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ABSTRACT 
 

Low-Power Mixed-Signal Time-Domain Hardware Accelerator Design for Edge 

Computing and Machine Learning 

 

Zhengyu Chen 

 

While the entire silicon industry has been blooming under Moore’s Law for decades, 

conventional digital implementation is approaching the “stall” of Moore’s Law due to many 

physical design limitations. Technology innovation now is going to take a different direction. 

Given the increasing demand for emerging applications' computational capacity, it is urgent to 

find alternative computing methods that can bring efficiency beyond conventional digital 

approach. To improve the computing efficiency, multiple alternative solutions have been 

proposed, e.g. approximate computing, parallel computing, quantum computing, time-domain 

computing, etc. Among them, mixed-signal time-domain computing (MSTC) has drawn 

significant attention recently due to its high energy efficiency and low area cost. As the nature of 

mixed-signal design, MSTC combines the advantages of both digital and analog computing 

methods. On one hand, circuit-wise, MSTC utilizes digital components to encode/decode and 

processes information in time domain, which brings the benefit of technology scalability and 

compatibility of the current digital design flow. On the other hand, from the signal processing 

aspect, MSTC is similar to analog computing as the information can be more densely encoded in 

a single signal, e.g. a time pulse, leading to benefits similar to the analog-based processing. Such 
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benefits include the high efficiency in energy consumption and a desirable error 

resiliency/scalability where most-significant-bit is the least likely to show errors. 

In this thesis, the innovative MSTC circuit, architecture, and algorithm design methodology 

are introduced to accelerate emerging applications, e.g. image processing and machine learning. 

To provide a concrete circuit design foundation, the variation-aware MSTC circuit design 

methodology is introduced. The basic arithmetic cells and other complex operation modules 

including time flip-flop, time-domain accumulator, and time-domain multiplier, are implemented 

in time domain. To demonstrate the energy and area efficiency in conducting non-linear 

operations, a MSTC-accelerated image processing engine is presented with over 40% area and 

energy improvement compared to the digital counterparts. To improve the throughput in MSTC, 

the first time-domain pipeline architecture for dynamic time warping (DTW) algorithm is 

proposed, which is enabled by the special time flip-flop design. The proposed pipeline operation 

leads to an order-of-magnitude improvement in throughput and a scalable processing capability 

for time series classification tasks.  

Moreover, to demonstrate the efficiency in conducting machine learning workloads, a 

MSTC-based accelerator for deep neural network (DNN) applications, i.e. generative adversarial 

network (GAN), is developed. The proposed GAN accelerator is the first mixed-signal circuit 

implementation with efficient multi-bit multiplication for on-chip DNN inference and training. 

Different from prior time-based implementations which need successive conversion between 

time and digital domain when realizing MAC operation, this work computes the entire MAC 

operation in time domain, rendering the highest throughput of 18~5400× with similar efficiency. 

To explore the potential in carrying the emerging Compute-In-Memory (CIM) task, an energy 

efficient time-domain CIM processor is proposed. A single-phase MAC operation is realized to 
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remove throughput overhead of prior multi-phase operation and digital accumulation. The power 

bottleneck of ADC/SA is mitigated by implementing a computation-adaptive ADC skipping 

operation and special analog sparsity scheme, leading to additional 2~3× reduction of CIM 

macro power.  

Finally, to deliver the missing element of design automation for time-based design and to 

make it compatible with the existing digital design flow, a systematic design automation flow for 

MSTC is presented. More specifically, a digital compatible synthesis and backend flow is 

developed with novel variation-aware RTL mapping and ACG-based placement algorithms to 

enable the automation of MSTC design. Compared to the existing analog placement methods and 

commercial EDA tools, the proposed design automation scheme shows significant improvement 

in the signal matching performance. 

  



6 
 

Acknowledgements 
 

The Ph.D. program is not only a process that helps me gain technical knowledge and 

research capability, but also a journey that cultivates my soul, my personality, and my faith in 

achieving success in whatever situations.  

Throughout my Ph.D. program, I have been supported by so many beloved people who 

provided me with advice, encouragement, and strength. Without these lovely people, my time at 

Northwestern University would not have been fulfilled by excitement and pleasure.  

I would like to express deepest appreciation to my Ph.D. advisor, Professor Jie Gu, for his 

continuous guidance and smart ideas throughout my studies at Northwestern. He spent 

significant efforts and patience in guiding me to become a mature researcher. His insight on 

high-quality research topics greatly inspired my research passion, rendering a successful Ph.D. 

journey for me. I could not expect a better advisor. Thanks again Prof. Gu, for all his guidance 

and help during the past five years.  

I want to thank other committee members, including Professor Hai Zhou and Professor Seda 

Ogrenci Memik. Prof. Zhou has been mentoring my research at Northwestern and providing me 

with a lot of valuable guidance in my research on design automation. Prof. Memik has been 

providing me with very helpful feedback on multiple occasions including research topics, Ph.D. 

prospectus and defense. Many thanks to their guidance, comments, and recommendations over 

the past years. 

I would like to thank all the lab members who I have been working with throughout my 

Ph.D. period. Dr. Tianyu Jia, who joined this lab with me at the same time, is an excellent 

colleague and a good friend of mine. We have been extensively collaborating over the past years. 



7 
 

Great thanks to the Master students who have been me working with me on those tough tape-out 

projects, including Sihua Fu, Xi Chen, Qiankai Cao, Geng Xie and Zhenduo Zhai. They have 

been learning and researching with me together over the past years. I would also thank other lab 

members including Kofi Otseidu, Yijie Wei, Yuhao Ju and Aly Shoukry. Thank them for all the 

assistance and help throughout these years.  

Moreover, I would like to thank my internship advisor, Mr. Christopher Clark, at Google 

TPU team. I would also thank other colleagues I worked with in the TPU team in Wisconsin 

Madison. I had a great internship experience with their help and advice and got involved into real 

industrial product development during the summer in 2019.  

Lastly, and most importantly, I would like to show great appreciation to my family. None of 

the achievements in this journey would have become possible without my family. I would thank 

my parents for the endless love and countless support both mentally and financially. Without 

their support and encouragement, this exciting journey of Ph.D. could not be concluded with 

such a joyful ending.  



8 
 

Table of Contents 

ABSTRACT .................................................................................................................................... 3 

Acknowledgements ......................................................................................................................... 6 

Table of Contents ............................................................................................................................ 8 

List of Tables ................................................................................................................................ 10 

List of Figures ............................................................................................................................... 11 

Chapter 1 Introduction .................................................................................................................. 15 

1.1 Mixed-Signal Time-Domain Computing ............................................................................ 15 

1.2 Motivation ........................................................................................................................... 18 

1.3 Summary of Contributions .................................................................................................. 20 

Chapter 2 Background .................................................................................................................. 24 

2.1 Mixed-Signal Time-Domain Computing ............................................................................ 24 

2.2 Related Work ....................................................................................................................... 26 

Chapter 3 Energy-Efficient Mixed-Signal Time-Domain Circuit Design Methodology ............. 29 

3.1 Mixed-Signal Time-Domain Computing Circuit Design Overview ................................... 29 

3.2 Energy-Efficient Design Methodology in MSTC ............................................................... 33 

3.3 Variation-Aware Design Methodology in MSTC ............................................................... 36 

3.4 Summary ............................................................................................................................. 44 

Chapter 4 A Time-Domain Accelerated Image Recognition Processor Design ........................... 45 

4.1 Exploiting Complex MSTC Non-Linear Operations .......................................................... 45 

4.2 Time-domain Computing Accelerated Image Recognition Processor ................................ 52 

4.3 Measurement Results .......................................................................................................... 55 

4.4 Comparison and Discussion ................................................................................................ 57 

4.5 Summary ............................................................................................................................. 59 

Chapter 5 A Scalable Pipelined Time-Domain DTW Engine for Time-Series Classification ..... 60 

5.1 Time-Series Classification and Dynamic Time Warping ................................................... 61 

5.2 Time-Domain Acceleration Technique ............................................................................... 63 

5.3 Time-Domain DTW Architecture ....................................................................................... 68 

5.4. Measurement Results ......................................................................................................... 78 

5.5 Comparison and Discussion ................................................................................................ 82 

5.6 Summary ............................................................................................................................. 85 

Chapter 6 A Mixed-signal Time-Domain Generative Adversarial Network Accelerator ............ 86 



9 
 

6.1 Design Challenge in Generative Adversarial Network (GAN) ........................................... 86 

6.2 Time-Domain GAN Accelerator Architecture Design ........................................................ 88 

6.3 Time-domain GAN Accelerator Circuits Design ................................................................ 93 

6.4 Measurement Results .......................................................................................................... 95 

6.5 Comparison and Discussion ................................................................................................ 98 

6.6 Summary ............................................................................................................................. 99 

Chapter 7 A 3T Dynamic Analog RAM-Based Computing-in-Memory Macro and CNN 

Accelerator Design...................................................................................................................... 100 

7.1 Computing-In-Memory Design and Challenges ............................................................... 100 

7.2 Dynamic Analog RAM-Based CIM Circuit Design ......................................................... 102 

7.3 Dynamic Analog RAM-Based CIM Architecture Design ................................................ 104 

7.4 Dynamic Analog RAM-Based CIM Energy Saving Techniques ...................................... 107 

7.5. Measurement Results ....................................................................................................... 109 

7.6 Comparison and Discussion .............................................................................................. 111 

7.7 Summary ........................................................................................................................... 111 

Chapter 8 Digital Compatible Synthesis, Placement and Implementation of MSTC ................. 113 

8.1 Design Automation in Mixed-Signal Time-Domain Computing ...................................... 113 

8.2 Synthesis of Time-Domain Logic ..................................................................................... 115 

8.3 Proposed Mixed-Signal Placement ................................................................................... 118 

8.4 Experimental Results ......................................................................................................... 126 

8.5 Summary ........................................................................................................................... 130 

Chapter 9 Conclusion and Future Work ..................................................................................... 132 

References ................................................................................................................................... 135 

 

  



10 
 

List of Tables 

Table 2.1 List of Operations Implemented in Time Domain ........................................................ 25 

Table 3.1 Variation-Awareness Optimization Algorithm ............................................................. 43 

Table 4.1 Performance Comparison ............................................................................................. 59 

Table 5.1 DTW Accelerator Design and Comparison Table ........................................................ 84 

Table 6.1 Comparison Table of Time-Domain GAN Accelerator ............................................... 98 

Table 7.1 Comparison Table of Proposed 3T DARAM CIM CNN Accelerator. ....................... 112 

Table 8.1 Netlist Optimization Algorithm .................................................................................. 117 

Table 8.2 Example RTL Implementation of MSTC-Neural Node. ............................................ 117 

Table 8.3 Example Netlist of MSTC-Neural Node from Synthesis. .......................................... 117 

Table 8.4 Performance Comparison for Placement Methods. .................................................... 128 

 

  



11 
 

List of Figures 

Figure 1.1 Uni-processer performance. ........................................................................................ 16 

Figure 2.1 Concept of mixed-signal time-domain computing. ..................................................... 24 

Figure 3.1 (a) System overview of time-domain computing; (b) Time encoder circuit: prior work 

[11] (left), proposed DTC in this work (right); (c) Time-domain operation circuits; (d) An 

example of n-bit MSTC adder: circuit schematic (left), waveform (right). .................................. 31 

Figure 3.2 Proposed double-edge operation: (a) overview, (b) conventional digital 

complementary logic, (c) Two 1-bit adders using dual-encoding scheme with different logic 

operations for rising and falling transitions, (d) energy and area comparison between single ..... 34 

Figure 3.3 Proposed bit-split technique: (a) technique overview, (b) performance and energy 

saving come from the bit-split scheme, (c) combine algorithm. ................................................... 36 

Figure 3.4 Variation-awareness design flow of MSTC. ............................................................... 37 

Figure 3.5 Normalized delay across PVT corners and INL of (a) slow corner, (b) typical corner, 

(c) fast corner. ............................................................................................................................... 38 

Figure 3.6 (a) Circuit schematic of individual DTC scheme [11], (b) proposed shared time 

encoder scheme, (c) variation comparison between shared TG and individual TE/DTC, (d) 

mismatch and energy comparison between induvial and shared TE/DTC (8-output). ................. 40 

Figure 3.7 (a) Variation of MAX (NAND2) and MIN (NOR2) at various sizes; (b) Example 

schematic....................................................................................................................................... 42 

Figure 4.1 (a) MSTC implementation of a non-linear operation; (b) Area comparison between 

digital and MSTC approaches. ...................................................................................................... 46 

Figure 4.2 Algorithm of 6-bit 4-input WTA design with 3-bit split in MSBs and LSBs. ............ 46 

Figure 4.3 (a) Circuit design of WTA, (b) example of double-edge and bit-split technique, (c) 

example waveform of MIN function used in this design. ............................................................. 47 

Figure 4.4 Layout comparison between (a) conventional digital WTA and (b) MSTC WTA. .... 48 

Figure 4.5 Algorithm of 12-input MF. .......................................................................................... 49 

Figure 4.6 Circuit diagram of MF with detailed circuit schematic of combine logic & equal 

detection and the circuit detail of decoder. ................................................................................... 50 

Figure 4.7 Example of waveform of MF operation. ..................................................................... 51 

Figure 4.8 Layout comparison between (a) conventional digital MF and (b) MSTC MF............ 52 

Figure 4.9 Overview of image recognition algorithm used in this work. ..................................... 52 

Figure 4.10 (a) Top level implementation of the proposed test chip; (b) Circuit diagram of timing 

variation test module. .................................................................................................................... 54 

Figure 4.11 Measurement results on (a)performance, (b) measured (blue histogram) vs. simulated 



12 
 

variation through chips, (c) linearity of the TE/DTC, (d) area, speed and power comparison..... 56 

Figure 4.12 Die micrograph and specifications. ........................................................................... 57 

Figure 4.13 Efficiency vs. variation of timing encoding circuits from prior work [11, 13, 31] and 

our proposed work; (b)Performance vs. energy for prior image processing designs [50, 51, 52].58 

Figure 5.1 Dynamic time warping (DTW) algorithm. .................................................................. 62 

Figure 5.2 Circuit details of time-domain circuits implemented in this work. (a) Basic time-

domain circuits; (b) ABS module; (c) 3-input MIN module. ....................................................... 64 

Figure 5.3 Differences between DFF and TFF. (a) DFF, (b) TFF. ............................................... 65 

Figure 5.4 Time-domain flip-flop designs. (a) Circuit diagram of TFF; (b) Circuit diagram of the 

W-TFF module.............................................................................................................................. 66 

Figure 5.5 Simulated waveform of TFF when (a) ring is not fully filled, (b) ring is fully filled. 68 

Figure 5.6 Time-domain DTW algorithm. (a) Waveform of time-domain DTW; (b) Time-domain 

implementation of DTW. .............................................................................................................. 69 

Figure 5.7 Architecture diagram of implemented pipelined time-domain DTW. ........................ 70 

Figure 5.8 Diagonal data path and pipeline stage structure of DTW engine. ............................... 71 

Figure 5.9 Data streaming flow comparison between (a) brute-force data streaming flow, (b) 

systolic data streaming flow.......................................................................................................... 72 

Figure 5.10 Unfolding mode of the proposed DTW engine. ........................................................ 74 

Figure 5.11 Architecture diagram of non-pipelined DTW mode. ................................................ 75 

Figure 5.12 Design automation techniques used in this work. (a) Design automation flow chart; 

(b) Layout result of 20×20 DTW matrix. ..................................................................................... 76 

Figure 5.13 Calibration scheme of the 20×20 DTW matrix. (a) Calibration order through 

different diagonals. (b) Calibration order of each DTW node on the main diagonal. (c) 

Calibration order of each DTW node on the second diagonal. (d) Example of special input sets to 

enable the calibration of different node on the main diagonal. ..................................................... 77 

Figure 5.14 Die photo and chip specification. .............................................................................. 78 

Figure 5.15 Measured waveform of (a) pipelined mode, (b) non-pipelined mode. ...................... 79 

Figure 5.16 Linearity measurement of TFF at nominal 1.0V with (a) retention time of 10ns, (b) 

retention time of 1μs. .................................................................................................................... 79 

Figure 5.17 Linearity measurement of TFF in low voltage case (0.7V) with retention time is 

20ns. .............................................................................................................................................. 80 

Figure 5.18 Measurement results of different applications. (a) DTW classification error rate of 

UCR archive (pipelined Mode); (b) Simulated vs. measured DNA alignment distance (non-pipe. 

mode). ........................................................................................................................................... 81 

Figure 5.19 Chip operating frequency and error rate measurement under different supply 



13 
 

voltages. ........................................................................................................................................ 81 

Figure 5.20 DTW node error measurement before and after calibration. ..................................... 82 

Figure 6.1 GAN applications and algorithm. ................................................................................ 87 

Figure 6.2 Model compression techniques utilized in this work. ................................................. 88 

Figure 6.3 Hardware adaptation techniques utilized in this work. ............................................... 89 

Figure 6.4 Adaptive training techniques in GAN accelerator design. .......................................... 89 

Figure 6.5 Training sequence of GAN. ......................................................................................... 90 

Figure 6.6 Block diagram of ASIC training management unit (TMU). ....................................... 90 

Figure 6.7 Top-level architecture diagram of proposed GAN accelerator. .................................. 91 

Figure 6.8 Circuit diagram of time-domain MAC array. .............................................................. 91 

Figure 6.9 Circuit details of (a) 4b time-domain accumulator, (b) time-domain ReLU function. 92 

Figure 6.10 Circuit diagram of time-domain MAC unit. .............................................................. 92 

Figure 6.11 Time-domain MAC operation waveforms. ............................................................... 93 

Figure 6.12 Time-domain multiplication, (a) circuit details, (b) simulation waveform. .............. 94 

Figure 6.13 Nonlinearity compensation in time-domain multiplier. ............................................ 94 

Figure 6.14 Nonlinearity compensation simulation results. ......................................................... 94 

Figure 6.15 Layout comparison between 4b digital multiplier and 4b timed-domain multiplier. 94 

Figure 6.16 Linearity measurement of (a) time-domain accumulator and (b) time-domain 

multiplier. ...................................................................................................................................... 95 

Figure 6.17 Measurement results of classification errors on different databases. ........................ 96 

Figure 6.18 Training results of GAN on (a) MNIST digit database, (b) Emoji and Fashion 

MNIST databases. ......................................................................................................................... 96 

Figure 6.19 (a) Measurement result of voltage scaling, (b) measurement result of ‘self-healing’.

....................................................................................................................................................... 97 

Figure 6.20 Die photo. .................................................................................................................. 97 

Figure 7.1 Challenges in CIM design and our proposed solution............................................... 101 

Figure 7.2 Proposed 3T DARAM design, (a) circuit schematic, (b) 3D diagram of metal 

capacitor, (3) layout. ................................................................................................................... 102 

Figure 7.3 Simulation of proposed DARAM, (a) leakage simulations over different design 

corners, (b) capacitance improvement, (c) area comparison between DARAM and prior design.

