing aMCI 

with poor performance on the Brief Smell Identification Test (25th percentile or below) compared 

to performance at or above the 75th percentile. Schubert et al. (2008) tested 1920 participants 

(mean age 66.9) on the San Diego Odor Identification Test (SDOIT) as part of the Beaver Dam 

Epidemiological Study. They found that performance on the SDOIT was significantly associated 

with the development of cognitive impairment after 5 years (positive predictive value = 15.9%). 

The authors also noted that participants who performed well on the SDOIT were very unlikely to 

develop aMCI over the 5-year study period (negative predictive value = 97.2%). In another 

study, Roberts et al. (2016) found that performance on the Brief Smell Identification Test (BSIT) 

predicted progression from healthy cognition to aMCI, and progression from aMCI to AD over 

an average time period of 3.5 years. For participants with healthy cognition at baseline 

(N=1430), the hazard ratio for developing aMCI was 2.18 for scores in the lower quartile on the 

BSIT. For participants with aMCI at baseline (N=221), the hazard ratio for developing AD was 

5.20 for scores in the lower quartile on the BSIT. A growing literature is thus lending credence to 

the use of simple olfactory identification tests as a tool in early detection of aMCI and AD.   

 

Olfactory System Pathology in aMCI and AD. The olfactory sense is truly a limbic sense, in that 

it shares close, strong anatomic connectivity with the medial temporal lobe and orbitofrontal 

limbic regions (Catani et al., 2013). These limbic regions are also heavily involved in olfactory 

processing, and are particularly vulnerable to the amyloid plaque and tau tangle pathology 

observed in the progression of AD. Tau pathology first affect the entorhinal cortex, amygdala, 
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hippocampus, and parahippocampal cortex in Braak stages I-II. By Braak stages III-IV, the 

primary olfactory cortex, the olfactory bulbs, and the posterior orbitofrontal cortex are affected 

(Braak & Braak, 1991, 1995; Murphy, 2019; Price et al., 1991). In an autopsy study, the level of 

neurofibrillary tangles observed in the olfactory bulbs and tracts was found to match the level of 

tangles observed in medial temporal lobe limbic regions (Attems et al., 2005). All subjects 

diagnosed with AD were found to have Braak stages V-VI levels of neurofibrillary tangles in the 

olfactory bulbs, while those diagnosed with aMCI had Braak stages III-IV level pathology in the 

olfactory bulbs.  

A growing literature suggests that olfactory impairments are significantly associated with 

tau pathology and with amyloid-beta pathology in the presence of tau pathology, but not with 

amyloid-beta pathology alone (Murphy, 2019; Tu et al., 2020). Two studies found no significant 

associations between scores on olfactory identification tests and amyloid-beta pathology, 

measured with amyloid-PET (Bahar-Fuchs et al., 2010; Buchanan et al., 2020). A third study 

found that amyloid burden assessed with amyloid-PET was significantly higher in participants 

with anosmia (total loss of smell) compared to normosmic (healthy olfaction) participants, but 

there was no statistically significant difference in amyloid burden between hyposmic (reduced 

olfactory ability) and normosmic participants (Vassilaki et al., 2017). Another study that 

investigated both CSF-tau and CSF-amyloid markers found that reduced olfactory identification 

scores were significantly associated with CSF tau pathology, and with CSF tau and amyloid 

pathology, but not with CSF amyloid pathology alone (Lafaille-Magnan et al., 2017). Another 

more recent study also found a significant negative association between performance on an 

olfactory identification test and the level of tau pathology measured by tau-PET imaging and 
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CSF lumbar punctures (Klein et al., 2021). The authors note that this association was primarily 

driven by participants who exhibited both amyloid-beta (assessed with amyloid-PET) and tau 

pathology. These results taken together suggest that amyloid-beta burden alone is not associated 

with olfactory impairments, so odor identification tests may not detect the presence of amyloid 

pathology. However, the degree of tau pathology appears to correlate more strongly with odor 

identification scores. Tau pathology is believed to precede cognitive and memory impairments in 

the progression of AD (Jack et al., 2010), so if simple olfactory identification tests are sensitive 

to the degree of tau pathology, they may prove to be useful tools for early detection and 

diagnosis of aMCI and AD.  

 

  



 
 

51 

1.3 Detailed Aims and Research Approach 

1.3.1.  Aim 1: Mapping the Striae and Microstructure of the Human Olfactory Tracts 

The first aim of this thesis work was to identify and characterize the in vivo white matter 

projections of the lateral olfactory tract into primary olfactory cortex in the human, using 

diffusion magnetic resonance imaging (dMRI). This aim was broken up into four objectives. The 

first objective was to develop an optimized dMRI protocol that would allow clear imaging of the 

olfactory and orbitofrontal brain regions. The second objective was to design a tractography 

pipeline to extract streamlines from the lateral olfactory tracts, and characterize the tracts’ 

endpoints in primary olfactory cortex. The third objective was to create a probabilistic atlas 

illustrating the location of the olfactory tracts in standardized MNI space. The last objective was 

to evaluate microstructural properties of the lateral olfactory tracts, including fractional 

anisotropy (FA) and mean diffusivity (MD), and their relationships with subjects’ performance 

on olfactory perceptual tasks. The detailed methods and results of this aim are described in 

Chapter 2 of this thesis, which was published in the Journal of Neuroscience in January, 2022; 

Echevarria-Cooper, S. L., Zhou, G., Zelano, C., Pestilli, F., Parrish, T. B., & Kahnt, T. (2022). 

Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI. 

Journal of Neuroscience, 42(1), 58–68. https://doi.org/10.1523/JNEUROSCI.1552-21.2021 

 

The Optimized dMRI Dataset. To image the olfactory tracts and their cortical endpoints with 

clarity, it was important to collect high-resolution dMRI data that was relatively free of 

susceptibility artifacts and motion artifacts. To prevent motion artifacts, we used individualized 

3D-milled head stabilizers to essentially “head-fix” participants while in the scanner. These head 
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stabilizers were milled on the outside to fit snugly in the scanner coil, and on the inside to fit 

each individual subject based on 3D renderings of their head and face. To reduce susceptibility 

artifacts, we used a multi-shot echo planar imaging (EPI) technique (Siemens RESOLVE) to 

split data acquisition for each tissue slice into seven segments in the read-out direction. This 

allowed us to collect data for each slice at a very early echo time (TE), preventing the substantial 

signal decay in the olfactory brain regions that leads to susceptibility artifacts in typical single-

shot EPI sequences. We chose to collect 90 diffusion weighted directions at b=1000 s/mm2, 

providing high angular resolution and a better signal-to-noise ratio than would have been 

possible with higher b-values. Using these methods, we were able to collect data at 1.5mm 

isotropic resolution; a higher resolution than has been used before to image the olfactory tracts. 

With these methods, we collected dMRI data, T1-weighted and T2-weighted anatomical scans, 

and olfactory perceptual data (Sniffin’ Sticks Threshold, Discrimination, and Identification 

scores) from N=25 subjects.  

 

Tractography Approach and Olfactory Tract Cortical Connectivity. To generate streamlines in 

the olfactory tracts, we first fit a constrained spherical deconvolution (CSD) model to the 

diffusion data, capable of modeling crossing and curving fiber pathways within single voxels. 

We then used probabilistic tractography and seeded streamlines from the olfactory bulbs, a 

midpoint along the olfactory tracts just anterior to the anterior olfactory nucleus, and from the 

primary olfactory cortical regions. For one subject, we were able to generate continuous 

streamlines from the olfactory bulb to the primary olfactory cortex. For other subjects, there was 

a small area of signal drop-out near the sphenoid sinus preventing continuous tracking. In these 
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subjects, we used a b-spline interpolation method to infer the trajectory of the tracts between 

streamlines seeded from the olfactory bulb and streamlines seeded from the olfactory tract 

midpoint. We then recorded counts of how many streamlines existed between the olfactory tract 

midpoint and primary olfactory cortical regions, including the anterior olfactory nucleus, the 

olfactory tubercle, the frontal piriform cortex, the temporal piriform cortex, the amygdala, and 

the entorhinal cortex.   

 

Creation of the Olfactory Tract Atlas. To create the probabilistic olfactory tract atlas, we first 

created binary voxel-wise masks of the olfactory tracts of each subject in native space. Any 

voxels traversed by olfactory tract streamlines were included in each subject’s mask. These 

masks were then normalized to standardized MNI space, and averaged together to create a 

probabilistic atlas. This atlas is now freely available to the public on NeuroVault 

(https://neurovault.org/collections/ZTCWDMII/) and on BrainLife 

(https://brainlife.io/project/5ac2a489e182730027c55588). 

 

Olfactory Perceptual Performance and Olfactory Tract Microstructure. FA and MD measures 

were evaluated and plotted for eight longitudinal segments of the olfactory tracts for each 

subject. For each of the eight segments, we evaluated correlations between the three olfactory 

perceptual measures (Threshold, Discrimination, and Identification scores) and the two diffusion 

microstructure measures (FA and MD). We then used a Bonferroni correction for multiple 

comparisons (8 segments x 3 perceptual measures) and evaluated the relationships between 

diffusion microstructure and olfactory perceptual performance in each segment.  
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1.3.2 Aim 2: Anatomical Parcellation of the Human Orbitofrontal Cortex using Diffusion MRI 

The second aim of this thesis work was to characterize the anatomical connectivity of the 

in vivo human orbitofrontal cortex (OFC), using the same dMRI dataset from Aim 1. This aim 

was split into three objectives; first, to design a tractography pipeline that would allow us to 

extract streamlines and characterize the broad anatomical connections of the OFC; second, to use 

a k-means parcellation approach to identify OFC sub-regions with distinct anatomical 

connectivity; and third, to identify the regions of the OFC that have the strongest connectivity 

with the primary olfactory cortex. The detailed methods and results of this aim are described in 

Chapter 3 of this thesis.  

 

Tractography Approach and Evaluating OFC Connectivity. For this aim, we used anatomically 

constrained tractography (R. E. Smith et al., 2012). This probabilistic tractography approach 

seeds streamlines from the gray-matter white-matter interface (GMWMI), and only allows 

streamlines to have endpoints in the GMWMI or in the subcortical gray matter. We seeded 10 

million streamlines from the whole brain GMWMI, and 10 million streamlines from the OFC 

GMWMI, producing 20 million streamlines for each subject’s tractogram. Streamlines were then 

weighted using the Spherical deconvolution Informed Filtering of Tractograms (SIFT2) method 

(Smith et al., 2015) to prevent bias toward larger, long-range white matter pathways in the final 

connectome. A connectome matrix was then created, with the down-sampled 3mm isotropic 

voxels of the OFC GMWMI represented in the rows, and the down-sampled 3mm isotropic 

GMWMI and subcortical gray matter voxels represented in the columns. The degree of 

connectivity (sum of the SIFT2 streamline weights) between each pair of voxels was recorded.  
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K-Means Parcellation Approach and Identifying Distinct OFC Subregions. K-means parcellation 

was then used on the OFC connectome matrix to sort the rows of this matrix (corresponding to 

3mm OFC GMWMI voxels) into distinct clusters based on connectivity with the rest of the 

brain. Parcellation was performed separately for the left and right hemispheres. We varied K 

from 2-6 to produce unique clustering solutions. Clustering was performed separately for each 

subject and hemisphere. We then created 3mm voxel masks in each subject’s native T1 space of 

the OFC voxel cluster assignments for each value of K. These masks were then normalized to 

standardized MNI space. Each subject’s normalized masks were then re-labeled according to 

similarity with a template subject (voxel cluster assignments remained the same for each 

subject’s masks, only the cluster number labels were changed). These re-labeled masks were 

then averaged together to produce probability maps for each individual cluster, for each value of 

K. For K=2, K=3, and K=6 clustering solutions, we evaluated the connectivity patterns of each 

individual cluster across subjects, based on the weighted streamlines from the whole brain 

tractograms that intersected with voxels in each cluster.  

 

1.3.3 Aim 3: Validation of the NIH Toolbox Odor Identification Test across Normal Cognition, 

amnestic Mild Cognitive Impairment, and Alzheimer’s Disease 

The third aim of this thesis work was to validate the National Institutes of Health 

Toolbox (NIHTB) Odor Identification Test for a population of adults over age 65 with normal 

cognition (NC), amnestic mild cognitive impairment (aMCI), and Alzheimer’s disease (AD). 

Data for this aim were collected through several Alzheimer’s Disease Research Centers 

(ADRCs) across the United States as part of the Assessing Reliable Measurement in Alzheimer’s 
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Disease and cognitive Aging (ARMADA) project (Weintraub et al., 2022), and included N=389 

participants (NC, N=248; aMCI, N=79; AD, N=62). This aim was split into three objectives. The 

first objective to evaluate differences in performance on the Odor Identification Test across 

diagnostic categories (NC, aMCI, and AD), sex, and age. The second objective was to determine 

how well the Odor Identification Test is able to classify participants with aMCI compared to 

participants with NC. The last objective was to evaluate whether performance on the Odor 

Identification test is significantly different across three special interest measures, including AD 

biomarker status (positive versus negative), APOE ε4 allele carrier status (positive versus 

negative), and across NC age groups (ages 65-84 versus ages 85+). The detailed methods and 

results of this aim are described in Chapter 4 of this thesis.  

 

Evaluating Odor Identification Performance across Age, Sex, and Diagnosis. Summary statistics 

were evaluated to determine the mean, standard deviation, and spread of odor identification 

scores across sex (male versus female) and diagnostic categories (NC, aMCI, and AD). Main 

effects and interactions between diagnostic categories, age, and sex on odor identification scores 

were evaluated using multiple linear regression.  

 

Predictive Value of the Odor Identification Test for aMCI. For this analysis, we included only 

participants with NC and aMCI. A logistic regression model was used to evaluate whether lower 

odor scores were significantly associated with having aMCI. A receiver operating characteristic 

(ROC) curve was then plotted based on the fitted values of the logistic regression model, and the 
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area under the curve (AUC) was calculated to determine how well odor identification scores can 

classify NC versus aMCI.  

 

Odor Identification Performance across Special Interest Measures. Here, we evaluated 

differences in odor identification scores based on AD biomarker status (positive versus 

negative), APOE ε4 allele carrier status (positive versus negative), and across age groups within 

the NC subset of participants (ages 65-84 versus ages 85+). Three-way analyses of covariance 

(ANCOVAs) were used to evaluate differences in odor identification scores, age, and sex across 

groups for each of the three special interest measures.  The subset of participants included in the 

AD biomarker analysis were any participants that had a lumbar puncture to evaluate tau levels in 

the cerebrospinal fluid or that had PET imaging to evaluate amyloid plaque levels. Participants 

were classified as “positive” if they were indicated as meeting AD biomarker thresholds on at 

least one of these two tests, and “negative” if they were indicated as not meeting AD biomarker 

thresholds on one or both of these tests. In total, there were N=48 participants with positive 

biomarker tests, and N=117 participants with negative biomarker tests. For the APOE analysis, 

participants were placed in the “positive” group if they had at least one ε4 allele, and in the 

“negative” group if they had no ε4 alleles. In total, there were N=177 participants with at least 

one ε4 allele, and N=98 participants with no ε4 allele. For the analysis across age groups in the 

Normal Cognition diagnostic category, there were N=152 participants aged 65-84 and N=96 

participants aged 85+. 
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Chapter 2: Mapping the Microstructure and Striae the Human Olfactory Tract with 

Diffusion MRI 

This chapter is adapted from a manuscript published in The Journal of Neuroscience in January 

2022 (Echevarria-Cooper et al., 2022). 

 

2.1.  Abstract and Significance 

The human sense of smell plays an important role in appetite and food intake, detecting 

environmental threats, social interactions, and memory processing. However, little is known 

about the neural circuity supporting its function. The olfactory tracts project from the olfactory 

bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical 

regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the 

human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a 

dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize 

image distortions and characterize the human olfactory tracts in vivo. We collected high-

resolution dMRI data from 25 healthy human participants (12 male and 13 female) and 

performed probabilistic tractography using constrained spherical deconvolution (CSD). At the 

individual subject level, we identified the lateral, medial, and intermediate striae with their 

respective cortical connections to the piriform cortex and amygdala, olfactory tubercle, and 

anterior olfactory nucleus. We combined individual results across subjects to create a 

normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship 

between olfactory perceptual scores and measures of white matter integrity, including mean 

diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor 
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discrimination performance. In summary, our results provide a detailed characterization of the 

connectivity of the human olfactory tracts and demonstrate an association between their 

structural integrity and olfactory perceptual function. 

This study provides the first detailed in vivo description of the cortical connectivity of the 

three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging 

(dMRI). Additionally, we show that tract microstructure correlates with performance on an odor 

discrimination task, suggesting a link between the structural integrity of the olfactory tracts and 

odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that 

may be used in future research to study its integrity in health and disease. 

 

2.2.  Introduction 

Human olfaction supports many important cognitive and behavioral functions, including 

food-intake, social interactions, memory, and detecting threats in the environment (Gottfried, 

2010; McGann, 2017). Despite its importance, much of our knowledge about the connectivity of 

olfactory bulb afferents is inferred from work in nonhuman animals. Post mortem studies in 

humans suggest that the olfactory tracts are comprised of parallel afferents that split into three 

separate striae (lateral, medial, and intermediate) before meeting primary olfactory cortex, but 

their precise targets remain difficult to identify (Allison, 1954; Boniface M. Kavoi & Hassanali 

Jameela, 2011; Mark et al., 1994; Rose, 1927). In rats and mice, axon tracing reveals projections 

to the anterior olfactory nucleus (AON), anterior and posterior piriform cortices, the olfactory 

tubercle (OT), the amygdala (AMY), periamygdaloid cortex, and lateral entorhinal cortex (EC) 

(Haberly & Price, 1978a, 1978b; Miyamichi et al., 2011; Schwob & Price, 1984; Scott et al., 
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1980; White, 1965). In macaque monkeys, projections identified with axon tracing methods 

appear to be highly conserved and innervate homologous primary olfactory regions, but 

connectivity to the EC is confined only to its most rostral aspect (Carmichael et al., 1994). 

Homologous cortical regions have been identified in humans (Allison, 1954; Boniface M. Kavoi 

& Hassanali Jameela, 2011; Crosby & Humphrey, 1941; Rose, 1927; Uyematsu, 1921), 

including the AON, frontal piriform cortex (FPC), temporal piriform cortex (TPC), OT, AMY, 

and EC. Allison (1954) identified the striae of the post mortem human olfactory tracts with silver 

staining, and concluded that they reached each of these regions with the exception of EC. 

However, precise replication of these findings using in vivo methods is still needed.  

In vivo investigations of the human olfactory tracts have only recently become possible 

with innovations in dMRI (Fjaeldstad et al., 2017; Milardi et al., 2017; Skorpil et al., 2011). 

However, several limitations have so far prevented a comprehensive mapping of their 

connectivity. First, magnetic susceptibility differences between brain tissue and air in the sinus 

cavities cause severe artifacts, warping the final image and obscuring the olfactory tracts. 

Second, dMRI scans are particularly sensitive to head motion. Third, the branching and highly 

curved olfactory tract striae pose problems for the traditional diffusion tensor model, which 

cannot model multiple fiber orientations within a single voxel (Tournier et al., 2007, 2012). 

