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ABSTRACT

Motion and Sensing in Electrosensory Systems

James R Solberg

Sensing is a fundamental operation for almost any motion-based system. We have

chosen electrosensory systems as a platform to explore sensing and control in both ar-

tificial and biological systems. Electrosense is a convenient sensing modality because

artificial electrosensory systems are relatively simple to implement, and weakly electric

fish have some of the most well-documented sensorimotor pathways. In particular, active

electrolocation is investigated, where the task is to estimate the location of a target using

measurements from a self-generated electric field. The fundamentals of electrolocation are

described first with a finite-element numerical approximation of the governing equations,

and then simple models are used to predict electrosensory observations. Several belief

maintenance schemes are employed to fuse sensor data and explicitly account for uncer-

tainties in the position of the target. In the biological realm, a protocol for simulating the

sensory acquisition and belief maintenance during prey-capture behavior in the weakly

electric fish was developed. Using these simulations optimal sensing was investigated, and

results provide insight into the interdependencies and co-evolution of sensing and motion
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systems of the weakly electric fish. In the artificial realm, an electrosensory robot capa-

ble of actively locating underwater targets by measuring perturbations in a self-generated

electric field was built. Using seven different control algorithms, the robot can successfully

locate nearby targets, as well as localize itself when placed in a pre-mapped environment,

in both fresh and saltwater.
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CHAPTER 1

Introduction

The black ghost knifefish (Apteronotus albifrons) is a peculiar species of predatory

fish that live in the rivers of Amazon basin (Figure 1.1(A)). They hunt at night in turbid

waters where vision is of little use for capturing the small insect larvae and water fleas that

they often feast on. These knifefish utilize a self-generated electric field for sensing nearby

objects. As a potential prey enters the fish’s electric field, the prey distorts the nominal

electric field (assuming the electrical impedance of the prey differs from the surrounding

water). These distortions are detected by the knifefish’s voltage-sensitive sensory organs

that are scattered over the surface of its body. The fish uses the voltage measurements

from the perturbed electric field to estimate the location and other properties of the prey

[149]. The black ghost knifefish, along with several other species of South American and

African fish that emit an electric field for sensing purposes, are collectively referred to as

weakly electric fish to differentiate them from other aquatic species that generate much

stronger electric fields to stun prey or for self-defense.

Figure 1.1(B) depicts a 2-D simplified electrostatic model of a weakly electric fish in

the presence of a circular object (blue disk in Figure 1.1(B)) with higher resistance than

the surrounding water. Dipole charges create an electric field (black arrows are field lines),

and the pink circles represent volt sensors. The insulating blue disk diverts the electric

field causing the sensors to measure a voltage that is different than if there was no object
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(A) The black ghost knifefish: Apteronotus alb-
ifrons

(B) A simple model of the weakly electric fish

Figure 1.1. The weakly electric fish. (A): A photo of the weakly electric
fish. (B): A simple model of the electric field of the weakly electric fish. The
black curves are flow lines of the electric field. The blue disk is an electric
insulator. The pink dots are voltage-sensitive receptors.

present. In general the electric field is time-varying, and the objects in this field exhibit

a complex impedance (from both resistance and capacitance).

The electrosensory system of weakly electric fish is quite impressive. Their self-

generated electric field is only about 1 mV/cm near the body of the fish [187]. Yet,

their approximately 14, 000 voltage-sensitive organs (electroreceptors) can detect a 0.1 %,

or about 1 µV/cm, change in their nominal electric field [157]. This level of sensitivity

allows the black ghost knifefish to detect a water flea (Daphnia magna) about 2.8 cm

away in low conductivity water [154].

The weakly electric fish plays two very important roles in this document—inspiration

and simulation. A major theme of this document is the development of an electrosensory

system that rivals the performance of the weakly electric fish. The weakly electric fish

is used only for inspiration in this case, and details of our system are not constrained
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to exactly match the specifics of the weakly electric fish. In particular electrolocation—

which is the task of estimating the position of target from voltage measurements—is

investigated. Secondly, the weakly electric fish is used to investigate the interdependencies

between sensing and motion. Sensory acquisition and prey localization is simulated for

several different types of fish-like trajectories. By quantifying the sensing performance of

these trajectories, conclusions are drawn about the sensing effectiveness of the trajectory

choice and structure of the electrosensory system.

1.1. Thesis Overview

In almost any system with both sensing and motion control, it is necessary to rec-

ognize their interdependencies. We have chosen electrosensory systems as a platform to

explore sensing and control in both artificial and biological systems. Electrosense is a con-

venient sensing modality because artificial electrosensory systems are relatively simple to

implement, and weakly electric fish have some of the most well documented sensorimotor

pathways. In the artificial realm, we have built a robotic electrosensory robot capable of

actively locating underwater targets using perturbations in a self-generated electric field.

In the biological realm, we have simulated the sensory acquisition and belief maintenance

of the weakly electric fish during the prey-capture task. In both cases—as in most systems

with both sensing and motion control—characteristics of the sensing system influence the

optimal motion plan.

This document addresses three major objectives:

(1) Developing models of electrosense and complementary methods of target belief

maintenance.
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(2) Investigating interdependencies between motion and sensing in weakly electric

fish.

(3) Implementing an active, robotic electrosensory system for locating underwater

targets.

These objectives are realized through focusing on two electrosense-based systems: the

weakly electric fish and the Electrosenster. The weakly electric fish has been described

above. The Electrosenster is an XY robot equipped with a self-generated electric field

and sensors to measure perturbations in the field (just like the weakly electric fish). The

Electrosenster is a much simpler system than the fish. Nonetheless, it is capable of

performing electrolocation of targets using the same sensing modality.

1.2. Weakly Electric Fish Use Active Sensing for Active Sensing

Active sensing is a reoccurring theme throughout this document. Coincidentally,

weakly electric fish exhibit two different meanings of the word “active sensing,” which

are differentiated below [174].

Active Sensing definition 1. During the task of electrolocation weakly electric

fish strategically control the trajectory of their body so their electroreceptors can receive

the necessary information to determine the location of the target. In this context active

sensing refers to the control strategy of moving to maximize the knowledge of the world

[51].

Active sensing is a fundamental task for both robots and animals wishing to increase

their knowledge of their surroundings [26, 106, 165, 174]. Active sensing usually takes

the form of a sensor-based control scheme and is often synonymous with exploration.
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Active sensing strategies have been used for both linear and nonlinear [117] systems as

well as for stochastic [151] systems. A few applications include target tracking [135,

216], sensor planning [60, 137], haptic exploration [27, 190, 198, 219], localization

[241, 257], and locating vapor sources [183]. The chapters to come will use electrosense-

based systems to demonstrate various active sensing techniques.

Active Sensing definition 2. Weakly electric fish sense changes in their self -

generated electric field to infer the state of their surroundings. In this context active

sensing refers to actively emitting the energy that will be sensed. Since weakly electric

fish generate the electric field that is subsequently sensed, their electrosense can be called

an active sensing modality.

The first definition of active sensing is used more frequently in this document than

the second, thus, we use the term “active sensing” to denote definition 1 above unless

otherwise noted.

1.3. Background on Electric Field Sensing

Since sensing electric fields is a fundamental concept throughout this document, it is

useful to understand how it is used in other applications.

As a potential sensing technology for both marine and freshwater applications, elec-

trosense combines some of the advantages of somatosensation, in that it is easily dis-

tributed across a body surface to achieve omnidirectionality, and of vision, in that it

occurs at a distance [155]. It is also useful in dark, cluttered or turbid environments

where vision is useless, as evidenced by the weakly electric fish’s ability to hunt in these

conditions [155]. As a leading model system in neurobiology for how animals process



24

sensory information, a great deal is known about biological electrolocation [20, 246]

facilitating the development of artificial electrolocation systems [39].

There are a few examples of engineered electric field sensing systems. One of the

earliest was the Theremin, a musical instrument that made its first public appearance

in 1921 and measures the player’s capacitance to determine the pitch of the output tone

[224]. The Theremin is the first device that could measure the position of an object (the

body parts of the player in this case) by measuring changes of an emitted electric field

[206]. Using principles similar to a Theremin, a system has been developed by the MIT

Media Lab that is able to extract the 3-D position of a user’s hand [207]. In both systems

the capacitance of a nearby hand changes the nominal electric field.

In a previous study an artificial electrosensory array was built to study the feasibility of

using such a system in underwater robots [156, 155]. This system was able to determine

the distance of a submerged 10 mm diameter plastic sphere up to a distance of about

12 mm away from the sensor. The distance estimation algorithm was based on the spatial

distribution of the sensor measurements. A related study built an artificial electrosensory

system to investigate the possibility of using such a system for obstacle avoidance in

underwater robots [74]. This system could detect either a conducting or insulating sphere

25 mm in diameter at a range of 5 mm. In preliminary experiments the robot could

perform obstacle avoidance using this electrosensory system.

The biological and man-made electric field sensing approaches described above are a

specific instance of impedance imaging [48]. In impedance imaging the goal is to determine

the spatial distribution of electrical resistance and permittivity (a measure of how readily

charges separate under an imposed electric field) of a specified region given voltage and/or
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current measurements at the boundary. Two popular variants of impedance imaging are

resistivity imaging and electrical impedance tomography.

Resistivity imaging began its widespread use in the 1920s by geophysicists who used

arrays of metal electrodes inserted into the ground to estimate a map of the subsurface

strata. Data are collected by injecting current across pairs of electrodes and then mea-

suring the voltages at the other electrodes. Variants of the basic technique are still used

today by geophysicists for imaging the subterrane and extracted core samples [86].

In the late 1970s tomographic impedance measurement techniques were developed for

non-invasive imaging of impedance variations inside the human body [15]. This technique

is now referred to as electrical impedance tomography (EIT, see [72], [111], and [148] for

reviews). Internal impedance images can be used to diagnose such medical conditions as

pulmonary emboli or blood clots in the lungs [195]. The problem of EIT is to estimate

the spatial distribution of impedances from a series of electrical measurements at the

boundary. In medical imaging applications, electrodes are placed on the surface of the

skin, and an internal impedance image is deduced. The basic mathematical model used

to construct an impedance image is Laplace’s equation with complex impedance,

(1.1) ∇ · γ(x, ω)∇V = 0,

where x ∈ R3 is the spatial coordinate, ω is the frequency of the applied current, V

is the electric potential, and the inverse of electrical impedance (called admittivity) is

represented by γ(x, ω) = σ(x, ω)+iωε(x, ω), where σ is the electrical conductivity and ε is

the electric permittivity. The forward problem associated with Equation (1.1) is deducing

the relationship between the electric potentials and currents at the boundary for a given
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impedance. The inverse problem, sometimes known as the Calderón Problem [57], is to

determine the impedance of the interior of the body given the applied electric potentials

and current measurements on the boundary [179]. This nonlinear inverse problem is

typically severely ill-posed [87, 118]. In practice, the number of degrees of freedom of

a parameterized impedance map that can be determined is limited by the number and

precision of the independent observations made. In special cases, simplifying assumptions

can reduce the complexity of the solution [244].

1.4. Electrosense as a Possible Modality for AUVs

We have just seen some applications of electric field sensing, but none give strong

motivation for developing an active robotic electrosensory system. In this section the case

is made for using electrosense in underwater vehicles. By developing a simple robotic

electrosensory system, we are taking the first steps to implementing electrosense on more

complex (man-made) systems including autonomous underwater vehicles.

Autonomous underwater vehicles (AUVs) are routinely used by oil and gas companies,

the military, and scientists for tasks such as developing seafloor maps, mine detection, and

studying the ocean and ocean floor (e.g. aquatic flora and fauna monitoring), respectively.

Many new designs of AUVs that are currently being developed promise to perform much

more challenging tasks such as reconnaissance, search and rescue operations, and weapon

deployment. Because of tight constraints on power and space, AUV designs are often

streamlined to perform a specific task. An effective AUV design incorporates comple-

mentary sensing and propulsion systems for its intended task. For example, it would be

inefficient for an AUV to have a long-range sonar system if it was only traversing tight
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underwater caves since the sound waves could not penetrate the walls of the caves. Thus,

when choosing a sensing system for an AUV it is important to find the best technology

for both the AUV’s motion capabilities and for collection of the pertinent information.

Most contemporary AUVs emphasize long range sensing. The majority of these sensing

systems can be classified as either optical or acoustical. The optical class includes video

camera and laser range finders. These systems are able to provide high spatial resolution

for shorter range applications and when the optical properties of the water are favorable.

Sonar systems, on the other hand, have a longer range, but provide poor spatial resolution.

Another advantage of sonar is that it is unaffected by poor visibility.

Less mainstream underwater sensing technologies could be utilized to better comple-

ment the AUV’s motion capabilities and designated task. A few examples of potential

AUV sensing technologies are ultrasound, whisker systems inspired by those of seals and

rodents, and the use of emitted low power electric fields and field perturbation sensing

as is utilized by nocturnal electrosensory fish. Ultrasonic technologies offer the potential

of higher resolution than their more commonly used audible and sub-audible counter-

parts, but their higher frequency acoustic waves are more readily dissipated. Underwater

whiskers, inspired by whiskers on seals, can be used to sense fluid current patterns and

possibly even fine details of solid objects based on mechanical interaction with the whiskers

[215]. Electrosense is also a viable option, depending on the task of the AUV. A self-

generated electric field (i.e. active electrosense) allows for control of the intensity, direc-

tion, timing, and spectral characteristics of the stimulus energy [174]. An electrosensory

system on an AUV could construct an impedance image of its surroundings, which could

be used for navigation or surveying. Active (sensing self-generated energy) electrosense
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could potentially offer high spatial resolution, but because of the quartic power-law de-

pendance of geometric spreading [174], electrosense should only be used for short-range

applications. Electrosense is omnidirectional, and is unaffected by water visibility. A

good application for electrosense would be in an AUV working in cramped caverns with

an omnidirectional locomotion system. In this situation the AUV needs a good image of

its nearby surroundings to make reactive control choices.

1.5. Belief Maintenance and Planning Under Uncertainty

Any real sensing system has noise. Thus, we have chosen to address the uncertainties

that arise from noisy sensors (specifically, from electrosense). These uncertainties should

be accounted for in the both the estimation scheme and controller [24].

Conceptually, a belief is any reasonable representation of the state of a system [212].

This is a very vague and abstract definition, so, for the purposes of this document we limit

a belief to a mathematical (and usually statistical) description of the parameters that

define the system. Many times the belief will take the form of probability distributions

over a state space or parameter space. For example, if we wish to keep track of the position

of a point on a line, then we could choose the coordinate position along that line, say x, as

the state. If we knew with absolute certainty where the point was, then we could just use

that single number as the belief (e.g., x = 1 is the belief). But, because the sensors used

to estimate x are noisy, the position is uncertain, and the uncertainties should be reflected

in the belief representation (for example the belief could be a probability distribution over

all possible values of x). Belief maintenance is the process of updating the belief with

new information (e.g., sensor observation).
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The classical approach to motion planning under uncertainty is to first estimate the

state of the system based on all previous motion and sensor information and then execute

a control policy based on that state estimate. If the history information space, Ihist,

is defined as the collection of all the actions and all the sensor observations (past and

present) along with the initial conditions of the system, then this classical control scheme

can be written as the following two step process:

(1.2) κs.e. : Ihist → X

(1.3) π : X → U

where κs.e. is a mapping from information space to state space (s.e. = state estimate). The

mapping π is a control policy that generates a control vector, u ∈ U , based on the state

estimate, x̂ ∈ X . This decoupling of the estimation and control components facilitates

an efficient and intuitive flow of information. But, crucial information could potentially

be lost in the transformation in Equation (1.2), depriving the control policy of sufficient

information to act optimally.

Alternatively, a control policy can be an explicit function of the history information

space:

(1.4) π : Ihist → U

This guarantees that the control policy operates with the maximum amount of information

available. In general Ihist is a very large dimensional space that grows by the number



30

of observations plus control actions at each time step. In almost any scenario a control

policy that is an explicit function of Ihist becomes impractical. Additionally, Ihist does

not lend itself to an intuitive representation of the knowledge of the system’s state. An

intuitive representation of the state can facilitate the design of a control policy.

This document employs an intermediate approach where the control policy is a func-

tion of the belief, b, of the system. We define belief space, B, as a type of derived infor-

mation space [142]. An information mapping, κbel, transforms an element in Ihist to an

element in B. Now, the control policy, π, operates on the belief space (derived information

state), as expressed here:

(1.5) κbel : Ihist → B

(1.6) π : B → U

Equations (1.2) and (1.3) are a specific implementation of Equations (1.5) and (1.6),

where B becomes X for the case of directly estimating the system’s state for the control

policy to use.

Recall the example of tracking the x coordinate of a point on a line. A PDF over all

possible x values is a valid belief, and thus an element in belief space. All of the raw sensor

data would be contained in Ihist. An information mapping would map all the sensor data

into a PDF over x. The controller uses this PDF to generate the control command.
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1.6. Preview

An overview of this document was given in Section 1.1, which outlined three objectives.

Each of these objectives has been assigned to one of the three parts of this document.

In Part 1 models of electrolocation and target belief maintenance are presented. In

Chapter 2 two methods of modeling electrosensory observations are examined. The first

method is a numerical simulation that is general but computationally expensive. In the

second method an analytic solution is provided for a single spherical target in the electric

field. In Chapter 3 the noise in the sensors is explicitly accounted for with several

different belief maintenance schemes.

Part 2 investigates interdependencies between motion and sensing in weakly electric

fish. We use the models developed from Part 1 to simulate the sensory acquisition and

belief maintenance of the weakly electric fish during the prey-capture task. Using these

simulations we can quantify the sensing performance of different types of trajectories.

Results reveal how well the fish’s sensing system has evolved for the prey-capture task.

Part 3 is dedicated to the implementation and evaluation of a robotic electrosen-

sory system for locating underwater targets (a.k.a. the Electrosenster). In Chapter

6 the experimental setup is described. Chapter 7 develops a sensor model as well as

characterizes the detection distance. Next, Chapter 8 evaluates the performance of the

several active controllers whose task is electrolocation. Finally, in Chapter 9 a few more

capabilities of the Electrosenster are demonstrated including global localization and a

non-probabilistic-based controller.

Chapter 10 1) states the driving objectives of this work, and 2) discusses extensions

of this work that include developing accurate models of sensorimotor transformations in
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the weakly electric fish. Throughout this document we have chosen very simple models

to investigate various aspects of weakly electric fish. While these models have provided

some valuable results, they cannot accurately replicate sensorimotor transformations of

the weakly electric fish. Appendix F discusses models of the afferent and early stages

of electrosensory information that are grounded in the morphology, anatomy, and neu-

robiology of the weakly electric fish. Appendices I and J address the complexities of

modeling controllers in biology. Once the intricacies of the fish’s sensorimotor transfor-

mations are exposed, we may discover that more parsimonious models of sensor-based

control (discussed in Appendix G) may accurately model the salient components. If

not, then more complex approaches may be needed (discussed in Appendix H).



Part 1

Modeling Electrolocation



Part 1 investigates the fundamentals of electrolocation. We examine how voltage

measurements of an electric field can be used to estimate the location of a target perturbing

the electric field. In Chapter 2 two types of models are considered. The first employs

a finite-element numerical approximation of the governing equations of the electric field.

While accurate and general, this method is computationally expensive. The other method

is only valid for spherical targets but is fast to compute since closed-form solutions can be

found. This second method will be used in the remainder of this document for simulating

electrosensory observations.

Two different electrosensory systems are presented. The first model—called the dipole

model—represents the emitter/detector layout of the electrosense-based robot that will

be investigated in Part 3. The second—called the ellipse model—is a simplified model of

the weakly electric fish.

Once the fundamentals of electrolocation are established, Chapter 3 investigates sen-

sor fusion techniques with noisy sensors. First, we consider the case when statistics about

the sensor noise are not known, but the noise is bounded (possibilistic models). Sec-

ond, Gaussian noise is assumed, and we explore belief maintenance techniques for target

electrolocation using both a histogram filter and a particle filter. All the sensor fusion

techniques are demonstrated on both the dipole and ellipse models.
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CHAPTER 2

Modeling Electrosensory Observations

Electrolocation is the task of estimating the location of a target based on electri-

cal measurements (i.e. voltage and/or current) near the target. In this chapter the

electrolocation of circular and spherical targets based on voltage measurements from a

self-generated electric field is examined.

Two methods of modeling electrosensory observations are considered in this chapter.

The first methods uses differential equations derived from Maxwell’s Equations to describe

the electric field. Then, a finite element solver numerically approximates the electric field.

This method is very general but is computationally expensive. The second method uses

an analytical model to predict electrosensory observations. This model is only valid for

simple objects (spheres or ellipsoids), but is very fast to compute.

The ensemble of electrosensory viewpoints (EEV) maps the configuration of the target

to the expected sensor observation. The EEV, along with a sensor model and sensor

fusion scheme, can be used to determine the configuration of the target. This chapter

demonstrates how to compute EEVs using both numerical methods and an analytical

model for simple targets.

2.1. Numerical Construction of the EEV in 2-D

The purpose of this section is to illustrate how voltage measurements of an electric

field can be used to estimate the location of a nearby target. We first consider a general
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formulation derived from governing differential equations. A simple example of a con-

ductor in an electric field is used. The example used is made as simple as possible while

still providing the general intuition behind electric field sensing. The example consists

of a single target near an electrostatic dipole producing DC current. In the interest of

simplicity the following assumptions are made:

(1) linear and isotropic media

(2) time-invariant fields

(3) ignore the presence of magnetic fields

(4) two-dimensional (planar)

2.1.1. Formulation

We begin with the fundamental equations for electric fields and then use the assumptions

above to simplify the model.

2.1.1.1. Fundamental Equations. The physics of all electric and magnetic waves are

mathematically described by a set of four differential equations commonly referred to as

Maxwell’s Equations [120] (terms are defined in Table 2.1):

(2.1) ∇ ·D = ρ

(2.2) ∇ ·B = 0

(2.3) ∇× E = −∂B

∂t
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(2.4) ∇×H = J +
∂D

∂t

E electric field
H magnetic field
D electric displacement field
B magnetic flux density
ρ free electric charge density,

not including dipole charges bound in a material
J free current density,

not including polarization or magnetization currents bound in a material
Table 2.1. Definition of terms for Maxwell’s equations (Equations (2.1)
through (2.4)).

Also of interest is the equation of continuity of charge. To obtain the continuity

equation, begin with Equation (2.4), then take the divergence of both sides. Because the

divergence of a curl is zero, the result is:

(2.5) ∇ · ∇ ×H = ∇ · J +
∂∇ ·D
∂t

= 0

If Maxwell’s Equation (2.1) is substituted into Equation (2.5), then the continuity equa-

tion for current density is obtained. This relation states that the divergence of the current

density is equal to the negative rate of change of the charge density, and shown here:

(2.6) ∇ · J = −∂ρ
∂t

Next, it is shown that by applying the four simplifying assumptions to Equations (2.1)

through (2.6) Poisson’s equation will emerge. Poisson’s equation will serve as the basis

for the numerical simulations.
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2.1.1.2. Application of the Four Assumptions. Each of the four assumptions listed

above will be applied to the fundamental equations.

(1) Linear and isotropic media. By invoking this assumption, the following con-

stituent relations can be assumed (σ is the electrical conductivity; ε is the electrical

permittivity; and µ is the magnetic permeability):

D = εE

B = µH

(2.7) J = σE

where σ, ε, and µ are time-independent scalars.

(2) Time-invariant fields. One problematic complication of Maxwell’s equations is

that the time rate of change of B affects the electric field (see Equation (2.3)), and the

time rate of change of D effects the magnetic field (See Equation (2.4)). Thus, Maxwell’s

equations must be solved simultaneously in the case of time-varying fields. When these

fields become time-invariant, then this type of coupling disappears, and the two fields can

be determined independent of each other. This is why static-field problems are relatively

simple. Therefore, to greatly reduce the complexity of the problem, time-invariant fields

are assumed here.

(3) Ignore the presence of magnetic fields. Even with time-invariant fields, there

is still coupling between electric and magnetic fields through Equation (2.3), which arises

from conduction currents. Since J = σE, Equation (2.3) can be written as ∇×H = σE,
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which means the magnetic field is dependent on the (time-invariant) electric field. But,

because of combination of Equations (2.3), (2.6), and (2.7), the sources of the electric field

are independent of the magnetic field. Thus, the coupling between electric and magnetic

fields (under these strict assumptions) resulting from conduction currents is unidirectional.

Furthermore, it will be assumed that these magnetic fields will not interfere in any other

way (i.e. The presence of magnetic fields will be ignored).

(4) Two-dimensional (planar). The dimension of the example will be kept as low

as possible for easy computation and visualization.

Given the above four assumptions, Equations (2.1) through (2.6) are reduced to Pois-

son’s equation for pure conduction current:

(2.8) −∇ · (σ∇V ) = ρ

This is the equation that is used in the next section to numerically determine the electric

field with a target nearby.

2.1.2. Numerical Simulation of Electric Field

Equation (2.8) is now used to develop a numerical simulation to demonstrate how targets

of impedances different than their surrounding medium perturb an electric field.

Simulations are implemented with MATLAB’s Partial Differential Equation Toolbox

(The Mathworks, Natick MA, USA), which is a finite-element solver. The simulation uses

Poisson’s equation (Equation (2.8)) with both Dirichlet and Neumann type boundary

conditions. For electrostatic problems, the Dirichlet type boundary condition takes the
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Figure 2.1. Unperturbed electric field for the simulation world. Arrows
show the direction of the electric field. Contours are isopotentials (constant
voltage) with the heavy line at zero volts. Contours are at 50 mV incre-
ments. In subfigure (B) the emitters are represented with red squares. The
center of the green diamond represents the point of voltage observation.

form:

(2.9) hV = r

and the Neumann type boundary condition takes the form:

(2.10) n · (σ∇V ) + qV = g

where n is a vector normal to the boundary surface; h, r, q, and g are parameters that

define the nature of the constraint (these will be assigned later).
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The ideal simulation would compute the electric field generated by a simple dipole in an

infinite medium. But, since the finite element simulation requires a finite domain, a “very

large” medium is used. The modeled electric field is generated by two 1 mm diameter

disks that are centered at y = 0 and x = {−25, 25}. For the disk at (x = −25, y = 0)

Dirichlet boundary conditions with h = 1 and r = 1 are used (see Equation (2.9)). This

constrains the electrostatic potential at the disk’s surface to 1 volt (essentially making it

a voltage source). Similarly, the Dirichlet boundary conditions of h = 1 and r = −1 are

imposed at the disk centered at (x = +25, y = 0) (making this a voltage source of −1

volt).

The “infinite” medium is approximated as an 800 mm by 800 mm square centered

at (x = 0, y = 0). Neumann boundary conditions with g = 0 and q = 0 (see Equation

(2.10)) are imposed at the four edges of the square. In electrostatic problems with q = 0,

Neumann boundary conditions define the normal component of the electric field. With

g = 0 this particular constraint says there is no normal component of the electric field at

the square’s edges. This is equivalent to the square’s edges being ideal electrical insulators.

Figure 2.1 shows the electric field for this setup.

2.1.3. Electrosensory Viewpoint

In Figure 2.1 no target is present to distort the electric field generated by the electric

dipole (two red squares). In this situation, a sensor located at position (x = 0 mm, y =

−25 mm)—which is symbolized by the green diamond—lies on the iso-potential contour

of 0 V. In Figure 2.2 a circular perfect conductor of radius 3 mm is centered at coordinates

(x = 15 mm, y = −15 mm). The presence of the conductor distorts the electric field, and
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Figure 2.2. The electric field is perturbed by an electrically conducting disk
of 3 mm radius. The emitters of the electric field are located at the two
red squares. The green diamond sensor reads 112 mV. Since the target is a
perfect conductor, no electric field can exist inside it. Thus, the surface of
the target is an equipotential, and the electric field is perpendicular to the
surface. The heavy contour line is zero volts. In subfigure (A) the contours
are at 50 mV increments and are at 10 mV increments in subfigure (B).
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Figure 2.3. The electric field is perturbed by an electrically insulating disk
of 3 mm radius. The emitters of the electric field are located at the two
red squares. The green diamond sensor reads 9.5 mV. Since the target is
a perfect insulator, the electric field is tangent to the surface. The heavy
contour line is zero volts. In subfigure (A) the contours are at 50 mV
increments and are at 10 mV increments in subfigure (B).

thus perturbs the original electrostatic potential. The sensor is now at Vct = 112 mV, and

the observation for this target at this location is w = 112 mV. We define the combination

of target position and the observation the electrosensory viewpoint (EV) for these sets

of conditions. If x is the location of the target relative to the sensor frame, and w

is the measured voltage, then the EV is simply {x, w}. In this example, the EV is

{(15 mm,−15 mm), 112 mV}.
In Figure 2.3 the conducting target from the previous example is replaced with an in-

sulating target. As before, its presence perturbs the nominal electric field. The green dia-

mond sensor will observe 9.5 mV in this case. Thus, the EV is {(15 mm,−15 mm), 9.5 mV}.
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2.1.4. The Ensemble of Electrosensory Viewpoints

The collection of EVs for every possible target location composes the ensemble of elec-

trosensory viewpoints (EEV). The functional form of the EEV maps the target position

to the observed sensor measurement, and can be written as:

(2.11) EEVe(x) = w

The subscript e denotes unchanging aspects of the environment that the EEV depends

on, which here includes the size, shape, and material properties of the target, the applied

electric field, and the conductivity of the medium.

An EEV can be created for the 6 mm diameter conducting disk used previously. The

disk is placed at each of the 144 points of a 12 by 12 grid and the simulated voltage

observed by the green diamond is recorded. For example, above it was shown that if the

disk is placed at location (x = 15, y = −15), then the sensor observes 112 mV. In Figure

2.4 this location is represented as the large yellow dot, and the value of +112 mV is

assigned to the cell centered at (15,−15). Once this process is repeated for the remaining

143 yellow dots, the EEV shown in Figure 2.4 emerges.

Figure 2.4 can be used to localize the 6 mm diameter disk. Assume it is known that

only the 6 mm conducting disk is perturbing the electric field, and the sensor is noise-

free. Also, the disk is constrained to be only at one of the 144 grid locations. If the

sensor observes 112 mV, and if the cell centered at (15,−15) in Figure 2.4 is the only disk

location that rendered 112 mV, then it could be concluded with certainty that the disk is

located at position (15,−15). Of course this very simple case does not accurately portray
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Figure 2.4. The EEV for the 6 mm diameter conducting disk. The two
red squares generate the electric field. The green diamond is the voltage
sensor. Yellow dots represent all the locations the target was placed during
the construction of the EEV. The color of each cell represents the observed
voltage, where white is the largest positive observation and black is the
largest negative value.
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real-world target localization situations. In forthcoming chapters it will be shown how to

electrolocate targets under more realistic conditions.

2.2. An Analytical Solution to the EEV in 3-D

A finite-element numerical simulation of electric fields is a computationally expensive

method for estimating the voltage observation, making it impractical to use in 3-D simu-

lations. Luckily, there is an analytical solution for predicting electrosensory observations

induced by simple targets perturbing electric fields. Also, we now only consider electric

fields that are generated by point charges. This assumption allows for quick calculation

of the electric field.

2.2.1. Electric Field Generated by Point Charges

In the previous section the 2-D electric field needed to be computed for all nodes, even if

only the electric field for a single point in space was needed. Fortunately, the electric fields

examined in this document can be closely approximated by a computationally-efficient,

analytical solution, which uses point charges to generate the electric field. All models of

electric fields throughout the remainder of this document will be assumed to be generated

by ideal point charges.

If xq ∈ R3 represents the charge-centered relative coordinates, then an isolated point

charge defines an electric field for every point in its vicinity by the Equation [235]:

(2.12) Ef(xq) =
kQ

|xq|2 x̂q
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Figure 2.5. Electric field for dipole model. Contours are at 10 mV incre-
ments. Q+ = 1.11 · 10−13 C and Q− = −1.11 · 10−13 C.

where Q is the magnitude of the charge (in Coulombs), x̂q is a unit vector from the

charge to xq, |xq|2 is the square of the magnitude of xq; and k is the Coulomb constant

(8.988× 109N ·m2/C2).

The electric field at each point in space is a vector and obeys the superposition princi-

ple. That is, the net electric field due to a system of charges can be found by computing

the electric field due to each charge in the system separately and then adding these vectors

to obtain the net electric field. Simply, E =
∑

i Ei. Figure 2.5 shows an example of the

resultant electric field generated from two point charges (an electric dipole).
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2.2.2. An Analytical Model for Electrosensory Observations

We now consider an idealized 3-D model for the observed voltage perturbation created by

a sphere of known diameter and conductivity in water of known conductivity [187]. This

model gives an analytical solution of the EEVe(·) for spheres.

If we let xt ∈ R3 represent the target-centered relative coordinates, then the model is

represented as:

(2.13) δV (xt) =
a3Ef · xt

|xt|3
(
σtarget − σwater

σtarget + 2σwater

)

where δV (xt) represents the change in potential (mV) at position xt (cm); a is the target’s

radius (cm); Ef is the electric field vector at the location of the target (mV/cm) when

no target is present; σtarget is the conductivity of the target (µS/cm), and σwater is the

conductivity of the water. The right term of Equation (2.13) within the parentheses is

called the electrical contrast factor and denoted χ. The electrical contrast factor varies

from χ = −1/2 (for perfect insulators) to χ = +1 (for perfect conductors). When the

conductivity of the target and water are equal, the electrical contrast is zero and the

target becomes electrically invisible. It should be noted, however, that this model ignores

phase shifts due to capacitive components of the target impedance. In weakly electric

fish, such phase shifts are detected by a different electrosensory system [175]. Such phase

shifts are likely used to differentiate between inanimate objects and live objects, which

have capacitance due to biological membranes [245]. This simple model also assumes the

electric field is uniform across the target. As the target approaches close to the source of

the electric field, this assumption will be violated.
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Equation (2.13) represents the model of electrosensory observations that will be used

for the remainder of this document and will be referred to extensively. Thus, we will

restrict the simulations to locating spheres.

We now have the tools to construct EEVe(·) for spheres. First, Equations (2.12) and

(2.13) will be converted from the charge-centered and target-centered coordinate systems

to a more convenient sensor-centered coordinate system. If xq
s is the position of the charge

in the sensor-centered coordinate frame, then in Equation (2.12) let xq = xs − xq
s . To

convert coordinates in Equation (2.13) let xt = −xs. Now, let EEVe(xs) = w = δV (xs).

Thus, for a single sensor and single point charge, the EEV in the sensor frame can be

defined as:

(2.14) EEVe(xs) =

(
a3kQ

|xs|3 |xs − xq
s |3
)(

σtarget − σwater

σtarget + 2σwater

)(
−xs · (xs − xq

s )

)

Equation (2.14) is a function of xs, xq
s , Q, k, a, σtarget, and σwater. The parameter

k is a universal constant; and xq
s , Q, a, σtarget, and σwater are defined by the e vector,

which denotes unchanging aspects of the environment that the EEV depends on. It is

assumed that the charge is rigidly connected to the sensor (this is the case for both systems

examined in this document), meaning xq
s is constant and included in e. Thus, EEVe(xs)

is a function of only e and xs.

Of course if the point charge in Equation (2.14) is truly electrically isolated, then

no current will flow to or from the charge. Without flowing current it is impossible to

record a voltage. But, this model would work very well for a point charge in a large,

electrically-grounded box.
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For the remainder of this document two electrosensory systems will be investigated.

In the next two sections these two different emitter/detector layouts are examined using

the analytical model for sensor observation (Equation (2.13)). The first is a model of the

robotic electrolocation system, and the second is a simplified model of the weakly electric

fish.

2.3. Dipole Model

The first emitter/detector setup considered is that of the robotic electrolocation system

(The Electrosenster) that will be thoroughly discussed in forthcoming chapters. The

electric field is generated by two (approximately) point emitters, thus this setup is referred

to as the “dipole model”. With the dipole model there are two sensors, and the model

lives in full 3-D space, although only a 2-D slice will be examined.

The Electrosenster is a 2-DOF XY robot (similar to a plotter) that moves its 2 emit-

ters and 2 detectors through a tank of water. The emitter/detector layout can be seen

in Figure 2.6. It is able to electrolocate targets by sensing voltage changes in its self-

generated electric field. We use the simple 3-D models of electric fields (Equation (2.12))

and observations (Equation (2.13)) induced by spheres. A single observation, w, is the

difference of the two sensor voltages.

Both the emitters and detectors are constrained to move in the plane z = 0. Each

emitter and detector is approximately a 1 mm radius metal sphere. In the Electrosenster,

the potential across the two emitters is 2 volts. But, recall that the model of electric field

uses point charges. If we assume the electric field is generated by two point charges of +q
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and −q located at positions xp and xn, respectively, then the electric field at position x

can be computed as

(2.15) E(x) =
q k

|x− xp|3 (x− xp)− q k

|x− xn|3 (x− xn)

where k is Coulomb’s constant. If the emitters are assumed to be spherical conductors,

then the equivalent charge for an emitter of radius remitter and voltage ±Vemitter is qeq =

Vemitterremitter/k. Thus, if remitter = 1 mm, then qeq = 1.11 · 10−13 C.

To prevent the emitters and detectors from making contact with the target, the center

of the target is placed at a depth of z = −(rtarget + 3 mm), where rtarget is the radius

of the target. With remitter = 1 mm, there is 2 mm clearance between the bottom of

the emitters and the top of the sphere. Complete details of the Electrosenster and its

operating conditions can be found in Chapter 6.

We first consider a hypothetical example to illustrate the dipole model. In Fig-

ure 2.6(A) no target is present to distort the electric field generated by the two red

squares. In this situation both the top sensor (sensor 1) and bottom sensor (sensor 2)

lie on the iso-potential contour of 0 V. In Figure 2.6(B) a spherical perfect conductor of

radius 5 mm is centered at coordinates (x = 20 mm, y = −20 mm, z = −8 mm). The

presence of the conductor distorts the electric field, and thus perturbs the original electro-

static potential. Sensor 1 is now at V1 = 0.62 mV, and sensor 2 is now at V2 = 0.97 mV.