..................................................................................................................................................... 103 

Figure 7.4 Stationary cycles of weights on CNN models. .......................................................... 103 

Figure 7.5 Top-level architecture diagram of proposed CIM-based CNN accelerator. .............. 105 



14 
 

Figure 7.6 Sparsity management module in ASIC core. ............................................................ 106 

Figure 7.7 (a) Histogram of weight offset, (b) weight-shift-based Imem reduction based. .......... 106 

Figure 7.8 MAC-based ADC skipping scheme. ......................................................................... 107 

Figure 7.9 ReLU-based ADC skipping scheme. ......................................................................... 108 

Figure 7.10 Weight nonlinearity compensation technique for DARAM. ................................... 109 

Figure 7.11 Measurement results: (a) DARAM cell retention time, (b) weight refresh overhead, 

(c) CIM macro power improvement. .......................................................................................... 110 

Figure 7.12 Measurement results: (a) ADC saving vs skipping Vth of bitline cap, (b) voltage-

frequency scaling, (c) MAC linearity. ........................................................................................ 110 

Figure 7.13 Die photo and chip specifications............................................................................ 111 

Figure 8.1 Flowchart of proposed MSTC automation flow. ....................................................... 114 

Figure 8.2 Symmetry group in (a) conventional analog design, (b) time-domain computing 

design. ......................................................................................................................................... 119 

Figure 8.3 (a) A floorplan, (b) constraint graphs in horizontal (solid edges) and vertical (dotted 

edges) directions, (c) ACG Graph, (d) ACG data structure. ....................................................... 121 

Figure 8.4: Example of (a) symmetric constraint, (b) clustering constraint, (c) critical signal path 

constraint. .................................................................................................................................... 123 

Figure 8.5 Example of moves in (symmetry group are marked in blue): (a) category 1, (b) 

category 2, (c) category 3............................................................................................................ 124 

Figure 8.6: Example of packing (a) to lower-bottom corner, and (b) respect to the symmetry axis.

..................................................................................................................................................... 125 

Figure 8.7 Topology and implementation of WTA in MSTC. ................................................... 126 

Figure 8.8 Layout of placement methods: (a) B* tree based [40], (b) sequence pair based [38], (c) 

proposed design in this work. ..................................................................................................... 127 

Figure 8.9 Simulation result of mismatch for (a) B* tree based placement [40], (b) sequence pair 

based placement [38], (c) our proposed technique, (d) conventional digital design. ................. 127 

Figure 8.10 Mismatch measurement results; y axis denotes the absolute variation from the 

nominal delay. ............................................................................................................................. 129 

Figure 8.11 Die photo and specifications of the WTA design. ................................................... 130 

 

  



15 
 

Chapter 1  

Introduction 

1.1 Mixed-Signal Time-Domain Computing 

The energy improvement of conventional digital circuits has reached a bottleneck as the 

dynamic energy consumption of digital logic gates is dictated by CVdd
2 where both C, i.e. the 

capacitance of the circuits, and Vdd, i.e. the supply voltages, are limited by the technology [1]. 

Besides, the leakage power of digital design also contributes significantly to the total power 

consumption and the leakage power is mainly determined by the technology in use. Finding 

alternative computing methods is quite urgent to bring efficiency beyond the conventional digital 

approach. To fulfill such a demand, several non-conventional digital techniques such as 

approximate computing and stochastic computing have been proposed providing a good tradeoff 

between energy/area consumption and accuracy. Such a tradeoff is made possible based on the 

fact that 80% of daily application have certain degree of error tolerance leading to feasibility of 

approximation in computing [2, 3]. Despite of the different methodologies used in the above low 

power design techniques, the energy reduction is still based on conventional voltage and 

technology scaling leaving little room for further improvement assuming logic optimization has 

been well obtained from the modern design automation tools. The single-core processor 

performance over the recent decades is shown in Figure 1.1. As depicted in the figure, the gap 

between the single-core computing capacity and the prediction of Moore’s Law is getting larger 

and larger.  
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Figure 1.1 Uni-processer performance.  

On the other hand, analog computing, which is potentially more energy- and area-efficient 

than its digital counterpart at the cost of limited accuracy, has been explored over decades. For 

instance, a digital-analog hybrid neural network exploits efficient analog computation and digital 

intra-network communication for feature extraction and classification with an equivalent digital 

design [4]. A switched capacitor based analog matrix multiplication design was proposed to 

perform multiply-accumulate (MAC) operations efficiently for machine learning tasks with 

similar accuracy compared to the digital counterpart [5]. In addition, memristor or RRAM-based 

computing explores the voltage, current and resistance relationship to achieve much higher 

efficiency on MAC operations for deep neural network (DNN) applications [6]. Other analog 

computing designs, such as analog multiplier, and mixed-signal FIR filter [7, 8, 9, 10] , offer 

several attractive features such as high energy efficiency in certain applications. However, 
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analog computing suffers from its limitation on voltage scalability due to the design of 

amplifiers, process variation sensitivity, the static current from amplifiers, and incompatibility to 

conventional digital design flow. As a result, analog computing has not been chosen as the 

primary design method for general purpose computing compared to its digital counterpart.  

Recently, the mixed-signal time-domain computing (MSTC) emerges as an interesting 

alternative to the existing computing methods [11, 12, 13, 14]. MSTC combines the advantages 

of both digital and analog methods. After encoding information into time domain, conventional 

arithmetic operations can be more efficiently conducted by manipulating the signals in time 

domain with special time-domain operation modules. As a result, MSTC is a good candidate for 

realizing emerging applications like image processing and machine learning.  

In this thesis, several interesting and novel research at circuit-, algorithm-, architecture- and 

design methodology-level are going to be presented including: (1) Circuit-level design of novel 

MSTC modules including the time flip-flop, time-domain accumulator, time-domain multiplier 

and other high-efficient time-domain logic cells; (2) Algorithm-level designs for low-power 

image processing, dynamic programming, and machine learning applications, e.g. convolutional 

neural network (CNN) and generative adversarial network (GAN); (3) Architecture-level design 

for scalable pipelined time-domain architecture, and multi-bit analog memory compute-in-

memory (CIM) computing; (4) Design-automation methodology for MSTC including simulated 

annealing-based frontend (synthesis) and backend (place&route); All these techniques are 

verified by rigorous simulation and silicon implementation throughout fabricated chips. 
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1.2 Motivation 

1.2.1 Circuit Variation and Nonlinear Operation in Time Domain 

The basic idea of MSTC is to represent data/information in the format of delay or length of 

time pulses and then process the information in time domain with special mixed-signal circuits. 

As all the information is carried and processed in time domain, the timing control is critical to 

guarantee the error resiliency due to the sensitivity of delay to variations including both global 

variation and local mismatches. Since the least-significant-bit (LSB) resolution is pre-defined, a 

mismatch of timing beyond this value will lead to single-bit error. There has been a lack of 

discussion on robustness and variation impact to the MSTC computing, which is the crucial 

consideration in this type of design. Also, the efficiency of conducting non-linear operations in 

time domain was not well explored [11-17]. As a result, most of existing time-based works suffer 

from the following issues: (1) Variation impact which is critical to the time-domain computing 

design, is not well considered and analyzed [12, 13, 14]; (2) The existing designs utilized an 

inefficient and variation vulnerable multiple-gate time encoding circuit that limited the 

advantages of the technique [11]; (3) The strong capability of MSTC in various nonlinear 

operations, e.g. MAX, MIN operation, has not been well explored leaving limited improvement 

from the techniques [12, 13, 14]. To deal with the above issues, the following techniques are 

developed including (1) a variation-driven design methodology for MSTC is proposed, (2) the 

high-efficient time-domain nonlinear operation development are demonstrated by a MSTC image 

processing engine. 



19 
 

1.2.2 Special Purpose Accelerator Design in Time Domain 

Special purpose accelerators have recently gained significant interests thanks to the bloom 

of machine learning applications. Several time-domain demonstrations in CNN and 

reinforcement-learning have been developed in recent years to improve the energy and area 

efficiency [15, 16, 17]. In addition, time-based Computing-In-Memory (CIM) techniques which 

incorporate analog computing inside memory macros have shown significant advantages in 

computation efficiency for deep learning applications [18, 19, 20, 21, 22, 23]. However, there are 

quite some limitations in the existing demonstrations: (1) There is a lack of memory in 

time-domain operations which significantly limits the design space of the technique; (2) Most 

prior works suffer from low throughput and low hardware utilization due to the non-pipelined 

operation; (3) There is a lack of dedicated low-power ML accelerator for particular applications 

in edge computing, e.g. generative adversarial network (GAN), due to the tremendous challenges 

on resource-limited edge devices; (4) The efficiency of the existing CIM designs is limited by 

the low bit-precision. To overcome these challenges, the solutions are introduced as: (a) An 

efficient and high-throughput time-domain pipelined architecture is presented to accelerate 

dynamic time warping (DTW) algorithm; (b) Through significant architecture improvement and 

hardware adaptation, a low-power mixed-signal GAN accelerator is developed on edge device 

with 8-bit resolution; (c) A high-efficient time-based CIM design is implemented, which utilizes 

the analog-sparsity-based low-power methods,  a compute-adaptive ADC skipping, and a special 

weight shifting technique. 
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1.2.3 Design Automation in Time Domain 

Despite of many existing demonstrations of highly efficient operation using MSTC [9-22], 

most of existing work for time-domain computing is based on analog/mixed-signal design flow, 

which requires significant manual design and layout effort. This is partially due to the stringent 

timing control requirement of the technology leading to the difficulty of adoption into a large-

scale design. Hence, it is important to develop a comprehensive design methodology for the 

automatic synthesis and place&route for MSTC. To address such a growing demand and deliver 

the missing design automation element, a design automation flow for MSTC is developed. 

1.3 Summary of Contributions 

The rest of the thesis is organized as follows. Chapter 2 introduces the background of 

mixed-signal time-domain computing (MSTC) including the related prior work on multiple 

interesting MSTC applications. Chapter 3 presents novel time-domain circuit techniques [24], 

including: (1) double-encoding strategy; (2) bit-scalable design that accelerates the performance 

compared to previous linear coding; and (3) shared digital-to-time converter/time encoder with 

variation-aware design technique which significantly improves the error tolerance of MSTC. 

Chapter 4 presents a time-based feature-extraction processor used for real-time image 

recognition [25, 26]. Complex operations like median filter and winter-take-all are carried out in 

time domain to improve the efficiency in image classification. Chapter 5 presents a general-

purpose dynamic time warping (DTW) engine for time-series classification using time-domain 

computing [27]. Chapter 6 presents a low-cost mixed-signal time-domain accelerator for 

generative adversarial network (GAN) [28]. Chapter 7 introduces a dynamic analog RAM 

(DARAM) based Computing-In-Memory macro and associated CNN accelerator. Chapter 8 
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proposes a comprehensive design automation flow for MSTC [29]. Chapter 9 concludes this 

thesis and introduces the future research plan. 

The contributions of this thesis are summarized as below:  

• In Chapter 3, a design methodology for energy efficient time domain signal processing is 

proposed. To understand the strength and weakness of the technique, the impacts of process 

variation are studied and modeled with a variation driven design strategy. Such a design achieves 

an optimal tradeoff between energy and robustness. Several key circuit techniques such as dual-

encoding scheme and bit-scalable design are proposed to further improve the design efficiency. 

The test results show a 3.3× improvement in energy-delay product and a 34% area reduction 

compared with conventional design. 

• In Chapter 4, a MSTC accelerated image process is developed based on the feature-

extraction algorithm. This work proposes a series of highly efficient time-domain computing 

techniques including shared time generator/DTC, double-edge operation scheme, bit-split 

technique and high-efficient time-domain nonlinear operations. MSTC-based accelerators are 

used to remove the bottlenecks of the algorithm, i.e. median filter (MF) and winner-take-all 

(WTA), rendering significant speedup. A total of 24% to 42% area saving is observed in MF and 

WTA accelerators compared to ASIC implementation. A 1.7× speedup and 20% to 23% power 

saving are also observed using MSTC. The overall image recognition processor operates at 

1.33GHz with a throughput of 72 frames per second (fps).  

• In Chapter 5, a general-purpose DTW engine using time-domain computing is designed 

for time-series classification. The first pipeline architecture in time domain is presented. A 

special time-domain storage cell, namely time flip-flop, has been developed with extendable 
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ring-based structure and embedded accumulation functionality. The developed DTW engine also 

allows high-throughput pipelined data flow and unfolded operation for longer time series through 

a specially designed pipeline architecture. The measurement shows a throughput improvement of 

more than 9× compared to prior works. A post-silicon calibration scheme is also incorporated to 

reduce the impact from process variation leading to 3× reduction of distance measurement error.  

• In Chapter 6, a low-cost mixed-signal time-domain accelerator is developed to accelerate 

generative adversarial network (GAN). A significant reduction in hardware cost is achieved 

through delicate architecture optimization for 8-bit GAN training on edge devices. As a result, 

the total training time of MNIST database takes only 4.5 minutes which is 82× less than a high-

performance CPU (2.6GHz Intel i7 Quad-core with a power of 197W). As most of the existing 

AMS designs suffer from low throughput, this work achieves the highest throughput of 

18~5400× [15, 16, 17] with similar efficiency.  

• In Chapter 7, a 3T Dynamic-Analog-RAM-Based Computing-in-Memory Macro and 

CNN Accelerator is presented to accelerate CNN inference workload. A special ADC skipping 

scheme brings 65% saving of ADC energy with less than 0.4% accuracy degradation. Combining 

all the sparsity features, the macro power was reduced by 2.1× on average under VGG16 model. 

Compared to the closest system implementation in [18], an 8× system energy efficiency 

improvement at 44.7TOPS/W is achieved along with 3× area reduction in macro size. Overall, 

this work achieves a state-of-art macro efficiency of 217TOPS/W at 4 bits, which is 3× 

improvement from prior work and is only 32% lower than that reported in a recent 7nm 

technology. In addition, an effective bit cell size of only 75% of 6T foundry SRAM cell is 

achieved.  
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• In Chapter 8, a comprehensive digital compatible design flow including frontend 

synthesis and backend placement for MSTC is presented. In the synthesis stage, the proposed 

technique can handle the variation requirement while minimizing the estimated area of the 

circuit. During the backend stage, an ACG-based placement algorithm is proposed to handle the 

complex placement constraints for MSTC design. The comparison to the previous analog 

placement scheme shows 4× matching improvement from the proposed method.  
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Chapter 2  

Background 

2.1 Mixed-Signal Time-Domain Computing 

The basic concept of mixed-signal time-domain computing (MSTC) is to represent data in 

the format of delay or length of time pulses and process the information in time domain with 

special mixed-signal circuits. As shown in Figure 2.1, digital information, e.g. digit 2 and 5, are 

converted into time domain represented by time pulses. Afterwards, computations in time 

domain are realized by manipulating the pulse width of time pulses utilizing time-domain logic 

circuits, e.g. time_domain(2+5) as depicted in Figure 2.1. In the end, the time-domain results are 

converted back to digital domain for further operation, e.g. convert time pulsed to digit 7 and 3.  
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Figure 2.1 Concept of mixed-signal time-domain computing.  

A digital-to-time converter (DTC) is used to convert digital information into time domain. 

Correspondingly, time-to-digital converter (TDC) carries the job to convert time-domain 

information back into digital domain. More technical details of DTC and TDC designs are 

presented in Chapter 3. Most of the arithmetic and Boolean operations are supported in time 
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domain such as, addition, multiplication, accumulation, shift, max, min, comparison, etc. More 

complex operations/algorithms can be implemented based on these building arithmetic 

operations such as, multiply-accumulate (MAC), median filter (MF), winner-take-all (WTA), 

etc. As a result, many emerging applications with complex algorithms can be conducted in time 

domain efficiently, e.g. image recognition [25, 26], machine learning applications [28, 29], etc. 

Memory related operations such as load and store can also be realized in time domain by 

utilizing special time flip flop design resulting in the first high-throughput time-domain pipeline 

architecture [27]. Moreover, MSTC is by nature a good candidate for near sensor computing as 

the overhead of analog-to-digital conversion can be mitigated by using time-domain techniques. 

Table 2.1 summarizes the implemented operations in time domain. 

TABLE 2.1 LIST OF OPERATIONS IMPLEMENTED IN TIME DOMAIN 

Operation Type Supported 

in MSTC 

addition basic arith. Yes 

subtraction basic arith. Yes 

multiplication basic arith. Yes 

division basic arith. Partially 

modulus basic arith. Yes 

increment basic arith. Yes 

decrement basic arith. Yes 

shift right basic arith. Yes 

shift left basic arith. Yes 

comparison Boolean op. Yes 

maximum Boolean op. Yes 

minimum Boolean op. Yes 

store pipeline op. Yes 

load pipeline op. Yes 

MAC complex op. Yes 

MF complex op. Yes 

WTA complex op. Yes 

CNN ML algori. Yes 

FCN ML algori. Yes 

GAN ML algori. Yes 
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2.2 Related Work 

2.2.1 Prior Work in Analog Computing 

There has been a growing interest in analog computing which utilizes non-Boolean analog 

voltage or physical resistance for computing. For instance, a digital-analog hybrid neural 

network explored the efficient analog computation and digital intra-network communication for 

feature extraction and classification with 7.5× energy efficiency compared to equivalent digital 

design [4]. A switched capacitor based analog matrix multiplication design was proposed to 

perform MAC operations efficiently for machine learning tasks with similar accuracy compared 

to digital counterpart [5]. A memristor- or RRAM-based computing explores the voltage, current 

and resistance relationship to achieve much higher energy efficiency on multiplier-accumulator 

(MAC) operations for deep neural network (DNN) applications [6]. In addition, a spike timing 

dependent plasticity (STDP) inspired wavefront recording scheme is implemented to capture 

incoming wavefronts in [30]. 

2.2.2 Prior Work in Time-Domain Computing 

Several demonstrations have been developed in recent years using MSTC for realizing 

emerging applications [11, 15, 16, 17, 31, 14]. For instance, a time-domain low-density parity-

check (LDPC) design was demonstrated with 2× reduction in area compared to the digital 

implementation [11]. A swarm robotic system incorporating a time-domain reinforcement 

learning accelerator was implemented with over 30% saving of energy compared to the digital 

counterpart [15, 14]. A time-domain CNN engine showed 12× improvement for energy 

efficiency compared to the other state-of-art digital implementations [16]. A high-efficient time-
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based in-memory computing graph engine was realized using wave-front expansion and 2D 

gradient control for solving single-source shortest path problems [17].  

2.2.3 Prior Work in DNN Accelerator and Compute-In-Memory Design 

The technology trends of big data, social networks, and autonomous driving bring high 

volume of data for processing and high demands on computing devices. As a result, many new 

markets have grown significantly justifying the cost of special purpose accelerator chips with 

examples of tensor processing unit (TPU) from Google [32], AWS Inferential chip from Amazon 

[33], and self-driving AI chip from Tesla [34]. On one hand, the digital implementations 

accelerate the machine learning (ML) workloads by utilizing novel dataflow architecture, e.g. 

systolic array, and data-parallel etc. On the other hand, analog-based Computing-In-Memory 

(CIM) has drawn significant attention recently as it shows significant advantages in computation 

efficiency for ML applications. Several interesting designs based on SRAM bit-cell show 

significant area/energy improvement over CNN tasks [18, 19, 20, 21, 22, 23]. While earlier CIM 

macro was limited by lower bit precision, e.g. binary weight in [18], recent works have shown 4 

to 8 bit-precision for the weights/inputs and up to 20bits for the output values [19, 20]. Sparsity 

and application features have also been exploited at system level to further improve the 

computation efficiency [21, 22, 23]. 

2.2.4 Prior Work in Design Automation for Analog Computing 

Design automation for mixed-signal analog computing has been developed over decades. 

