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ABSTRACT

Pushforwards of Measures on Real Varieties under Maps with Rational Singularities

Andrew Reiser

Let X, Y be algebraic varieties defined over R. Assume Y is smooth and X is Goren-

stein. Suppose ϕ : X → Y is a flat R-morphism such that all the fibers have rational

singularities. We show that the pushforward of any smooth, compactly supported measure

on X has a continuous density with respect to any smooth measure with non-vanishing

density on Y . This extends a result of Aizenbud and Avni from the p-adic case to the

archimedean case.
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CHAPTER 1

Introduction

1.1. First Properties of Measures on R-varieties

Definition 1.1.1. Let X, Y be measurable spaces, ϕ : X → Y a measurable function,

and µ a measure on X. The pushforward of µ by ϕ is denoted ϕ∗µ and is defined by

(ϕ∗µ)(S) = µ(ϕ−1(S)) for every S ⊂ Y .

We are specifically interested in the properties of the pushforward in the case that

X, Y are algebraic varieties over R equipped with sufficiently nice measures, and ϕ is an

R-morphism of varieties.

Definition 1.1.2. Suppose X is a Borel space and µ is a measure on X. If ν is

another measure on X and for any Borel subset A ⊂ X we have µ(A) = 0 ⇒ ν(A) = 0,

then ν is said to be absolutely continuous with respect to µ.

Definition 1.1.3. Let X be a measurable space and let µ, ν be measures on X. If

ν is absolutely continuous with respect to µ, for any set A ⊂ X of finite µ-measure, the

Radon-Nykodym Theorem says that there is fA ∈ L1(A, µ) such that ν(B) =
∫
B
fAdµ for

all measurable subsets B ⊂ A. Assuming X can be written as a union of sets of finite

µ-measure, the functions fA associated to each set patch together to a globally-defined

function f which belongs to L1(U) for each set U ∈ X so that µ(U) < ∞, and we call

this f the density of ν with respect to µ.
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We are interested in measures which locally are absolutely continuous with respect

to measures coming from algebraic differential forms, where the density function is well-

behaved. The following definition shows how to construct a measure from a differential

form.

Definition 1.1.4. Suppose X is a smooth irreducible algebraic variety over R and

that ω is a rational top differential form on X. We define a measure |ω| on X(R) as

follows. Given a relatively-compact open set U ⊂ X(R) and an analytic diffeomorphism

Ψ between U and an open subset W ⊂ Rn, we may write

Ψ∗ω = gdx1 ∧ · · · ∧ dxn

for some g : W → R, and define

|ω|(U) =

∫
W

|g|dλ

where |g| is the usual absolute value on R and λ is the standard Lebesgue measure

on Rn. By the change of variables formula, this definition is independent of the diffeo-

morphism Ψ. There is a unique extension of |ω| to a (possibly infinite) Borel measure on

X(R), which we also denote |ω|.

Note that we may assume that X has a smooth real point, as otherwise X(R) = ∅

and there is nothing to do here.

The following lemma describes some first properties of measures coming from algebraic

differential forms.
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Lemma 1.1.5. Suppose X is a smooth, irreducible R-variety and ω1, ω2 are two ra-

tional top forms on X which are not identically zero.

• If ω1 is regular, |ω1| assigns finite values to compact sets A ⊂ X(R).

• |ω1| and |ω2| are absolutely continuous with respect to each other.

• If both ω1, ω2 are regular and ω1 is nowhere-vanishing, the density of |ω2| with

respect to |ω1| is a continous function on X(R).

• If ω1 has a pole at x ∈ X(R), then |ω1|(A) =∞ for every open set A containing

x.

Some measures on the real points of algebraic varieties which are locally absolutely

continuous with respect to measures coming from differential forms are of special interest

to us.

Definition 1.1.6. Suppose X is a smooth, irreducible R-variety and µ is a measure

on X(R). We say µ is locally absolutely continuous with respect to algebraic measures

at x or is locally (AC) at a point x ∈ X(R) if there exists a Zariski-open neighborhood

U ⊂ X containing x together with a choice of nowhere-vanishing section of the line bundle

of top differential forms ω ∈ ΩX(U) such that when considered as measures on U(R), µ

is absolutely continuous with respect to |ω|.

Definition 1.1.7. Suppose X is a smooth, irreducible R-variety and µ is a measure

on X(R). We say µ is locally of continuous density or is locally (CD) at a point x ∈ X(R)

if there exists a Zariski-open neighborhood U ⊂ X containing x together with a choice

of nowhere-vanishing section of the line bundle of top differential forms ω ∈ ΩX(U) such
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that when considered as measures on U(R), µ is absolutely continuous with respect to |ω|

and the density of µ with respect to |ω| may be chosen to be a continuous function.

We say µ has continuous density or is (CD) if µ is locally (CD) at every point x ∈ X(R).

Every locally (CD) measure is also locally (AC), and if we have an (AC) measure µ

we wish to show is (CD), it suffices to show that µ is locally of continuous density at each

point.

Definition 1.1.8. We call a measure µ on a measurable space X compactly supported

if and only if there exists a compact K ⊂ X such that for all measurable A ⊂ X,

A ∩ (X \K) = ∅ implies that µ(A) = 0.

Definition 1.1.9. We call a (CD) measure which is also compactly supported a

(CSCD) measure.

We are interested in finding conditions on a map ϕ : X → Y between two smooth

R-varieties such that ϕ∗m has continuous density for any (CSCD) measure m on X(R).

It is sufficient for ϕ to be a smooth map (see Theorem 2.0.3), a flat map with all its

fibers smooth. We show that this condition may be relaxed in the following sense: it is

enough to let the map be flat with all its fibers having rational singularities (see B.3.1 for

a definition of rational singularities).

Definition 1.1.10. Let X, Y be varieties over a field k of characteristic zero, or

complex-analytic spaces. Let ϕ : X → Y be a morphism. We say ϕ is (FRS) if ϕ is flat

and for all y ∈ Y (k), the fiber X ×Y y is reduced with rational singularities.

Our main theorem is the following:



12

Theorem 1.1.11. Let X, Y be smooth, irreducible varieties over R and ϕ : X → Y be

an R-morphism. Assume that ϕ is (FRS). The the pushforward of every (CSCD) measure

is again a (CSCD) measure.

We prove a stronger version of this theorem:

Theorem 1.1.12. Let X and Y be irreducible varieties over R and ϕ : X → Y be an

R-morphism. Assume X is Gorenstein and Y is smooth. Assume that ϕ is (FRS). The

the pushforward of every (CSCD) measure is again a (CSCD) measure.

A p-adic analogue of this theorem appeared in [1]. In proving Theorem 1.1.11, the

strategy is similar to the p-adic case but with a few detours. After several reductions,

the density function of the pushforward will be shown to be constructible (in this case,

log-subanalytic). From there, the problem will be reduced to the case of a map to a

one-dimensional target, and that case will be analyzed.

1.2. Conventions

Unless otherwise stated, the following conventions will be obeyed throughout this

work:

All schemes we consider are finite type over the base field.

An algebraic variety is a synonym for a reduced scheme.

A morphism of algebraic varieties or schemes means a morphism over the base field.

The smooth locus of an algebraic variety X will be denoted by Xsm.

The smooth locus of a morphism of schemes ϕ : X → Y will be denoted by XS.

When referring to a point, we mean a closed point over the base field.
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For a variety X defined over R or C, we will often consider the set of R or C points

together with the analytic topology, and we use X(R) or X(C) to denote these topological

spaces.

When referring to geometric spaces, we will use Roman letters for schemes and script

letters for analytic spaces.

For an algebraic or analytic variety, we denote the dualizing complex Ω•, and in the

case that this complex is concentrated in a single degree, we use Ω for the dualizing sheaf.

We identify the restriction of the dualizing sheaf to the smooth part of the variety with

top differential forms on the smooth locus.

If A = (a1, · · · , an) is a sequence of integers or real numbers, we write A > c (respec-

tively, A ≥ c) if each ai > c (respectively ai ≥ c).
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CHAPTER 2

General properties of the pushforward

Let ϕ : X → Y be a smooth map of smooth k-varieties. Denote by ΩX/Y the sheaf

of relative top differential forms on X with respect to Y . Since ϕ is smooth, ΩX/Y is an

invertible sheaf on X and there is an isomorphism ΩX → ϕ∗ΩY ⊗ ΩX/Y such that for

every field extension K ⊃ k and every point x ∈ X(K), the isomorphism of fibers

∧dimXT ∗xX →
(
∧dimY T ∗ϕ(x)Y

)
⊗
(
∧dimϕ−1(ϕ(x))T ∗xϕ

−1(ϕ(x))
)

comes from the short exact sequence of vector spaces

0→ Txϕ
−1(ϕ(x))→ TxX

dϕ→ Tϕ(x)Y → 0.

For a top form ωX ∈ Γ(X,ΩX) and a nowhere-vanishing top form ωY ∈ Γ(Y,ΩY ),

there exists a unique element η ∈ Γ(X,ΩX/Y ) such the the image of η ⊗ ϕ∗ωY under the

isomorphism ΩX/Y ⊗ ϕ∗ΩY → ΩX is ωX .

Definition 2.0.1. For the rest of the paper, we will refer to the η defined above as

ωX
ϕ∗ωY

. In cases where ϕ : X → Y is not smooth, we shall carry out the construction on

the smooth locus of ϕ.

Next, we discuss how to extend the concept of a locally (CD) measure (definition

1.1.4) to a variety with mild singularities.
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Definition 2.0.2. Suppose X is an irreducible Gorenstein algebraic variety defined

over R with dualizing line bundle ΩX . For ω ∈ ΩX(X), we define a measure |ω| on X(R)

as follows. Recall that ΩX |Xsm is isomorphic to the line bundle of top differential forms

on Xsm. Given a relatively-compact open set U ⊂ X(R) and an analytic diffeomorphism

Ψ between U ∩Xsm(R) and an open subset W ⊂ Rn, we may write

Ψ∗ω = gdx1 ∧ · · · ∧ dxn

for some g : W → R, and define

|ω|(U) =

∫
W

|g|dλ

where |g| is the usual absolute value on R and λ is the standard Lebesgue measure on Rn.

By the change of variables formula, this definition is independent of the diffeomorphism

Ψ. There is a unique extension of |w| to a (possibly infinite) Borel measure on X(R),

which we also denote |ω|.

With this modification, each of Definitions 1.1.6, 1.1.7, 1.1.8 and 1.1.9 generalize in a

natural way to the case of X Gorenstein, so we may speak of (AC), (CD), and (CSCD)

measures on Gorenstein varieties.

Theorem 2.0.3. Let ϕ : X → Y be a smooth map of smooth varieties over R.

(1) The pushfoward of a compactly supported measure with continuous density is

compactly supported with continuous density.

(2) Let ωX , ωY be top differential forms on X, Y respectively. Assume ωY is nowhere

vanishing and f is a compactly supported continuous function on X(R). The
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measure ϕ∗(f |ωX |) is absolutely continuous with respect to |ωY | and its density

at a point y ∈ Y (R) is equal to
∫
ϕ−1(y)(R)

f
∣∣∣ ωX
ϕ∗ωY
|ϕ−1(y)

∣∣∣

Proof. First, we prove that the pushforward of a compactly supported measure is

compactly supported. Suppose µ is a compactly-supported measure on X(R). If K ⊂

X(R) is a compact set so that for all measurable A ⊂ X(R) \K, we have µ(A) = 0, then

ϕ(K) ⊂ Y (R) is a compact set so that for all measurable B ⊂ Y (R) \ ϕ(K), we have

(ϕ∗µ)(B) = 0.

To prove that the pushforwards of a (CSCD) measure is again (CSCD), we prove the

formula for the density first. In order to prove the second claim, we may use a partition

of unity and an analytic change of coordinates to reduce to the case where X and Y

are open subsets of An
R and Am

R , respectively, and the morphism is linear projection from

An
R → Am

R , where Am
R ⊂ An

R is embedded as the subspace of the final m coordinates.

Let A ⊂ Y (R) be a measurable subset. Let 1S be the characteristic function of a subset

S. We may fix functions Ψ,Ξ with Ξ is nonvanishing on Y so that ωX = Ψdx1 · · · dxn,

ωY = Ξdxn−m+1 · · · dxn and ωX
ϕ∗ωY

= Ψ
Ξ
dx1 · · · dxn−m. Rewrite

ϕ∗(f |ωX |)(A) = (f |ωX |)(ϕ−1(A)) =

∫
X(R)

1ϕ−1(A)f |ωX | =
∫
Rn

1X(R)∩Rn−m×(A)f |Ψ|dx1 · · · dxn.

By an application of Fubini’s Theorem, this may be rewritten as

∫
Rm

(∫
Rn−m

1X∩(A×Rn−m)f

∣∣∣∣ΨΞ
∣∣∣∣ dx1 · · · dxn−m

)
|Ξ|dxn−m+1 · · · dxn,
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which exhibits ϕ∗µ as absolutely continuous with respect to |ωY | and also gives the for-

mula for the density. This formula, along with the observation that f |Ψ
Ξ
| is uniformly

continuous, immediately implies that ϕ∗µ is (CD).

