

NORTHWESTERN UNIVERSITY

Low-Power Mixed-Signal Time-Domain Hardware Accelerator Design for Edge

Computing and Machine Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Engineering

By

Zhengyu Chen

EVANSTON, ILLINOIS

December 2020

2

© Copyright by Zhengyu Chen 2020

All Rights Reserved

3

ABSTRACT

Low-Power Mixed-Signal Time-Domain Hardware Accelerator Design for Edge

Computing and Machine Learning

Zhengyu Chen

While the entire silicon industry has been blooming under Moore’s Law for decades,

conventional digital implementation is approaching the “stall” of Moore’s Law due to many

physical design limitations. Technology innovation now is going to take a different direction.

Given the increasing demand for emerging applications' computational capacity, it is urgent to

find alternative computing methods that can bring efficiency beyond conventional digital

approach. To improve the computing efficiency, multiple alternative solutions have been

proposed, e.g. approximate computing, parallel computing, quantum computing, time-domain

computing, etc. Among them, mixed-signal time-domain computing (MSTC) has drawn

significant attention recently due to its high energy efficiency and low area cost. As the nature of

mixed-signal design, MSTC combines the advantages of both digital and analog computing

methods. On one hand, circuit-wise, MSTC utilizes digital components to encode/decode and

processes information in time domain, which brings the benefit of technology scalability and

compatibility of the current digital design flow. On the other hand, from the signal processing

aspect, MSTC is similar to analog computing as the information can be more densely encoded in

a single signal, e.g. a time pulse, leading to benefits similar to the analog-based processing. Such

4

benefits include the high efficiency in energy consumption and a desirable error

resiliency/scalability where most-significant-bit is the least likely to show errors.

In this thesis, the innovative MSTC circuit, architecture, and algorithm design methodology

are introduced to accelerate emerging applications, e.g. image processing and machine learning.

To provide a concrete circuit design foundation, the variation-aware MSTC circuit design

methodology is introduced. The basic arithmetic cells and other complex operation modules

including time flip-flop, time-domain accumulator, and time-domain multiplier, are implemented

in time domain. To demonstrate the energy and area efficiency in conducting non-linear

operations, a MSTC-accelerated image processing engine is presented with over 40% area and

energy improvement compared to the digital counterparts. To improve the throughput in MSTC,

the first time-domain pipeline architecture for dynamic time warping (DTW) algorithm is

proposed, which is enabled by the special time flip-flop design. The proposed pipeline operation

leads to an order-of-magnitude improvement in throughput and a scalable processing capability

for time series classification tasks.

Moreover, to demonstrate the efficiency in conducting machine learning workloads, a

MSTC-based accelerator for deep neural network (DNN) applications, i.e. generative adversarial

network (GAN), is developed. The proposed GAN accelerator is the first mixed-signal circuit

implementation with efficient multi-bit multiplication for on-chip DNN inference and training.

Different from prior time-based implementations which need successive conversion between

time and digital domain when realizing MAC operation, this work computes the entire MAC

operation in time domain, rendering the highest throughput of 18~5400× with similar efficiency.

To explore the potential in carrying the emerging Compute-In-Memory (CIM) task, an energy

efficient time-domain CIM processor is proposed. A single-phase MAC operation is realized to

5

remove throughput overhead of prior multi-phase operation and digital accumulation. The power

bottleneck of ADC/SA is mitigated by implementing a computation-adaptive ADC skipping

operation and special analog sparsity scheme, leading to additional 2~3× reduction of CIM

macro power.

Finally, to deliver the missing element of design automation for time-based design and to

make it compatible with the existing digital design flow, a systematic design automation flow for

MSTC is presented. More specifically, a digital compatible synthesis and backend flow is

developed with novel variation-aware RTL mapping and ACG-based placement algorithms to

enable the automation of MSTC design. Compared to the existing analog placement methods and

commercial EDA tools, the proposed design automation scheme shows significant improvement

in the signal matching performance.

6

Acknowledgements

The Ph.D. program is not only a process that helps me gain technical knowledge and

research capability, but also a journey that cultivates my soul, my personality, and my faith in

achieving success in whatever situations.

Throughout my Ph.D. program, I have been supported by so many beloved people who

provided me with advice, encouragement, and strength. Without these lovely people, my time at

Northwestern University would not have been fulfilled by excitement and pleasure.

I would like to express deepest appreciation to my Ph.D. advisor, Professor Jie Gu, for his

continuous guidance and smart ideas throughout my studies at Northwestern. He spent

significant efforts and patience in guiding me to become a mature researcher. His insight on

high-quality research topics greatly inspired my research passion, rendering a successful Ph.D.

journey for me. I could not expect a better advisor. Thanks again Prof. Gu, for all his guidance

and help during the past five years.

I want to thank other committee members, including Professor Hai Zhou and Professor Seda

Ogrenci Memik. Prof. Zhou has been mentoring my research at Northwestern and providing me

with a lot of valuable guidance in my research on design automation. Prof. Memik has been

providing me with very helpful feedback on multiple occasions including research topics, Ph.D.

prospectus and defense. Many thanks to their guidance, comments, and recommendations over

the past years.

I would like to thank all the lab members who I have been working with throughout my

Ph.D. period. Dr. Tianyu Jia, who joined this lab with me at the same time, is an excellent

colleague and a good friend of mine. We have been extensively collaborating over the past years.

7

Great thanks to the Master students who have been me working with me on those tough tape-out

projects, including Sihua Fu, Xi Chen, Qiankai Cao, Geng Xie and Zhenduo Zhai. They have

been learning and researching with me together over the past years. I would also thank other lab

members including Kofi Otseidu, Yijie Wei, Yuhao Ju and Aly Shoukry. Thank them for all the

assistance and help throughout these years.

Moreover, I would like to thank my internship advisor, Mr. Christopher Clark, at Google

TPU team. I would also thank other colleagues I worked with in the TPU team in Wisconsin

Madison. I had a great internship experience with their help and advice and got involved into real

industrial product development during the summer in 2019.

Lastly, and most importantly, I would like to show great appreciation to my family. None of

the achievements in this journey would have become possible without my family. I would thank

my parents for the endless love and countless support both mentally and financially. Without

their support and encouragement, this exciting journey of Ph.D. could not be concluded with

such a joyful ending.

8

Table of Contents

ABSTRACT .. 3

Acknowledgements ... 6

Table of Contents .. 8

List of Tables .. 10

List of Figures ... 11

Chapter 1 Introduction .. 15

1.1 Mixed-Signal Time-Domain Computing .. 15

1.2 Motivation ... 18

1.3 Summary of Contributions .. 20

Chapter 2 Background .. 24

2.1 Mixed-Signal Time-Domain Computing .. 24

2.2 Related Work ... 26

Chapter 3 Energy-Efficient Mixed-Signal Time-Domain Circuit Design Methodology 29

3.1 Mixed-Signal Time-Domain Computing Circuit Design Overview 29

3.2 Energy-Efficient Design Methodology in MSTC ... 33

3.3 Variation-Aware Design Methodology in MSTC ... 36

3.4 Summary ... 44

Chapter 4 A Time-Domain Accelerated Image Recognition Processor Design 45

4.1 Exploiting Complex MSTC Non-Linear Operations .. 45

4.2 Time-domain Computing Accelerated Image Recognition Processor 52

4.3 Measurement Results .. 55

4.4 Comparison and Discussion .. 57

4.5 Summary ... 59

Chapter 5 A Scalable Pipelined Time-Domain DTW Engine for Time-Series Classification 60

5.1 Time-Series Classification and Dynamic Time Warping ... 61

5.2 Time-Domain Acceleration Technique ... 63

5.3 Time-Domain DTW Architecture ... 68

5.4. Measurement Results ... 78

5.5 Comparison and Discussion .. 82

5.6 Summary ... 85

Chapter 6 A Mixed-signal Time-Domain Generative Adversarial Network Accelerator 86

9

6.1 Design Challenge in Generative Adversarial Network (GAN) ... 86

6.2 Time-Domain GAN Accelerator Architecture Design .. 88

6.3 Time-domain GAN Accelerator Circuits Design .. 93

6.4 Measurement Results .. 95

6.5 Comparison and Discussion .. 98

6.6 Summary ... 99

Chapter 7 A 3T Dynamic Analog RAM-Based Computing-in-Memory Macro and CNN

Accelerator Design.. 100

7.1 Computing-In-Memory Design and Challenges ... 100

7.2 Dynamic Analog RAM-Based CIM Circuit Design ... 102

7.3 Dynamic Analog RAM-Based CIM Architecture Design .. 104

7.4 Dynamic Analog RAM-Based CIM Energy Saving Techniques 107

7.5. Measurement Results ... 109

7.6 Comparison and Discussion .. 111

7.7 Summary ... 111

Chapter 8 Digital Compatible Synthesis, Placement and Implementation of MSTC 113

8.1 Design Automation in Mixed-Signal Time-Domain Computing 113

8.2 Synthesis of Time-Domain Logic ... 115

8.3 Proposed Mixed-Signal Placement ... 118

8.4 Experimental Results ... 126

8.5 Summary ... 130

Chapter 9 Conclusion and Future Work ... 132

References ... 135

10

List of Tables

Table 2.1 List of Operations Implemented in Time Domain .. 25

Table 3.1 Variation-Awareness Optimization Algorithm ... 43

Table 4.1 Performance Comparison ... 59

Table 5.1 DTW Accelerator Design and Comparison Table .. 84

Table 6.1 Comparison Table of Time-Domain GAN Accelerator ... 98

Table 7.1 Comparison Table of Proposed 3T DARAM CIM CNN Accelerator. 112

Table 8.1 Netlist Optimization Algorithm .. 117

Table 8.2 Example RTL Implementation of MSTC-Neural Node. .. 117

Table 8.3 Example Netlist of MSTC-Neural Node from Synthesis. .. 117

Table 8.4 Performance Comparison for Placement Methods. .. 128

11

List of Figures

Figure 1.1 Uni-processer performance. .. 16

Figure 2.1 Concept of mixed-signal time-domain computing. ... 24

Figure 3.1 (a) System overview of time-domain computing; (b) Time encoder circuit: prior work

[11] (left), proposed DTC in this work (right); (c) Time-domain operation circuits; (d) An

example of n-bit MSTC adder: circuit schematic (left), waveform (right). 31

Figure 3.2 Proposed double-edge operation: (a) overview, (b) conventional digital

complementary logic, (c) Two 1-bit adders using dual-encoding scheme with different logic

operations for rising and falling transitions, (d) energy and area comparison between single 34

Figure 3.3 Proposed bit-split technique: (a) technique overview, (b) performance and energy

saving come from the bit-split scheme, (c) combine algorithm. ... 36

Figure 3.4 Variation-awareness design flow of MSTC. ... 37

Figure 3.5 Normalized delay across PVT corners and INL of (a) slow corner, (b) typical corner,

(c) fast corner. ... 38

Figure 3.6 (a) Circuit schematic of individual DTC scheme [11], (b) proposed shared time

encoder scheme, (c) variation comparison between shared TG and individual TE/DTC, (d)

mismatch and energy comparison between induvial and shared TE/DTC (8-output). 40

Figure 3.7 (a) Variation of MAX (NAND2) and MIN (NOR2) at various sizes; (b) Example

schematic... 42

Figure 4.1 (a) MSTC implementation of a non-linear operation; (b) Area comparison between

digital and MSTC approaches. .. 46

Figure 4.2 Algorithm of 6-bit 4-input WTA design with 3-bit split in MSBs and LSBs. 46

Figure 4.3 (a) Circuit design of WTA, (b) example of double-edge and bit-split technique, (c)

example waveform of MIN function used in this design. ... 47

Figure 4.4 Layout comparison between (a) conventional digital WTA and (b) MSTC WTA. 48

Figure 4.5 Algorithm of 12-input MF. .. 49

Figure 4.6 Circuit diagram of MF with detailed circuit schematic of combine logic & equal

detection and the circuit detail of decoder. ... 50

Figure 4.7 Example of waveform of MF operation. ... 51

Figure 4.8 Layout comparison between (a) conventional digital MF and (b) MSTC MF............ 52

Figure 4.9 Overview of image recognition algorithm used in this work. 52

Figure 4.10 (a) Top level implementation of the proposed test chip; (b) Circuit diagram of timing

variation test module. .. 54

Figure 4.11 Measurement results on (a)performance, (b) measured (blue histogram) vs. simulated

12

variation through chips, (c) linearity of the TE/DTC, (d) area, speed and power comparison..... 56

Figure 4.12 Die micrograph and specifications. ... 57

Figure 4.13 Efficiency vs. variation of timing encoding circuits from prior work [11, 13, 31] and

our proposed work; (b)Performance vs. energy for prior image processing designs [50, 51, 52].58

Figure 5.1 Dynamic time warping (DTW) algorithm. .. 62

Figure 5.2 Circuit details of time-domain circuits implemented in this work. (a) Basic time-

domain circuits; (b) ABS module; (c) 3-input MIN module. ... 64

Figure 5.3 Differences between DFF and TFF. (a) DFF, (b) TFF. ... 65

Figure 5.4 Time-domain flip-flop designs. (a) Circuit diagram of TFF; (b) Circuit diagram of the

W-TFF module.. 66

Figure 5.5 Simulated waveform of TFF when (a) ring is not fully filled, (b) ring is fully filled. 68

Figure 5.6 Time-domain DTW algorithm. (a) Waveform of time-domain DTW; (b) Time-domain

implementation of DTW. .. 69

Figure 5.7 Architecture diagram of implemented pipelined time-domain DTW. 70

Figure 5.8 Diagonal data path and pipeline stage structure of DTW engine. 71

Figure 5.9 Data streaming flow comparison between (a) brute-force data streaming flow, (b)

systolic data streaming flow.. 72

Figure 5.10 Unfolding mode of the proposed DTW engine. .. 74

Figure 5.11 Architecture diagram of non-pipelined DTW mode. .. 75

Figure 5.12 Design automation techniques used in this work. (a) Design automation flow chart;

(b) Layout result of 20×20 DTW matrix. ... 76

Figure 5.13 Calibration scheme of the 20×20 DTW matrix. (a) Calibration order through

different diagonals. (b) Calibration order of each DTW node on the main diagonal. (c)

Calibration order of each DTW node on the second diagonal. (d) Example of special input sets to

enable the calibration of different node on the main diagonal. ... 77

Figure 5.14 Die photo and chip specification. .. 78

Figure 5.15 Measured waveform of (a) pipelined mode, (b) non-pipelined mode. 79

Figure 5.16 Linearity measurement of TFF at nominal 1.0V with (a) retention time of 10ns, (b)

retention time of 1μs. .. 79

Figure 5.17 Linearity measurement of TFF in low voltage case (0.7V) with retention time is

20ns. .. 80

Figure 5.18 Measurement results of different applications. (a) DTW classification error rate of

UCR archive (pipelined Mode); (b) Simulated vs. measured DNA alignment distance (non-pipe.

mode). ... 81

Figure 5.19 Chip operating frequency and error rate measurement under different supply

13

voltages. .. 81

Figure 5.20 DTW node error measurement before and after calibration. 82

Figure 6.1 GAN applications and algorithm. .. 87

Figure 6.2 Model compression techniques utilized in this work. ... 88

Figure 6.3 Hardware adaptation techniques utilized in this work. ... 89

Figure 6.4 Adaptive training techniques in GAN accelerator design. .. 89

Figure 6.5 Training sequence of GAN. ... 90

Figure 6.6 Block diagram of ASIC training management unit (TMU). 90

Figure 6.7 Top-level architecture diagram of proposed GAN accelerator. 91

Figure 6.8 Circuit diagram of time-domain MAC array. .. 91

Figure 6.9 Circuit details of (a) 4b time-domain accumulator, (b) time-domain ReLU function. 92

Figure 6.10 Circuit diagram of time-domain MAC unit. .. 92

Figure 6.11 Time-domain MAC operation waveforms. ... 93

Figure 6.12 Time-domain multiplication, (a) circuit details, (b) simulation waveform. 94

Figure 6.13 Nonlinearity compensation in time-domain multiplier. .. 94

Figure 6.14 Nonlinearity compensation simulation results. ... 94

Figure 6.15 Layout comparison between 4b digital multiplier and 4b timed-domain multiplier. 94

Figure 6.16 Linearity measurement of (a) time-domain accumulator and (b) time-domain

multiplier. .. 95

Figure 6.17 Measurement results of classification errors on different databases. 96

Figure 6.18 Training results of GAN on (a) MNIST digit database, (b) Emoji and Fashion

MNIST databases. ... 96

Figure 6.19 (a) Measurement result of voltage scaling, (b) measurement result of ‘self-healing’.

... 97

Figure 6.20 Die photo. .. 97

Figure 7.1 Challenges in CIM design and our proposed solution... 101

Figure 7.2 Proposed 3T DARAM design, (a) circuit schematic, (b) 3D diagram of metal

capacitor, (3) layout. ... 102

Figure 7.3 Simulation of proposed DARAM, (a) leakage simulations over different design

corners, (b) capacitance improvement, (c) area comparison between DARAM and prior design.

... 103

Figure 7.4 Stationary cycles of weights on CNN models. .. 103

Figure 7.5 Top-level architecture diagram of proposed CIM-based CNN accelerator. 105

14

Figure 7.6 Sparsity management module in ASIC core. .. 106

Figure 7.7 (a) Histogram of weight offset, (b) weight-shift-based Imem reduction based. 106

Figure 7.8 MAC-based ADC skipping scheme. ... 107

Figure 7.9 ReLU-based ADC skipping scheme. ... 108

Figure 7.10 Weight nonlinearity compensation technique for DARAM. 109

Figure 7.11 Measurement results: (a) DARAM cell retention time, (b) weight refresh overhead,

(c) CIM macro power improvement. .. 110

Figure 7.12 Measurement results: (a) ADC saving vs skipping Vth of bitline cap, (b) voltage-

frequency scaling, (c) MAC linearity. .. 110

Figure 7.13 Die photo and chip specifications.. 111

Figure 8.1 Flowchart of proposed MSTC automation flow. ... 114

Figure 8.2 Symmetry group in (a) conventional analog design, (b) time-domain computing

design. ... 119

Figure 8.3 (a) A floorplan, (b) constraint graphs in horizontal (solid edges) and vertical (dotted

edges) directions, (c) ACG Graph, (d) ACG data structure. ... 121

Figure 8.4: Example of (a) symmetric constraint, (b) clustering constraint, (c) critical signal path

constraint. .. 123

Figure 8.5 Example of moves in (symmetry group are marked in blue): (a) category 1, (b)

category 2, (c) category 3.. 124

Figure 8.6: Example of packing (a) to lower-bottom corner, and (b) respect to the symmetry axis.

... 125

Figure 8.7 Topology and implementation of WTA in MSTC. ... 126

Figure 8.8 Layout of placement methods: (a) B* tree based [40], (b) sequence pair based [38], (c)

proposed design in this work. ... 127

Figure 8.9 Simulation result of mismatch for (a) B* tree based placement [40], (b) sequence pair

based placement [38], (c) our proposed technique, (d) conventional digital design. 127

Figure 8.10 Mismatch measurement results; y axis denotes the absolute variation from the

nominal delay. ... 129

Figure 8.11 Die photo and specifications of the WTA design. ... 130

15

Chapter 1

Introduction

1.1 Mixed-Signal Time-Domain Computing

The energy improvement of conventional digital circuits has reached a bottleneck as the

dynamic energy consumption of digital logic gates is dictated by CVdd
2 where both C, i.e. the

capacitance of the circuits, and Vdd, i.e. the supply voltages, are limited by the technology [1].

Besides, the leakage power of digital design also contributes significantly to the total power

consumption and the leakage power is mainly determined by the technology in use. Finding

alternative computing methods is quite urgent to bring efficiency beyond the conventional digital

approach. To fulfill such a demand, several non-conventional digital techniques such as

approximate computing and stochastic computing have been proposed providing a good tradeoff

between energy/area consumption and accuracy. Such a tradeoff is made possible based on the

fact that 80% of daily application have certain degree of error tolerance leading to feasibility of

approximation in computing [2, 3]. Despite of the different methodologies used in the above low

power design techniques, the energy reduction is still based on conventional voltage and

technology scaling leaving little room for further improvement assuming logic optimization has

been well obtained from the modern design automation tools. The single-core processor

performance over the recent decades is shown in Figure 1.1. As depicted in the figure, the gap

between the single-core computing capacity and the prediction of Moore’s Law is getting larger

and larger.

16

Figure 1.1 Uni-processer performance.

On the other hand, analog computing, which is potentially more energy- and area-efficient

than its digital counterpart at the cost of limited accuracy, has been explored over decades. For

instance, a digital-analog hybrid neural network exploits efficient analog computation and digital

intra-network communication for feature extraction and classification with an equivalent digital

design [4]. A switched capacitor based analog matrix multiplication design was proposed to

perform multiply-accumulate (MAC) operations efficiently for machine learning tasks with

similar accuracy compared to the digital counterpart [5]. In addition, memristor or RRAM-based

computing explores the voltage, current and resistance relationship to achieve much higher

efficiency on MAC operations for deep neural network (DNN) applications [6]. Other analog

computing designs, such as analog multiplier, and mixed-signal FIR filter [7, 8, 9, 10] , offer

several attractive features such as high energy efficiency in certain applications. However,

17

analog computing suffers from its limitation on voltage scalability due to the design of

amplifiers, process variation sensitivity, the static current from amplifiers, and incompatibility to

conventional digital design flow. As a result, analog computing has not been chosen as the

primary design method for general purpose computing compared to its digital counterpart.

Recently, the mixed-signal time-domain computing (MSTC) emerges as an interesting

alternative to the existing computing methods [11, 12, 13, 14]. MSTC combines the advantages

of both digital and analog methods. After encoding information into time domain, conventional

arithmetic operations can be more efficiently conducted by manipulating the signals in time

domain with special time-domain operation modules. As a result, MSTC is a good candidate for

realizing emerging applications like image processing and machine learning.

In this thesis, several interesting and novel research at circuit-, algorithm-, architecture- and

design methodology-level are going to be presented including: (1) Circuit-level design of novel

MSTC modules including the time flip-flop, time-domain accumulator, time-domain multiplier

and other high-efficient time-domain logic cells; (2) Algorithm-level designs for low-power

image processing, dynamic programming, and machine learning applications, e.g. convolutional

neural network (CNN) and generative adversarial network (GAN); (3) Architecture-level design

for scalable pipelined time-domain architecture, and multi-bit analog memory compute-in-

memory (CIM) computing; (4) Design-automation methodology for MSTC including simulated

annealing-based frontend (synthesis) and backend (place&route); All these techniques are

verified by rigorous simulation and silicon implementation throughout fabricated chips.

18

1.2 Motivation

1.2.1 Circuit Variation and Nonlinear Operation in Time Domain

The basic idea of MSTC is to represent data/information in the format of delay or length of

time pulses and then process the information in time domain with special mixed-signal circuits.

As all the information is carried and processed in time domain, the timing control is critical to

guarantee the error resiliency due to the sensitivity of delay to variations including both global

variation and local mismatches. Since the least-significant-bit (LSB) resolution is pre-defined, a

mismatch of timing beyond this value will lead to single-bit error. There has been a lack of

discussion on robustness and variation impact to the MSTC computing, which is the crucial

consideration in this type of design. Also, the efficiency of conducting non-linear operations in

time domain was not well explored [11-17]. As a result, most of existing time-based works suffer

from the following issues: (1) Variation impact which is critical to the time-domain computing

design, is not well considered and analyzed [12, 13, 14]; (2) The existing designs utilized an

inefficient and variation vulnerable multiple-gate time encoding circuit that limited the

advantages of the technique [11]; (3) The strong capability of MSTC in various nonlinear

operations, e.g. MAX, MIN operation, has not been well explored leaving limited improvement

from the techniques [12, 13, 14]. To deal with the above issues, the following techniques are

developed including (1) a variation-driven design methodology for MSTC is proposed, (2) the

high-efficient time-domain nonlinear operation development are demonstrated by a MSTC image

processing engine.

19

1.2.2 Special Purpose Accelerator Design in Time Domain

Special purpose accelerators have recently gained significant interests thanks to the bloom

of machine learning applications. Several time-domain demonstrations in CNN and

reinforcement-learning have been developed in recent years to improve the energy and area

efficiency [15, 16, 17]. In addition, time-based Computing-In-Memory (CIM) techniques which

incorporate analog computing inside memory macros have shown significant advantages in

computation efficiency for deep learning applications [18, 19, 20, 21, 22, 23]. However, there are

quite some limitations in the existing demonstrations: (1) There is a lack of memory in

time-domain operations which significantly limits the design space of the technique; (2) Most

prior works suffer from low throughput and low hardware utilization due to the non-pipelined

operation; (3) There is a lack of dedicated low-power ML accelerator for particular applications

in edge computing, e.g. generative adversarial network (GAN), due to the tremendous challenges

on resource-limited edge devices; (4) The efficiency of the existing CIM designs is limited by

the low bit-precision. To overcome these challenges, the solutions are introduced as: (a) An

efficient and high-throughput time-domain pipelined architecture is presented to accelerate

dynamic time warping (DTW) algorithm; (b) Through significant architecture improvement and

hardware adaptation, a low-power mixed-signal GAN accelerator is developed on edge device

with 8-bit resolution; (c) A high-efficient time-based CIM design is implemented, which utilizes

the analog-sparsity-based low-power methods, a compute-adaptive ADC skipping, and a special

weight shifting technique.

20

1.2.3 Design Automation in Time Domain

Despite of many existing demonstrations of highly efficient operation using MSTC [9-22],

most of existing work for time-domain computing is based on analog/mixed-signal design flow,

which requires significant manual design and layout effort. This is partially due to the stringent

timing control requirement of the technology leading to the difficulty of adoption into a large-

scale design. Hence, it is important to develop a comprehensive design methodology for the

automatic synthesis and place&route for MSTC. To address such a growing demand and deliver

the missing design automation element, a design automation flow for MSTC is developed.

1.3 Summary of Contributions

The rest of the thesis is organized as follows. Chapter 2 introduces the background of

mixed-signal time-domain computing (MSTC) including the related prior work on multiple

interesting MSTC applications. Chapter 3 presents novel time-domain circuit techniques [24],

including: (1) double-encoding strategy; (2) bit-scalable design that accelerates the performance

compared to previous linear coding; and (3) shared digital-to-time converter/time encoder with

variation-aware design technique which significantly improves the error tolerance of MSTC.

