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ABSTRACT

Spatial-temporal Data Mining for Traffic Speed Clustering and Prediction

Bing Zhang

Spatial-temporal data mining, with data driven model and machine learning techniques,

significantly benefit the traditional transportation research. This dissertation focus on three

problems related to uncertain location data, lane-level traffic speed clustering and anomalous

traffic speed prediction.

We take a first step towards combining the uncertain location data i.e., fusing the

uncertainty of moving objects location obtained from both GPS devices and roadside sensors.

We develop a formal model for capturing the whereabouts in time in this setting and propose

the Fused Bead (FB) model, extending the bead model based solely on GPS locations. We

also present algorithms for answering traditional spatio-temporal range queries, as well as a

special variant pertaining to objects locations with respect to lanes on road segments.

We address the problem of efficient spatio-temporal clustering of speed data in road seg-

ments with multiple lanes. We postulate that the navigation/route plans typically reported

by different providers as a single-value need not be accurate in multi-lane networks. Our

methodology generates lane-aware distribution of speed from GPS data and agglomerates the
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basic space and time units into larger clusters. In addition, we address the problem of incor-

porating uncertain location data in the generation of speed profiles for vehicles on roads with

multiple lanes. Moving objects location data can be obtained from different/multiple sources

e.g., GPS on-board the moving objects, roadside sensors, cameras. However, each source has

inherent limitations that affect the precision from pure measurement-errors, to sparsity

of their distribution. Incorporating such imprecisions is paramount in any query/analytics

oriented system that deals with location data. The difficulties multiply when one needs to

reason about localization with lane-awareness and attempts to use the location-in-time data

to enable effective navigation systems.

We improve the accuracy of short-term traffic speed prediction with an novel prediction

framework that is adaptive to anomalous events. A new demand feature is proposed with an

anomalous events detection algorithm to collect features when anomalies occur. An artificial

neural network based prediction model is introduced to incorporate demand features and

traffic speed features. Our experiment demonstrate that the proposed prediction framework

offer a more accuracy short-term traffic speed prediction.
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CHAPTER 1

Introduction

Spatio-temporal data mining is an emerging research area dedicated to the development

and application of novel computational techniques for the analysis of large spatial-temporal

databases [5, 83, 91]. The main motivation for a more focused research in this particular

subfield of data mining stems from the fact that extremely large amount of spatial-temporal

data are being generated in various applications – e.g., GIS, CAD, robotics, computer vision,

traffic management; and from plethora of sensing devices – e.g., GPS, inductive loop sensors,

cameras, tracking sensors, etc. [6, 69, 116, 122].

This research work has focused on spatio-temporal data management/mining in the con-

text of transportation related tasks. Given that commuting is among the largest-scale peo-

ple’s everyday activity, efficient transportation management has an essential and tremen-

dously important role in our society. In the past 20 years, with the development of sensing

and communication technologies, as well as the improvement of computational resources, in-

telligent monitoring and management of transportation system is a lot more feasible than two

decades ago [104]. This, in turn, both enables and demands the development of advanced

transportation-related data mining algorithmic solution, to help extract hidden information

from the vast datasets, which reflect people’s mobility and behavior in the city [24].
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However, there are many challenges and constrains in this area along the spectrum rang-

ing from hardware limitation to state-of-art data mining. On the one hand, the GPS un-

certainties and GPS errors constrain our ability for accurate sensing and related applica-

tions [6, 101, 124, 128]. On the other hand, people are generating data in an unprece-

dented way, in terms of speed, quantity and heterogeneity, and we haven’t fully utilized all

available features for prediction and clustering. More specifically, this dissertation tackles

the spatial-temporal data mining from three aspects:

(1) We propose a data model to fuse heterogeneous location data, targeting to reduce

the GPS uncertainties.

(2) We propose a framework to mining speed clusters in multi-lane setting.

(3) We propose a novel data feature and prediction framework to improve the accuracy

of traffic speed prediction.

In the rest of this Chapter, we provide an overview of the main challenges and contribu-

tions regarding the three aspects of the dissertation.

1.1. Fusing Uncertain Location Data

Many applications relying on some forms of Location Based Services (LBS) [84] de-

pend on efficient techniques for storing, retrieving and querying data which describes the

whereabouts-in-time of moving entities. Traditionally, such topics are studied in the field of

Moving Objects Databases (MOD) [38], and the impacts of the effectiveness of those tech-

niques are of an extreme importance in many applications of high societal relevance such

as transportation and traffic management [22, 32, 94, 19], disaster remediation [50] and

location-aware social networking [9]. Especially so since, due to the advances in networking
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and miniaturization of the various GPS-enabled devices, the volume of location-in-time data

exceeds the order of Peta-Bytes per year just from smartphones [69].

Typically, the location of a given moving object at a particular time instant is obtained

either by some GPS (Global Positioning System) based devices [106, 87], or by some type

of a road-side sensor – e.g., lane level positioning [48, 25]. Such sensed location data may

be further combined with data from different on-board sensing devices – e.g., U.S. Xpress

gathers 900 to 970 data elements of various engine/component readings [61].

Due to the inherent imprecision of the sensing devices – be it on-board GPS or other –

typically there is a degree of uncertainty associated with the measurements of the location

of a given moving object at a particular time instant. The problem of capturing the impact

of the location uncertainty into the spatio-temporal data models [55] as well adding proper

syntactic constructs to capture its impact on the MOD queries and the respective processing

algorithms has been recognized and tackled by several earlier works [23, 35, 38, 55, 78,

102, 101].

At the heart of the motivation for this work is the observation that the state of the art –

to the best of our knowledge – has not provided any models and algorithmic approaches that

would combine (i.e., fuse) uncertain location data from two different sources. Specifically,

we take a first step towards fusing the uncertain location data from on-board GPS devices

and road-side sensors. We demonstrate that properly considering the joint impact of the

uncertainties from both sources can eliminate portion of the moving objects (trajectories)

from the answer-set. In other words, what may have been considered an answer under

the single (e.g., GPS) source, may become a false-positive after fusing the two location

uncertainties. As an example, consider the following query:
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Q1: Retrieve all the vehicles which have crossed the lane in road segment RS1 when driving

less than 50km/h and carrying less than 80% of the maximum load.

Clearly, given the imprecision of the location measurements, Q1 needs to be re-phrased

so that it incorporates uncertainty:

Q1u: Retrieve all the vehicles which have had > Θ (0 < Θ ≤ 1) probability of crossing the

lane in road segment RS1 when driving less than 50km/h and carrying less than 80% of the

maximum load.

The answers to such, so called, lane-crossing queries play an important role in applications

related to efficient traffic management [43, 18, 87] for the purpose of regulating the regime

of traffic lights [48, 65].

The main contribution of this work can be summarized as follows:

• We propose a novel model of spatio-temporal uncertainty for moving objects, which

combines the location data obtained by GPS devices on-board moving objects and

the location data obtained from road-side sensors. We also report our preliminary

experimental observations, demonstrating the reduction of false positives from the

answers to certain spatio-temporal queries.

• We discuss the semantic implications of the model, in terms of the basic where at

and when at location-in-time (whereabouts) queries, and we present algorithms for

processing lane-crossing queries (exemplified by Q1u above) and basic range queries.

• We present experimental observations which quantify the benefits of fusing the two

uncertainties for lane-crossing and range queries in terms of the percentage of trajec-

tories which are pruned from the answer-sets when compared to using the traditional

bead-model of uncertainty for GPS-based location data.
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In Section 2.1 we recollect some backgrounds in terms of modeling spatio-temporal uncer-

tainty, and introduce the basic terminology used in the rest of the work. Section 2.2 presents

the details of the new uncertainty model, along with the semantics of the basic whereabouts

queries along with lane-crossing and range queries. Section 2.5 describes our experimental

observations. In Section 2.6 we compare our work with related literature, and we summarize

and outline directions for future work in Section 2.7.

1.2. Multi-lane Speed Cluster Mining

Lane level positioning and navigation have been one of the challenging tasks that have

spurred a significant amount of recent research since accurate navigation is at the very core

of the autonomous driving [17, 86]. Models for lane-level high-definition maps have been

proposed in different applications’ settings [1], but lane-aware traffic inference and route

planning are still investigated, mostly from two perspectives: (a) Assuming very accurate

positioning data gathered through Differential GPS (DGPS) or laser scanners [82]. The high

cost of sensors prohibits this method from being widely deployed for production cars; (b)

Fusing heterogeneous data sources, i.e., combining GPS data with camera and using com-

puter vision for lane recognition [17, 51]. The bottleneck of this approach is the speed of

image processing, which constrains the use case in a real-time manner. Routing and naviga-

tion in modern traffic systems have been investigated since the 1980s [57], with techniques

coming from both databases [32, 113] and transportation communities [80]. Typically, the

algorithmic solutions rely on certain estimated values of the traffic flow – e.g., average speed

– along the segments of the underlying road-networks, which vary dynamically [113] within



17

(a) Uniform traffic speed with low congestion (b) Uniform traffic speed with high congestion

(c) Nonuniform traffic speed for carpool lane (d) Nonuniform traffic speed for highway exit

Figure 1.1. Traffic speeds vary among different lanes in different scenarios

a certain period (e.g., a day), depending on factors such as: time of day, capacity (lanes),

road surface, etc.

From traditional vehicle routing problem [57] up to recent Eco-routing works [63], the

methodologies (data properties, algorithms, etc.) proposed in various contexts share the

assumption that on any road segment, at a certain time-period, vehicles have only one kind

of a speed/motion. However, due to the multiple lanes, vehicles on the same road segment

and at the same time instant/interval, may have different speeds. This, in turn, implies that

using the average speed as a descriptor may not be good enough for many routing-based

applications. Figure 1.1 illustrates four different real life scenarios on highways. When

there are few cars on the road or the highway is fully congested, traffic speeds are relatively
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uniform among the lanes (cf. Figure 1.1a and 1.1b). However, Figure 1.1c, shows how

a high-occupancy lane (also known as carpool lane; restricted traffic lane reserved during

rush hour for the exclusive use of vehicles with one or more passengers) usually has higher

speeds than the other lanes. Similarly, Figure 1.1d, shows a highway exit 450B on U.S. route

101 in California, near Richmond-San Rafael Bridge. The cars back up at the rightmost

lane towards the bridge, while the left lane on northbound U.S. route 101 has very low

densities. Thus, averaging the observations from particular (groups of) vehicles, could yield

an inaccurate picture about the traffic distribution – and, yet, most of the popular traffic

speed estimation methods are based on averaging the samples from vehicles over a period of

time or area — e.g., Time Mean Speed and Space Mean Speed [31].

At the heart of the motivation for this work is the observation that – to the best of our

knowledge – the state of the art approaches have not provided solutions that would couple

the multi-lane information with location uncertainties, when designing traffic speed profiles

(we note that this is also the case for the existing works on map-matching GPS points from

moving objects [13, 114]). Consider the following query:

Q1: What is the distribution of the traffic speed on the route 101 between San Francisco and

Richmond-San Rafael Bridge, between 8:00AM and 10:00AM?

Traditional methods [75, 88, 113] would answer Q1 with a single average value, possibly

varying it throughout different time intervals between 8:00AM to 10:00AM (e.g., the average

speed is updated every 30min.); and along different distances from Marine city on the route

101. However, this will yield incorrect values because the averaged speed will be applied
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within certain distances before/after exit 450B (cf. Figure 1.1d), yielding incorrect time-

estimates for trip planning. The main contribution of this work can be summarized as

follows:

• We achieve a compact description of speed variations in multi-line road networks

that can be used for more accurate trips planning.

• We propose an agglomerative speed clustering algorithm to represent the distribu-

tion in a more compact manner.

• We propose a novel probabilistic model to represent location uncertainties and apply

it to spatial temporal data mining.

• We propose a novel distance function and an improved speed cluster mining algo-

rithm for multi-lane road networks.

• We present experimental observations conducted on the Rome Ring Road to demon-

strate the benefits of the proposed approaches.

The rest of this chapter is structured as follows. In Section 3.1 we review some prelimi-

nary background and introduce the basic formalisms used in the subsequent parts. Section

3.2 will present an agglomeration based speed cluster mining method. In Section 3.3 and

3.4, we propose a probabilistic speed profiling approach in conjunction a density based clus-

tering algorithm. The quantitative results of experiments and interpretation are presented

in Section 3.5. Section 3.6 positions the work in the context of related literature and Section

3.7 summarizes and outlines directions for future work.
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1.3. Anomalous Traffic Prediction

Traffic prediction is one of the most important applications in the Intelligent Transporta-

tion System (ITS). It has been proved as the foundation for other services like routing,

navigation, traffic control and signal optimization. The purpose of traffic prediction is to

predict the traffic speed of a road segment. This topic has been studied in the area of

transportation research for more than three decades [110]. Many statistical and machine

learning models have been proposed to make an accurate prediction [127, 110], including:

spectral analysis [72], regression methods [107], time series model [70], kalman filtering

methods [37], support vector machine [117], neural networks [68], fuzzy logic system [96]

and other Hybrid models [67].

In the traditional study of traffic prediction, models rely on the historical traffic data

obtained from traffic sensing system as the single data source. From the point of view of the

classical traffic prediction research, traffic flow is periodic, over a 24-h period for weekdays,

or over a week for both weekdays and weekends [127]. Traffic flow is stochastic [56], due

to exogenous factors such as traffic incident, weather and road conditions. Traffic flow is

spatial-temporal correlated [70], because of the nature of traffic flow and the connectivity of

road segments. Most existing prediction models try to capture certain patterns of the traffic

flow in spatial-temporal dimensions.

In the recent few years, with the development of portable devices, more and more dif-

ferent types of mobility data become available. This enables researches of spatial-temporal

data mining that tackle issues related to people’s urban activities [130] and their applica-

tions in transportation researches. Some novel models are proposed to indirectly infer and

predict traffic condition from heterogeneous data sources such as CO2 concentration in large
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buildings [131] or taxi trajectories [11]. However, Many constraints still exist with these

approaches. For example, the use of CO2 concentration data are limited to building dense

area with the deployment of CO2 sensors.

Traffic flow is the result of people’s mobility. Although most people’s everyday life is

periodic with predicted patterns, expected or unexpected events always happen.

Example: Since 1904, Times Square has been the place for people in the New York City

to conduct celebration to greet the new year. On the New Year’s Eve 2016, an estimated

one millions people ushered in the new year in Times Square [2] as shown in Figure 1.2. The

celebration event started from 3:00 p.m. and ended on 12:15 a.m. Figure 1.3 is a visualization

for traffic speed of 11th Ave. on Jan 1st, 2016. There is a sudden drop of traffic speed after

midnight, which reflects the traffic congestion incurred by one million people’s leaving from

Times Square.

Figure 1.2. One million people celebrate in Times Square

Urban anomalies are defined as spatial-temporal entries with underlining abnormal mo-

bility distributions [129]. They often happen with special events that people gather and
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Figure 1.3. Traffic speed of 11th Ave. on Jan 1st, 2016

disperse in a short period of time. When we study cities and people’s mobility with Spatial-

Temporal Graph (STG) model, urban anomalies result in mobility black holes and volca-

noes [44], which act as a sink or generation for traffic flow. Because of the infrequency and

the randomness of anomalies, it is very hard for traditional models to capture the anomalous

change of traffic solely based on historical traffic data. These anomalous cases, which would

be classified as outliers in traditional data analytics, are very challenging for real-time traffic

prediction model as well. The additional generated traffic flows would affect the prediction

accuracy, or prediction power (in terms of prediction time length).

People move everyday. Their mobility essentials are fulfilled by various mobility modes

(e.g. walking, bike, taxi and Uber) at different time. The traffics in road networks, as a

complex system, are the aggregated result of fulfillment of mobility demands. Therefore,

being able to access and analyze the data gathered from transportation supplier enable us

to predict traffic from the origin.
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Traffic prediction under anomalies directly benefit applications like routing and naviga-

tion. It enables ITS to manage traffic when anomalies occur. In this dissertation, we propose

a prediction framework that incorporate historical traffic data with people’s mobility demand

to improve the prediction accuracy when urban anomalies take place.
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CHAPTER 2

Fusing Uncertain Location Data From Heterogeneous Sources

In this chapter, we discuss in details our contributions related to fusing uncertain location

data for moving objects trajectories from heterogeneous sources.

2.1. Preliminaries

We now present an overview of some of the techniques for obtaining location data, which

we assume and rely upon in this work. Specifically, we discuss the main features of road-side

sensors and GPS devices. Subsequently, we proceed with introducing the basic terminology

and notation used in the rest of the chapter.

