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ABSTRACT

The Effect of Gender Diversity in Creative Teams

João Amado Gomez Moreira

Individuals commonly engage in collaborative behavior to more easily produce works of

high societal impact. The effect of many individual characteristics such as age or gender

on the effectiveness of a team is still unclear. Gender is especially pertinent because many

professional settings are still far from gender parity, despite ongoing controversy about innate

differences between males and females.

In this dissertation, I use a rigorous mathematical approach validated with large datasets

to study the effect of gender diversity in scientific collaborations and movie productions, and

the impact of scientific works.

First, I analyze the publication records of thousand of researchers in science, technology,

engineering, and math disciplines and show that previous contradicting findings of gender

differences in collaboration patterns are a by-product of females’ historic disadvantages in

academia. I also present evidence of gender segregation in some sub-disciplines of molecular

biology.

While there have been claims that males may be better suited for research than females,

the same cannot be said for the movie industry. Therefore, to ensure the generality of my
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findings, I also study gender diversity in U.S. movie casts. I demonstrate that a period of

concentration of power at the hands of a small group of male leaders had a severe negative

influence on female representation in the U.S. movie industry. Moreover, I find gender

diversity among movie producers, directors, and actors to be strongly interdependent which

can exacerbate female under-representation in movie casts.

The success of creative teams is also determined by how their work is received by their

peers. Having limited time and expertise, individuals use a variety of measures to identify

which books to read, movies to watch, songs to listen, or sights to see. Yet, most metrics are

subjective measures of quality that can have unknown biases. I develop a principled indicator

that quantifies the long-term impact of scientific works. By virtue of its construction, my

indicator is resistant to manipulation and rewards publication quality over quantity.
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CHAPTER 1

Introduction

Humans are a cooperative species. Governments must engage in trade deals to provide

their respective citizens with more choices of goods and exotic delicacies. International

and private institutions regularly fund scientific collaborations involving researchers from

different universities and countries [1]. Companies strategically share resources and partners

to create surprising new innovations [2, 3]. Artists who work in close proximity act share

ideas and act as each other’s critic and fan, thereby improving the overall quality of their

works [4]. As illustrated by these examples, we band together to find solutions to problems

that no single individual could solve alone. Indeed, a “collective intelligence” can emerge for

a group of individuals that is not simply the sum of individual intelligence [5].

Despite the advantages of working as a team [4, 6–9], personal and hierarchical differences

between individuals and institutions can create conflicts, insecurity, and miscommunication

that detract from the team’s effectiveness [10–13]. The exact effect of individual character-

istics such as age, gender, or location on team impact is an area of active research.

Gender is a particularly relevant characteristic. Even though the general population is

nearly gender-balanced, this is not observed in most sectors of society. While some argue

that some professions are more suited to a single gender, the fact is that gender diversity is

increasingly regarded as a desired condition by many institutions and corporations. Indeed,

a prolonged gender imbalance in a given occupation can turn to unconscious bias that, over



13

time, will give rise to the unhealthy stereotype that only males (or females) are suited for

that job [14].

In science, technology, engineering, and mathematical (STEM) disciplines, researchers

have shown that females make for better collaborators than males [15–17] and that mixed-

gender teams produce higher impact works than single-gender groups [18], others have re-

ported that males publish more [19] and are more prolific collaborators than females [20, 21].

Given the current gender gap in STEM disciplines it is vital that we understand how re-

searchers’ gender facilitates or hinders the effectiveness of collaborations.

However, studying gender discrimination in science teams is complicated by claims that

there are innate mathematical and logical ability differences between genders [22, 23], and

that females choose to leave academia to raise children [24] or to pursue a scientific career

in other industries [25]. One profession where no such arguments can be made is acting.

Indeed, the movie industry gives the same accolades to female and male actors. Moreover,

the fact that movie productions are usually just a few months long and that actors can go

several years without appearing in a motion picture make acting more amenable to childcare

than most other careers.

Yet, there is evidence for gender discrimination in the movie industry. While females

are present in nearly all movies, action movies are typically associated with males, whereas

romance movies are more closely identified with females [26, 27]. Furthermore, Hollywood

has an insidious gender wage gap, as recently brought to light by some of the industry’s most

famous actors and actresses [28–30]. The origin of this gender discrimination and the effect

of gender diversity in movie-making teams are still unsettled questions.

To fully determine the success of creative teams it is not enough to study their gender

diversity. We must also analyze how the work produced by teams is perceived by their
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peers. Scientific collaborations create publications whose impact can be quantified using

bibliometric indicators. Unfortunately, despite the rather large number of ad-hoc bibliometric

indicators of scientific impact proposed in recent years [31–40], there have been surprisingly

few attempts to develop a rigorous framework that reliably quantifies scientific impact [41–

45]. Such a framework can be used to promote science of excellent quality, with the capability

to promote innovation, economic growth, and social well-being.

In this dissertation, I present a quantitative, large-scale study of the effect of gender

diversity in creative teams, coupled with a rigorous framework to quantify the impact of

scientific works.

1.1. Gender disparities in scientific collaborations

Collaborations bring many benefits to all scientists involved. Studies show that collab-

orations can decrease experimental costs [3], increase researcher productivity [1, 6, 46] and

creativity [2, 4]. Moreover, teams have a greater chance of producing publications with

higher impact than individuals [8], especially if they constitute novel collaborations [7, 9].

Given that collaborations can deeply impact researchers’ careers, it is vital to understand

the individual factors that enable a collaboration to be successful such as researcher nation-

ality [47], institute, [12], discipline [13], or gender [48]. The effect of this last factor is of

particular interest. On one hand, some studies revealed that, compared to males, females

have fewer single-author publications than males [19], prefer to work in less hierarchical

structures [15], show less self-interest [17], and are more cooperative [16], suggesting females

make for better collaborators. On the other hand, other researchers showed that males can

be more productive than females [20, 49] and have more international collaborations [21].
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However some of these apparently contradictory results rely on small samples or self-reported

surveys and thus have small statistical power.

Furthermore, female researchers are at a disadvantage in nearly all science, technology,

engineering, and math (STEM) disciplines. Females comprise only a small percentage of

faculty members [50] in STEM and there is a growing gender gap with advancing levels of

science specialization [51], the so-called “leaky pipeline” phenomenon. Several researchers

also report that female faculty suffer systemic and selective pressures creating a “glass ceiling”

that prevents career advancement [52–56] and that females are more risk-averse than males

[57].

A proper study of gender diversity in scientific collaborations should take structural

factors such as academic positions and publication volume into consideration. Indeed, after

controlling for age, discipline, and career stage, Bozeman et al. find that females overall

collaborate more than males after [58, 59]. Moreover, McDowell et al. find evidence for gender

homophily in collaborations among economists [60], i.e., researchers prefer to collaborate with

others of the same gender. Thus, the presence of gender homophily suggests that females have

fewer opportunities for collaboration [61], which could help explain some of the apparently

contradictory results on gender differences in collaborations. A systematic, large-scale study

clarifying the role that gender diversity plays in scientific collaborations would go a long

way towards understanding productivity differences between male and female researchers in

STEM disciplines.

1.2. Gender discrimination in movie productions

Movies have the power to make us afraid, laugh, cry, think, and even angry. Some actors

can obtain a high level of notoriety from their movies which enable them to get cult-like
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followings [62], dictate fashion trends [63], and even exert political influence [64]. On the

whole, the movie industry has an enormous impact on the world economy. In 2015, 708

movies were released worldwide, which generated US$38 billion in revenue [65] and involved

more than 600,000 direct jobs [66].

A movie can be viewed as a collaborative act between several actors, producers, directors,

screenwriters, and other crew members. Therefore it is reasonable to assume that individual

characteristics have an effect on the impact of movie-making teams, perhaps even more so

than individual characteristics on scientific collaborations, since even so-called “one-actor”

movies often require tens of supporting crew as well as a director and one or several producers.

In principle, gender should not play a role in the effectiveness of movie production teams:

outstanding female and male actors are both similarly laudable, and the fact that, on average,

actors participate in a single movie production per year precludes the need for female actors

to go on maternity leave. Yet, examples of female discrimination were abundant throughout

much of the 20th century [26, 67]. Females actors suffer from age [68, 69] and salary [70]

discrimination, and get less acting opportunities than their male counterparts [71, 72].

Several researchers have suggested that the emergence of the Hollywood “studio system”

may have been at least partly responsible for the observed gender discrimination in the movie

industry [69, 70, 73, 74]. In 1920, the five biggest studios in Hollywood (MGM, Paramount,

Warner Bros., RKO, and Fox) banded together into a cartel that controlled every aspect

of a motion picture, from casting of actors and hiring of directors and writers, all the way

to distribution and exhibition of the final movie [75]. The few leaders of the production

companies composing the studio system — white males such as Louis B. Mayer, David

Sarnoff, David O. Selznick, or Jack Warner — essentially gained absolute control over the

Hollywood movie industry.
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The studio system started to crumble when, in 1944, actress Olivia de Havilland suc-

cessfully sued Warner Bros. to end long-term contracts in Hollywood [76]. This decision

gave actors greater creative freedom to chose their projects. The studio system was finally

disbanded in 1948, after the U.S. Supreme court it to be in violation of anti-trust laws [77].

Adverse effects of the studio system’s policies continued to be felt for years after its

dissolution. Female screenwriters were present at the start of the movie industry, and even

though they were the minority gender, the average female screenwriter had the same visibility

as the average male screenwriter [73]. However, with the establishment of the studio system,

female screenwriters were quickly pushed to the background. Only recently have female TV

and movie screenwriters started to gain recognition again [78, 79].

Surprisingly, most studies performed so far on gender discrimination against actors, pro-

ducers, directors, or screenwriters are either mostly qualitative, or consider only recently-

released or highest-grossing movies. A comprehensive, large-scale analysis of historical pat-

terns of female representation in the movie industry is still lacking. Such an analysis can

yield valuable insights regarding the effect of gender diversity in movie productions.

1.3. Scientific impact of published research

The exponential growth of scientific literature in the past half century has all but strained

researchers ability to keep up with recent developments. To choose what to browse, read or

cite is now a very challenging task for researchers. Simultaneously, the scientific workforce

also experienced a tremendous growth. In order to continue generating ever more specialized,

high quality knowledge, universities, funding agencies, and reviewers need to be able to

evaluate the creativity and productivity of researchers. Neither researchers nor evaluating
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entities have in-depth experts on all fields, therefore they need to rely on proxies or indicators

of publication quality, researcher impact, etc.

Bibliometric indicators are measures that consider one or more of counts of scientific

publications and citations received by them in the scientific literature, co-authorship and

concentration within specific journals, journal prestige just to name a few [80–82]. The

number of citations, in particular, represent a measure of the impact or influence of not

only specific publications but scientific journals [83], individual researchers [31, 84], research

groups [85], institutions [21, 86, 87] or even whole cities and nations [88–90].

Various bibliometric indicators have been proposed such as the notorious Journal Impact

Factor [91] and the h-index [31] which measure the impact of scientific journals and individual

researchers, respectfully. Yet, despite their growing numbers [32–40], for the most part,

existing bibliometric indicators constitute simple heuristics of citation counts and thus can be

biased by career stage or publication volume, or be susceptible to manipulation [80–82, 92–

99]. To address these issues, many researchers sought to develop bibliometric indicators

that are unbiased by collaboration contribution [100, 101], researchers’ career stage [102],

journal citation skewness [42, 103, 104], or field size [41, 105]. The increasing demand for the

evaluation and accountability of science both from within the scientific community and the

public [106–111] means we can no longer afford to rely on flawed indicators of performance.

Citation counts span many orders of magnitude, thus it is ill-advised to work with the

raw number of citations directly when creating an indicator [112]. Furthermore, extensive

research on the aging of scientific literature shows that publications’ citation rates change

over time and eventually reach a steady-state [113–118]. As a result of this process of accu-

mulating citations, any set of publications can be characterized by a cumulative distribution
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of citations. This distribution represents the probability of a publication acquiring a given

number of citation after a certain elapsed time period.

A lognormal distribution was one of the first proposed functional forms for the citation

distribution [119]:

P (n) =
1

n
√

2πσ2
exp

(
−(lnn− µ)2

2σ2

)
,

where µ and σ represent, respectively, the mean and standard deviation of lnn. Several

researchers have since provided empirical evidence for the use of a lognormal model to study

citation distributions [41, 42, 45, 120–122].

More recently, inspired by Burrell’s idea of the existence of a latent variable that de-

termines the number of citations receive by a publication [115, 123], Stringer et al. used a

modified lognormal model to demonstrate that the distribution of the number n of citations

to publications published in a given journal in a given year converges to a stationary discrete

lognormal functional form after, on average, ten years [42, 124]. With their model, Stringer

et al. can successfully quantify the long-term impact of publications published in a scientific

journal. This suggests that the framework of the discrete lognormal may be used to develop

an unbiased bibliometric indicator of scientific impact at several levels.

1.4. Objectives

The primary goal of my research is the quantification of the effect of gender diversity in

creative teams. I first present a quantitative analysis of the origins of gender disparities in

two distinct domains that are each of paramount importance to society as whole: scientific

collaborations, the main drivers of knowledge creation worldwide, and movie-making teams,
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the creators one of the most popular forms of entertainment. I then focus on the quantifi-

cation of the impact of the work produced by some of these teams. Namely, I present a

framework to quantify the long-term impact of scientific publications.

In Chapter 2, I study gender diversity in scientific collaborations. Historically, female

researchers have been at a disadvantage in STEM disciplines. Females have lower publication

rates and shorter careers than males. These observed gender disparities make it difficult

to interpret differences in collaborations patterns between male and female researchers. I

perform a quantitative analysis of researcher collaborations that properly controls for these

historic disadvantages suffered by females. I also analyze systemic differences both between

and within several STEM disciplines.

Some researchers have posited that observed gender differences in science may be due

to innate ability differences between genders, or females choosing to leave academia. For

these reasons, in Chapter 3, I turn my studies to the acting career, as it is a profession

with no innate differences between males and females but one where gender discrimination

nevertheless still exists. I propose a possible cause for the low female representation among

actors in the in the U.S. movie industry. I then find how the gender diversity of producers

and directors influences the gender composition of actors in a movie production. I also

investigate the role of genre and movie budget on female representation in the industry.

To determine the effect of individual characteristics on team dynamics, we need to quan-

tify the impact of the output from those teams. Therefore , in Chapter 4, I design and

rigorously validate a principled framework to measure the long-term impact of scientific

publications grounded on the functional form of the discrete lognormal distribution. I use

this framework to construct a bibliometric indicator to measure the scientific impact of the

publications authored by a researcher and those associated with a given research institution.
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CHAPTER 2

Gender differences in collaboration patterns of STEM researchers

This work was published with Xiaohan Zeng, Jordi Duch, Marta Sales-Pardo, Filippo

Radicchi, Haroldo Ribeiro, Teresa Woodruff, and Lúıs Amaral as “Differences in Collabora-

tion Patterns Across Discipline, Career Stage, and Gender” in the Meta-Research section of

PLoS Biology [125].

2.1. Abstract

Collaboration plays an increasingly important role in promoting research productivity

and impact. What remains unclear is whether female and male researchers in science,

technology, engineering, and mathematical (STEM) disciplines differ in their collaboration

propensity. Here, we report on an empirical analysis of the complete publication records

of 3,980 faculty members in six STEM disciplines at select U.S. research universities. We

find that female faculty have significantly fewer distinct co-authors over their careers than

males, but that this difference can be fully accounted for by females’ lower publication rate

and shorter career lengths. Next, we find that female scientists have a lower probability of

repeating previous co-authors than males, an intriguing result because prior research shows

that teams involving new collaborations produce work with higher impact. Finally, we find

evidence for gender segregation in some sub-disciplines in molecular biology, in particular in

genomics where we find female faculty to be clearly under-represented.
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2.2. Author summary

Collaboration is increasingly important role in promoting research productivity and im-

pact. What remains unclear is whether female and male researchers differ in their collabora-

tion practices. In our study, we report on an empirical analysis of the complete publication

records of 3,980 faculty members in six science, technology, engineering, and mathematical

disciplines at select U.S. research universities. First we find that female faculty have signif-

icantly fewer distinct co-authors over their careers than males, but that this difference can

be fully accounted for by females’ lower publication rate and shorter career lengths. Next,

we find that female scientists have a lower probability of repeating previous co-authors than

males, an intriguing result because prior research shows that teams involving new collabo-

rations produce work with higher impact. Finally, we find evidence for gender segregation

in some sub-disciplines in molecular biology, in particular in genomics where we find female

faculty to be clearly under-represented.
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2.3. Introduction

It is widely acknowledged that collaboration is critical to the scientific enterprise [12,

13, 47, 126–129]. Although the motivations determining collaboration propensity is still the

subject of much research, scientists benefit from collaboration both in terms of productivity

and impact [2–4, 6, 46]. For example, Bordons et al. [1] showed that for biomedical research

there is a positive correlation between productivity and collaboration at the author level,

and Wuchty et al. [8] showed that teams produce publications with higher impact than

individuals. Moreover, teams that include novel collaborations have a greater likelihood of

producing higher impact work [7, 9].