Chapter 4 presents a time-based feature-extraction processor used for real-time image

recognition [25, 26]. Complex operations like median filter and winter-take-all are carried out in

time domain to improve the efficiency in image classification. Chapter 5 presents a general-

purpose dynamic time warping (DTW) engine for time-series classification using time-domain

computing [27]. Chapter 6 presents a low-cost mixed-signal time-domain accelerator for

generative adversarial network (GAN) [28]. Chapter 7 introduces a dynamic analog RAM

(DARAM) based Computing-In-Memory macro and associated CNN accelerator. Chapter 8

21

proposes a comprehensive design automation flow for MSTC [29]. Chapter 9 concludes this

thesis and introduces the future research plan.

The contributions of this thesis are summarized as below:

• In Chapter 3, a design methodology for energy efficient time domain signal processing is

proposed. To understand the strength and weakness of the technique, the impacts of process

variation are studied and modeled with a variation driven design strategy. Such a design achieves

an optimal tradeoff between energy and robustness. Several key circuit techniques such as dual-

encoding scheme and bit-scalable design are proposed to further improve the design efficiency.

The test results show a 3.3× improvement in energy-delay product and a 34% area reduction

compared with conventional design.

• In Chapter 4, a MSTC accelerated image process is developed based on the feature-

extraction algorithm. This work proposes a series of highly efficient time-domain computing

techniques including shared time generator/DTC, double-edge operation scheme, bit-split

technique and high-efficient time-domain nonlinear operations. MSTC-based accelerators are

used to remove the bottlenecks of the algorithm, i.e. median filter (MF) and winner-take-all

(WTA), rendering significant speedup. A total of 24% to 42% area saving is observed in MF and

WTA accelerators compared to ASIC implementation. A 1.7× speedup and 20% to 23% power

saving are also observed using MSTC. The overall image recognition processor operates at

1.33GHz with a throughput of 72 frames per second (fps).

• In Chapter 5, a general-purpose DTW engine using time-domain computing is designed

for time-series classification. The first pipeline architecture in time domain is presented. A

special time-domain storage cell, namely time flip-flop, has been developed with extendable

22

ring-based structure and embedded accumulation functionality. The developed DTW engine also

allows high-throughput pipelined data flow and unfolded operation for longer time series through

a specially designed pipeline architecture. The measurement shows a throughput improvement of

more than 9× compared to prior works. A post-silicon calibration scheme is also incorporated to

reduce the impact from process variation leading to 3× reduction of distance measurement error.

• In Chapter 6, a low-cost mixed-signal time-domain accelerator is developed to accelerate

generative adversarial network (GAN). A significant reduction in hardware cost is achieved

through delicate architecture optimization for 8-bit GAN training on edge devices. As a result,

the total training time of MNIST database takes only 4.5 minutes which is 82× less than a high-

performance CPU (2.6GHz Intel i7 Quad-core with a power of 197W). As most of the existing

AMS designs suffer from low throughput, this work achieves the highest throughput of

18~5400× [15, 16, 17] with similar efficiency.

• In Chapter 7, a 3T Dynamic-Analog-RAM-Based Computing-in-Memory Macro and

CNN Accelerator is presented to accelerate CNN inference workload. A special ADC skipping

scheme brings 65% saving of ADC energy with less than 0.4% accuracy degradation. Combining

all the sparsity features, the macro power was reduced by 2.1× on average under VGG16 model.

Compared to the closest system implementation in [18], an 8× system energy efficiency

improvement at 44.7TOPS/W is achieved along with 3× area reduction in macro size. Overall,

this work achieves a state-of-art macro efficiency of 217TOPS/W at 4 bits, which is 3×

improvement from prior work and is only 32% lower than that reported in a recent 7nm

technology. In addition, an effective bit cell size of only 75% of 6T foundry SRAM cell is

achieved.

23

• In Chapter 8, a comprehensive digital compatible design flow including frontend

synthesis and backend placement for MSTC is presented. In the synthesis stage, the proposed

technique can handle the variation requirement while minimizing the estimated area of the

circuit. During the backend stage, an ACG-based placement algorithm is proposed to handle the

complex placement constraints for MSTC design. The comparison to the previous analog

placement scheme shows 4× matching improvement from the proposed method.

24

Chapter 2

Background

2.1 Mixed-Signal Time-Domain Computing

The basic concept of mixed-signal time-domain computing (MSTC) is to represent data in

the format of delay or length of time pulses and process the information in time domain with

special mixed-signal circuits. As shown in Figure 2.1, digital information, e.g. digit 2 and 5, are

converted into time domain represented by time pulses. Afterwards, computations in time

domain are realized by manipulating the pulse width of time pulses utilizing time-domain logic

circuits, e.g. time_domain(2+5) as depicted in Figure 2.1. In the end, the time-domain results are

converted back to digital domain for further operation, e.g. convert time pulsed to digit 7 and 3.

 2 5 2

Time Encoding

Din[n:0]

Time Operation

Dout[n:0]

Time Decoding

DTC

+ =

-

5

2

TDC

 5 5 2 7

=
 3

 7

 3

7

3

TDC DTC

Figure 2.1 Concept of mixed-signal time-domain computing.

A digital-to-time converter (DTC) is used to convert digital information into time domain.

Correspondingly, time-to-digital converter (TDC) carries the job to convert time-domain

information back into digital domain. More technical details of DTC and TDC designs are

presented in Chapter 3. Most of the arithmetic and Boolean operations are supported in time

25

domain such as, addition, multiplication, accumulation, shift, max, min, comparison, etc. More

complex operations/algorithms can be implemented based on these building arithmetic

operations such as, multiply-accumulate (MAC), median filter (MF), winner-take-all (WTA),

etc. As a result, many emerging applications with complex algorithms can be conducted in time

domain efficiently, e.g. image recognition [25, 26], machine learning applications [28, 29], etc.

Memory related operations such as load and store can also be realized in time domain by

utilizing special time flip flop design resulting in the first high-throughput time-domain pipeline

architecture [27]. Moreover, MSTC is by nature a good candidate for near sensor computing as

the overhead of analog-to-digital conversion can be mitigated by using time-domain techniques.

Table 2.1 summarizes the implemented operations in time domain.

TABLE 2.1 LIST OF OPERATIONS IMPLEMENTED IN TIME DOMAIN

Operation Type Supported

in MSTC

addition basic arith. Yes

subtraction basic arith. Yes

multiplication basic arith. Yes

division basic arith. Partially

modulus basic arith. Yes

increment basic arith. Yes

decrement basic arith. Yes

shift right basic arith. Yes

shift left basic arith. Yes

comparison Boolean op. Yes

maximum Boolean op. Yes

minimum Boolean op. Yes

store pipeline op. Yes

load pipeline op. Yes

MAC complex op. Yes

MF complex op. Yes

WTA complex op. Yes

CNN ML algori. Yes

FCN ML algori. Yes

GAN ML algori. Yes

26

2.2 Related Work

2.2.1 Prior Work in Analog Computing

There has been a growing interest in analog computing which utilizes non-Boolean analog

voltage or physical resistance for computing. For instance, a digital-analog hybrid neural

network explored the efficient analog computation and digital intra-network communication for

feature extraction and classification with 7.5× energy efficiency compared to equivalent digital

design [4]. A switched capacitor based analog matrix multiplication design was proposed to

perform MAC operations efficiently for machine learning tasks with similar accuracy compared

to digital counterpart [5]. A memristor- or RRAM-based computing explores the voltage, current

and resistance relationship to achieve much higher energy efficiency on multiplier-accumulator

(MAC) operations for deep neural network (DNN) applications [6]. In addition, a spike timing

dependent plasticity (STDP) inspired wavefront recording scheme is implemented to capture

incoming wavefronts in [30].

2.2.2 Prior Work in Time-Domain Computing

Several demonstrations have been developed in recent years using MSTC for realizing

emerging applications [11, 15, 16, 17, 31, 14]. For instance, a time-domain low-density parity-

check (LDPC) design was demonstrated with 2× reduction in area compared to the digital

implementation [11]. A swarm robotic system incorporating a time-domain reinforcement

learning accelerator was implemented with over 30% saving of energy compared to the digital

counterpart [15, 14]. A time-domain CNN engine showed 12× improvement for energy

efficiency compared to the other state-of-art digital implementations [16]. A high-efficient time-

27

based in-memory computing graph engine was realized using wave-front expansion and 2D

gradient control for solving single-source shortest path problems [17].

2.2.3 Prior Work in DNN Accelerator and Compute-In-Memory Design

The technology trends of big data, social networks, and autonomous driving bring high

volume of data for processing and high demands on computing devices. As a result, many new

markets have grown significantly justifying the cost of special purpose accelerator chips with

examples of tensor processing unit (TPU) from Google [32], AWS Inferential chip from Amazon

[33], and self-driving AI chip from Tesla [34]. On one hand, the digital implementations

accelerate the machine learning (ML) workloads by utilizing novel dataflow architecture, e.g.

systolic array, and data-parallel etc. On the other hand, analog-based Computing-In-Memory

(CIM) has drawn significant attention recently as it shows significant advantages in computation

efficiency for ML applications. Several interesting designs based on SRAM bit-cell show

significant area/energy improvement over CNN tasks [18, 19, 20, 21, 22, 23]. While earlier CIM

macro was limited by lower bit precision, e.g. binary weight in [18], recent works have shown 4

to 8 bit-precision for the weights/inputs and up to 20bits for the output values [19, 20]. Sparsity

and application features have also been exploited at system level to further improve the

computation efficiency [21, 22, 23].

2.2.4 Prior Work in Design Automation for Analog Computing

Design automation for mixed-signal analog computing has been developed over decades.

Although automatic placement has been proposed previously for analog/mixed-signal design [35,

36], MSTC poses special challenges, i.e. massive-stage-symmetry (MASS), and hence requires

28

special techniques not available from the prior work. Topological representations are widely

used in solving analog placement problems (in back-end), in which the relative positions

between the modules are encoded. Typical topological representations are slicing tree [37],

sequence-pairs (SP) [38], O-tree [39], B*-trees [40], and TCG-S [41]. Most of these works have

been applied to handle the symmetry constraint and other constraints like the centroid constraint.

29

Chapter 3

Energy-Efficient Mixed-Signal Time-Domain Circuit Design

Methodology

In this chapter, the operating principle and design methodology of energy efficient MSTC

is systematically presented. Variation impact of MSTC is evaluated and a variation driven design

methodology is proposed. Several novel circuit level-design techniques including double

encoding strategy and bit-scalable schemes are proposed, which significantly improve the area

and energy efficiency of MSTC.

The reset of Chapter 3 is organized as follows: the basic MSTC design methodology along

with circuit implementation are introduced in Chapter 3.1. An energy-efficient design

methodology including double-edge operation and bit-split scheme, is presented in Chapter 3.2.

A variation-aware design methodology for MSTC is proposed in Chapter 3.3. Chapter 3.4

concludes this chapter.

3.1 Mixed-Signal Time-Domain Computing Circuit Design Overview

3.1.1 Mixed-Signal Time-Domain Computing Building Modules

Mixed-Signal Time-Domain Computing (MSTC), or also referred as time-domain

computing (TC), converts the task of signal processing into “time” or delay of digital cells which

can be processed efficiently for numerous operations. The digital binary inputs are first encoded

and processed in time domain and either reconverted back into digital domain through time-to-

digital converter (DTC) or results are directly obtained at time domain without time decoding.

30

...

Time Encoding Time Logic Time Decoding

Din[n:0]

Tin

clk

Tin
Td×2

Td×2 Td×1

CMPCMP

(a)

... Din[n-1:0]

Tin

Din

Tout

Delay Delay

Prior Work[9] This Work

(b)

1 ADD

RE

TR
WE

rstb

Q

2 SUB

TD

CMP

abs value

sign

3 CMP 4 Boolean

5 Max/Min 6 Shift

TD CMP

sign
"1" "0" "0"

"1" "0" "1"

min

max

7 Mutiplication

RE

TR
WE

rstb

Q

Voltage

Ctrl

left shift

right shift
÷2

×2

TA

TB

sign
sign

Tin

Tout

𝑰𝒅𝒔 = 𝑰𝒅𝒔𝟎 × 𝒆
(𝑽𝑮𝑺−𝑽𝒕𝒉−∆𝑽𝑨−∆𝑽𝑩)

𝒏𝒌𝑻/𝒒

(c)

31

TA TB

Tout

Tout=TA+TB

Time-domain AdderA[n:0]

TE

B[n:0]

TE

Tin Tout

TA TB+

(d)

Figure 3.1 (a) System overview of time-domain computing; (b) Time encoder circuit: prior work

[11] (left), proposed DTC in this work (right); (c) Time-domain operation circuits; (d) An

example of n-bit MSTC adder: circuit schematic (left), waveform (right).

Figure 3.1 (a) shows an overall setup of the MSTC which consists of key processing stages:

(1) time encoding, (2) information processing in time domain, and (3) time decoding. Here, Tin is

the time-domain input signal, Din is the digital input signal which used to determine the time

delay of generated time-domain signal from digital-to-time converter (DTC) or time encoder

(TE), and Td is referred as the time delay of a single delay cell, e.g. buffer.

3.1.2 Time Encoder (TE) or Digital-to-Time Converter (DTC)

Figure 3.1 (b) shows 1-bit DTC from prior work (left) [11] and the proposed n-bit DTC

(right) in this work. Our proposed DTC has a simple inverter chain to generate the delay passed

through selection multiplexer to convert from digital input to time-domain signal. Compared

with the design in LDPC work [11], our design has benefits in area, energy and robustness.

3.1.3 Energy- and Area-Efficient Time-Domain Operations

Figure 3.1 (c) summarizes the schematic of basic time-domain operation/logic cells that

process the signal in time-domain once the information is encoded into time domain from DTC.

Compared to conventional CMOS logic design, many operations can be performed much more

efficiently. For example, the MAX, MIN and Compare (CMP) operations are realized by a single

32

or two logic gates leading to tremendous saving from conventional CMOS operation. Note that,

the symmetric output load constraint is critical to the CMP circuit. In addition, some more

complex operations, e.g. shift and multiplication, are also implemented efficiently in time

domain. More details of such time-domain operations will be introduced in Chapter 5, 6, and 7.

3.1.4 Time-digital-converter

Time decoder (TD), or time-digital-converter (TDC) has been extensively developed in all-

digital phase-locked-loop (ADPLL) design with the state-of-art TDC achieving 1ps resolution

[42, 43]. The right-hand side of Figure 3.1 (a) shows a 2-bit base-line TDC design based on

binary-search. However, due to the high energy and area cost of such a TDC, in this work, we

develop algorithms that eliminate the use of TDC leading to much improved area and energy

efficiency.

3.1.5 Benefits of MSTC

The benefits of MSTC come from the following interesting facts: (1) similar as analog

computing, multiple bits can be encoded into single transition leading more efficient information

delivery. An example is the adder circuit as shown in Figure 3.1 (d) where the n-bit operation

only consumes transitions of a few inverters rendering 3× improvement in energy efficiency;

Here, A[n:0] and B[n:0] are the digital control signal of the DTCs; TA and TB are the

corresponding time-domain signals. (2) Some logic operation can be efficiently carried (3)

Owing to the analog nature of operation, the MSTC is intrinsically immune to large magnitude of

error. In other word, compared to digital design, the analog-based design has much less chance to

have the error happen at the most-significant bit (MSB). Since the computation output is more

33

affected by MSB errors in applications like facial recognition, MSTC is more error tolerant

compared with digital counterpart when error occurs; (4) Although the information is processed

in time-domain, the information carriers are still binary digital signals processed by conventional

logic circuits which makes the entire design digital-friendly.

3.2 Energy-Efficient Design Methodology in MSTC

3.2.1 Double-edge Operation

In this work, we propose a double-edge operation, where logic operation is processed at

both rising and falling transitions as shown in Figure 3.2 (a). The energy taken from source to

charge the gate capacitance is as 𝐸 = 𝑉 ∗ 𝑄 = 𝑉 ∗ 𝑉 ∗ 𝐶 = 𝐶𝑉2. Half of the energy is dissipated

during rising transition; the other half is dissipated during falling transition.

In previous design [9], only single transition is used. Thus, the other half is purely a waste.

In our proposed design, we utilize both transitions, which provides us with 2× energy efficiency.

Area consumption is also reduced by around 30% because the buffer stage is shared for both

rising and falling transitions. Figure 3.2 (d) shows the energy and area saving come from the

double-encoding scheme. Figure 3.2 (b) and (c) shows the logic encoding concepts between

conventional complementary logic design where pull-up and pull-down realize complementary

logic functions and the dual-encoding strategy for MSTC.

Interestingly, in MSTC design, for rising and falling operation, the design could perform

two totally different logic operations as compared with conventional design where

complementary operations have to be performed.

34

DTC
TX TY

TLogic

Job X Job Y

(a)

BA

A

B

 A B out

0 0 1

0 1 1

1 0 1

 1 1 0/Z

 A B out

 0 0 1/Z

 0 1 1/Z

 1 0 1/Z

1 1 0

Tin

A

C

Vdd

Tout

B

E
Vdd

Dup=A+B

Ddn=CD+E

D

Tin
Tout

A+B CD+E

 (b) (c)

1.4X2X

(d)

Figure 3.2 Proposed double-edge operation: (a) overview, (b) conventional digital

complementary logic, (c) Two 1-bit adders using dual-encoding scheme with different logic

operations for rising and falling transitions, (d) energy and area comparison between single

As shown in Figure 3.2 (c), (1) during the falling edge of time-domain input signal Tin, the

pull-up part of the circuit is turned on, which processes 𝐷𝑢𝑝 = 𝐴 + 𝐵; (2) During the rising edge

of Tin, the pull-down part of the circuit is turned on, which processes 𝐷𝑑𝑛 = 𝐶𝐷̅̅ ̅̅ + 𝐸. This

means that theoretically MSTC could realize more functionality with the same amount of pull-up

and pull-down logic circuits as compared with conventional digital design. Simulation shows

35

that the pull-up and pull-down operation can be completed decoupled without delay impact to

each other as long as the input slew rate is much faster than the encoded 1-bit delay, which is

guaranteed by adding inter-stage buffers.

3.2.2 Bit-Split Scheme

As previous work shows only limited bit precision, e.g. 3 bits [11, 12], we propose a bit-

split technique that splits an input vector into smaller bit groups leading to a scalable high-

resolution encoding without exponentially increasing the delay. As shown in Figure 3.3 (a), 8-bit

inputs A and B are split into 2 sub-groups, e.g. A[7:4] (referred as MSBs) and A[3:0] (referred as

LSBs). In this work we encode 4-bit MSBs operation in the falling-edge and 4-bit LSBs in the

rising-edge rending 16× reduction of delay and 2-4× reduction of energy on a 8-bit non-linear

operation, e.g. MIN(MAX(A, B), (C+D)) (Figure 3.3 (b)). This technique also makes MSTC

designs scalable with the number of bits since large number of bits can be split into several small

groups. To allow the split of the bits, a digital combination logic has to be added to combine the

decision from each sub-group. This incurs digital equal comparison to deal with the situation that

MSBs are equal. An example of the combine algorithm is shown in Figure 3.3 (c): the

comparison between A and B goes through the following steps: (1) check if A’s 4-bit LSBs

equals to B’s, if no, go to step (2), else go to step (3); (2) Check weather A’s 4-bit MSBs is larger

than B’s; (3) Check weather A’s 4-bit LSBs is larger than B’s. Then based on the value of these

conditions to determine the mathematical relation between A and B.

36

A[7:0]

B[7:0]

A[7:4]

B[7:4]
TLogic TLogic

A[3:0]

B[3:0]

TAB[7:4] TAB[3:0]

Comb

Logic

(a)

16X 4X

(b)

If A[5:3] = B[5:3]

If A[2:0] > B[2:0] If A[5:3] > B[5:3]

A>=B

Y N

Y YN N

A<B

(c)

Figure 3.3 Proposed bit-split technique: (a) technique overview, (b) performance and energy

saving come from the bit-split scheme, (c) combine algorithm.

3.3 Variation-Aware Design Methodology in MSTC

3.3.1 Overview of Variation-Aware Design Methodology

Figure 3.4 shows the overall flow of our proposed variation-awareness design

methodology. The flow includes two steps: (1) initial circuit generation which first convert the

target algorithm/application into time-domain algorithm and then map the time-domain

algorithm into time-domain logic cells; (2) Resizing the time-domain logic cells and adjusting

37

the single-bit delay (resolution) to meet the design specification, e.g. variation and performance

target. More specifically, (a) the capacitive loads of the time-domain circuits determine the delay

of the circuits, e.g. time encoder; (b) The larger size of the transistor, the smaller variation it has

but the capacitive load/energy consumption also increases. Thus, the size of time-domain logic

cells must be carefully selected to satisfy the design specification. Meanwhile the time-domain

logic cells are characterized based on Monte-Carlo simulation.

Circuit Optimization

Solution: Netlist, Constraints

TC Cells Monte-Carlo

Simulation with Various Size

Variation Sensitivity

Function Characterization

Time-domain Logic

Cell Characterization
Sizing & Resolution

Initial Circuit Generation

Time-domain algorithm

implementation

Logic Mapping (TC & Digital)

Design Specification

Variation & Area

Variation and Performance

Target

Figure 3.4 Variation-awareness design flow of MSTC.

3.3.2 Global Variation VS. Local Variation

As TE/DTC holds the most stringent requirement on the timing control accuracy, we

performed the global process-voltage-temperature (PVT) variation analysis to a 4-bit DTC in a

55nm technology using the base-line 1-bit DTC.

38

(a)

(b)

(c)

Figure 3.5 Normalized delay across PVT corners and INL of (a) slow corner, (b) typical corner,

(c) fast corner.

Since relative delay among signals is most critical to keep the computation error-free or at

low error rate, linearity matters the most compared with the absolute delay values. As shown in

the left side of Figure 3.5 (a), (b), and (c), the linearity is well preserved across PVT corners. The

right side of Figure 3.5 (a), (b), and (c) show the integral nonlinearity (INL) of the time encoder

where the integrated nonlinearity is represented as a fraction of least-significant bit (LSB). The

INL variation of the time encoder is well maintained within 15% of LSB across PVT corners.

39

Hence, through a proper budgeting of variation, the global PVT variation does not introduce

significant concern to the functionality of the MSTC design.

On the other hand, local variation/mismatch poses more challenges to the MSTC design

compared with global variation due to the linearity requirement of time encoder. Monte-Carlos

simulation with random threshold voltage variation is performed to evaluate the impact of local

mismatch.

3.3.3 Shared TDC/TE Design

The digital-to-time (DTC) converter poses the most stringent variation requirement on the

timing control accuracy as the generated signal experiences multiple stages of variation impact

during signal generation stage. For example, for a 4-bit DTC, the longest delay generated by

such a DTC sums up the variation of 15-stage inverter chain. Assume the variation (also referred

as the standard deviation) of a single stage inverter is σ𝑖𝑛𝑣 , the variation V𝑖𝑛𝑑−𝑇𝐸 for a n-bit

individual DTC (Figure 3.6 (a)) in the worst scenario is shown in (3.1):

V𝑖𝑛𝑑𝑖𝑣−𝐷𝑇𝐶 = √(2𝑛 − 1)σ𝑖𝑛𝑣
2 + 𝑛σ𝑖𝑛𝑣

2 = σ𝑖𝑛𝑣√(2𝑛 − 1) + 𝑛 (3.1)

The term, (2𝑛 − 1)σ𝑖𝑛𝑣
2 ,represents the variation comes from (2𝑛 − 1) -stage inverter

chain when input is set to maximum value. The other term, 𝑛σ𝑖𝑛𝑣
2, comes from the n-stage

multiplexer at the end of the inverter chain. Relative delay among signals is most critical, we

derive the mismatch between two individual TDCs in (3.2):

V𝑖𝑛𝑑𝑖𝑣−𝐷𝑇𝐶−𝐶𝑀𝑃 = σ𝑖𝑛𝑣√2(2𝑛 − 1) + 2𝑛 (3.2)

The mismatch between two individual DTCs/TEs increases dramatically when the number

of bits increases. In order to relieve the variation concern comes from the time encoder, we

40

proposed the shared time generator (TG) scheme which uses a common inverter chain to

generate timing signals relieving the variation impact.

V𝑇𝐺−𝐶𝑀𝑃 = σ𝑖𝑛𝑣√2𝑛 (3.3)

Common TE

T2

T1

T3

T0

D0[n:0]

D1[n:0]

D2[n:0]

D3[n:0]

TE0 TE1 TE2 TE3 TE4

M
U

X
M

U
X

M
U

X
M

U
X

T2

T3

T0

T1

Individual TE

Din[2] Din[1] Din[0]

ToutTin

Din

M
U

XTin Tout

D0[n:0]

TE

D1[n:0]

D2[n:0]

D3[n:0]

TE

TE

TE

sel

sel_b

sel_b

in0

in1

out

1-bit MUX

TG

buffer

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
a

li
z
e

d

V
a

ri
a

ti
o

n
(σ

)

NO. of Bit

Shared TG

Individual TE

6X
2X

3X

4X 2X

1.8X

1.6X

(c) (d)

Figure 3.6 (a) Circuit schematic of individual DTC scheme [11], (b) proposed shared time

encoder scheme, (c) variation comparison between shared TG and individual TE/DTC, (d)

mismatch and energy comparison between induvial and shared TE/DTC (8-output).

Figure 3.6 (b) shows the circuit schematic of the shared time generator which consists of

(1) a common inverter chain used to generate the all possible delay, (2) distributing multiplexers

which are used to select the desired delay for each output. When we consider the mismatch of

41

two different output from TG, the worst scenario is when the delay difference of two output is

just single-bit delay away from each other. Since all the output are generated by the common

inverter, the variation comes only from the distributing multiplexers eliminating the mismatch

source from inverter chains rendering much improved variation resiliency. The mismatch

between two outputs from TG can be represented by (3.3):

Compared with individual DTC design whose mismatch in a n-bit DTC is proportional to

√(2𝑛 − 1) + 𝑛 , the shared TG has mismatch only proportional to √𝑛 leading to 3~4× less

mismatch rendering shortened single bit delay and smaller cell size. Figure 3.6 (c) shows the

variation trend of shared TG and individual DTC cases. As we can see, the variation of

individual DTC case grows dramatically compared with the shared TG case. Besides, the area

consumption of TG is also smaller due to the sharing of common inverter chain. Figure 3.6 (d)

shows the mismatch improvement and area saving come from proposed common TG design.

