Lithium-ion battery technology is a critically important component of the emerging renewable energy infrastructure. Since battery technology was first commercialized in the 1990s, significant progress has been made in materials development, motivated by the prospect of higher energy and power densities, increased cycling longevity, and faster charging and discharging rates....
Nanomaterials present an exciting landscape of innovation at length scales below 100 nm, wherein controllable synthesis and materials metrology have led to tunable structure-property relationships and next-generation products. The disruptive field of nanotechnology is poised to capitalize upon the exotic chemistry and physics of these nanomaterials to enable more efficient...
Cancer remains a leading cause of death worldwide, necessitating continued study to explore and unravel its complex etiology. For example, there has been a shift of focus in cancer treatment from surgery and radiotherapy to targeted chemo- and immunotherapies as we gain more knowledge on the hallmarks of cancer (e.g.,...
Nucleic acid therapeutics can be drug molecules with high programmability, minimal off-target effects, and the capability to address “undruggable” targets for diseases. In addition, each time a new drug is needed, one needs to only change the sequence as opposed to finding an entirely new structure. One nucleic acid type...
Scalable processing of well-defined interfaces is key not only for wider application of two-dimensional (2D) materials in technology but also for improved fundamental understanding. Atomic layer deposition has useful characteristics, especially self-limited growth at low temperatures, that make it well suited for the production of uniform interfaces. Related processes, such...
Nanotechnology research broadly encompasses the exploration of the unique chemical,optical, electronic, or biological properties of materials with dimensions < 1 µm. Inorganic
nanoparticles are one such class of materials, with properties that are exceptionally sensitive to
particle size and structure. This is especially evident in the field of heterogeneous chemical...
The ability to control the crystalline ordering and morphology of polymeric nanomaterials is a grand challenge in the field of materials science, which could enable the development of functional materials able to solve long-standing problems in renewable energy and medicine. In this work, we explore a combination of supramolecular chemistry...
Nanocarriers, structures with at least one dimension on the nanoscale (1-1000 nm), have been engineered for delivery of various cargoes. The shape and flexibility of nanocarriers are important parameters that influence their biological performance. Self-assembling polymeric filamentous nanocarriers, known as filomicelles (FM), are of great interest to nanomedicine due to...
Like many diseases, atherosclerotic cardiovascular disease is driven by the activity of inflammatory cells. Using molecular imaging to target and analyze populations of inflammatory cells is one promising strategy to non-invasively assess atherosclerosis progression. However, current molecular imaging contrast agents are not suited for such targeted imaging applications. Nanomaterial-based strategies...
This thesis proposes a robust multi-pronged approach to study the effect of nanoparticles on cells. In the first place, this work is focused on investigation of the protein corona that accumulates on the surface of nanoparticles internalized by the cells and their poly-pathway effects on protein availability and messenger RNA...