Since research suggests that collaboration patterns affect a researcher’s career perfor-

mance, it is important to understand whether there are gender differences in collaboration

patterns [14, 48]. Indeed, Kyvik and Teigen [19] reported that the productivity of both

genders is positively correlated with the level of collaboration, and that females have fewer

single-author works than males.

Prior research suggests that women tend to be more collaborative and less competitive

than men in decision making, making them potentially better collaborators [15–17], but

recent studies have reported contradicting results about which gender is more collaborative

[20, 21, 58, 59, 130].

Because most STEM fields have much larger numbers of males than of females, ho-

mophily would suggest that female academics have fewer opportunities for collaboration

[61]. McDowell et al. [60] find evidence of gender homophily in collaborator choice among a

sample of economists and that females preferentially apply to larger departments to increase

their chances of finding collaborators. Bozeman et al. not only find evidence of the same
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gender homophily [58] but also that, after controlling for gender disparities, females overall

collaborate more than males [59].

To investigate the role of gender in collaborative behavior, we perform a large-scale

empirical analysis on the publication records of faculty members for six STEM disciplines.

Our analyses yield three main findings. First, female faculty have significantly fewer distinct

co-authors than male faculty, but that this difference can be fully accounted for by the

shorter career lengths of current female faculty and their lower publication rate. Second,

female faculty tend to have a lower probability of repeating a collaboration, a strategy that

has been shown to produce work of greater impact. Third, for the discipline of molecular

biology, we find evidence for gender segregation in some sub-disciplines. In particular, we

find that female faculty are clearly under-represented in genomics.

2.4. Data

We obtain complete faculty rosters, as of Fall 2010, for departments of chemical engi-

neering, chemistry, ecology, materials science, molecular biology and psychology from several

top research universities in the United States (US) (Tables B.1–B.3). We consider all active

faculty members as of 2010, including tenure-track and research faculty, but exclude emeritus

professors. We identify the researchers’ gender from their departmental website photograph.

If they have no photograph we use their given name to identify the gender (faculty with am-

biguous names were excluded). We then obtain bibliometric data for 3,980 faculty members

from Thomson Reuters’ Web of Science (WoS) based on the biographical information listed

on their websites and curricula vitae. See [50] for details on data acquisition and validation,

and Table 2.1 for aggregate statistics.
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Table 2.1. Characteristics of the faculty cohorts in our study.

Discipline Depts.
Faculty Publications

Female Male Ratio Female Male Ratio

Chemical Engineering 31 98 567 1:5.8 6,392 66,328 1:10.4
Chemistry 35 198 1,020 1:5.2 13,790 137,723 1:10.0
Ecology 15 106 328 1:3.1 3,976 22,425 1:5.6
Materials Science 26 98 473 1:4.8 9,538 75,373 1:7.9
Molecular Biology 11 168 474 1:2.8 9,882 51,234 1:5.2
Psychology 10 171 279 1:1.6 7,143 20,976 1:2.9

Total 129 839 3,141 1:3.7 50,721 374,059 1:7.4

2.5. Results

2.5.1. Gender differences in number of collaborators

Since scientific publications are the direct product of scientific research and collaboration,

the number of distinct co-authors a researcher has accrued throughout her career is a good

proxy of how strongly she seeks collaborations. Because collaboration patterns may be

discipline-specific, we examine each discipline separately [131]. Moreover, because collabora-

tion patterns may depend on career stage, we also account for career stage in our analyses.

We focus on the number of distinct co-authors; that is, we count only once co-authors

that appear multiple times in the publications of an individual. We do this because co-

authoring publications with new collaborators more likely indicates the introduction of new

expertise into the team and the expansion of one’s professional network.

We calculate the distribution of total number of distinct co-authors over the career of

the scientists in our database. Our raw results show that for all six disciplines, females

on average have a significantly lower number of distinct co-authors over their careers than

males (Fig. 2.1). However, in order to properly interpret these results, we must account

for the fact that until 1980 there were hardly any female faculty, which implies that female
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faculty typically have shorter career length and thus are likely to have fewer publications

than their male colleagues [50]. Moreover, because of the gender gap in the number of

publications [50, 132], it is necessary to control for publication rate when comparing the

number of co-authors of females and males. Thus, we test the null hypothesis that there is

no gender difference in the number of distinct co-authors when controlling for the number of

publications (see Appendix A.1). The confidence intervals constructed under this hypothesis

show that once we account for the number of publications, the observed difference in the

distribution of the number of distinct co-authors of female and male faculty is not statistically

significant (Fig. 2.1).

2.5.2. Repeated co-authors and propensity to collaborate

The data from Fig. 2.1 shows that female and male faculty accrue an average number of

new distinct co-authors per publication that is indistinguishable from the average for males.

However, this observation does not imply that females and males accrue new collaborators

in the same manner, or that they have the same propensity to collaborate.

2.5.2.1. Accruing new collaborators. Consider a publication of researcher i and nc co-

authors. The number nn of distinct co-authors that i accrues can be expressed as

nn = nc (1− fr) , (2.1)

where fr is the fraction of repeated co-authors. Eq. (2.1) makes explicit that both team size

(that is, nc) and propensity to repeat collaborations affect the number of new distinct co-

authors to be gained from each publication. We first investigate the effect of the repetition

of co-authors on the gender disparity in the number of distinct co-authors. Researchers who

frequently co-author with the same team will not accumulate co-authors as rapidly as those



27

10 100 800

Chemistry

10 100 500

0.2

0.4

0.6

0.8

1.0

Ecology

10 100 800
0.0

0.2

0.4

0.6

0.8

1.0

Chemical Engineering

10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Materials Science

10 100 1000

Molecular Biology

10 100 400

0.2

0.4

0.6

0.8

1.0

Psychology

Total number of distinct co-authors over career

S
u

rv
iv

a
l 
c
u

rv
e

Figure 2.1. Lower number of publications by female scientists results in lower
total number of distinct co-authors. Survival curve of the total number of co-authors
over careers of females (orange) and males (purple). We test the null hypothesis that there
is no gender difference in the total number of distinct co-authors for females and males
with similar number of publications. The grey shaded region indicates the 95% confidence
interval obtained under the null hypothesis. To construct the confidence interval, we generate
samples of NF males, where NF is the number of females in our dataset. For a female
with nF publications, we select a male whose number of publications falls in the range
of [0.8 nF , 1.2 nF ] (see Appendix A.1). Note that the curve for females falls inside the
confidence interval, indicating that after correcting for number of publications, females and
males have comparable numbers of distinct co-authors over their careers. The curve for
males falls outside the confidence interval because some male researchers in the dataset have
very large numbers of publications (see Fig. 7 of [50]).

who seek out new collaboration opportunities. To quantify the tendency to repeat previous

co-authors, we calculate fr for each author, and obtain the distribution of fr for both genders

for each discipline. We then test whether the two samples could have been drawn from the

same distribution.

We show in Fig. 2.2 the probability distribution functions of fr for females and males.

The data show that females have an fr approximately 20% smaller than males, indicating
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that female faculty repeat co-authors less frequently than male faculty. More frequent repe-

tition of co-authors may also be an indicator that a few co-authors are responsible for most

collaborations. We use the Gini coefficient [133] and the disparity index to quantify the

degree of inequality in the distribution of collaboration frequencies, and find that females do

tend to distribute their co-authoring opportunities more equally among their collaborators

than males (Figs. C.1–C.3).1

2.5.2.2. Average team size. We next study the average number of co-authors per publi-

cation, nc. Researchers who collaborate with larger teams have higher numbers of co-authors

per publication. However, the number of co-authors changes as a function of the publica-

tion year and author’s career stage (Fig. C.5). Since female faculty entered academia more

recently and on average have shorter career lengths than male faculty [50], we need to ac-

count for these two factors when comparing team sizes. In Fig. 2.3 we show that, except for

molecular biology, the two genders do not differ significantly in the number of co-authors

per publication when their publication year and career stage are taken into consideration.

2.5.3. The case of molecular biology

Our findings for molecular biology are intriguing. While there are no significant differences

during the first ten years, beyond ten years, publications authored by females in molecular

biology have significantly lower number of co-authors per publication than those authored

by males. To further detail this observation, we bin the publications authored by females

according to the number of co-authors, after accounting for increases in team size over

the period considered. Assuming that females do not prefer any particular team size, the

1Although the gender difference in the tendency to repeat co-authors is significant, our ability to establish
its statistical significance on the total number of distinct co-authors is hampered by the heterogeneity in
team size and number of publications (Fig. C.4).
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Figure 2.2. Gender differences in the propensity to co-author with prior collab-
orators. Probability distribution of the fraction of total coauthors who are repeated for
all females (orange) and males (purple) in the dataset with at least 10 publications. We
exclude single-author publications. Orange and purple lines are kernel density estimation
of the distributions for females and males with bandwidth given by Scott’s Rule [134].
We obtain p-values for the validity of the null hypothesis that the samples were drawn
from the same distribution using the Kolmogorov-Smirnov test. For all disciplines, we find
δ = 2(f̄r,F − f̄r,M)/(f̄r,F + f̄r,M) < 0, where f̄r,F and f̄r,M are the average fr of the female
and male faculty, respectively. Females have fr smaller than those of males, suggesting that,
except for materials science, female faculty have a lower propensity than male faculty to
repeat collaborations.

fraction of publications by females in each bin should remain approximately constant. For

each bin, we then calculate how much the observed number of publications by females deviate

from the number expected from the null hypothesis using the hypergeometric distribution

(see Appendix A.1). Figure C.6 demonstrates that female faculty in molecular biology

departments have a distinct behavior from females in other disciplines: They consistently

author significantly more publications than expected in teams smaller than average, and

significantly fewer publications than expected in teams larger than average. We make this
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Figure 2.3. Male and female faculty have similar number of co-authors per pub-
lication for five other disciplines, but not for molecular biology. Probability of
females having greater number of co-authors per publication in a given year of her career
than a male peer at the same career stage (red lines). We use z-scores to account for the
increasing size of research teams and the fluctuations over career stage (see Appendix A.1).
We indicate the 99% confidence intervals by the grey areas, and the medians of the prob-
abilities obtained from random ensembles by black lines. The p-values are obtained under
under the null hypothesis that there is a 99% probability of any value being outside the
confidence interval. Note that although the difference in the average size of teams appears
to be statistically significant, it is not consistent along the career stage, except for chemistry
for the first few years, and for molecular biology in later career stages (dark horizontal bars).

fact visually apparent by shading in grey regions where the observed value is significantly

different from the null hypothesis.

2.5.3.1. Segregation among sub-disciplines. Although we restrict our analysis to re-

searchers within the same discipline, academic disciplines such as molecular biology com-

prise several sub-disciplines. If females and males are segregated across sub-disciplines so

that more males work in sub-disciplines with large teams, and more females in those with

small teams, then this segregation could give rise to the gender gap in the average number

of co-authors per publication.
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Figure 2.4. Female faculty in molecular biology departments publish more in jour-
nals and sub-disciplines where typical team size is smaller. We show correlation
between the average number of co-authors corrected for the annual average and the fraction
of publications authored by females, grouped by journal. We only consider publications au-
thored after the tenth year mark in an author’s career. We restricted the publication types to
“article”, “letter”, and “note.” The size of the circle is proportional to the logarithm of the
number of publications in that journal or sub-discipline. We use journal category in the ISI
Journal Citation Report as the sub-disciplines. Journals with multiple categories are plotted
as concentric rings. The purple line indicates the total average fraction of publications by
females for all the publications authored by faculty in molecular biology in our cohort, fM
(17.3%). The blue line is a weighted linear regression, in which we assign to each journal a
weight equal to the number of publications. We only include data points within the range
of [0.5fM , 2fM ].

We find that at journal level the average number of co-authors is strongly and significantly

anti-correlated with the fraction of publications authored by females (Fig. 2.4). The strong

and statistically significant anti-correlation indicates that females publish more in journals

(and, presumably, sub-disciplines) where the typical team size is smaller, and less in those

where the typical team size is larger (see Figs.C.7–C.11 for results for other disciplines).

The journal-level analysis strongly suggests the existence of gender segregation across

sub-disciplines. However, many journals are multi-topic and even multidisciplinary, thus

they may not accurately represent narrower research topics. To overcome this limitation
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of the journal-level analysis, we must determine the research topic of each publication at

a finer scale. To this end, we use a highly accurate and reproducible topic classification

algorithm to identify the topics of publications [135]. We identify a total of 69 topics using

the titles and abstracts from the set of 61,116 publications by molecular biology faculty in

our database. Table B.4 lists the identified topics and the most representative words and

journals associated with them.

For the publications in each topic, we calculate the average team size and fraction of pub-

lications by females (Fig. 2.5). Using a 99% confidence region [136], we identify seven topics

that are outliers; of those, two are in molecular biology (Table 2.2). All the outlier topics in

chemistry and of the outlier topics in materials science actually have larger representations

of publications by female faculty and larger team sizes. In contrast, the outlier topics in

molecular biology have just larger team sizes. Looking at the representative journals for

each of the outlier molecular biology topics, it becomes clear that topic 6 refers to genomics.

Genomics (topic B5) is particularly relevant when attempting to explain the smaller team

sizes of female authored molecular biology papers. Genomics is unique because it has a very

striking under-representation of females and markedly larger team sizes. Moreover, because

it is a topic with a very large number of publications, it strongly affects the characteristics of

the entire discipline. These results prompt the question of why females are under-represented

in genomics. Table B.5 shows that 19 of the 20 most prolific researchers in our database

working in genomics are male. A recent study suggests that the labs of prominent male

researchers have lower than average fractions of female graduate students and postdocs [137].

Since the protégés of prominent scientists have such an important role in populating faculty

positions in molecular biology, the under-representation of females in those labs propagates

all the way to the level of tenured faculty.
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Figure 2.5. Topic dependence of female representation in publications in the six
disciplines. We show the average number of co-authors corrected for the annual average
for male faculty versus that for female faculty. Note for molecular biology most of the data
points fall above the line y = x, indicating that for most topics females work in smaller
teams than males. We label the seven topics which fall outside the 99% confidence region
(brown ellipse) (see Table 2.2 for topic details).

In order to investigate the origins of the distinct characteristics of the outlier topics, we

turn again to the lists of the scientists with the most publications in each topic (Tables B.5,

B.6). We then repeat the analysis of Fig. 2.5 but excluding the publications of the 5 most

prolific scientists for each outlier topic. Strikingly, we find that the characteristics of these

topics revert to the mean for the entire discipline. That is, the gender of the most prolific

authors determines the characteristics of the topic. We believe that this finding raises an

important question: Why females have not been able to succeed in genomics in proportion

to their numbers? No female in our dataset made it into the top 10 most prolific scientists

in genomics, the first female appearing in 12th place. If genomics was gender blind, and
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Table 2.2. Topics within considered disciplines that are outliers when considering
the differences in average team size between male and female faculty in our
database. Topic represents the topic number identified by the topic classification algorithm
and is field-specific [135]; Outlier topic represents the topic in Fig. 2.5.

Discipline Topic
Outlier
topic

Representative journals
No.

publs.