Note that, the more paths/operations that share the same TG, the more complexity of distributing

network will be needed, e.g. tree-structure buffers and distributing MUXs. In our case, it is a

clear win for using shared TG. But it is possible that the shared TG becomes too expensive if too

many signals are generated. In that case, the design needs to be performed towards using

individual DTC.

3.3.4 Variation-Awareness Design

In this section, we introduce the variation-awareness design flow. We define the 3-sigma

variation of MSTC modules, which is a function of the size s as 𝜎(𝑠). Apparently, the 𝜎(𝑠)

decreased as s increases. Also, the area is a function of the size s as 𝐴(𝑠). The sensitivity of

variation of a module can be defined as (3.4):

42

𝐹𝑠𝑒𝑛(𝑠) = 𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 (3.4)

Where
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from module itself without

considering the whole placement topology. The 𝛾 term represents the significance of the module,

e.g. module in a convergent path.

Δσ = 0.3 ps

Δσ = 0.2 ps

(a)

Max
A

B

C

MIN

D

Fsen_TE(s1)

Fsen_TE(s2)

Fsen_TE(s3) Fsen_TE(s4)

Fsen_MAX(s5)

Fsen_MIN(s6)
P0

MIN(MAX(A,B), (C+D))

TE TE

TE

TE

(b)

Figure 3.7 (a) Variation of MAX (NAND2) and MIN (NOR2) at various sizes; (b) Example

schematic.

Figure 3.7 (a) shows the variation-area(size) curve of MAX (NAND) and MIN (NOR)

gates. Since most time-domain cells are standard-cell like, we follow standard cell sizing

convention of 1×, 2×, 3×, etc. An example of MSTC operation, MIN(MAX(A, B), (C+D)), is

shown Figure 3.7 (b). Given a simple task of decreasing the variation of critical path P0, it is

obvious that we can gain more variation improvement if we give the sizing priority to the module

43

whose current variation sensitivity is larger than the rest. Based on this, we propose our netlist

optimization in following.

Assume we have totally n modules, X1, X2, …Xn, the size of each module is s1, s2, … sn.

Besides, there are P paths need to be considered in the placement. The optimization problem of

netlist is then formed in (3.5) and (3.6):

Minimize ∑ 𝐴𝑖(𝑠𝑖)
𝑛
𝑖=1 (3.5)

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝𝑖
2(𝑠𝑖)

𝑛
𝑖=1 ≤ 𝜎𝑇 (3.6)

where 𝜎𝑖(𝑠𝑖) is the variation of Xi, and 𝐴𝑖(𝑠𝑖) is the module area of Xi. The optimization

algorithm is described as follows:

Table 3.1 Variation-Awareness Optimization Algorithm

Algorithm 1 Variation-Awareness Optimization Algorithm

Input: Initial schematic/netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn.

Output: Netlist which satisfies variation budget with minimum estimated area

1: while ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃,√∑ 𝜎𝑖
2(𝑠𝑖)

𝑛
𝑖=1 > 𝜎𝑇 do

2: for i = 1 to n do

3: find the module j = i,with maximum 𝐹𝑠𝑒𝑛_𝑗(𝑠𝑗)

4: end

5: Increase the size of module j by 1×, update sj

6: end

7: Return the schematic/netlist with current sizing

Given the initial schematic/netlist with minimum size for each module, we first check if the

variation of critical path meets the budget 𝜎𝑇. If yes, the optimization is completed. Otherwise,

the second step is performed where we traverse the netlist to find out the module in the critical

path with maximum variation sensitivity with their current size. The size of module is then

increased by 1×. In the following steps, we continue to check whether the variation budget is

satisfied. If not, the optimization repeats by upsizing the most effective module, i.e. highest

44

sensitivity. The pseudo code is shown in Table 3.1 above.

3.4 Summary

This chapter proposes a design methodology for energy-efficient mixed-signal time-domain

computing. To understand the strength and weakness of the technique, the impacts of process

variation are studied and modeled with a variation driven design strategy proposed to achieve an

optimal tradeoff between energy and robustness. Several key circuit techniques such as dual-

encoding scheme and bit-scalable design are proposed to further improve the design efficiency.

45

Chapter 4

A Time-Domain Accelerated Image Recognition Processor Design

In this Chapter, a feature-extraction and vector-quantization processor accelerated by

MSTC is developed to conduct real-time image recognition. A 55nm prototype chip shows 72

fps/core (@1.33 GHz) operation with up to 42% area and power saving from time-domain

computing compared to the conventional digital implementation.

The reset of Chapter 4 is organized as follows: Chapter 4.1 exploits the complex MSTC

non-linear operation and shows benefits in both area and energy consumption compared to the

conventional digital counterparts. The MSTC-accelerated image processing engine is presented

in Chapter 4.2. The silicon implementation with measurement results are presented in Chapter

4.3. The summary of this chapter is given in Chapter 4.4.

4.1 Exploiting Complex MSTC Non-Linear Operations

Many image processing applications such as pattern classification and facial recognition,

require a large amount of non-linear signal processing operations, e.g. comparison, sorting,

minimum, maximum, etc. [44, 45]. Among them, winner-take-all (WTA) and median filter (MF)

are two of the most critical building blocks commonly used for pattern classification. In WTA

and MF, a deterministic decision is made based on excessive compare and sorting operation

which are highly expensive to be implemented in standard CMOS ASIC design and even more

difficult for a CPU operation [46, 47]. As introduced in Chapter 3, many nonlinear operations

can be efficiently implemented in MSTC. Figure 4.1 (a) shows the circuit diagram of MSTC

implementation for operation MIN(MAX(A, B), (C+D)), which was introduced in previous

46

section. As depicted in Figure 4.1 (b), by using several NAND and NOR gates, such a complex

operation can be easily implemented in MSTC rendering an energy saving of 6×. Therefore, we

can improve the area efficiency by increasing the utilization of such efficient MSTC non-linear

functions, e.g. MAX, CMP, in the design.

A

B

C D

MIN(MAX(A,B), (C+D))

TE

TE

TE TE
0

0.2

0.4

0.6

0.8

1

Digital TC

N
o

rm
a
li

z
e
d

 A
re

a Area

6X

(a) (b)

Figure 4.1 (a) MSTC implementation of a non-linear operation; (b) Area comparison between

digital and MSTC approaches.

4.1.1 Winner-Take-All

We derived our time-domain WTA algorithm from a binary comparison tree scheme which

takes advantages of the efficient MAX/MIN and CMP operations in time domain (Figure 4.2).

If A[5:3] =

B[5:3]

If A[2:0] >

B[2:0]
If A[5:3] >

B[5:3]

W0=A

 Out0 = 0
W0=B

 Out0 = 1

Y N

Y YN N

If C[5:3] =

D[5:3]

If C[2:0] >

D[2:0]
If C[5:3] >

D[5:3]

W1=C

 Out1 = 0
W1=D

 Out1 = 1

Y N

Y YN N

If W0[5:3]

=W1[5:3]

If W0[2:0] >

W1[2:0]
If W0[5:3] >

W1[5:3]

 Out2 = 0 Out2 = 1

Y N

Y
YN N

Decode

Out2 Out1 Out0

Figure 4.2 Algorithm of 6-bit 4-input WTA design with 3-bit split in MSBs and LSBs.

Figure 4.3 (a) shows the circuit implementation of the proposed 8-input 6-bit WTA

accelerator. The winners or MIN value from each branch in each stage are selected in parallel

47

and propagated to the subsequent stage to be compared again. After converting the input digital

value into time-domain, the comparison can be simply made by using time-domain CMP.

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

RiseFall

Double Edge
Operation

Fall: A[5:3]

Rise: A[2:0]

TG

Win

Win

Win

Win

Win

Win

Win

Out_RAB
Out_FAB

Out_RGH
Out_FGH

Decode

Logic

Out_RAB

Out_FAB Out[2:0]

Fall
RiseA

B

C

D

E

F

G

H

Out_RGH

Out_FGH

(a)

TB

TA
Min_F

Cmp_F

Falling Edge

(MSB)

Rising Edge

(LSB)

TA

TB

TB

TA
Min_R

Cmp_R

Min_R

Out_R

A
B

Equal Detector

XOR

Min_F

Out_F

EAB

M
U

X

EAB
TA

TB

Win

Out_F
TA

TB

Out_R
TA

TB

Two Input Winner-

Take-All Module

(b)

AB C D

CMP(A,B)

Min(C,D)

CMP(C,D)
Min(A,B)

V
 (

V
)

0
.0

0
.6

1
.2

0
.0

0
.6

1
.2

0
.0

0
.6

1
.2

V
 (

V
)

V
 (

V
)

(c)

Figure 4.3 (a) Circuit design of WTA, (b) example of double-edge and bit-split technique, (c)

example waveform of MIN function used in this design.

The MIN function which is built by a single NAND/NOR gate directly propagates the

winner to next stage without intermediate restoration or regeneration. As a result, a massive

48

parallel operation with mostly NAND or NOR gates, is realized in MSTC. All comparison

results are finally decoded in digital domain to find the final winner. Shared TE/DTC, double-

edge operation and bit-split technique are also utilized in this design.

Figure 4.3 (b) shows the example of double-edge operation and bit-split techniques utilized

in the WTA design: (1) the 6-bit input are divided into two groups as in[5:3] and in[2:0]; (2)

in[5:3] (referred as MSBs) and in[2:0] (referred as LSBs) are encoded into falling and rising

edge of the same clock cycle respectively; (3) During falling transition of signal, MSBs are

processed while LSBs are processed during rising transition. Figure 4.3 (c) shows the example

waveform of MIN function used in this design. As a result, the MSTC WTA achieves lower area

consumption with faster speed. The area of proposed time-based WTA is improved by 42%

compare to digital implementation as shown in Figure 4.4.

42%

Reduction

55 um

5
0
 u

m

TC WTAASIC WTA

3
0
 u

m

52 um

(a) (b)

Figure 4.4 Layout comparison between (a) conventional digital WTA and (b) MSTC WTA.

4.1.2 Median Filter

As a core building block in applications such as facial recognition, median filter (MF)

consumes up to 70% of total CPU cycles due to its enormous amount of CMP and swapping

operation in a typical bubble sorting algorithm [48]. In order to remove the bottlenecks of the

49

application, several efficient MF algorithms have been proposed such as [49, 50]. The majority

voting algorithm [50] improves energy efficient, but still suffers from the drawbacks of analog-

based design such as cannot scale with technology which requires substantial amount of effort in

tuning the circuit and designing the layout.

We propose an energy efficient time-based MF with high performance. The core idea of the

algorithm is to have a massive comparison between each of the two inputs and order the inputs

from high to low. The final median value is filtered/selected by the proposed decoder. Figure 4.5

shows the algorithm and detailed implementation of the proposed 12-input 8-bit time-domain

median filter design as following steps: (1) each pair of the 12 inputs is compared, thus a total

number of 66 comparisons are processed. The comparison result is recorded as “0” or “1”, e.g. if

A > B, OUTAB = 1, OUTBA = 0; (2) The related comparison results of each input are summed

up, e.g. OUTA = OUTAB + OUTAC + … + OUTAL; (3) Finally, all the summation results are

compared with N/2, where N is the number of inputs. The input whose summation result of the

comparisons equals to N/2 is marked as the median value.

(L>A) ? 1 : 0
(L>B) ? 1 : 0

(L>K) ? 1 : 0
=? N

2

(B>A) ? 1 : 0
(B>C) ? 1 : 0

(A>L) ? 1 : 0
=? N

2(A>B) ? 1 : 0
(A>C) ? 1 : 0

(A>L) ? 1 : 0
=? N

2

Figure 4.5 Algorithm of 12-input MF.

50

Cross-Bar Compare

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

x2

Rise Fall

Double Edge
Operation

12 Input x 8 bitsA[7:4]

A[3:0]

L[7:4]

L[3:0]

Combine Logic &
Equal Detection

Decoder

CMP_AB_MSB
/CMP_AB_LSB

TE0 TE1 TE2

TG

Time Generator

A

B

Out
Outb

CMP

Combine

Logic
Decoder

OUTAB

OUTJM

A[7:4]

B[7:4]

Equal Detector

XOR

M
U

X

CMP_AB_MSB

CMP_AB_LSB

EQ
A[7:4]

B[7:4] OUTAC

OUTBA

Din[0] Din[1]

in out
CMP

CMP

Tref-

OUTAB

MF_OUTA

OUTAC

OUTAL Tref

OUTLA

MF_OUTL

OUTLB

OUTLK

Tref+

Tref-

Tref+

out

Din[11]

Tref

Gen

x12

Time Accumulator

CMP

Tref

CMP

DecoderCombine Logic & Equal

Detection

OUTA

OUTL

Figure 4.6 Circuit diagram of MF with detailed circuit schematic of combine logic & equal

detection and the circuit detail of decoder.

Figure 4.6 shows the corresponding MSTD circuit diagram of MF. During the comparison

stage, the digital inputs are first converted into time-domain by the proposed shared TE/DTCs.

Each pair of input is compared in parallel in time-domain with double-edge and bit-split design,

with overall 66 comparisons for both MSBs and LSBs for all 12 input vectors. The 66

comparisons are processed parallelly in the cross-bar compare module as shown in the left-hand

side of Figure 4.6. During the combine & equal-detection stage, all the comparison results are

51

then processed by the following digital logic for purpose of equal detection and MSBs/LSBs

grouping to obtain the comparison results for all input vectors. In the decoder stage, to decode

the comparison results into final median value, a special time accumulator/adder design is

implemented where all 11 digital comparison results from each input are summed in time-

domain and compared with a reference median time-domain signal.

V
 (

V
)

0
.0

0
.6

1
.2

V
 (

V
)

0
.0

0
.6

1
.2

AB CDEFG H

CMP(A,B)

CMP Waveform

1
st

 8
th

 7
th

Tref- Tref+

9
th

V
 (

V
)

0
.0

0
.6

1
.2

Decoder Waveform

Figure 4.7 Example of waveform of MF operation.

Although the 66 comparison results can be further decoded into final result in conventional

digital design, the decoding logic will incur large overhead due to the complex operations. To

reduce the overhead, we proposed a time-accumulator based time-domain decoding logic. The

bottom-left side of Figure 4.6 shows the detailed circuit implementation of the combine & equal

detection stage. The bottom-right side of Figure 4.6 shows the detailed circuit implementation of

decoder. The core idea of the time-domain decoder is to form a detection window by Tref- and

Tref+. As the 12 inputs are ordered and represented by the delay of the rising edge, the median

value is carried by the 7th rising edge. The Tref- is set to be located in middle of 6th and 7th

signal while Tref+ is set to be located in middle of 7th and 8th signal. In this way, the 7th signal

which represents the median value can be captured by the detection window as shown in the

decoder waveform in Figure 4.7. Compared to digital decoder design, the time-based decoder

52

dramatically reduced the area by 3×. Overall, the final area of proposed time-based MF is

improved by 24% compared to conventional digital implementation as shown in Figure 4.8.

140 um

1
4
0

 u
m

170 um

9
0
 u

m

24%

Reduction

TC MFASIC MF

(a) (b)

Figure 4.8 Layout comparison between (a) conventional digital MF and (b) MSTC MF.

4.2 Time-domain Computing Accelerated Image Recognition Processor

To demonstrate the proposed circuit techniques, we adopt a basic image recognition

algorithm as shown in Figure 4.9 into a hybrid ASIC design with time-domain accelerators [50].

1 -1

1 -1

1 -1

1 1 1

-1 -1 -1

1 1

1 -1

-1 -1

Median Filter

-1 -1

1 -1

1 1

Max
Gradient

Winner-Take-AllASIC Processing

Feature Extraction Vector Formation Classification

CMP

CMP

ACC

ACC

SUB

ABS
SUB

ABS
SUB

ABS
SUB

ABS

SUB

ABS
SUB

ABS
SUB

ABS
SUB

ABS

ACC
ACC

ACC
ACC

ASIC Processing

Time Domain Accelerators Digital

M
UX

M
UX

M
U

X

M
UX

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X

M
UX

Combine

Logic
Decoder

MF
Win

Win

Win

Win

Win

Win

Win

WTA

Decoder

Figure 4.9 Overview of image recognition algorithm used in this work.

53

4.2.1 Implemented Image Processing Algorithm

As shown in Figure 4.9, the operations of the image recognition algorithm involve three

main steps: (1) feature extraction which detects edges in four directions: horizontal, vertical,

+45˚ and -45˚. In order to determine the threshold value for edge detection, all the absolute-value

differences between each two neighboring pixels are calculated in the 3×3 kernel and the median

detection of the 12 difference-value is adopted as the threshold; (2) Vector formation where edge

flags in all directions are counted and the spatial distribution of edge flags is represented by a

vector of 64 elements; (3) Classification: the generated feature vector is then classified by a

winner-take-all (WTA) classifier.

The subtractors and absolute value circuits shown in Figure 4.9 are used for calculating the

distance between template feature vector and input feature vectors, e.g. 𝐷𝑥𝑦 = |𝑥 − 𝑦| . The

compare (CMP) and 1st stage accumulator (ACC) compute the 64 elements. Then the subtractor

and absolute value circuits calculate the distance of each element between the template feature

vector and input feature vectors. At the end, the 2nd stage accumulator calculate the accumulated

distance of the 64 elements between template feature vector and each input feature vectors. The

heavily used nonlinear computations such as comparison (CMP), MIN/MAX function, are

expensive for CPU/GPU based design or even state-of-art ASIC design. In this work, MSTC

based accelerators are used to remove the bottlenecks of the algorithm, i.e. MF and WTA with

significant speedup as shown in Chapter 4.4.

4.2.2 Test Chip Implementation

Figure 4.10 shows the test chip implementation of the proposed image recognition

processor in a 55nm low power CMOS process at 1.2V. Scan chains are used to fetch image data

54

to on-chip register files and read out all internal register/comparator values for test verification.

A special timing test module (Figure 4.10 (b)) is built to exam the linearity and robustness of the

proposed shared DTC design. A Vernier-delay-chain based TDC with ~5ps bit-resolution is used

to characterize the timing variation of DTC. The DTC used throughout this work is implemented

with a ~25ps single-bit resolution which can be tuned from 13ps to 35ps for further evaluation.

Register FileData

Scan In

Time Domain

Median Filter
ASIC

Processing
Time Domain

Winner-Take-All

Timing Variation
Test Module Data Scan Out

Clock

VCO

clk

Preprocessed
Image Data,

Max Gradient

Off-chip

On-chip

(a)

Shared TE

M
U

X
M

U
X

M
U

X

T1

T7

T0
D0[n:0]

D1[n:0]

D7[n:0]

Timing Variation Test Module

M
U

X clk

D Q

clk

D Q

clk

D Q
out0 out1 out2

Vernier Delay Based TDC

Δt 5ps
ref

TG

(b)

Figure 4.10 (a) Top level implementation of the proposed test chip; (b) Circuit diagram of timing

variation test module.

55

4.3 Measurement Results

In the test chip setup, there is a separate power supply for DTC modules to change the

single-bit delay from 13ps to 35ps. Note that, we cannot directly measure the single-bit delay on

the test chip due to the limited measurement resolution. However, based on extracted simulation

from SPICE, we can estimate the single-bit delay on the test chip of the current supply voltage.

Figure 4.11 shows measurement results. Robustness of the design was verified across 10 chips.

As shown in Figure 4.11 (a), by default, no error was observed at the design target speed of

1.33GHz. When pushing the DTC resolution beyond 22ps (estimated based on simulation), small

error was observed at the MF’s output at LSBs while no error was observed at the final WTA

output. The error rate from MF reached 0.6% when reducing the resolution to 13ps which led to

an operating speed of 1.5GHz, a 13% boost of performance without observing error at the final

output. This shows the strength of MSTC where small errors may be generated at LSBs at

stringent timing condition but does not lead to significant error at final output.

The linearity of DTC was also measured for all eight inputs across 10 chips and supply

voltages from 1.1V to 1.4V as shown in Figure 4.11 (c). Only small deviation (~8ps) from ideal

value was observed across all the measurement leading to an integral nonlinearity (INL) of less

than 0.3 LSB. The measured (blue histogram) vs. the simulated variation from SPICE Monte

Carlo simulation of DTC across chips are shown in Figure 4.11 (b). The results match the

expectation from the simulation. Note that, the measurement results in the figure are from all

chips and all paths with Din set as 7. As the matching among paths on the same chip is more

critical, the measured variation on a single chip is quite small, which is within 5ps.

56

10 Chips

Error

Free

F
re

q
u

e
n

c
y

(G
H

z
)

Error Rate vs. Speed

Monte Carlo Simulation

Measurement

0

15

30

45

8.5 ps

(3-sigma point)

(a) (b)

Linearity Variation

1.4V

1.2V

1.1VINL< 0.3LSB

Across 8 inputs: T0 to T7

 (c)

24%

MF

WTA

23%

Area

42%

WTA
42%

WTA

42%

MF
20%

MF

Speed Power
TCTCTC

TCTCTC

(d)

Figure 4.11 Measurement results on (a)performance, (b) measured (blue histogram) vs. simulated

variation through chips, (c) linearity of the TE/DTC, (d) area, speed and power comparison.

57

4.4 Comparison and Discussion

The design is compared with conventional ASIC design in the same process with standard

synthesis and place & route implementation. As shown in Figure 4.11 (d), 24% to 42% area

saving is observed in MF and WTA accelerators compared with ASIC implementation. A 1.7×

speedup and 20% to 23% power saving are also observed using MSTC. The overall image

recognition processor operates at 1.33GHz with a throughput of 72 frames per second (fps).

Figure 4.12 shows the die micrograph and the detailed design specifications. As the focus of this

work is on robust and efficient techniques for time-based design, a direct comparison with prior

work is difficult. We made comparison in two aspects: (1) time-based work, and (2) image

recognition processors.

Test Module

MEM

MF

ASIC
Scan Out

WTA

Test

Module

Scan In

VCO

850 um

7
5
0

 u
m

Figure 4.12 Die micrograph and specifications.

4.4.1 Time-based Work

As shown in Table 4.1 and Figure 4.13, compared with prior time-based work [11, 13, 31],

(1) we achieved the fastest operation speed with a single-bit delay which is 2×~4× shorter; (2)

We encoded largest number of bits by the bit-split technique; (3) We achieved lowest

mismatch/variation which is 3× smaller compared with [11, 13, 31] ;(4) We had the least

58

encoding effort with lowest transistor count.

4.4.2 Image Recognition Processors

As shown in Table 4.1 and Figure 4.13, compared with image recognition processors with

similar algorithms, e.g. feature vector based, we achieved (1) the highest throughput per core and

throughput per area, (2) highest energy efficiency for single processor core with more than 9×

improvement. However, it is notable that prior work involves more configurations and numbers

of processing units [50, 51, 52]. Note that, (1) compared with our implementation, only [50]

implements very similar design. We have significant advantages due to both time-domain design

as well as technology scaling from 180nm to 65nm. (2) For designs in [51] [52], their algorithms

are much more complex and support more throughput. For example, the work presented in [51]

is based on vector parallel image recognition algorithm. Work presented in [52] is based on

principal component analysis (PCA), and the proposed hardware utilizes the technique described

above to reduce data dimensionality and uses support vector machine (SVM) as a final classifier

for face recognition. Our comparison is focused on “single core/PE”.

Throughput/ core (fps)

E
n

e
rg

y
/p

ix
e
l

(p
J

)

0 20 40 60 80 100
0

500

1000

1500

2000

[52]

[51]

[50]

proposed

design

Normalized Area

(equivalent No. of inverters)

N
o

rm
a
li
z
e
d

 V
a

ri
a
ti

o
n

(σ
 o

f
s
in

g
le

 d
e

la
y

 c
e

ll
)

0 5 10 15 20 250

2

4

6

8
[11][31]

[13]proposed

design

(a) (b)

Figure 4.13 Efficiency vs. variation of timing encoding circuits from prior work [11, 13, 31] and

our proposed work; (b)Performance vs. energy for prior image processing designs [50, 51, 52].

59

4.5 Summary

In this chapter, a series of highly efficient time-domain signal processing techniques are

proposed including shared time generator, double-edge operation scheme, bit-split technique and

high-efficient time-domain operations. In our approach, the use of MSTC-based accelerates the

pipeline operation bottleneck by 40% due to the limitation of MF and WTA operations. The

strength of MSTC including error resiliency, highly efficient non-linear operations and better

energy/area efficiency compared with digital counterpart is demonstrated by a test chip. The test

chip on image recognition processor is fabricated in 55nm low power CMOS showing state-of-

art energy efficiency and throughput with significant improvement from time-domain techniques

compared with conventional digital implementation.

TABLE 4.1 PERFORMANCE COMPARISON

[50]

JSSC

2007

[51]

JSSC

2014

[52]

JSSC

2017

[11]

JSSC

2014

[31]

CICC

2017

[13]

ASSCC

2016

This

work

Im
a
g
e

R
e
co

g
n

it
io

n

Technology 180nm 180nm 40nm 65nm 65nm 55nm 55nm

Voltage (V) 1.8 1.8 0.6 1.2 1.2 1.2 1.2

Area (mm2) 33.64 82.3 5.9 0.063 0.24 3.61 0.64

Power (mW) 85 630 23 4 0.3 - 75

Accuracy (No. of bit) 8 8 10 - - - 8

Frequency (GHz) 0.1 0.05 0.1 - 0.1 - 1.33

Throughput/core (fps) * 6.1 16 14.7 - - - 72

Throughput/area

(fps/mm2)
11.6 12.4 80.3 - - - 116

Energy/pixel (pJ) 756 2126 84 - - - 54

T
im

e-
b

a
se

d

Single bit delay (ps) - - - 100 50 - 25

Maximum No. of bit

encoded
- - - 3 3 5 8

Timing Mismatch** 6.5 6.5 4 2.8

No. of equiv. inverters

to generate 1-bit delay

(4-bit TE/DTC)

- - - 22 10 7 5

60

Chapter 5

A Scalable Pipelined Time-Domain DTW Engine for Time-Series

Classification

Time-series classification (TSC) is a challenging problem in machine learning and

significant efforts have been made to improve its speed and computation efficiency. Among

various approaches, dynamic time warping (DTW) algorithm is one of the most prevalent

methods for TSC due to its succinctness and generality. To improve the throughput of the

operation, this chapter presents a mixed-signal DTW accelerator utilizing MSTC where signals

are encoded and processed using time pulses. A pipelined operation is enabled by a specially

designed time flip-flop (TFF) circuit leading to dramatic improvements in performance and

scalability of the operation. A 65nm CMOS test chip was implemented and measured. The

results show more than 9× improvements in throughput compared to prior work on time-series

classification. As most existing time-domain designs suffer from the lack of time-domain storage

elements, this work utilizes sequential circuit elements in time-domain computing extending the

capability of time-based circuits.