Although automatic placement has been proposed previously for analog/mixed-signal design [35, 

36], MSTC poses special challenges, i.e. massive-stage-symmetry (MASS), and hence requires 
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special techniques not available from the prior work. Topological representations are widely 

used in solving analog placement problems (in back-end), in which the relative positions 

between the modules are encoded. Typical topological representations are slicing tree [37], 

sequence-pairs (SP) [38], O-tree [39], B*-trees [40], and TCG-S [41]. Most of these works have 

been applied to handle the symmetry constraint and other constraints like the centroid constraint.  
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Chapter 3  

Energy-Efficient Mixed-Signal Time-Domain Circuit Design 

Methodology 

In this chapter, the operating principle and design methodology of energy efficient MSTC 

is systematically presented. Variation impact of MSTC is evaluated and a variation driven design 

methodology is proposed. Several novel circuit level-design techniques including double 

encoding strategy and bit-scalable schemes are proposed, which significantly improve the area 

and energy efficiency of MSTC.  

The reset of Chapter 3 is organized as follows: the basic MSTC design methodology along 

with circuit implementation are introduced in Chapter 3.1. An energy-efficient design 

methodology including double-edge operation and bit-split scheme, is presented in Chapter 3.2. 

A variation-aware design methodology for MSTC is proposed in Chapter 3.3. Chapter 3.4 

concludes this chapter.  

3.1 Mixed-Signal Time-Domain Computing Circuit Design Overview 

3.1.1 Mixed-Signal Time-Domain Computing Building Modules 

Mixed-Signal Time-Domain Computing (MSTC), or also referred as time-domain 

computing (TC), converts the task of signal processing into “time” or delay of digital cells which 

can be processed efficiently for numerous operations. The digital binary inputs are first encoded 

and processed in time domain and either reconverted back into digital domain through time-to-

digital converter (DTC) or results are directly obtained at time domain without time decoding.  
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(d) 

Figure 3.1 (a) System overview of time-domain computing; (b) Time encoder circuit: prior work 

[11] (left), proposed DTC in this work (right); (c) Time-domain operation circuits; (d) An 

example of n-bit MSTC adder: circuit schematic (left), waveform (right). 

Figure 3.1 (a) shows an overall setup of the MSTC which consists of key processing stages: 

(1) time encoding, (2) information processing in time domain, and (3) time decoding. Here, Tin is 

the time-domain input signal, Din is the digital input signal which used to determine the time 

delay of generated time-domain signal from digital-to-time converter (DTC) or time encoder 

(TE), and Td is referred as the time delay of a single delay cell, e.g. buffer.  

3.1.2 Time Encoder (TE) or Digital-to-Time Converter (DTC)  

Figure 3.1 (b) shows 1-bit DTC from prior work (left) [11] and the proposed n-bit DTC 

(right) in this work. Our proposed DTC has a simple inverter chain to generate the delay passed 

through selection multiplexer to convert from digital input to time-domain signal. Compared 

with the design in LDPC work [11], our design has benefits in area, energy and robustness. 

3.1.3 Energy- and Area-Efficient Time-Domain Operations 

Figure 3.1 (c) summarizes the schematic of basic time-domain operation/logic cells that 

process the signal in time-domain once the information is encoded into time domain from DTC. 

Compared to conventional CMOS logic design, many operations can be performed much more 

efficiently. For example, the MAX, MIN and Compare (CMP) operations are realized by a single 
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or two logic gates leading to tremendous saving from conventional CMOS operation. Note that, 

the symmetric output load constraint is critical to the CMP circuit. In addition, some more 

complex operations, e.g. shift and multiplication, are also implemented efficiently in time 

domain. More details of such time-domain operations will be introduced in Chapter 5, 6, and 7. 

3.1.4 Time-digital-converter 

Time decoder (TD), or time-digital-converter (TDC) has been extensively developed in all-

digital phase-locked-loop (ADPLL) design with the state-of-art TDC achieving 1ps resolution 

[42, 43]. The right-hand side of Figure 3.1 (a) shows a 2-bit base-line TDC design based on 

binary-search. However, due to the high energy and area cost of such a TDC, in this work, we 

develop algorithms that eliminate the use of TDC leading to much improved area and energy 

efficiency.  

3.1.5 Benefits of MSTC 

The benefits of MSTC come from the following interesting facts: (1) similar as analog 

computing, multiple bits can be encoded into single transition leading more efficient information 

delivery. An example is the adder circuit as shown in Figure 3.1 (d) where the n-bit operation 

only consumes transitions of a few inverters rendering 3× improvement in energy efficiency; 

Here, A[n:0] and B[n:0] are the digital control signal of the DTCs; TA and TB are the 

corresponding time-domain signals. (2) Some logic operation can be efficiently carried (3) 

Owing to the analog nature of operation, the MSTC is intrinsically immune to large magnitude of 

error. In other word, compared to digital design, the analog-based design has much less chance to 

have the error happen at the most-significant bit (MSB). Since the computation output is more 
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affected by MSB errors in applications like facial recognition, MSTC is more error tolerant 

compared with digital counterpart when error occurs; (4) Although the information is processed 

in time-domain, the information carriers are still binary digital signals processed by conventional 

logic circuits which makes the entire design digital-friendly. 

3.2 Energy-Efficient Design Methodology in MSTC 

3.2.1 Double-edge Operation 

In this work, we propose a double-edge operation, where logic operation is processed at 

both rising and falling transitions as shown in Figure 3.2 (a). The energy taken from source to 

charge the gate capacitance is as 𝐸 = 𝑉 ∗ 𝑄 = 𝑉 ∗ 𝑉 ∗ 𝐶 = 𝐶𝑉2. Half of the energy is dissipated 

during rising transition; the other half is dissipated during falling transition.  

In previous design [9], only single transition is used. Thus, the other half is purely a waste. 

In our proposed design, we utilize both transitions, which provides us with 2× energy efficiency. 

Area consumption is also reduced by around 30% because the buffer stage is shared for both 

rising and falling transitions. Figure 3.2 (d) shows the energy and area saving come from the 

double-encoding scheme. Figure 3.2 (b) and (c) shows the logic encoding concepts between 

conventional complementary logic design where pull-up and pull-down realize complementary 

logic functions and the dual-encoding strategy for MSTC. 

Interestingly, in MSTC design, for rising and falling operation, the design could perform 

two totally different logic operations as compared with conventional design where 

complementary operations have to be performed. 
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Figure 3.2 Proposed double-edge operation: (a) overview, (b) conventional digital 

complementary logic, (c) Two 1-bit adders using dual-encoding scheme with different logic 

operations for rising and falling transitions, (d) energy and area comparison between single 

As shown in Figure 3.2 (c), (1) during the falling edge of time-domain input signal Tin, the 

pull-up part of the circuit is turned on, which processes 𝐷𝑢𝑝 = 𝐴 + 𝐵; (2) During the rising edge 

of Tin, the pull-down part of the circuit is turned on, which processes 𝐷𝑑𝑛 = 𝐶𝐷̅̅ ̅̅ + 𝐸. This 

means that theoretically MSTC could realize more functionality with the same amount of pull-up 

and pull-down logic circuits as compared with conventional digital design. Simulation shows 
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that the pull-up and pull-down operation can be completed decoupled without delay impact to 

each other as long as the input slew rate is much faster than the encoded 1-bit delay, which is 

guaranteed by adding inter-stage buffers. 

3.2.2 Bit-Split Scheme  

As previous work shows only limited bit precision, e.g. 3 bits [11, 12], we propose a bit-

split technique that splits an input vector into smaller bit groups leading to a scalable high-

resolution encoding without exponentially increasing the delay. As shown in Figure 3.3 (a), 8-bit 

inputs A and B are split into 2 sub-groups, e.g. A[7:4] (referred as MSBs) and A[3:0] (referred as 

LSBs). In this work we encode 4-bit MSBs operation in the falling-edge and 4-bit LSBs in the 

rising-edge rending 16× reduction of delay and 2-4× reduction of energy on a 8-bit non-linear 

operation, e.g. MIN(MAX(A, B), (C+D)) (Figure 3.3 (b)). This technique also makes MSTC 

designs scalable with the number of bits since large number of bits can be split into several small 

groups. To allow the split of the bits, a digital combination logic has to be added to combine the 

decision from each sub-group. This incurs digital equal comparison to deal with the situation that 

MSBs are equal. An example of the combine algorithm is shown in Figure 3.3 (c): the 

comparison between A and B goes through the following steps: (1) check if A’s 4-bit LSBs 

equals to B’s, if no, go to step (2), else go to step (3); (2) Check weather A’s 4-bit MSBs is larger 

than B’s; (3) Check weather A’s 4-bit LSBs is larger than B’s. Then based on the value of these 

conditions to determine the mathematical relation between A and B. 
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Figure 3.3 Proposed bit-split technique: (a) technique overview, (b) performance and energy 

saving come from the bit-split scheme, (c) combine algorithm. 

 

3.3 Variation-Aware Design Methodology in MSTC 

3.3.1 Overview of Variation-Aware Design Methodology 

Figure 3.4 shows the overall flow of our proposed variation-awareness design 

methodology. The flow includes two steps: (1) initial circuit generation which first convert the 

target algorithm/application into time-domain algorithm and then map the time-domain 

algorithm into time-domain logic cells; (2) Resizing the time-domain logic cells and adjusting 
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the single-bit delay (resolution) to meet the design specification, e.g. variation and performance 

target. More specifically, (a) the capacitive loads of the time-domain circuits determine the delay 

of the circuits, e.g. time encoder; (b) The larger size of the transistor, the smaller variation it has 

but the capacitive load/energy consumption also increases. Thus, the size of time-domain logic 

cells must be carefully selected to satisfy the design specification. Meanwhile the time-domain 

logic cells are characterized based on Monte-Carlo simulation. 
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Figure 3.4 Variation-awareness design flow of MSTC. 

3.3.2 Global Variation VS. Local Variation 

As TE/DTC holds the most stringent requirement on the timing control accuracy, we 

performed the global process-voltage-temperature (PVT) variation analysis to a 4-bit DTC in a 

55nm technology using the base-line 1-bit DTC.  
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(a) 
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(c) 

Figure 3.5 Normalized delay across PVT corners and INL of (a) slow corner, (b) typical corner, 

(c) fast corner.  

Since relative delay among signals is most critical to keep the computation error-free or at 

low error rate, linearity matters the most compared with the absolute delay values. As shown in 

the left side of Figure 3.5 (a), (b), and (c), the linearity is well preserved across PVT corners. The 

right side of Figure 3.5 (a), (b), and (c) show the integral nonlinearity (INL) of the time encoder 

where the integrated nonlinearity is represented as a fraction of least-significant bit (LSB). The 

INL variation of the time encoder is well maintained within 15% of LSB across PVT corners. 
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Hence, through a proper budgeting of variation, the global PVT variation does not introduce 

significant concern to the functionality of the MSTC design.  

On the other hand, local variation/mismatch poses more challenges to the MSTC design 

compared with global variation due to the linearity requirement of time encoder. Monte-Carlos 

simulation with random threshold voltage variation is performed to evaluate the impact of local 

mismatch. 

3.3.3 Shared TDC/TE Design 

The digital-to-time (DTC) converter poses the most stringent variation requirement on the 

timing control accuracy as the generated signal experiences multiple stages of variation impact 

during signal generation stage. For example, for a 4-bit DTC, the longest delay generated by 

such a DTC sums up the variation of 15-stage inverter chain. Assume the variation (also referred 

as the standard deviation) of a single stage inverter is σ𝑖𝑛𝑣 , the variation V𝑖𝑛𝑑−𝑇𝐸  for a n-bit 

individual DTC (Figure 3.6 (a)) in the worst scenario is shown in (3.1): 

V𝑖𝑛𝑑𝑖𝑣−𝐷𝑇𝐶 = √(2𝑛 − 1)σ𝑖𝑛𝑣
2 + 𝑛σ𝑖𝑛𝑣

2 = σ𝑖𝑛𝑣√(2𝑛 − 1) + 𝑛                       (3.1) 

The term, (2𝑛 − 1)σ𝑖𝑛𝑣
2  ,represents the variation comes from (2𝑛 − 1) -stage inverter 

chain when input is set to maximum value. The other term, 𝑛σ𝑖𝑛𝑣
2, comes from the n-stage 

multiplexer at the end of the inverter chain. Relative delay among signals is most critical, we 

derive the mismatch between two individual TDCs in (3.2): 

V𝑖𝑛𝑑𝑖𝑣−𝐷𝑇𝐶−𝐶𝑀𝑃 = σ𝑖𝑛𝑣√2(2𝑛 − 1) + 2𝑛                                            (3.2) 

The mismatch between two individual DTCs/TEs increases dramatically when the number 

of bits increases. In order to relieve the variation concern comes from the time encoder, we 
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proposed the shared time generator (TG) scheme which uses a common inverter chain to 

generate timing signals relieving the variation impact.  

V𝑇𝐺−𝐶𝑀𝑃 = σ𝑖𝑛𝑣√2𝑛                                                         (3.3) 
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(c)                                                                                 (d) 

Figure 3.6 (a) Circuit schematic of individual DTC scheme [11], (b) proposed shared time 

encoder scheme, (c) variation comparison between shared TG and individual TE/DTC, (d) 

mismatch and energy comparison between induvial and shared TE/DTC (8-output). 

Figure 3.6 (b) shows the circuit schematic of the shared time generator which consists of 

(1) a common inverter chain used to generate the all possible delay, (2) distributing multiplexers 

which are used to select the desired delay for each output. When we consider the mismatch of 



41 
 

two different output from TG, the worst scenario is when the delay difference of two output is 

just single-bit delay away from each other. Since all the output are generated by the common 

inverter, the variation comes only from the distributing multiplexers eliminating the mismatch 

source from inverter chains rendering much improved variation resiliency. The mismatch 

between two outputs from TG can be represented by (3.3):  

Compared with individual DTC design whose mismatch in a n-bit DTC is proportional to 

√(2𝑛 − 1) + 𝑛  , the shared TG has mismatch only proportional to √𝑛  leading to 3~4× less 

mismatch rendering shortened single bit delay and smaller cell size. Figure 3.6 (c) shows the 

variation trend of shared TG and individual DTC cases. As we can see, the variation of 

individual DTC case grows dramatically compared with the shared TG case. Besides, the area 

consumption of TG is also smaller due to the sharing of common inverter chain. Figure 3.6 (d) 

shows the mismatch improvement and area saving come from proposed common TG design. 

Note that, the more paths/operations that share the same TG, the more complexity of distributing 

network will be needed, e.g. tree-structure buffers and distributing MUXs. In our case, it is a 

clear win for using shared TG. But it is possible that the shared TG becomes too expensive if too 

many signals are generated. In that case, the design needs to be performed towards using 

individual DTC. 

3.3.4 Variation-Awareness Design 

In this section, we introduce the variation-awareness design flow. We define the 3-sigma 

variation of MSTC modules, which is a function of the size s as 𝜎(𝑠). Apparently, the 𝜎(𝑠) 

decreased as s increases. Also, the area is a function of the size s as 𝐴(𝑠). The sensitivity of 

variation of a module can be defined as (3.4): 
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𝐹𝑠𝑒𝑛(𝑠) =  𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
                                                           (3.4) 

Where 
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from module itself without 

considering the whole placement topology. The 𝛾 term represents the significance of the module, 

e.g. module in a convergent path.  

Δσ = 0.3 ps

Δσ = 0.2 ps
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Figure 3.7 (a) Variation of MAX (NAND2) and MIN (NOR2) at various sizes; (b) Example 

schematic.  

Figure 3.7 (a) shows the variation-area(size) curve of MAX (NAND) and MIN (NOR) 

gates. Since most time-domain cells are standard-cell like, we follow standard cell sizing 

convention of 1×, 2×, 3×, etc. An example of MSTC operation, MIN(MAX(A, B), (C+D)), is 

shown Figure 3.7 (b). Given a simple task of decreasing the variation of critical path P0, it is 

obvious that we can gain more variation improvement if we give the sizing priority to the module 
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whose current variation sensitivity is larger than the rest. Based on this, we propose our netlist 

optimization in following. 

Assume we have totally n modules, X1, X2, …Xn, the size of each module is s1, s2, … sn. 

Besides, there are P paths need to be considered in the placement. The optimization problem of 

netlist is then formed in (3.5) and (3.6): 

Minimize ∑ 𝐴𝑖(𝑠𝑖)
𝑛
𝑖=1                                                               (3.5) 

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝𝑖
2(𝑠𝑖)

𝑛
𝑖=1  ≤  𝜎𝑇                                           (3.6) 

where 𝜎𝑖(𝑠𝑖) is the variation of Xi, and 𝐴𝑖(𝑠𝑖) is the module area of Xi. The optimization 

algorithm is described as follows:   

Table 3.1 Variation-Awareness Optimization Algorithm 

 

Algorithm 1 Variation-Awareness Optimization Algorithm  

Input: Initial schematic/netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn. 

Output: Netlist which satisfies variation budget with minimum estimated area 

1:    while ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃,√∑ 𝜎𝑖
2(𝑠𝑖)

𝑛
𝑖=1  >  𝜎𝑇 do 

2:         for i = 1 to n do 

3:        find the module j = i,with maximum 𝐹𝑠𝑒𝑛_𝑗(𝑠𝑗) 

4:          end  

5:   Increase the size of module j by 1×, update sj 

6:      end 

7:    Return the schematic/netlist with current sizing 

Given the initial schematic/netlist with minimum size for each module, we first check if the 

variation of critical path meets the budget 𝜎𝑇. If yes, the optimization is completed. Otherwise, 

the second step is performed where we traverse the netlist to find out the module in the critical 

path with maximum variation sensitivity with their current size. The size of module is then 

increased by 1×. In the following steps, we continue to check whether the variation budget is 

satisfied. If not, the optimization repeats by upsizing the most effective module, i.e. highest 
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sensitivity. The pseudo code is shown in Table 3.1 above.  

 

3.4 Summary  

This chapter proposes a design methodology for energy-efficient mixed-signal time-domain 

computing. To understand the strength and weakness of the technique, the impacts of process 

variation are studied and modeled with a variation driven design strategy proposed to achieve an 

optimal tradeoff between energy and robustness. Several key circuit techniques such as dual-

encoding scheme and bit-scalable design are proposed to further improve the design efficiency.  
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Chapter 4  

A Time-Domain Accelerated Image Recognition Processor Design 

In this Chapter, a feature-extraction and vector-quantization processor accelerated by 

MSTC is developed to conduct real-time image recognition. A 55nm prototype chip shows 72 

fps/core (@1.33 GHz) operation with up to 42% area and power saving from time-domain 

computing compared to the conventional digital implementation.  

The reset of Chapter 4 is organized as follows: Chapter 4.1 exploits the complex MSTC 

non-linear operation and shows benefits in both area and energy consumption compared to the 

conventional digital counterparts. The MSTC-accelerated image processing engine is presented 

in Chapter 4.2. The silicon implementation with measurement results are presented in Chapter 

4.3. The summary of this chapter is given in Chapter 4.4.  

4.1 Exploiting Complex MSTC Non-Linear Operations 

Many image processing applications such as pattern classification and facial recognition, 

require a large amount of non-linear signal processing operations, e.g. comparison, sorting, 

minimum, maximum, etc. [44, 45]. Among them, winner-take-all (WTA) and median filter (MF) 

are two of the most critical building blocks commonly used for pattern classification. In WTA 

and MF, a deterministic decision is made based on excessive compare and sorting operation 

which are highly expensive to be implemented in standard CMOS ASIC design and even more 

difficult for a CPU operation [46, 47]. As introduced in Chapter 3, many nonlinear operations 

can be efficiently implemented in MSTC. Figure 4.1 (a) shows the circuit diagram of MSTC 

implementation for operation MIN(MAX(A, B), (C+D)), which was introduced in previous 
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section. As depicted in Figure 4.1 (b), by using several NAND and NOR gates, such a complex 

operation can be easily implemented in MSTC rendering an energy saving of 6×. Therefore, we 

can improve the area efficiency by increasing the utilization of such efficient MSTC non-linear 

functions, e.g. MAX, CMP, in the design. 
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(a)                                                                        (b) 

Figure 4.1 (a) MSTC implementation of a non-linear operation; (b) Area comparison between 

digital and MSTC approaches. 