Norm.
ratio
by

females

Mean
norm.
team
size

C4 1

Cancer Research, Bioconju-
gate Chemistry, Antimicro-
bial Agents and Chemother-
apy

4,809 1.5 1.43

Chemistry C14 2
Nucleic Acids Research,
Physical Review E, Genome
Biology

1,354 1.3 1.37

C18 3
Journal of Membrane Sci-
ence, Radiochimica Acta,
Journal of Natural Products

1,399 1.2 1.14

Materials
Science

M0 4
Biomaterials, PNAS, Jour-
nal of Biological Chemistry

4,547 2.0 1.39

M29 5
Organome tallics, Journal of
Chemical Physics, Surface
Science

1,742 1.0 0.99

Molecular
Biology

B5 6
Nature Genetics, Genetics,
Nucleic Acids Research

4,186 1.0 1.51

B10 7
Molecular Biology and Evo-
lution, Genetics, American
Journal of Botany

899 1.1 1.22

considering that females comprise 26% of the biology researchers in our database, this would

be an unlikely situation (p ' 0.0095).
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2.6. Discussion

A number of recent studies support the hypothesis that there are gender differences

in collaboration patterns [14, 48] and that collaboration has a significant impact on sci-

entific productivity and impact [7, 8]. Evidence suggests that self-selection among female

researchers due to greater career risks, and female scientists’ decreased access to funding

can, respectively, cause gender differences in publication rate and impact [50, 60].

Our present analysis conclusively shows that females do have fewer distinct co-authors

over their careers, but that this gap can be accounted for by differences in number of pub-

lications. We also find evidence for the hypothesis that female scientists are more open to

novel collaborations than their male counterparts, a behavior that was shown to correlate

with producing work of greater impact [7].

It could be, however, that females have fewer distinct collaborators not purely because,

as the females in our cohort they publish fewer publications, but because female scientists

do not participate in research teams to the same extent as male scientists. We believe that

this possibility is unlikely since there is strong evidence that females are generally more

collaborative than males both in academic life [21, 59] and in other realms [15–17].

Concerning our finding that females appear to be more likely to engage new collaborators,

it could be that females are simply more effective collaborators and are able to make the most

of their lower representation in STEM disciplines. Wolley et al. showed that females typically

have greater group intelligence than males [5] giving some credence to this hypothesis. An

alternative explanation for the greater repetition of collaborations by males is unwarranted

authorship in publications for the purpose of increasing one’s publication counts. Anecdotal

evidence suggests that, while the number of scientists pursuing such gaming of the system

is small, they do tend to be male.



36

Lastly, our finding of female exclusion from genomics is of particular interest, especially

because of what it may imply concerning the cultural milieu of this sub-discipline. The

importance of culture on gender segregation is supported by recent studies showing the

existence of gender stereotyping in physics and its negative consequences for females in that

field [138, 139]. It is known that in some molecular biology sub-disciplines such as telomere

research (topic B21) the participation of female scientists has been encouraged. Indeed, 6 of

the 10 most prolific researchers in this topic are female (Table B.7). The top three researchers,

Elizabeth Blackburn, Virginia Zakian, and Carol Greider conducted their doctoral research

under the mentorship of Joseph Gall, who is known for having supported female scientists

at a time when misogyny was widely accepted. The important role of prominent scientists

in encouraging both males and females to pursue careers in research is also illustrated by

William H Bragg’s role in the recruitment of female scientists to crystallography. In contrast,

the cultural milieu in institutions such as Genentech [140] likely had a chilling effect on female

participation in genomics.

One caveat of our study is that it is limited by the fact that we are only able to track those

scientists that persisted within academia. We believe it is important to also investigate to

what extent our findings would still hold for scientists that were unable to remain in academic

positions at top universities. In a perverse way, it could be that females’ propensity to

collaborate creates both better publications and a successful research program, and greater

risk when the time comes for tenure decisions. Another caveat is that we are not able to

identify which coauthors may be trainees (graduate students or post-docs), a situation that

in many cases would be more representative of mentorship than of typical collaboration.
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CHAPTER 3

Probable causes of gender discrimination in the U.S. movie

industry

The work in this chapter is submitted for publication and was completed with contribu-

tions from Murielle Dunand, and Lúıs Amaral.

3.1. Abstract

Gender parity has been slowly but steadily increasing in many sectors of society. One

sector where one would expect to see near gender parity is the movie industry, yet the

numbers of females in most function of the U.S. movie industry remain surprisingly low.

Here, we study the historical trends of female representation among actors, directors, and

producers and attempt to gain insights into the causes of the lack of gender parity in the

industry. We demonstrate that the advent of the studio system, a period where the “Big

Five” Hollywood studios deliberately cooperated to control all aspects of the movie industry,

had an extremely negative impact on female representation. Indeed, female representation

among actors, directors, and producers dropped by more than half after the emergence

of the studio system, to values so low that the gender imbalance is still observed presently.

Moreover, we find that the gender diversity of a movie’s producers influences both the gender

of the director and the gender composition of the cast, and that female directors have a

statistically significant preference for more gender-balanced casts. Additionally, we find that

female directors are over-represented in two genres — Documentary and Romance — but

under-represented in seven other genres. Lastly, we find that actress representation in higher
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budget movies grew during the studio system, and that the increase in female representation

in the 1960s was most evident in the lowest budget movies.
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3.2. Introduction

Gender diversity is increasingly regarded as a desirable condition by educational, business,

and governmental organizations. Recent research shows that more gender-balanced groups

are better at complex decision-making [5] and females show less self-interest are are better at

complex moral reasoning than males [17]. Indeed, the proportion of women faculty members

in many STEM fields has been steadily increasing [50], as has the number of females in

corporate suites and in political office [141, 142]. These trends are positive because the

absence of women in leadership positions has a negative impact on women’s aspirations and

advancement and may perpetuate gender biases [71].

A factor muddying the discussion of the causes for lack of gender diversity is the argument

that males may be better suited to some professions (i) because of greater physical strength,

greater mathematical ability, or some other advantage; or (ii) because, unlike females, they

do not have to interrupt their careers due to childbearing. However, there is one career for

which neither of these arguments would ‘hold much water’ — acting. Indeed, unlike many

other professions for which it is much easier to name prominent male exponents than female

exponents, the same is not true for acting: Marlene Dietrich, Katharine Hepburn, and Meryl

Streep are just as recognizable as Douglas Fairbanks, Humphrey Bogart, and Tom Hanks.

Moreover, the fact that most actors participate in at most a single movie per year and can

go several years without appearing in a motion picture, makes the career more flexible and

amenable to actresses taking time away to care for young children.

Yet, there is evidence of significant gender discrimination against females in the U.S.

movie industry [26, 67, 70]. Females not only are offered less roles than males in certain

markets [71], they will also feature in fewer films if they have repeatedly co-starred with

the same counterparts [72], or as they age [68, 69]. Indeed, age affects an actor’s earnings
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Table 3.1. Coverage of gender information for the movies in our dataset. See
Appendix A.2 for details on gender assignment.

Gender

Role Coverage Males Females Unknown

Actors 98% 144,460 81,294 0
Directors 98% 6,281 543 71
Producers 94% 19,232 5,572 753

potential differently depending on gender. For females stars, movie earnings peak in the

mid-thirties, whereas for males stars they do not peak until they reach fifty [70].

We believe that the study of the historical patterns of female representation among actors

is likely to yield insights into the causes of gender discrimination without the confounding

effect of potentially different innate abilities for the profession. Thus, we study here the

temporal evolution of female representation in the cast of over 15 thousand U.S.-produced

movies released between 1894 and 2011. We find that prior to the establishment of the

Hollywood studio system (1920-1930) [75], female representation stood at nearly 30%, but

that it had decreased by nearly a third by the late 1940s and that it would take another

15 years before it returned to pre-studio system levels. Below, we show that concentration

of decision power among a small cadre of male executives predated the drop in female

representation and that only the breakdown of the studio system let female representation

rise again.

3.3. Background

The early movie industry was considerably more diverse in terms of gender and geogra-

phy than it would become by the time the Great Depression arrived. Until the mid 1910s,

France, Italy and the U.S. were all important movie production countries. Within the U.S.,

movies were being produced along the East Coast, from New York to Florida. However,
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within fifteen years, this situation would change dramatically. In the U.S., the attempt by

Thomas Edison and the Motion Picture Patent Company (MPPC) to control movie produc-

tion pushed many in the industry to relocate to California, and away from the legal reach

of the MPPC (Fig. 3.1a). In Europe, the first World War greatly hindered the development

of the industry. As a result, by the 1920s, Hollywood was the dominant player in the global

movie industry both in terms of the number of movies being produced (Fig. 3.1a) and in

terms of the profits captured [143].

Economic growth and co-location prompted industry consolidation and the emergence of

the so-called “studio system”. The “Big Five” studios (MGM, Paramount, Warner Bros.,

RKO, and Fox) formed a cartel that controlled every aspect of a motion picture, from the

casting of actors, hiring of the director and the screenwriters, all the way to the distribution

and exhibition of the final movie [75]. Through the studio system, a handful of individuals

— men such as Louis B. Mayer, David Sarnoff, David O. Selznick, or Jack Warner — gained

essentially absolute control over the industry.

3.4. Results

Using a dataset [146] comprising 15,425 U.S.-produced movies released between 1894

and 2011 (see Table 3.1 and Appendix A.2 for details), we find that the studio system had

a similar impact on female representation among movie directors and producers (Figs. 3.1c,

3.1d). By the 1930s, female representation among producers and directors had dropped to

less than half of the levels observed prior to 1920. At the level of producers, the drop was

particularly severe for executive producers (Fig. C.13). This fact is particularly significant

because producers’ decisions are so impactful. They are responsible for overseeing a movie’s
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Figure 3.1. Historical trends of gender imbalance in the U.S. movie industry. (a)
Timeline of 20th century events relevant to the U.S. movie industry. Orange shadings indicate
the rates of TV adoption in U.S. households (from unsaturated to saturated: < 30%, < 60%,
< 90%) [144]. Blue bars identify, chronologically, the duration of the MPPC control [143],
consolidation of the studio system [75], and the blacklisting of industry participants [145].
Red bars represent major wars (chronologically, World War I, World War II, Korean war,
and Vietnam war). (b) Number of U.S.-produced movies released annually and recorded in
IMDb. (c) Percentage of movies directed by females as a function of release year. The data
shows a U-shape. Remarkably, the percentage of movies directed by females in the early
1900s (dashed line, approximately 10%) was only reached again in 1994, having remained
below half of that level for 59 years (dash-dotted line). (d) Percentage of female producers
in movies (mean ± standard error). As for directors, the percentage of female producers for
movies in the early 1900s (dashed line, approximately 15%) was only reached again in 1987,
having remained below half of that level for 53 years (dash-dotted line).

finances, selecting and managing the cast and crew, and are involved in all movie-making

facets, from conception to distribution [147, 148].
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Figure 3.2. Power and gender discrimination in the U.S. movie industry. (a) Lack
of gender parity is apparent for three of the most visible functions in the movie industry:
producers, directors, and actors. Note the dramatic drop in female representation for these
3 functions starting in 1920. We hypothesize that the power structure within the movie
industry contributes to gender discrimination. We test our hypothesis in the following panels
using data from movies with a single director. (b) Logistic regression on the probability of a
director being female as a function of the percentage of producers that are female. We find a
significant correlation (pseudo-R2 = 0.11, β = 0.046± 0.002, p < 0.001), strongly suggesting
that the gender of the producers contributes to explaining the gender of the director. (c)
Impact of the gender of the director on the gender representation of actors. We find that,
compared to male directors, female directors have a significant preference for a more gender-
balanced cast (Mann-Whitney test, U = 2.4 × 106, p < 0.001). (d) Linear regression on
the percentage of actors that are female as a function of the percentage of producers that
are female. We find a significant increase (slope = 0.13 ± 0.007, t = 19, p < 0.001) in the
percentage of female actors cast as the percentage of female producers grows (black line,
representing bins left-edge values). Movies with no female producers are binned together
(N = 7974); remaining movies (N = 4936) are divided into 10 equal-sized bins.
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The establishment of the studio system also affected the gender diversity of a movie’s

cast. Figure 3.2 clearly demonstrates that the emergence of the studio system had a negative

impact of female representation within casts. Between 1920 and 1940, we observe a reduction

of nearly a third in the percentage of females cast for the typical movie.

The temporal evolution of female representation in three of the most visible functions

in the movie industry displays the same overall “U-shape” (Fig. 3.2a). In the early years

of the U.S. movie industry, female representation is high compared to mid-century levels,

between 10% (for directors) and 33% (for actors). Interestingly, we find a recovery of female

representation starting in the mid-1950s for actors (and in the late 1970s for producers

and directors). Not coincidentally, the vise-like grip of the Big Five had started to ease

just a few years earlier (Fig. 3.1a). First, Olivia de Havilland’s 1944 legal victory against

Warner Brothers Pictures [76], started to free actors from the endless contracts tying them

to a studio. Then, in 1948, the U.S. Supreme Court ruled that the structure of the movie

industry violated anti-trust laws [77].

These results mirror prior findings for screenwriters. Female screenwriters were highly

visible at the start of the movie industry [73]. However, this visibility dramatically decreased

with the establishment of the studio system. Only recently have female TV and movie

screenwriters started to gain recognition again [78, 79].

An important difference to acting, however, is that the changes being brought by the

studio system for screenwriters could be interpreted as supporting the hypothesis that males

are innately better writers, and that the reduction in the representation of female screen-

writers was due to increased competition for economically attractive positions. No such

argument can be made about innate ability for acting. In the case of acting it is unlikely
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that competition among individuals with different innate abilities is the mechanism driving

the historical patterns of female representation within movie casts.

3.4.1. Impact of gender of power brokers

Because of the decision-making power held by producers, we next investigate whether the

gender diversity of the producer affects the gender of the director selected for a movie. To

test this hypothesis we first perform a logistic regression on the probability of a director

being female as a function of the percentage of producers that are female (Fig. 3.2b). We

find a significant correlation (pseudo-R2 = 0.11, β = 0.046 ± 0.002, p < 0.001), strongly

suggesting that the gender of the producers contributes to explaining why the overwhelming

majority of directors are male (Fig. 3.2a. See also [149]).

To further test our hypothesis, we verify whether the gender of the director affects

the gender representation of actors. Splitting movies according the gender of the direc-

tor (Fig. 3.2c) reveals that female directors have a statistically significant preference for

more gender-balanced casts (Mann-Whitney test, U = 2.4× 106, p < 0.001). As a final test,

we perform a linear regression on the percentage of actors that are female as a function of

the percentage of producers that are female (Fig. 3.2d). We find a significant increase (slope

= 0.13± 0.007, t = 19, p < 0.001) in the percentage of female actors cast as the percentage

of female producers grows, indicating that the gender of the producers also contributes to

explaining the gender composition of a movie’s cast [147, 150].

3.4.2. Impact of movie genre

A second movie characteristic that will likely affect female representation is genre. Action,

Adventure, or War are all genres typically associated with male characteristics, whereas
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Romance may be more identifiable with females [26, 27]. Additionally, actors need to consider

the genre(s) of the movies they participate in. Novice actors are more likely to be hired in

the future if they restrict to the same genre, whereas more established actors have a higher

chance to get hired if they diversify the genres of their work [151].

In order to investigate the role of genre on female representation, we group movies ac-

cording to genre (Fig. 3.3). For clarity, we omit genres with fewer than 700 movies. Note

that, in IMDb, movies are usually classified into multiple genres (median 2) which means

movies sharing an “unpopular” genre may still be considered. To check for female discrim-

ination we compare how many females actually directed movies in a given genre with what

would be expected under a genre-unbiased null model (Fig. 3.3b). We observe that, while

female directors are over-represented in Documentary and Romance movies, they are under-

represented in seven of the fifteen most popular genres (Mystery, Sci-Fi, Horror, Adventure,

Crime, Thriller, and Action). Notably, female directors do not appear to be over or under-

represented in the two most common genres, Comedy and Drama. These results confirm

the impact of gender preconceptions on hiring decisions. Consistent with all the findings re-

ported, as female director representation decreases, so does the percentage of female actors

(Fig. 3.3c).