In the present study, we sought to overcome these challenges by using recent advances in 

dMRI technology. Most importantly, we used a method with readout segmentation of long 

variable echo-trains (RESOLVE) to segment data acquisition in the read-out direction and 

achieve short echo times (TEs), allowing high-resolution scanning with relatively few 

susceptibility artifacts (Porter & Heidemann, 2009). We also used customized head stabilizers to 
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“head-fix” participants during scanning (Power et al., 2019). Finally, to discern the branching 

striae, we performed probabilistic tractography using the constrained spherical deconvolution 

(CSD) model, capable of fitting multiple fiber orientations within each voxel (Tournier et al., 

2007, 2012).  

Using these optimized methods, we have identified the three striae of the olfactory tracts 

and characterized their connectivity with primary olfactory cortex in 25 healthy human subjects. 

Further, we found a correlation between the microstructural integrity of the olfactory tracts and 

olfactory perceptual function. These results provide novel insight regarding human olfactory 

tract connectivity, which has historically been difficult to discern. They also provide the first step 

toward investigating in vivo microstructure-function relationships in the human olfactory system, 

which may be useful for studying olfactory tissue integrity in clinical populations. Specifically, 

olfactory dysfunction may serve as an early harbinger of neurodegenerative diseases such as 

Parkinson’s (Fullard et al., 2017; M. Witt et al., 2009) or Alzheimer’s disease (Murphy, 2019; 

Peters et al., 2003), and in demyelinating diseases such as multiple sclerosis (Carotenuto et al., 

2019; Lucassen et al., 2016). Identifying specific patterns of tissue degeneration in conjunction 

with olfactory perceptual testing may help dissociate different degenerative diseases in their 

prodromal stages. 

 

2.3. Materials and Methods 

Subjects. A total of 27 right-handed subjects (14 male and 13 female; age: mean 25.76 +/- 

standard deviation 4.01 years), with no neurologic disorders, psychiatric disorders, or MRI 

contraindications, were enrolled in this study. Two subjects, both males, were excluded from 
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final analyses because they did not complete the MRI scanning protocol. The study was 

approved by the Northwestern IRB (STU00098371), and all subjects gave written informed 

consent for participation.  

 

Study design. Subjects visited the lab two times (Figure 2.1A). During visit 1, they completed 

three olfactory perceptual tests (threshold, discrimination, and identification) and were fitted for 

a personalized head stabilizer. During visit 2, participants repeated the olfactory threshold test, 

and underwent MRI scanning. Visit 1 and visit 2 were separated by 2–35 days (mean 15.68 +/- 

standard deviation 9.51).  

 

Olfactory perceptual testing. During visit 1, subjects underwent olfactory perceptual testing 

using the Sniffin’ Sticks threshold (n-butanol), discrimination, and identification tests (Rumeau 

et al., 2016), administered in the listed order. During visit 2, subjects repeated the olfactory 

threshold test, and the two threshold scores were averaged. Scores on each test range from 0 

(worst) to 16 (best), with anosmic thresholds at scores of T = 1.0, D = 8, and I = 8. All subjects 

scored above anosmic thresholds for all three tests. We computed the composite threshold + 

discrimination + identification (TDI) score by adding the mean threshold score, the 

discrimination score, and the identification score (Figure 2.1B).  

 

Personalized head stabilizers. Subjects wore personalized head stabilizers to prevent head 

motion for the duration of MRI scanning (Power et al., 2019). 3D renderings of each subject’s 

face and head were created using a handheld camera and the Caseforge iOS application. The 
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head stabilizers were 3D-milled to fit the subject’s face and head on the inside and the shape of 

the MRI scanner coil on the outside. An example is shown in Figure 2.1C.  

 

MRI data acquisition. During visit 2, subjects underwent MRI scanning on a 3T Siemens Prisma 

scanner with a 64-channel head-neck coil. We collected a set of diffusion-weighted images, a 

T1-weighted image, and a T2-weighted image. Subjects wore their customized head stabilizers 

for the duration of the scans.  

We used a high-resolution (1.5 mm isotropic) RESOLVE dMRI scan with seven readout 

segments (Porter & Heidemann, 2009) to collect the diffusion-weighted images. This sequence is 

different from typical single-shot echo planar imaging (SS-EPI) techniques in that it splits data 

collection into seven segments in the read-out direction and re-excites the tissue before each 

segment with a new radio frequency pulse. The readout segments are combined in the end to 

produce the full image. The shorter readout segment allows for a shorter TE than is possible in 

SS-EPI sequences. However, it takes more time to acquire a complete dataset, based on the 

number of segments. We also included a navigator echo to monitor between-segment motion, so 

that volumes were re-acquired if the motion was excessive (Porter & Heidemann, 2009). In 

addition, we used simultaneous multi-slice acquisition (Nunes et al., 2006) to allow for improved 

spatial coverage required when using such small voxels. This sequence was designed based on 

extensive pilot testing to provide high-resolution images with reduced blurring, and largely free 

of susceptibility artifacts compared with conventional SS-EPI techniques (Figure 2.1D). 

Imaging parameters were as follows: 92 slices; field of view (FoV) = 240 mm; matrix size = 240 

x 240 x 138 mm; 90 diffusion-weighted directions at b = 1000 s/mm2; 12 interspersed b0 
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volumes; phase encoding = A > P; TE1 (image echo) = 61 ms; TE2 (navigator echo) = 98 ms; 

repetition time (TR) = 6250 ms; flip angle = 180°; bandwidth = 897 Hz/Px, multiband factor = 2. 

The scan time for this RESOLVE dMRI sequence was approximately 1 hour and 30 minutes. An 

oblique slice angle (~30° relative to the AC–PC plane) was used to further reduce susceptibility 

artifacts (Weiskopf et al., 2006).  

The parameters for the two anatomic scans were as follows: T1-weighted, 1.0 mm 

isotropic, TE = 2.94 ms, TR = 2300 ms, flip angle = 9°, FoV = 256 mm, matrix size = 256 x 256 

x 176 mm; phase encoding = A > P, bandwidth = 240 Hz/Px; T2-weighted (Siemens ZOOMit 

protocol), 0.5 mm isotropic, TE=125ms, TR=1000ms, flip angle=100°, FoV=160 mm, matrix 

size=82 x 160 x 72 mm, phase encoding = A > P, bandwidth = 256 Hz/Px. The T2-weighted 

image covered the ventral frontal lobes and temporal poles, including the olfactory bulbs, 

orbitofrontal cortex, and lengths of the olfactory tracts. The scan duration was 5min for the T1-

weighted image and 7min for the T2-weighted image.  

 

MRI data preprocessing. All MRI data were converted to the Nifti file type using MRIcron’s 

dcm2niix function (X. Li et al., 2016). The diffusion MRI data were corrected for motion and 

eddy current artifacts using FSL’s function, eddy_openmp (Jenkinson et al., 2012; S. M. Smith et 

al., 2004; Woolrich et al., 2009). The T1-weighted and T2-weighted images were co-registered 

to the native diffusion space using SPM12 (SPM12 Software, 2014). All diffusion model fitting 

and tractography were performed in the native diffusion space to prevent registration-related 

errors in the alignment of the b-vectors with the diffusion-weighted data. MRtrix2 functions were 

used to fit the tensor model (dwi2tensor), create FA (tensor2FA) and eigenvector maps 



 
 

65 

(tensor2vector), estimate the fiber response function for use in spherical deconvolution 

(estimate_response), and fit the CSD model (csdeconv; lmax=8) (Tournier et al., 2007, 2008, 

2012). The MRtrix3 function tensor2metric was used to generate mean diffusivity (MD) maps 

based on the estimated diffusion tensors (Basser et al., 1994; Tournier et al., 2019; Westin et al., 

1997). The CSD model was used to perform probabilistic fiber tractography, using the MRtrix2 

function streamtrack SD_PROB (Tournier et al., 2012), to delineate the paths traversed by the 

olfactory tracts. 

 

 
 

Regions of interest (ROIs). Olfactory ROIs were defined for use in tractography segmentation 

(Figure 2.2) using ITK-SNAP (Yushkevich et al., 2006). The ROIs were drawn for the left and 

right hemispheres separately on each individual’s anatomic images. The olfactory bulbs were 

Figure 2.1. A, Study timeline. DWI = diffusion weighted imaging. B, Histogram of the 

summed TDI (Threshold, Discrimination, and Identification) scores across subjects. C, 
Example of a customized 3D-milled head stabilizer for preventing head motion during MRI 

scanning. D, Comparison of susceptibility artifacts and blurring at 1.5-mm isotropic resolution 
between a non-segmented Single-Shot Echo Planar Imaging (SS-EPI) sequence and the multi-

shot Readout Segmentation of Long Variable Echo trains (RESOLVE) sequence (collected 
from the same pilot subject). Note that severe artifacts present in orbitofrontal regions in the 

non-segmented EPI images are absent in the RESOLVE images (red).  
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outlined on each individual’s 0.5-mm resolution T2-weighted image. Using both the 0.5-mm 

resolution T2- weighted and 1.0-mm resolution T1-weighted images, ROIs were placed in a 

midpoint region of the olfactory tracts in both hemispheres. This midpoint ROI was placed in the 

olfactory sulcus, anterior to the position of the olfactory trigones, and posterior and superior to 

the level where the optic nerves traverse below the olfactory sulci. In some subjects, a portion of 

the olfactory tract is visible at this location in the anatomic images and in the FA maps.  

Several cortical and subcortical ROIs were defined based on established targets of the olfactory 

tracts in rodents and nonhuman primates (Carmichael et al., 1994; Haberly & Price, 1978a, 

1978b; Miyamichi et al., 2011; White, 1965). These regions included the AON, OT, FPC, TPC, 

AMY, and EC. These regions were defined for each subject, separately in the left and right 

hemispheres based on a published atlas (Mai et al., 2015), architectonic studies (Ongür et al., 

2003a; Öngür & Price, 2000), and the results of an olfactory functional network study (Zhou et 

al., 2019). To generate probabilistic atlases for these olfactory ROIs, each subject’s ROIs were 

normalized to MNI space and binarized, and the normalized ROIs were averaged across subjects, 

resulting a probability value for each voxel. These ROI atlases are available on NeuroVault 

(https://neurovault.org/collections/ZTCWDMII/) and BrainLife 

(https://brainlife.io/project/5ac2a489e182730027c55588).  

 

Probabilistic tractography. The olfactory tracts were defined for each subject, separately in each 

hemisphere, with probabilistic tractography based on the CSD model, using the streamtrack 

SD_PROB algorithm (Lmax = 8, FA threshold = 0.1, curvature threshold = 1.5 mm) from 

MRtrix2 (Tournier et al., 2007, 2008, 2012). Three sets of fiber groups were generated in each 
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hemisphere (for details, see Results). For each fiber group, probabilistic tractography continued 

until 1000 streamlines were generated meeting the defined conditions. Brain masks were not 

used to constrain tracking, since most brain masking algorithms exclude the olfactory bulbs and 

probable locations of the olfactory tracts, because of the signal quality of conventional diffusion- 

weighted images. Fiber groups were then cleaned using the dtiCleanFibers and 

AFQ_removeFiberOutliers functions from Vistasoft and the Automated Fiber Quantification 

(AFQ) package (Pestilli et al., 2014; Yeatman et al., 2012). These functions remove any 

streamlines that are more than four standard deviations longer than the mean streamline length, 

or that are more than four standard deviations outside of the mean Gaussian distance from the 

“core” of the fiber tract, as defined in Yeatman et al. (2012).   

In most subjects, the olfactory bulbs could not be continuously linked to cortex because 

of a small area of signal drop out near the sphenoid sinus. In these subjects, we used the 

MATLAB function cscvn (version R2020b) to produce natural cubic spline curves (Lee, 1989) to 

interpolate the path of the olfactory tracts across this gap, separately for each subject in each 

hemisphere. The five most posterior points (1 mm) of fiber group 1 and the five most anterior 

points (1 mm) of fiber group 2 were excluded, since the streamlines tended to splay out away 

from the core of the fiber tract near the ends. The next five most posterior points (1 mm) of the 

streamlines in fiber group 1 and the next five most anterior points (1 mm) of the streamlines in 

fiber group 2 were used as control points for interpolation.  

In all subjects, the midpoint seeding regions of the olfactory tracts were linked to primary 

olfactory cortical ROIs via continuous streamlines, in fiber groups 2 and 3. These fiber groups 

were used to analyze connectivity between the olfactory tracts and individual cortical ROIs. 
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Connectivity was noted as present if streamlines existed connecting the seeding region in the 

olfactory tracts with the cortical ROI in question. Connection density values were calculated for 

each connection to describe the strength of each connection, defined as the number of 

streamlines connecting the seeding region to each cortical ROI, divided by the volume (mm3) of 

that cortical ROI. 

 

 
 

Generation of the olfactory tract atlas. We created binary masks in each subject’s native space to 

index voxels traversed by the olfactory tracts, using the cleaned, interpolated, and combined fiber 

groups. We then normalized these masks into Montreal Neurological Institute (MNI) space using 

SPM12 (SPM12 Software, 2014) with deformation fields estimated based on the T1-weighted 

images. We averaged the masks in MNI space across subjects to create a probabilistic atlas of the 

olfactory tracts, where each voxel’s value between 0 and 1 reflects the proportion of subjects in 

Figure 2.2. Atlases of the Regions of Interest in MNI space. A, Seed regions of the olfactory 
bulb (top and middle) and midpoint of the olfactory tract (bottom) used for segmentation of the 

olfactory tracts. B, Masks of the primary olfactory regions that were used as inclusionary 
regions investigated for connectivity with the olfactory tracts. Only voxels overlapping in .20% 

of sub- jects are shown for illustration. Masks are overlaid on a mean image of all subjects’ 

MNI-normalized T1 images.  
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which olfactory tract streamlines were present at that position. We truncated the posterior 

boundary of the olfactory tract atlases at MNI Y = –3, just posterior to the point where the lateral 

and medial striae enter cortex. The anterior boundary is located at MNI Y = 53, at the anterior 

edge of the olfactory bulbs. This atlas is publicly available on NeuroVault (https://neurovault. 

org/collections/ZTCWDMII/) and on BrainLife 

(https://brainlife.io/project/5ac2a489e182730027c55588).  

 

Diffusion microstructure profiles of the olfactory tracts. We conducted analyses of local 

olfactory tract microstructural characteristics in individual subjects, using our probabilistic 

olfactory tract atlas. Fractional anisotropy (FA) and mean diffusivity (MD) estimates in a white 

matter tract of interest are known to be affected by partial volume effects with surrounding 

anatomy, inhomogeneities in the magnetic field, and noise. Local measures of FA and MD can 

thus be plotted along a white matter tract to account for these effects, and this method has been 

shown to produce replicable characteristic curves for specific white matter tracts across healthy 

subjects (Yeatman et al., 2012). Here, we used a similar approach in the olfactory tracts.  

We first divided the olfactory tract atlas into eight equally-spaced anterior-posterior segments 

(width = 6.25 mm) in each hemisphere, in MNI space. We reasoned that averaging FA and MD 

measures within segments of this size would help to reduce noise while preserving local 

information about field inhomogeneities and neighboring anatomic features. We then then 

transformed the segmented masks into each subjects’ native diffusion space, using SPM12 

(SPM12 Software, 2014) with inverse deformation fields estimated based on the T1-weighted 

images. For each subject, we calculated voxel-wise values for FA and MD in each segment and 
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weighted these values by the probability values in the olfactory tract atlas. We then calculated 

the mean of the weighted FA and MD measures within each segment, for each subject.  

 

Statistical analysis. To test correlations between microstructure measures and olfactory 

perceptual ability, we regressed the FA and MD values in each of the eight segments (averaged 

across hemispheres) against scores on each of the Sniffin’ Sticks tests (threshold, discrimination, 

and identification). We controlled for potential effects of age and sex, by including these 

variables as covariates in multiple linear regression models. Bonferroni correction was used to 

correct for multiple comparisons (eight segments x three measures).  

 

2.4. Results 

Healthy subjects [N = 25, 13 female, age 24.98 6 4.38 (mean 6 SD) years] participated in 

olfactory perceptual testing and MRI scanning (Figure 2.1A). Summed Sniffin’ Sticks TDI 

scores are shown in Figure 2.1B. During MRI scanning, subjects wore individualized head 

stabilizers (Figure 2.1C) to prevent motion. MRI scanning included 1.0-mm isotropic T1-

weighted and 0.5-mm isotropic T2-weighted structural MRI scans, used to identify anatomic 

ROIs, and 1.5-mm isotropic dMRI RESOLVE scans. We chose the dMRI RESOLVE sequence 

based on extensive pilot testing in our lab to produce high-resolution images with reduced 

blurring, and largely free of susceptibility artifacts compared with conventional SS-EPI dMRI 

techniques (Figure 2.1D).  
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Tractography and connectivity results. We reconstructed olfactory tract streamlines in each 

subject using probabilistic tractography based on the CSD model (Tournier et al., 2007, 2012). In 

each hemisphere, we defined ROIs for each individual subject, including the olfactory bulb, 

several primary olfactory cortical regions (including the AON, FPC, TPC, OT, AMY, and EC), 

and a midpoint region of the olfactory tract located in the olfactory sulcus (Figure 2.2). We 

generated three sets of fiber groups in each hemisphere with the following conditions: (1) 

streamlines were seeded from the olfactory bulbs; (2) streamlines were seeded from the olfactory 

tract midpoint ROI, and olfactory cortical regions including the AON, FPC, TPC, OT, AMY, and 

EC were defined as inclusionary ROIs; (3) streamlines were seeded from the cortical ROIs listed 

in the second condition, and the olfactory tract midpoint ROI was defined as an inclusionary 

ROI. In all three conditions, exclusionary ROIs were placed to prevent streamlines from crossing 

the midline or entering the optic nerves, gyrus rectus, orbitofrontal cortex, or the surrounding 

cerebrospinal fluid. Fiber groups were cleaned to remove noisy and erroneous streamlines (see 

Materials and Methods), and the resulting fiber groups contained (mean +/- standard deviation) 

952.64 +/- 24.98, 879.64 +/- 40.05, and 853.60 +/- 37.73 streamlines in the left hemisphere for 

fiber groups 1–3, respectively. The number of streamlines was 963.64 +/- 23.49, 873.48 +/- 

30.75, and 864.92 +/- 31.91 for groups 1–3 in the right hemisphere. Fiber groups 2 and 3 were 

used to evaluate the connectivity of the olfactory tracts with primary olfactory cortex.  

Most importantly, bilateral continuous streamlines between the olfactory bulb and 

primary olfactory cortex were found in one subject (Figure 2.3). In two other subjects, fiber 

group 1 overlapped with fiber groups 2 and 3 in the right hemisphere only. In many subjects, a 

small area of signal dropout near the sphenoid sinus prevented continuous tracking across the 
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entire length of the olfactory tracts. In these subjects, fiber group 1 was separated from fiber 

groups 2 and 3 by a small gap. The length of fiber group 1, measured from the olfactory bulbs to 

the point of signal drop out, was: left hemisphere, mean 24.04 mm +/- standard deviation 4.81 

mm; and right hemisphere, mean 27.12 mm +/- standard deviation 6.99 mm. The Euclidean 

distances between the posterior end of fiber group 1 and the anterior-most end of fiber groups 2 

and 3 were: left hemisphere, mean 10.1 mm +/- standard deviation 4.1 mm; and right 

hemisphere, mean 8.5 mm +/- standard deviation 4.7 mm. In these subjects, we used a natural 

cubic spline interpolation method (Lee, 1989) to estimate the path of the olfactory tracts across 

the gap (Figure 2.4).  