2.1.1. Road-side Sensors

Starting in the 1920s, when the traffic signals were still manually controlled, several gen-

erations of sensor types have been developed and deployed along road segments in various

states – all for the purpose of more efficient traffic management. The types of such sensors

vary from the older pressure-sensitive ones introduced in 1931, to more modern laser-based

sensors sensors [105] and quite a few different types have been commercialized and used in

day-to-day practical settings. For example, the AMR sensor [43] developed by Honeywell is

a type of magnetic sensor with low cost. The WiEye [27] is a passive infrared sensor that can

be installed on top of motes to sense road condition. The variation of sensing technologies

may affect the manner of how a motion is modeled, in order to capitalize on the capabilities
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of a particular type of sensor. In this chapter, the data model for roadside sensor that we

adopt is based on TruSense T-Series, manufactured by Laser Technology Inc. [58] – a kind

of active infrared sensor with a very accuracy as well as a high sampling rate.

Table 2.1. Comparison among different types of sensors

Sensor technology Count Presence Speed Output Data Classification Multiple Lane detection
Inductive loop 3 3 3 3 3 7

Magnetometer (two axis fluxgate) 3 3 3 3 7 7
Magnetic induction coil 3 3 3 3 7 7

Microwave radar 3 3 3 3 3 3
Active infrared 3 3 3 3 3 3
Passive infrared 3 3 3 3 7 7

Ultrasonic 3 3 7 3 7 7
Acoustic array 3 3 3 3 7 3

Video image processor 3 3 3 3 3 3

Table 2.1 provides a summary of features of several different types of roadside sen-

sors [105]. As can be seen, all of the popular and commercially available types can de-

tect the presence and speed of vehicles, as well as provide a count value for the number of

vehicles that have been detected in their sensing range. However, very few types provide

more detailed sensing capabilities, such as classification and multiple lanes detection. We

note that, unlike the GPS-based data, the location-in-time information obtained from the

roadside sensors has not been exploited extensively in MOD context.

2.1.2. GPS-based Spatio-Temporal Uncertainty

As commonly done in the literature [38], in this paper the trajectory is defined as:

Definition 1. A trajectory Tri of a moving object with a unique identifier (oID) is

a sequence of triplets TroID = [(L1, t1), (L2, t2), vmax1] . . ., [(Ln−1, tn−1), (Ln, tn), vmax (n−1)]

where each Li = (xi, yi) is a point in 2D space in a corresponding reference coordinate

system, and ti denotes the time instant at which the object was at location Li. When it
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comes to the time-values, i < j implies ti < tj, and vmax i denotes the maximum speed of

the object between samples at ti and ti+1

Given the possibility of errors in the discrete location samples (e.g., due to the imprecision

of the GPS devices), plus the fact that one attempts to model a continuous phenomenon

(motion, in this case) with a discrete set – uncertainty becomes an inevitable component

of the model. The problem of incorporating the location uncertainty into the syntax and

the respective algorithms for calculating the queries answers has been treated from a couple

perspective in the MOD literature [38, 102].

One approach for modeling spatio-temporal uncertainty of moving objects is the, so

called, sheared cylinder model [102]. The main assumption is that at any time instant

ti, the object’s location is inside a given disk with a fixed radius, centered at the expected

location at ti. For time values different from sampling ones, the expected location is obtained

via linear interpolation [102]. This model assumes a fully-known trajectory is geared towards

processing continuous queries over past/historic trajectories.

The implications of the fact that the object’s motion was bound by some vmax in-between

two consecutive location updates was analyzed in [77]. Based on the definition as a geometric

set of 2D points, it was demonstrated that the possible whereabouts are bound by an ellipse,

with foci at the respective point-locations of the consecutive samples. Subsequently, [45]

presented a spatio-temporal version of the model, naming the volume in-between two update

points a bead, and the entire uncertain trajectory, a necklace. This model was actually

introduced as a space-time prism in the geography literature [39]. However, the first work to

present a formal analysis of the properties of the bead are [55]. An illustration is provided in
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Figure 2.1. Bead and ellipse model

Figure 2.1. Letting d =
√

(x2 − x1)2 + (y2 − y1)2 denote the distance between the starting

location (at t1) and ending location (at t2), the equation of the projected ellipse (cf. [77]) is:

(2.1)
(2x− x1 − x2)2

v2
max(t2 − t1)2

(2y − y1 − y2)2

v2
max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2

= 1

The corresponding bead (equivalently, space-time prism) is specified with the following

constraints:
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(2.2)



ti ≤ t ≤ ti+1

(x− xi)2 + (y − yi)2 ≤ [(t− ti)vimax]2

(x− xi+1)2 + (y − yi+1)2 ≤ [(ti+1 − t)vimax]2

where vmax is the maximal speed that the object can take between ti and ti+1. We note

that, what is commonly called expected speed in the case of crisp trajectories, now becomes

minimal expected speed in-between the updates/samples. As shown in Figure 2.1, at any

time instant t between two consecutive samples, the possible locations of the objects are

bound by the lens – i.e., intersection of two circles centered at the respective foci and with

respective radii vmax(t− t1) and vmax(t2 − t).

In similar spirit to [100, 102] we can define a possible trajectory to be any trajectory which

has its starting point and its ending point coinciding with the foci, and is fully contained

inside the given bead.

2.1.3. Trajectories and Road Networks

Figure 2.2. Road segments and sensors
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If the objects are constrained to move along a road network, then on would expect that

the corresponding space-time prisms would somehow be restricted as volumes. Specifically,

if the segments of the road network are assumed to be edges in a graph, then the prisms

become restricted to 2D planar figures (c.f. [28]).

In this work, we define a road network as an augmented graph G = (P,ERS) where

P = {p1, p2, . . . , pn} denotes a set of points (commonly corresponding to intersections) and

ERS = {rS1, ..., rSk} is a collection of triplets of the form rSi = (ei, wei, vei) where:

• ei = (pi1, pi2) (∈ P X P ) is a “regular edge” (i.e., a link between two connected

vertices)

• wei denotes the width of the road segment associated with the edge ei.

• vei denotes the maximum speed associated with rSi.

We assume that the maximum speed in-between two consecutive location samples along

a particular road segment corresponds to the speed-limit of that segment. Geometrically

speaking, the collection of all the rSi’s is the boundary of the Minkowski sum of each “regular

edge” ei and a disk with diameter wei.

We also assume the existence of a collection of sensors S = {s1, s2, ..., sm}, where each

sensor sj is located at a point along the outer boundary of some road segment rSi. Each sj

detects when (i.e., the time instant at which) a moving object crosses the line segment going

through its location and perpendicular to ei. The concepts are illustrated in Figure 2.2.

2.2. Modeling the Uncertainties Fusion

We now discuss the details of the new uncertainty model resulting from combining the

GPS-based location data and the location data generated by road-side sensors.
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(a) GPS + Roadside sensors (b) Determining boundaries

Figure 2.3. Fusing GPS and roadside sensors data

The main observation is that the road-side sensors provide additional constraints on

the possible whereabouts in-between two consecutive GPS-based samples (and vice-versa).

More specifically, recall that the “traditional” bead (i.e., space-time prism) was defined by

the system of inequalities (2.2) (cf. Section 2). In addition to those inequalities, we now

have the constraint that at a particular time instant tsi, the possible locations of a particular

moving object detected by the roadside sensor are also known to be along a given line-segment

determined by:

(1) the location of the corresponding road-side sensor, and

(2) the direction which is perpendicular to the (boundaries of the) road segment.

This can be formalized as:
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ti 6 t 6 ti+1,

(x− xi)2 + (y − yi)2 6 (t− ti)2v2
max,

(x− xi+1)2 + (y − yi+1)2 6 (ti+1 − t)2v2
max,

y = mix+ bi,when t = tsi

ti 6 tsi 6 ti+1.

(2.3)

An illustration of the system of constraints (3) is given in Figure 3.5: Specifically, as

shown in Figure 2.3a, the original GPS-based locations L1 and L2 would yield a 2D projection

which is an ellipse having them as foci (light-grey shaded shape in Figure 2.3a) – denote it

El1. Due to the road-side sensor, the possible locations of the moving object at ts1 can only

be along the portion of line segment originating in (xs1, ys1), perpendicular to the boundaries

of the road segment, and intersecting the corresponding lens ofEl1 – i.e., along the portion

of the line segment L′1L
′′
1. Clearly, that intersection has an uncountably many points, and

we show 3 such points in Figure 2.3a: L11, L12 and L13. Each such point, in turn, can be

used as a “generator” for two more space-time prisms: one originating in L1, and the other

terminating at L2. The corresponding 2D projections (ellipses) are shown in Figure 2.3a for

L11, L12 and L13. The most important implication is that when combining the original ellipse

El1 with the uncountably infinite collection of the ellipses with one of the foci along the line

segment due to the road-side sensors, the additional constraint induces a significant amount

of a “dead-space” in El1. A more detailed illustration of the valid range for selecting the

points that will generate the infinite collection of (pairs of) new beads is given in Figure 2.3b.
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Recall that at any ts1 between the sampling times t1 and t2, the object can be located inside

of the lens obtained as the intersection of the circles with radii vmax(ts1−t1) and vmax(t2−ts1).

Hence, although the ray emanating from the roadside sensor s1 would intersect the “global

boundary” (i.e., the ellipse which is the projection of the bead) at L′1 and L′′1, the only valid

points to be considered as possible whereabouts are the ones along (and inside) the lens. As

shown in Figure 2.3b, those are the points along the line segment bounded by L11 and L13.

We note that there is a complementary context of having a single uncertainty source –

i.e., in contrast to having GPS-based points only. Namely, if there were only the roadside

sensors available, then in between two detections by consecutive sensors (say, s1 and s2 from

Figure 2.2), the whereabouts of a given object is bounded by the infinite union ∪(Elsi,sj) of

uncountably many ellipses for which:

(1) The first focus is some point Ls1 located on the line-segment originating at the

location of s1.

(2) The second focus is some point Ls2 located on the line-segment originating at the

location of s2;

(3) The distance between Ls1 and Ls2 is smaller than vmax(ts2 − ts1) (i.e., the object

could travel the distance within the time-interval [ts1, ts2] for the given speed limit).

Incorporating the GPS-based bead in this context would either amount to the case where

it intersects one (or more) of the line segments originating at the respective sensors locations,

or it has no intersection with any of them. In the latter case, we have a scenario in which

GPS sampling frequency is higher than the sampling frequency obtained by the roadside

sensors. For such settings, the possible whereabouts will be reduced to the intersection of

the ∪(Elsi,sj) and the bead obtained from the GPS-based samples. In the former case, the
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model is a generalization of the one corresponding to the scenario illustrated in Figure 3.5

– in the sense that it may be possible to have intersections of the GPS-based bead with > 1

sensor lines, as illustrated in Figure 2.4. In the rest of this chapter, we focus on detailed

discussion of the scenarios in which a bead is intersected by a line segment emanating from

a single roadside sensor.

We call the spatio-temporal structure induced by combining the two uncertainty sources

– GPS and roadside sensors – a Fused Bead (FB), and it is a sixtuple FB ( (xi, yi, ti),

(xi+1, yi+1, ti+1), vmax, ts,m, b) consisting of:

• The 2 GPS-based location-in-time samples (xi, yi, ti), and (xi+1, yi+1, ti+1) along with

the vmax speed bound.

• The time instant of detection of the road-side sensor.

Figure 2.4. Multiple roadside sensors intersecting a bead
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Figure 2.5. Outer boundary of the fused uncertain locations

• The parameters of the equation y = mx+ b (in a given referent coordinate system)

of the line specifying the corresponding line-segment emanating from the roadside

sensor and specifying the locations of the possible new foci.

When it comes to bounding the possible whereabouts, an intuition may cause one expect

that some of the points along the intersection of the line segment with the ellipse El1 may

yield possible focal points that would generate ellipses which are not fully contained inside

El1. However, the set of constraints in (3) will eliminate every portion which is outside the

intersection of the original El1.

We now proceed with a formal analysis of an important property of the FB model,

towards which we first recall some of the properties of the bead model presented in [55]. Let

B(xi, yi, ti, xi+1, yi+1, ti+1, vmax) denote1 the bead between two location-samples (xi, yi) and

(xi+1, yi+1) at respective times ti and ti+1, during which the speed is bounded by vmax

1The original notation in [55] was B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) and we slightly modified it for consistency
with the rest of the notation in this article.
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Property 1. Given (xi, yi, ti), and (xi+1, yi+1, ti+1) with ti < ti+1 and vmax >

0, any trajectory from (xi, yi, ti) to (xi+1, yi+1, ti+1) for which the speed at any

moment ti ≤ t ≤ ti+1 is less than vmax is located within the bead

B(xi, yi, ti, xi+1, yi+1, ti+1, vmax) and the projection of such a trajectory on the (x, y)-plane is

located within πx,y(B(xi, yi, te, xi+1, yi+1, ti+1, vmax)). Furthermore, for any point (x, y, t) in

B(xi, yi, ti, xi+1, yi+1, ti+1, vmax), there exists a trajectory from (xi, yi, ti) to (xi+1, yi+1, ti+1)

which passes through (x, y, t).

Property 1 explains the bounding relationship between trajectory and bead. Taking the

constraint (3) into consideration, one can deduce the following corollary:

Corollary 1. For any possible trajectory from xi, yi, ti to (xi+1, yi+1, ti+1) inside the

bead, there is always a longer which passes through a point that lies on the boundary of the

ellipse

(2.4)
(2x− x1 − x2)2

v2
max(t2 − t1)2

+
(2y − y1 − y2)2

v2
max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2

= 1

is the longest possible trajectory.

Corollary 1 can be perceived as a consequence of the (extension to the) fact that the sum

of the lengths between a point on the boundary of the ellipse to its foci is constant – i.e., the

definition of the ellipse as a geometric set of points. In a similar spirit, and based on these

properties of the bead model, we now have the following property regarding the FB model:
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Lemma 1. Any bead generated by: (1) a focal point located in the GPS-based sample,

and (2) a point from the line segment P1P2 representing possible locations obtained via a

roadside sensor, is contained within the original bead.

Figure 2.6. Illustrating the proof of fused bead containment

Proof. We prove Lemma 1 by contradiction. Assume that Pn is a point on the line

segment P1P2 and consider the ellipse El2 with foci Pn and L1. Let A1 denote a point which

lies within El2 but outside the original bead El1, defined by the original bead (i.e., foci L1

and L2, and vmax bounding speed). Using Figure 2.6 as an illustration, we proceed with

connecting the two line segments L1A1 and A1Pn. They intersect El1 at some points, denote

them A2 and A3. According to Corollary 1, the polyline with two segments L1A3L2 is the

longest trajectory that the object could possibly move along from L1 to L2. However, by

assumption, A1 is bounded to be within El1 which, in turn, implies that L1A1Pn is a route

of a valid trajectory from L1 to Pn and, moreover, L1A1PnL2 is a route of a valid trajectory

from L1 to L2. However, since, based on the triangular inequality, A3A1 +A1Pn > A3Pn and
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A3Pn + PnL2 > A3L2, we have A3A1 + A1Pn + PnL2 > A3L2. Based on the last inequality,

we can conclude that L1A3 + A3A1 + A1Pn + PnL2 > L1A3 + A3L2, which implies that the

trajectory L1A1PnL2 is longer than trajectory L1A3L2. This, however, is a contradiction to

the Corollary 1 which states that no other valid trajectory is longer than L1A3L2, and we

could conclude that assumption on the existence of point A1 is not valid. �

Lemma 1 demonstrates that whenever there is a location sampling from a roadside sensor

in-between two GPS-based location samples, the set of (i.e., the union of) all the possible

locations by the FB model are contained within the set of the possible locations bounded by

the original GPS-based bead. An illustration of a FB-based segment is shown in Figure 2.5,

and a visual comparison with the illustration of the full GPS-based bead (cf. Figure 2.1)

reveals one of the consequences of Lemma 1. Another important consequence of Lemma 1 is

in the conclusion that the FB will not introduce any false positives – in comparison with the

traditional bead – when determining an intersection of the possible whereabouts with other

(spatial, or spatio-temporal) entities.

2.3. Possible Locations at Time Instants

We now proceed with elaborating some basic calculations regarding the boundary of the

possible locations of a given object at a specific time instant under the FB model, as well as

the time-interval during which an object can be at a particular location. Subsequently, we

also discuss the methodology for detecting whether the possible locations of a moving object

are part of a given (spatial) range.
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Figure 2.7. Cross section of fused bead

Recall that the FB model is based on the original bead obtained via GPS-based locations

L1 and L2 (foci of a 2D ellipse El1) and a road-side sensor providing possible locations along

a line-segment perpendicular to a given road at a time instant ts (cf. Figure 2.3a).