3.4.3. Impact of movie budget

As the Hollywood studio system was reeling from the lost legal battles of the 1940s, three

major societal changes would force the industry to rethink its strategy. Television, which

started entering U.S. households in the late 1940s, had reached over 75% households by

the late 1950s [144]. Simultaneously, the Hollywood Blacklist interrupted the careers of

screenwriters, actors, and directors with suspect political views [145]. A decade later, the



47

0100020003000400050006000
Number of moviesa

0 2 4 6 8 10 12
% directed by females

Action
Thriller
Crime

Adventure
Horror
Sci-Fi

Mystery
Fantasy

Animation
Family

Comedy
Drama
Short

Romance
Documentary

-7.0
-6.1
-5.1
-4.8
-4.4
-4.4
-3.9
-2.0
-1.8
-1.7
0.6
1.6
1.9
5.4
8.2

Z-Score
b

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

0

10

20

30

40

50

%
 fe

m
al

e 
ac

to
rs

c

Romance
Comedy
Action

Figure 3.3. Impact of genre on director gender. (a) Number of movies classified into a
given genre. Note that, in IMDb, movies are usually classified into multiple genres (median
2). We omit genres with fewer than 700 movies and consider only movies with a single
director. (b) Female directors are over-represented (z-score > 3) in Documentary and Ro-
mance movies but under-represented (z-score < −3) in Mystery, Sci-Fi, Horror, Adventure,
Crime, Thriller, and Action movies. Observed percentage of movies directed by females is
indicated by the blue circles. We calculate 95% and 99% confidence intervals (light and
dark green bars, respectively) by bootstrapping 1,000 samples the evolution of each genre
under a binomial process for selecting a movie’s director (see Appendix A.2 for simulation
details). (c) Historical percentage of female actors (mean ± standard error) in movie genres
with over-represented (Romance), typical (Comedy), and under-represented (Action) female
directors. Note that, as female director representation decreases, so does the percentage of
female actors. Data is smoothed over a 3-year rolling window. Black dashed line represents
level of gender parity.

Vietnam War, the Civil Rights movement, and second-wave feminism forced new voices into

the movie industry. As a reaction, the big Hollywood studios directed their focus towards

big budget movies — blockbusters — that would have a better chance of bringing people to
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the theaters and achieve large profits [152, 153], and left small budget movies to independent

studios [149, 154].

Prompted by these changes, we next investigate the impact of movie budget on female rep-

resentation within movie casts. We have budget information for nearly 36% (5,476/15,425)

of the movies in our dataset. We partition these movies by decade, and within each decade

partition movies into deciles according to budget. In order to better visualize the impact of

movie budget and time on female representation, we calculate deviations from the average

female representation for all movies within the specific decade (Fig. 3.4). Along a column in

Fig. 3.4, positive (negative) values indicate that movies within the budget decile have higher

(lower) than average female representation.

In the 1910s, prior to the establishment of the studio system, there is no apparent pattern

to the fluctuations in female representation according to movie budget. With the establish-

ment of the studio system, however, we observe that higher than average female represen-

tation becomes concentrated in lower budget movies. Remarkably, during the 1930s, 1940s

and 1950s, higher than average female representation shifts to increasingly higher budget

movies (Fig. 3.4, leftmost green arrow).

We can understand this shift if we assume that female stars ‘sold’ movies just as well

as male stars and that higher budget movies — which where expected to bring in greater

revenues — would require greater gender balance of their casts. Indeed, while some studies

have reported no impact of actors or directors on movie income [153, 155], others reported

that well-known or recently successful actors, directors, and even producers positively impact

movie revenues [156, 157].

In the 1960s, with the emergence of the independent studios and the greater power of male

and female movie stars, we observe a dramatic change in the level of female representation
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as a function of movie budget. While in the previous decade, higher than average female

representation was observed for movies with large budgets, during the 1960s higher than

average female representation shifts to the movies with the lowest budgets. Note that this

shift is accompanied by an overall increase in female representation (Fig. 3.2a). This means

that females entering the industry are entering at the ‘bottom’.

Strikingly, from the 1960s on, we find a steady increase in the budget size of the movies

for which female representation is higher than the average (Fig. 3.4, rightmost green arrow).

Again, this could be understood as the industry being unable to keep successful females

stuck in the movies with the lowest budget.

3.5. Discussion

Our study suffers from two limitations. First, it does not capture changes in gender

representation among starring actors, as the cast is not always shown in starring order on

IMDb. Second, we do not know which percentage of female actors in the early 1900s may have

been confined to minor roles or whether that percentage changed over time. Nonetheless, the

U-shape of the time-series for all major movie industry functions (Fig. 3.2a) suggests that

the studio system resulted in females being systematically excluded from most functions in

the industry [73, 78, 79].

Our analysis supports the hypothesis that concentration of power in the hands of a few

white males during the heyday of the studio system led to exclusion of other groups. The

economic shift in favor of actors after the de Havilland decision [76] and the power that

change brought to some actresses enabled them to later play roles as producers and directors

leading to a virtuous cycle of increased female presence in the U.S. movie industry. Such a

step could have had its own added benefits, as female directors have a slightly higher chance
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Figure 3.4. Female cast participation as a function of time and movie budget. In
order to highlight possible dependency on budget, we calculate the percentage of female
actors in the movies released each decade according to budget decile. We show the difference
between the percentage for each cell and the mean percentage of female actors per decade.
Top row shows the median inflation-adjusted movie budget (U.S. $millions) for each decade.

of directing award-winning movies [158], and collaborations between producers and female

actors can have a positive impact on a movie’s revenue [74].

Our results are consistent with the broader hypothesis that periods in which an industry

grows in importance, with increasing financial rewards, and with greater consolidation may

be particular susceptible to dramatic decreases in diversity. Thus, our study adds to the

known examples of gender discrimination in such areas as computer science (despite the first

programmers being female [159], the discipline became extremely popular among males with

the advent of the home PC that was almost exclusively marketed to boys [160]) and medicine
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(by 1900, females struggled to be accepted in medical schools, yet in the previous century

they performed almost all medical tasks without training [161]). This interpretation is also

consistent with the increase in female representation in professions that lost prestige, such

as teaching elementary school [162].
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CHAPTER 4

A discrete lognormal model to quantify scientific impact

This work was published with Xiaohan Zeng, and Lúıs Amaral as “The Distribution of

the Asymptotic Number of Citations to Sets of Publications by a Researcher or From an

Academic Department Are Consistent With a Discrete Lognormal Model” in PLoS ONE

[163].

4.1. Abstract

How to quantify the impact of a researcher’s or an institution’s body of work is a matter

of increasing importance to scientists, funding agencies, and hiring committees. The use

of bibliometric indicators, such as the h-index or the Journal Impact Factor, have become

widespread despite their known limitations. We argue that most existing bibliometric in-

dicators are inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we

pursue a principled approach to the development of an indicator to quantify the scientific

impact of both individual researchers and research institutions grounded on the functional

form of the distribution of the asymptotic number of citations. We validate our approach

using the publication records of 1,283 researchers from seven scientific and engineering dis-

ciplines and the chemistry departments at the 106 U.S. research institutions classified as

“very high research activity”. Our approach has three distinct advantages. First, it accu-

rately captures the overall scientific impact of researchers at all career stages, as measured

by asymptotic citation counts. Second, unlike other measures, our indicator is resistant to
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manipulation and rewards publication quality over quantity. Third, our approach captures

the time-evolution of the scientific impact of research institutions.
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4.2. Introduction

The explosive growth in the number of scientific journals and publications has outstripped

researchers’ ability to evaluate them [164]. To choose what to browse, read, or cite from a

huge and growing collection of scientific literature is a challenging task for researchers in

nearly all areas of Science and Technology. In order to search for worthwhile publications,

researchers are thus relying more and more on heuristic proxies – such as author and journal

reputations – that signal publication quality.

The introduction of the Science Citation Index (SCI) in 1963 [91] and the establishment

of bibliographic databases spurred the development of bibliometric measures for quantifying

the impact of individual researchers, journals, and institutions. Various bibliometric indica-

tors have been proposed as measures of impact, including such notorious examples as the

Journal Impact Factor and the h-index [31, 165]. However, several studies revealed that

these measures can be inconsistent, biased, and, worst of all, susceptible to manipulation

[80–82, 92–99]. For example, the limitations of the popular h-index include its dependence

on discipline and on career length [166].

In recent years, researchers have proposed a veritable alphabet soup of “new” metrics

– the g-index [167], the R-index [33], the ch-index [35], among others – most of which

are ad-hoc heuristics, lacking insight about why or how scientific publications accumulate

citations.

The onslaught of dubious indicators based on citation counts has spurred a backlash

and the introduction of so-called “altmetric” indicators of scientific performance. These new

indicators completely disregard citations, considering instead such quantities as number of

article downloads or article views, and number of “shares” on diverse social platforms [168–

170]. Unfortunately, new research is showing that altmetrics are likely to reflect popularity
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rather than impact, that they have incomplete coverage of the scientific disciplines [171, 172],

and that they are extremely susceptible to manipulation. For example, inflating the findings

of a publication in the abstract can lead to misleading press reports [173], and journals’

electronic interfaces can be designed to inflate article views and/or downloads [174].

Citations are the currency of scientific research. In theory, they are used by researchers

to recognize prior work that was crucial to the study being reported. However, citations

are also used to make the research message more persuasive, to refute previous work, or to

align with a given field [175]. To complicate matters further, the various scientific disciplines

differ in their citation practices [176]. Yet, despite their limitations, citations from articles

published in reputable journals remain the most significant quantity with which to build

indicators of scientific impact [96].

It behooves us to develop a measure that is based on a thorough understanding of the

citation accumulation process and also grounded on a rigorous statistical validation. Some

researchers have taken some steps in this direction. Examples include the ranking of re-

searchers using PageRank [43] or the beta distribution [44], and the re-scaling of citation

distributions from different disciplines under a universal curve using the lognormal distribu-

tion [41].

One crucial aspect of the process of citation accumulation is that it takes a long time to

reach a steady state [42]. This reality is often ignored in many analyses and thus confounds

the interpretation of most measured values. Indeed, the lag between time of publication and

perception of impact is becoming increasingly relevant. For example, faced with increasingly

large pools of applicants, hiring committees need to be able to find the most qualified re-

searchers for the position in an efficient and timely manner [177, 178]. To our knowledge,
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only a few attempts have been made in developing indicators that can predict future impact

using citation measures [179, 180] and those have had limited success [181].

Here, we depart from previous efforts by developing a principled approach to the quan-

tification of scientific impact. Specifically, we demonstrate that the distribution of the as-

ymptotic number of accumulated citations to publications by a researcher or from a research

institution is consistent with a discrete lognormal model [42, 124]. We validate our approach

with two datasets acquired from Thomson Reuters’ Web of Science (WoS):

• Manually disambiguated citation data pertaining to researchers at the top United

States (U.S.) research institutions across seven disciplines [50]: chemical engineering,

chemistry, ecology, industrial engineering, material science, molecular biology, and

psychology;

• Citation data from the chemistry departments of 106 U.S. institutions classified as

“very high research activity”.

Significantly, our findings enable us to develop a measure of scientific impact with desirable

properties.

4.3. Data

We perform our first set of analyses on the dataset described by Duch et al. [50]. This

dataset contains the disambiguated publication records of 4,204 faculty members at some of

the top U.S. research universities in seven scientific disciplines: chemical engineering, chem-

istry, ecology, industrial engineering, material science, molecular biology, and psychology

(see [50] for details about data acquisition and validation). We consider here only 230,964
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publications that were in press by the end of 2000. We do this so that every publication con-

sidered has had a time span of at least 10 years for accruing citations [124] (the researcher’s

publication dataset was gathered in 2010).

We perform our second set of analyses on the publication records of the chemistry de-

partments at the top U.S. research institutions according to [182]. Using the publications’

address fields, we identified 382,935 total publications from 106 chemistry departments that

were in press by the end of 2009 (the department’s publication dataset was gathered in 2014).

In our analyses we distinguish between “primary” publications, which report original

research findings, and “secondary” publications, which analyze, promote or compile research

published elsewhere. We identify as primary publications those classified by WoS as “Arti-

cle”, “Letter”, or “Note” and identify all other publications types as secondary publications.

Moreover, to ensure that we have enough statistical power to determine the significance

of the model fits, we restrict our analysis to researchers with at least 50 primary research

publications. These restrictions reduce the size of the researchers dataset to 1,283 researchers

and 148,878 publications. All 106 departments in our dataset have a total of more than 50

primary research publications.

4.4. The distribution of the asymptotic number of citations

Prior research suggests that a lognormal distribution can be used to approximate the

steady-state citation profile of a researcher’s aggregated publications [41, 121]. Stringer et al.

demonstrated that the distribution of the number n(t) of citations to publications published

in a given journal in a given year converges to a stationary functional form after about

ten years [42]. This result was interpreted as an indication that the publications published

in a single journal have a characteristic citation propensity [123] which is captured by the
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distribution of the “ultimate” number of citations. Here, we investigate the asymptotic

number of citations na to the publications of an individual researcher as well as the set of

all researchers in a department at a research institution.

We hypothesize that na is a function of a latent variable ψ representing a publication’s

“citability” [115]. The citability ψ results from the interplay of several, possibly independent,

variables such as timeliness of the work, originality of approach, strength of conclusion,

reputation of authors and journals, and potential for generalization to other disciplines, just

to name a few [119, 183]. In the simplest case, citability will be additive in all these variables,

in which case the applicability of the central limit theorem implies that ψ will be a Gaussian

variable, ψ ∈ N(µa, σa), where µa and σa are respectively the mean and standard deviation

of the citability of the publications by researcher a. Therefore, the impact of a researcher’s

body of work is described by a distribution characterized by just two parameters, µ and σ.

Similarly, because in the U.S. departments hire faculty based on their estimated quality, the

researchers associated with a department will presumably be similar in stature or potential.

Unlike citations, which are observable and quantifiable, the variables contributing to ψ

are neither easily observable nor easy to quantify. Moreover, mapping ψ into citations is

not a trivial matter. Citation counts span many orders of magnitude, with the most highly

cited publications having tens of thousands of citations [112]. Large-scale experiments on

cultural markets indicate that social interactions often create a “rich get richer” dynamics,

far distancing the quality of an underlying item from its impact [184]. Citation dynamics

are no different. For example, Duch et al. recently showed that the h-index has a power-

law dependence on the number of publications Np of a researcher [50]. Here, we reduce

the potential distortion of citation-accruing dynamics by focusing on the logarithm of na. In

effect, we take na to be the result of a multiplicative process of the same variables determining
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ψ. Thus, we can calculate the probability pdln(na) that a researcher or department will have

a primary research publication with na citations, as an integral over ψ:

pdln(na|µ, σ) =

log10(na+1)∫
log10(na)

dψ√
2πσ2

exp

(
−(ψ − µ)2

2σ2

)
. (4.1)

Most researchers also communicate their ideas to their peers via secondary publications

such as conference proceedings which, in many disciplines, are mainly intended to promote

related work published elsewhere. Some secondary publications will have significant time-

liness, in particular review papers and editorial materials, and therefore will likely be cited

too. Most of them, however, will not be cited at all. If accounting for secondary publications,

Eq. (4.1) has to be generalized as:

P (na|µ, σ, fs,θ) = (1− fs)pdln(na|µ, σ) + fs ps(na|θ) , (4.2)

where fs is the fraction of secondary publications in a body of work and ps(na|θ) represents

the probability distribution, characterized by parameters θ and not necessarily lognormal,

of na for secondary research publications. We found that in practice Eq. (4.2) can be well

approximated by:

P (na|µ′, σ′, fs) = fs δ0,na + (1− fs)pdln(na|µ′, σ′) ,

where δ is the Kronecker delta. Surprisingly, we found that µ′ ≈ µ and σ′ ≈ σ, suggesting

that secondary publications have citation characteristics that are significantly different from

those of primary publications.
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4.5. Results

Fig. 4.1 shows the cumulative distribution of citations to primary research publications

of two researchers in our database (see the Supporting Information of [163] for the results

for all 1,283 researchers) and two chemistry departments. Using a χ2 goodness-of-fit test

with re-sampling [185], we find that we can reject the discrete lognormal model, Eq. (4.1),

for only 2.88% of researchers and 1.13% or departments in our database. The results of our

statistical analysis demonstrate that a discrete lognormal distribution with parameters µ and

σ provides an accurate description of the distribution of the asymptotic number of citations

for a researcher’s body of work and for the publications from an academic department.