The reset of Chapter 5 is organized as follows: The basics and background of time-series

classification and dynamic time warping (DTW) are introduced in Chapter 5.1. The special

circuit techniques including the novel time flip-flop design is carried out in Chapter 5.2. The

domain-domain pipeline architecture is presented in Chapter 5.3. The physical implementation

and testing results are shown in Chapter 5.4. The comparison and discussion are presented in

Chapter 5.5 with summary written in Chapter 5.6.

61

5.1 Time-Series Classification and Dynamic Time Warping

5.1.1 Time-Series Classification

A time series is a series of data points indexed, listed or graphed in time order [53]. Time

series are encountered in many real-world applications ranging from electronic health records to

human activity recognition. Typical examples of time series are stock price, voice, human

motion, electrocardiogram (ECG) signal, etc. The classification of time series signals, e.g. an

ECG signal, is commonly used for detection of special events or operational anomaly. However,

time series classification (TSC) has been considered as a significantly challenging problem in

data mining due to its variable speed, lack of alignment, random appearance of sparse events,

and long time-sequence [53, 54]. Three conventional classification methods are being developed

including the distance-based, model-based, and feature-based methods [53, 55]. The model-

based and feature-based methods are case-specific and complex to implement. For example, the

HMM algorithm as a model-based method can only be useful when dealing with voice signal

classification. On the other hand, the distance-based methods, e.g. Euclidean-based, DTW-based

or cosine-based, are comparatively easy to implement with good accuracy results. Specially

DTW, a variant of the dynamic programming algorithm, has been widely used for time-series

classification. In addition, as machine learning introduced promising results in dealing with

classification and detection workloads, a few neural network (NN) based works for time-series

classification were implemented showing good classification results [56]. Even though NN-

based designs sometimes show better accuracy, they rely on large database for training which

may not be available and requires large computation efforts. The NN-based design usually

consumes more area and energy compared to the succinct distance-based methods. The strong

62

capability for distance measurement for variable-speed temporal sequences makes DTW a

popular method for time-series classification in broad applications, such as ECG diagnosis,

motion detection, voice recognition, stock prediction, etc. [53]. In addition, a similar dynamic

programming based approach is also being used in DNA sequencing for comparison of similarity

between DNA pairs [54]. To accelerate the operation, a DNA sequencing hardware accelerator

based on dynamic programming algorithm was previously implemented resulting in 15 giga-cell-

update per second (GCUPS) throughput at 70mW power consumption [54].

5.1.2 Dynamic Time Warping (DTW)

Figure 5.1 Dynamic time warping (DTW) algorithm.

Figure 5.1 shows the basic principle of DTW, which detects similarity among temporal

signals with variable speed. As shown in Figure 5.1, for two time series A and B, Di,j can be

formulated as the summation of absolute difference |Ai - Bj| and the minimum value of its three

ancestor nodes min(Di-1, j, Di, j-1, Di-1,j-1) where Ai and Bj denotes the ith and jth elements of A, B,

and Di, j denotes the DTW value at node (i, j). The equation is written as:

𝐷𝑖,𝑗 = |𝐴𝑖 − 𝐵𝑗| + min (𝐷𝑖−1,𝑗, 𝐷𝑖−1,𝑗−1, 𝐷𝑖,𝑗−1) (5.1)

A "warping path" is produced in order to align the two signals in time, as highlighted in

0 2 5 11 18 26 29 31 33 34

3 1 1 4 8 13 13 14 15 17

5 1 2 5 9 14 14 13 13 14

8 2 1 4 8 13 13 14 14 15

16 8 6 43 4 9 15 20 21

19 9 6 6 7 9 4 5 6 8

23 11 7 8 9 11 5 6 7 9

27 13 8 9 11 13 6 7 8 10

29 13 9 12 14 17 7 6 6 7

34 16 11 10 12 15 9 9 9 10

Warping Path

Di, j = |Ai – Bj| + min(Di-1, j, Di-1, j-1, Di, j-1)

= |A5 – B4| + min(D4, 4, D4, 3, D5, 3)

= |9 – 7| + min(4, 1, 6) = 3

4
1

3
4
9
4
5
5
3
6

1 3 4 8 9 4 3 3 2

A

B

7
D1, j = |A1 - Bj| + D1, j-1

= |A1 – B8| + D1, 7

= |1 – 3| + 29
= 31

Di, 1 = |Ai – B1| + Di-1, 1

= |A8 – B1| + D7, 1

= |5 – 1| + 23
= 27

B
A

63

Figure 5.1. The value of bottom-right node denotes the DTW distance between the two inputs.

The lower distance represents more similarity between the inputs and can be directly used for

classification tasks. As will be shown later, time-domain design holds significant advantages in

performing simple operations such as MIN and ABS, which are repetitively used in DTW

operations. As a result, in this work, we aim at utilizing time-domain computing to accelerate the

DTW operations.

5.2 Time-Domain Acceleration Technique

5.2.1 Basic Time-Domain Computing Circuits

As the fundamental building blocks, basic time-domain operations, i.e. subtraction (SUB),

maximum (MAX), minimum (MIN), addition/accumulation (ADD), equal detection (EQ),

comparison (CMP), are specially designed with high energy and area efficiency as depicted in

Figure 5.2 (a). As shown in the figure, some of the input signals are required to be overlapped

while others are not. In order to guarantee the correctness of time-domain operations, we

introduced the following mechanisms: (1) The overlap and non-overlap fashion of signals are

pre-defined for different operations. For most operations besides ADD are working in the fashion

of overlap. (2) We have special technique to make sure the rising or falling edges of two input

time-domain signals are aligned in order to conduct the operation correctly. For example, by

using the proposed time flip-flop to latch time-domain signals, the output time-domain pulses are

aligned by falling edge. The operations such as CMP, MAX, MIN, can be easily implemented in

time domain using few standard cell gates. DTW algorithm also requires some sophisticated

computing modules, i.e. ABS and MIN, which are generally not easy to be implemented in

digital domain. Figure 5.2 (b) (c) show the MIN and ABS modules used in this work.

64

B
A Max(A, B)

A
B

Max(A, B)

A
B

Min(A, B)

B
A Min(A, B)

B
A Sub(A, B)

A
B

Sub(A, B)

ADD/ACCUM

SUB MAX MIN

RE

TR
WE

rstb

Q

A
B

ADD(A, B)

A
B

Add(A, B)
A

Pre-Charge

A

B

B

Equal Detection

Eq(A, B)

A
B

Eq(A, B)

Comparison

A
B

CMP(A, B)

A

B

CMP(A, B)

(a)

(b)

(c)

Figure 5.2 Circuit details of time-domain circuits implemented in this work. (a) Basic time-

domain circuits; (b) ABS module; (c) 3-input MIN module.

In the MIN module, computation is split into MSB and LSB groups. Both modules consist

of only simple digital gates, e.g. NAND, rendering 6× reduction compared with equivalent

Min_m

Cmp

MSB LSB

TA_m

TB_m

TA_l

TB_l

TA_m

TB_m

TB_m

TA_m

MIN

MSB
LSB

MIN Module

MIN
TA

TB

TC

TA_m

Pre-
Charge

TB_m

TA_m

TB_m

EAB

Equal Detector

Min_lM
U

X

EAB

TA_l

TB_l

M
U

X

Cmp

MIN Sub-module

ABS Module

Tx ABS(x - y)

Ty

Tx

Ty
ABS(x - y)

DTC

x[3:0]

DTC

y[3:0]

65

digital implementation. The 3-input MIN module consists of a 2-input MIN module and one

equal detector module. The data path is divided into MSB and LSB paths. As shown in the

figure, both MSB and LSB MIN modules are built by simple NAND, NOR, and MUX gates with

corresponding waveform depicted.

As mentioned in Chapter 4, the existing time-domain demonstrations suffer from excessive

digital and time domain conversion and the lack of internal storage. Missing the storage

mechanism in time domain causes a lack of time-domain sequential logic which is required for

high throughput pipelined structure or design of finite state machines in non-combinational

circuits [54]. Thus, in this paper, a novel time-domain storage cell, namely time flip-flop (TFF)

is introduced in the following section.

5.2.2 Time Flip-Flop Circuit

(a) (b)

Figure 5.3 Differences between DFF and TFF. (a) DFF, (b) TFF.

As depicted in Figure 5.3, the proposed TFF takes time pulse as inputs and generates time

pulse as the output triggered by the read enable signal. Compared to digital DFF, the proposed

TFF operates in a similar fashion but has some advanced features: (1) TFF can store multi-bit

information in time domain; (2) TFF takes multiple time pulses as input in a sequential order; (3)

WE

rstb

CLK

DFF
D

rstb

Q

RE

TFF
WE

rstb

Q

Q

D

CLK

rstb

Q

RE (CLK)

66

Accumulation operation can be naturally realized – the output pulse width equals to the width

summation of input pulses.

rstb

DFF

cp

rstb

r

D Q carry

carry_b

out

VDD

EN
RE

WE0
WE1

carry_b

Ringring_ctrl

Time Storage Cell

TS

EN

EN

TS TS TS

A total of 6-bit

storage capacity

1

3

2

(a)

(b)

Figure 5.4 Time-domain flip-flop designs. (a) Circuit diagram of TFF; (b) Circuit diagram of the

W-TFF module.

Figure 5.4 (a) shows the circuit diagram of a ring-based multi-bit TFF design which

contains three parts: (1) a 33-stage tri-state inverter chain serves as the storage unit. In this

design a total of 6-bit time-domain information with 40ps single-bit resolution (a total of 2520ps

capacity) can be stored in such a tri-state inverter ring. (2) A carry signal detection module is

used to generate a carry signal when the ring is fully filled. Due to the nature of the ring

structure, the storing process can continue without the need of resetting the circuit after the ring

is full. (3) A peripheral module which is used to reset the ring at the very beginning of the

W-TFF Module

LSB

Pulse
Gen

RE

TFF
WE1
WE0

rstb

Cal.

clk0

rstb

RE

TFF
WE1
WE0

rstb

MSB

MSB_out

LSB_out

MSB_in
LSB_in

ABS_in

clk1

67

computation. Besides, such a peripheral circuit is also used to flip the polarity of the output pulse

when the ring is fully filled. In this design, each TFF can store a 6-bit time domain signal and

two TFFs are used to construct a 10-bit time domain values separated into MSB and LSB units,

leading to a wide-TFF module (WTFF) as shown in Figure 5.4 (b). In WTFF, once the LSB TFF

is full, a carry signal is sent to a pulse generator to generate an extra pulse to be stored in the

MSB TFF, extending the operation into 10 bits. In addition, a minimum pulse generator circuit is

used to create a removable offset to keep the pulse from being too narrow (less than 100ps) to be

propagated.

The write and read mechanism are described in Figure 5.5. In the scenario when the input

pulses are not large enough to fully fill the ring (overflow), the simulated waveform is shown in

Figure 5.5 (a). During reset phase (t=t0), rstb signal is sent to reset voltages in the internal nodes

of TFF. During the write phase (t=t1, t2), input pulses are sent to the ring, which allows

propagation of “0” through the ring with a duration of input pulses. Multiple input pulses can be

repeatedly sent to TFF and will be accumulated through the propagation of the ring. During

readout phase (t=t3, t4), the stored pulse is sent out from the output pin of the ring with pulse

width equivalent to summation of the stored values. Note that while the inputs are quantized time

pulses, the information is stored as analog voltages on the internal nodes of the inverter chain, so

no quantization loss occurs inside the TFF.

In another scenario when the ring is filled during write phase, the corresponding simulated

waveform is shown in Figure 5.5 (b). At t=t2 when the ring is filled, the operations are identical

to the first scenario. At the moment of t=t2, the ring is fully occupied by the input pulses while

the writing process is still going on since the second pulse is not fully finished yet. A carry signal

rises by the carry detection peripheral circuit and the ring will rotate back with remainder values

68

stored inside (t=t3~t4). The “rotation” operation conveniently allows cascading TFFs into multi-

bit groups rendering a scalable large numerical range of TFF.

T0

Reset
Phase

Write
Phase

Read
Phase

t0 t1 t2 t3 t4

T1

T0+T1

t

T0

TS

1 1 1 1 1 1 1

0 0 1 1 1 1 1

T0+T1

0 0 0 0 0 1 1

T0+T1

1 0 0 0 0 0 1

T0+T1

1 1 1 0 0 0 0 0

TS TS TS TS TS TS

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

WE0

WE1

RE

carry

out

rstb

ring_ctrl

t=t0

t=t1

t=t2

t=t3

t=t4

(a)

WE1

RE

out

rstb

ring_ctrl

WE0

carry

T0

Reset
Phase

Write
Phase

Read
Phase

t0 t1 t2t3 t4

T1

t

when ring is fully
charged

(T0+T1)-Tfull

t=t1

T0

0 0 1 1 1 1 1

t=t2

Tfull

0 0 0 0 0 0 0

t=t3

1 1 1 0 0 0 0

t=t4

0 0 0 0 1 1 1

(T0+T1)-Tfull

(T0+T1)-Tfull

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

TS TS TS TS TS TS TS

carry rises

(b)

Figure 5.5 Simulated waveform of TFF when (a) ring is not fully filled, (b) ring is fully filled.

5.3 Time-Domain DTW Architecture

5.3.1 Time-Domain DTW Algorithm Mapping

As shown in eq. (5.1), the core computations of DTW contain two non-linear operations –

the ABS and MIN. Such operations can be efficiently realized in time domain. The

69

corresponding time-domain waveform for node Di,j of eq. (5.1) is depicted in Figure 5.6 (a). The

minimum value of its three ancestor nodes is carried by time-domain signal T(min(Di-1, j, Di, j-1,

Di-1,j-1)) which is generated by the time-domain MIN module. The absolute difference is carried

by time-domain signal T(|Ai - Bj|) which is generated by the time-domain ABS module. The two

time pulses are subsequently summed to generate the local DTW value of the current node. By

recursively calculate the local nodes’ DTW values in the matrix, the final DTW distance of the

two time-series input can be obtained. The high-level circuit diagram of such a time-domain

implementation is shown in Figure 5.6 (b) with succinct topology and data path.

4xTs

 4

1xTs

 1

6xTs

 6

T(Di-1, j-1)

T(Di-1, j)

T(Di, j-1)

T(min(Di-1, j-1, Di-1, j-1,

Di-1, j-1))

1xTs

 1

T(|Ai – Bj|)

T(Di, j)

2xTs

 2

3xTs

 3 +

min value

accumulation

(a)

(b)

Figure 5.6 Time-domain DTW algorithm. (a) Waveform of time-domain DTW; (b) Time-domain

implementation of DTW.

4xTs

 4

6xTs

 6

1xTs

 1

min(Di-1, j-1, Di-1, j-1, Di-1, j-1)

Minimum Module

ABS and Accumulation Module

x
y

Min(x, y, z)
z

out

t0 t1

t0+t1

wr_en
 |Ai – Bj| + min(Di-1, j-1, Di-1, j-1, Di-1, j-1) rd_en

70

5.3.2 Pipelined Time-Domain DTW algorithm

The time-domain implementation of DTW described in the above section is in the

combinational logic fashion – there is no internal clock to synchronize the computation. This

solution has its own benefits such as compact architecture, simple circuit requirement, and

smaller latency when dealing with single time-series pair. However, it suffers from low

throughput without pipelining, low utilization of hardware, and the bounded length of input time-

series data limited by the dimension of hardware implementation. For such reasons, a pipelined

architecture is developed to overcome the above issues.

20x20 DTW Matrix

Scan-in

Chain

VCO

clk

DFF

cp r

D QTs/2

ref

Tin

DFF

cp r

D QTs/2

TDC

rstb

clk

DTW

data

cal.

ctrl

Scan-out

Chain

TDC

MSB[31:0]

M
U

X

TDC

M
U

X

LSB[127:0]

T
D

C

M
S

B
[3

1
:0

]

MUX

T
D

C

MUX

L
S

B
[1

2
7
:0

]

CLK Gen &

Data

Register

File

ABS

Unit Cell

WIde-TFF
Module

Figure 5.7 Architecture diagram of implemented pipelined time-domain DTW.

One key element to enable the time-domain pipelined design is the time-domain

information storage cell, i.e. time flip-flop (TFF). By inserting TFF to every node of the DTW

matrix, the pipelined architecture can be realized. Figure 5.7 shows the pipelined DTW engine

with 20×20 DTW unit cells and scalable operation to construct longer time series. The DTW

matrix contains a group of DTW unit cells with a diagonal pipeline structure. The unit cell, as

depicted in Figure 5.7, contains 2 WTFF modules, an ABS module, and a MIN module. The

71

second WTFF module (marked in white) in the unit cell is used to copy the data from last

pipeline stage, because the data stored in node (i-1, j-1) is one pipeline stage earlier than the

nodes (i-1, j) and (i , j-1).

A 4-bit digital-time-converter (DTC) is implemented inside ABS to convert input digital

values into time-domain pulses. The DTC consists of an inverter-based delay chain and

multiplexers. The inputs of ABS modules are stored in on-chip SRAMs and sent to the 20×20

DTW array in the fashion of the systolic data streaming.

5.3.3 Pipelined Structure and Data Streaming Flow

Due to the use of the TFF, in every clock cycle, the time-domain pulses are propagated

along the diagonal direction of the matrix as depicted in Figure 5.8. A total of 39 pipeline stages

in the diagonal direction are synchronized by the global clock and reset signals. Note that, the

TFF is the largest component and takes about 40% area of each DTW node. Hence, 40%

overhead is added to enable pipeline operation. However, the throughput improvement of

pipeline mode is 7× compared to the non-pipeline mode.

Figure 5.8 Diagonal data path and pipeline stage structure of DTW engine.

T
D

C

Clock Generator

TDC

Unit Cell

ABS ABSABS

ABS ABS ABS

ABSABSABS
clk2 &
rstb2

rstb0

rstb1

clk0

clk1

clk1 &
rstb1

clk0 &
rstb0

clk3 &
rstb3

clk4 &
rstb4

clk5 &
rstb5

Unit Cell

72

Data interaction can always be a challenge for array-based accelerator design, especially in

a mixed-signal design which is very sensitive to the quality of signal routing. One

straightforward solution for DTW data signal routing is shown in Figure 5.9 (a), with a massive

routing broadcasting all signal connections. This would not only introduce signal crosstalk but

also lead to the top-level signal routing congestions. Instead, in this work, a systolic data

streaming flow is implemented where each data item is piped through the DTW matrix as inputs

to ABS modules both vertically and horizontally (Figure 5.9 (b)). Such a flow is similar to a

systolic dataflow in other accelerators e.g. Google’s TPU design [32]. With such a solution, we

reduce the signal crosstalk and eliminate massive data signal routing by more than 15×: The

routing signals of ABS inputs are reduced from 2×20×20×4b into 2×20×4b at 20× reduction.

However, some calibration signals still need to be explicitly routed into each DTW node which

makes the total reduction into 15×.

Register File

R
e
g

is
te

r
F

il
e

from same dataset,
@different pipeline stages

A
s

0
,0

A
s

1
,0

A
s

2
,0

A
s

3
,0

A
s

4
,0

A
s

0
,1

A
s

1
,1

A
s

2
,1

A
s

3
,1

A
s

4
,1

A
s

0
,2

A
s

1
,2

A
s

2
,2

A
s

3
,2

A
s

4
,2

A
s

0
,3

A
s

1
,3

A
s

2
,3

A
s

3
,3

A
s

4
,3

A
s

0
,4

A
s

1
,4

A
s

2
,4

A
s

3
,4

A
s

4
,4

Register File

Bs0,0

Bs1,0

Bs2,0

Bs3,0

Bs4,0

Bs0,1

Bs1,1

Bs2,1

Bs3,1

Bs4,1

Bs0,2

Bs1,2

Bs2,2

Bs3,2

Bs4,2

Bs0,3

Bs1,3

Bs2,3

Bs3,3

Bs4,3

Bs0,4

Bs1,4

Bs2,4

Bs3,4

Bs4,4

R
e
g

is
te

r
F

il
e

from same dataset,
@different pipeline stages

ABS

D
F

F
D

F
F

D
F

F
c

p
r

D
Q

DFFDFF
DFF
cpr

D Q

Bs0,4

Bs1,4

Bs2,4

Bs3,4

Bs4,4

Bs0,3

Bs1,3

Bs2,3

Bs3,3

Bs4,3

Bs0,2

Bs1,2

Bs2,2

Bs3,2

Bs4,2

Bs0,1

Bs1,1

Bs2,1

Bs3,1

Bs4,1

Bs0,0

Bs1,0

Bs2,0

Bs3,0

Bs4,0

A
s

0
,4

A
s

1
,4

A
s

2
,4

A
s

3
,4

A
s

4
,4

A
s

0
,3

A
s

1
,3

A
s

2
,3

A
s

3
,3

A
s

4
,3

A
s

0
,2

A
s

1
,2

A
s

2
,2

A
s

3
,2

A
s

4
,2

A
s

0
,1

A
s

1
,1

A
s

2
,1

A
s

3
,1

A
s

4
,1

A
s

0
,0

A
s

1
,0

A
s

2
,0

A
s

3
,0

A
s

4
,0

(a) (b)

Figure 5.9 Data streaming flow comparison between (a) brute-force data streaming flow, (b)

systolic data streaming flow.

73

5.3.4 Unfolding DTW Operation

The pipelined operation allows fixed dimensions of the DTW engine to be unfolded for

longer data sequences, as shown in Figure 5.10. The total unfolded length is ultimately limited

by internal register storage capacity, i.e. 10 bits in this implementation but can be easily extended

further using the WTFF design. All output pulses from the bottom and right boundaries are

decoded by shared time-to-digital converters (TDCs) every clock cycle and re-sent back for

processing by subsequent sections.

Please note that due to the nature of analog/mixed-signal (AMS) computing, this design

also has limitation on the scalability compared with digital implementation although we intend to

improve this drawback by adding an unfolding operation in the special pipelined mode. In our

study, most of our results are based on the final distance which require the value at the bottom

right point of the matrix given that the distance measurement of two time series can be obtained

at the bottom right corner of the matrix. For the goal of retrieving all intermediate data for post-

processing for a larger matrix, multiple similar cores (not implemented in this work) can be

stitched together on the same chip. In that case, the data from TDC can be send out to the next

core for further operation with some degradation of the throughput due to data transmission.

Such an operation is only supported in pipelined mode because the non-pipelined mode in this

work would generate data asynchronously leading to a high cost in obtaining intermediate data.

74

TDC

d
a
ta

T
D

CDTW

Block
data

TDC

d
a
ta

T
D

CDTW

Block
data

TDC

d
a
ta

T
D

CDTW

Block
data

TDC

d
a
ta

T
D

CDTW

Block
data

1 2 3

4 5 6

7 8 9

1 2

4 5

Figure 5.10 Unfolding mode of the proposed DTW engine.

5.3.5 Non-Pipelined DTW Mode

The pipelined mode is essentially designed for accelerating multi-bit time-series

classification. And each pipeline period is determined by the capacity of the WTFF module,

which is 10 bits in this design. As the processing time scales with the number of bits in time-

domain operation, the pipelined mode is not efficient for low resolution time-series

classification, e.g. DNA sequencing that only requires 1-bit operation. In such a case, the

throughput is higher in non-pipelined operation than the pipelined operation due to the extremely

fast operation at each node with only 1-bit input. Hence, to speed up the operation for simple

data sequence case, a non-pipelined mode is implemented by bypassing the TFF modules and

allowing signal edges to directly propagate through the matrix as shown in Figure 5.11. Different

from pipelined case, in non-pipelined case, we encode information by the delay of rising edges

instead of the pulse width of time pulses (similar to prior work [57]). Note that, the rising edge is

naturally accumulated through the combinational block for “ADD” operation as depicted in

Figure 5.6 (b).

75

ABS

Bypass Mode

Figure 5.11 Architecture diagram of non-pipelined DTW mode.

5.3.6 Design Automation for Mixed-Signal Circuit Design

Mixed-signal circuit design typically suffers from the requirement of manual layout efforts

to enhance the integrity of the signals. To ease the large amount of design effort for the 2-D

array, a time-domain design automation technique is utilized as shown in Figure 5.12.

In the local module level, the implemented automation technique includes both the

synthesis and place & route parts. The synthesis process involves two steps: (1) the RTL with

customized syntax for time-domain logics is utilized to perform a special mixed-signal

time-domain (MSTC) logic synthesis process which generates an initial gate-level netlist; (2)

The size of each module in the initial netlist is tuned by a special optimizer to meet the variation

budget while keeping the area consumption small. The place & route process utilizes an adjacent

constraint graph-based placement algorithm to realize the special signal mapping requirement in

time domain [58]. As a result, majority of the modules are automated except critical local cells,

e.g. ring core of TFF.

76

(a)

(b)

Figure 5.12 Design automation techniques used in this work. (a) Design automation flow chart;

(b) Layout result of 20×20 DTW matrix.

In the higher level, we developed placement script and utilized digital tool to conduct the

layout as such an example shown Figure 5.12 (b). The neighbor DTW nodes are placed abut to

each other to minimize the routing length of inter-module connections. The critical global

signals, i.e. clock and reset, are routed in a structured way by routing script with higher metal

layer to relieve the signal crosstalk effect. As a result, the massive manual signal routing can be

avoided at the higher level of the design while still maintaining routing quality/matching

clock and rstb signals

Inter-module connections

Netlist Optimization

Solution: Netlist, Constraints

TC Cells Monte-Carlo

Simulation with Various Size

Variation Sensitivity Function

Characterization

Time-domain Library

Characterization
Sizing & Resolution

Initial Netlist Generation

TD and Digital RTL

Logic Mapping (TD & Digital)

Design Specification

Variation & Area

Variation and Performance

Target

Automative Placement & Route

77

performance compared to hand layout.