We define EEVe(x) = V1 − V2 = w, where now x ∈ R3. Since V1 − V2 = −350 µV, the

electrosensory viewpoint is {(20 mm,−20 mm),−350 µV}.
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Figure 2.6. An illustration of the dipole emitter/detector layout. The left
red square is +1 V and the right is at −1 V. Isopotential contours are shown
has black lines. The bold line represents the 0 V contour. (A) Unperturbed
electric field. Both green sensors observe 0 V. (B) A circular target of
diameter 10 mm is centered at x = 20, y = −20. For example if the top
sensor observes 0.62 mV, and the bottom sensor observes 0.97 mV, then,
w = −0.35 mV.

In Figure 2.7 the EEV of a 10 mm diameter spherical ideal conductor is depicted as

a filled contour plot with a gray colormap for the observation w as a function of the x

and y coordinates of the center of the target. Figure 2.7 is a 2-D slice of the EEV at

a height of z = +8 mm relative to the center of the target (+z points out of the x-y

plane). As before, an electric field is applied at the red squares, and two sensors (green

diamonds) measure voltage. If a single measurement gives w = −350 µV, the target must

lie somewhere on one of the two yellow contours in Figure 2.7 (target not shown in this

figure). These contours are the set {x | EEVe(x) = −350 µV}.
The isopotential perturbation contours of Figure 2.7 therefore represent the theoretical

limit on how well a target of known properties can be localized by a single noiseless

observation of the perturbation in 2-D. Each contour in Figure 2.7 represents the 1-D
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Figure 2.7. An example of an ensemble of electrosensory viewpoints (EEV).
The target is a 10 mm diameter ideal conductor. The EEVe(x) is computed
from Equation (2.13). To construct this EEV, we successively place the sim-
ulated sphere at each position on a grid covering the illustrated domain. For
each place on this grid, we compute the perturbation at each of the green
diamonds (sensors) according to Equation (2.13), given the field applied
at the red squares, and take the difference between these perturbations.
Off-grid values are interpolated. White represents the largest positive ob-
servation, and black is the largest negative observation. Intermediate grays
are linear interpolations of these extreme values. The solid blue contour
is w = 0 V. The yellow contour is the localization subspace for the single
observation of w = −350 µV.
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“localization subspace” of a target for the given sensor observation. It is impossible to

disambiguate the location of any single target from the location of any other single target

(observed at a different time) located on the same contour. The length of the 1-D subspace

is a measure of the “localization quality”; shorter subspaces are better for localization than

longer ones.

2.4. Ellipse Model

The other emitter/detector setup examined in this document is inspired by the weakly

electric fish. It was shown by [12] (and later verified by [8] and [71]) that the electric

field of weakly electric fish can be modeled as a line of uniformly distributed electric poles

along the rostro-caudal axis of the model fish1. The model has one negative pole located

at the “tail” of the fish, and the remaining m are positive poles. The net charge of the

poles is zero, thus, the magnitude of the single negative pole is m times greater than the

m positive poles. The model of the electric field with n total poles, one negative pole,

and m = n− 1 positive poles is [71]:

(2.16) E(x) = − q

|x− xn
p |3

(x− xn
p ) +

m∑
i=1

q/m

|x− xi
p|3

(x− xi
p)

xi
p is the position of the ith pole. The quantity q is analogous to electric charge in an

electrostatic model and is distributed such that the first m poles have a “charge” of q/m

and the remaining poles have a charge of −q/(n − m), resulting in a total net charge

of zero. The poles are uniformly distributed along the midline from head to tail. This

model has been experimentally verified, and is depicted in Figure 2.8. A charge of q = 10

1Other models are marginally more similar to the actual electric field of the fish [11]. But, these
models requires numerical methods, which are much more computationally expensive.
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Figure 2.8. Comparison of multipole model with measured data from an
actual fish. This figure is taken from [71].

mV·cm (equivalent to q = 10−4 N·m2/C) will be used, which was empirically estimated

from [71]. In this chapter only a 2-D slice will be considered.

Figure 2.9 depicts the 2-D slice of the electric field and iso-potential contours of the

ellipse model. Figure 2.10 shows the EEV for four different sensors located on the ellipse.

The yellow contour is the localization subspace for each sensor if a 10 mm conducting

sphere is located at (x = 10, y = 15, z = 0) (this position is shown as an orange “x”).

Note that a target near the tail would create a larger voltage perturbation at a sensor

near the tail than a target near the head for a sensor near the head (the white region

in Figure 2.10(C) is larger than the black region in Figure 2.10(A)). This is because the

charge at the tail is 99 times greater in magnitude than the other 99 charges, thus the
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Figure 2.9. The electric field generated from a line of charges. Arrows show
the direction of the electric field. Black curves are iso-potential contours
(lines of constant voltage); the thick line is V = 0 volts. Red dots are the
locations of the 100 poles. The blue dashed line is the edge of an ellipse
that is 50 mm long and 10 mm tall. This is the electric field model used in
the ellipse model.
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electric field is greater at the tail. According the Equation (2.13), larger electric fields

create larger voltage perturbations at the sensor.
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(A) yellow contour = −42 µV

−50 −40 −30 −20 −10 0 10 20 30 40 50
−30

−20

−10

0

10

20

30

 x (mm)

 y
 (

m
m

)

(B) yellow contour = −217 µV
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(C) yellow contour = −5 µV
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(D) yellow contour = −39 µV

Figure 2.10. An example of four EEVs. The target is a 10 mm diameter
spherical ideal conductor. The EEVe(x) is computed from Equation (2.13).
White represents target locations that would result in an observation of
greater than +1, 000 µV, and black represents target locations that would
result in an observation of less than −1, 000 µV. Intermediate grays are
linear interpolations of these extreme values. The solid blue contour is
w = 0 V. Blue dashed contours are at 25 µV increments. The yellow
contour is the localization subspace for the single observation of a target
centered at (x = 10, y = 15, z = 0) (shown as an orange “x”). The center
of the green diamond is location of the sensor. The pink dashed line is the
edge of an ellipse that is 50 mm long and 10 mm tall.
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CHAPTER 3

Belief Maintenance During Electrolocation

In the previous chapter models of idealized electrosensory observations were presented

without any discussion of sensor noise. Any real measurement system has noise. In this

chapter we show data fusion and belief maintenance techniques that account for sensor

noise.

Two classes of beliefs are considered in this chapter—possibilistic and probabilistic. If

the sensor noise is bounded, and if statistics about the observations are not available (or,

if it is known that all possible observations are equally likely), then a possibilistic belief

maintenance scheme should be used. Possibilistic belief maintenance can also be used for

a “worst-case” analysis. Instead, if statistics about the observations are known, then a

probabilistic belief maintenance scheme should be used. Two types of probabilistic belief

maintenance schemes are presented in the chapter—the histogram filter and the particle

filter.

At this point we have abandoned the numerical models of the electric field and elec-

trosensory observations that were discussed in the first part of the previous chapter.

Instead, the computationally-efficient analytical models discussed in Section 2.2 are used

for the remainder of this document. Thus, targets are spheres and electric fields are gen-

erated by point charges. The two example systems used in this chapter are the dipole

model (described in Section 2.3) and ellipse model (described in Section 2.4)
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3.1. Possibilistic Belief Maintenance

First, consider a possibilistic noise model (also called nondeterministic; see [142]). If

the noise is bounded, then possibilistic sensor fusion can be used. Possibilistic models

assume all possible observations are equally likely. A possibilistic model simply prescribes

whether or not something is possible without addressing the probability of the possibility.

3.1.1. Single Observation Possibilistic Electrolocation

A possibilistic noise model is now imposed on the electrolocation problem. Recall, Figure

2.7 shows the theoretical limit on how well a single voltage sensor observation can localize a

target. Once noise is introduced into the picture, localization will become more uncertain;

the localization subspace will change dimension, and the localization quality is reduced.

3.1.1.1. Single Observation with Dipole Model. Figure 3.1 demonstrates localiza-

tion with a possibilistic model. The electric field, sensor locations, and conductivities

of the target and medium are identical to those used in Figure 2.7. An observation of

w = −350 µV has been received (just like in Figure 2.7), and the noise of the sensor is

known to be ±200 µV and is assumed to be constant (not state or sensor dependent).

Knowing only this sensor reading and noise level, we can conclude that the noise-free sen-

sor reading could have been anywhere from −150 to −550 µV. The blue band represents

all the locations a target could be that correspond to a −150 to −550 µV observation.

Thus, it is known with certainty that the target must lie within this band.

Figure 3.1 is constructed by first discretizing the 2-D world into a finite number of

cells. Each cell maintains a binary variable, which defines whether or not it is possible the

target is in this cell (1 for possible and 0 for not possible). Initially, when it is completely
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Figure 3.1. Possibilistic noise model with the dipole model. The target is
a 10 mm diameter spherical ideal conductor. The EEVe(x) is shown in
the background and is computed from Equation (2.13). White represents
target locations that would result in a large positive observation, black are
locations that result in largest negative observations, and grays are linear
interpolations of these extreme values (this is the same as in Figure 2.7). A
single observation of w = −350 µV is received, thus if sensors were noise-
free, then the belief of the target would be the yellow lines. But, the noise
on the observation is ±200 µV, which results in a belief of the blue colored
area. The blue area contains all possible target locations that would result
in an observation of w = −350± 200 µV.
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uncertainty where the target is, all cells are set to 1. When new sensor data are received,

all cells that are inconsistent with the new data are set to 0. The blue in Figure 3.1

represents all cell set to 1 and represents the belief of the target.

Formally, let x be the world-frame position of the target, and X andW be the complete

configuration space of the target and the space of all possible observations, respectively.

Let h : X → W be a function mapping target position to (noise-free) observation. Thus,

for our electrolocation scenario h(x) = EEVe(x) = w. The set X1 ⊆ X is a valid belief of

the target position for a single observation, w1 if

(3.1) X1 = {x ∈ X |(w1 − n) ≤ h(x) ≤ (w1 + n)}

where, ±n is the noise.

With a single observation of the noisy voltage sensors the localization subspace forms

a 2-D area (in this 2-D slice); the localization subspace has gained an entire dimension

from the noise-free case! Thus, the localization quality has also worsened.

3.1.1.2. Single Observation with Ellipse Model. The blue regions in Figure 3.2

represent the belief of the target location for each sensor making a single observation

(no sensor fusion yet). In this particular example it is assumed that the noisy sensors

did, in fact, observe the correct observation (i.e., the sensors observed the noise-free

measurement). The belief of this noise-free observation is signified by the yellow contour

in Figure 3.2. The blue shaded areas represent the belief assuming a possibilistic sensor

model with ±20 µV noise.
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(A) yellow contour = −42 µV

−60 −40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

30

40

 x (mm)

 y
 (

m
m

)

(B) yellow contour = −217 µV
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(C) yellow contour = −5 µV
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(D) yellow contour = −39 µV

Figure 3.2. Possibilistic noise model with the ellipse model. Figures (A)
through (D) show four separate beliefs and EEVs for the four different sen-
sors. The blue shaded regions in the foreground represent the possibilistic
beliefs. The target is a 10 mm diameter spherical ideal conductor. The
EEVe(x) is computed from Equation (2.13). The EEV is shown behind the
belief, where white represents target locations that would result in an ob-
servation of greater than +1, 000 µV, and black represents target locations
that would result in an observation of less than −1, 000 µV. Intermediate
grays are linear interpolations of these extreme values. The yellow contour
is the noise-free localization subspace for the single observation of a target
centered at (x = 10, y = 15, z = 0) (shown as an orange “x”), and the
value of the contour is stated in the caption of each figure. The center of
the green diamond is the location of the sensor. The noise on each sensor
observation is ±20 µV.
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3.1.2. Fusion in Multi-Observation Possibilistic Electrolocation

In Figure 3.2 beliefs were constructed for single observations, and possibly valuable infor-

mation from other sensors were not utilized in the individual belief constructions. Sensor

fusion is a crucial component of the belief construction process [104]. With the possi-

bilistic sensor model that has been used, the data fusion process is merely taking the

intersections of the beliefs in the configuration space of the target.

Formally, for all sensor observations, wi ∈ W , and beliefs, Xi ⊆ X (constructed

individually from Equation (3.1)), the minimal set Xfused ⊆ X belief representation is:

(3.2) Xfused =
⋂
i

Xi.

3.1.2.1. Possibilistic Sensor Fusion with the Dipole Model. Figure 3.3 demon-

strates possibilistic sensor fusion for the dipole model. In this example the noise on any

observation is ±200 µV. Initially the robot is centered at location (x = 0, y = 0) in the

2-D slice (the center of the robot is signified by a “+”). The robot makes a single ob-

servation, which results in the belief depicted in Figure 3.3(A). The robot then moves to

location (x = 5, y = 7). The belief for a single observation (no fusion) at that location

is shown in Figure 3.3(B). Figures 3.3(C) and 3.3(D) show the single-observation beliefs

when the robot is at positions (x = 10, y = 0) and (x = 15, y = 7), respectively.

When all four beliefs are superimposed on top of each other, the actual target location

can only be in the regions where all the beliefs overlap. This union of the four beliefs is

shown in Figure 3.4.
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(A) w1 = −460 µV (w1,nf = −350 µV is the
noise-free observation)
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(B) w2 = −210 µV (w2,nf = −250 µV is the
noise-free observation)
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(C) w3 = −750 µV (w3,nf = −870 µV is the
noise-free observation)
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(D) w4 = −650 µV (w4,nf−570 µV is the noise-
free observation)

Figure 3.3. Single-observation possibilistic electrolocation for the dipole
model. The shaded regions in Figures (A) through (D) represent the single-
observation belief for each of the four emitter/detector locations. The actual
location of the center of the 10 mm diameter spherical ideal conductor is
xtarget = (x = 20, y = −20, z = −8), and is signified by the orange “x.”
The blue contour is the localization subspace if the actual observation, wi,
was considered noise-free. “+” is the center of the robot. wi,nf = h(xtarget)
would be the noise-free observation.
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Figure 3.4. Four beliefs superimposed for dipole model. The shaded region
is Xshaded =

⋃
i=1,2,3,4Xi
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(A) Xfused = X1
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(B) Xfused = X1

⋂X2
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(C) Xfused =
⋂

i=1,2,3 Xi
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(D) Xfused =
⋂

i=1,2,3,4 Xi

Figure 3.5. Fused belief after each observation in the dipole model. The
shaded regions in (A) through (D) represent Xfused, which is the fused belief
after incorporating the current sensor observation into the prior belief. Xi

are the single-observation beliefs depicted in Figure 3.3
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(A) w1 = −30 µV (w1,nf = −42 µV is the noise-
free observation)
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(B) w2 = −201 µV (w2,nf = −217 µV is the noise-
free observation)
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(C) w3 = +8 µV (w3,nf = −4 µV is the noise-free
observation)
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(D) w4 = −39 µV (w4,nf = −39 µV is the noise-
free observation)

Figure 3.6. Possibilistic electrolocation. The actual location of the center
of the 10 mm diameter spherical ideal conductor is (x = 10, y = 15, z =
0), and is signified by the orange “x.” The yellow contour is the set of
target locations that would render observations identical to the one actually
received by the sensor. The shaded regions represent the individual beliefs
(not fused) for each of the robot locations. The center of the green diamond
is the location of the sensor. wi,nf = h(xtarget) would be the noise-free
observation.

To incorporate sensor information across observation, the intersection of the individual

beliefs is used to create the minimal-set belief (see Equation (3.2)). The fused beliefs after

each observation are shown in Figure 3.5; the target (orange “x” at location (20,−20))

does indeed always reside in the fused belief.
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(A) Superposition of the four single-observation beliefs: Xshaded =⋃
i=1,2,3,4 X1
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(B) The resultant belief is the intersection of the other four:
Xfused =

⋂
i=1,2,3,4 Xi

Figure 3.7. Possibilistic sensor fusion for the ellipse model. The actual
location of the center of the 10 mm diameter spherical ideal conductor is
(x = 10, y = 15, z = 0), and is signified by the orange “x.”
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3.1.2.2. Possibilistic Sensor Fusion with the Ellipse Model. Figure 3.6 shows four

separate observations of the same target. The green diamond shows the sensor location

(different in each subfigure), and the orange “x” shows the actual location of the target

(same position in each subfigure and unknown to the observer). The sensors are modeled

as possibilistic with absolute noise of ±20 µV. For example, in Figure 3.6(A) the actual

observation from the voltage sensor is w1 = −30 µV. The sensor model says a noise-free

observation could have been between −10 and −50 µV. The cyan colored region represents

all the possible locations of the target that would give a voltage reading of −10 to −50 µV

for an ideal (i.e., noise-free) sensor.

As shown before, possibilistic beliefs have no statistics associated with them; all pos-

sible configurations of the target are counted as either “possible” or “not possible”. The

subfigures of Figure 3.6 display target possibilities in target configuration space. So, if

we superimpose all four maps on top of each other, then the actual target location can

only be in the regions where all the beliefs overlap. The data fusion process is simply an

intersection of the beliefs from each voltage sensor once the sensor model has been applied

and then mapped to target configuration space.

This intersection of the four beliefs can be seen in Figure 3.7(B). In 3.7(A) The beliefs

of the target position rendered from the single observation of each sensor are shown as

shaded regions that correspond to the color of the sensor (this same information can be

seen in Figure 3.6, but is shown together here to demonstrate the intersection data fusion

process).



71

.20

.10
.10.10

.10 .06

.06.06

.06
.02

.02

.02

.02.01
.01 .01

.01
.01.01

.01

.01

Figure 3.8. A simple example of a histogram belief scheme. The location
of the target (light-blue circle) can be in one of the 21 regions (cells), and
its true location is unknown. The figure on the left—minus the light-blue
circle—represents the belief of the target. The number in each cell repre-
sents the probability of the target occupying the region (The probabilities
of all 21 cells sum to 1). Alternatively, a color scheme could be used to
represent the probabilities in each region; this is shown on the right.

3.2. Belief Maintenance via Histogram Filter

Possibilistic models are intuitive and provide absolute bounds for analyzing a worst-

case scenario. But, it is often more advantageous to utilize the statistics of the uncer-

tainties. A probabilistic model does exactly this. Probabilistic models assume enough

information has been gathered to estimate the statistical properties of the induced uncer-

tainties (these statistics could alternatively just be given).

In this section a type of probabilistic belief maintenance scheme called the histogram

filter is used in the electrolocation task. The histogram filter is a type of Bayes filter where

the state space is decomposed into a finite number of regions (cells). The cumulative

probability of each cell is represented by a single probability value. Figure 3.8 depicts an

example of utilizing a 2-D histogram for the belief of target.
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3.2.1. Shannon Entropy as an Information Metric

When comparing uncertainties associated with different beliefs, it is convenient to estab-

lish a common measure. With a possibilistic belief from the previous section, one possible

uncertainty metric is the area of the belief (i.e., the area of the 2-D localization subspace).

But, this in not a useful method for probabilistic beliefs that take the form of probability

distributions. In order to quantify the uncertainty for a given probability distribution,

we need a mapping from the probability distribution to a scalar. Shannon Entropy [200]

(also referred to as information entropy; for the remainder of this document it shall be re-

ferred to as just entropy) is usually accepted as the most generalized metric of uncertainty

for probability densities (see [1, 55, 136, 184] for instances of entropy for probability

distribution metrics). Entropy is given as

(3.3) H = −
∑
cells

p(x) · log2 p(x),

where p(x) is the probability of the target occupying that cell. Entropy is often called

the “compactness” of a distribution. If a distribution is spread out, then its entropy is

relatively high. It refers to how much “surprise” is in a distribution. An entropy of zero

means there is no uncertainty. As the entropy increases so does the uncertainty. When

log2 is used, entropy can be interpreted as the shortest average message length, in bits,

that can be sent to communicate the true value of the random variable to a recipient.

Figure 3.9 shows the entropy for two different beliefs; both have 21 regions, but they have

different probabilities.
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Figure 3.9. The entropy of two beliefs. Both beliefs have 21 possible regions
where the target could be. But, each have different probability distribu-
tions. The belief in (B) is much more uniform than (A), thus, (B) has more
uncertainty associated with it, and this is reflected in the higher entropy.

3.2.2. Sensor Model

The actual sensor observation, w, is the idealized (i.e., noise-free) observation, EEVe(xtarget),

plus the noise, n. Thus, w = EEVe(xtarget) + n, where p(n) ∼ N (0, σ2
n), and EEVe(x) is

derived from Equation (2.13). The variance of the sensor noise is σ2
n.

The probabilistic sensor model can be written as p(w|x, e), which represents the likeli-

hood of observing w conditioned on the position of the target in the sensor frame, x. The

information contained in e defines all relevant unchanging aspects of the environment that

the idealized observation depends on, which here includes the size, shape, and material

properties of the target, the applied electric field, and the conductivity of the medium.

Since only Gaussian noise is considered, the sensor model can be parameterized as σ2
n

(i.e., the variance of n) and the expected observation for each possible target location.

Recall Equation (2.11) from Section 2.1.4. If only Gaussian sensor noise is considered,

then the EEV is precisely the collection of expected observations as a function of the
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possible target positions. Thus, E[w] = EEVe(x), where E[·] denotes the expected value

function.

3.2.3. Single Observation Probabilistic Electrolocation

The key difference between possibilistic sensor models and probabilistic sensor models is

that probabilistic models also designate the probability of possible states (not just if it is

possible). All probabilistic noise models used in this document assume Gaussian noise of

known standard deviation.

When utilizing the histogram belief scheme in the electrolocation task, the configu-

ration space of possible target locations is discretized into a finite number of cells. The

target occupies exactly one of these cells. A probability of occupancy is maintained for

each cell.

Figure 3.10 (and all histogram beliefs used in this document) is constructed as a specific

type of histogram called a position probability grid [54]. Position probability grids are

originally derived from Elfes’ occupancy grids [91], which are used to map an environment.

With occupancy grids, the world is discretized into finite cells. Each cell contains the

probability of being occupied by an obstacle. As the robot receives more sensory data,

it appropriately updates the grid to reflect this new data. While Elfes’ occupancy grid

maps environments of various number and size of obstacles, a position probability grid

only keeps track of a single object. The intended use of position probability grids is

localization, which is determining one’s position in the world. Here it is used for locating

a single target.
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(A) Sensor 1: w1 = −30 µV (w1,nf = −42 µV);
H = 19.58
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(B) Sensor 2: w2 = −201 µV (w2,nf = −217 µV);
H = 15.20
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(C) Sensor 3: w3 = +8 µV (w3,nf = −4 µV); H =
19.66
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(D) Sensor 4: w4 = −39 µV (w4,nf = −39 µV);
H = 19.32

Figure 3.10. Single-observation histogram beliefs for ellipse model. Black
signifies cells outside the 7-sigma interval. The belief is represented as a grid
of 750×1250 cells (937, 500 total cells). The actual location of the center of
the 10 mm diameter spherical ideal conductor is (x = 10, y = 15, z = 0), and
is signified by the orange “x.” The blue contour is the set of target locations
that would render observations identical to the one actually received by the
sensor. The center of the green diamond is the location of the sensor.
Let, wi,nf = EEVe(xtarget) be the noise-free observation (This is the reading
the sensor would receive if there were no noise). The caption under each
subfigure states the sensor number; actual (i.e., noisy) sensor observation
(wi); noise-free observation (wi,nf); and entropy of the belief (H). Compare
with 3.6
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Figure 3.10(A) shows the belief of the target position after a single sensor observation

from Sensor 1. The other three subfigures in 3.10 show the beliefs for the other three sen-

sors in the ellipse model. Since Gaussian noise is assumed, there is no finite bound on the

actual position of the target, but the probabilities do decay quickly outside of the expected

value. Figure 3.10 uses a gray-scale filled contour plot to show the probabilities of the

belief of the position of the target from a single observation. From highest to lowest prob-

ability the gray colormap scheme goes from white to black. The contour lines correspond

to confidence intervals of standard deviations. For example, the confidence interval of one

standard deviation is 0.683. This means that if a very large number of samples is drawn

from a Gaussian distribution, 68.3% of the samples live within one standard deviation of

the mean. Likewise, 95.5% of all the samples live within 2 standard deviations. Table 3.1

displays the confidence intervals for the first seven standard deviations. In Figure 3.10

the sum of all the probabilities in the white cells is approximately 0.683; and the sum of

all the probabilities in the white and lightest gray together is approximately 0.955.

std: 1 2 3 4 5 6 7
C.I.: 0.6827 0.9545 0.9973 0.99994 0.9999994 0.999999998 0.999999999997

Table 3.1. Confidence intervals of standard deviations.

Construction of Figure 3.10 begins by discretizing the 2-D world into cells (Ncells =

number of cells). Once the sensor obtains an observation (let’s call this observation w1),

it compares this observation to the expected observation at each (i = 1...Ncells) cell in a

precomputed EEV. With these two voltages and the noise on the sensor, a likelihood of

target occupancy can be found as follows. Since the normally-distributed noise and the

sensor model are not state dependent (i.e., always the same), computing the likelihood
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ith cell

Figure 3.11. Determining the likelihood of w1 for the ith cell in the belief
from Figure 3.10(A). The expected observation when the target is in this
cell is −15 µV; i.e., E[wi] = EEVe(xi) = −15 µV. The standard deviation
of the sensor noise is 20 µV. Thus, the Gaussian curve associated with this
cell has mean of EEVe(xi) = −15 µV (dashed, vertical line) and standard
deviation of σn = 20 µV (red, horizontal error bar). The likelihood of w1

when the target is in this cell can be read from this Gaussian curve (for
example, p(w1 = −30|xi) = 0.0151).

can be done by reading off the probability of a Gaussian curve with mean EEVe(xi)

and variance σ2
n. This Gaussian curve represents the distribution of observations if the

target were actually in the ith cell (i.e., p(w|xi)). From this curve we find the probability of

observing the actual voltage, w1, assuming the target is actually in the ith cell—p(w1|xi)—

this is called the likelihood. These probabilities are found for every cell in the grid. Figure

3.11 depicts an example of determining the likelihood of an observation for a cell in the

belief. Figure 3.10 shows these probabilities once they have been normalized (i.e., all

probabilities sum to one).
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3.2.4. Fusion in Multi-Observation Probabilistic Electrolocation

Belief construction from the possibilistic beliefs was as simple as taking the intersection

across all beliefs from each of the observations. A successful technique for integrating

multiple beliefs from successive observations from probabilistic models must utilize prob-

abilities of each candidate target location of the belief probability distribution. A Bayes

filter is the tool of choice for such a task. A new belief probability distribution derived

from an observation, w, is computed cell by cell with the prior belief probability distri-

bution by applying Bayes rule to each cell. If xi is the candidate target location for the

ith cell in the belief, then Bayes rule is written:

p(xi|w, e) = η · p(w|xi, e) · p(xi|e)(3.4)

posterior = normalizer · likelihood · prior

where p(xi|w, e) is the posterior probability of the target occupying the ith cell, condi-

tioned on the observation w. We call p(xi|e) the prior (sometimes called the subjective

belief ), and it represents the belief of the target (occupying the ith cell) immediately before

the observation. The observation along with the sensor model will yield the likelihood.

Let η (sometimes called evidence) be a scaling factor that ensures all of the probabilities

add up to 1.
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(A) Belief from sensor 1 (same as Figure 3.10(A)).
H = 19.58
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(B) Fusion of sensors 1 and 2. H = 14.30
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(C) Fusion of sensors 1, 2, and 3. H = 13.72
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(D) Fusion of sensors 1, 2, 3, and 4. H = 11.83

Figure 3.12. Fusion of probabilistic beliefs. The orange “x” is the actual
location of the target. The gray-scale color map represents the current
belief of the target location after the current sensor reading is fused with
the prior. The green diamonds in each subfigure show which sensors have
been used for the construction of the current belief. The caption under each
subfigure displays the entropy to the belief.
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(A) Belief from sensor 3; H = 19.66
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(B) Fusion of sensors 3 and 1; H = 19.32
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(C) Fusion of sensors 3, 1, and 4; H = 18.80
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(D) Fusion of sensors 3, 1, 4, and 2; H = 11.83

Figure 3.13. Fusion of probabilistic beliefs. Everything is the same as Figure
3.12 except the order of the sensors has changed.

3.2.5. Probabilistic Sensor Fusion with the Ellipse Model

Figure 3.12 demonstrates the successive application of Bayes’ rule to each of the beliefs

from each of the observations. Figure 3.12(A) is the belief after a single observation (same

belief as Figure 3.10(A)). After the second observation is made from sensor 2, the belief

from observation 1 is the prior and the belief from observation 2 (i.e., Figure 3.10(B))

is the likelihood. The resultant belief is the posterior and is shown in Figure 3.12(B).

Likewise, Figure 3.12(B) is the prior and Figure 3.10(C) is the likelihood for the posterior

belief shown in Figure 3.12(C).
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(A) possibilistic belief (same as Figure 3.7(B))
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(B) possibilistic belief (same as Figure 3.12(D) and
3.13(D))

Figure 3.14. Comparing beliefs from possibilistic and probabilistic belief
schemes for the ellipse model.

Because of the commutative property of Bayes filters, the order of the sensors in the

sensor-fusion process does not matter. Figure 3.13 depicts successive Bayes filter steps

for the same conditions as Figure 3.12, but only the order of the sensors has been altered.

Note that the final beliefs in each figure (i.e., subfigure (D)) are identical.

Figure 3.14 compares the final beliefs from both the possibilistic and probabilistic

models. The noise of both models are characterized by ±20 µV. With the possibilistic

case this number defines absolute bounds of the noise, but with the probabilistic case

±20 µV defines the standard deviation of the normal distribution. The possibilistic

model states that the noise-free observation must always be within ±20 µV from the

actual observation, while the probabilistic model states that there is a 68.3% chance

that the noise-free observation is within ±20 µV from the actual observation. Thus, the

possibilistic version is much more restrictive; this is reflected in the belief.
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(A) w1 = −460 µV (w1,nf = −350 µV);
H = 20.46; robot location: (0, 0, 0)
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(B) w2 = −210 µV (w2,nf = −250 µV);
H = 21.14; robot location: (5, 7, 0)
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(C) w3 = −750 µV (w3,nf = −870 µV);
H = 17.53; robot location: (10, 0, 0)
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(D) w4 = −650 µV (w4,nf = −570 µV);
H = 18.28; robot location: (15, 7, 0)

Figure 3.15. Single-observation histogram beliefs for dipole model. Black
signifies cells outside the 7-sigma interval. The actual location of the center
of the 10 mm diameter spherical ideal conductor is (x = 20, y = −20, z =
−8), and is signified by the orange “x” (recall, only a 2-D slice at z =
−8 is considered). The blue contour is the set of target locations that
would render observations identical to the one actually received by the
sensor. The colored “+” is the center of the robot. The center of the green
diamond is the location of the sensor. Let, wi,nf = EEVe(xtarget) be the
noise-free observation (This is the reading the sensor would receive if there
were no noise). The caption under each subfigure states the sensor number;
actual (i.e., noisy) sensor observation (wi); noise-free observation (wi,nf);
and entropy of the belief (H). Compare with Figure 3.3.
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3.2.6. Probabilistic Sensor Fusion with the Dipole Model

Figure 3.15 depicts the single-observation beliefs for each of the four sensors (no sensor

fusion). The target is stationary, but the robot moves three times from its initial position.

The sensor noise is normally distributed with a standard deviation of 200 µV. The four

robot positions and observations are the same as used with the possibilistic model. Figure

3.16 depicts the sensor fusion process for the four observations from Figure 3.15. Figure

3.17 compares the final beliefs from the possibilistic and probabilistic schemes.

3.3. Belief Maintenance via Particle Filter

3.3.1. An Introduction to the Particle Filter

A particle filter tracks a finite number of candidate target positions based on a Monte

Carlo simulation forward simulation [161]. Belief of the target location is represented by a

large number of hypotheses (or “particles”) in the target configuration space, allowing ap-

proximate representations of complex multi-modal beliefs. The particle filter uses Monte

Carlo simulation [161] to approximate a Bayes filter, and the particle representation is

updated as new information comes in [232].

One of the many applications of particle filters is localization [95] and mapping in

mobile robotics [85, 96, 232]. The electrolocation problem is a variant of the localization

problem, where the task is to determine the location of an external target as opposed to

the location of the robot relative to some external coordinate frame. The particle filter

algorithm consists of recursive implementations of both a predictive and a measurement

update step, which are described below.
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(A) Initial belief. H = 20.46
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(B) Belief after 2 observations. H = 20.33
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(C) Belief after 3 observations. H = 16.06
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(D) Final belief. H = 15.38

Figure 3.16. Fusion of probabilistic beliefs. The orange “x” is the actual
location of the target. The gray-scale color map represents the current belief
of the target location after the current sensor reading is fused with the prior.
The “+” in each subfigure show which robot positions have been used for
the construction of the current belief. The caption under each subfigure
displays the entropy to the belief. Compare with Figure 3.5.



85

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

 x (mm)

 y
 (

m
m

)

(A) possibilistic belief (same as Figure 3.5(D))
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(B) probabilistic belief (same as Figure 3.16(D)

Figure 3.17. Comparing beliefs from possibilistic and probabilistic belief
schemes for the dipole model.

3.3.1.1. Predictive step. The predictive step takes the motion control and the current

belief of the target location relative to the sensor and creates a new belief. This step

requires a motion model p(x′|x,u), a probability distribution on the new position x′ of

the target in the sensor frame as a function of the current position x and the control u.

Each of the M particles xi in the current belief is mapped to a new particle by sampling

from the distribution p(x′i|xi,u).

The two electrolocation systems examined in this document are the Electrosenster

(similar to dipole model) and the weakly electric fish (similar to the ellipse model). The

the Electrosenster has high-precision encoders and controllers to achieve accurate motion.

Thus, the motion model introduced very little uncertainty into the belief about the target

position. For this reason, its motion model is deterministic (i.e., x′ = x + u). Similarly,
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with the weakly electric fish model, it is assumed that motion uncertainties are much

smaller than sensing uncertainties. Therefore, a probabilistic motion model is not used.

3.3.1.2. Measurement Update Step. Once sensor data are recorded, the measure-

ment update step weights the likelihood of each observation conditioned on the predicted

state x′i of each particle. The likelihood weight for particle i is written λi = p(w|x′i, e),

where e is the vector of sphere conductivity, sphere diameter, water conductivity, and

the value of the applied field. Importance resampling then randomly chooses M times

from a roulette wheel of the particles x′i, i = 1 . . .M , where particle i occupies a slice of

the wheel proportional to its weight λi [230]. The chosen particles will include dupli-

cates at the same location. To introduce diversity into the particle set, a small amount

of normally-distributed noise is added to the position of each particle. This new set of

particles comprises the new belief.

3.3.1.3. The Particle Set as Another Type of Probabilistic Belief. Each particle

in the belief represents a candidate location of the target. Regions of high-density particles

represents regions of higher probably of target location. The collection of particles is

simply an alternative to the histogram for representing the belief of the target location. A

particle belief can be translated into a histogram belief, as shown in Figure 3.18. Appendix

A on page 257 gives a simple example of locating a target using a range, bearing, and

GPS sensor via particle filtering.
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Figure 3.18. Converting a particle belief representation to a histogram belief
representation. The left subfigure depicts the particle belief representation
of the target. The target-configuration space is then decomposed into 21
cells. The percentage of total particles in each cell is computed. This results
in the histogram belief representation.

3.3.2. An Uncertainty Metric for Particle Filters

With the histogram filter the entropy of the belief was used as the uncertainty metric.

To compute the entropy of a belief represented by particles, one typically uses a multi-

dimensional grid representing the possible (discretized) states. Each cell, i, in this grid

stores a probability which is given by the sum of the normalized weights of the samples

corresponding to that cell. The entropy is then computed by summing up p(i) · log p(i) of

each cell in that grid. In the case of multi-modal distributions, however, the entropy does

not consider the distance between the different modes. For example, consider the two

multi-modal beliefs, A and B, which both have identical entropies and the same number

of modes. In belief A the modes are located close to each other (e.g. in the same quadrant

of the workspace), but the modes in B are dispersed randomly throughout the workspace.

Intuitively, belief A is better since the target appears to be localized to a quadrant. But,

this is not reflected in the entropy metric.
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A metric that captures the spatial distribution of particles will be used instead of

entropy. The square root of the trace of the covariance matrix of the particles will be

used as the uncertainty metric. Formally, we define P as the spatial covariance matrix of

the particle belief, with elements

P =

 pxx pxy

pyx pyy

 ,
thus, the uncertainty metric is parts-std =

√
trace(P ), where trace(P ) = pxx + pyy. If

we let b ∈ B represent the set of particles that represents the belief of the target, then we

can define the following function:

(3.5) parts-std(b) =
√

trace(Pb)

where Pb is the covariance matrix of the particle set b.

3.3.3. Particle Filter with the Dipole Model

Figure 3.19 depicts particle-belief representations for each of the four robot positions

after a single observation (no sensor fusion across steps). Figure 3.20 depicts the sensor

fusion process—via particle filtering—across the four robot positions. Note parts-std is

greater in Figure 3.20(B) than in Figure 3.20(A). Thus, even though more information

has been incorporated into the belief the uncertainty metric increased. Due to the non-

linear properties of the system and multi-modal beliefs, there is no single metric on the

belief space that is able to reduce the high-dimensional belief representation to a one-

dimensional measure of uncertainty that completely encapsulates the quality of the history
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(A) step 1: w1 = −460 µV; w1,nf = −350 µV;
parts-std = 33.3; position: (0, 0, 0)
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(B) step 2: w2 = −210 µV; w2,nf = −250 µV;
parts-std = 43.3; position: (5, 7, 0)
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(C) step 3: w3 = −750 µV; w3,nf = −870 µV;
parts-std = 21.8; position: (10, 0, 0)
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(D) step 4: w4 = −650 µV; w4,nf = −570 µV;
parts-std = 23.9; position: (15, 7, 0)

Figure 3.19. Single-observation particle beliefs for dipole model (no sensor
fusion across steps). The green diamonds and red squares represent the
locations of the sensors and emitters, respectively. The target (orange “x”)
is stationary, while the robot (centered at the “+”) moves in each subfig-
ure. The caption in each subfigure states the actual observation, noise-free
observation, the uncertainty metric (defined in Equation 3.5), and robot
position (in that order). Compare with Figures 3.3 and 3.15.