�

Corollary 2.0.3.1. Let ϕ : X → Y be a locally dominant map between smooth R-

varieties and denote the smooth locus of ϕ by XS.

(1) If mX is a (CSCD) measure on X(R), then ϕ∗mX is a compactly supported

measure on Y which is (AC).

(2) In particular, if mX = f |ωX | for a top differential form ωX ∈ ΩX(X) and contin-

uous, compactly supported function f : X(R)→ R and ωY is a nowhere vanishing

top differential form on Y , ϕ∗mX is absolutely continuous with respect to |ωY |

and has density given by

y 7→
∫

(XS∩ϕ−1(y))(R)

f

∣∣∣∣ ωXϕ∗ωY
|XS∩ϕ−1(y)

∣∣∣∣
as a function from Y (R) to R≥0 ∪ {∞}.

Proof. Since the claims above are local on Y , we may assume that Y is affine. We

may cover X by affine opens Ui and construct a partition of unity on X(R) subordinate to

the cover Ui(R). With this partition of unity, we may assume that X is affine and choose

an embedding of it in to AN for some N . Let X(R)s,n be the set of points of XS(R) such

that their distance in the natural metric on AN(R) to the set (X \XS)(R) is at least 1
n
,

and let gn be a C∞ function supported on X(R)s,n+1 which takes the value 1 on X(R)s,n

and satisfies 0 ≤ gn ≤ 1 everywhere.
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Since gnmX satisfies the assumptions of Theorem 2.0.3 on XS(R), we may apply The-

orem 2.0.3 to see that ϕ∗(gnmX) is absolutely continuous with respect to mY , so it has

a density, denoted hn. Since hn is nondecreasing in n and
∫
Y
hnmY ≤ mX(X(R)) < ∞,

we have by Lebesgue’s Monotone Convergence Theorem that h := limn→∞ hn exists

and belongs to L1(Y (R),mY ). Since ϕ is locally dominant and mX is (CD), we have

that ϕ∗(mX) = (ϕ|XS)∗(mX |XS). After integrating against continuous functions and

another application of the Monotone Convergence Theorem, we see that ϕ∗(mX) =

(ϕ|XS)∗(mX |XS) = hmY , and the latter is absolutely continuous with respect to mY .

The statement on the integral formula representation for the density is clear from

Theorem 2.0.3.

�

Next, there are some lemmas about how (CD) measures and their pushforward interact

with rational singularities. For a reminder on the definition and equivalent characteriza-

tions of rational singularities, see Section A.3 in Appendix A, especially Definition B.3.1

and Theorems B.3.2 and B.3.3.

Lemma 2.0.4. Let V ⊂ An be an R-variety with rational singularities. Let U ⊂ V

be an open smooth subset such that V \ U has codimension two in V . Additionally, let

ω be a regular top differential form on U . Then for any compact subset K ⊂ An(R), the

integral
∫
U(R)∩K |ω| is finite.

Proof. Take a strong resolution of singularities π : Ṽ → V . By Theorem B.3.2 part

(7), there exists a top differential form ω̃ on Ṽ so that the restriction of ω̃ to Xsm is equal

to ω. In particular, ω̃|U = ω. Computing, we see



19

∫
U(R)∩K

|ω| =
∫
π−1(U(R)∩K)

|ω̃| =
∫
π−1(V (R)∩K)

|ω̃|

where the final integral is a continuous function over a compact set and is therefore

finite.

�

This shows that an algebraic measure on the real points of a Gorenstein variety with

rational singularities assigns finite values to compact sets.

Lemma 2.0.5. Let X be a Gorenstein variety with rational singularities over R. Let

Y be a smooth variety over R. Let ϕ : X → Y be a locally dominant map, and let Xs be

the smooth locus of ϕ.

(1) If mX is a (CSCD) measure on X(R), then ϕ∗mX is a compactly supported

measure on Y which is (AC).

(2) In particular, if mX = f |ωX | for a section ωX ∈ ΩX(X) and continuous, com-

pactly supported function f : X(R) → R and ωY is a nowhere vanishing top

differential form on Y , ϕ∗mX is absolutely continuous with respect to |ωY | and

has density given by

y 7→
∫

(XS∩ϕ−1(y))(R)

f

∣∣∣∣ ωXϕ∗ωY
|XS∩ϕ−1(y)

∣∣∣∣
as a function from Y (R) to R≥0 ∪ {∞}.

Proof. As in 2.0.3.1, it suffices to prove the second claim assuming that X, Y are

affine. Choose a resolution of singularities π : X̃ → X, let ϕ̃ = ϕ ◦ π, and let ωX̃ be a top
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differential form that coincides with ωX on an open dense set. By 2.0.3.1, we see that the

measure ϕ̃∗((f ◦ π)|ωX̃ |) = ϕ∗(f |ωX |) is absolutely continuous with respect to |ωY | and

has density given by

y 7→
∫

(XS∩ϕ−1(y))(R)

f

∣∣∣∣ ωXϕ∗ωY
|XS∩ϕ−1(y)

∣∣∣∣
Let U ⊂ X be an open dense set such that π|U is an isomorphism. Then π−1(U) is

open dense in X̃, and there exists an open dense subset V ⊂ Y such that for any y ∈ V ,

U ∩ ϕ−1(y) is dense in ϕ−1(y) and the set π−1(U) ∩ ϕ̃−1(y) is dense in ϕ̃−1(y). Passing

from (Xs∩ϕ−1(y))(R) as our domain of integration to (U ∩Xs∩ϕ−1(y))(R), then pulling

back to X̃ and using the fact that π−1(U) is open dense, we obtain the result.

�
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CHAPTER 3

O-Minimal Geometry

In this section, we establish all of the results in o-minimal geometry we will need for

the rest of the paper. Section one gives the basic definitions. Section two discusses the

continuity of functions definable in an o-minimal structure and establishes that continuity

of log-subanalytic functions may be checked along analytic curves. Section three deals

with approximating arbitrary functions and sets by semialgebraic functions and sets.

Section four deals with the integration of definable functions.

3.1. First definitions

Definition 3.1.1. An o-minimal structure on the field (R,+, ·, 0, 1) is a collection S =

{Sn}n∈Z≥0
, where each Sn is a family of subsets of Rn satisfying the following properties:

(1) Sn contains all algebraic subsets of Rn;

(2) Sn is a Boolean subalgebra of the power set of Rn, i.e. it is closed under finite

intersection, finite union, and complement;

(3) If A ∈ Sn, B ∈ Sm, then A×B ∈ Sm+n;

(4) If π : Rn × R→ Rn is the natural projection and A ∈ Sn+1, then A ∈ Sn;

(5) S1 is exactly the collection of finite unions of points and intervals.
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Definition 3.1.2. A subset A ⊂ Rn is semialgebraic if it may be described as

A =

p⋃
i=1

q⋂
j=1

{x ∈ Rn | fij(x) ∗ 0}

where fij(x) are polynomials and ∗ stands for any of the symbols >,<,=.

Let A ⊂ Rn be semialgebraic. A function f : A→ Rm is semialgebraic if its graph is

a semialgebraic subset of Rn+m.

Theorem 3.1.3. Semialgebraic sets form an o-minimal structure, and every o-minimal

structure contains the semialgebraic sets. In addition to satisfying the conditions of an

o-minimal structure, semialgebraic sets and functions possess the following properties:

(1) The semialgebraic sets are exactly the definable subsets of Rn in the structure

R = (R, 0, 1,+, ·) (equivalently, R = (R, 0, 1,+, ·,≤));

(2) Each semialgebraic set has a finite number of connected components, each of

which is semialgebraic;

(3) If A is semialgebraic, then the closure, interior, and boundary are also semialge-

braic;

(4) The sum, product, and scalar multiples of semialgebraic functions are semialge-

braic;

(5) The Euclidean distance function from a point to a fixed non-empty semialgebraic

set is semialgebraic.

Proof. See, for example, section 1.1 of [7].

�
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We will require greater generality than semialgebraic sets give us access to. In order to

access the definition of globally subanalytic sets, we require two intermediate definitions.

Definition 3.1.4. Let M be a real analytic manifold. A subset A ⊂ M is called

semianalytic if for any x ∈ M there exists an open neighborhood U 3 x and analytic

functions fi, gij on U such that

A ∩ U =

p⋃
i=1

q⋂
j=1

{x ∈ U | fi(x) = 0, gij(x) > 0}

Definition 3.1.5. Let M be a real-analytic manifold. A subset E ⊂ M is called

subanalytic if for any x ∈ M there exists an open neighborhood U 3 x together with a

real analytic manifold N and a semianalytic set A ⊂ M × N such that E ∩ U = π(A),

where π : M ×N →M is the natural projection.

Definition 3.1.6. A subset E ⊂ Rn is called globally subanalytic if its image under

the natural embedding of Rn ↪→ Pn given by (x1, · · · , xn) 7→ (1 : x1 : · · · : xn) is

subanalytic.

Let E ⊂ Rn be globally subanalytic. A function f : E → Rm is globally subanalytic

if its graph is a globally subanalytic subset of Rn+m.

Theorem 3.1.7. Globally subanalytic sets and functions have the following properties:

(1) Globally subanalytic sets are exactly the sets definable in the expansion of the real

field by all restricted analytic functions f : Rn → R, i.e. functions of the form

1[−1,1]nf0, where f0 is an analytic function defined on an open neighborhood of

[−1, 1]n;
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(2) Globally subanalytic sets form an o-minimal structure;

(3) The interior, closure, and boundary of a globally subanalytic set are globally sub-

analytic;

(4) The connected components of a globally subanalytic set are each globally subana-

lytic and the collection of connected components is finite.

Proof. See, for example, section 2.3 of [7].

�

Definition 3.1.8. A log-subanalytic function on a globally subanalytic set E ⊂ Rn

is a function which may be written in either of the two following equivalent forms:

(1) as a polynomial in a finite number of globally subanalytic functions and loga-

rithms of strictly positive globally subanalytic functions;

(2) as a polynomial in a finite number of strictly positive globally subanalytic func-

tions and their logarithms.

Note that the usual logarithm is excluded from this class of functions.

3.2. Continuity

The following theorem shows that functions definable in a given o-minimal structure

are piecewise continuous, and establishes a convenient description of the pieces.

Theorem 3.2.1. Let X ⊂ Rn and Y ⊂ Rm be definable sets in a fixed o-minimal

structure S. Let f : X → Y be a function definable in S. There exists a finite definable

partition of X = X1 ∪ · · · ∪Xn such that f |Xi is continuous for each i.

Proof. See Theorem 2.12 of [5].
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�

Subanalytic subsets of manifolds may also be treated with the tools of resolution of

singularities, as in Hironaka’s Rectilinearization Theorem [2]:

Theorem 3.2.2. Assume that M is a pure-dimensional real analytic manifold and

E ⊂ M a subanalytic subset. Let K be a compact subset of M . Then there are finitely

many real analytic mappings ψi : Rm →M such that:

(1) For each i, there is a compact subset Li of Rm, such that
⋃
i ψi(Li) is a neigh-

borhood of K in M ;

(2) For each i, ψ−1
i (E) is a union of quadrants in Rm.

Where a quadrant Q ⊂ Rm is a set described by the m equations (one for each 1 ≤

i ≤ m) xi ∗ 0, where ∗ is any of the symbols >,=, <.

The combination of rectilinearization and piecewise continuity give the following the-

orem, which says that a log-subanalytic function from a manifold to R is continuous if

and only its restriction to every analytic curve is continuous.

Theorem 3.2.3. Let M ⊂ Rn be a real-analytic manifold of dimension m and f :

M → R be a log-subanalytic function. If f is discontinuous at a point x0 ∈M , then there

exists an analytic map g : R→M such that x0 ∈ g(R) and f |g(R) is discontinuous.

Proof. Since f : M → R is log-subanalytic, we may pick strictly positive globally sub-

analytic functions ϕ1, · · · , ϕr : M → R>0 and a polynomial p ∈ R[x1, · · · , xr, y1, · · · , yr]
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such that f = p(ϕ1, · · · , ϕr, logϕ1, · · · , logϕr). By Theorem 3.2.1, for each ϕi we may de-

compose M into ni globally subanalytic pieces Mi,1, · · · ,Mi,ni such that ϕi is continuous

on each Mi,j.

For each α = (α1, · · · , αr) ∈
∏

1≤i≤r{1, 2, · · · , ni} = A, let Mα =
⋂

1≤i≤rMi,αi . Then

each Mα is globally subanalytic, the Mα partition M , and the restriction of f to each Mα

is continuous. One of the following three claims must hold:

(1) f extends to a continuous function on Mα for all α ∈ A;

(2) There exists α0 ∈ A and a pointm0 ∈Mα0 such that limm∈Mα0 ,m→m0 f(m) = ±∞;

(3) There exist α1, α2 ∈ A such that Mα1 ∩Mα2 6= ∅ and infm1∈Mα1 ,m2∈Mα2
|f(m1)−

f(m2)| 6= 0.