Across subjects, streamlines in fiber group 1 projected posteriorly from the olfactory 

bulbs, following along the length of the olfactory sulci. Anterior projections of streamlines in 

fiber groups 2 and 3 followed along the olfactory sulcus and passed superiorly to the optic nerves 

before connecting to streamlines in fiber group 1, either directly or via interpolated segments. 

Posterior portions of streamlines in fiber groups 2 and 3 branched near the level of the optic 

chiasm to form the lateral, medial, and intermediate striae. Streamlines forming the intermediate 

striae curved sharply superiorly, entering AON gray matter, while those forming the lateral striae 

curved sharply laterally to meet FPC gray matter, and those forming the medial striae curved 

sharply medially to meet OT gray matter (Figure 2.3C). Some streamlines of the lateral branch 

continued through the uncinate fasciculus to meet the TPC, and through temporal lobe white 

matter to meet AMY. Only one streamline identified in one subject reached the EC.  
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Figure 2.3. Continuous streamlines connecting the olfactory bulbs with primary olfactory 
cortex in one subject (Table 2, row 4), overlaid on the subject’s T1 image. A, 3D fiber groups 

overlaid on an axial slice. B, Sagittal views of the fiber groups in the left hemisphere. C, 
Coronal views of the fiber groups indicating the trajectory of the olfactory tracts from bulb (y 

= 80) to the inter- mediate stria (left hemisphere, y = 45), and the medial (right hemisphere) 
and lateral striae (both hemispheres, y = 37). Red, green, and blue color scheme corresponds to 

lateral-medial (x), anterior-posterior (y), and superior-inferior (z) streamline trajectories, 

respectively. Primary olfactory cortical targets are labeled: AON, OT, FPC, TPC, AMY.  
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We quantified the connectivity of the olfactory tracts with each primary olfactory cortical 

region, defined as whether streamlines in fiber group 2 or 3 existed connecting the olfactory tract 

midpoint ROI with each cortical region. In all subjects, connectivity was present in at least one 

hemisphere between the olfactory tracts and the AON, the FPC, the TPC, and the OT. In 76% 

of subjects, connectivity with the AMY was also present in at least one hemisphere. Only one 

subject showed connectivity with the EC in the right hemisphere. Connection density, a measure 

of connection strength (Hagmann et al., 2008), was calculated for each connection by dividing 

the number of streamlines present by the volume (mm3) of the target cortical ROI. Group 

connectivity and connection density results are listed in Table 2.1. Individual subjects’ 

connectivity and connection density results are listed in Table 2.2.  

 

 

Figure 2.4. Example of natural cubic spline interpolation in the lateral olfactory 
tracts, overlaid on the subject’s T1 image. A, Streamlines generated using probabilistic 

tractography, seeding in the olfactory bulb, olfactory tract midpoint, and cortical olfactory 
regions. B, The same streamlines as shown in A, with the interpolated streamlines included 

(white). Red, green, and blue color scheme corresponds to lateral-medial (x), anterior-

posterior (y), and superior-inferior (z) streamline trajectories, respectively.  
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Table 2.1. Connectivity and connection densities of the olfactory tracts. 

ROI Hemisphere Streamlines 
(median) 

Streamlines 
IQR (Q3 – 

Q1) 

Connection 
density (mean 

+/– SEM) 

Number of 
Subjects 

AON Left 271 301 0.77 +/– 0.12 25 

 Right 295 351 0.72 +/– 0.11 24 

FPC Left 104 247 0.89 +/– 0.16 22 

 Right 15 54 0.22 +/– 0.07 19 

TPC Left 173 289 1.01 +/– 0.21 23 

 Right 23 174 0.30 +/– 0.08 18 

OT Left 451 359 1.70 +/– 0.23 24 

 Right 223 206 1.17 +/– 0.19 24 

AMY Left 1 22 0.06 +/– 0.03 14 

 Right 2 36 0.03 +/– 0.01 14 

ENT Left 0 0 0 0 

 Right 0 0 0.4e–5 1 

 
 
 

The Olfactory Tract Atlas. Based on our tractography results, we created a normalized, 

probabilistic atlas to define the locations of the olfactory tracts in MNI space (Figure 2.5). We 

created a binarized mask for each subject that consisted of voxels traversed by olfactory tract 

streamlines. We then transformed the masks into MNI space and averaged them across subjects 

to create a probability map of voxels traversed by the olfactory tracts. The atlas captures the 

trajectory of the olfactory tracts, as they project posteriorly, slightly superiorly and slightly 

laterally toward the primary olfactory cortex. The three branches of the olfactory tracts (i.e., 

lateral, medial, and intermediate striae) are clearly visible in the atlas in both hemispheres.  

 

 

Table 2.1. Connectivity and connection densities of the olfactory tracts. Columns depict 

the median and interquartile range [IQR (Q3 – Q1)] of the number of streamlines found 

between the olfactory tracts and the Regions of Interest (ROIs), the mean and Standard Error 

of the Mean (SEM) of connection density for each ROI, as well as the number of subjects in 

which the connectivity between the olfactory tracts and each ROI was identified. 



 
 

 

 

 

Table 2.2. Individual streamlines and connection densities of the olfactory tracts 

Table 2.2. Individual streamlines and connection densities of the olfactory tracts. Individual subjects’ data. #: number of 

streamlines identified between the LOT and each ROI; density: number of streamlines divided by ROI volume (mm3); total 

N: total number of subjects with streamlines between the LOT and each ROI. – denotes no streamlines found.  
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Figure 2.5. Probabilistic atlas of the olfactory tracts in MNI space. A, Coronal slices 

showing the trajectory of the olfactory tracts from the bulbs (y = 44) to the superior projections 
of the intermediate striae (y = 11), and the projections of the medial and lateral striae (y = 2 

and y = –1). B, Axial slices showing the projections of the tracts from the bulbs (z = –34), the 
point where the tracts cross superiorly to the optic nerves (z = –26), and where all three striae 

are visible in each hemisphere (z = –16). Voxels overlapping in >20% of subjects are overlaid 
on a mean image of all subjects’ MNI-normalized T1 images. This atlas is freely available on 

NeuroVault (https://neurovault.org/collections/ZTCWDMII/) and on BrainLife 

(https://brainlife.io/project/ 5ac2a489e182730027c55588).  

 



 
 

78 

Microstructure of the olfactory tracts. Next, we used our probabilistic olfactory tract atlas to 

extract measures of microstructure integrity (i.e., FA and MD) from the olfactory tracts of 

individual subjects. We first divided the normalized atlas into eight anterior-posterior segments 

(6.25-mm width) in each hemisphere (Figure 2.6A), and then transformed the segmented atlases 

into each subjects’ native diffusion space and extracted the voxel-wise FA and MD values. 

Finally, we averaged the FA and MD values for each segment in each hemisphere across voxels, 

weighting FA and MD values by each voxel’s probability value in the atlas, thus giving more 

weight to values closer to the core of the tract, and less weight to those near the edges of the tract 

that may have partial volume effects with surrounding cerebrospinal fluid. As expected, we 

found that FA and MD values varied by segment (Figure 2.6B,C), presumably driven by local 

anatomic features.  

 

 
 

Tract microstructure integrity is related to olfactory function. To test whether microstructure 

integrity in the olfactory tracts is relevant for olfactory perceptual function, we next tested 

Figure 2.6. Diffusion microstructure profiles of the olfactory tracts. A, Segments (1–8) 

of the olfactory tract atlases in each hemisphere in MNI space. B, Fractional Anisotropy 
(FA) along the longitudinal axis of the olfactory tract. The FA values of each voxel were 

weighted by the probability of the olfactory tract atlas and averaged across all voxels for 

each segment. C, Same as B but for Mean Diffusivity (MD).  
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correlations between the weighted mean FA and MD values for each segment (averaged across 

both hemispheres) and the three Sniffin’ Sticks tests (threshold, discrimination, and 

identification). We found statistically significant correlations [Bonferroni corrected for multiple 

comparisons (eight segments x three measures)] between the MD values in segments 5 and 7 and 

the Sniffin’ Sticks discrimination scores (Figure 2.7). Both correlations were significant when 

controlling for sex (Bonferroni corrected; segment 5: b = –0.57, p = 0.0021; segment 7: b = –

0.54, p=0.0054) and age using multiple regression (Bonferroni corrected; segment 5: b = –0.65, p 

= 0.0004; segment 7: b = –0.62, p = 0.0012). We found no significant (Bonferroni corrected) 

correlations with FA, and no significant correlations between MD and the threshold or 

identification tests.  

 

 

Figure 2.7. Pearson correlations between Mean Diffusivity in the olfactory tracts and 
olfactory discrimination scores. MD values were averaged across hemispheres for each 

segment. The straight line indicates least squares fit. Asterisks indicate statistically 

significant correlations (Bonferroni corrected for eight segments x three measures).  
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2.5.  Discussion 

The likely cortical endpoints of the human olfactory tracts were first outlined nearly 70 

years ago using silver myelin staining in post mortem brains (Allison, 1954). More recently, 

several groups have attempted to delineate these projections using modern dMRI methods in vivo 

(Fjaeldstad et al., 2017; Milardi et al., 2017; Skorpil et al., 2011). However, because of 

methodological limitations, these studies were unable to provide a comprehensive 

characterization of the striae and their cortical connectivity. In the present study, we 

implemented innovative imaging and tractography techniques to accomplish this goal. We 

identified the three striae of the olfactory tracts in 25 subjects, and discovered in vivo 

connectivity patterns matching those identified in post mortem data by Allison (1954). Based on 

these results, we have created the first publicly available probabilistic atlas of the olfactory tracts 

in MNI space. Additionally, we investigated microstructural properties of the tracts, and found 

that MD correlates with olfactory discrimination scores. In summary, our results provide the first 

comprehensive characterization of in vivo human olfactory tract connectivity, along with 

evidence for a relationship between olfactory tract microstructure and olfactory perceptual 

function.  

In our data, the lateral, medial, and intermediate stria were identified in all subjects in at 

least one hemisphere. The lateral striae were the largest, and curved sharply laterally to meet 

FPC, TPC, and AMY. The medial striae curved medially to meet the OT, located at the base of 

the nucleus accumbens. The intermediate striae were the smallest, and projected superiorly to 

meet AON near the olfactory trigone. All three striae are clearly visible in both hemispheres 

within our probabilistic olfactory tract atlas.  
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We found reliable connectivity between the olfactory tracts and FPC, TPC, the AON, and 

the OT, with all subjects showing these connections in at least one hemisphere. In addition, 76% 

of subjects showed relatively sparse connectivity with the AMY in at least one hemisphere. This 

is consistent with Allison (1954)’s findings, wherein the majority of lateral striae fibers were 

found to reach FPC and TPC, with relatively few fibers continuing to meet AMY. Connectivity 

with EC, observed in both rodents and macaques (Carmichael et al., 1994; Haberly & Price, 

1978a, 1978b; Miyamichi et al., 2011), was nearly absent in our data. This could be because of 

one of two reasons. First, while Haberly and Price note connectivity with the entire extent of the 

lateral EC in the rodent, Carmichael and colleagues report that only Layer I of the rostral EC 

receives sparse olfactory tract inputs in the macaque, and Allison reports no olfactory tract 

connectivity with EC in the human. In both rats and macaques, association fibers between the EC 

and piriform cortex are much denser than fibers projecting directly between the EC and the 

olfactory bulb (Carmichael et al., 1994; Haberly & Price, 1978a, 1978b; White, 1965). While the 

human EC is likely involved in olfactory processing (Bao et al., 2016, 2019; Poellinger et al., 

2001), it may be two synapses away from the olfactory bulb rather than directly connected. 

Further investigation is warranted to determine the specific olfactory connectivity patterns of the 

human EC. Second, the lack of connectivity observed in our data may be because of known 

limitations with diffusion tractography methods. Tracking directly from the olfactory tracts to 

EC requires streamlines to cross piriform gray matter, where the diffusion signal tends to be 

more isotropic, and thus not conducive to tractography. Additionally, where direct streamlines 

are found, it is impossible to tell whether they represent direct synaptic connectivity with the 

olfactory bulb, or rather secondary synaptic connections with the piriform cortex. This may also 
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explain the reduced number of subjects and the reduced density of streamlines found connecting 

the olfactory tracts with the AMY. Thus, diffusion tractography may not be an appropriate 

method for evaluating these particular connections. Further methodological innovation will be 

necessary to identify the presence or absence of these pathways in the human.  

In addition to connectivity analyses, we characterized diffusion-based measures of tissue 

microstructure in the olfactory tracts. Fractional anisotropy (FA) and Mean Diffusivity (MD) are 

calculated from the diffusion signal and serve as non-invasive proxy measures of microstructural 

tissue properties, such as cell body or axon density, thickness of myelination, and the spatial 

organization of the underlying fiber architecture (Basser & Pierpaoli, 1996; Song et al., 2003, 

2005). In segment 1, comprising the olfactory bulbs (gray matter), we found relatively low FA 

and relatively high MD values. In successive segments 2–5, comprised of the myelinated, single-

trajectory core of the olfactory tracts, we see increasing FA and decreasing MD. Segments 6–8 

comprise portions of the olfactory tracts that cross over the optic nerves and branch into several 

striae, including multiple fiber orientations and partial volume effects with neighboring gray 

matter. Accordingly, we see decreasing FA and increasing MD in these segments. FA and MD 

measures have been correlated with learning and skills training (Bengtsson et al., 2005; 

Hofstetter et al., 2013; Scholz et al., 2009), perceptual performance (Yeatman et al., 2011), and 

neurodegeneration-related loss of function (Song et al., 2003, 2005) in functionally-specific 

white matter pathways. An open question is whether olfactory tract microstructure is similarly 

related to olfactory perceptual performance. We observed significant correlations between odor 

discrimination scores and MD measures in segments 5 and 7 of the olfactory tracts, and most 

other olfactory tract segments showed similar nonsignificant trends. Differences between 
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segments are likely because of varying noise levels along the lengths of the tracts, driven by 

magnetic field inhomogeneities, and partial volume effects with surrounding anatomic structures. 

However, the general direction of these effects suggests that tissue integrity in the human 

olfactory tracts supports olfactory perceptual function. We speculate that MD measures in the 

olfactory tracts may in part reflect individual variations in myelination or axon density, thus 

affecting the speed or bandwidth of olfactory information transfer. We note that our subject 

sample (25 healthy young adults who scored above anosmic thresholds) may be too limited to 

fully capture microstructure-function relationships. We suggest that future investigations include 

larger sample sizes, and consider wider age ranges, varied olfactory ability, and clinical 

populations with olfactory deficits.  

In our study, we used modern technological innovations to provide a comprehensive 

characterization of human olfactory tract connectivity in vivo. Two previous dMRI studies 

(Fjaeldstad et al., 2017; Skorpil et al., 2011) attempted to reconstruct the olfactory tracts using 

the tensor model, and while they were able to reconstruct portions of the tracts, they were unable 

to characterize the branching and curving striae or the cortical connectivity of the tracts. Our 

study and one previous study (Milardi et al., 2017) used a CSD model to address this issue. 

While Milardi and colleagues identified the larger lateral striae, they were unable to identify the 

intermediate and medial striae, likely because of a combination of susceptibility artifacts and low 

voxel resolution. In the present study, we applied an optimized RESOLVE sequence (Porter & 

Heidemann, 2009), designed specifically to reduce susceptibility artifacts and achieve a higher 

scanning resolution (1.5 mm) than has been used before to investigate the human olfactory 

system. Additionally, our subjects wore individualized head stabilizers during scanning to 
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prevent motion. With these data, we were able to characterize all three striae of the olfactory 

tracts and identify their connectivity with primary olfactory cortex. We also provide the first in-

depth description of the functionally-relevant microstructural properties of the tracts and their 

relationships with olfactory function.  

While the RESOLVE sequence greatly improves image quality with relatively little 

susceptibility artifact, it requires a 7-fold increase in scan-time, making it less suitable for 

clinical settings. Additionally, we still observed a small region of signal drop-out near the 

sphenoid sinus in most subjects, preventing continuous tractography across the entire lengths of 

the olfactory tracts. However, based on post mortem observations, we are confident that 

interpolating between the two fiber groups accurately describes the trajectory of these white 

matter fibers. Additionally, when reconstructing the olfactory tracts, it is important to watch for 

streamline “jumping,” where streamlines may progress in anatomically impossible directions, 

especially in regions with low signal (Mori, 2007). When exclusionary ROIs were not placed to 

constrain tracking, we found that streamlines seeded in the olfactory bulb would jump into the 

parallel fibers of the gyrus rectus. To prevent such jumping resulting in erroneous streamlines, 

we placed extensive exclusionary ROIs in the gyrus rectus.  

In summary, our results offer an in depth look at the in vivo anatomy of the human 

olfactory tracts. They provide the first step toward in vivo investigations of human olfactory tract 

structure-function relationships, which could be extended to address questions regarding 

microstructural changes following olfactory perceptual training (Haehner et al., 2013; 

Jiramongkolchai et al., 2021). In addition, our methods may be used in combination with our 
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atlas to investigate olfactory tract integrity in clinical populations presenting with anosmia, such 

as those with Alzheimer’s disease, Parkinson’s disease, or multiple sclerosis.  
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Chapter 3: Anatomical Parcellation of the Human Orbitofrontal Cortex using Diffusion 

MRI 

3.1.  Abstract & Significance 

The orbitofrontal cortex (OFC) is an important brain region involved in multimodal 

sensory integration, visceromotor and emotional regulation, reward learning, and decision 

making. To fully understand the complex functional role of the human OFC, we must develop a 

detailed understanding of its anatomical organization and connectivity with the rest of the brain. 

In the current study, we used an optimized diffusion MRI and tractography approach to 

investigate the whole-brain connectivity of the human OFC in N=25 adult subjects. We then 

applied K-means clustering (K=2-6) to identify subregions of the OFC based on distinct 

anatomical connectivity patterns. We found that the OFC shares widespread, bilateral 

connectivity with prefrontal, temporal, and limbic cortex, subcortical limbic structures including 

the hippocampus and amygdala, and dense connectivity with the ventral striatum and nucleus 

accumbens. K-means clustering, performed separately in each hemisphere, identified robust 

symmetric clustering solutions for each tested value of K. For K=2, we replicated the well-

known medial-lateral division previously identified in the macaque. For K=3, the medial cluster 

was preserved, while the lateral cluster split into anterior and posterior clusters, suggesting an 

anterior-posterior organization of the human OFC. For higher values of K, clusters roughly 

corresponded to OFC sulcogyral morphology (K=5), and diverse cytoarchitectural regions 

previously identified in the human OFC (K=6). Here, we present a detailed characterization of 

the whole brain connectivity of the human OFC, alongside descriptions of our K-means 

clustering results and notable differences in connectivity across clusters in the K=2 and K=3 
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solutions. Further, we consider the diverse functional roles of the human OFC that may be 

supported by its anatomical involvement in diverse brain networks.  