Fig. 4.2 displays the sample characteristics of the fitted parameters. The median value

of µ̂ obtained for the different disciplines lies between 1.0 and 1.6. Using data reported in

[176] we find a significant correlation (τKendall = 0.62, p = 0.069) between the median value

of µ̂ for a discipline and the total number of citation to journals in that discipline (Fig. 4.3).

This correlation suggests that µ̂ depends on the typical number of citations to publications

within a discipline. This dependence on discipline size can in principle be corrected by a

normalization factor [41, 98, 103].

We also plot the fraction of secondary publications, fs, for all the researchers. We find

that nearly a fourth of the publications of half of all researchers are secondary, but intra-

discipline variation is high. Inter-discipline variability is also high: 17% of the publications of

a typical researcher in chemistry are secondary, whereas 60% of the publications of a typical

researcher in industrial engineering are secondary.
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Figure 4.1. Distribution of the asymptotic number of citations to publications for
researchers and chemistry departments in our database. We fit Eq. (4.1) to all
citations accrued by 2010 to publications published by 2000 for two researchers (top row),
and to all citations accrued by 2013 to publications published in 2000 for two chemistry
departments (bottom row). The red line shows the maximum likelihood fit of Eq. (4.1) to
the data (blue circles). The light red region represents the 95% confidence interval estimated
using bootstrap (1000 generated samples per empirical data point). We also show the number
of publications Np in each set and the parameter values of the individual fits.

4.5.1. Reliability of estimation

We next investigate the dependence of the parameter estimates on number of publications,

Np, both at the individual level – testing the effect of sample size – and at the discipline level

– testing overall dependence on Np. To test for sample size dependence, we fit the model

to subsets of a researcher’s publication list. We find that estimates of σ are more sensitive

to sample size than estimates of µ (Figs. C.15, C.16). However, this dependence becomes
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Figure 4.2. Parameter statistics of all 1,283 researchers in the database grouped by
discipline. We show the maximum likelihood fitted model parameters (top and center)
and the fraction of secondary publications (bottom). The black horizontal dashed line
indicates the median of all researchers. For clarity, we do not show the values of σ̂ for 9
researchers that are outliers.

rapidly negligible as the sample size approaches the minimum number of publications we

required in creating our sample (Np ≥ 50).

Next, we test whether, at the discipline level, there is any dependence of µ̂ on Np. We

find no statistically significant correlation, except for a very weak dependence (R2 ∼ 0.035,
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Figure 4.3. Correlation between median µ̂ for a discipline and the discipline’s
relative size. We use Rosvall et al. [176] reported values of the relative number of citations
to publications in journals of several disciplines as a proxy for relative field size and compare
them with the median value of µ̂ in each discipline. A Kendall rank-correlation test yields a
τK = 0.62 with p = 0.069. This correlation suggests that µ̂ depends on the typical number
of citations of a discipline.

p = 0.0052) of σ̂ on Np for chemical engineering (Table B.8). This is in stark contrast with

the h-index which exhibits a marked dependence on number of publications [166].

Then, we test for variation of the estimated parameter values along a researcher’s ca-

reer. To this end, we order each researcher’s publication records chronologically and divide

them into three sets with equal number of publications and fitted the model to each set of

publications. Each set represents the citability of the publications authored at a particular

career stage of a researcher. Time trends in the estimated values of µ would indicate that
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Table 4.1. Trends of µ̂ on career stage for the seven disciplines considered. We
divide each researcher’s chronologically-ordered publication records into three sets with equal
number of publications (start, middle, and end) and fit the model to each set of publications
to obtain µ̂s, µ̂m, and µ̂e. We then used ordinary-least-squares to perform a linear regression
on the time dependence of (µ̂s, µ̂m, µ̂e). We then calculate the fraction of researchers whose
µ exhibits a statistically significant dependence on career length, by performing a two-tailed
significance test on the slope of the regression. We use a randomization test (1,000 samples),
combined with a multiple hypothesis correction [186] (false discovery rate of 0.05) to calculate
a p-value: for each researcher, we randomly re-order his or her publications, divide them into
three sets with equal number of publications and fit the model to each set of publications,
and calculate the new slope; we obtain a p-value by comparing the original slope of the fit
with the distribution of the randomized slopes.

Discipline Upward trend in µ̂ Downward trend in µ̂

ChemEng 12% 19%
Chemistry 26% 6%
Ecology 8% 8%
IndustEng 0% 33%
MatScience 10% 11%
MolBio 5% 8%
Psychology 0% 0%

All 16% 9%

the citability of a researcher’s work changes over time. We find such a change for 25% of all

researchers. For over 64% of those researchers whose citability changes of over time we find

that µ̂ increases (Table 4.1).

In general, a department has many more publications than any single researcher. Thus,

we are able to apply the model from Eq. (4.1) to each year’s worth of departmental publi-

cations. This fine temporal resolution enables us to investigate whether there is any time-

dependence in the citability of the publications from a department. Figure 4.4 shows the

time-evolution of µ̂ for the chemistry departments at four typical research institutions. We

see that both µ̂ (circles) and σ̂ (vertical bars) remain remarkably stable over the period

considered.



65

0.0

0.5

1.0

1.5

2.0

2.5

Florida State Universityµ ≈ 1.18 George Washington Universityµ ≈ 1.20

1990 1995 2000 2005
0.0

0.5

1.0

1.5

2.0

2.5

Harvard Universityµ ≈ 1.60

1990 1995 2000 2005

Northwestern Universityµ ≈ 1.39

Year

µ̂

Figure 4.4. Time-evolution of departments µ̂. Each circle and bar represent, respec-
tively, the µ̂ and σ̂ for a given year of publications. We estimate the parameters in Eq. (4.1)
for sets of departmental publications using a “sliding window” of 3 years. Fits for which we
cannot reject the hypothesis that the data is consistent with a discrete lognormal distribu-
tion are colored green. We also show each department’s average value of µ̂ over the period
considered (orange dashed lines).

4.5.2. Development of an indicator

In the following, we compare the effectiveness of µ as an impact indicator with that of

other indicators. First, we test the extent to which the value of µi for a given researcher is

correlated with the values of other indicators for the same researcher. In order to provide an

understanding of how the number of publications Np influences the values of other metrics,

we generate thousands of synthetic samples of na for different values of Np and µi, and a fixed

value of σ for each discipline. We find that µ is tightly correlated with several other measures,

especially with the median number of citations (Fig. 4.5). Indeed µ̂ can be estimated from

the median number of citations:

µ̂ ∼= log10[median(na)] , (4.3)
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Figure 4.5. Dependence of popular impact metrics on the values of µ̂ and number
of publications Np for researchers in chemistry. We generate 1000 synthetic datasets
for each of 20 values of µ̂ from 0.5 to 2.0, inclusive, and for Np = 50 (blue) and Np = 200
(red). We use the average σ̂ of all researchers in chemistry. For each pair of values of µ̂
and Np we calculated the average value and 95% confidence interval. The colored circles
indicate the observed values of the corresponding metrics for chemistry, which have been
grouped according to their number of publications Np. Values for 22 researchers fall outside
of the figures’ limits: 3 in A, 7 in B, 4 in C, 3 in D. (A) The total number of citations
depends dramatically on Np, which in turn depends strongly on career length, and can be
influenced by just a few highly cited publications. (B) The average number of citations is
less susceptible to changes in Np but can still be influenced by a small number of highly cited
publications. (C) The h-index, like the total number of publications, is strongly dependent
on Np. (D) The median number of citations to publications, like the average, is not very
dependent on Np, and can capture most of the observed behavior.

This close relation between mean and logarithm of the median further supports our hypothe-

sis of a lognormal distribution for the asymptotic number of citations to primary publications

by a researcher.
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An important factor to consider when designing a bibliometric indicator is its suscepti-

bility to manipulation. Both the number of publications and total or average number of cita-

tions are easily manipulated, especially with the ongoing proliferation of journals of dubious

reputation [187, 188]. Indeed, the h-index was introduced as a metric that resists manipu-

lation. However, it is a straightforward exercise to show that one could achieve h ∝
√
Np

exclusively through self-citations. Indeed, because the h-index does not account for the effect

of self-citations, it is rather susceptible to manipulation, especially by researchers with low

values of h [189, 190].

In order to determine the true susceptibility of the h-index to manipulation, we devise a

method to raise a researcher’s h-index using the least possible number of self-citations (see

Appendix A.3 for details). Our results suggest that increasing the h-index by a small amount

is no hard feat for researchers with the ability to quickly produce new articles (Fig. 4.6, left).

Our proposed indicator, µ, is far more difficult to manipulate. Because it has a more

complex dependence on the number of citations than the h-index, to increase µ in an efficient

manner we use a process whereby we attempt to increase the median number of citations of

a researcher’s work (see Appendix A.3 for details). Specifically, we manipulated µ for all the

researchers by increasing their median number of citations. Remarkably, to increase µ by a

certain factor one needs at least 10 times more self-citations than one would need in order

to increase the h-index by the same factor (Fig. 4.6, right).

While a difference of 2 to 3 orders of magnitude in number of required self-citations may

seem surprising for a measure so correlated with citation numbers (Fig. 4.5), the fact that

µ̂ is actually dependent on the citations to half of all primary publications by a researcher

(Eq. (4.3)) makes µ̂ less susceptible than the h-index to manipulation of citation counts

from a small number of publications. This view is also supported by the fact that increasing
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Figure 4.6. Comparison of the susceptibility of h-index (left) and µ (right) to
manipulation. Bottom panel: For each researcher in the database, we add publications
with self-citations until we reach the desired value of index (see main text for details). The
dashed black, dotted-dashed black and dotted white lines indicate the number of publications
required to increase the index value by 10%, 50% and 100%, respectively. The solid diagonal
black line indicates when the current value of µ̂ is equal to the manipulated µ̂. The dark
blue vertical line represents the average value of the indicator amongst all researchers in our
database. Top panel: Distributions of current h-index (left) and µ̂ (right) for all researchers
in the database.

citations may actually decrease µ̂, as we may be adding them to a publication that would

not be expected to receive that number of citations given the lognormal model. As a result,

manipulation of scientific performance would be very difficult if using a µ-based index.

4.5.3. Comparison of parameter statistics

Finally we estimate the parameters in Eg. (4.1) for chemistry journals and compare µ̂ of

chemistry departments and journals in selected years, and all chemistry researchers in our

database (Fig. 4.7. See Fig. C.18 for σ̂ and fs comparison). In order to make sense of this

comparison, we must note a few aspects about the data. The researchers in the database were

affiliated with the top 30 chemistry departments in the U.S., whereas the set of chemistry
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departments covers all the chemistry departments from very high research activity universi-

ties. Thus, it is natural that the typical µ̂ of researchers is higher than that of departments.

Not surprisingly, we find that µ̂ is typically the lowest for journals.

4.6. Discussion

The ever-growing size of the scientific literature precludes researchers from following all

developments from even a single sub-field. Therefore researchers need proxies of quality

in order to identify which publications to browse, read, and cite. Three main heuristics

are familiar to most researchers: institutional reputation, journal reputation, and author

reputation.
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Author reputation has the greatest limitations. Researchers are not likely to be known

outside their (sub-)field and young researchers will not even be known outside their labs.

Similarly, if we exclude a few journals with multidisciplinary reputations (Nature, Science,

PNAS, NEJM), the reputation of a scientific journal is unlikely to extend outside its field.

Institutional reputations are the most likely to be known broadly. Cambridge, Harvard,

Oxford, and Stanford are widely recognized. However, one could argue that institutional

reputation is not a particularly useful heuristic for finding quality publications within a

specific research field.

Our results show that the expected citability of scientific publications published by (i)

the researchers in a department, (ii) a given scientific journal, or (iii) a single researcher

can be set on the single scale defined by µ. Thus, for a researcher whose publications are

characterized by a very high µ, authorship of a publication may give a stronger quality signal

about the publication than the journal in which the study is being published. Conversely,

for an unknown researcher the strongest quality signal is likely to be the journal where the

research is being published or the institution the researcher is affiliated with. Our results

thus provide strong evidence for the validity of the heuristics used by most researchers and

clarify the conditions under which they are appropriate.
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CHAPTER 5

Conclusion

In this dissertation, I have presented a rigorous analysis of gender disparities in creative

teams. I first analyzed the differences in collaboration patterns between male and female

STEM researchers. Then, I studied the origins of gender discrimination in the U.S. movie

industry. I have also presented a framework to quantify scientific impact of individual re-

searchers and academic institutions.

My work is noteworthy in that all results are derived from rigorous statistical analysis

of large-scale datasets. I used the Web of Science database of scientific publications when

quantifying the effect of gender diversity in scientific collaborations and the impact of sci-

entific publications; and the Internet Movie Database when quantifying the effect of gender

diversity in movie productions.

In Chapter 2, I studied gender differences in scientific collaborations. I first proved that,

even though female researchers have less distinct collaborators, this is only due to the fact

that females publish less than males and have shorter career lengths. I then showed that,

despite these disadvantages, females actually have a higher propensity to engage in novel

collaborations, suggesting their work to be of higher impact than that of males. Finally, I

presented evidence of female exclusion from genomics, a sub-disciplines of molecular biology.

In Chapter 3, I present evidence for how females have been discriminated against in the

U.S. movie industry. Namely, I demonstrated that during the years of the Hollywood studio

system, female representation among actors, directors, and producers dropped by more than
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half. This under-representation may be at least partially responsible for today’s observed

gender imbalance in the movie industry as I also found that the gender diversity of a movie’s

producers influences both the gender of the director and the gender composition of the cast,

and that female directors have a statistically significant preference for more gender-balanced

casts. Additionally, I showed that female directors are over-represented in Documentary and

Romance, and under-represented in seven other genres Mystery, Sci-Fi, Horror, Adventure,

Crime, Thriller, and Action. Finally, I found that higher than average female representation

became concentrated in higher budget movies during the studio system, but in the 1960s

higher than average female representation shifted to the movies with the lowest budgets.

In Chapter 4, I put forth the notion that scientific publications have a latent “citability”

that can be estimated using the asymptotic number of citations. Specifically, I determined

that the asymptotic number of citations na to sets of publications by a researcher or associ-

ated with an academic department can be described by a discrete lognormal distribution. I

performed a principled statistical analysis of the properties of this distribution and showed

that the mean citability, µ, can be used as an unbiased bibliometric indicator of scientific

impact for researchers, departments, and journals. Furthermore, µ is resistant to manipula-

tion, unlike other popular indicators such as the h-index, and can be well approximated by

the median of the logarithm of na.

5.1. Societal implications of gender biases in creative teams

Collaborations decrease many barriers towards producing works of high impact which

benefits all creators involved in the process. I have determined that gender has a profound

effect in creative teams. While other researchers have also reported gender effects in teams,

my research has several distinctive features. First, I leveraged the power of “Big Data” in
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order to avoid many sampling biases of small datasets that can lead to inaccurate conclu-

sions. Second, I controlled for some inherent complexities in my systems of study — scientific

collaborations and movie productions — that can make it difficult to draw the correct infer-

ences, regardless of dataset size. For instance, a direct analysis of co-authorship patterns in

collaborations would lead to the erroneous conclusion that male researchers collaborate more

than females; and only by correcting for differences in publication volume and shorter career

lengths can we uncover the true relation (Figs. 2.1, 2.3). Similarly, only by accounting for the

fact that there are very few female movie directors can we show the rich genre differences

across movie directors (Fig. 3.3c). My findings illustrate the need to always consider the

context of where the data collected when performing any analysis.

