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ABSTRACT

Essays on the Econometric Theory of Rank Regressions

Viktor Yevgenyevich Subbotin

Several semiparametric estimators recently developed in the econometrics literature

are based on the rank correlation between the dependent and explanatory variables.

Examples include the maximum rank correlation estimator (MRC) of Han [1987], the

monotone rank estimator (MR) of Cavanagh and Sherman [1998], the pairwise-di¤erence

rank estimators (PDR) of Abrevaya [2003], and others. These estimators apply to vari-

ous monotone semiparametric single-index models, such as the binary choice models, the

censored regression models, the nonlinear regression models, and the transformation and

duration models, among others, without imposing functional form restrictions on the un-

known functions and distributions. This work provides several new results on the theory of

rank-based estimators. In Chapter 2 we prove that the quantiles and the variances of their

asymptotic distributions can be consistently estimated by the nonparametric bootstrap.

In Chapter 3 we investigate the accuracy of inference based on the asymptotic normal

and bootstrap approximations, and provide bounds on the associated error. In the case

of MRC and MR, the bound is a function of the sample size of order close to n�1=6. The
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PDR estimators, however, belong to a special subclass of rank estimators for which the

bound is vanishing with the rate close to n�1=2: In Chapter 4 we study the e¢ ciency prop-

erties of rank estimators and propose weighted rank estimators that improve e¢ ciency.

We show that the optimally weighted MR attains the semiparametric e¢ ciency bound in

the nonlinear regression model and the binary choice model. Optimally weighted MRC

has the asymptotic variance close to the semiparametric e¢ ciency bound in single-index

models under independence when the distribution of the errors is close to normal, and is

consistent under practically relevant deviations from the single index assumption. Under

moderate nonlinearities and nonsmoothness in the data, the e¢ ciency gains from weight-

ing are likely to be small for MRC in the transformation model and for MRC and MR in

the binary choice model, and can be large for MRC and MR in the monotone regression

model. Throughout, the theoretical results are illustrated with Monte-Carlo experiments

and real data examples.
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CHAPTER 1

Introduction

Several semiparametric estimators recently developed in the econometrics literature

are based on the rank correlation between the dependent and explanatory variables. The

�rst was introduced by Han [1987], and is called the maximum rank correlation estimator

(MRC). It applies to models in which the joint distribution of the data, (Y;X); satis�es

the condition: for two independent realizations, (Y1; X1) and (Y2; X2) ;

P fY1 > Y2jX1; X1g > P fY1 > Y2jX1; X1g ;(1.1)

=) X 0
1�0 > X 0

2�0;

for a vector of unknown coe¢ cients �0: This condition holds, in particular, in the general-

ized regression model of Han [1987], in which the outcome Y and the vector of covariates

X are related according to the equation:

(1.2) Y = D � F (X 0�0; ") ;

for independent X and "; a nondecreasing function D; and a function F which is strictly

increasing in both arguments. This model itself nests such important estimation models

as the binary choice models, the ordered discrete response models, the censored regression

models, the transformation models, proportional and additive hazard models, and nonlin-

ear regression models under the independence assumption and monotonicity constraints.
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Relations (1.1) and (1.2) identify the vector �0; up to scale, even if the other elements

of the models (e.g. the functions D; F; and the distribution of the error term ") are not

speci�ed. If a sample fXi; Yig ; i = 1; :::; n; of i.i.d. observations is available, �0 can be

estimated (up to scale) by the MRC estimator, a vector �n that maximizes the criterion

function

(1.3)
X
i6=j

1fYi > Yjg1fX 0
i� > X 0

j�g:

Cavanagh and Sherman [1998] considered the monotone regression model:

(1.4) Y = f (X 0�0) + ";

where f is a nondecreasing function, and the error term satis�es the conditions:

E ["jX] = 0;(1.5)

E
�
"2jX

�
� �20 (X) <1:

They have shown that �0 can be consistently estimated, up to scale, by the monotone

rank estimator (MR) which maximizes the criterion function

(1.6)
X
i6=j

Yi1fX 0
i� > X 0

j�g:
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They also suggested an alternative estimator for �0 in the generalized regression model,

a solution of the maximization problem with the objective function

(1.7)
X

i;j;k distinct

1 fYi > Yjg1fX 0
i� > X 0

k�g:

Abrevaya [2003] considered a special case of the generalized regression model, the

transformation model:

(1.8) h (Y ) = X 0�0 + ";

where h is a strictly increasing, unknown function. He proposed two pairwise-di¤erence

rank estimators of �. The PDR3 estimator maximizes the objective function

X
i;j;k distinct

(1 fYi > Yjg � 1 fYj > Ykg)1
�
(Xi �Xj)

0 � > (Xj �Xk)
0 �
	
;

and the PDR4 estimator maximizes the objective function

X
i;j;k;l distinct

(1 fYi > Yjg � 1 fYk > Ylg)1
�
(Xi �Xj)

0 � > (Xk �Xl)
0 �
	
:

Estimators with a similar structure have been proposed for � in the transformation

model with observed or unobserved truncation (Abrevaya [1999b], Khan and Tamer

[2007]), and in the binary response model with panel data (Lee [1999]), as well as for the

link function h in the transformation model (Chen [2002], Han [1987b], and Asparouhova

et al [2002]), among others.

Rank correlation estimators have several advantages. First, they are root-n-consistent

and asymptotically normal (Sherman [1993], Arcones, Chen, Giné [1994]). Second, they
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do not require a choice of any tuning parameters (bandwidths, trimming parameters, etc.),

unlike any other presently known asymptotically normal semiparametric estimators (such

as the average derivative method of Powell, Stock and Stoker [1989], the semiparametric

least-squares estimator of Ichimura [1993], the sieve minimum-distance estimator of Ai

and Chen [2003] or the semiparametric maximum likelihood method for binary response

models of Klein and Spady [1993]). This property is useful for empirical work, as choos-

ing bandwidths or other tuning parameters is not always easy in practice. Third, rank

estimators can be applied to models with heavy-tailed distributions of the error term,

when other semiparametric estimators of " may not be consistent.

In this work we provide new results concerning the properties of rank-based estima-

tors. In Chapter 2 we prove that the standard errors and the con�dence intervals for

such estimators can be consistently estimated by the nonparametric bootstrap. This re-

sult is important as it allows to keep the bandwidth-free nature of the rank regression

methodology not only in estimation, but also in inference. In Chapter 3 we character-

ize the accuracy of inference based on either the asymptotic normal approximations, or

the bootstrap approximations of the �nite-sample distributions of these estimators. In

particular, we show that the estimators like PDR3 and PDR4 can be substantially more

accurate than the estimators like MRC or MR. In Chapter 4 we consider the problem

of e¢ ciency of rank estimators. We show that under commonly made assumptions one

can construct estimators with lower asymptotic variances by introducing weights into the

criterion functions de�ning the rank estimators. We also evaluate the resulting e¢ ciency

gains in numerical examples, and compare the lowest variances achievable by this method
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with the semiparametric e¢ ciency bounds for single-index models. Finally, we provide a

real data application of these techniques.

The statistical theory of rank-based estimators relies on the empirical process theory

for U -processes. In Appendix, Section A.3, we review the currently known results from

this theory, and provide extensions that are necessary for our work and that may be useful

for other applications.
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CHAPTER 2

Consistency of the Bootstrap for Rank Regressions

2.1. Introduction

This chapter is concerned with inference about the �nite dimensional parameter es-

timated by a rank-based estimator. Under appropriate regularity conditions, such esti-

mators are root-n-consistent and asymptotically normal. Therefore, the test statistics,

critical values, and con�dence intervals for the estimated parameters can be constructed

in the usual way based on the limiting normal distributions. In the case of rank esti-

mators, however, the asymptotic variances depend on moments of random variables that

are not directly observed (the �rst and second-order derivatives of certain conditional

expectations), and special procedures are needed for their estimation. Two methods that

are available at present are the numerical derivative method of Pakes and Pollard [1989],

and the nonparametric method of Sherman [1993] and Cavanagh and Sherman [1998].

However, both have drawbacks. First, they depend on tuning parameters (step sizes

for numerical di¤erentiation or bandwidths for kernel regressions). No objective, data-

driven mechanism has been developed to set these parameters in practical applications.

The numerical derivative method involves a �nite-di¤erence approximation of the second-

order derivatives and often produces unstable results. The nonparametric method, which

avoids the direct estimation of the second-order derivatives, requires additional program-

ming e¤ort, as the analytical expressions for the variances that it uses are speci�c for
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each particular estimator, and are sometimes complicated (as in the case of PDR3, for

example). Finally, both methods can be numerically intensive in large samples, with the

computational burden rising with the sample size as O (n2) for MRC and MR, and as

O (n4) for PDR41.

Alternatively, the asymptotic distribution can be estimated by resampling methods,

particularly, the nonparametric bootstrap of Efron [1979]. This approach is free of tuning

parameters, and is straightforward to implement. Unlike in most other econometric set-

tings, the bootstrap of rank correlation estimators can be less computationally demanding

than a direct variance estimation, due to availability of fast algorithms for evaluating their

objective functions. For example, one evaluation of the objective function can be reduced

to O (n log n) operations for MR (Cavanagh and Sherman [1998]), and MRC (Abrevaya

[1999b]), and to O (n2 log n) operations for both PDR (Abrevaya [2003]). The same

e¢ cient algorithms can be used in the nonparametric bootstrap, making it feasible and

possibly more attractive computationally than other alternatives.

The results on the consistency of the bootstrap exposed in this chapter are obtained

for a general class of maximizers of a criterion function in the form of a U -process, of

which the rank estimators are particular examples. Prior to our work, it has not been

known if the nonparametric bootstrap consistently estimates the asymptotic distribution

of such estimators (the fact that an estimator is root-n-consistent and asymptotically

normal does not guarantee consistency of the bootstrap, see Abadie and Imbens (2006)

for a counterexample). The regularity conditions that we require for the bootstrap are,

1These and the following estimates of the computational complexity assume that the full sample is used
for inference. When n is large, inference can be performed, at the expense of lower precision, using a
randomly chosen subsample of data.
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up to a minor quali�cation, the same as the assumptions of Sherman [1993] and Arcones,

Chen, Giné [1994] for the asymptotic normality.

The chapter is organized as follows. Section 2.2 presents the asymptotic and bootstrap

theory of rank estimators. In Section 2.3 we apply the bootstrap in a real data example.

Section 2.4 concludes. Proofs of all theoretical results are given in Appendix A.

2.2. Asymptotic Theory

We �rst de�ne a class of estimators that includes all rank estimators listed in Chapter

1. The following notation is used: Z is a vector space, and P is a probability measure on

Z;

H = fh�(z1; :::; zm) : � 2 � � Rdg

is a family of real-valued functions de�ned on Zm = Z�:::�Z (m � 2 times), indexed by

a vector of parameters �: It will be a matter of notational convenience to assume that the

functions h are symmetric in their z arguments:

h�(z1; :::; z; :::; z
0; :::; zm) = h�(z1; :::; z

0; :::; z; :::; zm):

Write Pm�kh; k = 0; :::;m; for the partial integral, relative to P , over the last m � k

arguments of h:

�
Pm�kh

�
(z1; :::; zk) =

Z
h (z1; :::; zk; Zk+1; :::; Zm) dP (Zk+1) :::dP (Zm)

(in particular, P 0h = h).

Assume that the parameter of interest, �0; is a global maximum on � of the expected

value of h�, Pmh�: Given an i.i.d. sample of observations, fZ1; :::; Zng ; from the space
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(Z; P ), one can construct a sample analog of Pmh�; a U -process of order m indexed by �:

(2.1) Gn;� = U (m)n h� �
(n�m)!

n!

X
i1;:::;im; distinct

h�(Zi1 ; :::; Zm)

(a U -process considered for a speci�c � is called a U -statistic. See e.g. Ser�ing [1980] on

the basic properties of U -statistics).

The parameter �0 can be estimated by an approximate solution of the sample analog

of the population problem:

(2.2) Gn;�n � sup
�2�

[Gn;� � rn;�] ;

where the remainder term rn;� is introduced to ensure measurability of �n as in Pakes and

Pollard [1989] and may also represent the terms that do not have the structure studied

below (e.g. the numerical error of solving the maximization problem)2.

Under general conditions, �n is root-n-consistent for �0 and asymptotically normal.

Namely, let the following assumptions hold.

Assumption 1. � is a compact set; Pmh�; m � 2; is continuous on � and �0 is its

unique global maximum on �:

Assumption 2. H is a Euclidean class3 of symmetric functions for a Pm-square-

integrable envelope H (H is called an envelope for the class H if jhj � H for each h 2 H).

Assumption 3. De�ne � �(z) = (Pm�1h�) (z) : There is an open neighborhood N � �

of �0 such that

2Below we describe admissible orders of magnitude of rn;�:
3See Appendix, Section A.3, for the de�nition and basic properties of Euclidean classes.
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(i) All mixed partial derivatives of � �(z) with respect to � of orders 1 and 2 exist on N .

(ii) There is a P -integrable function M(z) such that for all z and all � in N ,

@2� �(z)� @2� �0(z)
 �M(z) k� � �0k ;

where @2� � is the Hessian matrix of � with respect to �; and k�k denotes the Euclidean

norm.

(iii) The gradient of � �(z) with respect to � at �0, @� �0 (z) ; has �nite variance relative to

P .

(iv) The matrix A = �P [@2� �0 ] is �nite and positive de�nite.

Assumption 4. As � ! �0; P
2
h
(Pm�2h� � Pm�2h�0)

2
i
! 0:

These assumptions are a stylized version of assumptions of Sherman [1993]. Assump-

tion 1 is standard for identi�cation. Assumption 2 says that the class of functions over

which maximization is performed is not too large, which is necessary for consistency.

Assumptions 3 and 4 repeat the continuity and smoothness conditions of Sherman for

asymptotic normality.

For example, in the case of MRC, let � = (�; 1)0 2 Rd+1 (to �x the scale, the last

component of � is set to 1). The function h� is a symmetric version of the kernel in (1.3)

(note that symmetrization does not change the optimization problem):

h�(z1; z2) =(2.3)

1fy1 > y2g1f(�0; 1)(x1 � x2) > 0g

+1fy2 > y1g1f(�0; 1)(x2 � x1) > 0g;
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where z = (y; x). Han [1987] provided primitive conditions under which h� satis�es

Assumption 1. Sherman [1993] veri�ed that for a compact �; the class of functions

fh�(z1; z2)g is Euclidean for the envelope H = 1, and gave conditions on the primitives of

the model (1.2) under which Assumptions 3 and 4 are satis�ed4. In particular, Assumption

4 is satis�ed if the last component of vector X; denoted V; is continuously distributed

conditionally on the vector of the �rst d components, U . Also, the following condition is

su¢ cient for parts (i)-(iii) of Assumption 3: V is continuously distributed conditionally

on U and Y ; the conditional density, �V jU;Y , is three times di¤erentiable in V for almost

all U and Y; and is uniformly bounded together with its derivatives up to order three; and

P kUk3 < 15. Below, we will refer to these, or similar, su¢ cient conditions repeatedly.

Assumptions 1-4 were veri�ed for the other rank estimators in the corresponding papers

listed in Chapter 1. It is worth noting, however, that Assumptions 1-4 do not rely on

the speci�c structure of rank estimators, but rather on the fact that they maximize a

U -process with su¢ ciently smooth leading terms. The applicability of our theoretical

results, therefore, extends beyond the scope of rank estimators.

Theorem 1, which is essentially due to Sherman [1993] and Arcones, Chen, Giné

[1994], says that the estimator �n; after a proper normalization and recentering, converges

in distribution, uniformly, to a normal law.

Theorem 1. Let Assumptions 1-4 hold, and sup�2� jrn;�j = op (n
�1) : De�ne � =

m2A�1V ar (@� �0)A
�1: Then �n is consistent for �0 in probability, and

(2.4) sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = o (1) ;

4With the exception of Assumption 3 (iv), see Chapter 4 for the discussion.
5Sherman assumed that U has bounded support, but P kUk3 <1 su¢ ces.
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where Fn1=2(�n��0) is the c.d.f. of the random vector n1=2 (�n � �0) ; �� is the c.d.f. of

the normal distribution with mean zero and variance �, and A is the collection of all

measurable convex sets in Rd:

To use the result of Theorem 1 for inference, one needs an estimate of the asymptotic

variance �. The latter, however, depends on moments of the derivatives of the unknown

function � : As explained in Introduction, estimation of these moments may be di¢ cult in

practice.

Alternatively, the limiting distribution can be estimated by the nonparametric boot-

strap of Efron [1979]. Speci�cally, let
n
Ẑ1; :::; Ẑn

o
be the bootstrap sample, i.e. a

collection of independent draws, with replacement, from the sample fZ1; :::; Zng. The

bootstrapped objective function Û (m)n h� is formed as in (2.1) using Ẑi instead of Zi:

(2.5) Ĝn;� = Û (m)n h� �
(n�m)!

n!

X
i1;:::;im; distinct

h�(Ẑi1 ; :::; Ẑm):

The bootstrapped estimator, �̂n; is an approximate solution to the corresponding maxi-

mization problem:

(2.6) Ĝn;�̂n � sup
�2�

h
Ĝn;� � r̂n;�

i
;

with some remainder r̂n;�:

To prove consistency of the bootstrap, we make one more assumption. It arises be-

cause the bootstrap draws, unlike the sample observations, are statistically dependent

unconditionally. Note that Assumptions 1-4 provide no bounds on moments of function
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h if its arguments are statistically dependent. The form of dependency that needs to be

explicitly controlled in the bootstrap is that of drawing the same sample realization of

vector Z two or more times. To state the assumption formally, de�ne the function

H!m (z1; :::; zm) = H
�
z!m(1); :::; z!m(m)

�
;

where !m is a permutation, with repetition, of numbers f1; :::;mg; and the function

h
[m�2]
� (z1; :::; zm�2) =

Z
h� (z1; :::; zm�2; Zm; Zm) dP (Zm) :

Assumption 5. (a) For all !m, PmH2
!m <1:

(b) As � ! �0; P
m�2

h
h
[m�2]
� � h

[m�2]
�0

i
! 0:

Assumption 5 is not restrictive for rank estimators. The moment condition on H!m

is trivially satis�ed for bounded functions h (which is the case for the majority of rank

estimators). MR is an example when hmay be unbounded, however, the condition PY 2 <

1; required by Assumption 2, also entails the moment condition in Assumption 5 (a) for

the envelope H = jY1j + jY2j. The continuity condition on h
[m�2]
� is also not di¢ cult

to verify. For MR and MRC, for example, it is satis�ed vacuously, because in this case

h
[m�2]
� � 0: For other estimators, e.g. pairwise-di¤erence rank estimators, h[m�2]� 6= 0:

However, Assumption 5, similarly to Assumption 4, holds if the last component of the

vector of regressors, V; is distributed continuously conditionally on the �rst d components,

U .

We now give two results showing consistency of the bootstrap. The distribution of the

test statistic, n1=2(�n� �0); can be approximated by the conditional (on the data sample)
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distribution of the bootstrapped statistic, n1=2(b�n� �n), or by the normal c.d.f. with zero
mean and variance equal to the conditional variance of n1=2(b�n��n). Both approaches give
consistent results, although the second relies on slightly stronger regularity conditions.

Theorem 2. Let the assumptions of Theorem 1 and Assumption 5 hold, and assume

that sup� jr̂n;�j = op (n
�1) : Then the bootstrap estimator of the asymptotic distribution of

n1=2 (�n � �0) is consistent in probability:

(2.7) sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = op (1) ;

where F̂ is the conditional c.d.f. of the bootstrapped estimator.

Theorem 3. Let the assumptions of Theorem 1 hold, and, additionally, PmHp <1;

PMp <1; P k@2� �0k
p
<1; for a p > 2; and P sup� jrn;�j

2 = o (n�1) : Then

V ar
�
n1=2(�n � �0)

�
! �:

If also PmHp
!m < 1 for each !m; P sup� jr̂n;�j

2 = o (n�1) ; and Assumption 5 (b) holds,

then the bootstrap estimator of the asymptotic variance of n1=2 (�n � �0) is consistent in

probability: dV ar hn1=2(b�n � �n)
i
!p �:

Here V ar is the �nite sample variance and dV ar is the bootstrap variance conditional on
the sample.
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2.3. Empirical Example

Here we apply the bootstrap to a real data set. Our main focus is the feasibility of the

bootstrap procedure. We reestimate the standard errors in the wage-equation example

studied by Abrevaya [2003]. The data set, constructed by Ruud [2000], is an extract from

the March 1995 CPS, consisting of 1,289 observations. The dependent variable is an hourly

wage (WAGE). The regressors are years of schooling (EDUC), years of potential work

experience (EXPER) and its square (EXPSQ), a female indicator variable (FEMALE), a

union indicator variable (UNION), and a nonwhite indicator variable (RACE equal to 0

if white, 1 if not). The model is speci�ed as the transformation model with an unknown

link function h:

h (WAGE) = �1EDUC + �2EXPER + �3EXPSQ

+�4FEMALE + �5UNION + �6RACE + "

(the traditional choice of h in such models is the logarithmic function). The identi�cation

assumption is that h is a strictly increasing function and " is an i.i.d. error term distributed

independently of the covariates.

The coe¢ cients are estimated by MRC and PDR4, with a scale normalization �1 = 1:

Abrevaya [2003] computed the estimates of the coe¢ cients. He also applied the non-

parametric method to estimate their standard errors. It is worth noting that the number

of (one-dimensional) kernel regressions that the nonparametric method involves increases

with the dimension of the vector of covariates, d+ 1, as 3 + d for MRC and as 4 + d(d+1)
2

for PDR (so that in the example considered here one has to run, respectively, eight and
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nineteen one-dimensional kernel regressions). As the implementation of each of them re-

quires a choice of a bandwidth and some other details (such as the form of the kernel

and the trimming parameters in the denominator of the Nadaraya-Watson conditional

expectation estimator), the method contains an element of subjectivity.

Here we provide alternative estimates of the standard errors obtained by the boot-

strap. The computational burden of the bootstrap is of order O (Bn log n) for MRC

and O (Bn2 log n) for PDR4, where B is the number of bootstrap iterations. We used

B = 1000, although the estimates of the standard errors were stable after B = 200 iter-

ations already. For this sample size, the computation of the MRC objective function is

faster than that of the PDR4 objective function, but the associated maximization prob-

lem for the former is more di¢ cult to solve numerically. In the case of MRC we used the

Nelder-Mead algorithm of optimization with �ve di¤erent combinations of parameters

and starting values (chosen in trial runs) in each bootstrap iteration. For PDR4 we used

the standard MATLAB maximization routine fminsearch with default settings and one

starting vector, the estimated vector of coe¢ cients. The objective functions of the two

estimators were computed using the fast algorithm of Abrevaya [1999] for MRC and a

sorting-based algorithm described in Appendix, Section C.1, for PDR4, both programmed

in C. The computational times for one thousand bootstrap iterations were 34 minutes for

MRC and 6.5 hours for PDR4, on an AMD Opteron 2.8 GHz processor. The memory

usage was 62 megabytes for MRC and about 400 megabytes for PDR4.
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MRC PDR4
coef. std. error coef. std. error

nonpar. boots. nonpar. boots.
EDUC 1.0000 - - 1.000 - -
EXPER .3590 .0559 .0502 .4068 .0487 .0432
EXRSQ -.5965 .1251 .1123 -.6741 .1140 .0977
FEMALE -2.2105 .3187 .2744 -2.3252 .3102 .2747
RACE -.9851 .4537 .2937 -1.2828 .4076 .3492
UNION 1.5178 .4482 .3022 1.8922 .4103 .3166

Table 2.1. Wage equation estimation

Table 2.1 reports the values of the estimated coe¢ cients and the standard errors. One

can see that the standard errors estimated by the bootstrap and by the nonparametric

methods can be substantially di¤erent in practice6.

2.4. Conclusion

The nonparametric bootstrap is a way of performing inference in rank regressions

without relying on subjective choices of tuning parameters. In this chapter we have

established consistency of the nonparametric bootstrap for rank estimators and other

�nite-dimensional estimators that maximize U -processes of order 2 and higher. The com-

putational feasibility of the bootstrap has been demonstrated in an empirical example.

6Since the true distribution of the data is not known in this example, we cannot say which method
gives a better estimate of the true asymptotic standard deviations. The �nite-sample performance of the
bootstrap and the nonparametric methods will be investigated in Monte-Carlo experiments in Chapter
3.
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CHAPTER 3

Rates of Convergence in the Central Limit Theorems for Rank

Estimators

3.1. Introduction

Here we investigate the accuracy of inference in rank regressions. As explained in

Chapter 2, one can use the normal distribution with an estimated variance or the boot-

strap distribution as consistent approximations of the �nite-sample distribution of a rank

estimator. However, the results on the asymptotic normality, or consistency of the boot-

strap, provide no insight on the potential magnitudes of the error in such approximations.

If the error converges to zero slowly with the number of observations n; the con�dence in-

tervals and tests of hypotheses constructed using either approximation may have coverage

probabilities and levels very di¤erent from the nominal ones in �nite samples.

The problem of the accuracy of inference is well understood in the case of an estimator

that is a smooth function of sample moments (see e.g. Bhattacharya and Rao [1976] and

Hall [1992]). Then, con�dence intervals based on the asymptotic normal distribution

typically attain the desired coverage probability up to an error of order O
�
n�1=2

�
for

one-sided con�dence intervals and O (n�1) for two-sided symmetric con�dence intervals.