 

3.2.  Introduction 

The orbitofrontal cortex (OFC), located on the ventral surface of the frontal lobes, is a 

complex brain area that plays a role in many functions related to perception and behavior. It is 

involved in multimodal sensory integration, representation of motivationally salient memories, 

flexible updating of reward values for specific stimuli based on context and experience, 

visceromotor and emotional regulation, and coordinating adaptive goal-directed behaviour 

(Howard & Kahnt, 2021; Rudebeck & Rich, 2018; Stalnaker et al., 2015; Wallis, 2012). To 

support a full mechanistic understanding of the OFC’s role in these complex functions, we must 

develop a strong understanding of its anatomical organization and connectivity with the rest of 

the brain. 

The detailed white matter connectivity of the macaque OFC has been characterized with 

axon tracing methods and electrophysiological techniques (Carmichael & Price, 1995b, 1995a, 

1996; Cavada et al., 2000; Giguere & Goldman-Rakic, 1988; Haber et al., 1995; Rempel-Clower 

& Barbas, 1998; Yarita et al., 1980). The macaque OFC has widespread connectivity with 

sensory, premotor, limbic, and visceromotor brain regions. Distinct medial and lateral regions of 

the macaque OFC have been defined based on their brain-wide connectivity and intrinsic 

connectivity between distinct cytoarchitectural regions within the OFC (Carmichael & Price, 

1996). The lateral OFC receives heavy inputs from sensory and premotor regions, and is thought 

to be involved in multimodal sensory integration (Carmichael & Price, 1995b). The medial OFC, 
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conversely, sends heavy outputs to limbic and visceromotor regions, and is likely involved in 

regulating emotion and coordinating motivated behaviors (Carmichael & Price, 1995a; Öngür et 

al., 1998).This medial-lateral distinction has also been demonstrated in the human OFC using 

measures of resting-state functional connectivity between the OFC and the rest of the brain 

(Kahnt et al., 2012). In addition to a medial-lateral distinction, the macaque and human OFC 

have both been shown to have a distinct rostro-caudal organization (Carmichael & Price, 1994; 

Ongür et al., 2003b). More rostral regions of the OFC are characterized by six-layered cortex 

with a dense granule cell layer, while more caudal regions are characterized by dysgranular and 

agranular cortex with very sparse granule cell layers. In general, cortico-cortical white matter 

connections of the macaque OFC have been shown to match in terms of granularity. More rostral 

OFC regions share heavier connectivity with other granular cortical regions, including visual, 

auditory, and somatosensory cortex. More caudal OFC regions share heavier connectivity with 

other agranular and dysgranular regions, including olfactory, visceral, and gustatory cortex 

(Cavada et al., 2000; Kringelbach & Rolls, 2004).  

In the human, the major OFC white matter pathways have been documented with 

Klingler dissection (Ebeling & Cramon, 1992; Martino et al., 2010) and diffusion magnetic 

resonance imaging (dMRI) (Croxson et al., 2005; Heather Hsu et al., 2020; Thiebaut de Schotten 

et al., 2012). These include the pathways of the uncinate fasciculus, the inferior fronto-occipital 

fasciculus, the orbito-polar tract, the extreme capsule, the fornix, the cingulum, amygdala fibers, 

and ventral striatal fibers. However, the precise connectivity of these pathways, their topographic 

organization, and the identification of OFC subregions with distinct anatomical connectivity 

patterns has not been done in the human brain, largely due to methodological limitations.  
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In vivo investigations of the human OFC white matter are possible with dMRI. However, 

typical methods employ single-shot echo planar imaging techniques, which leave the OFC region 

substantially affected by susceptibility artifacts, hyperintense signals, and blurring (Porter & 

Heidemann, 2009). These artifacts prevent an accurate characterization of the local diffusivity, 

and may lead to inaccurate reconstructions of local white matter pathways. In the present study 

we used an optimized dMRI protocol to image the human OFC with very few artifacts in N=25 

young adult subjects (Echevarria-Cooper et al., 2022). With these data, we have characterized 

the whole brain connectivity of the OFC using probabilistic tractography, based on a constrained 

spherical deconvolution model (Tournier et al., 2007). We then used a data-driven k-means 

parcellation approach to identify unique OFC subregions with distinct anatomical connectivity 

patterns. Here, we describe the brain-wide anatomical connectivity of the human OFC, 

parcellation results for K=2-6, and the distinct anatomical connectivity patterns of each identified 

OFC subregion for select clustering solutions. We then consider the potential functional roles of 

each subregion in consideration of our results alongside the broader OFC literature.  

 

3.3.  Materials & Methods 

The dMRI data and T1-weighted volumes used for these analyses are from the same 

dataset described above in Chapter 2 of this thesis, originally collected by Echevarria-Cooper et 

al. (2022). The following sections “Subjects”, “Personalized head stabilizers”, “MRI data 

acquisition”, and portions of “MRI data preprocessing” are adapted from Echevarria-Cooper et 

al. (2022), and also appear in Chapter 2 of this thesis.  
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Subjects. A total of 27 right-handed subjects (14 male and 13 female; age: mean 25.76 +/- 

standard deviation 4.01 years), with no neurologic disorders, psychiatric disorders, or MRI 

contraindications, were enrolled in this study. Two subjects, both males, were excluded from 

final analyses because they did not complete the MRI scanning protocol. The study was 

approved by the Northwestern IRB (STU00098371), and all subjects gave written informed 

consent for participation.  

 

Personalized head stabilizers. Subjects wore personalized head stabilizers to prevent head 

motion for the duration of MRI scanning (Power et al., 2019). 3D renderings of each subject’s 

face and head were created using a handheld camera and the Caseforge iOS application. The 

head stabilizers were 3D-milled to fit the subject’s face and head on the inside and the shape of 

the MRI scanner coil on the outside. An example is shown in Figure 2.1C (see Chapter 2, Figure 

2.1).  

 

MRI data acquisition. Subjects underwent MRI scanning on a 3T Siemens Prisma scanner with a 

64-channel head-neck coil. We collected a set of diffusion-weighted images and a T1-weighted 

image. Subjects wore their customized head stabilizers for the duration of the scans.  

We used a high-resolution (1.5 mm isotropic) RESOLVE dMRI scan with seven readout 

segments (Porter & Heidemann, 2009) to collect the diffusion-weighted images. This sequence is 

different from typical single-shot echo planar imaging (SS-EPI) techniques in that it splits data 

collection into seven segments in the read-out direction and re-excites the tissue before each 

segment with a new radio frequency pulse. The readout segments are combined in the end to 
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produce the full image. The shorter readout segment allows for a shorter TE than is possible in 

SS-EPI sequences. However, it takes more time to acquire a complete dataset, based on the 

number of segments. We also included a navigator echo to monitor between-segment motion, so 

that volumes were re-acquired if the motion was excessive (Porter & Heidemann, 2009). In 

addition, we used simultaneous multi-slice acquisition (Nunes et al., 2006) to allow for improved 

spatial coverage required when using such small voxels. This sequence was designed based on 

extensive pilot testing to provide high-resolution images with reduced blurring, and largely free 

of susceptibility artifacts compared with conventional SS-EPI techniques (Figure 2.1D; see 

Chapter 2, Figure 2.1). Imaging parameters were as follows: 92 slices; field of view (FoV) = 240 

mm; matrix size = 240 x 240 x 138 mm; 90 diffusion-weighted directions at b = 1000 s/mm2; 12 

interspersed b0 volumes; phase encoding = A > P; TE1 (image echo) = 61 ms; TE2 (navigator 

echo) = 98 ms; repetition time (TR) = 6250 ms; flip angle = 180°; bandwidth = 897 Hz/Px, 

multiband factor = 2. The scan time for this RESOLVE dMRI sequence was approximately 1 

hour and 30 minutes. An oblique slice angle (~30° relative to the AC–PC plane) was used to 

further reduce susceptibility artifacts (Weiskopf et al., 2006).  

The parameters for the T1-weighted anatomical scan were as follows: 1.0 mm isotropic, 

TE = 2.94 ms, TR = 2300 ms, flip angle = 9°, FoV = 256 mm, matrix size = 256 x 256 x 176 

mm; phase encoding = A > P, bandwidth = 240 Hz/Px, scan duration = 5 minutes.  

 

MRI data preprocessing and fitting the constrained spherical deconvolution model. All MRI data 

were converted to the Nifti file type using MRIcron’s dcm2niix function (X. Li et al., 2016). The 

diffusion MRI data were corrected for motion and eddy current artifacts using FSL’s function, 
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eddy_openmp (Jenkinson et al., 2012; S. M. Smith et al., 2004; Woolrich et al., 2009). As the 

multi-shot RESOLVE sequence was designed to prevent susceptibility artifacts, additional 

susceptibility correction was not applied. The T1-weighted images were co-registered to the 

native diffusion space using SPM12 (SPM12 Software, 2014). All diffusion model fitting and 

tractography were performed in the native diffusion space to prevent registration-related errors in 

the alignment of the b-vectors with the diffusion-weighted data. MRtrix3 software was used to fit 

the constrained spherical deconvolution (CSD) model (Tournier et al., 2019). First, the response 

function for spherical deconvolution was estimated using the dwi2response tournier function 

(Tournier et al., 2013). Then, the CSD fiber orientation distribution (FOD) functions were fit 

using the dwi2fod function (Tournier et al., 2007).  

 

Tissue Masks and Regions of Interest. Probabilistic tissue masks, including white matter, cortical 

gray matter, subcortical gray matter, and cerebrospinal fluid (CSF) masks, were created from 

each subject’s T1-weighted image using the MRtrix3 function 5ttgen with the fsl algorithm 

(Patenaude et al., 2011; R. E. Smith et al., 2012; S. M. Smith, 2002; S. M. Smith et al., 2004; 

Zhang et al., 2001). A mask of the gray matter-white matter interface (GMWMI) was then 

created using the MRtrix3 function 5tt2gmwmi (R. E. Smith et al., 2012), including overlapping 

voxels between the gray matter and white matter masks. The GMWMI mask and the subcortical 

gray matter mask (GMWMI+SCGM) were then combined and re-sampled to 3mm isotropic 

resolution. For each subject, an indexed integer value was assigned to each 3mm voxel in the 

GMWMI+SCGM mask, and used to reference each voxel as an individual node in the final 

connectome matrix for each subject.  
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 The Automated Anatomical Parcellation atlas (AAL3v1, June 2020 release) (Rolls et al., 

2015, 2020; Tzourio-Mazoyer et al., 2002) was used to identify voxels within the OFC, and to 

reference regions of interest (ROIs) that share connectivity with the OFC. The 1mm resolution 

atlas was downloaded and inverse normalized using the nearest neighbor algorithm to each 

subject’s T1-weighted image (previously co-registered to the native space diffusion-weighted 

images) using the SPM deformations toolbox (SPM12 Software, 2014). The inverse-normalized 

atlases were then resliced to 3mm resolution matching the 3mm GMWMI+SCGM masks for 

each subject. Voxels in the GMWMI+SCGM mask for each subject that overlapped with AAL3 

regions 23-32, including the left and right gyri rectus, medial orbital gyri, lateral orbital gyri, 

anterior orbital gyri, and posterior orbital gyri, were defined as OFC voxels. A mask of these 

OFC GMWMI voxels was created for both 1mm and the 3mm resolution.  

 

Tractography and Generating the Voxelwise OFC Connectome Matrix. Tractography was 

carried out in each individual subject’s native space and then used to create a unique OFC 

connectome matrix for each subject. Anatomically constrained tractography (R. E. Smith et al., 

2012) was carried out using the MRtrix3 function tckgen, with the iFOD2 probabilistic 

tractography algorithm (Tournier et al., 2010). Two sets of 10 million streamlines were generated 

for each subject. For the first set, streamlines were seeded from the 1mm resolution whole brain 

GMWMI-SCGM mask. For the second set, streamlines were seeded from the 1mm resolution 

OFC GMWMI mask. For both sets, streamlines were only allowed to terminate in the gray 

matter-white matter interface or in subcortical gray matter regions. The two sets of streamlines 

were then combined to create a 20 million streamline tractogram for each subject.  
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 Streamlines were then assigned weights based on the updated spherical-deconvolution 

informed filtering of tractograms (SIFT2) method (R. E. Smith et al., 2013, 2015b). This method 

compares the number of streamlines and their major orientations in each voxel with the CSD 

FOD for that voxel. The amplitude of the FOD lobes along each major direction of diffusion is 

related to the magnitude of diffusivity along that direction, and proportional to the volume 

compartment of white matter fibers oriented along that direction. The SIFT2 algorithm weights 

the streamlines in the tractogram such that the weighted number of streamlines in each direction 

is proportional to the FOD lobe amplitudes, providing a more anatomically correct representation 

of the volume of white matter fibers traversing in that direction. This helps to produce more 

anatomically-informed connectomes by preventing large white matter pathways from being over-

represented in the voxel-to-voxel connectivity estimates.  

 The SIFT2-weighted streamlines were then used to create a voxel-wise connectome 

matrix for each subject, using the MRtrix3 function tck2connectome (R. E. Smith et al., 2015a). 

The indexed voxels of the 3mm resolution GMWMI-SCGM mask were used as nodes in the 

connectome matrix, and for each pair of nodes the sum of the SIFT2 streamline weights between 

them was recorded as the measure of connectivity. The whole-brain connectome matrices were 

then read into Matlab (version R2020b). This matrix was then reduced to create two separate 

connectome matrices for the two hemispheres. Rows were reduced in each matrix so that only 

rows corresponding to 3mm resolution OFC GMWMI voxels for that hemisphere were retained. 

Empty columns, referring to voxels outside the OFC that had zero streamlines connecting to an 

OFC voxel, were removed. The two resulting matrices thus had single hemisphere (left or right) 



 
 

95 

OFC voxels across the rows, and non-empty 3mm resolution GMWMI-SCGM voxels across 

both the ipsilateral and contralateral hemispheres in the columns.  

 

K-Means Parcellation. K-means parcellation was carried out separately for each hemisphere in 

each subject. The connectome matrices described above were used as input to the Matlab 

(version R2020b) function kmeans, from the Statistics and Machine Learning package. The 

correlation between two OFC voxel’s connectivity patterns was used as the distance measure. 

Kmeans was run for K=2-6, with 1000 iterations and 100 replicates for each value of K. The 

cluster assignments for each OFC voxel (row in the connectome matrix) were then written out in 

3mm resolution Nifti masks for each hemisphere for each subject.  

 All cluster assignment masks were normalized to MNI space with the nearest neighbors 

algorithm using SPM (SPM12 Software, 2014). Since the k-means algorithm begins with 

randomly placed cluster centers, the resulting cluster number labels do not necessarily 

correspond in brain-space across subjects. To better compare clusters across subjects, cluster 

number labels for 24 subjects were re-labeled based on spatial similarity with one randomly 

selected subject designated as the “template”. (Only the numbers used to label each cluster in the 

cluster map were changed – voxel membership to a particular cluster was preserved.) The 

template subject’s voxel-wise cluster labels were first read into Matlab. For each remaining 

subject, their voxel-wise cluster labels were read in, and every possible combination of cluster-

labeling was compared to the template subject. The numbering scheme that shared the most 

overlap with the template subject was retained. This was repeated for the cluster maps for every 
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value of K. The re-labeled cluster maps were then averaged to produce probability maps for each 

cluster in each hemisphere for each value of K.  

 

Evaluation of Cluster Connectivity. For the entire OFC (equivalent to K=1) and for the K=2 and 

K=3 clustering solutions, we extracted tracts from the whole-brain tractogram that intersected 

with the 3mm GMWMI voxels assigned to each individual cluster in each hemisphere, for each 

subject. Tract density maps were then created in the T1 native space (1mm resolution) for each 

set of extracted streamlines, using the MRtrix3 tckmap function (Calamante et al., 2010). Tract 

density values were recorded as the sum of SIFT2-weighted streamlines in each voxel that 

intersected with a voxel in the 3mm OFC GMWMI masks for each cluster. Voxels in the tract 

density maps that intersected with the 1mm resolution GMWMI-SCGM mask were saved, and 

then normalized to MNI space; voxels deep to the GMWMI-SCGM mask in the white matter 

were not included or used to evaluate cortico-cortical or cortico-subcortical connectivity. 

Normalized GMWMI-SCGM tract density maps from each subject were then averaged together, 

producing one averaged track density map for each cluster in each hemisphere. Voxels from 

these normalized tract density maps with a weighted streamline count greater than 1.0 that 

intersected with a labeled region in the 1mm resolution AAL3 atlas were used to evaluate OFC 

cluster connectivity with each AAL3 region.  

 

3.4.  Results 

Whole-Brain OFC Connectivity. Ipsilateral and contralateral connectivity of the OFC with 

regions defined in the AAL3 atlas (Rolls et al., 2020) were evaluated using probabilistic 
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tractography based on a constrained spherical deconvolution model. SIFT2-weighted streamline 

counts (R. E. Smith et al., 2015b) were averaged across voxels in each AAL3 region that 

received streamlines from the OFC, and are listed in Table 3.1.  

 We found that the connectivity patterns of the left and right OFC were largely symmetric.  

Cortico-cortical connections included widespread connectivity with the frontal and temporal 

lobes and with limbic cortex, as well as a few connections in the parietal and occipital lobes. In 

the frontal lobes (Figure 3.1A), the OFC shared strong connectivity with the ipsilateral superior 

frontal gyrus (dorsolateral, medial, and medial orbital parts), the middle frontal gyrus, and the 

inferior frontal gyrus (opercular, triangular, and pars orbitalis). Connectivity with the superior 

and middle frontal gyri was constrained to the anterior portions of these gyri, while connectivity 

was observed throughout the inferior frontal gyrus. The regions of strongest connectivity (>100 

streamlines/voxel) included the medial orbital part of the superior frontal gyrus and pars orbitalis 

of the inferior frontal gyrus. In the left hemisphere, we found a weak connection with the 

ipsilateral Rolandic operculum. The left and right OFC each shared connectivity with all 

contralateral OFC gyri except the lateral orbital gyrus, with the strongest contralateral OFC-to-

OFC connectivity in the gyrus rectus. We also observed contralateral connectivity with the 

superior frontal gyrus (dorsolateral, medial, and medial orbital parts), middle frontal gyrus, and 

the inferior frontal gyrus pars orbitalis.  