4.1.1 Winner-Take-All 

We derived our time-domain WTA algorithm from a binary comparison tree scheme which 

takes advantages of the efficient MAX/MIN and CMP operations in time domain (Figure 4.2).  
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Figure 4.2 Algorithm of 6-bit 4-input WTA design with 3-bit split in MSBs and LSBs. 

Figure 4.3 (a) shows the circuit implementation of the proposed 8-input 6-bit WTA 

accelerator. The winners or MIN value from each branch in each stage are selected in parallel 
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and propagated to the subsequent stage to be compared again. After converting the input digital 

value into time-domain, the comparison can be simply made by using time-domain CMP.  
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(c) 

Figure 4.3 (a) Circuit design of WTA, (b) example of double-edge and bit-split technique, (c) 

example waveform of MIN function used in this design. 

The MIN function which is built by a single NAND/NOR gate directly propagates the 

winner to next stage without intermediate restoration or regeneration. As a result, a massive 
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parallel operation with mostly NAND or NOR gates, is realized in MSTC. All comparison 

results are finally decoded in digital domain to find the final winner. Shared TE/DTC, double-

edge operation and bit-split technique are also utilized in this design. 

Figure 4.3 (b) shows the example of double-edge operation and bit-split techniques utilized 

in the WTA design: (1) the 6-bit input are divided into two groups as in[5:3] and in[2:0]; (2) 

in[5:3] (referred as MSBs) and in[2:0] (referred as LSBs) are encoded into falling and rising 

edge of the same clock cycle respectively; (3) During falling transition of signal, MSBs are 

processed while LSBs are processed during rising transition. Figure 4.3 (c) shows the example 

waveform of MIN function used in this design. As a result, the MSTC WTA achieves lower area 

consumption with faster speed. The area of proposed time-based WTA is improved by 42% 

compare to digital implementation as shown in Figure 4.4. 
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(a)                                                 (b) 

Figure 4.4 Layout comparison between (a) conventional digital WTA and (b) MSTC WTA. 

4.1.2 Median Filter 

As a core building block in applications such as facial recognition, median filter (MF) 

consumes up to 70% of total CPU cycles due to its enormous amount of CMP and swapping 

operation in a typical bubble sorting algorithm [48]. In order to remove the bottlenecks of the 
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application, several efficient MF algorithms have been proposed such as [49, 50]. The majority 

voting algorithm [50] improves energy efficient, but still suffers from the drawbacks of analog-

based design such as cannot scale with technology which requires substantial amount of effort in 

tuning the circuit and designing the layout.  

We propose an energy efficient time-based MF with high performance. The core idea of the 

algorithm is to have a massive comparison between each of the two inputs and order the inputs 

from high to low. The final median value is filtered/selected by the proposed decoder. Figure 4.5 

shows the algorithm and detailed implementation of the proposed 12-input 8-bit time-domain 

median filter design as following steps: (1) each pair of the 12 inputs is compared, thus a total 

number of 66 comparisons are processed. The comparison result is recorded as “0” or “1”, e.g. if 

A > B, OUTAB = 1, OUTBA = 0; (2) The related comparison results of each input are summed 

up, e.g. OUTA = OUTAB + OUTAC + … + OUTAL; (3) Finally, all the summation results are 

compared with N/2, where N is the number of inputs. The input whose summation result of the 

comparisons equals to N/2 is marked as the median value.  

(L>A) ? 1 : 0
(L>B) ? 1 : 0

(L>K) ? 1 : 0
=? N

2

(B>A) ? 1 : 0
(B>C) ? 1 : 0
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Figure 4.5 Algorithm of 12-input MF.  
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Figure 4.6 Circuit diagram of MF with detailed circuit schematic of combine logic & equal 

detection and the circuit detail of decoder. 

Figure 4.6 shows the corresponding MSTD circuit diagram of MF. During the comparison 

stage, the digital inputs are first converted into time-domain by the proposed shared TE/DTCs. 

Each pair of input is compared in parallel in time-domain with double-edge and bit-split design, 

with overall 66 comparisons for both MSBs and LSBs for all 12 input vectors. The 66 

comparisons are processed parallelly in the cross-bar compare module as shown in the left-hand 

side of Figure 4.6. During the combine & equal-detection stage, all the comparison results are 
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then processed by the following digital logic for purpose of equal detection and MSBs/LSBs 

grouping to obtain the comparison results for all input vectors. In the decoder stage, to decode 

the comparison results into final median value, a special time accumulator/adder design is 

implemented where all 11 digital comparison results from each input are summed in time-

domain and compared with a reference median time-domain signal. 
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Figure 4.7 Example of waveform of MF operation. 

Although the 66 comparison results can be further decoded into final result in conventional 

digital design, the decoding logic will incur large overhead due to the complex operations. To 

reduce the overhead, we proposed a time-accumulator based time-domain decoding logic. The 

bottom-left side of  Figure 4.6 shows the detailed circuit implementation of the combine & equal 

detection stage. The bottom-right side of  Figure 4.6 shows the detailed circuit implementation of 

decoder. The core idea of the time-domain decoder is to form a detection window by Tref- and 

Tref+. As the 12 inputs are ordered and represented by the delay of the rising edge, the median 

value is carried by the 7th rising edge. The Tref- is set to be located in middle of 6th and 7th 

signal while Tref+ is set to be located in middle of 7th and 8th signal. In this way, the 7th signal 

which represents the median value can be captured by the detection window as shown in the 

decoder waveform in Figure 4.7. Compared to digital decoder design, the time-based decoder 
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dramatically reduced the area by 3×. Overall, the final area of proposed time-based MF is 

improved by 24% compared to conventional digital implementation as shown in Figure 4.8. 
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Figure 4.8 Layout comparison between (a) conventional digital MF and (b) MSTC MF. 

4.2 Time-domain Computing Accelerated Image Recognition Processor 

To demonstrate the proposed circuit techniques, we adopt a basic image recognition 

algorithm as shown in Figure 4.9 into a hybrid ASIC design with time-domain accelerators [50].  
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Figure 4.9 Overview of image recognition algorithm used in this work. 
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4.2.1 Implemented Image Processing Algorithm 

As shown in Figure 4.9, the operations of the image recognition algorithm involve three 

main steps: (1) feature extraction which detects edges in four directions: horizontal, vertical, 

+45˚ and -45˚. In order to determine the threshold value for edge detection, all the absolute-value 

differences between each two neighboring pixels are calculated in the 3×3 kernel and the median 

detection of the 12 difference-value is adopted as the threshold; (2) Vector formation where edge 

flags in all directions are counted and the spatial distribution of edge flags is represented by a 

vector of 64 elements; (3) Classification: the generated feature vector is then classified by a 

winner-take-all (WTA) classifier.  

The subtractors and absolute value circuits shown in Figure 4.9 are used for calculating the 

distance between template feature vector and input feature vectors, e.g. 𝐷𝑥𝑦 = |𝑥 − 𝑦| . The 

compare (CMP) and 1st stage accumulator (ACC) compute the 64 elements. Then the subtractor 

and absolute value circuits calculate the distance of each element between the template feature 

vector and input feature vectors. At the end, the 2nd stage accumulator calculate the accumulated 

distance of the 64 elements between template feature vector and each input feature vectors. The 

heavily used nonlinear computations such as comparison (CMP), MIN/MAX function, are 

expensive for CPU/GPU based design or even state-of-art ASIC design. In this work, MSTC 

based accelerators are used to remove the bottlenecks of the algorithm, i.e. MF and WTA with 

significant speedup as shown in Chapter 4.4.  

4.2.2 Test Chip Implementation 

Figure 4.10 shows the test chip implementation of the proposed image recognition 

processor in a 55nm low power CMOS process at 1.2V. Scan chains are used to fetch image data 
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to on-chip register files and read out all internal register/comparator values for test verification. 

A special timing test module (Figure 4.10 (b)) is built to exam the linearity and robustness of the 

proposed shared DTC design. A Vernier-delay-chain based TDC with ~5ps bit-resolution is used 

to characterize the timing variation of DTC. The DTC used throughout this work is implemented 

with a ~25ps single-bit resolution which can be tuned from 13ps to 35ps for further evaluation.  
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Figure 4.10 (a) Top level implementation of the proposed test chip; (b) Circuit diagram of timing 

variation test module.  
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4.3 Measurement Results 

In the test chip setup, there is a separate power supply for DTC modules to change the 

single-bit delay from 13ps to 35ps. Note that, we cannot directly measure the single-bit delay on 

the test chip due to the limited measurement resolution. However, based on extracted simulation 

from SPICE, we can estimate the single-bit delay on the test chip of the current supply voltage. 

Figure 4.11 shows measurement results. Robustness of the design was verified across 10 chips. 

As shown in Figure 4.11 (a), by default, no error was observed at the design target speed of 

1.33GHz. When pushing the DTC resolution beyond 22ps (estimated based on simulation), small 

error was observed at the MF’s output at LSBs while no error was observed at the final WTA 

output. The error rate from MF reached 0.6% when reducing the resolution to 13ps which led to 

an operating speed of 1.5GHz, a 13% boost of performance without observing error at the final 

output. This shows the strength of MSTC where small errors may be generated at LSBs at 

stringent timing condition but does not lead to significant error at final output.  

The linearity of DTC was also measured for all eight inputs across 10 chips and supply 

voltages from 1.1V to 1.4V as shown in Figure 4.11 (c). Only small deviation (~8ps) from ideal 

value was observed across all the measurement leading to an integral nonlinearity (INL) of less 

than 0.3 LSB. The measured (blue histogram) vs. the simulated variation from SPICE Monte 

Carlo simulation of DTC across chips are shown in Figure 4.11 (b). The results match the 

expectation from the simulation. Note that, the measurement results in the figure are from all 

chips and all paths with Din set as 7. As the matching among paths on the same chip is more 

critical, the measured variation on a single chip is quite small, which is within 5ps. 
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(d) 

Figure 4.11 Measurement results on (a)performance, (b) measured (blue histogram) vs. simulated 

variation through chips, (c) linearity of the TE/DTC, (d) area, speed and power comparison. 

 



57 
 

4.4 Comparison and Discussion  

The design is compared with conventional ASIC design in the same process with standard 

synthesis and place & route implementation. As shown in Figure 4.11 (d), 24% to 42% area 

saving is observed in MF and WTA accelerators compared with ASIC implementation. A 1.7× 

speedup and 20% to 23% power saving are also observed using MSTC. The overall image 

recognition processor operates at 1.33GHz with a throughput of 72 frames per second (fps). 

Figure 4.12 shows the die micrograph and the detailed design specifications. As the focus of this 

work is on robust and efficient techniques for time-based design, a direct comparison with prior 

work is difficult. We made comparison in two aspects: (1) time-based work, and (2) image 

recognition processors. 
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Figure 4.12 Die micrograph and specifications.  

4.4.1 Time-based Work  

As shown in Table 4.1 and Figure 4.13, compared with prior time-based work [11, 13, 31], 

(1) we achieved the fastest operation speed with a single-bit delay which is 2×~4× shorter; (2) 

We encoded largest number of bits by the bit-split technique; (3) We achieved lowest 

mismatch/variation which is 3× smaller compared with [11, 13, 31] ;(4) We had the least 
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encoding effort with lowest transistor count.  

4.4.2 Image Recognition Processors 

As shown in Table 4.1 and Figure 4.13, compared with image recognition processors with 

similar algorithms, e.g. feature vector based, we achieved (1) the highest throughput per core and 

throughput per area, (2) highest energy efficiency for single processor core with more than 9× 

improvement. However, it is notable that prior work involves more configurations and numbers 

of processing units [50, 51, 52]. Note that, (1) compared with our implementation, only [50] 

implements very similar design. We have significant advantages due to both time-domain design 

as well as technology scaling from 180nm to 65nm. (2) For designs in [51] [52], their algorithms 

are much more complex and support more throughput. For example, the work presented in [51] 

is based on vector parallel image recognition algorithm. Work presented in [52] is based on 

principal component analysis (PCA), and the proposed hardware utilizes the technique described 

above to reduce data dimensionality and uses support vector machine (SVM) as a final classifier 

for face recognition. Our comparison is focused on “single core/PE”.  
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(a)                                                          (b) 

Figure 4.13 Efficiency vs. variation of timing encoding circuits from prior work [11, 13, 31] and 

our proposed work; (b)Performance vs. energy for prior image processing designs [50, 51, 52]. 
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4.5 Summary  
 

In this chapter, a series of highly efficient time-domain signal processing techniques are 

proposed including shared time generator, double-edge operation scheme, bit-split technique and 

high-efficient time-domain operations. In our approach, the use of MSTC-based accelerates the 

pipeline operation bottleneck by 40% due to the limitation of MF and WTA operations. The 

strength of MSTC including error resiliency, highly efficient non-linear operations and better 

energy/area efficiency compared with digital counterpart is demonstrated by a test chip. The test 

chip on image recognition processor is fabricated in 55nm low power CMOS showing state-of-

art energy efficiency and throughput with significant improvement from time-domain techniques 

compared with conventional digital implementation. 

TABLE 4.1 PERFORMANCE COMPARISON 

  

[50] 

JSSC 

2007 

[51] 

JSSC 

2014 

[52] 

JSSC 

2017 

[11] 

JSSC  

2014 

[31] 

CICC  

2017 

[13] 

ASSCC 

2016 

This  

work 

Im
a
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e 

R
e
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n
 

Technology 180nm 180nm 40nm 65nm 65nm 55nm 55nm 

Voltage (V) 1.8 1.8 0.6 1.2 1.2 1.2 1.2 

Area (mm2) 33.64 82.3 5.9 0.063 0.24 3.61 0.64 

Power (mW) 85 630 23 4 0.3 - 75 

Accuracy (No. of bit) 8 8 10 - - - 8 

Frequency (GHz) 0.1 0.05 0.1 - 0.1 - 1.33 

Throughput/core (fps) * 6.1 16 14.7 - - - 72 

Throughput/area 

(fps/mm2) 
11.6 12.4 80.3 - - - 116 

Energy/pixel (pJ) 756 2126 84 - - - 54 

T
im

e-
b

a
se

d
 

Single bit delay (ps) - - - 100 50 - 25 

Maximum No. of bit 

encoded 
- - - 3 3 5 8 

Timing Mismatch**    6.5 6.5 4 2.8 

No. of equiv. inverters 

to generate 1-bit delay 

(4-bit TE/DTC) 

- - - 22 10 7 5 
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Chapter 5  

A Scalable Pipelined Time-Domain DTW Engine for Time-Series 

Classification 

Time-series classification (TSC) is a challenging problem in machine learning and 

significant efforts have been made to improve its speed and computation efficiency. Among 

various approaches, dynamic time warping (DTW) algorithm is one of the most prevalent 

methods for TSC due to its succinctness and generality. To improve the throughput of the 

operation, this chapter presents a mixed-signal DTW accelerator utilizing MSTC where signals 

are encoded and processed using time pulses. A pipelined operation is enabled by a specially 

designed time flip-flop (TFF) circuit leading to dramatic improvements in performance and 

scalability of the operation. A 65nm CMOS test chip was implemented and measured. The 

results show more than 9× improvements in throughput compared to prior work on time-series 

classification. As most existing time-domain designs suffer from the lack of time-domain storage 

elements, this work utilizes sequential circuit elements in time-domain computing extending the 

capability of time-based circuits.  

The reset of Chapter 5 is organized as follows: The basics and background of time-series 

classification and dynamic time warping (DTW) are introduced in Chapter 5.1. The special 

circuit techniques including the novel time flip-flop design is carried out in Chapter 5.2. The 

domain-domain pipeline architecture is presented in Chapter 5.3. The physical implementation 

and testing results are shown in Chapter 5.4. The comparison and discussion are presented in 

Chapter 5.5 with summary written in Chapter 5.6.  
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5.1 Time-Series Classification and Dynamic Time Warping 

5.1.1 Time-Series Classification 

A time series is a series of data points indexed, listed or graphed in time order [53]. Time 

series are encountered in many real-world applications ranging from electronic health records to 

human activity recognition. Typical examples of time series are stock price, voice, human 

motion, electrocardiogram (ECG) signal, etc. The classification of time series signals, e.g. an 

ECG signal, is commonly used for detection of special events or operational anomaly. However, 

time series classification (TSC) has been considered as a significantly challenging problem in 

data mining due to its variable speed, lack of alignment, random appearance of sparse events, 

and long time-sequence [53, 54]. Three conventional classification methods are being developed 

including the distance-based, model-based, and feature-based methods [53, 55]. The model-

based and feature-based methods are case-specific and complex to implement. For example, the 

HMM algorithm as a model-based method can only be useful when dealing with voice signal 

classification. On the other hand, the distance-based methods, e.g. Euclidean-based, DTW-based 

or cosine-based, are comparatively easy to implement with good accuracy results. Specially 

DTW, a variant of the dynamic programming algorithm, has been widely used for time-series 

classification. In addition, as machine learning introduced promising results in dealing with 

classification and detection workloads, a few neural network (NN) based works for time-series 

classification were implemented showing good classification results [56]. Even though NN-

based designs sometimes show better accuracy, they rely on large database for training which 

may not be available and requires large computation efforts. The NN-based design usually 

consumes more area and energy compared to the succinct distance-based methods. The strong 
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capability for distance measurement for variable-speed temporal sequences makes DTW a 

popular method for time-series classification in broad applications, such as ECG diagnosis, 

motion detection, voice recognition, stock prediction, etc. [53]. In addition, a similar dynamic 

programming based approach is also being used in DNA sequencing for comparison of similarity 

between DNA pairs [54]. To accelerate the operation, a DNA sequencing hardware accelerator 

based on dynamic programming algorithm was previously implemented resulting in 15 giga-cell-

update per second (GCUPS) throughput at 70mW power consumption [54]. 

5.1.2 Dynamic Time Warping (DTW) 

 

Figure 5.1 Dynamic time warping (DTW) algorithm. 

Figure 5.1 shows the basic principle of DTW, which detects similarity among temporal 

signals with variable speed. As shown in Figure 5.1, for two time series A and B, Di,j can be 

formulated as the summation of absolute difference |Ai - Bj| and the minimum value of its three 

ancestor nodes min(Di-1, j, Di, j-1, Di-1,j-1) where Ai and Bj denotes the ith and jth elements of A, B, 

and Di, j denotes the DTW value at node (i, j). The equation is written as: 

𝐷𝑖,𝑗 = |𝐴𝑖 − 𝐵𝑗| + min (𝐷𝑖−1,𝑗, 𝐷𝑖−1,𝑗−1, 𝐷𝑖,𝑗−1)                                  (5.1) 

A "warping path" is produced in order to align the two signals in time, as highlighted in 

0 2 5 11 18 26 29 31 33 34

3 1 1 4 8 13 13 14 15 17

5 1 2 5 9 14 14 13 13 14

8 2 1 4 8 13 13 14 14 15

16 8 6 43 4 9 15 20 21

19 9 6 6 7 9 4 5 6 8

23 11 7 8 9 11 5 6 7 9

27 13 8 9 11 13 6 7 8 10

29 13 9 12 14 17 7 6 6 7

34 16 11 10 12 15 9 9 9 10

Warping Path

Di, j = |Ai – Bj| + min( Di-1, j, Di-1, j-1, Di, j-1)

= |A5 – B4| + min( D4, 4, D4, 3, D5, 3)

= |9 – 7| + min( 4, 1, 6) = 3

4
1

3
4
9
4
5
5
3
6

1 3 4 8 9 4 3 3 2

A

B

7
D1, j = |A1 - Bj| + D1, j-1

= |A1 – B8| + D1, 7

= |1 – 3| + 29
= 31

Di, 1 = |Ai – B1| + Di-1, 1

= |A8 – B1| + D7, 1

= |5 – 1| + 23
= 27

B
A

 



63 
 

Figure 5.1. The value of bottom-right node denotes the DTW distance between the two inputs. 