90

of observations. Intuitively, the addition of sensor observations should not increase the

uncertainty of the belief.

Figure 3.21 shows the final beliefs for the three different types of belief representations

(possibilistic, histogram, and particles) for the dipole model. Both the histogram and

particle schemes are based on a probabilistic sensor model and use variants of the Bayes

filter to update beliefs. Because the belief in Figure 3.21(A) uses a possibilistic sensor

model, the target must be contained in the locus of points that is represented by the belief.

A probabilistic scheme, on the other hand, prescribes the likelihood of target occupancy.

And, because we have assumed Gaussian noise, the likelihood of every possible target

location is non-zero. For example, there is less than once chance in a trillion that the

target is located somewhere in the black region in Figure 3.21(B) (i.e., the probability

mass of the black region is less than 10−12).

3.3.4. Particle Filter with the Ellipse Model

Figure 3.22 depicts the particle-belief representation for each of the four sensors in the

ellipse model (no sensor fusion). Figure 3.23 shows the fusion of the four individual beliefs,

where the order of the sensors is 3, 1, 4, and finally 2. Note parts-std= 34.7 in Figure

3.22(C), but 34.8 in Figure 3.23(A). The slight discrepancy is due to the stochastic nature

of resampling the particles. Thus, even though both beliefs received identical observations,

the particle filter rendered slightly different beliefs. Figure 3.24 compares the final beliefs

from the three different sensor fusion techniques used for the ellipse model.
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(A) belief after first observation. parts-std =
33.3
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(B) belief after fusion from steps 1 and 2.
parts-std = 35.6

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

 x (mm)

 y
 (

m
m

)

(C) belief after fusion from steps 1, 2, and 3.
parts-std = 19.6

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

 x (mm)

 y
 (

m
m

)

(D) final belief after fusion from steps 1, 2, 3, and
4. parts-std = 18.7

Figure 3.20. Fusion of probabilistic beliefs via particle filter. The orange
“x” is the actual location of the target. The particles (black dots) represent
the current belief of the target location after the current sensor reading is
fused with the prior. The “+” in each subfigure show which robot positions
have been used for the construction of the current belief. The caption under
each subfigure displays the uncertainty metric of the particles (defined in
Equation 3.5). Compare with Figures 3.5 and 3.16.



92

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

 x (mm)

 y
 (

m
m

)

(A) possibilistic belief (same as Figure 3.5(D))
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(B) histogram belief (same as Figure 3.16(D)
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(C) particle belief (same as Figure 3.20(D)

Figure 3.21. Comparing beliefs from possibilistic and probabilistic belief
schemes (both histogram and particle) for the dipole model.
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(A) Sensor 1: w1 = −30 µV (w1,nf = −42 µV);
parts-std = 32.5
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(B) Sensor 2: w2 = −201 µV (w2,nf = −217 µV);
parts-std = 16.9
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(C) Sensor 3: w3 = +8 µV (w3,nf = −4 µV);
parts-std = 34.7
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(D) Sensor 4: w4 = −39 µV (w4,nf = −39 µV);
parts-std = 30.5

Figure 3.22. Single-observation particle beliefs for ellipse model. The par-
ticles (black dots) represent the belief of the target. The actual loca-
tion of the center of the 10 mm diameter spherical ideal conductor is
(x = 10, y = 15, z = 0), and is signified by the orange “x.” The center of
the green diamond is the location of the sensor. Let, wi,nf = EEVe(xtarget)
be the noise-free observation (This is the reading the sensor would receive
if there were no noise). The caption under each subfigure states the sensor
number; actual (i.e., noisy) sensor observation (wi); noise-free observation
(wi,nf); and the uncertainty metric (parts-std). Compare with Figures 3.6
and 3.10.
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(A) belief after fusion of sensor 3; parts-std =
34.8
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(B) belief after fusion of sensors 3 and 1;
parts-std = 32.6
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(C) belief after fusion of sensors 3, 1, and 4;
parts-std = 29.3
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(D) belief after fusion of sensors 3, 1, 4, and 2;
parts-std = 3.7

Figure 3.23. Fusion of probabilistic beliefs via particle filtering. The orange
“x” is the actual location of the target. The particles (black dots) represent
the current belief of the target location after the current sensor reading is
fused with the prior. The green diamonds in each subfigure show which sen-
sors have been used for the construction of the current belief. The caption
under each subfigure displays the uncertainty metric of the belief. Compare
with Figure 3.13
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(A) possibilistic belief (same as Figure 3.7(B))
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(B) histogram belief (same as Figure 3.13(D))
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(C) particle belief (same as Figure 3.23(D))

Figure 3.24. Comparing beliefs from possibilistic and probabilistic belief
schemes (both histogram and particle) for the ellipse model.
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3.4. Uncertainty maps

For a single-sensor electrosensory system the EEV can give some intuition about the

expected quality of sensor information as a function of the relative target location (The

dipole model is effectively a single-sensor system since an observation is defined as the

difference between the two sensors). For example, the white and black regions of the

dipole EEV (see Figure 2.7 on page 53) represent the target locations that generate the

greatest expected magnitude of observation. We would expect these regions to be the

best places for the target to be for reducing the uncertainty of the belief. For multi-sensor

systems—such as the ellipse model—it is more difficult to predict the good target locations

since each sensor has its own EEV. It would be convenient to have a tool for estimating

the resulting belief uncertainty after each sensor has executed one observation and one

belief update. Such a tool would reveal how good or bad a particular emitter/detecter

layout is.

We have developed such a tool, which is called the uncertainty map. An uncertainty

map displays the belief uncertainty (e.g., parts-std or entropy) as a function of target

position. To construct the map, the target is placed on a grid near the emitters and

detectors. The belief is initially uncertain (e.g., a set of randomly dispersed particles) and

each sensor updates the belief once. The uncertainty of the belief is then assigned to that

point on the grid.

In this section we develop uncertainty maps for the histogram belief scheme (i.e.,

position probability grid). Figure 3.25 shows the uncertainty maps for 4 different levels of

noise for the dipole model. Sensor noise corresponding to σn = 200 µV (Figure 3.25(C))

has been used in the previous examples in this chapter. White represents target locations



97

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

 x (mm)

 y
 (

m
m

)

(A) σn = 2 µV
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(B) σn = 20 µV
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(C) σn = 200 µV

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

 x (mm)

 y
 (

m
m

)

(D) σn = 2, 000 µV

Figure 3.25. Uncertainty maps of the dipole model for 4 different noise lev-
els; all other parameters (e.g. target and water) are identical to those used
for the dipole model previously. White corresponds to almost no uncertainty
in the belief (entropy is near zero). Black corresponds to a completely un-
certain belief (maximum entropy). Intermediate grays are on a logarithmic
scale. 200 µV was used in the previous examples in this chapter.
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that would be effectively localized with a single observations. The resulting entropy of

a belief from a target located in the white is near zero. Black regions represent target

locations where an observation would effectively do nothing to reduce the uncertainty of

a belief. In these regions the resulting entropy of the belief is near the maximum.

One might be tempted to use an uncertainty map as a potential field for a controller.

In general it may be good to move towards the white regions in the uncertainty maps,

but arriving at the lowest potential doesn’t guarantee an optimal sensing trajectory. Un-

certainty maps (as described here) only predict belief uncertainty for the specific case

of beginning with a flat prior (completely uncertain belief) and then having each sensor

update the belief exactly once. Thus, for anything but a flat prior an uncertainty map

cannot precisely predict the resulting belief uncertainty.

An uncertainty map is a good tool for evaluating the localization effectiveness of a

particular combination of sensor/emitter layout, noise level, target properties, and other

environmental parameters (e.g., water conductivity). In Figure 3.25 four different levels of

noise are considered; all other properties are identical to those used for the dipole model

previously. A noise level of σn = 2, 000 µV (Figure 3.25(D)) appears to be an unacceptable

level of noise for localizing this target under these conditions. With σn = 200 µV (the

noise level used in previous examples with the dipole model) the uncertainty map still

has a lot of black, but it is possible to localize the target if the target can be positioned

in the lighter regions. When the noise level is reduced to σn = 2 µV the range of the

electrolocation system is significantly increased.

In Figure 3.26 all parameters are identical to those used for the ellipse model previ-

ously. Two additional cases of 10 and 100 sensors are considered. Figure 3.26(A) uses
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(A) 4 sensors
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(B) 10 sensors
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(C) 100 sensors

Figure 3.26. Uncertainty maps of the ellipse model for 3 different number
of sensors; all other parameters (e.g. target and noise) are identical to
those used for the ellipse model previously. White corresponds to almost
no uncertainty in the belief (entropy is near zero). Black corresponds to
a completely uncertain belief (maximum entropy). Intermediate grays are
on a logarithmic scale. Number of sensors: 4, 10, and 100. Four sensors
were used in the previous examples in this chapter. Green diamonds are
the locations of the sensors, and red dots are the locations of the charges
that generate the electric field. The yellow contour is at the same entropy
level for all three subfigures.
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the same sensor locations as used in previous examples of the ellipse model. To a first

approximation, the four-sensor and ten-sensor layouts appear to yield similar uncertainty

maps. When the number of sensors is increased to 100, the performance of the electrosen-

sory system increases. Increasing the number of sensors has the same effect as decreasing

the sensor noise (This statement is formally investigated later in Section 5.1). Thus,

increasing the sensor density from 10 to 100 increases the range of the electrosensory

system.



Part 2

Electrosense Optimization for Prey Capture

in Weakly Electric Fish



Sensing is a fundamental operation for almost any motion-based system—biological or

artificial. We develop a general framework to investigate optimal sensing in the setting of

optimal motion control and optimization of the sensory system. We use the prey-capture

task of the weakly electric fish as a model system to explore optimal sensing. We develop

a method for simulating sensory acquisition and probabilistic belief maintenance for the

prey-capture task. We investigate two aspects of sensory system optimization. First, we

examine the structure of the fish’s self-generated electric field. We speculate that the

electric field is stronger near the tail to complement the fish’s omnidirectional sensing and

motor system. Second, we show that the weakly-electric fish has evolved an efficient sensor

layout for the prey-capture task. Within the optimal control framework we investigate

co-optimization between the sensory and motor systems. We show that if motions are

limited to those similar to the fish then mechanically-optimal trajectories are also good

for sensing.
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CHAPTER 4

Electrosense Optimization for Prey Capture:

Introduction and Formulation

In this part of the thesis the tools and techniques discussed in the Part 1 are applied

to the prey-capture task of the weakly electric fish. This chapter provides an introduction

and background for the results and discussion presented in the next chapter. First, the

stage is set with a brief overview of the problem, solution methods, and results. Then, a

formal mathematical framework of the optimal sensing problem is discussed. Finally, the

methods for the simulations are presented in the final section of this chapter.

4.1. Introduction

Since the very first motor systems evolved in ancient organisms, a primary purpose of

motion has been to control sensors to acquire better information (i.e., active sensing). In

almost any system with both sensing and motion control, it is necessary to address their

interdependencies. For example, design engineers are often faced with the daunting task

of integrating sensory, motion, and control systems into a single robot. In general each

of these components request conflicting designs. For example, a large sensory array may

induce drag-based friction, which would cause the motion system to be inefficient; or, a

particular actuation system may be incapable of meeting the objectives of the control

task. Biological systems face the same co-optimization dilemma. We investigate the
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fundamental problem of optimal sensing in motor systems, which includes both active

sensing and optimization of the sensory system.

We use the prey-capture task of the weakly electric fish as a model system to investigate

optimal sensing. The weakly electric fish is an excellent model system since much is

known about its sensorimotor system. In general it is virtually impossible to simulate

all the components of a biological sensory system, and we make no claim to model all

sensory pathways in the weakly electric fish. Instead, we use simple, established models

to estimate sensor information. Even with these simple models we show that the sensing

and motor systems of the weakly electric fish are well-suited for the prey-capture task.

We begin by formally stating the problem of optimal control under uncertainty, which

is to choose a set of future control actions that will minimize an appropriately defined

expected future cost [52]. This lays the theoretical foundation for optimal sensing. In

general there may be uncertainty in sensing and control, which make exact solutions

intractable for almost any practical system. Nonetheless, good sensing strategies can

still be investigated under the proper heuristics and assumptions. We then describe our

methods for modeling and simulating a probabilistic belief-maintenance scheme for the

electrolocation task. To make the simulations computationally tractable, we prescribe

some simplifying assumptions such as a simplified electric field model [71], a simple model

for sensing electric field perturbations induced by a spherical target [187], and a Bayes

filter to maintain the belief of the target. Our model only uses a fraction of the full

∼14, 000 sensors found on the surface of a typical weakly electric fish. In the next chapter

we show this simplification is justified since there is a tradeoff between the number of
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sensors and the level of noise of the sensors. Thus, the sensing effectiveness of many high-

noise sensors can be equivalent to fewer lower-noise sensors through a simple equivalence

relationship.

The first hypothesis we test is that the weakly electric fish has evolved an effective

electric field and sensor distribution for the prey-capture task. We first examine the self-

generated electric field. We suggest that while the fish’s electric field is stronger near the

tail, their anisotropic sensor distribution facilitates a near-isotropic sensing system that

complements the omnidirectional motor system. We then investigate the utility of the

fish’s distribution of electrosensors for the electrolocation task. The general formulation

of the sensor layout optimization problem is conceptually the same as the optimal control

problem. But, we abandon notion of “optimal” for merely finding the best among a

sample of all possible sensor layouts. We sample 16 sensor layouts from a parameterized

space of sensor layouts, and one of these layouts is very similar to the fish’s layout. For

each combination of sensor layout and trajectory, the uncertainty of the prey position

during the prey-capture task was quantified. Of the 16 sensor layouts and across the 25

trajectories tested, the sensor layout most similar to the fish was the most effective at

locating the target (i.e., the lowest average uncertainty of the prey position during the

task).

The other hypothesis tested with our simulator is that the sensing and motor system

have been co-optimized for the prey-capture task. This would mean that the trajectories

executed by the fish are optimal for both sensing and motor efficiency. This hypothesis

was tested by comparing the sensing utility of the actual fish trajectory to a mechanically

optimal trajectory performing the same prey-capture task. If we consider a fully actuated
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ellipsoid, then mechanically-optimal trajectories are much worse for sensing than the

trajectories of the fish. But, the mechanically-optimal trajectories are as good as the fish

trajectories for sensing when only allowed to perform maneuvers similar to what the fish

can do.

4.1.1. Relevant Work

There has been quite a bit of work on the notion of optimal sensing in both biological

and engineering systems, much of which has been devoted to active sensing. In the field

of artificial intelligence, there are primarily two areas of application: active vision for

optical sensors and exploration for robots. In active vision a common objective is to

orient a camera to obtain the best view [5, 14, 59, 58, 193, 251]. The details of the

cost functional are dependent on the particular application, but the general formulation

is identical across all application areas.

Since the mid-1990s active sensing—also referred to as exploration—has become a

popular area in the robotics community [1, 226]. Active Markov Localization [94] is a

framework for actively localizing a robot under uncertainty, but can be easily generalized

to the active sensing problem. Others have used active sensing techniques in coastal nav-

igation [192], exploration for a mobile rover [116, 152], sensor scheduling [136], tracking

a dynamic target [77], robot localization [258], tactile sensing [127], and controlling the

head of a robot [3].

Optimal sensing also includes optimization of the sensory system itself. Since sensory

systems have such a dominant role in food acquisition, predator avoidance, and reproduc-

tive success, they have a profound influence on evolutionary fitness, hence are subject to
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strong evolutionary pressures. In vision systems higher resolution comes with the penalty

of higher metabolic expense from both the eye and the added brain size. In birds it has

been shown that the size of the eye is positively correlated with resolution [49]. Birds in

particular need to keep body weight as low as possible, thus, evolution is responsible for

establishing a suitable compromise between visual resolution and body weight/metabolic

expense. Similarly, in the blowfly (Calliphora vicina) at rest, visual acquisition and pro-

cessing represents 13% of its metabolic rate [243]. When the blowfly takes off this is

reduced to less than 0.4%, but the cost of carrying the eye is ∼3% of its total metabolic

rate. Thus, signal acquisition dominates at rest, while eye carriage dominates during

flight [141]. Once again evolution must determine a suitable solution that simultaneously

considers cost during rest and flight.

More closely related to the system examined here is the work in [50], where they

modeled electrosensory landscapes in elasmobranchs (sharks, skates, and rays). They

investigated various morphologies to see which is most advantageous for the electrosensory

system.

4.1.2. Bayes Filter for Belief Maintenance in the Fish

It is obvious that biological systems deal with uncertainties in sensing and motion, but it

is unclear what algorithms the nervous system uses to maintain a belief of the state of the

world [242]. Here, we assume the fish employs a Bayesian data fusion scheme to update

the belief of the position of the target (i.e., prey). Without a complete neuro-biological

model of the weakly electric fish, there is no way to definitively determine if this biological

system truly operates under Bayes’ rule. But, many researchers have suggested that
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biological systems perform Bayes’ optimal [128] computations within their sensorimotor

systems [133, 132, 180]. We assume that the weakly electric fish does indeed use a Bayes

filter to update its belief of the prey. A Bayes filter is the optimal method for data fusion

and thus is the limiting case for data fusion in the weakly electric fish.

4.2. Optimal Sensing Formulation

Before we invoke simplifications and heuristics on the optimal sensing problem, it is

important to first understand the complete optimal sensing formulation. We begin with

developing the general framework for state estimation under uncertainty. We then apply

the formulation to active sensing and sensory system design. Finally, we discuss a few

possible solution methods.

4.2.1. Motion Optimization Under Uncertainty Formulation

We first formulate the general problem of optimal motion under uncertainty. Let x ∈ X ,

w ∈ W , and u ∈ U represent the state of the system, an observation, and control action,

respectively. Let T = {k|k ∈ (0, 1, 2, ..., F )} be a set of discrete time steps, where F is

the final time. Let w̃k = (w1, w2, ..., wk) ∈ W̃k be the observation history up to time step

k. Similarly, let ũk = (u1, u2, ..., uk) ∈ Ũk be the action history [142].

If we let I0 be the space of all the known initial conditions at k = 0, then Ihist =

I0×Ũk−1×W̃k represents the complete history information space [142] at time k. All the

“raw” information known about the system is contained in Ihist. Instead of operating in

Ihist we choose a more convenient derived information space, where b ∈ B is a probability

density function (PDF) over the state space and B is a derived information space (i.e., B
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is a space of PDFs). We refer to this derived information space as belief space. To operate

in belief space, there must exist an information mapping that maps elements in Ihist to

elements in B.

The belief is responsible for maintaining a probabilistic representation of the system

state and is conditioned on all available information, thus bk = p(xk|w̃k, ũk−1, b0), where

b0 ∈ B is the belief at k = 0. Here, we assume the current belief, bk, is not conditioned on

the current control action, uk, since the current control action will not affect the state until

the next time step. Thus, while observations and belief updates occur instantaneously,

control actions are manifested over a time step.

Both observations and control actions influence the evolution of the belief through the

sensor model and motion model, respectively. The term p(w|x) defines the sensor model,

which is conditioned on the state of the system. The term p(x′|u, x) defines the motion

model, which is conditioned on the selected control action and previous state, where the

prime (′) denotes the next time step. By imposing the Markov assumption and utilizing

Bayes rule, the belief of the system state after executing control action, u but before the

observation (often referred to as the prediction step), is [230]

(4.1) b′− =

∫
p(x′|u, x) b dx

where the “−” subscript denotes the belief before the observation, and b is the prior belief.

After an observation is made, the belief is updated via the sensor model (often referred

to as the measurement update step):

(4.2) b′ = η p(w′|x′) b′−
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where η is a normalization constant. Equations (4.1) and (4.2) can be combined into a

single “move-then-sense” step [227]:

(4.3) b′ = η p(w′|x′)
∫
p(x′|u, x) p(x) dx

Equation (4.3) in the fundamental equation for all Bayes filters including Kalman filters

and particle filters.

Figure 4.1 demonstrates the implementation of Equations (4.1) and (4.2) (i.e., Bayes

filter) for a simple 1-D prey localization task. Equation (4.2) uses the prior in Figure

4.1(A) along with the likelihood depicted in Figure 4.1(B) (which is derived from the

sensor model and the observation) to update the belief, which is shown in Figure 4.1(C).

The observation, w, used to construct the likelihood in Figure 4.1(B) suggests it is highly

likely the prey is located near x = 15 or x = −15. Between Figures 4.1(C) and 4.1(D) the

fish moves +5 units to the right (thus, moving the prey belief 5 units to the left in this

fish-centered coordinate system). Equation (4.1) is used to update 4.1(C) to the belief

shown in 4.1(D). Due to imperfect actuation, the belief becomes more uncertain as shown

by the spread of each of the two modes in Figure 4.1(D). The process begins again by

combining 4.1(D) and 4.1(E) via Equation (4.2) to create the final belief shown in 4.1(F).

The observation, w′, used to construct the likelihood in Figure 4.1(E) suggests it is highly

likely the prey is located near x = −20.

Ultimately, we wish to find the best trajectory that minimizes some predefined cost.

Formally, if J is the cost functional, then the optimal control problem is to find the
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Figure 4.1. A 1-D example of prey localization using a Bayes filter. The
x-coordinate is the position of the prey relative to the fish. The actual
location of the prey—shown by the picture of the water flea—is initially
at x = −15 relative to the fish and later moves to x = −20 in (D). (A)
Initially the fish is completely uncertain about the position of the prey (i.e.,
flat prior). (B) The fish receives an observation that suggests the prey is
either near x = −15 or x = 15. (C) The observation updates the belief
(i.e., measurement update step). (D) The fish moves +5 to the right, and
the motion model updates the belief (i.e., prediction step). (E) The second
observation suggests the prey is near x = −20 relative to the fish. (F) The
observation updates the belief (another measurement update step). The
mode at x = 10 in (D) is inconsistent with the likelihood depicted in (E),
thus this mode is almost completely eliminated in final belief shown in (F).
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trajectory that minimizes J , where

(4.4) J [ũF , b0] = φ[ũF , b0] +
F∑

k=1

L[ũk, b0, k]

The function φ[·] is the terminal cost, and L[·] is the accumulated cost along the way. In

general the cost function can be composed of one or both of these components.

Once the cost functional is established, the optimization problem is to find the best

trajectory that will minimize the cost function, or

(4.5) ũ∗F = argmin
ũF

J [ũF , b0].

In general, a new ũ∗F must be recomputed every time b0 is updated via a prediction step

(i.e., Equation (4.1)) or a measurement update step (i.e., Equation (4.2)). Alternatively,

an off-line method could calculate a control policy for every possible belief, creating a

feedback-control law, which maps belief states (i.e., b ∈ B) into control actions (The

most popular method of calculating such a control policy is via value iteration, which

uses dynamic programming). Such a feedback-control law operates over belief space (in

general) since the true state is uncertain. Thus, it may be convenient to determine the

transition of the belief to the next time step conditioned on the current belief and the

control choice (This is useful, for example, when defining the control policy via value

iteration once a cost is defined for each state). The result is a probability distribution

over belief space (i.e., a PDF of a PDF) for all possible next beliefs and is a function of

the control choice, u. The distribution of next beliefs, p(b′) is determined by

(4.6) p(b′|u, b) =

∫
p(b′|w′, u, b) p(w′|u, b) dw′
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where p(b′|w, u, b) is computed through Equation (4.3) and

(4.7) p(w′|u, b) =

∫
p(w′|x′)

∫
p(x′|u, x) p(x) dx dx′

where p(w′|x′), p(x′|u, x), and p(x) are the sensor model, motion model, and prior belief,

respectively. If the motion model is deterministic, then in Equation (4.7) the p(w′|u, b)
becomes p(w′|u, b, x′), and the integral of

∫
p(x′|u, x) p(x) dx can be removed.

Equation (4.6) defines a PDF over all possible next beliefs, b′ ∈ B, conditioned on the

control inputs and current belief. Since the left side of Equation (4.6) in not conditioned

on w′, the integral over all possible observations is needed to determine the expected

value. It is interesting to note that Equation (4.6) is infinite dimensional for continuous

states (e.g., x ∈ R) since it defines a PDF for all possible states.

Because future observations are uncertain, the cost functional needs to be defined as

an expected cost over all possible observations conditioned on the set of control actions,

ũF and the belief at k = 0, b0. If the cost is a function of the belief at k > 0, then

recursive implementation of Equation (4.6) will be needed to compute bk as a function of

b0, ũk, and w̃k. In general, since w̃k is unknown, an expected value over W̃k will need to

be computed.

4.2.2. Active Sensing

Here, we define the active sensing problem as finding the set of controls that minimize

the expected final uncertainty. Let Uncert : B → R denote a function for computing an

uncertainty norm on a belief. For example, Uncert could be the entropy of a belief.
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Let Update : B × W̃k × Ũk−1 → B denote a function that produces an updated belief

(posterior) from the initial belief, the set of observations, and the control history. Update

uses recursive implementation of Equation (4.6).

The Lagrangian L of a cost functional that only accounts for the final uncertainty

from k = 0 through k = F (i.e., active sensing) is

(4.8) LAS[ũk−1, b0, k] =

∫
W̃k

Uncert
[
bk = Update(b0, ũk−1, w̃k)

]
p(w̃k|ũk−1, b0) dw̃k

This function describes how the expected uncertainty varies with the initial belief and the

control inputs up to time k− 1. Note the integral over W̃k is needed to find the expected

value over all possible observations histories.

A cost functional can also account for costs of controls a well as the uncertainty of the

belief. Let CCost : U → R1 denote a function that determines the cost associated with

a set of control actions. Thus, LCCost[uk] = CCost(uk). An example of a specific class of

active sensing cost functionals that also accounts for the cost of control actions is:

(4.9) J [ũF , b0] = φ[ũF , b0] +
F∑

k=1

[
LAS[ũk−1, b0, k] + α LCCost[uk]

]
where α is a weighting factor, which controls the relative importance between uncertainty

and control costs.

Equation (4.9) demonstrates a specific class of cost functionals where the uncertainty

costs are decoupled from the control costs, and the control cost is only a function of the

immediate control action. In general the total cost need not be a weighted sum. Also, in
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general the control cost may be a function of the state and previous controls. Since the

state is unknown, an expected value over the possible states is used.

4.2.3. Sensory System Design Optimization

Optimal sensing is not restricted to optimal control and can include optimization of

parameters of the sensing system. In biological systems the optimization process could

take place over evolutionary timescales through natural selection. For example, the self-

generated electric field can be optimized to render the best sensory signal for a given

allowance of energy to produce it. With parameter optimization, the equations are the

same as presented above, except the set of parameters, p, shows up in the arguments of

the cost functional and in the statement of the optimization problem. Thus,

(4.10) J [ũF , b0, p] = φ[ũF , b0, p] +
F∑

k=1

L[ũk, b0, k, p]

The optimization problem is finding the best parameters that will optimize the cost func-

tion, or,

(4.11) p∗ = argmin
p

J [ũF , b0, p]

Equation (4.11) finds the optimal parameters only for the trajectory ũF and the initial

belief b0, which is, most likely, a single instance in the space of all possible combinations

of trajectories and initial beliefs. In general, the parameters would need to be optimized

across all possible conditions.
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4.2.4. Solution Methods

Fundamental optimal control theory says the optimal set of controls from Equation (4.5),

ũ∗F can be derived using Pontryagin’s maximum principle (a necessary condition), or by

solving the Hamilton-Jacobi-Bellman equation (a sufficient condition). In practice exact

solutions via literal application of these techniques is computationally infeasible. Thus,

approximations and heuristics must be used.

Perhaps the least restrictive formulation is the partially-observable Markov decision

process (POMDP). In fact we only need complete discretization (i.e., discrete states,

observations, actions, and time) to use this formulation [122]. Dynamic programming,

which is an application of the Bellman equation, is the most popular technique for solving

a POMDP. In addition to a sensing and motion model, a reward function is needed to

map a state and action to a scalar reward. In general this is a computationally expensive

approach, but in some cases heuristics are acceptable [64].

If it can be assumed that the dynamics are linear and the disturbances on the sensor

and process models are normally distributed, and the cost functional is quadratic, then

the Linear Quadratic Gaussian (LQG) control can be used. LQG dramatically decreases

the computational cost by decoupling the control and estimation problems (the separation

principle). The Kalman filter is an optimal state estimator for the LQG case that param-

eterizes the belief with only a vector of means and the covariance matrix. The optimal

control policy can be determined in closed-form via the Ricatti equations.

The solution methods used in this paper take a more pragmatic route than the ones

described above. We evaluate a small sample from the space of possible solutions. Even
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Figure 4.2. The black ghost knifefish fit to an ellipsoid. This figure is taken
from [155].

though we cannot claim to find an optimal solution, we can still gain some insight into

optimal sensing.

4.3. Methods

We use the prey-capture task of the weakly electric fish to investigate several aspects

of optimal sensing. In this section we explain the methods for simulating the belief-

maintenance process during this task. The morphology of the fish’s body is modeled as a

6-DOF rigid ellipsoid of similar length (see Figure 4.2). In addition, other simplifications

of the electric field, sensor layout parametrization , and electrosensory observations are

needed for computational tractability.

4.3.1. Electric Field Model

The model of the electric field is described in [71], which built off the model developed in

[12]. It is almost identical to the model used for the ellipse model (Section 2.4, page 54),

where the unperturbed electric field is modeled as a line of point charges in a homogeneous
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medium. The model of the electric field with n total poles, one negative pole, and m =

n− 1 positive poles is [211]:

(4.12) Efish(x) =

[
− q

|x− xn
p |3

(x− xn
p ) +

m∑
i=1

q/m

|x− xi
p|3

(x− xi
p)

]
σmes

σmod

The vector xi
p is the position of the ith pole. The quantity q is analogous to electric charge

in an electrostatic model and is distributed such that the first m poles have a “charge” of

q/m and the remaining pole has a charge of −q, resulting in a total net charge of zero. The

poles are uniformly distributed along the midline from head to tail. We use q = 10 mV·cm

(equivalent to q = 10−4 N·m2/C), and the pole locations run from the nose to the tail

of the fish along the central axis of the fish body with equidistant spacing. These values

result in field values within 10% of measurements of the electric field vector Efish(x) of A.

albifrons obtained by other researchers (B. Rasnow, C. Assad, P. Stoddard, unpublished

data) at σmes = 210 µS using a multiaxis electrode array [8, 7, 187]. The σmes/σmod

term scales the field strength to the water conductivity used in simulation. This scaling

is based on empirical measurements of the knifefish field at different water conductivities

[129] which suggest the electric organ can be idealized as constant current source. We

selected 35 µS because an earlier study [154] found detection range was highest for trials

at this conductivity, and this conductivity is most similar to rivers of the fish’s native

habitat.

4.3.2. Idealized Electrosensory Observation

Electrosensors (i.e., voltage sensors) on the surface of the ellipsoid measure changes in the

self-generated electric field. These voltage observations—along with a sensor model—are
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used to update the belief of the target. At each time step, each sensor performs exactly one

observation. The observations are simulated with Rasnow’s model for spherical objects

in a uniform electric field [187], which is Equation (2.13) on page 48. In our simulations

we used a target radius of rtarget = 0.083 cm, which is a typical size of a water flea. The

conductivities of the target and water are σtarget = 300 µS / cm; and σwater = 35 µS / cm,

which results in a contrast factor of approximately χ = +0.72.

4.3.3. Probabilistic Sensor Model

Of course, any real sensor has non-zero noise. Therefore, we employ a probabilistic sensor

model to update the belief. The noise on the sensors is assumed to be normally distributed.

The actual sensor observation, w, is the idealized observation, δV , plus the noise, n. Thus,

w = δV (xt) + n, where p(n) ∼ N (0, σ2
n), and δV is computed from Equation (2.13). We

define σ2
n as the variance of the sensor noise.

Our probabilistic sensor model can be written as p(w|x, e), which represents the like-

lihood of observing w conditioned on the position of the target in the sensor frame, x.

The vector e defines all relevant unchanging aspects of the environment that the idealized

observation depends on, which here includes the size, shape, and material properties of

the target, the applied electric field, and the conductivity of the medium.

We are assuming all sensors have an equal level of noise for any level of idealized

observation. Because we are assuming normally distributed noise, our sensor model can

be parameterized as σ2
n (the variance of n) and the expected observation for each possible

target location. Recall, the ensemble of electrosensory viewpoints (EEV) is a mapping

from the target position to the expected observation for each possible target location
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[213], and can be written as:

(4.13) EEVe(x) = E[w]

E[w] is the expected (i.e., noise-free) observation for a target at location x. The EEV is

constructed directly from Equation (2.13).

4.3.4. Uncertainty Norm

For the prey-capture simulations, the belief of the prey location is maintained via a particle

filter (See Section 3.3 on page 83), allowing approximate representations of complex multi-

modal beliefs. A norm on the belief space (i.e., the space of all possible sets of particles)

is needed to quantify the uncertainty associated with the belief.

Shannon Entropy [200] (see Section 3.2.1 on page 72) is usually accepted as the

most generalized norm of uncertainty for probability densities [55, 136]. Entropy can be

computed for a set of particles by discretizing the state space into cells. However, in the

case of multi-modal distributions, the entropy does not consider the distance between the

different modes.

An uncertainty norm that captures the spatial distribution of particles is the 3-D

version of the parts-std norm originally discussed in Section 3.3.2. Thus, the uncertainty

norm is parts-std =
√

trace(P ), where trace(P ) = pxx+pyy+pzz (Recall, P is the spatial

covariance matrix of the particle belief).

For the prey-capture task it is important to penalize larger distances between modes

within a belief to avoid having the controller to choose which mode to act on. For example,

let us consider the 1-D prey capture task, where at each time step the fish must decide
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Figure 4.3. The motivation for using the parts-std uncertainty norm
rather than entropy. In this 1-D example of prey-capture, the fish must
decide whether to move to the left or right. The plots show the belief of the
x-coordinate (the 1-D position of the prey). Both beliefs are bi-modal, thus
the fish roughly believes the prey could be in one of two locations (signified
by the pictures of the water fleas). Both PDFs have the same utility by
the Shannon entropy norm, but the standard deviation of the PDF in (B)
is approximately 4.5 times greater than the PDF in (A).

to move left or right until it captures the prey. Figure 4.3 depicts two scenarios with bi-

modal beliefs of the prey location, thus the fish roughly believes the prey could be in one

of two locations (signified by the pictures of the water fleas). It is unambiguous for the fish

choose its control option in the case of the PDF with clustered modes (Figure 4.3(A)). In

the case of the spread apart modes (Figure 4.3(B)), the fish is just as likely to move further

away from the prey than move towards it. For the prey-capture task, the clustered-modes

belief (Figure 4.3(A)) is clearly better than the unclustered-modes belief (Figure 4.3(A)).

The entropy for both beliefs are identical, but the standard deviation is approximately 4.5

times greater in Figure 4.3(B) than in 4.3(A) (In 1-D the parts-std norm is equivalent

to the standard deviation of the belief). Similar situations of multi-modal beliefs were

observed in our prey-capture simulations in higher-dimension space. While both entropy

and parts-std approximate the uncertainty of a belief, only parts-std accounts for the
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spatial distribution of the belief. Thus, a controller with parts-std in its cost function—

as opposed to entropy—favors clustered-modes beliefs over nonclustered-modes beliefs,

while the entropy norm is indifferent to the distance between modes.

4.3.5. Sensor Layout Parametrization

We use a compact parametrization to approximate the sensor densities along the antero-

posterior axis (the AP dimension) and along dorsal-ventral-right-left (DVRL) dimension.

Each sensor layout corresponds to a sensor PDF for each of the two dimensions. The

density of sensors along each dimension is characterized by a region of low density and a

region of high density. The density function is parameterized by three numbers: 1)cen-

ter of high-density region, chd; 2)width of high-density region, whd; and 3) percentage of

sensors in high-density region, phd.

The range of the AP is from −1 (for the extreme anterior point) to +1 (for the extreme

posterior point). The range for the DVRL dimension is (−π,+π], where 0 is the most

dorsal part, −π/2 is the fish’s right, +π/2 is the fish’s left, and ±π is the most ventral

part of the fish. An example of a sensor density distribution using this parametrization

is shown in Figure 4.4.

The sensor density that most closely approximates the distribution of sensors in

A. albifrons as measured from [61]—called the “fish-like” layout—is {chd, whd, phd}
= {−0.84, 0.32, 0.62} for the AP dimension and {chd, whd, phd} = {0, π/2, 0.35} for the

DVRL dimension. 11 other layouts were examined that had identical whd and phd as the

fish-like layout for both the DVRL and AP dimension, but differed in the chd parameter

for each dimension. Three different chds for the AP dimension (−0.84, 0, and +0.84) and
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Figure 4.4. An example of a sensor layout using our parametrization. This
is the sensor layout closest to the fish (i.e., the fish-like layout). The top left
shows the sensor density in the AP dimension, and the bottom left shows
the density in the DVRL dimension. The gray dashed line signifies chd, and
whd is shown by the double-headed arrow. The figure on the right shows
the locations of the senors on the surface of the ellipsoid that corresponds
to these two density functions.

four different chds for the DVRL dimension (−π/2, 0,+π/2, and +π) were considered for

a total of twelve permutations (including the fish layout).