 In the temporal lobes, the OFC shared ipsilateral connectivity with the superior and 

middle parts of the temporal pole, the superior temporal gyrus, the middle temporal gyrus, the 

inferior temporal gyrus, and a few voxels in the anterior fusiform gyrus. Though not defined in 

the AAL3 atlas, we observed very strong connectivity (>100 streamlines/voxel) with the  
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Table 3.1: Whole Brain OFC Connectivity 

  
Left Hemisphere 
Connectivity 

Right Hemisphere 
Connectivity 

AAL Region Name 
AAL 
Label 

Left OFC, 
Ipsilateral 

Right OFC, 
Contra-
lateral 

Right OFC, 
Ipsilateral 

Left OFC, 
Contra-
lateral 

Gyrus rectus 23,24  6.0  65.6 

Medial orbital gyrus 25,26  2.0  2.6 

Anterior orbital gyrus 27,28  2.7  2.8 

Posterior orbital gyrus 29,30  1.1  1.2 

Lateral orbital gyrus 31,32     
Superior frontal gyrus, 

dorsolateral  3,4 46.1 2.2 41.7 2.5 

Superior frontal gyrus, 

medial 19,20 13.3 4.2 12.5 4.7 

Superior frontal gyrus, 

medial orbital 21,22 171.2 7.9 152.3 22.3 

Middle frontal gyrus 5,6 59.5 1.4 41.8 1.5 

Inferior frontal gyrus, 

opercular part 7,8 1.4  1.4  
Inferior frontal gyrus, 

triangular part 9,10 10.8  8.6  
Inferior frontal gyrus,  

pars orbitalis 11,12 189.0 1.2 181.5 1.2 

Superior temporal 

gyrus 85,86 2.2  2.3  
Temporal pole: 

superior temporal gyrus 87,88 7.9  13.1  
Middle temporal gyrus 89,90 1.8  2.0  
Temporal pole: middle 
temporal gyrus 91,92 4.0  3.7  
Inferior temporal gyrus 93,94 1.8  1.5  
Fusiform gyrus 59,60 1.7  2.1  
Insula 33,34 35.5  33.0 1.3 

Rolandic operculum 13,14 1.1    
Olfactory cortex 17,18 91.1 12.9 77.7 16.8 

Calcarine fissure 47,48 1.1    
Lingual gyrus 51,52 2.0  1.8  
Precuneus 71,72 1.4  1.2  
Middle cingulate & 
Paracingulate Gyri 37,38 4.9 1.1 2.6 1.3 
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Posterior cingulate 

gyrus 39,40 1.8  1.2  
Anterior cingulate 

cortex, subgenual 151,152 76.4 4.0 34.7 7.4 

Anterior cingulate 

cortex, pregenual 153,154 17.0 3.9 5.3 2.8 

Anterior cingulate 

cortex, supracallosal 155,156 17.5 2.2 9.6 3.5 

Amygdala 45,46 3.7  8.5  
Hippocampus 41,42 2.7  3.0 1.3 

Parahippocampal gyrus 43,44 4.1  2.5  
Caudate nucleus 75,76 28.6 13.3 27.1 7.6 

Lenticular nucleus, 
Putamen 77,78 28.7 1.6 32.2 1.7 

Lenticular nucleus, 
Pallidum 79,80 5.9  5.3 1.0 

Nucleus accumbens 157,158 135.3 10.2 104.2 9.6 

Thalamus, 

Anteroventral Nucleus 121,122 11.5  5.5  
Lateral posterior 123,124 2.2  3.9  
Ventral anterior 125,126 13.4  16.9  
Ventral lateral 127,128 2.9  4.7  
Ventral posterolateral 129,130 1.2  1.9  
Intralaminar 131,132 9.8  5.6  
Reuniens 133,134 7.6  7.0  
Mediodorsal medial 

magnocellular 135,136 6.9  4.9 1.7 

Mediodorsal lateral 

parvocellular 137,138 4.1  8.0  
Lateral geniculate 139,140 2.6  2.8  
Medial Geniculate 141,142 1.4  1.3  
Pulvinar anterior 143,144 2.1  2.2  
Pulvinar medial 145,146 1.8  2.3  
Pulvinar lateral 147,148 2.2  3.0  
Pulvinar inferior 149,150   1.6  

 
 

Table 3.1. Connectivity of the left and right OFC with regions in the AAL3 Atlas. Recorded 
values are tract density measures calculated by averaging SIFT2-weighted streamline counts 

(R. E. Smith et al., 2015b) across voxels in each AAL3 region that received streamlines from 
the OFC. Darker blue cells indicate regions with higher tract density, reflecting stronger 

anatomical connectivity.  
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temporal opercular cortex, including auditory cortex. We also observed very strong ipsilateral 

connectivity between the OFC and the insula. Connectivity was strongest in the anterior insula, 

including regions likely involved in taste, interoception, and visceral sensory function (Figure 

3.1B). We found that the OFC shared very strong ipsilateral and contralateral connectivity with 

the primary olfactory cortex, located at the junction of the frontal and temporal lobes.  

We observed weak connectivity with parietal regions, including the precuneus, the 

middle cingulate and paracingulate gyri, and the posterior cingulate gyrus. These regions are 

likely involved in visuospatial processing (precuneus) and regulating attention as part of the 

default mode network (posterior cingulate). We also observed weak bilateral connectivity with 

visual areas in the lingual gyrus of the occipital lobe, and in the left hemisphere with cortex 

surrounding the calcarine fissure (Figure 3.1C).  

 Limbic connectivity of the OFC includes both cortical and subcortical targets. We found 

a topographic pattern in the strength of connectivity between the OFC and the ipsilateral anterior 

cingulate cortex (Figure 3.1A). Connectivity was strongest with the subgenual portion of the 

anterior cingulate cortex, followed by the pregenual and supracallosal portions of the anterior 

cingulate cortex. Contralateral connectivity with the anterior cingulate cortex was much weaker, 

but this same topographical pattern was preserved with stronger connections with the subgenual 

regions than with the pregenual and supracallosal regions. In both hemispheres, we additionally 

found ipsilateral connectivity with the hippocampus, amygdala, and parahippocampal gyrus. 

Connectivity with the ipsilateral nucleus accumbens was very strong (>100 streamlines/voxel) in 

both hemispheres (Figure 3.2), and strong contralateral projections were also observed in both 
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hemispheres. In addition, although the hypothalamus is not included in the AAL3 atlas, we 

observed bilateral ipsilateral connectivity with GMWMI voxels adjacent to the hypothalamus.  

 We observed strong connectivity between the OFC and the basal ganglia. Very strong 

ipsilateral connectivity was observed with the caudate and the putamen, and weaker ipsilateral 

connectivity was observed with the globus pallidus (pallidum). We further observed contralateral 

connectivity with the caudate, putamen, and globus pallidus. Connectivity was observed 

throughout the caudate, putamen, and globus pallidus, but voxels with the strongest connectivity 

were located in the anterior-most and ventral-most regions of these nuclei (Figure 3.2). 

We further observed ipsilateral OFC connectivity with a variety of thalamic nuclei 

(Figure 3.3), including the anteroventral nucleus, the lateral posterior nucleus, the ventral 

anterior nucleus, the ventral lateral nucleus, the ventral posterolateral nucleus, the intralaminar 

nucleus, the reuniens, the mediodorsal nucleus, the lateral geniculate nucleus, the medial 

geniculate nucleus, and the pulvinar. The nuclei with the densest connectivity included the 

mediodorsal nucleus, the reuniens, the intralaminar nucleus, the ventral anterior nucleus and the 

anteroventral nucleus. 
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Figure 3.1. Cortical and hippocampal connectivity of the OFC. 3D-rendered average tract 

density maps are shown on the subjects’ mean T1 image in MNI space, with partially 
transparent gray matter for visualization. A. Frontal, temporal, and cingulate connectivity, 

shown for the lateral side of the right hemisphere (left) and the medial wall of the left 
hemisphere (right). B. Insular, opercular, and hippocampal connectivity, shown in the left 

hemisphere. C. Axial view showing bilateral connectivity, featuring the inferior fronto-

occipital fasciculus and the fornix. 
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Figure 3.2. OFC connectivity with the basal ganglia. Average tract density maps show 
ipsilateral and contralateral basal ganglia connectivity with the left OFC, overlaid on a mean 

T1 image for all subjects. The AAL3 Atlas basal ganglia regions, including the caudate (76), 
putamen (78), globus pallidus (80), and nucleus accumbens (158) are labelled in the right 

hemisphere for reference. Left panels show K=2 Medial cluster connectivity, while right panels 
show K=2 Lateral cluster connectivity. The brightest regions (highest tract density, >100 

streamlines per voxel) in the anterior (y=13) slices include voxels in the nucleus accumbens, 
ventral caudate, ventral putamen, olfactory cortex, anterior insula, and the external and extreme 

capsules. The brightest regions (highest tract density, >100 streamlines per voxel) in the 
posterior (y=5) slices include voxels in the ventral putamen and the external and extreme 

capsules.  
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K-means Clustering Results. We subdivided the OFC into clusters based on distinct anatomical 

connectivity patterns using a k-means clustering approach. We tested K=2-6 separately in each 

hemisphere and subject, and then for each clustering solution we generated normalized 

probabilistic maps of each cluster. The resulting probability maps for each clustering solution 

were largely similar across the two hemispheres (Figure 3.4). Probability maps for each cluster 

Figure 3.3. OFC connectivity 
with the thalamus and basal 
ganglia. Average tract density 
maps show ipsilateral and 

contralateral connectivity with 
the left OFC, overlaid on a mean 

T1 image for all subjects. The 
AAL3 Atlas regions of the basal 

ganglia (76, 78, & 80) and 
thalamus are labelled on the 

right hemisphere for reference. 
Labelled thalamic nuclei include 

the ventral anterior nucleus 
(126), ventral lateral nucleus 

(128), ventral posterolateral 
nucleus (130), intralaminar 

nucleus (132), medial and lateral 
divisions of the mediodorsal 

nucleus (136 & 138), lateral 
geniculate nucleus (140), and 

the anterior, medial, and lateral 
divisions of the pulvinar (144, 

146, & 148).  
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were thresholded to include voxels that were assigned to that cluster in >20% of subjects, 

minimizing overlap between cluster probability maps. 

For the K=2 solution, distinct medial and lateral clusters were identified. The medial clusters in 

both hemispheres covered gyrus rectus and the medial orbital gyrus in each hemisphere, while 

the lateral clusters covered the anterior orbital gyrus, posterior orbital gyrus, and lateral orbital 

gyrus.  

 For the K=3 solution, we identified distinct medial, lateral anterior, and lateral posterior 

clusters. In this clustering solution, the medial cluster was largely confined to gyrus rectus. The 

lateral anterior cluster covered the anterior orbital gyrus and the anterior portion of the medial 

orbital gyrus in each hemisphere. The lateral posterior cluster covered the lateral orbital gyrus, 

the posterior orbital gyrus, and the posterior portion of the medial orbital gyrus in each 

hemisphere. 

 For the K=4 solution, we identified medial, posterior, anterior, and lateral clusters in each 

hemisphere. In each hemisphere, the medial clusters covered gyrus rectus, the posterior clusters 

covered the posterior orbital gyrus and the posterior portion of the medial orbital gyrus, the 

anterior clusters covered the anterior orbital gyrus and the anterior portion of the medial orbital 

gyrus, and the lateral clusters covered the lateral orbital gyrus.  

For the K=5 solution, we identified a medial cluster, lateral cluster, anterior cluster, posterior 

cluster, and central cluster. In each hemisphere, the medial cluster covered gyrus rectus. The 

lateral clusters covered the lateral portions of the anterior orbital gyrus. The anterior clusters 

covered the anterior-most portions of the medial orbital gyrus and the anterior orbital gyrus. The 
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posterior cluster covered the posterior orbital cluster and the posterior portion of the lateral 

orbital gyrus. The central cluster covered the posterior extend of the medial orbital gyrus.  

For the K=6 solution, we identified an anterior medial cluster, a posterior medial cluster, a lateral 

cluster, an anterior cluster, a posterior cluster, and a central cluster. The posterior medial clusters 

covered the posterior half of gyrus rectus, while the anterior medial clusters covered the anterior 

half of gyrus rectus. The central clusters covered the posterior two-thirds of the medial orbital 

gyrus. The anterior clusters covered the anterior orbital gyrus and the anterior third of the medial 

orbital gyrus. The lateral clusters covered the lateral orbital gyrus, and the posterior clusters 

covered the posterior orbital gyrus.  

 

 
 

Figure 3.4. 3D-rendered probabilistic maps showing the OFC K-means clustering 
solutions for K=2-6. Maps are thresholded at 0.2, so that each voxel shown is a part of the 

indicated cluster in at least 20% of subjects. K=2: lateral cluster, red; medial cluster, yellow. 
K=3: lateral anterior cluster, red; lateral posterior cluster, dark blue; medial cluster, yellow.  

K=4: lateral cluster, dark blue; anterior cluster, red; posterior cluster, green; medial cluster, 
yellow. K=5: lateral cluster, dark blue; anterior cluster, red; posterior cluster, purple; central 

cluster, green; medial cluster, yellow. K=6: lateral cluster, dark blue; posterior cluster, purple; 
anterior cluster, red; central cluster, green; anterior medial cluster, cerulean; posterior medial 

cluster, yellow. 
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Ipsilateral Connectivity of OFC Subregions. The connectivity patterns of the K=2 cluster 

solution medial and lateral clusters are provided in Table 3.2, and of the K=3 cluster solution 

medial, anterior, and posterior clusters are provided in Table 3.3.  It is worth nothing that 

although two clusters may have a similar degree of connectivity with an AAL3 region, this does 

not necessarily mean that they share connectivity with the same voxels within that region, or 

have the same topographical organization in their connections. An example of this is shown in 

Figure 3.2, where the medial and lateral clusters have similar connection strengths with the 

striatum, but their strongest projections are to different regions within the striatum.  

Table 3.2: Ipsilateral Connectivity of the K=2 Medial and Lateral OFC Clusters 

 
 Medial Clusters Lateral Clusters 

AAL Region Name AAL 
Label Left Right Left Right 

Superior frontal gyrus, 

dorsolateral  3,4 28.0 20.6 33.1 37.6 

Superior frontal gyrus, 
medial 19,20 11.5 10.5 7.9 6.8 

Superior frontal gyrus, 
medial orbital 21,22 142.6 115.8 71.3 72.4 

Middle frontal gyrus 5,6 23.7 14.9 52.9 38.1 

Inferior frontal gyrus, 
opercular part 7,8   1.4 1.4 

Inferior frontal gyrus, 
triangular part 9,10 4.2 4.3 10.1 7.7 

Inferior frontal gyrus, 
pars orbitalis 11,12 21.9 42.3 177.3 151.4 

Superior temporal 
gyrus 85,86 2.0 1.9 2.2 1.9 

Temporal pole: 
superior temporal gyrus 87,88 3.1 10.4 7.7 6.9 

Middle temporal gyrus 89,90 1.5 1.5 1.7 1.8 

Temporal pole: middle 

temporal gyrus 91,92 2.6 2.7 3.4 3.0 

Inferior temporal gyrus 93,94 1.3 1.2 1.7 1.5 
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Fusiform gyrus 59,60 1.3 1.5 1.7 1.9 

Insula 33,34 12.8 21.5 34.0 29.5 

Rolandic operculum 13,14   1.1  
Olfactory cortex 17,18 86.0 69.1 15.0 18.7 

Calcarine fissure 47,48 1.1    
Lingual gyrus 51,52 1.4 1.3 1.9 1.5 

Precuneus 71,72 1.4 1.1   
Middle cingulate & 
Paracingulate Gyri 37,38 4.8 2.5 1.4 1.4 

Posterior cingulate 
gyrus 39,40 1.7 1.2   
Anterior cingulate 
cortex, subgenual 151,152 75.2 31.1 2.9 7.5 

Anterior cingulate 
cortex, pregenual 153,154 16.6 4.9 5.3 2.0 

Anterior cingulate 
cortex, supracallosal 155,156 17.5 9.6 2.6 2.8 

Amygdala 45,46 3.5 6.8 3.2 6.7 

Hippocampus 41,42 1.8 2.0 2.4 2.6 

Parahippocampal gyrus 43,44 3.7 2.2 3.0 2.0 

Caudate nucleus 75,76 20.6 18.8 17.5 17.5 

Lenticular nucleus, 

Putamen 77,78 16.9 21.3 22.2 21.9 

Lenticular nucleus, 
Pallidum 79,80 3.6 3.2 4.6 4.3 

Nucleus accumbens 157,158 122.5 90.5 28.7 22.1 

Thalamus, 
Anteroventral Nucleus 121,122 3.5 2.5 8.8 4.4 

Lateral posterior 123,124 1.2 1.3 1.9 3.1 

Ventral anterior 125,126 4.3 4.9 11.2 13.7 

Ventral lateral 127,128 1.5 1.9 2.6 4.1 

Ventral posterolateral 129,130  1.1  1.7 

Intralaminar 131,132 3.7 3.8 9.9 4.6 

Reuniens 133,134 2.3 2.9 6.1 5.2 

Mediodorsal medial 

magnocellular 135,136 2.6 2.1 5.2 4.0 

Mediodorsal lateral 

parvocellular 137,138 1.7 2.4 3.5 6.4 

Lateral geniculate 139,140 1.5 1.6 2.2 2.3 

Medial geniculate 141,142 1.1  1.4 1.0 

Pulvinar anterior 143,144 1.3 1.3 1.9 1.9 
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Pulvinar medial 145,146 1.2 1.3 1.7 2.0 

Pulvinar lateral 147,148 1.1 1.3 1.8 2.5 

Pulvinar inferior 149,150    1.4 

 

In the K=2 cluster solution, the medial-lateral OFC divide is apparent. In the frontal 

cortex, both medial and lateral clusters show strong connectivity with the superior frontal gyrus 

(dorsolateral, medial, and medial orbital parts), middle frontal gyrus, and inferior frontal gyrus 

(triangular part and pars orbitalis). The medial clusters show stronger connectivity than the 

lateral clusters with the medial and medial orbital parts of the superior frontal gyrus. The lateral 

clusters, however, show stronger connectivity with the dorsolateral superior frontal gyrus, the 

middle frontal gyrus, and the inferior frontal gyrus.  

 In the temporal cortex, we found that connectivity with the fusiform gyrus, superior 

temporal gyrus, temporal pole, middle temporal gyrus, and inferior temporal gyrus were 

comparable across both the medial clusters and the lateral clusters. Both clusters showed strong 

connectivity with the temporal opercular cortex and the anterior insular cortex, though the 

connectivity with the lateral clusters was stronger for both of these regions than with the medial 

clusters. Conversely, while both clusters showed strong connectivity with the primary olfactory 

cortex, the medial clusters had much stronger connectivity with this region than the lateral 

clusters.  

 In the parietal cortex, the medial clusters shared weak connectivity with the precuneus, 

middle cingulate, and the posterior cingulate gyrus. The middle cingulate also shared weak 

Table 3.2. Ipsilateral connectivity of the medial and lateral OFC clusters, from the K=2 cluster 
solution. Connectivity of each OFC cluster with regions in the AAL3 Atlas were assessed using 

probabilistic tractography. SIFT2-weighted streamline counts (R. E. Smith et al., 2015b) were 
averaged across voxels in each AAL3 region that received streamlines from the OFC to produce 

these recorded tract density values. Darker blue cells indicate regions with higher tract density, 

reflecting stronger anatomical connectivity.  
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connectivity with the lateral clusters. In the occipital cortex, both clusters shared weak 

connectivity with the lingual gyrus, while only the left medial cluster shared weak connectivity 

with the cortex of the calcarine fissure.  

 In the anterior cingulate cortex, connectivity was very strong with the medial OFC 

clusters, especially in the left hemisphere, though weaker connections were also present with the 

lateral OFC clusters. Connections with the hippocampus, amygdala, and parahippocampal gyrus 

were comparable across medial and lateral clusters. The nucleus accumbens showed strong 

connectivity with the lateral clusters, but much stronger connectivity with the medial clusters 

(Figure 3.2). Connectivity with the GMWMI voxels adjacent to the hypothalamus was only 

observed from the medial clusters.  