The lower distance represents more similarity between the inputs and can be directly used for 

classification tasks. As will be shown later, time-domain design holds significant advantages in 

performing simple operations such as MIN and ABS, which are repetitively used in DTW 

operations. As a result, in this work, we aim at utilizing time-domain computing to accelerate the 

DTW operations.  

5.2 Time-Domain Acceleration Technique 

5.2.1 Basic Time-Domain Computing Circuits 

As the fundamental building blocks, basic time-domain operations, i.e. subtraction (SUB), 

maximum (MAX), minimum (MIN), addition/accumulation (ADD), equal detection (EQ), 

comparison (CMP), are specially designed with high energy and area efficiency as depicted in 

Figure 5.2 (a). As shown in the figure, some of the input signals are required to be overlapped 

while others are not. In order to guarantee the correctness of time-domain operations, we 

introduced the following mechanisms: (1) The overlap and non-overlap fashion of signals are 

pre-defined for different operations. For most operations besides ADD are working in the fashion 

of overlap. (2) We have special technique to make sure the rising or falling edges of two input 

time-domain signals are aligned in order to conduct the operation correctly. For example, by 

using the proposed time flip-flop to latch time-domain signals, the output time-domain pulses are 

aligned by falling edge. The operations such as CMP, MAX, MIN, can be easily implemented in 

time domain using few standard cell gates. DTW algorithm also requires some sophisticated 

computing modules, i.e. ABS and MIN, which are generally not easy to be implemented in 

digital domain. Figure 5.2 (b) (c) show the MIN and ABS modules used in this work.  
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Figure 5.2 Circuit details of time-domain circuits implemented in this work. (a) Basic time-

domain circuits; (b) ABS module; (c) 3-input MIN module. 
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digital implementation. The 3-input MIN module consists of a 2-input MIN module and one 

equal detector module. The data path is divided into MSB and LSB paths. As shown in the 

figure, both MSB and LSB MIN modules are built by simple NAND, NOR, and MUX gates with 

corresponding waveform depicted. 

As mentioned in Chapter 4, the existing time-domain demonstrations suffer from excessive 

digital and time domain conversion and the lack of internal storage. Missing the storage 

mechanism in time domain causes a lack of time-domain sequential logic which is required for 

high throughput pipelined structure or design of finite state machines in non-combinational 

circuits [54]. Thus, in this paper, a novel time-domain storage cell, namely time flip-flop (TFF) 

is introduced in the following section. 

5.2.2 Time Flip-Flop Circuit 

 

(a)                                                 (b) 

Figure 5.3 Differences between DFF and TFF. (a) DFF, (b) TFF. 

As depicted in Figure 5.3, the proposed TFF takes time pulse as inputs and generates time 

pulse as the output triggered by the read enable signal. Compared to digital DFF, the proposed 

TFF operates in a similar fashion but has some advanced features: (1) TFF can store multi-bit 

information in time domain; (2) TFF takes multiple time pulses as input in a sequential order; (3) 
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Accumulation operation can be naturally realized – the output pulse width equals to the width 

summation of input pulses.  
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Figure 5.4 Time-domain flip-flop designs. (a) Circuit diagram of TFF; (b) Circuit diagram of the 

W-TFF module.  

Figure 5.4 (a) shows the circuit diagram of a ring-based multi-bit TFF design which 

contains three parts: (1) a 33-stage tri-state inverter chain serves as the storage unit. In this 

design a total of 6-bit time-domain information with 40ps single-bit resolution (a total of 2520ps 

capacity) can be stored in such a tri-state inverter ring. (2) A carry signal detection module is 

used to generate a carry signal when the ring is fully filled. Due to the nature of the ring 

structure, the storing process can continue without the need of resetting the circuit after the ring 

is full. (3) A peripheral module which is used to reset the ring at the very beginning of the 
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computation. Besides, such a peripheral circuit is also used to flip the polarity of the output pulse 

when the ring is fully filled. In this design, each TFF can store a 6-bit time domain signal and 

two TFFs are used to construct a 10-bit time domain values separated into MSB and LSB units, 

leading to a wide-TFF module (WTFF) as shown in Figure 5.4 (b). In WTFF, once the LSB TFF 

is full, a carry signal is sent to a pulse generator to generate an extra pulse to be stored in the 

MSB TFF, extending the operation into 10 bits. In addition, a minimum pulse generator circuit is 

used to create a removable offset to keep the pulse from being too narrow (less than 100ps) to be 

propagated. 

The write and read mechanism are described in Figure 5.5. In the scenario when the input 

pulses are not large enough to fully fill the ring (overflow), the simulated waveform is shown in 

Figure 5.5 (a). During reset phase (t=t0), rstb signal is sent to reset voltages in the internal nodes 

of TFF. During the write phase (t=t1, t2), input pulses are sent to the ring, which allows 

propagation of “0” through the ring with a duration of input pulses. Multiple input pulses can be 

repeatedly sent to TFF and will be accumulated through the propagation of the ring. During 

readout phase (t=t3, t4), the stored pulse is sent out from the output pin of the ring with pulse 

width equivalent to summation of the stored values. Note that while the inputs are quantized time 

pulses, the information is stored as analog voltages on the internal nodes of the inverter chain, so 

no quantization loss occurs inside the TFF.  

In another scenario when the ring is filled during write phase, the corresponding simulated 

waveform is shown in Figure 5.5 (b). At t=t2 when the ring is filled, the operations are identical 

to the first scenario. At the moment of t=t2, the ring is fully occupied by the input pulses while 

the writing process is still going on since the second pulse is not fully finished yet. A carry signal 

rises by the carry detection peripheral circuit and the ring will rotate back with remainder values 
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stored inside (t=t3~t4). The “rotation” operation conveniently allows cascading TFFs into multi-

bit groups rendering a scalable large numerical range of TFF.  
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Figure 5.5 Simulated waveform of TFF when (a) ring is not fully filled, (b) ring is fully filled. 

 

5.3 Time-Domain DTW Architecture 

5.3.1 Time-Domain DTW Algorithm Mapping 

As shown in eq. (5.1), the core computations of DTW contain two non-linear operations – 

the ABS and MIN. Such operations can be efficiently realized in time domain. The 
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corresponding time-domain waveform for node Di,j of eq. (5.1) is depicted in Figure 5.6 (a). The 

minimum value of its three ancestor nodes is carried by time-domain signal T(min(Di-1, j, Di, j-1, 

Di-1,j-1)) which is generated by the time-domain MIN module. The absolute difference is carried 

by time-domain signal T(|Ai - Bj|) which is generated by the time-domain ABS module. The two 

time pulses are subsequently summed to generate the local DTW value of the current node. By 

recursively calculate the local nodes’ DTW values in the matrix, the final DTW distance of the 

two time-series input can be obtained. The high-level circuit diagram of such a time-domain 

implementation is shown in Figure 5.6  (b) with succinct topology and data path.  
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Figure 5.6 Time-domain DTW algorithm. (a) Waveform of time-domain DTW; (b) Time-domain 

implementation of DTW.  
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5.3.2 Pipelined Time-Domain DTW algorithm 

The time-domain implementation of DTW described in the above section is in the 

combinational logic fashion – there is no internal clock to synchronize the computation. This 

solution has its own benefits such as compact architecture, simple circuit requirement, and 

smaller latency when dealing with single time-series pair. However, it suffers from low 

throughput without pipelining, low utilization of hardware, and the bounded length of input time-

series data limited by the dimension of hardware implementation. For such reasons, a pipelined 

architecture is developed to overcome the above issues.  
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Figure 5.7 Architecture diagram of implemented pipelined time-domain DTW. 

One key element to enable the time-domain pipelined design is the time-domain 

information storage cell, i.e. time flip-flop (TFF). By inserting TFF to every node of the DTW 

matrix, the pipelined architecture can be realized. Figure 5.7 shows the pipelined DTW engine 

with 20×20 DTW unit cells and scalable operation to construct longer time series. The DTW 

matrix contains a group of DTW unit cells with a diagonal pipeline structure. The unit cell, as 

depicted in Figure 5.7, contains 2 WTFF modules, an ABS module, and a MIN module. The 
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second WTFF module (marked in white) in the unit cell is used to copy the data from last 

pipeline stage, because the data stored in node (i-1, j-1) is one pipeline stage earlier than the 

nodes (i-1, j ) and (i , j-1).  

A 4-bit digital-time-converter (DTC) is implemented inside ABS to convert input digital 

values into time-domain pulses. The DTC consists of an inverter-based delay chain and 

multiplexers. The inputs of ABS modules are stored in on-chip SRAMs and sent to the 20×20 

DTW array in the fashion of the systolic data streaming. 

5.3.3 Pipelined Structure and Data Streaming Flow 

Due to the use of the TFF, in every clock cycle, the time-domain pulses are propagated 

along the diagonal direction of the matrix as depicted in Figure 5.8. A total of 39 pipeline stages 

in the diagonal direction are synchronized by the global clock and reset signals. Note that, the 

TFF is the largest component and takes about 40% area of each DTW node. Hence, 40% 

overhead is added to enable pipeline operation. However, the throughput improvement of 

pipeline mode is 7× compared to the non-pipeline mode. 

 

Figure 5.8 Diagonal data path and pipeline stage structure of DTW engine.  
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Data interaction can always be a challenge for array-based accelerator design, especially in 

a mixed-signal design which is very sensitive to the quality of signal routing. One 

straightforward solution for DTW data signal routing is shown in Figure 5.9 (a), with a massive 

routing broadcasting all signal connections. This would not only introduce signal crosstalk but 

also lead to the top-level signal routing congestions. Instead, in this work, a systolic data 

streaming flow is implemented where each data item is piped through the DTW matrix as inputs 

to ABS modules both vertically and horizontally (Figure 5.9 (b)). Such a flow is similar to a 

systolic dataflow in other accelerators e.g. Google’s TPU design [32]. With such a solution, we 

reduce the signal crosstalk and eliminate massive data signal routing by more than 15×: The 

routing signals of ABS inputs are reduced from 2×20×20×4b into 2×20×4b at 20× reduction. 

However, some calibration signals still need to be explicitly routed into each DTW node which 

makes the total reduction into 15×. 
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(a)                                                                               (b) 

Figure 5.9 Data streaming flow comparison between (a) brute-force data streaming flow, (b) 

systolic data streaming flow. 
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5.3.4 Unfolding DTW Operation  

The pipelined operation allows fixed dimensions of the DTW engine to be unfolded for 

longer data sequences, as shown in Figure 5.10. The total unfolded length is ultimately limited 

by internal register storage capacity, i.e. 10 bits in this implementation but can be easily extended 

further using the WTFF design. All output pulses from the bottom and right boundaries are 

decoded by shared time-to-digital converters (TDCs) every clock cycle and re-sent back for 

processing by subsequent sections.  

Please note that due to the nature of analog/mixed-signal (AMS) computing, this design 

also has limitation on the scalability compared with digital implementation although we intend to 

improve this drawback by adding an unfolding operation in the special pipelined mode. In our 

study, most of our results are based on the final distance which require the value at the bottom 

right point of the matrix given that the distance measurement of two time series can be obtained 

at the bottom right corner of the matrix. For the goal of retrieving all intermediate data for post-

processing for a larger matrix, multiple similar cores (not implemented in this work) can be 

stitched together on the same chip. In that case, the data from TDC can be send out to the next 

core for further operation with some degradation of the throughput due to data transmission. 

Such an operation is only supported in pipelined mode because the non-pipelined mode in this 

work would generate data asynchronously leading to a high cost in obtaining intermediate data. 
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Figure 5.10 Unfolding mode of the proposed DTW engine. 

 

5.3.5 Non-Pipelined DTW Mode 

The pipelined mode is essentially designed for accelerating multi-bit time-series 

classification. And each pipeline period is determined by the capacity of the WTFF module, 

which is 10 bits in this design. As the processing time scales with the number of bits in time-

domain operation, the pipelined mode is not efficient for low resolution time-series 

classification, e.g. DNA sequencing that only requires 1-bit operation. In such a case, the 

throughput is higher in non-pipelined operation than the pipelined operation due to the extremely 

fast operation at each node with only 1-bit input. Hence, to speed up the operation for simple 

data sequence case, a non-pipelined mode is implemented by bypassing the TFF modules and 

allowing signal edges to directly propagate through the matrix as shown in Figure 5.11. Different 

from pipelined case, in non-pipelined case, we encode information by the delay of rising edges 

instead of the pulse width of time pulses (similar to prior work [57]). Note that, the rising edge is 

naturally accumulated through the combinational block for “ADD” operation as depicted in 

Figure 5.6 (b). 
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Figure 5.11 Architecture diagram of non-pipelined DTW mode. 

5.3.6 Design Automation for Mixed-Signal Circuit Design 

Mixed-signal circuit design typically suffers from the requirement of manual layout efforts 

to enhance the integrity of the signals. To ease the large amount of design effort for the 2-D 

array, a time-domain design automation technique is utilized as shown in Figure 5.12. 

In the local module level, the implemented automation technique includes both the 

synthesis and place & route parts. The synthesis process involves two steps: (1) the RTL with 

customized syntax for time-domain logics is utilized to perform a special mixed-signal 

time-domain (MSTC) logic synthesis process which generates an initial gate-level netlist; (2) 

The size of each module in the initial netlist is tuned by a special optimizer to meet the variation 

budget while keeping the area consumption small. The place & route process utilizes an adjacent 

constraint graph-based placement algorithm to realize the special signal mapping requirement in 

time domain [58]. As a result, majority of the modules are automated except critical local cells, 

e.g. ring core of TFF. 
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(a) 

 

(b) 

Figure 5.12 Design automation techniques used in this work. (a) Design automation flow chart; 

(b) Layout result of 20×20 DTW matrix.  

In the higher level, we developed placement script and utilized digital tool to conduct the 

layout as such an example shown Figure 5.12 (b). The neighbor DTW nodes are placed abut to 

each other to minimize the routing length of inter-module connections. The critical global 

signals, i.e. clock and reset, are routed in a structured way by routing script with higher metal 

layer to relieve the signal crosstalk effect. As a result, the massive manual signal routing can be 

avoided at the higher level of the design while still maintaining routing quality/matching 

clock and rstb signals 
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performance compared to hand layout. 

5.3.7 DTW Matrix Calibration Scheme 

Similar to analog computing, variation is also a significant concern in time-domain 

computing [16]. To relieve such an issue, special calibration scheme is introduced to calibrate the 

20×20 DTW matrix as shown in Figure 5.13. A 2b tunable delay cell is implemented in each unit 

cell to tune the output pulse width, compensating for process variations.  

 

         (a)                              (b)                              (c) 

 

(d) 

Figure 5.13 Calibration scheme of the 20×20 DTW matrix. (a) Calibration order through 

different diagonals. (b) Calibration order of each DTW node on the main diagonal. (c) 

Calibration order of each DTW node on the second diagonal. (d) Example of special input sets to 

enable the calibration of different node on the main diagonal. 

The DTW nodes are calibrated through each diagonal path following a center-to-side order 

as depicted in Figure 5.13 (a). On each diagonal path, the nodes are calibrated from bottom-right 
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to top-left as shown in Figure 5.13 (b) (c) and the calibration is performed node by node. The 

basic idea is to construct special input sets which make the warping path to lie into the particular 

diagonal path and to be calibrated. By specially manipulating the input data patten, each node is 

further calibrated in that particular diagonal path one by one. Once the diagonal path is properly 

calibrated, the next diagonal path will be calibrated following center-to-side order until all the 

nodes on all diagonals are calibrated. This systematic calibration flow allows each cell to be 

tuned sequentially without back and forth operations and can be easily automated using the PC. 

The calibration results are shown in the next section.  

 

5.4. Measurement Results 

5.4.1 Test Chip Setup 

 

Figure 5.14 Die photo and chip specification. 

A test chip of the proposed DTW accelerator engine was implemented in a 65nm CMOS 

process with die photo and specification table shown in Figure 5.14. The chip is running at 

110 MHz with a nominal supply voltage of 1V. Two sets of TDCs, based on Vernier delay 

chains, are placed at the right and bottom sides to decode time-domain signals at the boundaries. 
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A single-bit resolution of 40ps is used in the DTW design, while a resolution of 20ps is used in 

the TDC to reduce quantization errors at the boundary of operation. All the input and output data 

can be scanned in and out through a scan chain for verification. 

5.4.2 Measurement Results 

Figure 5.15 (a) shows the measured waveform in the pipelined mode which confirms the 

expected output pulse at a frequency of 110MHz. The negative pulses depicted in the zoomed-in 

window carry the DTW distance information in time domain. Figure 5.15 (b) shows 3.1ns 

processing time in DNA-sequencing non-pipelined mode. 

9 ns

frequency = 110 MHz

DTW
distance

Time(ns)

Voltage(v)
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0
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(a)                                                                            (b) 

Figure 5.15 Measured waveform of (a) pipelined mode, (b) non-pipelined mode. 
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(a)                                                         (b) 

Figure 5.16 Linearity measurement of TFF at nominal 1.0V with (a) retention time of 10ns, (b) 

retention time of 1μs. 
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Figure 5.17 Linearity measurement of TFF in low voltage case (0.7V) with retention time is 

20ns. 

The linearity of the TFF is key to the accuracy of the DTW computation. Also, the 

retention capability of TFF for time-domain signals is important since the degradation of time-

domain signal over the time due to leakage will cause information loss for the computation. The 

linearity of TFF is measured and verified under different retention time condition. As shown in 

Figure 5.16 (a) (b), the TFF is verified to retain data for over 1us at a supply voltage of 1V, with 

less than 0.5 LSB linearity loss due to leakage. This retention time is sufficient for the target 

application whose retention requirement is only 7ns. The linearity of TFF is also verified at a 

lower supply voltage of 0.7V. As shown in Figure 5.17, the linearity loss is 1.5 LSBs which 

results to classification error increase (2%) in the low voltage operation. 

Figure 5.18 (a) shows measurement results on classification error using the fabricated 

DTW chip. UCR time-series classification databases were used with five databases from four 

typical applications including ECG signal classification, gesture recognition, words recognition 

and, face detection [59]. The measured error rate for classification by the DTW engine is only 

1.5% higher than ideal DTW operation (floating point results in software). The increased error 

rate is mainly due to quantization loss (contributing about 0.5%) and process variation effect 

(contributing about 1%). 
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(a)                                                                            (b) 

Figure 5.18 Measurement results of different applications. (a) DTW classification error rate of 

UCR archive (pipelined Mode); (b) Simulated vs. measured DNA alignment distance (non-pipe. 

mode). 

In order to test the performance of the non-pipeline DTW mode, a measurement of the 

DNA sequencing application is conducted. 100 sets of DNA sequence data from the human 

genome database (GDB) were tested for comparison between ideal DTW operation and 

measurement results. As shown in Figure 5.18 (b) the measured distance closely tracks the ideal 

results, having an error within 2.6%.  