If the first claim holds, then f : M → R is continuous and we have nothing to prove.

If the second claim holds, note that Mα is positive-dimensional, as otherwise it is

finite and the claim cannot hold. We may apply Theorem 3.2.2 to Mα0 ⊂ M to get an

analytic map h : RdimM →M such that h−1(Mα0) is a union of quadrants, at least one of

which is positive dimensional. Since m0 /∈Mα0 , h
−1(m0) /∈ h−1(Mα0). On the other hand,

m0 ∈Mα0 so h−1(m0) ∈ h−1(Mα0). This means we can pick a line L0 ⊂ RdimM such that

h−1(Mα0) ∩ L0 is an open ray which contains a point of h−1(m0) in it’s closure. After

identifying L0 and R, the map h|L0 : L0 →M satisfies the conclusions of the lemma.

If the third claim holds, pick a point m0 ∈ Mα1 ∩Mα2 . We may assume both Mα1

and Mα2 are positive-dimensional, as otherwise one of them is finite and we may apply

the same logic from the previous paragraph. After possibly subdividing the partition, we

may assume m0 /∈ Mα1 and m0 /∈ Mα2 . Apply Theorem 3.2.2 to Mα1 ,Mα2 ⊂ M to get

analytic maps h1, h2 : RdimM →M such that each h−1
i (Mαi) is a union of quadrants, and
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at least one of these quadrants is positive dimensional for each i. By our assumption on

m0, we have that h−1
i (m0) ∩ h−1

i (Mαi) = ∅ for i = 1, 2. On the other hand, m0 ∈ Mαi ,

so h−1(m0) ⊂ h−1
i (Mαi) for both i. This means we can pick a lines L1, L2 ⊂ RdimM such

that h−1
i (MαI )∩Li is an open ray which contains a point of h−1(m0) in it’s closure. Then

h1(L1) and h2(L2) are two analytic curves in M which meet at m0. If f was continuous

when restricted to both h1(L1) and h2(L2), then it would be continuous on their union,

which contradicts our assumption that infm1∈Mα1 ,m2∈Mα2
|f(m1)−f(m2)| 6= 0. So, without

loss of generality, f is discontinuous when restricted to h1(L1). After identifying L1 and

R, the map h1|L1 : L1 →M satisfies the conclusions of the lemma.

�

3.3. Approximation by semialgebraic functions

Firstly, we recall the Stone-Weierstrass Theorem:

Theorem 3.3.1. Let K be a compact Hausdorff topological space. Let C(K,R) be

the space of real-valued continuous functions on S. Let A ⊂ C(K,R) be a subalgebra. A

is dense in C(K,R) in the topology of uniform convergence if and only if A contains a

nonzero constant function and A separates points.

We will show that the semialgebraic continuous functions on any compact semialge-

braic set fulfill the conditions of the theorem.

Lemma 3.3.2. Fix K a semialgebraic compact subset of Rn. Let A be the collection

of continuous semialgebraic functions K → R. The following are true:

(1) A is a subalgebra of C(K,R).
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(2) A separates points.

(3) A contains a nonzero constant function.

Proof. From Theorem 3.1.3 on the properties of semialgebraic functions, they form

an algebra. To show that continuous semialgebraic functions separate points, recall that

the function which returns the Euclidean distance to a point is semialgebraic, so d(x1, x) is

a continuous semialgebraic function which separates any two distinct points x1, x2. Since

K is semialgebraic, every constant function on it is semialgebraic, and in particular, the

constant function 1K is in A.

�

Next, we will show that for any affine variety X(R) and any compact set K ⊂ X(R) ⊂

Rn, there exists a continuous compactly supported semialgebraic cutoff function bK :

X(R)→ R taking the value 1 on K.

Lemma 3.3.3. Suppose X is an affine variety defined over R. Then the embedding

X ↪→ An
R gives an inclusion X(R) ⊂ Rn. Suppose K ⊂ X(R) is a compact set. Then

there exists a continuous, compactly supported, semialgebraic function bK : X(R) → R

such that 0 ≤ bK ≤ 1 and bK |K = 1.

Proof. As X(R) is locally compact, for every point x ∈ X(R) there exists a compact

neighborhood Nx ⊂ X(R) containing B(x, qx) ∩X(R) for some real number qx > 0. For

each x ∈ X(R), let ψx(y) = min(0, qx
2
− d(x, y)) where d is the induced metric from

the inclusion X(R) ↪→ Rn. Then each ψx : X(R) → R is continuous, semialgebraic,

and compactly supported (its support is a closed subset of a compact subset, Nx). The

sets ψ−1
x ((0,∞)) cover X(R), and since Supp(f) is compact, there exists a finite set
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{x1, · · · , xN} ⊂ X(R) such that ∪1≤i≤Nψ
−1
xi

((0,∞)) cover Supp(f). As a result,
∑N

i=1 ψxi

is a compactly supported continuous semialgebraic function taking positive values on

Supp(k). After multiplication by some large enough C > 0, bK := min(1, C
∑N

i=1 ψxi) is a

semialgebraic, continuous, compactly supported function taking the value 1 on Supp(f).

�

This implies that for any K, b−1
K (1) is a compact semialgebraic subset containing K. In

particular, any compactly supported function f : X(R)→ R has a compact semialgebraic

subset of X(R) which contains its support. This observation, combined with Theorem

3.3.1 and Lemma 3.3.2 gives the following corollary.

Corollary 3.3.3.1. Suppose X ⊂ An
R is an affine R-variety. Let f : X(R) → R

be a nonnegative compactly-supported continuous function. Then there exists a sequence

of nonnegative continuous compactly supported semialgebraic functions fn : X(R) → R

which converges uniformly to f and at all points, fn ≤ f .

Proof. By Lemma 3.3.3, we may fix a compact semialgebraic subset K ⊂ Rn con-

taining Supp f . By an application of Theorem 3.3.1 and Lemma 3.3.2, we may find a

continuous semialgebraic function gn such that ||(f − 1
2n

) − gn|| < 1
2n

on K. For each n,

{x ∈ K | gn(x) > 0} is a semialgebraic subset of K and therefore of X(R). Define fn =

max(gn, 0), which is semialgebraic. Furthermore, fn ≥ 0 at all points, and fn is continu-

ous. Since f(x) = fn(x) = 0 for all x ∈ X(R)\K and |f(x)− fn(x)| ≤ |f(x)− gn(x)| ≤ 1
n

for all x ∈ K and all n ≥ 1, we see that fn → f uniformly as n→∞.

�
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3.4. Integration

In this section, we discuss the parameterized integration of semialgebraic functions on

semialgebraic domains.

Definition 3.4.1. Suppose X ⊂ Rn is a semialgebraic set and let f : X × Rm → R

be a semialgebraic function. Let ∞(X, f) = {x ∈ X |
∫
Rm |f(x, ξ)|dξ = ∞} be the locus

in X where f is not integrable over the fibers.

Lemma 3.4.2. Suppose X ⊂ Rn is a semialgebraic set and let f : X × Rm → R be a

semialgebraic function. Then f is measurable and ∞(X, f) ⊂ X is semialgebraic.

Proof. See Kaiser[13] Proposition 1.1 and Theorem 2.3a.

�

The follwing theorem of Cluckers and Miller [6] implies that the integral of any log-

subanalytic function is again log-subanalytic.

Theorem 3.4.3. Let E ⊂ Rn be a globally subanalytic set, m ≥ 0 an integer, and

f : E × Rm → R a log-subanalytic function such that f(x,−) is Lebesgue integrable for

all x ∈ X. Then IX(f) : X → R given by x 7→
∫
Rm f(x, y)dy is log-subanalytic.

If f and X from Theorem 3.4.3 are actually semialgebraic, one may semialgebraically

alter f to remove the locus where it is not integrable by an application of Lemma 3.4.2.

In this way, one may make sense of IX(f) for arbitrary semialgebraic f by declaring IX(f)

to return ∞ on ∞(X, f).

In order to apply Theorem 3.4.3, we will establish some results similar to the techniques

of appendix A in [1].
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Lemma 3.4.4. Suppose that X ⊂ AN
R and Y ⊂ AM

R are affine R-varieties, that

π : X → Y is a morphism with finite fibers, and that f : X(R) → R is semialgebraic.

Then the function y ∈ Y (R) 7→
∑

x∈π−1(y)(R) |f(x)| is semialgebraic.

Proof. We will show that there are semialgebraic functions gi : Y (R)→ R such that

for every y ∈ Y (R) we have {|f(x)| : x ∈ π−1(y)(R) ∧ f(x) 6= 0} ⊂ {g1(y), · · · , gm(y)}

and, after passing to a semialgebraic partition, the number of points x ∈ π−1(y)(R) such

that |f(x)| = gi(y) is a constant ni. This implies that
∑

x∈π−1(y)(R) |f(x)| =
∑
nigi(y) on

each piece, and therefore that both sums are semialgebraic functions.

Let N be the maximum size of the fiber of π. We will show by induction on i that there

exists a finite semialgebraic partition of Y (R) and on each piece A there are semialgebraic

functions g1, · · · , gi and natural numbers n1, · · · , ni such that for each y ∈ A the following

hold:

(1) #{x ∈ π−1(y) : |f(x)| = gi(y)} = ni

(2) #{x ∈ π−1(y) : f(x) 6= 0 ∧ |f(x)| /∈ {g1(y), · · · , gi(y)}} ≤ N − i

If we can show this claim for i = N , then we will have completed the proof.

Suppose that gj and nj were chosen for all j < i, and let

gi(y) = min{|f(x)| : π(x) = y ∧ |f(x)| 6= g1(y), · · · , gi−1(y)}

As the minimum of a finite number of semialgebraic functions is semialgebraic, gi is

semialgebraic. For each n, the set of y ∈ Y such that there are at least n distinct points

xk in the fiber over y such that |f(xk)| = gi(y) is semialgebraic, and so we have shown

the claim.
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�

Theorem 3.4.5. Let π : X → Y be a morphism between affine algebraic varieties over

R. Let U ⊂ X be a dense open set such that π|U is smooth. Suppose that ω ∈ Γ(U,ΩU/Y )

and that f : X(R) → R is a nonnegative continuous compactly-supported semialgebraic

function. Then on Y , the density function y 7→
∫
π−1(y)∩U f |ω| log-subanalytic away from

the locus where it is infinite, which is a semialgebraic subset of Y .

Proof. We may assume that Y ⊂ AM and X ⊂ Y × AN and that the morphism is

the projection.

Up to decomposition and dilation, we may assume that f is supported inside (−1, 1)M+N .

After further decomposition, we may assume there is a subset I ⊂ {1, · · · , N} such that

for any y ∈ Y , the projection πI : π−1(y) ∩ U ∩ (−1, 1)M+N → (−1, 1)I is etale. Let ν be

the standard volume form on B(−1, 1)I . For any y ∈ Y (R), we have the following:

∫
(π−1(y)∩U∩(−1,1)M+N )(R)

|ω| =
∫
z∈(−1,1)I

 ∑
x∈(π−1

I (z)∩π−1(y)∩U∩(−1,1)M+N )

∣∣∣∣ ωπ∗Iν (x)

∣∣∣∣
 |ν|

The integrand on the right is semialgebraic, and via the embedding of Y ⊂ AM , we

are in a position to apply Theorem 3.4.3 of Cluckers and Miller after checking that our

parameterized integrand is measurable and integrable at each value of y ∈ Y . By Lemma

3.4.2, our integrand is measurable and the locus where it is not integrable is semialgebraic

and may be removed from the domain. Thus the density function y 7→
∫
π−1(y)∩U f |ω| from

Y (R) \∞(Y (R), f |ω|)→ R is log-subanalytic.

�
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CHAPTER 4

Reduction to a curve

In this section, we show that in order to prove our main theorem, it is enough to prove

the following theorem:

Theorem 4.0.1 (Modified Main Theorem). Let X be a Stein complex-analytic variety

with a complex conjugation σ. Let ψ : X → C be a (FRS) map of complex-analytic

varieties which intertwines σ with the usual complex conjugation on C. Assume that

X is Gorenstein. Let ωX be a regular nowhere-vanishing σ-invariant holomorphic top

differential form on the smooth locus Xsm of X and let f : X σ → R be a nonnegative

continuous compactly-supported function. Denote the smooth locus of ψ by X S. Then the

measure ψ∗(f |ωX |) on X σ has continuous density with respect to the measure |dz| = dx

on Cσ = R, which is given by

(ψ∗f)(y) :=

∫
(ψ−1(y)∩XS)σ

f ·
∣∣∣∣ ωXψ∗dz

|ψ−1(y)∩XS

∣∣∣∣ .
See Appendix A for definitions and notions from complex-analytic varieties.

Our strategy will be as follows: in section one, we will reduce the proof of the main

theorem to the case of X, Y affine and (CSCD) measures on X of the form f |ω| for f

semialgebraic. In section two, we will show that if our main theorem fails for affine X, Y

and semialgebraic f , then we can find a complex-analytic variety X and map ψ : X → C
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satisfying the conditions of Theorem 4.0.1 where ψ∗(f |ωX |) does not have continuous

density.