 In the basal ganglia, the strength of connectivity was comparable between the medial and 

lateral clusters across the caudate, putamen, and globus pallidus. However, we found that the 

medial clusters projected to more ventromedial parts of the caudate and putamen, while the 

lateral clusters projected to more ventrolateral parts of the caudate and putamen (Figure 3.2). 

The thalamic nuclei with strongest OFC connectivity, including the mediodorsal nucleus, 

reuniens, intralaminar nucleus, ventral anterior nucleus, and anteroventral nucleus, all had 

stronger connectivity with the lateral clusters compared to the medial clusters. 

In the K=3 clustering solution, the medial cluster is narrowed, while the lateral cluster is divided 

into anterior and posterior parts, illustrating the rostro-caudal organization of the OFC. In the 

following text, emphasis will be placed on differences between the anterior and posterior clusters 

of the lateral OFC.  
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In the frontal cortex, connectivity with the superior frontal gyrus is much stronger for the 

anterior cluster compared to the posterior cluster. For the anterior clusters, connectivity is 

strongest in the medial orbital part of the superior frontal gyrus, followed by the dorsolateral 

part, and the medial part. The posterior clusters show stronger connectivity with the dorsolateral 

and medial orbital parts than with the medial part. Connectivity with the middle frontal gyrus is 

comparable across anterior and posterior clusters. In contrast to the superior frontal gyrus, 

connectivity with the inferior frontal gyrus is much stronger for the posterior clusters compared 

to the anterior clusters. Connectivity is strongest across both clusters for pars orbitalis of the 

inferior frontal gyrus, followed by the triangular part. Both anterior and posterior clusters share 

weak connectivity with the opercular part of the inferior frontal gyrus.  

 In the temporal cortex, the anterior and posterior clusters share comparable connectivity 

with the superior temporal gyrus, the temporal pole, the middle temporal gyrus, the inferior 

temporal gyrus, and the fusiform gyrus. The posterior cluster showed slightly stronger 

connectivity with the temporal polar portion of the superior temporal gyrus compared to the 

anterior clusters. In addition, the posterior cluster had much stronger connectivity with the insula 

and the temporal opercular cortex compared with the anterior clusters. The anterior and posterior 

clusters had comparable connectivity with the primary olfactory cortex, although olfactory 

connectivity with the medial cluster was much stronger than for either of the lateral clusters. In 

the parietal and occipital regions, neither of the lateral clusters showed connectivity with the 

precuneus, posterior cingulate gyrus, or calcarine fissure cortex. Weak connectivity with the 

lingual gyrus was present for both the anterior and posterior clusters. Weak bilateral connectivity 
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with the middle cingulate was present in the anterior clusters, and unilaterally in the left posterior 

cluster.  

 While much weaker than with the medial clusters, connectivity with the anterior 

cingulate cortex was generally higher for the anterior cluster than for the posterior cluster. In the 

posterior cluster, connectivity with the anterior cingulate was stronger in the left hemisphere than 

in the right hemisphere. Connectivity with the hippocampus, parahippocampal gyrus, and 

amygdala was comparable across anterior and posterior clusters. Connectivity with the nucleus 

accumbens was comparable across both anterior and posterior clusters, while nucleus accumbens 

connectivity with the medial cluster was much stronger in comparison. Connectivity with each of 

the thalamic nuclei and with each of the basal ganglia nuclei was comparable across anterior and 

posterior clusters.  

Table 3.3: Ipsilateral Connectivity of the K=3 Medial, Anterior, and Posterior OFC 
Clusters 

 

 Medial Cluster Anterior Cluster 

Posterior 
Cluster 

AAL Region Name AAL 
Label Left Right Left Right Left Right 

Superior frontal gyrus, 

dorsolateral  3,4 12.8 6.3 45.1 48.9 11.1 8.4 

Superior frontal gyrus, 

medial 19,20 10.0 10.2 9.9 8.3 3.6 2.6 

Superior frontal gyrus, 

medial orbital 21,22 125.7 112.9 105.4 94.2 14.7 8.4 

Middle frontal gyrus 5,6 2.3 2.1 47.6 31.4 35.4 30.0 

Inferior frontal gyrus, 

opercular part 7,8   1.2 1.2 1.3 1.3 

Inferior frontal gyrus, 

triangular part 9,10 1.3 1.4 6.4 3.2 8.1 8.3 

Inferior frontal gyrus, 

pars orbitalis 11,12 2.7 2.2 87.0 24.4 122.9 171.0 

Superior temporal 
gyrus 85,86 2.0 1.6 1.9 1.5 2.2 1.9 
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Temporal pole: superior 

temporal gyrus 87,88 2.8 7.7 4.6 5.5 7.1 7.5 

Middle temporal gyrus 89,90 1.5 1.4 1.6 1.4 1.5 1.7 

Temporal pole: middle 

temporal gyrus 91,92 2.2 2.3 2.5 2.4 3.2 2.9 

Inferior temporal gyrus 93,94 1.2 1.3 1.4 1.2 1.6 1.4 

Fusiform gyrus 59,60 1.5 1.2 1.3 1.5 1.6 1.8 

Insula 33,34 10.7 15.1 14.3 21.5 31.6 29.6 

Olfactory cortex 17,18 83.9 68.6 9.1 20.2 20.7 11.8 

Calcarine fissure 47,48 1.0      

Lingual gyrus 51,52 1.2 1.2 1.4 1.3 1.8 1.5 

Precuneus 71,72 1.4 1.1     
Middle cingulate & 
Paracingulate Gyri 37,38 4.8 2.5 1.3 1.5 1.3  
Posterior cingulate 
gyrus 39,40 1.7 1.2     
Anterior cingulate 
cortex, subgenual 

151,15
2 75.9 33.4 3.1 5.8 3.9 1.4 

Anterior cingulate 
cortex, pregenual 

153,15
4 16.7 5.2 5.9 1.7 3.0 1.3 

Anterior cingulate 
cortex, supracallosal 

155,15
6 17.6 9.7 2.7 3.2 2.7 1.2 

Amygdala 45,46 3.5 5.9 3.0 5.9 3.2 6.1 

Hippocampus 41,42 1.5 1.6 1.7 1.9 2.2 2.4 

Parahippocampal gyrus 43,44 1.8 2.1 1.7 1.7 3.8 1.9 

Caudate nucleus 75,76 20.4 17.7 15.4 17.2 11.9 9.5 

Lenticular nucleus, 
Putamen 77,78 14.7 17.2 15.7 17.6 17.1 18.1 

Lenticular nucleus, 
Pallidum 79,80 3.4 2.9 3.8 3.1 3.1 3.5 

Nucleus accumbens 
157,15
8 113.1 75.0 20.4 33.6 39.0 13.9 

Thalamus, 
Anteroventral Nucleus 

121,12
2 1.9 1.8 6.5 2.8 4.7 3.3 

Lateral posterior 
123,12
4  1.0 1.5 1.7 1.3 2.4 

Ventral anterior 
125,12
6 2.8 2.7 8.4 6.7 6.4 10.1 

Ventral lateral 

127,12

8 1.1 1.3 2.2 2.4 1.9 3.4 
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Ventral posterolateral 

129,13

0    1.1  1.6 

Intralaminar 

131,13

2 2.4 2.9 7.5 3.6 5.6 3.5 

Reuniens 

133,13

4 1.8 2.7 3.8 3.1 3.5 3.3 

Mediodorsal medial 

magnocellular 

135,13

6 1.8 1.7 3.9 2.4 3.1 2.8 

Mediodorsal lateral 

parvocellular 

137,13

8 1.1 1.5 2.8 3.2 2.3 4.6 

Lateral geniculate 

139,14

0 1.4 1.2 1.5 1.6 1.9 2.1 

Medial Geniculate 
141,14
2 1.1    1.3  

Pulvinar anterior 
143,14
4 1.3 1.1 1.3 1.3 1.7 1.7 

Pulvinar medial 
145,14
6 1.1 1.1 1.6 1.5 1.4 1.7 

Pulvinar lateral 
147,14
8   1.5 1.4 1.2 2.1 

Pulvinar inferior 
149,15
0      1.3 

 

 

3.5 Discussions 

 In the present study, we characterized the widespread cortical and subcortical 

connectivity of the human OFC, and then used a K-means clustering approach to divide the OFC 

into distinct subregions based on differences in anatomical connectivity patterns across voxels. 

We found that the human OFC shares strong connectivity with multimodal sensory cortex, 

prefrontal cortex, cortical and subcortical limbic regions, the basal ganglia, and the thalamus. 

Table 3.3. Ipsilateral connectivity of the medial, anterior, and posterior OFC clusters, from the 
K=3 cluster solution. Connectivity of each OFC cluster with regions in the AAL3 Atlas were 

assessed using probabilistic tractography. SIFT2-weighted streamline counts (R. E. Smith et 
al., 2015b) were averaged across voxels in each AAL3 region that received streamlines from 

the OFC to produce these recorded tract density values. Darker blue cells indicate regions with 
higher tract density, reflecting stronger anatomical connectivity.  
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The connectivity of the human OFC shares many similarities with that of the macaque, and our 

results are in alignment with theories regarding human OFC involvement in multimodal sensory 

integration, memory for motivationally-salient stimuli, encoding of reward values across 

contexts, visceral and emotional regulation, and coordinating goal-oriented behavior.  

 For the K=2 clustering solution, we identified distinct, symmetrical medial and lateral 

OFC clusters in each hemisphere. This finding is in agreement with previous literature on the 

macaque OFC anatomical connectivity, wherein distinct medial and lateral OFC networks have 

been described and dissociable roles for each network have been proposed (Carmichael & Price, 

1996). The lateral OFC network of the macaque receives heavy sensory inputs from every 

sensory modality, and is thought to be involved in multimodal sensory integration and encoding 

the specific identity and valence of motivationally-salient stimuli. The macaque medial OFC 

network, in contrast, was found to share much stronger connectivity with limbic and 

visceromotor regions, and is likely involved in regulating visceral and emotional responses. In 

our K=3 clustering solution, we found that the medial cluster was preserved, but narrowed, and 

the lateral cluster split into anterior and posterior clusters. This anterior-posterior division 

appears to mirror the cytoarchitectonic organization between anterior and posterior OFC, 

observed in both the human and the macaque (Carmichael & Price, 1994; Ongür et al., 2003b; 

Petrides & Pandya, 2002). Anterior OFC cortex has a denser granule cell layer, and tends to 

share connectivity with other regions of granular cortex, while posterior OFC cortex is 

dysgranular and agranular, and tends to share connectivity with other dysgranular and agranular 

cortical regions. For K=4-6, we identified increasingly more complex, but still symmetrical 

clustering solutions across each OFC hemisphere. In our K=5 clustering solution, we found five 
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clusters that corresponded roughly to the five major OFC gyri, including the gyrus rectus, medial 

orbital gyrus, lateral orbital gyrus, anterior orbital gyrus, and posterior orbital gyrus. This 

suggests that the sulcogyral morphology of this region may indeed be related to this region’s 

anatomical connectivity. Variability in OFC sulcogyral morphology has been identified in 

humans, and participants can be classed into four major OFC sulcogyral subtypes (Chiavaras et 

al., 2001). Further research investigating differences in anatomical connectivity across 

participants with differing OFC sulcogyral subtypes may provide insight into individual 

differences in OFC organization and function. In our K=6 clustering solution, we identified a 

more complex organization that roughly corresponds to identified cytoarchitectural boundaries in 

the human OFC (Ongür et al., 2003b). The lateral clusters (dark blue, Figure 3.4) corresponded 

roughly to area 47/12 along the posterior-lateral edge of the OFC. The posterior clusters (purple) 

corresponded to agranular insular cortex. The anterior clusters (red) encompassed the lateral 

portions of areas 10 and 11, while the medial anterior clusters (cerulean) encompassed the 

medial portions of these two areas. The central cluster (green) and the posterior medial cluster 

(yellow) then each encompassed areas 13 and 14, respectively. These results suggest that the 

previously identified cytoarchitectural regions of the human OFC can additionally be dissociated 

by differing patterns of anatomical connectivity with the rest of the brain.  

In our data, we identified widespread OFC connectivity with sensory cortex. 

Connectivity with primary olfactory cortex, primary gustatory cortex, insular visceral cortex, and 

temporal opercular auditory cortex was substantial. The OFC also shared strong connectivity 

with temporal visual areas, including regions in the inferior temporal gyrus and fusiform gyrus 

involved in the visual “what” pathway, as well as weaker connections between the OFC and 
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earlier visual cortex in the lingual gyrus and calcarine fissure. Similar to the macaque, we found 

that sensory connections are generally denser in the lateral OFC compared to the medial OFC, 

with exceptions for olfaction and vision. In our study, we found that connectivity with auditory 

cortex, gustatory cortex, and anterior insular cortex related to visceral sensation and 

interoception was much stronger with the lateral OFC clusters than the medial OFC clusters. In 

contrast, we found that the primary olfactory cortex had very strong connectivity with both 

medial and lateral clusters, but connectivity with the medial clusters was stronger. Temporal lobe 

visual areas and the occipital lobe lingual gyrus had roughly equal connectivity with both the 

medial and lateral OFC clusters. Medial parietal areas involved in visuospatial processing, 

including the precuneus and posterior cingulate cortex, shared weak connectivity with the medial 

OFC clusters, but not the lateral OFC clusters. Surprisingly, we did not find any OFC 

connectivity with primary somatosensory cortex or parietal somatosensory association cortex, 

although these regions share connectivity with area 12o in the posterior lateral OFC of the 

macaque (Carmichael & Price, 1995b). Another recent dMRI study investigating connectivity of 

the human OFC also failed to find OFC connectivity with somatosensory regions, but did find 

bilateral connectivity between the adjacent inferior frontal gyrus and parietal area 7 and the 

supramarginal gyrus (Hsu et al., 2020).  

 In our study, we found strong OFC connectivity with prefrontal cortex. The medial OFC 

clusters shared stronger connectivity with the anterior cingulate gyrus and ventromedial 

prefrontal cortex (vmPFC; including AAL3 medial and medial orbital superior frontal gyrus), 

regions involved in processing motivationally- and emotionally-salient stimuli, and regulating 

emotional and behavioral responses. The lateral OFC clusters, in contrast, shared stronger 
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connectivity with lateral prefrontal cortex. In our K=3 clustering solution, the lateral OFC was 

split into anterior lateral and posterior lateral clusters, each of which had differentiable 

connectivity with prefrontal cortical regions. The dorsolateral and medial orbital parts of the 

superior frontal gyrus were more strongly connected with the anterior lateral OFC clusters. The 

dorsolateral prefrontal cortex (dlPFC) is involved in executive functions including planning, 

working memory, task-switching, and preventing distractions from interfering with current goal-

directed behaviors (Panikratova et al., 2020; Robbins et al., 1996). The lateral OFC may thus 

serve as an important source of highly integrated, motivationally-salient sensory information to 

the dlPFC, and the connectivity between these two regions is likely important for coordinating 

goal-directed behaviors. The inferior frontal gyrus, in contrast, was more strongly connected 

with the posterior lateral OFC clusters. The inferior frontal gyrus is the site of Broca’s area, and 

is involved in speech production (Dronkers et al., 2007). A strong link between OFC regions 

involved in processing motivationally-salient stimuli and the inferior frontal gyrus regions 

involved in speech production would allow for quick and efficient verbal communication 

regarding potential rewarding or threatening environmental stimuli.   

 We also observed substantial subcortical connectivity with the OFC. We found that OFC 

connectivity with the striatum was organized topographically, in that the medial OFC clusters 

had stronger connectivity with the ventromedial caudate and putamen, while the lateral OFC 

clusters had stronger connectivity with the ventrolateral caudate and putamen. The nucleus 

accumbens shared strong connectivity with both the medial and lateral clusters, although this 

connectivity was much stronger with the medial clusters. This same topography is also observed 

in the macaque (Ferry et al., 2000; Haber et al., 1995; Haber & Knutson, 2010). These cortico-
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striatal connections are important for reinforcement learning and reward processing. In addition, 

the amygdala, hippocampus, and parahippocampal gyrus shared connectivity throughout the 

OFC, while the GMWMI adjacent to the hypothalamus shared connectivity with the medial OFC 

clusters. The network formed by the amygdala with vmPFC, the ventral striatum, and the 

mediodorsal nucleus of the thalamus is important for proper emotional responses and emotional 

learning in response to motivationally-salient stimuli. We found that the OFC shares connectivity 

with each of these regions, suggesting a role for the OFC in emotional learning. Patients with 

OFC lesions are generally able to learn the initial reward value of a stimulus, but then have 

trouble updating these reward values in reversal learning tasks (Berlin et al., 2004; Rudebeck & 

Rich, 2018). Perhaps the initial stimulus-reward association is learned through the amygdala, but 

later recognition of changes to this association and updating of these reward-stimulus 

associations may be mediated by the OFC. Further, the OFC shares connectivity with several 

regions involved in the Papez circuit, important for spatial and episodic memory, including the 

hippocampus, hypothalamus, anterior nucleus of the thalamus, posterior cingulate cortex, and 

parahippocampal cortex. OFC connectivity with this circuit may be important for tracking 

changing reward contingencies across changing spatial and temporal contexts. The OFC further 

shares interconnectivity both with anterior insular regions important for incoming visceral and 

interoceptive sensory signals, and the hypothalamus, important for homeostatic regulation. The 

OFC may then serve as a relay to coordinate activity between these visceral brain systems and 

higher-order executive systems in the prefrontal cortex. This would allow for internal monitoring 

of physiologic states, and coordination of adaptive goal-oriented behaviors in response to 

visceral and physiologic needs. 
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 Several brain-wide functional networks have been proposed that serve important roles for 

the regulation of human behavior. Three networks of important consideration include the Central 

Executive Network (also known as the fronto-parietal network), the Salience Network (or ventral 

attention network), and the Default Mode Network (S. T. Witt et al., 2021). The default mode 

network involves the vmPFC, hippocampus, angular gyrus, precuneus, and posterior cingulate 

cortex, and is thought to be involved in internally-directed cognition and mind wandering. In our 

data, we found that the medial OFC clusters shared very strong connectivity with the vmPFC, as 

well as connectivity with the hippocampus, the precuneus and the posterior cingulate cortex. The 

lateral OFC additionally shared weaker connectivity with vmPFC and the hippocampus. Medial 

OFC functions involving visceromotor and emotional regulation may very well be influenced by 

interactions with the default mode network, and these interactions may be important for 

maintaining an accurate representation of current internal emotional and physiological states. 

The central executive network, in contrast, involves the dlPFC (especially the middle frontal 

gyrus) and posterior parietal cortex, and is especially active when engaged in cognitively 

demanding goal-oriented tasks. The lateral OFC shares strong connectivity with dlPFC regions 

involved in the central executive network, and the medial OFC shares weaker connectivity with 

these regions. The lateral OFC has been implicated in reward memory, encoding identity- and 

value-specific information about incoming stimuli, and predicting future expected outcomes in 

value-based decision making tasks (Howard et al., 2015, 2020; Howard & Kahnt, 2021). 