5.3.7 DTW Matrix Calibration Scheme

Similar to analog computing, variation is also a significant concern in time-domain

computing [16]. To relieve such an issue, special calibration scheme is introduced to calibrate the

20×20 DTW matrix as shown in Figure 5.13. A 2b tunable delay cell is implemented in each unit

cell to tune the output pulse width, compensating for process variations.

 (a) (b) (c)

(d)

Figure 5.13 Calibration scheme of the 20×20 DTW matrix. (a) Calibration order through

different diagonals. (b) Calibration order of each DTW node on the main diagonal. (c)

Calibration order of each DTW node on the second diagonal. (d) Example of special input sets to

enable the calibration of different node on the main diagonal.

The DTW nodes are calibrated through each diagonal path following a center-to-side order

as depicted in Figure 5.13 (a). On each diagonal path, the nodes are calibrated from bottom-right

2
1

3
4
5
6
7
0

1 2 3 4 5 6 7 1
0 1 3 6 10 15 21 22

1 0 1 3 6 10 15 17

3 1 0 1 3 6 10 13

6 3 1 0 1 3 6 10

10 6 3 1 0 1 3 6

15 10 6 3 1 0 1 7

21 15 10 6 4 1 0 7

21 16 12 9 7 6 6 1

B

A

tuned node

2
1

3
4
5
6
8
1

1 2 3 4 5 6 7 1
0 1 3 6 10 15 21 22

1 0 1 3 6 10 15 17

3 1 0 1 3 6 10 13

6 3 1 0 1 3 6 10

10 6 3 1 0 1 3 6

15 10 6 3 1 0 1 7

21 15 10 6 3 1 1 7

21 16 12 9 7 6 8 1

B

A

tuned node

1
st

 node in main diagonal 2
nd

 node in main diagonal

12468910

3

5

7

9

11

13

12

15

center to

side
Second Diagonal

Calibration

Main Diagonal

Calibration

78

to top-left as shown in Figure 5.13 (b) (c) and the calibration is performed node by node. The

basic idea is to construct special input sets which make the warping path to lie into the particular

diagonal path and to be calibrated. By specially manipulating the input data patten, each node is

further calibrated in that particular diagonal path one by one. Once the diagonal path is properly

calibrated, the next diagonal path will be calibrated following center-to-side order until all the

nodes on all diagonals are calibrated. This systematic calibration flow allows each cell to be

tuned sequentially without back and forth operations and can be easily automated using the PC.

The calibration results are shown in the next section.

5.4. Measurement Results

5.4.1 Test Chip Setup

Figure 5.14 Die photo and chip specification.

A test chip of the proposed DTW accelerator engine was implemented in a 65nm CMOS

process with die photo and specification table shown in Figure 5.14. The chip is running at

110 MHz with a nominal supply voltage of 1V. Two sets of TDCs, based on Vernier delay

chains, are placed at the right and bottom sides to decode time-domain signals at the boundaries.

20x20 DTW

Matrix

VCO
1450 um

1
1
5

0
 u

m

S
c

a
n

-I
n

R
F

 &

C
L

K
 G

E
N

S
c

a
n

-O
u

t

Technology

Die Area

Frequency

Power

65nm

1.67 mm
2

110 MHz

111 mW

20 mW

25 mW

Pipelined

Non-pipe.

RF&

CLK

GEN

Nom Vdd 1V

DTW

Core

TDC
15 mW

Pipelined

Non-pipe.

79

A single-bit resolution of 40ps is used in the DTW design, while a resolution of 20ps is used in

the TDC to reduce quantization errors at the boundary of operation. All the input and output data

can be scanned in and out through a scan chain for verification.

5.4.2 Measurement Results

Figure 5.15 (a) shows the measured waveform in the pipelined mode which confirms the

expected output pulse at a frequency of 110MHz. The negative pulses depicted in the zoomed-in

window carry the DTW distance information in time domain. Figure 5.15 (b) shows 3.1ns

processing time in DNA-sequencing non-pipelined mode.

9 ns

frequency = 110 MHz

DTW
distance

Time(ns)

Voltage(v)

1.0

0

0.5

3.1 ns

processing time = 3.1 ns

Time(ns)

Voltage(v)

1.0

0

0.5

(a) (b)

Figure 5.15 Measured waveform of (a) pipelined mode, (b) non-pipelined mode.

0

20

40

60

80

0 30 60 90

N
o

rm
a
li

z
e
d

 t
o

u
t

Normalized tin

rotate back

0

20

40

60

80

0 30 60 90

N
o

rm
a
li

z
e
d

 t
o

u
t

Normalized tin

Retention = 10 ns Retention = 1 µs

(a) (b)

Figure 5.16 Linearity measurement of TFF at nominal 1.0V with (a) retention time of 10ns, (b)

retention time of 1μs.

80

0

20

40

60

80

0 30 60 90

N
o

rm
a
li

z
e
d

 t
o

u
t

Normalized tin

Retention = 20ns, Voltage = 0.7 V

Figure 5.17 Linearity measurement of TFF in low voltage case (0.7V) with retention time is

20ns.

The linearity of the TFF is key to the accuracy of the DTW computation. Also, the

retention capability of TFF for time-domain signals is important since the degradation of time-

domain signal over the time due to leakage will cause information loss for the computation. The

linearity of TFF is measured and verified under different retention time condition. As shown in

Figure 5.16 (a) (b), the TFF is verified to retain data for over 1us at a supply voltage of 1V, with

less than 0.5 LSB linearity loss due to leakage. This retention time is sufficient for the target

application whose retention requirement is only 7ns. The linearity of TFF is also verified at a

lower supply voltage of 0.7V. As shown in Figure 5.17, the linearity loss is 1.5 LSBs which

results to classification error increase (2%) in the low voltage operation.

Figure 5.18 (a) shows measurement results on classification error using the fabricated

DTW chip. UCR time-series classification databases were used with five databases from four

typical applications including ECG signal classification, gesture recognition, words recognition

and, face detection [59]. The measured error rate for classification by the DTW engine is only

1.5% higher than ideal DTW operation (floating point results in software). The increased error

rate is mainly due to quantization loss (contributing about 0.5%) and process variation effect

(contributing about 1%).

81

0

5

10

15

20

25

30

35

ECG200 Gesture_x Gesture_y 50 Words FaceAll

E
rr

o
r

R
a

te
(%

)
Euclidean Ideal DTW Measured DTW

error increases

less than 1.5%

20

40

60

80

100

D
is

ta
n

c
e

Sequence #

simulated

measured

1 10050

measured distance tracks the
simulated score with 2.6% error for

100 sequence samples

(a) (b)

Figure 5.18 Measurement results of different applications. (a) DTW classification error rate of

UCR archive (pipelined Mode); (b) Simulated vs. measured DNA alignment distance (non-pipe.

mode).

In order to test the performance of the non-pipeline DTW mode, a measurement of the

DNA sequencing application is conducted. 100 sets of DNA sequence data from the human

genome database (GDB) were tested for comparison between ideal DTW operation and

measurement results. As shown in Figure 5.18 (b) the measured distance closely tracks the ideal

results, having an error within 2.6%.

As shown in Figure 5.19, in order to test the robustness of the chip, the chip was verified at

different supply voltages in pipelined mode down to 0.7V, with a 2.3% increase in error rate

compared with ideal DTW operation on the UCR database.

Figure 5.19 Chip operating frequency and error rate measurement under different supply

voltages.

14

15

16

17

18

19

20

0

30

60

90

120

150

1 0.9 0.8 0.7

E
rr

o
r

R
a
te

(%
)

F
re

n
q

u
e

n
c

y
(M

H
z
)

Supply Voltage (V)

Frequency error rate

ideal error rate

82

E
rr

o
r

+5

-5

Before Calibration After Calibration

Max error = 5 LSBs Max error = 1.5 LSBs

Figure 5.20 DTW node error measurement before and after calibration.

Figure 5.20 shows the chip calibration results before and after calibration operations. In this

experiment, a 20×20 time-series classification task was conducted with 4-bit inputs. The scale

for the figure is the measurement distance error in the unit of LSB. The final absolute

computation different is 1 LSB. After calibrating the 20×20 DTW matrix, the maximum DTW

distance computation error drops from 5 LSBs to 1.5 LSBs. Table 5.1 shows the comparison

with prior work. A throughput of 140 giga-cell-updates-per-second (GCUPS) for DNA

sequencing is achieved with 9× improvement over previous work [54]. The number of bits in this

work are 4 bits as input and 10 bits in internal operation as compared with low resolution in most

prior work, e.g. 1 bit [54]. More than 20× higher throughput per area (GCUPS/mm2) is observed

compared with prior CPU, GPU and ASIC implementations. This is mainly due to the area

efficiency of time-domain circuit technique in special operations, e.g. compare, maximum and

minimum. Overall, 1.5×~50× improvement of energy per GCUP is realized in this work compare

to prior chip implementations. Over 20× and 18× improvements on inference per second per mm2

and inference per second per watt are achieved respectively.

5.5 Comparison and Discussion

In order to form an apple-to-apple comparison, the technology scaling effect is also taken

83

into consideration. Compared to [54], whose throughput is limited by their time resolution which

is 2ns. We assume the bit resolution scales with technology (which is not typically true in

analog/mixed-signal design), our technology advances about 3 generation with scaling of about

0.73 leading to about 3× improvement in throughput. On the other hand, our design has shown 9×

improvement of throughput, so we observe 3× improvement if taking into account of the

technology impact. Compared to [60], we further scale down the process impact by 0.7 (from

90nm to 65nm) and the bit precision impact (from 32 bit to 4 bit), this leads to an throughput

improvement of about 11× for the ASIC implementation of [60].

In addition, the use of time flip-flops enables the first pipelined architecture for time-

domain design which not only improves the throughput but also increases the hardware

utilization. Compared to non-pipelined operation, the pipelined design shows 7× improvement in

throughput for general DTW applications. The hardware utilization has been improved from

11% to 93% due to the pipeline architecture.

In addition of the fabricated prior test chips, Kin Fun Li et al. proposed a DTW single

element processing unit to investigate the suitability of using it as a building block for more

complex architecture for embedded applications [63]. V.K Sundaresan et al. introduced parallel

DTW algorithm [64]. Xiaowei Xu et al. proposed a memristor-based DTW accelerator design

[56]. Compared to the digital implementations in [60] [63], our design improved the throughput

by over 4×. Compared to the analog mixed-signal design in [64], we realized a throughput

improvement over 200×.

84

TABLE 5.1 DTW ACCELERATOR DESIGN AND COMPARISON TABLE

 [61] [62] [60] [54] This work

Architecture CPU GPU ASIC/

CPU

Time-domain

ASIC

Time-domain

ASIC

Process (nm) 65 28 90 180 65

Area (mm2) 143 300 6.4 4 1.67

Number of bits
floating

point

floating

point

32 1 4 (input)

10 (internal)

Power (mW)
9.5×104 2×105 2732 70 136 (pipeline)

35
(non-pipe.)

Clock period

(GHz)

2 1 0.6 0.01 0.11 (pipeline)

Throughput for

DNA sequencing

(GCUPS)

3 119 9 ** 15 ** 140 *

Throughput per

Area

(GCUPS/mm2)

0.02 0.4 1.4 3.75 84

Throughput for

general DTW

App. (GCUPS)

- - - - 71 (pipeline)

10 (non-pipe)

Energy per

GCUP (pJ/CUP)

3.2×104 1×103 304 4.7 0.25

Inferences/Secon

d (Giga)

0.006 0.276 0.021 0.036 0.32

Inferences/Secon

d/mm2 (Mega/

mm2)

0.041 0.92 3.3 9 191

Inferences/Secon

d/W (Mega/W)

0.0006 0.0014 0.0076 0.51 9.2

Error rate - - - 2.9% 1.5~2.6%

* *In DNA application, single bit non-pipeline mode with input length of 20 is utilized for fair

comparison with prior work.

** Technology scaling is considered and is further discussed in the above paragraph.

85

5.6 Summary

In this chapter, a general-purpose DTW engine using time-domain computing is designed

for time-series classification. A special time-domain storage cell, namely time flip-flop, is

developed with extendable ring-based structure and embedded accumulation functionality. The

developed DTW engine also allows high-throughput pipelined data flow and unfolded operation

for longer time series through a specially designed pipeline architecture utilizing the time flip-

flop circuits. A 65nm CMOS test chip is fabricated and tested. The measurement shows a

throughput improvement of more than 9× compared to prior works. In addition, a design

automation methodology was applied to ease the mixed-signal design effort. A post-silicon

calibration scheme was also incorporated to reduce the impact from process variation leading to

3× reduction of distance measurement error.

86

Chapter 6

A Mixed-signal Time-Domain Generative Adversarial Network

Accelerator

In this chapter, a low-cost mixed-signal time-domain accelerator for generative adversarial

network (GAN) is presented. A significant reduction in hardware cost is achieved through

delicate architecture optimization for 8-bit GAN training on edge devices. An area efficient

subthreshold time-domain multiplier is designed to eliminate excessive data conversion for

mixed-signal computing, enabling high throughput mixed-signal online training that

demonstrated in a 65nm CMOS test chip.

Chapter 6 is organized as follows: Chapter 6.1 introduces the background and design

challenges in building a GAN accelerator for edge computing. Chapter 6.2 introduces the

architecture innovation for GAN accelerator. Chapter 6.3 presents the circuit innovation

including a high-efficient time-domain multiplier design. Chapter 6.4 shows the measurement

results and Chapter 6.5 compare the proposed design with other time-based ML accelerator

designs. Chapter 6.6 concludes the design.

6.1 Design Challenge in Generative Adversarial Network (GAN)

GAN is rendered as one of the most interesting and challenging applications in deep

learning space. As shown in Figure 6.1, GAN contains two deep neural networks (DNN), i.e. a

generator and a discriminator, contesting and evolving with each other [65]. Despite its broad

real-time applications in gaming, authentication, VR, there is a lack of dedicated low power

87

GAN accelerator due to the tremendous challenges on resource-limited edge devices. From the

algorithm aspect, GAN is extremely difficult to train due to model collapses from unbalanced

models and high sensitivity to hyper-parameters. From the hardware aspect, GAN involves two

DNNs with complex training sequences, e.g. 41 different training stages as in this work.

Moreover, the typical floating-point training and complex calculation, e.g. batch normalization

and optimizers, are very expensive for a resource-limited edge device [65].

Monet

GAN Application

Anime Characters
Generation

Input Van Gogh

Input

Image Style
Transfer

GAN Algorithm

contest

real imagesfake images

evolve

Generator Dsicriminator

𝒎𝒊𝒏 𝒎𝒂𝒙
𝑮 𝑫

𝑽(𝑫, 𝑮) = 𝔼𝒙~𝒑𝒅𝒂𝒕𝒂(𝒙) 𝒍𝒐𝒈𝑫(𝒙) + 𝔼𝒛~𝒑𝒙(𝒛)[𝐥𝐨𝐠(𝟏 − 𝑫(𝑮(𝒛)))]

Figure 6.1 GAN applications and algorithm.

This work, through significant architecture improvement and hardware adaptation, presents

a mixed-signal GAN accelerator with 8-bit resolution for cost-effective implementation on edge

device. The contributions include: (1) for the first time, a complete GAN training core was

implemented on an 8-bit low-power ASIC chip consuming only 39mW; (2) An efficient

subthreshold time-domain (TD) multiplier was designed with significant area saving compared

to digital design; (3) On-chip training was performed in mixed-signal TD for the first time. The

design eliminated 94% overhead from domain conversion, leading to the state-of-art throughput

for a mixed-signal based accelerator which normally suffers from slow operation speed.

88

6.2 Time-Domain GAN Accelerator Architecture Design

Figure 6.2 shows the implemented GAN architecture with model compression that used in

this work. For fitting with a small chip budget on edge device, we targeted a low-budget

architecture implementation of DCGAN [65] using greyscale image with a size of 28×28 pixels.

16b FP vs. 8b Integer

1

6
-b

it
 F

lo
a

ti
n

g

8

-b
it

 I
n

te
g

e
r

97%

A
c
c
u

ra
c
y
 (

%
)

Accuracy

94%100

50

0
FP Int

1

6
-b

it
 F

lo
a

ti
n

g

5x

N
o

rm
a

li
z
e
d

 P
o

w
e
r

Power

FP Int

8
b

 I
n

t
1

5

5

15

FC

5

5

15

Batch

Norm

Transpose

Conv

13

13

13

13
Batch

Norm

28

28 28

28 24

24

12

12

8

8

4
4

15
32

Conv Pool Conv Pool

15
15 1532

Generator (T-CNN)

3 Minimize number of channels

2 Reduce number of layers

6x

BN
12%

FC
36%

4x

Operation Reduction

Conv
52%

Opt.

Opt.

MAC

MAC

8%

6x
11x
9x

12%
11x

Implemented GAN architecture

Transpose

Conv

Figure 6.2 Model compression techniques utilized in this work.

As depicted in Figure 6.3 and Figure 6.4, the following techniques were specially

developed: (1) model balancing and adaptive training were utilized to enable 8-bit training

versus conventional floating-point training, leading to a 5× reduction in hardware cost; (2) The

challenging and memory consuming operations of batch normalization were simplified by

disabling low-impact runtime operations, rendering a 77% removal of the associated operations;

(3) The expensive ADAM optimizer was replaced by a succinct momentum stochastic gradient

89

descent optimizer suitable for integer implementation with an 11× reduction of the optimizer’s

computation; (4) The number of layers and channels were further minimized to reduce the

computation load by 6× to 9×. Overall, a 6× reduction of training complexity, a 6.5× hardware

cost reduction, and an 11× reduction of on-chip memory were achieved through the algorithm

simplification with about a 3% loss of accuracy.

𝝁𝜷 ←
𝟏

𝒎
 𝒙𝒊

𝒎

𝒊=𝟏

𝝈𝜷
𝟐 ←

𝟏

𝒎
 (𝒙𝒊 − 𝝁𝜷)𝟐

𝒎

𝒊=𝟏

𝒙𝒊 ←
𝒙𝒊 − 𝝁𝜷

 𝝈𝜷
𝟐 + 𝝐

𝒚𝒊 ← 𝜸𝒙𝒊 + 𝜷 ≡ 𝑩𝑵𝜸,𝜷(𝒙𝒊)

Batch Norm Simplification

// mini-batch mean

// mini-batch variance

// normalize

// dynamic scale

Optimizer Simplification
Adam SGD with Momentum

77% Comp.

𝒗𝒕 = 𝜷𝟏 ∗ 𝒗𝒕−𝟏 − (𝟏 − 𝜷𝟏) ∗ 𝒈𝒕

𝒔𝒕 = 𝜷𝟐 ∗ 𝒔𝒕−𝟏 − (𝟏 − 𝜷𝟐) ∗ 𝒈𝒕
𝟐

∆𝝎𝒕 = -𝜼
𝒗𝒕

√𝒔𝒕 + 𝝐
∗ 𝒈𝒕

𝝎𝒕+1 = 𝝎𝒕 + ∆𝝎𝒕

𝒗𝒕 ← 𝜼 ∗ 𝒗𝒕 − 𝜶 ∗ 𝜵𝝎 𝑳𝒎(𝝎)

𝒎

𝟏

𝝎𝒕 ← 𝒗𝒕 + 𝝎𝒋

 Remove complex operations

 11X saving from SGD

Figure 6.3 Hardware adaptation techniques utilized in this work.

Generator generates
fake images

Discriminator scores the
fake and real images

Loss calculation for
generator

Weight update for
generator

Generator
Training

Generator generates
fake images

Discriminator scores the
fake and real images

Loss calculation for
discriminator

Weight update for
discriminator

Discriminator
Training

Loss_G > Loss_D×2 Loss_D > Loss_G×2

Y Y

N N

Model Balanceing

Adaptive Training

000
100
111

-111
-100

Enlarge

gradient

G
ra

d
ie

n
t

E
n

la
rg

e

 Increase gradient magnitude

if current gradient is <2

Training Cycle

Loss back-prop. of
discriminator

1

2

3

4

5

1

2

6

7

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Phase

Figure 6.4 Adaptive training techniques in GAN accelerator design.

Figure 6.5 shows the training sequence. Each training iteration consists of 7 unique phases

(e.g. forward prop., loss cal.) with 5 phases for the generator and 4 phases for the discriminator.

Each phase also contains 4 to 6 sub-tasks (e.g. Conv, FC, pooling, etc.). To avoid model

90

collapsing, an adaptive training and model strength control scheme was implemented which

ceases the training of discriminator if its strength is too high and adaptively increases the

magnitude of the gradients during backpropagation (presented in Figure 6.4). The training

sequence is managed by an ASIC training management unit (TMU) shown in Figure 6.6. A total

of 41 training stages were implemented in the TMU as a finite state machine. Special operations

such as pooling, sigmoid, data transpose etc. were handled by the dedicated hardware modules

inside the TMU. Register files were used to store temporary weights and feature map outputs,

bridging the throughput mismatch between SRAM and MAC arrays.

Update

Backward

T-CNN

Update

Backward

T-CNN

Forward

CNN

Forward

T-CNN

Loss Cal

CNN

Backward

Loss Cal

CNNCNN

T-Conv

L3

Batch

Norm

L4

Batch

Norm

L2

FC

L1

T-Conv

L5

ForwardBackward

Conv

L3

Pooling

L4

Pooling

L2

Conv

L1

FC

L5

FC

L5

1 2 3 4 5

6 7

Figure 6.5 Training sequence of GAN.

Reg

File

Addr

Cal.
Padding

S0 Model
Balancing

Data/Address Bus

Control Bus

S1 S2

S6

...

...

......

Pooling Sigmoid

Adaptive

Training

Ctrl

State Control

MAC
Control

Data

Data

Transpose

Dataflow
Control

Training Management Unit (TMU)

Figure 6.6 Block diagram of ASIC training management unit (TMU).

Figure 6.7 shows the test chip architecture diagram including the TMU, a 10×10 time-

domain (TD) MAC matrix, SRAM modules and supporting blocks. All the MAC operations of

CNN and Transpose-CNN are performed by a TD MAC matrix to improve area and energy

efficiency. The circuit diagram of TD MAC matrix/array is depicted in Figure 6.8. The time

91

pulses generated from digital-to-time converters (DTC) are processed by the subsequent

multiplication, accumulation and activation all in time domain and are finally converted back

into digital domain using time-to-digital converters (TDC). A special 16b time-pulse based time-

domain accumulator (TD-ACC) is designed using four 4-b ring-based time accumulators [27]

with carry propagation to realize accumulation efficiently.

10x10 TD MAC Matrix
MEM BANK0

MEM BANK1

S
c
a

n
 C

h
a

in

VCO

clk

clk

D
a
ta

T

ra
n

s

S
ta

te
 C

o
n

tr
o

l

TMU

D
a
ta

fl
o

w

C
o

n
tr

o
l

R
e

g
 F

il
e

Figure 6.7 Top-level architecture diagram of proposed GAN accelerator.

DTC

TDC

ReLU

TDC

ReLU

TDC

ReLU

MAC

Activate

Encode

Decode

A9
B9

A0
B0

dout9 dout1 dout0

DTC DTC DTC DTC DTC

MAC MAC MAC

Figure 6.8 Circuit diagram of time-domain MAC array.

92

RE

WE0
WE1

rstb

DFF

rstb

D Q

carry

carry

OU

T
EN

carry

TS

EN

EN

TS TS TS

Pulse
Gen

WE0

WE1

RE
OUT

RE

Tin

Tref

Tout

(a) (b)

Figure 6.9 Circuit details of (a) 4b time-domain accumulator, (b) time-domain ReLU function.

XXXXXXXX

B[7:0]
×

a7a6a5a4 a3a2a1a0

b7b6b5b4 b3b2b1b0

A1 A0

B1 B0

×

a7a6a5a4

b7b6b5b4

A1

B1

×
b3b2b1b0

A0

B0

×

a3a2a1a0

a7a6a5a4

b3b2b1b0

A1

B0

×
b7b6b5b4

A0

B1

×

a3a2a1a0

A[7:0]

out[15:12] out[11:8] out[7:4] out[3:0]

carrycarry

X X X X

TD-ACC

A1×B1 A1×B0 A0×B1 A0×B0

TD-MUL

TD-ACC TD-ACC TD-ACC
carry

Multiplication Partition

Figure 6.10 Circuit diagram of time-domain MAC unit.

As presented in Figure 6.10, with the special TD-ACC, the TDC is only activated once

every 25 MAC operations, removing 94% of the time and power overhead from the expensive

TDC operations. Pushing all operations in time domain significantly reduces the cross-domain

data conversion, rendering a 160× speed-up in MAC operation compared with previous counter-

based TD designs [15]. The 8-b TD multiplication is partitioned into four 4-bit multiplications to

93

improve the computation accuracy and speed. The detailed circuit implementation of 4-bit time-

domain accumulator is shown in Figure 6.9 (a) with operating waveform of time-domain MAC

operation shown in Figure 6.11

3xTs

 3
2xTs

 2 T(Bi)

T(Ai)

6xTs

 6 T(Ai×Bi)

2xTs

 2 T(Bi+1)

T(Ai+1)

4xTs

 4 T(Ai+1×Bi+1)

2xTs

 2

T(Ai×Bi+
Ai+1×Bi+1)

+

accumulation

10xTs

 10

MUL

MUL

Figure 6.11 Time-domain MAC operation waveforms.

6.3 Time-domain GAN Accelerator Circuits Design

Figure 6.12 (a) shows the detailed circuit design featuring a subthreshold (sub-vth) TD

multiplier (TD-MUL) and a DTC- based linearization technique. The TD-MUL takes input time

pulses and generates output pulses of the multiplication results.

As in Figure 6.12 (a), the current starving PMOS transistor is pre-biased at subthreshold

region and generates a delay equals to the multiplication results through charge accumulation at

the gate with logarithmic addition, i.e. a multiplication is addition in log domain.

94

TB

TA

 VA
 VB

charge_en

td_A

td_B

Tin

Tout

Vq

TD Mutiplication

Pre-charge Circuit

Vpre

TA

TB

Sign

Tin
Tout

Vpre

En

Sign Buffer

Ids

 VA+ VB
Vq

Pre-bias
Phase

Operands
Read Phase

Multiplication
Phase

∝ 𝒆𝑻𝑨 × 𝒆𝑻𝑩

(a) (b)

Figure 6.12 Time-domain multiplication, (a) circuit details, (b) simulation waveform.