4.1. Reduction to X, Y affine and f semialgebraic

Theorem 4.1.1. In proving Theorem 1.1.12, it suffices to consider the scenario when

X and Y are both affine.

Proof. Suppose ϕ : X → Y is an (FRS) morphism of R-varieties with Y smooth and

X Gorenstein. Let mX be a (CSCD) measure on X.

First we prove that it is enough to consider Y affine. Let Vi be a finite affine open

covering of Y , and let Xi = X×Y Vi. The Xi form a finite open cover of X, and the Xi(R)

form a finite open cover of X(R). Construct on X(R) a locally finite partition of unity

Ψj such that each Ψj is compactly supported and the support of each Ψj is contained in

some Xi(R). Then

ϕ∗mX = ϕ∗

(∑
j

ΨjmX

)
=
∑
i

(ϕ|Xi)∗

(∑
j

ΨjmX |Xi

)

and because only finitely many Ψj are nonzero on the support of mX , we may reduce

from checking if ϕ∗mX is (CSCD) to checking that each (ϕ|Ui)∗(ΨjmX |Ui) is (CSCD).

Next we prove that it is enough to consider X affine. For any X, we may take a finite

covering of X by affine opens Ui. The Ui(R) form an open cover of X(R). Construct on

X(R) a locally finite partition of unity ρj such that each ρj is compactly supported and

the support of each ρj is contained in some Ui(R). We may now write

ϕ∗mX = ϕ∗

(∑
j

ρjmX

)
=
∑
i

(ϕ|Ui)∗

(∑
j

ρjmX |Ui

)



35

and because only finitely many ρj are nonzero on the support of mX , we may reduce from

checking if ϕ∗mX is (CSCD) to checking that each (ϕ|Ui)∗(ρjmX |Ui) is (CSCD).

Since each of these reduction steps maintains the setting of a Gorestein source, smooth

target, and (FRS) map, we have reduced our main theorem to the case of a map between

affine R-varieties.

�

Suppose ϕ : X → Y is (FRS) with X Gorenstein and Y smooth. Now that we have

reduced to the case of affine varieties, we may assume that mX is given by f |ωX | for

f : X(R)→ R a compactly-supported continuous function and ωX ∈ ΩX(X). In order to

prove that ϕ∗mX is (CSCD), we will show that the density of f |ωX | with respect to |ωY |

is continuous, where ωY ∈ ΩY (Y ) is a nonvanishing top differential form on Y .

Let XS be the smooth locus of ϕ. Since all fibers of ϕ are reduced and ϕ is flat,

the smooth locus of ϕ−1(y) is equal to XS ∩ ϕ−1(y). Since the restriction of f to

ϕ−1(y)(R) is nonnegative, continuous, and compactly supported, Lemma 2.0.4 implies

that each integral
∫
XS∩ϕ−1(y)(R)

f
∣∣∣ ωX
ϕ∗ωY

∣∣∣ is convergent. We denote the function y 7→∫
XS∩ϕ−1(y)(R)

f
∣∣∣ ωX
ϕ∗ωY

∣∣∣ by ϕ∗f (this depends on ωX and ωY , despite their failure to ap-

pear in the notation). By Lemma 2.0.5, ϕ∗f is a function representing the density of

ϕ∗(f |ωX |) with respect to |ωY |. In order to show that ϕ∗mX is (CSCD), it suffices to

show that ϕ∗f is continuous.

The next theorem establishes that it is enough to consider the case of f semialgebraic

and nonnegative.
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Theorem 4.1.2. Suppose X ⊂ An
R, Y ⊂ Am

R are affine and ϕ : X → Y is (FRS).

Fix top differential forms ωX ∈ ΩX(X) and ωY ∈ ΩY (Y ) and suppose ωY is nowhere-

vanishing. If the density of ϕ∗(g|ωX |) with respect to |ωY | is continuous for every non-

negative, continuous, compactly supported, semialgebraic function g : X(R) → R, then

the density of ϕ∗(f |ωX |) is continuous for all continuous compactly supported functions

f : X(R)→ R.

Proof. First we note that it is enough to check the continuity of ϕ∗f when f is nonneg-

ative, as any continuous compactly supported function may be written as the difference of

two continuous compactly supported nonnegative functions. If f is nonnegative, we may

pick a sequence of nonnegative continuous compactly supported semialgebraic functions

fi : X(R)→ R converging uniformly to f with the additional property that f(x) ≥ fi(x)

for all x ∈ X(R) and all i by Corollary 3.3.3.1. We may also fix b : X(R)→ R a continu-

ous, compactly supported, semialgebraic bump function taking the value 1 on Supp f by

Lemma 3.3.3. It is enough to prove that the density of ϕ∗fi converges uniformly to the

density of ϕ∗f .

In order to show that ϕ∗fn converges uniformly to ϕ∗f on Y (R), note that

∣∣∣∣∫
(ϕ−1(y)∩Xs)(R)

fn

∣∣∣∣ ωXϕ∗ωY

∣∣∣∣− ∫
(ϕ−1(y)∩Xs)(R)

f

∣∣∣∣ ωXϕ∗ωY

∣∣∣∣∣∣∣∣ ≤ ∫
(ϕ−1(y)∩Xs)(R)

|f − fn|
∣∣∣∣ ωXϕ∗ωY

∣∣∣∣ .
Combining the above observation with the statement that for all ε > 0 we may pick a N

such that for all n ≥ N and all x ∈ X(R), we have |f(x) − fn(x)| ≤ ε, we see that the

right hand side of the above equation is in fact bounded above by ε
∫

(ϕ−1(y)∩Xs)(R)
b
∣∣∣ ωX
ϕ∗ωY

∣∣∣.
But this is exactly the density of ε(ϕ∗b), which is continuous by our assumption. Since
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ϕ∗b is continuous and compactly supported, it has a finite maximum, and therefore the

density of εϕ∗b uniformly converges to zero as ε does. This means that the density of

ϕ∗fn converges uniformly to density of ϕ∗f , and therefore the latter is continuous.

�

4.2. Construction of the scenario of Theorem 4.0.1

By results of the previous section, it is enough to show that for ϕ : X → Y an (FRS)

map of affine R-varieties with X ⊂ AN Gorenstein and Y ⊂ AM smooth, top differential

forms ωX ∈ ΩX(X) and ωY ∈ ΩY (Y ), and nonnegative continuous compactly supported

semialgebraic f : X(R) → R that ϕ∗f : y 7→
∫
XS∩ϕ−1(y)(R)

f
∣∣∣ ωX
ϕ∗ωY

∣∣∣ is continuous. In this

section, we explain how to produce the scenario of Theorem 4.0.1 given the above data.

For the rest of the section, we will assume that X, Y, ϕ, ωX , ωY , and f are all as above.

Assume that ϕ∗f is not continuous at a point y ∈ Y (R). Since ϕ is (FRS),∞(X, f |ω|)

is empty by an application of Lemma 2.0.4. As ∞(X, f |ω|) is empty, we may apply

Theorem 3.4.5 to obtain that ϕ∗f is log-subanalytic on Y (R) ⊂ AN
R (R).

By Theorem 3.2.3, we may find an analytic map g : R → Y (R) such that g(R)

contains y and ϕ∗f |g(R) is discontinuous at y. Since g : R→ Y (R) is a real-analytic map

of smooth real-analytic manifolds, we may naturally upgrade it to a complex-analytic

map gC from an open complex neighborhood of R in C, which we denote Op(R), to Y (C).

Without loss of generality, we may assume that Op(R) has a complex conjugation fixing

R. Recall that ϕR : X(R) → Y (R) is induced by ϕ : X → Y , which also induces a map

ϕC : X(C)→ Y (C).
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Let X = X(C) ×Y (C) Op(R), where we form the fiber product X(C) ×Y (C) Op(R)

using the maps gC : Op(R) → Y (C) and ϕC : X(C) → Y (C). X(C) ×Y (C) Op(R) is

Stein by Corollary A.2.4.1. Composing the projection π : X(C) ×Y (C) Op(R) → Op(R)

with the inclusion Op(R) ↪→ C, we obtain ψ : X(C) ×Y (C) Op(R) → C. Since each

of X(C), Y (C),Op(R) have complex conjugations and the maps ϕC, gC are intertwiners

for these conjugations, the fiber product X = X(C) ×Y (C) Op(R) also has a complex

conjugation. We also note that ψ : X → C is an intertwiner of the complex conjugations

on X and C. Finally, the complex conjugation on X(C) ×Y (C) Op(R) fixes exactly the

real-analytic fiber product X(R)×Y (R) R ⊂ X(C)×Y (C) Op(R).

To produce a compactly supported, continuous, nonnegative f : X σ = X(R)×Y (R)R ⊂

X(C) ×Y (C) Op(R) → R, we may restrict f : X(R) → R to X(R) ×Y (R) R ⊂ X(R). In

order to specify ωX , recall that ωX
ϕ∗ωY

is a section of ΩX/Y over the smooth locus of ϕ.

This naturally produces a section of the bundle of relative differential forms for the map

ψ : X → C, and we also call this section ωX
ϕ∗ωY

. We may then specify ωX = ( ωX
ϕ∗ωY

)∧ψ∗dz,

which is a regular holomorphic conjugation-invariant top differential form on X S. This

choice of ωX implies that the density function on X(R)×Y (R) R is the same as the density

function along g(R) ⊂ Y (R). In particular, this density function ψ∗f is discontinuous if

and only if the original density function ϕ∗f was.

To complete the reduction it remains to show that π : X(C)×Y (C)Op(R)→ Op(R) is

(FRS) and X(C)×Y (C) Op(R) is Gorenstein.

Lemma 4.2.1. π : X(C)×Y (C) Op(R)→ Op(R) is (FRS).

Proof. Consider the following diagram of completed local rings:
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ÔanX(C)×Y (C)Op(R),p ÔanX(C),x

ÔanOp(R),r ÔanY (C),y

g f̂

Note that the diagram is not cartesian, but the top left entry ÔanX(C)×Y (C)Op(R),r is a

completion and localization of ÔanX(C),x⊗Ôan
Y (C),y

ÔanOp(R),r, so it is flat over ÔanOp(R),r as ÔanX(C),x

is flat over ÔanY (C),y.

To show that the fibers are reduced and have rational singularities, note the fibers of π

as complex-analytic varieties are the analytifications of the complex points of the fibers of

f as algebraic varieties, and therefore each fiber is reduced and has rational singularities.

�

Lemma 4.2.2. X(C)×Y (C) Op(R) is Gorenstein.

Proof. It is enough to show that for each point p ∈ X(C)×Y (C)Op(R) the completion

of the local ring ÔanX(C)×Y (C)Op(R),p is Gorenstein. We recall the following classical result on

Gorenstein local rings [20]:

Let (A,m) and (B, n) be local rings with ψ : A → B a local homomorphism making

B flat over A. Then B Gorenstein is equivalent to A and B/mB Gorenstein.

We will apply this lemma to the map g : ÔanR,r → ÔanX(C)×Y (C)Op(R),(x,r) from the left

column of the diagram in Lemma 4.2.1. In our case, flatness has already been ver-

ified in Lemma 4.2.1, and ÔanR,r is Gorenstein as R is smooth. It remains to show that

ÔanX(C)×Y (C)Op(R),(x,r)/mÔanOp(R),r
ÔanX(C)×Y (C)Op(R),(x,r) is Gorenstein. But this ring is isomorphic
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to the local ring of x in the fiber of X(C) ×Y (C) Op(R) over l, i.e. Ôan(X(C)×Y (C)Op(R))r,x
∼=

ÔanXf(x),x ∼= ÔXf(x),x, which is just the completion of the local ring of the point in the

algebraic fiber over x. Applying the statement above to OY,y
f#→ OX,x, we see that this

local ring is Gorenstein. Since a local ring is Gorenstein if and only if its completion is,

we are done.

�

From the combination of Lemmas 4.2.1 and 4.2.2, we may conclude that we are in the

situation of Theorem 4.0.1 and we have completed our reduction.
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CHAPTER 5

Reduction to a Local Model

In this chapter, we reduce from the case of Theorem 4.0.1 to computing the push-

forward of monomial measures under monomial maps Cn → C. In section one, we will

prove that if ψ : X → Y is an (FRS) map of complex-analytic varieties with Y smooth,

then X has rational singularities. In section two, we will prove a regularity theorem for

meromorphic differential forms on resolutions of singularities of complex-analytic varieties

with rational singularities. In section three, we combine these two results to complete the

reduction.