Interactions between the lateral OFC and the dlPFC central executive regions are likely critical 

for flexibly adapting and updating our behaviors in order to stay on task and reach a particular 

goal.  
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Lastly, we found that both medial and lateral OFC share very strong connectivity with the 

brain regions involved in the salience network, including the anterior cingulate cortex, anterior 

insular cortex, amygdala, and ventral striatum. The salience network is involved in shifting 

attention in response to motivationally-salient stimuli, and is thought to help facilitate transitions 

between default mode network activity and central executive network activity. It has been 

suggested that the OFC maintains and updates a “cognitive map” of relationships between 

learned predictive cues, behavioral actions, and outcomes of those actions (Wikenheiser & 

Schoenbaum, 2016). The OFC then may play a role alongside the salience network in 

discriminating which incoming stimuli are important or relevant to the current task and should be 

allowed to influence the activity of the central executive network, versus those salient 

environmental stimuli that should be ignored as distractions.  

The OFC is thus uniquely situated to be able to regulate interactions between these three 

networks. Medial OFC regions may monitor internal states and physiological needs through 

interactions with the default mode network and visceromotor structures such as the 

hypothalamus, while the lateral OFC encodes stimulus reward values and predictions about 

behavioral outcomes that serve as motivating factors for central executive activity. Incoming 

salient sensory information activates the salience network, and may tip the balance between 

default mode and central executive network activity. OFC interactions with the salience network 

can help to determine which incoming stimuli should interrupt central executive function, versus 

which stimuli should be ignored. This ensures that the goal-directed activity of the central 

executive network sufficiently meets internal physiological needs, and that it can be overridden 

or altered to better meet those needs. Attention Deficit/Hyperactivity Disorder (ADHD) is a 
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disorder characterized by dysregulated attention, impaired executive function, poor working 

memory, impaired performance on reward and reversal learning tasks, and poor interoceptive 

awareness (Brown, 2009; Itami & Uno, 2002; Kutscheidt et al., 2019). OFC dysfunction and 

OFC gray matter abnormalities have been reported in ADHD (Fernández-Jaén et al., 2014; Itami 

& Uno, 2002; Tegelbeckers et al., 2018; Yang et al., 2019), in addition to dysfunction and 

reduced integrity of the central executive, ventral attention, and default mode networks (Janssen 

et al., 2017; Silk et al., 2008; Uddin et al., 2008; Yerys et al., 2019). Alongside our data 

describing the anatomical connectivity of the OFC with these three brain networks, observations 

in the ADHD literature provide further support for the hypothesis that the OFC plays an active 

role in regulating interactions between these networks, and is necessary for flexible and adaptive 

goal-oriented behaviors.  

 In the present study, we have provided an in-depth characterization of the anatomical 

connectivity of the human OFC, based on an optimized dMRI and tractography pipeline that 

allowed us to image the OFC with few artifacts. We further used a K-means parcellation 

technique to divide the OFC into unique subregions based on differences in anatomical 

connectivity. Our results provide an in-depth look at the brain-wide anatomical connectivity and 

intrinsic organization of the OFC, and provide insight into the complex functional role of this 

brain region. Future investigations into specific pathways of the OFC, their microstructural 

properties, and their relationships with human behavior will help to further elucidate the 

mechanistic role of the OFC in regulating human behavior.  
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Chapter 4: Validation of the NIH Toolbox Odor Identification Test across Normal 

Cognition, amnestic Mild Cognitive Impairment, and Alzheimer’s Disease 

 

4.1.  Abstract & Significance 

Olfactory impairments have been associated with aging, amnestic mild cognitive 

impairment (aMCI) and Alzheimer’s disease (AD). Olfactory identification tests have been 

proposed as a cost-effective measure that may be able to distinguish between normal cognition 

(NC) and aMCI. The present study, as part of the Advancing Reliable Measurement in 

Alzheimer’s Disease and Cognitive Aging (ARMADA) (Weintraub et al., 2021) parent study, 

was conducted to validate the NIH Toolbox Odor Identification Test (Dalton et al., 2013) across 

NC, aMCI, and AD participants over the age of 65 (N=389). We determined that scores on the 

Odor Identification Test significantly decreased with age (p=2.03e-09) and were significantly 

lower for aMCI (p=6.28e-08) and for AD (p< 2.0e-16) compared to NC controls after correcting 

for age and sex. Further, we determined that the Odor Identification Test has a sensitivity of 

49.4% and specificity of 88.8% at a threshold of 0.50, for detecting aMCI compared to NC 

participants. The Area Under the Curve (AUC) was 0.78. Additionally, we found that Odor 

Identification Scores were significantly lower in participants with a positive AD biomarker test 

compared to those with a negative AD biomarker test (p = 0.005). Odor Scores were not found to 

differ significantly based on APOE e4 allele carrier status. Finally, scores on the Odor 

Identification Test were evaluated for a NC sample aged 85-91, and were found to be 

significantly lower than scores from NC participants aged 65-84 (p = 0.000453). This study 

provides useful measures for the validation of the NIH Toolbox Odor Identification Test across 
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NC, aMCI, and AD diagnostic categories, and evidence for the usefulness of the NIH Toolbox 

Odor Identification Test for detecting aMCI compared to NC.  

 

4.2.  Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting memory 

and cognition, leading to reduced independence, impaired ability to carry out the activities of 

daily life, and lower life expectancy (Mayeux & Stern, 2012). The progression from normal 

cognition (NC) to dementia of the Alzheimer’s type is gradual, and involves an intermediary 

stage termed amnestic mild cognitive impairment (aMCI). In aMCI, memory impairments are 

present, but not severe enough to impact daily living (Petersen et al., 2014). Identifying 

individuals who are in the earliest disease stages and at high risk for converting to AD will help 

to target preventative measures and slow disease progression.  

In addition to age, AD risk factors that may forewarn cognitive decline include carrying a 

copy of apolipoprotein E (APOE) e4 allele (Corder et al., 1993), and preclinical presence of 

amyloid b and/or tau pathology (Braak & Braak, 1991, 1995; Jack et al., 2010; Vos et al., 2016). 

However, genotyping and testing for known AD biomarkers, involving PET scans with injected 

radioactive tracers or a lumbar spinal tap to evaluate cerebrospinal fluid markers, are expensive 

and invasive procedures. Typically, brain imaging, extensive cognitive testing, and evaluation by 

a specialist is required to diagnose aMCI in clinical settings (Doody et al., 2011). Identifying a 

quick, low-cost, and easily interpretable measure that can accurately flag individuals who are at 

risk of cognitive decline is thus imperative to lowering costs and earlier diagnosis (Weintraub et 

al., 2021). 
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Olfactory impairments have been proposed as indicators of the early stages of aMCI and 

AD (Albers et al., 2015; Murphy, 2019). Olfactory identification tests are simple to administer 

and may provide a time- and cost-effective way to identify individuals at risk of cognitive 

decline. While olfactory decline is observed in healthy aging (Doty & Kamath, 2014; Palmquist 

et al., 2020; Seubert et al., 2017), this decline appears to occur earlier and is more severe in 

individuals who go on to develop aMCI and AD (Bacon et al., 1998; Devanand et al., 2015; 

Roberts et al., 2016; Schubert et al., 2008; Wilson et al., 2007).  Estimates suggest that 85-90% 

of individuals with AD have impaired olfaction (Morgan et al., 1995; Woodward et al., 2017), 

and the severity of olfactory impairment is correlated with the severity of cognitive impairment 

(Murphy et al., 1990; Yoo et al., 2018) and with the degree of tau pathology (Klein et al., 2021; 

Lafaille-Magnan et al., 2017).  

The aim of the present study was to validate the NIH Toolbox Odor Identification Test 

(Dalton et al., 2013) in an elderly population ranging from NC to AD, as part of a multisite 

study, Advancing Reliable Measurement in Alzheimer’s Disease and Cognitive Aging 

(ARMADA) (Weintraub et al., 2021). The NIH Toolbox Odor Identification Test is a 9-item 

multiple choice test that is administered via scratch-and-sniff cards and a computer or tablet, and 

can be easily interpreted by a primary care physician. Here, we characterized performance on the 

NIH Toolbox Odor Identification Test in a cohort of research participants involved in 

longitudinal research through Alzheimer’s disease research centers (ADRCs) across the United 

States. We evaluated performance on the test across diagnostic categories, including NC, aMCI, 

and AD, while controlling for age and sex. We then validated the Odor Identification Test’s 

ability to discriminate between aMCI and NC participants. In addition, we conducted two 
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additional analyses to evaluate relationships between scores on the Odor Identification Test with 

both APOE e4 allele status and AD biomarker presence in a subset of participants with available 

genotype and/or biomarker data. Finally, as the NIH Toolbox was initially validated only in 

populations aged 65-85 (Dalton et al., 2013), we compared Odor Identification Scores between 

NC participants aged 65-84 and NC participants over age 85.  

 

4.3.  Materials and Methods 

The purpose of the present study was to validate the NIH Toolbox Odor Identification 

Test for a general population cohort of adults over age 65, across NC, aMCI, and AD diagnoses. 

The dataset used in the present study was obtained through the overarching ARMADA study 

(Weintraub et al., 2021). Participants in the ARMADA study were recruited across nine separate 

study sites, including Northwestern University (NU), University of Michigan (UM), University 

of Wisconsin-Madison (UW-M), Mayo Clinic-Jacksonville, Florida (MCF), University of 

Pittsburgh (UPitt), Emory University, University of California-San Diego (UCSD), Columbia 

University, and Massachusetts General Hospital (MGH). Participants were recruited from 

existing research cohorts in this network of Alzheimer’s disease research centers (ADRCs) 

funded by the National Institute on Aging (NIA) and other NIH-funded longitudinal studies that 

use similar methods to the ADRC longitudinal studies. Emphasis was placed on recruiting 

participants so that the resulting general population dataset is racially representative of the 

United States population. Additionally, emphasis was placed on recruiting NC participants over 

the age of 85 in order the validate the NIH Toolbox Odor Identification Test for this age group. 

Available data through the ARMADA study includes scores on the NIH Toolbox tests (Gershon 
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et al., 2013; Hodes et al., 2013), measures of cognitive functioning, health history, and mental 

health history through the Uniform Data Set (UDS) (Morris et al., 2006; Weintraub et al., 2018); 

and, for a subset of participants, APOE genotype and/or AD biomarker testing results 

(cerebrospinal fluid (CSF) and/or a-beta PET imaging) were also available.  

 

NIH Toolbox Odor Identification Test. The NIH Toolbox Odor Identification Test (Dalton et al., 

2013) is a 9-item test administered to participants by a facilitator. The test includes 9 odors on 

scratch-and-sniff cards. For each odor, the participant must choose from four options, including 

one correct response and three distractor options. Each option is presented with picture and word 

descriptors on a computer or tablet screen, and read aloud by the facilitator. Scores are recorded 

as integer values ranging from 0-9, with chance performance at 25%, or roughly a score of 2.  

 

Study Participants. Data collected from N=389 participants as part of the overarching ARMADA 

study were included in the present study. Participants were included for analysis in the present 

study if they 1) had completed the NIH Toolbox Odor Identification Test; and 2) had no record 

in the UDS dataset of previous traumatic brain injury or stroke, both of which may affect 

olfactory ability (Howell et al., 2018; Wehling et al., 2015). Participants were divided into three 

research diagnostic categories, including normal cognition (NC), amnestic mild cognitive 

impairment (aMCI), and Alzheimer’s disease (AD). Diagnostic categories were assigned based 

on neurocognitive testing alongside the participant’s CDR score. A score of 0.0 was required for 

NC, a score of 0.5 for aMCI, and a score greater than or equal to 1.0 for AD.  In the NC group, 

emphasis was placed on recruiting participants over the age of 85 in order to validate the NIHTB 
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Odor Identification Test for this age group. A summary of participant demographics across 

diagnostic categories is provided in Table 4.1.  

Table 4.1: Participant Demographics 
Emphasis Group Diagnosis N Male vs. 

Female 
Age (Years) 

General Population 
(Ages 85+)  

Normal Cognition 96 42 Male 
54 Female 

87.7 +/- 2.1 

General Population 
(Ages 65-84) 

Normal Cognition 152 50 Male 
102 Female 

72.7 +/- 5.1 

General Population Mild Cognitive 
Impairment 

79 47 Male 
32 Female 

77.3 +/- 
6.9 

General Population Dementia 62 34 Male 
28 Female 

75.4 +/- 7.2 

  389 173 Male 
216 Female 

77.8 +/- 8.0 

 

APOE genotype data was available for N=275 participants. Participants were collapsed 

into two groups, an e4 allele positive group (at least one e4 allele, N=98) and an e4 allele 

negative group (no e4 allele, N=177). AD biomarker data were also available for N=165 

participants. Participants were collapsed again into two groups, an AD Biomarker Positive group 

(N=48) and an AD Biomarker Negative group (N=117). Available biomarker tests varied across 

participants, and included amyloid-beta PET scans and/or cerebrospinal fluid (CSF) amyloid-

beta, tau, or phospho-tau measures. Positive or negative assignments were determined based on 

SUVR or DVR readings for the amyloid beta PET scans, with cut points at 1.35 and 1.19, 

respectively. Positive or negative group assignments for CSF results were based on the collecting 

lab’s designation of “Consistent with AD” or “Inconsistent with AD”. A summary of the APOE 

genotype and AD Biomarker group assignments is provided in Table 4.2. 
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Table 4.2: Available AD Biomarker and APOE Genotype Data 
Emphasis 
Group 

Diagnosis N Positive  
AD 
Biomarker 

N Negative 
AD 
Biomarker 

N with 
APOE e4  
allele 

N without 
APOE e4  
allele 

General 
Population 85+  

Normal 
Cognition 

9 21 53 13 

General 

Population 65-85 

Normal 

Cognition 

12 89 57 29 

General 

Population 

Mild 

Cognitive 
Impairment 

14 5 38 29 

General 
Population 

Dementia 13 2 29 27 

Totals  48 117 177 98 

 

Statistical Analyses and Validation of the NIH Toolbox Odor Identification Test. For the present 

study, we first calculated odor identification score summary statistics across diagnostic 

categories. These included the mean, standard deviation, range, N at floor, N at ceiling, 

skewness, and kurtosis of the distribution of odor identification scores for each group.  

We then evaluated Odor Identification Scores using a multiple linear regression model with the 

equation: 

 

!"#$	&'#$(	~	*! + ,-(*" + &(.*# + /01-2#303*$ 

 

We fit this model across the three research diagnostic groups, age, and sex to assess relationships 

between olfactory performance and diagnosis. We also tested a second version of this model 

including interaction terms between each of the three predictors. The multiple regression models 

were fit for the entire participant population (N = 389). For each multiple regression model, age 

was centered at 77.8 years, the mean age of the entire participant pool. Thus, the intercept values 
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reported in the Results section represent the mean Odor Scores for NC Males at the mean age 

77.8.  

We then used a logistic regression model with the following equation, to evaluate 

whether Odor Scores, Age, and Sex can accurately predict whether a participant is in the aMCI 

versus NC group:  

 

ln 6 7
1 − 7: = 	*% +	!"#$	&'#$(*" + &(.*# + ,-(*$ 

P refers to the computed probability of having aMCI given Odor score. For these analyses, we 

only included participants in the NC ages 65-85 group, and participants in the aMCI group.  

 We plotted a receiver operating characteristic (ROC) curve based on the fitted values of the 

logistic regression model. We calculated the Area Under the Curve (AUC), indicating how well 

Odor Scores, Age, and Sex can distinguish between aMCI and NC participants. The sensitivity, 

specificity, positive predictive value, and negative predictive value of this model are reported. 

The fitted probability of having aMCI for each Odor Score (0-9) is also reported.  

Further, we used two three-way ANCOVAs to compare differences in odor scores across age, 

sex and the two special interest categories: AD biomarker presence (Positive versus Negative) 

and APOE e4 allele carrier status (one or more e4 allele versus no e4 alleles). We then used a 

two-way ANCOVA to evaluate differences in odor scores based on sex and NC age group (ages 

65-84 versus ages 85+). 
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4.4.  Results 

Table 4.3 displays the summary statistics for the Odor Identification Scores across each 

diagnostic cohort and NC age group.  

Table 4.3: Summary of Odor Identification Scores by Cohort 
Emphasis 
Group 

Diagnosis N Mean 
+/- SD 

Range N at 
Floor 

N at 
Ceiling 

Skew-
ness 

Kurto-
sis 

General 
Population 

85+  

Normal 
Cognition 

96 6.14 +/- 
1.70 

2 – 9  0 2 -0.734 2.834 

General 

Population 
65-85 

Normal 

Cognition 

152 6.97 +/- 

1.71 

2 – 9  0 33 -0.750 2.942 

General 
Population 

Mild 
Cognitive 

Impairment 

79 5.32 +/- 
2.18 

0 – 9  1 4 -0.163 2.140 

General 

Population 

Dementia 62 4.10 +/- 

2.01 

0 – 9  1 1 0.012 2.447 

Total  389 5.97 +/-

2.12 

0 – 9  2 40 -0.532 2.534 

 

Differences in Odor Scores Across Age and Diagnostic Categories. To evaluate the decline of 

performance on the Odor Identification Test with age, and differences in Odor Scores across 

diagnostic categories, we fit a multiple linear regression model. The model was significant with 

adjusted R2 = 0.2985 (F4,384=40.85, p < 2.2e-16).  The resulting model coefficients are displayed 

in Table 4.4. The intercept reflects the mean odor scores for NC Males at mean age 77.8 years.  

Table 4.4: Multiple Linear Regression Model on the Relationships of Age, Sex, and 
Diagnosis with Odor Identification Scores 

Coefficient Estimate Standard Error t-value p-value 
Intercept 6.367 0.163 38.951 < 2.0e-16 

Age (per year) -0.070 0.011 -6.143 2.03e-09 

Sex = Female 0.530 0.186 -2.848 0.00464 

Diagnosis = aMCI -1.295 0.235 -5.519 6.28e-08 

Diagnosis = AD -2.675 0.258 -10.365 < 2.0e-16 
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This model suggests that odor identification scores decrease by 1 point for every 14.3-

year increase in age (1/0.07 = 14.29). Females scored on average 0.530+/-0.186 points higher 

than males across diagnostic categories. Participants with aMCI scored on average 1.295+/-0.235 

points lower than participants with NC, while participants with AD scored on average 2.675+/-

0.258 points lower than participants with NC.  

A second model was evaluated including interaction terms between Age and Sex, Age 

and Diagnosis, and Sex and Diagnosis. None of the interaction terms were significant (p-values 

ranged from 0.09 through 0.87), so they were not included in the final model. Interestingly, while 

the effect of Sex was significant in the main effects model, it was no longer significant in the 

model with main effects and interaction terms (p = 0.09). Differences in odor score across sex 

were evaluated within each diagnostic category using Welch two-sample t-tests. In the NC 

group, Odor Scores were significantly different between Males (mean=6.33) and Females 

(mean=6.84, t182.64=2.2163 , p = 0.0279). However, Odor Scores were not significantly different 

between Males and Females for the aMCI or AD groups (p=0.09 for aMCI, p=0.21 for AD).  

Figure 4.1 shows a scatterplot of Odor Identification Scores versus Age, with separate fitted 

regression lines (Odor Score ~ Age) with 95% confidence intervals for each diagnostic category. 