While my study on scientific collaborations is limited to U.S. faculty members in seven

distinct STEM disciplines, it could easily be extended to all scientific disciplines where

collaborations are the norm. Thus we could precisely determine how field-dependent the

gender effects in collaborations are. Large gender differences across sub-disciplines of the

same large discipline could indicate the presence of strong gender discrimination, such as the

case of molecular biology (Fig. 2.4). Conversely, academic practices in disciplines showing

very minimal gender differences in collaborations warrant a deeper look as they may be

promoting female participation in science.

Many researchers investigate the factors contributing to the the gradual loss of female rep-

resentation along the academic career path — the “leaky pipeline”. The findings from studies

can be combined with the present work to create guidelines or policies that ensure proper

institutional support for both genders. For instance, highlighting the academic achievements

of female researchers and creating inclusive environments for female postdoctoral students

and faculty members could foster an increase in female representation in science. Indeed,
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evidence indicates that increasing the visibility of female leaders in careers of low female rep-

resentation, such as business and politics, has a positive contribution to female advancement

and can decrease gender biases [71, 141, 142].

Conversely, my study of gender representation in the U.S. movie industry clearly shows

how the lack of female role models can have a strong negative impact on gender diversity:

while the early U.S. movie industry had a relatively high gender diversity — females com-

posed about one third of the cast in the typical at the time — once the studio system was

established, many females either left the industry or were forced to leave, especially those

working behind the camera (Fig. 3.2a). My results suggest that the accumulation of power

in the hands of the few white male leaders of the big Hollywood studios lead to females

being excluded from the industry. Furthermore, this negative influence can carry a strong

inertia, as evidenced by the fact that, after the studio system was dissolved, it took decades

for female representation to recover to pre-studio levels.

If there is power consolidation in sectors experiencing big growth, we should create in-

centives for teams at the top to remain as diverse as possible so as to avoid instituting biases

— not just gender-related — that can take years to dispel. The discipline of computer

science provides another illustrative example of this phenomenon. Programming pioneers

such as Ada and Grace Hopper certainly made the nascent field appealing to females [159].

Then, with the creation of the PC, there was the opportunity to make the field accessible

to the general public. Unfortunately, the product was almost exclusively marketed towards

young males, which lead to a surge of male interest in the field [160]. Despite educational re-

forms and focus groups aimed at increasing female interest in the discipline, the stereotypical

computer programmer is still overwhelmingly a young male.
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Finally, it is worth noting that the factors I identified as possible causes of gender biases

may also explain under-representation of other minorities in creative teams. For example,

given the appropriate datasets, my analyses can be adapted to study the effect of racial or

ethnic diversity in movie success, or to understand how cultural diversity of ideas affect the

impact of a scientific publication.

5.2. Guidelines to quantify the impact of creative works

The goal of science is to accurately quantify and measure natural phenomena. For this

reason alone we should move away from using heuristics and ad-hoc measures if we want

to measure the impact of science itself in a rigorous way. Upon closer look, the disadvan-

tages of bibliometric indicators such us the h-index and Journal Impact Factor far outweigh

their touted ease-of-use and simple interpretation. For instance, the fact that the h-index

increases monotonically over time makes it unsuitable to compare researchers at different

career stages, as it penalizes younger researchers with fewer publications. Moreover, because

of its dependence on publication volume, the h-index can be boosted if researchers spread

their results over many publications, in effect encouraging quantity over quality of scien-

tific research. This incentive system has consequences for hiring committees and funding

agencies that may use bibliometric indicators as a first screen of their potentially hundreds

of applicants. The solution to this problem is not to propose corrections to the h-index

or more-complex ad-hoc indicators but instead use a principled, data-driven approach to

quantify scientific impact.

In contrast to most existing heuristic bibliometric indicators, my proposed framework is

grounded on the latent citability of a publication and as such can be used to systematically

characterize the impact of any set of publications, be it those authored by a researcher,
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associated with a department, or published in a journal. Being able to place work by all

these three entities in the same scale — the expected citability — is especially relevant

when there is uncertainty about a researcher’s impact. It may be difficult to directly assess

the impact of a young researcher with few publications or an unknown researcher from a

different discipline, but the expected citability of the journals where they have published work

or their institutional address will provide a good indication of expected researcher impact.

Conversely, work by researchers with high expected citability may be noteworthy even if it

is published in unknown journals. Thus, my framework will enable hiring committees and

funding agencies to speed up their evaluating process while simultaneously be confident that

they are making sound decisions.

To create a general framework of impact of creative works, it is not enough to have a

solid mathematical foundation. Any proposed model must be carefully validated against a

representative dataset. For the case of scientific impact, I validated the citability framework

against hundreds of thousands of publications across different scientific disciplines. With

large datasets from various domains becoming more accessible than ever before, my approach

can be applied to not only quantify scientific impact in other disciplines but the impact of

most creative works in areas outside of science.

One such domain is the movie industry. In the U.S., movies that are deemed “culturally,

historically, or aesthetically significant” to the country are preserved in the National Film

Registry (NFR) [191]. For U.S. productions, induction into the NFR is perhaps the closest

indicator of latent movie impact. Indeed, Wasserman et al. recently showed that the long-gap

citations, i.e., the number of times that a movie is referenced in other movies that are 25+

years younger is a good predictor of induction into the NFR [192]. Thus these researchers
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demonstrated that long-gap citations constitute a quantitative, principled indicator of movie

significance, much like the expected citability for publication impact.
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APPENDIX A

Methods

A.1. Gender differences in collaboration patterns of STEM researchers

A.1.1. Co-author names matching

To calculate the number of distinct co-authors for a researcher, we used the following pro-

cedure. For each researcher, we maintain a set of standardized co-author names. For each

co-author name, we convert the name to a string of last name and first name initials. For

example, a co-author named “Jane Linda Smith” will be converted to “Smith JL”. For each

publication, we standardize the names of the co-authors, and add them to the set. We finally

count the number of elements in the set.

Note that using this procedure, we treat “Jane Linda Smith” and “Jane Lily Smith” as

the same name, because they are both converted to the string “Smith JL”. Also, we treat

“Jane Linda Smith” and “Jane Smith” as different names, since the former is converted

to “Smith JL”, while the latter is converted to “Smith J”. In reality, for a single author’s

co-authors, the probability for either case to happen is very small, hence the error rate of

our procedure is very low.

A.1.2. Confidence interval for the survival curve of total number of distinct co-

authors

We use matched sampling to obtain the confidence interval for the survival curve of total

number of distinct co-authors. We consider the null hypothesis that there is no difference
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in the total number of co-authors between females and the males with similar number of

publications. To construct the confidence interval, we generate samples of NF males, where

NF the number of females in our dataset. For a female with nF publications, we select

a male whose number of publications falls in the range of [0.8 nF , 1.2 nF ], a range small

enough to produce good matches but large enough that there is at least one match. We

then compute the survival curve for the obtained sample of male authors. We obtain the

confidence interval by repeating this procedure 1,000 times.

The procedure is similar for the null hypothesis that there is no difference in the total

number of co-authors between females and the males with equal number of publications,

except that the sample of males consists of males who have the same number of publications

as the females.

A.1.3. Measuring gender difference in the distribution of collaboration opportu-

nities

We use two methods, the Gini coefficient and the disparity index, to measure how homo-

geneously each author distributes all her/his collaboration opportunities among her/his co-

authors. A high Gini coefficient or disparity index indicates inhomogeneity of collaboration

frequency distribution, where the author collaborates highly frequently with only a small

portion of her/his co-authors, but only a few times with each of the remaining majority.

Thus, this author has a high propensity to concentrate her/his collaboration opportunities

on a few co-authors. A low Gini coefficient or disparity index indicates that the author

collaborates with each of her/his co-authors about equally frequently.

Gini coefficient. Consider author a with nc co-authors. For each co-author ci of a, we

count the times of collaboration between a and ci, yi. That is, the number of publications a
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has co-authored with ci. We next arrange yi in non-decreasing order, where yi ≤ yi+1. The

Gini coefficient of author a is calculated as

G(a) =

2
nc∑
i=1

iyi

nc

nc∑
i=1

yi

− nc + 1

nc

. (A.1)

Disparity index. We first calculate the weight of collaboration (link) between a and ci as

given by Newman [193],

waci =

kci∑
j=1

1

lj − 1
, (A.2)

where kci is the number of publications authored by a and ci together, and lj is the number

of co-authors in publication j. Then we calculate for a the summation of the weights of

collaboration (strength),

sa =
nc∑
i=1

waci . (A.3)

Finally, the disparity index is calculated as

Υ(a) =
nc∑
i=1

(
waci

sa

)2

nc . (A.4)

We obtain the sample of Gini coefficients for female authors, {GF}, and that for male authors,

{GM}. We then can obtain the significance of the difference between the two samples, by

performing a Kolmogorov-Smirnov test on the cumulative distribution function curves of the

two samples. We perform the same hypothesis test for {ΥF} and {ΥM}.
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A.1.4. Simulating total number of distinct co-authors

We simulate the process of accumulating distinct co-authors and then calculate the total

number of distinct co-authors. For each author, we calculate the fraction of repeated co-

authors, fr. We then generate a list of publications, and record the number of collaborations

with each distinct co-author. For each co-author in each publication, we decide if this co-

author is a previous co-author with probability fr. If yes, we choose a previous co-author with

a probability proportional to the times of collaboration with that co-author, and increase

the times of collaboration with that co-author by one. Otherwise, we add a new co-author to

the list of co-authors. We do not use equal probability when choosing a previous co-author

because this would lead to larger number of distinct co-authors than observed.

Initially, we assign to each author 100 publications, in each of which the author has 5 co-

authors. The results show that, for most disciplines, females have significantly more distinct

co-authors (p < 0.0006, Fig. C.4a). This is expected since females repeat co-authors less than

males do. We next introduce the observed heterogeneity in the team size, by keeping the

number of publications at 100 while using team sizes sampled from the author’s publications.

Figure C.4b shows that in this case the gender difference is no longer significant. Finally,

we introduce the heterogeneity in the number of publications, by using the actual number

of publications and the number of co-authors in each publication (Fig. C.4c). Now, females

have significantly fewer number of distinct co-authors for most disciplines. These results

clearly expose the origins of the results presented in Fig. 2.1 where by controlling for number

of publications alone we observed no statistical significant difference between males and

females in the number of distinct co-authors.
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A.1.5. Confidence interval for the probability of greater number of co-authors

per publication

We consider the probability that publications authored by female authors in our cohort have

a larger number of co-authors than publications authored by male authors in our cohort as

a function of the career stage of the authors. Since not all the publications are published at

the same career stages of the authors, and the size of science teams is increasing with time,

we do not consider raw numbers of co-authors but instead standard scores relative to career

stages.

Let ni(y) denote the number of co-authors of publication i from discipline j in year y,

and let Nj(y) denote the total number of publications published in year y. We calculate the

standard score of publication i in year y as

zi(y) =
ni(y)− µj(y)

σj(y)
, (A.5)

where µj(y) is the average number of co-authors per publication from discipline j published

in year y

µj(y) =

∑
k

nk(y)

Nj(y)
, (A.6)

σj(y) is the standard deviation of the number of co-authors per publication published in year

y

σj(y) =

√
1

Nj(y)

∑
k

[nk(y)− µj(y)]2 . (A.7)

We finally consider zci (s), the standard score of publication i as a function of the career

stage s = y − yi, where yi is the year of the first publication of i’s author. We then

calculate for each career stage s the quantity P [zcF (s) > zcM(s)], representing the probability

that a publication authored by a female author has a standard score higher than that of a
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publication authored by a male author at the same stage of the career as the female author.

We also compute the confidence intervals for these probability values, in the null hypothesis

that there is no gender difference in the standard scores:

H0 : zF (t) = zM(t). (A.8)

We generate the confidence interval valid under this hypothesis using a re-sampling

method: The populations of females and males are fixed, the values of all standard scores are

also fixed, but values of the standard score are randomly reassigned among publications (this

is the same as randomly reassigning the genders to authors). For each random configuration,

we compute again the probability P [zcF (s) > zcM(s)] and obtain the confidence interval by

repeating this procedure 1,000 times.

A.1.6. Statistical significance of the number of publications with a given team

size

To measure the extent to which females have different team sizes than expected, we use the

hypergeometric distribution as the null model. We first account for the increasing trend in

the team size over years (Fig. C.5). For publication i with ni co-authors from discipline j in

year y, we calculate the corrected team size, νi(y), by dividing ni by the average number of

co-authors for all the publications published in year y, µj(y),

νi(y) =
ni(y)

µj(y)
, µj(y) =

∑
k

nk(y)

Nj(y)
, (A.9)

where Nj(y) is the total number of publications published in year y. We then bin the

publications according to ν(y).
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For the discipline being considered, suppose there are N publications in total, of which

NF are authored by females. Consider a bin b in which there are Nb publications. If the

females collaborate with teams of different sizes with equal probability, then the expected

number of publications by females in b is

N e
F,b = Nb

NF

N
. (A.10)

Suppose that of the Nb publications in bin b, N o
F,b are authored by females. The proba-

bility of observing N o
F,b publications by females given by the hypergeometric distribution is

then

P (X = N o
F,b) =

(
NF

No
F,b

)(
N−NF

Nb−No
F,b

)(
N
Nb

) . (A.11)

The p-value of observing N o
F,b is then P (X ≤ N o

F,b). In Fig. C.6 we plot log
No

F,b

Ne
F,b

for each bin,

and shade the regions where the p-value is significant. We use the Bonferroni correction in

which the false discovery rate (FDR) is set to be 0.01. We reject the null model if p-value

< 0.01
m

, where m is the number of bins and thus the number of hypotheses.

A.2. Probable causes of gender discrimination in the U.S. movie industry

A.2.1. Assigning gender to individuals

The gender of actors is explicitly mentioned in their individual biographical pages, thus we are

able to fully determine their gender. For producers and directors that do not also have acting

credits, we use indirect methods to assign a gender. If present, we parse the individual’s

biographical text for gender-specific pronouns (he/his/him/himself, or she/her/hers/herself).

If the number of (male-) female-specific pronouns exceeds that of (female-) male-specific ones,

we assume the individual is a (male) female. If the previous attempt is inconclusive, we use
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the Python package gender-guesser (version 0.4.0) [194] to “guess” the gender based on

the first name of the individual. The output of gender-guesser is one of “female”, “mostly

female”, “androgynous”, “unknown”, “mostly male”, or “male”. We only assign a gender

if the guess is either “male” or “female”. If we still have not been able to assign a gender,

we try to find a photograph of the individual. If all attempts fail, we mark the individual’s

gender as “unknown”.

A.2.2. Null model for assigning gender to movie directors

We build a null model for gender assignment that preserves the number and genres of the

movies produced each year. We consider only movies directed by a single director. We

extract the number of movies of each genre released each year. For each year y in the

period 1910–2000, we assign a director gender to each of Ny movies released that year while

keeping track of each movie’s genre. The gender is female with probability pdy (equal to the

fraction of active female directors in year y). After repeating this procedure for every year,

we record the total fraction fG of movies in genre G directed by females. For each genre G,

we bootstrap the evolution the number of movies directed by females using 1,000 samples,

and extract the 95% and 99% confidence interval bounds from the bootstrap samples.

A.2.3. Confidence interval for the probability of selecting a female actor

For any given year y, we assume the gender breakdown of the cast aiy for movie iy to be the

result of a binomial process B(aiy , p
a
y) where an actor is female with probability pay. Then,

movie iy has fiy female and (aiy − fiy) male actors. If we assume that each movie’s casting

process within year y is an independent stochastic process, we can take the total actors

Ay =
∑

i aiy and the total female actors Fy =
∑

i fiy , and estimate p̂ay from the observed
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fraction of female actors in all movies in a given year. Therefore, we calculate a confidence

interval for the binomial proportion pay using the Clopper-Pearson method [195] where Fy is

the number of successes of B(Ay, p̂ay).

While the IMDb data violates the independence assumption, the error will be quite

small because there are many more actors than those that can be cast within a single movie.

Indeed, less than 12% of actors ever acted in more than 1 movie in a single year.

A.2.4. Data Availability

The movies, actors, directors, and producers datasets analyzed in Chapter 3 are available in

figshare at doi.org/10.6084/m9.figshare.4967876.v1 [146].