5.1. ψ : X → Y (FRS) and Y smooth implies X has rational singularities

In the algebraic setting, Elkik’s Theorem shows that if f : X → Y is flat with Y

smooth, then any rational singularity x of Xy is also a rational singularity of X [8]. This

theorem enables us to conclude that if f : X → Y is an algebraic morphism which is

(FRS) with Y smooth, then X has rational singularities. We are interested in an analytic

analogue of this theorem in order to perform later computations. Our goal is to show that

if f : X → Y is a map of complex-analytic varieties with Y smooth and f (FRS), then

X has rational singularities. We will apply this to conclude that X in Theorem 4.0.1 has

rational singularities. The proof will follow the one in Elkik’s paper [8] very closely, with

some mild departures due to the analytic setting.
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Lemma 5.1.1. Let f : X → S be a flat holomorphic map of complex-analytic spaces

with S smooth. Let s ∈ S and x ∈ Xs. If Xs is normal and Cohen-Macaulay at x, then

X is normal and Cohen-Macaulay at x.

Proof. We apply a characterization for flatness from Hironaka [12]. Let C(X , F )

denote the normal cone to F in X , where F is a closed analytic subvariety of X . If

f : X → S is a holomorphic map between two complex-analytic spaces with f(x) = s,

then f is flat at x if and only if in a sufficiently small neighborhood of x, we have

C(X ,Xs) ∼= Xs × C(S, s).

Recall that a local ring is normal or Cohen-Macaulay if and only if its completion

is. To check if X is normal and Cohen-Macaulay at x, it is enough to check at the

completed local ring of x. From the construction of the normal cone, we recover that

ÔanX ,x ∼= ÔanC(X ,Xs),x, where the completion is taken with respect to the maximal ideal.

Applying Hironaka’s characterization to the map f : X → S, we see that C(X , Xs) ∼=

Xs × C(S, s) in some small-enough open neighborhood of x ⊂ Xs, which implies that

OanC(X ,Xs),x
∼= OanXs,x⊗O

an
C(S,s),s. Each of these local rings are normal and Cohen-Macaulay,

so their tensor product is as well. Thus ÔanC(X ,Xs),x and therefore ÔanX ,x are normal and

Cohen-Macaulay. This proves that that X is normal and Cohen-Macaulay at x

�

The following analytic analogue of the Grauert-Riemanschneider Vanishing Theorem

will be useful:
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Lemma 5.1.2. Suppose π : X̃ → X is a resoultion of singularities of X a complex-

analytic space. Then Riπ∗ΩX̃ = 0 for i > 0, and π∗ΩX̃ is independent of the resolution of

singularities.

Proof. See Lemma A.2 in [16], or Corollary 1 in [18] for a slightly more general

version.

�

Theorem 5.1.3. Let f : X → S be a flat holomorphic map of complex-analytic spaces

with S smooth and X reduced. Let s ∈ S. If x ∈ X is a rational singularity of Xs, then

x is a rational singularity of X .

Proof. As each Xs has rational singularities, Theorem B.3.3 gives that Xs is normal

and Cohen-Macaulay at x ∈ Xs. By Lemma 5.1.1, X is normal and Cohen-Macaulay at

x. After restricting to a neighborhood of x ∈ X , we may assume that X is normal and

Cohen-Macaulay.

Since X is Cohen-Macaulay, the dualizing complex Ω•X is isomorphic to a complex

concentrated in a single degree. By abuse of notation, let ΩX be a sheaf such that Ω•X is

isomorphic to the complex consisting of ΩX in the correct degree and zero elsewhere. Let

π : X̃ → X be a resolution of singularities. By Lemma 5.1.2, an analytic analogue of the

Grauert-Riemanschneider Vanishing Theorem, we have that Riπ∗ΩX̃ = 0 for i > 0, and

π∗ΩX̃ is independent of the choice of resolution.

Let i : OX → R•π∗OX̃ be the natural map. Dualizing, we get j : R•π∗ΩX̃ [dim X̃ ] →

Ω•X , which by the discussion in the previous paragraph, is a map between two complexes

concentrated in degree dim X̃ . We will refer to this map as an honest map of sheaves
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j : π∗ΩX̃ → ΩX . By Theorem B.3.3, in order to prove that x is a rational singularity of

X , it suffices to prove that j is surjective in a neighborhood of x.

We will proceed by induction on dimS. Suppose dimS = 1. Let s ∈ S. Suppose

V ⊂ S is an open neighborhood of s with a choice of t ∈ Γ(V,OS) such that t generates

the maximal ideal in the stalk of OS at s. We obtain the following exact sequences on X̃

and X , respectively:

0→ ΩX̃
(f◦π)∗t→ ΩX̃ → ΩX̃s → 0

0→ ΩX
f∗t→ ΩX → ΩXs → 0.

Taking direct images of the first exact sequence and applying Lemma 5.1.2, we see that

it is still exact. Using the morphism j : π∗ΩX̃ → ΩX , we obtain the following diagram:

0 π∗ΩX̃ π∗ΩX̃ π∗ΩX̃s 0

0 ΩX ΩX ΩXs 0

f ∗t

f ∗t

j j k

where k is induced by j.

By taking a resolution of the pair (X ,Xs) we may assume that X ′s, the strict transform

of Xs in X̃ , is a resolution of singularities of Xs. As Xs was assumed to have a rational

singularity at x, we have that π∗ΩX ′s → ΩXs is surjective in a neighborhood of x. Noting

that π∗ΩX ′s is naturally a subsheaf of π∗ΩX̃s , we see that k is surjective in a neighborhood

of x. Applying the Snake Lemma to the above diagram of short exact sequences, we see

that cokerj
f∗t→ cokerj → cokerk is an exact sequence. Restricting to a neighborhood of x
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where k is surjective, we have that cokerj
f∗t→ cokerj → 0 is exact. By Nakayama’s Lemma,

cokerj = 0 in this neighborhood, and therefore j is surjective in our chosen neighborhood

of x. Therefore we have shown that x is a rational singularity of X .

To complete the induction, suppose that the statement is true for dimS ≤ n. Let S

be smooth of dimension n + 1. Pick V ⊂ S an open coordinate neighborhood of s with

coordinates t1, · · · , tn+1 generating the maximal ideal of OS at s. Let Vn+1 = {t1 = · · · =

tn = 0} ⊂ V . Then X ×s Vn+1 → Vn+1 is a flat holomorphic map with Vn+1 smooth and

of dimension one with the same fibers as f : X → S. Thus each point x ∈ Xs which is a

rational singularity is also a rational singularity of X ×s Vn+1.

On the other hand, let V ′ ⊂ Cn be obtained from V by projecting away the final

coordinate, i.e. V ′ is the image of V under the map

V
(t1,··· ,tn+1)

↪→ Cn+1
projtn+1→ Cn.

Then the composite f−1(V ) → V ′ is flat with fiber over zero isomorphic to X ×s Vn+1,

and so by the induction hypothesis, x is a rational singularity of X .

�

5.2. Regularity on the Exceptional Divisor

Theorem 5.2.1. Let Y be a complex-analytic variety which is Stein, Gorenstein, and

has rational singularities. Let ϕ : Y → C be a holomorphic function, and let Y0 = ϕ−1(0).

Let π : Ỹ → Y be a resolution of singularities, let ϕ̃ = ϕ ◦ π, and Ỹ0 = ϕ̃−1(0). If η̃ is a

meromorphic top form defined on Ỹ so that ϕ̃η̃ is holomorphic, then η̃ is holomorphic on

Ỹ0 \ Y ′0.
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Proof. Since ϕ̃η̃ is regular and Y has rational singularities, there exists a top differ-

ential form ζ on Y such that ζ agrees with ϕ̃η̃ on an open dense set. Let η = ζ
ϕ

. Let ω0

be the residue of η along Y0. Since Y0 has rational singularities and Y ′0 is a resolution of

singularities of Y0, we may find a top form ω̃0 on Y ′0 which agrees with ω0 along an open

dense set.

In order to find a meromorphic top form ω̃ on Ỹ so that the residue of ω̃ along Y ′0 is

ω̃0, we need to show that after taking global sections over Ỹ , the residue exact sequence

0→ ΩỸ → ΩỸ([Y ′0])→ i∗ΩY ′0 → 0

is still exact. Thus it suffices to show that H1(Ỹ ,ΩỸ) = 0.

Since Y has rational singularities, we have that π∗ΩỸ
∼= ΩY and Rpπ∗ΩỸ = 0 for

p > 0. This implies that H i(Ỹ ,ΩỸ) ∼= H i(Y , π∗ΩỸ) for all i. Since Y is Stein, we have

that H i(Y , π∗ΩỸ) = 0 for all i > 0 by an application of Cartan’s Theorem B (see Theorem

A.2.2). Thus we may choose a meromorphic top form ω̃ on Ỹ so that the residue of ω̃

along Y ′0 is ω̃0 and ω̃ is regular away from Y ′0.

Now consider δ̃ = ϕ̃(η̃ − ω̃). By construction, δ̃ is holomorphic on Ỹ , so we may

choose a holmorphic differential form δ on Y which agrees with δ̃ on an open dense set.

Computing residues along Ysm ∩ Y0, we see that δ vanishes on Ysm ∩ Y0, so δ vanishes

along all of Y0 and is therefore divisible by ϕ. This implies that δ̃ is divisible by ϕ̃, or

that η̃ − ω̃ is holomorphic. This shows that η̃ has no poles along Ỹ \ Ỹ ′0.

�
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5.3. Reduction

Suppose we are in the situation of Theorem 4.0.1, with a Stein, Gorenstein complex-

analytic variety X equipped with a complex conjugation σ, a σ-invariant holomorphic

differential form ωX ∈ ΩX (X sm), a compactly-supported continuous function f : X σ → R

and an (FRS) map ψ : X → C which intertwines σ with the usual complex conjugation

on C. Denote X0 = ψ−1(0), and let X̃ π→ X be a complex-conjugation equivariant strong

resolution of singularities (see Theorem B.1.2) of the pair (X ,X0), so that X̃ inherits a

complex conjugation. The singular values of ψ̃ = ψ ◦ π form an analytic closed subset

of C with no accumulation points, therefore we may pick an open neighborhood of the

origin U ⊂ C such that 0 is the only singular value inside U . In this neighborhood, for

any t ∈ U , ψ̃−1(t) is smooth and the map ψ̃−1(t)→ ψ−1(t) is a resolution of singularities.

By a standard argument, the strict transform X ′0 of X0 is a resolution of singularities of

X0.

Let W ⊂ X be an open dense subset where π is an isomorphism. Since X has

rational singularities by Theorem 5.1.3, we may choose a top differential form ωX̃ ∈ ΩX̃ (X̃ )

agreeing with ωX on W , i.e. ωX̃ |π−1W = π∗(ωX |W ).

Since X̃0 is a divisor with strict normal crossings inside a smooth variety, locally at

every point z in X̃0 there exists a coordinate system x1, · · · , xn such that both ψ̃ and ωX̃

are monomial, i.e.

ψ̃ = αxa11 · · ·xann

ωX̃ = βxb11 · · ·xbnn dx1 ∧ · · · ∧ dxn
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where α, β are units. Since X ′0 ∩π−1(W ) is isomorphic to the reduced variety W ∩X0,

we get that X ′0 is reduced by Serre’s criteria for reducedness and the fact that X ′0 is Cohen-

Macaulay. For points z ∈ X ′0, we have that X ′0 is locally the zero locus of one xi, which we

may assume to be x1, implying that a1 = 1. By Theorem 5.2.1 applied to
ωX̃
ψ̃

, if z ∈ X ′0,

we have ai ≤ bi for i ≥ 2 and if z /∈ X ′0, then ai ≤ bi for all i.

Setting f̃ = f ◦ π and computing measures, we have that ψ∗(f |ωX |) = ψ̃∗(f̃ |ωX̃ |).

This means that in order to compute ψ∗(f |ωX |), it is enough to compute ψ̃∗(f̃ |ωX̃ |). The

following partition of unity argument reduces the computation of ψ̃∗(f̃ |ωX̃ |) to the case

where X̃ = Cn and both ψ̃ and ωX̃ are monomial.

For each x ∈ X̃ , choose a relatively compact connected open neighborhood Ux ⊂ X̃

in the standard topology such that both ϕ̃ and ωX̃ are monomial in this neighborhood.

Up to possibly shrinking Ux, we may assume that each of these is an analytic coordinate

patch where α and β extend to units on the closure of Ux. Since X̃ is a locally compact

second-countable Hausdorff space, there exists a countable, locally finite refinement of the

covering {Ux}x∈X , which we denote {Ui}i∈I . Since the Ui cover X̃ , the sets Uσ
i cover X̃ σ,

and we may form a partition of unity Φi subordinate to the cover {Uσ
i }i∈I .

Let A := Supp f̃ ⊂ X̃ σ. Since π is proper and f is compactly supported, A is

compact. As {Uσ
i }i∈I forms an open covering of X̃ σ, we may select a finite collection

{Uσ
i }i∈I′ which forms an open cover of A. Let fi = Φif . Then f |ωX̃ | =

∑
i∈I′ fi|ωX̃ |, so

it is enough to demonstrate that ψ̃∗(fi|ωX̃ |) has continuous density. By the choice of Ui,

this is the same as showing the pushforward of fi|βxb11 · · ·xbnn dx1 · · · dxn| along the map

αxa11 · · ·xann : Cn → C has continuous density.
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CHAPTER 6

Proof for a Local Model

In this chapter, we prove the following theorem:

Theorem 6.0.1. Denote the usual measure on Rn by dx�n and the usual measure

on R by dx. Assume that f : Rn → R is a continuous compactly supported nonnegative

function, α, β : Rn → R are analytic functions which are units on the support of f , and

A = (a1, · · · , an) and B = (b1, · · · , bn) are sequences of nonnegative integers with not all

ai equal to zero. Suppose either of the following two cases hold:

(1) ai ≤ bi for all i, or

(2) a1 = 1 and ai ≤ bi for i ≥ 2.