𝑻𝒐𝒖𝒕 ∝
𝑪𝑽𝒅𝒅

𝑰𝒅𝒔
=

𝑪𝑽𝒅𝒅

𝑰𝒅𝒔𝟎
× 𝒆

(𝑽𝒕𝒉−𝑽𝑮𝑺)
𝒏𝒌𝑻/𝒒 × 𝒆

∆𝑽𝑨
𝒏𝒌𝑻/𝒒 × 𝒆

∆𝑽𝑩
𝒏𝒌𝑻/𝒒 ∝ 𝒆∆𝑽𝑨 × 𝒆∆𝑽𝐵

DTC Linearization Compensation

Non-linear

Linearity

Compensation𝑰𝒅𝒔 = 𝑰𝒅𝒔𝟎 × 𝒆
(𝑽𝑮𝑺−𝑽𝒕𝒉−∆𝑽𝑨−∆𝑽𝑩)

𝒏𝒌𝑻/𝒒 = 𝑰𝒅𝒔𝟎 × 𝒆
(𝑽𝒕𝒉−𝑽𝑮𝑺)

𝒏𝒌𝑻/𝒒 × 𝒆
−(∆𝑽𝑨+∆𝑽𝑩)

𝒏𝒌𝑻/𝒒
∆𝑽𝑨 ∝ 𝑻𝑨 = 𝒍𝒏(𝑫𝒊𝒏𝑨)

∆𝑽𝐵 ∝ 𝑻𝑩 = 𝒍𝒏(𝑫𝒊𝒏𝑩)

Subthreshold Multiplication Equations

𝑻𝒐𝒖𝒕 ∝ 𝒆∆𝑽𝑨 × 𝒆∆𝑽𝐵 = 𝑫𝒊𝒏𝑨 × 𝑫𝒊𝒏𝑩

*Some scaling constants are

omitted in the equations

Figure 6.13 Nonlinearity compensation in time-domain multiplier.

w/o DTC
Linearization

w/ DTC
Linearization

Normalized TA Normalized TA

N
o

rm
a

li
z
e

d
 T

o
u

t

N
o

rm
a

li
z
e

d
 T

o
u

t

B=15

B=12

B=9

B=6

B=3

1 157 1 157
1

225

112

1

225

112

After linearization
Figure 6.14 Nonlinearity compensation simulation results.

1
9

 u
m

20 um 12 um

7
 u

m

4b Digital-MUL 4b TD-MUL

4.3X
Reduction

Figure 6.15 Layout comparison between 4b digital multiplier and 4b timed-domain multiplier.

95

The layout comparison between Compared to the digital implementation is shown in Figure

6.15. Overall, the implemented sub-vth multiplier renders a 4.3× reduction of area. However, as

shown in simulation, significant nonlinearity is observed in sub-vth multiplication. The

nonlinearity is compensated by a logarithmic encoding of DTC. As shown in both equation and

the simulated waveforms in Figure 6.13 and Figure 6.14, the linearization technique elegantly

removes nonlinearity with negligible overhead. After the multiplication, the resulting time pulses

are sent into TD-ACC for accumulation of 25 cycles avoiding time-consuming digitalization as

[15, 16, 66]. Simple TD ReLU function (depicted in Figure 6.9 (b)) is also implemented at each

CNN layer except the final layer which uses digital sigmoid function.

6.4 Measurement Results

Figure 6.16 shows the measured linearity from both the TD-MUL and TD-ACC. For the

multiplier, although up to 4% error is seen in the result, most of the error is just a small scaling

factor shift. Less than 1b error is observed in the TD-ACC design.

0

75

150

225

0 3 6 9 12 15N
o

rm
a
li

z
e
d

 T
o

u
t

Normalized TinA

0

50

100

150

200

250

0 50 100 150 200 250N
o

rm
a
li
z
e
d

 T
o

u
t

Normalized Tin

Figure 6.16 Linearity measurement of (a) time-domain accumulator and (b) time-domain

multiplier.

We trained the GAN with 3 databases, i.e. a digit-MNIST, a fashion, and an emoji database

[67, 68]. As depicted in Figure 6.17, accuracy of the generated images with conditional GAN

96

from 3 databases shows less than 1% error compared to the ideal integer 8-bit training on CPU

and 3% compared with ideal floating-point training (1.6% comes from quantization loss). The

final training results of the 3 databases are shown in Figure 6.18.

0%

25%

50%

75%

100%

MNIST Fashion Emoji

A
c

c
u

ra
c

y
 (
%

)

FP on PC 8b on PC 8b on Chip

accuracy loss

less than 1.0%

Figure 6.17 Measurement results of classification errors on different databases.

DC GAN[1] Ideal IntegerThis Work Ideal Integer This Work

E
m

o
ji

 [
9

]
F

a
s

h
io

n
 [

8
]

4058

25 125

15 3015

4019

4039

1987

13585023

5087

 (a) (b)

Figure 6.18 Training results of GAN on (a) MNIST digit database, (b) Emoji and Fashion

MNIST databases.

As results shown in Figure 6.19 (a), the chip is verified with supply voltages down to 0.7V

with up to 5% degradation of accuracy compared with ideal GAN operation. Interestingly, a

“self-healing” feature of GAN is observed as depicted in Figure 6.19 (b), recovering most of the

error loss from on-chip variations compared with no on-chip training. This intrinsic resiliency

97

presents a merit for training empowered design using mixed-signal circuits. The chip consumes

39mW power with TD-MAC at 90MHz. The total training time of MNIST database takes 4.5

minutes which is 82× less than a high-performance CPU (2.6GHz Intel i7 Quad-core with a

power of 197W). The die photo and comparison table with prior analog mixed-signal (AMS)

designs are shown in Figure 6.20.

50

70

90

0

20

40

60

80

100

1 0.9 0.8 0.7

A
c
c
u

ra
c
y
 (

%
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Voltage(V)

Frequency accuracy

Ideal

accuracy

Id

e
a

l

In

fe
re

n
c

e

97.1%

A
c

c
u

ra
c
y

 (
%

) 91.7%

T

ra
in

in
g

94.8%
100

75

50

25

0

Self-healing

 (a) (b)

Figure 6.19 (a) Measurement result of voltage scaling, (b) measurement result of ‘self-healing’.

10x10

MAC Array
ASIC

SRAM0

SRAM2 SCAN

2
1
8

0
 u

m

1800 um

SRAM3

SRAM1

DeCapsVCO

Figure 6.20 Die photo.

98

6.5 Comparison and Discussion

The comparison table is in As most of existing AMS designs suffer from low throughput,

this work achieves the highest throughput of 18~5400× [31, 15, 16, 66, 69] with similar

efficiency. In addition, a low-cost 8-bit on-chip training was realized for AMS design on the very

challenging GAN operation.

TABLE 6.1 COMPARISON TABLE OF TIME-DOMAIN GAN ACCELERATOR

 [66]

ISSCC

2016

[69]

VLSI

2018

[31]

CICC

2017

[15]

ISSCC

2019

[16]

ISSCC

2019

This work

Architecture Switch

Capacitor

TD

ASIC

TD

ASIC

TD

ASIC

TD

ASIC

TD

ASIC

Application Gradient

Descent

DNN

Inference

Image

Recog.

Reinforcement

Learning

CNN

Inference

GAN

Process (nm) 40 28 65 65 40 65

Area (mm2) 1.44 0.02 0.24 2.0 0.12 3.94

Input/Weight

Resolution

(bit)

6/3 8/8 1/3 8/8 8/1 8/8

Learning Offline Offline Offline Online Offline Online

Freq. (MHz) 2500 780 99 1.5 25 90

Power (mW)
0.65 0.15 77 0.003 0.03 8 (MAC)

31 (ASIC)

Throughput

(GOPS)

1 0.8 0.75 0.0033 0.365 18*

MAC

Efficiency

(TOPS/W*Bit)

16 112 0.004

1.1 12 18*

On-die SRAM - - 0.1 KB 16 KB No 52 KB

99

6.6 Summary

In this Chapter, the first mixed-signal design for GAN accelerator is presented with

efficient subthreshold time-domain 8b multiplier. A few novel circuit designs including time-

domain multiplier and time-domain accumulator are proposed. The time-domain multiplier

allows a 2.6× area improvement compared to digital counterpart. Model compression is utilized

to improve the hardware efficiency for edge computing. To further stabilize the training process

of the fragile GAN algorithm, the adaptive training technique is introduced. Compared with prior

mixed-signal design, the highest GOPS for mixed-signal neural network computing is reported.

100

Chapter 7

A 3T Dynamic Analog RAM-Based Computing-in-Memory Macro

and CNN Accelerator Design

In this chapter, a Dynamic-Analog-RAM (DARAM) based Computing-In-Memory (CIM)

macro and associated CNN accelerator is demonstrated in a 65nm CMOS test chip. With special

analog sparsity techniques and retention enhancement, the design achieves state-of-art energy

efficiency of 217TOPS/W at CIM macro level and 44 TOPS/W at system level for 4 bits

weight/input operation. An effective bit cell size of only 75% of 6T foundry SRAM cell is

achieved.

Chapter 7 is organized as follows: the design basic of CIM is introduced in Chapter 7.1.

The special circuit techniques including the special 3T dynamic analog RAM are presented in

Chapter 7.2. Architecture innovation of the proposed CIM-based CNN accelerator is presented in

Chapter 7.3. Special energy saving techniques are introduced in 7.4. Measurement results and

comparison with prior work are introduced in Chapter 7.5 and 7.6. Chapter 7.7. summarizes the

proposed CIM design.

7.1 Computing-In-Memory Design and Challenges

Computing-In-Memory (CIM) techniques which incorporate analog computing inside

memory macros have shown significant advantages in computing efficiency for deep learning

applications. While earlier CIM macro was limited by lower bit precision, e.g. binary weight in

[18], recent works have shown 4 to 8bit precision for the weights/inputs and up to 20bits for the

101

output values . Sparsity and application features have also been exploited at system level to

further improve the computation efficiency [21, 22, 23]. To enable higher precision, bit-wise

operations were commonly utilized [21, 22, 23]. However, there is limitation on existing

solutions using the bit-wise operations with SRAM cells.

0

1

2

3

4

5

Original (a) (b) (c) (d)P
o

w
e

r
(m

W
)

Energy Saving Technique

0

20

40

60

80

1 2 3

This work6T SRAM 8T SRAM

Transistor Counts for a 4-bit Weight

30

20

10

0

This work

(1) Area Limit of CIM SRAM Cells (2) Linearity and Energy Enhancement in this work

Efficiency TOPS/W (4b Weight)

Foundry 6T SRAM

N
o

rm
. B

it
 A

re
a

x

(a) ADC skipping
(b) Input sparsity
(c) ReLU termination
(d) Weight shift

10X

8X 4X 2X 1X
 No Cap Matching

 Linear Time Encoding

Weight Value

 Nonlinearity Compensation

A[3:2] A[1:0]

Reg

A[3:0]

 Single Phase Operation

1

2

100 15050

321 TOPS/W
ISSCC 20ISSCC 20

ISSCC 19 ISSCC 18

ISSCC 20

ISSCC 20

3T Dynamic
Analog RAM

This work

This work

This work

(3) Macro Power Reduction

2.1x

-8 70

Figure 7.1 Challenges in CIM design and our proposed solution..

Figure 7.1 shows the summary of challenges and solutions in this work. First, all existing

solutions utilize 6T/8T/10T SRAM as a CIM cell which fundamentally limits the size of the CIM

array. In this work, we replace the commonly used SRAM cell with a 3-transistor (3T) analog

memory cell, referred as dynamic-analog-RAM (DARAM) which represents a 4-bit weight value

in an analog voltage. This leads to ~10× reduction of transistor counts and achieves an effective

CIM single-bit area smaller than the foundry supplied 6T SRAM cell for the first time. Secondly,

as no bit-wise calculation is needed in this work, only single-phase MAC operation is performed,

removing throughput degradation due to previous multi-phase operation and associated digital

102

accumulation in [20, 21]. Furthermore, analog linearity issue is mitigated by highly linear time-

based activation, removal of matching critical multi-bit caps [21, 23], and a special read current

compensation technique. Thirdly, to mitigate power bottleneck of ADC or SA, this work applies

analog sparsity based low power methods which includes a compute-adaptive ADC skipping

operation when analog MAC value is small (or “sparse”) and a special weight shifting technique,

leading to additional ~2× reduction of CIM-macro power. We demonstrated the proposed

techniques using a 65nm CIM-based CNN accelerator showing a state-of-art energy efficiency.

7.2 Dynamic Analog RAM-Based CIM Circuit Design

B
L_

R

WE

B
L_

W

RE

Isub

IgateIgate

3D Interlayer/Interdigit
Metal Capacitor

MEM
M1

M2

M3 MEM

GND

MEM

MEM

GND

GND

GND

GND
MEM

MEM

Write
Bitline

Read
Bitline

V_MAC=1/C*Σ Imem*TRE

TRE

IMEM

GND

B
L_

W

B
L_

R

RE

WE

VDD

MEM

Layout of 3T Cell in This Work (only
shown ME1, poly)

C

Metal 1

Metal 5

...

Figure 7.2 Proposed 3T DARAM design, (a) circuit schematic, (b) 3D diagram of metal

capacitor, (3) layout.

Figure 7.2 shows the design details 3T dynamic-analog-RAM (DARAM). Similar as a

conventional CIM bit cell, the charge drawn to BL_R is proportional to the multiplication of read

current Imem from the read access transistor M1 and time pulse duration of RE through switch

M2. A 4-bit weight is stored as an analog voltage on the internal “MEM” node generating a read

current proportional to the weight value. Due to the 4-bit lumped analog weight, a 4-bit MAC

operation is realized by a single read of the DARAM, much simpler than the previous bit-wise

operation. Designed with regular logic transistors, the critical read-access transistor M1 is sized

103

with larger W and L to reduce device variation.

1-bit 6T
Foundry SRAM

1-bit 8T CIM
SRAM [20]

4-bit 3T CIM
MEM in this work

N
o

rm
al

iz
ed

 A
re

a

1

2

3

3X
1.9X

Gate Cap Metal Cap

w/o 3D
Metal Cap

w/ 3D
Metal Cap

C
ap

ac
it

an
ce

 (
A

.U
.)

0.0

1.0

2.0

0
0.5 0.6 0.7 0.8 0.9 1.0

1

10

100

1000

0.05k

5k

0.5k

50k

100

1,000

10,000

100,000

10

100

1000

10000

0.5 0.6 0.7 0.8 0.9 1

To
ta

l L
e

ak
ag

e
 (

A
.U

)

VBL_W (V)

Leak_typ

Retention_typ

R
e

te
n

ti
o

n
 C

yc
le

s

4

Figure 7.3 Simulation of proposed DARAM, (a) leakage simulations over different design

corners, (b) capacitance improvement, (c) area comparison between DARAM and prior design.

Simulation results of the proposed DARAM are depicted in Figure 7.3. The DARAM cell

has an area of 1.9× of previous 8T CIM cell and 3× of foundry 6T SRAM cell leading to an

effective bit area of 47% of the 8T CIM cell and 75% of foundry 6T SRAM cell [20]. During

write, write-access transistor M3 is used to write the analog voltage from BL_W into the “MEM”

node from a column-wise DAC with an adjustable voltage range from 0.45V to 1V. Each write

can be finished within one clock cycle with totally 64 clock cycles for writing into the entire

CIM macro.

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3L2L1
Convolutional Layers

L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3L2L1
Convolutional Layers

L14 L15 L16 L17

VGG16 ResNet18

Figure 7.4 Stationary cycles of weights on CNN models.

104

Subthreshold and gate leakage are minimized to maintain a constant analog voltage during

the life cycles of stationary weights for the CNN operation. As shown in Figure 7.4, the weight

stationary cycles of CNN models, e.g. VGG16, ResNet18 vary from a few tens of cycles to

thousands of cycles for a single image and increase proportionally with the batch size, driving

the retention requirement of the analog voltage. A special 3D inter-layer and inter-digit metal

capacitor using M1 to M5 interleaving MEM and GND nodes vertically and horizontally are

added inside each DARAM cell to enhance the storage capacitance by 3×. As shown in Figure

7.3 (a), during CNN inference, a separate biasing of BL_W at 0.8V leads to about 20× reduction

of subthreshold leakage current. This allows a retention time of ~41k cycles (for a voltage drift

less than half of a single bit) at typical corner and more than 5k cycles at fast corner. As a result,

a batch size of 5~40 images can be processed without a rewrite (refresh) operation with

negligible accuracy loss. For a larger batch size, a 64-cycle DARAM refresh operation is needed

at every 5.5k-41k cycles, leading to a throughput overhead of less than 1.2% or CIM macro

energy overhead of less than 0.4%. Note for smaller batch size or CNN layers with less

stationary weight, refresh is not needed.

7.3 Dynamic Analog RAM-Based CIM Architecture Design

Figure 7.5shows the architecture of the CNN accelerator with 4 CIM macros. Each CIM

macro contains a 64×32 DARAM array. A row-wise digital-time-converter (DTC) is used to

convert a 4-bit activation into a time pulse with 50ps resolution. A 5-bit SAR ADC and a 4-bit

current DAC are implemented at each column to provide MAC read-out and analog write-in. The

design natively supports 4bit input/weight operation and can also support 8b/8b by combining

105

two DARAM cells and operating in successive two cycles. Similar to prior schemes, global

SRAMs are used to store weight and input/output activation data before being fetched into CIM

macro. As depicted in Figure 7.6, an ASIC core is used to manage data sequencing and pre/post-

processing including (a) offsetting of data values due to the non-2’s complementary format of

weight in comparison with the support of both non-2’s and 2’s complement formats in prior

works [20, 21]. The offset calculation has negligible overhead as it is commonly shared by all the

columns; (b) 4bit to 8bit conversion if needed; (c) Accumulation at inter-macro loop similar as in

[21].

DACDAC

DTC
#1

DTC
#2

DTC
#3

DTC
#64

ADC ADC ADC ADC ADC

DAC

3T 3T 3T 3T 3T

3T 3T 3T 3T 3T

3T 3T 3T 3T 3T

3T 3T 3T 3T 3T

DAC DAC

Pre-
charge

#1 #2 #3 #32

ASIC Data Fetch
Manager and

Sparsity Control

64x32 CIM
Macro

64x32 CIM
Macro

64x32 CIM
Macro

64x32 CIM
Macro

Global Weight SRAM

 Activation SRAM

#4

CIM Macro

Figure 7.5 Top-level architecture diagram of proposed CIM-based CNN accelerator.

106

Data Sequencer

Sparsity
Management

Pre/Post Processing:
(1) Offset (2) 4bit to 8bit
Conversion (3) Inter-macro Accum

SRAM/Macro Data
Buffer and Interface

Activation
CMP
== 0?

Disable
Pulse DTC

D
A

C

ASIC CIM Macro

Weight
Data

Buffer

Act. Data
Buffer

CIM
Array

Shifted
Weight

ASIC Core Sparsity Management

ADC

ADC
Skipping

Accum

Post-
Processing

Offset

Figure 7.6 Sparsity management module in ASIC core.

-8 -3 2 7
Weight

Im
e

m
 (

a.
u

)

Weigh Shift with Reduced Imem

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

ge

Weight Offset

Histogram of Weight Offset

 (a) (b)

Figure 7.7 (a) Histogram of weight offset, (b) weight-shift-based Imem reduction based.

Additional three features are introduced in this work. (1) An input-stationary operation

mode is supported, which is more efficient for later layers in VGG/Resnet. (2) Because the MAC

energy consumption using analog weight favors lower weight value compared with zero weight

in digital SRAM, a special analog weight shifting technique is introduced where the weights are

shifted down whenever the weight range in a column is not fully utilized. The shifted weights are

pre-determined off-chip according to the weight being used and associated MAC offsets are

added back in ASIC to restore the values. As shown in Figure 7.7, an average of 3-bit weight

107

shifting is achieved providing a 1.3× energy reduction on the MAC operation of the DARAM

cells. (3) Input sparsity is also leveraged by detecting zero inputs from ASIC and disabling row-

wise DTC and the associated MAC operation in the CIM macro.

7.4 Dynamic Analog RAM-Based CIM Energy Saving Techniques

Figure 7.8 presents the ADC skipping technique exploiting “analog sparsity” in MAC

operation to save the dominant ADC power in CIM macro.

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

M
A

C
 O

P

P
e
rc

e
n

ta
g

e
 (

%
)

Cycle BL Voltage Drop (%)

Histogram from VGG on CIFAR-10

Cycle BL Volt.
Drop (%)
Accum. BL Volt.
Drop (%)

12

12

Skip Norm Skip Skip Norm

56

68

9

9

12

21

33

54

...

...

...
1 2 3 4 5

Precharge

Run Cycle

V
B

L_
R

Vmin_BL

vth=27% of BL
Full Swing

Skipping Threshold

(27%)

65%

Skipped

Figure 7.8 MAC-based ADC skipping scheme.

108

0

25

50

75

100

0
2
4
6
8

10
12
14
16
18

70 73 76 79 82 85 88 91 94 97 100

A
c
c
u

m
u

la
te

d

P
e
rc

e
n

te
a
g

e
 (

%
)

T
e
rm

in
a
ti

o
n

P

e
rc

e
n

ta
g

e
 (

%
)

Cycle Percentage (%)

Histogram of ReLU-based
Termination Scheme

Percentage Accumulated PercentageKeep

accumulation
Runtime > 70% total cycles

Acc. Value < threshold

Skip the rest MAC

operations

Y

Y

N Keep

accumulation

N

0

0.2

0.4

0.6

0.8

1

2.4X 2.9X

ADC Power Saving

w/o
saving

N
o

rm
al

iz
e

d
 P

o
w

e
r 1

0.8

0.6

0.4

0.2

0
Cycle

Skipping
Cycle + ReLU

Skipping

Histogram of ReLU-based

Termination Scheme

Figure 7.9 ReLU-based ADC skipping scheme.

As shown in the histogram of the bitline voltage drop, i.e. analog MAC value, based on the

VGG model, over 60% of the cases have bitline voltage drop less than 27% of full swing leading

to the possibility of merging two or more MAC accumulation without activating ADC and bitline

precharge with small accuracy impact of 0.1~0.4% from occasional overflow. Different from

[19] which only reduces ADC conversion steps at low MAC value, this work skips entire ADC

operations leading to higher energy saving, i.e. an average ADC power reduction of 2.4×. In

addition, as depicted in Figure 7.9, we apply an early termination of MAC operation based on the

ReLU function, i.e. the accumulation has become negative enough that the sign of accumulation

results cannot be flipped by remaining MAC operations. The detection is performed in ASIC

with a preset negative threshold. Combining both approaches, an average of about 2.9× saving

can be achieved on ADC energy consumption.

109

ADC

3T

CMP
vth

Skip_ADCVBL_R

VBias

Sel[0] Sel[1] Sel[n]

DAC

IMEMVMEM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

N
o

rm
a
li

z
e
d

 V
a
lu

e
Normalized Value

DAC Compensation Curves
Imem vs Vmem Imem Vmem

Figure 7.10 Weight nonlinearity compensation technique for DARAM.

Figure 7.10 shows a nonlinearity compensation scheme where the nonlinear relationship

between the bitline current and MEM voltage from the read transistor M2 is compensated by a

non-linear analog voltage generated from the DAC. As a result, a highly linear Imem versus the

weight is achieved.

7.5. Measurement Results

A 65nm CMOS test chip was fabricated to demonstrate the DARAM in a CNN accelerator

running at 105MHz at 1V. Calibration was performed to remove variation impacts, e.g. ADC,

DAC offset, etc. by adding small offsets in ASIC. As shown in measurement results in Figure

7.11, a retention time of up to 0.36ms (38k cycles) without refresh was observed with negligible

accuracy degradation supporting a batch size of 37 images in VGG16. With larger batch size, the

refresh operations incurred only up to 0.17% throughput overhead. The ADC skipping scheme

110

brings 65% saving of ADC energy with less than 0.4% accuracy impact using a 27% MAC value

as the skipping threshold. Combining all the sparsity features, the macro power was reduced by

2.1× on average under VGG16 model. As shown in Figure 7.12, the CNN accelerator was

measured from 1.1V down to 0.85V showing a system efficiency from 29TOPS/W to 37TOPS/W

without sparsity enhancement.

0

1

2

3

4

5

Original ADC Skip DTC
Spars.

ReLu
Term.

Weight
Shift

P
o

w
e

r
(m

W
)

Energy Saving Technique

1.6x 1.85x 1.98x 2.1x

+ + +

0

20

40

60

80

100

0

1

2

3

4

5

0.3 0.7 1.3 1.8 2.3 2.8 3.2

A
c
c

u
ra

c
y
 (

%
)

V
o

lt
a

g
e
 D

ri
ft

 (
L

S
B

)

Retention Time (ms)

Voltage Drift Accuracy

0

0.05

0.1

0.15

0.2

0.3 0.7 1.3 1.8 2.3 2.8 3.2

T
h

ro
u

g
h

p
u

t
O

v
e

rh
e

a
d

 (
%

)

Refresh Interval (ms)

 (a) (b) (c)

Figure 7.11 Measurement results: (a) DARAM cell retention time, (b) weight refresh overhead,

(c) CIM macro power improvement.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15

N
o

rm
a

li
z
e

d
 O

u
t

Activation Value

0

20

40

60

80

0

30

60

90

120

150

0.85 0.9 0.95 1 1.05 1.1

P
o

w
e

r
(m

W
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Voltage (V)

Frequency (MHz) Power (mW)

32.5

TOPS/W

33.4

TOPS/W
35.7

TOPS/W

37.5

TOPS/W

32.6

TOPS/W

29.5

TOPS/W

Measured Curve Ideal Curve

w/o sparsity

0

25

50

75

100

70

75

80

85

90

95

2 7 12 17 22 27 32 37 42 47

A
D

C
 S

a
v

in
g

 (
%

)

A
c

c
u

ra
c

y
 (

%
)

Vth (%)

Accuracy ADC Saving

 (a) (b) (c)

Figure 7.12 Measurement results: (a) ADC saving vs skipping Vth of bitline cap, (b) voltage-

frequency scaling, (c) MAC linearity.

