The use of light to understand detailed electronic structure and chemical properties of a molecule through light-matter interaction is fundamentally essential to design and analyze any chemical system. Over the past decades, rapid developments on optics and laser techniques improved the detection efficiency of multiphoton processes with more detailed chemical...
Electrochemical cell devices are increasingly being sought for energy conversion and storage applications due to their high efficiencies and their potential for operating free of greenhouse gas (GHG) emissions. Solid Acid Electrochemical Cells (SAECs), which most commonly employ CsH2PO4 (CDP) as the electrolyte component, are uniquely suited to meet the...
Throughout history, the development of materials has relied heavily on the empirical judgment of scientists and engineers and on prolonged experiments proton to errors. Due to the complexity of material behavior, successful discovery of new candidates has been serendipitous, and down-selection of candidates remains a time-consuming process that requires repetitive...
Rapid changes in global climate are pushing nations to reduce CO2 emissions and adopt clean energy technologies for renewable energy generation and storage. As wind and solar are implemented worldwide, a commensurate response in energy storage will need to be installed to meet fluctuations in peak energy demands and generation...
Electrochemical reactions on the nanoscale play a pivotal role in a variety of areas, including electrocatalysis, energy conversion and storage, corrosion prevention, plasmon driven chemistry, and so forth. An in-depth knowledge of how site-specific compositions and morphologies locally affect the electron transfer kinetics will greatly benefit the design of catalysts,...
Technology has advanced rapidly, especially in the twenty-first century, influencing our day-to-day life on unprecedented levels. Most such advances in technology are closely linked to, and often driven by, the discovery and design of new materials. It follows that the discovery of new materials can not only improve existing technologies...
Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds...
Growing energy and climate concerns in the United States and across the world demand improvements in energy efficiency, conservation, and renewability. Solid oxide fuel cells (SOFCs) are highly efficient devices that electrochemically convert the chemical energy of a fuel to electricity. These devices can operate on natural gas as a...