A.3. A discrete lognormal model to quantify scientific impact

A.3.1. Model Fitting and Hypothesis Testing

We estimate the discrete lognormal model parameters of Eq. (4.1) for all 1,283 researchers

in our database using a maximum likelihood estimator [124]. We then test the goodness

of the fit, at an individual level using the χ2 statistical test. We bin the empirical data in

such a way that there are at least 5 expected observation per bin. To assess significance

we calculate the χ2
o statistic for each researcher and then, for each of them, re-sample their

citation records using bootstrap (1,000 samples) and calculate a new value of the statistics

χ2
i (i = 1 , . . . , 1,000). We then extract a p-value by comparing the observed statistic χ2

o

with the re-sampled χ2 distribution. Finally we use a multiple hypothesis correction [186],

with a false discovery rate of 0.05, when comparing the model fits with the null hypothesis.

https://doi.org/10.6084/m9.figshare.4967876.v1


103

A.3.2. Generation of Theoretical Performance Indicators

For each discipline we take the average value of σ̂ and 20 equally spaced values of µ between

0.5 and 2.0. We then generate 1,000 datasets of 50 and 200 publications by random sampling

from Eq. (4.1). We then fit the model individually to these 2,000 synthetic datasets and

extracted the h-index, average number of citations, total number of citations and median

number of citations to publications with at least one citation. Finally, for each value of µ,

we calculate the average and the 95% confidence interval of all the indicators.

A.3.3. Manipulation Procedure for h-index

We try to increase the h-index of a researcher by self-citations alone, i.e., we assume the

researcher does not receive citations from other sources during this procedure. The procedure

works by adding only the minimum required citations to those publications that would cause

the h-index to increase. Consider researcher John Doe who has 3 publications with {na} =

(2,2,5). Doe’s h is 2. Assuming those publications don’t get cited by other researchers during

this time period, to increase h by 1, Doe needs to publish only one additional publication

with two self-citations; to increase h by 2 he must instead produce five publications with

a total of eight self-citations, four of which to one of the additional five publications. We

execute this procedure for all researchers in the database until they reached a h-index of 100.

A.3.4. Manipulation Procedure for µ

The manipulation of µ is based on Eq. (4.3). We try to change a researcher’s µ by increasing

the median number of citations to publications which have at least one citation already. We

consider only self-citations originating from secondary publications, i.e., publications that

will not get cited. For a given corpus of publications we first define a target increase in
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median, x and then calculate the number of self-citations needed to increase the current

median by x citations and the corresponding number of secondary publications. We then

take the initial corpus of publications and attempt to increase the median citation by x +

1. We repeat this procedure until we reach an increase in median citation of 2000.
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APPENDIX B

Supplementary Tables
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Table B.1. US News & World Report 2010 Best Colleges [196], and Chemical
Engineering [197] and Chemistry [198] specialty Graduate School Rankings.

Chemical Engn. Chemistry

Rank University Rank Researchers Rank Researchers

1 Harvard University — — 5 24
1 Princeton University 6 22 16 20
4 Massachusetts Inst of Technology 1 39 1 32
4 Stanford University 5 20 1 23
4 Univ Pennsylvania 16 23 20 34
4 California Inst of Technology 3 10 1 26

10 Duke University — — 43 27
12 Northwestern University 16 17 9 30
14 Johns Hopkins University 23 13 28 21
15 Cornell University 13 17 9 26
17 Rice University 23 18 28 22
17 Emory University — — 36 20
20 Univ Notre Dame 30 20 62 35
21 Univ California, Berkeley 2 18 1 58
22 Carnegie Mellon University 16 23 50 28
24 Univ California, Los Angeles 23 13 12 54
27 Univ Michigan 13 23 16 48
35 Georgia Inst of Technology 11 38 26 42
39 Univ Wisconsin at Madison 6 19 7 46
39 Univ Illinois at Urbana-Champaign 11 20 7 44
42 Univ California, Santa Barbara 9 19 26 40
42 Rensselaer Polytechnic Inst 27 17 74 21
42 Univ California, Davis 30 27 34 38
42 Univ Washington 21 17 28 35
47 Univ Florida 23 22 36 44
47 Univ Texas at Austin 6 23 12 46
47 Pennsylvania State University 21 22 16 36
53 Ohio State University 27 17 28 41
56 Boston University — — 62 22
61 Univ Minnesota at Minneapolis St. Paul 3 33 22 42
61 Purdue University 15 27 22 55
68 Univ Delaware 10 24 62 32
77 Univ Colorado 19 22 28 51
88 North Carolina State University 20 24 50 28

106 Univ Massachusetts Amherst 30 18 50 27
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Table B.2. US News & World Report 2010 Best Colleges [196], and Ecology [199]
and Materials Science [200] specialty Graduate School Rankings.

Ecology Materials Science

Rank University Rank Researchers Rank Researchers

1 Harvard University 2 11 — —
1 Princeton University 8 16 — —
4 Massachusetts Inst of Technology — — 1 25
4 Stanford University 7 18 5 14
4 Univ Pennsylvania — — 13 20
4 California Inst of Technology — — 12 11
8 Univ Chicago 1 20 — —

10 Duke University 5 31 — 24
12 Northwestern University — — 3 35
14 Johns Hopkins University — — 22 12
15 Cornell University 6 25 8 17
17 Rice University — 13 37 15
21 Univ California, Berkeley 2 43 5 25
22 Carnegie Mellon University — — 13 19
24 Univ California, Los Angeles — — 22 19
27 Univ Michigan — 51 7 30
35 Georgia Inst of Technology — — 8 39
39 Univ Wisconsin at Madison — 31 16 20
39 Univ Illinois at Urbana-Champaign — 68 2 23
42 Univ California, Santa Barbara — — 4 34
42 Rensselaer Polytechnic Inst — — 19 11
42 Univ Washington — 6 26 15
47 Univ Florida — — 8 40
47 Univ Texas at Austin 8 16 — —
47 Pennsylvania State University — 58 8 24
53 Ohio State University — — 15 24
56 Boston University — — — 31
58 Univ Georgia 10 24 — —
61 Purdue University — — 16 15
68 Univ Delaware — — 45 14
88 North Carolina State University — — 31 16
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Table B.3. US News & World Report 2010 Best Colleges [196], and Molecular
Biology [201] and Psychology [202] specialty Graduate School Rankings. Univ
California, San Francisco offers only graduate-level courses and thus is not part of the Best
Colleges Rankings. We still include it since it is very highly ranked in the specialty of
Molecular Biology.

Ecology Materials Science

Rank University Rank Researchers Rank Researchers

1 Harvard University 1 44 3 26
1 Princeton University 8 54 8 30
3 Yale University 8 38 3 25
4 Massachusetts Inst of Technology 2 67 — —
4 Stanford University 3 24 1 32
4 California Inst of Technology 6 15 — —
2 Washington University in St. Louis — 155 — —

14 Johns Hopkins University 8 32 — —
11 Univ California, Berkeley 5 41 1 31
24 Univ California, Los Angeles — — 3 67
27 Univ Michigan — — 3 111
39 Univ Wisconsin at Madison — — 8 35
39 Univ Illinois at Urbana-Champaign — — 7 53
47 Univ Texas at Austin — 123 — —
61 Univ Minnesota at Minneapolis St. Paul — — 8 40
– Univ California, San Francisco 4 50 — —
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Table B.4. Research topics in molecular biology. We show for each topic the list of
most representative words and journals. The topic numbers and words are given by the topic
classifying method [135], and the journals are those in which the number of publications
is significantly more than expected to occur by chance if drawn from a hypergeometric
distribution.

Topic Representative words Representative journals

B0 cell express activ signal develop Development, Molecular and Cellular Biol-

ogy, Cancer Research, Genes & Development,

Journal of Immunology

B1 patient increas studi p signific Journal of Clinical Investigation, Cancer Re-

search, Circulation, Diabetes, Investigative

Ophthalmology & Visual Science

B2 protein structur bind dna site Biochemistry, Nucleic Acids Research, Molec-

ular Cell, Journal of The American Chemical

Society, EMBO Journal

B3 use model method data protein Biophysical Journal, Nucleic Acids Research,

Journal of The American Chemical Society,

Physical Review Letters, Physical Review B

B4 channel receptor neuron cell activ Journal of Neuroscience, Neuron, Journal of

Neurophysiology, Nature Neuroscience, Jour-

nal of Physiology-London

B5 gene mutat sequenc genom chro-

mosom

Nature Genetics, Genetics, Nucleic Acids Re-

search, Genome Research, American Journal

of Human Genetics

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B6 virus infect cell viral protein Journal of Virology, Virology, Journal of Im-

munology, Journal of Experimental Medicine,

Nature Medicine

B7 protein membran cell transport

vesicl

Journal of Cell Biology, Molecular Biology of

The Cell, EMBO Journal, Journal of Cell Sci-

ence, American Journal of Physiology

B8 male femal behavior sex receptor Endocrinology, Development, Hormones and

Behavior, Developmental Biology, Journal of

Comparative Neurology

B9 cell microtubul protein spindl mi-

tot

Journal of Cell Biology, Molecular Biology of

The Cell, Current Biology, Genes & Develop-

ment, Molecular and Cellular Biology

B10 speci sequenc phylogenet group

data

Molecular Biology and Evolution, Genet-

ics, American Journal of Botany, Systematic

Botany, Molecular Phylogenetics and Evolu-

tion

B11 actin cell protein filament myosin Journal of Cell Biology, Journal of Cell Sci-

ence, Molecular Biology of The Cell, Current

Biology, Neuron

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B12 gene methyl histon cell dna Molecular and Cellular Biology, Genes & De-

velopment, Molecular Cell, Genetics, Nature

Genetics

B13 protein degrad ubiquitin substrat

cell

Molecular Cell, Molecular and Cellular Biol-

ogy, EMBO Journal, Genes & Development,

Journal of Virology

B14 plant express gene protein cell Plant Cell, Plant Journal, Plant Physiology,

Plant Molecular Biology, Molecular Plant-

Microbe Interactions

B15 gene v iron bacteria express Journal of Bacteriology, Molecular Microbiol-

ogy, Infection and Immunity, Applied and En-

vironmental Microbiology, Biotechnology and

Bioengineering

B16 c elsevi right reserv all Developmental Biology, Bioorganic & Medic-

inal Chemistry Letters, Tetrahedron Letters,

FEBS Letters, Biochemical and Biophysical

Research Communications

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B17 oxid no activ nitric heme Biochemistry, Investigative Ophthalmology &

Visual Science, Biochemical and Biophysical

Research Communications, Archives of Bio-

chemistry and Biophysics, Free Radical Biol-

ogy and Medicine

B18 beta radic 2 dot center Biochemistry, Journal of the American Chem-

ical Society, Physical Review B, Physical Re-

view Letters, Inorganic Chemistry

B19 light protein gene express ara-

bidopsi

Plant Cell, Plant Physiology, Plant Journal,

Genetics, Planta

B20 proteas inhibitor parasit activ cys-

tein

Biochemistry, Journal of Medicinal Chem-

istry, Chemistry & Biology, Molecular

and Biochemical Parasitology, Bioorganic &

Medicinal Chemistry Letters

B21 telomer telomeras rna dna cell Molecular and Cellular Biology, Genes & De-

velopment, Nucleic Acids Research, Molecu-

lar Cell, RNA-A Publication of the RNA So-

ciety

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B22 class cell peptid t molecul Journal of Immunology, Journal of Experi-

mental Medicine, European Journal of Im-

munology, Immunity, International Immunol-

ogy

B23 receptor activ thrombin bind

platelet

Blood, Journal of Clinical Investigation, Bio-

chemical Journal, Journal of Pharmacology

and Experimental Therapeutics, Molecular

Endocrinology

B24 charg lipid cation nmr concentr Biochemistry, Journal of The American

Chemical Society, Biophysical Journal, Lang-

muir, Journal of General Physiology

B25 cell oxidas neutrophil activ mice Blood, Journal of Immunology, Journal of Ex-

perimental Medicine, Journal of Leukocyte

Biology, Calcified Tissue International

B26 tumor dna skin mice adduct Cancer Research, Molecular Carcinogenesis,

Biochemistry, Carcinogenesis, Chemical Re-

search In Toxicology

B27 phage gene genom rate cell Journal of Bacteriology, Evolution, Molecu-

lar Biology and Evolution, Virology, RNA-A

Publication of The RNA Society

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B28 shock heart heat ventricular car-

diac

American Journal of Physiology-Heart and

Circulatory Physiology, Circulation Research,

Circulation, Journal of Cardiovascular Elec-

trophysiology, Heart Rhythm

B29 anion complex 1 angstrom 2 Journal of The American Chemical Soci-

ety, Biochemistry, Chemical Communica-

tions, Journal of Organic Chemistry, Inor-

ganic Chemistry

B30 mice cholesterol receptor apo cell Journal of Lipid Research, Journal of Clini-

cal Investigation, Circulation Research, Arte-

riosclerosis Thrombosis and Vascular Biology,

Lipids

B31 zone fluid soil site depth Development, Journal of Neuroscience, Amer-

ican Journal of Pathology, Geology, Journal

of Geophysical Research-Planets

B32 coli e assembl pilus bladder Infection and Immunity, Journal of Bacteriol-

ogy, Molecular Microbiology, EMBO Journal,

Organic & Biomolecular Chemistry

B33 ant coloni popul speci albican Genetics, PLOS Biology, Evolution, Molecu-

lar Ecology, Insectes Sociaux

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B34 surfac cell antibodi use film Physical Review B, Applied Physics Letters,

Langmuir, Journal of Physical Chemistry B,

Nature Biotechnology

B35 cell protein signal kinas chemotaxi Journal of Bacteriology, Molecular Microbi-

ology, Biophysical Journal, Planta, Microbial

Ecology

B36 spd lung macrophag cell protein Journal of Immunology, American Journal of

Respiratory Cell and Molecular Biology, Jour-

nal of Clinical Investigation, American Jour-

nal of Physiology-Lung Cellular and Molecu-

lar Physiology, Infection and Immunity

B37 protein aggreg diseas beta prion Protein Science, Human Molecular Genetics,

Annals of Neurology, ACS Chemical Biology,

Archives of Neurology

B38 ligand bind structur kringl acid Biochemistry, Journal of The American

Chemical Society, Journal of Biomolecu-

lar NMR, Protein Engineering, Proteins-

Structure Function and Genetics

Continued on next page



116

Table B.4. Continued from previous page

Topic Representative words Representative journals

B39 resist cell drug efflux mutant Journal of Bacteriology, Antimicrobial Agents

and Chemotherapy, Molecular Microbiology,

American Journal of Physiology, Organic &

Biomolecular Chemistry

B40 gene cell gut c human Molecular Microbiology, Eukaryotic Cell,

American Journal of Physiology, Journal of

Nutrition, Cell Host & Microbe

B41 matrix fiber cell type tissu Journal of Cell Biology, Journal of Clinical In-

vestigation, Journal of Cell Science, Journal

of The Acoustical Society of America, Ameri-

can Journal of Respiratory Cell and Molecular

Biology

B42 l cell monocytogen host intracellu-

lar

Journal of Bacteriology, Infection and Immu-

nity, Molecular Microbiology, Journal of Im-

munology, Journal of Experimental Medicine

B43 domain bind type vwf platelet Blood, Journal of Clinical Investigation,

Thrombosis and Haemostasis, Journal of

Thrombosis and Haemostasis, Human Gene

Therapy

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B44 mrna rna express intestin protein RNA-A Publication of The RNA Society,

Journal of Lipid Research, Endocrinology,

American Journal of Physiology, Biochemical

and Biophysical Research Communications

B45 dna recombin protein meiotic

chromosom

Genes & Development, Molecular and Cellu-

lar Biology, Genetics, Development, Molecu-

lar Cell

B46 express gene cell develop hoxa10 Cancer Research, Development, Developmen-

tal Biology, Molecular Endocrinology, En-

docrinology

B47 receptor bind cell protein ligand Bioconjugate Chemistry, Biochemical Jour-

nal, Journal of Neurochemistry, Journal of

Medicinal Chemistry, Experimental Cell Re-

search

B48 activ insulin acid islet increas Biochemistry, Diabetes, Circulation Re-

search, Journal of Clinical Investigation, Bio-

chemical Journal

B49 subunit alpha protein gamma beta Analytical Biochemistry, Archives of Bio-

chemistry and Biophysics, Applied Microbi-

ology and Biotechnology, Molecular Plant-

Microbe Interactions, Journal of Phycology

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B50 beta alpha termin subunit lh Molecular Endocrinology, Endocrinology,