111

7.6 Comparison and Discussion

Figure 7.13 shows the die photo and additional information. Comparison with prior work

was made in Table 7.1. Compared to the closest system implementation in [21], at 4-bit

weight/input operation, an 8× system energy efficiency improvement at 44.7TOPS/W is achieved

along with 3× area reduction in macro size. Overall, this work achieves a state-of-art macro

efficiency of 217TOPS/W at 4 bits, which is more than 3× improved from those reported in

closer technologies and is only 32% lower than that reported in a recent 7nm technology. In

addition, an effective bit cell area smaller than foundry supplied 6T SRAM is achieved.

Figure 7.13 Die photo and chip specifications.

7.7 Summary

In this Chapter, a dynamic analog RAM based Computing-In-Memory macro and

associated CNN accelerator is demonstrated in a 65nm CMOS test chip. With special analog

112

sparsity techniques and retention enhancement, the design achieves state-of-art energy efficiency

of 217TOPS/W at CIM macro level and 44 TOPS/W at system level for 4 bits weight/input

operation. An effective bit cell size of only 75% of 6T foundry SRAM cell is also achieved.

TABLE 7.1 COMPARISON TABLE OF PROPOSED 3T DARAM CIM CNN ACCELERATOR.

[23]

[19]

[20]

[21]

 This work

Memory Bit
8T

SRAM

6T

SRAM

Twin-8T

SRAM
8T SRAM 3T Analog RAM

Tech. (nm) 7 28 55 65 65

Frequency

(MHz)
222 240 - 100 105

System Area

(mm2)
- - - 9 3.3

Size of Macro

(bit)
64×64 512×64 64×60 64×64 4×64×32

Area of Macro

(mm2)
0.0032 - - 0.148 0.05

Activation

Precision (bit) 4 4/8 1/2/4 2/4/6/8 4/8

Weight

Precision (bit)
4 4/8 2/5 4/8 4/8

ADC Precision

(bit)
4 5 5 5 5

Digital Storage - - - 164KB 172KB

Sparsity

Support
- - -

Activation +

weight

Activation +

Weight + ADC

Power of CIM

Macro (mW)
- - - 3.8 4.2 (raw)

Energy

Efficiency of

CIM Macro at

4bit

Weight/Input

(TOPS/W)

321 68.44 22.96 25.83
102.2 * (raw)

113

Chapter 8

Digital Compatible Synthesis, Placement and Implementation of

MSTC

In this chapter, a comprehensive design flow for MSTC is presented. In the frontend, a

variation-aware digital compatible synthesis flow is proposed. In the backend, a placement

technique using graph-based optimization engine is proposed to deal with the especially stringent

matching requirement in MSTC. Simulation results show significant improvement over the prior

analog placement methods. A 55nm test chip is used to demonstrate that the proposed design

flow can meet the stringent timing matching target for MSTC with significant performance boost

over conventional digital design.

Chapter 8 is organized as follows: the challenges and background of design automation in

time domain is carried out in Chapter 8.1. The synthesis methodology is proposed in Chapter 8.2,

and the backend design automation methodology in presented in Chapter 8.3. Chapter 8.4 shows

the experimental results with summary written in Chapter 8.5.

8.1 Design Automation in Mixed-Signal Time-Domain Computing

8.1.1 Challenges of Time-domain Computing Design Automation

As MSTC relies on the precise timing control for information processing, variation and

mismatch of signal timing could lead to computation errors. As the least-significant-bit (LSB)

resolution is pre-defined, e.g. 25ps used in this work, a variation of timing beyond this value will

lead to single-bit error. Specially, local variation or mismatch creates the largest threat to the

114

operation similar to analog computing. Comparing to digital design, a much more stringent

backend layout is needed in consideration of matching, variation, crosstalk and signal slew rate.

In addition, as MSTC usually performs more complex algorithms [11, 14], the signal paths and

matching components in MSTC are much more complicated than a typical analog design leading

to more challenges in the front-end or back-end design for MSTC.

8.1.2 Proposed Digital Compatible Design Methodology

TC-logic
Synthesis

TC-logic Place
& Route

• Embedded Time-based RTL
• Digital RTL Compatible

• Technology Mapping
• Variation Aware Synthesis

• ACG-based Flow
• Matching-aware Placement
• Simulated Annealing
• Critical-signal Handling

 module NN_module();

 ...

 assign mul0 = a0 *(T) b0;

 assign mul1 = a1 *(T) b1;

 ...

 endmodule

Max

Max

Max

A

B

C

D

(TC) RTL Gate Netlist

Design Specification
Variation and

Performance Target

Netlist Optimization

Solution: Netlist, Constraints

Sizing & Resolution

Variation & Area

TC Cells Monte-Carlo
Simulation with Various Size

Variation Sensitivity
Function Characterization

Time-domain Library
Characterization

Layout

TC RTL

Figure 8.1 Flowchart of proposed MSTC automation flow.

Figure 8.1 shows the overview of the proposed digital compatible design automation flow.

Particularly, a specially developed time-domain RTL code is attached to conventional Verilog

language to denote the special design of the time-domain logic operation. Based on the hybrid

RTL codes, the synthesis tool provides logic synthesis and technology mapping to create a gate-

level netlist using both standard cells and digital friendly time-domain modules. Variation

awareness is implemented into the synthesis process. At the back-end, an ACG-based placement

technique is developed to handle the stringent signal matching requirement of MSTC design.

115

8.2 Synthesis of Time-Domain Logic

To create a digital-compatible design flow for MSTC design, synthesis needs to create

gate-level netlist similar to the conventional digital design. The proposed technique is realized by

embedding a special plug-in script into existing RTL/synthesis flow. It handles not only the

generation of time-domain cells but also special requirements in MSTC, such as variation.

8.2.1 Overview of Proposed MSTC Synthesis Technique

The bottom of Figure 8.1 shows the flow of the proposed synthesis technique: (1) the RTL

with customized syntax for time-domain logics is utilized to perform a special MSTC logic

synthesis process. As a result, both conventional digital and time-domain logics are synthesized

into an initial gate-level netlist. The size of each cell is set to the smallest size at this step. (2)

The initial netlist is then sent to a netlist optimizer to exercise the sizing options of each module

to meet the variation budget while minimizing area consumption.

8.2.2 Implementation of MSTC Synthesis

The proposed logic synthesis script can recognize special syntax used for the MSTC RTL.

In the MSTC RTL, a special syntax is developed to denote the MSTC operation, e.g. add and

multiplication. The special keyword “(T)” after the operation symbol “+” or “×” is used to

denote the MSTC operation as shown in Table 1. The synthesis script works as a plug-in script

on top of conventional synthesis tool. Special mapping functions are called for generating time-

domain circuits similar to the conventional technology mapping. For instance, the “?” operation

symbol in time-domain RTL, is mapped into a time-domain.

116

The variation sensitivity function is introduced for netlist optimization. We define the 3-

sigma variation of MSTC modules, which is a function of the size s as 𝜎(𝑠). Apparently, the

𝜎(𝑠) decreases as s increases. The area of MSTC modules is a function of the size s as 𝐴(𝑠). The

variation sensitivity function is shown as:

𝐹𝑠𝑒𝑛(𝑠) = 𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 (8.1)

where
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from the module, and 𝛾 term

represents the significance of the module, e.g. module in a convergent path. As most MSTC cells

are standard-cell like, we follow the standard cell sizing convention, e.g. 1×, 2×, etc.

Assume that we have totally n modules, X1, X2, … Xn, the size of each module is s1, s2, …

sn. Besides, there are p critical paths need to be considered in the placement. The optimization

problem of netlist is then formed in (8.2) and (8.3):

Minimize ∑ 𝐴(𝑠𝑖)
𝑛
𝑖=1 (8.2)

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝
2(𝑠𝑖)

𝑛
𝑖=1 ≤ 𝜎𝑇 (8.3)

where 𝜎𝑝(𝑠𝑖) is the variation comes from Xi, and 𝐴(𝑠𝑖) is the area of Xi. The pseudo code

of the optimization is shown as follows.

117

TABLE 8.1 NETLIST OPTIMIZATION ALGORITHM

Algorithm 1 Netlist Optimization Algorithm

Input: Initial netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn.
Output: Netlist which satisfies variation budget with minimum area
1: for all critical paths p in the netlist do

2: while √∑ 𝜎𝑖
2(𝑠𝑖)

𝑛
𝑖=1 > 𝜎𝑇 do

3: for i = 1 to n do
4: find the module j = i, with maximum 𝐹𝑠𝑒𝑛(𝑠𝑗)

5: end
6: Increase the size of module j by 1×, update sj

7: end
8: end
9: Return the netlist with current sizing

TABLE 8.2 EXAMPLE RTL IMPLEMENTATION OF MSTC-NEURAL NODE.

1

2

…

6

…

11

12

13

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, out);

 input [1:0] a0, a1, a2, a3;

 …

 assign mul0 = a0 *(T) b0;

 …

 assign mac1 = mul2 +(T) mul3;

 assign out = (mac0 >= mac1) ?(T) 0 : 1;

endmodule

TABLE 8.3 EXAMPLE NETLIST OF MSTC-NEURAL NODE FROM SYNTHESIS.

1

2

…

6

…

13

14

15

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, in, out);

 input [1:0] a0, a1, a2, a3;

 …

 TC_TE_X3 I0 (.IN(in), .DIN(a0), .OUT(te0));

 …

 TC_MUX_X4 I7 (.A(mul2), .B(te3), .S(b3), .OUT(mac1));

 TC_CMP_X2 I8 (.a(mac0), .b(mac1), .out(out));

endmodule

Given the initial netlist generated by MSTC logic mapping from MSTC RTL with

minimum sizing, we first check if the variation of all critical paths meets the budget 𝜎𝑇. If yes,

the optimization is completed. Otherwise, the following step is performed in which we traverse

118

the netlist to find out the most effective module in the critical path, i.e. highest variation

sensitivity. The size s of this module is then increased by 1×. We keep repeating the previous

steps until the variation targets of all critical paths are met.

8.3 Proposed Mixed-Signal Placement

Due to the lack of prior techniques on automatic placement for MSTC circuits [11, 14, 13,

31], in this section, we propose a practical and efficient placement technique for MSTC circuit

utilizing adjacent constraint graph (ACG) based optimization engine to deal with the stringent

matching requirements. It is worth to mention that although automatic placement has been

proposed previously for analog/mixed-signal design [35, 36], MSTC poses special challenges,

i.e. massive-stage-symmetry (MASS), as referred in this paper, and hence requires special

techniques not available from the prior work. The special matching requirement of MASS for

time domain circuits are highlighted as follows:

1) Module symmetry and stage symmetry constraint: modules within certain groups must

be placed symmetrically with respect to a horizontal or a vertical axis to maintain the matching

of critical MSTC signal. Moreover, modules on symmetry paths need to be place symmetrically

in each stage.

2) Clustering constraint: certain MSTC modules must be placed near to each other in order

to isolate the critical MSTC modules from other digital modules.

3) Shortest critical signal path constraint: the wire length of critical paths must be

minimized in order to relieve the variation impact of MSTC circuit and improve slew rate of the

signals.

119

Similar constraints are observed in the existing analog placement/floorplan design, but

MSTC design has more challenges due to its larger numbers of components as described in the

follows.

8.3.1 Preliminaries

Topological representations are widely used in solving analog placement problems, in

which, the relative positions between the modules are encoded. Typical topological

representations are slicing tree [37], sequence-pairs (SP) [38], O-tree [39], B*-trees [40], and

TCG-S [41]. Most of these works have been applied to handle the symmetry constraint and other

constraints like the centroid constraint. However, these representations are not suitable for

solving the MASS placement problem of MSTC design as explained as follows.

X1

X2

X3

X5

X7

X8

X10
X11

Y11

Y13

Y1 Y5
Y9

Y10

Y2 Y6

Y3 Y7

Y4 Y8

symmetry

group

axis of

symmetry

Y15 Y18
Y17

Y16

X12

symmetry

group

axis of

symmetry

2-module

symmetry

pair

4-module

symmetry

quadruple

symmetry

sets

X4

X6

Y14

p0
p1
p2
p3

 (a) (b)

Figure 8.2 Symmetry group in (a) conventional analog design, (b) time-domain computing

design.

1) A complete representation is preferred in order to efficiently handle the special

constraints like symmetry and critical path constraints. For example, tree-based representation

doesn’t provide complete topological information, which makes it harder to check the relations,

e.g. horizontal relation, between modules.

120

2) When dealing with symmetry constraint, we form a symmetry group with multiple

symmetry pairs. However, in most of analog placement problem, each symmetry pair in the

symmetry group only contains few modules as shown in Figure 8.2 (a). On the other hand, in the

MSTC design, large numbers of modules, defined by the algorithm, e.g. LDPC [11], need to be

allocated symmetrically through hierarchies as shown in Figure 8.2 (b).

3) For MSTC design, we not only need to place the modules symmetrically within a set,

but also need to guarantee the matching across different hierarchy on the long signal paths. As

shown in Figure 3.3 (b), the modules on path p0 must be symmetric with the modules on paths

p1 – p3 leading to stringent multi-path matching problems for sequence of modules. This not

only requires a massive symmetry placement within a symmetry group but also requires

carefully match at each stage. Thus, the MASS becomes a special challenge in the MSTC

placement.

Adjacent Constraint Graph (ACG) [70]representation is chosen in this work due to the

following advantages: compared with existing placement techniques, ACG has the advantage of

efficiency and succinctness when dealing with the symmetry and other constraints. Without the

redundant edges, the number of edges in ACG is O(nlog(n)), much smaller than the O(n2)

number of edges in TCG-S or SP. ACG is also more flexible than other representations in

performing packing.

Assume we are given a set of n modules with areas Ai where i = 1. . . n, together with a set

of j nets N1, N2 . . . Nj. Our objective is to obtain a placement F of the circuit satisfying all the

placement constraints mentioned previously while minimizing a cost function:

C(𝐹) = A(𝐹) + 𝛼 × W(𝐹) + 𝛽 × W_penalty(𝐹) (8.4)

121

where A(F) is the total area of F, W(F) is the total wire length of F, W_penalty(F) is the

total wire length of wires between the modules which violated the constraint after the packing

stage. α and β are empirical coefficients used for regulating the weights of wire length and wiring

violation.

8.3.2 Adjacent Constraint Graph (ACG) Representation

The basic idea of the ACG representation, briefly described below, is to encode any

rectangle packing as an ordered module sequences with edges which indicates the spatial

relations [70].

x1

x3 x5

x2

x4

x1

x3 x5

x2

x4
H V

x5

x2x1

x3

x4

X1

X4

X2

X5
X3 X1 X2 X3 X4 X5

 (a) (b) (c) (d)

Figure 8.3 (a) A floorplan, (b) constraint graphs in horizontal (solid edges) and vertical (dotted

edges) directions, (c) ACG Graph, (d) ACG data structure.

As an illustration, for a floorplan given in Figure 8.3 (a), its constraint graph in both

horizontal and vertical directions are shown in Figure 8.3 (b). As the essential idea of constraint

graph is used for avoiding module overlap, any two modules must have at least one relation

(“left” or “below to”). Thus, over-specification has no benefit in terms of representation. Since

those redundant edges are unnecessary for placement, we can remove those edges and the result

is an ACG representation (Figure 8.3 (c)). The corresponding ACG data structure is shown in

Figure 8.3 (d). The vertices will be doubly linked in a linear order. Edges are all directed from

left to right. The edges above the vertex line represent horizontal (H) relations and those below

122

represent vertical (V) relations.

8.3.3 Proposed MSTC Placement Approach

Simulated annealing is employed as the basic searching engine in our approach with ACG

as the representation. Our proposed placement algorithm works as follows. It first generates an

initial ACG representation following the default cells order, which also satisfies all the

constraints proposed by the designer. After the initial solution is generated, the simulated

annealing process is applied. In each iteration the following steps are performed: (1) three

categories of perturbations/moves are introduced. All these perturbations are complete in terms

of the searching space; (2) After the perturbation, a new ACG is generated and the corresponding

packing is produced based on the longest path algorithm; (3) Area and interconnect cost with

extra penalties are computed based on the new packing. (4) Check whether the annealing process

should continue based on the current temperature and cost. The flowchart is shown in Figure 8.4.

8.3.4 Handling of Placement Constraints in MSTC

In MSTC circuit, symmetry constraint (marked in blue in Figure 8.5 (a)) can be handled as

follows (we assume the symmetric modules are symmetric with respect to a horizontal axis):

1) If modules Y1, Y2, Y3, and Y4 are required to be symmetric, all of them must be in

vertical relations. In the other word, every two of them must be connected by horizontal edges in

the ACG.

2) The x coordinates of modules Y1, Y2, Y3, and Y4 must be same which can be regulated

during the packing stage.

3) The distances between adjacent modules must be same.

123

Y5

Y9

Y3

Y4

Y1 Y6

Y2 Y7

Y8

Cluster

group

Y3

Y1 X1
Y2

Y5

Y6

Y7

Y4
P0

P1

<=d

Y11

Y1 Y5
Y9

Y10

Y2 Y6

Y3 Y7

Y4 Y8

symmetry

group

symmetry

pairs

 (a) (b) (c)

Figure 8.4: Example of (a) symmetric constraint, (b) clustering constraint, (c) critical signal path

constraint.

Clustering constraint can be handled by forcing the modules in the same clustering group to

abut each other in ACG representation. Besides, we introduce the penalty term in the cost

function to force the placement to obey the constraint. An example of clustering constraint

among modules Y1-Y9 is shown in Figure 8.5 (b).

To handle this constraint, the total wire lengths of these paths need be as short as possible

(P1 and P0 in Figure 8.5). The constraint can be handled by (1) guaranteeing horizontal relations

for the modules in same critical path in ACG, e.g. Y1, Y2, Y3 and Y4; (2) increasing the weight of

nets which are on the critical paths when calculating the cost of total wire length. As a result, the

placement engine tends to move the modules which are not on critical signal path, e.g. X1, away

from the critical path P0.

124

8.3.5 Set of Perturbations/Moves

Y19

Y12

Y1 Y5
Y17

Y18

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y9

Y10

Y11

group exchange

Y16 Y20

Y19

Y12

Y1 Y5
Y17

Y18

Y2 Y6

Y3 Y7

Y4

Y8

Y13
Y15

Y14

Y9

Y10

Y11

Y16
Y20

type 1

type 2

type 3

Y1 Y5

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14 Y14 Y
1
4

 (a) (b) (c)

Figure 8.5 Example of moves in (symmetry group are marked in blue): (a) category 1, (b)

category 2, (c) category 3.

We employ the following set of moves to perturb a current candidate ACG. The

moves/perturbations can be divided into three categories: (a) exchange of two random modules,

(b) group exchange of the symmetric sets, and (c) editing edges in the current ACG

representation. The details of moves are given as follows:

1) In the first category (Figure 8.5 (a)), there are three different types of exchanges: (1)

Exchange two random modules which are not in any of the symmetry groups. (2) Exchange two

random modules within a symmetric set. (3) Exchange one module which is inside of one

symmetry group and another module which is outside of that symmetry group. This movement

cannot be guaranteed to not violate the symmetry constraint. Thus, a special checker is

implemented to check the feasibility of the new generated ACG. If such a move violates the

constraints, penalty will be added to the cost function shown in eq. (8.4).

2) Figure 8.5 (b) shows one example of second category. This group exchange also needs

special checker to check the feasibility of the new ACG after such a move. It provides the chance

of moving away the modules which are located inside of a symmetry group.

125

3) The third category involves the modification of ACG edges including (1) changing

current edge type from horizontal to vertical or vice versa; (2) Adding or removing the existing

current edges while following the ACG requirement. We only allow modifying the edges of the

modules which are outside of symmetry group. In this way, all the constraint within the

symmetry group cannot be violated. An example of modify the edge between Y14 and Y15 from

vertical to horizontal is shown in Figure 8.5 (c).

8.3.6 Packing and Routing

A new packing algorithm is derived from conventional packing scheme based on the

longest path algorithm. Different from previous work, the proposed packing algorithm allows us

to pack the selected modules in respect to the symmetry axis instead of only to the lower bottom

corner of plane [38, 40]. The packing example of conventional and our proposed ways are shown

in Figure 8.6 with symmetric modules marked in blue.

Y12

Y9

Y1 Y5

Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14

Y16

Y17

Y18

Y12

Y9

Y1 Y5
Y10

Y11

Y2 Y6

Y3 Y7

Y4 Y8

Y13
Y15

Y14 Y16

Y17
Y18

 (a) (b)

Figure 8.6: Example of packing (a) to lower-bottom corner, and (b) respect to the symmetry axis.

We utilize the Innovus tool to handle the routing job. Since the MSTC cells follow the

digital cell’s implementation and are well organized after the proposed placement, e.g. the cells

on the same critical path are placed abut to each other, the Innovus tool can handle the routing

job appropriately.

126

8.4 Experimental Results

8.4.1 Time-domain WTA Operation Implementation

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

M
U

X
M

U
X

WTA2

WTA2

WTA2

WTA2

WTA2

WTA2

WTA2 Decode

Logic

Out_AB
Out_CD Out[2:0]

A

B

C

D

E

F

G

H

critical path 0

Stage I Stage II Stage III

Out_CD

Out_EF

critical path 1

critical path 7

Out_AB

Out_GH

Figure 8.7 Topology and implementation of WTA in MSTC.

We compare our proposed ACG-based placement flow to other existing work [38, 40] on a

winner-take-all (WTA) circuit, which is a commonly used digital module in machine learning

based classifiers. Figure 8.7 shows the design of the 8-input 6-bit WTA. The algorithm of WTA

is based on binary comparison tree. The critical signals are propagated through 3 stages and the

matching of 8 critical paths is the key concern of the design. The total number of critical digital

modules for matching are 84 which is much larger than a typical matching problem observed in

an analog design.

We experiment the placement of WTA by different approaches: (a) use B* tree based

placement method from [40], (b) use sequence pair (SP) based placement method from [38], (c)

use the proposed placement method. The layout results of approaches (a), (b) and (c) are shown

in the Figure 8.8. All the methods maintain a good symmetry property in the 1st stage (WTA2).

However, both B* tree based and SP based placement methods have troubles in placing the

modules properly in the stages 2 and 3 as (1) the modules in 2nd and 3rd stages are not placed in

the central region with respect to the 1st stage leading to large signal routing mismatch between

127

critical signals; (2) The critical MSTC modules are not separated with other non-critical modules

causing the slew rate degradation of the critical signals. These failures are mainly due to the

following reasons: (1) both previous placement approaches pack the modules from lower bottom

corner leading to difficulty in placing the selected modules in respect to the symmetry axis; (2)

Both previous placement methods are short of the ability to deal with the clustering and critical-

path constraints.

 (a) (b) (c)

Figure 8.8 Layout of placement methods: (a) B* tree based [40], (b) sequence pair based [38], (c)

proposed design in this work.

Δt = 11.8 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt = 4.5 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt = 5.3 ps

t (ps)

V
 (

V
)

0
.0

0
.6

1
.2

Δt < 1 ps

t (ps)

slew rate = 22 ps slew rate = 19 ps slew rate = 13 ps slew rate = 26 ps

0
.0

0
.6

1
.2

 (a) (b) (c) (d)

Figure 8.9 Simulation result of mismatch for (a) B* tree based placement [40], (b) sequence pair

based placement [38], (c) our proposed technique, (d) conventional digital design.

As a result, they failed to place the critical time-domain modules to be close to each other

avoiding non-critical modules to block the critical paths. On the other hand, due to the efficiency

and succinctness of ACG-based representation, it’s much easier to handle the cluster and critical

128

path constraints. As a result, the above issues can be properly resolved by the proposed ACG-

based placement with good matching through stages of critical paths (Figure 8.8 (c)).

After the layout is generated from Innovus, we import the layout back into Cadence

Virtuoso to perform spice simulation with parasitic extraction. The simulation result of matching

for the 8 critical paths is shown in Figure 8.9 in comparison among B* tree method, SP method,

proposed method and conventional digital design using EDA tools. As we can see, the mismatch

from using B* tree based and SP based placement method are better than that from the

conventional digital flow. However, the mismatch from these two methods are still significantly

larger than our proposed ACG-based placement method whose mismatch is less than 1ps. Thus,

the proposed placement methodology provides both the efficiency and accuracy in dealing with

MSTC design. Table 3 summarizes the performance of different methods. The algorithms are

implemented in C++ and run on a Windows machine with 2.6GHz i7 Quad-core and 8GB RAM.

Note that ACG-based placement method also achieves the lowest runtime mainly due to the

efficient and succinct representation when deal with complex matching constraints. For example,

the number of edges in ACG is O(nlog(n)), while it’s O(n2) in SP. Even though the edge number

is only O(n) in B* tree, it lacks a complete topology information used for dealing with MSTC

constraints which makes the number of searching iteration larger.

TABLE 8.4 PERFORMANCE COMPARISON FOR PLACEMENT METHODS.

Methods B* tree

[40]

SP

[38]

This work

Mismatch (ps) 5.3 4.5 1

Slew rate (ps) 22 19 13

Run time (s) 23 85 18

Area (um2) 1484 1536 1600

129

8.4.2 Time-domain Image Processing Implementation

For demonstration, we adopt a basic facial recognition algorithm into a hybrid ASIC design

with time-domain accelerators. The operations of the image recognition algorithm involve three

steps: (1) feature extraction which performs median filtering and detects edges in four directions.

(2) Vector formation; (3) Classification where the generated feature vector is classified by a

winner-take-all (WTA) classifier. In our design, the median filter for feature extraction and WTA

for final classification were designed in time-domain to remove the bottlenecks of the

algorithm [26]. In particular, the proposed synthesis and placement techniques were applied on

the WTA design leading to the layout for the fabricated chips.

8.5.3 Measurement Results

The 55nm test chip was fabricated and measured across 10 chips. No error was observed at

internal time-domain results or final classification at the design target speed of 1.33GHz.

Figure 8.10 Mismatch measurement results; y axis denotes the absolute variation from the

nominal delay.