In the case of M -estimators with nonsmooth criterion functions, the exact order of the

approximation error is known only in several special cases, such as the least absolute devi-

ation estimator studied by De Angelis, Hall and Young [1993]. Some results are available
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for nonparametric methods that are applicable to models (1.2) or (1.6). Nishiyama and

Robinson [2005] studied the accuracy of inference for the normal and the bootstrap ap-

proximations for the average derivative estimator of Powell, Stock and Stoker [1989] and

showed that it can be the same as in parametric methods. However, this conclusion relies

on restrictive moment and smoothness conditions. Particularly, there is a hidden curse-

of-dimensionality e¤ect: the conditional expectation E [Y jX 0�] has to have progressively

higher numbers of bounded derivatives in the single index X 0� as the dimension of X

grows, and progressively higher orders of kernels have to be used in associated nonpara-

metric regressions1.

Below we give an upper bound on the error of approximation of the �nite-sample

distributions of MRC, MR, and the other rank estimators listed in Chapter 1. The

bound is the same for approximations by both the bootstrap distribution and the normal

distribution with the true variance. In the case of MRC, the error converges to zero with

the rate arbitrarily close to n�1=6: The rate is slower for the MR estimator if the outcome

Y is not bounded, but it also approaches the order of n�1=6 if Y has su¢ ciently many

�nite moments. The result holds under mild regularity conditions and is not subject to the

curse of dimensionality. We further show that, under somewhat stronger assumptions, the

PDR3 and PDR4 estimators of Abrevaya [2003] have a much smaller approximation error,

close to n�1=2 in the case of PDR3 and exactly n�1=2 for the case of PDR4. Therefore, in

1The same is true for conditions under which this estimator is root-n-consistent. The sieve minimum-
distance estimator of Ai and Chen [2003] also has a hidden curse of dimensionality, since it requires
progressively stronger smoothness properties of the unknown functions when the dimension of the vector
X grows. Other methods, such as the estimator by Ichimura [1993], may not have this problem. Un-
fortunately, the second-order asymptotic properties of Ichimura�s estimator are not known. It is likely
though that strong smoothness assumptions will be needed for it to have the rate of convergence of order
O
�
n�1=2

�
for the error between the �nite-sample distribution of the estimator and the asymptotic normal

distribution.
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one-sided tests and con�dence intervals, the pairwise-di¤erence rank estimators achieve

the same order of accuracy as the classical parametric estimators. We are not aware of

existence of smoothing-based nonparametric techniques applicable to model (1.8) that

would achieve this degree of precision of inference under the same regularity conditions.

The rest of the chapter is organized as follows. The asymptotic results are given in

Section 3.2 for the rank estimators in general, and in Section 3.3 for the pairwise-di¤erence

rank estimators. In Section 3.4 the convergence properties are illustrated in Monte-Carlo

experiments. Conclusions are given in Section 3.5. The proofs of the results exposed in

Sections 3.2 and 3.3 can be found in Appendix A.

3.2. Rates of Convergence: General Case

In this section we obtain bounds on the approximation errors in Theorems 1 and

2 of Chapter 2 in the special case of the rank estimators. Here we consider the rank

estimators in general, and in the next subsection we give stronger results for the subclass

of the pairwise-di¤erence rank estimators.

To expose the asymptotic theory, we use the same framework as in Chapter 2. The

bounds that we �nd are closely related to the continuity properties of the quantity ap-

pearing in Assumption 4. The �rst result is obtained for the maximizers of U -processes

whose kernel functions h satisfy the following condition.

Assumption 6. There exist numbers �; C > 0 such that for all �1; �2 in the �-

neighborhood of �0;

(3.1) P 2
h�
Pm�2h�1 � Pm�2h�2

�2i � C k�1 � �2k :
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Note that for di¤erentiable kernels h one would normally have, by a Taylor expansion

argument, that

(3.2) P 2
h�
Pm�2h�1 � Pm�2h�2

�2i
= O

�
k�1 � �2k2

�
:

Assumption 6, therefore, re�ects a degree of nonsmoothness of the criterion function. To

see why it is relevant for rank estimators, note that for estimators like MRC or MR, both

(3.1), and its reverse:

(3.3) P 2
h�
Pm�2h�1 � Pm�2h�2

�2i � c k�1 � �2k :

(for a constant c > 0) are generally true.

Consider, for example, MRC. One can see that

[h�1(z1; z2)� h�2(z1; z2)]
2 = jh�1(z1; z2)� h�2(z1; z2)j

(this is a consequence of a property of the indicator function: for any two sets A; B;

[1fAg � 1fBg]2 = j1fAg � 1fBgj). Let X = (U; V ) ; x = (u; v) where V (v) is the last

component of the vector X (x); and U (u) is the vector of the �rst d components of X

(x). Suppose that V is continuously distributed conditionally on U . Then, except on a

set of P -measure zero,

jh�1(z1; z2)� h�2(z1; z2)j = 1 fy1 6= y2g �(3.4)

j1fv2 > v1 + �01 (u1 � u2) g � 1fv2 > v1 + �02 (u1 � u2) gj :
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Suppose, further, that the density �V jU is uniformly bounded and that components of U

are P -integrable. Then

(3.5) P 2
�
(h�1 � h�2)

2� � 2 k�1 � �2kP kUk sup�V jU :

This is inequality (3.1), because in the case of m = 2; Pm�2h� = h�: The same inequality

can be obtained without di¢ culty for all existing rank correlation estimators by similar

considerations.

To prove the reverse inequality, (3.3), for MRC, assume that V has a continuous

density �V jY;U conditionally on both Y and U . Then

P 2
�
(h�1 � h�2)

2� � k�1 � �2k �Z
1 fy1 6= y2g j(u1 � u2)

0n�1��2j dP (y2; u2)dP (y1; x1):

In this formula n�1��2 is the unit vector in the direction of �1��2; P (y2; u2) and P (y1; x1)

are marginal c.d.f.s of, respectively, (Y; U) and (Y;X) ; and

(v1; y2; u2) = min
jrj��kU1�U2k

�V jY;U (v1 + rjy2; u2);

where � > 0 is so large that the compact � lies in the ball of radius � with center at zero.

If �V jY;U is everywhere positive (so that  > 0), and the set

fy1 6= y2; (u1 � u2)
0n�1��2 6= 0g

has a positive P�measure, then the reverse of (3.5) holds. For m = 2; this is the same as

inequality (3.3).
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Inequality (3.3) can be veri�ed by similar methods for the other rank estimators that

maximize a U -processes of the second order (e.g. MR or the partial rank estimator of

Khan and Tamer [2007]), and for the estimator of Cavanagh and Sherman [1998] that

maximizes the U -statistic of order 3 given by (1.7) (we will refer to this estimator as

MR3). However, (3.3) does not hold for the pairwise-di¤erence estimators PDR3 and

PDR4. For the latter, (3.2) holds instead (for small di¤erences �1 � �2). As explained

in the next subsection, this property lies at the origin of the higher accuracy of inference

associated with the pairwise-di¤erence rank estimators.

In the bootstrap problem, we also need to account for the unconditional statistical

dependence between the bootstrap draws.

Assumption 7. There exist �; C > 0 such that for all �1; �2 in the �-neighborhood of

�0; �
Pm�2h

[m�2]
�1

� Pm�2h
[m�2]
�2

�2
� C k�1 � �2k :

Again, this condition is immediately true for MRC. For the other rank estimators it

can be veri�ed in the same way as Assumption 6, under the same su¢ cient conditions.

For estimators satisfying Assumption 6 (and, for the bootstrap, Assumption 7), the

following upper bound holds.

Theorem 4. Let Assumptions 1-3 and 6 hold. Assume that P jsup�2� rn;�j = O
�
n�3=2

�
;

PM2 <1, P k@2� �0k
2
<1; P k@� �0k

4 <1; and, for a p � 6; PmHp <1: Then

(3.6) sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O

��
n�1=6 (log n)2=3

� 1
1+2=3p

�
:
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If, additionally, P jsup�2� r̂n;�j = O
�
n�3=2

�
; PmHp

!m < 1 for each permutation, with

repetition, !m; and Assumption 7 holds, then

(3.7) sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op

��
n�1=6 (log n)2=3

� 1
1+2=3p

�
:

The upper bound for the error with which the bootstrap quantiles of �̂n approxi-

mate the �nite-sample quantiles of �n can be found from (3.6) and (3.7) by the triangle

inequality. In the case of MRC (PmHp; PmHp
!m <1 for all positive p), we have

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

dF̂n1=2(�̂n��n)

���� = Op
�
n�1=6+"

�
;

where " > 0 can be taken arbitrarily small.

3.3. Rates of Convergence: Pairwise-Di¤erence Rank Estimators

The bound obtained in the previous subsection converges to zero slowly. The rate of

convergence improves substantially, however, if the quantity on the left hand side of (3.1)

has stronger continuity properties. Namely, let the following assumption hold.

Assumption 8. For s = 2 or 32; function f� = Pm�sh� is three times continuously

di¤erentiable in a �0-neighborhood of �0. There exists a function L (z1; :::; zs), satisfying

the condition P sL4 <1; such that

k@f�0k ;
@2f�0 ;@3f�0 � L;

2If this condition is satis�ed with s > 3; then it is also satis�ed with s = 3; which is su¢ cient for our
analysis.
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and, for all �1; �2 in the �0-neighborhood of �0;

@3f�1 � @3f�2
 � L k�1 � �2k :

(Here @kf�; k � 3; is the array of all partial derivatives of f of order k at �; and
@kf�

is the maximum in the absolute value over all elements of the array.)

It is clear that Assumption 8 cannot hold for MRC or MR, for which inequality (3.3) is

true. Nonetheless, it can be satis�ed for certain rank estimators maximizing a U -process

of order 3 or higher. Historically, the �rst such example is the estimator by Han [1987b]

of the parameter of the transformation function in the Box-Cox transformation model.

Another example is the estimator for the same problem proposed in Asparouhova et al

[2002]. Abrevaya�s PDR3 and PDR4 estimators also satisfy Assumption 8. Below we will

focus on Abrevaya�s estimators as they have broader applicability than the former two

estimators.

To see why Assumption 8 holds for pairwise-di¤erence rank estimators, consider, for

example, the objective function of the PDR3 estimator. The symmetric version of the

kernel of the corresponding U -process is:

h� (z1; z2; z3) =(3.8)

(1 fy1 < y2g � 1 fy2 < y3g)
�
1f(x1 � x2)

0 � < (x2 � x3)
0 �g
�

+(1 fy2 < y3g � 1 fy3 < y1g)
�
1f(x2 � x3)

0 � < (x3 � x1)
0 �g
�

+(1 fy3 < y1g � 1 fy1 < y2g)
�
1f(x3 � x1)

0 � < (x1 � x2)
0 �g
�
;
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where the scale of � is �xed by setting � = (�; 1) : We will now check Assumption 8 with

s = 2: To compute the value of the function Pm�2h� one should integrate out the pair

(x1; y1) in every term in the above expression. Once the component v1 of the vector x1 is

integrated out, the �rst term becomes

(1 fy1 < y2g � 1 fy2 < y3g)
Z (2x2�x3)0��u10�

�1
�V jY;U (xjy1; u1) dx:

The derivative of this expression with respect to � is

(1 fy1 < y2g � 1 fy2 < y3g) (2u2 � u3 � u1)

��V jY;U
�
(2u2 � u3 � u1)

0 � + 2v2 � v3jy1; u1
�
:

Similar expressions can be obtained for the other two terms in (3.8). The following condi-

tions are su¢ cient for Assumption 8 to be satis�ed: �V jY;U is three times di¤erentiable in

V for almost all U and Y and is uniformly bounded together with its derivatives of orders

up to 3; and P kUk12 < 1: By a similar derivation, the PDR4 estimator (as well as the

estimators of Han and Asparouhova et al) satis�es Assumption 8, with s = 3; under the

same su¢ cient conditions.



36

Not every rank estimator whose criterion function is a U -process of order 3 satis�es

Assumption 8. Consider the MR3 estimator. After symmetrization,

h� (z1; z2; z3) =

1 fy1 < y3g1fx01� < x02�g

+1 fy3 < y2g1fx03� < x01�g

+1 fy2 < y1g1fx02� < x03�g:

The value of Pm�2h� is obtained by integrating out (x1; y1) : After that, the �rst two terms

will become di¤erentiable in �; while the last term will still contain the indicator function

1fx02� < x03�g: It is clear that under general conditions, inequality (3.3) will hold, which

is incompatible with Assumption 8.

When Assumption 8 is satis�ed, the components of �n that it controls decrease rapidly

with n: The following condition is imposed to ensure a similar asymptotic behavior of the

higher-order terms.

Assumption 9. Either m = s or there exist �; C > 0 such that for all �1; �2 in the

�-neighborhood of �0;

P s+1
h�
Pm�(s+1)h�1 � Pm�(s+1)h�2

�2i � C k�1 � �2k :

Similarly to the previous cases, an extra condition is needed in the bootstrap problem.



37

Assumption 10. (a) Assumption 8 is satis�ed with a function L such that, for every

permutation, with repetition, !s,

P sL4!s <1:

(b) If s = 2 or 3; and m > s; then there exist �; C > 0 such that for all �1; �2 in the

�-neighborhood of �0;

P s�1
��
Pm�(s+1)h

[m�2]
�1

� Pm�(s+1)h
[m�2]
�2

�2�
� C k�1 � �2k :

If s = 3 and m > 3, then, additionally,

�
Pm�4h

[m�4]
�1

� Pm�4h
[m�4]
�2

�2
� C k�1 � �2k ;

where

h
[m�4]
� (z1; :::; zm�4)

=

Z
h� (z1; :::zm�4; Zm�1; Zm�1; Zm; Zm) dP (Zm�1) dP (Zm) :

For PDR3 and PDR4 (and Han�s and Asparouhova et al estimators) these conditions

can be checked, for, respectively, s = 2 and s = 3; by the same methods that were used

to obtain (3.5). Moreover, in Assumption 9, generally the reverse inequality is also true,

which can be veri�ed by an argument similar to the proof of inequality (3.3) for MRC.

The next theorem gives the rates of convergence for rank estimators satisfying Assump-

tions 8 and 9. For brevity, only the case of uniformly bounded functions h is considered.
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Theorem 5. Suppose that Assumptions 1-3 and 8, 9 hold, supZ;� jrn;�j = O (n�2) ;

and H is a constant. If Assumptions 8, 9 are satis�ed with s = 2; let " > 0 be arbitrarily

small, and if they are satis�ed with s = 3; let " be zero3. Then

(3.9) sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O
�
n�1=2+"

�
:

If also supZ;� jr̂n;�j = O (n�2) ; Assumptions 5 (a) and 10 hold, then

(3.10) sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op
�
n�1=2+"

�
:

3.4. Monte-Carlo Experiments

In this section we investigate the bootstrap properties of rank estimators in �nite

samples. We consider two estimators, MRC and PDR4. As explained in the previous

sections, MRC has a wider scope of applications (in particular, it can be applied to limited

dependent variable models) and its criterion function is cheaper to compute. However, our

asymptotic results suggest that inference with MRC may be inaccurate in small samples.

PDR4, on the other hand, needs substantial computational capacity (the fastest available

algorithm for computing its objective function requires O (n2 log n) operations and O (n2)

memory cells). However, within the scope of its application, PDR4 can serve as a good

complement to MRC in small samples, where it achieves higher precision of inference.

In the Monte-Carlo experiments, MRC is applied to the binary choice model:

3In this case the order of magnitude of the approximation error of the distribution of �n by the asymptotic
normal distribution is exactly O

�
n�1=2

�
; since one can obtain the Edgeworth expansion of �n in which

the �rst-order term has the magnitude O
�
n�1=2

�
and the next term is bounded by O

�
n�3=4+"

�
: The

same also holds in probability for the bootstrap. See the footnote in Section A.2.4.
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Yi = 1
n
X
(1)
i +X

(2)
i + �"i > 0

o
:

(In this case MRC and MR are numerically equivalent (see Cavanagh and Sherman

[1998]), so the evidence presented below illustrates the properties of MR as well.) Three

distributions for the �rst regressor are considered: the standard normal (a continuous

case), binomial with the probability of 1 equal to 0.5 (a discrete case), and the Student

distribution with 1.5 degrees of freedom. In the latter case, the �rst moment of X(1)

is �nite, but its second moment is in�nite. This is a situation where the nonparamet-

ric method of Cavanagh and Sherman [1998] for estimating the asymptotic variance is

rather di¢ cult to apply. In particular, the moment conditions of Theorem 4 in Sherman

[1993], under which the method is known to be consistent, are violated. Also, the rule

for choosing the bandwidths (proportionally to the sample standard deviation of the es-

timated index X 0�̂) suggested by Cavanagh and Sherman may result in arbitrarily large

bandwidths and is not practical. The second regressor, X(2); is distributed as N (0; 1)

independently of X(1). It plays the role of a continuously distributed regressor needed for

point identi�cation of �: The error term, "; is also distributed as N(0; 1) independently

of both regressors. The scaling parameter � determines the noise-to-signal ratio in the

dataset. We consider two cases, � = 1 and � = 0:1:

PDR4 is applied to the linear model:

Yi = X
(1)
i +X

(2)
i + "i:
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The regressor X(1) can have the standard normal or the Student(1.5) distribution. Re-

gressor X(2) is distributed as a standard normal random variable independently of X(1).

The error term is independent of both regressors and is distributed as either a standard

normal or a standard Cauchy random variable. The latter case serves to demonstrate

the robustness properties of PDR4 with respect to heavy-tailed distributions of the error

term. Note that for the Cauchy distributed errors, P j"j = +1; so that the OLS or

nonparametric minimum-square-distance methods are not consistent in this case.

In rank regressions, the point identi�cation of � is achieved by imposing a scale nor-

malization. Here we set the coe¢ cient at the second regressor to be 1: The estimated

model is then

yi = f
�
�X

(1)
i +X

(2)
i + "i

�
;

where f (x) = 1 fx > 0g in the binary choice model, and f (x) = x in the linear model

(function f does not have to be known for implementation of MRC or PDR4) and "i

is the error term. The value of � is found by maximizing the corresponding criterion

function. The objective function of MRC is rather nonsmooth for our sample sizes, and

its maximization is more di¢ cult than that of the PDR4 objective function. We used the

Nelder-Mead simplex maximization algorithmwith parameters adjusted in trial runs of the

program. For PDR4 estimator the standard maximization MATLAB routine fminsearch

with default settings was enough. Both algorithms are iterative procedures requiring a

starting approximation of the solution. In the sample problem, we took the true value,

�0 = 1. This option, of course, is not available in real data applications, where a grid of

initial values should be considered. In the bootstrap we used both �0 and �n.



41

There are several asymptotically equivalent methods for computing the bootstrap

critical values for the test statistic n1=2 (�n � �0) that do not need an explicit estimator

of the asymptotic variance. In the percentile method the quantiles of the test statistic

are approximated by the conditional quantiles of the bootstrapped recentered statistic

n1=2
�
�̂n � �n

�
: In our experiments with MRC, however, recentering of the bootstrapped

estimator at �n led to inaccurate results. One alternative, motivated by the symmetry

of the normal distribution, is the other percentile method, see Hall [1992], in which

the quantiles of the test statistics are approximated by the quantiles of the statistic

n1=2
�
�n � �̂n

�
: The procedure e¤ectively eliminates the estimated value �n from com-

puting the con�dence intervals and critical values (�n cancels out in the corresponding

expressions). This method was used to build one-sided and double-sided (equal-tailed)

con�dence intervals. The rejection probabilities for the corresponding tests were similar,

and, for the sake of brevity, we report them only for the double-sided case4. There are

other procedures that do not require recentering at �n. One can approximate the c.d.f. of

the test statistic by the c.d.f. of the demeaned bootstrapped statistic, n1=2
�
�̂n � P̂

h
�̂n

i�
;

or by the c.d.f. of the normal distribution with zero mean and variance estimated by the

conditional variance of n1=2�̂n: These two methods can be more convenient than the other

percentile method for inference about multidimensional �: The results for both are similar

to the case of the other percentile method and are omitted.

MRC was computed for sample sizes n = 200; 500, and 1000 (see Table 3.1). The

coverage probabilities are reasonably accurate except in the case with n = 200 and � = 0:1

where the bootstrap fails dramatically for all three distributions of X(1): This should serve

4For a description of how rejection probabilities are computed, see Hall and Horowitz [1996].
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nominal level 5% nominal level 10%
n = 200 500 1000 200 500 1000

Normal X(1)

� = 1 3.0 3.2 5.1 7.7 8.5 9.4
� = 0:1 25.0 5.9 3.6 31.2 10.6 8.1

Binary X(1)

� = 1 3.6 4.2 4.2 7.7 9.6 8.3
� = 0:1 31.9 5.5 2.8 35.0 9.2 5.9

Student (1.5) X(1)

� = 1 2.7 2.5 4.3 5.3 7.3 8.9
� = 0:1 33.8 6.8 3.5 38.6 10.1 7.2

Table 3.1. Bootstrap rejection probabilities for equal-tailed t-tests - MRC

as a caution against using the bootstrap when the signal-to-noise ratio is high and the

sample size is moderate. In this case the simulated distribution of MRC appears to have a

mass point at zero. The bootstrap gives a distribution with a much higher concentration of

mass at zero, and underestimates the length of the con�dence intervals and the variance of

the estimator. The phenomenon has to be taken into account when MRC is used together

with a speci�cation search: the bootstrap may reject models with low noise more often

than it should.

In the case of PDR4, the percentile method (involving recentering) and the other

percentile method gave close values of rejection probabilities. For brevity we report only

the values obtained for the equal-tailed tests based on the other percentile method, for

sample sizes n = 50; 100; and 200 (Table 3.2). It can be seen that bootstrap performs

well even when the sample includes only 50 observations.

Finally, we compute the rejection probabilities in the same tests using the normal

approximation with the asymptotic variance estimated by the nonparametric method of
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nominal level 5% nominal level 10%
n = 50 100 200 50 100 200

Normal X(1); " 5.9 4.8 5.8 12.8 10.1 10.3
Student (1.5) X(1); " 6.4 4.9 4.6 12.5 10.8 10.7
Normal X(1); Cauchy " 6.1 5.0 6.2 13.9 9.6 9.5

Table 3.2. Bootstrap rejection probabilities for equal-tailed t-tests - PDR4

Cavanagh and Sherman. Because of the complicated nature of the nonparametric method

for PDR4, we only consider the case of MRC. We used kernel regressions to estimate the

nonparametric functions that are required by this method, with the standard normal

kernel and the bandwidths given by the rule of thumb used in Cavanagh and Sherman

[1998], according to the formula:

h = k � �̂nn�1=5:

Here �̂n is the sample variance of the estimated single index, and k is a scaling multi-

plier allowing for di¤erent choices of bandwidths. Figures 3.1 and 3.2 show the rejection

probabilities for 5% tests for coe¢ cient � in the binary choice models described above,

with the standard normal, and the binary regressors X(1); respectively, for the sample

sizes n = 200 and n = 500; and the noise-to-signal ratio � = 1 and 0:1. One can see

that although the rejection probabilities are close to the nominal level for some values

of k; they can also deviate from that level for other values of k: Figure 3.3 shows the

rejection probabilities in the binary choice model with X(1) distributed according to the

Student distribution with 1.5 degrees of freedom. This examples is problematic for the

nonparametric method and the speci�ed rule for choosing the bandwidth for the reasons

made clear in the preceding discussion. One can see that the nonparametric method is
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Figure 3.1. Rejection probabilities for the nonparametric method, the bi-
nary choice model, X(1) � N (0; 1)

particularly sensitive to the choice of k here. Of course, the example is extreme and does

not preclude the nonparametric method from practical use, but it underscores the ne-

cessity of developing objective and robust rules for choosing bandwidths in this method.

3.5. Conclusion

This chapter provides bounds on the approximation errors in the central limit the-

orems and the bootstrap consistency theorems for rank estimators, a class of methods

that can be applied to popular semiparametric single-index models or used for robust

estimation of parametric models. In the case of MRC and MR, the error is bounded by a

function of the sample size of order close to n�1=6; for both the sample and the bootstrap

problem. Pairwise-di¤erence rank estimators, such as PDR3 and PDR4, however, have a

special structure due to which the bound is vanishing with the rate close to n�1=2: Thus,
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pairwise-di¤erence estimators provide a remarkable example of a robust semiparametric

method whose �rst- and second-order asymptotic properties approach those of paramet-

ric methods. The theoretical results have been illustrated with �nite-sample Monte-Carlo

experiments.
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CHAPTER 4

Weighted Rank Estimators

4.1. Introduction

In this chapter we consider the problem of e¢ ciency of rank-based estimators. We

focus on the rank estimators of order two, such as MRC, MR, the partial rank estimator

of Khan and Tamer [2007], and others. The identi�cation conditions on which these

estimators are based can be written in the form: for two independent realizations of

(Y;X) ;

(4.1) E [M (Y1; Y2) jX1; X2] > 0 =) X 0
1�0 > X 0

2�0:

HereM is an antisymmetric function, such asM (Y1; Y2) = Y1�Y2 for MR andM (Y1; Y2) =

sign (Y1 � Y2) for MRC. The estimator of the vector of parameters, �0; up to scale, is the

solution of the maximization problem

(4.2) max
�=(�;1)

X
i6=j

M (Yi; Yj)1fX 0
i� < X 0

j�g:

As shown by Sherman [1993] in the example of the binary choice model estimated

by MR or MRC, such estimators do not attain the semiparametric e¢ ciency bound for

single-index models, in general.
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To improve e¢ ciency, we consider the estimation of �0 by a maximizer of a weighted

version of the criterion function in (4.2):

(4.3) max
�=(�;1)

X
i6=j

w (Xi; Xj)M (Yi; Yj)1fX 0
i� < X 0

j�g;

where w � 0 is a weighting function. Under regularity conditions, the resulting estimator

is consistent and asymptotically normal. The optimal rank estimator is the weighted

rank estimator that has the least asymptotic variance among weighted rank estimators.