When it comes to location whereabouts at certain time instant ts1, the regular bead

model has a boundary defined by a lens Le(ts1) which obtained as the intersection of the

circles with radii vmax(ts1 − t1) and vmax(t2 − ts1), centered at L1 and L2 respectively (light

blue shaded area in Figure 2.7). If it happens that at that same time instant the object

has been detected by a roadside sensor – then the object must be somewhere along the

ray emanating from that sensors location and perpendicular to the road segment. However,

because of the uncertainty boundary from the GPS-based location data, only the points

along that ray which are inside the lens Le are valid possible-locations – illustrated by the

segment P1P2 in Figure 2.7.
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Let ε ∈ [0, 1] denote a real variable. Any point P (ts1, ε) ∈ P1P2 which is a possible

location of the object at ts1 has coordinates xP (ε) = εxP1 + (1 − ε)xP2 and yP (ε) = εyP1 +

(1− ε)yP2

With this in mind, given a time instant ti ∈ [t1, ts1], the possible locations of the moving

object at ti are bounded by the uncountable union of intersections between:

(1) The disk centered at L1 and with radius vmax(ti − t1).

(2) An infinite collection of disks, each centered at a point P (ts1, ε) along P1P2 and each

with radius vmax(ts − ti)

In Figure 2.7, the circles C1, C2 and C3 are examples of the boundaries of the objects

whereabouts at different time-values (ti) due to the GPS-sample at location L1. For a fixed

value of ti Figure 2.7 also shows the boundary defined by the “envelope” of the union of the

uncountably many disks centered along P1P2 – essentially, the sum of the line segment P1P2

and a disk with radius vmax(ts − ti).

Depending on the time value and ε, there are five basic kinds of time-intervals during

which shapes of the unions determining the object’s whereabouts have distinct properties.

We use the phrase significant times to denote the boundaries of those time-intervals.

(1) t ∈ [t1, t
l1
i ) (Occurrence of the first lens): During this interval, the possible locations

are inside a disk centered at L1 – this is the case when ti is very close to t1 – meaning:

regardless of the value of ε, each disk with radius vmax(ts− ti) centered at any point

along P1, P2, fully covers the disk centered at L1 with radius vmax(ti − t1). Let Pc

and Pf denote points along P1P2 which is geometrically closest and farthest to L1

respectively. Clearly, point Pf will be the one with the earliest change of this kind
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of containment with the disk – at some time instant tl1i , the intersection2 will switch

from a full-disk centered at L1 into a lens defined by the intersection of the two

disks: one centered at L1 and one centered at Pf .

(2) t ∈ [tl1i , t
lA
i ) (from a single lens, until “lenses All”): During this time interval, de-

pending on the values of ε, some of the disks centered along P1P2 (each with radius

vmax(ts1−ti)) are still fully covering the disk centered at L1 with radius vmax(ti−t1).

These are the ones whose centers are closer to P1 (i.e., P (ts1, ε) with ε closer to 0).

(3) t ∈ [tlAi , t
d1
i ) (from lenses All, until the first (full) disk appears): This is the time-

period during which each possible foci along P1P2 is a center of a disk with which

yields a lens-shaped intersection with the disc centered at L1. At the expiration of

this time interval, the disk centered at Pc and with radius vmax(ts − ti) is about to

be fully covered by the disk centered at L1 and with radius: vmax(ti − t1)

(4) t ∈ [td1
i , t

dA
i ) (from a single full disk appearance, until disks All): similarly to the 2nd

case above, during this time interval some of the disks centered along P1P2 have a

lens-shaped intersection with the disk centered at L1, while some are fully contained

inside of it.

(5) t ∈ [tdAi , ts1) (disks All): The last distinct time-interval for the part of the FB

between the first GPS-based foci and the roadside sensor is similar to case “1”

above, in the sense that every disk with radius vmax(ts1− ti), regardless of where its

center is located along P1P2, is fully contained inside the disk centered at L1 and

with radius vmax(ti − t1).

2For clarity, we present the details of calculating tl1i and other significant times in the Appendix.
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We note that for time-values t ∈ [ts1, t2], the cases are analogous (and in reverse order)

from the ones specified above, in the sense that there are four significant time instants

defining five distinct intervals.

Let D1(t) denote the disk centered at L1 and with radius vmax(t− t1). Also, let DP (t, ε)

denote the disk centered at the point P (ts1, ε) with radius vmax(ts1−t). For a given 2D shape

S, let A(S) denote its area. Assuming a uniform distribution in each time-interval between

two consecutive significant times3, we obtain that the corresponding pdfs (probability density

functions) are:

(1) t ∈ [t1, t
l1
i ):

f(x, y, t) =


1

π(vmax(t−t1))2
if(x, y) ∈ D1(t)

0 otherwise

(2) t ∈ [tl1i , t
lA
i )

f(x, y, t) =
1

π(vmax(t− t1))2 + A(∪ε>δ1(t)(D1(t) ∩DP (t, ε)))

where δ1(t) is the smallest value of ε at a given t for which DP (t, ε) 6⊆ D1(t).

(3) t ∈ [tlAi , t
d1
i )

f(x, y, t) =
1

A(∪ε(D1(t) ∩DP (t, ε)))

(4) t ∈ [td1
i , t

dA
i )

3Throughout this work, we assume independence between location-values in successive location samples
(cf. [15, 28]).
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f(x, y, t) =
1

π(vmax(ts1 − t))2 + A(∪ε>δ2(t)(D1(t) ∩DP (t, ε)))

where δ2(t) is the smallest value of ε at the given t for which D1(t) 6⊆ DP (t, ε).

(5) t ∈ [tdAi , ts1)

f(x, y, t) =


1

π(vmax(ts1−t))2+P1P2·(vmax(ts1−t))
if(∀ε)DP (t, ε) ⊆ D1(t)

0 otherwise

When calculating the probability that a given moving object whose motion is modelled

as an FB is inside a given spatial range at a given time instant, we need the area of the

intersection. However, given the complexity of the boundary of the objects whereabouts,

the calculation of overlapping area may necessitate relying on numerical integration methods.

2.3.1. Numerical Method for Complex Area Calculation

Selecting an approximate evaluation method, i.e., numerical method, depends on the task at

hand. If we aim at calculating the intersection of two curves, the Newton-Raphson Method

is the most widely used one, whereas calculating the area bounded by a given curve may

rely upon Trapezoid Rule, Gaussian Quadrature Method or Monte Carlo Integration [33].

As an example, in a GPS-based bead, the location whereabouts given time instant are

relatively straightforward to compute since they are either a circular disk or a lens formed by

intersection of two circles. Moreover, finding the points where the boundary of the object’s

whereabouts intersect a given polygon is still achievable analytically, since the possibilities
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Figure 2.8. Area calculation in GPS-based bead

amount to calculate an intersection between a circle and a line(segment) is limited, as shown

with P1 and P4 in Figure 2.8. However, even in such cases, one may need to use numerical

methods for calculating the area of the intersection.

Given the complexity of the FB structure at a particular time instant, in this work we

resort to approximate computations based on a spatial grid, as shown in Figure 2.9. Clearly,

the size of the grid cell will affect the running time of the (execution of the) corresponding

algorithms. However, there is another aspect to consider – the (im)precision. By the very

definition of the FB, it is a union of uncountably many (subsets of) disks. Hence, we need to

discretize the number of such disks, for which a basic unit ∆d is introduced, specifying the

locations of the centers of the disks that will be accounted for when calculating a particular

area. These impacts are analyzed in Section 3.5.
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Figure 2.9. Grid based numerical approximation

2.4. Query Processing

We now turn our attention to processing spatio-temporal queries under the FB model.

We start with the basic where at and when at location-in-time queries, followed by a range

query and lane-crossing query. Lastly, we discuss the possibility of speeding up the query

processing via pruning.

Without loss of generality, the presentation will use the setting of a single fused bead.

However, when necessary, the issues that may arise due to considering the entire necklace

will be explicitly addressed.

2.4.1. Basic Queries

Similarly to the GPS-based bead, in order to determine the whereabouts at a given time

instant t for a fused bead, we need to obtain the intersection of FB with the horizontal plane
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Figure 2.10. Whereabouts at Time Instant

Time = t. The corresponding illustration of the volume in 2D space + Time, along with

the 2D projection, is shown in Figure 2.10. The boundary of the 2D projection is obtained

as the “envelope” of the union of two collections of uncountably many intersections of disks

centered along the line-segment originating at the roadside sensor, with the disk centered at

L1. The details were elaborated in Section 4.

The GPS-based bead (e.g., L1) and the other centered at a point along the intersection

chord (cf. L11L13 in Figure 3.5) resulting from secant due to the roadside sensor and the

arc from the lens of the GPS-based bead. Thus, one of the boundaries is always a circular

arc originating at the focal point of the “original” GPS-based bead, centered at focus of

the GPS-based bead (say, L1) and with radius vmax(t − t1). The boundary is actually the

boundary of the union of uncountably many disks with radii vmax(ts1− t), with centers along

the intersection-chord.
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The complementary query, when at(oID, L) returns the times during which it is possible

for the object oID to be at the location L(xL, yL), i.e., a time-interval [tL1, tL2]. The time-

interval can be defined as the two intersections between the boundary of the fused bead

FB and the vertical line (i.e., ray) emanating from L. To calculate the values, we have the

following observations:

(1) tL2 is the latest time that a circle located at the GPS-based focus from the sample

at t1 will “reach” L – hence, it can be obtained as a solution to the equation:

L1L = vmax(tL2 − t1)

(2) tL1, on the other hand, is the earliest time that any circle with the center on the

intersection chord(P1P2 in Figure 2.7) and radius vmax(ts− tL1) would pass through

L.

2.4.2. Range Query Processing

A typical spatial range query aims at retrieving the spatial (static) objects which have a

particular topological relationship (e.g., inside, intersect, etc...) with a given range, which is,

an entity with spatial extent [90]. A distinct feature of spatio-temporal range queries is that

they are continuous – i.e., the answer may change with time: for example, an object that

was inside a given query region may subsequently exit it, and vice versa. In our settings, the

key observation is that we need to take into account the uncertainty of the object’s location

at a given time instant when formulating the syntactic variants of the range query [93, 102].

In this work, we assume that the spatial region of interest for the range query is bounded

by a simple polygon R (Figure 2.11) and we also assume [tbq, teq] values indicating the

bounds of interest in the temporal dimension. We denote the set {∀(x, y, t)|(x, y ∈ R and
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Figure 2.11. Range query for a given prism

t ∈ [tbq, teq])} for QPR (query prism). Earlier works [102, 100] have provided qualitative

variants regarding the domains of space and time in the sense of uncertain object being

inside R: (1) sometimes or always throughout the time-interval of interest; and (2) possibly

or definitely so.

For a given uncertain trajectory represented as a sequence of FBs, Tr =

[FB1, FB2, . . . , FBn], where each FBi = ((xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b), we are

interested in answering the following type of a range query:

Qu
R: Does the moving object have a probability ≥ Θ of being inside R at least φ of the

time-interval [tbq, teq].

We use the generic notation Inside (FB,R, tbq, teq, θ, φ) to denote the (parameterized

version of the) queries like Qu
R, with the intended meaning ∃φ – a sum of time-intervals (not

necessarily contiguous) during which the ratio of the intersection of the FB andQPR is greater
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than Θ. We note that [100] proposed analytical solutions for answering existential/universal

variants by verifying intersecting conditions between ellipses and circles in the traditional

bead model. Thus, for example, one could verify whether Sometime Inside (FB,R, tbq, teq)

based on an existence of a time instant at which the intersection between R and FB is not

empty – which corresponds to any Θ > 0 in the current context. Similarly, the predicate

Always Inside (FB,R, tbq, teq) would amount to Θ = 1 throughout the entire time-interval

of interest for the query.

Following our discussions in Section 4, the probability Prob(X,Y,T ) (i.e., the probability

that the object is inside a region bounded by implicit curves “X”, “Y” throughout a time-

interval “T”) is defined as triple integral on 2D+time:

Prob(X, Y, T ) =

∫
T

∫
Y

∫
X

f(x, y, t)

The grid based numerical method provides an estimation regarding areas of location

whereabouts at a certain time instant. Assuming a uniform pdf at any time instant, we have

:

Prob(X, Y, T ) =

∫
T

Overlapping Area between FB and R(t)∫
T

Possible FB Whereabouts(t)

=
Overlapping Volume between FB and QPR

Overall volume of FB

Let AFB(t) denote the area of the possible whereabouts of the object at time t (i.e., the

area of the region corresponding to the answer of where at(t) query) and let A(R) denote

the area of the query region R. We have the following algorithm:
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Algorithm 1 Inside (TrFB, R, tbq, teq, θ, φ)

1: float T = 0, ttotal = 0;
2: int k = 0;
3: while (tq + k · 4) < teq do
4: T = T +4;
5: if ((AFB(T ) ∩ A(R))/ AFB)(T ) ≥ θ then
6: ttotal = ttotal +4
7: if ttotal ≥ φ then
8: The trajectory satisfies the predicate;
9: Exit;

10: end if
11: end if
12: k + +;
13: end while
14: Trajectory satisfies the predicate only ttotal of the [tbq, teq];

Algorithm 1, without checking the value of the “time-accumulator” and with a minor

addition to sum up the values ((AFB(T ) ∩A(R))/(AFB)(T ))×4, can be used to calculate

the ratio of the volume (i.e., the corresponding probability) of the object being inside R. We

note that, if one simply wants to calculate the probability of an object being inside QPR,

without any concerns about Θ or φ (i.e., overloading the argument-signature), then the “If()”

test in Algorithm 1 can be eliminated, and the corresponding approximations summed up.

As our experimental results in Section 3.5 will illustrate, applying Algorithm 1 to process

range queries over uncertain trajectories modeled with FB consistently yields fewer false

positives, in comparison to the case of applying it to a collection of uncertain trajectories

represented via regular beads.
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2.4.3. Lane-crossing Query Processing

Lane-crossing query can be perceived as a special case of a range query where the query

prism is degenerated from a polygon into a half plane. Figure 2.12, illustrates the lane-

crossing query for the regular bead and FB models. As mentioned in Section 1., the lane-

crossing query is important in applications related to fleet management and efficient traffic

management. We reiterate the statement explaining such queries:

Qu
LC : Given a fused bead FB(((xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b)), does the moving

object have > Θ (0 < Θ ≤ 1) probability of crossing the lane and entering half-plane R.

We use the generic notation Lane-Cross (FB,L, tbq, teq, θ) to specify the corresponding

predicate expressing the fact that an uncertain moving object represented via FB has crossed

the lane L on a given road segment (cf. Section 2.) with a probability ≥ Θ, sometime

between [tbq, teq]. If we wish to calculate the total probability of an object crossing the

lane L throughout the entire time-interval of interest of the query, then we can obtain

(a) Bead model (b) Fused bead model

Figure 2.12. Beads and lane-crossing query
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an approximate value by applying similar ideas as in Algorithm 1 – i.e., summing up the

products of the intersection area with 4.

2.4.4. Pruning Techniques

Typically, spatio-temporal query processing proceeds in three “stages” [38]:

(1) Filtering, where an index is used to eliminate those data items that are guaranteed not

to satisfy the query [97]; followed by:

(2) Pruning, where some properties might be used to further reduce the set of the possible

candidates for the answer, portion without introducing any false negatives;

(3) Refinement, where algorithmic checks and calculations are used to eliminate false positives

that were not eliminated during the previous stage(s).

While the problem of efficient and effective indexing structures for processing spatio-

temporal queries over the FB model is outside the scope of this work, we note that for

the specific queries discussed here, there may be pruning approaches that can speed up the

overall execution of the spatio-temporal queries on FB model. In the sequel we discuss few

such strategies:

A. Definitely Outside – Individual Fused Bead Bounds (IBb)

Proposed in [100], this pruning strategy is designed for GPS-based bead. It approxi-

mates each GPS-based bead with its minimum bounding vertical cylinder. According to the

Lemma 1, FB is bounded by GPS-based bead, which justifies its application to FB as well.

In effect, the ellipse – which is the projection of a bead, formed by two GPS points belongs to



52

Figure 2.13. Cylinder-based pruning approximation

FB, on (X,Y ) plane, becomes a circle centered in the center of the respective ellipse, as shown

in figure 2.13. The radius of the approximation-disk Adi is: r(Adi) = 1/2(vimax)(ti+1 − ti).

B. Definitely Inside – GPS points pre-screening

This pruning technique is specially designed for lane-crossing query, where the predicate

determines if it is possible for a lane-cross to occur. The technique is based on the following

observation: if two consecutive GPS points are located on two different sides of the central

line, there must be at least one time instant at which the moving object crosses the road, in

which case we are able to prune the FB and direct return true.