As shown in Figure 5.19, in order to test the robustness of the chip, the chip was verified at 

different supply voltages in pipelined mode down to 0.7V, with a 2.3% increase in error rate 

compared with ideal DTW operation on the UCR database.  

 

Figure 5.19 Chip operating frequency and error rate measurement under different supply 

voltages. 
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Figure 5.20 DTW node error measurement before and after calibration.  

Figure 5.20 shows the chip calibration results before and after calibration operations. In this 

experiment, a 20×20 time-series classification task was conducted with 4-bit inputs. The scale 

for the figure is the measurement distance error in the unit of LSB. The final absolute 

computation different is 1 LSB. After calibrating the 20×20 DTW matrix, the maximum DTW 

distance computation error drops from 5 LSBs to 1.5 LSBs. Table 5.1 shows the comparison 

with prior work. A throughput of 140 giga-cell-updates-per-second (GCUPS) for DNA 

sequencing is achieved with 9× improvement over previous work [54]. The number of bits in this 

work are 4 bits as input and 10 bits in internal operation as compared with low resolution in most 

prior work, e.g. 1 bit [54]. More than 20× higher throughput per area (GCUPS/mm2) is observed 

compared with prior CPU, GPU and ASIC implementations. This is mainly due to the area 

efficiency of time-domain circuit technique in special operations, e.g. compare, maximum and 

minimum. Overall, 1.5×~50× improvement of energy per GCUP is realized in this work compare 

to prior chip implementations. Over 20× and 18× improvements on inference per second per mm2 

and inference per second per watt are achieved respectively. 

 

5.5 Comparison and Discussion  

In order to form an apple-to-apple comparison, the technology scaling effect is also taken 
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into consideration. Compared to [54], whose throughput is limited by their time resolution which 

is 2ns. We assume the bit resolution scales with technology (which is not typically true in 

analog/mixed-signal design), our technology advances about 3 generation with scaling of about 

0.73 leading to about 3× improvement in throughput. On the other hand, our design has shown 9× 

improvement of throughput, so we observe 3× improvement if taking into account of the 

technology impact. Compared to [60], we further scale down the process impact by 0.7 (from 

90nm to 65nm) and the bit precision impact (from 32 bit to 4 bit), this leads to an throughput 

improvement of about 11× for the ASIC implementation of [60]. 

In addition, the use of time flip-flops enables the first pipelined architecture for time-

domain design which not only improves the throughput but also increases the hardware 

utilization. Compared to non-pipelined operation, the pipelined design shows 7× improvement in 

throughput for general DTW applications. The hardware utilization has been improved from 

11% to 93% due to the pipeline architecture. 

In addition of the fabricated prior test chips, Kin Fun Li et al. proposed a DTW single 

element processing unit to investigate the suitability of using it as a building block for more 

complex architecture for embedded applications [63]. V.K Sundaresan et al. introduced parallel 

DTW algorithm [64]. Xiaowei Xu et al. proposed a memristor-based DTW accelerator design 

[56]. Compared to the digital implementations in [60] [63], our design improved the throughput 

by over 4×. Compared to the analog mixed-signal design in [64], we realized a throughput 

improvement over 200×. 
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TABLE 5.1 DTW ACCELERATOR DESIGN AND COMPARISON TABLE 

 [61] [62] [60]  [54] This work 

Architecture CPU GPU ASIC/ 

CPU 

Time-domain 

ASIC 

Time-domain 

ASIC 

Process (nm) 65 28 90 180 65 

Area (mm2) 143 300 6.4 4 1.67 

Number of bits 
floating 

point 

floating 

point 

32 1 4 (input) 

10 (internal) 

Power (mW) 
9.5×104 2×105 2732 70 136 (pipeline) 

35  
(non-pipe.) 

Clock period 

(GHz) 

2 1 0.6 0.01 0.11 (pipeline) 

Throughput for 

DNA sequencing 

(GCUPS) 

3 119 9 ** 15 ** 140 * 

Throughput per 

Area 

(GCUPS/mm2) 

0.02 0.4 1.4 3.75 84 

Throughput for 

general DTW 

App. (GCUPS) 

- - - - 71 (pipeline) 

10 (non-pipe) 

Energy per 

GCUP (pJ/CUP) 

3.2×104 1×103 304 4.7 0.25 

Inferences/Secon

d (Giga) 

0.006 0.276 0.021 0.036 0.32 

Inferences/Secon

d/mm2 (Mega/ 

mm2) 

0.041 0.92 3.3 9 191 

Inferences/Secon

d/W (Mega/W) 

0.0006 0.0014 0.0076 0.51 9.2 

Error rate  - - - 2.9% 1.5~2.6% 

* *In DNA application, single bit non-pipeline mode with input length of 20 is utilized for fair 

comparison with prior work. 

** Technology scaling is considered and is further discussed in the above paragraph. 
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5.6 Summary  

In this chapter, a general-purpose DTW engine using time-domain computing is designed 

for time-series classification. A special time-domain storage cell, namely time flip-flop, is 

developed with extendable ring-based structure and embedded accumulation functionality. The 

developed DTW engine also allows high-throughput pipelined data flow and unfolded operation 

for longer time series through a specially designed pipeline architecture utilizing the time flip-

flop circuits. A 65nm CMOS test chip is fabricated and tested. The measurement shows a 

throughput improvement of more than 9× compared to prior works. In addition, a design 

automation methodology was applied to ease the mixed-signal design effort. A post-silicon 

calibration scheme was also incorporated to reduce the impact from process variation leading to 

3× reduction of distance measurement error.  
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Chapter 6  

A Mixed-signal Time-Domain Generative Adversarial Network 

Accelerator 

In this chapter, a low-cost mixed-signal time-domain accelerator for generative adversarial 

network (GAN) is presented. A significant reduction in hardware cost is achieved through 

delicate architecture optimization for 8-bit GAN training on edge devices. An area efficient 

subthreshold time-domain multiplier is designed to eliminate excessive data conversion for 

mixed-signal computing, enabling high throughput mixed-signal online training that 

demonstrated in a 65nm CMOS test chip.  

Chapter 6 is organized as follows: Chapter 6.1 introduces the background and design 

challenges in building a GAN accelerator for edge computing. Chapter 6.2 introduces the 

architecture innovation for GAN accelerator. Chapter 6.3 presents the circuit innovation 

including a high-efficient time-domain multiplier design. Chapter 6.4 shows the measurement 

results and Chapter 6.5 compare the proposed design with other time-based ML accelerator 

designs. Chapter 6.6 concludes the design.  

6.1 Design Challenge in Generative Adversarial Network (GAN) 

GAN is rendered as one of the most interesting and challenging applications in deep 

learning space. As shown in Figure 6.1, GAN contains two deep neural networks (DNN), i.e. a 

generator and a discriminator, contesting and evolving with each other [65]. Despite its broad 

real-time applications in gaming, authentication, VR, there is a lack of dedicated low power 
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GAN accelerator due to the tremendous challenges on resource-limited edge devices. From the 

algorithm aspect, GAN is extremely difficult to train due to model collapses from unbalanced 

models and high sensitivity to hyper-parameters. From the hardware aspect, GAN involves two 

DNNs with complex training sequences, e.g. 41 different training stages as in this work. 

Moreover, the typical floating-point training and complex calculation, e.g. batch normalization 

and optimizers, are very expensive for a resource-limited edge device [65].  
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Figure 6.1 GAN applications and algorithm. 

This work, through significant architecture improvement and hardware adaptation, presents 

a mixed-signal GAN accelerator with 8-bit resolution for cost-effective implementation on edge 

device. The contributions include: (1) for the first time, a complete GAN training core was 

implemented on an 8-bit low-power ASIC chip consuming only 39mW; (2) An efficient 

subthreshold time-domain (TD) multiplier was designed with significant area saving compared 

to digital design; (3) On-chip training was performed in mixed-signal TD for the first time. The 

design eliminated 94% overhead from domain conversion, leading to the state-of-art throughput 

for a mixed-signal based accelerator which normally suffers from slow operation speed.  
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6.2 Time-Domain GAN Accelerator Architecture Design  

Figure 6.2 shows the implemented GAN architecture with model compression that used in 

this work. For fitting with a small chip budget on edge device, we targeted a low-budget 

architecture implementation of DCGAN [65] using greyscale image with a size of 28×28 pixels.  
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Figure 6.2 Model compression techniques utilized in this work. 

As depicted in Figure 6.3 and Figure 6.4, the following techniques were specially 

developed: (1) model balancing and adaptive training were utilized to enable 8-bit training 

versus conventional floating-point training, leading to a 5× reduction in hardware cost; (2) The 

challenging and memory consuming operations of batch normalization were simplified by 

disabling low-impact runtime operations, rendering a 77% removal of the associated operations; 

(3) The expensive ADAM optimizer was replaced by a succinct momentum stochastic gradient 
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descent optimizer suitable for integer implementation with an 11× reduction of the optimizer’s 

computation; (4) The number of layers and channels were further minimized to reduce the 

computation load by 6× to 9×. Overall, a 6× reduction of training complexity, a 6.5× hardware 

cost reduction, and an 11× reduction of on-chip memory were achieved through the algorithm 

simplification with about a 3% loss of accuracy.  
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Figure 6.3 Hardware adaptation techniques utilized in this work. 
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Figure 6.4 Adaptive training techniques in GAN accelerator design.  

Figure 6.5 shows the training sequence. Each training iteration consists of 7 unique phases 

(e.g. forward prop., loss cal.) with 5 phases for the generator and 4 phases for the discriminator. 

Each phase also contains 4 to 6 sub-tasks (e.g. Conv, FC, pooling, etc.). To avoid model 
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collapsing, an adaptive training and model strength control scheme was implemented which 

ceases the training of discriminator if its strength is too high and adaptively increases the 

magnitude of the gradients during backpropagation (presented in Figure 6.4). The training 

sequence is managed by an ASIC training management unit (TMU) shown in Figure 6.6. A total 

of 41 training stages were implemented in the TMU as a finite state machine. Special operations 

such as pooling, sigmoid, data transpose etc. were handled by the dedicated hardware modules 

inside the TMU. Register files were used to store temporary weights and feature map outputs, 

bridging the throughput mismatch between SRAM and MAC arrays.  
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Figure 6.5 Training sequence of GAN.  
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Figure 6.6 Block diagram of ASIC training management unit (TMU).  

Figure 6.7 shows the test chip architecture diagram including the TMU, a 10×10 time-

domain (TD) MAC matrix, SRAM modules and supporting blocks. All the MAC operations of 

CNN and Transpose-CNN are performed by a TD MAC matrix to improve area and energy 

efficiency. The circuit diagram of TD MAC matrix/array is depicted in Figure 6.8. The time 
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pulses generated from digital-to-time converters (DTC) are processed by the subsequent 

multiplication, accumulation and activation all in time domain and are finally converted back 

into digital domain using time-to-digital converters (TDC). A special 16b time-pulse based time-

domain accumulator (TD-ACC) is designed using four 4-b ring-based time accumulators [27] 

with carry propagation to realize accumulation efficiently.  
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Figure 6.7 Top-level architecture diagram of proposed GAN accelerator.  
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Figure 6.8 Circuit diagram of time-domain MAC array. 
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Figure 6.9 Circuit details of (a) 4b time-domain accumulator, (b) time-domain ReLU function.  
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Figure 6.10 Circuit diagram of time-domain MAC unit.  

As presented in Figure 6.10, with the special TD-ACC, the TDC is only activated once 

every 25 MAC operations, removing 94% of the time and power overhead from the expensive 

TDC operations. Pushing all operations in time domain significantly reduces the cross-domain 

data conversion, rendering a 160× speed-up in MAC operation compared with previous counter-

based TD designs [15]. The 8-b TD multiplication is partitioned into four 4-bit multiplications to 
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improve the computation accuracy and speed. The detailed circuit implementation of 4-bit time-

domain accumulator is shown in Figure 6.9 (a) with operating waveform of time-domain MAC 

operation shown in Figure 6.11 
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Figure 6.11 Time-domain MAC operation waveforms.  

6.3 Time-domain GAN Accelerator Circuits Design 

Figure 6.12 (a) shows the detailed circuit design featuring a subthreshold (sub-vth) TD 

multiplier (TD-MUL) and a DTC- based linearization technique. The TD-MUL takes input time 

pulses and generates output pulses of the multiplication results.  

As in Figure 6.12 (a), the current starving PMOS transistor is pre-biased at subthreshold 

region and generates a delay equals to the multiplication results through charge accumulation at 

the gate with logarithmic addition, i.e. a multiplication is addition in log domain.  
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Figure 6.12 Time-domain multiplication, (a) circuit details, (b) simulation waveform.   
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Figure 6.13 Nonlinearity compensation in time-domain multiplier.  
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Figure 6.15 Layout comparison between 4b digital multiplier and 4b timed-domain multiplier. 
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The layout comparison between Compared to the digital implementation is shown in Figure 

6.15. Overall, the implemented sub-vth multiplier renders a 4.3× reduction of area. However, as 

shown in simulation, significant nonlinearity is observed in sub-vth multiplication. The 

nonlinearity is compensated by a logarithmic encoding of DTC. As shown in both equation and 

the simulated waveforms in Figure 6.13 and Figure 6.14, the linearization technique elegantly 

removes nonlinearity with negligible overhead. After the multiplication, the resulting time pulses 

are sent into TD-ACC for accumulation of 25 cycles avoiding time-consuming digitalization as 

[15, 16, 66]. Simple TD ReLU function (depicted in Figure 6.9 (b)) is also implemented at each 

CNN layer except the final layer which uses digital sigmoid function.  

6.4 Measurement Results 

Figure 6.16 shows the measured linearity from both the TD-MUL and TD-ACC. For the 

multiplier, although up to 4% error is seen in the result, most of the error is just a small scaling 

factor shift. Less than 1b error is observed in the TD-ACC design.  
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Figure 6.16 Linearity measurement of (a) time-domain accumulator and (b) time-domain 

multiplier.  

We trained the GAN with 3 databases, i.e. a digit-MNIST, a fashion, and an emoji database 

[67, 68]. As depicted in Figure 6.17, accuracy of the generated images with conditional GAN 
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from 3 databases shows less than 1% error compared to the ideal integer 8-bit training on CPU 

and 3% compared with ideal floating-point training (1.6% comes from quantization loss). The 

final training results of the 3 databases are shown in Figure 6.18. 
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Figure 6.17 Measurement results of classification errors on different databases. 
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Figure 6.18 Training results of GAN on (a) MNIST digit database, (b) Emoji and Fashion 

MNIST databases. 

As results shown in Figure 6.19 (a), the chip is verified with supply voltages down to 0.7V 

with up to 5% degradation of accuracy compared with ideal GAN operation. Interestingly, a 

“self-healing” feature of GAN is observed as depicted in Figure 6.19 (b), recovering most of the 

error loss from on-chip variations compared with no on-chip training. This intrinsic resiliency 
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presents a merit for training empowered design using mixed-signal circuits. The chip consumes 

39mW power with TD-MAC at 90MHz. The total training time of MNIST database takes 4.5 

minutes which is 82× less than a high-performance CPU (2.6GHz Intel i7 Quad-core with a 

power of 197W). The die photo and comparison table with prior analog mixed-signal (AMS) 

designs are shown in Figure 6.20.  
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Figure 6.19 (a) Measurement result of voltage scaling, (b) measurement result of ‘self-healing’. 
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Figure 6.20 Die photo. 
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6.5 Comparison and Discussion 

The comparison table is in As most of existing AMS designs suffer from low throughput, 

this work achieves the highest throughput of 18~5400× [31, 15, 16, 66, 69] with similar 

efficiency. In addition, a low-cost 8-bit on-chip training was realized for AMS design on the very 

challenging GAN operation. 

TABLE 6.1 COMPARISON TABLE OF TIME-DOMAIN GAN ACCELERATOR 

 [66] 

ISSCC 

2016 

[69] 

VLSI 

2018 

[31] 

CICC 

2017 

[15] 

ISSCC 
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ASIC 

TD 

ASIC 
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Learning 

CNN 

Inference 

GAN 

Process (nm) 40 28 65 65 40 65 

Area (mm2) 1.44 0.02 0.24 2.0 0.12 3.94 

Input/Weight 

Resolution 

(bit) 

6/3 8/8 1/3 8/8 8/1 8/8 

Learning Offline Offline Offline Online Offline Online 

Freq. (MHz) 2500 780 99 1.5 25 90 

Power (mW) 
0.65 0.15 77 0.003 0.03 8 (MAC) 

31 (ASIC) 

Throughput 

(GOPS) 

1 0.8 0.75 0.0033 0.365 18* 

MAC 

Efficiency 

(TOPS/W*Bit) 

16 112 0.004 

 

1.1 12 18* 

On-die SRAM - - 0.1 KB 16 KB No 52 KB 

 

 

 

 

 

 



99 
 

6.6 Summary  

In this Chapter, the first mixed-signal design for GAN accelerator is presented with 

efficient subthreshold time-domain 8b multiplier. A few novel circuit designs including time-

domain multiplier and time-domain accumulator are proposed. The time-domain multiplier 

allows a 2.6× area improvement compared to digital counterpart. Model compression is utilized 

to improve the hardware efficiency for edge computing. To further stabilize the training process 

of the fragile GAN algorithm, the adaptive training technique is introduced. Compared with prior 

mixed-signal design, the highest GOPS for mixed-signal neural network computing is reported. 
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Chapter 7  

A 3T Dynamic Analog RAM-Based Computing-in-Memory Macro 

and CNN Accelerator Design 

In this chapter, a Dynamic-Analog-RAM (DARAM) based Computing-In-Memory (CIM) 

macro and associated CNN accelerator is demonstrated in a 65nm CMOS test chip. With special 

analog sparsity techniques and retention enhancement, the design achieves state-of-art energy 

efficiency of 217TOPS/W at CIM macro level and 44 TOPS/W at system level for 4 bits 

weight/input operation. An effective bit cell size of only 75% of 6T foundry SRAM cell is 

achieved.  

Chapter 7 is organized as follows: the design basic of CIM is introduced in Chapter 7.1. 

The special circuit techniques including the special 3T dynamic analog RAM are presented in 

Chapter 7.2. Architecture innovation of the proposed CIM-based CNN accelerator is presented in 

Chapter 7.3. Special energy saving techniques are introduced in 7.4. Measurement results and 

comparison with prior work are introduced in Chapter 7.5 and 7.6. Chapter 7.7. summarizes the 

proposed CIM design.  

7.1 Computing-In-Memory Design and Challenges 

Computing-In-Memory (CIM) techniques which incorporate analog computing inside 

memory macros have shown significant advantages in computing efficiency for deep learning 

applications. While earlier CIM macro was limited by lower bit precision, e.g. binary weight in 

[18], recent works have shown 4 to 8bit precision for the weights/inputs and up to 20bits for the 
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output values . Sparsity and application features have also been exploited at system level to 

further improve the computation efficiency [21, 22, 23]. To enable higher precision, bit-wise 

operations were commonly utilized [21, 22, 23]. However, there is limitation on existing 

solutions using the bit-wise operations with SRAM cells.  
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Figure 7.1 Challenges in CIM design and our proposed solution..  