Then the pushforward of the measure f |βxB|dx�n = f |βxb11 · · ·xbnn dx1 · · · dxn| along

the map αxA = αxa11 · · ·xann : Rn → R has continuous density with respect to the measure

dx.

The following lemma reduces our task to a computationally simpler one:

Lemma 6.0.2. In proving Theorem 6.0.1, it suffices to treat the case where α = 1,

β = 1, and Supp f ⊂ [−1, 1]n.

Proof. To prove that it suffices to consider β = 1, note that f |βxB| = (f |β|)|xB| and

f |β| is a continuous compactly supported nonnegative function. To prove that it suffices

to consider α = 1, we note that we may make an analytic change of coordinates on Rn
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which changes the map αxA to xA. This sends the measure f |xB|dx�n to g|xB|dx�n, where

g is also continuous, compactly supported, and nonnegative. Since Supp f is compactly

supported, it is bounded, and so up to a dilation action which multiplies the measure by

a positive constant, we may assume that Supp f is contained in [−1, 1]n.

�

Next, we show that for continuous nonnegative f with Supp f ⊂ [−1, 1]n, the measure

(xA)∗(f |xB|dx�n) has continuous density on Rn \ {0}.

Lemma 6.0.3. Assume that f : Rn → R is a continuous nonnegative function with

Supp f ⊂ [−1, 1]n, and A = (a1, · · · , an) and B = (b1, · · · , bn) are sequences of nonnega-

tive integers with not all ai equal to zero.

Then the pushforward of the measure f |βxB|dx�n = f |βxb11 · · ·xbnn dx1 · · · dxn| along

the map αxA = αxa11 · · ·xann : Rn → R has continuous density with respect to the measure

dx on the set R \ {0}.

Proof. Let gm be a continuous function taking the value 1 on (|xA|)−1([ 1
m+1

, 1]), van-

ishing outside (|αxA|)−1([ 1
m+2

, 2]), and so that 0 ≤ gm ≤ 1 for allm. Then (xA)∗(fgm|xB|) =

(xA)∗(fgm+1|xB|) = (xA)∗(f |xB|) on (−m,− 1
m

)∪( 1
m
,m), and by Lemma 2.0.3, the density

function (xA)∗(fgm|xB|) is continuous for each m.

�

It remains to show that the density is continuous at zero. In order to do this, we

introduce an auxiliary definition and recall a basic fact from measure theory.
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Definition 6.0.4. Suppose k and n are positive integers. Suppose r1, · · · , rn are

integers satisfying 0 ≤ ri < k. Define �k,r1,··· ,rn = [−1 + 2r1
2k+1

,−1 + 2(r1+1)
2k+1

]× · · · × [−1 +

2rn
2k+1

,−1 + 2(rn+1)
2k+1

].

Lemma 6.0.5. For any continuous function f supported inside [−1, 1]n and any ε > 0,

there exists an integer k > 0 and a function f� which is linear combination of character-

istic functions of sets of the form �k,r1,··· ,rn so that

|f − f�| < ε1[−1,1]n

almost everywhere. Additionally, the locus where the approximation fails is a union of

perpendicular translates of coordinate hyperplanes by odd multiplies of 1
2k+1

.

Proof. This is just the definition of integrability.

�

Lemma 6.0.6. Suppose A,B are as in the situation of Theorem 6.0.1. Suppose

(xA)∗(1�k,r1,··· ,rn
|xB|dx�n) is continuous in a neighborhood of 0.

Then (xA)∗(f |xB|dx�n) is continuous with respect to dx.

Proof. Recall that the function (xA)∗(f |xB|)(y) given by y 7→
∫

(xA)−1(y)S
f |xB|dx1···dxn

dx

represents the density of the pushforward (xA)∗(f |xB|)dx�n with respect to dx. By Lemma

6.0.3, it is enough to show that (xA)∗(f |xB|)(y) is continuous at 0.

Let ε > 0. We will show directly that

|(xA)∗(f |xB|)(0)− (xA)∗(f |xB|)(q)| < ε
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for all q in some small neighborhood of 0.

According to Lemma 6.0.5, we may choose a function f� which is a linear combination

of characteristic functions of boxes so that f� approximates f uniformly within any ε1 > 0

except on a union of translates of coordinate hyperplanes. By restricting to small enough

q ∈ R, we may assume that the intersection of the set of non-uniform approximation with

(xA)−1(q)S is of measure zero inside (xA)−1(q)S for each q. Therefore (xA)∗(|f−f�|·|xB|) ≤

ε1(xA)∗(1[−1,1]n|xB|) on a small enough open neighborhood of 0 ∈ R.

Writing

|(xA)∗(f |xB|)(0)− (xA)∗(f |xB|)(q)| ≤
∣∣(xA)∗(f |xB|)(0)− (xA)∗(f

�|xB|)(0)
∣∣+

+
∣∣(xA)∗(f

�|xB|)(0)− (xA)∗(f
�|xB|)(q)

∣∣+
+
∣∣(xA)∗(f |xB|)(q)− (xA)∗(f

�|xB|)(q)
∣∣ ,

it is enough to show that each term on the right hand side is less than ε
3

in a small-enough

open neighborhood of zero.

Rewriting the first term as (xA)∗(|f − f�| · |xB|)(0), we see that this is less than

ε1(xA)∗(1[−1,1]n|xB|)(0). Since (xA)∗(1[−1,1]n|xB|) is continuous in a neighborhood of 0, it

is bounded near 0, and by fixing q in some small open neighborhood of 0 and picking ε1

small we may make the first term less than ε
3
. The same argument applies to the third

term, and as the second term is a linear combination of continuous functions, we may also

bound it by ε
3

on a sufficiently small neighborhood of zero.

�
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The following lemma enables us to reduce checking the continuity of (xA)∗(1�k,x1,··· ,xn
|xB|)

in a neighborhood of 0 to checking the continuity of (xA)∗(1[−1,1]n|xB|) in a neighborhood

of 0.

Lemma 6.0.7. Suppose A and B are as in the situation of Theorem 6.0.1. If the

density function (xA)∗(1[−1,1]n|xB|) is continuous in a neighborhood of 0, then the density

function (xA)∗(1�k,x1,··· ,xn
|xB|) is continuous in a neighborhood of 0.

Proof. Let � be any box of the form [−1+ 2r1
2k+1

,−1+ 2(r1+1)
2k+1

]×· · ·× [−1+ 2rn
2k+1

,−1+

2(rn+1)
2k+1

] for each 0 ≤ ri < 2k + 1 an integer. Let �̂ be the union of all reflections of

� through all coordinate subspaces of Rn. We may write 1�̂ as a linear combination of

characteristic functions of n-dimensional boxes of the form SBk,s1,··· ,sn = [−2s1+1
2k+1

, 2s+1
2k+1

]×

· · · × [−2sn+1
2k+1

, 2sn+1
2k+1

].

First, there exists a positive integer N so that N(xA)∗(1�|xB|) = (xA)∗(1�̂|xB|). Now,

writing 1�̂ as a linear combination described above, we see that (xA)∗(1�|xB|) is a linear

combination of functions of the form (xA)∗(1SBk,s1,··· ,sn |x
B|). But each of these functions

is equal to a multiple of (xA)∗(1[−1,1]n|xB|) composed with a scaling of the input by the

change of variables formula. So (xA)∗(1�|xB|) is continuous in a neighborhood of 0.

�

As the f� picked in Lemma 6.0.6 was a linear combination of functions of the form

1�k,x1,··· ,xn
, it is enough to analyze (xA)∗(1[−1,1]n|xB|dx�n). Finally, we reduce from the

case of [−1, 1]n to the case of [0, 1]n.

Lemma 6.0.8. Assume A and B are as in Theorem 6.0.1. In order to show that

(xA)∗(1[−1,1]n |xB|dx�n) has continuous density with respect to dx in a neighborhood of
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zero, it suffices to show that the function given by −d
dq

∫
(xA)−1(q,1)

1[0,1]nx
B for q ∈ (0, 1) has

continuous extension to q = 0, which is zero if all entries of A are even.

Proof. If there is an odd entry in A, then (xA)∗(1[−1,1]n|xB|) at a point q is the same

as the density at a point −q, and the density for q ∈ (0, 1) is given by the formula

limε→0
2n−1

2e

∫
(xA)−1(q−ε,q+ε) 1[0,1]nx

B. If A has only even entries, then (xA)∗(1[−1,1]n|xB|) is

zero for q < 0, and the density for q ∈ (0, 1) is given by limε→0
2n

2e

∫
(xA)−1(q−ε,q+ε) 1[0,1]nx

B.

To show that (xA)∗(1[−1,1]n|xB|) has continuous density in a neighborhood of 0, we may

show that the function given by limε→0
1
2e

∫
(xA)−1(q−ε,q+ε) 1[0,1]nx

B for q ∈ (0, 1) has a

continuous extension to q = 0, and that this extension is 0 when A has only even entries.

As limε→0
1
2e

∫
(xA)−1(q−ε,q+ε) 1[0,1]nx

B = − d
dq

∫
(xA)−1(q,1)

1[0,1]nx
B, we have proven the lemma.

�

We start by computing
∫

(xA)−1(q,1)
1[0,1]nx

B for q ∈ (0, 1). First, we note that we may

generalize to the case where A and B are sequences of nonnegative real numbers with

not all ai = 0. We note that we may immediately integrate away all ai which are zero

at the price of a constant, so we may assume in the following that all ai are positive real

numbers.

In the following, if S = (s1, · · · , sk) is a sequence of real numbers, we say that S > c

or S ≥ c for c ∈ R if si > c or si ≥ c for all i.

Lemma 6.0.9. Suppose A = (a1, · · · , an) is a sequence of positive real numbers and

B = (b1, · · · , bn) is a sequence of nonnegative real numbers. Let C = (c1, · · · , cn) where

ci = bi+1
ai

. Let q ∈ (0, 1). Let hk(z1, · · · , zl) be the complete symmetric homogeneous

polynomial in the variables z1, · · · , zl with the convention that hk(z1, · · · , zl) = 0 for k < 0
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and h0(z1, · · · , zl) = 1. Let V (A,B, q) denote the volume of (xA)−1(q, 1) with respect to

the measure 1[0,1]nx
Bdx�n. Then V (A,B, q) is continuous in A, B, and q and may be

written in any of the following forms:

(1) V (A,B, q) = 1∏n
i=1 ai

∞∑
i=0

hi−n(c1, · · · , cn)(log q)i

i!
,

(2) V (A,B, q) = 1∏n
i=1 ai

(
1∏n
i=1 ci

−
∑n

i=1
qci

ci
∏

1≤j≤n,j 6=i(cj−ci)

)
, assuming the entries of

C are all pairwise distinct.

Proof. The claim that V (A,B, q) is continuous in A, B, and q is obvious from the

integral representation of the volume.

We now prove that the second case above holds and use it to deduce the first case.

We proceed by induction on n. For n = 1, the result is clear:

∫ 1

x1=q
1
a1

xb11 dx1 =
1

b1 + 1

(
1− q

b1+1
a1

)
=

1

a1

(
1

c1

− qc1

c1

)
Assuming the result for n, we may compute the n+ 1 dimensional volume as follows:

∫ 1

xn+1=q
1

an+1

1∏n
i=1 ai

(
1∏n
i=1 ci

−
n∑
i=1

(qx
−an+1

n+1 )ci

ci
∏

1≤j≤n,j 6=i(cj − ci)

)
x
bn+1

n+1 dxn+1 =

=
1∏n+1
i=1 ai

(
1∏n+1
i=1 ci

−
n∑
i=1

qci

ci
∏

1≤j≤n,j 6=i(cj − ci)
− qcn+1∏n+1

i=1 ci
+

n∑
i=1

qcn+1

ci
∏

1≤j≤n+1,j 6=i(cj − ci)

)

By a classical theorem of Sylvester [17], we have that 1 =
∑n+1

i=1

∏n+1
j 6=i

cj
cj−ci , or equiva-

lently 1∏n+1
i=1 ci

−
∑n

i=1
1

ci
∏

1≤j≤n+1,j 6=i(cj−ci)
= 1

cn+1
∏n
i=1(ci−cn+1)

, and so the coefficient of qcn+1

is as claimed.
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We now show the first case. By another classical theorem of Sylvester [17], we have

that hd−n+1(x1, · · · , xn) =
∑n

r=1 x
d
r

∏
j 6=r

1
xr−xj . Assuming ci 6= cj for i 6= j, let 0 < q < 1,

expand the m-dimensional volume function as a series in log(q), and apply the result of

Sylvester to obtain that the volume function is equal to

1∏n
i=1 ai

∞∑
i=0

hi−n(c1, · · · , cn)(log(q))i

i!

when ci 6= cj for i 6= j.

