Polymers occupied nearly every facet of our daily lives, and enhancing their mechanical and fracture properties has long been an important topic in the field of polymer science. Based on the various need in applications, polymers are designed to have a range of characteristics such as tackiness, optical properties, mechanical...
Recent progress in semiconductor synthesis and photophysics has revealed a host of new materials with exciting properties for applications in optoelectronic devices such as sensors, photovoltaics, solid state lighting, and more. One of the most significant recent additions to the field is the class of hybrid and inorganic materials that...
The relationship between the structure and function of proteins is a fundamental problem in biology with implications for the future of biotechnology and global health. For example, changes to the structure of a coronavirus spike protein led to a global pandemic where our best defenses were vaccines that could only...
Directional freeze-casting is a porous materials fabrication technique that is used to create materials with complex, three-dimensional pore structures. Particle suspensions are solidified under a thermal gradient, promoting anisotropic growth of dendrites and incorporation of particles within interdendritic space. A fully-solidified directional freeze-cast structure is composed of dendrites that are...
Drying oils have been used as a binding medium for oil paints since the 15th century. These oil paints transition from a liquid-like paste to a solid-like film as a result of crosslinks forming between the oil molecules. These reactions have been extensively studied chemically, but other material properties are...
The continuing increase in atmospheric CO2 to concentrations exceeding 400 ppm has attracted considerable attention from both scientists and policymakers. Industrial fossil fuel consumption generates a significant amount of CO2 emissions, and in particular, energy-intensive molecular separations that require thermal processes, such as distillation, drying, or evaporation, are responsible for...
How molecular chirality manifests at the nano- to macroscale has been a scientific puzzle since Louis Pasteur discovered biochirality. In general, amphiphilic molecules can organize into a variety of assembly shapes including micelles, spherical vesicles, cylindrical micelles, and planar bilayers. However, when such amphiphilic molecules are chiral, helical ribbons, helicoidal...
Large scale adoption of sustainable technologies for energy productionand storage can be greatly facilitated by scientific advances impacting efficiency, cost and availability. The study of materials is instrumental in both upgrading the performance of existing technologies and enabling the development of new ones, and ab-initio methods and machine learning represent...
In the late 2000’s, scientific studies in cultural heritage saw a great advancement in macro X-ray fluorescence (XRF) imaging of paintings. These images are used to generate elemental distribution maps, which aid in identifying chemical elements and paint pig- ments as well as their locations throughout the layers of the...
Metal–Organic Frameworks (MOFs) is a class of material comprising organic linkers and inorganic, metal-ion-containing nodes, with diverse functionalities and wide-range of applications. Because of their porous nature and functional nodes and linkers, they are competent candidates for gas storage, separation, catalysis, and so on. Most MOFs, however, are intrinsically insulating,...