C. Sometime Inside – fine grained dead-space removal

We are interested in finding the time instant(s) when uncertain trajectories enter/exit

the query region R – call them critical points. By doing so, we eliminate some redundant

time-intervals with respect to the time-bounds of a particular query. The general case for
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time t ∈ [ti, ti+1] being a critical point occurs when the intersection of the uncertain region

at t with a query rectangle is a single point. In the time interval [ti, ts], the single-point-

intersection between disk centered at the first GPS point and query region stands for the

entering moment. Similarly, in the time interval [ts, ti+1], the single-point-intersection repre-

sents exiting moment. Since the query region is represented as polygon in the (X, Y ) plane,

each edge of the polygon is defined as a segment of 2D line y = ax + b. The calculation of

the critical times is presented in the Appendix.

2.5. Experimental Observations

We now present the experimental observations regarding the traded-offs between the

benefits of the FB model in terms of reducing the number of false positives in the queries’

answers vs. the computational costs. More specifically, we implemented the proposed ap-

proach and tested it for lane-crossing query and range query, comparing the beads obtained

using only GPS data against the FB model, and ran comprehensive experimental compar-

isons based on correctness, robustness and efficiency. In addition, we present two types

of pruning techniques which we applied as part of the query processing and discuss their

impact.

2.5.1. Dataset Description

In our experiments we used both synthetic and real-life datasets.

Synthetic Data: The synthetic data was generated by a modified version of Brinkhoff

network-based generator, representing vehicles’ movements on road network. GPS points are
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Figure 2.14. Beijing road network and taxi dataset

generated on the map of Oldenburg, which are available at the Brinkhoff generator official

website (http://iapg.jade-hs.de/personen/brinkhoff/generator/).

Real-life Data: The real world dataset we used in our experiments is based on Beijing

taxi data from the T-Drive project [119, 120]. Essentially, the Beijing road network is

built based on OpenStreetMap data, containing 140207 vertices and 155997 road segments.

GPS points are map-matched to road network using point-to-curve matching approach [81].

Figure 2.14 illustrates the map matching process, where green dots correspond to the raw

GPS points, and the blue dots are the points obtained after map-matching process. To

minimize the impact of the measurement errors, we filtered out the low speed GPS points

(i.e., ones with speed less than 1m/s).

Following is the description of the setups that were applied in order to run the experiments

for each of the queries:

(1) Vehicles are allowed to move along the road network with a speed ≤ 50km/h.
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(2) We add a width parameter to the road network, the value of which is set to be ≤

4m [85].

(3) At each time instant of the object’s motion along the road, its width location is

generated by a python-based random generator within a given random interval based

on the width parameter used in that location. The values are selected such that 0

represents the center of the road; negative values represent left lane; and positive

values represent the right lane – with respect to the direction of the object’s motion.

(4) We apply additional post-processing to the trajectories by adding roadside sensor

data. As mentioned, for a given location on the right (i.e., in the direction of object’s

motion) side of the road, we generate a ray perpendicular to the road’s boundary.

(5) To cater to the variations of the speed, we vary the actual time at which the moving

object crosses the ray corresponding to a particular roadside sensor. Given a bead

B(xi, yi, ti, xi+1, yi+1, vmax) and the ray y = mx + b from a given roadside sensor,

we calculate the time interval during which a moving object can cross the (ray

generated at the) location of the sensor as:

[Tsmin, Tsmax] = [ti +
distance from (xi, yi) to sensor

vmax
,

ti+1 −
distance from (xi+1, yi+1) to sensor

vmax
]

Then we calculate the sensor time ts following normal distribution between Tsmin

and Tsmax with average µ = (Tsmin+Tsmax)/2 and standard deviation σ = ((Tsmax+

Tsmin)/2− Tsmin)/2.5.
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Experiments are conducted based on the synthesized dataset described above, and the

executional environment was a 64 bit jdk running on a Linux system with 4-core i7-3770

CPU with 3.40GHz, and 8GB of memory.

2.5.2. Granularity of the Numerical Solution

As mentioned in Section 2.3, a grid based numerical method is used to measure the cross

section area of FB given a certain time instant. Since the cell size significantly influences

the area estimation accuracy, we measured the number of grids between two GPS points

as a metric to determine the level of granularity. In the experiment, a traditional bead is

formed by two GPS sample points with a maximum speed. We pick an arbitrary query time

and calculate the location, which acts as a true value At. The estimated area is denoted as

Ae, and the relative error is defined as: δA = |Ae−At|
At

as the ratio between residual and true

value.

When determining the grid size, a 1% tolerance was chosen as a threshold and multiple

runs of the experiment were performed for beads with different distance between two GPS

sample points.

As expected, we observe in Figure 2.15 that the estimation errors decrease as the grid size

increases, and the numerical estimations for different size of beads – with distance ranging

from 1m to 1000m – have identical errors given the same grid size. Hence, to reach 1% error

tolerance, we choose grid size to be such that there are 100 units between two successive

GPS points.
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Figure 2.15. Impact of grid size on the estimation accuracy

2.5.3. Lane-Crossing Query Experiment

We assume road networks are composed of two-lane roads. A sequence of trajectories with

different lengths are generated and the data sets we used in experiments are not correlated

- that is, we generate each dataset separately.

Correctness improvement:

Figure 2.16 illustrates the number of false positives when lane-crossing query are applied

to trajectories, under the bead and FB model. As we can see, the FB eliminates around 40%

of the false positives from GPS-based bead model, due to its reduction of “dead-space”.

As a follow-up experiment, we reduced the percentages of FBs contained in trajectories

to five levels (0%, 25%, 50%, 75% and 100%), in order to mimic real situations when roadside

sensors are not fully and densely deployed on a given road network. Figure 2.17 reveals the
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Figure 2.16. Lane-crossing query — FB reduces number of false positives

Figure 2.17. Percentage of roadside sensor deployed influence the number of
false positives

relationship between percentages of FBs and number of false positives. Clearly, the more FBs

contained as components of a trajectory, the smaller the overall number of false positives.
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Figure 2.18. Lane-crossing query on Beijing taxi data set

When we apply the same experiment to Beijing Taxi data, its outcome indicates the

same effect, where 26.6% false positives are reduced, as shown in Figure 2.18. The real life

scenarios contained in Beijing taxi data is highly complicated, with continuously changing

speed, compared with Brinkhoff trajectory generator where vehicles drive under a constant

speed within each road segment. Despite the varieties and complications in real life data,

our algorithm is adaptive and effective in reducing location uncertainties.

Sensor deployment in real world applications is largely constrained by factors such as

budget, terrain, infrastructure, etc. To add to the realistic aspects of the experiments, we ex-

amined the influence of sensor deployment density. The effects of executing the lane-crossing

query for the same dataset but for different sensor densities are illustrated in Figure 2.19.

As shown, the higher the sensor deployment density is, the more false positive we are able

to reduce with the FB model.
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Figure 2.19. Road-side sensor deployment density influences the number of
false positives

Figure 2.20. Execution time comparison
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Figure 2.21. Number of points on the line segment from roadside sensor affects
estimation accuracy

Efficiency:

Next, we compare the performance of GPS-based bead and FB in terms of the respective

execution times. An important parameter affecting the execution time is the number of

points chosen to approximate the line segment from roadside sensor (intersecting with lens),

which are used to construct sub-beads. Recall from Section 3, that the FB is the union of

uncountably many sub-beads, with one of the foci located along the ray emanating from

the roadside sensor, within the width of the road. When approximating the uncountably

many sub-beads, the trade-off is the precision (i.e., using as many points as possible to

have an accurate approximation) vs. the computational overheads. Two experiments were

performed to compare both execution efficiency and approximation accuracy, executing lane-

crossing queries on trajectories with lenght ≤ 5000m, varying the number of points chosen

on the roadside sensor line segment. The total execution times for each of the GPS-based
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Figure 2.22. Range query — FB reduces number of false positives

bead model and FB model are displayed in Figure 2.20. On a complementary note, taking

maximum number of points allowed in a given grid setting as true value, their corresponding

approximation errors regarding location whereabouts areas are shown in Figure 2.21.

To discuss one specific setting explicitly: in the case when six points were used on the

sensor line segment as a parameter for constructing the FB, in comparison with GPS-based

bead model: (1) we have an overhead of a 30% latency in time to complete the query; (2)

however, in return, we reduce more than 26% false positives and gain a much more narrow

possible locations boundary (modulo the accuracy of the area approximation).

2.5.4. Range-query Experiment

The datasets used in range query are generated in the same fashion as the ones for the

lane-crossing query, and the query regions we used were squares and disks with respective

areas covering 12.5% of the total map area. As shown in Figure 2.22, similarly to the results
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(a) Number of data pruned in lane-crossing
query (b) Execution time for lane-crossing query

Figure 2.23. Pruning techniques applied to lane-crossing query

for the lane-crossing query, FB outperforms GPS-based bead model by reducing 30% false

positives .

2.5.5. Impact of Pruning

As discussed in section 2.4, we postulated that pruning techniques can significantly improve

the efficiency of the queries processing. In addition, during the early stages of our experi-

ments, we also observed that the fine grained dead-space removal method did not provide

any significant performance boost. Thus, we introduced the Individual Fused Bead bound-

ary (IBb) as a volume corresponding to a cylinder in 2D + time space, since in Algorithm 1

the most computationally expensive part is to aggregate the total volume in in the respec-

tive 2D + time space. Even though the redundant time removal method eliminates some

time-intervals with no intersections between FB and query prism from the refinement, we

note that one still needs to calculate the volume for those parts.
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Figure 2.24. Pruning — Individual Fused Bead Bounds

Figure 2.23 shows the effects of pre-processing based pruning. As the Figure 2.23b

indicates, around 30% of other total time have been saved via pruning. Figure 2.23a shows

that as the trajectory length increases, the number of FB that can be pruned increase

accordingly.

Our experiment for the effects of pruning in the case of range query were conducted with

a data set containing trajectories with a total length of 55km. IBb rules out large amount

of data points that definitely have no intersections with query prism. In Figure 2.24, x-axis

represents the ratio of the areas of the query region and the entire map. It indicates the

relationship between the pruning effect and the size of query region. As we expected, when

the query area decrease, the IBb prunes more data points.
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2.6. Related Work

There are three main bodies of research literature that are related to the work presented

in this article and, in one way or another, were used as foundation for our work.

The first body of works consists of the results from the GIS, MOD and spatio-temporal

databases communities, where the problem of capturing the uncertainty of motion has been

studied extensively. Starting with [39], and more recently [115], the issue of uncertain where-

abouts from the perspective of probabilistic time geography has been tackled by a model of

emanating cones-in-time, with a vertex at the last location sample. The 2D boundary of

the possible locations of moving objects with bounded speed was formalized by an ellipse

in [77], and its 2D+time version – beads – was presented in [45]. Subsequently, [54, 55]

provided a full formalization of the beads model and also provided extensions to capture the

impact of road networks [52]. A plethora of the works dealing with uncertainty (either in

free-space motion or road networks constrained) from MOD and spatio-temporal databases

community have also addressed the efficient processing of popular spatio-temporal queries

(range, (k)NN, reverse-NN) under various models of uncertainty [38, 15].

Unlike these works, we focused on fusing the uncertain location data from two sources

– GPS and the roadside sensors. In addition, to illustrate some of the features of the new

model and its use in query processing, unlike the traditional MOD-based works we considered

the road network which has a width as a parameter, instead of graph edges.

The second body of works originates in the transportation and traffic management com-

munities. Substantial efforts have been made to tackle the lane-crossing query and several

works have focused on building novel system to overcome the shortcoming of single GPS
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receivers which yields unstable measurements with large uncertainty [18, 25]. Comple-

mentary attempts have been made to acquire location data using commercially available

smartphones [87], but nearly 50% of the data failed to fall within the road network region.

Other efforts include the use of integrated sensor like gyroscope to fill the unknown values

between two GPS sample updates [99]. However, the works did not consider the uncertainty

in-between consecutive GPS-based updates and sensor-based location detections.

Some of the works [25, 99], use map matching algorithms to determine which lane

the vehicle belongs to and, subsequently, try to revise the measurement error using post-

processing. However, the bead (or, space-time prism) model has not been exploited.

The third body of works originates from the Wireless Sensor Networks (WSN) community.

Tracking of moving objects is considered to be a canonical research problem in WSN settings.

Various facets of the problem have been investigated: from the trade-off between energy

consumption and the accuracy of the tracking process, to routing protocols for conveying

location-in-time information to a given sink (see, e.g., [10, 14, 46, 76, 112]). Typically, the

location of a given object is determined by some form of collaborative trilateration among

the tracking sensors equipped with different distance-estimation devices (e.g., vibrations,

audio-strength, etc.). However, to the best of our knowledge, there have been no results on

fusing the location data from heterogeneous sources.

2.7. Concluding Remarks and Future Works

We proposed a formal model – FB (fused bead) – for capturing the possible whereabouts

of a moving object whose location data is obtained at discrete time-instants, either by a

GPS-device, or by a roadside sensor. Each of them entails a specific kind of uncertainty
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for the location-in-time data, however, we demonstrated that when combining the values

from the two sources it turns out that “two uncertainties are better than one”. In other

words, integrating/fusing the data from both sources narrows the possible whereabouts when

compared to each individual location data source. We analyzed the details of the FB model,

and its impact on the lane-crossing query and range query, and conducted a collection of

experiments to compare the overall performance between GPS-based bead model and FB

model. We demonstrated that, by accepting a small amount overhead in the processing time,

our FB model reduces the number of false positives.

There are a few directions that we plan to pursue in the near future. Firstly, we would

like to investigate the impact of incorporating other types of sensors and location sources

– e.g., the ones obtained via cellular networks [40] or indoor-localization – and develop a

formal model capable of multisensor fusion [49]. A particular challenge in these settings

is that different data sources may have different horizons of spatial and temporal validity.

Our second extension is to consider the processing of other popular spatio-temporal queries

(e.g., Nearest Neighbor) under the new model of location uncertainty. Yet another avenue

is to extend the model/formalism so that it captures the uncertainty/imprecision in the

very samples [79] as well as the possibility of accelerated motion [53]. Lastly, we are also

planning to investigate the impact that incorporating other kinds of semantic information

in the model – both in the representation of the trajectories [74], e.g., type of a vehicle (for

fuel consumption, size, etc.), as well as the type of roads [62] – can have on the processing

of spatio-temporal queries.
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CHAPTER 3

Multi-lane Speed Clusters Mining

We now turn the attention to the problem of speed-based clustering of trajectories [92,

30, 36, 47, 66, 91] moving along road networks, with a specific twist of incorporating the

multi-lane awareness. The main motivation for the problem(s) addressed is that without

properly considering the fact that there are more than one lane along segments of the road

network, the route-planning algorithms will generate trips with inaccurate duration. As our

experiments have demonstrated, we can indeed improve the accuracy of the trip-duration

with our methodologies.

3.1. Preliminaries

We now present a brief overview of the related background and introduce the basic

terminology.

Traditionally, in MOD [38] the motion of an object with a distinct ID (oID) is represented

as a trajectory TroID = [p1, p2...pn], where each point pi is a triplet pi = (xi, yi, ti); ti being

the time that the object was at location (xi, yi).

A road segment r is a octuple r = (rID, rDir, rs, re, rtype, rlength, rspeed, rlane), where: rID

is its unique identifier; rDir is a binary value indicating whether r is one-way or two-way

segment; rs and re are k-tuples (k = number of lanes) representing the starting and ending

points of each lane (centroids); rtype indicates the type of the road to which the segment

belongs (e.g., urban, rural, etc...); rlength is its length; rspeed is the maximum speed; and
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rlane is an integer specifying the number of lanes in each direction. A road network is an

(augmented) graph GRN = (VRN , ERN) where VRN is the set of nodes representing the

terminal points of road segments, and ERN is the collection of road segments.

Table 3.1. Lane Width for Different Types of Road

Type of Roadway: Rural Urban

Freeway 12ft 12ft

Ramps (1-lane) 12-30ft 12-30ft

Arterial 11-12ft 10-12ft

Local 9-12ft 9-12 ft

For types of roads and the width of the lanes, we assume the classification proposed by

the FHWA (Federal Highway Administration) of the US Department of Transportation [95]

illustrated in Table 3.1, noting that the width is often associated with the maximum pre-

scribed speed limit. Traffic-stream studies use different measures to characterize motion

along road segments [31], often coupled with the available technology. For example, induc-

tive sensors are good for estimating the flow, however, they cannot characterize the speed.

On-board GPS devices are good at obtaining an average speed of individual moving ob-

jects, however, they are error-prone in terms of location, and cannot capture fluctuations

in-between samples. We assume that motion-relevant data is obtained from (a sequence of)

GPS points.

In information theory, a classical measure of information in a stochastic setting is the

Shannon Information [41]. The Shannon Information SP (A) (also called the surprisal, or

self-information) of a probability distribution P for an event A is SP (A) = −log2P (A). The

information entropy (also called Shannon Entropy) is the expected value of the Shannon

information [89].
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3.1.1. Path Based Map-matching

Map-matching algorithms use information generated from positioning technologies and sup-

plement with data from a high resolution spatial road-network map to provide an enhanced

positioning output. It identifies the the correct road on which vehicles travel and deter-

mines vehicles’ location on that segment [81]. Map-matching approaches can be generally

categorised into four groups: geometric, topological, probabilistic, and other advanced tech-

niques [81].