In addition, three more distributions had a uniform distribution in the DVRL dimen-

sion, and in the AP dimension had whd = 0.32 (just like the fish-like layout) and phd = 1

(i.e., all sensors in the high-density region). The three chds used are -0.84, 0, and 0.84,

which place all the sensors near either the head, middle (in the A-P direction), or tail,

respectively. Lastly, a uniform sensor distribution was examined for a grand total of 16

sensor distributions. The sensor distributions are summarized in Table 4.1.
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sensor concentration layout
chd AP chd DVRL

AP DVRL number

head

right 1 −0.84 −π/2
dorsal 2, FL −0.84 0

left 3 −0.84 π/2
ventral 4 −0.84 π

middle

right 5 0 −π/2
dorsal 6 0 0

left 7 0 π/2
ventral 8 0 π

tail

right 9 0.84 −π/2
dorsal 10 0.84 0

left 11 0.84 π/2
ventral 12 0.84 π

uniform uniform 13 uniform uniform
head only uniform 14 −0.84 uniform

middle only uniform 15 0 uniform
tail only uniform 16 0.84 uniform

Table 4.1. The sixteen different sensor layouts. For sensor layouts 1
through 12 {whd, phd} = {0.32, 0.62} for the AP dimension and {whd, phd}
= {π/2, 0.35} for the DVRL dimension. In layout number 13 the sensors
are uniformly dispersed over the surface. For sensor layouts 14 through 16
{whd, phd} = {0.32, 1} for the AP dimension and {whd, phd} = {2π, 1} for
the DVRL dimension. FL = fish-like sensor layout.
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4.3.6. Three Types of Trajectories

Three different types of prey-capture trajectories are considered. One trajectory is based

on the actual trajectory of a fish during the prey-capture task (mo-cap). Another is the

mechanically optimal trajectory of the ellipsoid (mech-opt). The third type has neither

sensing-optimal nor motion-optimal significance—it is merely another type of trajectory

the fish could have executed (poly-fit). Twenty-five of each type of prey-capture trajectory

were simulated.

4.3.6.1. Motion Caption (mo-cap). In a previously published study [154] motion

capture data from weakly electric fish (Apteronotus albifrons) was recorded while the fish

were performing the prey capture task. Individual water fleas (Daphnia magna) were

introduced, and video recorded the fish’s motion as it captured the prey. Prey-capture

events were digitized, and 3-D trajectories of the fish and prey were rendered using a

model-based tracking system with spatial resolution of 0.5 mm and a temporal resolution

of 1/60 second. Once the fish detects the prey it performs an abrupt deceleration that

begins the prey-capture motion. We define detection time to coincide with the beginning

of this abrupt deceleration.

4.3.6.2. Polynomial Fit of 6-DOFs (poly-fit). To see if the fish’s actual prey-capture

trajectory is a good choice for efficient sensing we generated other trajectories that were

not actual fish motion. A fourth-order polynomial was fit to each of the 6 degrees of

freedom (DOFs) of the ellipsoid from the time of prey detection to the time of prey capture

(the pre-detection trajectory remained identical to the motion capture trajectory). Four

constraints were imposed to each of the 6 polynomials to match the configuration and
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velocity at the time of detection and at the time of prey capture. The remaining degree-

of-freedom of each polynomial was used to ensure the ellipsoid did not intersect the sphere

(the prey is modeled as a sphere of radius rtarget = 0.083 mm).

For example, if q1 is a coordinate defining the configuration of the ellipsoid (e.g., the

x position of the center of mass of the ellipsoid), then the time history of q1 is defined

by q1(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4. The coefficients c0, c1, c2, and , c3 are determined

by imposing the position and velocity boundary conditions at detection time and prey

capture time. The smallest c4 coefficient that ensures that the surface of the ellipsoid

does not intersect the surface of the prey is used as the final coefficient.

4.3.6.3. Mechanically Optimal Trajectories (mech-opt). We also investigate the

sensing efficiency of mechanically optimal trajectories. The fish is modeled as a neutrally

buoyant solid rigid ellipsoid immersed in an inviscid fluid moving under the influence of

applied forces and torques F and T . The motion of the ellipsoid can be described using

the Kirchhoff equations [139]. Kirchoff’s equations of motion are based on potential flow

theory, and provide a dynamic model of the motion of the body [112].

Mv̇ = Mv × ω + F,(4.14)

Iω̇ = Iω × ω +Mv × v + T.(4.15)

where, v is the velocity of the center of mass of the ellipsoid in a frame rotating with the

body, ω is the angular velocity of the body. M and I are the mass and inertia matrices,

respectively. We allow the body to be fully actuated, that is, F and T can be any vectors

in R3.
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The details of the optimization procedure are presented in [185]. The objective func-

tion to be minimized can be thought of as analogous to the metabolic cost of muscle

activation for the fish to complete the trajectory. If q(t) defines the time-history of the six

degrees of freedom of the ellipsoid, then the objective function takes the following form:

(4.16) J(q(t), q̇(t), F (t), T (t)) =
3∑

i=1

Fi(t)
2 + (αiTi(t))

2.

The scaling factors αi are included so that the terms in the sum have the same dimension.

For the αi they use the reciprocals of the radii of gyration of the ellipsoid, which turn

out to be in the range from 0.26 to 1.93 cm−1. The optimization is performed using an

implementation of sequential quadratic programming [185]. The optimization routine

finds a local minima of the objective function.

4.3.7. Computing environment

Computations were performed on a 54 CPU (2 GHz G5, 1 GB RAM) cluster of Xserves

(Apple Computer Inc., Cupertino CA, USA) running OS X. An open source distributed

computing engine (Grid Engine, Sun Microsystems, Santa Clara CA, USA) was utilized to

manage the computation across the nodes. Simulation and analysis programs were written

in MATLAB (The Mathworks, Natick MA, USA) and compiled to portable executables

for execution on the cluster.

For each of the 75 different trajectories, the 16 different sensor layouts were run 20

times for a total of 24, 000 prey capture simulations, taking more than a year of CPU

time (approximately one week on the 54 CPU cluster).
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CHAPTER 5

Electrosense Optimization for Prey Capture:

Results and Discussion

In this chapter we present results and discussion from simulating the sensory acqui-

sition and belief maintenance of the weakly electric fish. The fish’s body is modeled as

a 6-DOF rigid ellipsoid of similar dimensions as the fish (see Figure 4.2). The modeled

electric field is generated by a line of point charges running from the head to the tail with

a single negative charge at the tail and the remaining charges positive (see Section 4.3.1

and [71]). Electrosensors (i.e., voltage sensors) on the surface of the ellipsoid measure

changes in the self-generated electric field. The observations are simulated with Rasnow’s

model for spherical objects in a uniform electric field [187]. The belief of the position of

the target is maintained via a particle filter, which is a type of Monte Carlo Bayes filter.

All of these methods have been thoroughly described in Section 4.3

5.1. The Tradeoff Between Number of Sensors and Sensor Noise

Apteronotus albifrons has approximately 14, 000 probability type (P type) tuberous

electroreceptor organs on its surface, yet we base our conclusions on simulations using

much fewer than 14, 000 sensors. To justify this simplification we demonstrate the exis-

tence of a sensing equivalence between an array of many noisy sensors and an array of

fewer, less noisy sensors.
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Figure 5.1. Setup for toy problem. Green diamonds and red dots are the
sensors and emitter positions, respectively. Blue arrows show the direction
of the electric field. The target location is confined to the black dashed line
at x = 0.

5.1.1. Toy Problem

A simple experiment was devised to investigate the tradeoff between number of sensors

and noise level of the sensors. A 20 cm line of 100 charges (99 positive and 1 negative, see

Section 4.3.1 for details) is used to generate the electric field as depicted in Figure 5.1.

The negative charge is at x = −10 cm. A 10 cm line of evenly spaced sensors is positioned

1 cm above the charges (see Figure 5.1). A single target is constrained to x = 0.

In the experiments a single target (same properties as the modeled water flea, see

Section 4.3.2) begins at (x = 0, y = 4) and moves to (x = 0, y = rtarget), where rtarget

is the radius of the target in cm. We looked at two different types of sensor fusion. In

multi-step fusion sensory information across all steps is used to construct the belief. In

single-step fusion only information from the current time step is used to construct the

belief. With single-step fusion at each time step the belief is initially completely uncertain.

Two sets of simulations were performed. In the first set the sensor noise was fixed at

σn = 2 µV and the number of sensors varied across the 13 trials, where Nsen = (2i + 1)
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for i = 1, 2, ..., 12 with an additional trial of Nsen = 1. The odd number of sensors

ensured that there was always a sensor directly below (same x value) the target. Initially,

the location of the target is completely uncertain and the belief is initialized as a set

of particles randomly dispersed across feasible target locations. At each time step each

sensor updates the belief exactly once. We use parts-std (See Section 4.3.4) as the

measure of uncertainty of the belief. Simulations were performed for both the single- and

multi-step fusion case. In the second set of simulations, the number of sensors was fixed

at Nsen = 257. Sensors are assumed to have Gaussian noise of standard deviation σn. We

considered ten levels of sensor noise, σn = 2i µV, for i = −4,−3, ..., 5.

As expected, as the number of sensors in the array increases, so does the effectiveness of

the sensor array, and the sensing effectiveness also improves as the sensor noise decreases.

This is true for the single- and multi-step fusion cases. In the multi-step sensor fusion

scenario the parts-std norm decreased quicker than in the single-step sensor fusion case

because the belief in the multi-sensor case has more updates.

From these experiments we found different combinations of σn and Nsen rendered al-

most identical histories of parts-std. Let ξ = (number of sensors)/(variance of sensor noise) =

Nsen/σ
2
n denote the sensing effectiveness of particular combination of total number of sen-

sors and the variance of the noise on the sensors. Figure 5.2 shows pairs of curves with

similar ξ. This figure suggests there is a predictable tradeoff between the number of

sensors and level of sensor noise. If this relationship holds for the conditions of the 3-D

ellipsoid trajectories—which we show next to be true—then a smaller number of sensors

can be offset by using a lower level of noise.
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Figure 5.2. Sensing equivalence. The solid lines have 2 µV noise on the
sensors. The dashed lines all have 257 sensors. Thus, the four red curves
(2 solid and 2 dashed) are 2 µV and 257 sensors. For each curve in a pair,
the sensing effectiveness, ξ = Nsen/σ

2
n, is almost identical.
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5.1.2. Number of Sensors vs. Sensor Noise in 3-D Simulation

To demonstrate this relationship between number of sensors and level of sensor noise

is not just an artifact of the simple toy problem, we investigated this relationship in

the trajectories of the 3-D ellipsoid using the simulation methods described in the pre-

vious chapter. In these simulations a prey-capture trajectory with the sensor layout

most similar to the fish (sensor layout 2; see Section 4.3.5) was used. We examined three

different numbers of sensors—64, 256, and 1024—and six different levels of sensor noise—

0.5, 1, 2, 4, 8, and 16 µV. Each combination of number of sensors and level of sensor noise

were tested for a total of 18 combinations. To ensure this relationship is valid in the range

of the number of sensors on the fish (∼14, 000), we also tested 16, 384 sensors with 16 µV

noise.

Figure 5.3 depicts the sensing effectiveness for different combinations of number of

sensors and sensor noise. As with the toy example, curves of constant sensing effectiveness

are very similar. Is is apparent that the relationship suggested from the toy problem also

holds for a much more complex system. The heavy dashed line represents the trial with

16, 384 sensors.

The gray vertical line in Figure 5.3 is at the time of behavior prey detection (as define

in Section 4.3.6.1). The detection point is defined as the time when the fish just begins

to decelerate, thus the information to make the decision to decelerate must have been

present prior to the behavior detection point due to sensorimotor delays. Notice that

the knees of curves of ξ = 64 Nsen/µV
2 are just before the time of detection. From this

data it can be concluded that the fish probably had a sensing effectiveness somewhere

between ξ = 64 and ξ = 1024 based on this detection point and a sensorimotor delay
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Figure 5.3. Sensing equivalence (ξ) for the 3-D ellipsoid. Each of the 19
curves corresponds to a different combination of number of sensors and
sensor noise, where each combination corresponds to one of the eight ξ’s
shown by the annotations. The numbers in parentheses signify the number
of curves corresponding to the sensing effectiveness. As predicted, curves
with equal sensing effectiveness are very similar. The heavy dashed line
signifies the use of 16, 384 sensors in the simulation. The gray vertical line
denotes the time of behavioral prey detection. For each combination of
sensor noise and number a sensors, 40 simulations were run, and each curve
represents the mean of the 40 simulations.
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of ∼110 ms. With approximately 14, 000 sensors on the fish’s body, Gaussian noise with

standard deviation 14.8 µV would equate to ξ = 64, and noise with standard deviation

3.7 µV would equate to ξ = 1024. Thus, if we are able to lump all the sensor-noise-related

effects into a single parameter, we could say that the “effective noise” of the sensors is

probably between 3.7 µV and 14.8 µV for this trial.

5.1.3. Why Does the Fish Have a Large Number of Sensors?

The number of sensors and the level of sensor noise of the weakly electric fish is the

result of millions of years of evolution. This sensing optimization process can be stated

using the framework developed in Section 4.2.3 and Equations (4.10) and (4.11), where

p = ξ(Nsen, σ
2
n) is being optimized as a function of number of sensors and level of sensor

noise. If the fish has truly found an optimal solution for ξ (we do not really know if it

has), then Pontryagin’s principle states that ∂ξ/∂Nsen = 0 and ∂ξ/∂σ2
n = 0, and nearby

(for local optimality) ξ’s are lower than ξ∗ (the ∗ denotes an optimal solution).

The lumped parameter σn includes endogenous sources such as transduction imperfec-

tions at the afferent level as well as exogenous sources such as clutter and external electric

fields. The fish has no control over the exogenous components of σn and it is very difficult

to evolve better physiology that would allow improvement of the endogenous components

of σn. Thus, the fish has evolved a large number of sensors to improve its ξ.

5.2. Why is the Electric Field Stronger Near the Tail?

The electric field of the weakly electric fish is well-modeled as a line of point charges

with a single, negative charge at the tail [71]. The direction of the electric field using
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this simple model can be seen in Figure 5.1, where the tail is at x = −10 and the head

is at x = +10. In this section we investigate why the fish would evolve such a structure

for the electric field. The electric field is stronger near the tail than near the head, yet

intuitively, one would think that the stronger part of the electric field should be located

towards the head since this is where the fish localizes the prey. As in the previous section,

this can be stated as a parameter optimization problem, where p defines the set of fish

parameters that generate the electric field and are subject to optimization via evolution.

To help answer this question, we have constructed an uncertainty map of nearby prey

positions. This uncertainty map displays the belief uncertainty (i.e., parts-std) as a

function of prey position. To construct the map, the prey is placed on a grid near the

fish. The belief is initially uncertain (i.e., a set of randomly dispersed particles) and each

sensor updates the belief once via particle filtering. The uncertainty of the belief is then

assigned to that point on the grid. (In the future, something akin to an uncertainty map

could be used by a planner in an active sensing paradigm, similar to what was done in

[222].)

Figure 5.4 shows two different slices (mid-sagittal plane and mid-coronal plane) for

both the fish-like electric field and for an electric field when the large negative pole has

been placed at the head (i.e., flipped). The fish-like electric field creates a very regular

uncertainty map, while the flipped electric field is anisotropic. While the flipped electric

field is better for localizing prey near the head, the fish-like electric field is a better

complement to the fish’s omnidirectional sensing and motor system [10].
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(B) electric field flipped

Figure 5.4. Uncertainty map of prey position for the normal electric field
of the fish and when the electric field is flipped. We consider two cross-
sections here—the mid-sagittal plane (bottom in each figure) and the mid-
coronal plane (top in each figure). The green ellipses are the cross sections
of the ellipsoids, and the blue dots are the 2-D projections of the sensors
(the fish-like layout—layout 2—is used here). The gray-scale filled contours
correspond to the resulting parts-std for a target in that location after
each sensor has updated an initially uncertain prior. The yellow contour
is at parts-std = 4, which is roughly half the value of parts-std with a
completely uncertain belief (for example see Figure 5.3). We use Nsen =
1024 sensors and a sensor-noise level of σn = 4 µV, which corresponds to
the sensing effectiveness used in the other simulations.
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One method of quantifying the effectiveness of the electric field is by estimating the

area that will render a belief with an uncertainty below a predefined threshold. For ex-

ample, if parts-stdmax represents a completely uncertain belief, then the yellow contours

in Figure 5.4 is at parts-std = 0.5parts-stdmax. The area inside this contour, but not

including the ellipse, of the flipped electric field case is 4% greater in the mid-sagittal

plane and 3% greater in the mid-coronal plane than the normal electric field case. Across

all parts-std from 0.01parts-stdmax to 0.9parts-stdmax the flipped electric field always

creates a larger area but only by between one and five percent for both planes.

To quantify the level of isotropism of the sensing system we first determined the

shortest distance from each point on the perimeter of the ellipse to a specified parts-std

contour. The standard deviation of these distances is an indicator of the uniformness

of the sensing system. For both the mid-sagittal and mid-coronal planes this standard

deviation was approximately twice as large in the flipped electric field than in the normal

electric field across all parts-std from 0.01parts-stdmax to 0.9parts-stdmax. Also, the

ratio of largest distance to the smallest distance was almost twice as great in the flipped

electric than in the normal electric field case for the same range of parts-std and for both

planes. Both of these measures of isotropism suggest the normal electric field facilitates a

much more isotropic sensing system than the flipped electric field. Thus, a small increase

in sensing volume may be less important than a large difference in the isotropism of the

sensing system.
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5.3. Determining the Best Sensor Layout

In this section we address the question of “Is the sensor layout of the Apteronotous

albifrons a good choice for the prey-capture task?” An efficient distribution of sensors

can positively affect the fitness (in evolutionary terms) of a fish. For example, a good

sensor layout may require less expended mechanical energy to obtain the same level of

prey uncertainty (i.e., a good sensor layout can offset motion).

Finding the best sensor layout is yet another case of parameter optimization. For our

particular parametrization scheme, p defines the sensor densities on the two-dimensional

surface of the ellipsoid (see Section 4.3.5 for details). For computational considerations

we have reduced the set of possible p’s to 16 (listed in Table 4.1). Because the space of

possible parameters is so small, we do not need to resort to any of the solution methods

described in Section 4.2.4; we can try all 16 and see which is best.

In order to determine if the A. albifrons’ sensor layout is a good choice for the elec-

trolocation task, one the sensor layouts is similar to that of the actual fish (sensor layout

2). In the A. albifrons there are higher densities in the dorsal and anterior (head) regions

(approximate densities were recorded in [61]).

16 total layouts are considered. Sensor layouts 1 through 12 are characterized by a

region of high sensor density and the remainder of the ellipsoid surface has a lower density

of sensors. These layouts were constructed by shifting the region of higher sensor density

to three locations in the anterior-posterior direction (head, tail, and middle) and four

locations in the dorsal-ventral-right-left direction for a total of 12 permutations (Figure

5.5(A) shows the one of these 12 that is most similar to the fish). Layout number 13 is

a uniform distribution of sensors (See Figure 5.5(B)). Layouts 14, 15, and 16 only have
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(A) sensor layout 2 (fish-like) (B) sensor layout 13

(C) sensor layout 15

Figure 5.5. Three examples of sensor layouts with 256 sensors.

sensors near the head, middle, and tail, respectively (Figure 5.5(C) shows sensor layout

15). Section 4.3.5 describes the 16 layouts in more detail.

Three different types of prey-capture trajectories are considered. One trajectory is

based on the actual trajectory of a fish during the prey-capture task (mo-cap). Another

is the mechanically optimal trajectory of the ellipsoid (see mech-opt in Section 4.3.6.3).

The third type fits polynomials to the six degrees-of-freedom of the ellipsoid, where the

pose and velocities at detection time and prey-capture time are constrained to match the

corresponding mo-cap trajectory (see poly-fit in Section 4.3.6.2). The time-history of each

of the six degrees of freedom of the ellipsoid are defined by a polynomial. Twenty-five

of each type of prey-capture trajectory were simulated. Both the mech-opt and poly-fit
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trajectories are constrained to match the configuration and velocity of the corresponding

mo-cap trajectory at the time of prey detection and at the time of prey capture.

5.3.1. Sensory Performance of a Trajectory

The parts-std norm estimates the uncertainty of a belief at a single point in time. For

trajectory-comparison purposes we need to quantify the sensory performance of an entire

trajectory. The uncertainty of the prey position at the time of prey capture is irrelevant

since the shortest sensorimotor delay of weakly electric fish is about 100 ms, thus, the

fish’s current actions are based on information that is at least 100 ms old. If we wish to

examine how accurate the fish’s final action in the prey-capture sequence could be, then

we can look at the average uncertainty metric over a time window ending at tpc−100 ms,

where tpc is the time of prey capture. It is within this window that the fish will decide

on its final action. We consider parts-std over a 100 ms window from tpc − 200 ms to

tpc − 100 ms. If we define sense-utility to be this sensing utility for the trajectory,

then,

(5.1) sense-utility[b(t)] =
1

100 ms

∫ tpc−100

tpc−200

parts-std[b(τ)]dτ

where b(t) is the time history of the belief. Even though this measure only explicitly

considers the belief near the end of the prey-capture task, the utility of earlier observations

is still reflected in this measure since beliefs take into account all prior information.
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5.3.2. Data for all Sensor Layouts and Trajectories

All 16 sensor layouts were tried on the 25 different trials and for each of the 3 types of

trajectories. This was repeated (for statistical purposes) 20 times for a total of 24, 960

prey-capture simulations. The average across all N = 20 repeats is shown in Table 5.1. In

these simulations we used Nsen = 64 and σn = 1 µV, which corresponds to ξ = 64 Nsen/σ
2
n.

The sense-utility values in columns 4 through 6 in Table 5.1 (the numbers not in

parentheses) are normalized by the best (out of 36) of the combination of layout number

and trajectory type. The best sense-utility out of the 36 possibilities is denoted in

boxed text. The numbers in parentheses are another method of evaluating sensor-layout

performance, which is described below. A lower sense-utility is better, thus layout

number 2 with the mo-cap trajectory is the best of 36 possibilities. Two claims can be

made from the sense-utility data. First, for the given sample of 25 motion capture

prey-capture trajectories, sensor layout 2 is the best, since the lowest sense-utility

in column 4 is for the fish-like layout (FL = fish-like sensor layout). Secondly, given

the fish has sensor layout 2, the mo-cap trajectory is better than both mech-opt and

poly-fit for sensing, since the lowest sense-utility in the layout 2 row is in the mo-cap

column. Thus, it appears that the fish has made a good choice—at least in the interest

of sensing—of sensor layout and trajectory type for the prey-capture task.

In order to verify the implications of the sense-utility data in Table 5.1 we perform

pairwise t-test for all combinations of sensor layouts for each trajectory. For a given

pair of sensor layouts, if one pair is significantly better (α = 0.05), then 1 point is

added to the score of the superior sensor layout, and 1 point is subtracted from the

inferior sensor layout (zero-sum game). With 16 different sensor layouts there are 120
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sensor layout description normalized sensor-utility

sensor concentration layout
mo-cap poly-fit mech-opt

sensor
head-tail D-V number rank

head

right 1 1.1 (92) 1.7 (81) 1.7 (108) 2 (2)

dorsal 2, FL 1 ( 108 ) 1.5 ( 102 ) 1.7 ( 111 ) 1 (1)
left 3 1.1 (91) 1.7 (78) 1.8 (107) 3 (3)

ventral 4 1.1 (92) 1.7 (76) 1.8 (105) 4 (4)

middle

right 5 1.5 (48) 1.9 (71) 2 (55) 7 (7)
dorsal 6 1.4 (69) 1.7 (84) 1.9 (65) 5 (6)

left 7 1.5 (52) 1.9 (69) 2.1 (47) 8 (8)
ventral 8 1.6 (47) 1.9 (68) 2.1 (44) 9 (9)

tail

right 9 2.1 (−12) 2.7 (−34) 2.8 (−24) 12 (12)
dorsal 10 1.9 (−2) 2.5 (−24) 2.7 (−32) 11 (11)

left 11 2.1 (−21) 2.6 (−46) 2.9 (−42) 13 (13)
ventral 12 2.2 (−45) 2.8 (−42) 3.1 (−64) 14 (14)

uniform uniform 13 1.4 (79) 1.8 (70) 2.1 (70) 6 (5)
head only uniform 14 1.7 (7) 2.1 (20) 2.1 (36) 10 (10)

middle only uniform 15 3.7 (−231) 4.8 (−210) 5.3 (−213) 15 (15)
tail only uniform 16 10.7 (−374) 11.6 (−363) 11.7 (−373) 16 (16)

trajectory total 36.3 44.8 47.9
Table 5.1. The sensing performance for each combination of sensory layout
and trajectory type. The numbers in parenthesis are the scores from per-
forming the pair-wise t-tests between alternative layouts within the same
trajectory type. The first three columns describe the type of sensor layout
(see Table 4.1 for details; sensor layout 2 is most like the fish, which is
denoted by FL). D-V is short for dorsal-ventral. The next three columns
show the average normalized sense-utility for each combination of lay-
out number of trajectory type. The last column ranks the sensor layout
according to sum of columns 4 through 6 (lower rank is always better). The
bottom row sums the normalized sense-utility for each trajectory type
across all sensor layouts. The three rows in blue text (sensor layouts 2, 6,
and 10) correspond to sensor layouts with higher densities on the dorsal
edge. The best sense-utility is denoted by boxed text, which is the mo-
cap trajectory with layout number 2. The highest pair-wise t-tests within
each trajectory type are also denoted by boxed text. All of these are from
sensor layout number 2.
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possible pairs for each trajectory type (16 choose 2 = 120). Performances of the sensor

layouts are only compared within the same type of trajectory (zero-sum game for each

type of trajectory). Therefore, the maximum possible score for any sensor layout is

(15 other layouts)× (25 trajectories) = 375. Similarly, if a sensor layout was significantly

worse than all others across all trajectories it would receive a score of −375. These

results are summarized as the values in parentheses in Table 5.1. Evidence supports the

hypothesis that the sensor layout closest to the fish is the best. In both analyses sensor

layouts with highest concentrations near the head (layouts 1 to 4) are the four best for all

three trajectory types. Also, within each group of 4 with the same head-to-tail density

(sets {1, 2, 3, 4}, {5, 6, 7, 8}, and {9, 10, 11, 12}) the best sensor layout is the one with the

highest density at the dorsal edge (i.e., layouts 2, 6, and 10). In Table 5.1 these three

layouts are signified with blue text.

It is important to note that with the significance scores from Table 5.1 we cannot

draw any conclusions across trajectory types, since the t-tests were performed across the

16 layouts but within the same trajectory type. Thus, we can determine the relative

ordering of the sensor layouts only within each trajectory. Comparisons across trajectory

types using the significance scores in Table 5.1 are meaningless.

5.3.3. Is There Sensor Specialization?

The four best sensor layouts from Table 5.1 all had the highest sensor density near the

head. But, sensor layout 14, which only has sensors near the head, performed relatively

poorly. Upon inspection of the time history of parts-std, in most trials it appears

that sensors near the middle (along the head-to-tail direction) are responsible for gross
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refinement of the belief, while sensors near the head are used for fine localization. Early

in the time history of the uncertainty of the prey, there is little belief refinement as the

signal-to-noise (SNR) ratio is well below unity. As the SNR approaches unity parts-std

rapidly decreases. Often, the prey is nearest the middle of the body during this phase.

This may explain why the uniform sensory layout (number 13) performs much better than

layout 14 (all sensors near head). Is the location of sensors on the fish’s body specialized

for different levels of localization accuracy? For example, sensors further from the fish’s

mouth could be responsible for gross detection due to possible high convergence of afferent

signals downstream, and sensors closer to the mouth could have better spatial accuracy

due to low spatial convergence of the signal downstream.

5.4. Interdependencies Between Sensing and Motion

Ideally, acquiring information effectively and moving in a mechanically efficient man-

ner should be done simultaneously. This requires a co-optimization of the sensing and

mechanical systems. In this section we show the fish’s sensing and motor systems have

co-evolved for the prey-capture task

The active sensing problem, which was formally defined in Section 4.2.2, is moving to

acquire the best information possible. The Lagrangian for a pure active sensing cost is

defined in Equation (4.8), which can be used as the cost functional J in Equation (4.5)

to define the active sensing optimal control problem. As suggested in Section 4.2.4, we

make no claim of finding the global optimal trajectory. Instead, we examine 75 trajec-

tories generated from either motion-capture data (mo-cap), a mechanical optimization

solver (mech-opt), or fitting polynomials to the degrees-of-freedom (poly-fit). For each
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25 mo-cap trials, both poly-fit and mech-opt have configuration and velocity boundary

conditions that match the corresponding mo-cap trial. Our conclusions are based on the

sense-utility metric of the 75 trajectories.

5.4.1. Two Types of Trials

In many of the mechanically optimal trajectories, just after detection time the ellipsoid

will roll to a configuration that allows its dorsal edge to slice through the fluid. Then,

just prior to prey capture, it must roll back so its pose and velocity match the mo-cap

trajectory at the time of prey capture. When the ellipsoid leads with its dorsal edge, the

amount of fluid it is accelerating is minimized, which is good for minimizing mechanical

cost. Unfortunately for sensing, this maneuver often increases the distance between the

target and its sensors and emitters. Roughly speaking, the sensor signal decreases with

the 4th power of target distance for small targets over the behaviorally relevant range of

target distances [71].

For each trajectory we determined if the ellipsoid performed a “big-roll” maneuver

or not for both the mech-opt and mo-cap trajectories. The presence of a big-roll is

determined by examining the angular velocity about the major axis (the axis running

head to tail) of the ellipsoid at a 150 ms window after detection and a 150 ms window

prior to prey capture. If the angular velocity in both windows reach a max (roll) velocity

of 0.9 rad/sec, then it is concluded that this trajectory has performed a big-roll maneuver.

The optimization routine used to find the mech-opt trials is not aware of the constraints

of the real fish and searches across a fully-actuated movement repertoire for the optimal

trajectory. In many situations the real fish is unable to perform a big-roll maneuver, but
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in some situations it can [185]. This motivates a distinction between the fish-like mech-

opt trials and the non-fish-like mech-opt trials. In the fish-like trials at least one of the

two following conditions is met: 1) The mech-opt trajectory did not perform a big-roll;

or 2) The mo-cap trajectory did perform a big-roll. Ten of the twenty-five trials fit this

criteria. The remaining 15 trials are considered non-fish-like, since these are the trials

where the mech-opt did perform a big-roll and the mo-cap did not.

5.4.2. Sensing Performance of Trajectory Types

To compare sensing performance across trajectory types we use the normalized sense-utility,

where the sense-utility is divided by the average sense-utility for all three trajec-

tory types. Thus, if the normalized sense-utility is much less than unity for a particular

trajectory type, then it is pretty good relative to the other two. Columns (2) through (4)

of Table 5.2 show the sensing performance (normalized sense-utility) for all 25 trials

as well as just the fish-like and non-fish-like trials. The table only considers trajectories

using sensor layout 2, since this is closest to the fish.

5.4.3. The Sensor-Distance Metric as a Predictor of Sensing Performance

A possible predictor of sensing performance is the distance from the closest sensor on

the ellipsoid to the prey averaged along the trajectory, which we call sensor-dist. To

compute sensor-dist for a trajectory, at each time step we determine the distance from

the center of the prey to the nearest sensor on the ellipsoid. The average of these distances

across all time steps from detection to prey capture is the sensor-dist metric. Column

(5) of Table 5.2 is the normalized sensor-dist metric for the mech-opt trials, which
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sense-utility sensor-dist

(1) (2) (3) (4) (5)
mo-cap poly-fit mech-opt mech-opt

all trials (N = 25) 0.89 1.02 1.09 1.05

fish-like trials (N = 10) 0.97 1.06 0.97 0.99

non-fish-like trials (N = 15) 0.83 1.00 1.17 1.10
Table 5.2. Performance of fish-like and non-fish-like trials. Columns (2)
through (4) compare the trajectory types for each of the three sets of trials.
The sense-utility is normalized by the average sense-utility (of the
three trajectory type) of the trial. Thus, for each row, columns (2) through
(4) sum to 3. The best sense-utility for each set of trials is shown in
boxed text. Column (5) is the normalized sensor-dist metric for the mech-
opt trials. There is a significant different (α = 0.05) in sense-utility

between the mo-cap and mech-opt trajectories for both the “all trials” set
of data and the non-fish-like trials.

is computed by dividing the sensor-dist of the mech-opt trajectory by the average

sensor-dist of all three trajectory types.

Figure 5.6 suggests a positive correlation between the normalized sense-utility of

the mech-opt trajectories (column (4) in Table 5.2) and the normalized sensor-dist

metric (column (5) in Table 5.2). Thus, for good sensing performance it is good to get as

close to the target as possible as quickly as possible. Of course, the fish does not know

the exact location of the prey, so it cannot use this metric in a real-time control scenario.

Here, we use it to gain some insight as to why the mech-opt trials perform poorly.

5.4.4. Co-optimization in the Prey-Capture Task

If the ellipsoid is endowed with full actuation over its 6 degrees-of-freedom, then the

mechanically-optimal trajectory usually performs poorly for sensing. The conclusion is

drawn from the first row of Table 5.2 (“all trials”). The second row of Table 5.2 is the

average across the 10 trials where the mech-opt trajectories performed maneuvers similar
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Figure 5.6. The normalized sense-utility of the mech-opt trajectories
(column (4) in Table 5.2) versus the normalized sensor-dist metric (col-
umn (5) in Table 5.2). Each blue dot is a trial number. The solid line is
the linear-least-squares fit (R2 = 0.82). Red circles signify the 10 fish-like
trials.

to what the actual fish could do. For these trials the mech-opt performed as well as

the mo-cap trajectories. Thus, the mechanically-optimal trajectories are also good for

sensing when only allowed to perform maneuvers similar to what the fish can do. This

suggests that for sensing prey during the prey-capture task a fully-actuated fish possesses

unnecessary actuation capabilities. These additional capabilities would come at the cost

of additional tissue and bone mass, which could decrease the motion performance of the

fish.

Table 5.2 shows the relative performance between trajectory types for the fish-like

sensor layout (layout number 2). Thus, our conclusions are based on the fact that sensor

layout is fixed and the actuation system has evolved for this layout. But, even if we fix

the trajectories and are able to vary the sensor layout across all sixteen described earlier,
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then it is still the case that the mech-opt trajectory type is the worst of the three for any

of the sixteen layouts. Thus, even if the fish was fully-actuated, then none of the sixteen

sensor layouts would allow the mechanically-optimal trajectory to be the best for sensing.



Part 3

The Electrosenster: A Robotic

Electrosensory System



The electrosensory system presented in this part consists of a 2-degree-of-freedom

(DOF) XY planar robot, which controls the position of the generated electric field and

the sensors used to estimate the location of the target. Using various control algorithms,

the robot can successfully locate nearby targets, as well as localize itself when placed in

a pre-mapped environment, in both fresh and saltwater. Most of the controllers address

the stochastic nature of the electrosensory observations by employing Bayesian fusion to

calculate a belief of the position of the target. These controllers use empirical calibration

of the sensor for the specific target and environment. Another controller, used solely for

electrolocating individual targets, exploits invariant spatial features of the electric field

signatures of a class of targets to achieve electrolocation without calibration. In most

trials its precision was better than one millimeter.
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CHAPTER 6

Experimental Setup

This chapter describes a planar Cartesian robot that uses voltage measurements from

its self-generated electric field to estimate the state of its world. The Electrosenster is

composed of the robot, its signal processing circuitry, and its supporting software [214].

The Electrosenster is shown in Figure 6.1. Primary, the robot’s task is determining the

position of a single target with some assumed properties (electrolocation).

6.1. Related Systems

A survey of the literature to date reveals only two different physical systems that

utilize measured voltage perturbations from a self-generated electric field to estimate the

position of a target. One group built an artificial electrosensory system to investigate the

possibility of using it for obstacle avoidance in underwater robots [73] (referred to here as

the “Chetty system”). Their system could detect either a conducting or insulating sphere

as small as 25 mm in diameter as far away as 5 mm. In their preliminary experiments

their underwater robot could perform obstacle avoidance using this electrosensory system.

A few years later another study built an artificial electrosensory array to study the

feasibility of using such a system in underwater robots [156] (referred to here as the

“MacIver system”). They were able to determine the distance of a submerged 1 cm

diameter plastic sphere up to a distance of about 12 mm away from the sensor. Their

distance estimation algorithm was based on the time history of the sensor measurements.
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(A) Photo of the Electrosenster with four spherical targets at the
bottom of the tank. The larger targets have diameters of 1 1/2′′,
and the other two are 1/2′′ diameter.

-1
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analog switch

low pass filter

to
ADC

analog switch control signal

G

(B) Simplified schematic of electronics. The electronics will be thor-
oughly described in Section 6.5.

Figure 6.1. The Electrosenster.
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The Electrosenster is an improvement to both of these systems in four ways. First, the

Electrosenster employs probabilistic belief maintenance techniques. As previously seen,

such techniques utilize statistics of sensing and motion to maintain a belief of the position

of the target. Equipped with this belief of the target position, the controller can make

informed decisions. Secondly, neither of the other two systems actively seek to improve

the belief of the target (i.e., exploration or active sensing). Such a control scheme allows

for an efficient localization paradigm. Thirdly, only the Electrosenster can provide a 2-D

spatial estimate of the target. The MacIver system only estimates a scalar distance, and

the Chetty system makes no attempt to estimate quantitative distances. The Chetty

system uses the measured electric field perturbation to steer a submerged vehicle away

from the object. Lastly, the Electrosenster boasts superior detection range to either of

the other two.

6.2. Aquatic Environment

Experiments were conducted in a 750 mm by 750 mm glass tank filled to a depth

of approximately 160 mm. To minimize the effects of the tank walls on the electric

field, experiments were conducted in a central region of 200 mm by 200 mm. We used

two different types of water, the first to mimic conductivity conditions in the natural

habitat of weakly electric fish (“fresh”) [157, 175], and the second to mimic ocean water

conductivity. For each type of water sodium-chloride was added to de-ionized water

until the desired salinity was obtained. The salinities of the two water types resulted in

conductivities of 160 µS/cm for fresh water, similar to the native habitat of weakly electric
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Figure 6.2. Top view photo of the hardware. A 1 inch diameter brass cylin-
der is in the fish tank. The electrodes are fastened to a translucent plastic
breadboard.

fish [80], and 56, 000 µS/cm, an upper bound for marine water conductivity (typically

43, 000 µS/cm [81]).