Figure 8.10 shows the measured on-chip mismatch of 8 critical paths from 10 chips in

WTA circuits. The mismatches were measured by using an on-chip time-digital-converter (TDC)

130

with 5ps resolution. As shown, the measured mismatch is within 0.5 LSB, which verifies the

feasibility of handling variation (synthesis) and layout mismatch (placement) of the proposed

methodology. No systematic mismatch was observable from the measurement proving the good

matching performance of the placement algorithm. The mismatch was dominated by the random

process variation which has been properly budgeted (within half of LSB, i.e. 12ps as 3-sigma

variation target) from the proposed synthesis flow. The die micrograph and the specification of

WTA is shown in Figure 8.11. The design is compared with conventional ASIC with standard

synthesis and place and route implementation. A 42% area saving, a 1.7× speedup and a 23%

power saving, is observed in the time-domain WTA accelerator compared to ASIC

implementation. The overall image recognition processor operates at 1.33GHz with a state-of-art

throughput of 72 frames per second.

3
2
 µ

m

260 µm

WTATest TDC

Technology 55 nm

Frequency (GHz) 1.33

Total Chip Area

(mm2)

0.64

 ASIC TC

WTA Area (μm2) 2800 1600

WTA Power (mW) 3.1 2.4

WTA Frequency

(GHz)

1.2 2

Figure 8.11 Die photo and specifications of the WTA design.

8.5 Summary

This chapter proposes a comprehensive digital compatible design flow including frontend

synthesis and backend placement for MSTC. In the synthesis stage, our proposed technique can

handle the variation requirement while minimizing the estimated area of the circuit. In the

131

backend stage, an ACG-based placement algorithm is developed to handle the complex

placement constraints for MSTC design. The comparison with prior analog placement schemes

shows much improved matching performance from the proposed method. The proposed

synthesis and placement flow are demonstrated by a 55nm test chip showing on-target mismatch

results and significant performance enhancement from MSTC compared with digital

implementation.

132

Chapter 9

Conclusion and Future Work

Special purpose accelerators have recently gained significant interests thanks to the bloom

of machine learning applications. It is predicted that the special purpose artificial intelligence

(AI) chips with built-in machine learning accelerators will grow from $6 billion in 2018 to $90

billion in 2025 specially contributed by the edge devices [71]. Conventional digital design started

to encounter difficulties in fulfilling the rapid-growing computation demand for these

computation-intensive applications. Alternative solutions like mixed-signal time-domain

computing have drawn significant attention recently due to their computation efficiency in

conducting both arithmetic and non-linear operations.

In this thesis, a comprehensive design realm in MSTC is presented including circuit-,

algorithm-, architecture- and design methodology-level innovations.

At the circuit level, high-precision low-cost time-domain operation modules are introduced

to efficiently conduct computation workloads in time domain. Time encoding and decoding

circuits, i.e. digital-to-time converter and time-to-digital converter, are implemented to convert

signals between time and digital domains. Basic arithmetic and Boolean operation modules are

realized by succinct digital cells to conduct basic computation in time domain. Most of these

time-domain operations improve the energy/area efficiency by over 10× compared to digital

counterparts. Borrowing the ideas from analog computing, a sub-threshold time-domain

multiplier is proposed in time domain, which renders an improvement of 4× compared to digital

multiplier. More complex operations like median filter and multiply-accumulate (MAC) are

133

implemented based on those element modules. In addition, a special time-domain flip-flop circuit

is developed to enable the very first pipeline architecture in time domain. Finally, a multi-bit

dynamic RAM memory cell is introduced to conduct Compute-In-Memory (CIM) tasks in time

domain, showing 8× of improvement in energy and 3× in area compared to the state-of-art CIM

design.

At the algorithm level, many interesting adaptations of complex algorithms like median

filter and winner-take-all are developed to show the computation efficiency in time domain.

Moreover, some hardware-friendly algorithms are introduced to make the complicated

application applicable to time-domain computing. For instance, to overcome the resource

limitation of realizing AI applications on edge devices, an adaptive training and a model

balancing algorithm for time-domain GAN accelerator design are introduced. Finally, to improve

the hardware utilization in conducting AI tasks, some sparsity-aware algorithms are developed.

For example, in time-domain CIM accelerator design, the MAC-based and ReLU-based ADC

skipping method is introduced, rendering an 50% energy saving for CIM macro.

At the architecture level, the very first pipeline architecture in time domain is introduced,

resulting in a 9-20× throughput improvement over prior work in both time and digital domains.

A domain-conversion-free architecture that allows MAC operation to be completed computed in

time domain, is proposed to remove the energy bottleneck coming from signal conversions.

At the design methodology level, a comprehensive digital-compatible design flow including

frontend synthesis and backend placement for MSTC, is proposed to mitigate the original manual

design effort. The proposed synthesis and placement flow are demonstrated by a 55nm test chip

showing on-target mismatch results and significant performance enhancement from MSTC

compared to digital implementation.

134

As for the future work, we are planning to conduct research on a general-purpose mixed-

signal time-domain microcontroller used for near-sensor computing. Recently, near-sensor

computing draws significant interests for low-power Internet of Things (IoT) devices as it

relieves the overhead of data communication by processing the sensor data locally. However, the

existing works suffer from the high cost of data conversion, e.g. the use of ADC. In this future

work, we are going to propose a near-sensor microcontroller with embedded time-domain

computing which eliminates the conversion of signal between digital and analog mixed-signal

domains. Time-domain arithmetic logic units and pipelines will be seamlessly implemented into

a RISC-V ISA to directedly process the signals generated from sensors. In addition, we will

develop a dynamic time scaling technique to bridge the physical world with the digital world.

Finally, we are planning to implement this work into a real silicon chip to verify the performance

and robustness of the design.

135

References

[1] R. Hameed and et al., "Understanding sources of inefficiency in general-purpose chips," in

ACM International Symposium on Computer Architecture (ISCA), Saint-Malo, 2010.

[2] S. Hashemi, H. Tann, F. Buttafuoco and S. Reda, "Approximate Computing for Biometric

Security Systems: A Case Study on Iris Scanning," in IEEE Design, Automation & Test in

Europe Conference & Exhibition (DATE), Dresden, 2018.

[3] N. R. Shanbhag, R. A. Abdallah, R. Kumar and D. L. Jones, "Stochastic computation," in

IEEE Design Automation Conference (DAC), Anaheim, 2010.

[4] F. N. Buhler, P. Brown, T. C. J. Li, Z. Zhang and M. P. Flynn, "A 3.43TOPS/W

48.9pJ/pixel 50.1nJ/classification 512 analog neuron sparse coding neural network with on-

chip learning and classification in 40nm CMOS," in IEEE Symposium on VLSI Circuits,

Kyot, 2017.

[5] D. Bankman and B. Murmann, "An 8-bit, 16 input, 3.2 pJ/op switched-capacitor dot product

circuit in 28-nm FDSOI CMOS," in IEEE Asian Solid-State Circuits Conference (A-SSCC),

Toyama, 2016.

[6] S. Yu and et al., "Binary neural network with 16 Mb RRAM macro chip for classification

and online training," in IEEE International Electron Devices Meeting (IEDM), San

Francisco, CA, 2016.

[7] P. Godoy and J. L. Dawson, "Chopper Stabilization of Analog Multipliers, Variable Gain

Amplifiers, and Mixers," IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2311-

2321, Oct. 2008.

[8] S. T. Kim, J. Choi, S. Beck, T. Song, K. Lim and J. Laskar, "Subthreshold current mode

matrix determinant computation for analog signal processing," in IEEE International

Symposium on Circuits and Systems, Paris, 2010.

[9] K. Abdelhalim, L. Kokarovtseva, J. L. P. Velazquez and R. Genov, "915-MHz FSK/OOK

Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters," IEEE Journal of Solid-

State Circuits, vol. 48, no. 10, pp. 2478-2493, Oct. 2013.

[10] M. Gu and S. Chakrabartty, "A 100 pJ/bit, (32,8) CMOS Analog Low-Density Parity-Check

Decoder Based on Margin Propagation," IEEE Journal of Solid-State Circuits, vol. 46, no.

6, pp. 1433-1442, June 2011.

[11] D. Miyashita and et al., "An LDPC Decoder With Time-Domain Analog and Digital Mixed-

Signal Processing," IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 73-83, 2014.

[12] M. Liu, L. R. Everson and C. H. Kim, "A scalable time-based integrate-and-fire

neuromorphic core with brain-inspired leak and local lateral inhibition capabilities," in IEEE

Custom Integrated Circuits Conference (CICC), Austin, TX, 2017.

[13] D. Miyashita, S. Kousai, T. Suzuki and J. Deguchi, "Time-domain neural network: A 48.5

TSOp/s/W neuromorphic chip optimized for deep learning and CMOS technology," in IEEE

Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016.

[14] A. Amravati, S. B. Nasir, S. Thangadurai, I. Yoon and A. Raychowdhury, "A 55nm time-

136

domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded

reinforcement learning for autonomous micro-robots," in IEEE International Solid - State

Circuits Conference (ISSCC), San Francisco, CA, 2018.

[15] N. Cao, M. Chang and A. Raychowdhury, "A 65nm 1.1-to-9.1TOPS/W Hybrid-Digital-

Mixed-Signal Computing Platform for Accelerating Model-Based and Model-Free Swarm

Robotics," in IEEE International Solid- State Circuits Conference - (ISSCC), San Francis,

CA, 2019.

[16] A. Sayal, S. Fathima, S. S. T. Nibhanupudi and J. P. Kulkarni, "All-Digital Time-Domain

CNN Engine Using Bidirectional Memory Delay Lines for Energy-Efficient Edge

Computing," in IEEE International Solid- State Circuits Conference - (ISSCC), San

Francisco, CA, 2019.

[17] L. Everson and et al., "A 40X40 Four-Neighbor Time-Based In-Memory Computing Graph

ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control," in IEEE ISSCC, San

Fransicso, CA, 2019.

[18] W. Khwa and et al., "A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-

macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN

edge processors," in IEEE International Solid - State Circuits Conference - (ISSCC), San

Francisco, CA, 2018.

[19] X. Si and et al., "A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC

Operation for AI Edge Chips," in 2020 IEEE International Solid- State Circuits Conference

- (ISSCC), San Francisco, CA, 2020.

[20] X. Si and et al., "A Twin-8T SRAM Computation-In-Memory Macro for Multiple-Bit

CNN-Based Machine Learning," in IEEE International Solid- State Circuits Conference -

(ISSCC), San Francisco, CA, 2019.

[21] J. Yue and et al., "A 65nm Computing-in-Memory-Based CNN Processor with 2.9-to-

35.8TOPS/W System Energy Efficiency Using Dynamic-Sparsity Performance-Scaling

Architecture and Energy-Efficient Inter/Intra-Macro Data Reuse," in IEEE International

Solid- State Circuits Conference - (ISSCC), San Francisco, CA, 2020.

[22] R. Guo and et al., "A 5.1pJ/Neuron 127.3us/Inference RNN-based Speech Recognition

Processor using 16 Computing-in-Memory SRAM Macros in 65nm CMOS," in Symposium

on VLSI Circuits, Kyoto, Japan, 2019.

[23] Q. Dong and e. al., "A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro in

7nm FinFET CMOS for Machine-Learning Applications," in IEEE International Solid-

State Circuits Conference - (ISSCC), San Francisco, 2020.

[24] Z. Chen and J. Gu, "Analysis and Design of Energy Efficient Time Domain Signal

Processing," in IEEE/ACM International Symposium on Low Power Electroni cs and

Design, San Francisco, 2016.

[25] Z. Chen and J. Gu, "An Image Recognition Processor with Time Domain Accelerators

Using Efficient," in IEEE Asian Solid state Circuits Conference (A-SSCC), Taiwan, 2018.

[26] Z. Chen and J. Gu, "A Time-Domain Computing Accelerated Image Recognition Processor

With Efficient Time Encoding and Non-Linear Logic Operation," IEEE Journal of Solid-

State Circuits (JSSC), vol. 54, no. 10, pp. 3226-3237, Nov. 2019.

137

[27] Z. Chen and J. Gu, "A Scalable Pipelined Time Domain DTW Engine for Time Series

Classification Using Multibit," in IEEE International Solid- State Circuits Conference -

(ISSCC), San Francisco, CA, 2019.

[28] Z. Chen, S. Fu, Q. Cao and J. Gu, "A Mixed-Signal Time-Domain Generative Adversarial

Network Accelerator with Efficient Subthreshold Time Multiplier and Mixed-Signal On-

Chip Training for Low Power Edge Devices," in IEEE Symposium on VLSI Circuits,

Honolulu, HI, 2020.

[29] Z. Chen and J. Gu, "A 65nm 3T Dynamic Analog RAM-Based Computing-in-Memory

Macro and CNN Accelerator with Retention Enhancement, Adaptive Analog Sparsity and

44TOPS/W System Energy Efficiency," in IEEE International Solid-state Circuit

Conference, San Francisco, CA, 2021.

[30] A. Madhavan and et al., "Storing And Retrieving Wavefronts with Resistive Temporal

Memory," in arXiv:2003.09355v1 [cs.ET] , March 2020.

[31] M. Liu, L. R. Everson and C. Kim, "A scalable time-based integrate-and-fire neuromorphic

core with brain-inspired leak and local lateral inhibition capabilities," in IEEE Custom

Integrated Circuits Conference (CICC), 2017.

[32] N. P. Jouppi and et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit,"

in ACM ISCA, 2017.

[33] E. Beck and et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit," in

arXiv, 2019.

[34] V. James, "Tesla’s new AI chip isn’t a silver bullet for self-driving cars," 24 April 2019.

[Online]. Available: https://www.theverge.com/2019/4/24/18514308/tesla-full-self-driving-

computer-chip-autonomy-day-specs.

[35] H. P. Lin and et al., "Analog Placement Based on Hierarchical Module Clustering," in

IEEE/ACM Design Automation Conference (DAC), 2008.

[36] B. Xu, S. Li, N. Sun and D. Z. Pan, "A scaling compatible, synthesis friendly VCO-based

delta-sigma ADC design and synthesis methodology," in ACM/EDAC/IEEE Design

Automation Conference (DAC), Austin, TX, 2017.

[37] C.-T. Lin, D.-S. Chen and Y.-W. Wang, "An efficient genetic algorithm for slicing floorplan

area optimization," in IEEE International Symposium on Circuits and Systems. Proceedings,

Phoenix-Scottsdale, AZ, 2002.

[38] Q. Ma, L. Xiao, Y. Tam and E. F. Y. Young, "Simultaneous Handling of Symmetry,

Common Centroid, and General Placement Constraints," in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 85-98, 2011.

[39] P.-N. Guo, C.-K. Cheng and T. Yoshimura, "An O-tree representation of non-slicing

floorplan and its applications," in IEEE/ACM Design Automation Conference, New Orleans,

LA, 1999 .

[40] P.-Y. Chou and et al., "Heterogeneous B*-trees for analog placement with symmetry and

regularity considerations," in Proceedings of the International Conference on Computer-

Aided Design (ICCAD), Nov. 2011.

[41] J.-M. Lin and Y.-W. Chang, "TCG-S: orthogonal coupling of P*-admissible representations

138

for general floorplans," in IEEE/ACM Design Automation Conference (DAC), Oct. 2002 .

[42] Y. Seo, J. Kim, H. Park and J. Sim, "A 1.25ps Resolution 8b Cyclic TDC in 0.13µm

CMOS," IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 736-743, 2012.

[43] S. Henzler and et al., "A Local Passive Time Interpolation Concept for Variation-Tolerant

High-Resolution Time-to-Digital Conversion," IEEE Journal of Solid-State Circuits, vol.

43, no. 7, pp. 1666-1676, July 2008.

[44] E. Chicca, F. Stefanini, C. Bartolozzi and G. Indiveri, "Neuromorphic Electronic Circuits

for Building Autonomous Cognitive Systems," Proceedings of the IEEE, vol. 102, no. 9, pp.

1367-1388, 2014.

[45] Y. Hung and B. Liu, "High-reliability programmable CMOS WTA/LTA circuit of O(N)

complexity using a single comparator," IEE Proceedings - Circuits, Devices and System,

vol. 151, no. 6, pp. 579-586, Dec 2014.

[46] S.-C. Liu and M. Oster, "Feature competition in a spike-based winner-take-all VLSI

network," in IEEE International Symposium on Circuits and Systems, Island of Kos, 2006 .

[47] Y. Fang, M. A. Cohen and T. G. Kincaid, "Dynamic Analysis of a General Class of Winner-

Take-All Competitive Neural Networks," IEEE Transactions on Neural Networks, vol. 21,

no. 5, pp. 771-783, May 2010.

[48] G. M. Blair, "Low cost sorting circuit for VLSI," IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Application, vol. 32, no. 6, pp. 515-516, June 1996.

[49] S. Chen, X. Zhang, H. Sun and N. Zheng, "sWMF: Separable weighted median filter for

efficient large-disparity stereo matching," in IEEE International Symposium on Circuits and

Systems (ISCAS), Baltimore, MD, 2017.

[50] H. Yamasaki and T. Shibata, "A real-time image-feature-extraction and vector-generation

VLSI employing arrayed-shift-register architecture," in European Solid-State Circuits

Conference, Grenoble, 2005.

[51] C. Shi and et al., "A 1000 fps Vision Chip Based on a Dynamically Reconfigurable Hybrid

Architecture Comprising a PE Array Processor and Self-Organizing Map Neural Network,"

IEEE Journal of Solid-State Circuits (JSSC), vol. 49, no. 9, pp. 2067-2082, 2014.

[52] D. Jeon and et al., "A 23-mW Face Recognition Processor with Mostly-Read 5T Memory in

40-nm CMOS," IEEE Journal of Solid-State Circuits (JSSC)), vol. 526, pp. 1628-1642,

2017.

[53] H. Ding and et al., "Querying and Mining of Time Series Data: Experimental Comparison

of Representations and Distance Measures," in Proceedings of VLDB, Auckland, New

Zealand, 2008.

[54] A. Madhavan, T. Sherwood and D. Strukov, "A 4-mm2 180-nm-CMOS 15-Giga-cell-

updates-per-second DNA sequence alignment engine based on asynchronous race

conditions," in IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, 2017.

[55] H. I. Fawaz and et al., "Deep Learning for Time Series Classification: A Review," in arXiv,

2019.

[56] X. Xu and et al., "Accelerating Dynamic Time Warping With Memristor-Based Customized

Fabrics," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

139

vol. 37, no. 4, pp. 729-741, April 2018.

[57] A. Madhavan, T. Sherwood and D. Strukov, "Race Logic: A hardware acceleration for

dynamic programming algorithms," in ACM/IEEE 41st International Symposium on

Computer Architecture (ISCA), Minneapolis, MN, 2014 .

[58] Z. Chen, H. Zhou and J. Gu, "Digital Compatible Synthesis, Placement and Implementation

of Mixed-Signal Time-Domain Computing," in ACM/IEEE Design Automation Conference

(DAC), Las Vegas, NV, 2019.

[59] "UCR Archive," [Online]. Available: http://www.cs.ucr.edu/~eamonn/time_series_dat.

[60] N. Neves, N. Sebastião, D. Matos, P. F. P. Tomás and N. Roma, "Multicore SIMD ASIP for

Next-Generation Sequencing and Alignment Biochip Platforms," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1287-1300, July 2015.

[61] M. Farrar, Striped Smith–Waterman Speeds Database Searches Six Times Over Other

SIMD Implementations, Bioinformatic, 2007.

[62] Y. Liu and et al., "Cudasw++ 3.0: Accelerating Smith-Waterman Protein Database Search

by Coupling CPU and GPU SIMD Instructions," in BMC bioinormatics, 2013.

[63] K. F. Li and et al., "Dynamic Time Warping in Hardware," in iiWAS, Dec. 2012.

[64] V. K. Sundaresan, N. R. S. Nichani and R. Sankar, "A VLSI hardware accelerator for

dynamic time warping," in Proceedings., 11th IAPR International Conference on Pattern

Recognition, 1992 .

[65] A. Radford, L. Metz and S. Chintala, "Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks," in arXiv:1511.06434, Jan 2016.

[66] E. H. Lee and S. S. Wong, "A 2.5GHz 7.7TOPS/W switched-capacitor matrix multiplier

with co-designed local memory in 40nm," in IEEE International Solid-State Circuits

Conference (ISSCC), San Francisco, CA, 2016.

[67] Z. Research, "Fashion MNIST," 2017. [Online]. Available:

https://www.kaggle.com/zalando-research/fashionmnist.

[68] "Emoji database," [Online]. Available: https://getemoji.com/.

[69] K. Yoshioka and et al., "PhaseMAC: A 14 TOPS/W 8bit GRO Based Phase Domain MAC

Circuit for in-Sensor-Computed Deep Learning Accelerators," in IEEE Symposium on VLSI

Circuits, Honolulu, HI, 2018.

[70] H. Zhou and J. Wang, "ACG–Adjacent Constraint Graph for General Floorplans," in IEEE

ICCD, 2004.

[71] D. Stewart, "Edge AI chips come into their own," [Online]. Available:

https://www2.deloitte.com/us/en/insights/industry/technology/technology-media-and-

telecom-predictions/2020/ai-chips.html..

[72] Z. Chen and J. Gu, "High-Throughput Dynamic Time Warping Accelerator for Time-Series

Classification With Pipelined Mixed-Signal Time-Domain Computing," IEEE Journal of

Solid-State Circuits, 2020.

[73] R. Cutler and L. S. Davis, "Robust real-time periodic motion detection, analysis, and

application," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.

8, pp. 781-796, Aug. 2000.

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Mixed-Signal Time-Domain Computing
	1.2 Motivation
	1.2.1 Circuit Variation and Nonlinear Operation in Time Domain
	1.2.2 Special Purpose Accelerator Design in Time Domain
	1.2.3 Design Automation in Time Domain

	1.3 Summary of Contributions

	Chapter 2 Background
	2.1 Mixed-Signal Time-Domain Computing
	2.2 Related Work
	2.2.1 Prior Work in Analog Computing
	2.2.2 Prior Work in Time-Domain Computing
	2.2.3 Prior Work in DNN Accelerator and Compute-In-Memory Design
	2.2.4 Prior Work in Design Automation for Analog Computing

	Chapter 3 Energy-Efficient Mixed-Signal Time-Domain Circuit Design Methodology
	3.1 Mixed-Signal Time-Domain Computing Circuit Design Overview
	3.1.1 Mixed-Signal Time-Domain Computing Building Modules
	3.1.2 Time Encoder (TE) or Digital-to-Time Converter (DTC)
	3.1.3 Energy- and Area-Efficient Time-Domain Operations
	3.1.4 Time-digital-converter
	3.1.5 Benefits of MSTC

	3.2 Energy-Efficient Design Methodology in MSTC
	3.2.1 Double-edge Operation
	3.2.2 Bit-Split Scheme

	3.3 Variation-Aware Design Methodology in MSTC
	3.3.1 Overview of Variation-Aware Design Methodology
	3.3.2 Global Variation VS. Local Variation
	3.3.3 Shared TDC/TE Design
	3.3.4 Variation-Awareness Design

	3.4 Summary

	Chapter 4 A Time-Domain Accelerated Image Recognition Processor Design
	4.1 Exploiting Complex MSTC Non-Linear Operations
	4.1.1 Winner-Take-All
	4.1.2 Median Filter

	4.2 Time-domain Computing Accelerated Image Recognition Processor
	4.2.1 Implemented Image Processing Algorithm
	4.2.2 Test Chip Implementation

	4.3 Measurement Results
	4.4 Comparison and Discussion
	4.4.1 Time-based Work
	4.4.2 Image Recognition Processors

	4.5 Summary

	Chapter 5 A Scalable Pipelined Time-Domain DTW Engine for Time-Series Classification
	5.1 Time-Series Classification and Dynamic Time Warping
	5.1.1 Time-Series Classification
	5.1.2 Dynamic Time Warping (DTW)

	5.2 Time-Domain Acceleration Technique
	5.2.1 Basic Time-Domain Computing Circuits
	5.2.2 Time Flip-Flop Circuit

	5.3 Time-Domain DTW Architecture
	5.3.1 Time-Domain DTW Algorithm Mapping
	5.3.2 Pipelined Time-Domain DTW algorithm
	5.3.3 Pipelined Structure and Data Streaming Flow
	5.3.4 Unfolding DTW Operation
	5.3.5 Non-Pipelined DTW Mode
	5.3.6 Design Automation for Mixed-Signal Circuit Design
	5.3.7 DTW Matrix Calibration Scheme

	5.4. Measurement Results
	5.4.1 Test Chip Setup
	5.4.2 Measurement Results

	5.5 Comparison and Discussion
	5.6 Summary

	Chapter 6 A Mixed-signal Time-Domain Generative Adversarial Network Accelerator
	6.1 Design Challenge in Generative Adversarial Network (GAN)
	6.2 Time-Domain GAN Accelerator Architecture Design
	6.3 Time-domain GAN Accelerator Circuits Design
	6.4 Measurement Results
	6.5 Comparison and Discussion
	6.6 Summary

	Chapter 7 A 3T Dynamic Analog RAM-Based Computing-in-Memory Macro and CNN Accelerator Design
	7.1 Computing-In-Memory Design and Challenges
	7.2 Dynamic Analog RAM-Based CIM Circuit Design
	7.3 Dynamic Analog RAM-Based CIM Architecture Design
	7.4 Dynamic Analog RAM-Based CIM Energy Saving Techniques
	7.5. Measurement Results
	7.6 Comparison and Discussion
	7.7 Summary

	Chapter 8 Digital Compatible Synthesis, Placement and Implementation of MSTC
	8.1 Design Automation in Mixed-Signal Time-Domain Computing
	8.1.1 Challenges of Time-domain Computing Design Automation
	8.1.2 Proposed Digital Compatible Design Methodology

	8.2 Synthesis of Time-Domain Logic
	8.2.1 Overview of Proposed MSTC Synthesis Technique
	8.2.2 Implementation of MSTC Synthesis

	8.3 Proposed Mixed-Signal Placement
	8.3.1 Preliminaries
	8.3.2 Adjacent Constraint Graph (ACG) Representation
	8.3.3 Proposed MSTC Placement Approach
	8.3.4 Handling of Placement Constraints in MSTC
	8.3.5 Set of Perturbations/Moves
	8.3.6 Packing and Routing

	8.4 Experimental Results
	8.4.1 Time-domain WTA Operation Implementation
	8.4.2 Time-domain Image Processing Implementation
	8.5.3 Measurement Results

	8.5 Summary

	Chapter 9 Conclusion and Future Work
	References