In this chapter, we apply and implement a path based map-matching algorithm that uses

a Hidden Markov Model (HMM) to find the most likely road route [71]. Compared with the

traditional point-based map-matching algorithm that only utilizes the geometric information

from GPS points, the path based map-matching take the connectivity relationship between

consecutive GPS points into consideration. It also uses Viterbi algorithm to compute the

global optimal path.

Figure 3.1. Path based map-matching

Figure 3.1 is a zoom-in view of the highway road network, which is the environment

we developed for experiment. There are two parallel, directed edges r1 and r2 representing

two directed road segments of the highway. One car is driving counterclockwise on r2,

forming a trajectory [A,B,C]. The correct map-matching results are [A′, B′, C ′]. When
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applying point-based map-matching algorithm, that matches GPS points to line segments

with smallest matching distance [126], point B is map-matched to B′′ due to the GPS noise

and the factor that point B is closer to road segment r1. However, trajectory [A′, B′′, C ′] is

invalid since a jump between r1 and r2 is not allowed. Path based map-matching incorporate

geometric and topological information between every two consecutive GPS points, and is able

to correct the map-matching result for point B from B′′ to B′.

3.1.2. Partitioning

The philosophy of clustering traffic speed data is to group those GPS points that are spatially

and temporally close to each other and with similar speed. The Unit Cell (UC) is defined

as [123]:

Definition 2. (Unit Cell): A Unit Cell UCkl = (∆S
kl,∆

T
kl, Vkl, Dkl) in the lth lane of a

given road segment is the minimal partition in spatial and temporal dimension, characterized

by a spatial range ∆S
kl = d+

kl − d
−
kl, temporal interval ∆T

kl = t+kl − t
−
kl, and a set of trajecto-

ries Dkl = [Tr1, T r2, ...T rn] that belong to it. The set Dkl determines the speed-value Vkl

associated with UCkl

We note that the spatial range uses only “1D interval” – i.e., d+
kl − d−kl because the

“conventional” 2-D space is constrained to 1-D along the driving direction, representing the

distance(s) from starting point of the road segment (for the corresponding lane) until the

beginning of the k-th unit cell (and the width is pre-determined by the road-type).

It is possible that multiple UCs share the similar speed/speed cluster(if we regard all

GPS points within one UC as a single cluster). A Merging Cell (MC) is the combination of

two or more UCs.
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Figure 3.2. Unit cell and Merging cell

Definition 3. (Merging Cell): A Merging Cell (MC) is a union of multiple neighboring

unit cells MCj = UC1 ∪ UC2 ∪ ... ∪ UCn. Its spatial range is defined as RMC = ∪i∆S
i and

its temporal interval TMC = ∪i∆T
i .

The merging process follows certain criteria and procedures. We introduce two cluster

mining approaches. In Section 3.2, we will discuss agglomerative merging method according

to speed threshold; in section 3.3 and 3.4, a probabilistic speed profiling with a new distance

measurement and merging algorithm will be proposed.

3.2. Agglomerative Speed Cluster Mining

Partition-and-merge framework for clustering trajectories has been proposed in [60] –

however, the work did not consider the time-dimension (i.e., the speed) and was dealing

with free 2D motion, not constrained to road networks. Models have been proposed based

on trajectories’ geographical information (including moving objects’ heading and trajectory
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density) and semantic information. Compared with conventional trajectory clustering frame-

work, in our problem of mining traffic speed clusters, GPS sample points are constrained by

road-network. However, map-matching with uncertain location poses other challenges.

The agglomerative mining is a bottom-up approach. After partitioning the spatial-

temporal space into many UCs, the criteria that we require for merging two neighboring

UCs, inspired by [21, 60], are:

(1) V(k+1)l − Vkl ≤ δ′′v – i.e., the speed-values in the cells are close enough to each other, and

(2) ||D(k+1)l|−|Dkl||≤ τ – i.e., the cells need to have close enough number of trajectories in

their support-set.

An illustration of a merging cell MC formed by two neighboring UCs is shown in fig-

ure 3.6, in the (space, time, lane#) dimensionality. We constrain the union to consist of

neighboring UC’s in order to keep the spatial and temporal continuity. The first observation

that, depending on the merging order chosen, a given collection of UCs need not yield a

unique (collection of) MCs. A slight generalization of the scenario illustrated in Figure 3.6

can easily demonstrate that a particular cell can participate in as many as six different merg-

ings, provided that there are ≥ 3 lanes. One can envision cells as being nodes in a graph

and edges existing between neighboring cells. Upon merging, two nodes coalesce into one –

and, to select a criterion for merging, a priority needs to be assigned among the adjacent

vertices. Figure 3.6 illustrates merging of two neighboring edges from two lanes, sharing the

same time-interval and distance from the start of the road-segment. However, in the current

implementation, this is the 3rd criterion:

(3.1) First we check whether cells can be merged along the spatial dimension within the

same lane.
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(3.2) If not, we check next whether two cells with the same spatial extent can be merged

along the temporal dimension.

(3.3) Lastly, we check whether two cells can be merged along neighboring lanes.

For every iteration of merging process there are three basic steps that are followed when

processing each node.

I If there are no neighbors along the merging direction, the current cell is skipped and

marked as visited.

II We check the cross-section coordinates between current cell and its neighbor in the

order of preferences of merging directions. If cross-section coordinates are aligned and they

satisfy the merging criteria, a merged cell is formed to replace them. One example is shown in

figure 3.6–I. When we merge UC3 with UC4 along lane width dimension, their cross-section

are aligned and a new MC3 is formed. If we try to merge MC3 with UC5 along spatial range

dimension in figure 3.6–II, their cross-section cannot match, and the cell will be skipped.

III Newly merged cell inherits all the neighboring relationship from merged cells. At the

same time, all neighbors of two merged cells update their neighbor lists, by replacing original

cells with the new one.

Speed Cluster: When the merging process for a particular (unit or merged) cell can no

longer continue, we call that cell a Speed Clusters (SC)

Algorithm 2 formalizes the above description.

Assume that there are a total of n GPS points in the database, and (on the average) a

road segment is composed of O(K) spatial intervals in each lane and O(M) intervals in the

temporal dimension, defining the unit cells. Under a uniform distribution, each unit cell will

consist of O(n/(KM)) GPS points from various trajectories. Calculating the merged cells
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Algorithm 2 Cluster Mining (CellSets, DirectionSets)

1: ClusterID = NextID(NULL);
2: for Merging Direction MD IN DirectionList do
3: while Cell in CellSets is unvisited do
4: Neighbor = Cell.Neighbors(i) along MD;
5: if Neighbor.size() == 0 then
6: Cell.visited = True;
7: Continue;
8: else if Align(Cell, Neighbor) == True AND CanMerge(Cell, Neighbor) == True

then
9: NewCell = merge(Cell, Neighbor);

10: NewCell.Neighbors = mergeNeighbor(Cell, Neighbor);
11: updateNeighbor(Cell, Neighbor, NewCell);
12: delete Cell, Neighbor;
13: else
14: Cell.visited = True;
15: end if
16: end while
17: CellSets.visited = False;
18: end for
19: Return CellSets;

and clusters along a road segment can have an upper bound of O((KM)2) provided each

one of the K ·M cells is taken as a starting point to obtain the best possible clustering in

terms of the minimal final number of clusters.

The agglomerative mining is a simple but effective clustering approach. Its benefit of

reducing minimal travel time will be discussed in the experiment section. However, it is not

adaptive to the errors incurred by GPS uncertainties. During the lane labeling process, large

GPS errors will incur potential mislabeling, which later lead to noise points in the merging

phase. One possible direction is to soft allocate the weight of GPS points to different lanes

based on certain probabilities.
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3.3. Probabilistic GPS Model and Speed Profile

GPS devices yield measurement error associated with each GPS-based determined lo-

cation, even more so for crowd-sourced GPS data collected from potable devices. Due to

the constraint of device size and cost, average horizontal errors from consumer-grade GPS

receiver range from few meters to tens of meters [122]. Thus, deterministic lane level com-

putations based on GPS probe data are ambiguous, so much so that the position may yield

a different lane. In this section, we first introduce a probabilistic model to describe the

location whereabouts for GPS points, followed by a definition of speed profile for every UC.

3.3.1. Probabilistic GPS Weight

The uncertain disk model [102] is the most naive one for uncertain location data, assuming

uniform distribution. Let Dp(x, y, t, r) denote the disk centered at point P (x, y, t) with radius

r, and Ai denote the area of lane i, which is a rectangle shape area. The probability of a

GPS point located within a certain lane can be estimated by: Plane = Dp(x,y,t,r)∩A
Dp(x,y,t,r)

. More

sophisticated models describe the GPS data as a zero-mean Gaussian model [71, 20]. In this

dissertation, we do not consider the GPS errors along vertical axis, thus, measurements from

GPS receivers follow 2D Gaussian model. Given a GPS point Pi(xi, yi, ti), the probability

density function (pdf) is:

(3.1) f(x, y) =
1

πσxσy
exp(−(

(x− xi)2

2σ2
x

+
(y − yi)2

2σ2
y

))

The 2D Gaussian model is illustrated in Figure 3.3, with lane-width of 5m and spatial

range ∆S
kl is 5m as well. The location pdf for GPS point (12, 12, 0) spans over multiple UCs
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Figure 3.3. GPS point location probability distribution

and the probability of the GPS point being located into one UC is the integral of density

function 3.1 over the spatial range within the lane width. Given UC0(∆S
k0,∆

T
k0, Vk0, Dk0)

with spatial range [xuc, xuc + ∆S
k0] and lane width [yuc, yuc + width], the probability of Pi

being inside UC0 is:

(3.2) Pi =

∫ xuc+∆S
k0

xuc

∫ yuc+width

yuc

f(x, y)dydx

Definition 4. GPS Contribution CGPS: A GPS point G contributes to a Unit Cell UC

when the probability P for G being located in UC is greater than ω – a threshold for the

minimum probability value.
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We augment each trajectory TroID = [p1, p2...pn] within a UC by a GPS contribution,

thereby making each pi a quadruplet pi = (xi, yi, ti, CGPSi).

3.3.2. Speed Profile

Given a UC with a set of augmented supporting trajectories, we apply a discretized histogram

to estimate the traffic distribution within each UC. Given a bin size φ and number of bins

n, instead of counting, the frequency for each bucket is the aggregation of contribution

from every GPS point, reflecting a weighted sum for different points. The number of bins

determines the level of granularity of the speed profile. We note that using only one bin is

equivalent to a single average speed while too many bins may incur computational overhead.

For a set of GPS points S with speed ranges within (i ∗ φ, (i + 1) ∗ φ), the total GPS

contribution W is:

(3.3) W (i) =
∑
s

Ci

The discrete pdf for the speed within range (i ∗ φ, (i + 1) ∗ φ), which we call a Speed

Profile, is:

(3.4) pdfv(v ∈ (i ∗ φ, (i+ 1) ∗ φ)) = Pr(i) =
W (i)∑n
1 W (i)

An example of a speed profile is shown in Figure 3.4, where φ is set to be 5km/h. There

is one large peak at 80km/h, representing majority of GPS contributions; and a small peak

near 20km/h, due to the contributions from slow lanes.



79

Figure 3.4. Speed profile for a unit cell

3.3.3. Merging Multiple Speed Profiles

Merging multiple UCs is the process to consolidate data from multiple sources, and we

assume that the sources for GPS data within each UC are independent, because each UC is

unique in spatial-temporal space and GPS measurements are independent. There are many

approaches to consolidate independent data sources [42], like averaging the probabilities, and

averaging the data, however, they have disadvantages: either do not take the differences of

variances into consideration, or require averaging of dissimilar data.

Conflation is a method for consolidating a finite number of probability distribu-

tions P1, ..., Pn into a single probability distribution Q = Q(P1, ..., Pn) [41], denoted

by &(P1, ..., Pn). Given multiple UCs (UC1, UC2...UCm) with respective speed profile

(pdfv1, pdfv2...pdfvm), the merged probability distribution obtained via conflation is:
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pdfMC
v (v ∈ (i ∗ φ, (i+ 1) ∗ φ)) = Pr(i) =

∏m
1 pdfv(i)∑

y∈n
∏m

1 pdfv(y)
(3.5)

It has none of the disadvantages of the two averaging methods described above and has

many advantages and important properties [42]:

(1) Conflation is commutative and associative:

&(pdf1, pdf2) = &(pdf2, pdf1) and

&(&(pdf1, pdf2), pdf3) = &(pdf1,&(pdf2, pdf3))

(2) Conflation is iterative:

&(pdf1, pdf2, pdf3) = &(&(pdf1, pdf2), pdf3)

(3) Conflation minimizes the loss of Shannon information: If pdf1 and pdf2 are independent

probability distributions, then the conflation &(pdf1, pdf2) of pdf1 and pdf2 is the unique

probability distribution that minimizes, over all events, the maximum loss of Shannon infor-

mation in replacing the pair pdf1, pdf2 by a merged distribution pdfMC [42].

Properties (1) and (2) ensure that the conflation method can be used when merging UCs

in any order and sequences, whereas (3) implies that conflation is compatible with entropy

related measurement – i.e., given a threshold for the differences between two distributions in

the information space, merged distribution using conflation minimizes the loss of Shannon

information.
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3.4. Speed Cluster Mining

After finalizing the pre-processing of the uncertain GPS data and calculating speed profile

for individual UCs, we now proceed with the mining steps – i.e., detecting the speed clusters

in multi-lane settings.

We note that in our previous work [123] we proposed a sweep line based method for

merging neighboring UCs by scanning along spatial, temporal and lane dimensions. While

the algorithm proposed in [123] is effective in terms of reducing the number of UCs via merg-

ing, we observed that different merging sequences will generate different clustering results.

To alleviate this phenomenon, in the rest of this section, we present an improved merging

algorithm inspired by density based clustering.

(a) Traditional DBSCAN (b) UC as “dummy point”

Figure 3.5. DBSCAN inspired merging
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3.4.1. Probabilistic Distance Measurement

The most important criterion for merging two UCs is the level of similarity between them,

in terms of the respective speed profiles. In the previous work [123], we used a simple

method which compared the average speeds and the number of trajectories between two

UCs with corresponding thresholds. However, in this work we use the speed profile as a

more comprehensive description for drivers’ behavior within certain UC and, given that we

are catering to the fact of uncertainty of the locations’ values, we decide whether to merge

two UCs or not by calculating the distance between the respective discrete probability distri-

butions. However, the distance between two distributions cannot be easily captured through

geometric distance. Typically, in information theory, an uncertain object is treated as a

random variable following a particular probability distribution. One popular measure for

calculating the distance between two pdf’s is the Kullback-Leibler divergence (also called

information gain) – essentially, a measure of the difference between two probability distri-

butions [64]. In our settings, given two speed profiles described with the respective pdfi and

pdfj, the Kullback-Leibler divergence from pdfi to pdfj – denoted D(pdfi||pdfj), describes the

amount of information loss when pdfi is used to estimate pdfj. The equation defining the

Kullback-Leibler divergence is:

(3.6) D(pdfi||pdfj) =
∑
v

pdfi(v)log
pdfi(v)

pdfj(v)

However, one specific property of the Kullback-Leibler divergence is its asymmetry, which

is fine in many applications settings that rely on Bayesian inference. Contrary to this, in
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our settings, we would like to have the merging of UCs to be an undirected process that can

start from any UC – and this makes the asymmetry an undesirable property.

Another method to measure the similarity between two probability distributions is the

Jensen-Shannon divergence (JSD) (a.k.a. information radius) [64], which is commonly used

in clustering probability distributions. It is based on the Kullback-Leibler divergence with

the notable properties that it is symmetric, always a finite value and the square root is a

metric. The Jensen-Shannon divergence between two speed profiles pdfi and pdfj is denoted

as JSDij.

(3.7) JSDij =
1

2
D(pdfi||

pdfi + pdfj
2

) +
1

2
D(pdfj||

pdfi + pdfj
2

)

In this work, we adopt the Jensen-Shannon divergence as the distance function between

two UCs.

3.4.2. Mining Speed Clusters

The traditional DBSCAN [29] accepts a radius value ε based on a (user defined) distance

measure, and a value MinPts for the number of minimal points that should occur within

Eps radius. A simple illustration is shown in Figure 3.5a, where ε = 2 and the Euclidean

distance is used as a distance so that, upon comparison with ε, one can determine whether

two points are connected. The points A, B and C in Figure 3.5a are considered core points

because the discs with radii ε and centered at each of them, contain at least 2 neighboring

points and they belong to the same cluster. Points D and E are not core points. However,

they are reachable from A through other core points – and, consequently, they belong to the
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Figure 3.6. One UC has six neighboring candidates

same cluster as well. The point F is a separated/isolated noise point that is neither a core

point nor density reachable [29].