For many of the targets used, a small stand in the tank suspends them such that the

tops of the targets cleared the bottom of the electrodes. The electrical signature of the

target stand alone did not significantly interfere with any of the measurements.
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6.3. Hardware

The hardware of the Electrosenster consists for the following components, which are

shown in Figure 6.2:

(1) two linear slides

(2) two motors

(3) two motor amps

(4) a platform

(5) the carriage

(6) electrodes

The two linear slides provide the planar, two degrees-of-freedom of motion. The X

linear slide (P/N GL20-S-40-1250L from THK Company, LTD) has a 1.25 meters ball

screw stoke and 40 millimeter per revolution pitch. Physical stops were affixed to the

track (labeled “xmin stop” and “xmax stop” in Figure 6.2) that allowed for only 37 cm of

travel in the x direction. The Y linear slide (P/N VLA-ST-45-05-0500 also from THK

Company, LTD) has 0.5 m ball screw stoke and 6 mm/rev.

Both of the motors used to power the linear slides are Yaskawa AC servomotors (P/N

SGM-02B312). The motors are driven by the Yaskawa SGD-02BS Servo Pack that are

able to provide 200 watts of power.

A welded steel platform raises the X linear slide 30 cm above the ground. This allows

for the Y linear slide to hover above the fish tank and for the carriage to suspend its

four electrodes into the water. The carriage contains some of the preliminary signal

processing circuitry (see green shaded area in Figure 6.3). The carriage also suspends a
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translucent plastic breadboard for configuring the positions of the electrodes. The holes

on the breadboard are spaced at an inch (25.4 mm) on a 10 by 6 grid.

6.4. Electrodes

This electric field is transmitted between two silver electrodes submerged in water,

which were plated with silver chloride to improve the metal-water electrical interface

[191]. Refer to Appendix B for a description of the electroplating process. For most of

the experiments the electrodes are 50 mm apart. The two sensing electrodes are identical

to the electric field emission electrodes. Both the electric field emission electrodes and

the sensing electrodes are made from 0.38 mm diameter silver wires and are stabilized by

0.5 mm borate silicate glass pipettes (See [188] for more details on hardware for measur-

ing electric fields). The two sensing electrodes were placed in positions that nominally

correspond to the same voltage in the electric field when no target is present. This allows

us to input these signals to a high-gain differential amplifier.

6.5. Electrical Circuitry

The electrical circuitry described in this section is responsible for generating the elec-

tric field (stages (1) through (5) in Figure 6.3), measuring the voltage at the sensing elec-

trodes, and then producing a low-noise, low-frequency signal that the analog-to-digital

converter (ADC) can utilize. The twelve components of the circuit depicted in Figure 6.3

are:

(1) oscillator: generate 2 MHz TTL-level pulses

(2) binary counter: downsample to 1 and 2 kHz

(3) XOR gate: produce 90◦ phase shift



158

(4) high-pass filter: remove DC bias and set gain

(5) fish tank: interface between generated electric field and sensing electrodes

(6) high-pass filter: buffer and remove DC bias

(7) offset adjustment: adjust input levels for the differential amplifier

(8) instrumentation amplifier: produce difference of two signals

(9) high-pass filter: clean up signal before processing

(10) signal inverter: produce negative of signal

(11) analog switch: keep portion of signal that is in phase with control signal

(12) low-pass filter: smooth out for ADC

The electric organ discharge (EOD) of the weakly electric fish is a sinusoid-like emission

of about 1 kHz. We use a biphasic square wave of 1 kHz. The choice of square wave is

simply because the electronics are easier to implement. In the future if we would like to

use a sinusoid, we could send the square wave through a multi-pole low-pass filter before

transmitting through the water. In simulation an 8-pole low-pass Butterworth filter with

cutoff frequency of 1.2 kHz produced a nice clean 1 kHz sinusoid from a 1 kHz square

wave. It is also important to high-pass filter the signal before it is transmitted through

the electrode to minimize corrosion of the electrode. The high-pass filter will subtract a

DC offset and minimize charge buildup at the electrode/water interface.

Generation of the electric field signal begins at stage (1) in Figure 6.3, which is a

crystal oscillator (P/N SG-531P) that puts out pulses at 2 MHz. The pulses are then put

into a 14-stage binary ripple counter (Philips P/N 74HC4020N) that generates two square

waves of interest; one at 1 kHz and the other at 2 kHz (stage (2)). We also need a 1 kHz

square wave that is 90 degrees out of phase for gating one of the two analog switches (for
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Figure 6.3. Block Diagram of the signal processing circuitry. The blocks
represent the twelve stages of the circuit. Arrows indicate the flow of the
signal. An illustration of the signals are shown at various points throughout
the diagram; the three dashed lines in the insets represent −12, 0, and +12
volts. The green highlighted blocks (6 through 8) are implemented on the
carriage of the Electrosenster.
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later in the sensor circuitry). This 90 degree shifted wave can be created by sending the 1

kHz and 2 kHz square waves (of TTL levels) through an XOR logic gate (stage (3)). The

1 kHz square wave is sent through a high-pass filter (stage (4)) to remove DC offset and

amplify the signal before being transmitted through the fish tank (stage (5)). Stage (6)

is responsible for eliminating any induced DC bias on the sensing electrodes (minimize

electrode corrosion).

Both the electric field emission electrodes and the sensing electrodes are simply silver

wires that are stabilized by glass pipettes. The two sensing electrodes were placed in posi-

tions that nominally correspond to the same voltage in the electric field. This means that

when there is no target in the tank, both electrodes will measure the same voltage. The

circuit can be fine tuned with two potentiometers that act as voltage dividers (stage (7)).

So, when we put these two signals through a differential amplifier (e.g. instrumentation

amplifier, Burr-Brown INA 129) with nothing in the tank there is zero volts at the output

of the amplifier (stage (8)). But, when these voltages at the electrodes deviate from their

nominal values, these small differences can be greatly amplified. The differential amplifier

serves two purposes: 1) common mode rejection: any voltage experienced by both elec-

trodes (e.g. external noise) is canceled out. 2) increased resolution: We really only care

about changes in voltages, and these changes are usually on the order of mV to 10’s of

µV, which may be difficult to detect. But, these voltage changes are amplified to levels

that can be more accurately read by our electronics.

After leaving the differential amplifier the signal is put through another high-pass

filter to once again ensure there is no DC bias in the signal (stage (9)). Stage (11) of

the circuit involves two analog switches. An analog switch passes one of the two input
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Figure 6.4. Synchronous detection. The left shows the process in the time
domain, while the right column occurs in the frequency domain. This figure
is taken from [208]

signals depending on the state of the switch. In our circuit the two signals are the signal

from the differential amplifier and the negative of that signal, which was generated from

stage (10). The square wave used for the electric field is used as the controller for the

switch. The key point of this stage of the circuit is that the analog switch only allows

portions of the signal that have the exact same frequency as the switch controller signal

(electric field signal) to have a non-zero bias at the output of the analog switch. While

all the signal is passed though the analog switch, half of the signal is the original signal’s

negative. Recall that we had a high-pass filter stage before the analog switch. This

ensures a zero-mean signal before entering the analog switch. But, the component of

the signal that exactly matches the frequency of the switching frequency will have a
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non-zero-mean at the output of the analog switch and all other frequency components

will keep their zero-mean characteristic. A low-pass filter will essentially average out all

frequency components that are significantly higher than the filter’s cutoff frequency. Thus,

all frequency components of the signal leaving the analog switch that are higher than the

low-pass filter’s cutoff frequency and do not match the switching frequency of the analog

switch are averaged out to zero. This process is very similar to its analog counterpart,

synchronous detection [2], which is demonstrated in Figure 6.4. The signal leaving the

low-pass filter is read in by the analog-to-digital-converter (ADC) on the PC104 stack.

The analog switch/low-pass filter stages are duplicated, but the switching control signal

is now phase shifted by 90 degrees. So, in the end, the Electrosenster produces two analog

channels.

6.6. Computer Hardware Structure

The XY table is controlled by a PC-104 form-factor computer running the xPC real-

time operating system from Mathworks. This computer is referred to as the xPC target

and runs a compiled Simulink model in real time. The xPC target has four functions:

(1) home the encoders of the motors

(2) position motors to set point

(3) collect raw sensor data

(4) perform preliminary signal processing on sensor data

High level control is handled by a local desktop PC, referred to as the xPC host. The

xPC host is connected to the xPC target through a router via ethernet. The xPC host
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simply passes goal positions to the xPC target and receives the conditioned signal data.

The xPC target runs a PID controller at 1 kHz on the current goal position.

6.7. Electric Field

The electric field is generated by two exposed silver-chloride spheres in a fish tank.

The qualitative structure of this electric field is well-approximated by the electric field

generated from two point charges in an infinite medium (see dipole model in Section 2.3).

The justification of this approximation is in Appendix C. A 2-D slice of the electric field

using this approximation is depicted in Figure C.1 on page 264. Thus, the dipole model

discussed in previous chapters serves as a good model for the Electrosenster.

The power consumption of a sensing system can be an important consideration. In

fresh water conditions the electric field of the Electrosenster consumed 0.3 mW of power.

In saltwater, the electric field consumed 40 mW of power, corresponding to the two orders

of magnitude higher conductivity of the saltwater over the fresh water.
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CHAPTER 7

Sensor Characterization

In this chapter the electrosensory system of the Electrosenster is characterized. We

first show how to construct an empirical sensor model using data collected from the Elec-

trosenster. Then, the detection distance is investigated. We use simple models to develop

an analytical solution of the detection distance. This theoretical model is compared with

measured detection distances from the Electrosenster.

7.1. Empirical Construction of Sensor Model

The “dipole model” (see Section 2.3, page 50) discussed in previous chapters is based

on the Electrosenster. Thus, essentially the same type of sensor model used for the dipole

model is used for analyzing the Electrosenster. The only difference is that the sensor

model for the Electrosenster will be constructed from measurements of the target rather

than from a theoretical model. As with the dipole model, the position of the target in

the z-direction (vertical) is set such that the bottom of the electrodes clear the top of

the target by approximately 2 mm (the emitters and detectors are constrained to move

in the z = 0 plane). When reference is made to the location of the electrodes or target,

the geometric center is used to define its location. For example, with spherical targets

of radius rtarget mm if the emitter has radius remitter mm, then the z-distance between

the emitter and target when they both are located at the same x and y coordinates is

rtarget + remitter + 2 mm.
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7.1.1. The Sensor Model

The probabilistic sensor model used for the Electrosenster can be written as p(w|x, e),

which represents the likelihood of observing w conditioned on the position of the target in

the sensor frame, x, and under the environmental conditions defined by e. For the Elec-

trosenster w = V1−V2, and experimental data indicates that sensor noise is approximately

zero-mean and normally distributed. Thus, the sensor model can be parameterized as a

mean and variance for each possible target location in the predefined workspace.

The sensor model used to construct the beliefs discussed in Sections 3.2 (histogram)

and 3.3 (particles) used Equation (2.13) on page 48 (This is Rasnow’s equation for the

voltage perturbation in a uniform electric field induced by a sphere) to estimate the

expected value of p(w|x, e) for each x. These expected values are precisely the EEVs

depicted in Figures 2.7 (dipole model on page 53) and 2.10 (ellipse model on page 58).

7.1.2. Data Collection for the Sensor Model

For the Electrosenster, rather than derive the mean and standard deviation of p(w|x, e)

from an analytical model, we measure these two constituents of the sensor model by a

calibration step. For a given target at a known location, we collect sensor samples at a

grid of points near the target. By taking a number of readings with the target located

at each grid point, the sensor model can be parameterized by two grids of values: a grid

of average sensor readings and a grid of sensor reading variance. Letting xs = (xs, ys)

be the known target location in the sensor frame, we define the mean and variance of

ten measurements at this location as ave(xs) and var(xs). Both ave(·) and var(·) can

be viewed as mappings from R2 to R. Off-grid values of these functions are obtained by
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interpolation. Qualitatively, experimental data was consistent with our analytical model

(e.g., compare the theoretical EEV in Figure 2.7 with the measured EEV in Figure 7.2).

The Electrosenster was tested with different target geometries—the most common

being cylinders and spheres—and sizes ranging from 1/4′′ diameter to several inches wide.

We also tested targets of different materials. Plastics and glass targets were classified as

electrical insulators and metal targets were classified as electrical conductors. In general,

smaller targets perturbed the electric field less than larger targets. Thus, the workspace

was adjusted depending on the target. The workspace for a large sphere (1 1/2′′ diameter)

and small sphere (1/2′′ diameter) are shown in Figure 7.1. This figure also depicts the

local (i.e., permissable control choices at the current time step) and global control limits

for this example.

7.2. Empirical EEVs

As previously mentioned, various sets of experiments where performed using many

different types of targets in different water conductivities. In the interest of briefness,

only a few of these EEVs will be examined in this section. More EEVs are shown in

Appendix D.

Here, we examine the EEVs for eight experimental conditions corresponding to all

permutations of two target diameters (12.7 and 38.1 mm), two target conductivities (con-

ductor and insulator), and two water conductivities (fresh and salt). For each target/water

combination the target was placed at the center of the tank. For the 38.1 mm diameter

spheres the robot moved the sensor carriage on a 120 mm by 120 mm grid, stopping every

4 mm for a total of 31 × 31 = 961 positions (dots in Figure 7.1(B)). For the 12.7 mm
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Figure 7.1. A 2-D projection of the robot workspace for two different size
spheres. The white cross is the center of the robot’s carriage; this is de-
fined as the position of the robot. The black cross is the center of the 2-D
projection of the spherical target; in the plane of the sensor and emitter
electrodes, this is defined as the position of the target. The green diamonds
and red squares are the positions of the sensing electrodes and field emit-
ter electrodes, respectively for the given robot position. The darkest gray
area represents the area of possible locations the robot can travel to at the
next step. The next darker area contains all the possible starting positions
for the robot. The largest square represents all possible locations the ro-
bot is allowed to travel after the starting position. The black dots are all
the locations the robot visited while constructing the associated EEV. (A)
Workspace when locating the 12.7 mm sphere. The robot is at position
(xw = 29, yw = −35). (B) Workspace when locating the 38.1 mm sphere.
The robot is at position (xw = −35, yw = 58).
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diameter spheres the robot moved the sensor carriage on a 100 mm by 100 mm grid, stop-

ping every 4 mm for a total of 26× 26 = 676 positions (dots in Figure 7.1(A)). The ave(·)
and var(·) functions were obtained by taking the average and variance of 10 time-averaged

sensor readings at each grid point.

For each EEV in Figure 7.2, solid red contours indicate the detection range of the

sensor: if an target is placed inside the contours, the expected observation will correctly

detect its presence with at least a 95% likelihood. This is determined by collecting a

number of measurements Wnt when no target is present and calculating the mean wnt =

E[Wnt] and standard deviation σnt =
√

variance[Wnt]. The no-target observation, wnt, is

defined as the expected observation when nothing perturbs the electric field (i.e., when

no target is nearby), and the no-target noise, σnt, is defined as the standard deviation of

the observations when no target is nearby. The detection range is defined here by the

EEV voltage contours at wnt ± 2σnt. For the empirical sensor models σnt is between 40

and 100 mV for the 6 EEVs where G < 200 in Figure 7.2, and around 600 mV for the two

EEVs where G = 1977 (See Figure 6.1(B) on page 153 for a simplified schematic of the

Electrosenster’s circuitry). To determine the noise at the sensor (before being amplified),

divide σnt by differential amplifier gain, G. The noise was between 0.2 mV and 1 mV for

all experimental conditions.

Each of the two EEVs in each pair of constant gain (e.g., the pair in Figures 7.2(A) and

7.2(B)) in Figure 7.2 only differ by the material of the of target. If we use the simple model

from Equation (2.13), the two EEVs in each pair only differ by the contrast factor, χ,

which takes the value of +1 for an ideal conducting sphere and −1/2 for an ideal insulator.

Let us look at Figures 7.2(A) and 7.2(B). Because metal has a high electrical conductivity,
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191
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(B) Small plastic, fresh, G =
191
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(C) Large metal, fresh, G =
103
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(D) Large plastic, fresh, G =
103
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(E) Small metal, salt, G =
1977
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(F) Small plastic, salt, G =
1977
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(G) Large metal, salt, G =
148
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(H) Large plastic, salt, G =
148

Figure 7.2. EEVs for eight different experimental conditions. Caption leg-
end: Small is a 12.7 mm diameter sphere, Large is a 38.1 mm diameter
sphere, fresh is 160 µS/cm water, salt is 56, 000 µS/cm water, and G is
the differential amplifier gain. Metal is type 440-C stainless steel and plas-
tic is Delrin plastic. Red squares indicate the location of the electric field
dipoles. Green diamonds indicate the location of the voltage sensors. The
color map goes from white for +10 V to gray for intermediate values to
black for −10 V. Blue dashed lines are at 500 mV increments. The solid
red contours represent an observation that results in detection of the target
with 95% confidence.
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in fresh (low conductivity) water the target has high electrical contrast magnitude, |χ|.
By comparison, Delrin plastic has low electrical conductivity magnitude; thus in fresh

water this target has low contrast. Consequently, the magnitudes of the sensor readings

are greater for the same relative robot positions, which is evident by the larger saturated

lobes in Figure 7.2(A) (our data acquisition card saturates at ±10 V). But, as will be

seen in the analysis from Section 7.3, a relatively large difference in |χ| translates to a

small change in target position that would correspond to the same sensor observation.

This results in qualitatively similar detection contours for the metal and plastic spheres,

as seen in Figure 7.2.

Disregarding the effects of noise, a high gain or large contrast factor favors longer

range target detection, but these same factors can lead to adverse effects. Most of the

EEVs in Figure 7.2 exhibit significant regions that correspond to +10 V or −10 V due to

saturation of the data acquisition hardware. Referring back to the EEVs in Figures 7.2(A)

and 7.2(B) (same gain, but different |χ|), a sensor reading of +10 V would localize the

target to within the two relatively large white lobes in Figure 7.2(A), but the same sensor

reading for the EEV in Figure 7.2(B) would localize the target to a much smaller region.

7.3. Detection Range Analysis for a Single Sensor

In the previous section empirical measurements were used to approximate the detec-

tion distance of the Electrosenster. In this section we revert back to theoretical models to

estimate the detection distance of a target. The framework presented here can be general-

ized beyond the Electrosenster to predict detection distances for any electrosensory system

that fit the models discussed here. We will first consider the simplest emitter/detector
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setup: a single sensor in an electric field created by an electric dipole. This layout is

a departure from the Electrosenster, but this is one of the few systems that are simple

enough to write out closed-form solutions. In the next section a similar analysis will be

attempted on the Electrosenster setup but due to the geometry of the emitter/detector

layout, closed-form solutions become too lengthy to be displayed on a reasonable number

of pages. Also in the next section, the theoretical detection distances will be compared

to the measured detection distances from the previous section.

Once the specific sensor model is known, it is possible to determine the distance at

which a target can be reliably detected [213]. For this analysis we first consider an

emitter/detector layout which consists of a single voltage detector located at the origin

and the two emitters at locations (x = ±L/2, y = 0, z = 0). We wish to determine

the dimensionless detection distance, rd, of a sphere of radius A along a 45◦ line passing

through the origin. Figure 7.3 shows the system examined here. Note that these contours

of the EEV are equally spaced on a logarithmic scale.

Our detection distance model begins with the closed-form solution of the dimensionless

voltage perturbation δv = δV/Ve (derived from Equation (2.13)) where δV is the pertur-

bation and Ve is half of the difference between the emitter electrodes (e.g., one emitter is

at +Ve and the other is at −Ve). The dimensionless voltage perturbation is given by:

(7.1) δv(a, χ, e, r) = −2 a3 χ e
N1(r) + N2(r)

D(r)
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Figure 7.3. Sensor observation as a function of target position. This is
precisely the EEV for the single-sensor setup constructed using Equa-
tion (2.13)(Rasnow’s model from page 48). The emitters are red squares
and the detector is a green diamond. Only target positions along the yel-
low line will be considered (e.g., the one depicted at coordinates (−1,−1)).
Contours represent sensor observation for the target position. The color
map uses a logarithmic scale. The solid blue contour represents an obser-
vation of zero volts. Lengths are normalized to L, which is the distance
between the emitters.
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Figure 7.4. The absolute value of the dimensionless sensor signal as a func-
tion of the dimensionless distance from the sensor along the slice depicted
in Figure 7.3. The red dashed vertical line represents the singularity when
the sensor observes zero volts. Horizontal lines are at constant sensor ob-
servations, and the ‘x’ on each line represents the maximum distance for
the observation. This maximum distance is used in the definition of the
detection distance in Equation (7.2). δv is computed using Equation (7.1)
with a = 0.05, e = 0.005, and χ = +1.

where

N1(r) =
(√

2− 4
√

2 r2 + 16 r3
)√

1− 2
√

2 r + 4 r2

N2(r) =
(√

2− 4
√

2 r2 − 16 r3
) √

1 + 2
√

2 r + 4 r2

D(r) = r2
(

1− 2
√

2 r + 4 r2
) 3

2
(

1 + 2
√

2 r + 4 r2
) 3

2

where a is the dimensionless target radius given by A/L where A is the radius of the

target and L is the distance between the two emitters, χ is the contrast factor, e is the

dimensionless emitter radius given by E/L where E is the emitter radius, and r is the
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dimensionless distance to the center of target from the detector given by R/L, where R

is the distance to the center of the target. Equation (7.1) is derived in Appendix E.

The no-target observation, wnt, is defined as the expected observation when nothing

perturbs the electric field (i.e., when no target is nearby). In this particular example

wnt = 0. The no-target noise, σnt, is defined as the standard deviation of the observations

when no target is nearby. For a two-sigma (∼ 95%) confidence interval, when there is no

target nearby, there is only a ∼ 5% chance that any given observation will fall outside the

interval [wnt − 2σnt, wnt + 2σnt]. Thus, if an observation does fall outside the interval of

[wnt−2σnt, wnt +2σnt], then it can be concluded with at least 95% confidence that a target

has perturbed the electric field. We define the dimensionless expected detection distance,

rd = Rd/L (hereafter simply detection distance), as the distance when the expected

observation is equal to either wnt + 2σnt or wnt − 2σnt. If we define the dimensionless

no-target noise as n = σnt/Ve, then the detection distance is

(7.2) rd(a, χ, e, n) = max{r | δv(a, χ, e, r) = ±2n}.

The max function is used to select from multiple r’s when there is more than one solution

r to δv(a, χ, e, r) = ±2n. For example, Figure 7.4 shows the sensor observation along the

yellow line in Figure 7.3. For an observation of |δv| = 10−5 (in Figure 7.4 this is signified

by the upper horizontal line) there is only one possible r (represented as the ‘x’). But,

for |δv| = 10−6 (lower horizontal line in Figure 7.4) there are three possible values of r.

In this case the max of these is chosen (shown as the ‘x’).

Fixing a at 0.05 and e at 0.005, Figure 7.5 shows the relationship between the di-

mensionless no-target noise, n = σnt/Ve, and rd. The black points were computed using
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Figure 7.5. Dimensionless detection distance (rd = Rd/L) as a function of
dimensionless noise (n = σnt/Ve). The normalized radius of the target is a =
A/L = 0.05, and the radius of the emitting electrode is e = E/L = 0.005.
The red dashed line is the singularity detection distance where the target
can never be detected. Data points very near this singularity are not shown.
Away from the singularity detection distance can be well approximated by
one of the two curves shown as green and blue solid lines, which take the
form of rd = k nc.
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the method just described using Equation (7.1). When these points are plotted on a

log-log scale, most of them fall very near one of two lines, where each line takes the form

rd = k nc.

Figure 7.5 reveals two distinct regimes for dimensionless detection distance with nor-

malized noise. The near field regime is locations inside the w = 0 oval (thick blue contour)

in Figure 7.3. In this regime detection distance falls off as 1/
√
n. The far field regime is

locations outside the w = 0 oval. Here, detection distance falls off as 1/ 5
√
n. Thus, in the

far field with a 32-fold reduction of noise extends the detection distance by a factor of two.

Both of the fitted curves shown in Figure 7.5 fail as the detection distance approaches

the singularity point (shown as a red dashed line). This singularity happens when the

observation is exactly zero. This is when the yellow line crosses the solid blue line in

Figure 7.3. The singularity is also represented by the red dashed line in Figure 7.4.

The choice of a, e, and χ only affect the constant of proportionality, k, and not the

exponent, c, of the fitted power-law equations, rd = k nc, used to approximate the near and

far field relationships. In fact, a, e, and χ do not influence the location of the transition

from the near and far fields (this transition is signified by the solid blue oval contour in

Figure 7.3 and the red dashed line in Figure 7.5). Thus, the rd corresponding to this

transition is fixed at approximately 41% of L for any choice of a, e, and χ. As shown by

Equation (7.1), the choice of a, e, and χ does, however, shift the curves in Figure 7.5 to

the right or left.
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experimental conditions sensor noise detection distance, R (mm)
(mV RMS) measured theoretical

12.7 mm, steel in fresh 0.25 32.7 32.7

12.7 mm, plastic in fresh 0.23 31.3 29.5

38.1 mm, steel in fresh 0.92 41.1 43.2

38.1 mm, plastic in fresh 0.86 41.0 39.3

12.7 mm, steel in salt 0.24 25.3 32.9

12.7 mm, plastic in salt 0.35 27.4 26.6

38.1 mm, steel in salt 0.49 39.6 46.5

38.1 mm, plastic in salt 0.31 41.3 45.3
Table 7.1. Empirically measured and theoretical detection distance.

7.4. Computed vs Measured Detection Distances

A similar analysis as used in Section 7.3 was performed for the emitter and detector

layout used in the Electrosenster. The two emitters are again located at positions (x =

±L/2, y = 0, z = 0), and the detectors are located at positions (x = 0, y = ±L/2, z = 0).

The z coordinate of the center of the target is fixed such that there is approximately 2 mm

clearance between the sensing/emitting electrodes at the top of the target when directly

above the center of the target. If L = 50 mm, then this is precisely the setup for the

Electrosenster. The detection distance is the distance from the center of the target to the

origin, i.e., (x = 0, y = 0, z = 0). As before, we wish to find the detection distance along

a 45◦ line passing through the origin, but, as with the experimental setup, the center of

the target is not coplanar with the emitters and detectors.

Table 7.1 shows the measured and computed detection distance for the eight experi-

mental conditions. In this table the sensor noise is defined as σnt/G (G is the gain on the

differential amplifier and σnt is determined experimentally). The x and y coordinates of

detection are determined by the intersection of the red contours in Figure 7.2 with a 45◦



178

line passing through the origin. Then, the constant offset z-coordinate of the center of

the target is taken into account. The equations used to compute the theoretical values in

Table 7.1 are the same as those discussed in Appendix E and Section 7.3 except for the

location of the sensors and the fact that the observation is the difference of the two sensor

voltages. When computing the detection distance, the following parameters where used:

L = 50 mm, E = 1 mm, A = {12.7 or 38.1} mm, Ve = 2 volts, and χ = {+1 or − 1/2}.
The average magnitude of the difference between the measured and theoretical values

in Table 7.1 is about 3 mm. These relatively small discrepancies suggest that the theo-

retical analysis presented in Section 7.3 and Appendix E is able to predict performance

in real electrosensory systems.

The average difference between the measured and theoretical values is about −2 mm,

which means the theory is more likely to overestimate the measured detection distance.

The model appears to predict detection distance much better with the plastic spheres

(where the expected error is ∼ 0 mm and error magnitude is ∼ 2 mm) and worse with

the metal spheres (expected error is ∼ −4 mm and error magnitude is ∼ 4 mm). Perhaps

oxidation, or other electrically impeding films, on the surface of the metal sphere rendered

the sphere far from an ideal conductor, thus significantly reducing |χ|, and decreasing the

actual detection distance.
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CHAPTER 8

Probabilistic Target Electrolocation

In this chapter the Electrosenster performs the task of electrolocating a single target

using a predetermined EEV and a probabilistic belief maintenance scheme. The per-

formance of four different types of greedy active-sensing controllers is investigated and

compared to two different open-loop controllers. Three different sets of experiments are

examined, which cover five different target geometries, two target conductivities, three

water conductivities, and the six different controllers.

In this Chapter the belief of the target is maintained via a particle filter. With a par-

ticle filter the belief of the target location is represented by a large number of hypotheses

(or “particles”) in the target configuration space, allowing approximate representations of

complex multi-modal beliefs [6]. The particle filter uses Monte Carlo simulation [161] to

approximate a Bayes filter, and the particle representation is updated as new information

comes in [228]. Refer to Section 3.3 (beginning on page 83) for a more detailed discussion

on particle filters and their application to electrolocation.

8.1. Probabilistic-Based Control Algorithms

The complete active sensing problem was formally introduced in Section 4.2.2. Es-

sentially, the goal of an active sensing controller is to move its sensors to gather the

“best” information, where “best” depends on the specific task. Given an infinite amount

of computing power, the ideal active sensing control scheme for the Electrosenster would
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be defined by Equation (4.5) with the cost functional resembling Equation (4.9), where,

for example, the POMDP formulation would be solved via dynamic programming. The

control choice at each step would be conditioned on all current information and optimized

over all possible sequences of future actions. In reality, real-time systems don’t have the

luxury of waiting for optimal trajectories to be computed. Instead, heuristic controllers

based on the expected information at the next time step (i.e., greedy controllers) are used

in the “active” controllers for the Electrosenster. In the next subsections, four different

greedy controllers are presented.

The four greedy controllers presented below attempt to maximize the expected in-

formation gain on the next step. Similar techniques have been successfully used in

[42, 94, 165], where controllers minimize some scalar function of the covariance ma-

trix (in the case of a Gaussian belief) or the entropy (in the case of nonparametric belief)

[13].

8.1.1. Minimize Expected Variance of Particles, min-var

Recall Equation (3.5) (on page 88) defined an uncertainty metric, parts-std, on particle

belief representations that is the square root of the trace of the covariance matrix of the

particles. The min-var controller chooses the control option that minimizes the expected

parts-std at the next time step.

A mathematical formulation of min-var’s objective will now be presented. Let w ∈ W
and u ∈ U , whereW is the space of all possible observations and U is the space of possible

controls. The belief of the system state (i.e., the set of particles), b, is an element of the

belief space, B. Let Update : B×W×U → B denote a function that produces an updated
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belief (posterior) from the prior belief, the observation, and the control option. Update

uses a single instance of the update step in a Bayes filter. The expected uncertainty at

the next time step after choosing control option ui is found by

(8.1) E[Uncert(ui, b)] =

∫
W

Uncert
[
Update(b, ui, w)

]
p(w|ui, b) dw.

This equation describes how the expected uncertainty varies with the choice of control

input. If Uncert(b) is used to compute parts-std(b), then objective of the min-var

controller is to choose the best control option, u∗ such that

(8.2) u∗ = argmin
ui

E[Uncert(b)|ui].

Finding the control option, u∗ through solving Equations (8.1) and (8.2) requires

integrating over all possible observations. Instead, the min-var controller takes a shortcut

by employing particle voting (see Algorithm 1 and Section 8.1.1.1) to choose the control

option [213], where each particle is responsible for simulating a possible next observation

and casts a vote based on this observation. For the min-var controller replace Uncert in

Algorithm 1 with parts-std.

8.1.1.1. Particle Voting for Approximating the Uncertainty of the Next Be-

lief. The particle voting algorithm is formally stated in Algorithm 1, which will now be

explained in words. In particle voting each particle’s vote for the best control option is

determined by evaluating the Uncert (parts-std in the case of the min-var controller)

of the particle cloud after executing each of the possible control actions in simulation.

Particle voting looks to each particle in the belief representation and chooses the best
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control action under the assumption that the target is actually at that particle’s location.

Each particle can then be thought of as voting for a particular control action that works

best for that particle. Once all of the votes are tallied, the control action with the most

votes is chosen. Each particle’s vote for the best control option is determined by evalu-

ating the expected belief after executing the control action (in simulation) and taking an

observation (in simulation). This observation is assumed to be the expected observation

for this particular particle and control option combination. In the case of the min-var

controller, after each simulated control action and observation, the current particle cloud

is resampled based on this simulated observation. The Uncert metric (parts-std in the

case of the min-var controller) of this new (simulated) particle cloud serves as the cost

for this control action. The control action that yields the lowest expected cost gets the

particles vote. Three of the Electrosenster’s four active controllers use particle voting.

Algorithm 1 Particle voting for approximating the uncertainty of the next belief

Given the set of particles X = {xm|m = 1 . . .M}.
for each particle, m = 1 . . .M , do

xm is a target location hypothesis (particle).
for each control option, uc, c = 1 . . . C, do

(1) Simulate movement of particles in sensor frame: X ′ = {x′i|x′i = xi + uc,
i = 1 . . .M}.
(2) Simulate measurement: wm,c = E[w|x′m, e], where E[·] denotes expected value.
(3) Generate corresponding weights, λ, based on wm,c for each particle in X ′:
L′ = {λ′i|i = 1 . . .M}.
(4) Generate X ′′ via importance resampling based on X ′ and L′.
(5) Compute Uncert for particle set X ′′.

end for
Particle m votes for the control option that resulted in the lowest predicted Uncert.

end for
The control option with the most votes is chosen.



183

8.1.2. Minimize Distance to Centroid of Particles, min-mean

The min-mean controller chooses the control option that moves the center of the robot

closest to the centroid of the belief. This controller is motivated by the gross generalization

that moving as close to the target as possible is the best thing to do (We will see that this

generalization often fails). The centroid of the particles (geometric mean of the particles)

is the estimate of the target location. This controller bears the least computational load

since it does not attempt to estimate future expected beliefs. It is the only active controller

that does not use particle voting.

8.1.3. Maximize Expected Change in Sensor Reading, max-grad

The max-grad controller chooses the control option that maximizes the magnitude the

difference between the current sensor reading and the expected next sensor reading. This

controller is motivated by another gross generalization that it is best to position the target

in regions of high gradient in the EEV. For example, look at Figures 2.10(B), 2.10(C),

3.22(B), and 3.22(C), which have been preprinted as Figures 8.1(A), 8.1(B), 8.1(C), and

8.1(D), respectively, for convenience. The target is in a much steeper gradient in Sensor

2 than with Sensor 3; i.e., dE[w2]/dx > dE[w3]/dx. As a result Sensor 2 yields a belief

with lower uncertainty than the belief from Sensor 3.

Let, EEV-grad(x, ui) = |EEVe(x)− EEVe(x′)| be the absolute value of the difference

between the expected observation when the target is at x and the expected observation

when the target is at x′, where x′ is the target location after invoking action ui. The

max-grad algorithm uses particle voting, but because EEV-grad is only a function of x
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(A) EEV for Sensor 2
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(B) EEV for Sensor 3
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(C) Sensor 2: parts-std = 16.9
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(D) Sensor 3: parts-std = 34.7

Figure 8.1. Motivation for max-grad controller. Subfigures (A) and (B) are
the EEVs for Sensors 2 and 3 in the ellipse model, and subfigures (C) and
(D) are the beliefs after a single observation. In (A) the target is located
in steep gradient on the EEV, and the resulting belief—shown in (C)—has
relatively low uncertainty. In (B) the target is in a very flat region of the
EEV, and the resulting belief—shown in (D)—has high uncertainty.
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and u, the resulting belief does not have to be computed for each combination of particle

and control option, thus, it has less computational load than min-var.

Algorithm 2 Particle voting for max-grad controller

Given the set of particles X = {xm|m = 1 . . .M}.
for each particle, m = 1 . . .M , do

xm is a target location hypothesis (particle).
for each control option, uc, c = 1 . . . C, do

(1) Simulate movement of particles in sensor frame: x′m = xm + uc.
(2) Compute EEV-grad based on x′m, xm, and uc

end for
Particle m votes for the control option that resulted in the highest EEV-grad.

end for
The control option with the most votes is chosen.

Algorithm 2 defines the particle voting algorithm for the max-grad controller. Al-

gorithm 2 is similar to Algorithm 1 except steps (2) through (5) in the inner loop in

Algorithm 1 have been replaced by step (2) in Algorithm 2, and step (1) in Algorithm 2

invokes the motion model for only the single particle instead of the entire particle set as

in Algorithm 1.

8.1.4. Minimize Expected Number of Particles, parts-eater

The parts-eater controller chooses the control option that minimizes the expected num-

ber of unique particles at the next time step. Each particle eliminated is a possible state

that is no longer considered a candidate target location.

To gain a better understanding on the motivation behind this controller, we need

to revisit the update step of the particle filter. The resampling process stochastically

chooses the most likely particles based on the observation (see Section 3.3.1.2 on page 86

for details). This process does not generate any unique particles. More likely particles
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are duplicated, and less likely particles are eliminated. The intuition is that the control

action that results in the fewest number of unique particles is the best option.

Let Unique(b) = count(
⋃
b), where b is the set of particles, and the function count

returns the number of particles in the set. The union operator,
⋃

, eliminates duplicates.

For example, if control option u1 results in the next particle set (after simulated resam-

pling) to be M (M is the total number of particles) copies of the same particle, then

there is no uncertainty and the target has been perfectly localized—u1 is the best possible

control option. At the other extreme, if control option u2 results in the identical posterior

particle set as the prior, then nothing is gained by this control action—u2 is the worst

possible control option.

Since the parts-eater algorithm must predict a belief (i.e., set of particles) based on a

control action, particle voting is used. Algorithm 1 describes the parts-eater algorithm

if Unique is replaced by Uncert.

8.1.5. Open-Loop Controllers

The purpose of the feedback controllers presented above is to minimize uncertainty as

quickly as possible. The advantage of feedback over open-loop controllers is that feedback

controllers can adapt to unpredictable environments. But, if the feedback controllers do

no better than a pre-computed open loop control plan, then there is no advantage to

the feedback controller, and the CPU-friendly open-loop controller should be used. We

present two open-loop controllers that will be compared to the feedback controllers.
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The open-loop controllers still use the same belief update mechanism (i.e., a particle

filter). However, their control decisions are not based on meeting some objective, but

instead from a pre-defined plan.

8.1.5.1. Random Walk, rnd-wlk. The rnd-wlk controller randomly chooses one of the

possible control actions. This controller serves as the baseline to compare the performance

of the other controllers.

8.1.5.2. Move to Way Points Sampled from a Spiral, spiral. The spiral con-

troller moves towards way points sampled from a spiral. The spiral is centered at the

initial location. A way point sampled from the spiral is assigned to each time step. The

controller chooses the control option that moves it closest to the current way point. The

spiral controller represents a systematic method of exploring the workspace. Figure 8.2

shows the way points.