We look for conditions under which the optimal rank estimators exist, and verify if they

attain the semiparametric e¢ ciency bounds in various single-index models.

To evaluate the practical relevance of our weighting approach, as well as other methods

seeking to improve e¢ ciency, we compare the asymptotic variances of the unweighted

and the optimal rank estimators, and semiparametric e¢ ciency bounds, in models with

exactly speci�ed features (e.g. the distributions of the error term). These examples

suggest that in the models with independent errors, the asymptotic variance of the optimal

MRC is likely to be close to the semiparametric e¢ ciency bound unless there are strong

nonsmoothness e¤ects in the distribution of the error term. The e¢ ciency gains from

weighting are likely to be small in the transformation model estimated by MRC, or the

binary choice model estimated byMR or MRC. However they can be large in the monotone

regression model estimated by MR or MRC. The performance of a feasible optimal MR

and MRC in one such case is studied in a Monte-Carlo experiment, in which we obtain

a substantial improvement in the �nite-sample variances of these estimators over the

unweighted estimators.
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The rest of the chapter is organized as follows. Section 4.2 presents the asymptotic

theory of the weighted rank estimators and the feasible optimal rank estimators. Section

4.3 provides numerical evidence. Section 4.4 concludes. In Appendices B and C, we

give proofs of the theoretical results and discuss numerical algorithms for the proposed

methods.

4.2. Asymptotic Theory of Weighted Rank Estimators

4.2.1. Identi�cation, Consistency and Asymptotic Normality

In this section, we give conditions under which the estimator �n de�ned by (4.3) is con-

sistent and asymptotically normal, and derive the expression for its asymptotic variance.

We make the following assumptions.

Assumption 11. The observations (Yi; Xi) ; i = 1; :::; n; Yi 2 RdY ; Xi 2 Rd+1; are

i.i.d. across i:

Assumption 12. The function M (y1; y2) satis�es the conditions:

M (Y1; Y2) = �M (Y2; Y1)

almost surely, and

E jM (Y1; Y2)j <1:

Condition (4.1) is satis�ed for almost all X1; X2 and a �0 such that its (d+ 1)-th compo-

nent, �(d+1)0 ; is positive.

Let U be the vector of the �rst d components of X; and V be its (d+ 1)-th component.
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Assumption 13. Conditional on U; V has a Lebesgue density, gV jU (v;u) ; v 2 R; for

almost all u; that is twice continuously di¤erentiable in v for almost all (u; v). The con-

ditional mean E [M (Y; y) jX = (u; v)] is twice continuously di¤erentiable in v for almost

all y; u; v; with an absolutely integrable �rst derivative.

Assumption 14. The weighting function w (x1; x2) is nonnegative and is twice con-

tinuously di¤erentiable in v1 and v2 for almost all x1; x2:

In the remaining assumptions it is convenient to rearrange the components of X: Let

�0 2 Rd be the vector with the components �(i)0 = �
(i)
0 =�

(d+1)
0 ; i = 1; :::; d; and Z be the

single index:

Z = U 0�0 + V:

Note that Z has a density conditionally on U :

gZjU (z;u) = gV jU (z � u0�0;u) :

De�ne the function

� (y; u; z) = E [M (Y; y) jU = u; Z = z] ;

and the function

� (u1; u2; z) =
@

@�
E [M (Y1; Y2) jU1 = u1; U2 = u2; Z1 = z + �; Z2 = z]j�=0 :

By Assumption 13, the function � is well de�ned for almost all u1; u2; z; and

� (u1; u2; z) = E [�z (Y; u1; z) jU = u2; Z = z] ;
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where �z is the partial derivative of the function � with respect to z.

Also, let

ws (x1; x2) = w (x1; x2) + w (x2; x1)

be the symmetric version of the function w:

Assumption 15. There is a set U 2 Rd; and a nonempty open interval I � R such

that:

(i) The support of the distribution of the vector

(U1 � U2) 1 fU1; U2 2 Ug

does not lie in a proper linear subspace of Rd:

(ii) The functions gZjU (z; u1) ; � (u1; u2; z) ; ws (x (u1; z) ; x (u2; z)) ; where

x (u; z) = (u; z � u0�0) ;

are nonzero for any z 2 I and u1; u2 2 U .

Assumption 16. (i)

(4.4) E
�
M2 (Y1; Y2)w

2 (X1; X2)
�
<1:

(ii) For a � > 0; and s; l = 0; 1; 2;

E kU1 � U2ks+1 sup
k�k��

���(s;l) �Y1; U1; Z1 + (U1 � U2)
0 �;X2

��� <1;
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where

�(s;l) (y; u; z; x2) = @s�lz � (y; u; z) @lz
�
ws (x (u; z) ; x2) gZjU (z;u)

�
;

and @lz denotes the partial derivative with respect to z of order l.

Let

rw (y; u; z) = g (z)E [(u� U)M (y; Y )ws (x (u; z) ; X) jZ = z] ;

where g (z) is the marginal density of Z.

Assumption 17. The matrix

Vw = E
�
rw (Y; U; Z)rw (Y; U; Z)

0�
is �nite and positive de�nite.

By Assumption 11, the estimator is applicable to cross-section data. Assumption 12

gives the identi�cation condition. Assumption 13 imposes smoothness restrictions on the

distribution of the data. One of the covariates, V; must be continuously distributed con-

ditionally on the remaining covariates, U . This is similar to the original assumption of

Han [1987] except that we do not require that V have the full support conditionally on

U: The full support condition is often unrealistic as the covariates may not take all values

(e.g. may only be positive), or may not be observed for all values; so it is removed from

our set of conditions. Additionally, we need a degree of smoothness of the conditional

density of V and the conditional distribution of Y with respect to V; expressed via the

smoothness of the conditional expectation E [M (Y; y) jX] : Assumption 14 states basic

requirements to the weighting function. Note that the weighting function is allowed to
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take zero values. Assumption 15 (i) imposes a non-collinearity restriction on the dis-

tribution of U: Assumption 15 (ii) says that the values of U such that U1 � U2 form a

basis in Rd should be observable together with all values of the single index Z from a

small open set
�
gZjU (z; u) 6= 0; z 2 I

�
and that they are not censored by the weighting

function (ws > 0) : Additionally, it requires that the derivative � (u1; u2; z) be nonzero for

such values of u1; u2 and z: Note that the identi�cation condition (4.1) implies that the

derivative in the de�nition of �; if it exists, cannot be negative (� � 0). The condition

that � > 0 can be viewed as a local, di¤erential form of (4.1) that excludes the trivial

M � 0. Previously, weaker conditions excluding the case M � 0 were imposed. Our

stronger requirement allows us to avoid the full support condition on V discussed above.

Assumptions 16 and 17 impose integrability conditions on the vector U and the function

M; as well as the conditional mean E [M (Y; y) jX], the weighting function w; and the

conditional density gV jU and their derivatives relative to V (expressed using the single

index Z). In particular, Assumption 16 (i) puts a bound on the random �uctuations

of the criterion function in the sample optimization problem around its mean, which is

needed for root-n-consistency of �n:

The asymptotic variance of the estimator �n depends on the matrix Vw de�ned in

Assumption 17, and the matrix

�w = E [(U1 � U2)(U1 � U2)
0g (Z1)� (U1; U2; Z1)ws (X1; X2) jZ2 = Z1] :

Assumption 17 requires that Vw be �nite and nonsingular. Assumption 16 (ii) for s = 2

and l = 0 ensures that the matrix �w is �nite. It is clear that for �w to be nonsingular,

a condition on the random vector (U1 � U2)� (U1; U2; Z1) ; the distribution of Z and the
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values of ws (X1; X2) is necessary. Here such condition is the one stated in Assumption

151.

The following theorem establishes consistency and asymptotic normality of the weighted

rank estimator, and gives an expression for its asymptotic variance.

Theorem 6. Let � be a compact set in Rd; �0 be its interior point, and �n solve the

maximization problem (4.3) on �: Under Assumptions 11-17,

(i) �n !p �0; and

(ii)

sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��w

����! 0;

where Fn1=2(�n��0) is the c.d.f. of the random vector n
1=2 (�n � �0) ; ��w is the c.d.f. of the

normal distribution with mean zero and �nite, nonsingular variance

�w = 4�
�1
w Vw�

�1
w ;

and A is the collection of all measurable convex sets in Rd:

4.2.2. Optimal Choice of the Weighting Function

Among the consistent, asymptotically normal estimators of �0; corresponding to di¤erent

choices of w; it is natural to look for the one that achieves the lowest asymptotic variance.

In general, such optimal estimator may not exist; however, it exists and can be found in a

special case considered in this section. Namely, assume that the function � (y; u; z) does

1Sherman [1993] did not impose a di¤erentiable form of the identi�cation condition (4.1), such as posi-
tivity of � in our Assumption 15. He argued that the matrix �w is non-denerate because �0 is uniquely
identi�ed. However, the fact that �0 uniquely maximizes the population objective function does not imply
that the Hessian of that objective function (�2�w) is nonsingular.
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not depend on u:

(4.5) � (y; u; z) � E [M (Y; y) jU = u; Z = z] = � (y; z) 8u:

This assumption is satis�ed in the single-index models (the models in which Y jX is

distributed as Y jZ) and in the monotone regression model (1.4)-(1.5). However, the

assumption is restrictive in that it does not fully cover some interesting models that can

be estimated using the rank estimators. An example of such model will be given below.

As we show in Appendix, Lemma 21, the function � (u1; u2; z) is symmetric in u1; u2:

Therefore, under condition (4.5), it does not depend on either u1; u2: � (u1; u2; z) = � (z) :

Then the matrices Vw and �w can be written as

Vw = E [W1W
0
1] ;(4.6)

�w = 2E

�
� (Z1)U1
� (X1)

W 0
1

�
;

where

�2 (X) = E
�
�2 (Y; Z) jX

�
;

(4.7) W1 = � (X1) g (Z1)E2 [(U1 � U2)ws (X1; X2) jZ2 = Z1] ;

and E2 is the expectation over the random variables labeled 2, holding the random vari-

ables labeled 1 constant.
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Theorem 7. Assume that the matrices Vw;�w are given by (4.6) and (4.7), where

ws; g; � are nonnegative scalar functions, ws is symmetric in x1; x2, U is a random vector

taking values in Rd;

E [(1 + kUk)ws (x (U; z) ; x2)] < 1;

E

�
1 + kUk
�2 (X)

�
< 1;

for almost every x2; z; Vw and �w are �nite, the matrix

(4.8) �� =

�
E

�
�2 (Z)

�2 (X)

�
U � ~U (Z)

��
U � ~U (Z)

�0���1
with

~U (z) =
E
h

U
�2(X)

���Z = z
i

E
h

1
�2(X)

���Z = z
i

is well de�ned as a nonsingular, �nite matrix, and �w is nonsingular. Then

(4.9) 4��1
w Vw�

�1
w � ��:

The variance �� is attained with the following weighting function:

(4.10) w1 (x1; x2) = w
1=2
0 (x1)w

1=2
0 (x2) ;

where

(4.11) w0 (x) = 1 fg (z) > 0g �
� (z)

g (z)�4 (x)E
h

1
�2(X)

���Z = z
i ;

and for x = (u; v) ; z = u0�0 + v:
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If �2 (x) = �2 (z), then the expression for w0 (x) simpli�es:

(4.12) w0 (x) = 1 fg (z) > 0g �
� (z)

g (z)�2 (z)
;

and the optimal variance is attained with either w1; or

(4.13) w2 (x1; x2) = w0 (z1) + w0 (z2) :

If the support of g (z) is unbounded, and the function � (z) =�2 (z) is bounded away

from zero, the optimal weighting functions w1 and w2 will typically violate Assumption

16 (i) that was imposed for the root-n-consistency of �n. Namely, in this case,

E
�
w2 (X1; X2)

�
=1;

while for Assumption 16 (i) to hold it is typically necessary that

E
�
w2 (X1; X2)

�
<1:

In this case, instead of the function w0; one can use the function

w0� (z) =
� (z)

� + g (z)�4 (x)E
h

1
�2(X)

���Z = z
i ;

where � > 0 is a small number, to achieve approximate optimality. If the support of Z is

bounded, and the density g (z) is bounded away from zero on the support, trimming the

denominator in w0 (z) is not needed.
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4.2.3. Examples

The Conditional Mean Model and MR. In the monotone regression model (1.4)-

(1.5), the vector of coe¢ cients �0 can be consistently estimated up to scale by the

monotone rank estimator of Cavanagh and Sherman [1998]. For this method, the func-

tion � (y; u; z) = f (z)� y does not depend on u; so that the optimal weighting function

exists. We have:

� (z) = f 0 (z) = @zE [Y jZ]

�2 (x) = �20 (x) = V ar (Y jX = x) ;

where we assume, for notational simplicity, that �(d+1)0 = 1; and where the second rep-

resentation relates the functions � and �2 directly to the observable data. The optimal

weighting function is given by (4.10) with

w0 (x) =

0@ f 0 (z)

g (z)�40 (x)E
h

1
�20(X)

jZ = z
i
1A1=2

;

and the corresponding variance of the estimator is 
E

"
f 0 (Z)2

�20 (X)

�
U � ~U (Z)

��
U � ~U (Z)

�0#!�1
;

which is the semiparametric e¢ ciency bound for the nonlinear regression model (Newey

and Stoker [1993], formula (4.4)).

A special case of the monotone regression model is the binary choice model:

Y = 1 fX 0� � " > 0g ;
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under the independence assumption between " and X: In this case � (y; z) = G" (z) � y;

and

� (z) = g" (z) = @zE [Y jZ = z] ;

�2 (x) = G" (z) (1�G" (z))

= E [Y jZ = z] (1� E [Y jZ = z]) ;

where G" is the c.d.f. of " and g" is its density. The variance of the optimal weighted MR

is

(4.14)

 
E

"
g" (Z)

2

G" (Z) (1�G" (Z))
(U � E [U jZ]) (U � E [U jZ])0

#!�1
;

i.e. the semiparametric e¢ ciency bound for this model (Chamberlain [1992], Cosslett

[1987]).

The Generalized Regression Model and MRC. If the distribution of Y depends on

X only through the single index Z, as e.g. in the generalized regression model with "

independent of X; the function � (y; u; z) corresponding to MRC,

� (y; u; z) = E [sign (Y � y) jX = x (u; z)] ;

does not depend on u; and one can �nd the optimal weighted MRC estimator. In this

case,
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� (y; z) = 1� 2 ~GY jZ (y; z) ;

� (z) = �2E
h
@z ~GY jZ (Y ; z) jZ = z

i
;

�2 (z) = E

��
2 ~GY jZ (Y ; z)� 1

�2
jZ = z

�
;

where

~GY jZ (y; z) = P fY < yjZ = zg+ P fY = yjZ = zg =2:

The asymptotic variance of the optimal weighted MRC is given by (4.8), with ~U (Z) =

E [U jZ].

If the outcome Y has a continuous distribution, ~GY jZ (y; z) is just the c.d.f. of Y

conditional on Z = z; GY jZ (y; z) : In this case,

�2 (z) =

Z �
2GY jZ (Y ; z)� 1

�2
dG (Y ; z) =

1

3

(this has been noticed by Sherman [1993]). The variance of the optimal MRC becomes

�MRC
� =

�
E
h
12
�
E
�
@zGY jZ (Y ;Z)

��2
(U � E [U jZ]) (U � E [U jZ])0

i��1
:

Further simpli�cation is possible in more speci�c models with continuously distributed

Y: In the monotone regression model,

Y = f (X 0�) + ";
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with " independent of X;

� (z) = E [g" (")] f
0 (z) :

In the computation of the optimal MRC, the scalar multiplier E [g" (")] does not have

to be estimated, and one can use the same weighting function as in MR. The optimal

variance is

1

12 (E [g" (")])
2

�
E
�
f 0 (z)2 (U � E [U jZ]) (U � E [U jZ])0

���1
:

In the case of the transformation model:

f (Y ) = X 0�0 + ";

with " independent of X; the MRC estimator with the weighting function de�ned via

w0 (z) =
1

g (z)

attains the optimal variance,

1

12 (E [g" (")])
2

�
E
�
(U � E [U jZ]) (U � E [U jZ])0

���1
:

In the special case of the binary choice model, the expressions for � (z) and �2 (z) are

the same as for MR, and the weighted MRC attains the semiparametric e¢ ciency bound

given in (4.14) (for the binary choice model MRC and MR with the same weighting
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function are numerically equivalent2). However, it generally does not attain the semi-

parametric e¢ ciency bound in other models where the distribution of Y is allowed to

depend on X only through the single index Z = U 0�0 + V; for an unknown �0. The

semiparametric e¢ ciency bound for estimators of �0 for this model is given by3

(4.15) �eff =

 
E

"�
@zgY jZ (Y ;Z)

gY jZ (Y ;Z)

�2
(U � E [U jZ]) (U � E [U jZ])0

#!�1
;

where gY jZ (y; z) is the conditional density of Y given Z relative to a dominating measure

(discrete, continuous, or mixed). This expression is di¤erent from the expression for the

asymptotic variance of the optimal weighted MRC, in general.

The Heteroskedastic Generalized Regression Model and MRC. Let D; F; X and

" be as in the generalized regression model (1.2), and Y is related to X as either

Y = F (X 0�0; "+ �)

or

Y = D � F (X 0�0; ") + �;

where, conditionally on X, � is independent of " and symmetric around zero. Since the

variance of �jX is unrestricted, the �rst model can be used to introduce heteroskedasticity

2This has been shown by Cavanagh and Sherman [1998] for the unweighted MRC and MR, and can be
shown for the weighted estimators by a similar derivation.
3For the model speci�ed as the gY jX (y;x) = g (y; z) ; where z = u0�0 + v; g is an unknown density

function for each z; and �0 is an unknown, �nite dimensional parameter, the score for �0 is
@zg(Y ;Z)
g(Y ;Z) U;

the tangent set in the non-parametric dimension is f' (Y ;Z)jE [' (Y ;Z) jZ] = 0g and the e¢ cient score
is @zg(Y ;Z)

g(Y ;Z) (U � E [U jZ]) :
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into the error term "+�. The second model can be used, for example, to represent heavy-

tailed errors of measurement in Y 4: Under these assumptions the distribution of (Y;X)

satis�es the identi�cation condition (1.1) and, assuming that the regularity conditions

given in Section 4.2.1 hold, the vector of coe¢ cients �0 can be consistently estimated,

up to scale, by MRC. Thus, MRC allows for practically relevant deviations from the

independence and single-index assumptions in the generalized regression model. Note

also that, in general, the �rst model does not satisfy the identi�cation condition of the

monotone regression model, and cannot be consistently estimated by MR. In other words,

MRC and MR are consistent under non-nested speci�cations.

In this example, the function � (y; u; z) generally depends on u and the weighted MRC

with the weighting function given in Section 4.2.2 may not have a smaller asymptotic

variance than the unweighted MRC. As a practical matter, one can always compute both

estimators and choose the one with the smaller estimated variance.

4.2.4. Feasible Weighted Rank Estimators

The optimal weighted rank estimators described above cannot be computed since they

depend on �0 and the unknown functions �; �2 and g. In a feasible procedure these objects

have to be estimated. Under regularity conditions, the statistical uncertainty associated

with such estimates does not a¤ect the asymptotic distribution of the weighted rank

estimators, as we show in this section.

4MR allows for non-symmetric � as long as E
�
�2
�
<1 . However, in the case of heavy-tailed symmetric

distributions of � (e.g. if � models outliers), MRC is more e¢ cient and has �nite variance even if
E
�
�2
�
=1:
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To obtain the feasible weighted rank estimator, one needs to compute a root-n-

consistent estimator of �0; �0n; e.g. the unweighted rank estimator given by (4.2), and the

estimated single index:

Ẑi = U 0i�0n + Vi:

The optimal weighting functions given in (4.10)-(4.13) can be estimated using an appro-

priate representation for the functions � and �2 obtained in Section 4.2.3 and an estimate

of the probability density function of Z. In speci�c cases some of these functions need

not be estimated altogether (such as in the case of MRC applied to continuous outcome

models, where the function �2 (X) does not have to be estimated, or to the transformation

model, where neither � nor �2 have to estimated).

In this section we give a generic estimator of the function w0 (X) for the case �2 (X) =

�2 (Z) and bounded M; without making further assumptions on the data (e.g. continu-

ous vs. discrete outcomes), or specifying the function M explicitly (so that our results

are also applicable to the estimators other than MR and MRC)5. We will show that the

corresponding feasible optimal rank estimators, with additive weights, are asymptotically

equivalent to the optimal rank estimators. To avoid cumbersome notation, we do not

present a proof of this result for other implementations of the feasible optimal rank esti-

mators; however, one can obtain such proofs by replicating our techniques presented in

Appendix, Section B.2.

The unknown functions will be estimated using kernel regressions. We impose the

following regularity conditions on the kernel function � (x) in these regressions.

5Among the presently existing rank estimators, the case of �2 (X) 6= �2 (Z) and unbounded M is only
restrictive for MR, for which the estimation of the optimal weighting function is straightforward. We do
not consider this case in order to simplify the regularity conditions and proofs.
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Assumption 18. The kernel function � (x) has a �nite support, is bounded in absolute

value, twice continuously di¤erentiable and symmetric around zero, has no more than a

�nite number of local maxima, and integrates to 1.

These conditions are standard. In particular, they allow for higher order kernels. The

condition that � have a �nite support is made here for simplicity and can be relaxed at

the expense of more complicated proofs.

Write the function w0 (z) as:

w0 (z) �
� (z)

g (z)�2 (z)
=

g2 (z)� (z)

g3 (z)�2 (z)
:

The numerator can be estimated as

\g2 (z)� (z) =
1

n2h3�

X
i;j

M (Yi; Yj)��i (z)�
0
�j (z) ;

with

��i (z) = �

 
z � Ẑi
h�

!
;

�0�i (z) = �0

 
z � Ẑi
h�

!
:

and a positive bandwidth h�:

By the de�nition of the function �2 (z) ;

�2 (z) = E [M (Y1; Y2)M (Y1; Y3) jX 0
1�0 = X 0

2�0 = X 0
3�0 = z] ;

where labels 1; 2; 3 denote independent observations.
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A consistent estimator of �2 (z) g3 (z) can be constructed as

\�2 (z) g3 (z)

=
1

n3h3�

X
i

X
j 6=k

M (Yi; Yj)M (Yi; Yk)��i (z)��j (z)��k (z) ;

where

��i (z) = �

 
z � Ẑi
h�

!
;

and h� is a bandwidth.

Therefore, the weighting function can be estimated by

ŵ0 (z) =

1
n2h3�

P
i;jM (Yi; Yj)��i (z)�

0
�j (z)

� + 1
n3h3�

P
i

P
j 6=kM (Yi; Yj)M (Yi; Yk)��i (z)��j (z)��k (z)

;

where a small constant � > 0 is introduced to ensure integrability of w0 (z) : It is worth

noting that even though this expression involves double and triple sums, one can compute

the function ŵ0 (z) in O (n log n) operations for each z; and in O (n2) operations for the

entire sample of z: In Appendix, Section C.3, we provide an example of such algorithm

for MRC.

Theorem 8. Let Assumptions 11-18 hold, the function M (y1; y2) is bounded, �0n

is a root-n-consistent estimator of �0; the bandwidths satisfy the conditions h�; h� ! 0;

n1=6h�; n
1=6h� ! 1; and � > 0: Denote by �n the solution to the optimization problem

(4.3) with the weights ŵ (Xi; Xj) = ŵ0

�
Ẑi

�
+ ŵ0

�
Ẑj

�
. Then

�n
p! �0;
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and

n1=2 (�n � �0)
d! N

�
0; 4��1

w�Vw��
�1
w�

�
;

where w� (z1; z2) =
g2(z1)�(z1)

�+g3(z1)�2(z1)
+ g2(z2)�(z2)

�+g3(z2)�2(z2)
:

4.3. Numerical Examples

Here we provide numerical examples illustrating the asymptotic theory exposed in the

previous section. In the �rst set of examples we consider a submodel of the generalized

regression model with continuously distributed outcomes and the error term independent

of regressors. Both MRC and MR are consistent, but neither attains the semiparametric

e¢ ciency bound (computed assuming that " is independent of X) in this model. On the

other hand, both MRC and MR are also consistent under certain (non-nested) devia-

tions from the independence assumption. In these examples, we compare the asymptotic

variances of the optimal MRC and MR, and the e¢ ciency bound under independence, to

identify situations in which the �exibility allowed by MRC and MR is costly. In the second

set of examples we compare the asymptotic variance of the unweighted MRC (MR) with

that of the optimal MRC (respectively, MR), for various models with exactly speci�ed

features, to �nd the conditions under which the optimal weighting can deliver tangible

e¢ ciency improvements. Next, we provide an example of the �nite-sample performance

of the feasible optimal MRC and MR. Finally, we illustrate our conclusions in a real data

application.
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4.3.1. E¢ ciency Comparisons for Exact Distributions

Optimal Rank Estimators and a Semiparametric E¢ ciency Bound. In our �rst

illustration we compare the asymptotic variance of the optimal MRC with the semipara-

metric e¢ ciency bound (4.15) in the transformation-monotone regression model:

h (Y ) = f (Z) + ";

where f and h are strictly monotone, di¤erentiable functions, Z = U 0�0 + V is the single

index and " is independent of X = (U; V ) and has a di¤erentiable Lebesgue density. In

this case, the asymptotic variance of the optimal weighted MRC is

�MRC
� =

1

12E [g" (")]
2

�
E
�
f 0 (Z)2 (U � E [U jZ]) (U � E [U jZ])0

���1
;

while the semiparametric e¢ ciency bound is

�eff =
1

E

��
g0"(")
g"(")

�2� �E �f 0 (Z)2 (U � E [U jZ]) (U � E [U jZ])0
���1

(neither depends on the function h). Therefore,

�MRC
� = �eff

E

��
g0"(")
g"(")

�2�
12 (E [g" (")])

2 � �
eff � �2MRC=eff :

To give a numerical sense of the loss of e¢ ciency involved, we computed the values

of the coe¢ cient �MRC=eff (corresponding to the ratio of the standard deviations rather
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than variances) assuming that " has the density from the Subbotin�s [1923] family:

g� (e) _ e�je=!j
�

; e 2 R;

where � is a positive parameter and ! is a positive scaling constant (related to the variance

of the distribution). This family of distributions includes the normal distribution (� = 2)

and the double exponential distribution (� = 1). It is worth noting that the coe¢ cient

�MRC=eff does not depend on either the mean or the variance of "; but only on the shape

of its density function. In Figure 4.1 we plotted the densities g� for various �, choosing

the scaling factor ! so that the variance of " is 1. One can see that for � close to zero

the densities are steep near the origin, while for large values of � they are steep in the

tails. The limit � ! 1 corresponds to the uniform distribution on a bounded support.