Inspired by DBSCAN, we propose Traffic-Density-Merging (TDM), a density based clus-

tering algorithm. When mining the speed cluster based on fine-grained UCs, each UC is

treated as an “artificial point”, as shown in Figure 3.5b. They are well-identified in terms

of their organization in the spatio-temporal 3D space and the Euclidean distances between

two spatially-consecutive points are the same. The candidate-neighbors of a particular such

“artificial point” are defined as UCs which have representative “artificial points” that are

directly connected to the one representing the particular UC. Thus, each “artificial point”

can have at most 6 candidate neighbors, as shown in Figure 3.6. As a specific example, in

Figure 3.5b, the “point” B has 3 candidate neighbors. However, only “point” A and D have

similar speed profiles compared with “point” B, whose information-distance JSD is smaller
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than the (assumed) threshold. Therefore, B has two neighbors and is a core point (assuming

MinPts = 2). A, B and D can therefore be merged as a speed cluster. This process is anal-

ogous to the one occurring in the traditional DBSCAN – except, instead of the Euclidean

distance, JSD is used to calculate the respective distances in the “information space” and a

corresponding threshold λ is defined to determine whether two neighboring UCs belong to

the same speed cluster.

Proceeding formally, and in the spirit of [29], the density based speed cluster is defined

as follows:

Definition 5. (Density-based speed cluster): A cluster C is a non-empty subset of UCs

satisfying the following “maximality” and “connectivity” requirements:

(1) ∀p, q: if q ∈ C and p is density-reachable from q with respect to (λ) and MinPts,

then p ∈ C.

(2) ∀p, q ∈ C: p is density-connected to q with respect to (λ) and MinPts.

The TDM starts with an arbitrary UCa. If it has been visited, the iteration breaks

and proceeds to the next UC. Otherwise, we call the Neighbor-Query to retrieve its qualified

neighbors. As shown in Figure 3.6, UCa has six candidate neighbors. Those candidate neigh-

bors that have JSD less than λ with the currently considered UC (UCa) become neighbors

that are density reachable from UCa. In the case that the number of such neighbors is larger

than MinPts, UCa is a core UC and a cluster is identified. If the number of neighbors is less

than MinPts, it cannot form an independent cluster, and we keep this UC as a separate one.
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Algorithm 3 Traffic-Density-Merging (UCSets, MinPts, λ)

1: ClusterID = NextID(NULL);
2: for UC IN UCSets do
3: if UC.visited == True then
4: continue;
5: end if
6: UC.visited = True;
7: Neighbors = Neighbor-Query(UC, UCSets, λ);
8: if Neighbors.size() <MinPts then
9: Point.CID = Separate;

10: else
11: Point.CID = ClusterID;
12: Cluster = ExpandCluster(UCSets, Neighbors, UC, ClusterID, MinPts, λ);
13: SpeedCluster.add(Cluster);
14: ClusterID = NextID(ClusterID);
15: end if
16: end for
17: Return SpeedCluster;

In Algorithm 3, UCSets is either the whole set of UCs on certain road segment or a proper

subset of them. MinPts and λ are parameters that are provided as input to TDM and they

can be determined analytically or through experiments, based on a particular scenario.

When a new/unvisted UC is identified as a core cell, a new cluster is generated. Fol-

lowing that, the function ExpandCluster is invoked, for which the pseudo-code is presented

in Algorithm 4, in order to expand the cluster based on the current UC and its neighbors.

The cluster expansion process is essentially a depth-first kind of a search. A stack is used

to store all the seed UCs. If the current UC is unvisited, we retrieve its neighbors using

Neighbor-Query in the same way as described above. The qualified UCs are pushed onto the

stack under the condition that the current UC is identified as a core cell. If the current UC

has not been classified into any cluster or it is previously marked as Separated, we append

it into the current cluster.
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Algorithm 4 ExpandCluster (UCSets, Neighbors, UC, ClusterID, MinPts, λ)

1: Seeds = Neighbors;
2: Seeds.add(Point);
3: while Seeds.size() > 0 do
4: CurrentUC = Seeds.first();
5: Seeds.pop();
6: if CurrentUC.visited != True then
7: CurrentUC.visited = True;
8: Cluster.add(CurrentUC);
9: Cluster.MergeSpeedProfile(CurrentUC);

10: NewNeighbors = Neighbor-Query(CurrentUC, UCSets, λ);
11: if NewNeighbors.size() >MinPts then
12: Seeds.Append(NewNeighbors);
13: end if
14: end if
15: if (CurrentUC.CID == NULL) OR (CurrentUC.CID == Isolated) then
16: CurrentUC.CID = ClusterID;
17: end if
18: end while
19: Return cluster;

Algorithm 5 Neighbor-Query (UC, UCSets, AverageSpeed, λ)

1: CandidateNeighbors = UCSets.search();
2: for Neighbor in CandidateNeighbors do
3: if JSD(Neighbor, UC) <λ then
4: Neighbors.add(Neighbor);
5: end if
6: end for
7: Return Neighbors;

If two clusters C1 and C2 are very close to each other (in JSD sense), there might be

scenario that a given UCi belongs to both clusters – which entails that such UCi is on the

boundary between C1 and C2. If this is the case, UCi will be assigned to the first discovered

cluster. In addition, we note that there will not be cases in which a particular cluster partially

intersects or if fully contained by another cluster (otherwise the two clusters will be merged).
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Remark: The Neighbor Query can be supported efficiently by spatial access method like

R*-trees [7], which is often available in spatial database system – however, the issue of

indexing is beyond the scope of this dissertation and we defer it for our future work.

Given the results for the original DBSCAN, we note that the access time for a collection

of n UCs is O(logn). As we discover new clusters, for each of the n points there is at most

one invocation of the Neighbor-Query to be processed. Therefore the time complexity for

TDM is bounded by O(nlogn) – which, once again, is the time complexity of the traditional

DBSCAN (cf. [29]) since we retain the general framework for density based searching.

3.5. Experimental Observations

We evaluate both agglomerative mining method and Traffic-Density-Merging. For our

experiments, we used a data obtained from the Grande Raccordo Anulare (GRA) motor-

way. It is a toll-free, ring-shaped orbital motorway that encircles Rome, as illustrated in

Figure 3.7a, and it is considered to be one of the most frequently used roads with heavy

traffic for the most of the day. Our experiments are based on a dataset contains GPS traces

of 320 taxi cabs in Rome, collected over 30 days – from February 1, until March 2 of 2014 [8].

The cardinality of the dataset is 8,368,858 points.

To evaluate the benefit of our proposed speed cluster mining algorithm, an augmented

road network of GRA is built based on OpenStreetMap data, where road segments are

augmented with three lanes. Figure 3.7b is a simple visualization of such augmented road

networks. Blue dots represent GPS points that originated from two vehicles’ trajectories

driving along the GRA.
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(a) The GRA (b) Experiment environment

Figure 3.7. The Grande Raccordo Anulare and experiment environment
3.5.1. Evaluation for Agglomerative Mining

Baseline: The baseline approach we compared with is a traditional traffic speed estimation

method (cf. Section 1), by calculating the average speed among all speed samples. In order

to incorporate the variation along temporal dimension, we divide speed samples into 24

subsets, which represent 24 hours in a day. Average speed within each hour is calculated

accordingly.

Evaluation: The data was divided into four folds according to sample time, each containing

GPS points within one week. We used three weeks data to train our model, and we randomly

pick trajectories from the remaining set to estimate the travel time, by using both baseline

method and traffic speed clustering model.

The experiment was repeated 15 times and the average of all the runs is shown in Fig-

ure 3.9. The x-axis represents the aggregated travel distance, and y-axis stands for average

estimated travel. On average, the travel time by using speed clustering method is reduced
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by 20%, compared with baseline approach. For the entire road networks, there are 8,328,960

UCs before merging, and 414,982 MCs after merging, which is a 95% reduction.

Figure 3.8. Travel time estimation using baseline approach and agglomerative
method

3.5.2. Evaluation for Traffic-Density-Merging

The experimental evaluation for probabilistic speed profiling and Traffic-Density-Merging

consists of two parts – training and validation; and there are two steps in the training

process as well: (1) building speed profile for each UC, and (2) mining speed clusters. We

first train the model from GPS traces collected from Rome taxi cabs. Subsequently, we

validate our model by predicting the travel time using trained speed clusters.

The experiments were conducted on a MacOS machine with 2.7 GHz Intel CPU with

8GB 1867MHz DDR3 RAM and the implementation1 was done in Python 2.7.

Parameter Estimation and System Implementation: Our probabilistic GPS uncer-

tainty model calculating the GPS contribution for each UC requires two parameters σx and

1We note that the code and the datasets are publicly available at www.eecs.northwestern.edu/˜bzv686.
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σy. They are the values of the corresponding standard deviation of the Gaussion GPS noise

in longitudinal and latitudinal directions. This parameter can be affected by the measure-

ment devices and measurement environment. According to experiments conducted/reported

in the related literature [71], we estimate the standard deviation of Gaussion GPS noise to

be 5 meters.

In the Traffic-Density-Merging algorithm, there are two important parameters – MinPts,

which determines whether a given UC is a “core point”, and λ – which is the threshold to

determine the neighboring relationship between two UCs. MinPts is an integer in the range

[1, 6] and λ is a real number from the interval [0, 1].

There are many different ways of choosing data structure to implement our proposed

traffic speed cluster mining algorithm. In our experiments, we used a simple scheme –

i.e., we built a three dimensional matrix in spatial-temporal coordinates to index UCs on

each road segments, which is similar to the structure shown in Figure 3.2. The respective

dimensions in spatio-temporal coordinates are indexed to UCs that are stored in a key-value

map. While the overall efficiency is not a topic of this work, we note that the structure used

in this experimental setup allows for a fast query processing when inferring the traffic speed

from trained speed clusters.

Estimated Travel Time Query: Our first set of experiments aims at illustrating how

the speed clusters mining in the lane level granularity can provides a more accurate, yet

compact description of the traffic distribution for road networks. Many applications could

benefit from it – e.g., adaptive navigation, route planning and travel time prediction. In this

experiment, we implemented the travel time prediction to demonstrate the advantage of our

proposed method.
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Figure 3.9. Relative error for predicted travel time
The Rome taxi dataset is divided into four folds according to sample time. Each of them

contains GPS points within one week. We used three weeks data for training purpose, and

the remaining one was used for validation.

GPS points in validation trajectories are assigned to corresponding lanes using the lane

labeling process in [123]. Given a validation trajectory Trval = [p1, p2...pn], the traffic

speed for certain GPS points Pi = (xi, yi, ti) can be inferred from the speed profile of the

corresponding speed cluster. Thus, the predicted travel time Tpredict =
∑n−1

1
distance(Pi,Pi+1)
speed(xi,yi,ti)

.

Since the ground true driving time Ttrue = tn − t1, we use relative prediction error e =

abs(Ttrue−Tpredict)
Ttrue

to quantitatively measure the prediction power of the proposed model.

The baseline method we compared with is the agglomerative mining method we proposed

previously [123]. It is a bottom-up clustering method with sweep line styled merging. The

experimental results are shown in Figure 3.9. When the parameter MinPts is 3 and λ equals

0.1, the probabilistic speed profiling with density based merging method reduces prediction

error by more than 20%. Compared with the simple agglomerative method, the new model
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describes the multi-lane traffic speed information with a probabilistic speed profile and is

able to make a more accurate travel time prediction.

Figure 3.10. Percentage of UC reduction when changing parameter

UC Reduction: As described in Section 2.3, we partition the spatio-temporal space into

fine-grained UCs. Since lots of them will share similar speed profiles, it is not necessary

to store every UCs into the database. Therefore, merging is a beneficial operation in the

cluster mining process. We re-iterate that the sweep line styled merging, proposed in [123],

has three possible merging directions for each UC and each direction is processed sequen-

tially. The disadvantage for this merging method is its instability — the merging results

are affected by different merging sequences. The density-based merging algorithm proposed

in this dissertation overcomes this issue. Due to the nature of depth first search within the

cluster expanding process, the density-based merging is independent of merging direction

and merging sequences.
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Figure 3.10 shows the percentage of UC reduction with various parameter choices. The

highest compression ratio reaches more then 96%, while the lowest one is still more than

70% when MinPts is 5 and λ equals 0.1. The larger λ values and smaller MinPts values

(which correspond to lessening the constraints for merging neighboring UCs) will incur higher

compression ratio.

Figure 3.11. Execution time for speed cluster training

Training and Validation Time:In the last experiment that we report, we consider the

respective execution times for the model training and validation. The system for this ex-

periment is designed to run in an offline mode, where the speed clusters are mined from

historical GPS data. As shown in Figure 3.11, the training process fo mining speed clusters

takes relatively long time. We note that the training time is related not only to the size of

the raw data, but also to the level of granularity of the partitioning. The smaller size of UC

(i.e., more granular representation) yields a longer training time.
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Figure 3.12. Execution time for travel time prediction
The main advantage for this offline trained model is that processing queries that depend

on the traffic speed distribution is fast. When we validate the model by calculating predicted

travel time, all queries are finished within a second. We note that this kind of an executional

behavior is suitable for many OLAP kinds of applications.

3.6. Related Work

Lane level positioning, routing and navigation are correlated research areas with high

societal impacts. There are two main categories of related works in this realm. The first

one attempts to directly map-match GPS points to corresponding lanes [25]. This method

usually requires the use of Differential Global Positioning System (DGPS) for data collection

so that the GPS errors are smaller than the usual lane width. However, because of the

high cost, DGPS has not been widely available in consumer grade mobile devices. Other

researchers choose to pursue external calibration through computer visions [111], vehicle-

to-vehicle (V2V) communication or vehicle-to-infrastructure (V2I) communication [4, 26].
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These approaches require additional hardware or infrastructure and cannot be applied in

large scale quickly.

Multiple models have been proposed to answer queries related to GPS uncertainties.

From disk model of location uncertainty (yielding sheared cylinder model in spatio-temporal

space) [102], through beads model [100], to adaptation of the bead model on road net-

works [73]. More recently, an attempt to combine heterogeneous location data sources in

the context of multi-lane road networks, called fused bead model was presented in [124].

A complementary body of related works stems from the literature addressing problems

related to trajectories clustering, for both online and offline settings. Various clustering

algorithms and frameworks have been proposed, including regression [30], partitioning and

grouping [59] and density based clustering [92]. However, most of these works are targeting

the, so called, macroscopic model and focus on large scale pattern mining, which lead to

application like popular region discovery, event detection or route analysis. In addition,

very few of them combine the trajectories clustering techniques with the constraint of road

networks and use it as a tool to analyze the traffic on the lane level granularity.

3.7. Concluding Remarks and Future Works

We proposed a methodology for mining speed clusters in multi-lane road networks, incor-

porating the uncertainty of the moving objects location to capture the GPS errors within the

model. We proposed a basic agglomerative approach, a novel distance function and a variant

of the DBSCAN algorithm for mining multi-lane speed clusters. We used the Rome taxi data

to demonstrate that our proposed method yields both a more compact representation of the

clusters, as well as a more accurate travel time calculation for trajectories.
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There are several extensions to our work. Firstly, we plan to tackle several efficiency-

related aspects – namely, data structures that will enable efficient storage and retrieval of the

elementary UCs. Our next aim is to incorporate a few distinct contexts: (1) we would like to

investigate the impact of changes in the type of the road (i.e., from 4 lanes expressway into a

single lane local street); (2) we believe that the an attribute with a stronger impact may be

the kind of a vehicle (e.g., passenger car vs. trucks); and (3) we plan investigate the impact

of speed/travel-time clustering in the settings of multi-modal transportation. Our longer

term vision is to develop a model that will balance the trade-offs between the precision of

the clustering vs. the cost (both in terms of access as well as execution time), when multiple

data sources can be combined – e.g., roadside sensors and cameras – with the GPS-based

location data.
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CHAPTER 4

Anomalous Traffic Speed Prediction

This Chapter presents the third major aspect of the research work conducted as part of

this dissertation. Specifically, we aim at developing Artificial Neural Networks (ANN) based

approach to predict the occurrence of speed anomalies in geographic area within urban

settings. The main contribution is in identifying a distinct feature that, when incorporated

in the ANN based model, will enable more accurate prediction on a smaller temporal scale.

4.1. Preliminaries

We now present a brief overview of the basic terminology, followed with a more formal

presentation of the problem and introduction of the prediction framework.