8.1.6. Completion of Electrolocation Sequence

For each trial the controller terminates when either a maximum run time is exceeded (fail-

ure) or the target is considered sufficiently localized (success). We use the parts-std un-

certainty metric defined in Section 3.3.2 on page 87 to determine if the target is sufficiently

localized. We set the “success” termination condition as parts-std(b) =
√

trace(Pb) ≤ β

for an appropriately chosen β, where Pb is the covariance matrix of the particle set b.

8.1.7. Preview of Next Three Sections

In the next three sections, three experimental sets are examined. In all sets the task

is the same: electrolocation of a single target with a predetermined sensor model. The
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Figure 8.2. Way points for spiral controller. The initial location of the
robot is signified by a red asterisk. At the first time step the controller
chooses the control action that brings it closest to the blue dot labeled
“1”. The process is repeated for the remainder of the time steps. A typical
workspace of the robot is usually no bigger than a square of sides 120 mm,
which is shown as black dashed lines.

experimental conditions (e.g., target type, water conductivity, and workspace size) and

which controllers are considered are varied across the three experimental sets. The targets

are cylinders and spheres made of either metal (stainless steel or aluminum) or plastic

(PVC or Delrin) in either fresh or salt water.

8.2. Experimental Set 1: Cylinders

8.2.1. Methods for Experimental Set 1

In this set of experiments the robot performs electrolocation of cylinders for three exper-

imental conditions:

(1) 12.7 mm (1/2”) diameter aluminum (electrical conductor) cylinder in fresh water.



189

(2) 25.4 mm (1”) diameter aluminum (electrical conductor) cylinder in fresh water.

(3) 25.4 mm (1”) diameter plastic (electrical insulator) cylinder in salt water.

The corresponding EEVs are depicted in Figure D.1 on page 267. The 80 mm heights of

the cylinders were chosen such that the bottom of the sensors were just able to pass over

them without touching.

We test four different controllers in these conditions: rnd-wlk, min-mean, min-var,

and max-grad. For these experiments we choose a discrete-time formulation with a dis-

crete control set consisting of 17 different control options. One of these is to remain

stationary, and the other 16 are 5 mm moves at 22.5◦ intervals on the unit circle.

8.2.1.1. Sensor Model Construction. Empirical sensor models were constructed for

each of the three experimental conditions in Table 8.1. The protocol is almost identical to

that used for sensor characterization (See Section 7.1.2, page 165). For each target/water

combination the target was placed at the center of the tank. The robot moved the sensor

carriage on a 160 mm by 160 mm grid, stopping every 5 mm to take a data point, for a

total of 33× 33 = 1089 positions. The ave() and var() maps were obtained by taking the

average and variance of 10 sensor readings at each grid point, where each sensor reading

was the average of 100 readings taken at 1 kHz.

8.2.1.2. Electrolocation Protocol. Automatic electrolocation was performed for the

three experimental conditions shown in Table 8.1 using each of the four different types

of controllers (described in Section 8.1). For each condition, each of the four controllers

started from ∼50 different positions for a total of ∼200 trials for each condition. Fifty

starting positions were chosen randomly and this same set of 50 positions was used for all

controllers.
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The robot keeps moving until parts-std(b) =
√
pxx + pyy ≤ 10 mm. If this stopping

condition is not satisfied within 35 steps, the trial is labeled a failure.

Each complete step of each trial consisted of the following operations:

(1) observation: Acquire sensor data from sensor circuit

(2) weighting each particle: Apply sensor model (i.e., p(w|x, e)) to each particle

(3) importance resampling of particles: Create new particle population based

on particle weights.

(4) check trial termination conditions: If uncertainty of the belief is low enough

or the number of steps is too many, then the trial is over

(5) choose next position: Use one of the four controllers to pick the next position

(6) artificially add noise to particles: This is to add some diversity into the

particle population.

A completed trial is labeled a success only if the uncertainty threshold defined above

is met in fewer than 35 moves, and failure otherwise.

8.2.2. Description of Performance Statistics for All Data Sets

For a given starting position, if either controller yielded a failure trial, then data from

these trials was omitted in calculating the mean error and the mean number of steps

statistics. This was done because failure trials often resulted in errors much larger than

successful trials. All data (including failure trials) were used in calculating the medians.

Tables 8.1, 8.2, 8.3 show the performance of the electrolocation controllers (for all

three data sets) using three statistical measures:
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(1) success trials: This is the number of trials that were labeled a success. The

number next to it in parentheses is the number of trials that were labeled failure.

(2) error: This is the distance between the actual target location and the estimated

target location at the end of the trials. The mean error only considers the trials

that were a success for both controllers for that starting position, while the median

error considers all trials.

(3) steps: This is the number of steps needed to complete the trials. The mean

calculation only considers successful trials while the median calculation accounts

for all trials.

This “error” statistic (the final error between the actual location of the target and the

centroid of the particles) was not given heavy importance for two reasons: 1) For general

beliefs (e.g., multi-modal) the centroid is a somewhat arbitrary method of state estimation;

and 2) The actual value of the error is dependant on the threshold of parts-std stopping

condition. For example if the threshold is low, then more steps and observations will be

taken, which will create a more accurate estimate.

8.2.3. Results from Experimental Set 1

The target was always placed at the center (coordinates (0,0)) of the workspace. The robot

could move anywhere within the 160 mm by 160 mm (±80 in both x and y coordinates),

but the starting positions were restricted to ±50 mm for the 12.7 mm aluminum cylinder

in freshwater and the 25.4 mm PVC cylinder in salt water, and ±60 mm for the 25.4 mm

aluminum cylinder in freshwater.
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(A) Initial belief
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(B) First observation
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(C) Moves in heading 202.5◦
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(D) Second observation
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(E) Moves in heading 315◦
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(F) Third observation
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(G) Moves in heading 315◦
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(H) Fourth observation
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(I) Moves in heading 270◦

Figure 8.3. Frames from a typical electrolocation sequence. The particles
that make up the belief of the target position are blue dots. The actual
target location is a yellow circle, in this case the 25.4 mm Al cylinder. The
position of the electrodes on the robot are the green diamonds (sensors) and
red asterisks (electric field emitter). The orange asterisks represent the path
of the robot. The contours are iso-electric-field-perturbation gradations at
650 mV steps. The target is at coordinate x = 0, y = 0, and the axes range
from ±80 mm in both dimensions.
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Figure 8.4. Final frame of the same trial. The red “x” located at coordinate
x = −0.34 and y = 1.68 is the centroid of the particles and is the final
estimate of the location of the target (shown in yellow). The numbered
orange asterisks are the positions visited by the robot. Note that the axes
have changed from the previous figure.
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Figure 8.3 shows a typical electrolocation sequence. In Figure 8.3(B) the robot has

updated its belief using a single observation and the particle filter algorithm. Since the

sensor measurement is near the RMS noise assumed for the sensor, the particle filter kept

most of the particles. This particular trial uses the controller that minimizes the expected

spatial variance of the particles at the next step, i.e., min-var. Based on the particles

shown in Figure 8.3(B) the robot moves at a heading of 202.5◦. This is repeated until

the uncertainty is below the threshold described above. Figure 8.4 shows the final belief

(dots). The centroid of these particles is taken as the estimate of the target location

(“x”), and has coordinates x = −0.34 mm and y = 1.68 mm (total error = 1.72 mm).

The numbered asterisks are the positions of the robot for each of the five observations.

8.2.3.1. 12.7 mm aluminum in freshwater. The top part of Table 8.1 summarizes the

statistics from the 196 trials under these conditions. Of the 49 unique starting positions

39 had successful trials from all four controllers. Thus, the error and steps statistics in

Table 8.1 were averaged over those 39 trials for each controller. The starting positions

were restricted ±50 in both x and y coordinates.

8.2.3.2. 25.4 mm aluminum in freshwater. The middle part of Table 8.1 summarizes

the statistics from the 228 trials used for these experimental conditions. Of the 57 unique

starting positions 32 had successful trials from all four controllers. Since the diameter of

the target cylinder for these trails was large, the starting positions were expanded to ±60

in both x and y coordinates.

8.2.3.3. 25.4 mm PVC in salt water. The bottom part of Table 8.1 summarizes the

statistics from the 204 trials used for these experimental conditions. Of the 51 unique

starting positions 18 had successful trials from all four controllers. Since the contrast
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12.7 mm diameter metal (aluminum) cylinder in freshwater
success trials error, mm steps
(failure trials) mean / median mean / median

rnd-wlk 46 (3) 4.3 / 4.3 7.4 / 7
min-var 46 (3) 3.8 / 3.8 6.8 / 6
min-mean 45 (4) 3.7 / 3.3 8.1 / 7
max-grad 47 (2) 4.3 / 4.3 6.6 / 6

25.4 mm diameter metal (aluminum) cylinder in freshwater
success trials error, mm steps
(failure trials) mean / median mean / median

rnd-wlk 46 (11) 3.7 / 4.1 10.2 / 8
min-var 50 (7) 2.6 / 2.6 7.2 / 6
min-mean 46 (11) 5.1 / 5.1 7.3 / 7
max-grad 51 (6) 4.9 / 4.3 9.6 / 7

25.4 mm diameter plastic (PVC) in salt water
success trials error, mm steps
(failure trials) mean / median mean / median

rnd-wlk 38 (13) 5.1 / 5.2 9.4 / 12
min-var 40 (11) 4.3 / 5.5 12.4 / 9
min-mean 37 (14) 5.6 / 6.4 7.2 / 7
max-grad 45 (6) 6.4 / 5.7 9.1 / 6

Table 8.1. Electrolocation statistics for the three experimental conditions tested.
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factor (see Equation (2.13)) of a plastic target is about half that of an aluminum one, the

starting positions were was restricted back to ±50 in both x and y coordinates.

8.2.4. Discussion

The performance of the four controllers did not vary greatly. This may be a result of

the small step size (5 mm) of the robot. A second sensor measurement taken nearby the

first measurement often yields less additional information than if the second measurement

were taken further away from the first.

Nonetheless, there are some trends that can be seen in the data. It appears that

the different controllers perform better for different statistics. For example the ‘maximize

expected change in sensor reading’ controller seemed to consistently have the fewest failed

trials, while the min-var controller (minimize the expected variance of the particles)

controller tended to have the lowest error across different experimental conditions.

A failed trial would almost always be the result of one of the following causes:

(1) robot is too far away from the target

(2) robot gets stuck in a local minimum

(3) the target falls on the boundary between the saturated lobes

If the robot gets lost from being too far away from the target, then really the only

remedy is to increase the range of the sensor. This could be accomplished by increasing

the gain on the differential amplifier, decreasing the level of noise in the system, and

increasing the repeatability of the sensor. With the current setup the electrical circuitry

can only sustain a finite gain in the differential amplifier before it went unstable. We

usually operated near that instability point in order to maximize sensitivity.
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A failed trial would often be the result of the controller getting stuck in a local min-

imum. The most common scenario would be when the target is in one of the saturated

lobes of the sensor map, and the particles form a bimodal belief (a group of particles in

the two lobes of the same sign). If the gain on the differential amplifier were decreased,

then the voltages in these saturated lobes could be brought down within the range of the

ADC at the price of decreasing the range of the sensory system. In future iterations we

could actively change the gain of the differential amplifier to establish sensitivity where

needed.

Another failure mode occurs when the target falls on the boundary between the lobes.

When this happens the robot receives a measurement of near zero volts. Unless there

happens to be a particle right at this boundary, the robot interprets the measurement as

the target being far away and eliminates any nearby particles. A remedy for this problem

would be to have multiple sets of sensors. This redundancy would make this failure mode

highly unlikely.

8.3. Experimental Set 2: Eight Different Conditions for Spheres

8.3.1. Methods for Experimental Set 2

Electrolocation of spheres was performed for eight experimental conditions corresponding

to all permutations of two target diameters (12.7 and 38.1 mm), two target conductivities

(conductor and insulator), and two water conductivities (fresh and salt). A small stand in

the tank suspends the spherical targets such that the tops of the targets cleared the bottom

of the electrodes. The electrical signature of the target stand alone did not significantly

interfere with any of the measurements.
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In these experiments we only considered the rnd-wlk and min-var controllers. Be-

cause of the fewer controllers, were able to explore more experimental conditions for the

same total number of trials.

There are 16 possible control options at each time step. One of these options is to

remain stationary, and the other 15 are randomly sampled from the interior points of a

square centered at the current robot position and with sides of length 20 mm. Thus, the

robot can never move more than 10 mm in any dimension in a single time step. At each

time step, a new set of 15 control options are randomly generated.

8.3.1.1. Sensor Model Construction. EEVs were recorded for eight experimental

conditions . For each target/water combination the target was placed at the center of

the tank. For the 38.1 mm diameter spheres the robot moved the sensor carriage on a

120 mm by 120 mm grid, stopping every 4 mm for a total of 31 × 31 = 961 positions

(dots in Figure 7.1(B)). For the 12.7 mm diameter spheres the robot moved the sensor

carriage on a 100 mm by 100 mm grid, stopping every 4 mm for a total of 26× 26 = 676

positions (dots in Figure 7.1(A)). The ave(·) and var(·) functions were obtained by taking

the average and variance of 10 time-averaged sensor readings at each grid point.

8.3.1.2. Electrolocation Protocol. Electrolocation was performed 50 times for each of

the eight experimental conditions using the two controllers, for a total of 50×8×2 = 800

trials. The robot was initiated at the same 50 random positions for each experimental

condition. The target was always placed at the center of the tank (coordinates (xw =

0, yw = 0)). For the larger targets the robot was confined to start within coordinates

{±55,±55} (darker gray area in Figure 7.1(B)) and was permitted to move anywhere
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with coordinates of {±60,±60}. For the smaller targets the robot started at {±40,±40}
and stayed within {±50,±50} (darker gray area in Figure 7.1(A)).

The two probabilistic controllers were terminated either after 35 steps (failure) or

when the square root of the trace of the particle covariance matrix dropped below 10 mm

(success).

8.3.2. Experimental Results from Experimental Set 2

Figure 8.5 shows a typical electrolocation sequence. Figure 8.5(A) shows the particles

randomly distributed over the workspace since the robot initially only knows that the

target is somewhere within the bounds of the workspace. In Figure 8.5(B) the robot has

updated its belief using a single observation and the particle filter algorithm. Since the

sensor measurement is near the RMS noise assumed for the sensor, the particle filter kept

most of the particles that correspond to a sensor reading of near 0 V. This trial uses

the min-var controller. Based on the particles shown in Figure 8.5(B) the robot moves

up 9.5 mm and right 4.5 mm. This “sense and move” sequence is repeated until the

uncertainty is below the threshold (square root of the trace of the covariance is less than

or equal to 10 mm). Figure 8.6 shows the final belief (blue dots).

The random walk controller (rnd-wlk) was compared to the greedy minimum-variance

controller (min-var). First, we look at two statistics to evaluate the performance of the

controllers. The first statistic is the number of failed trials (i.e., trials that need more

than 35 steps) out of the 50 total trials for each controller for each condition. The other

statistic is the median number of steps for completion. Figure 8.7 displays these statistics

for the 800 target electrolocation trials (broken down by controller type and experimental
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(A) Initial belief

−80 −70 −60 −50 −40 −30 −20 −10 0 10
−50

−40

−30

−20

−10

0

10

20

30

40

 x (mm)

 y
 (

m
m

)
(B) First observation
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(C) Move (+4.5,+9.5) (mm)
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(D) Second observation
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(E) Move (+8.9,−9.3)
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(F) Third observation
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(G) Move (−9.2,−5.1)
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(H) Fourth observation

Figure 8.5. Snapshots of a typical electrolocation sequence. The EEV cor-
responds to Figure 7.2(A). The 2500 particles are shown as blue dots. The
actual target location is a yellow circle, in this case a 12.7 mm diameter
stainless steel sphere. The position of the electrodes on the robot are the
green diamonds (sensors) and red squares (electric field emitter). The or-
ange asterisks represent the path of the robot. The target is at coordinate
x = 0, y = 0. The min-var controller was used to choose the action at each
time step. The “move” frames are the beliefs immediately before the obser-
vation, and the “observation” frames are the beliefs after the observation
taken from this position is fused.
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Figure 8.6. Final snapshot of the same trial. The red “x” located at (x =
0.074, y = 0.001) is the centroid of the particles and is the final position
estimate for the target located at (x = 0, y = 0). The numbered orange
asterisks are the positions visited by the robot. Note that the axes have
changed from the previous figure.
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conditions) and suggests that the min-var controller is better at reducing both the number

of failures and the median number of steps to complete the task. The total number of

failures for the rnd-wlk is 113 out of the 400 total, which is almost six times as many

as the 19 failures for the min-var controller. For all eight of the experimental conditions

the median number of steps for completion is lower for the min-var controller with the

average of those medians being 12.4 steps for rnd-wlk and 6.7 for the min-var controller.

Table 8.2 shows the performance of the electrolocation controllers using the same

three statistical measures as before (see Section 8.2.2 for explanation). If we examine the

success trial statistics only, the mean error and the mean number of steps for completion

do not make a compelling argument for choosing the minimum variance over the random

walk controller. However, if we examine all trials including the failures, the median error

and the median number of steps is significantly better for the active controller over the

random walk (See Figure 8.7).

8.3.2.1. Pre-Detection Search. In 22% of the electrolocation trials the robot’s start-

ing position was outside the detection range of the target (i.e., the initial position of the

target fell outside the red contours in Figure 7.2). Thus, for these trials the initial elec-

trosensory feedback does not provide any reliable estimate to the location of the target.

However, the resulting belief is still improved since significant portions of the target con-

figuration space are inconsistent with the observation (e.g., Figure 8.5(B)). The min-var

controller will move to minimize the expected particle variance, which will usually drive

the robot towards exploring novel regions. Prior to initial target detection the min-var

controller performs better than the rnd-wlk controller since it systematically eliminates

regions of the target configuration space. In addition rnd-wlk performs poorly in this case
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Figure 8.7. Performance of the rnd-wlk verses the min-var controllers. The
height of the bars are determined for the 50 trials for each of the controllers
for each of the experimental conditions. The top bar graph displays the
number of failed trials. The bottom bar graph displays the median number
of steps needed to complete the electrolocation task.
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9.7 / 6.72.2 / 1.9381 (19)min-varconditionsall

10.8 / 12.42.4 / 2.8287 (113)rnd-wlkconditionsall

11 / 12.52.9 / 2.844 (6)min-var38.1 / Psalt

11 / 14.53.1 / 4.931 (19)rnd-wlk38.1 / Psalt

11 / 6.51.3 / 1.045 (5)min-var38.1 / Ssalt

10 / 131.1 / 1.037 (13)rnd-wlk38.1 / Ssalt

7 / 52.7 / 1.950 (0)min-var12.7 / Psalt

10 / 8.52.3 / 2.241 (9)rnd-wlk12.7 / Psalt

10 / 73.9 / 3.749 (1)min-var12.7 / Ssalt

11 / 114.3 / 4.935 (15)rnd-wlk12.7 / Ssalt

9 / 52.2 / 2.449 (1)min-var38.1 / Pfresh

10 / 9.52.4 / 2.835 (15)rnd-wlk38.1 / Pfresh

9 / 6.51.4 / 1.544 (6)min-var38.1 / Sfresh

15 / 23.52.2 / 2.832 (18)rnd-wlk38.1 / Sfresh

10 / 61.5 / 1.150 (0)min-var12.7 / Pfresh

9 / 102.1 / 2.035 (15)rnd-wlk12.7 / Pfresh

10 / 51.7 / 1.150 (0)min-var12.7 / Sfresh

10 / 92.0 / 1.541 (9)rnd-wlk12.7 / Sfresh

# steps
mean / 
median

error 
[mm]

mean / 
median

success
(failure)

control
type

sphere
dia.

[mm] /
material

water
salinity

Table 8.2. Electrolocation statistics for the eight experimental conditions
tested for the particle filter-based control scheme. P=Plastic; S=Steel.
Water salinity: fresh is 160 µS/cm; salt is 56, 000 µS/cm. Refer to Section
8.2.2 for a definition of each of the statistics displayed here.)
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because it will often revisit locations, which often does very little to improve the belief.

This hypothesis is consistent with the fact that when electrolocation statistics (like those

shown in Figure 8.7 and Table 8.2) were reanalyzed using only the 22% of the trials that

began outside the detection range, the min-var controller still outperformed the rnd-wlk

controller. In future versions we could use an efficient pre-detection search strategy like

the one in [31]

8.4. Experimental Set 3: Comparison of Six Controllers

In the final set of data we compared all six controllers electrolocating a one inch

(25.4 mm) metal sphere in 350 µS water.

8.4.1. Methods for Experimental Set 3

The workspace was a 100 mm by 100 mm square at the center of the tank. The EEV was

constructed by sampling every 4 mm on a 100 mm by 100 mm grid (sampling points seen

in Figure 7.1(A) on page 167). The corresponding EEV is depicted in Figure 8.8. The

gain on the differential amplifier was G = 107.

Each of the six controllers started from the same 64 starting positions. The starting

positions were generated by first dividing the 100 by 100 mm workspace into an 8 by 8

grid of cells. Exactly one starting position was chosen randomly from each set of interior

points that define each of the cells.

The remainder of the experimental methods for this set of data were identical as those

used for data set 2.
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Figure 8.8. EEV for experimental set 3. Red squares indicate the location
of the electric field dipoles. Green diamonds indicate the location of the
voltage sensors. The color map goes from white for +10 V to gray for
intermediate values to black for −10 V. Blue dashed lines are at 500 mV
increments. The solid red contours represent an observation that results in
detection of the target with 95% confidence.
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8.4.2. Results for Experimental Set 3

Figure 8.9 shows the median number of steps for completion and the number of failures

(out of 64) for each of the six controllers. Table 8.3 shows all 5 statistical measures for

each of the six controllers (see Section 8.2.2 for explanation of the statistical measures).

Both the max-grad and parts-eater had no failed trials. The min-var controller had

the lowest mean and median number of steps for completion. As before, only the trials

where all controllers successfully located the target were used in the mean calculations.

In this data set there were 19 such trials.

It is not obvious which of the six controllers performed the best if we consider all

statistical measures. Both the max-grad and parts-eater successfully located the target

within the allowed number of steps all 64 times. The min-var controller appeared to

perform the electrolocation task the quickest, although there is no significant difference

between min-var, max-grad, and parts-eater in the number of steps to complete the

task in the 19 trials. Due to the limited number of trials, a definitive choice of superior

controller cannot be established, but it is clear that min-var, max-grad, and parts-eater

performed better than the other three (under our chosen measures). Thus, we conclude

that the min-var, max-grad, and parts-eater controllers all performed roughly the same

and share a three-way tie for “best” controller.

The two open-loop controllers—rnd-wlk and spiral—performed worse across the

board compared with the three best active controllers. These differences are significant

(α = 0.05) for the number of steps for completion in the 19 trials. Between the two

open-loop controllers, the spiral controller appears to edge out rnd-wlk, mostly due to

its fewer failed trials. This was an expected result since spiral systematically explores
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Figure 8.9. Performance of the six controllers for data set 3. The height
of the bars are determined for the 64 trials for each of the controllers for
each of the two performance measures, which are the number of failed trials
(out of 64) and the median number of steps needed to complete the elec-
trolocation task. Shorter bars indicate better controller performance. The
horizontal dashed line indicates the minimum (across all six controllers)
medium number of steps for any single controller. The minimum number
of failures for any controller is zero (both max-grad and parts-eater).
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controller
success trials error, mm steps
(failure trials) mean / median mean / median

open-loop
rnd-wlk 42 (22) 2.0 / 3.8 10.7 / 13
spiral 58 (6) 2.2 / 2.0 9.1 / 10

active

min-mean 35 (29) 2.1 / 7.0 10.8 / 19
min-var 61 (3) 1.3 / 1.4 6.2∗ / 5∗

max-grad 64∗ (0∗) 1.9 / 1.7 6.3 / 7
parts-eater 64∗ (0∗) 1.1∗ / 1.1∗ 6.4 / 6

average 54 (10) 1.8 / 2.9 8.3 / 10
Table 8.3. Statistics for electrolocation data set 3. Asterisks (∗) indicate
the best value for each statistic. The last row displays the average (mean)
for each statistic across all six controllers. The “mean” statistics are com-
puted across the 19 trials where all six controllers successfully completed
the electrolocation task. The “median” statistics considered all 64 trials.

the workspace, where rnd-wlk may often wander off to a corner of the workspace without

ever exploring the rest of the workspace.

The active controller min-mean appears to have performed the worst across all six

controllers. This is mainly due to its 45% failure rate. In many of its trials the center of

robot arrives at the centroid of the particles before the target is successfully located. If

the target is located in one of the saturated lobes (see black and white lobes in Figure

8.8), and if the particles are clustered in these lobes, then observations will do little to

refine the belief. The controller will keep the robot stationary since it is already at the

centroid of the particles. When this happens the robot will remain there until its 35 time

steps have expired, which will result in a failed trial. See Figure 8.10 for an illustration

of the “stuck” scenario.
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Figure 8.10. The mean-min controller gets stuck. The blue dots are the
particles in the belief, and the yellow disk is the actual location of the
target. The center of the robot (orange asterisk) has arrived at the centroid
of the particles. Since the target is located in a saturated lobe, the belief
will not change. Thus, the robot will not move.
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8.5. Conclusions Across Experiment Sets

We now draw generalizations across all twelve experimental conditions (three experi-

mental conditions from set 1, eight from set 2, and one from set 3). In all twelve experi-

mental conditions, rnd-wlk was compared with min-var, thus the strongest generalization

can be made comparing these two controllers. In all twelve conditions, the min-var per-

formed better with both fewer failed trials and a lower median number of steps to complete

the task. Thus, the min-var active controller does better than merely wandering around

aimlessly.

Across all six controllers, in 11 of the 12 conditions, min-var had the lowest median

number of steps for task completion. The only exception was with the one inch diameter

plastic cylinder in salt in experimental set 1. In this case both min-mean and max-grad

usually needed fewer steps than min-var.

In the 4 experimental conditions where the max-grad controller was used, it always

had the fewest number of failed trials. It only failed 14 times out of a total of 221 attempts.

Not enough data was taken with the parts-eater controller to make any strong

generalization. In the final set of experiments it did have an impressive estimation error

(mean and median = 1.1). And, it never did fail to locate the target in its 64 tries.
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CHAPTER 9

More Capabilities of the Electrosenster

Thus far we have only utilized the Electrosenster to localize single targets with a

predefined sensor model (i.e., ave(·) and var(·)). In this chapter we investigate additional

capabilities of the Electrosenster. First, the tank is populated with many objects. The

task of the Electrosenster is to locate itself amid these objects (i.e., global localization).

Next, a controller is presented that does not need a predefined sensor model. It exploits

invariant spatial features of the electric field signatures of a class of targets to achieve

electrolocation without calibration. Finally, extensions to the current Electrosenster are

proposed.

9.1. A Global Localization Scenario

We now demonstrate the robot’s ability to localize itself in a much more complex

environment—global localization. From the standpoint of the particle filter-based elec-

trolocation algorithm, it does not matter if the measured EEV is of a single target or of a

complex layout of diverse objects. Both the min-var and rnd-wlk controllers were used.

For this set of experiments six objects of different diameters and conductivities were

dispersed randomly with xw and yw coordinates within (xw = ±80, yw = ±80). Figure 9.1

shows the environment. The goal of the robot was to localize itself relative to the origin

of the map. Table 9.1 summarizes the performance of the global localization task for all

100 trials (50 trials for each controller). These global localization trials used the same
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(B) EEV

Figure 9.1. Global localization environment. (A): A photo of the six ob-
jects. There are two aluminum cylinders (silver color), one brass cylinder
(gold color), two PVC plastic cylinders (black), and a glass vial. The four
electrodes of the Electrosenster can be seen in the upper left corner. (B):
EEV used for global localization. This EEV serves as the prior knowledge
for the global localization experiments. The origin of the image is shown
as a yellow circle. The color map goes from white for +10 V to gray for
intermediate values to black for −10 V. Blue dotted lines are at 1 V incre-
ments.
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controller success trials error, mm steps
type (failure trials) mean / median mean / median

rnd-wlk 48 (2) 1.3 / 1.0 11.8 / 11
min-var 49 (1) 1.4 / 0.8 6.9 / 6

Table 9.1. Statistics for global localization. The “mean” statistics are com-
puted across the 48 trials where both controllers successfully completed the
electrolocation task. The “median” statistics considered all 50 trials. Refer
to Section 8.2.2 for complete definitions of each of the statistics displayed
here.

protocol and algorithms as the probabilistic-based single-target trials. Figure 9.2 depicts

a self-localization sequence.

The results from the global localization trials show little difference in the success and

error statistics between the two controllers tested. During many of the global localization

trials it was common for multiple clusters of particles to form in the belief representation.

As seen in Figure 9.1, multiple locations in the EEV look locally similar. As a result, the

minimum-variance controller, which benefits from a local gradient, had trouble disam-

biguating the multiple hypotheses, but on average the minimum-variance controller was

still able to complete the task faster than the random walk controller.

As seen from Table 9.1 the min-var—on average—performs the self-localization task

much faster than the rnd-wlk controller. This difference is even more noticeable here than

in the single-target electrolocation task that was investigated in the previous chapter. This

may be because this is a much richer electrosensory environment. For example compare

the EEV in Figure 9.1(B) with that of any of the single-target EEVs. The symmetry

and regularity in the single-target EEVs actually hinders the electrolocation task when

using these controllers since it is more difficult to disambiguate local electrosensory scenes.

Notice there are steeper gradients in the multi-target EEV than in a single-target EEV.
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(A) Initial belief

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

 x (mm)
 y

 (
m

m
)

(B) First observation
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(C) Move {−8.9,−4.9} (mm)
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(D) Second observation
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(E) Move {−6.3, 8.6}
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(F) Third observation
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(G) Move {8.1, 9.2}
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(H) Fourth observation

Figure 9.2. Snapshots of a typical global localization sequence. The 2500
particles are shown as blue dots and represent belief of the current location
of the center of the robot. The position of the electrodes on the robot
are the green diamonds (sensors) and red squares (electric field emitter).
The electrodes are only shown in the first frame. The orange asterisks
represent the actual path of the center of the robot. The EEV corresponds
to Figure 9.1. The min-var controller was used to choose the action at each
time step.
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Figure 9.3. Final snapshot of the same trial. The red “x” located at (x =
26.9, y = −24.4) is the centroid of the particles and is the final position
estimate for the robot position, which is actually located at (x = 30.7, y =
−24.6). The numbered orange asterisks are the positions visited by the
robot. Note that the axes have changed from the previous figure.

Thus, there is more reliable information to base control decisions on. This is why the

feedback controller performs much better than the open-loop controller.

9.2. A Non-Probabilistic-Based Controller

One of the major disadvantages of the probabilistic-based controllers that has been

used thus far is that the sensor model for the specific set of experimental conditions

must be calibrated in advance. Empirically determining the sensor model can be time-

consuming or impractical. Instead, we can use features of the EEV common to all isolated

targets that are invariant to the salinity of the water and conductivity and size of the

target. The feature that we use is the two orthogonal lines of 0 V that pass through
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the center of the sensor (see, e.g., Figure 8.8). This feature was found for all isolated,

spherical targets we observed, and it suggests the use of sensor voltage zero crossings for

electrolocation. There is also typically a circular contour of 0 V (See Figure 2.7 on page

53), but the gradient of the EEV is small at this distance, and we require a steep gradient

of the EEV for robust identification of zero crossings.

We tested a single policy for the deterministic controller, zero-cross, which searches

for polarity change in sensor readings. Defining the coordinates of a world frame as

(xw, yw), the robot performs a binary search on the region of possible xw-coordinates of

the target. For each xw-coordinate tested, the robot moves in the yw-direction until a

robust change in signal polarity is identified. Once this is found, the binary search ends,

and the target’s yw coordinate is recorded as the yw position of the sensor where the zero

crossing occurs. The robot then scans along the xw-direction until another robust zero

crossing is found.

Figure 9.4 depicts an example of the zero-cross controller locating a metal sphere.

The y-coordinate of the target is searched for first. In Figure 9.4(A), the Electrosenster

divides the workspace in half (in the x-direction) and moves down the middle with a

constant x-coordinate and moving in 10 mm increments. It did not find a zero crossing

in its first pass (first pass shown in Figure 9.4(A)). It then continues to systematically

search. In Figure 9.4(B) it does find a zero-crossing. In Figure 9.4(C) it moves in smaller

increments to achieve an accurate estimate. In Figure 9.4(D) it begins to search for the

x-coordinate of the target by moving along a line 15 mm above the estimated target y-

coordinate, which is where the EEV shows its steepest gradient near the zero crossing.
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(B) detects y zero crossing
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(C) refines y zero crossing posi-
tion
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(E) detects x zero crossing
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Figure 9.4. Electrolocation using zero-cross controller. The black dashed
lines represent the predefined bounds of possible target locations; this de-
fines the workspace of the robot. The blue line is the path of robot, and the
blue circles are locations of the center of robot where it stopped to make
an observation. The yellow disk is the actual location of the target. Red
squares and green diamonds are the locations of the emitter and detectors
for the current robot position, respectively. In (C) the red horizontal line
signifies the y estimate of the target location. Similarly, the red vertical
line in (F) is the x estimate of the target location. Thus, the intersection
of the two red lines is the estimate of the target.
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In Figures 9.4(E) and 9.4(F) the robot detects zero crossing and refines its x-coordinate

estimate.

9.3. Performance of Non-Probabilistic-Based Controller

Two sets of experiments were performed using the zero-cross electrolocation algo-

rithm. In the first set it was noticed that the estimate of the y-coordinate of the target

position was much worse than the estimate of the x-coordinate. In the second set of ex-

periments the algorithm was adjusted to include an additional pass to improve precision.

This additional pass greatly improved the estimate of the target location at the expense

of taking longer to perform the task. The two sets of experiments are now described in

detail.

9.3.1. Experimental Set 1: Eight Different Conditions

Electrolocation of spheres was performed for eight experimental conditions corresponding

to all permutations of two target diameters (12.7 and 38.1 mm), two target conductivities

(conductor and insulator), and two water conductivities (fresh and salt). These are the

identical target and water properties as used in Experimental Set 2 of the probabilistic-

based controller (See Section 8.4 on page 205). A small stand in the tank suspends the

spherical targets such that the tops of the targets cleared the bottom of the electrodes.

The electrical signature of the target stand alone did not significantly interfere with any

of the measurements.

Table 9.2 shows the average electrolocation error for the zero-crossing controller over

the 50 trials for each of the eight conditions. The target always remains at coordinate
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(xw = 0, yw = 0), but the center of the robot’s 160 mm by 160 mm workspace to scan

is generated randomly from within coordinates (xw = ±75, yw = ±75). This allows the

relative starting position of the robot to change every trial without having to move and

calibrate the position of the target at every trial. For each set of experimental conditions

the estimated position of the target is calculated as the mean xw coordinate and mean yw

coordinate of all 50 final positions for that set of conditions.

Since the estimated position is calculated after the electrolocation task, the numbers in

Table 9.2 demonstrate the repeatability of the electrolocation system and not necessarily

its ability to locate a predefined reference point on the target. However, theory and

empirical observations both suggest that the zero-crossing reference point that we are

localizing is the actual center of the 2D projection of the sphere. Thus, the data in Table

9.2 is a measure of the precision of the electrolocation system. A consistent offset bias

in the location estimate would not be reflected in the statistics in Table 9.2. In other

words, Table 9.2 does not capture the statistical first-order moment, but it does reflect

the second-order moment of the estimates.

Table 9.2 reveals that the average magnitude of error in the xw direction is less than

1 mm for each of the conditions and less than 65 µm in 6 out of the 8 conditions. The large

discrepancy in precision between the xw and yw errors is because during the search for the

y-coordinate (which is looked for first), the Electrosenster has no clue how far away the

target is, thus, the zero-crossing could be a very shallow gradient. Once the y coordinate

is known, the Electrosenster takes a trajectory during the x-coordinate search that will

allow the target to pass approximately 15 mm from the center of the robot. Figure

9.5(A) shows a typical EEV. The blue solid line shows a possible relative trajectory the
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experimental conditions
mean abs error

xw (mm) yw (mm)

12.7 mm, steel in fresh 0.06 0.39

12.7 mm, plastic in fresh 0.05 0.64

38.1 mm, steel in fresh 0.05 0.93

38.1 mm, plastic in fresh 0.06 0.89

12.7 mm, steel in salt 0.23 0.47

12.7 mm, plastic in salt 0.14 0.59

38.1 mm, steel in salt 0.06 0.78

38.1 mm, plastic in salt 0.05 0.69
Table 9.2. Electrolocation statistics for the eight experimental conditions
tested for the zero-crossing-based control scheme.

target could make during the y-coordinate search. The red dashed line shows the relative

trajectory the target would make during the x-coordinate search (y = −15 relative the

estimated target y-coordinate from the previous pass). Figure 9.5(B) shows the expected

history of observations for the two trajectories shown in Figure 9.5(A). Because of factors

such as noise and a finite number of observations, an estimate of the zero crossing of the

blue solid line would be less precise. Thus, we see larger variability in the y estimate than

the x estimate. Next, we will add another pass to the zero-cross controller that will

alleviate this problem.

9.3.2. Experimental Set 2: Extra Pass

In this set of experiments an additional pass is added to the zero-cross controller in

an attempt to increase its precision at locating the spherical target. Here, a one inch
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Figure 9.5. Two target trajectories relative to the robot. The solid blue
line is a relative trajectory the target could take during the search for the
x-coordinate of the target. The red dashed line corresponds to relative
trajectory of the target during the x-coordinate search of the zero-cross

controller. The target moves at a constant y = 15 relative to the center of
the robot (based on the y estimate found in the previous pass). (B): The
history of the expected observations of the two trajectories from (A).

(25.4 mm) metal sphere is electrolocated in 350 µS water (This is the same as Experi-

mental Set 3 for the probabilistic-based controllers, see Section 8.4). The electrolocation

task is repeated 100 times.

