Since their introduction nearly a century ago, protein vaccines and therapeutics have revolutionized our ability to prevent and treat human disease. However, existing production processes for biopharmaceuticals are technically complex and rely on living cells, which necessitates highly centralized manufacturing in large-scale production facilities, specialized equipment, and cold-chain distribution. With...
Supported transition metal oxides are an important class of catalysts with a wide range of industrially relevant applications. However, commonly used synthesis techniques to prepare these catalysts often result in a complex mixture of surface species. This inhomogeneity makes it difficult to understand what specific structures might be responsible for...
Supported vanadium oxide materials have been extensively studied for alkane oxidative dehydrogenation (ODH) reactions due to their high activity and selectivity. The catalytic activity of supported VOx materials is influenced by the surface coverage of VOx sites and hence the distribution of V=O, V-O-V, and V-O-S (S, support) bonds. The...
Recent advances in combinatorial chemistry, synthetic biology, and ‘omics’ research require high-throughput methods for performing and analyzing thousands to millions of reactions in one day. However, it is a challenge to engineer high-throughput systems that can autonomously conduct and analyze such a large number of reactions in a generalizable and...
As the global population grows, consumption of water, energy, and food will also increase, placing stresses on these sectors, raising the importance of the Water-Energy-Food Nexus (WEFN). However, operation of WEFN systems are currently not sustainable. It is thus crucial to design WEFN systems to be sustainable from local to...
The effective capture and detoxification of chemical warfare agents (CWAs) is a pressing need in the modern world. Materials are needed for both the destruction of weapon stockpiles and personal protection via fabric coatings or respirators. Attractive candidates for these applications include metal–organic frameworks (MOFs) – highly crystalline materials composed...
Complex fluids are ubiquitous, from natural materials to manufactured products. Understanding their behavior under flow is vital for engineering these materials. Extensional flow, despite being industrially relevant and often producing dominant impacts upon complex fluids, is an underserved topic compared to shear flow due to a lack of reliable apparatuses...
Metal–organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes connected by organic linkers. Due to their high degree of synthetic tunability, MOFs have been considered for a wide range of applications, including many that rely on a change in oxidation state. While most MOFs are generally...
This thesis centers around the development and application of novel high throughput lithography tools. These advances help: 1) establish the field of nanocombinatorics, where massive libraries (termed megalibraries) of materials can be prepared in a positionally encoded manner and then screened for functional activity, and 2) advance stereolithographic 3D printing...
When attached to another species (e.g. a nanoparticle), the sequence specificity of DNA can be repurposed to program interactions between such entities and to direct their formation into ordered structures. The research presented in this thesis aims to push the boundaries of structures that can be made via this approach....
Heterogeneous catalysts based on metal oxides are of significant interest for many industrial chemical reactions. These catalysts, however, often suffer from ill-defined structures that preclude better understanding of the surface phenomena. Thus, structurally well-defined catalysts have received growing attention by making it feasible to understand the kinetics and reaction mechanisms....
The need to rapidly develop and produce life-saving vaccines and therapeutics is critical for overcoming pandemics in a global economy. Recent advances in automation and cell-free systems have opened new avenues for expediting optimization and production of biologic vaccines and therapeutics. A key consideration for the development of protein biologics...
Two-step, solar thermochemical water splitting using nonstoichiometric oxides has emerged as an attractive approach for large-scale hydrogen production. Perovskite-structured oxides, with their wide tunability, offer the potential for high fuel productivity at moderate operating temperatures. Given the vast chemical space, the materials development effort is carried out here in combination...
Natural gas is likely to become one of the main sources of carbon-based chemicals in the next century due to rapidly increasing natural gas production levels. This has created new incentives to find materials that are active and selective towards alkane partial oxidation reactions that are relevant for natural gas...
Metal-organic frameworks are crystalline, nanoporous materials formed by metal nodes connected by organic ligands. MOFs represent an exciting approach to materials design where a material with desired properties can be made by choosing the compatible nodes, linkers and topologies independently. MOFs are highly porous and have high surface areas...
Cells are primarily comprised of metal ions, small molecules, proteins, lipids, and nucleic acids. The ability to probe these molecules in single living cells can shed new light on chemical processes inside of cells or allow disease diagnosis based on molecular profiling. However, there exists a lack of tools that...
Interfacial effects play a critical role in perturbing the properties of polymeric materials. The average properties of polymer materials with substantial specific interfacial area, e.g., ultrathin films, nanorods, and polymer nanocomposites, often deviate significantly from the bulk responses. Much of the past research has focused on systems in which free...
Polymers permeate almost all facets of modern life. For end use applications, these materials are typically processed into products at elevated temperatures under which molten polymers are subjected to flow. Particular interest lies in the flow-induced crystallization behavior of polymer melts under extensional flow, which is a flow type dominant...
The fields of metabolic engineering and synthetic biology have emerged in recent years with the heavily overlapping goals of sustainable bioproduction of chemical goods and predictable and precise engineering of biological function.1 However, efforts to reach commercially relevant titers have stalled.2 Many challenges arise during optimization of each production platform,...
Biological therapeutics have revolutionized the way we treat cancer due to their ability to target tumors discriminately, leaving healthy cells unaffected. However, our inability to tailor the structure of biologics may hamper their optimization for efficacy. This lack of programmability contributes to factors such as immunogenic responses, inability to penetrate...