Detailed representation of the traffic state in space and time allows a more detailed

analysis of multiple aspects of traffic dynamics. We note that in most practical scenarios,

data are available in the form of aggregated minute by minute data of speed and flow

recorded by stationary detectors. In other words, real traffic data are only available for

a small subset of locations and times, the full traffic state can only be reconstructed by

spatiotemporal interpolation. An example of interpolating the traffic state in-between two

discrete measurements is illustrated in Figure 4.1 (cf. [104]).

In this dissertation, we rely on traffic flow models [11, 37, 107, 109] which, in trans-

portation literature are often categorized along different contexts – e.g., aggregation level,
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Figure 4.1. Traffic state are reconstructed by interpolation
mathematical structure, and conceptual aspects. For example, from the aggregation level

perspective, the transportation literature distinguishes among (cf. [104]):

• Macroscopic models – where traffic flow is specified in an analogous manner to how

physicists would specify the dynamics of liquids or gases in motion, using variables

that capture locally aggregated quantities, e.g., the traffic density (ρ(x, t)), flow

(Q(x, t)), mean speed (V (x, t)), etc.

• Microscopic models – (e.g., car-following models; cellular automata models) which

describe individual “driver-vehicle particles” that collectively dictate the traffic flow.

Microscopic models focus on impact that a reaction of an individual driver (acceler-

ating, braking, lane-changing) can have on the surrounding traffic (and vice versa).

The typical variables capturing the dynamics are individual vehicle positions (xα(t)),

speed (vα(t)), and accelerations (v
′
(t)).
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• Mesoscopic models – which are often a “hybrid” between microscopic and macro-

scopic approaches. In other words, the parameters of a microscopic model may

depend on macroscopic quantities such as traffic density or local speed and speed

variance, and vice-versa: the dynamics of a macroscopic quantity (e.g., the num-

ber of vehicles in a traffic jam) is described in terms of microscopic stochastic rate

equations for in- and out-“flowing” vehicles.

Figure 4.2. Scopes of transportation models

An illustration of relative scope of each of the commonly used models is shown in Fig-

ure 4.2 (cf. [104]). By its nature, the context of this part of our research most closely fits

in-between the macroscopic and mesoscopic model – i.e., we do “expand” the spatial range

of validity of our predictions from road segments to regions1. The data obtained from both

roadside sensors and on-board GPS devices are what enables the study of different aspects

of traffic characterizations (e.g., jams and their propagation). Many times2 one can inter-

changeably use different quantities to describe the traffic state – e.g., flow vs. density (vs.

(average) speed). However, in post-microscopic level, those quantities are typically related

1Defined in more detail in the sequel.
2The specific choice may be depending on the aggregation/granularity level used to model the reality.
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– e.g., one can use Q(x, t) = ρ(x, t) ∗ V (x, t) to specify that (similarly to hydrodynamics)

the traffic flow at a given (location, time) point, is a product of the traffic density and the

(aggregated) speed.

We consider urban settings and we partition a given city into regions using an I×J grid

map (c.f. [125]) based on the longitude and latitude values. We assume that each region

is a square corresponding to a cell in the grid, with a given width w (resp. length l = w).

Given the boundaries of the zone of interest (i.e., city) (latlow, lonlow, lathigh, lonhigh), we

assume row-major ordering for enumerating the regions – i.e., Ri,j = (latlow + i×w, lonlow +

j × w, latlow(i + 1) × w, lonlow(j + 1) × w), where 0 ≤ i ≤ (lathigh − latlow)/ w, and 0 ≤

j ≤ (lonhigh − lonlow)/ w. From a different perspective, a region is a minimal spatial unit

of demand-distribution. Similarly, a road segments is the minimal unit for (expressing the

values for) traffic speed prediction.

We consider (time-stamped) transport requests posed by individual users. Each request,

denoted TRi
, is represented as a triplet [uidi , di, pi] – where uidi is a unique user-identifier; di

is a triplet (xi, yi, ti), corresponding to the location of uidi at which the transport request

was made, along with the respective time-stamp; and pi denotes the provider of the request.

We note that one can distinguish between the time-stamp when an order was placed, e.g.,

with a taxi calling center, and the time-stamp when the actual provider’s vehicle arrived.

Unless otherwise specified, in the rest of this dissertation the value of ti in [uidi , (xi, yi, ti), pi] is

assumed to be the pick-up time, and we also assume that the location did not change between

the request and the pick-up time. In addition, a collection of transportation requests can

have different modes – e.g., driving (individual or service-provider vehicle), biking (individual
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or public-station bike), walking or taking a bus, train, flight, etc... – and the respective data

can be gathered from corresponding (heterogeneous) sources like, for example:

• Activation of Uber App on the smart phone.

• Checking out a bike at a particular service station.

• Paying with a credit card when exiting a garage.

For a given transportation mode, we define Modal mobility demand at time-instant t and

with a past duration window ∆ as a set of all the transport requests for that mode:

MDmode(t,∆) = ∪jTRj
((t−∆) < tj ≤ t)

.

Throughout this work we focus on predictions related to traffic speed within an urban

area, thus, the transportation modes such as train rides, flights and cruises are not considered

and are left for the future work.

Traffic Speed: For a given road segment rj, we define its traffic speed Sji = (s, ti) be the

average traffic flow speed within time interval (ti−1, ti), where s is the speed value and ti is

the time stamp.

As mentioned, traffic speeds are typically averaged over multiple data readings and ag-

gregated up to a common time cadence. In this work, the traffic speed data are collected

from traffic speed detector deployed in major arterial in the New York City [103], with

five-minute time interval as the aggregation unit. For a given region R with spatial extent,

we focus on detecting anomalous events – which is, time-intervals in which an occurrence

of abnormality with respect to the (model-based) values of the variables that describe the
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state of the traffic in that region. More specifically, we combine individually-detected abnor-

malities (i.e., variation in speed/flow for certain number of individual participants) within a

pre-defined time-interval.

In this dissertation, the spatial-temporal entries being tested for anomalous events are

mobility demands MDmode(t,∆) at each time-instant.

Figure 4.3. Region Segmentation

4.1.1. Problem Definition

Let TR be the data series on traffic speed for a certain road segment and D represent

the mobility demand data in nearby regions, where TRj
i denotes the traffic speed for road

segment rj at time ti and Dj
i denotes the mobility demand in region Rj at time ti. In

addition, we extract Demand Feature from mobility demand data (cf. section 5) and denote

it as DF . Assuming the current time tc and prediction length l, the traditional traffic

prediction problem in transportation research has the following setting:
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Short-term Traffic Prediction: Given the historical traffic speed data TR within time

interval [0, tc], develop a traffic prediction model M(·) that output the traffic speed at time

tc+l. TRc+l = M(TR).

When anomalous events (e.g. mobility volcano) occur, the traditional statistical model

will suffer in this scenario since the additional traffic flows being injected into road networks

affect the existing traffic patterns. To solve this challenge, additional features from mobility

demands are proposed to be included into our prediction models.

Short-term Traffic Prediction with anomalies: Given the historical traffic speed

data TR and demand features DF within time interval [0, tc], develop an extended traffic

prediction model EM(·) that output the traffic speed at time tc+l. TRc+l = EM(TR,DF ).

4.1.2. Prediction Framework

In this chapter, we propose an adaptive prediction framework for short term traffic speed

prediction, as illustrated in Figure 4.4. More specifically, we enhance the prediction accuracy

when anomalous events occur, by utilizing mobility demand data from heterogeneous data

sources.

The prediction framework can be separated into two parts, namely, batch training and

online prediction. In the training stage, the road networks are first segmented and correlated

regions are calculated for targeting road segment. After that, the historical mobility demands

data and traffic speed data are preprocessed and stored when anomalous events are detected.

Finally, we extract demand features from mobility demand data and train the anomalous

traffic model with demand features and historical traffic speed. When conducting online

traffic speed prediction, we first detect the anomalous events using real-time mobility demand
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data. If anomalies are detected, we predict the traffic speed with anomalous traffic model.

Otherwise, the traffic speed is predicted with a conventional model.

Figure 4.4. Overview of Prediction Framework

4.2. Anomalous Events Detection

Mobility demands, defined as a set of transport request, are recorded when individual

makes a request with Taxi, Uber or shared bike system. If we visualize every request on the

map with a dot, the painted mobility demands will cover the entire map. An appropriate

aggregation, conversion and mining are essential to extract Demand Features, which can be

applied into prediction models, from raw mobility demand data.

The anomalous events detection plays an important role in our proposed anomalous

traffic speed prediction framework. On the training side, we need to classify anomalous
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events and collect corresponding mobility demand and traffic speed data for training purpose;

on the prediction side, the anomalous events have to be detected in a real-time manner,

which determines when our anomalous traffic speed prediction need to be applied to replace

conventional model.

Recently, an anomaly detection method based on Likelihood Ratio Test (LRT) model

has been proposed to detect anomalous event from different knowledge domains [129, 118].

The anomalies detection can be separated into two parts – learning and classification.

4.2.1. Region Segmentation and Demand Aggregation

Region segmentation is the foundation for demand analysis. There are various segmentation

methods like hierarchy-based segmentation, morphology-based segmentation and grid-based

segmentation [121]. Different segmentation methods have advantages and disadvantages for

different applications and use cases. For example, road-network based segmentation divides

the map into regions representing communities, which is semantically meaningful. However,

mobility demands within one community may be different, and it is hard to control the

granularity of the segmentation. In this work, we propose to adopt grid-based segmentation.

The granularity of segmentation is determined by grid size w×l. We further adopt a mod-

ified Pearson Correlation coefficient to search the correlated region with the targeting road

segment.

We merge Mobility Demand data from heterogeneous data sources with different mobility

mode MDmerge = [MDdriving,MDbiking, ...]. For each region, mobility demand data is aggre-

gated within duration window ∆. Therefore, the Modal mobility demand data is converted
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into a Time Series Mobility Demand data DTi = (count, ti,∆), as shown in Figure 4.5.

count = aggre(MDmerge, ti,∆, Ri)

We choose the time interval of aggregated mobility demand to be aligned with the sam-

pling frequency of traffic speed data that is collected with roadside sensors. Because time

series mobility demand and traffic speed have significant day to day and week to week pat-

tern, we divide time series traffics and mobility demands data into 24 hours as our minimal

training/prediction unit, being denoted as TRd
t and DT dt .

Figure 4.5. Aggregated mobility demand

4.2.2. Learning Demand Distribution

Seasonality is a natural property for mobility demands. Since mobility demands are periodic

from day to day, what we are interested to learn is their long-term common pattern within a
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day. Based on duration window ∆, we divide a day into j time slots and adopt a statistical

distribution to model the demand within each slot, as shown in Figure 4.6. The mobility

demand for time slot j on day d is denoted as DT dj .

Poisson distributions are usually used to model time series data that happens in a com-

pletely haphazard way. In this process, the random variable counts the number of events

that take place in a given time interval, and all events take place independently. For exam-

ple, the number of accidents occur in an hour. However, for mobility demand data that is

often over-dispersed (i.e. variance is much larger than mean), the Gaussian distribution is a

more appropriate choice.

For every time slot j, a Gaussian distribution Nj(µj, σ
2
j ) is adopted to model the occur-

rence of mobility demands. When we learn the distribution from historical data, for each

day, the mobility demand DT dj is regarded as an independent sample. Assuming the total

number of days is N , we are able to estimate the mean and variance of the distribution from

samples.

µj =

∑N
d=1DT

d
j

N

σ2
j =

1

N − 1

N∑
d=1

(DT dj − µj)2

4.2.3. Detection with Statistical Test

In statistics, the LRT is a hypothesis test used to compare the fit of two models. A statistical

model is a parameterized family of probability density function f(x|θ), where θ is a set of
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Figure 4.6. Learn null model for each time slot
parameters come from parameter space Θ. When the statistical model is Gaussian distri-

bution, Θ = {µ, σ2}. We assume a null hypotheses H0 representing our knowledge based –

mobility demand distribution Nj learned from historical data, and an alternative hypotheses

H1 representing our current observation.

H0 = f(x|θ0)

H1 = f(x|θ1)

Each of them is separated fitted to the data with the likelihood function. The likelihood

ratio test is based on the likelihood ratio, which is denoted by Λ. In addition, we use the

logarithm of the likelihood ratio as the test statistics so that the probability distribution of

the test result can be approximated by chi-squared distribution (χ2).
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Λ(x) = −2log
L(x|θ0)

sup{L(x|θ1)}

Where the likelihood function for Nj is defined as:

L(x|θ) = (2πσ2)−1/2exp(−(x− µ)2

2σ2
)

sup denotes the supremum function that finds the the θ1 maximizing L(x|θ1) [129]. The

anomalous level (AL) is defined to be the p-value of the hypothesis test, which is estimated

by:

AL = χ2(Λ, df)

The degree of freedom df = df1−df0 represents the number of differences in terms of free

parameters of the null hypothesis and alternative hypothesis. Given the significance level α,

we will reject the null hypothesis when AL ≥ α, in which case the observed traffic demand

is detected as an anomalous event.

4.3. Demand Feature Extraction

Once anomalous events are detected, we are able to retrieve the mobility demand and

traffic speed data during the occurrence of it. However, we cannot directly fit these data

into prediction model. The critical issues are the time shift and misalignment. As we

discussed in section 3, there is a time delay between mobility demand and traffic speed.

Furthermore, the time delay for different correlated regions are misaligned to each other for

certain road segment. Therefore, we need an accurate time shift to align mobility demand
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with traffic speed. Given a time series mobility demand data DT dn within time interval (0, n)

and the corresponding traffic speed data TRd
m, our task is to find an optimized point-to-point

matching DT dl that can minimize the overall distance. We also denote a time shift o = l−m,

where l is the time index of matched series and m is the original time index.

4.3.1. Demand Data Preprocessing

In time series analysis, Dynamic Time Warping (DTW) is a famous algorithm for measuring

similarity between two temporal sequences. Inspired by DTW, we propose a Demand-DTW

algorithm to find the optimized matching sub-sequence from mobility demand to traffic

speed. However, there are two-step data preprocessing needed before Demand-DTW.

The first step is to transform the mobility demand data so that it is positively correlated

with traffic speeds. In nature, mobility demand and traffic speeds are negatively correlated

(i.e. more mobility demand will incur lower traffic speeds). However, the assumption in

DTW is that, two time series should be positively correlated. Therefore, we define Demand

Feature DF d
l = max(DT dl )−DT dl and use it as the time series being matched.

The second step is data normalization. Since mobility demand data is in the range of

few hundreds while traffic speed is usually less than 100 miles per hour, in traditional DTW

algorithm, many points of demand data would be matched to the point of traffic speed with

the maximum value. Therefore, we first apply linear projection and normalize both mobility

demand data and traffic speed data into the range [0, 1].
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4.3.2. Demand-DTW

Instead of calculating the global distance, we are more interested in the appropriate matching

sequence and the corresponding time shift. Compared with traditional DTW problem, our

data has the following properties:

a) Demand feature lead traffic speed data. Therefore, for each point of DF d
l , we only need

to consider the matching candidates with later time stamp.

b) The lengths of two time series data are not the same. Since the time shift is unknown

before Demand-DTW, we usually record longer traffic speed data, so that every point of

demand feature can find its optimized matching pair. When one point has multiple possible

matching candidates, we choose the closest one.

c) The traditional DTW does not limit the length of connection between two points in its

distance function. It is possible that a demand feature point on 9:00AM is matched to

a traffic speed point on 3:00PM. One modified distance function with a penalty term is

adapted [130].

Dis(DT dj , TR
d
k) =


|DT dj − TRd

k|, |j − k|< T∆

|DT d
j −TRd

k|
β|j−k| , |j − k|≥ T∆

β is a constant satisfying 0 < β < 1 and T∆ is the threshold for time difference penalty.

When the time difference between two points are larger than threshold, a penalty is applied.

Taking the above three properties into consideration, our Demand-DTW algorithm is

shown in Algorithm 6. There are two parts in the algorithm. Firstly, a distance matrix is

built with n row and m col. Each cell with index [i, j] represents the minimized matching
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distance for demand feature DF0..i and traffic speed TR0..j. We fill the distance matrix using

dynamic programming with transfer function cell[i, j] = cost + min(cell[i − 1, j], cell[i, j −

1], cell[i − 1, j − 1]). At the same time, we also keep a record of the parent for each cell.

In the second part, we find the optimized matching sequence from the distance matrix and

calculate the average time shift. We start from the last cell [n,m] and backtrack following

the trace of parent.