Recall from Table 9.2 that the zero-cross algorithm did a relatively poor job of

estimating the y-coordinate of the target location compared with the x-coordinate. It was

suggested from Figure 9.5 that certain relative trajectories could render poor estimates. In

this final set of experiments an additional pass is executed by the Electrosenster to obtain

a more precise y-coordinate estimate. So, the new zero-cross protocol is 1) approximate

y-coordinate, 2) estimate x-coordinate, and 3) re-estimate y-coordinate.
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experimental conditions
mean abs error

xw (mm) yw (mm)

25.4 mm, steel in fresh 0.11 0.02
Table 9.3. Electrolocation statistics for the zero-crossing-based control
scheme using an additional pass.

Table 9.3 shows the average error estimate for both coordinates over the 100 trials.

As before, these numbers reflect the precision of the electrolocation system. The average

total error is 112 µm, which is a great improvement from the previous set of data. Thus,

the additional pass to re-estimate the y-coordinate will improve the target estimate.

9.4. Extensions of the Current Setup

The Electrosenster is the first actively-controlled robot to use electrosense to locate

targets. Its simplicity did not limit us from investigating the basic questions of artificial

electrosense. Nonetheless, there are many improvements we could make to the system. A

few are discussed below.

The only difference between the EEVs shown in Figures 7.2(E) and 7.2(F) is that

the magnitude of the electrical contrast factor (χ in Equation (2.13)) is greater with the

plastic target than with the metal target. An alternative to increasing the magnitude of

χ is to increase the gain of the differential amplifier. If we disregard the effects of noise,

the sensor map shown in Figure 7.2(E) could be made to look identical to the one shown

in Figure 7.2(F) by only changing the gain on the differential amplifier (negative gains

are permissible). Armed with the controller’s proposed ability to dynamically change

G, an electrolocation algorithm could take advantage of having both a high-gain EEV

(good for long-range detection) and a lower-gain EEV (good for precise localization when
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near the target). Interestingly, there is good evidence for dynamic gain control in the

electrosensory lateral line lobe, the structure in the hindbrain of weakly electric fish where

all electrosensory data are initially processed [21, 146].

Because of the commutative property of Bayes filters, the final belief shown in Fig-

ure 8.4 could have been achieved by four stationary sensor pairs positioned at the four

orange asterisks. As seen by the EEVs shown in Figure 7.2, a single observation is almost

never enough to establish a satisfactory belief of the target location. But, often with just a

few movements the particles quickly converge to an acceptable uncertainty level. A robot

equipped with an array of sensors could potentially locate the target without any motion

between the sensor array and object. This demonstrates how motion and sensing can

be traded off in active sensing systems. A parallel example from the realm of biological

active localization systems is provided by the dolphin, which uses a narrow (10◦) sonar

beam with head scanning motions, possibly for increased sensing range over what would

be possible with a broader beam [174].

All control algorithms employed by the electrosensory robot never look ahead more

than one time step. Greedy controllers are vulnerable to converging to unacceptable local

minima. Ideally, at each time step the controller would evaluate every possible path and

proceed to execute the first action in the trajectory that yields the best expected sensing

information. To make this strategy computationally practical, we must limit the number

of lookahead steps and perhaps use heuristics to select which paths to evaluate.

One of the major drawbacks of the particle-filter-based controller utilized here (all

controllers except zero-cross) is that it requires the EEV of the target. It would be
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convenient if this time-consuming step of EEV construction was eliminated. The simi-

larities between the modeled (Figure 2.7 on page 53) and measured EEVs (Figure 7.2 on

page 169) suggests that a theoretical EEV for a known target can replace a pre-measured

EEV. Alternatively, an EEV for an unknown target could be estimated from EEVs that

are expected to be similar to that of the unknown target. For example, if the EEV for

10 mm, 15 mm, and 20 mm diameter metal sphere in fresh water is known, and the robot

is searching for a 14.5 mm diameter metal sphere in fresh water, the EEV for this novel

target could be approximated from the known EEVs.

Currently the probabilistic-based controller searches for the target in a two-dimensional

place once it is given EEV that depends on a particular water conductivity, target con-

ductivity, and target size. Alternatively, the robot could determine the conductivity of

the water by measuring electrical current and voltage drop across the emitting electrodes.

The conductivity and diameter of the target could be two more dimensions in the search

space. This would dramatically increase the computational costs associated with the

Monte Carlo approach. Prior knowledge could lessen this additional burden. For exam-

ple, if only pure conductors or insulators are possible, then the belief space would be

reduced to two 3-D spaces, which is, of course, more tractable than the full 4-D space.

We do not solve the full EIT problem with our robot. EIT usually implies measuring

electrical properties at fixed electrodes—which can act as both emitters and detectors—at

the periphery to estimate an impedance map of the interior [248]. Our robot employs an

active sensing strategy to move towards positions of maximal information gain. Rather

than construct an impedance map, this movement generates a sequence of observations

serving electrolocation.
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For other studies using a similar setup as the Electrosenster, it was found that by

shielding the experimental tank from electromagnetic interference from surrounding lights

and equipment, ambient noise levels could easily be reduced by more than a factor of 32.

Using the same technique as discussed in Section 7.4 to compute the theoretical values in

Table 7.1, this noise reduction would result in roughly a doubling in detection distance.
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CHAPTER 10

Conclusions and Future Directions

10.1. The Driving Objectives of this Thesis

The two original objectives that have driven the work presented in this thesis are 1)

implementation of an active artificial electrosensory system; and 2) obtaining a better

understanding of sensing and motor control in weakly electric fish.

10.1.1. Objective #1: Implementation of an Active Artificial Electrosensory

System

Motivating objective #1 is the development of a sensing modality well suited for low speed,

highly maneuverable underwater vehicles operating in cluttered environments. Such ve-

hicles require sensors with several specific properties [155]. First, the sensors must work

well at short range. Second, rather than being concentrated on one portion of the hull

of the vehicle (e.g., cameras at the front of a remotely operated vehicle), the sensors

should be distributed over the entire surface of the vehicle. This is required to support

highly maneuverable, possibly omnidirectional movement in tight spaces. Third, to more

robustly control sensory acquisition in geometrically complex spaces, such sensors should

generate the energy that they subsequently transduce, as with radar and sonar systems

[174]. Finally, as a very inexpensive approach for acquiring a unique form of sensory

information—as the sensors are simply exposed conductors—active electrosense may also



228

provide a useful complement to the usual suite of sensors provisioned on standard under-

water vehicles.

Chapters 6 through 9 demonstrate objective #1 was successfully accomplished. The

Electrosenster is a complete electrosensory system. Chapter 6 describes the hardware

of this 2-DOF electrosensory-based robot. In Chapter 7 we demonstrate the ability of

the Electrosenster to self-calibrate its sensor model. This sensor model is used by the

probabilistic-based controllers during the target localization and (self) global localization

tasks. Also in this chapter we develop an analytical solution to the detection range for

a simple electrosensory system, and we compare this model to empirical target detection

results from the Electrosenster.

Once the Electrosenster calibrates its sensor model it can use a probabilistic-based

controller to electrolocate the target. Four such active controllers and two such open-

loop controllers presented in Chapter 8 establish that the Electrosenster is able to locate

targets under various experimental conditions. Three out of the four active controllers

performed significantly better than the two open-loop controllers.

The abilities of the Electrosenster go beyond locating an isolated target when given

a sensor model. Chapter 9 demonstrates the Electrosenster’s ability to localize itself in

a complex environment (i.e., amid many objects). Also in this chapter we develop a

controller (called zero-cross) that is able to localize isolated spheres without a prede-

termined sensor model. Instead, the algorithm exploits invariant spatial features of the

electric field signatures induced by spherical targets.
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10.1.2. Objective #2: Understanding Sensing and Motion in Weakly Electric

Fish

One of our major focuses within objective #2 is how weakly electric fish—and other bio-

logical systems—could perform electrolocation. While there are a number of hypotheses

in the literature regarding the mechanisms of active electrolocation [246], these are still

largely not well understood. While the Electrosenster utilizes the same physics as biologi-

cal active electrolocation, their belief maintenance techniques almost certainly differ. The

Electrosenster can therefore merely provide a useful baseline for comparative analysis of

biological active electrolocation.

While this document has made steps towards understanding biological electrolocation,

we have only begun to understand this complex process. Part 1 establishes the funda-

mentals of electrolocation. We consider a Bayes filter for belief maintenance. While it has

been proposed by many researchers that biological systems perform Bayes’ optimal [128]

computations within their sensorimotor systems [133, 180], without a complete neuro-

biological model of the weakly-electric fish, there is no way to definitively determine if

this biological system truly operates under Bayes’ rule.

In Part 2 we use the models and methods developed in Part 1 to simulate sensory

acquisition and probabilistic belief maintenance for the prey-capture task of the weakly-

electric fish (We assume that the weakly-electric fish does indeed use a Bayes filter to

update its belief of the prey). Using these simple models we investigate optimal sensing

in weakly electric fish and are able to make the following statements:

(1) We suggest that the weakly electric fish has evolved a large number of sensors to

offset the noise the electrosensory system is subjected to.
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(2) We speculate that the electric field is stronger near the tail to complement the

fish’s omnidirectional sensing and motor system.

(3) We show that the weakly-electric fish has evolved an efficient sensor layout for

the prey-capture task.

(4) We show that if motions are limited to those similar to the fish, then mechanically-

optimal trajectories are also good for sensing.

In the grand scheme, this thesis was only able to provide a few pieces to the solution

of objective #2. Most of the progress was made in the sensing realm, but sensing cannot

be studied in isolation without considering motion and the mechanics of the sensorimotor

pathways. Thus, in future work it is crucial the sensing, motion, and neural mechanisms

be studied as a complete system. The next section begins a discussion on some possible

approaches.

10.2. Future Directions: Modeling the Sensing and Motion Systems of the

Weakly Electric Fish

Objective #2 has been the motivation of much research across many decades and

across many labs. Knowing this objective could not be fully fulfilled in a single thesis,

we selectively chose a few simple aspects of the fish sensorimotor system to investigate.

In this section possible future approaches of acquiring an even better understanding of

sensorimotor transformations in the weakly electric fish is discussed.

Throughout this document very simplified and abstract models of the weakly electric

fish have been used in the interest of computational efficiency. With these models we have

obtained useful insight into sensing and motion in the weakly electric fish, but these models
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fall short of accurately modeling the real sensorimotor components of their corresponding

biological system. Perhaps the first step in constructing a complete model of the fish’s

sensorimotor transformations is the use of more realistic models. In Appendix F more

complex models that are grounded in the morphology, anatomy, and neurobiology of the

weakly electric fish are considered. The Appendix begins by providing some of the relevant

biology (particularly in the sensing realm) of the fish (Section F.1). We then discuss two

relevant models. The first is a model of the neural coding in the primary electrosensory

afferents. Up until now, we have disregarded this component and have assumed perfect

transmission of the voltage at the fish’s sensor to the representation of that voltage in the

central processing center. In reality, there are many intermediate signal transformations

including the encoding of transdermal potentials (voltage at the sensor) into spike trains1,

which is the topic of Section F.2 and depicted in Figure F.1. The other component of

the fish system that is touched on in Appendix F is transforming spike trains into prey

location. This process is less understood, but there are some models of the electrosensory

lateral line lobe (ELL). The ELL is the sole recipient of all the primary afferents of the

electrosensory system. This means that all the spike trains that propagate from the

electrosensory organs first pass through the ELL before anywhere else in the CNS. Thus,

it is a crucial component, and is discussed in Section F.3.

1The central nervous system (CNS) uses spike trains to encode information to be sent to neurons
within the CNS. Nerves transmit voltages and the “spike” refers to the impulse of voltage in the nerve.
Spike trains are not unlike binary voltages in computer circuitry (e.g., both represent information as
streams of binary voltages).
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Up until now, we have mostly focused on sensing and processing models of the fish2.

We now suggest some possible methods for modeling sensing, motion, and control compo-

nents of the fish within a single framework. Appendix G discusses some simple methods for

modeling sensorimotor transformation. This framework is only valid for linear systems

(linear motion and sensing models) with Gaussian disturbances. While real biological

systems do not fall in this realm, the methods in Appendix G can be used in situations

where linear approximations are appropriate for modeling the relevant components. If it

can be assumed that the dynamics are linear and the disturbances on the sensor and mo-

tion models are normally distributed, and the cost function is quadratic, then the Linear

Quadratic Gaussian (LQG) can be used. LQG dramatically decreases the computational

cost by decoupling the control and estimation problems (the separation principle). The

Kalman filter is an optimal state estimator for the LQG case that parameterizes the belief

with only a vector of means and the covariance matrix. The optimal control policy can

be determined in closed-form via the Ricatti equations.

Unfortunately, if a “simple” model is not sufficient, then more complex (computa-

tionally expensive) methods must be employed to capture the relevant aspects of the

sensorimotor transformations. Perhaps the least restrictive formulation is the partially-

observable Markov decision process (POMDP). In fact we only need complete discretiza-

tion (i.e., discrete states, observations, actions, and time) to use this formulation [121].

Dynamic programming, which is an application of the Bellman equation, is the most

popular technique for solving a POMDP. In addition to a sensing and motion model,

a reward function is needed to map a state and action to a scalar reward. In general

2In Section 4.2 (beginning on page 108) we did provide the general formulation for optimal motion
control. But, we quickly abandoned analytical solutions for computationally tractable ones.
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this is a computationally expensive approach, but in some cases heuristics are acceptable

[64]. POMDPs and similar methods (including reinforcement learning) are discussed in

Appendix H.

Appendices G and H discuss general methods for modeling systems with sensing, mo-

tion, and control. These methods were not specifically developed for biological systems.

In particular biological systems must compensate for significant sensorimotor delays. Such

long delays make pure feedback control impractical for many situations. In Appendices I

and J we investigate some critical components of fish (and most biological system) senso-

rimotor transformations with a focus on compensating for sensorimotor delays. Appendix

I discusses the importance of both feedback and feedforward control in biological systems.

Feedback control is slow, but can compensate for unpredictable disturbances. Feedfor-

ward control circumvents sensorimotor delays, but an accurate predictive model of the

world is needed to successfully use it. In Appendix J we discuss feedforward (predictive)

controllers in more detail.

It is now obvious that models of biological sensorimotor transformations can be very

complex. In this section we have given just a glimpse of how one may approach such a

daunting endeavor. Each biological system is different, and we have focused our discussion

on the weakly electric fish. Thus, other biological systems may use methods not mentioned

here.
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APPENDIX A

A Simple Example Using a Particle Filter

Figure A.1 demonstrates using a particle filter to construct a belief of the location of a

target. In A.1(A) it is only known that the target is somewhere within the 20 m by 20 m

workspace. In this simple example it is assumed that even though the sensors are noisy,

each observation actually corresponds to the noise-free observation. In A.1(B) the robot

makes a single observation with its range sensor. The red dashed lines show the standard

deviation of the observation mapped into the target state space. The green dashed line

show the locus of target configurations that would generate the same range observation.

The particles in Figure A.1(B) represent the posterior belief after the range sensor obser-

vation is updated with the prior belief from Figure A.1(A). In Figure A.1(C) the robot

uses a bearing measurement to update the belief. The bearing sensor’s noise is 45◦, as

shown by the red dashed lines. Finally, Figure A.1(D) depicts the updated belief after a

GPS observation.



258

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

 x (m)

 y
 (

m
)

(A) initial belief
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(B) belief after integration of range sensor
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(C) belief after integration of range and
bearing sensors
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(D) belief after integration of range, bear-
ing, and GPS sensors

Figure A.1. A simple example using a particle filter. A robot is shown as
a black cross located at (x = 0, y = 0), and is trying to locate the target
position (x = 0, y = 7), which is shown as an orange “x.” The particles
(i.e., target belief) are shown as blue dots.
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APPENDIX B

Electroplating the Electrodes

sacrificial silver
silver electrodes

salt
water

6 volts DC1 kOhm

Figure B.1. Electrode electroplating setup.

To promote favorable impedance properties of the four electrodes the exposed tips

of each electrode were first formed into a sphere of about 2 mm, and then each was

electroplated with silver-chloride (AgCl). When heating silver wire to its melting point,

intermolecular forces pull the molten silver into a sphere. Once the spheres are formed, the

electrodes are placed in the electroplating setup as shown in Figure B.1. The electrodes

and a bare strand of silver wire are placed in a bath of salt water (sodium-chloride). When

the electrodes are held at a higher potential (6 volts used here) than the bare silver wire,

the electrodes become the cathode and they become plated with the AgCl, and the bare

wire becomes the sacrificial anode.
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APPENDIX C

The Electric Field of the Electrosenster

The Electrosenster’s electric field is generated by a pair of electrodes submerged in the

fish tank. One electrode is tied to ground (0 volts). The voltage at the other electrode is

a biphasic square wave (see Section 6.5). The RMS voltage of this square wave is 2 volts

unless otherwise stated. In this appendix the spatial characteristics of the unperturbed

electric field is examined.

The analysis of the electric field of the Electrosenster begins by making the following

two assumptions:

(1) presence of magnetic fields can be ignored

(2) non-dispersive, isotropic media (ε and µ are time-independent scalars)

Both of these assumptions are accurate for the operating conditions of the Electrosenster.

If the assumption of time-invariant electric fields could be made, then the analysis

could be simplified even further. To examine the feasibility of this assumption we begin

with a temporal analysis of the square wave (The voltage drop across the electrodes of

the Electrosenster is a square wave). The Fourier series of a square wave of period T is:

(C.1) sq(t) =
∑

n∈{1,3,5,...nmax}

4

πn
sin(

2πnt

T
)

For the Electrosenster T = 0.001 sec = 1/(1 kHz). The bandwidth of the amplifier used by

the Electrosenster to generate the wave is approximately 1 MHz, which means nmax = 999.
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Because of assumption (1) from above, Faraday’s law of induction (Equation 2.3) says

the electric field is irrotational, i.e., ∇×E = 0. Thus, the electric field is the gradient of

the voltage, V , i.e.,

(C.2) E = −∇V

The total current density (typical units are A/m2) is defined as the sum of the current

density due to conduction, Jc plus the current density due to displacement, Jd:

(C.3) Jtot = Jc + Jd = σE − iωεE

If it can be shown that the proportion of displacement current is insignificant relative to

the amount of conduction current, then the effects of time-varying fields can be ignored.

The permittivity of water is approximately ε = εrε0 = 7.1 × 10−10 F/m, where ε0

is the permittivity of free space ε0 = 1/(c2µ0) ≈ 8.85 × 10−12 F/m; εr is the relative

permittivity of water (also called the dielectric constant). The conductivity of fresh and

marine water are approximately 0.02 Ω−1m−1 and 4 Ω−1m−1, respectively. I begin with

contribution of displacement current in fresh water:

(C.4) Jtot = E(σ − iωεE) = E(0.02Ω−1m−1 − iω · 7.1× 10−10 Fm−1)

where ω would be the frequency of excitation if it were a sine wave. But, since we are

dealing with a pseudo-square wave (because 1 MHz bandwidth), all the relevant harmonics

must be considered.
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From Equations (C.1) and (C.2), we can show that the relative contribution of each

odd harmonic to the total displacement current decays as 1/n for n equal to the odd

integers. In addition, Equation (C.3) reveals that the displacement current associated

with each frequency is linear with that frequency. If ω0 = 2πf , where f = 1000 Hz, then

ω can be redefined as:

(C.5) ω =
∑

n∈{1,3,5,...nmax=999}

n · ω0

n
= 500ω0 = 2π106

If the result of the Equation (C.5) is plugged into Equation (C.4), then it can be shown

that about 18% of the total current is due to displacement current. But, when the same

analysis is performed on water conductivities near sea water, less than 0.1% of the total

current density is due to displacement current. Thus, displacement currents for the salt

water environment can be ignored, but the displacement currents cannot be ignored for

the fresh water conditions.

By invoking the assumptions from the beginning of this appendix, the electric field

generated by two equal and opposite charges (i.e. dipole) in an infinite, isotropic medium

can be found by Coulombs law with superposition:

(C.6) E(x) =
∑

i

k · qi
‖ri0‖2

· r̂i0

where qi is the magnitude of the charge (in Coulombs), r̂i0 is a unit vector pointing from

the charge to x, ‖ri0‖2 is the square of the magnitude of that vector; and k is the Coulomb

constant (8.988×109N ·m2/C2). But, the Electrosenster uses two electrodes of prescribed

voltage to generate the electric field, not idealized point charges. The tips of the electrodes
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are conducting spheres of radius, re = 1 mm, which would generate an identical electric

field as a point charge of q+ = V re/k = 1.11 · 10−13 C, where V = 1 is the voltage of

the electrode and k is the Coulomb constant. If q− is equal in magnitude, but opposite

in sign to q+, then a 2-D slice of the electric field generated by q+ and q− in an infinite,

purely conducive medium (e.g. two point charges in the middle of the ocean) would look

like Figure C.1.

Also shown in Figure C.1 are the iso-voltage contours in mV. Note that the contours

are not at constant increments, and the voltage rapidly decays with the distance from

the electrode. Figure C.1 is a model of an electric field in an infinite medium. But, the

Electrosenster operates in a glass-walled fish tank of approximately 750 mm by 750 mm

and 160 mm deep. This means that an electrode is usually no closer than 325 mm to any

of the 4 vertical glass walls, but is always 80 mm from both the surface of the water and

the glass floor. The effects of the vertical glass walls of the tank on the electric field near

the middle of the tank (only the middle 80 mm by 80 mm section of the tank is used

in experiments) is extremely small and can be completely ignored for our purposes. The

effects of the floor and water surface as insulating boundaries are a little more noticeable.

These boundaries compress the electric to stay within in the conducting medium, thus

increasing the current density in the water since it cannot flow (as easily) through the air

or glass bottom. In reality, these boundaries 80 mm above and below the electrodes have

virtually no effect on the qualitative structure of the electric field depicted in Figure C.1.

But, the magnitude of the electric field is slightly greater (< 1%) than if these horizontal

non-conducting boundaries were not present.
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Figure C.1. Electric field of the Electrosenster. Arrows show the direction
of the electric field. Contours are at constant voltages.
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APPENDIX D

Some Examples of Measured EEVs of Cylinders

The purpose of this appendix is to expose the reader to EEVs of targets other than

spheres. Early on in this thesis the commitment was made to model observations via

Rasnow’s model of simple objects (i.e., Equation (2.13)). Unfortunately, this model is

invalid for cylinders. Thus, we forgo any formal analysis on the structure of the measured

EEVs presented in this appendix.

We consider eleven different EEVs of cylinders (all approximately 80 mm in height)

under various conditions. The 80 mm heights of the cylinders were chosen such that the

bottom of the emitting and sensing electrodes were just able to pass over them without

touching. See Section 8.2.1.1 on page 189 for the protocol for constructing the EEVs of

cylinders using the Electrosenster. The EEVs are grouped into three sets:

(1) The three experimental conditions for electrolocation experimental set 1 (Figure

D.1).

(2) Plastic cylinders under 4 different experimental conditions (Figure D.2).

(3) Brass cylinders of four different diameters (Figure D.3).

In the following EEV figures, “fresh” water refers to 160 µS/cm electrical conductivity

water, and “salt water” is 56, 000 µS/cm water. “Plastic” refers to Delrin plastic. Red

squares indicate the location of the electric field dipoles. Green diamonds indicate the
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location of the voltage sensors. The color map goes from white for +10 V to gray for

intermediate values to black for −10 V.

Figure D.1 depicts the EEVs for the three conditions in experimental set 1. The

results of the corresponding electrolocation experiments are in Section 8.2. The three

experimental conditions are:

(1) 12.7 mm (1/2”) diameter aluminum (electrical conductor) cylinder in freshwater

(Figure D.1(A)).

(2) 25.4 mm (1”) diameter aluminum (electrical conductor) cylinder in freshwater

(Figure D.1(B)).

(3) 25.4 mm (1”) diameter plastic (electrical insulator) cylinder in freshwater (Figure

D.1(C)).

Figure D.2 depicts four more EEVs of cylinders (not used in electrolocation experiments).

Almost all of the EEVs shown in this document prior to this appendix have been for

spheres (e.g., the modeled EEVs in Chapter 2 and the measured EEVs in Chapters 7

and 8). Figures D.1 and D.2 give us a glimpse of what EEVs of cylinders under various

conditions look like. They look similar to the EEVs of spheres with two major differences,

which are described below.

Probably the most obvious difference is the extra set of lobes seen in Figure D.1(B).

Since it was introduced in Chapter 2, we have relied on Rasnow’s model of simple objects

(i.e., Equation (2.13) on page 48) to model electrosensory observations. This simple model

does not apply to cylinders. Thus, we cannot use the simple model to investigate these

extra lobes. The numerical methods developed in Section 2.1 failed to explain the extra

set of lobes due to the 2-D simplification that was enforced in the model formulation
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(C) 1/2” dia. plastic cylinder in fresh water

Figure D.1. The EEVs for the three conditions in experimental set 1. Blue
dashed lines are at 1 V increments. The solid red contours represent an
observation that results in detection of the target with 95% confidence (see
Section 7.2 for details).
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(D) 1” dia plastic cylinder in salt water

Figure D.2. EEVs for plastic cylinders under 4 different experimental con-
ditions. Blue dashed lines are at 1 V increments. The solid red contours
represent an observation that results in detection of the target with 95%
confidence (see Section 7.2 for details).
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(assumption (4) from Section 2.1). A 3-D analysis using the same methodology could be

performed with access to the appropriate software package such as COMSOL Multiphysics

(COMSOL, Inc., Burlington, MA). This approach is beyond the scope of this thesis.

These extra sets of lobes were only observed in conductors and not in the smaller

cylinders—it is present in the one inch diameter cylinder but not the half inch cylinder.

Thus, there is a significant qualitative change between the EEVs of small and large diam-

eter conductive cylinders. In Figure D.3 EEVs of brass (electrical conductor) cylinders

of intermediate diameters (5/8” and 3/4”) were constructed. Figure D.3(A) is similar to

Figure D.1(A) and Figure D.3(D) is similar to Figure D.1(B). In Figure D.3(B) we see

the extra set of lobes just starting to form, and in Figure D.3(C) they are well developed.

In Figures D.3(C) and D.3(D) the orange ‘x’s correspond to target locations on the

boundary between lobes (these locations render an observation of w = 0 volts). The blue

dashed circles in these two subfigures represent the edge of the cylindrical target. The

boundary between the near lobes and far lobes is nearly a straight line with the endpoints

corresponding to target locations when the edge of the cylinder just touches either an

emitter or sensor. This does not provide an explanation, merely an observation.

The second major difference between the EEVs of cylinders and spheres is that the

polarity of the lobes does not change when the conductivity of the target changes. As

predicted by Rasnow’s model (Equation (2.13)) the sign of the observation depends on

the relative conductivity between the target and water (specifically, it depends on the sign

of the contrast factor, χ). This effect is seen in the EEVs of spheres, but it is not seen in

the EEVs of cylinders (e.g. compare Figures D.1(A) and D.1(C)). Thus, the sign of the

lobes is the same for metal and plastic cylindrical targets.
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Figure D.3. EEVs for brass cylinders of four different diameters in fresh
water. (A) and (B): Blue dashed lines are at 1 V increments. (C) and (D):
The orange “x”s are example target locations (center of cylinder) on the
boundary between the two lobes. The blue dashed circles are the edges of
the corresponding cylinders projected into the 2-D plane. The dashed-line
contours have been removed for clarity.
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APPENDIX E

Closed-Form Solution for Voltage Perturbation

Here, we derive Equation (7.1), which is also displayed at the end of this appendix.

Recall Equation (2.13) (Rasnow’s model from page 48) is an analytical solution to the

observed voltage perturbation, δV , as a function of the relative target position, xt, target

radius, a, the unperturbed electric field at the center of the target, Ef, and the contrast

factor, χ. We wish to find a closed form solution of Equation (2.13), which is an explicit

function of the experimental parameters.

If we assume the electric field is generated by two point charges of +q and −q located

at positions xp and xn, respectively, then the electric field at position x can be computed

as

(E.1) E(x) =
q k

|x− xp|3 (x− xp)− q k

|x− xn|3 (x− xn)

where k is Coulomb’s constant. It is usually inconvenient to specify the source of the

electric field in units of charge, but if the emitters are assumed to be spherical conductors,

then the equivalent charge for a emitter of radius E and voltage Ve is qeq = VeE/k.

Let us consider a simple emitter/detector layout that consists of a single voltage

detector located at the origin and the two emitters separated by the distance L and at

positions xp = {−L/2, 0, 0} and xn = {L/2, 0, 0}. We wish to determine the detection
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distance, R, of a spherical target of radius A along a 45◦ line passing through the origin

(This setup is shown in Figure 7.3). We first define the dimensionless parameters a = A/L,

e = E/L, r = R/L, and δv = δV/Ve. We then substitute qeq into Equation (E.1) and then

substitute that equation of the electric field into Equation (2.13) to arrive at a closed-

form solution of the dimensionless voltage perturbation as a function of the dimensionless

target radius (a), contrast factor (χ), emitter radius (e), and distance to the center of

target from the detector (r) (this is Equation (7.1)):

δv(a, χ, e, r) = −2 a3 χ e
N1(r) + N2(r)

D(r)

where,

N1(r) =
(√

2− 4
√

2 r2 + 16 r3
)√

1− 2
√

2 r + 4 r2

N2(r) =
(√

2− 4
√

2 r2 − 16 r3
) √

1 + 2
√

2 r + 4 r2

D(r) = r2
(

1− 2
√

2 r + 4 r2
) 3

2
(

1 + 2
√

2 r + 4 r2
) 3

2
.

Likewise, we can perform the same analysis for the emitter/detector configuration

used in the experimental setup. The location of the emitters are the same as above, but

the locations of the detectors are now (x = 0, y = ±L/2, z = 0}. In the experimental

setup the location of the center of target was in the plane z = −(E + O) relative to the

plane containing the emitters and detectors, where O is an additional offset that enabled

the electrodes to pass safely over the target. In our setup O = 2 mm. When these new

values for the positions of the detectors and target are substituted into Equations (E.1)
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and (2.13) the closed-form solution of dimensionless voltage perturbation can be obtained.

The length of this equation precludes its inclusion here.
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APPENDIX F

More Complex Models of the Electrosensory System of Weakly

Electric Fish

In this document, only very simplified models of the weakly electric fish’s sensing and

motion have been considered. For example the electroreceptors of the fish were modeled

as simple volt sensors. The signal processing pathways were modeled as Bayes filters.

In this appendix more complex models that are grounded in the morphology, anatomy,

and neurobiology of the weakly electric fish are considered. Many aspects of the weakly

electric fish have been thoroughly studied, so many different models for different parts of

the weakly electric fish are available (See [171] and [172] for an introduction to relevant

models of the weakly electric fish.) In this section we discuss some relevant models that

may help give some insight to how such an organism could perform electrolocation of prey.

The electrolocation task can be subdivided into three different phases: detection,

characterization, and localization. The detection phase is simply determining whether or

not a potential prey is in the vicinity. The characterization phase entails determining

if the potential target is a prey. The localization phase will be the main focus of this

appendix. This is the phase where the fish determines the position of the prey [246].

F.1. Modeling the Weakly Electric Fish

The South American black ghost knifefish (Apteronotus albifrons) captures prey in the

dark using its active electric sense [140, 157] and also possibly its ability to detect the
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bioelectric fields around prey (passive electric sense) [157] and fluid disturbances due to

the prey (mechanosense) [175] (See [109] and [53] for an overview of the electric sense in

weakly electric fish.). In active electrosense, black ghost knifefish sense their surroundings

using a weak, self-generated electric field (≈1 mV/cm near the body). Nearby objects

that differ in electrical conductivity from the surrounding water create localized voltage

perturbations across the skin that are sensed by about 14, 000 tuberous electroreceptor

organs scattered over the body surface [61]. In passive electrosense, nearby objects that

emit a bioelectric field stimulate about 700 ampullary electroreceptor organs [61]. In

mechanosense, flow accelerations caused by the prey’s movement are detected by about

200 canal neuromasts [175], and flow velocity caused by relative motion between the fish

and its medium are detected by about 100 superficial neuromasts [61].

Do to the extreme complexities of vertebrate systems, only a few components of the

weakly electric fish will be examined here, and we will mainly focus on the sensory ac-

quisition and processing of electrosensory information from the active electrosense in the

weakly electric fish. We consider models of the electroreceptor afferent1, specifically how

it transduces transdermal potentials (voltages across the skin of the fish) into spike trains

(the communication protocol for the nervous system) to be used by the central nervous

system (CNS) of the weakly electric fish. We also begin to look at how the CNS processes

the electrosensory information. The CNS uses spike trains to encode information to be

sent to neurons within the CNS. Nerves transmit voltages and the “spike” refers to the

impulse of voltage in the nerve. Spike trains are not unlike binary voltages in computer

circuitry (e.g., both represent information as streams of binary voltages).

1In the nervous system, afferent nerves carry nerve impulses towards the brain. “Afferent” can also
refer to a sensory signal that goes towards the brain.
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F.2. Models of Neural Coding in Primary Electrosensory Afferents

Of the three sensing modalities used by the black ghost knifefish to localize prey in the

dark, only the active electrosense modality is considered here. This is believed to be the

most dominant modality of the prey capture task, and it is the most widely studied. The

active electrosensory system is composed of the electric organ, which emits the electric

field (referred to as the electric organ discharge, or EOD), and the tuberous organs which

are the electroreceptor organs for this electrosensory modality (See [8] for modeling the

electric organ discharge.). Tuberous organs are sensitive to high-frequency (typically 0.1

to 1 kHz) electric fields, and typically tuned to frequencies near the peak of the EOD

spectrum.

For the nervous system to carry out the computations necessary to support electrolo-

cation, information about the transdermal voltage (transdermal voltage is the voltage

across the skin) patterns on the skin must be converted into a neural representation. The

information needed for subsequent neural processing is encoded in the spike train data.

The coding strategies implemented by these organs are rather sophisticated, involving

various forms of input filtering and noise suppression during the encoding process.

The black ghost knifefish has two subtypes of tuberous receptor units [197]. One type

conveys information about stimulus amplitude, while the other type conveys information

about stimulus timing. The ongoing quasi-sinusoidal oscillation of the fish’s EOD pro-

vides a natural “clock” for the system. In wave-type fish, tuberous afferents fire at most

one spike per clock cycle. Amplitude information is conveyed by a spike probability code

[23, 197]. When no target object is present, probability-coding (P-type) units fire a spike
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with some baseline probability per EOD cycle, typically around 0.3. When a conduct-

ing object approaches the receptor organ, it causes an increase in the local transdermal

voltage and an increase in the per-cycle firing probability of the P unit. Similarly, when

a nonconducting object approaches the receptor, the local transdermal potential and the

P-unit firing probability will decrease. The interspike interval distribution is irregular, so

P-type units are sometimes described as “sputtering.”

The baseline EOD oscillation serves as a carrier signal and a target object induces an

amplitude modulation (AM) of this carrier signal. P-type units are tuned to the carrier

frequency of the fish’s own EOD [113]. The frequency content of an AM signal induced

by a target is related to its speed and distance. Nearby, fast-moving targets will cause

higher-frequency AMs compared to distant, slow-moving targets. P-type units act as high-

pass filters in the AM frequency domain, giving the strongest response to fast components

of the AM signals (See [20], [250], and [176] for details.).

Encoding of transdermal potentials into spike trains is now examined. In [47] a sim-

ple model of spike generation is described that gives rise to negative correlations in the

interspike interval (ISI) sequence and leads to long-term spike train regularization (this

model was basically derived from more complex models of [69] and [68]). Such regular-

izing effects have been observed in the spike trains of electrosensory afferent nerve fibers

and can lead to dramatic improvements in the detectability of weak signals encoded in

the spike train data [189]. The model from [47] can be described by four update rules,

which are evaluated in the following order at each time step n:
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(F.1) v[n] = c i[n] + δ[n]

(F.2) θ = θ[n− 1]− (b/a)

(F.3) s[n] = H(v[n]− θ[n]) =

 1 if v[n] ≥ θ[n]

0 otherwise

(F.4) θ[n] = θ[n] + b s[n] =

 θ[n] + b if s[n] = 1

θ[n] otherwise

where H is the Heaviside function, defined as H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0.

The voltage v is the product of the input resistance c and the instantaneous input current

i plus random noise δ, where δ is zero-mean Gaussian noise with variance σ2. When the

voltage v rises above a threshold level θ, a spike is generated (s = 1), and the threshold

level is elevated by an amount b. The threshold subsequently decays linearly with a slope

of −b/a until the next spike is generated.

Current, i[n], from the EOD reaches the skin of the fish and is impeded by a resistance,

c, and noise, δ[n], is superimposed on top the resultant voltage (This is Equation F.1). The

voltage experienced by the fish’s electroreceptor is v[n]. This voltage must be transduced

to a spike train so the CNS can process the electrosensory information. At each “clock

cycle” of the fish (i.e. at each time step n) the electroreceptor organ must choose whether
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Figure F.1. Modeling the transformation from transdermal potential to
spike trains in the fish. This is an example of Equations F.1 through F.4 in
action. The input signal, i[n], is a sinusoid with a period of 100 time steps:
i[n] = sin(2πn/100). After implementation of Equation F.1, v[n] takes the
form of the thick (noisy) line in the figure. A spike occurs (i.e. s[n] = 1)
whenever the voltage, v[n] meets the threshold, θ[n]. After a spike does
occur the threshold is bumped back up by an amount dictated by Equation
F.4 and then proceeds to decay as prescribed by Equation F.2. This figure
is taken from of [47].
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or not to propagate a spike. This choice is dictated by Equation F.3. If a spike does

occur (i.e. s[n] = 1), then the threshold, θ[n], for subsequent spikes is bumped up (see

Equation F.4), but the threshold will decay at each time step (see Equation F.2). Figure

F.1 demonstrates the implementation of these equations for a given input function, i[n].

F.3. Electrosensory Processing Models

Ultimately, weakly electric fish must be able to extract and interpret useful information

from these spike trains. Once the electrosensory information is transduced into spike

trains, it is sent upstream to the hindbrain electrosensory lateral line lobe (ELL) [34].

The encoding properties of these afferent signals have been the subject of much study

[105, 22, 97]. Of particular interest is the research on the information content of the

encoded spike trains [173, 189, 68, 70].