By the root test and the estimate |hi−n(c1, · · · , cn)| ≤
(
i−1
n−1

)
maxj |cj|i−n, this series

converges for all C (in particular, for all A > 0 and all B ≥ 0) and 0 < q < 1 (even when

ci = cj for some i 6= j). Since the above series agrees with

1∏n
i=1 ai

(
1∏n
i=1 ci

−
n∑
i=1

qci

ci
∏

1≤j≤n,j 6=i(cj − ci)

)

on the open dense subset where both are defined and V (A,B, q) is continuous, we see

that V (A,B, q) is in fact analytic in A, B, and log(q) with a series representation given

by 1∏n
i=1 ai

∑∞
i=0

hi−n(c1,··· ,cn)(log(q))i

i!
for A > 0, B ≥ 0, and 0 < q < 1.

�

Since all partial derivatives of all orders of an analytic function defined on an open

set U are again analytic, convergent, and continuous on U , we see that the negative of

the derivative of V (A,B, q) with respect to q is again analytic for all 0 < q < 1 and all

ai 6= 0, and is given by the formula

1∏n
i=1 ai

∞∑
i=0

hi−n+1(c1, · · · , cn)(log q)i

i!
.
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To show this function has a continuous extension to q = 0 which is zero if all entries

of A are even integers while the conditions on A and B from Theorem 6.0.1 are met, we

analyze the function

F (C, q) =
∞∑
i=0

hi−n+1(c1 − 1, · · · , cn − 1)(log q)i

i!
.

Lemma 6.0.10. Suppose C = (c1, · · · , cn) is a sequence of real numbers with either

ci > 1 for all i or ci ≥ 1 for all i with exactly one index i0 such that ci0 = 1. Then F (C, q)

has continuous extension to q = 0. Additionally, the continuous extension takes the value

0 if no ci = 1.

Proof. Up to relabeling, we may assume c1 ≤ c2 ≤ · · · ≤ cn. In the case where all

entries of C are pairwise distinct, we may apply formula (2) from Lemma 6.0.9 to see that

F (C, q) =
n∑
i=0

qci−1∏
j 6=i(cj − ci)

,

which has limit 0 as q → 0 if c1 > 1 and limit 1∏n
j=2(cj−1)

if c1 = 1.

In the remaining case where some entries of C are equal to each other, assume again

that we have ordered c1 ≤ c2 ≤ · · · ≤ cn. Since F (C, q) is continuous in C for all C and

0 < q < 1, for any 0 < q < 1 we may write F (C, q) = limC′→C F (C ′, q) for C ′ a sequence

of real numbers such that all entries of C ′ are distinct.

Let Y1 = {k ∈ Z>0 | c1 = ck}, and let Yl be inductively defined as {k ∈ N |

cminZ>0\(Y1∪···∪Yl−1) = ck}. Using the equality F (C ′, q) =
∑n

i=0
qci−1∏

j 6=i(cj−ci)
and the linearity
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of the limit, we see that we can write

lim
C′→C

F (C ′, q) =
∑
l

lim
C′→C

∑
i∈Yl

qci−1∏
j 6=i(cj − ci)

assuming each limit limC′→C
∑

i∈Yl
qci−1∏

j 6=i(cj−ci)
exists. Factoring out (cj−ci) for each j /∈ Yl,

we see that it is enough to treat the case of

lim
(c1,··· ,cm)→(c1,c1,··· ,c1)

m∑
i=0

qci−1∏
j 6=i(cj − ci)

.

Rewriting, we have lim(c1,··· ,cm)→(c1,c1,··· ,c1)

∑∞
i=0

hi−m+1(c1−1,··· ,cm−1)(log q)i

i!
. Applying con-

tinuity of this power series in the ci, we see that this is equal to
∑∞

i=0
hi−m+1(c1−1,··· ,c1−1)(log q)i

i!
.

As hi−m+1(c1 − 1, · · · , c1 − 1) =
(
i−m+1+m−1

m−1

)
(c1 − 1)i−m+1 =

(
i

m−1

)
(c1 − 1)i−m+1, we may

write this series as ∑
i=m−1

(c1 − 1)i−m+1(log q)i

(m− 1)!(i−m+ 1)!

and reindexing with j = i−m+ 1 gives

(log q)m−1

(m− 1)!

∞∑
j=0

((c1 − 1) log q)j

j!
= qc1−1 (log q)m−1

(m− 1)!
.

Since in this case c1 > 1 by our assumptions on the permissible C, this has limit 0 as

q → 0, and we have proven the lemma.

�

If all nonzero entries of A are even integers, then by the conditions in Theorem 6.0.1,

all ci must be greater than 1. By Lemma 6.0.8, we have shown that the conditions of
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Lemma 6.0.6 are satisfied, and thus we have proven Theorem 6.0.1, which in turn implies

Theorem 1.1.12 by the reductions in Sections 4 and 5.
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APPENDIX A

Recollections in complex geometry

In these appendices, we state a collection of definitions and results which we need

to reference in the main body of the text. We abandon our convention that when talk-

ing about geometric spaces, Roman letters are reserved for schemes and script letters

are reserved for complex-analytic spaces. Each time we define a geometric space in the

statement of a theorem or result, we will make it clear what we are referring to.

A.1. Basic definitions

We deal with k = R or C in this paper.

Definition A.1.1. Let Okn be the sheaf of analytic functions on kn. Let U be an open

connected subset of kn, and fix finitely many analytic functions f1, · · · , fm ∈ Okn(U). Let

V ⊂ U be the common vanishing locus of the functions f1, · · · , fm. Define a sheaf of rings

OV on V as the restriction of OU/(f1, · · · , fm), where OU is the restriction to U of the

sheaf Okn . We call the locally ringed space (V,OV ) a model.

Definition A.1.2. A k-analytic space X is a locally ringed space (X,OX) so that

every point x ∈ X has an open neighborhood U ⊂ X isomorphic as a locally ringed space

to a model V as described in Definition A.1.1.

Definition A.1.3. A morphism of k-analytic spaces is a morphism of locally-ringed

spaces such that the induced map on structure sheaves is k-linear.
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Definition A.1.4. Suppose (X,OX) is a complex-analytic space. By a complex con-

jugation, we mean a map of locally-ringed spaces σ : (X,OX) → (X,OX) which is an

order-two involution on the topological space X and σU : OX(σ(U)) → OX(U) satisfies

zσU(s) = σU(zs) for s ∈ OX(σ(U)) and z ∈ C.

Lemma A.1.5. Suppose X is a complex-analytic variety and σ is a complex conju-

gation on X. The following claims hold:

(1) (Xσ,OσX) is a real-analytic variety.

(2) If x ∈ Xσ ⊂ X is a smooth point as a complex-analytic variety, then x ∈ Xσ is

a smooth point as a real-analytic variety.

(3) If x ∈ Xσ is a smooth point, the the real dimension of Xσ at x coincides with the

complex dimension of X at x.

(4) For every point x ∈ Xσ, we may choose a σ-invariant open set Ux so that Ux is

isomorphic to a local model inside Cn, where the ideal sheaf is generated by real

functions. Equivalently, we may choose a local model so that the isomorphism

between Ux and the local model is an intertwiner for the complex conjugation on

X and the complex conjugation on the local model inherited from Cn.

Proof. See [9], Chapter II Section 4.

�

A.1.1. Measures on Analytic Spaces

In a manner similar to Definition 2.0.2, we define how to construct a measure on the

complex-conjugation invariant locus of a complex-analytic variety:
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Definition A.1.6. Suppose X is a Gorenstein complex-analytic space with a complex

conjugation σ. Let ΩX be the dualizing sheaf of X. For ω ∈ ΩX(X)σ a global section

invariant under σ, we define a measure |ω| on Xσ as follows. Recall that ΩX |Xsm is

isomorphic to the line bundle of top differential forms on Xsm. Given a relatively compact

open subset U ⊂ Xσ and an analytic diffeomorphism Ψ between U ∩Xsm and W ⊂ Rn,

we may write

Ψ∗ω = gdx1 ∧ · · · ∧ dxn

for some g : W → R, and define

|ω|(U) =

∫
W

|g|dλ

where |g| is the usual absolute value (g is a real-valued function by Lemma A.1.5) and λ is

the standard Lebesgue measure on Rn. By the change of variables formula, this definition

is independent of the diffeomorphismn Ψ. There is a unique extension of |ω| to a (possibly

infinite) Borel measure on Xσ, which we also denote |ω|.

A.2. Stein Spaces

A particularly useful concept in the study of complex-analytic spaces is that of Stein

spaces.

Definition A.2.1. Let X be a second countable complex-analytic space, and OX its

structure sheaf. X is called Stein if it satisfies the following criteria:

(1) For every pair of distinct points x, y ∈ X, there exists a holomorphic function

f ∈ OX(X) such that f(x) 6= f(y).
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(2) Every local ring OX,x is generated by functions in OX(X).

(3) X is holomorphically convex - that is, for every compact K ⊂ X, the set

K̂X = {p ∈ X : |f(p)| ≤ max
x∈K
|f(x)|∀f ∈ OX(X)}

is again compact.

Theorem A.2.2. (Cartan’s Theorem B)

Let X be a complex-analytic space. X is Stein if and only if for any coherent analytic

sheaf F on X, H i(X,F) = 0 for all i > 0.

Theorem A.2.3. (Cartan’s Theorem A)

Let X be a Stein complex-analytic space. Then every coherent sheaf F on X is gen-

erated by global sections.

Proof. See [3]. Cartan’s Theorem B is presented before Cartan’s Theorem A because

Theorem A is actually a consequence of Theorem B.

�

Lemma A.2.4. Let X, Y be complex-analytic spaces.

(1) If X ⊂ Y is a closed complex-analytic subvariety and Y is Stein, then X is also

Stein.

(2) If X, Y are both Stein, then X × Y is also Stein.

(3) If X ⊂ C is open, X is Stein.
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Proof. In each case, verifying that global holomorphic functions separate points and

generate local rings at points is immediate. We concentrate on proving holomorphic

convexity.

(1): Assume Y is holomorphically convex. Let K ⊂ X be a compact set and x ∈ K̂X .

This means that |f(x)| ≤ maxp∈K |f(p)| for all f ∈ OX(X). In particular, this statement

holds for every restriction of a function f ∈ OY (Y ) to X, so x must also belong to K̂Y .

Therefore K̂X ⊂ K̂Y . Since K̂Y was assumed to be compact and K̂X is closed, K̂X is

again compact and therefore X is holomorphically convex.

(2): Assume X, Y are both holomorphically convex. Let K ⊂ X × Y be a compact

set, and let (x, y) ∈ K̂X×Y . Then |f(x, y)| ≤ maxp∈K |f(p)| for all f ∈ OX×Y (X×Y ), and

in particular this holds for all functions which are constant in the X or Y direction. If f is

constant in the Y direction, this says that |f(x)| ≤ maxp∈prXK |f(p)| for all f ∈ OX(X),

so x must belong to p̂rXK. A similar argument for functions which are constant in the X

direction shows that y ∈ p̂rYK. Therefore K̂X×Y ⊂ p̂rXK × p̂rYK, so K̂X×Y must again

be compact as a closed subset of a compact set.

(3): We show directly that every open subset X ⊂ C is holomorphically convex. Let

K be a compact subset of X. K̂X ⊂ X is closed in the induced topology, so to show that

it is compact, it is enough to show that K̂X avoids the boundary of X and is bounded.

To see that K̂X is bounded, consider the definition of holomorphic convexity applied to

the function z : C→ C. If x ∈ K̂X , then |x| ≤ maxp∈K |p|, so K̂X is bounded. To see that

K̂X avoids the boundary, let a ∈ C belong to ∂X. Apply the definition of holomorphic

convexity to z 7→ 1
z−a . Since K is compact and does not contain a, | 1

z−a | is bounded on

K. This means that K̂X cannot approach a, and we are done.
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�

Corollary A.2.4.1. The following statements follow easily from Lemma A.2.4:

(1) Cn is Stein.

(2) Any polydisc is Stein.

(3) Any complex-analytic variety which admits a closed analytic embedding into Cn

is Stein.

(4) If X is an affine algebraic variety defined over a subfield k ⊂ C, then X(C) is

Stein.

(5) Let f : X → Z and g : Y → Z be holomorphic and assume that X, Y are Stein.

Then X ×Z Y is Stein.

Proof. (1),(2): Apply statements (2) and (3) from Lemma A.2.4.

(3): Apply (1) from Lemma A.2.4.

(4): Since X is affine, it admits a closed embedding X ↪→ AN
k for some N . Taking C

points, we see that X(C) ↪→ CN and we are done by (3).

(5): X ×Y Z is a closed subvariety of X × Z, so by applying statements (1) and (2)

from Lemma A.2.4, we have the result.