Algorithm 6 Demand-DTW (DF0..n, TR0..m)

1: DTW[n+1,m+1] . Matrix for DTW
2: for i = 0 to n do
3: DTW[i,0].value = Inf
4: end for
5: for j = 0 to m do
6: DTW[0,j].value = 0
7: end for
8: for i = 1 to n do
9: for j = i to m do

10: cost = Dis(DFi, TRj)
11: DTW[i,j].value = cost + min(DTW[i-1,j].value, DTW[i,j-1].value, DTW[i-1,j-

1].value)
12: DTW[i,j].prev = min(DTW[i-1,j], DTW[i,j-1], DTW[i-1,j-1])
13: end for
14: end for
15: DF = n . Index for current demand
16: TR = m . Index for current traffic
17: time shift = 0
18: while DF >0 do
19: if DTW[DF,TR].prev = DTW[DF,TR-1] then
20: TR -= 1
21: Continue
22: end if
23: time shift += TR - DF
24: DF = DTW[DF,TR].prev.i
25: TR = DTW[DF,TR].prev.j
26: end while
27: Return time shift/n
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An average time shift o is calculated with all detected anomalous events. After that, the

demand features DF d
t are shifted to be DF d

t+o, and become input to the prediction model.

4.4. Anomalous Traffic Prediction Model

Given a targeting road segment, with the knowledge of correlated region, anomalous

event detection and demand features, we are able to train an anomalous traffic model and

use it to predict traffic speed when anomalous events occur.

In the early stage of the development of short-term traffic prediction, most of the re-

searches employed statistical approaches to predict traffic at a single point. For example,

Autoregressive integrated moving average (ARIMA) is a classical time series model to pre-

dict future points in the time series data. However, its applicability is limited by model’s

linearity and stationarity of data. Recently, data driven approaches raise more and more

attentions in the transportation research communities. The Artificial Neural Networks, as

one of the AI-based method, outperform traditional statistical models with large flexibility

in terms of input variables [108].

4.4.1. Artificial Neural Networks with Demand Features

We adopt the multilayer feed-forward perceptron (MLP) as our basic prediction model. For

each region, the input features are the combination of historical traffic speed and demand

features. In the temporal dimension, we set p be the order of lagged operation. Therefore, for

traffic speed TR with current time stamp c, the input features are (TRc, TRc−1, .., TRc−p).

In addition, for each correlated region Ri, since there is a corresponding time shift oi mined
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through Demand-DTW, the input demand features will be (FDc+o, FDc+o−1, .., FDc+o−p).

The Demand-MLP model is formulated as:

TRc+t = EM(TR, FD) =
H∑
i=1

Wif(

p∑
j=0

wihTRc−j

+

p∑
j=0

wihDFc+o−j + ε)

where f(·) is the activation function; Wi and wih are weights of the connection or synap-

tic (i.e.,coefficient) estimated through training; and ε is learned constant. Its topological

structure is shown in Figure 4.7.

Figure 4.7. MLP with demand features
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The number of neurals in the hidden layer can be systematically optimized with genetic

algorithm [109]. To train the network, we minimize the residuals
∑

(T̂R−TR)2 with gradient

descent and backpropagation.

4.4.2. Training and Prediction

The training of Demand-MLP model is executed in batch mode. It requires the combina-

tion of anomalous events detection, Demand-DTW and Demand-MLP training. Firstly, we

process the training data with anomalous events detection. Once an anomalous event is

detected on time t, a continuous time series data within time interval (t, t+κ) from demand

feature and traffic speed will be store. κ represent the time window for selecting training

data, κ > o. The reason we need to select additional data when anomalies are detected is

that, the Demand-DTW requires points in the future to match with lagged time series. After

calculating the average time shift through Demand-DTW, we shift the demand features and

use them, together with traffic speeds, to train the Demand-MLP model.

The prediction is a real time process, where we have the current traffic speed data and

mobility demand data. Given a targeting road segment, one MLP model is trained for every

correlated region. The final prediction result is the combination of the output from multiple

models. The decision making mechanism is shown in Figure 4.8.

If there is no anomalies according to mobility demand, the traditional traffic speed pre-

diction model make a prediction based on historical traffic speeds. When an anomaly is

detected in certain region, the corresponding model is triggered. The mobility demand data

are converted and time-shifted into demand features, which act as input with current traffic

speed into the Demand-MLP model. The predicted traffic speed will be determined by the
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Figure 4.8. Different model is applied in different scenario
model representing the region with anomalous events. When multiple anomalies are detected

simultaneously, the prediction result will be the average of output value from all triggered

models.

4.5. Experiment

4.5.1. Evaluation Setup

Datasets: The datasets being used in this experiment are real-life traffic speed and taxi

trip data from New York City. The traffic speed data are collected by the City of New York

Department of Transportation [103] from April 2015 to June 2016. It records the real-time
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traffic speeds monitored by road-side sensors being deployed on 150 highways in the New

York City. The traffic speeds are sampled every five minutes.

Taxi trip data are published by New York City Taxi and Limousine Commission [98],

which consist of fields capturing pick-up and drop-off dates/time, trip distance, fare and

other information. The trip records include the services provided by yellow and green taxi

form April 2015 to June 2016. The total size of uncompressed data is more than 40 GB.

New York Yankees are an american professional baseball team based in the New York city.

Their home games, which held in the Yankee Stadium (cf. Figure 4.3), attract attendance

of over 50000 fans. The home games in baseball season 2015 and season 2016 are irregularly

scheduled in the afternoons and nights. When a particular game ends, the departure of large

groups of people results in a surge of mobility demand, which is the anomalous event that

can be detected.

Our experiment focus on a road segment near Yankee Stadium. Four nearby correlated

regions are identified. We use the traffic speed and taxi trip data in game season 2015, which

spans from April 2015 to October 2015 as our training datasets, and use the data from April

2016 to June 2016, which belongs to game season 2016 as validation datasets.

Baseline comparison: When anomalous events occur, we compare our Demand-MLP

model with traditional ANN based traffic prediction model that is trained with normal

historical traffic speeds with the same data size as Demand-MLP. It has been demonstrated

that, ANN based traffic prediction model outperforms statistical model like Auto-Regressive

Integrated Moving Average (ARIMA) or Vector Auto-Regressive (VAR) [108, 125].
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Evaluation parameter: The prediction length range from 5 mins to 30 mins. The order

of lagged operation p is set to be 6. The significance level α of the LRT is chosen to be 90%.

The New York City is partitioned using grid with width 1000m.

Evaluation criteria: We adopt the commonly used measurement metric Root Mean Square

Error (RMSE) to measure our approaches.

RMSE =

√√√√1

z

i=z∑
i=1

(TRi − T̂Ri)2

where T̂R and TR are the predicted value and ground truth, and z is the number of all

predicted values.

4.5.2. Traffic Speed Prediction when Anomalous Events Occur

Figure 4.9. RMS with different prediction length

We train the Demand-MLP model with traffic speed and demand feature when anomalous

mobility demand is detected with LRT, using data from April 2015 to October 2015. The
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ANN model is trained with traffic speed data from April 2015 to October 2015, with the same

data size as anomalous traffic data being used for training Demand-MLP. We predict the

traffic speed when Demand-MLP and ANN model when anomalous events occur from April

2016 to June 2016. Figure 4.9 shows the RMSE for different prediction length using Demand-

MLP and tradition ANN model. When predicting traffic speeds under anomalous events,

the Demand-MLP outperform traditional ANN model and reduce around 30% RMSE.

Figure 4.10. Prediction of traffic speed during the event of baseball game

Figure 4.10 is a visualization for the traffic speed for a night from 19:00 to 3:00. The

baseball game started from 19:15 and ended around 22:30. There is a significant traffic speed

drop near 23:00 as shown in the figure, which corresponding to the end of the baseball game.

The Demand-MLP model is able to generate a prediction that better fit the ground truth.



121

Figure 4.11. Prediction error with multiple regions

Figure 4.12. Prediction error with different size of training data
4.5.3. Prediction Accuracy with Multiple Regions

As shown in Figure 4.11, four regions [RA, RB, RC , RD] are correlated with targeting road

segment when anomalies occur. Different kinds of anomalous events happen in different

regions at different times. When we incorporate more related regions into our prediction
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framework, more anomalous events are detected and our prediction framework will further

reduce the amount of prediction errors, compared with cases when a single ANN model is

used for all traffic scenarios. We also found in our experiment that, most anomalous events

being detected in different regions are not overlapping with other anomalies.

Figure 4.12 demonstrate the effect of the size of training data. When we use larger

datasets to train the Demand-MLP model, the model is able to generate a more accurate

prediction.

4.6. Related Work

One way of characterizing the traffic prediction is along two broad directions: the long-

term and short-term traffic prediction. Long term traffic prediction aims to model the

physical process that governs the evolution of traffic [130]. These models can be (and are

often) used for urban planning.

Short-term traffic prediction attempts to predict day-to-day and hour-to-hour status of

traffic. According to the types of prediction models, there are three directions of short-term

traffic predictions, namely, statistical approaches, machine learning approaches and other

hybrid methods [110].

Furthermore, the studies of short-term traffic prediction can be categorized in to two

types: one only considers the traffic data (e.g., historical traffic data collected by inductive

loop sensor), and the other takes additional data into consideration (e.g., weather context).

For traffic prediction using traffic sensing data, a great many learning and inference algo-

rithms have been proposed, including linear regression, univariate and multivariate state-

space methods (ARIMA), neural networks, k-nearest neighbors, Kalman filtering and many
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others. For traffic prediction assisted by additional information, two traditionally considered

classes of information are weather information and holidays. Two recent work reports using

multisource data related to traffic (including taxicabs, buses, trucks, subway, cellular data

and building occupancy data) to predict traffic status [127, 130].

Anomaly detection refers to the problem of finding patterns in data that do not conform to

expected behavior. Detecting outliers or anomalies in data has been studied in the statistics

community as early as the 19th century [12]. Over time, a variety of anomaly detection

techniques have been developed in several research communities. These techniques include

classification, clustering, nearest neighbor, statistical and information theory. In the spatial-

temporal data mining community, a statistical approach based on likelihood ratio test was

proposed recently [118, 129].

4.7. Concluding Remarks and Future Works

In this chapter, we proposed a demand feature and a prediction framework that enables

a more accuracy short-term prediction. Demand feature are extracted from user’s trans-

port request. An ANN based prediction model and prediction framework are proposed to

incorporate demand feature with traffic speed information. A real-life traffic speed data and

taxi request data for the city of New York is collected and used into the evaluation. Our

experiments demonstrate that, the Demand-MLP model with demand feature yield a more

accurate short-term traffic prediction, under the occurrence of anomalous events.

There are several possible extensions to our work. Firstly, we would like to investigate

the possibility of application of multi-layer neural network/deep learning into our prediction

framework. The reason we propose to train a separate MLP model for each region is that,
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the timings for anomalous events occur in different regions vary. Mixing demand feature

under anomalous events with those feature in usual case would reduce the overall learning

ability of ANN. A deep network with hierarchical structure maybe the solution for that.

Another possible avenue is to consider the possibility of merging two or more regions and

their corresponding prediction models. An large scale anomalous events may affect more that

one regions. If two regions are similar enough, we may be able to merge them to simplify

our model.
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CHAPTER 5

Concluding Remarks and Future Works

In this dissertation, we tackled certain aspects from the broad field of spatio-temporal

data management and mining. Specifically, we addressed three categories of problems:

(1) Merging heterogeneous location data to reduce GPS uncertainties.

(2) Mining speed clusters in multi-lane setting.

(3) Predicting of anomalous traffic speed with mobility demand.

We conducted multiple experimental evaluations with real datasets, as well as synthetic

ones. Regarding the three main aspects of this dissertation, experimental observations

demonstrated that:

• Integrating/fusing the data from both sources narrows the possible whereabouts

when compared to each individual location data source.

• Speed clusters mining under multi-lane setting yield a compact while accurate data

representation for traffic speed, which in turn lead to a more accurate travel time

estimation.

• Prediction model incorporating people’s mobility demand achieve a more accurate

short-term traffic speed prediction.

As a spatial-temporal data mining research in the application of transportation related

tasks, our works contribute both transportation research community, as well as computer

science community. We introduce data driven approaches with machine learning techniques
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to traditional transportation tasks, which used is dominated by statistical model. The results

of our research will benefit multiple kinds of application with high societal relevance, like

route planning, travel time estimation, the development of intelligent transportation system

and traffic management schemes that are more dynamics-aware.

In each of the previous Chapters, we indicated directions for future works aligned with

the respective topics addressed therein. However, there are some broader, more visionary

application domains where we believe our results could be extended/augmented, both in

terms of adapting the contexts as well as tackling the novel challenges.

One broad category is the efficient (re)routing of autonomous cars [34]. The partic-

ular challenge here is how to efficiently incorporate the updates of the traffic-changes in

the different paradigms of computing and communication – i.e., coupling cloud and V2V

communication [3].

Another challenging research area is maritime data. Efficiently mining and clustering

vessel trajectories to help optimize ship safety and operation will lead to a huge impact on

global economy and our everyday life [16]. Due to the volume, velocity and heterogeneity

of maritime data, an integrated maritime information management system requires hetero-

geneous data merging, events recognition/detection and trajectories clustering. The tasks

would be even more complex to combine multiple modalities of transportation including

aviation data, maritime data and ground transportation data.



127

References

[1] Autonomous cars can only understand the real world through a map (2016).

Https://goo.gl/Q7U1bw

[2] What to expect on new years (2017). Https://goo.gl/5dsJhV

[3] Abuelsamid, S.: Tesla autopilot fatality shows why lidar and v2v will be necessary for

autonomous cars. Forbes (2016)

[4] Alam, N., Balaei, A.T., Dempster, A.G.: An instantaneous lane-level positioning using

dsrc carrier frequency offset. Intelligent Transportation Systems, IEEE Transactions

on 13(4), 1566–1575 (2012)

[5] Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data.

Journal of Intelligent Information Systems 27(3), 187–190 (2006)

[6] Baskar, L.D., De Schutter, B., Hellendoorn, J., Papp, Z.: Traffic control and intelligent

vehicle highway systems: a survey. IET Intelligent Transport Systems 5(1), 38–52

(2011)

[7] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and

robust access method for points and rectangles, vol. 19. ACM (1990)



128

[8] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAW-

DAD dataset roma/taxi (v. 2014-07-17). Downloaded from http://crawdad.org/

roma/taxi/20140717 (2014). DOI 10.15783/C7QC7M

[9] Brugere, I., Gunturi, V.M.V., Shekhar, S.: Modeling and analysis of spatiotemporal

social networks. In: Encyclopedia of Social Network Analysis and Mining, pp. 950–960

(2014)

[10] Cao, Q., Yan, T., Stankovic, J., Abdelzaher, T.: Analysis of target detection perfor-

mance for wireless sensor networks. In: DCOSS, pp. 276–292 (2005)

[11] Castro, P.S., Zhang, D., Li, S.: Urban traffic modelling and prediction using large

scale taxi gps traces. In: International Conference on Pervasive Computing, pp. 57–72.

Springer (2012)

[12] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM comput-

ing surveys (CSUR) 41(3), 15 (2009)

[13] Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map match-
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APPENDIX A

Significant Times in Instantaneous Possible Location Query

In section 4 we analyze the boundary of the possible locations at a given time instant

under the FB model. The detailed significant times calculation will be presented here. Let

dmin and dmax denote the shortest and longest distance from L1 to any point P (ts1, ε) ∈ P1P2.

tl1i =
t1 + ts

2
− dmax

2vmax

tlAi =
t1 + ts

2
− dmin

2vmax

td1
i =

t1 + ts
2

+
dmin

2vmax

tdAi =
t1 + ts

2
+

dmax
2vmax
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APPENDIX B

Enter/Exit Time Calculation for Range Query

The general case for time t ∈ [ti, ti+1] being a critical point occurs when the intersection of

the uncertain region at t with a query rectangle is a single point. In the time interval [ti, ts],

the single-point-intersection between disk centered at the first GPS point and query region

stands for the entering moment. Similarly, in the time interval [ts, ti+1], the single-point-

intersection represents exiting moment. Since the query region is represented as polygon in

the (X, Y ) plane, each edge of the polygon is defined as a segment of 2D line y = ax+ b.

The entry boundary of FB is:

(x− xi)2 + (y − yi)2 = (t− ti)2v2
max

Substituting for y for the equation of the line, we have:

(x− xi)2 + (ax+ b− yi)2 = (t− ti)2v2
max

This yields an equation in x and t:

A ∗ x2 + x ∗ (B + C ∗ t) +D ∗ t2 + E = 0

Where A,B,C,D,E are constant. Solving for x, as a function of t, we have:
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x1,2 =
−(B + C ∗ t)±

√
(B + C ∗ t)2 − 4 ∗ A ∗ (D ∗ t2 + E)

2 ∗ A

To be noted that, we need to check the solution for x against the boundaries of the

respect edge of the query region. To find the time for critical point, we set the discriminant

to be zero:

√
(B + C ∗ t)2 − 4 ∗ A ∗ (D ∗ t2 + E) = 0

The real root tin is the time instant when the uncertain trajectory start to enter the

query prism.

In the time interval [ts, ti+1], we can use the similar method to find the exiting time tout.
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