The ELL is the sole recipient of all the primary afferents of the electrosensory system.

This means that all the spike trains that propagate from the electrosensory organs first

pass through the ELL before anywhere else in the CNS. We are particularly interested

in the three separate somatotopically organized2 maps for the tuberous electrosensory

system [201, 202]. See Figure F.2 for a schematic of the ELL.

Signals from the tuberous electroreceptors trifurcate, and each somatotopic map in

the ELL gets its own copy of the spike train. Each of the maps in the ELL has a different

rate of convergence of the spike trains. The rate of convergence dictates spatial resolution

and the sensitivity of the map. For example, if a map has high convergence (many

2Somatotopically organized means that there is a topological (homeomorphic) relationship between
sensory receptive fields and their corresponding activation areas in the brain. So, electroreceptors that
are near each other on the skin will have sensitive neurons in the brain that are near each other (the
homunculus is an example of a somatomic map).
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Figure F.2. The transformation of spike trains to prey location. This figure
depicts the ELL with multi-resolution maps. Part of this figure is taken
from [110].

spike trains going to a single nucleus of neurons), then this nucleus will have information

from many electroreceptors, so it can easily determine if something has perturbed the

electric field (i.e. high sensitivity); but, because of high convergence, it is poor at spatial

discrimination of the target because it cannot differentiate which spike train came from

which electroreceptor.

F.4. Prey Localization

Previously, Bayes filters have been used to model the signal processing in the fish,

but we really do not know how the fish encodes the spike trains into the location of the

prey in 3-D space. Information theory, statistics, and digital filtering techniques have
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been applied to spike trains in an attempt to understand the information contained in

them [41], [147], [134], [147], [68]. There has been limited progress with this due to

the extreme complexities of a typical nervous system. But electrosensory systems provide

a great platform for understanding principles of neural encoding [131]. Behaviorally

relevant sensory stimuli are well understood and easy to control experimentally. And, of

course, there is a wealth of knowledge on sensory acquisition and processing in weakly

electric fish. So, many have used electrosensory models to decipher neural codes [162],

[98]. See [196] for an overview of this work.
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APPENDIX G

Simple Models of Sensorimotor Transformations in Fish and

Robots

By “Simple” model we mean that the differential or difference equations governing

the system dynamics and the observations need to be linear and time invariant (LTI).

“Simple” also means there are constraints on the nature of the uncertainties. The most

common assumption is Gaussian noise on a sensor and Gaussian disturbances on the

system dynamics. While these constraints seem very restricting, many systems have been

successfully modeled like this. And, these assumptions greatly reduce compute time.

G.1. The Kalman filter

One of the most popular state estimators is the Kalman filter [126]. It is a simple

algorithm, but can deliver excellent results under the appropriate conditions. For intro-

ductions to Kalman filtering see [249], [46], [101], or [159]. The system dynamics and

observation map must fit the following linear stochastic difference equations:

(G.1) xk = Axk−1 +Buk + δk−1

(G.2) wk = Hxk + νk
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where δk−1 and νk are normally distributed random variables with means of zero and

covariance matrices of Q and R, respectively. Equations G.1 and G.2 give us our first

glimpse of feedforward model (i.e. predictive model) vs. feedback (i.e. observed). Equation

G.1 makes a prediction one timestep into the future on what the state, xk will be, given

the current state, xk−1 and the input signal, uk. In fact, since δ is guaranteed to be zero-

mean and normally distributed, the expected value of xk, given xk−1 and uk is given by

Equation G.1 with δk−1 set to zero (because the expected value of δ is zero; i.e. E[δ] = 0).

So, with an accurate model of the plant (The matrices A and B are linear models of the

plant) and no disturbances (i.e. δ = 0 for all time), there is no need to observe the system

because all states can be known for all time a priori.

If Equation G.1 represents the feedforward (Specifically, this is called a forward model.),

then Equation G.2 models the feedback in the system. H transforms the states of the

system into the expected observations (Again, we can say “expected” because ν is char-

acterized as Gaussian and unbiased). So, if we wanted to estimate the state, xi, est from

a single observation, wi, we could simply say xi, est = H−1wi, where xi, est is the expected

value and the most likely state, given this single observation.

The Kalman filter is a state estimator. This means it forms a belief of the state.

Previously, we’ve represented beliefs as probability distributions over all possible states.

The Kalman filter does the same thing, but because we are only dealing with Gaussians,

the belief can be completely represented as the mean, x̂, and the covariance, P .

The Kalman filter is special case of a Bayes filter, thus a prior and likelihood must

show up somewhere in the algorithm. Here, the prior belief is the belief immediately

before the observation, w is made and can be represented as the set: {x̂−, P−}. The
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priors are computed as:

(G.3) x̂−k = Ax̂k−1 +Buk

(G.4) P̂−k = AP̂k−1A
T +Q

The likelihood is embedded in the sensor model and observation, w. The actual integration

of the feedforward model (i.e. Equation G.3) and feedback (the observation, w) is by the

following equation, which can be considered the posterior estimate:

(G.5) x̂k = x̂−k +Kk(wk −Hx̂−k )

where Kk (often called the Kalman gain) is essentially a weighting factor that dictates

how much to trust the feedforward model vs. the feedback information. Kk is a function

of the R and P covariance matrices and is a square matrix that varies from the zero

matrix (Kk approaches 0 as P approaches zero; this means to trust the model more) to

H−1 (This happens when the measurement noise, P , is zero, thus, we can perfectly trust

the observations). For details on combining Gaussian beliefs, see [209] and [210].

How can this be applied to the fish? Two possibilities are: 1) Make the models linear.

We may be able to make linear models of the dynamics, but the sensor models seem

pretty hard to force into a linear structure. 2) Use the extended Kalman filter (EKF)

[100]. This linearizes the models at each time step.
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G.2. SLAM

Simultaneous Localization And Mapping (SLAM) is an algorithm that addresses the

following question: “Is it possible for a robot to start in an unknown location in an

unknown environment and then to incrementally build a map of this environment while

simultaneously using this map to compute its own location?” The term was probably

coined in [143], but has been investigated by many others since then [42], [67], [75], [88],

[234], [218], [4], [233], [145].

SLAM uses data fusion techniques from the Kalman filter, where the state variables, x,

represent the robot’s own coordinates (for localization) and the coordinates of landmarks

to be mapped. SLAM has been said to be analogous to the “chicken and egg” paradox,

since in order to move precisely you need a good map of the environment, but in order build

an accurate map, you need to know your sensing locations. In the LTI case with Gaussian

disturbances the algorithm addresses this dilemma by optimally combining (à la Kalman

filter) model information (e.g., pose1 and landmark beliefs) with incoming observations

to construct beliefs of both robot pose and landmark pose simultaneously.

Weakly electric fish have been known to map landmarks in their environment [56].

In fact, a cognitive map (i.e. an internal representation of the environment, see [240]),

which is constructed from sensory information has been demonstrated by many species

including birds, mammals and other fish species; [32], [108], and [186]. We could use

SLAM in a simulated fish to map out these landmarks [144, 229]. Also, we have always

assumed that there has only been a single prey in the fish’s sensory field. SLAM provides

a framework for tracking multiple prey simultaneously; each prey could be a “landmark”.

1Pose refers to the configuration (both position and orientation) of the robot.
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And, with minor modifications, we could even assume moving prey, provided we have a

motion model of the prey (i.e. We need to model the prey as in Equation G.1) [30]. In

fact, we should be able to keep track of landmarks, prey positions, and the fish’s own pose

with a single framework.

G.3. The Utility of Uncertainty in Simple Models

Previously, we used entropy or the “spread” of particles (parts-std) as the uncertainty

metric because it can be applied to any general probability distribution. Here, we will

see a much more simple representation. Recall that in a Kalman filter the beliefs of the

states can be compactly represented as {x̂, P}, which represent the mean and covariances

of the state beliefs, respectively. The matrix P represents how much variance there is

in the estimate, x̂, and thus, is a measure of uncertainty in the estimate. Numerically

“reducing” P means reducing the uncertainty in the beliefs of x. In fact, P is the most

common uncertainty metric (when assuming Gaussian disturbances) and has been used

in many analyses; [25], [83], [124], and [92].

The problem with using P as an uncertainty metric is that P is an n × n matrix,

where n is the number of states. In order to compare two P ’s we need a mapping from

a matrix to a scalar: Rn×n → R
1. Some common methods are provided in: [92], [103],

[102], [158], and see [165] for the most comprehensive review.

G.4. Sensor-Based Control with Simple Models

We can now talk about a sensor-based controller for our simple model. In summary,

“simple” means linear models for the plant and observation as well as unbias, normally

distributed disturbances of those models. With these assumptions we can use the LQG
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framework (Linear model; Quadratic utility function; Gaussian disturbances). See [220]

or [238] for an introduction to LQG. The previous section gave us a utility function: we

wish to minimize a scalar metric of P .

Perhaps the most simple algorithm is to just choose the action that will decrease P by

the most at the next time step. The discrete-time greedy approach requires computing an

expected value of Pk+1 for all possible controls at timestep k. Then, choose the control,

uk, that decreases the expected value of Pk+1 by the most:

(G.6) uk = min
u

E [ ‖Pk+1‖ ]

where E [·] is the expected value, and ‖ · ‖ is some generic norm on P .
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APPENDIX H

More Generalized Models for Sensorimotor Transformations in

Fish and Robots

In this section we will relax the LTI system and Gaussian perturbation constraints that

were established in the previous appendix. Of course, this opens the door to a multitude of

possible approaches. Here, we choose to frame the problem as a Markov decision process

(MDP). Then we describe a framework capable of handling uncertainties in motion and

sensing, and then we show how to devise controllers fit for sensor-based control. Some

of the procedures were originally developed for localization in robotics (determining the

robot’s own pose), but many of these procedures can be easily adapted to the weakly

electric fish.

H.1. (Active) Markov Localization

The objective of Markov localization is to form a belief of the pose of the robot, but

the problem can be easily restated as forming a belief of the prey relative to the fish. The

Markov localization algorithm estimates a posterior belief of the state, given the actions

of the robot, observations of the sensors, and models of the world (see [93], [231], and

[227]). Because of the Markov assumption (i.e. the past is independent of the future,

given knowledge of the current state), the solution can be formulated recursively such that

new information need only be integrated once [93]. At the guts of the Markov localization

method is a Bayes filter used for localization.
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Active Markov localization [94, 93] takes it one step further by implementing a con-

troller that will choose appropriate actions to improve beliefs (Active here is the same as

in the active sensing paradigm of moving to get better information). The control policy

is very similar to the one presented in Equation G.6, but entropy is used as the metric

for reducing the belief to a scalar. Conceptually, active Markov localization is pretty

straightforward:

(1) Make Markov assumption to allow recursive update of belief.

(2) Apply Bayes’ rule to any new information to update belief (i.e., Bayes filter).

(3) When it is time for control, choose actions that will decrease the expected entropy

after the action (this is the greedy case).

This framework is an attractive approach to modeling sensorimotor transformations

because of its generality. For instance, “action” could be a movement primitive chosen

from a finite motion repertoire. For the fish, a movement primitive could be heave, roll,

or pitch, or even a heave-roll-pitch. The analysis stays exactly the same.

As like many generalized formulations, one of the major downfalls of Markov localiza-

tion is the tractability of the solution for any useful application. Analytic solutions are

impossible for all but very simple cases. This means in almost all instances, the system

must be approximated via discretization. One of the most powerful approximations is

known as importance sampling [194], and the resulting algorithms are known as parti-

cle filters [89, 96, 182], condensation algorithms [119], and Monte Carlo localization

[85, 93, 232]. These methods make smart choices about which samples of the space

should be examined.
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H.2. Markov Decision Processes

A MDP is a discrete framework that can model how an agent (e.g. fish or robot)

interacts with the world. While the effects of the agent’s actions may be uncertain, the

state of agent is always known (This is in contrast to a POMDP; we will discuss these

later). For complete introductions to Markov decision processes see [43], [44], [99], [125],

[150], and [169]. An MDP can be described as the tuple {X ,U , T, R}, where:

• X is a finite set of states of the world;

• U is a finite set of actions;

• T : X × A → p(x) is the state-transition function, giving for each world state

and agent action, a probability distribution over world state. We have previously

referred to this as the motion model, and was written p(x′|x, u) (in lay term:

“What is the likelihood of transitioning to state x′, given that I am in state x

and will execute control u?”).

• R : X × U → R
1 is the reward function that maps a state and action to a scalar

reward (utility). We have seen this before as the objective function (sometimes

called J).

The Markov assumption forces the choice of state representation to completely describe

the system up to the current time. So, as a system evolves through time, the state vector

is all that is needed. In terms of information space, this means that there is an efficient

information mapping, κ, from all the information ever received, Ihist, to the current state

vector of the system κ : Ihist → X .

This framework is quite general; the two major assumptions are:
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(1) discretization of states and actions (and we will see shortly that observations

need to be discrete for POMDPs).

(2) the Markov assumption. This is really just boils down to the choice of state

vector. Any system could be made Markovian if the state vector is sufficient for

completely describing the complete history of the system. In the worst case, one

could always use the history information space, Ihist, as the state space (see [142]

for details on information spaces).

In general it is not obvious what the reward function, R, should be, and it is always

specific to the problem one is trying to solve. But, once R is defined, it should be clear

how one could implement a greedy controller: simply choose the action, u, that gives the

expected most favorable reward, E[r] (The common convention in MDP is to maximize

some reward rather than minimizing some cost). In fact it is not much of a jump to

implement a finite-horizon controller by maximizing the summed rewards over k steps:

(H.1) π(x) = max
u

E

[
k−1∑
t=0

rt

]

where rt is the reward received on step t; and π is the conventional symbol for a policy of

a MDP. For an MDP, a policy is defined as a mapping from state to action: π : X → U .

A MDP does not say anything about observations, and if we wish to talk about

observations in an MDP, then there are two options:

(1) There are no observations. This is a pure feedforward process and the state

transition function, T, must be completely accurate in predicting state transitions;

i.e. the image of X from T must be the actual state and not a PDF over state

space.
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(2) Perfect observations. The MDP assumes the state is exactly known at the

time of the decision, so if T cannot tell the decision maker the exact state, then

a perfect observer must do the job.

H.2.1. Partially Observable Markov Decision Processes

If we want to explicitly address the uncertainties associated with observations, then we will

need to frame the problem as a partially observable Markov decision process (POMDP;

often pronounced “pom-dee-pee”). A POMDP also needs W and O added to the X ,U , T,
and R needed to define the MDP, where:

• W is a finite set of observations the agent can experience of its world; and

• O : U × X → p(w) is the observation function, which gives, for each action and

resulting state, a probability distribution over all possible observations. We have

previously referred to this type of relationship as the sensor model, which was

written p(w|x, u) (in lay term: “What is the likelihood of making the observation

w, given the control action, u was able to transition the system to state x?”).

For more complete descriptions of POMDPs, see [65], [62], [76], [122], [153], [168], and

[199]. POMDPs have been recently used in robotics (see [121], [130], [177], [203],and

[223]). POMDPs are attractive due to their generalized framework and their ability

to explicitly address observation uncertainty in the planning process. But as would be

expected with this type of framework, solutions can become quickly intractable. Efficient

solution methods have been the subject of quite a bit of research (see [66], [63], and

[153]). Solution methods are usually a variant of dynamic programming or some type of

gradient descent search in policy space.



294

The structure of a POMDP contains two basic components: a state estimator and a

policy. The state estimator uses current observations, previous actions, and the previous

belief to generate current state belief. This fusion process is usually done via Bayes’ rule.

Let B represent the set of all possible beliefs. The policy uses this belief to generate a

control action: π : B → U . So, a POMDP-based controller gathers new information on

the world via observations, and attempts to influence the world via actions.

The reward function, R, dictates what the decision maker (e.g. controller or policy)

cares about. Previously, we have discussed minimizing uncertainty. For Kalman-filter-

type problems, we have used a scalar metric on the error covariance matrix of the state

estimate, P ; and for more generalized systems, we’ve reduced belief PDFs to scalars via

Shannon entropy, H.

The POMDP framework provides essentially a continuum of options as far as deciding

the level of detail we wish to model in the weakly electric fish. But, blindly setting the

weakly electric fish model in the POMDP framework without giving the problem much

thought could result in an unnecessarily complex model. With the weakly electric fish

we have the luxury of a well understood system (relative to most biological systems). It

would thus be highly advantageous to give considerable thought to 1) what we choose

for our finite sets U , X , and W ; 2) how we define our likelihood models, a.k.a. T and O;

and 3) what do we use for the reward function, R. Also, since we are assuming temporal

discretization, we will need to be smart on what we use for a ∆t.

We know that weakly electric fish have preferred, stereotyped motions. Biological

systems such as the weakly electric fish, have had the luxury of millions of years of

evolution. So, we know that these commonly observed motions are probably some of the
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better choices a fish could make. So, we could greatly reduce the complexity of a POMDP

modeled fish by setting the set of possible actions, U , to be the observed motion primitives

from actual behavior motion capture data.

Coming up with the set of possible observations, W , will be a much more challenging

task. As we know, the Apteronotus albifrons has about 14, 000 tuberous electroreceptors

covering its body. Each electroreceptor transduces an analog voltage that could take a

continuum of values. If a POMDP is used on the fish, special consideration for the choice

of W is needed.

H.3. Reinforcement Learning

Reinforcement learning (RL) is the process of an agent learning what do in order

to maximize some predefined reward function, that is, it is learning the mapping from

situations to actions. The good news about using reinforcement learning is that RL is

an easy extension of the MDP framework [221]. So, much of background needed to

understand RL is understanding MDP.

In the MDP framework, the observation function (O : X × U → p(W)) and the state

transition function (T : X × R → p(X )) are given in the problem definition. But RL

provides a framework for the agent to learn those functions [225, 226]. The agent can

do this by visiting states in X , trying actions, {u |u ∈ U} and gathering statistics that

can estimate O and T.

It can then use these learned models for planning [204]. “Planning” involves deriving

a feedback plan using some of the methods discussed in the POMDP section. There are

generally two methods of doing this:
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(1) policy iteration: Searching in policy space to find the policy that maximizes

the expected accumulation of rewards.

(2) value iteration: Using a variant of dynamic programming [19]. A value function

determines the expected reward to come for each state. It defines the expected

accumulation of rewards from the current state to the goal or horizon time.

Whereas rewards determine the immediate, intrinsic desirability of states, values

indicate the long-term desirability of states after taking into account the states

that are likely to follow, and the rewards available in those states (see [40] or

[181] for examples).

H.3.1. Exploiting Natural Dynamics to Ease Computation

Relevant applications of RL for our purposes include powered passive dynamic walk-

ers. Passive dynamic walkers (PDWs) are simple mechanical devices that perform stable

bipedal locomotion down an incline without any sort of actuators [160]. Considerable

attention is given to the design of the links, joints, and contact surfaces such that the

dynamics of the connected falling links under gravity match the kinematics of bipedal

gait. While these devices are clever in their own right, they set the stage for developing

efficient walkers. If PDWs can locomote unactuated when traversing a slight incline, then

it should only take minimal actuation to walk on flat ground [217]. Such a robot was

investigated in [78]; small actuators picked up the slack of the change of potential energy

from the robot moving down the incline.

What was particularly neat about [78], was that they used an RL algorithm to teach

the robot how to walk. And, as an added bonus of using PDW, they had a much smaller
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search space than if dealing with a robot that was not mechanically designed like a PDW.

Under most circumstances, RL algorithms succumb to the curse of dimensionality [18]

and ultimately become computationally intractable for even lower order systems. But,

because the natural dynamics of the system, and because the placement of the actuators

complement the task, very little effort is needed for successful gait. Because the space of

feasible controls is smaller, the RL algorithm had less space to search. Also, the PDW-like

robot probably requires fewer actuators than a similar robot where the passive dynamics

were not taken into consideration for its design. Fewer actuators mean a lower dimensional

control space and fewer dimensions the RL algorithm has to search. This should be taken

into consideration when we are modeling the weakly electric fish. The natural dynamics

of the fish have evolved over millions of years to complete the necessary tasks for survival

(e.g. prey capture). By understanding the natural dynamics of the fish in water, we can

limit our control space by choosing efficient motion primitives. This will require models

of the fish morphology, locomotion systems, and its surrounding fluid. Or, we can cheat

by extracting motion primitives from actual motion capture data of fish doing relevant

tasks.

H.3.2. Exploration vs Exploitation in RL

RL algorithms iteratively improve models while they are using those models to choose

appropriate actions. RL algorithms need good models to make accurate control choices,

but they are also compelled to choose actions that return the best rewards. These are

often competing effects and create a comment dilemma in RL called the exploration vs

exploitation compromise. The controller can choose to exploit the current models and
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choose the action that will maximize rewards; or, the controller can choose actions that

will generate information (e.g. observations) to best improve the models (i.e. explore the

environment).

The k armed bandit is the classical example of exploration vs exploitation. Let’s say

you are put in a room with k slot machines, each of which has a percentage pay-out that

is unknown to you. You have a limited number of total tries that can be distributed

across the k slots at your discretion. Since you do not know any of the pay-outs (each

machine is different), you need to develop an estimate for each slot’s payout. If you had

an unlimited number of tries, you’d play each slot for a large number of tries, get an

accurate payoff percentage, and then play the slot with the largest payoff until the end

of time; this would maximize your total gain. But, with a limited number of tries, you

must balance exploration vs exploitation, where: (1) exploration: try each slot as much

as possible to get an accurate model of each slot’s payoff; (2) exploitation: only use the

slot with the best perceived payoff.
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APPENDIX I

Feedback-Feedforward Hybrid Controllers

Controllers have the job of choosing control commands for their system. Their choice of

command can be determined based incoming information from the world—i.e. feedback—

or it could base its control choice on previously compiled knowledge of the world—i.e.

feedforward. A simple feedback controller maps an incoming observation to a control

signal: πFB : w → u. A simple feedforward controller maps a state (or belief) to a control

signal: πFF : x→ u.

Let’s think back to the Kalman filter (Appendix G.1); Equation G.3 used a model of

the world to predict the state. At the same time, an observation is made. Equation G.5

shows the resultant state estimate as essentially a weighted sum of the two modalities

of state estimation1. A paper by Art Kuo used similar ideas to investigate “the relative

roles of feedforward and feedback in the control of rhythmic movements” [138]. He

used an LQG framework (i.e. Kalman-filter-type state estimation) with the dynamics of

a pendulum to model rhythmic limb movements. A CPG feedback index (CFI; where

CPG stands for central pattern generator) determines the relative weight to give feedback

vs feedforward control. The optimal CFI is a function of the amount of noise in the

observations and in the uncertainties in the forward model. Noisy observations call for a

1While equation G.5 isn’t exactly a control law, my point is to demonstrate how observations and
models can be used synergistically. Plus, with the LQG framework the result from the state estimator
(i.e. Equation G.5) is used as an input to the controller; this is a result of the separation principle, so it
is an indirect part of the controller
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higher weighting on the feedforward component, while large model uncertainties should

give more credibility to the observations.

So we’ve seen how a “feedback-feedforward-dial” can be used to give relative weights

to different information modalities (observations vs internal models). But many systems

don’t have the luxury of this continuous dial; changes in relative needs for feedback

or feedforward can create qualitatively different controls. I will borrow Kevin Lynch’s

favorite exemplifying scenario to illustrate this phenomenon: an outfielder catching a

baseball that will land behind his current position. The objective of the outfielder is to be

at the ball when it lands. The outfielder has two options: (1) back peddle (slower motion)

while keeping his eye on the ball; (2) turn around and run to where he thinks the ball will

land. Option (1) is a slower motion, but the outfield is getting new information about the

ball, thus, his belief of the ball’s landing spot is improving. But, the outfielder may not

get to the ball before it hits the ground. Option (2) will get him there on time, but he

has a very poor estimate of “there” and will most likely overshoot or undershoot. This

is a simple 1-D problem, but illustrates some of the issues associated with feedforward-

feedback-hybrid controllers with finite motion choices. For instance, a controller should

map the state belief (bel[x]) and the uncertainty of that belief (i.e., Uncert(bel[x]) from

page 113) to a control signal, u, i.e. π : bel[x] × H(bel[x]) → u. If we could somehow

plot out this mapping, then we’d see regionalized control choices with boundaries that

specify when to switch control options. So, an infinitesimal change in the belief-space

could qualitatively change the control choice (e.g., from back-peddle to turn-and-run).

So, what is the relevance of this baseball example to the weakly electric fish? Two

similarities are:
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(1) the competing effects of getting information and achieving the objective.

(2) the use of discrete motion options to solve a problem in continuous time.

Let’s look at similarity (1). In prey strike in the weakly electric fish, the objective of the

fish could be to capture the prey in the least amount of time. If the fish had no motor or

sensory uncertainties, then it could just plan the time optimal path to prey a priori (This

is analogous to the outfielder just turning around and running to where the ball will land).

But, with greater uncertainty in the belief of the prey position comes a greater chance the

fish will miss the prey when it goes to capture it. Thus, it must balance between getting

information (i.e. choose motions that will decrease its uncertainty of the prey position)

and achieving the objective (choosing motions that will get it to the prey the quickest).

Now consider similarity (2): the use of discrete motion options to solve a problem in

continuous time. We know fish generally choose from a finite set of motion primitives

[157]. Why might they do this? One answer is because of sensorimotor delays. There

is a time delay of about 110 milliseconds between the time a sensory event happens and

the time the resultant muscle actuation is realized. So, in the case of a simple feedback

controller (πFB : w → u), there is a significant delay between observing w and the system

responding to u. So, the fish’s motor system will be reacting to events that happened

some time ago. If the fish chose to control its actuators using feedback control, then

it would be responding to events that happened some time ago. And, if it chose to

wait for appropriate feedback before making a control choice, and if it made very small

movements, then it would have to wait several hundred milliseconds before it could make

another one of those very small movements. This would result in a very, very slow fish.

So, to counteract this the fish constructs a “maneuver library” where each maneuver may
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be well learned and relatively complex (say 500 milliseconds long). In previous sections

(e.g., MDP) we needed to discretize the motions for the formulation of the problem. Now

we have some justification.
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APPENDIX J

Predictive Controllers in Biological Systems

We now focus on applying some of the concepts from the previous appendix to biolog-

ical control systems. We initially investigate control models in the primate motor control

system because of the exorbitant number of studies done on humans and monkeys in this

area. We then extrapolate to the weakly electric fish system.

We are fairly certain that any nontrivial model of the weakly electric fish’s control

system will need both feedforward and feedback components. Control theory provides

many flavors of such architectures, but we want our models to have at least some neu-

robiological justification. Thus, we consider some relevant theories in neuroscience and

then see if can be applied to the weakly electric fish model.

While most of the literature we draw from is based on the primate motor control

system, we argue the weakly electric fish is a better system to study if we wish to model

sensorimotor control schemes. So, we attempt to carry over lessens from the primate cen-

tral nervous system (CNS) to the weakly electric fish CNS. In particular we investigate the

roles of feedback and feedforward in the cerebellum1. The cerebellum is a brain structure

located in the lower-bottom section of the cranial cavity and completely separate from

the cerebrum2. In classical neuroscience, the cerebellum was thought to be responsible

1Both feedback and feedforward controllers are almost certainly also essential to animals without
cerebellums [247]

2The cerebrum (also called the telencephalon) is the largest section of the brain and associated with
conscious thought.
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for the regulation and coordination of complex voluntary muscular movement as well as

the maintenance of posture and balance. But, more recently, much of the research on the

cerebellum has focused on its processing of sensory information and its ability to model

projected sensory effects (as well as perform state estimation [180]). Weakly electric fish

have a cerebellar-like structure that is disproportionately large relative to any other type

of animal. It has been speculated that it aids in processing all the electrosensory informa-

tion impinging its CNS. Since we know so much about the weakly electric fish’s sensory,

motor, and information processing systems, we think it provides a perfect platform to

investigate the functions of the cerebellum.

J.1. Relevant Models of the Primate Motor Control System

The intricacies and complexities of the primate motor control system are simply mind-

boggling. This is evident by looking at the number of theories that are continuously being

published, refined, and outright rejected on almost a weekly basis. The primate motor

control system is so incredibly multi-dimensional and non-linear that any engineer would

tremble at the thought of characterizing such a juggernaut. But, no matter how complex

the controller may be, it can be broken down into functional feedforward and feedback

sensorimotor transformations. Almost any theory on motor control will define what roles

one or both of these control schemes play [90, 115, 123, 166, 253, 254, 256, 255, 17,

163]. A feedback control scheme uses state-related information (e.g. afferent signals) in

the computation of the control signal. Feedforward control relies on an intrinsic model

of the plant in its estimate of the control signal. While most researchers would attest to

the fact that biological motor control systems inevitably take advantage of both control
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Figure J.1. A very crude block diagram of biological controller. Each block
is labeled with a letter (A-J).

schemes, few provide any convincing physiological evidence on the sources of them in the

brain [236].

Figure J.1 is a very crude block diagram representation of some of the components in

a typical control scheme in a biological system. The green boxes are abstract information

transformation modules that are thought to be in the cerebellum. The A-B-C-D-E loop

is a typical model of a feedback controller where block A is the controller, and the path

of blocks B, C, D, and E is the plant. As in real motor control systems, noise and delays

are present. It is these elements that truly make control a difficult task. The I-J path

through the cerebellum is capable of predicting both of the following: 1) the resultant

state of the of the muscular-skeletal system that is determined from the efferent copy;
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and 2) the expected sensory feedback that would result from that predicted state. The H

block computes the inverse model. The result of the inverse model is integrated together

with the output of the “feedback” controller that is said to be in the cerebrum (within

the motor cortices).

Does the motor control system really use both feedback and feedforward control

schemes? If so, does it really need both? A paper by Todorov and Jordan [237] ex-

plained in their introduction that there is a body of evidence that supports open loop

(feedforward) control of planned trajectories. But Todorov et al chose a different path

by proposing that the human CNS in fact uses an optimal feedback control scheme for

motor coordination (specifically, they proposed an LQG modeled system). The Todorov

and Jordan model of optimal control relies on sensory feedback for the state estimation

needed to determine the optimal corrective movement to accomplish the task [239]. This

is illustrated as the A-B-C-D-E-F-G loop in Figure J.1. For a motor control system,

feedback is an extremely powerful tool. But, if used improperly, it can cause catastrophic

instabilities. Let’s suppose that once the control signal is computed, block B (Figure J.1)

induces a 50 msec transmission delay in the signal. The signal then recruits muscles that

move the skeleton (block C). Afferent signals are encoded (block D), and block E induces

another 50 msec to the signal. Upon arriving at the state estimator (block G), let’s assume

a small overhead computation time of only 25 msec. So, without even considering the

phase lags (e.g., mechanical) induced by block C or the additional computation that would

probably be needed by blocks G and A, there is a pure delay of 125 msec. Let’s say that a

particular task requires a movement path that contains frequency components up to 4 Hz

(a bandwidth of 4 Hz). By the time the 4 Hz component makes the A-B-C-D-E-F-G loop,
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it will have a 125 msec delay (just from blocks B, C, E, and G), which corresponds to a

180◦ phase lag. The system is now unstable. In reality, time delays can be longer, and

phase lags (from muscular-skeletal mechanics) are non-zero and significant. This analysis

would lead one to believe that any quick motion would cause the controller to go unstable

and exhibit uncontrollable oscillations (using only feedback control). Control theory tells

us that a controller can become more stable (larger range of stability) by taking advantage

of an inverse dynamics compensator (Figure J.1, block H) and a forward dynamics model

(block I). A feedforward transformation is able to induce a phase lead that could cancel

an anticipated phase lag [252]. A forward dynamics transformation is able to predict the

dynamics of the muscles from the state of the system and a copy of controller output.

This means the CNS can predict the state variables and the errors without having to

wait for the sensorimotor delay. The stability of such a system will strongly rely on the

accuracy of the forward model and the ability to cancel the response from the remote

system. It should be now evident that motor control systems need (at least) feedforward

control.

Wolpert (and many others) have put fourth many theories of the cerebellum computing

inverse dynamics [253, 254, 256, 255, 163], canceling predicted sensory input [254,

38, 35, 37], and utilizing a Smith-predictor-type scheme to cancel time delays in the

control loop [163]. These researchers have presented an abundance of anecdotal and

circumstantial evidence for the existence of such computational units in the cerebellum.

But, they have fallen short of pinpointing the exact neural avenues and representations of

these modules. Wolpert and others classify these predictive models within the cerebellum
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into two distinctions [254]: inverse internal models (e.g. block H in Figure J.1) and

forward internal models (e.g. blocks I-J in Figure J.1) (also see [35]).

One study used the age-old question of “Why can we not tickle ourselves?” to demon-

strate the cerebellum’s ability to predict sensory consequences [37, 36]. They showed

(via behavior experiments and MRIs) that we can predict sensory consequences of tactile

stimulation, and the neural location of this prediction is in the cerebellum. Prediction

of sensory consequences of one’s own actions can greatly reduce the computational load

of a controller or state estimator [84]. This is because attention only needs to be given

to sensory consequences that are unexpected (Attention equates to use of computational

resources). Also, if a sensory event is accounted for, then that sensory event cannot be

erroneously attributed to an external stimuli. We could improve our model of the fish by

utilizing such forward models.

Barto, Houk, Strick, and others have approached the cerebellum’s computational pow-

ers in a slightly different perspective [115, 17, 164]. In the Barto-Houk model [17], by

including realistic mossy fiber signals, as well as realistic conduction delays in afferent

and efferent pathways, the model facilitated the investigation of timing and predictive

processes relevant to cerebellar involvement in the control of movement. Their model is

much simpler (than say Wolpert’s) and without the need for extensive calculations. But,

while their model is based on established properties of the various cerebellar neurons, they

provided no evidence of their model predicting actual neural recordings. In theory, rein-

forcement learning algorithms could benefit greatly by utilizing such models of predicted

reward.
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J.2. Relevance to Weakly Electric Fish

What does all this mean for the weakly electric fish? Three three things that could

be used in a model of the weakly electric fish are:

1: sensory cancelation.

It had been stated that the cerebellum is capable of predicting sensory consequences. This

is based off experiments on human subjects. But, an important paper by Bell and others

[28, 29] on the “generation of expectations about sensory inputs and the subtraction of

such expectations from actual input” in cerebellum-like structures in the weakly electric

fish has suggested that these theories also apply to weakly electric fish (Also see [157]

for electrosensory reafference compensation in weakly electric fish). Implementation of

sensory cancelation in our weakly electric fish model would be both computationally

attractive and more realistic. There are two major advantages to using sensory cancelation

in a weakly electric fish model:

(1) attention to only novel information. If the controller already knows what the

sensory system is telling it, then the information is redundant, and it is a waste

of computational resources. The controller really only needs to listen to sensory

information that contradicts expected sensory consequences [114].

(2) electrosensory reafference compensation. Consider the electrolocation problem.

The fish processes minute voltage perturbations to compute prey location. Very

minor changes in the configuration of the fish can corrupt the voltage perturbation

signature of the prey by a factor of ten (i.e. create a signal-to-noise ratio of

worse than 0.1) [157]. But if the fish compensates via forward model of sensory

consequences, then it can greatly improve this signal-to-noise ratio.
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2: inverse dynamics.

Previously, we presented evidence for constructing a finite repertoire of maneuvers for

the fish. Such learned ballistic maneuvers are needed to compensate for the inherent

sensorimotor delays. But, if there is an accurate inverse dynamics model, then there is no

longer a need to store these maneuvers in a type of “lookup table”; we can now explicitly

predict what control signals will be needed for the desired maneuver. Instead of a finite

set of maneuvers, three are a continuum of possibilities.

3: predicted reward.

Reinforcement learning relies on rewards to improve models. But, for the prey strike task

an external reward is received only once the fish has captured the prey. So, how can the

fish use reinforcement learning on en route to capturing the prey? This is a common

problem in RL. One way to solve the problem is through predicted rewards [45, 205].

The fish can receive virtual rewards for taking actions that are likely to result in rewards

in the future. In order for this to work, there needs to be a predictive mechanism present.

Some of the predictive mechanisms presented in this appendix are applicable.
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APPENDIX K

Information in the Brain

Information processing and redundancy considerations are important for any intelli-

gent system, artificial or biological [9]. Information theory tells us that redundancy results

in inefficient use of bandwidth on communication channels, and/or inefficient encoding

algorithms for occupying extra memory [33, 79]. It may seem logical that redundancy is

a burden, but most biological systems, and even many engineering, systems benefit from

redundancies.

Researchers have examined spike trains using information theoretic techniques and

have been surprised at how low the encoding efficiency is. A major difference between

biological sensory systems and engineering sensory systems is the number of sensors [170].

Engineers strive to build highly precise transducers and typically try to keep the number

of sensors to a minimum [82]. Biological systems take a different approach by populating

sensory arrays with many sensors. Sensory transduction and information circuits in the

biological systems are often unreliable, and thus redundancy is necessary (see [16] for a

discussion on the necessity of redundancy).

In this document we’ve assumed beliefs take the form of probability distributions of

states and parameters. And, we’ve assumed that these beliefs are updated via a Bayes

filter type process. This is the way engineers tackle the problem, but who’s to say the

weakly electric fish actually uses this format for belief construction and representation?

There have been a few recent papers that have pointed the reader to the conclusion that
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the brain does in fact use Bayesian techniques to combine sensory date with priors [107,

128, 133, 132, 167, 178]. But much of this has been inference of behavior anecdotes,

so we still cannot draw any hard conclusions. How the brain represents information is a

very complex issue and neuroscience has yet to draw a consensus on this.

So, what does this mean for modeling the weakly electric fish?:

(1) We should not assume engineering techniques can model biological systems.

(2) Biological systems play by different rules than engineering systems; things like

sensory, actuation, and information redundancies may be crucial components.

(3) “State variables” in the engineering sense may have no meaning in the brain. No

one really knows how the brain represents beliefs of the world.

(4) Bayesian techniques are really the only game in town for engineers updating

priors. And, studies have claimed that Bayesian techniques are at least possi-

ble in brain. But, as with many theories in neuroscience, these results are not

conclusive.
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