In Figure 4.2 we plotted the densities g� renormalized so that the value of the density at

zero is (2�)�1=2 (e.g. the same as for the standard normal distribution). It is apparent

from this �gure that the limit �! 0 also corresponds to heavy-tailed distributions.

The value of the coe¢ cient �MRC=eff for this family of distributions can be computed

explicitly and is given by

�MRC=eff (�) =

 
4
1
�

3
�

�
1

�

�
�

�
2� 1

�

�!1=2
;

where � (p) is the Gamma function. The function �MRC=eff (�) is plotted in Figure

4.3. The e¢ ciency loss is small for the double exponential and the normal distributions.

The e¢ ciency loss is large when there are regions in the support of the distribution of

" in which the density changes fast (the value of the ratio g0"(")
g"(")

is high). In this case
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Figure 4.1. Probability densities g�; variances normalized to 1
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Figure 4.2. Probability densities g�; modes normalized to (2�)
�1=2

a maximum likelihood approach based on the model Y jX � Y jZ can give substantial

e¢ ciency improvements over MRC (but will not be consistent from deviations of this

model) as long as it correctly picks up this feature of the distribution of ".
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Figure 4.3. The functions �MRC=Eff (�) ; �MR=MRC (a) and �g (�)

Next, we compare the asymptotic variances of the optimal MRC and MR in the

monotone regression model (i.e. h � 1). The optimal variance of MR is

�MR
� = V ar (") �

�
E
�
f 0 (Z)2 (U � E [U jZ]) (U � E [U jZ])0

���1
;

and, therefore,

�MR
� = �MRC

� � 12E [g" (")]2 V ar (") � �MRC
� � �2MR=MRC :

For the family of densities introduced above,

�MR=MRC (�) =

 
3�2

4
1
�

�
�
3
�

��
�
�
1
�

��3
!1=2

:

The graph of the function �MR=MRC (�) is shown in Figure 4.3. MRC has lower asymptotic

variance if the distribution of " has heavy tails (low �; e.g., � = 1), and if there are regions
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in the support of " where the density of " takes high values. However, one can also see

that the asymptotic variance of MRC can be larger than that of MR (� ! 1 in the

graph).

As noted above, in the binary choice model, the two estimators attain the semipara-

metric e¢ ciency bound. As the binary choice model and the continuous outcome model

can be considered as extreme cases of the models with censoring, one can expect that

estimating the models with censoring by MRC or MR will lead to a loss of e¢ ciency, of

the order of magnitude comparable or smaller than the loss of e¢ ciency in models with

continuously distributed outcomes.

Unweighted vs. Optimal Rank Estimators. In this section we compare the asymp-

totic variances of unweighted rank estimators with those of the optimal rank estimators.

Throughout, we maintain the following assumptions: the function � (y; u; z) does not de-

pend on u; the vector of the �rst d regressors, U; is distributed independently of the single

index, Z; and the function �2 (X) depends on X only through the single index Z: Then

the asymptotic variances are given by

V ar (U)�1
E [�2 (Z) g2 (Z)]

(E [� (Z) g (Z)])2
; V ar (U)�1

1

E
h
�2(Z)
�2(Z)

i
for the unweighted and the optimal rank estimators, respectively. The variance of the

unweighted estimator, therefore, is

�2g;�;� =
E [�2 (Z) g2 (Z)]E

h
�2(Z)
�2(Z)

i
(E [� (Z) g (Z)])2

times bigger than the variance of the optimal estimator.
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As the �rst example, consider the case where the functions �2 (Z) and � (Z) are

constant (e.g. in the transformation model with independent errors estimated by MRC).

In this case

�2g =
E [g2 (Z)]

E [g (Z)]2
:

The coe¢ cient �g is bigger than 1 if the single index Z is unevenly distributed over its

support. To illustrate, we computed this coe¢ cient for the Subbotin�s family of densities,

g� (z) _ e�jzj
�

; z 2 R; as a function of �:

�g (�) =

�
4

3

� 1
2�

:

The graph of the function �g (�) is shown in Figure 4.3. One can see that substantial

deviations from uniformity in the distribution of the single index are needed for noticeable

e¢ ciency gains from the optimal weighting.

Next, we consider the case where the functions � (z) and �2 (z) are nonconstant. Ex-

amples include the transformation-monotone regression model with " independent of X;

estimated by MRC (� (z) / f 0 (z) ; constant �2 (z)), other generalized regression models

with " independent of X estimated by MRC (constant �2 (z)), and the monotone regres-

sion model estimated by MR (� (z) = f 0 (z) ; �2 (z) = V ar (Y jZ = z)). We assume that

the single index has a density from the Subbotin�s family, � (z) = jzj��1 for a � > 0; and

�2 (z) = jzj. Then

�g;�;� (�; �; ) =

 
4
�
�

3
2+1
�

�
�
2��2�1

�

�
�
�
2+1
�

�
�
�
�
�

�2
!1=2
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Figure 4.4. The functions �g;�;� (2; �; ) for  = 0 and  = �

(note that for the power functions � (z) and �2 (z) ; the coe¢ cient �g;� (�; �) is invariant

to changes in the scale of the single index, but not to the changes in the location of its

distribution). Figure 4.4 shows the graph of the functions �g;�;� (2; �; 0) and �g;�;� (2; �; �).

One can see that, unlike in the previous cases, sizable gains in e¢ ciency are possible with

the optimally weighted estimators even with moderate nonlinearities in the data.

Finally, we consider an important special case of the monotone regression model with

heteroskedasticity, the binary choice model. The ratio of the variance of the unweighted

MR (MRC) estimator to the variance of the optimal estimator (i.e. the semiparametric

e¢ ciency bound for the binary choice model under independence) is given by

�2bin =
E [G" (Z) (1�G" (Z)) g

2 (Z)] � E
h

g"(Z)
2

G"(Z)(1�G"(Z))

i
E [g" (Z) g (Z)]

:
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Consider the case in which the densities g"; g are bounded and have substantial overlap,

or, formally, where the ratio

E [G" (Z) (1�G" (Z)) g
2 (Z)]

E [g" (Z) g (Z)]

is bounded away from zero and in�nity. Then one can expect the coe¢ cient �bin to be

large if there are regions in the support of Z where G" (z) (1�G (z)) is close to zero and

g" (z) and g (z) are not. For example, for " with a bounded support lying strictly inside

the support of the single index, the coe¢ cient �bin can be large if the density of " is

nonsmooth near the boundaries, e.g., �bin = +1 for uniformly distributed ". However,

�bin is likely to be moderate if the density of " is Lipschitz near the boundaries of the

support, in which case the function g"(z)
2

G"(z)(1�G"(z)) remains bounded.

In the numerical example, we consider " with the c.d.f. G";� (e) = B�1
� (e) ; where

B� (t) =

Z t

1=2

u�� (1� u)�� du; � � 0; t 2 (0; 1) :

The density of this distribution is given by

g";� (e) = G";� (e)
� (1�G";� (e))

� :

The function B� (t) has �nite (in�nite) range, and G";� (e) has �nite (in�nite) support

for � < 1 (� � 1). The zero value of � corresponds to the uniform distribution of ":

The value � = 1 corresponds to the logistic distribution with the c.d.f. (1 + e�z)�1 : For

0 < � < 1
2
; the density g";� (e) converges to zero near the boundaries of the support, but

its derivative diverges to 1 in absolute value. For � � 1
2
; the derivative of the density is
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bounded. The density of the single index is speci�ed as

g�;� (z) = c�1�;� �G";� (e)
� (1�G";� (e))

� ; � > �� 1;

where c�;� =
R
G";� (e)

� (1�G";� (e))
� de is a normalization constant. Therefore, in this

example, the single index has the same support (�nite or in�nite) as the error term, while

� measures relative thickness of the two densities near the boundaries of the support (or

at in�nity). For these distributions,

�bin (�; �) =

 
~B (�+ �) ~B (3� + 2� �)

~B (2� + 1)2

!1=2
;

where ~B (t) = B (t; t) ; and B (s; t) =
R 1
0
us�1 (1� u)t�1 du is the Beta function. Figure

4.5 shows the graphs of the functions �bin (�; �) for �xed � = 0; 0:5, 1; 1:5. One can see

that the e¢ ciency gains from optimal weighting are small except in the case of the uniform

distribution of " and su¢ ciently thick density of the single index near the boundaries of

the support.

4.3.2. Finite-Sample Performance of the Feasible Optimal Rank Estimators

We evaluate the �nite-sample performance of the feasible optimal rank estimators in the

model:

Y = Z2sign (Z) + ";

Z = �0X
(1) +X(2);
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Figure 4.5. The functions �bin (�; �) for � = 0; 0:5; 1 and 1:5

where the random vector
�
X(1); X(2); "

�
is distributed according to the standard normal

distribution and �0 = 0:We estimate the parameter �0 by the unweighted and the feasible

optimal MR and MRC on 1000 data samples of n = 1000 observations. Using the un-

weighted estimator, �̂0n; of �0; we computed the estimated single index, Ẑ = �̂0nX
(1)+X(2);

and estimated the density of the single index, g (z), and the functions � (z) = @zE [Y jZ]

and �2 (z) = V ar (Y jZ) using the kernel regressions with the kernel function given by

the density of the standard normal distribution and a bandwidth h. The correspond-

ing estimators are denoted by ĝh (z) ; �̂h (z) ; and �̂
2
h (z) : The objective function in the

optimization problem for the weighted MR is

X
i6=j

�
ŵ0h

�
Ẑi

�
+ ŵ0h

�
Ẑj

��
Yi1
n
�X

(1)
i +X

(2)
i > �X

(1)
j +X

(2)
j

o
;



78

and the objective function for the weighted MRC is

X
i6=j

�
ŵ0h

�
Ẑi

�
+ ŵ0h

�
Ẑj

��
1 fYi > Yjg 1

n
�X

(1)
i +X

(2)
i > �X

(1)
j +X

(2)
j

o
;

where ŵ0h (z) =
�̂h(z)

�̂+ĝh(z)�̂
2
h(z)

: For additive weights, the MRC and MR objective functions

can be evaluated using O (n log n) operations, which is important for their practical use

(the same is true for multiplicative weights; see Appendix, Section C.2, for the numer-

ical algorithms). We computed the feasible optimal MR and MRC estimators for the

bandwidths

h = kn�1=6 (q̂z (:95)� q̂z (:05)) ;

where q̂z (:05) and q̂z (:95) are the estimated 5% and 95%-quantiles of the distribution of

the single index, and k is a scaling factor, taking ten values in the interval 0.05:0.5. The

truncation parameter �̂ and the truncation parameters in the kernel estimators of the

functions g; �; and �2 were set at the level of 0.01 of the mean value of the denominator

over the sample. The maximization of the objective functions was performed on a grid

of 20,000 points in the interval [�5 � n�1=2; 5 � n�1=2]. The simulated biases and standard

deviations of the statistic n1=2 (�n � �0) are reported in Table 4.1. One can see that the

biases are low for both the unweighted and weighted estimators, for all considered values

of the bandwidth. The weighted estimators provide substantial e¢ ciency gains for all k;

with the lowest standard deviation of the estimator attained near k = 0:2 for MR and

k = 0:25 for MRC.
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MR MRC
bias st.dev. bias st.dev.

Unweighted .070 1.009 .041 1.023
Optimal:
k =
.05 .048 .809 .046 .849
.10 .031 .684 .046 .734
.15 .029 .653 .039 .695
.20 .036 .649 .040 .686
.25 .037 .651 .040 .682
.30 .040 .670 .040 .687
.35 .047 .683 .038 .698
.40 .047 .699 .043 .723
.45 .052 .709 .039 .737
.50 .057 .721 .037 .753

Table 4.1. Biases and standard deviations of the unweighted and feasible
optimal rank estimators

4.3.3. Empirical Example

In this example we study a model of choice between private and public schools in Chile. We

use the census data SIMCE 2006 collected by the Ministry of Education of Chile6, which

contains the information on the type of schools attended by grade four students, along

with various demographic and income characteristics of the students and their families.

Our purpose is to estimate the vector of coe¢ cients � in the binary choice model:

Y = 1 fX 0� + " > 0g ;

where Y is the choice of school (1 if private, 0 if public), and X contains the following

variables: NUP; the number of people living in the household excluding the child, INC;

the income category of the family, CHS; the binary variable showing if the child has

ever received a poverty subsidy from the government, GEN; the gender of the child (1 if

6I am grateful to Professor Sergio Urzúa at Northwestern University for providing me with this data set.
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female), FIN and MIN; the binary variables showing, respectively, if the father and the

mother belong to an Indian tribe, and EDU; the combined years of education attained by

the farther and the mother of the child. The estimation sample is restricted to children

from urban families, and contains 160,998 observations.

To estimate the model using MR, we need a continuously distributed regressor with a

smooth density. Because all variables in this example are discrete, the coe¢ cient � is not

pointwise identi�ed, up to scale, without further assumptions. To resolve this problem,

we adopt a simpli�ed approach. We assume that the education of the parents a¤ects the

choice of school via an unobservable, continuously distributed variable EDU�; related to

EDU according to the equation:

EDU� = EDU + �;

with the random term � being distributed with a known distribution independently of

EDU; the other regressors in the model, and ": Since the discretization step in EDU

is equal to 1 unit (year), we specify the distribution function of � as N
�
0; 1

9

�
to allow

for a small overlap between the supports of the distributions N
�
EDU; 1

9

�
for consecutive

values of EDU 7. Under these assumptions, �0 = (�0; 1) can be consistently estimated, up

to scale, from the model:

Y = 1 f�00U + EDU + � + " > 0g ;

7As a robustness check, we also estimated the model with � distributed uniformly in the interval
�
� 1
4 ;

1
4

�
.

In this speci�cation, the density of EDU� is discontinuous, and its support consists of non-overlapping
intervals around the integer values. The estimated coe¢ cients and their standard errors were very similar
to those obtained under the normally distributed �:
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where the vector U contains all regressors except EDU; and � is a randomly generated

noise having the same distribution as � independently of U; EDU and ": In this setup the

continuously distributed regressor with the coe¢ cient �xed to 1 is EDU + �.

As a benchmark, we �rst found the standard logit estimator of �0; �Logit; computed

the vector �Logit by dividing the components of �Logit by the coe¢ cient at EDU; and

estimated the variance of �Logit from the variance of �Logit by the delta-method. Next, we

found the unweighted MR estimator of �0; and the single index, Ẑ: To perform numerical

optimization we used the Nelder-Mead algorithm as described in Appendix, Section C.4.

To �nd the feasible optimal MR, we �rst estimated the weighting function, which depends

on the density of the index, g (z) ; the conditional mean of the outcome given the index,

E [Y jZ] ; and the function � (z) = @
@z
E [Y jZ = z] ; which in the binary choice model is the

density of the error term8. We computed these functions, on a grid of 2; 000 values of the

single index, for bandwidths h = 3; 4; 5 and the truncation parameter in the denominator,

� ; equal to � 0 times the mean of the denominator, for � 0 = 0:02; 0:05; and 0:1: Figure

4.6 shows the density of the single index and the density of the error term (the function

� (z)) for h = 4 and � 0 = 0:05: One can see, in particular, that the estimated density is

not symmetric, thus deviating from the logit assumption. To illustrate the range of the

weighting functions resulting from our choices of bandwidths and trimming parameters,

we plotted them in Figure 4.7 for h = 3; 5 and � 0 = 0:02, 0:1. Once the weighting

functions were found, we computed the weighted MR estimators. Finally, the standard

errors of the coe¢ cients were found using the M out of N bootstrap with M = 10; 000:

8In the model with an added noise, the error term " is contaminated by the term � � � � N
�
0; 29
�
.
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Figure 4.6. School choice equation, the densities of the index and the error term
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Figure 4.7. School choice equation, the weighting functions

Tables 4.2 and 4.3 report, respectively, the estimates and the standard errors of the

coe¢ cients for the logit, unweighted MR, and the feasible optimal MR estimators. It is

apparent that estimates obtained by the weighted and unweighted MR agree with each

other. However, the logit appears to overestimate the e¤ect of the family income on the
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NUP FIN MIN INC CHS GEN

Logit -1.2548 -.4302 -.6134 3.5605 -3.2781 .3222

Unweighted MR -1.1472 -.6231 -.8845 2.8074 -3.6328 .2096

Weighted MR:
� = :02; h = 3 -1.1973 -.8256 -1.1200 2.6743 -3.6476 .2505
� = :02; h = 4 -1.2003 -.7287 -1.2290 2.6746 -3.6599 .2478
� = :02; h = 5 -1.2002 -.7266 -1.2185 2.6735 -3.6629 .2467
� = :05; h = 3 -1.1965 -.7215 -1.1032 2.6734 -3.5466 .2502
� = :05; h = 4 -1.1972 -.7059 -1.1155 2.6743 -3.5908 .2524
� = :05; h = 5 -1.2009 -.7289 -1.1080 2.6758 -3.6476 .2474
� = :10; h = 3 -1.1945 -.6968 -1.1094 2.6830 -3.5390 .2422
� = :10; h = 4 -1.1939 -.6965 -1.1049 2.6810 -3.5651 .2425
� = :10; h = 5 -1.1983 -.7038 -1.0972 2.6803 -3.5464 .2398

Table 4.2. School choice equation, coe¢ cients

choice of school. The standard errors of the weighted estimators are lower by just a small

fraction of the standard errors of the unweighted MR. This suggests that the variance of

the unweighted MR estimator is near the semiparametric e¢ ciency bound, the property

that has already been observed in our previous examples. Interestingly, the logit estimator

has little to o¤er in terms of reducing the standard errors for most coe¢ cients relative to

the more robust semiparametric estimators.

4.4. Conclusion

Rank-based estimators are important tools of robust estimation in popular semipara-

metric models under monotonicity constraints. Using weights in their criteria functions

can lead to lower asymptotic variances. We provided conditions under which the optimally

weighted rank estimators exist and studied the associated gains in e¢ ciency. Optimal

monotone rank estimator exists and attains the semiparametric e¢ ciency bound in the
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NUP FIN MIN INC CHS GEN

Logit .0526 .4494 .4259 .0847 .3221 .1501

Unweighted MR .0572 .4897 .4837 .1174 .3556 .1375

Weighted MR:
� = :02; h = 3 .0551 .4784 .4732 .1021 .3434 .1301
� = :02; h = 4 .0550 .4833 .4740 .1029 .3451 .1316
� = :02; h = 5 .0551 .4809 .4746 .1027 .3465 .1323
� = :05; h = 3 .0557 .4800 .4731 .1041 .3453 .1322
� = :05; h = 4 .0553 .4800 .4746 .1040 .3454 .1323
� = :05; h = 5 .0555 .4857 .4760 .1037 .3469 .1325
� = :10; h = 3 .0559 .4809 .4771 .1057 .3460 .1326
� = :10; h = 4 .0558 .4815 .4765 .1058 .3461 .1323
� = :10; h = 5 .0554 .4799 .4775 .1056 .3473 .1323

Table 4.3. School choice equation, standard errors

nonlinear regression model and the binary choice model. Optimal maximum rank correla-

tion estimator exists in single-index models with independent errors, has the asymptotic

variance close to the semiparametric e¢ ciency bound when the distribution of the errors

is close to normal, and is consistent under practically relevant deviations from the single

index assumption. Under moderate nonlinearities and nonsmoothness in the data, the ef-

�ciency gains from weighting are likely to be small for MRC in the transformation model

and for MRC and MR in the binary choice model, and can be large for MRC and MR in

the monotone regression model.
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APPENDIX A

Appendix to Chapters 2 and 3

Here we provide the proofs of Theorems 1-5 presented in Chapters 2 and 3. Due to

mathematical complexity and length, the derivation is divided into four steps. First, we

discuss the structure and the principal ingredients of our analysis (Section A.1). The

actual proofs are given in Section A.2. Section A.3 provides an overview of the empirical

process theory for U -processes, with necessary extensions. Section A.4 contains an auxil-

iary lemma on the Berry-Esséen bound for M -estimators with a criterion function in the

form of a smooth U -process.

A.1. Main Tools of Proof

This subsection describes the main ideas underlying the proofs of Theorems 1-5. The

essence of the analysis is to separate a smooth and a nonsmooth components of the

objective function. The estimator �n is approximated by a maximizer of the smooth

component whose properties can be studied using the Taylor expansion and the Berry-

Esséen bounds. Then the empirical process theory for U -processes is used to show that

the e¤ect of the nonsmooth remainder in the objective function on the distribution of �n

is negligible.

To simplify notation, we assume, without loss of generality, that �0 = 0; and that the

function h0 is identically zero.
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A.1.1. Approximation

Consider an estimator, �n; that solves the problem

Gn;�n � sup
�2�

[Gn;� � rn;�] ;

and assume that the objective function Gn;� admits the representation

(A.1) Gn;� = G0n;� + �n;�;

where � 2 � � Rd; G0n;� is a smooth random function of �; and �n;� is a remainder. An

approximation to �n; denoted by �n; solves the problem

(A.2) �n 2 argmax
�2�

G0n;�:

If the remainder terms �n;�; rn;� are small in an appropriate sense, then the di¤erence

n1=2 (�n � �n) will also be small. The following theorems formalize this idea.

The �rst theorem is useful for establishing the asymptotic normality of �n (part (a)),

and estimating its variance (part (b)). Here it is enough to consider the representation

(A.1) with

G0n;� � �0Wn �
1

2
�0A�;

where Wn is a d� 1 random vector, not depending on �; and A is a matrix of constants.

Then �n = A�1Wn; as long as the vector on the right-hand side is an element of �: The

�rst part of the theorem is a variant of Pollard�s [1985] asymptotic normality theorem

(see also Sherman [1993] and Arcones, Chen, Giné [1994]), and the second part is a

simple extension.
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Theorem 9. Assume that 0 is an interior point of �; and A is a symmetric, positive

de�nite, constant matrix. (a) If �n !p 0; Wn = Op
�
n�1=2

�
; and for every sequence of

numbers �n ! +0;

(A.3) sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

!p 0;

then

n1=2
�
�n � A�1Wn

�
!p 0:

(b) If, additionally, � is a bounded set, P kWnk2 = O (n�1) ; and for every " > 0; and

every sequence of numbers �n ! +0;

P fk�nk > "g = o
�
n�1
�
;

P
W 2

n

 1 fkWnk > "g = o
�
n�1
�
;

and

(A.4) P

(
sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

> "

)
= o

�
n�1
�
;

then

(A.5) P
n1=2 ��n � A�1Wn

�2 ! 0:
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Proof. Denote tn = n1=2 (�n � A�1Wn) : When A�1Wn 2 �; by the de�ning property

of �n and (A.1),

Gn;�n � Gn;A�1Wn
� rn;A�1Wn

;

�0nWn �
1

2
�0nA�n + �n;�n �

1

2
W 0
nA

�1Wn + �n;A�1Wn
� rn;A�1Wn

;

(A.6) t0nAtn � 2n
�
�n;�n � �n;A�1Wn

� rn;A�1Wn

�
:

Note that this implies that

ktnk2 �
2n

�

�
�n;�n � �n;A�1Wn

� rn;A�1Wn

�
;

where � > 0 is the smallest eighen-value of A:

(a) Fix " > 0; and let E";n be the event that

ktnk2 � "
�
1 + ktnk2 + n kWnk2

�
:

We next show that, by the assumptions of the theorem and (A.6), P
�
E";n

�
= o (1) :

Without a loss of generality, assume that A = I: First, note that the fact that �n !p 0

implies that there exists a deterministic sequence �n ! +0 such that

P fk�nk > �ng = o (1) :

Now �x �0 > 0: Take �n ! +0 such that P fk�nk > �ng = o (1) and P fkWnk > �ng =

o (1) (note thatWn !p 0). For all n � N1; P fk�nk > �ng � �0 and P fkWnk > �ng � �0:

Since 0 is in interior of �; this also implies that P fWn =2 �g � �0 for all n � N2: By
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(A.3), for all n � N3;

P

(
sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

>
"

6

)
< �0:

Thus, with probability at least 1 � 4�0 (when none of the above events is true), for all

n � N4 = maxfN1; N2; N3g,

ktnk2 � 2n
�
�n;�n � �n;A�1Wn

� rn;A�1Wn

�
� "

6
2n
�
2n�1 + k�nk2 + kWnk2

�
� "

�
1 + ktnk2 + n kWnk2

�
;

i.e. P
�
E";n

�
= o (1) :

Next, since Wn = Op
�
n�1=2

�
; there exists K > 1 such that for n > N5;

P
�
n kWnk2 > K

	
< �0;

therefore,

P
�
n kWnk2 � K and E "

K
;n

	
= 1� o (1) :

On this latter event, ktnk2 � "
�
2 + ktnk2

�
; or ktnk2 � 2"

1�" ; which implies that tn = op (1) :

(b) Fix " > 0; and let E";n be the event de�ned above. Assumptions of the theorem

and (A.6) imply that P
�
E";n

�
= o (n�1) : To show this, we �rst prove that there is a

deterministic sequence �n ! +0; such that

P fk�nk > �ng = o
�
n�1
�
:
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De�ne

�n = inf
�
� > 0 : P fk�nk > �g � n�1�

	
:

Note that �n � n is always �nite and so well de�ned. Since P fk�nk > �g ! 1 as � ! 0;

�n > 0 for all n: Also, by continuity of probability,

P fk�nk > �ng � n�1�n:

It remains to show that �n ! 0: Take a � > 0:We have: P fk�nk > �g = o (n�1) ; that is,

there exists n� such that P fk�nk > �g < �n�1 for all n � n�: By de�nition of �n; �n � �

for all n � n�: In other words, �n ! +0:

Note that the condition

P
W 2

n

 1 fkWnk > �g = o
�
n�1
�

implies, by Chebyshev inequality, that for any � > 0; P fkWnk > �g = o (n�1) ; therefore,

there is a sequence �n ! +0 such that P fk�nk+ kWnk > �ng = o (n�1).