Molecular and Cellular Endocrinology, Clin-

ical Orthopaedics and Related Research,

Bio-Technology

B51 reaction synthesi acid group use Journal of The American Chemical Society,

Biochemistry, Organic Letters, Tetrahedron

Letters, Journal of Organic Chemistry

B52 mice diseas cell bone normal Journal of Clinical Investigation, Blood, In-

vestigative Ophthalmology & Visual Science,

Molecular Therapy, Journal of Bone and Min-

eral Research

B53 protein activ cell kinas inositol Molecular and Cellular Biology, Biochemical

and Biophysical Research Communications,

Biochemical Journal, Biotechniques, Ameri-

can Journal of Physiology-Endocrinology and

Metabolism

B54 transcript activ promot bind pro-

tein

Molecular and Cellular Biology, Genes & De-

velopment, Molecular Cell, EMBO Journal,

Journal of Virology

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B55 cell protein assembl flagellar cilia Journal of Cell Biology, Development, Cell

Motility and The Cytoskeleton, Current Bi-

ology, Genetics

B56 cell oscil neuron period cycl Journal of Neuroscience, Neuron, Journal

of Neurophysiology, Nature Neuroscience,

PLOS One

B57 reductas degrad protein cell j Archives of Biochemistry and Biophysics, Cir-

culation, American Journal of Medical Ge-

netics, Calcified Tissue International, Protein

Expression and Purification

B58 mitochondri cell protein death mi-

tochondria

Molecular and Cellular Biology, Journal of

Clinical Investigation, Circulation Research,

Archives of Biochemistry and Biophysics,

Current Genetics

B59 replic cell gene dna protein Journal of Bacteriology, Molecular Microbiol-

ogy, Genes & Development, Molecular Cell,

Genetics

B60 toxin alpha nakatpas express cell Developmental Biology, FEBS Letters,

Memorias Do Instituto Oswaldo Cruz, In-

sect Biochemistry and Molecular Biology,

European Journal of Biochemistry

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B61 gene express protein cell 1433 Plant Physiology, Plant Molecular Biology,

Plant Cell, Plant Journal, Maydica

B62 neuron express gene olfactori

drosophila

Development, Neuron, Journal of Neuro-

science, Genes & Development, Developmen-

tal Biology

B63 m tuberculosi infect immun secret Infection and Immunity, Molecular Micro-

biology, Journal of Experimental Medicine,

PLOS Pathogens, Structure

B64 protein coli respons gene stress Journal of Bacteriology, Genes & Devel-

opment, Molecular Microbiology, Molecular

Cell, Molecular Biology of The Cell

B65 gene element boundari express do-

main

Development, Genes & Development, Molec-

ular and Cellular Biology, Genetics, Nucleic

Acids Research

B66 protein activ kinas signal inhibit Chemistry & Biology, Cell Calcium, Science

Signaling, Journal of Experimental Biology,

Mutation Research

B67 activ kinas enzym acid phosphoryl Biochemistry, Journal of Bacteriology,

Biotechnology and Bioengineering, Applied

Microbiology and Biotechnology, Archives of

Biochemistry and Biophysics

Continued on next page
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Table B.4. Continued from previous page

Topic Representative words Representative journals

B68 respons call pattern select differ Journal of Neuroscience, Journal of Neuro-

physiology, Journal of The Acoustical Society

of America, Journal of Molecular Evolution,

Hearing Research
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Table B.5. The 20 most prolific scientists in our dataset publishing in topic B5
identified as genomics (outlier topic 6 in Table 2.2).

Name Publications in topic Total publications Gender

Lander ES 196 334 M
Vogelstein B 187 448 M
Chakravarti A 99 277 M
Boeke JD 86 220 M
Housman DE 85 213 M
Wilson RK 84 125 M
Botstein D 80 391 M
Kazazian HH 79 320 M
Permutt MA 77 204 M
Page DC 70 177 M
Kruglyak L 67 116 M
Walbot V 62 188 F
Zack DJ 61 149 M
Feinberg AP 60 149 M
Tilghman SM 52 131 F
Nathans J 51 144 M
Silver LM 43 150 M
Germino GG 39 86 M
Burge CB 33 51 M
Landweber LF 30 90 F
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Table B.6. The 20 most prolific scientists in our dataset publishing in topic B10
(outlier topic 7 in Table 2.2).

Name Publications in topic Total publications Gender

Jansen RK 114 148 M
Hillis DM 49 143 M
Gutell RR 48 96 M
Andolfatto P 22 37 M
Warnow T 21 49 F
Lander ES 16 334 M
Wilson RK 14 125 M
Garcia BA 14 91 M
Hoekstra HE 13 38 F
Landweber LF 12 90 F
Shankland M 12 42 M
Irish VF 11 54 F
Dellaporta SL 10 51 M
Barrick JE 10 43 M
Silver LM 9 150 M
Matz MV 9 34 M
Gordon JI 8 396 M
Deng XW 8 200 M
Weissman JS 8 196 M
Bartel DP 8 121 M
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Table B.7. The 20 most prolific scientists in our dataset publishing in topic B21
identified as telomere research.

Name Publications in topic Total publications Gender

Blackburn EH 89 177 F
Zakian VA 59 109 F
Greider CW 58 86 F
Collins K 42 64 F
Campbell JL 27 117 F
Pardue ML 24 117 F
Weinberg RA 23 346 M
Boeke JD 20 220 M
Lambowitz AM 19 174 M
Bartel DP 19 121 M
Hanawalt PC 15 262 M
Sharp PA 11 396 M
Doudna JA 11 115 F
Altman S 10 170 M
Hemann MT 10 25 M
Kazazian HH 9 320 M
Bustamante C 9 205 M
Landweber LF 9 90 F
Paull TT 9 37 F
Vogelstein B 8 448 M
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Table B.8. Individual lognormal parameters show no dependence on Np. For each
researcher within each of the seven disciplines we perform least-squares linear regression
between the lognormal parameters µ̂ and σ̂, and log10(Np). We used a permutation test
to calculate the p-values: for each set of pairs, (µ̂, Np) and (σ̂, Np), we performed 10,000
random swaps of all Np and subsequent regression; we obtained a p-value by comparing the
original slope of the fit with the distribution of the permuted slopes. ∗p < 0.05/7 ∼ 0.0074.

Parameter Discipline slope (m) intercept (b) R2 p

ChemEng 0.051 1.218 0.00187 0.5240
Chemistry 0.073 1.286 0.00668 0.0744
Ecology -0.150 1.658 0.00844 0.4502

µ̂ = mNp + b IndustEng 0.379 0.348 0.04305 0.3166
MatScience 0.106 1.043 0.01114 0.1278
MolBio 0.156 1.332 0.01909 0.0410
Psychology 0.104 1.229 0.00496 0.5732

ChemEng 0.067 0.379 0.03542 0.0052*
Chemistry 0.031 0.418 0.00650 0.0862
Ecology 0.059 0.434 0.00806 0.4524

σ̂ = mNp + b IndustEng -0.094 0.764 0.01657 0.5380
MatScience 0.033 0.502 0.00921 0.1598
MolBio 0.064 0.415 0.01688 0.0592
Psychology -0.092 0.761 0.02026 0.2302
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Table B.9. Individual discipline statistics of the lognormal model parameters.

Parameter Discipline Mean Std Dev Min Median Max

ChemEng 1.354 0.256 0.566 1.320 1.921
Chemistry 1.439 0.225 0.689 1.437 2.179
Ecology 1.395 0.308 0.702 1.375 1.999

µ̂ IndustEng 1.012 0.313 0.603 1.046 1.466
MatScience 1.250 0.266 0.629 1.254 1.947
MolBio 1.624 0.253 0.950 1.641 2.250
Psychology 1.437 0.318 0.545 1.427 1.967

ChemEng 0.508 0.080 0.323 0.513 0.764
Chemistry 0.468 0.095 0.300 0.482 0.956
Ecology 0.536 0.124 0.359 0.546 0.896

σ̂ IndustEng 0.604 0.150 0.438 0.591 0.796
MatScience 0.559 0.095 0.335 0.568 0.969
MolBio 0.525 0.105 0.362 0.541 1.006
Psychology 0.550 0.137 0.398 0.585 0.954
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APPENDIX C

Supplementary Figures
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Figure C.1. Gender differences in the propensity to repeat previous collaboration
measured using the Gini coefficient. Distribution of the Gini coefficient of collaboration
heterogeneity [133] for females (orange) and males (purple) in the dataset with at least 10
publications. We exclude single-author publications. We obtain p-values for the validity
of the null hypothesis that the samples were drawn from the same distribution using the
Kolmogorov-Smirnov test. For all disciplines, we find δ = 2(ḠF − ḠM)/(ḠF + ḠM) < 0,
where ḠF and ḠM are the average Gini coefficient of the female and male faculty, respectively.
Females have Gini coefficients smaller than those of males, suggesting that female faculty
have a lower propensity than male faculty to repeat collaborations.
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Figure C.2. Gender difference in the propensity to repeat previous co-authors
measured using the disparity index. Distribution of the disparity index measuring the
repetition of co-authors of females (orange) and males (purple). The p-values indicate the
significance of the gender difference, obtained with Kolmogorov-Smirnov test. The result is
in good agreement with that obtained using the Gini coefficient in Fig. C.1.
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Figure C.3. Correlation between Gini coefficient and probability to repeat previ-
ous co-authors. Orange (female) and purple (male) lines are linear fits to data, and R2

F

and R2
M are the corresponding coefficient of determination.
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Figure C.4. Heterogeneity in the number of publications and team size masks the
effect of gender difference in the propensity to repeat co-authors. Survival curves
of the simulated total number of distinct co-authors with fixed number of publications and
team size (A), fixed number of publications and team sizes sampled from real data (B), and
both number of publications and team sizes from real data (C) for female (orange) and male
(purple) faculty in all departments (see Appendix A.1 for details). We obtained p-values for
the validity of the null hypothesis that the samples were drawn from the same distribution
using the Kolmogorov-Smirnov test. Statistical significant results with p < 0.01/18 ≈ 0.0006
(Bonferroni correction for multiple hypothesis) are shaded grey. When using fixed number
of publications and team size, females have significantly more distinct co-authors. However,
the gender difference disappears for most disciplines when using fixed number of publications
but real team sizes. When we also use number of publications from the real data, females
have significantly fewer distinct co-authors, consistent with Fig. 2.1.
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Figure C.5. Growth of average number of co-authors during considered period.
Average number of co-authors per publication for females (orange) and males (purple) as
a function of publication year. The data are smoothed using a moving averaging method
with window size 3. The shaded region indicates the 99% confidence interval obtained with
bootstrapping.
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Figure C.6. In molecular biology departments, female faculty work in smaller
teams than male faculty. Logarithm of the ratio of observed number of publications
authored by females over that expected from a hypergeometric distribution (orange circles).
The publications are binned by the number of co-authors corrected for the annual average
with a bin size of 0.2. The shaded areas indicate that the observed number is significantly
different from expected by the model, using the Bonferroni correction by treating each bin
as an independent hypothesis test (see Appendix A.1 for details). The error bars indicate
thrice the standard deviation. The black line indicates the ratio of 1.0, and the purple line
indicates the average corrected team size. Note that for molecular biology, females have
more publications than expected with smaller teams (corrected team size < 1.0) and fewer
publications than expected with larger teams (corrected team size > 1.0).
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Figure C.7. Correlation between the average number of co-authors corrected for
the annual average versus the fraction of publications authored by female fac-
ulty in chemical engineering departments. Publications are grouped by journal. We
restricted the publication types to “article”, “letter”, and “note”. The size of the circle is
proportional to the logarithm of the number of publications in that journal or sub-discipline.
We use journal category in the ISI Journal Citation Report as the sub-disciplines. Journals
with multiple categories are plotted as concentric rings. The purple line indicates the total
average fraction of publications by females for all the publications authored by faculty in
chemical engineering in our cohort, fM . The blue line is a weighted linear regression, in
which we assign to each journal a weight equal to the number of publications. We only
include data points within the range of [0.5fM , 2fM ].
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Figure C.8. Correlation between the average number of co-authors corrected for
the annual average versus the fraction of publications authored by female faculty
in chemistry departments. See the caption of Fig. C.7 for details.
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Figure C.9. Correlation between the average number of co-authors corrected for
the annual average versus the fraction of publications authored by female faculty
in ecology departments. See the caption of Fig. C.7 for details.
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Figure C.10. Correlation between the average number of co-authors corrected for
the annual average versus the fraction of publications authored by female faculty
in materials science departments. See the caption of Fig. C.7 for details.
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Figure C.12. Evolution of female representation as directors and producers. Num-
ber of (a) females and (b) males directing a movie for the first time (entry) or for the last
time (exit) for U.S.-produced movies. For females, entries almost exactly balance exits. For
males, between 1920 and 1940, the number of entries systematically exceeds the number of
exits. (c) Percentage of females among active movie directors. The more equitable condi-
tion of the early 1900s (dashed line, approximately 5%) was only reached again in 1991,
having remained below half of that level for 49 years (dash-dotted line). Number of (d)
females and (e) males producing a movie for the first time (entry) or for the last time (exit)
for U.S.-produced movies. For females, entries almost exactly balance exits until 1975, at
which point entries exceed exits. For males, between 1920 and 1940, the number of entries
systematically exceeds the number of exits. (f) Percentage of females among active movie
producers. The more equitable condition of the early 1900s (dashed line, approximately
10%) was only reached again in 1983, having remained below half of that level for 44 years
(dash-dotted line).
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Figure C.13. Historical trends of female representation in different producer roles.
Percentage of females among different active movie producer roles over time.
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Figure C.14. Actor preferences according to director’s gender. Historical trend of
the mean percentage of female actors cast in movies directed by a female (orange) or a male
(purple). Female directors have a significantly higher preference for female actors than male
directors (Mann-Whitney test, U = 2.6 × 106, p < 0.001). Shaded regions represent the
99% confidence bands calculated using the Clopper-Pearson [195] method under a binomial
process for selecting a movie’s cast (see Appendix A.2 for details).
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Figure C.15. Dependence of µ̂ on number of publications at the individual level. We
fit the model to 1,000 randomized subsets of each researcher’s publication list and compare
the µ̂ obtained from fitting each subset of 10, 50, and 100 publications with the µ̂ associated
with the complete publication list. Then, for each researcher and subset size, we calculate a
z-score using the mean and standard deviation of the “sub-µ̂”. For Np ≥ 50, the dependence
on sample size is negligible for most researchers. Researchers with Np < 100 are omitted
from the calculation on the subset of size 100.
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Figure C.16. Dependence of σ̂ estimates on number of publications at the individ-
ual level. We use the same procedure as in Fig. C.15, except here we show the results for
the dependence of σ̂ on sample size. Estimates of σ̂ are more dependent of sample size than
µ̂. However, as in the case of µ̂, the dependence of σ̂ on sample size decays rapidly with
increasing sample size. Researchers with Np < 100 are omitted from the calculation on the
subset of size 100.
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Figure C.17. Susceptibility of impact measures to manipulation. We used the same
procedure as in Fig. 4.6, except here we show the required number of publications with self-
citations that researchers need to publish in order to increase their indicators. Other details
are the same as in Fig. 4.6.
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Figure C.18. Comparison of σ̂ and fs across departments, journals, and re-
searchers. We show the maximum likelihood fitted σ̂ (top) and the fraction of secondary
publications (bottom) for chemistry departments and chemistry journals in select years,
and for all chemistry researchers in our database. The black horizontal dashed lines mark
the value of the corresponding parameter for the Journal of the American Chemical Society
in 1995. For clarity, we do not show σ̂ for 19 journals and 9 researchers that are outliers.
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