While Odor Scores decrease significantly with age, and the mean Odor Scores are significantly 

different across diagnostic categories, there is no significant interaction between age and 

diagnosis (i.e., slopes do not differ significantly across the three diagnostic categories). Figure 

4.2 shows distribution plots for Odor Scores, stratified by sex and diagnostic category. 
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Figure 4.1. Scatterplot displaying Odor Scores as a function of Age. Separate 
regression lines with 95% confidence intervals are fitted for NC (1, red), aMCI (2, green), 

and AD (3, blue) diagnostic categories. Odor Scores are integer values (0-9), but are 

jittered along the y-axis here for easier visualization.  
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Validation of the NIH Toolbox Odor Identification Test for Detecting aMCI. To determine 

whether the Odor Identification Test is useful for detecting aMCI, we computed a Receiver 

Operator Characteristic (ROC) curve based on a logistic regression model. 

The model was fit with Male as the baseline group, and centered at the mean age of 77.8 

years. The Akaike Information Criterion of the model was 248.3, with residual deviance of 

240.30 (df= 227). The computed values of the coefficients and their interpretations are shown in 

Table 4.5.  

 

Figure 4.2. Violin plots displaying the distribution of Odor Scores across Sex 
and Diagnosis categories. Female = red, and Male = Blue. 
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Table 4.5: Logistic Regression Model on the Relationships of Age, Sex, and Odor Score 
with aMCI Diagnosis 

Term Coefficient Standard 
Error 

z-value p-value Interpretation 

Intercept 1.95977 0.53668 3.652 0.000261 A Male at mean age 77.8, with 

an Odor Score of 0 has 7.1 to 1 
odds of having aMCI compared 

to NC. (Odds Ratio = 7.1) 

Odor 
Score 

-0.29231 0.08514 -3.422 0.000597 For every 1-point increase in 

Odor Score, there is a 25.3% 
decrease in relative risk for 

having aMCI. 

Sex -0.93531 0.32266 -2.899 0.003746 Females have a 60.8% decrease 

in relative risk for having aMCI 
compared to Males. 

Age 0.10245 0.02815 3.639 0.000274 For every 1-year increase in age 
there is a 10.8% increase in 

relative risk for having aMCI 

 

 For a threshold of 0.50, the sensitivity and specificity of this model were found to be 

49.4% and 88.8%, respectively. The Positive Predictive Value of this model was 69.6%, while 

the Negative Predictive Value was 77.1%. The calculated area under the curve (AUC) of the 

ROC plot was 0.78. The ROC plot is displayed in Figure 4.3. In Figure 4.4, the fitted 

probability values for having aMCI are plotted against the Odor Scores for each participant, 

color coded by sex. From this plot, we see that for females, an odor score of 3 or below has 

>50% chance of having aMCI, while for males, an odor score of 5 or below is has >50% chance 

of having aMCI.  
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Figure 4.3. Receiver Operator 
Characteristic Curve for classifying 
aMCI based on Odor Scores, Age, 
and Sex. The calculated AUC was 0.78.  

AUC = 0.78 
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Figure 4.4 Scatter plot of participants’ fitted probability of having aMCI from the 

logarithmic regression model described above, plotted against their scores on the Odor 
Identification Test. Loess smoother lines are fitted separately for females (Red) and males 

(Blue), with 95% confidence intervals. True diagnoses are indicated by the shape of the point 
with NC triangles and aMCI circles. Variability in fitted values about the y-axis reflects 

variability from the age of the participants. Odor Scores are integer values (0-9), but are jittered 

about the x-axis here for visualization. 
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Differences in Odor Scores based on AD Biomarker Presence. The mean +/- standard deviation 

odor scores for the biomarker positive group and biomarker negative group were 5.60 +/- 2.15, 

and 6.71 +/- 1.80, respectively. A three-way analysis of covariance (ANCOVA) was used to 

evaluate differences in odor scores across biomarker groups while controlling for age and sex. 

There was a significant main effect of biomarker status (F1,161 = 7.941, p = 0.005), where 

participants who had a positive AD biomarker test scored lower on the odor identification test 

than participants with a negative AD biomarker test. Main effects of Age and Sex were also 

significant (Age: F1,161 = 7.923, p = 0.005; Sex: F1,161 = 5.745, p = 0.018). The distribution of 

Odor Scores based on AD biomarker status is shown in Figure 4.5.  

 

Differences in Odor Scores based on APOE e4 Allele Status. The mean +/- standard deviation 

odor scores for the APOE e4 allele carriers versus non-carriers were 5.72 +/- 2.21, and 5.99 +/- 

2.18, respectively. A three-way ANCOVA was used to evaluate differences in odor scores 

between participants with at least one APOE e4 allele and participants with no APOE e4 alleles, 

while controlling for age and sex. The main effect of APOE e4 allele status was not significant 

(F1,271 = 2.852, p = 0.092), indicating that odor scores did not significantly differ based on APOE 

e4 allele status. The main effects of Age and Sex were significant (Age: F1,271 = 16.926, p = 

5.16e-05; Sex: F1,271 = 14.611, p = 1.64e-04). The distribution of Odor Scores based on APOE e4 

Allele Status is shown in Figure 4.6. 

 

Differences in Odor Scores between NC Participants Ages 65-84 and NC Participants over age 

85. The mean and standard deviation odor scores for each age group are listed in Table 3. A two-
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way ANCOVA was used to evaluate differences in odor scores between NC participants aged 

65-84 and NC participants over age 85, while controlling for sex. In this model, the main effect 

of age group was significant (F1,245 = 12.641, p = 0.000453), indicating that participants in the 

85+ years age group performed significantly worse on the odor identification test compared to 

participants in the 65-84 years age group. The main effect of sex was not significant in this 

model (F1,245 = 3.601, p = 0.059). The distribution of Odor Scores based on NC Age group are 

shown in Figure 4.7. We further broke down the mean and standard deviation odor scores across 

each decade: For participants aged 65-74 (N=103), the mean +/- standard deviation odor scores 

were 7.23 +/- 1.67; for participants aged 75-84 (N=49), the mean +/- standard deviation odor 

scores were 6.43 +/- 1.70; and for participants aged 85-91 (N=96), the mean +/- standard 

deviation odor scores were 6.13 +/- 1.70. 

 

  

Figure 4.5 Violin plots 
illustrating the distribution 
of odor scores across AD 
biomarker groups. Group 0 

was negative for AD 
biomarkers, and group 1 was 

positive for AD biomarkers. 
Note that odor scores are 

integer values (0-9), but are 

jittered here for visualization. 



 
 

141 

 

  

 

Figure 4.6 Violin plots 
illustrating the distribution 
of odor scores across APOE 
e4 allele groups. Group 0 had 

no copies of the e4 allele, and 

group 1 had at least one copy 

of the e4 allele. Note that odor 
scores are integer values (0-

9), but are jittered here for 

visualization. 

Figure 4.7 Violin plots 
illustrating the distribution of 
odor scores across NC 
participant age groups. Group 

1 includes NC participants aged 
85+, and group 2 includes NC 

participants aged 65-84. Note 
that odor scores are integer 

values (0-9), but are jittered 

here for visualization. 
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4.5.  Discussion 

In the present study, we found that scores on the NIH Toolbox Odor Identification Test 

were significantly lower for aMCI and AD compared to NC participants. Using multiple linear 

regression, we determined that scores on the Odor Identification Test decrease with age at a 

similar rate across all diagnostic categories, although the mean scores for each diagnostic 

category significantly differed. This may indicate that olfactory impairments begin earlier in life 

for those who go on to develop aMCI and AD, and is consistent with related findings that odor 

impairments may precede diagnosis of aMCI or AD by several years (Roberts et al., 2016; 

Schubert et al., 2008; Wilson et al., 2007). In addition, we found a weak effect of sex on odor 

identification scores, with females scoring better than males on average.  

 We further found that the Odor Identification Test is a useful tool for discriminating 

between participants with aMCI and participants with NC, while controlling for sex and age. An 

ROC curve fit with results from a logistic regression model had an AUC of 0.78, indicating good 

predictive value of the odor identification test. The sensitivity and specificity of the test at a 

threshold of 0.50 were 49.4% and 88.8%, respectively. While the odor identification test only 

correctly flagged about 50% of aMCI cases, it had a fairly low rate of false negatives. These 

findings are consistent with earlier studies of odor identification tests.  The University of 

Pennsylvania Smell Identification Test (UPSIT) (Doty et al., 1984) was found to have a 74% 

sensitivity and 71% specificity for identifying aMCI in a recent study (Woodward et al., 2017). 

Additionally, in a longitudinal study, the San Diego Odor Identification Test (SDOIT) (Krantz et 

al., 2009) was found to have a sensitivity of 55.1% and specificity of 84.4% for predicting the 5-

year incidence of cognitive impairment in a group of participants who had normal cognition at 
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baseline (Schubert et al., 2008). Thus, the NIH Toolbox Odor Identification Test appears to have 

similar or nominally better sensitivity and specificity for identifying aMCI compared to other 

evaluated odor identification tests.  

The fitted logistic regression model also indicated an increase in relative risk of aMCI of 

about 10.8% per year increase in age, suggesting that the relative risk of having aMCI doubles 

roughly every 6.75 years within this age group. Additionally, the model indicated that females 

have a 60.8% decrease in relative risk for having aMCI compared to males, given a particular 

age and score on the Odor Identification Test. To illustrate this effect, we plotted the fitted 

probability values for having aMCI for males and females against their scores on the Odor 

Identification Test, and fit loess smoother curves with 95% confidence intervals. We see from 

the plot that for females, scores of 3 and below on the Odor Identification test indicate greater 

than 50% probability of having aMCI, while for males, scores of 5 and below indicate greater 

than 50% probability of having aMCI. Thus, clinicians and researchers using the Odor 

Identification Test to evaluate the possible presence of aMCI should consider age and sex when 

determining diagnosis.  

For a subset of participants, data from various AD biomarker tests and APOE genotype 

data were available. We determined whether Odor Identification Scores differ significantly 

depending on the presence of AD biomarkers or the presence of at least one APOE e4 allele. We 

determined that odor scores were significantly lower for participants who had a positive AD 

biomarker test compared to those who had negative AD biomarker tests. This is consistent with 

previous findings that the severity of AD biomarkers, particularly tau pathology, correlates with 

performance on odor identification tests (Klein et al., 2021; Lafaille-Magnan et al., 2017; 
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Vassilaki et al., 2017). We determined that odor identification scores did not significantly differ 

between participants who had no APOE e4 alleles, and participants who had at least one APOE 

e4 allele. The APOE e4 allele is associated with an increased lifetime risk of developing aMCI 

and AD (Belloy et al., 2019), but when comparing APOE e4 allele status and olfactory 

impairment, there have been mixed results. One study found that there was a significant 

interaction between family history of AD and APOE e4 allele status on an odor identification 

test, but no significant main effect of APOE e4 allele status (Handley et al., 2006). However, in a 

10-year longitudinal study, APOE e4 homozygotes were found to have earlier onset olfactory 

impairment and more rapid decline in olfaction and cognition compared to controls (Josefsson et 

al., 2017). A third study found that APOE e4 homozygotes performed significantly worse on 

odor identification and odor memory tasks compared to APOE e3/e4 heterozygotes and 

noncarriers (Oleson & Murphy, 2015). A large population-based study (N=1236) found that 

APOE e4 allele carriers were impaired in odor identification compared to non-carriers, but that 

this effect was independent from 5-year conversion from NC to AD (Olofsson et al., 2010). This 

literature suggests olfactory impairment risk with one APOE e4 allele may be more easily 

detected with larger sample sizes, and that APOE e4 homozygotes have a substantially increased 

risk for olfactory impairments compared to APOE e3/e4 heterozygotes and noncarriers. 

However, in our sample of N=275 participants with available genotype data, only 19 were 

identified as APOE e4 homozygotes. This is likely too small a sample size to accurately test for 

effects of APOE e4 carrier status on olfactory performance.  

Lastly, since the NIH Toolbox Odor Identification Test was originally only validated for 

NC populations up to age 85 (Dalton et al., 2013), we tested performance on the test for a group 
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of N=96 NC participants ages 85 through 91. We found that performance on the Odor 

Identification Test for this age group was significantly lower compared to performance of NC 

participants aged 65-84. This is consistent with previous literature suggesting a steady decline of 

olfactory ability with age, beginning with a slow decline in the 40s-50s and a more rapid decline 

after age 60 (Albers et al., 2015; Dalton et al., 2013; Doty & Kamath, 2014). 

While we have determined that the NIH Toolbox Odor Identification Test is useful for 

classifying aMCI versus NC, it is not sensitive or specific enough to rely on for an individual 

diagnosis. Olfactory impairments are strongly associated with aMCI and AD, but are not specific 

to these disorders and have been associated with healthy aging (Dalton et al., 2013), Parkinson’s 

disease (Fullard et al., 2017; M. Witt et al., 2009), Huntington’s disease (Patino et al., 2021), 

multiple sclerosis (Carotenuto et al., 2019; L.-M. Li et al., 2016), traumatic brain injuries 

(Howell et al., 2018), and strokes (Wehling et al., 2015). We have identified a positive predictive 

value for the NIH Toolbox Odor Identification Test of 69.6%, while the Negative Predictive 

Value was 77.1%. While the test cannot provide a definitive diagnosis, we suggest that this 

simple and cost-effective 9-item test may be useful if included in annual physical exams 

provided to senior patients. If a low score is obtained, then the patient may be referred for in-

depth neuropsychological evaluation by a specialist to determine whether other symptoms of 

mild cognitive impairments are present.  

An additional consideration is the cultural relevancy of odor identification tests. These 

tests require some degree of familiarity and past experiences with the presented odors. Many 

odors are language- or culture-specific, and native speakers have been shown to perform 

significantly better on tests developed within their culture compared to non-native participants 
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(Cavazzana et al., 2017; Cho et al., 2009; Shu et al., 2007). With this in mind, we caution that 

using the NIH Toolbox Odor Identification Test to evaluate risk of aMCI outside of the United 

States population may not be as accurate.  

Further studies are needed to determine whether the NIH Toolbox Odor Identification 

Test has longitudinal predictive power for identifying which NC participants will convert to 

aMCI, and which aMCI participants will convert to AD. Additionally, investigations into the 

relationships between odor identification scores and amyloid and tau burden will help determine 

the usefulness of these tests for identifying participants with AD-specific pathologies. In 

summary, we have provided evidence for the association between scores on the NIH Toolbox 

Odor Identification Test and diagnosis across NC, aMCI, and AD participants, and we have 

demonstrated that this test has good predictive power for classifying NC from aMCI participants.  
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Chapter 5: Concluding Remarks and Future Directions 

 In the present thesis work, we have provided a detailed characterization of the human 

olfactory and OFC anatomical brain networks, and evaluated relationships between olfactory 

performance and age across NC, aMCI and AD cohorts. Here, we consider the broader 

significance of our findings, and propose new lines of future research to further our 

understanding of the human olfactory-OFC brain network’s anatomy and function in health and 

disease. 

Our results in Chapter 2 provide novel evidence for specific projections of the human 

lateral olfactory tracts into primary olfactory cortex, and provide evidence for a relationship 

between olfactory tract microstructural integrity and olfactory perceptual performance. However, 

the specific cellular-level topological organization and functional dissociation of the parallel 

olfactory tract pathways have yet to be determined. Future work might start by identifying 

whether specific parts of the olfactory bulb project to specific cortical ROIs by using high 

resolution structural and diffusion MRI methods. Sub-millimeter resolution structural scans are 

becoming more common, and can be achieved with good signal-to-noise ratios when using 7T 

and 10T scanners, although scanning time required will be quite high. In in vivo studies, 

participants with a range of olfactory perceptual abilities can be recruited and evaluated for 

differences in olfactory tract microstructural integrity. We may then be able to determine 

whether microstructural measures in the separate olfactory tract striae relate to different olfactory 

functions. In addition, potential post mortem experiments could combine high-resolution 

structural and diffusion MRI measures with histological methods and newly developing ex vivo 

axon tracing methods (Heilingoetter & Jensen, 2016; Yendiki et al., 2022) to investigate the 
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microstructural and cellular-level anatomy of the human olfactory tracts and primary olfactory 

cortex in greater detail. Our probabilistic lateral olfactory tract atlas will help in localizing the 

lateral olfactory tracts and striae in future structural and diffusion MRI investigations of these 

pathways. 

Our work in Chapter 3 provides a detailed characterization of the human OFC anatomical 

networks, and further identifies OFC subregions that have distinct connectivity profiles through a 

k-means clustering approach. With these results, we are able to identify how the OFC is situated 

within several brain-wide anatomical networks, and develop hypotheses regarding OFC function 

and contribution to these networks’ functioning. We found that the OFC shares strong 

connectivity with the hub regions in the ventral attention network, the default mode network, and 

the central executive network, suggesting that the OFC may provide some influence in the 

activity of these networks. One hypothesis is that the OFC’s “cognitive map” of motivationally-

salient stimuli and their contextual relevancy may serve as a sort of reference for the ventral 

attention network to help determine if and when an incoming stimulus should be allowed to 

interrupt or recruit the functions of the central executive network. Further research, perhaps 

using a task-based fMRI approach, will be necessary to test these hypotheses. Potential 

experiments may characterize task-based functional connectivity between regions of the ventral 

attention network, central executive network, and the OFC during a decision-making task with 

changing reward contingencies. Differences in OFC functional connectivity with the ventral 

attention and central executive networks could be characterized in response to changing stimuli 

that are task-relevant and that require a change in behavior to complete the task, versus salient 

distractor stimuli that should be ignored in order to successfully complete the task. A transcranial 
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magnetic stimulation experiment could also determine whether a participant would perform more 

poorly on this type of task following temporary deactivation of the OFC. Ultimately, our 

characterization of the human OFC’s anatomical networks provides a myriad of jumping-off 

points for generating testable mechanistic hypotheses on the function and behavioral importance 

of the human OFC.  

Our findings in Chapter 4 add to a growing body of literature documenting olfactory 

perceptual impairments in the aMCI to AD disease process. While evidence is accumulating that 

olfaction is impaired early on in the disease process, and that olfactory perceptual tests are able 

to detect early stages of cognitive decline and predict future conversion to AD, a mechanistic 

understanding of the olfactory neuropathology is still lacking. Future studies may use optimized 

MS-EPI diffusion MRI and structural MRI sequences, such as the one developed for this thesis 

work, to evaluate the microstructural integrity of the lateral olfactory tracts, olfactory bulbs, and 

primary olfactory cortical regions in elderly participants across NC, aMCI, and AD. Diffusion 

microstructural measures such as FA and MD may be used to evaluate differences across groups 

and identify signs of neurodegeneration in the olfactory system. Pairing these techniques with a 

longitudinal study design would allow us to build temporal hypotheses regarding disease 

progression, and determine whether degeneration follows along previously identified white 

matter pathways and across synapses. 

 The current findings provide a new level of insight into the anatomical network structure 

of the human olfactory system and OFC. Additionally, we found that olfactory functioning is 

impaired in aMCI and AD, suggesting that olfactory brain regions are likely adversely affected 

in these diseases. New lines of research will be necessary to further elucidate the anatomical and 
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functional characteristics of specific regions and pathways within the human olfactory-OFC 

brain networks, and their susceptibility to degeneration and dysregulation in the aMCI to AD 

disease process. The findings presented in this thesis provide a valuable reference for generating 

anatomically-informed hypotheses of human olfactory-OFC function in health and disease.  
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