Figure 7.1 shows the summary of challenges and solutions in this work. First, all existing 

solutions utilize 6T/8T/10T SRAM as a CIM cell which fundamentally limits the size of the CIM 

array. In this work, we replace the commonly used SRAM cell with a 3-transistor (3T) analog 

memory cell, referred as dynamic-analog-RAM (DARAM) which represents a 4-bit weight value 

in an analog voltage. This leads to ~10× reduction of transistor counts and achieves an effective 

CIM single-bit area smaller than the foundry supplied 6T SRAM cell for the first time. Secondly, 

as no bit-wise calculation is needed in this work, only single-phase MAC operation is performed, 

removing throughput degradation due to previous multi-phase operation and associated digital 
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accumulation in [20, 21]. Furthermore, analog linearity issue is mitigated by highly linear time-

based activation, removal of matching critical multi-bit caps [21, 23], and a special read current 

compensation technique. Thirdly, to mitigate power bottleneck of ADC or SA, this work applies 

analog sparsity based low power methods which includes a compute-adaptive ADC skipping 

operation when analog MAC value is small (or “sparse”) and a special weight shifting technique, 

leading to additional ~2× reduction of CIM-macro power. We demonstrated the proposed 

techniques using a 65nm CIM-based CNN accelerator showing a state-of-art energy efficiency.  

 

7.2 Dynamic Analog RAM-Based CIM Circuit Design  
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Figure 7.2 Proposed 3T DARAM design, (a) circuit schematic, (b) 3D diagram of metal 

capacitor, (3) layout.  

Figure 7.2 shows the design details 3T dynamic-analog-RAM (DARAM). Similar as a 

conventional CIM bit cell, the charge drawn to BL_R is proportional to the multiplication of read 

current Imem from the read access transistor M1 and time pulse duration of RE through switch 

M2. A 4-bit weight is stored as an analog voltage on the internal “MEM” node generating a read 

current proportional to the weight value. Due to the 4-bit lumped analog weight, a 4-bit MAC 

operation is realized by a single read of the DARAM, much simpler than the previous bit-wise 

operation. Designed with regular logic transistors, the critical read-access transistor M1 is sized 
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with larger W and L to reduce device variation.  
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Figure 7.3 Simulation of proposed DARAM, (a) leakage simulations over different design 

corners, (b) capacitance improvement, (c) area comparison between DARAM and prior design.  

Simulation results of the proposed DARAM are depicted in Figure 7.3. The DARAM cell 

has an area of 1.9× of previous 8T CIM cell and 3× of foundry 6T SRAM cell leading to an 

effective bit area of 47% of the 8T CIM cell and 75% of foundry 6T SRAM cell [20]. During 

write, write-access transistor M3 is used to write the analog voltage from BL_W into the “MEM” 

node from a column-wise DAC with an adjustable voltage range from 0.45V to 1V. Each write 

can be finished within one clock cycle with totally 64 clock cycles for writing into the entire 

CIM macro.  
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Figure 7.4 Stationary cycles of weights on CNN models.  
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Subthreshold and gate leakage are minimized to maintain a constant analog voltage during 

the life cycles of stationary weights for the CNN operation. As shown in Figure 7.4, the weight 

stationary cycles of CNN models, e.g. VGG16, ResNet18 vary from a few tens of cycles to 

thousands of cycles for a single image and increase proportionally with the batch size, driving 

the retention requirement of the analog voltage. A special 3D inter-layer and inter-digit metal 

capacitor using M1 to M5 interleaving MEM and GND nodes vertically and horizontally are 

added inside each DARAM cell to enhance the storage capacitance by 3×. As shown in Figure 

7.3 (a), during CNN inference, a separate biasing of BL_W at 0.8V leads to about 20× reduction 

of subthreshold leakage current. This allows a retention time of ~41k cycles (for a voltage drift 

less than half of a single bit) at typical corner and more than 5k cycles at fast corner. As a result, 

a batch size of 5~40 images can be processed without a rewrite (refresh) operation with 

negligible accuracy loss. For a larger batch size, a 64-cycle DARAM refresh operation is needed 

at every 5.5k-41k cycles, leading to a throughput overhead of less than 1.2% or CIM macro 

energy overhead of less than 0.4%. Note for smaller batch size or CNN layers with less 

stationary weight, refresh is not needed.  

 

7.3 Dynamic Analog RAM-Based CIM Architecture Design  

Figure 7.5shows the architecture of the CNN accelerator with 4 CIM macros. Each CIM 

macro contains a 64×32 DARAM array. A row-wise digital-time-converter (DTC) is used to 

convert a 4-bit activation into a time pulse with 50ps resolution. A 5-bit SAR ADC and a 4-bit 

current DAC are implemented at each column to provide MAC read-out and analog write-in. The 

design natively supports 4bit input/weight operation and can also support 8b/8b by combining 
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two DARAM cells and operating in successive two cycles. Similar to prior schemes, global 

SRAMs are used to store weight and input/output activation data before being fetched into CIM 

macro. As depicted in Figure 7.6, an ASIC core is used to manage data sequencing and pre/post-

processing including (a) offsetting of data values due to the non-2’s complementary format of 

weight in comparison with the support of both non-2’s and 2’s complement formats in prior 

works [20, 21]. The offset calculation has negligible overhead as it is commonly shared by all the 

columns; (b) 4bit to 8bit conversion if needed; (c) Accumulation at inter-macro loop similar as in 

[21].  
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Figure 7.5 Top-level architecture diagram of proposed CIM-based CNN accelerator.  
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Figure 7.6 Sparsity management module in ASIC core.  
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Figure 7.7 (a) Histogram of weight offset, (b) weight-shift-based Imem reduction based.    

Additional three features are introduced in this work. (1) An input-stationary operation 

mode is supported, which is more efficient for later layers in VGG/Resnet. (2) Because the MAC 

energy consumption using analog weight favors lower weight value compared with zero weight 

in digital SRAM, a special analog weight shifting technique is introduced where the weights are 

shifted down whenever the weight range in a column is not fully utilized. The shifted weights are 

pre-determined off-chip according to the weight being used and associated MAC offsets are 

added back in ASIC to restore the values. As shown in Figure 7.7, an average of 3-bit weight 
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shifting is achieved providing a 1.3× energy reduction on the MAC operation of the DARAM 

cells. (3) Input sparsity is also leveraged by detecting zero inputs from ASIC and disabling row-

wise DTC and the associated MAC operation in the CIM macro.  

 

7.4 Dynamic Analog RAM-Based CIM Energy Saving Techniques  

Figure 7.8 presents the ADC skipping technique exploiting “analog sparsity” in MAC 

operation to save the dominant ADC power in CIM macro.  
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Figure 7.8 MAC-based ADC skipping scheme.  
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Figure 7.9 ReLU-based ADC skipping scheme.  

As shown in the histogram of the bitline voltage drop, i.e. analog MAC value, based on the 

VGG model, over 60% of the cases have bitline voltage drop less than 27% of full swing leading 

to the possibility of merging two or more MAC accumulation without activating ADC and bitline 

precharge with small accuracy impact of 0.1~0.4% from occasional overflow. Different from 

[19] which only reduces ADC conversion steps at low MAC value, this work skips entire ADC 

operations leading to higher energy saving, i.e. an average ADC power reduction of 2.4×. In 

addition, as depicted in Figure 7.9, we apply an early termination of MAC operation based on the 

ReLU function, i.e. the accumulation has become negative enough that the sign of accumulation 

results cannot be flipped by remaining MAC operations. The detection is performed in ASIC 

with a preset negative threshold. Combining both approaches, an average of about 2.9× saving 

can be achieved on ADC energy consumption.  
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Figure 7.10 Weight nonlinearity compensation technique for DARAM. 

Figure 7.10 shows a nonlinearity compensation scheme where the nonlinear relationship 

between the bitline current and MEM voltage from the read transistor M2 is compensated by a 

non-linear analog voltage generated from the DAC. As a result, a highly linear Imem versus the 

weight is achieved. 

 

7.5. Measurement Results 

A 65nm CMOS test chip was fabricated to demonstrate the DARAM in a CNN accelerator 

running at 105MHz at 1V. Calibration was performed to remove variation impacts, e.g. ADC, 

DAC offset, etc. by adding small offsets in ASIC. As shown in measurement results in Figure 

7.11, a retention time of up to 0.36ms (38k cycles) without refresh was observed with negligible 

accuracy degradation supporting a batch size of 37 images in VGG16. With larger batch size, the 

refresh operations incurred only up to 0.17% throughput overhead. The ADC skipping scheme 
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brings 65% saving of ADC energy with less than 0.4% accuracy impact using a 27% MAC value 

as the skipping threshold. Combining all the sparsity features, the macro power was reduced by 

2.1× on average under VGG16 model. As shown in Figure 7.12, the CNN accelerator was 

measured from 1.1V down to 0.85V showing a system efficiency from 29TOPS/W to 37TOPS/W 

without sparsity enhancement.  
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Figure 7.11 Measurement results: (a) DARAM cell retention time, (b) weight refresh overhead, 

(c) CIM macro power improvement.  
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Figure 7.12 Measurement results: (a) ADC saving vs skipping Vth of bitline cap, (b) voltage-

frequency scaling, (c) MAC linearity.  
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7.6 Comparison and Discussion 

Figure 7.13 shows the die photo and additional information. Comparison with prior work 

was made in Table 7.1. Compared to the closest system implementation in [21], at 4-bit 

weight/input operation, an 8× system energy efficiency improvement at 44.7TOPS/W is achieved 

along with 3× area reduction in macro size. Overall, this work achieves a state-of-art macro 

efficiency of 217TOPS/W at 4 bits, which is more than 3× improved from those reported in 

closer technologies and is only 32% lower than that reported in a recent 7nm technology. In 

addition, an effective bit cell area smaller than foundry supplied 6T SRAM is achieved.  

 

Figure 7.13 Die photo and chip specifications. 

 

7.7 Summary 

In this Chapter, a dynamic analog RAM based Computing-In-Memory macro and 

associated CNN accelerator is demonstrated in a 65nm CMOS test chip. With special analog 



112 
 

sparsity techniques and retention enhancement, the design achieves state-of-art energy efficiency 

of 217TOPS/W at CIM macro level and 44 TOPS/W at system level for 4 bits weight/input 

operation.  An effective bit cell size of only 75% of 6T foundry SRAM cell is also achieved. 

TABLE 7.1 COMPARISON TABLE OF PROPOSED 3T DARAM CIM CNN ACCELERATOR. 

 

[23] 

 

[19] 

 

[20] 

 

[21] 

 

   This work 

Memory Bit 
8T 

SRAM 

6T 

SRAM 

Twin-8T 

SRAM 
8T SRAM 3T Analog RAM 

Tech. (nm) 7 28 55 65 65 

Frequency 

(MHz) 
222 240 - 100 105 

System Area 

(mm2) 
- - - 9 3.3 

Size of Macro 

(bit) 
64×64 512×64 64×60 64×64 4×64×32 

Area of Macro 

(mm2) 
0.0032 - - 0.148 0.05 

Activation 

Precision (bit) 4 4/8 1/2/4 2/4/6/8 4/8 

Weight 

Precision (bit) 
4 4/8 2/5 4/8 4/8 

ADC Precision 

(bit) 
4 5 5 5 5 

Digital Storage - - - 164KB 172KB 

Sparsity 

Support 
- - - 

Activation + 

weight 

Activation + 

Weight + ADC 

Power of CIM 

Macro (mW) 
- - - 3.8 4.2 (raw) 

Energy 

Efficiency of 

CIM Macro at 

4bit 

Weight/Input 

(TOPS/W) 

321 68.44 22.96 25.83 
102.2 * (raw) 
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Chapter 8  

Digital Compatible Synthesis, Placement and Implementation of 

MSTC 

In this chapter, a comprehensive design flow for MSTC is presented. In the frontend, a 

variation-aware digital compatible synthesis flow is proposed. In the backend, a placement 

technique using graph-based optimization engine is proposed to deal with the especially stringent 

matching requirement in MSTC. Simulation results show significant improvement over the prior 

analog placement methods. A 55nm test chip is used to demonstrate that the proposed design 

flow can meet the stringent timing matching target for MSTC with significant performance boost 

over conventional digital design. 

Chapter 8 is organized as follows: the challenges and background of design automation in 

time domain is carried out in Chapter 8.1. The synthesis methodology is proposed in Chapter 8.2, 

and the backend design automation methodology in presented in Chapter 8.3. Chapter 8.4 shows 

the experimental results with summary written in Chapter 8.5.  

8.1 Design Automation in Mixed-Signal Time-Domain Computing 

8.1.1 Challenges of Time-domain Computing Design Automation 

As MSTC relies on the precise timing control for information processing, variation and 

mismatch of signal timing could lead to computation errors. As the least-significant-bit (LSB) 

resolution is pre-defined, e.g. 25ps used in this work, a variation of timing beyond this value will 

lead to single-bit error. Specially, local variation or mismatch creates the largest threat to the 
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operation similar to analog computing. Comparing to digital design, a much more stringent 

backend layout is needed in consideration of matching, variation, crosstalk and signal slew rate. 

In addition, as MSTC usually performs more complex algorithms [11, 14], the signal paths and 

matching components in MSTC are much more complicated than a typical analog design leading 

to more challenges in the front-end or back-end design for MSTC.  

8.1.2 Proposed Digital Compatible Design Methodology 

TC-logic 
Synthesis 

TC-logic Place 
& Route 

• Embedded Time-based RTL
• Digital RTL Compatible

• Technology Mapping
• Variation Aware Synthesis

• ACG-based Flow 
• Matching-aware Placement
• Simulated Annealing
• Critical-signal Handling      

  

  module NN_module(); 

           ...

       assign mul0 = a0 *(T) b0;

       assign mul1 = a1 *(T) b1;

             ...

  endmodule
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Figure 8.1 Flowchart of proposed MSTC automation flow. 

Figure 8.1 shows the overview of the proposed digital compatible design automation flow. 

Particularly, a specially developed time-domain RTL code is attached to conventional Verilog 

language to denote the special design of the time-domain logic operation. Based on the hybrid 

RTL codes, the synthesis tool provides logic synthesis and technology mapping to create a gate-

level netlist using both standard cells and digital friendly time-domain modules. Variation 

awareness is implemented into the synthesis process. At the back-end, an ACG-based placement 

technique is developed to handle the stringent signal matching requirement of MSTC design.  
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8.2 Synthesis of Time-Domain Logic 

To create a digital-compatible design flow for MSTC design, synthesis needs to create 

gate-level netlist similar to the conventional digital design. The proposed technique is realized by 

embedding a special plug-in script into existing RTL/synthesis flow. It handles not only the 

generation of time-domain cells but also special requirements in MSTC, such as variation. 

8.2.1 Overview of Proposed MSTC Synthesis Technique 

The bottom of Figure 8.1 shows the flow of the proposed synthesis technique: (1) the RTL 

with customized syntax for time-domain logics is utilized to perform a special MSTC logic 

synthesis process. As a result, both conventional digital and time-domain logics are synthesized 

into an initial gate-level netlist. The size of each cell is set to the smallest size at this step. (2) 

The initial netlist is then sent to a netlist optimizer to exercise the sizing options of each module 

to meet the variation budget while minimizing area consumption.  

 

8.2.2 Implementation of MSTC Synthesis 

The proposed logic synthesis script can recognize special syntax used for the MSTC RTL. 

In the MSTC RTL, a special syntax is developed to denote the MSTC operation, e.g. add and 

multiplication. The special keyword “(T)” after the operation symbol “+” or “×” is used to 

denote the MSTC operation as shown in Table 1. The synthesis script works as a plug-in script 

on top of conventional synthesis tool. Special mapping functions are called for generating time-

domain circuits similar to the conventional technology mapping. For instance, the “?” operation 

symbol in time-domain RTL, is mapped into a time-domain. 
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The variation sensitivity function is introduced for netlist optimization. We define the 3-

sigma variation of MSTC modules, which is a function of the size s as 𝜎(𝑠). Apparently, the 

𝜎(𝑠) decreases as s increases. The area of MSTC modules is a function of the size s as 𝐴(𝑠). The 

variation sensitivity function is shown as: 

𝐹𝑠𝑒𝑛(𝑠) =  𝛾
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
                                                           (8.1) 

where 
𝑑𝜎(𝑠)

𝑑𝐴(𝑠)
 term represents the variation sensitivity comes from the module, and 𝛾 term 

represents the significance of the module, e.g. module in a convergent path. As most MSTC cells 

are standard-cell like, we follow the standard cell sizing convention, e.g. 1×, 2×, etc. 

Assume that we have totally n modules, X1, X2, … Xn, the size of each module is s1, s2, … 

sn. Besides, there are p critical paths need to be considered in the placement. The optimization 

problem of netlist is then formed in (8.2) and (8.3): 

Minimize ∑ 𝐴(𝑠𝑖)
𝑛
𝑖=1                                                            (8.2) 

 ∀ 𝑝𝑎𝑡ℎ𝑠 ∈ 𝑃, 𝑠. 𝑡. √∑ 𝜎𝑝
2(𝑠𝑖)

𝑛
𝑖=1  ≤  𝜎𝑇                                             (8.3) 

where 𝜎𝑝(𝑠𝑖) is the variation comes from Xi, and 𝐴(𝑠𝑖) is the area of Xi. The pseudo code 

of the optimization is shown as follows. 
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TABLE 8.1 NETLIST OPTIMIZATION ALGORITHM 

 

Algorithm 1 Netlist Optimization Algorithm  

Input:  Initial netlist of module X1, X2, …Xn, with minimum sizing s1, s2, … sn. 
Output:  Netlist which satisfies variation budget with minimum area 
1: for all critical paths p in the netlist do 

2:     while √∑ 𝜎𝑖
2(𝑠𝑖)

𝑛
𝑖=1  >  𝜎𝑇 do 

3:         for i = 1 to n do 
4:     find the module j = i, with maximum 𝐹𝑠𝑒𝑛(𝑠𝑗) 

5:         end  
6:     Increase the size of module j by 1×, update sj 

7:     end 
8: end 
9: Return the netlist with current sizing 

TABLE 8.2 EXAMPLE RTL IMPLEMENTATION OF MSTC-NEURAL NODE. 

1 

2 

… 

6 

… 

11 

12 

13 

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, out); 

 input [1:0] a0, a1, a2, a3; 

 … 

 assign mul0 = a0 *(T) b0; 

 … 

 assign mac1 = mul2 +(T) mul3; 

 assign out = (mac0 >= mac1) ?(T) 0 : 1; 

endmodule 

TABLE 8.3 EXAMPLE NETLIST OF MSTC-NEURAL NODE FROM SYNTHESIS. 

1 

2 

… 

6 

… 

13 

14 

15 

module NN_module (a0, a1, a2, a3, b0, b1, b2, b3, in, out); 

 input [1:0] a0, a1, a2, a3; 

 … 

 TC_TE_X3 I0 (.IN(in), .DIN(a0), .OUT(te0)); 

 … 

 TC_MUX_X4 I7 (.A(mul2), .B(te3), .S(b3), .OUT(mac1)); 

 TC_CMP_X2 I8 (.a(mac0), .b(mac1), .out(out)); 

endmodule 

Given the initial netlist generated by MSTC logic mapping from MSTC RTL with 

minimum sizing, we first check if the variation of all critical paths meets the budget 𝜎𝑇. If yes, 

the optimization is completed. Otherwise, the following step is performed in which we traverse 
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the netlist to find out the most effective module in the critical path, i.e. highest variation 

sensitivity. The size s of this module is then increased by 1×. We keep repeating the previous 

steps until the variation targets of all critical paths are met.  

