Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

Public Deposited

Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured morphologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 Ω cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively low pO2. The cells were subjected to life testing at temperatures between 650°C and 800°C for as long as 1500 h. EIS measurements, carried out periodically during the life tests, were done in air at 600°C, a typical expected intermediate-temperature SOFC operating temperature. These were accelerated tests because the aging temperatures > 600ºC should accelerate most degradation processes such as nano-particle coarsening. Long-term RP versus time data was fitted to a combined surface resistance and coarsening kinetics model, and a t0.25 power law coarsening model was found to provide the best fits to the data, suggesting that surface diffusion is the dominant mass transport pathway in SSC-GDC infiltrated cathodes. That is, cathode degradation was due primarily to the coarsening-induced decrease in active SSC surface area. Scanning electron microscopy (SEM) performed after electrochemical life testing confirmed the extent of coarsening of the SSC nanoparticles. The model is used to make predictions regarding long-term stability of infiltrated SSC electrodes, and is also compared with prior results on a similar perovskite MIEC electrode, LSCF. An important new finding is that increasing infiltration loadings yields a marked decrease in the long term degradation rate. Predictions based on accelerated life tests found the lowest possible operating temperature while achieving a degradation rate of 0.5% per kh is 595°C, corresponding to an initial particle size of 40 nm.

Last modified
  • 03/13/2018
Date created
Resource type
Rights statement