�

A.3. Analytic Duality

For some constructions related to rational singularities on complex-analytic varieties,

it is important that we develop a complex-analytic analogue of portions of Grothendieck

duality. In this section, we will define the dualizing complex and recall a duality theorem

of Ramis, Ruget, and Verdier.
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Definition A.3.1. Let X be a complex-analytic space of dimension n. Let U be an

open subset of X isomorphic to a model in an open subset Z ⊂ Cm. We define

Ω•X |U = RHomX(OX ,ΩZ [m])|U

where ΩZ is the line bundle of top differential forms on Z, which is the dualizing complex

on Z up to a shift of m.

Lemma A.3.2. Let X be a complex-analytic space. Define an endofunctor DX on

the category of complexes of sheaves on X with coherent cohomology by

DX(F•) = RHomX(F•,Ω•X).

Then the canonical morphism from F• to DXDXF• is a quasi-isomorphism.

Proof. See [14].

�

Theorem A.3.3. Suppose f : X → Y is a proper morphism of analytic spaces. Let

F• be a complex of sheaves on X with coherent cohomology, and let G• be a bounded-below

complex of sheaves on Y with coherent cohomology. There is a canonical isomorphism

Rf∗RHomX(F•, RHomX(Lf ∗RHomY (G•,Ω•Y ),Ω•X))→ RHomY (Rf∗F•,G•).

Proof. See [15].

�
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Corollary A.3.3.1. Suppose f : X → Y is a proper morphism of analytic spaces.

Let F• be a complex of sheaves on X with coherent cohomology. There is a canonical

isomorphism

Rf∗RHomX(F•,Ω•X)→ RHomY (Rf∗F•,Ω•Y ).

Proof. Applying Theorem A.3.3 with G• = Ω•Y , we see that we have a canonical

isomorphism

Rf∗RHomX(F•, RHomX(Lf ∗RHomY (Ω•Y ,Ω
•
Y ),Ω•X))→ RHomY (Rf∗F•,Ω•Y ).

Noting that RHomY (Ω•Y ,Ω
•
Y ) = OY , Lf ∗OY = OX , and that RHomX(OX ,−) is the

identity functor, we obtain the result.

�
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APPENDIX B

Resolution of Singularities

B.1. Algebraic Resolution of Singularities

We will use Hironaka’s theorem on resolution of singularities in characteristic zero,

found in [11]. The algebraic machinery introduced in this section is primarily intended

as background, and may be helpful in understanding resolution of singularities in the

analytic context in the next subsection.

Definition B.1.1. Let X be an algebraic variety.

• A resolution of singularities of X is a proper map π : Y → X such that Y is

smooth and π is a birational equivalence.

• A strong resolution of singularities of X is a resolution which is an isomorphism

over the smooth locus of X.

• A subvariety D ⊂ X is said to be a normal crossings divisor if for any x ∈ D there

exists an etale neighborhood φ : U → X of x and an etale map α : U → An such

that φ−1(D) = α−1(D′), where D′ ⊂ An is a union of coordinate hyperplanes.

• A subvariety D ⊂ X is said to be a strict normal crossings divisor if for any x ∈ D

there exists a Zariski neighborhood U ⊂ X of x and an etale map α : U → An

such that D∩U = α−1(D′), where D′ ⊂ An is a union of coordinate hyperplanes.

• We say that a resolution of singularities π : X̃ → X resolves (respectively strictly

resolves) a closed subvariety D ⊂ X if π−1(D) is a normal crossings divisor
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(respectively a simple normal crossings divisor). In this case we will also say that

π : X̃ → X is a resolution (respectively a strict resolution) of the pair (X,D).

• Let D ⊂ X be a subvariety of codimension 1. A strong resolution of the pair

(X,D) is a strict resolution π : X̃ → X which is an isomorphism outside of the

singular locus of X and the singular locus of D.

• Let π : X̃ → X be a resolution of singularities. Let U ⊂ X be the maximal

open set on which π is an isomorphism. Let D ⊂ X be a subvariety. The strict

transform of D is defined to be π−1(D ∪ U).

Theorem B.1.2 (Hironaka). Let D ⊂ X be a pair of algebraic varieties. Assume

that D ⊂ X is of codimension 1 and let U ⊂ X be a smooth open subset such that U ∩D

is also smooth. Then there exists a resolution of singularities π : X̃ → X that resolves D

and such that π : π−1(U)→ U is an isomorphism.

There is a standard method to resolve a normal crossings divisor to a strict normal

crossings divisor. This implies the following corollary.

Corollary B.1.2.1. Any pair of algebraic varieties D ⊂ X admits a strong resolution.

The following lemma is standard.

Lemma B.1.3. Let D ⊂ X be a pair of algebraic varieties such that D is irreducible,

has codimension one in X, and is not contained in the singular locus of X. Let π : X̃ → X

be a strong resolution of the pair (X,D) and let D′ be the strict transform of D. The

π|D′ : D′ → D is a resolution of singularities.
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B.2. Analytic Resolution of Singularities

We use Hironaka’s theorem for resolution of singularities for analytic spaces, found in

[11]. A more modern overview may be found in [21].

Definition B.2.1. Let X be a complex-analytic variety.

• An analytic subvariety D ⊂ X is said to be a strict normal crossings divisor if

for any x ∈ D there exists a neighborhood U ⊂ X and an open set V ⊂ Cn such

that there is an isomorphism α : U ∼= V and D = α−1(D′), where D′ ⊂ V is a

union of coordinate hyperplanes.

• A resolution of singularities of X is a manifold X̃ with a proper bimeromorphic

map π : X̃ → X such that π is an isomorphism over the nonsingular part of X,

the inverse image of the singular locus is a strict normal crossings divisor, and π

is functorial with respect to local analytic isomorphisms.

• Let π : X̃ → X be a resolution of singularities. Let U ⊂ X be the maximal

open set on which π is an isomorphism. Let D ⊂ X be a subvariety. The strict

transform of D is defined to be π−1(D ∪ U).

• Let X be a smooth complex-analytic space (i.e. a manifold) and D ⊂ X be an

analytic subspace. There exists a manifold X̃ together with a proper bimeromor-

phic map π : X̃ → X and strict normal crossings locally finite divisor E ⊂ X

such that the strict transofrm D̃ of D is smooth and has simple normal crossings

with E. Furthermore, the support of E is the exceptional locus of π, and π

factors as a sequence of blowups in smooth centers.
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• Let D ⊂ X be a subvariety of codimension 1. A strong resolution of the pair

(X,D) is a resolution π : X̃ → X which is an isomorphism outside of the singular

locus of X and the singular locus of D.

Theorem B.2.2 (Hironaka). Each sort of resolution defined above in definition B.2.1

exists.

An analogue of B.1.3 holds in the analytic situation.

B.3. Rational Singularities

Here we recall the definition of rational singularities for both algebraic varieties and

complex-analytic varieties. Both definitions depend on the notion of resolution of singu-

larities, defined previously in the appendix.

Definition B.3.1. We say that an algebraic variety or complex-analytic variety X has

rational singularities if for any (equivalently, some) resolution of singularities π : X̃ → X,

the natural map OX → Rπ∗(OX̃) is an isomorphism.

If X is an algebraic variety, a point x ∈ X(k) is said to be a rational singularity if

there is a Zariski neighborhood of x that has rational singularities.

If X is a complex-analytic variety, a point x ∈ X is said to be a rational singularity if

there is a neighborhood of x with rational singularities.

Theorem B.3.2. Let X be an algebraic variety. The following are equivalent:

(1) X has rational singularities.

(2) For any (equivalently, for some) resolution of singularities π : X̃ → X, the trace

map Trπ : Rπ∗ΩX̃ → ΩX is an isomorphism.
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(3) X is Cohen-Macaulay, and for any (equivalently, for some) resolution of singu-

larities π : X̃ → X, the trace map Trπ : Rπ∗ΩX̃ → ΩX is an isomorphism.

(4) X is Cohen-Macaulay, and for any (equivalently, for some) resolution of singu-

larities π : X̃ → X, the trace map Trπ : Rπ∗ΩX̃ → ΩX is onto.

(5) X is Cohen-Macaulay, normal, and for any (equivalently, for some) resolution

of singularities π : X̃ → X the composition Rπ∗ΩX̃

Trπ→ ΩX → i∗(ΩXsm), where

i : Xsm → X is the embedding of the smooth locus, is an isomorphism.

If X is affine, these conditions are also equivalent to the following:

(6) X is Cohen-Macaulay, and for any (equivalently, for some) strong resolution

of singularities π : X̃ → X and any section ω ∈ ΩX(X), there exists a top

differential form ω̃ ∈ ΩX̃(X̃) agreeing with ω on the smooth locus of X, i.e.

ω|Xsm = ω̃|Xsm

where we consider Xsm as a subset of both X and X̃.

(7) X is Cohen-Macaulay, normal, and for any (equivalently, for some) strong res-

olution of singularities π : X̃ → X and any top differential form ω ∈ ΩX(Xsm),

there exists a top differential form ω̃ ∈ ΩX̃(X̃) agreeing with ω on the smooth

locus of X, i.e.

ω = ω̃|Xsm

where we consider Xsm as a subset of both X and X̃.

Proof. See [1], Proposition B.7.2.
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Theorem B.3.3. Suppose X is a complex-analytic variety. The following are equiv-

alent:

(1) X has rational singularities.

(2) For all (equivalently, for some) resolution of singularities π : X̃ → X the natural

map j : R•π∗ΩX̃ → Ω•X is an isomorphism.

(3) X is Cohen-Macaulay, normal, and for all (equivalently, for some) resolution of

singularities π : X̃ → X the natural map j : π∗ΩX̃ → ΩX is an isomorphism.

(4) X is Cohen-Macaulay, normal, and for all (equivalently, for some) resolution of

singularities π : X̃ → X the natural map j : π∗ΩX̃ → ΩX is surjective.

(5) Assume X is also Stein. X is Cohen-Macaulay, normal, and for any section

ω ∈ ΩX and strong resolution of singularities π : X̃ → X, there exists a top form

ω̃ ∈ ΩX̃ so that ω|Xsm = ω̃|Xsm.

Proof. (1)⇔(2): Let j : Rπ∗ΩX̃ [dimX] → Ω•X be the natural map obtained by

applying DX = RHomX(−,Ω•X) to the map π# : OX → Rπ∗OX̃ , where we rely on

Theorem A.3.3 for the identification of DX(Rπ∗OX̃) ∼= Rπ∗ΩX̃ . Construct distinguished

triangles OX → Rπ∗OX̃ → M•
X → OX [1] and Rπ∗ΩX̃ [dimX] → Ω•X → N•X → Rπ∗ΩX̃ [1]

in the derived category of complexes with coherent cohomology on X. By Lemma A.3.2,

M•
X = DX(N•X) and N•X = DX(M•

X). Note that Rπ∗ΩX̃ is concentrated in a single degree

by Lemma 5.1.2, and OX is also concentrated in a single degree. If π# is an isomorphism,

then M0
X = 0, which implies that N− dimX

X = 0, and thus j must also be an isomorphism.

Similarly, if j is an isomorphism, then π# must also be an isomorphism.
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(2)⇔(3): This follows from Lemma 5.1.2, a version of the Grauert-Riemenschneider

Theorem in the analytic case.

(3)⇔(4): We need to prove that under the hypotheses that X is Cohen-Macaulay and

normal, the map j : R•π∗ΩX̃ → Ω•X is a monomorphism. Let U ⊂ X be an open set.

Because X is Cohen-Macaulay and π is a resolution of singularities, the map reduces to

j : π∗ΩX̃ → ΩX , a map of sheaves. Suppose ω ∈ ΩX̃(π−1(U)) = π∗ΩX̃(U) is in the kernel.

Let W ⊂ X be the open dense locus where π is an isomorphism. Then ω|W∩U = 0, so

ω ∈ ΩX̃(π−1(U)) is a holomorphic section which is zero on a set whose complement has

codimension at least two. By the Riemann Extension Theorem, ω must be zero, and we

have proven the claim.

(3)⇒(5): Since j : π∗ΩX̃ → ΩX is an isomorphism, we just compute the preimage of

ω. Since j is the identity on Xsm, the claim follows.

(5)⇒(4): Since X is Stein, the map j is determined by its action on global sections by

Cartan’s Theorem A (Theorem A.2.3). It suffices to show that j(ω̃) = ω. By construction

of j, j(ω̃)|Xsm = ω|Xsm , so j(ω̃) − ω is zero on a set whose compliment has codimension

at least two, and is thus zero.

�

Definition B.3.4. Suppose X, Y are either algebraic varieties defined over a field k

of characteristic zero or complex-analytic varieties. Suppose further that Y is smooth.

Let ϕ : X → Y be a morphism. We say that ϕ is (FRS) if it is flat and:

(1) in the case that Y is an algebraic variety with y ∈ Y (k), the fiber X ×Y y is

reduced with rational singularities
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(2) in the case that Y is a complex-analytic space with y ∈ Y , the fiber X ×Y y is

reduced with rational singularities.
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