Proteins are the nanoscale building blocks of life. Their sophisticated but well-defined architectures result in complex biological functions, including ones involved in metabolism, photosynthesis, transcription, translation, and immunity. To study and improve upon the natural functions of proteins, it is desirable to develop methodology for organizing proteins into targeted architectures....
Nanocarriers are drug delivery vehicles that have at least one dimension at the nanoscale (10-9 m). Engineering the nanocarrier surface is a strategy for targeting drug delivery to specific cell types to enhance efficacy and minimize side effects. A useful analogy is to consider how the chassis of an automotive...
Biological therapeutics have revolutionized the way we treat cancer due to their ability to target tumors discriminately, leaving healthy cells unaffected. However, our inability to tailor the structure of biologics may hamper their optimization for efficacy. This lack of programmability contributes to factors such as immunogenic responses, inability to penetrate...
Label-free assays, and particularly those based on the combination of mass spectroscopy with surface chemistries, enable high-throughput experiments of a broad range of reactions. However, these methods can still require the incorporation of functional groups that allow immobilization of reactants and products to surfaces prior to analysis. In this thesis,...
Spinal cord injury (SCI) is a devastating injury, which can be caused by motor vehicle accidents, violence, and non-traumatic causes. These injuries can leave patients with lifelong paralysis, as well as incontinence and life threatening autonomic dysreflexia. There is currently no FDA approved treatment for SCI. Spinal injury disrupts the...
Over the past decade significant advancements have been made across the field of cancer biology resulting in transformative new therapies. Despite these advancements, treatments for metastatic cancer remain relatively ineffective. Metastasis is coordinated by various types of “healthy†stromal cells in addition to the tumor cells themselves. This requires a...
Graphene oxide (GO), a product of oxidative exfoliation of graphite powders, has received significant attention due to its excellent solution dispersibility, rich functionality, and ease of conversion to chemically modified graphene (also known as œreduced graphene oxide or œr-GO). These properties make GO an attractive building block for constructing various...
The assembly of nanoscale building blocks into larger ensembles with well-defined architecture has the potential to create entirely new classes of designer photonic and plasmonic metamaterials with unique properties not found in nature. Electromagnetic metasurfaces, or 2D metamaterials, operating at optical wavelengths are of particular interest due to ease of...
This project is comprised of primary source research on the field of semiconductor microscopy. We were interested in determining a more interdisciplinary application of this technology, as the most frequently cited applications are for defense purposes such as drug screening or infrared imaging. When we researched, we found that these...
The projected increase in the use of nanomaterials raises concerns about adverse impacts new technologies utilizing these materials may have on the environment. These concerns can be addressed from a chemical perspective by studying how emerging nanomaterials interact with biological systems. Fundamentally, the key interactions for nanomaterial uptake into a...