Fix � > 0 and take �n as above. Take N so large that the union of the events

fk�nk+ kWnk > �ng(
sup
k�k��n

���n;���+ jrn;�j
n�1 + k�k2

>
"�

6

)
and

fWn =2 �g
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has the probability less than �: On the complement event,

ktnk2 � "
�
1 + ktnk2 + n kWnk2

�
by the same argument as in (a).

Choose " < 1: Then, taking into account that �n 2 � is bounded,

P ktnk2

� P ktnk2 1E";n + P ktnk2 1E";n

� "

1� "
P
�
1 + n kWnk2

�
+ P ktnk2 1E";n

� "

1� "
O (1) + 2Pn k�nk2 1E";n + 2Pn kWnk2 1E";n

� "

1� "
O (1) + 2 sup

�
k�k2 nP

�
E";n

�
+2nP kWnk2 1

�
kWnk2 > 1

	
+ 2nP

�
E";n

	
� "

1� "
O (1) + o (1) :

Therefore, P ktnk2 = o (1). �

To assess the accuracy of the normal approximation, one needs to investigate the

nature of the di¤erence between �n and �n more closely.

Theorem 10. . Suppose that equations (A.1) and (A.2) hold. Assume that there

exists a sequence of numbers an � 1; and numbers �; �0 > 0 and � 2 [0; 2) such that the

ball with center zero and radius �0 is in �; and

(i) For any � > 0; P fk�nk+ k�nk > �g = O (a�1n ) :
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(ii)

P

8><>: Matrix @2G0n;� exists and is continuous, and

�@2G0n;� � �I for all k�k � �0

9>=>;
= 1�O

�
a�1n
�
:

(iii) For any 0 < � � �0,

P

(
sup
k�k��

�n;�n+� � �n;�n + rn;�n

n�1a�2n + � k�k2 + (n�1=2a�1n )
2�� k�k�

� 1

�0

)
= 1�O

�
a�1n
�
:

Then there exists a constant K such that

P
�
n1=2 k�n � �nk > Ka�1n

	
= O

�
a�1n
�
:

Proof. Let �� = min
�
�0;

��0
4

	
: Let En be the union of event

fk�nk ; k�nk < ��g ;

the event in condition (ii), and the event in condition (iii) for � = ��: Conditions (i)-(iii)

imply that P
�
En
�
= O (a�1n ) : De�ne tn = n1=2an (�n � �n) : Since �n 2 �; we have

G0n;�n �G0n;�n � �rn;� + �n;�n � �n;�n :
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When on En; �n is an interior maximum and so the F.O.C., @G0n;�n = 0; is satis�ed. Use

this to expand the left-hand side around �n: for some
~�n � ��;

G0n;�n �G0n;�n =
1

2
n�1a�2n t0n@

2G0
n;~�n

tn

� ��
2
n�1a�2n ktnk2 :

Therefore,

ktnk2 � 2

�
na2n

�
rn;� + �n;�n � �n;�n

�
� 2

��0

�
1 + �� ktnk2 + ktnk�

�
;

or (recall that �� � ��0
4
)

ktnk2 �
4

��0
(1 + ktnk�) :

Because � 2 [0; 2); this implies that for some constant K = K (�; �0; �) > 0;

ktnk � K:

Taking into account the possibility of the event En; we have

P
�
n1=2 k�n � �nk > Ka�1n

	
= P

�
En
�
= O

�
a�1n
�
:

�
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A.1.2. Hoe¤ding Decomposition and Its Bootstrap Version

When the estimator maximizes a U -process, representation (A.1) can be obtained by the

so-called Hoe¤ding decomposition (or the U -decomposition). Let h� : Zm ! R be a

symmetric, P -measurable function. Denote by �k:mh� the projection of h� onto the space

of functions of k arguments that are degenerate with respect to the measure P; in the sense

that their expectation relative to P over any one argument, holding the other arguments

constant, is zero:

(�k;mh�) (z1; :::; zk) = (�z1 � P ) ::: (�zk � P )Pm�kh�

(where �z1h� = h� (z1; �)). Then

(A.7) U (m)n h� = Pmh� +mPn�1;mh� +
mX
k=2

�
m

k

�
U (k)n (�k;mh)� ;

where Pn is the sample mean, i.e. the U -process of order 1 (see e.g. Arcones and Giné

[1992] for the U -decomposition in this notation).

The importance of the Hoe¤ding decomposition is that it isolates terms of progressively

higher order in n�1=2: The �rst term is the expectation of h� and has the order O (1) :

The second term is the sample mean of a random variable with zero mean; it has the

order Op
�
n�1=2

�
by the Central Limit Theorem. The following terms are of the order

Op
�
n�k=2

�
: Representation (A.1) can be obtained if the �rst few terms in (A.7) are twice

di¤erentiable in �; so that they admit a Taylor expansion with leading terms given by

G0n;�; while the error term �n;� will collect the remainder from the Taylor expansion and

the higher-order U -processes in (A.7). Speci�c decompositions will be considered below.
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A similar decomposition is also needed for the bootstrap problem. In the literature on

the bootstrap of U -statistics, it is common to write the Hoe¤ding decomposition of the

bootstrapped process, Û (m)n h�; conditionally on the sample of data fZigni=1, i.e. relative

to the empirical measure Pn in place of P: This approach makes the analysis of the

higher-order processes no more di¢ cult in the bootstrap problem than in the sample

problem. It is inconvenient for M -estimators, however, because the leading terms of the

U -decomposition relative to Pn may not have the smoothness properties of the leading

terms in (A.7). For example, the �rst term will be:

Pmn h� �
1

n2

X
i1;:::;im

h� (Zi1 ; Zi2 ; :::; Zim)

which is not a di¤erentiable function of � for the rank estimators. Thus, the Taylor

expansion arguments leading to representation (A.1) for the sample problem will not be

directly applicable to the bootstrap problem.

Here we suggest a di¤erent approach. Write the Hoe¤ding decomposition of the boot-

strapped process in terms of the same functions �k:mh� (integrals of h� relative to P ) that

appear in (A.7):

(A.8) Û (m)n h� = Pmh� +mP̂n (�1;mh�) +
mX
k=2

�
m

k

�
Û (k)n (�k:mh�) :

(To obtain this formula, apply the summation operator Û (m)n to formula (2.5) in Arcones

and Giné [1992].) Now, the functional form, and therefore, smoothness properties with

respect to �; of the leading terms in Gn;� and Ĝn;� are the same, and only the sample of

data on which they are evaluated di¤er.
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A.1.3. Bounds on the Higher-Order U-Processes

To apply the approximation theorems, we need to check their equicontinuity assumptions

for the components of �n;� and �̂n;� given by the higher-order U -processes in the Hoe¤ding

decomposition. This is the most challenging part of the proof, which is mostly deployed

in Section A.3. Here we give only the �nal results relevant to our problem.

Given a function h (z1; :::; zm) ; de�ne the function

h[m�2s] (z1; :::; zm�2s) =Z
h (z1; :::; zm�2s; Zm�s+1; Zm�s+1; :::; Zm; Zm) dP (Zm�s+1) :::dP (Zm) :

For the sample problem, the following two bounds hold.

Lemma 11. (a) Let H = fh� : Zm ! Rg; m � 1; be a class of P -degenerate

symmetric functions, which is Euclidean for an envelope H satisfying PmHp_2 < 1 for

p � 1; and Hn be its subclasses. Then, as n!1,

nm=2
�
P sup
h2H

��U (m)n h
��p�1=p = O (1) :

(b) If, additionally, suph2Hn
Pmh2 ! 0; then

nm=2
�
P sup
h2Hn

��U (m)n h
��p�1=p = o (1) :

(c) If, additionally to conditions in (a), PmHp_2
!m <1 for each permutation, with repeti-

tion, !m; then

nm=2
�
P sup
h2H

���Û (m)n h
���p�1=p = O (1) :
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(d) If, additionally to conditions in (b) and (c), for each s; 1 � s � m
2
;

sup
h2Hn

Pm�2s
�
h[m�2s]

�2 ! 0;

then

nm=2
�
P sup
h2Hn

���Û (m)n h
���p�1=p = o (1) :

Lemma 12. Let H = fh� : Zm ! Rg; m � 2; be a class of symmetric, P -degenerate

functions, Euclidean for an envelope H. Assume that there exist constants �0; C > 0 such

that for all �1; �2 in the �0-neighborhood of 0;

(A.9) Pm
�
(h�1 � h�2)

2� � C k�1 � �2k :

Then

(A.10) P

8<: sup
k~�k; k�k��0=2

���U (m)n

�
h~�+� � h~�

����
n�1a�2n + (n�1=2a�1n )

3=2 k�k1=2
> 1

9=; = O
�
a�1n
�
;

with any an � 1 satisfying

an �
�
n1=6 (log n)�2=3

�1=(1+2=3p)
; if m = 2 and PmH6 <1;

an � n(m�1)=4�"; if m � 3 and PmHp <1 for all p:
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In the last expression, " > 0 can be arbitrarily small1.

(b) If, additionally, the integrability conditions imposed on function H also hold for func-

tions H!m ; for all permutations, with repetition, !m; and for all �1; �2; and for all s;

1 � s � m
2
; in the �0-neighborhood of 0;

Pm�2s
��
h
[m�2s]
�1

� h
[m�2s]
�2

�2�
� C k�1 � �2k ;

then inequality (A.10) also holds (with the same rates an) with U
(m)
n changed to Û (m)n :

A.2. Proofs of the Main Results

A.2.1. Asymptotic Normality and Consistency of the Bootstrap

Only the proof of Theorem 2 is provided. The proof of Theorem 1 is analogous (and

simpler), and is close to the proofs in Sherman [1993] and Arcones, Giné and Chen

[1994].

First, we obtain a quadratic approximation for the bootstrap objective function Ûnh�:

De�ne � � = Pm�1h� and A = �P [@2� 0] : By Assumptions 1 and 3, A is a symmetric,

positive de�nite matrix; P [@� 0] = 0 (this is the �rst-order condition in the population

maximization problem), and P k@� 0k2 <1: De�ne

R�(z) = [Pmh� +m�1;mh�] (z)�m�0@� 0 (z) +
1

2
�0A�

= P� � +m (� � (z)� P� � � �0@� 0 (z)) +
1

2
�0A�:

1Results for other combinations of m and p can be easily deduced from the proof. We omit them for
brevity.
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Using this and the Hoe¤ding decomposition for the bootstrapped U -statistic, we obtain

(A.11) Û (m)n h� = �0Ŵn �
1

2
�0A� + �̂n;�;

where Ŵn = mP̂n@� 0; and �̂n;� is the remainder:

(A.12) �̂n;� = P̂nR� +

mX
k=2

�
m

k

�
Û (k)n (�k;mh�) :

Let �0 > 0 be such that the neighborhood N in Assumption 3 contains the ball of radius

�0 with the center at zero. By Assumptions 3 (i), (ii), conditions h0 � 0; P@� 0 = 0; and

the second-order Taylor expansion around zero,

(A.13)
���P̂nR���� � m

�
PM + P̂nM

�
k�k3 +m

�P̂n � P
�
@2� 0

 k�k2
for all k�k � �0:

Now we check conditions of Theorem 9. By the bootstrap Hoe¤ding decomposition,

Assumptions 2, 5 and Lemma 11 (c),

P sup
�2�

���Û (m)n h� � Pmh�

���! 0;

which together with the identi�cation Assumption 1 implies consistency of �̂n for 0, by

the standard argument: for every � > 0, there is � > 0 such that

P
n�̂n > �

o
� P

�
sup
�2�

���Û (m)n h� � Pmh�

��� > �

�
� ��1P sup

�2�

���Û (m)n h� � Pmh�

��� = o (1) :
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(the last line follows from the Chebyshev Inequality).

Clearly, Ŵn = Op
�
n�1=2

�
: note that Ŵn =

�
Ŵn �Wn

�
+Wn; where Wn = mPn@� 0:

The second moment of both terms relative to P is m2V ar (@� 0) =n; so by the Chebyshev

inequality, Ŵn = Op
�
n�1=2

�
. Next, use (A.13) and integrability conditions imposed in

Assumption 3 to argue that P̂nR� satis�es condition (A.3), actually, the stronger condition

sup
k�k��n

���P̂nR����
k�k2

!p 0

whenever �n ! +0: It is enough to show that P̂nM = Op (1) and
�
P̂n � P

�
@2� 0 = op (1)

under conditions PM <1 and P k@2� 0k <1: Both follow from the following: if P jf j <

1 then
���P̂nf � Pf

��� = op (1) : In fact,
�
P̂n � P

�
f =

�
P̂n � Pn

�
f + (Pn � P ) f: The sec-

ond term is op (1) by the Law of Large Numbers, and the �rst term is op (1) by the boot-

strap weak law of large numbers given e.g. in Theorem 3.5 in Giné and Zinn [1990]. Con-

dition P jf j <1 is su¢ cient for condition (i) of that theorem. Then, P̂
����P̂n � Pn

�
f
��� =

op (1) : By the Chebyshev inequality, for any " > 0; P̂
n����P̂n � Pn

�
f
��� > "

o
= op (1) : The

left-hand side is bounded by 1: Integrate over P to obtain

P
n����P̂n � Pn

�
f
��� > "

o
= o (1) :

It remains to verify condition (A.3) for the higher-order U -processes in (A.12). Use

the maximal inequality, Lemma 11 (c) (with p = 1). For k � 3;

P sup
�2�

���Û (k)n (�k;mh�)
��� = O

�
n�3=2

�
:
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For k = 2; take a sequence �n ! +0 and apply the maximal inequality from Lemma 11

(d) (with m = 2 in that lemma) to classes Hn = f�2;mh� : k�k � �ng:

P sup
k�k��n

���Û (2)n (�2;mh)
��� = o

�
n�1
�
:

Conclude that condition (A.3) is satis�ed for all k � 2.

By Theorem 9,

n1=2
�
�̂n � P̂nA

�1@� 0

�
= op (1) :

A similar derivation for the sample problem gives

n1=2
�
�n � PnA

�1@� 0
�
= op (1) :

Therefore,

(A.14) �n � n1=2
�
�̂n � �n

�
� n1=2

�
P̂n � Pn

�
A�1@� 0 = op (1) :

By Theorem 2.2 of Bickel and Freedman [1981], for almost all sequences fZ1; Z2; :::g

n1=2
�
P̂n � Pn

�
A�1@� 0 ! N (0;�) :

Weak convergence to the multivariate normal distribution is always uniform (Corollary

2.6, Theorem 3.1 and Corollary 3.2 of Bhattacharya and Rao [1976]); therefore, for almost

all sequences fZ1; Z2; :::g ;

(A.15) sup
A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����! 0:
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This and (A.14) imply the conclusion of Theorem 2:

(A.16) sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = op (1) ;

as follows. For " > 0; and a set A 2 A, de�ne A" = [fB (x; ") ; x 2 Ag ; where B (x; ")

is the open ball with center x and radius "; and A�" = Rdn
�
RdnA

�"
: Both sets are in A

(both are convex, the �rst is open and the second is closed, so both are measurable), and

A�" � A � A". It is known that

sup
A2A

Z
A"nA�"

d�� � K (d;�) ";

see formula (3) and Corollary 3.2 in Bhattacharya and Rao [1976]. We have

Z
A

dF̂n1=2(�̂n��n) �
Z
A"
dF̂n1=2(Ŵn�Wn) + P fk�nk � "g

and Z
A

dF̂n1=2(�̂n��n) �
Z
A�"

dF̂n1=2(Ŵn�Wn) � P fk�nk � "g :

Then,

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

����
� sup

A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����
+ sup
A2A

Z
A"nA�"

d�� + P fk�nk � "g :

Therefore, (A.16) holds.
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A.2.2. Estimation of the Variance

Here we prove consistency of the asymptotic variance estimators given in Theorem 3. We

consider only the bootstrap problem, while the (simpler) proof for the sample problem

can be reconstructed using the same steps. We check conditions of part (b) of Theorem 9.

By condition PmHp <1; for p > 2; the bootstrap Hoe¤ding decomposition, and Lemma

11 (c), for each " > 0 there is � > 0 such that

P
n�̂n > "

o
� ��pP sup

�2�

���Û (m)n h� � Pmh�

���p
= ��pO

�
n�p=2

�
= o

�
n�1
�
:

Next note that conditions PmHp < 1; PMp < 1; P k@2� 0kp < 1; and the Taylor ex-

pansion, imply that P k@� 0kp <1: Then by Rosenthal inequality, P
Ŵn

p = O
�
n�p=2

�
;

and, therefore,

nP
Ŵn

2 1�Ŵn

2 > "

�
=

Z 1

n"2
x2dF

nkŴnk2 �
1

(n"2)p�2

Z 1

n"2
xpdF

nkŴnk2

� 1

(n"2)p�2
P
Ŵn

p = o
�
n�1
�
:

The extra integrability assumptions of Theorem 3 ensure that P̂nRn;� satis�es condition

(A.4). (For example, since PMp <1;

P
�P̂n � P

�
M > "

 �
P
�P̂n � P

�
M
p

"p

= O
�
n�p=2

�
= o

�
n�1
�
:
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Here we used the Rosenthal inequality, applied conditionally for the bootstrap and inte-

grated over P; and applied unconditionally for the sample mean. Similarly,

P
�P̂n � P

�
@2� 0 > "

 = o
�
n�1
�

if P k@2� 0kp <1:)

To check (A.4) for the higher-order U-processes, invoke Lemma 11 (c) with p > 2:

Theorem 3 implies

P
n1=2 ��̂n � A�1P̂n@� 0

�2 ! 0:

By Chebyshev inequality,

P̂
n1=2 ��̂n � A�1P̂n@� 0

�2 !p 0:

By Theorem 2.2 of Bickel and Freedman [1981],

dV ar �n1=2A�1P̂n@� 0�� �!a:s: 0

so, dV ar �n1=2�̂n�� �!p 0:

A.2.3. Generic Bound for Rank Estimators

Here we prove Theorem 4 for the bootstrap problem. The proof for the sample problem

follows the same steps. We use the same representation (A.11), but check conditions of

Theorem 10. The rate in Theorem 4, an; is determined by the rate of convergence to zero of

the U -process of order 2 in the remainder �̂n;�; Û
(2)
n (�2;mh�) : It is given in Lemma 12. To
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apply it, consider the class of functions
n
�h = �2;mh

o
: The class consists of P -degenerate

functions of two arguments. Note that by Jensen inequality, the condition on Pm�2h�;

Pm�2h
[m�2]
� in Assumptions 6, 7 imply the same condition for functions �h�; �h

[m�2]
� . If the

class fhg is Euclidean, then so is the class
n
�h
o
(see the properties of the Euclidean classes

in Section A.3). Also, the class
n
�h
o
inherits from the class fhg its integrability properties

(�niteness of moments). Lemma 12 (b) gives the rate, an, with which condition (iii) of

Theorem 10 is satis�ed for Û (2)n (�2;mh�): an =
�
n1=6 (log n)�2=3

�1=(1+2=3p)
if PmHp

!m <1

for p � 6 and all permutations, with repetition, !m: It now su¢ ces to check that the other

conditions of Theorem 10 are satis�ed with this rate and the probability 1�O
�
n�1=6

�
:

First, check condition (i). For �̂n, as in the previous subsection, for p = 6 (this is the

minimal integrability assumption imposed in Theorem 4),

P
n�̂n > �

o
� ��p� P sup

�2�

���Û (m)n h� � Pmh�

���p
= ��p� O

�
n�p=2

�
= O

�
n�3
�
:

Since by the Rosenthal inequality, P
Ŵn

4 = O (n�2) ; under condition P k@� 0k4 <1;

P
nŴn

 > �
o
= O

�
n�2
�
:

Condition (ii) is trivial here because A is assumed to be a constant positive de�nite matrix.

As a consequence, �̂n = Ŵn; except on an event of probability O (n�2) : We, therefore,

can neglect the distinction between �̂n and Ŵn:
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Condition (iii) for higher-order U -processes in �̂n;�; Û
(k)
n (�k;mh�) ; for an � n1=6, is

trivial because sup�
���Û (k)n (�k;mh�)

��� = Op
�
n�k=2

�
by Lemma 11 (c), and the rate nk=2;

k � 3; dominates the rate na2n; which is at most n4=3:

Condition (iii) for P̂nR� can be checked using the extra integrability assumptions on

M(z), @2� 0, and @� 0 made in Theorem 4.

[Let us verify, for example, that for a su¢ ciently small �0 > 0; for all 0 < � < �0;

P

8<: supk�k��

���P̂nRŴn+�

���
n�1a�2n + � k�k2

>
1

�0

9=; = O
�
n�1=6

�
:

Use the bound in (A.13):

���P̂nR���� � m
�
PM + P̂nM

�
k�k3 +m

�P̂n � P
�
@2� 0

 k�k2 :
Clearly, it is enough to check the following: for all " > 0,

P

�
na2n

Ŵn

3 > "

�
= O

�
n�1=6

�
;

P
n�
P̂n � P

�
M > "

o
= O

�
n�1=6

�
;

P
n�P̂n � P

�
@2� 0

 > "
o
= O

�
n�1=6

�
;

P

�
na2n

Ŵn

2 �P̂n � P
�
@2� 0

 > "

�
= O

�
n�1=6

�
:
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The �rst three follow from the Chebyshev and Rosenthal inequalities (the latter bounds

the moments of bootstrapped means). Note that the latter requires a �nite second pop-

ulation moment. So, for example,

P

�
na2n

Ŵn

3 > "

�
� P

�
n4=3

Ŵn

3 > "

�
= P

�n1=2Ŵn

3 > "n1=6
�

= O
�
n�1=6

�
;

since P
n1=2Ŵn

3 = O (1) : For the last one, we have:

P

�
na2n

Ŵn

2 �P̂n � P
�
@2� 0

 > "

�
� P

�
n11=12

Ŵn

2 > "1=2
�

+P
n
n5=12

�P̂n � P
�
@2� 0

 > "1=2
o

= P

�n1=2Ŵn

2 > "1=2n1=12
�

+P
nn1=2 �P̂n � P

�
@2� 0

 > "1=2n1=12
o

= O
�
n�1=6

�
;

because P
n1=2Ŵn

4 ; P n1=2 �P̂n � P
�
@2� 0

2 = O (1) :]

We, therefore, have

P
nn1=2 ��̂n � A�1P̂n@� 0

� > Ka�1n

o
= O

�
a�1n
�
:
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A similar derivation gives

P
�n1=2 ��n � A�1Pn@� 0

� > Ka�1n
	
= O

�
a�1n
�
:

Therefore,

P
n
�n �

n1=2 ��̂n � �n

�
� n1=2A�1

�
P̂n � Pn

�
@� 0

 > Ka�1n

o
(A.17)

= O
�
a�1n
�

for some K > 0:

Next we use the multivariate Berry-Esséen Theorem (Corollary 18.3 in Bhattacharya

and Rao [1976]). For the sample problem, under conditions that V ar (@� 0) is a positive

de�nite matrix and P k@� 0k3 <1; we have:

sup
A2A

����Z
A

dFA�1Pn@�0 �
Z
A

d��

���� � n�1=2c (d)P
��1=2A�1@� 03 ;

where c (d) is an absolute constant for each d:

For the bootstrap problem, let C0 be a constant such that

lim sup
n!1

Pn
��1=2n A�1@� 0

3 < C0(P � a:s);

where �n = dV ar �n1=2A�1P̂n@� 0�. Such �nite constant exists by the law of large numbers
under conditions that �, A are positive de�nite and P k@� 0k3 < 1: Apply the Berry-

Esséen Theorem conditionally on sequences of data for which this condition is satis�ed.
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Then, P � a:s:;

lim
n!1

sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� � n�1=2c (d)C0

Integrate over P and take into account that the integrand is a sequence of bounded

functions, apply the Lebesgue dominated convergence theorem:

lim
n!1

P sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� � n�1=2c (d)C0

or, by the Chebyshev inequality,

sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��n

���� = Op
�
n�1=2

�
:

Finally, condition P k@� 0k4 <1; implies that �n � � = Op
�
n�1=2

�
: Namely,

P
�
k�n � �k > Kn�1=2

	
� P

nA�12 Pn [@� 0@� 00]� (Pn@� 0) (Pn@� 0)0 � � > Kn�1=2
o

� P

�A�12 n1=2 (Pn [@� 0@� 00]� �) > K

2

�
+P

�A�12 n1=2Pn@� 02 > K

2
n1=2

�

�
2 kA�1k2 P

n1=2 (Pn [@� 0@� 00]� �)2
K

+
2 kA�1k2 P

n1=2 (Pn [@� 0@� 00]� �)2
Kn1=2

! 0 as K !1;
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where we used the Rosenthal inequality (the fourth moment of @� 0 is needed because the

Rosenthal inequality requires the second moment).

