Understanding the characteristics of interfaces between materials and solvent media such as structure, chemistry, and charge remains crucial to determining the properties and performance of numerous systems and technologies. This thesis focuses specifically on characterizing the interactions of water at oxide interfaces. A large collection of questions remains unanswered about...
Amyloid beta oligomers (AβOs) are a key instigator of neurodegeneration in Alzheimer’s disease (AD). The work presented in this thesis includes three disease-modifying approaches to disrupt pathological AβO-related mechanisms in AD: (1) inhibiting AβO buildup, (2) blocking AβO-induced tau phosphorylation, and (3) neutralizing AβOs. These three approaches were tested in...
Uranium is a unique, multifaceted element that possesses rich chemistry and promise for challenging reactions. Pressing demands within nuclear stockpile stewardship and the nuclear energy sector call for development of this relatively understudied element. Uranium metal–organic frameworks (U-MOFs), a class of nanoscale hybrid materials, harness the exceptional attributes of uranium...
Soft materials are inherently fluxional, with morphologies and behaviors that are dictated by their solvation state. Thus, many organic systems cannot be reliably imaged by static dry state or cryogenic-transmission electron microscopy (TEM). This motivated us to pursue liquid cell (LC) TEM method development to study our own materials and...
Single-use plastic waste pollution will cause significant harm to the environment if left unaddressed. One possible mitigation strategy is to develop processes, e.g. catalytic hydrogenolysis, that can convert (i.e. upcycle) waste plastics into value-added products capable of participating in a circular economy. Platinum (Pt) catalysts on strontium titanate nanocuboid supports...
Amyloid beta oligomers (AβOs) are a key instigator of neurodegeneration in Alzheimer’s disease (AD). The work presented in this thesis includes three disease-modifying approaches to disrupt pathological AβO-related mechanisms in AD: (1) inhibiting AβO buildup, (2) blocking AβO-induced tau phosphorylation, and (3) neutralizing AβOs. These three approaches were tested in...
Uranium is a unique, multifaceted element that possesses rich chemistry and promise for challenging reactions. Pressing demands within nuclear stockpile stewardship and the nuclear energy sector call for development of this relatively understudied element. Uranium metal–organic frameworks (U-MOFs), a class of nanoscale hybrid materials, harness the exceptional attributes of uranium...
Soft materials are inherently fluxional, with morphologies and behaviors that are dictated by their solvation state. Thus, many organic systems cannot be reliably imaged by static dry state or cryogenic-transmission electron microscopy (TEM). This motivated us to pursue liquid cell (LC) TEM method development to study our own materials and...
This thesis presents results on photophysics and spin dynamics of photoactive organic molecules that possess one unpaired electron spin in the ground state and two or three unpaired spins upon photoexcitation. The excited state dynamics of the systems were studied using transient optical absorption spectroscopies and non-Boltzmann population on the...
A fundamental materials science question is “why and how will this material form?” The experimental,computation, and time resources necessary to answer this question consume significant resources due to the
predominantly trial-and-error based approaches common in materials research. This dissertation reintroduces
a number of fundamental thermodynamics-based tools for the study of...