 

8.3 Proposed Mixed-Signal Placement 

Due to the lack of prior techniques on automatic placement for MSTC circuits [11, 14, 13, 

31], in this section, we propose a practical and efficient placement technique for MSTC circuit 

utilizing adjacent constraint graph (ACG) based optimization engine to deal with the stringent 

matching requirements. It is worth to mention that although automatic placement has been 

proposed previously for analog/mixed-signal design [35, 36], MSTC poses special challenges, 

i.e. massive-stage-symmetry (MASS), as referred in this paper, and hence requires special 

techniques not available from the prior work. The special matching requirement of MASS for 

time domain circuits are highlighted as follows: 

1) Module symmetry and stage symmetry constraint: modules within certain groups must 

be placed symmetrically with respect to a horizontal or a vertical axis to maintain the matching 

of critical MSTC signal. Moreover, modules on symmetry paths need to be place symmetrically 

in each stage.  

2) Clustering constraint: certain MSTC modules must be placed near to each other in order 

to isolate the critical MSTC modules from other digital modules.  

3) Shortest critical signal path constraint: the wire length of critical paths must be 

minimized in order to relieve the variation impact of MSTC circuit and improve slew rate of the 

signals. 
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Similar constraints are observed in the existing analog placement/floorplan design, but 

MSTC design has more challenges due to its larger numbers of components as described in the 

follows.  

8.3.1 Preliminaries 

Topological representations are widely used in solving analog placement problems, in 

which, the relative positions between the modules are encoded. Typical topological 

representations are slicing tree [37], sequence-pairs (SP) [38], O-tree [39], B*-trees [40], and 

TCG-S [41]. Most of these works have been applied to handle the symmetry constraint and other 

constraints like the centroid constraint. However, these representations are not suitable for 

solving the MASS placement problem of MSTC design as explained as follows. 
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                                             (a)                                                             (b) 

Figure 8.2 Symmetry group in (a) conventional analog design, (b) time-domain computing 

design.  

1) A complete representation is preferred in order to efficiently handle the special 

constraints like symmetry and critical path constraints. For example, tree-based representation 

doesn’t provide complete topological information, which makes it harder to check the relations, 

e.g. horizontal relation, between modules. 
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2) When dealing with symmetry constraint, we form a symmetry group with multiple 

symmetry pairs. However, in most of analog placement problem, each symmetry pair in the 

symmetry group only contains few modules as shown in Figure 8.2  (a). On the other hand, in the 

MSTC design, large numbers of modules, defined by the algorithm, e.g. LDPC [11], need to be 

allocated symmetrically through hierarchies as shown in Figure 8.2 (b).  

3) For MSTC design, we not only need to place the modules symmetrically within a set, 

but also need to guarantee the matching across different hierarchy on the long signal paths. As 

shown in Figure 3.3 (b), the modules on path p0 must be symmetric with the modules on paths 

p1 – p3 leading to stringent multi-path matching problems for sequence of modules. This not 

only requires a massive symmetry placement within a symmetry group but also requires 

carefully match at each stage. Thus, the MASS becomes a special challenge in the MSTC 

placement.  

Adjacent Constraint Graph (ACG) [70]representation is chosen in this work due to the 

following advantages: compared with existing placement techniques, ACG has the advantage of 

efficiency and succinctness when dealing with the symmetry and other constraints. Without the 

redundant edges, the number of edges in ACG is O(nlog(n)), much smaller than the O(n2) 

number of edges in TCG-S or SP. ACG is also more flexible than other representations in 

performing packing. 

 

Assume we are given a set of n modules with areas Ai where i = 1. . . n, together with a set 

of j nets N1, N2 . . . Nj. Our objective is to obtain a placement F of the circuit satisfying all the 

placement constraints mentioned previously while minimizing a cost function:  

C(𝐹) = A(𝐹) + 𝛼 × W(𝐹) + 𝛽 × W_penalty(𝐹)                                    (8.4) 
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where A(F) is the total area of F, W(F) is the total wire length of F, W_penalty(F) is the 

total wire length of wires between the modules which violated the constraint after the packing 

stage. α and β are empirical coefficients used for regulating the weights of wire length and wiring 

violation. 

8.3.2 Adjacent Constraint Graph (ACG) Representation 

The basic idea of the ACG representation, briefly described below, is to encode any 

rectangle packing as an ordered module sequences with edges which indicates the spatial 

relations [70].  
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             (a)                                            (b)                           (c)                                (d) 

Figure 8.3 (a) A floorplan, (b) constraint graphs in horizontal (solid edges) and vertical (dotted 

edges) directions, (c) ACG Graph, (d) ACG data structure. 

As an illustration, for a floorplan given in  Figure 8.3 (a), its constraint graph in both 

horizontal and vertical directions are shown in Figure 8.3 (b). As the essential idea of constraint 

graph is used for avoiding module overlap, any two modules must have at least one relation 

(“left” or “below to”). Thus, over-specification has no benefit in terms of representation. Since 

those redundant edges are unnecessary for placement, we can remove those edges and the result 

is an ACG representation (Figure 8.3 (c)). The corresponding ACG data structure is shown in 

Figure 8.3 (d). The vertices will be doubly linked in a linear order. Edges are all directed from 

left to right. The edges above the vertex line represent horizontal (H) relations and those below 
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represent vertical (V) relations.  

8.3.3 Proposed MSTC Placement Approach 

Simulated annealing is employed as the basic searching engine in our approach with ACG 

as the representation. Our proposed placement algorithm works as follows. It first generates an 

initial ACG representation following the default cells order, which also satisfies all the 

constraints proposed by the designer. After the initial solution is generated, the simulated 

annealing process is applied. In each iteration the following steps are performed: (1) three 

categories of perturbations/moves are introduced. All these perturbations are complete in terms 

of the searching space; (2) After the perturbation, a new ACG is generated and the corresponding 

packing is produced based on the longest path algorithm; (3) Area and interconnect cost with 

extra penalties are computed based on the new packing. (4) Check whether the annealing process 

should continue based on the current temperature and cost. The flowchart is shown in Figure 8.4.  

8.3.4 Handling of Placement Constraints in MSTC 

In MSTC circuit, symmetry constraint (marked in blue in Figure 8.5 (a)) can be handled as 

follows (we assume the symmetric modules are symmetric with respect to a horizontal axis): 

1) If modules Y1, Y2, Y3, and Y4 are required to be symmetric, all of them must be in 

vertical relations. In the other word, every two of them must be connected by horizontal edges in 

the ACG.  

2) The x coordinates of modules Y1, Y2, Y3, and Y4 must be same which can be regulated 

during the packing stage.  

3) The distances between adjacent modules must be same.  
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Figure 8.4: Example of (a) symmetric constraint, (b) clustering constraint, (c) critical signal path 

constraint. 

Clustering constraint can be handled by forcing the modules in the same clustering group to 

abut each other in ACG representation. Besides, we introduce the penalty term in the cost 

function to force the placement to obey the constraint. An example of clustering constraint 

among modules Y1-Y9 is shown in Figure 8.5 (b). 

To handle this constraint, the total wire lengths of these paths need be as short as possible 

(P1 and P0 in Figure 8.5). The constraint can be handled by (1) guaranteeing horizontal relations 

for the modules in same critical path in ACG, e.g. Y1, Y2, Y3 and Y4; (2) increasing the weight of 

nets which are on the critical paths when calculating the cost of total wire length. As a result, the 

placement engine tends to move the modules which are not on critical signal path, e.g. X1, away 

from the critical path P0. 
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8.3.5 Set of Perturbations/Moves 
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Figure 8.5 Example of moves in (symmetry group are marked in blue): (a) category 1, (b) 

category 2, (c) category 3. 

We employ the following set of moves to perturb a current candidate ACG. The 

moves/perturbations can be divided into three categories: (a) exchange of two random modules, 

(b) group exchange of the symmetric sets, and (c) editing edges in the current ACG 

representation. The details of moves are given as follows:  

1) In the first category (Figure 8.5 (a)), there are three different types of exchanges: (1) 

Exchange two random modules which are not in any of the symmetry groups. (2) Exchange two 

random modules within a symmetric set. (3) Exchange one module which is inside of one 

symmetry group and another module which is outside of that symmetry group. This movement 

cannot be guaranteed to not violate the symmetry constraint. Thus, a special checker is 

implemented to check the feasibility of the new generated ACG. If such a move violates the 

constraints, penalty will be added to the cost function shown in eq. (8.4). 

2) Figure 8.5 (b) shows one example of second category. This group exchange also needs 

special checker to check the feasibility of the new ACG after such a move. It provides the chance 

of moving away the modules which are located inside of a symmetry group.  
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3) The third category involves the modification of ACG edges including (1) changing 

current edge type from horizontal to vertical or vice versa; (2) Adding or removing the existing 

current edges while following the ACG requirement. We only allow modifying the edges of the 

modules which are outside of symmetry group. In this way, all the constraint within the 

symmetry group cannot be violated. An example of modify the edge between Y14 and Y15 from 

vertical to horizontal is shown in Figure 8.5 (c). 

 

8.3.6 Packing and Routing 

A new packing algorithm is derived from conventional packing scheme based on the 

longest path algorithm. Different from previous work, the proposed packing algorithm allows us 

to pack the selected modules in respect to the symmetry axis instead of only to the lower bottom 

corner of plane [38, 40]. The packing example of conventional and our proposed ways are shown 

in Figure 8.6 with symmetric modules marked in blue.  
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Figure 8.6: Example of packing (a) to lower-bottom corner, and (b) respect to the symmetry axis. 

We utilize the Innovus tool to handle the routing job. Since the MSTC cells follow the 

digital cell’s implementation and are well organized after the proposed placement, e.g. the cells 

on the same critical path are placed abut to each other, the Innovus tool can handle the routing 

job appropriately.  



126 
 

8.4 Experimental Results 

8.4.1 Time-domain WTA Operation Implementation 
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Figure 8.7 Topology and implementation of WTA in MSTC. 

We compare our proposed ACG-based placement flow to other existing work [38, 40] on a 

winner-take-all (WTA) circuit, which is a commonly used digital module in machine learning 

based classifiers. Figure 8.7 shows the design of the 8-input 6-bit WTA. The algorithm of WTA 

is based on binary comparison tree. The critical signals are propagated through 3 stages and the 

matching of 8 critical paths is the key concern of the design. The total number of critical digital 

modules for matching are 84 which is much larger than a typical matching problem observed in 

an analog design.  

We experiment the placement of WTA by different approaches: (a) use B* tree based 

placement method from [40], (b) use sequence pair (SP) based placement method from [38], (c) 

use the proposed placement method. The layout results of approaches (a), (b) and (c) are shown 

in the Figure 8.8. All the methods maintain a good symmetry property in the 1st stage (WTA2). 

However, both B* tree based and SP based placement methods have troubles in placing the 

modules properly in the stages 2 and 3 as (1) the modules in 2nd and 3rd stages are not placed in 

the central region with respect to the 1st stage leading to large signal routing mismatch between 
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critical signals; (2) The critical MSTC modules are not separated with other non-critical modules 

causing the slew rate degradation of the critical signals. These failures are mainly due to the 

following reasons: (1) both previous placement approaches pack the modules from lower bottom 

corner leading to difficulty in placing the selected modules in respect to the symmetry axis; (2) 

Both previous placement methods are short of the ability to deal with the clustering and critical-

path constraints.  

 

                         (a)                                               (b)                                                (c) 

Figure 8.8 Layout of placement methods: (a) B* tree based [40], (b) sequence pair based [38], (c) 

proposed design in this work. 
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Figure 8.9 Simulation result of mismatch for (a) B* tree based placement [40], (b) sequence pair 

based placement [38], (c) our proposed technique, (d) conventional digital design. 

As a result, they failed to place the critical time-domain modules to be close to each other 

avoiding non-critical modules to block the critical paths. On the other hand, due to the efficiency 

and succinctness of ACG-based representation, it’s much easier to handle the cluster and critical 
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path constraints. As a result, the above issues can be properly resolved by the proposed ACG-

based placement with good matching through stages of critical paths (Figure 8.8 (c)). 

After the layout is generated from Innovus, we import the layout back into Cadence 

Virtuoso to perform spice simulation with parasitic extraction. The simulation result of matching 

for the 8 critical paths is shown in Figure 8.9 in comparison among B* tree method, SP method, 

proposed method and conventional digital design using EDA tools. As we can see, the mismatch 

from using B* tree based and SP based placement method are better than that from the 

conventional digital flow. However, the mismatch from these two methods are still significantly 

larger than our proposed ACG-based placement method whose mismatch is less than 1ps. Thus, 

the proposed placement methodology provides both the efficiency and accuracy in dealing with 

MSTC design. Table 3 summarizes the performance of different methods. The algorithms are 

implemented in C++ and run on a Windows machine with 2.6GHz i7 Quad-core and 8GB RAM. 

Note that ACG-based placement method also achieves the lowest runtime mainly due to the 

efficient and succinct representation when deal with complex matching constraints. For example, 

the number of edges in ACG is O(nlog(n)), while it’s O(n2) in SP. Even though the edge number 

is only O(n) in B* tree, it lacks a complete topology information used for dealing with MSTC 

constraints which makes the number of searching iteration larger.  

TABLE 8.4 PERFORMANCE COMPARISON FOR PLACEMENT METHODS. 

Methods B* tree 

[40] 

SP  

[38] 

This work 

Mismatch (ps) 5.3 4.5 1 

Slew rate (ps) 22 19 13 

Run time (s) 23 85 18 

Area (um2) 1484 1536 1600 
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8.4.2 Time-domain Image Processing Implementation 

For demonstration, we adopt a basic facial recognition algorithm into a hybrid ASIC design 

with time-domain accelerators. The operations of the image recognition algorithm involve three 

steps: (1) feature extraction which performs median filtering and detects edges in four directions. 

(2) Vector formation; (3) Classification where the generated feature vector is classified by a 

winner-take-all (WTA) classifier. In our design, the median filter for feature extraction and WTA 

for final classification were designed in time-domain to remove the bottlenecks of the 

algorithm [26]. In particular, the proposed synthesis and placement techniques were applied on 

the WTA design leading to the layout for the fabricated chips.  

 

8.5.3 Measurement Results 

The 55nm test chip was fabricated and measured across 10 chips. No error was observed at 

internal time-domain results or final classification at the design target speed of 1.33GHz.  

 

Figure 8.10 Mismatch measurement results; y axis denotes the absolute variation from the 

nominal delay.  

Figure 8.10 shows the measured on-chip mismatch of 8 critical paths from 10 chips in 

WTA circuits. The mismatches were measured by using an on-chip time-digital-converter (TDC) 
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with 5ps resolution. As shown, the measured mismatch is within 0.5 LSB, which verifies the 

feasibility of handling variation (synthesis) and layout mismatch (placement) of the proposed 

methodology. No systematic mismatch was observable from the measurement proving the good 

matching performance of the placement algorithm. The mismatch was dominated by the random 

process variation which has been properly budgeted (within half of LSB, i.e. 12ps as 3-sigma 

variation target) from the proposed synthesis flow. The die micrograph and the specification of 

WTA is shown in Figure 8.11. The design is compared with conventional ASIC with standard 

synthesis and place and route implementation. A 42% area saving, a 1.7× speedup and a 23% 

power saving, is observed in the time-domain WTA accelerator compared to ASIC 

implementation. The overall image recognition processor operates at 1.33GHz with a state-of-art 

throughput of 72 frames per second.  
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Figure 8.11 Die photo and specifications of the WTA design.  

 

8.5 Summary  

This chapter proposes a comprehensive digital compatible design flow including frontend 

synthesis and backend placement for MSTC. In the synthesis stage, our proposed technique can 

handle the variation requirement while minimizing the estimated area of the circuit. In the 
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backend stage, an ACG-based placement algorithm is developed to handle the complex 

placement constraints for MSTC design. The comparison with prior analog placement schemes 

shows much improved matching performance from the proposed method. The proposed 

synthesis and placement flow are demonstrated by a 55nm test chip showing on-target mismatch 

results and significant performance enhancement from MSTC compared with digital 

implementation.  
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Chapter 9  

Conclusion and Future Work 

Special purpose accelerators have recently gained significant interests thanks to the bloom 

of machine learning applications. It is predicted that the special purpose artificial intelligence 

(AI) chips with built-in machine learning accelerators will grow from $6 billion in 2018 to $90 

billion in 2025 specially contributed by the edge devices [71]. Conventional digital design started 

to encounter difficulties in fulfilling the rapid-growing computation demand for these 

computation-intensive applications. Alternative solutions like mixed-signal time-domain 

computing have drawn significant attention recently due to their computation efficiency in 

conducting both arithmetic and non-linear operations. 

In this thesis, a comprehensive design realm in MSTC is presented including circuit-, 

algorithm-, architecture- and design methodology-level innovations.  

At the circuit level, high-precision low-cost time-domain operation modules are introduced 

to efficiently conduct computation workloads in time domain. Time encoding and decoding 

circuits, i.e. digital-to-time converter and time-to-digital converter, are implemented to convert 

signals between time and digital domains. Basic arithmetic and Boolean operation modules are 

realized by succinct digital cells to conduct basic computation in time domain. Most of these 

time-domain operations improve the energy/area efficiency by over 10× compared to digital 

counterparts. Borrowing the ideas from analog computing, a sub-threshold time-domain 

multiplier is proposed in time domain, which renders an improvement of 4× compared to digital 

multiplier. More complex operations like median filter and multiply-accumulate (MAC) are 



133 
 

implemented based on those element modules. In addition, a special time-domain flip-flop circuit 

is developed to enable the very first pipeline architecture in time domain. Finally, a multi-bit 

dynamic RAM memory cell is introduced to conduct Compute-In-Memory (CIM) tasks in time 

domain, showing 8× of improvement in energy and 3× in area compared to the state-of-art CIM 

design.  

At the algorithm level, many interesting adaptations of complex algorithms like median 

filter and winner-take-all are developed to show the computation efficiency in time domain. 

Moreover, some hardware-friendly algorithms are introduced to make the complicated 

application applicable to time-domain computing. For instance, to overcome the resource 

limitation of realizing AI applications on edge devices, an adaptive training and a model 

balancing algorithm for time-domain GAN accelerator design are introduced. Finally, to improve 

the hardware utilization in conducting AI tasks, some sparsity-aware algorithms are developed. 

For example, in time-domain CIM accelerator design, the MAC-based and ReLU-based ADC 

skipping method is introduced, rendering an 50% energy saving for CIM macro.  

At the architecture level, the very first pipeline architecture in time domain is introduced, 

resulting in a 9-20× throughput improvement over prior work in both time and digital domains. 

A domain-conversion-free architecture that allows MAC operation to be completed computed in 

time domain, is proposed to remove the energy bottleneck coming from signal conversions.  

At the design methodology level, a comprehensive digital-compatible design flow including 

frontend synthesis and backend placement for MSTC, is proposed to mitigate the original manual 

design effort. The proposed synthesis and placement flow are demonstrated by a 55nm test chip 

showing on-target mismatch results and significant performance enhancement from MSTC 

compared to digital implementation. 
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As for the future work, we are planning to conduct research on a general-purpose mixed-

signal time-domain microcontroller used for near-sensor computing. Recently, near-sensor 

computing draws significant interests for low-power Internet of Things (IoT) devices as it 

relieves the overhead of data communication by processing the sensor data locally. However, the 

existing works suffer from the high cost of data conversion, e.g. the use of ADC. In this future 

work, we are going to propose a near-sensor microcontroller with embedded time-domain 

computing which eliminates the conversion of signal between digital and analog mixed-signal 

domains. Time-domain arithmetic logic units and pipelines will be seamlessly implemented into 

a RISC-V ISA to directedly process the signals generated from sensors. In addition, we will 

develop a dynamic time scaling technique to bridge the physical world with the digital world. 

Finally, we are planning to implement this work into a real silicon chip to verify the performance 

and robustness of the design.   
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