Then it follows from the properties of the normal distribution that

sup
A2A

����Z
A

d��n �
Z
A

d��

���� = Op
�
n�1=2

�
:

[To see that, use the Taylor expansion:

Z
A

d��n �
Z
A

d��

=

�Z
A

�
@�

@�

�
~�n

dX

�0
(�n � �)

and the fact that

sup
A2A

����Z
A

�
@�

@�

�
~�n

dX

���� � Z
Rd

�����@�@�
�
~�n

���� dX <1:]

So, we have

(A.18) sup
A2A

����Z
A

dF̂A�1(P̂n�Pn)@�0 �
Z
A

d��

���� = Op
�
n�1=2

�
:

Now we obtain the uniform result of Theorem 4. We show it for the bootstrap. Use

(A.17) and (A.18), and the logic of the proof of uniformity in consistency theorems. Let
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"n = Ka�1n : We have:

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

����
� sup

A2A

����Z
A

dF̂n1=2(P̂n�Pn)A�1@�0 �
Z
A

d��

����
+ sup
A2A

Z
A"nnA�"n

d�� + P fk�nk � "ng

= Op
�
n�1=2

�
+O ("n) +Op

�
a�1n
�
= Op

�
a�1n
�
:

A.2.4. Better Rates under Additional Smoothness Assumptions

Under additional Assumption 8, the degenerate U -processes of order up to s � 2 in the

Hoe¤ding decomposition of the criterion function Gn;� are all smooth functions of �: Then

one can approximate �n by the random vector �n which solves the problem

�n 2 argmax
�2�

G0n;� � U (s)n h��;

where

h�� =

sX
k=0

�
m

k

�
�k;mh� =

sX
k=0

�
m

k

�
�k;sf�:

The bootstrapped estimator, �̂n can be approximated by

�̂n 2 argmax
�2�

Û (s)n h��:

The properties of �n and �̂n can be found by powerful methods based on the Taylor

expansion and Berry-Esséen bounds for higher-order U -statistics. Note �rst that by the
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Hoe¤ding decomposition, maximal and Chebyshev inequalities, for any � > 0;

P fk�nk > �g = O
�
n�1=2

�
;

and

P fk�̂nk > �g = O
�
n�1=2

�
:

In particular, with probability at least 1� O
�
n�1=2

�
; �n � �0 coincides with the solution

to the �rst order condition:

U (2)n g�0+� = �n;�0+�;

where g� =
�
Pm +m�1;s +

m(m�1)
2

�2;s

�
@f�; and �n;� =

Ps
k=3

�
m
k

�
U
(k)
n �k;s@f�: Functions

g�; �n;�; and �n satisfy the assumptions of Lemma 20 (in particular, P
m@g0 = Pm@f0 = 0;

by the �rst-order condition in the population problem), and, therefore, the following

Berry-Esséen bound holds:

(A.19) sup
A2A

����Z
A

dFn1=2(�n��0) �
Z
A

d��

���� = O
�
n�1=2

�
:

To obtain a similar bound for the bootstrap problem, apply Lemma 20 conditionally on

the sample. With probability at least 1� O
�
n�1=2

�
; the random vector �̂n� �n coincides

with the solution to the equation:

Û (2)n g�n+� = �̂n;�n+�
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where �̂n;� =
Ps

k=3

�
m
k

�
Û
(k)
n �k;s@f�: Note, in particular, that

P 2ng�n+� =
n� 1
n

Ung�n +
1

n2

nX
i=1

g�n (Zi; Zi)

= �n;�n +
1

n2

nX
i=1

g�n (Zi; Zi) ;

and, therefore, satis�es Assumption (ii) of Lemma 20 withK = Op (1) : Also note that the

conditional moments required to apply Lemma 20 are bounded for almost all sequences

of data fZ1; Z2:::g ; by the moment conditions on L in Assumption 10 (a); therefore, cd

in Lemma 20 will be Op (1) : Thus,

sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��n

���� = Op
�
n�1=2

�
:

Under the assumption that P k@f�k4 <1; we can rewrite the last bound as

(A.20) sup
A2A

����Z
A

dF̂n1=2(�̂n��n) �
Z
A

d��

���� = Op
�
n�1=2

�
:

The objective function for the estimators �n; �̂n; contains additional terms given by:

�n;� =

mX
k=s+1

�
m

k

�
U (k)n (�k;mh�) + rn;�

and

�̂n;� =

mX
k=s

�
m

k

�
Û (k)n (�k;mh�) + r̂n;�:
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To estimate the di¤erences �n� �n and �̂n� �̂n; use Theorem 10. Under Assumption 8,

by the Taylor expansion,

U (s)n h� = U (s)n h�� = �0Wn �
1

2
�0An;��;

where

Wn = U (s)n @h�0;

and, for A = �@2Ph0 = �@2Ph�0;

@2G0n;� = �A+ U (s)n @2 (h�0 � Ph�0) +O (L k�k) :

Condition (i) of Theorem 10 is satis�ed with an = n1=2; for both �n and �n: Condition

(ii) follows from the previous display, positive de�niteness ofA; and the moment conditions

on function L: If Assumptions 8, 9 are satis�ed with s = 2; then condition (iii) of the

theorem is satis�ed with an = n1=2�"; where " > 0 is arbitrarily small, by Lemma 12 (a)

(for the degenerate U -process of order 3), and Lemma 11 (a) with su¢ ciently high p (for

the degenerate U -processes of order 4 and higher). If s = 3; then condition (iii) is satis�ed

with an = n3=4�"; by the same lemmas (Lemma 12 now should be used for the degenerate

U -processes of order 4)2. Conditions (i-iii) can be veri�ed for the bootstrap (i.e. relative

2The result for s = 3 can be used to obtain the Edgeworth expansion for the distribution functions

of n1=2�n and n1=2
�
�̂n � �n

�
with the error term of order O

�
n�3=4+"

�
(Op

�
n�3=4+"

�
for the boot-

strap), which implies that the symmetric con�dence intervals for �n constructed using the bootstrap
are Op

�
n�3=4+"

�
-accurate. The last bound may not be tight, even with " omitted. For the parametric

estimators, the symmetric con�dence intervals are also more accurate than one-sided ones, and have the
error of coverage probability Op

�
n�1

�
(see Hall [1992]). The derivation is tedious because it requires

further terms in the Edgeworth expansion for �n and �̂n; and is omitted.
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to the unconditional distribution of the bootstrap draws) in the same way. Particularly,

condition (iii) directly follows from Lemmas 11 (c) and 12 (b).

It follows that for some constant K > 0;

(A.21) P
�
n1=2 k�n � �nk > Ka�1n

	
= O

�
a�1n
�

and

P
n
n1=2

�̂n � �̂n

 > Ka�1n

o
= O

�
a�1n
�
:

Combining the last to bounds we have

(A.22) P
n
n1=2

��̂n � �n

�
� (�̂n � �n)

 > Ka�1n

o
= O

�
a�1n
�
:

The sample version of Theorem 5 follows from (A.19) and (A.21), while its bootstrap

counterparts follows from (A.20) and (A.22).

A.3. Bounds on Oscillations of U-Processes

Here we provide a brief discussion of the empirical process theory for U -processes,

and extensions to it, that eventually lead to Lemmas 11, 12. The bounds listed here are

relevant for the U -processes indexed by a Euclidean class of functions. For the convenience

of the reader we remind the de�nition. Call function H an envelope of a class of functions

H if jhj � H for each h 2 H:

De�nition 13. (Nolan and Pollard [1987]) Let H be a class of real-valued functions

de�ned on the same set. Call H Euclidean for the envelope H if there exist positive

constants (referred to as Euclidean numbers in the sequel) A and V such that for any
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measure �; for which 0 < �H <1;

N2("; d�) � A"�V ; 0 < " � 1:

Here, for h1; h2 2 H; d�(h1; h2) = �jh1 � h2j2=�H2 and N2("; d�) is the packing number

of H with respect to the pseudometric d�; i.e. the largest number N such that there exist

functions h1; :::; hN with the property d�(hi; hj) > � for i 6= j:

A detailed review of the properties of Euclidean classes of functions can be found

in Nolan and Pollard [1987] and Pakes and Pollard [1989]. In particular, if H1 and

H2 are two Euclidean classes for the envelopes, respectively, H1 and H2; then the class

H1 + H2 � fh1 + h2 : hi 2 Hig is Euclidean for the envelope H1 + H2 and the class

H1 � H2 � fh1 � h2 : hi 2 Hig is Euclidean for the envelope H1 �H2: If H = fh : Zm ! Rg

is A; V - Euclidean for the envelope H; then the class fjhj : h 2 Hg is A; V -Euclidean for

the envelope H; and for any probability distribution �; acting on variables z1; :::; zk; the

class

f�h(�; zk+1; :::; zm) : h 2 Hg

is A; V -Euclidean for the envelope �H (in particular, � may put mass 1 on a value of

(z1; :::; zk)).

It is convenient to introduce extra notation for the rest of this subsection. Throughout

. will denote inequality up to a multiplicative constant. The constant may depend on

certain parameters of the model (typically, the Euclidean numbers A and V , the order of

the process m and so on), but not on n or the sample data fZ1; :::; Zng : In particular, we

will often use the inequality (a+ b)p . ap+bp; a; b � 0; p > 0; where the constant depends
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on p only (for p 2 (0; 1) the constant is 1). Symbol k�kH will stand for the supremum over

a class of functions H.

Lemma 14 gives bounds for the �rst moment of the suprema of the degenerate empirical

and U -processes.

Lemma 14. Let H be a class of P -degenerate symmetric functions which is Euclidean

for an envelope H with PmH > 0. Then

P kUmn hkH

. n�m=2P

24�Umn H2
�1=2 Z (kUmn h2kH=Umn H2)

1=2

0

(1� log ")m=2 d"

35
Here the multiplicative constant depends on m and the Euclidean numbers A; V only.

Proof. Cases m = 1; 2 were considered in Pollard [1989], Theorem 4.2 (i), and Nolan

and Pollard [1987]. For m > 1; the inequalities follow from Propositions 2.1, 2.2 and 2.6

in Arcones and Giné [1993]; see also the calculations in Arcones and Giné [1994]. �

Remark 15. The integral that appears in Lemma 14 (with kU
m
n h

2kH
Umn H

2 � x 2 (0; 1]) can

be bounded from above and from below by multiples of function

Jm (x) = x1=2
�
1� 1

m
log x

�m=2
;

which is increasing, concave, and bounded on x 2 (0; 1]: Furthermore, Jm (x) ; m � 1;

satis�es

(m=2)m=2 (log n)�m=2 Jm (x) � x1=2 _
�
n�1 log n

�1=2
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for all x 2 (0; 1] and n � em (particularly, if x � n�1 log n, Jm (x) � J (n�1 log n) by

monotonicity).

The bound on P kUmn hkH is related to the "continuity modulus" of the class H,

kPmh2k1=2H .

Lemma 16. Let H = fh : Zm ! Rg;m � 1; be a Euclidean class of symmetric,

P -degenerate functions with envelope 1. Then for all n;

(A.23) P
U (m)n h


H .

�
n�1 log n

�m=2 Pmh21=2H +
�
n�1 log n

�(m+1)=2
;

where the multiplicative constant depends on m and the Euclidean numbers of the class

only.

Proof. Follows from Theorem 8 in Giné and Mason [2007]. �

Lemma 17. Let H = fh : Zm ! Rg be a class of symmetric, P -degenerate functions,

Euclidean for an envelope H: If for p � 2; PmHp <1; then

P
U (m)n h


H .

�
n�1 log n

�m=2 Pmh21=2H +
�
n�1 log n

�(m+1)=2�1=p
:

In these inequalities, the multiplicative constants depend on m; PmHp and the Euclidean

numbers of the class only.

Proof. First, we obtain

(A.24) P
U (m)n h2


H .

Pmh2H + �n�1 log n�1�2=p :
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Let HL; L � 1; be the class of functions fh � 1 fjhj � Lg : h 2 Hg : Note that HL is

Euclidean for the envelope L: Consider the case L = 1: By the Hoe¤ding decomposition,

Lemma 14 and Remark 15,

P
U (m)n h2


H1

.
Pmh2H1

+ n�1=2PJ1

�Pn ��1;mh2�2
H1

�
+ n�1

.
Pmh2H1

+n�1=2P
Pn ��1;mh2�2 log n1=2

H1

+ n�1 log n:

Note that

Pn ��1;mh2�2
H1

.
Pn �Pm�1h2�2

H1

+
Pmh4H1

�
PnPm�1h2H1

+
Pmh2H1

:

Therefore, (also using 2 jxyj � x2 + y2)

P
U (m)n h2


H1

.
Pmh2H1

+ n�1 log n(A.25)

+
�
n�1 log n

�1=2
P
PnPm�1h21=2H1

:

Apply this inequality to the process Pn (Pm�1h2); denoting by X the expression

P
Pn �Pm�1h2�H1

;

and by C > 0 the multiplicative constant,

X � C
Pmh2H1

+ CX1=2
�
n�1 log n

�1=2
+ Cn�1 log n:
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One possibility is that X > 4C2n�1 log n; in which case the previous inequality gives

X � C
Pmh2H1

+
1

2
X + Cn�1 log n;

so that

X .
Pmh2H1

+ n�1 log n:

The other possibility is that X � 4C2n�1 log n: In both cases,

P
Pn �Pm�1h2�H1

�
Pmh2H1

+ n�1 log n:

Substitute this into (A.25):

P
U (m)n h2


H1
.
Pmh2H1

+ n�1 log n:

For an arbitrary L � 1; by rescaling,

P
U (m)n h2


HL
.
Pmh2HL

+ L2n�1 log n:

Next, as

h2 = h21 fjhj � Lg+ h21 fjhj � Lg

� h21 fjhj � Lg+H21 fH � Lg ;
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we have

P
U (m)n h2


H

.
Pmh2H + L2

�
n�1 log n

�
+ PH21 fH > Lg

=
Pmh2H + L2

�
n�1 log n

�
+ o

�
L�p+2

�
:

Taking L = (n�1 log n)�1=p gives (A.24).

For a U -statistic of order m; use �rst Lemma 14 and Remark 15:

P
U (m)n h


H .

�
n�1 log n

�m=2
P
U (m)n h2


H

+
�
PmH2

�1=2 �
n�1 log n

�(m+1)=2
:

Now use (A.24). �

Lemma 18. (Ho¤mann-Jørgensen inequality for U-processes indexed by Euclidean

classes of functions). Let H = fh : Zm ! Rg be a class of P -degenerate symmetric

functions which is Euclidean for a Pm-square-integrable envelope H. Then for every

p � 2

P
U (m)n h

p
H .

�
P
U (m)n h


H

�p
+ n�p(m+1)=2+1PmHp;

with a constant depending on m; p and Euclidean constants A; V of the class only.

Proof. For m = 1 this inequality is well-known: it holds without constraints on the

capacity of the class H, see van der Vaart and Wellner [1996], Theorem 2.14.5. For

m � 2; Giné and Zinn [1992], Corollary 4, obtained the following bound (also without
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capacity restrictions on H):

P
U (m)n h

p
H .

�
P
U (m)n h


H

�p
+P max

im�n


�
n

m

��1 nX
i1;:::;im�1:(i1;:::;im�1)2I(m)n

h(Zi1 ; :::; Zim)


p

H

:

The second term can be bounded by

P
nX
j=1


�
n

m

��1 nX
i1;:::;im�1:(i1;:::;im�1)2I(m)n

h(Zi1 ; :::; Zim)


p

H

. n�p+1P 0P
U (m�1)n�1 h(�; Z 0)

p
H
;

where Z 0 is an independent copy of Zi; and P 0 integrates over Z 0: Using the same argument

for U (m�1)n�1 h(�; z); with �xed z; we have:

P
U (m�1)n�1 h(�; z)

p
H
.

�
P
U (m�1)n�1 h(�; z)


H

�p
+n�p+1P 0P

U (m�2)n�2 h(�; Z 0; z)
p
H
:

Euclidean property of the class H gives an upper bound for the �rst term:

�
P
U (m�1)n�1 h(�; z)


H

�p
. n�(m�1)p=2

�
PH (�; z)2

�p=2
;

where the multiplicative constant is the same for all z:
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Continue by induction, and use eventually the Ho¤mann-Jørgensen inequality form =

1 for the remaining P -process:

P
U (m)n h

p
H .

�
P
U (m)n h


H

�p
+

m�1X
s=1

n(�p+1)s�(m�s)p=2PmHp

+n(�p+1)(m�1)n�1+1=pPmHp

.
�
P
U (m)n h


H

�p
+ n�(m+1)p=2+1PmHp:

�

Now consider the bootstrap version of the U -process. As in the preceding literature

(e.g. Theorem 2.2 in Arcones and Giné [1994]) the goal is to relate the moments of the

bootstrapped process Û (m)n h to the moments of a modi�ed sample process, by using the

symmetrization and poissonization techniques suggested in Giné and Zinn [1990]. Note,

however, that decomposition (A.8) requires the result under the assumption that h is

P -degenerate, rather than Pn-degenerate, as it was assumed by previous authors.

We need extra notation. Let Q(j)i ; i = 1; 2; :::; j = 1; :::;m; be i.i.d. (across i and

j) random variables, independent of all Zi; and having the Poisson distribution with

parameter 1=2: De�ne random vectors

~Zi =
�
Zi; Q

(1)
i ; :::; Q

(m)
i

�
;

and let ~P be the distribution of each ~Zi; and ~h (~z1 ; :::; ~zm) be a symmetric version of the

function

~h0 (~z1 ; :::; ~zm) = h (z1; :::; zm) q
(1)
1
� ::: � q(m)

m
;
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where ~z =
�
z; q(1); :::; q(m)

�
. Note that functions ~h are degenerate relative to the distri-

bution ~P . The usefulness of the following lemma stems from the fact that the class of

functions ~H =
n
~h : h 2 H

o
inherits the capacity and integrability properties (relative to

~P ) from those of the classH. In particular, ifH is Euclidean for an envelopeH (z1; :::; zm) ;

then ~H is Euclidean for a symmetric version of the envelope H (z1; :::; zm) � q(1)1
� ::: � q(m)

m
;

denoted ~H: Also, since all moments of Q(j)i are �nite, fZig and
n
Q
(j)
i

o
are independent,

~H has as many �nite moments relative to ~P ; as H does relative to P:

Lemma 19. Let H = fh : Zm ! Rg be a class of P -degenerate real symmetric

functions. Assume that H has an envelope H, and PmHp < 1: Then

P
Û (m)n h

p
H
. P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

;

where the constant depends on m and p only.

Proof. Use Hoe¤ding decomposition of the bootstrapped statistic relative to Pn (i.e.

conditionally on the sample):

Û (m)n h =

mX
k=0

�
m

k

�
Û (k)n

�
�Pnk;mh

�
;

where �
�Pnk;mh�

�
(z1; :::; zk) = (�z1 � Pn) ::: (�zk � Pn)P

m�k
n h�:
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Next we show that for each k = 0; :::;m;

P
Û (k)n

�
�Pnk;mh

�p
H
. P

 1nm X
i1;:::;im

~h0
�
~Zi1 ; :::; ~Zim

�
p

~H

= P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

:

Denote by E the expectation conditional on the sample Z1; :::; Zn. Let
n
Ẑ
(j)
1 ; :::; Ẑ

(j)
n

o
be i.i.d. samples from Pn; independent across j = 1; :::; k; denote by P̂

(j)
n the bootstrap

empirical measure that puts mass 1=n on each Ẑ(j)i : Let N (j)
1 ; :::; N

(j)
n be i.i.d. across i

and j; independent from all Zi; Ẑ
(j)
i ; and each distributed as a di¤erence between two

independent Poisson r.v. with parameter 1/2. Then

E
Û (k)n

�
�Pnk;mh

�p
H

. E

 1nk X
i1;:::;ik distinct

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

. E

 1nk X
i1;:::;ik

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

= E
�P̂ (1)n � Pn

��
P̂ (k)n � Pn

�
Pm�kn h

p
H
=: (�) :

Here the �rst inequality follows by the decoupling inequality of de la Peña [1992], applied

conditionally on Z1; :::; Zn. In the second inequality the LHS is di¤erent from the RHS in

that the latter includes summation over coinciding indices i1; :::; ik: The second inequality

follows from the following observation: for any r.v. Xh; Yh; if E [YhjXh] = 0; then, by the

convexity inequality, E kXh + YhkpH � E kXh + E [YhjXh]kpH = E kXhkpH : Apply this to
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obtain

E


X

i1;:::;is distinct;
is+1;:::;ik unrestricted

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

. E


X

i1;:::;is�1 distinct;
is;:::;ik unrestricted

�
�Pnk;mh

� �
Ẑ
(1)
i1
; :::; Ẑ

(k)
ik

�
p

H

(call Xh the �rst sum, Yh the di¤erence between the second and the �rst sums, then one

can see that E [YhjXh] = 0 by degeneracy of �
Pn
k;mh and independence of Ẑ

(j)
i across both

i and j). Apply the last inequality sequentially in s = m;m � 1; :::; 2 to obtain that the

unrestricted sum dominates the sum over distinct indices.

Next we apply a poissonization argument. De�ne

X̂i1 = �z1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

���
z1=Ẑ

(1)
i1

;

and

Xi1 = �z1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

���
z1=Zi1

:

Let Ẑ :=
n
Ẑ
(2)
i2
; :::; Ẑ

(k)
ik
ji2; :::; ik = 1; :::; n

o
: Note, that conditionally on Ẑ; X̂i1 are the

bootstrap drops from the sample fX1; :::; Xng ; and E
h
X̂i1 jẐ

i
= 1

n

P
i1
Xi1 : Apply the

symmetrization inequality of Proposition 2.1 in Arcones and Giné [1993], conditionally

on Ẑ; it gives:
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(�) = E
n�1X

i1

�
X̂i1 � EjẐX̂i1

�p
H

. E
n�1X

i1
"i1X̂i1

p
H
;

where f"i1g is a Rademacher sequence independent of all other r.v. in the model. Next

by the proof of Lemma 2.1 and Proposition 2.2 of Giné and Zinn [1990], applied to k�kp

rather than k�k ; we obtain:

E
n�1X

i1
"i1X̂i1

p
H

. E
n�1X

i1
Q
(1)
i1
Xi1

p
H

= E
n�1X

i1
Q
(1)
i1
�Zi1

�
P̂ (2)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h

p
H

(where the result that we use give the inequality for Q(1)i1 being distributed as a di¤erence

of two independent Poisson r.v. (with parameter 1=2). Use the triangle inequality to

obtain the inequality for Q(1)i1 being just the poisson r.v. with parameter 1/2).

Sequential application of this logic to the other arguments (with conditioning on pre-

viously introduced poisson r.v.), and integrating over the distribution of the sample lead

to the inequality

(�) . E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
h (Zi1 ; Zi2 ; :::; Zim)


p

H

:
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[Here we show the second step in the sequence.

E
n�1X

i1
Q
(1)
i1
Xi1

p
H

= E
n�1X

i1
Q
(1)
i1
�Zi1

�
P̂ (k)n � Pn

�
Pm�kn h

p
H

De�ne

X̂
(2)
i2
= Q

(1)
i1
�Zi1�Ẑi2

�
P̂ (3)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h;

X
(2)
i2
= Q

(1)
i1
�Zi1�Zi2

�
P̂ (3)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h;

and

Ẑ(2) :=
n
Q
(1)
i1
; Ẑ

(3)
ik
; :::; Ẑ

(k)
ik
ji2; :::; ik = 1; :::; n

o
:

Then, conditionally on the data sample and Ẑ(2);
n
X̂
(2)
i2

o
i2=1;:::;n

is the bootstrap sample

(i.e. i.i.d. draws with replacement) from
n
X
(2)
i2

o
i2=1;:::;n

: Applying the poissonization

technique to this bootstrap problem, we obtain:

(�) . E

n�2X
i1;i2

Q
(1)
i1
Q
(k)
i2
�Zi1�Zi2

�
P̂ (3)n � Pn

�
:::
�
P̂ (k)n � Pn

�
Pm�kn h


p

H

etc.]
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Note that

E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
h (Zi1 ; Zi2 ; :::; Zim)


p

H

. E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
:::Q

(m)
im
h (Zi1 ; Zi2 ; :::; Zim)


p

H

= E

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

:

by the Jensen inequality:

E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
:::Q

(m)
im
h (Zi1 ; Zi2 ; :::; Zim)


p

H

� E

n�m X
i1;:::;im

Q
(1)
i1
:::Q

(k)
ik
h (Zi1 ; Zi2 ; :::; Zim)E

h
Q
(k+1)
ik+1

:::Q
(m)
im

i
p

H

;

and the fact that E
h
Q
(k+1)
ik+1

:::Q
(m)
im

i
> 0.

To complete the proof, integrate the bound over the sample measure. �

Finally, we prove Lemmas 11 and 12.

Proof. (Lemma 11.) (a) For p = 1; see Corollary 4(i) in Sherman [1994]. For p � 2

use also the Ho¤mann-Jørgensen inequality, Lemma 18 (b). For p = 1; see the proof of

Corollary 8 in Sherman [1994] (only straightforward notational changes are required).

For p � 2 use also the Ho¤mann-Jørgensen inequality, Lemma 18.
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(c) By Lemma 19 (see the construction of function ~h; ~z; and ~P there; in particular, ~h

is ~P -degenerate),

P
Û (m)n h

p
H
. P

 1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

:

Let ~U (k)n denote the U -statistic based on the sample
n
~Zi1 ; :::; ~Zim

o
: Also, for s � m� s;

let !s be a permutation, with repetition, having s elements from the set f1; :::; sg : The

permutation f1; :::;m� s; !s (1) ; :::; !s (s)g ; therefore, contains m � s distinct elements.

Denote by em (!s) = m � s � # f!s (1) ; :::; !s (s)g � m � 2s; the number of its non-

repeating elements. Denote by ~h!s the symmetric version of the function

~h!s (~z1; :::; ~zs) = ~h
�
~z1; :::; ~zm�s; ~z!s(1); :::; ~z!s(s)

�
:

We can write:  1nm X
i1;:::;im

~h
�
~Zi1 ; :::; ~Zim

�
p

~H

.
 ~U (m)n

~h
p
~H
+

X
1�s�m=2

X
!s

n�s ~U (m�s)n
~h!s

p
~H
:

Note that functions ~h!s satisfy the condition

~P#f!s(1);:::;!s(s)g+1~h!s = 0

(because integrating out any # f!s (1) ; :::; !s (s)g + 1 variables in the function ~h!s nec-

essarily involves integrating out at least one non-repeating ~Zi). Apply operators ~P k;
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k = m�s;m�s+1:::;# f!s (1) ; :::; !s (s)g+1; consecutively to both sides of the Hoe¤d-

ing decomposition of ~U (m�s)n
~h!s relative to the measure ~P (the corresponding projections

are denoted � ~Pk;m�s); and conclude that its elements of order k = 0; 1; :::; em (!s)� 1; are

zero:

~U (s)n
~h!s =

m�sX
k=em(!s)

�
m� s

k

�
~U (k)n �

~P
k;m�s

~h!s :

Next note that every function � ~Pk;m�s~h!s satis�es the assumptions of part (a) of the theo-

rem, so that nk=2 ~U (k)n �
~P
k;m�s

~h!s

p
~H
= O (1) :

We then have

nm
2 Û (m)n h

p
H

.
nm

2 ~U (m)n
~h
p
~H
+

X
1�s�m=2

X
!s

m�sX
k=em(!s)

n
m�2s�k

2

nk=2 ~U (k)n �
~P
k;m�s

~h!s

p
~H
:

Next note that in the above sum m � s � k � 0; and the equality can only be achieved

when k = em (!s) = m � 2s; that is when all elements of !s are distinct. Finally, note

that by the ~P -degeneracy of ~h; for !s = f1; 2; :::; sg ; � ~Pm�2s;s~h!s is a constant multiple

of the function ~h[m�2s] (~z1; :::; ~zm�2s) (because the other integrals in �
~P
m�2s;s

~h!s involve

integrating out non-repeating ~Zi; also note that ~h[m�2s] (~z1; :::; ~zm�2s) is ~P -degenerate).

Therefore,

P
nm

2 Û (m)n h
p
H

. P
nm

2 ~U (m)n
~h
p
~H
+
X

1�s�m
2

P
n(m�2s)=2 ~U (m�2s)n

~h[m�2s]
p
~H
+O

�
n�1=2

�
:
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By part (a), the RHS is O (1).

(d) The inequality in the previous display still holds. We check that for 0 � s � m
2

P
n(m�2s)=2 ~U (m�2s)n

~h[m�2s]
p
~H
= o (1)

(where ~h[m] = ~h). This will follow from part (b) if we show that

 ~Pm�2s �~h[m�2s]�2
~Hn

! 0:

This follows from the extra condition in (d) and the construction of ~h from h. �

Proof. (Lemma 12.) (a) De�ne the class of functions

Hn =

(
h�;t =

h�+n�1=2a�1n t � h�

1 + ktk1=2
: k�k ; n�1=2a�1n ktk � �0

)
:

Note that Hn is Euclidean for the envelope 2H because it is a subclass of the Euclidean

class (
h�+t � h�

1 +
~t1=2 : k�k ; ktk � �0; ~t 2 Rd

)
:

To prove the lemma, it is enough to show that

(A.26) P
n
na2n

U (m)n h�;t

Hn

> 1
o
= O

�
a�1n
�
:

By the Chebyshev inequality,

P
n
na2n

U (m)n h�;t

Hn

> 1
o
�
�
na2n
�p
P
U (m)n h�;t

p
Hn
:
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The continuity modulus of class Hn satis�es

Pm �h�;t�2
Hn

� Cn�1=2a�1n :

By Lemmas 17 and 18,

P
U (m)n h�;t

p
Hn
.
�
n�1 log n

�pm=2 �
n�1=2a�1n

�p=2
+
�
n�1 log n

�p(m+1)=2�1
:

Therefore, (A.26) is satis�ed if

na2n
�
n�1 log n

�m=2 �
n�1=2a�1n

�1=2 � a�1=pn

and

na2n
�
n�1 log n

�(m+1)=2�1=p � a�1=pn :

These inequalities give

an �
�
nm=3�1=2 (log n)�m=3

� 1
1+2=3p

and

an �
�
n
m�1
4
� 1
2p (log n)

1
2p
�m+1

4

� 1
1+1=2p

:

from which the result follows immediately.

(b) Let Hn be as above. Use the inequality obtained in the proof of Lemma 19 (c),

rewritten as:

P
Û (m)n h�;t

p
H

. P
 ~U (m)n

~h�;t
p
~H
+
X

1�s�m
2

P
n�s ~U (m�2s)n

~h�;t[m�2s]
p
~H
+O

�
n�(m+1)=2

�
:
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From the additional assumptions made in part (b) of the lemma, and by construction of

functions ~h, we have:

(A.27)

Pm �~h�;t�2
Hn

� Cn�1=2a�1n ;

and, for each s; 1 � s � m=2;

(A.28)

Pm�2s �~h�;t[m�2s]�2
Hn

� Cn�1=2a�1n :

The result now follows from part (a). In particular, notice that we will have

P
n�s ~U (m�2s)n

~h�;t[m�2s]
p
~Hn

. n�sp
�
n�1 log n

�p(m�2s)=2 �
n�1=2a�1n

�p=2
+n�sp

�
n�1 log n

�p(m�2s+1)=2�1
= npm=2

�
n�1 log n

�p(m�2)=2 �
n�1=2a�1n

�p=2
+
�
n�1
�p(m+1)=2�1

(log n)p(m�1)=2�1 :

which is dominated by the bound for P
 ~U (m)n

~h�;t
p
~Hn

obtained in part (a) under condition

(A.27). �

A.4. A Berry-Esséen Bound

Lemma 20. Let Z1; :::; Zn be i.i.d. random variables taking values in a probability

space (Z; P ) (P may depend on n); and let g� : Z2 ! Rd; � 2 Rd be a vector-function,
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symmetric in z1; z2. Let �n solve the system of equations

U (2)n g
(l)
� = �(l)n (�) ;

l = 1; :::; d: Assume that there are numbers �0; K > 0 such that for all n � 1:

(i) P
�
supk�k��0 k�n (�)k > n�1

	
� Kn�1=2:

(ii) kPg0k � Kn�1.

(iii)P k�1;2gk4 <1; P k�2;2gk2 <1:

(iv) g� is twice continuously di¤erentiable in the �0-neighborhood of 0; P�a:e:; P k@2g0k4 <

1; P k@g0k3 <1; and there is L (z1; z2) with P 2L3 <1 such that

@2g�1 � @2g�2
 � L k�1 � �2k ;

for all k�1k ; k�2k � �0:

(v) The d � d matrix � = [@Pg0]
�1 V ar (2�1;2g0) [@Pg0]

�1 is well de�ned and is positive

de�nite (her V ar is the variance relative to P ).

Then for all n � 1;

sup
A2A

����Z
A

dFn1=2�n �
Z
A

d��

���� � cdn
�1=2 + cdP fk�nk > �dg ;

where, for each d; cd and �d < �0 are continuous functions of K; P k�1;2g0k4 ; P k�2;2g0k2 ;

P k@2g0k3 ; P k@g0k4 ; PL3.

Proof. Within the proof, . denotes an inequality up to a multiplicative constant

that may depend on d only, and cd and �d satisfy the conditions of the theorem (but may
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change from line to line in the proof). To reduce notation, we assume, without loss of

generality, that �0 � 1 and K � 1: It is enough to consider the case of k�nk < �0:

Step 1. Here we prove that, for all n � 1;

P
�
k�nk > n�1=3

	
� cdn

�1=2:

Without loss of generality, assume in this step that @Pg0 = I (identity matrix). Use

the Taylor expansion around � = 0 and the Hoe¤ding decomposition (we omit the index

l):

�n (�) = U (2)n g�

= U (2)n g0 + fI + Pn@�1;2g~�g �;

where ~� lies between 0 and �: By our assumptions, the class fPn@�1;2g�; k�k � �g is

Euclidean class for the envelope

M (z1; z2) = 1 + k@g0 (z1; z2)k+
@2g0 (z1; z2)+ 2pdL (z1; z2)

(see Lemma (2.13) of Pakes and Pollard [1989] and use the identity, for any f;

@lf� = @lf0 +

Z �

0

@2l;lf~�d�
(l) = @lf0 + @2l;lf0 +

Z �

0

�
@2l;lf~� � @2l;lf0

�
d�(l):

The envelope is made bigger than necessary to simplify notation later on). Therefore,

P

�
kPn@�1;2g~�k �

1

2

�
. n�1PM2
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(to see this, use the fact that P@�1;2g� = 0 for each non-random �; because P�1;2g� = 0

and P k@g0k <1; then apply the bound for the suprema for the second moment to deal

with the randomness in ~�).

Then

P
�
k�nk > n�1=3

	
. P

�
4
U (2)n g0

 > n�1=3
	
+ P

�
2 k�n (�)k > n�1=3

	
+ n�1PM2

. Kn�1=2;

by the Hoe¤ding decomposition, Maximal and Chebyshev inequalities. Namely,

P
�
4
U (2)n g0

 > n�1=3
	
= P

�
4n1=2

U (2)n g0
 > n1=6

	
. n�1=2P k�1;2g0k3 + n�1=3n�2=3P k�2;2g0k2 +Kn�1=2

(note that here we have used the fact that kP 2g0k � Kn�1). Note also that

P
�
k2�n (�)k > n�1=3

	
� P

�
2 k�n (�)k > n�1

	
. Kn�1=2:

This gives the estimate.

Step 2. Obtain the representation: for all n � 1;

(A.29) �(l1) = U (2)n g(l1)� + Cl1;l2;l3�
(l1)�(l2) + �(l1)n ;
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where Cl1;l2;l3 are constants, function g
(l1)
� (z1; z2) does not depend on � and satis�es P 2g� =

0; V ar [2�1;2g�] = �; P
2 k�1;2g�k3 <1; P 2 k�2;2g�k2 <1; and

P
�
k�nk > cdn

�1	 � n�1=2cd + P
�
k�nk > �dn

�1=3	 :
In this step, assume, without loss of generality, that @Pg0 = I: By the Hoe¤ding

decomposition and the Taylor expansion, for each component l1;

0 = U (2)n g
(l1)
� � �

(l1)
n;�(A.30)

= U (2)n

�
g
(l1)
0 � P 2g

(l1)
0

�
+ f(I +Bn) �g(l1) � Cl1;l2;l3�

(l2)�(l3)

+~�
(l1)

n (�) ;

where (Bn)l1;l2 = 2Pn@l2�1;2g
(l1)
0 ; Cl1;l2;l3 = �1

2
@l2;l3P

2g
(l1)
0 ; and

~�
(l1)

n (�) =
1

2

�
@l2;l3P

2g
(l1)
~�
� @l2;l3P

2g
(l1)
0

�
�(l2)�(l3)

+Pn@l2;l3�1;2g
(l1)
~�
�(l2)�(l3)

+U (2)n @l2�2;2g
(l1)
~�
�(l2) � �

(l1)
n;� + P 2g

(l1)
0 ;

and ~� is in between 0 and � (in fact, ~� is di¤erent for each l1 and each term above, but

we will ignore this distinction). (Note that by the Chebyshev inequality

P

�
kBnk �

1

2

�
. n�1P k@�1;2g0k2 ;

and, therefore, it is enough to restrict attention to the event
�
kBnk < 1

2

	
:)
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Using the identity

(I +Bn)
�1 = I �Bn (I +Bn)

�1

= I �Bn +B2
n (I +Bn)

�1 ;

we can rewrite (A.30) as

�(l1) = U (2)n g(l1)� + Cl1;l2;l3�
(l1)�(l2) + �(l1)n (�) ;

where

g(l1)� (z1; z2) = �
�
g
(l1)
0 (z1; z2)� P 2g

(l1)
0

�
� 2@l2�1;2g

(l1)
0 (z1) � �1;2g(l2)0 (z2) ;

(in particular, the random vector g� satis�es the above properties), and

�(l1)n (�) = U (2)n
�
� (I �Bn)

�
g0 � P 2g0

�
� g�

	(l1)
�
�
B2
n (I +Bn)

�1 U (2)n
�
g0 � P 2g0

�	(l1)
+
�
Bn (I +Bn)

�1�
l1;l2

Cl2;l3;l4�
(l3)�(l4)

�
n
(I +Bn)

�1 ~�n (�)
o(l1)

:

It remains to obtain the estimate for the remainder term �(l1)n (�) : It is enough to

restrict attention to the event that k�nk � n�1=3: First, consider the expression for ~�
(l1)

n (�) :

Its �rst term has the order PL � k�k3 ; from which the bound follows. For the second term,
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we have

P
nPn@l2;l3�1;2g(l1)~�

 k�k2 > n�1
o

� P
nPn@l2;l3�1;2g(l1)~�

 > n�1=3
o

= P
n
n1=2

Pn@l2;l3�1;2g(l1)~�

 > n1=6
o

. n�1=2
�
P 2 k�1;2gk3 + P 2 k�2;2gk2 + P 2M2

�
;

where we have used the fact that the classes
�
@l1;l2�1;2g� (z) ; � 2 Rd; k�k � �0

	
and�

@l1;l2�2;2g� (z) ; � 2 Rd; k�k � �0
	
; for each l1; l2, are Euclidean for the envelope

M (z1; z2) = 1 + k@g0 (z1; z2)k+
@2g0 (z1; z2)+ 2pdL (z1; z2)

(the envelope is made bigger than necessary to reduce notation here and below). For the

third,

P
nU (2)n @l2�2;2g

(l1)
~�

 k�k > n�1
o

� P
nU (2)n @l2�2;2g

(l1)
~�

 > n�2=3
o

� n�1=2
�
P k�1;2gk3 + P k�2;2gk2 + PM2

�
:

The bounds for the last two terms are assumed in the theorem.
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Finally, we show that P fk�nk > cdn
�1g � cdn

�1=2: For the �rst line in the expression

for �n; we have

U (2)n
�
(I �Bn)

�
g0 � P 2g0

�
+ g�

	
= �n�1Pnh�BnU

(2)
n �2;2g0 + n�1U (2)n (g� � g0);

where h (z) = 2@l2�1;2g0 (z) � �1;2g
(l2)
0 (z) : Note that

P
�
n�1 kPnhk � (P khk+ 1)n�1

	
� P

�n1=2 (Pn � P )h
 � n1=2

	
� n�1P khk2 . n�1P k@�1;2g0k4 � P k�1;2g0k4 ;

P
�BnU (2)n �2;2g0

 > n�1
	

� P
�n1=2Bn � nU (2)n �2;2g0

 > n1=2
	

. n�1=2P k@�1;2g0k2 + n�1=2P k�2;2g0k2 ;

P
�
n�1

U (2)n (g� � g0)
 > n�1

	
. n�2 k@�1;2g0k2 k�1;2g0k2 :

Now consider the second through fourth lines. By the Chebyshev inequality,

P
�
kBnk � n�1=3

	
. n�1=2P k@�1;2g0k3 :

From the bound on P
�
kBnk � 1

2

	
(where k�k is the spectral norm for matrices),

P
�(I +Bn)

�1 � 2	 . n�1P k@�1;2g0k2 :
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Therefore,

P
n�(l1)n (�n)

 > n�1
o

. P
�
kBnk � n�1=3

	
+ P

�
U (2)n g0 > n�1=3

	
+ kCl1;l2;l3k ��
P
�
kBnk � n�1=3

	
+ P

�
k�k > n�1=3

	
+ P

�(I +Bn)
�1 � 2		

+P
�(I +Bn)

�1 � 2	+ P
n~�(l1)n (�n)

 > n�1
o
:

Combining these estimates gives the result.

Step 3. Now use representation (A.29) to obtain the Berry-Esséen bound.

Consider the system of equations

(A.31) �(l1) = (l1) + Cl1l2l3�
(l2)�(l3):

By the Implicit Function Theorem and the Taylor expansion, there are numbers �� > 0;

K1 > 0; and bl1l2l3 ; continuously depending on Cl1l2l3 ; such that if kk � ��; and � is the

solution of (A.31) satisfying k�k � ��; then

�(l1) = (l1) + b
(2)
l1l2l3

(l2)(l3) + �(l1) ()

and

k� ()k � K1 kk3 :
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Let n = U
(2)
n g� + �n: By the Hoe¤ding decomposition, the properties of g� and �n;

and the Chebyshev inequality,

(A.32) P fknk > ��g . cdn
�1=2 + P

�
k�k > �dn

�1=3	 ;
and

P
�
k� (n)k � n�1; knk � ��

	
� P

n
K
1=3
1 knk � n�1=3

o
. P

n
2K

1=3
1

n1=2Pn�1;2g� � n1=6
o

+P
n
2K

1=3
1

nU (2)n �2;2g�
 � n2=3

o
. n�1=2

�
P k�1;2g�k3 + P k�2;2g�k2

�
:

Next, consider the statistic Tn de�ned as follows:

T (l1)n = U (2)n g� + bl1l2l3
1

n2

X
i6=j

n
�1;2g

(l2)
�i � �1;2g

(l3)
�j

o
;

where �1;2g
(l2)
�i � �1;2g

(l2)
� (Zi) :
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Note that

n1=2P
n����(l1)n � T (l1)n

��� � n�1; knk � ��; k�nk � ��
o

(A.33)

. n1=2P
�
3
��bl1l2l3 �U (2)n g(l2)� U (2)n g(l3)� � Pn�1;2g

(l2)
� Pn�1;2g

(l3)
�
�
� n�1

��	
+n1=2P

(
3

�����bl1l2l3 1n2X
i

�1;2g
(l2)
�i � �1;2g

(l3)
�i

����� � n�1

)
+P k�1;2g�k3 + P k�2;2g�k2

. P k�1;2g� � �2;2g�k+ P k�1;2g�k2 + P k�1;2g�k3 + P k�2;2g�k2

. P k�1;2g�k2 + P k�1;2g�k3 + P k�2;2g�k2 :

Using (A.32) and (A.33), we conclude that

�n = Tn + �n

(A.34) P
�
k�nk > n�1

	
� cdn

�1=2 + P
�
k�k > �dn

�1=3	 :
Tn has a form of a U -statistic of order 2 with zero mean. Its variance is n�1� up to a

term of order O (n�2) :

The Berry-Esséen bound for Tn follows from Theorem 2 of Bolthausen and Götze

[1993]. To check the conditions of the theorem, let T0 = Pn�1;2g�: Then, in the notation

of the theorem, and using the Cauchy-Schwartz inequality,

�3
�
n1=2T 0

�
= nP

n�1=2�1;2g�3 = n�1=2P k�1;2g�k3 ;
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�
�
n1=2Tn; n

1=2T0
�

= n1=2P
����T � T 0

�
(Z1; Z2:::; Zn)�

�
T � T 0

�
(Zn+1; Z2:::; Zn)

���
. n�1P

n�1=2
nX
j=2

�2;2g� (Z1; Zj)


+n�1

�
P k�1;2g�k2

�1=2 �
P
n1=2Pn�1;2g�2�1=2

� n�1
�
P k�2;2g�k2 + P k�1;2g�k2

�
;

and, by the Maximal inequality for a degenerate U -statistic of order 2,

n1=2E
���T � T 0

�
(Z1; Z2:::; Zn)

�� = n�1=2
�
P k�2;2g�k2 + P k�1;2g�k2

�1=2
:

Then by the above-mentioned theorem applied to n1=2Tn;

sup
A2A

����Z
A

dFn1=2Tn �
Z
A

d��

���� � cdn
�1=2:

The conclusion of the theorem follows from the last result and (A.34) by an argument

similar to that at the end of Section A.2.3. �
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APPENDIX B

Appendix to Chapter 4

B.1. Proofs of Theorems

Proof. (Theorem 6.)

(1) Identi�cation. We check that �0 is the unique maximizer of the population objective

function:

S (�) = E [M (Y1; Y2) 1 fX 0
1� (�) > X 0

2� (�)gws (X1; X2)]

where � (�) = (�; 1) (note that changing w to ws does not a¤ect the optimization problem

by the antisymmetry of M and the continuity of the distribution of X 0�0). De�ne

�S (�;X1; X2) = E [M (Y1; Y2) jX1; X2]ws (X1; X2) �

(1 fX 0
1� (�0) > X 0

2� (�0)g � 1 fX 0
1� (�) > X 0

2� (�)g) :

Condition (4.1) and antisymmetry of M imply that

(B.1) E [M (Y1; Y2) jX1; X2] < 0 =) X 0
1�0 < X 0

2�0

Together, (4.1) and (B.1) imply that �S (�;X1; X2) � 0 for all � and almost all X1; X2:

In particular, �0 is a maximizer of S (�) :
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Write S (�0)� S (�) as an iterated integral:

S (�0)� S (�)

=

Z
�S (�;x1; x2)ws (x1; x2) gZjU (z1; u1) gZjU (z2; u2) dz1dz2dG (u1) dG (u2) ;

where xi = x (ui; zi) ; and G (u) is the marginal c.d.f. of U: Assume that �� is another

maximizer of S (�) ; so that S (�0) � S (��) = 0: Since �S (�;x1; x2) � 0; the integrated

expressions must be zero almost surely. Also, condition (4.1) implies that � (u1; u2; z0) � 0

a.s. It follows that there are d pairs

u1;k; u2;k 2 U ; k = 1; :::; d;

a number z0 2 I and a countable set of numbers zt 2 I; dense in I; such that the d vectors

(u1;k � u2;k) are linearly independent, the function � is well-de�ned and is positive on the

vectors (u1;k; u2;k; z0), and

�S (�;x (u1;k; zt) ; x (u2;k; z0)) = 0; k = 1; :::; d; 8t:

As � (u1;k; u2;k; z0) > 0, for zt su¢ ciently close to z0;

E [M (Y1; Y2) jX1 = x (u1;k; zt) ; X2 = x (u2;k; z0)]

has the same sign as zt � z0: By conditions (4.1), (B.1), for such zt,

sign
�
(u1;k � u2;k)

0 (�� � �0) + zt � z0
	
= sign fzt � z0g ;
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so that

(u1;k � u2;k)
0 (�� � �0) = 0:

Since the d vectors u1;k � u2;k are linearly independent, �� = �0:

(2) Consistency. Under the conditions of the theorem, the population objective func-

tion is continuous in �: Note also that the class of functions
�
1 fX 0

1� > X 0
2�g ; � 2 Rd+1

	
is Euclidean for a constant envelope as shown by Sherman (1993). Therefore, the class of

functions

M (Y1; Y2) 1 fX 0
1� (�) > X 0

2� (�)gws (X1; X2)

is Euclidean for the square-integrable envelope jM (Y1; Y2)jws (X1; X2) (for the latter,

the square-integrability follows from (4.4) and antisymmetry of M). By the maximal

inequalities for U�processes (see Lemma 11), the sample objective function converges to

the population objective function in probability uniformly in � 2 �: Therefore, �n !p �0

by a standard argument.

(3) To prove the asymptotic normality we check the conditions of Theorem 1. As-

sumptions 1 and 2 have already been veri�ed. We now check the smoothness properties

of the function � � (y1; z1) de�ned as

� � (y; u; z) = E
�
M (y; Y ) sign

�
z � Z + (u� U)0 (� � �0)

�
ws (x;X)

�
:

A calculation as in Sherman (1993) shows that the gradient and the Hessian of the function

� � with respect to � are:

@�� � (y; u; z) = 2E
�
(u� U)� (y; U; Z�)ws (x (u; z) ; x (U;Z�)) gV jU (V�)

�
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and

@2�� � (y; u; v)

= 2E
�
(u� U) (u� U)0 (@z� (y; U; Z�))w (x (u; z) ; x (U;Z�)) gZjU (Z�)

�
+2E

�
(u� U) (u� U)S (y; U; Z�) @z

�
w (x (u; z) ; x (U;Z�)) gZjU (Z�)

��
where

Z� = z + (� � �0)
0 (u� U) :

Then required properties follow from our Assumptions 13, 14 and 16. At � = �0;

@�0� � (y; u; z) = 2rw (y; u; z)

Note also that by the continuity of the function � (y; u; z) in z and (4.1),

E [� (Y; u; z) jX = x (u2; z)] = 0;

therefore,

E
�
@2�0� � (Y; U; Z)

�
= �2�w

By our Assumptions 16, 17, the variance of @�0� � is a �nite, positive de�nite matrix, and

the expected value of @2�0� � (Y; U; V ) is a �nite matrix. By Assumption 15, �w is positive

de�nite. Assumption 4 of Theorem 1 can be checked in the same way as in Sherman

(1993), so that the conclusion of part (b) follows. �

Lemma 21. Under Assumptions 11-17, the function � (u1; u2; z) is symmetric in u1

and u2 for almost all u1; u2; z:
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Proof. By the antisymmetry of M;

E [M (Y1; Y2) jU1 = u2; U2 = u1; Z1 = z + �; Z2 = z]

= �E [M (Y2; Y1) jU1 = u2; U2 = u1; Z1 = z + �; Z2 = z]

= �E [M (Y1; Y2) jU1 = u1; U2 = u2; Z1 = z; Z2 = z + �]

where in the second equality we exchanged the labels 1 and 2 of the variables that are

integrated out. Note that the function

' (z1; z2) = E [M (Y1; Y2) jU1 = u2; U2 = u1; Z1 = z; Z2 = z]

(or �xed u1 and u2) is di¤erentiable in z1 and z2 and satis�es ' (z; z) = 0: Therefore,

'0z1 (z; z) + '0z2 (z; z) = 0: This implies that the derivative of the right-hand side of the

previous display at � = 0 is equal to the derivative of

E [M (Y1; Y2) jU1 = u1; U2 = u2; Z1 = z + �; Z2 = z] ;

therefore, � (u1; u2; z) = � (u2; u1; z) : �

Proof. (Theorem 7.)

De�ne

A1 =
� (Z1)

� (X1)E
h

1
�2(X2)

���Z2 = Z1

iE2 � U1 � U2
�2 (X2)

����Z2 = Z1

�
:

Then

E [A1W
0
1] = E [W1A

0
1] = �w



155

(note that we have used the symmetry of ws). The desired inequality then follows from

the matrix version of the Cauchy-Schwartz inequality:

E [W1W
0
1] � E [W1A

0
1]E [A1A

0
1]
�1
E [A1W

0
1] :

�

B.2. Estimation of the Optimal Weighting Functions

Here we show that the feasible optimal rank estimators are asymptotically equivalent

to the (unfeasible) rank estimators with the theoretical optimal weighting functions. The

preliminary results, stated �rst, can also be used to prove the asymptotic equivalence

under the conditions di¤erent from those imposed in Theorem 8.

Make the following assumptions.

Assumption 19. � is a �nite-dimensional set. fm� (z1; z2) : � 2 �g is a Euclidean

class of symmetric functions for a square-integrable envelope.

Assumption 20. For some m � 0; and each s = 1; :::; S; and n = 1; 2; :::;

n
 (s)n (z1; z2;x11; :::; x1m) :  2 �

o
is a Euclidean class, with the Euclidean constants not depending on n; of functions bounded

by a constant Ln; symmetric in z1; z2 and x11:::; x1m, and such that for each  2 � and

almost all z1; z2;

(B.2) E
�
 n (z1; z2;X11:::; X1m)

�
= 0:
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The numbers Ln satisfy the condition:

n�1L2n ! 0:

Assumption 21. The set � is a convex open set. De�ne the function

l;�;n = E

"
m� (z1; Z2)

SY
s=1

 (s)n (z1; Z2;xs1; xs2; xs3;:::; xsm)

#
:

For each n; l;�;n is continuously di¤erentiable in �; and the class of functions

f@�l;�;n; � 2 �;  2 �g

is Euclidean for an envelope F (z1) �LSn, satisfying EF 2 <1; with the Euclidean numbers

not depending on n:

Assumption 22. The function

EZ1 [l;�;n] � E [l;�;n (Z1;x11; :::; xSm)]

is twice continuously di¤erentiable in �; and satis�es:

(B.3) @�0EZ1 [l;�;n] = 0:

For each n; the class of functions f@2�EZ1 [l;�;n] ; � 2 �;  2 �g is Euclidean for the con-

stant envelope LSn; with the Euclidean numbers not depending on n:
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Consider the sum

S;�;n

= n�2
X
i6=j

m� (Zi; Zj)

SY
s=1

 
n�m

X
k1;:::;km

 (s)n (Zi; Zj;Xk1 ; :::; Xkm)

!
:

Theorem 22. (a) Under Assumptions 19-20,

sup
2�;�2�

jS;�;nj !p 0

(b) Under Assumptions 19-22,

sup
2�;�2�

jS;�;nj(B.4)

= constn + k� � �0k2 op (1) + k� � �0k op
�
n�1=2

�
+ op

�
n�1
�
;

where constn is a random term that does not depend on �:

Proof. The proof is provided for the more di¢ cult part (b). Note that the functions

';�;n = m� (z1; z2)
SY
s=1

 (s);n (z1; z2;xs1; :::; xsm) ; � 2 �;  2 �;

form a Euclidean class of functions with the Euclidean numbers that do not depend on

n: The sum S;�;n can be represented as the sum of U -statistics of order up to Sm+ 2:

(B.5) S;�;n = n�Sm�2
Sm+1X
a=0

X
a indices coincide

'�;;n
�
Zi; Zj;Xk1s

; :::; Xkms

�
(note that since in S;�;n i 6= j; it does not contain the term with all indices of '�;;n

coinciding). Consider �rst the sum over the non-coinciding indices (a = 0). Write its
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Hoe¤ding decomposition. By condition (B.2), its �rst (lowest order, nonzero) term is a

degenerate U -statistic of order S; consisting of the sums of the form:

n�S
X

k1;:::;kS distinct

l
(0)
;�;n (Xk1 ; :::XkS) ;

where l(0);�;n (x11; :::; x1m) is obtained from l;�;n (z1; x11; :::; x1m) by integrating out z1 and

all xks for k = 2; :::m; s = 1; :::; S: By Assumption 22 and the Taylor expansion,

n�S
X

l
(0)
;�;n = n�S

X
l
(0)
;�0;n

+(� � �0)
0
�
n�S

X
@2~� l

(0)
;�;n

�
(� � �0) ;

where ~� 2 �: By (B.2), for each ; �; the function @2� l
(0)
;�;n is degenerate of order S:

E
h
@2� l

(0)
;�;n (X1; x2; :::; xS)

i
= 0:

By the Euclidean property for the class of functions
n
@2� l

(0)
;�;n; � 2 �;  2 �

o
(see e.g.

Lemma 11), we have

E sup
;�

���n�SX @2� l
(0)
;�;n

��� = O
�
LSnn

�S=2� = o (1) :

The next term in the Hoe¤ding decomposition is a degenerate U -statistics of order S+1:

It consists of the following terms:

n�S�1
X
k1;k2

0BBBB@
E
h
l
(s0)
;�;n (Z1;x11; x21:::; xS1;xs02)

i
�E

h
l
(s0)
;�;n (Z1;x11; x21:::; xS1;Xs02)

i
�E

h
l
(s0)
;�;n (Z1;x11; :::; Xs01; :::; xS1;xs02)

i
1CCCCA
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and

1

n (n� 1)
X
k1;i

0B@ E
h
l
(s0)
;�;n (z1;x11; x21:::; xS1;Xs02)

i
�E

h
l
(s0)
;�;n (Z1;x11; x21:::; xS1;Xs02)

i
1CA ;

where l(s0);�;n (z1;x11; x21:::; xS1;xs02) is obtained from l;�;n by integrating out all xks for

k = 3; :::m; s = 1; :::; S; and also all x2s for s 6= s0: By Assumption 21, the Taylor

expansion and the Maximal Inequality (Lemma 11), both terms are of the order

constn + k� � �0kOp
�
n�S=2�1=2LSn

�
= constn + k� � �0k op

�
n�1=2

�
:

The remaining terms in the Hoe¤ding decomposition are of order at mostOp
�
n�S=2�1LSn

�
=

op (n
�1) :

We now consider the terms in (B.5) corresponding to ties between indices (a > 0).

The ties result in a smaller number of indices being summed up, so that the sums contain

O (na) times less terms than the sum over non-coinciding indices. Secondly, a tie in

the index reduces the order of the �rst nonzero term in the Hoe¤ding decomposition

because condition (B.2) becomes irrelevant in the presence of dependencies between the

X variables. When the a ties occur only between the k-indices, the �rst nonzero order

of the Hoe¤ding decomposition depends on max fS � 2a; 0g independent copies of X:

Therefore the order of this term is at most Op
�
n�an�(S�2a)=2LSn

�
= Op

�
n�S=2LSn

�
: In

this term both Z1 and Z2 are integrated out, therefore, we can use the smoothness of

the function l;�;n and condition (B.3) to show that it has the representation given in

(B.4). The next term in the Hoe¤ding decomposition, which has the order of magnitude

Op
�
n�S=2�1=2LSn

�
; can also be treated as above, and the remaining terms are of order

Op
�
n�S=2�1LSn

�
= op (n

�1) :
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Finally, we need to consider the ties between one or both indices i; j with some of the

k-indices (possibly, in the presence of the ties within the k-indices). The result of such tie

is that the condition (B.3) can no longer be used to remove the linear term in the Taylor

expansion of l;�;n after integrating out Zi; Zj: In the case of the tie with one of the indices

i; j; the �rst nonzero term in the Hoe¤ding decomposition, in accordance with condition

(B.2), contains max fS � 2 (a� 1) + 1; 0g = max fS � 2a+ 1; 0g independent copies of

the X-variable. Therefore, its order is at most Op
�
n�S=2�1=2LSn

�
: Using smoothness, we

can �nd that this term has the order

constn +Op
�
n�S=2�1=2LSn

�
k� � �0k = constn + op

�
n�1=2

�
k� � �0k :

The higher-order terms of the Hoe¤ding decomposition can be neglected. If there are ties

with both i; j we cannot use the smoothness in � any longer. However, condition (B.2)

now implies that the order of the �rst nonzero term in the Hoe¤ding decomposition is

Op
�
n�1n�S=2LSn

�
= op (n

�1) ; and the remaining terms are of even smaller order. �

Now we use the above result to prove Theorem 8.

Proof. (Theorem 8.)

Consistency of �n follows from the fact that the objective function converges to its

expectation with w3 (z) in place of ŵ3 (z) uniformly in �; which proof we omit. We now

prove the result on the asymptotic normality.

Let

a (z; h; �0n) =
1

h3
E

�
M (Y1; Y2)�

�
z �X 0�0n

h�

�
�0
�
z �X 0�0n

h�

��
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and

b (z; h; �0n)

=
1

h3
E

�
M (Y1; Y2)M (Y1; Y3)�

�
z �X 0

1�0n
h�

�
�

�
z �X 0

2�0n
h�

�
�

�
z �X 0

3�0n
h�

��

Rewrite the function ŵ3 as

ŵ3 =
a (z; h; �0n) +  

(�)
�0nn

(� + b (z; h; �0n))

(� + b (z; h; �0n))
�
1�  

(�)
�0nn

�
(this de�nes the functions  (�)n ;  

(�)
n ).

Note that the function m� = M (y1; y2) sign
�
(X1 �X2)

0 (�; 1)
�
and the symmetrized

functions  (�)n ;  
(�)
n (where  2 � is the placeholder for �0n), satisfy Assumptions 19 and

20 for Ln = 1

maxfh3�;h3�g : Next, note that by the maximal inequalities for the U-processes

(see Lemmas 16 and 18 for m = 1; and Lemma 11 for the higher-order degenerate U -

processes), for p � 2;

�
E sup
;�;z

��� (�)�0nn���p�1=p = O
�
n�1=2h3=2� log n

�
= o

�
n�1=4 log n

�

so that
�
E sup;�;z

��� (�)�0nn���10�1=2 = o (n�1) : Since

�
E sup
;�;z

���g2 (z)� (z) +  
(�)
�0nn

���2�1=2 = O (1) ;

we have, by the Cauchy-Schwartz inequality,

ŵ3 =

�
a (z; h; �0n)

� + b (z; h; �0n)
+  

(�)
�0nn

� 
1 +

4X
s=1

�
 
(�)
�0nn

�s!
+ op

�
n�1
�
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where the last term is op (n�1) uniformly in �;  and z:

Let

S;�;n

= n�2
X
i6=j

m� (Yi; Xi; Yj; Zj) (ŵ3 (Zi)� w3 (Zi)) :

Once we check that Assumptions 21 and 22 hold for the functions

a (z; h; )

� + b (z; h; )

�
 
(�)
�0nn

�s
; s = 1; :::; 4

 
(�)
�0nn

�
 
(�)
�0nn

�s
; s = 0; :::; 4;

Theorem 22 will imply that

sup
�2�

jS�0n;�;nj !p 0

and, with probability approaching 1;

sup
k���0k!0

jS�0n;�;nj = constn + k� � �0k2 op (1) + k� � �0k op
�
n�1=2

�
+ op

�
n�1
�
:

Therefore, the sum S;�;n has the order that does not a¤ect consistency, asymptotic nor-

mality and the asymptotic variance of �n (see conditions on �n;� in Theorem 9).

Let now �0 be an open ball in � containing �0. Since �n ! �0; with probability

approaching to one �n is in �0: It is clear that Assumption 21 is satis�ed for the same

numbers Ln as above.
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Consider the function

X
i6=j

a (z; h�; �0n)

� + b (z; h�; �0n)
m� (Yi; Yj;Xi; Xj) :

Use the Taylor expansion of the functions a (z; h; �0n) and b (z; h; �0n) in the powers of h

and (�0n � �0) keeping the terms of order 6 and lower. Because h�; h� = o
�
n�1=6

�
and

(�0n � �0) = Op
�
n�1=2

�
; the remainder of the expansion has the order op (n�1) uniformly

in z: The zero order term of the expansion is w3 (z) : It is easy to see that for the terms

of the expansion other than the zero-order term, the corresponding U -statistic can be

represented as the LHS of (B.4), and so these terms do not a¤ect consistency, asymptotic

normality and the asymptotic variance of �n: �



164

APPENDIX C

Computational Algorithms

C.1. PDR4 Criterion Function

Here we provide a brief description of our algorithm for computing Abrevaya�s [2003]

PDR4 criterion function:

X
i;j;k;l distinct

(1 fYi > Yjg � 1 fYk > Ylg)1 fZi > Zjg ;

where Zi = X 0
i�: The PDR4 criterion function is a U -statistic of order four, and its brute-

force computation requires O (n4) operations. The number of operations can be reduced to

O (n2 log n) by using sorting (Abrevaya [2003]). Additionally, one can exploit the pairwise-

di¤erence structure of the criterion function to reduce the amount of computations by a

�xed proportion. One such algorithm is presented below.

It is easier to compute a form of the PDR4 criterion function in which the summation

is done over the set of indices i; j; k; l 2 �I(4)n where �I(4)n excludes the following coincidences

of indices: i = j; k = l; fi = k; j = lg and fi = l; j = kg. Note that the e¤ect of (the

remaining) coinciding indices is analogous to the e¤ect of ties in the bootstrap, and it can

be ignored asymptotically under Assumptions 5 and 10. Summation over the set �I(4)n can

be performed using O (n2 log n) operations after sorting the vector of di¤erences Zi � Zj:

An e¢ cient algorithm exploits the fact that only the positive di¤erences of Zi�Zj need to

be sorted. Secondly, if the vector fZgni=1 is itself sorted before computing the di¤erences,
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the stacked vector of di¤erences fZi � Zjg consists of sorted segments of known lengths,

and a more e¢ cient sorting algorithm (relative to all-purpose algorithms such as quicksort

or heapsort) can be applied to it. Taking into account these two features allows us to

speed up the computation of the PDR4 criterion function by about three times.

To explain the algorithm, we �rst rewrite the objective function in terms of nonnegative

di¤erences of Zi�Zj: Assume that fZig are ordered in a nondecreasing order: Zi�Zj � 0

if i > j: The sums are over the indices in �I(4)n and the additional restrictions on indices

shown explicitly:

(�) : =
X

(1 fYi > Yjg � 1 fYk > Ylg) 1 fZi � Zj > Zk � Zlg

=
X

1 fYi > Yjg 1 fZi � Zj > Zk � Zlg

�
X

1 fYk > Ylg 1 fZi � Zj > Zk � Zlg

=
X

sign (Yi � Yj) 1 fZi � Zj > Zk � Zlg

Here we exchanged labels in the second sum as follows: k $ j; l$ i (note that this does

not change the summation set �I(4)n ), and used the de�nition of sign (Yi � Yj).



166

(�) =

 X
i>j

+
X
i<j

!
sign (Yi � Yj) 1 fZi � Zj > Zk � Zlg

=
X
i>j

sign (Yi � Yj) �

[1 fZi � Zj > Zk � Zlg � 1 f� (Zi � Zj) > Zk � Zlg]

=
X
i>j

sign (Yi � Yj) �

1 fZi 6= Zjg [1 fZi � Zj > Zk � Zlg � 1 fZi � Zj < Zk � Zlg]

Here we �rst exchanged labels i; j in the sum over i < j; noted that the summation term

is zero if Zi = Zj and then exchanged labels k; l in the second term in line 3. Summation

over k 6= l of the last term can be written as

1 fZi 6= Zjg
 X
k>l

+
X
k<l

!264 1 fZi � Zj > Zk � Zlg

+1 fZi � Zj � Zk � Zlg � 1

375
= 1 fZi 6= Zjg

X
k>l

[1 fZi � Zj > Zk � Zlg+ 1 fZi � Zj � Zk � Zlg]

because the remaining terms sum up to zero due to our assumption that fZig are ordered

in the nondecreasing order. Therefore,

(�) =
X
i>j

sign (Yi � Yj) 1 fZi 6= Zjg �

X
k>l

[2 � 1 fZi � Zj > Zk � Zlg+ 1 fZi � Zj = Zk � Zlg]

The last summation should be performed with the additional restriction (i; j) 6= (k; l) ;

while the restriction (j; i) 6= (k; l) follows from the restrictions i > j; k > l:
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This suggests the following algorithm:

(i) Sort fZigni=1 in the ascending order, and rearrange fYig
n
i=1 accordingly.

(ii) For i > j; compute the di¤erences Zi � Zj and stack them into a vector � =�
�q
	n(n�1)=2
q=1

. Use the following order of stacking the elements of vector �: �rst the element

with i = 2; j = 1; then the two elements with i = 3; j = 2; 1; then the three elements

with i = 4; j = 3; 2; 1; and so on. The resulting vector � consists of segments of lengths

1; 2; 3; :::; n� 1; that are each sorted in the ascending order.

(iii) For i > j; compute the values of sign (Yi � Yj) 1 fZi 6= Zjg and stack them in a

vector � =
�
�q
	n(n�1)=2
q=1

in the same order as in step (ii).

(iv) Sort the vector � in the ascending order and rearrange vector � accordingly. To

exploit the structure of �; use the mergesort algorithm iteratively. In each iteration, choose

a pair of non-overlaping sorted segments (e.g. take adjacent segments, whose lengths are

known) and merge them into one sorted segment. Repeat this step until the entire vector

is sorted.

(v) The value of sums
P

q0 1
�
�q > �q0

	
and

P
q0 1
�
�q = �q0

	
over q 6= q0 can now

be determined from the order of element �q in the sorted vector � with a correction on

coinciding elements of the vector. After �nding these sums for every q; compute the sum

(�) :

C.2. Weighted Criterion Functions

An important aspect of the weighted rank estimators is that their criterion function, for

a known weighting function (multiplicative or additive in the two observations), depends

on the number of observations as O (n log n) ; just as for the unweighted rank estimators.
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Given the large amount of the criterion function evaluations required to perform the

maximization, this property is crucial for the practical usefulness of these estimators.

Here we describe the corresponding algorithms for the two speci�c estimators considered

above, MR and MRC.

In the case of MR, the weighted criterion function can be computed as follows. Con-

sider the case when the weighting function is multiplicative in the two observations, i.e.

w (z1; z2) = w0 (z1)w0 (z2) :

As discussed in the previous subsection, under Assumption 5, the ties in the single index

do not a¤ect the asymptotic distribution of the estimator. With the ties ignored, the

criterion function can be rewritten as

X
i6=j

wiwjYi1
�
X 0
i (�; 1) > X 0

j (�; 1)
	
;

where wi is an estimator of w0 (X 0
i (�0; 1)) : To compute the double sum for a candidate �

using O (n log n) observations, (1) compute the vector of the modi�ed Y -values: ~Yi = wiYi;

(2) sort the values X 0
i (�; 1) in the ascending order, and rearrange the vectors fwig andn

~Yi

o
accordingly. After reordering, the sum takes the form:

X
i>j

wj ~Yi =

nX
i=2

Wi
~Yi

Wi =
i�1X
j=1

wj:
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(3) Compute the vector of values fWig by recursion:

W2 = w1;

Wi = Wi�1 + wi�1; i = 2; :::; n;

and compute the double sum
Pn

i=2Wi
~Yi:

In the case of the additive weights, w (z1; z2) = w0 (z1) + w0 (z2) ; the computation

algorithm is similar. The criterion function is

X
i6=j

(wi + wj)Yi1 fZi > Zjg

=
X
i6=j

�
~Yi + wjYi

�
1 fZi > Zjg

=
X
i

~YiRank(Zi) +
X
i6=j

WiYi;

where Rank(Zi) =
P

j 6=i 1 fZj < Zig ; ~Yi = wiYi; and Wi =
P

j wj1 fZi > Zjg can be

computed recursively after sorting the vector fZig.

For the weighted MRC with additive weights, the computation of the criterion func-

tion:

X
i6=j

(wi + wj) fYi > Yjg 1 fZi > Zjg

=
X
i6=j

wi (fYi > Yjg 1 fZi > Zjg+ fYi < Yjg 1 fZi < Zjg)

=
X
i

wi (Si + S 0i) ;
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where

Si =
X
j

fYi > Yjg 1 fZi > Zjg ;

S 0i =
X
j

fYi < Yjg 1 fZi < Zjg ;

is straightforward, since the entire vectors of sums fSigni=1 ; fS 0ig
n
i=1 ; can be computed in

O (n log n) operations using the algorithm of Abrevaya [1999] (for sorted Zi; S 0i can also

be expressed through Si after a correction for ties).

C.3. Optimal Weighting Functions

Here we explain how the estimated weighting function,

w3 (z) =

1
n2h3�

P
i;jM (Yi; Yj)��i�

0
�j

� + 1
n3h3�

�P
i

�P
jM (Yi; Yj)��j

�2
��i �

P
i;jM

2 (Yi; Yj)�
2
�j��i

�
can be computed using at most O (n log n) operations for each z: In the case of MR, this

follows from the multiplicative form of the involved sums (requiring O (n) computations

for each z). For other rank estimators, the only non-multiplicative term is 1 fYi > Yjg ;

however, using sorting such sums can be computed in O (n log n) operations.

Speci�cally, consider MRC:M (Y1; Y2) = sign (Y1 � Y2) (de�ned as zero at zero). First

sort Yi in the nondecreasing order in i (this requires at most O (n log n) operations, and

needs to be done only once), and rearrange the other vectors accordingly). Let fY0kg be

the distinct values of Yi in the sample ordered in the increasing order. Consider �rst the
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numerator and de�ne

��k =
X

i:Yi=Y0k

��i;

�0�k =
X

i:Yi=Y0k

�0�i:

The entire vectors (��k) ;
�
�0�k
�
can be computed in O (n) operations. The sum in the

numerator is

X
k;l

M (Y0k; Y0l) ��k�
0
�j

= 2
X
l<k

��k�
0
�l �

X
k 6=l

��k�
0
�l

= 2
X
l<k

��k�
0
�l �

X
k

��k
X
l

�0�l +
X
k

��k�
0
�k

which can be computed in O (n) operations using recursion.

To compute the denominator, let ��k =
P

i:Yi=Y0k
��i; and �2�k =

P
i:Yi=Y0k

�2�i: Vec-

tors (nk) ; (��k) ; (�2�k) can be computed in O (n) operations. The sums in the denomi-

nator are equal to

X
k

��k

 X
l

��lM (Y0k; Y0l)

!2
�
X
l;k

�2�l��kM
2 (Y0l; Y0k)

=
X
k

��k

 
2
X
l:l<k

��l �
X
l:l 6=k

��l

!2
�
X
k 6=l

��k�2�l

=
X
k

��k

 
2
X
l:l<k

��l �
X
l

��l + ��k

!2
�
X
k

��k
X
l

�2�l

+
X
k

��k�2�k
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which can be computed in O (n) operations using recursion. Similar algorithms can be

constructed for the other rank estimators.

C.4. Maximization Procedure in the School Choice Example

To maximize the MR criterion function we used the Nelder-Mead (NM) algorithm,

with three initial simplices, the identity matrix, I; and the matrices � � I; and �2 � I; with

� = 0:4: For each initial simplex, the NM algorithm is run until the values of the objective

function on the vertices of the simplex are within 10�9 of each other. As starting points

for the algorithms we take �(0) = �Logit; and

�(k) = ��(k�1) + �k; k = 1; :::; 50

where ��(k�1) is the convergence point of the NM algorithm from the starting point �(k�1);

and �k is a random draw from the distribution

N
�
�Logit; 4 � diag(V ar (�)Logit)

�
:

The draws �k are the same for all experiments (unweighted MR, weighted MR and the

bootstrapped estimators). To reduce the computational burden of the bootstrap, we took

only the �rst 30 draws of �k, and, in the weighted MR, used the same weighting functions

as on the estimation stage.
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