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Abstract

This dissertation comprises three essays in distinct areas of economic theory, yet all are

related to experimentation and learning.

In the first chapter, I study how organizations assign tasks to identify the best candi-

date to promote among a pool of workers. Task allocation and workers’ motivation interact

through the organization’s promotion decisions. The organization designs the workers’ ca-

reers to both screen and develop talent. When only non-routine tasks are informative about

a worker’s type and non-routine tasks are scarce, the organization’s preferred promotion

system is an index contest. Each worker is assigned a number that depends only on his own

type. The principal delegates the non-routine task to the worker whose current index is the

highest and promotes the first worker whose type exceeds a threshold. Each worker’s thresh-

old is independent of the other workers’ types. Competition is mediated by the allocation of

tasks: who gets the opportunity to prove themselves is a determinant factor in promotions.

Finally, features of the optimal promotion contest rationalize the prevalence of fast-track

promotion, the role of seniority, or when a group of workers is systemically advantaged.

The second chapter is co-authored with Matteo Camboni. We formulate a general op-

timal stopping problem that can accommodate various non-stationary environments, such

as situations where the decision maker’s patience, time pressure, and learning speed can

change gradually and abruptly over time. We show that, under mild regularity conditions,

this problem has a well-defined solution. Furthermore, we characterize the shape of the

stopping region in a large class of monotone environments and obtain comparative statics

on the timing and quality of decisions for many sequential sampling problems à la Wald.

For example, we show that accuracy increases (decreases) over time when, over time, (i) the

learning speed increases (decreases), or (ii) the discount rate decreases (increases) (i.e., the

decision maker values the future more (less) over time), or (iii) the time pressure decreases
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(increases). Since our main comparative static results hold locally, we can also capture

non-monotone relations between time and accuracy that consistently arise in perceptual and

cognitive testing.

The final chapter, co-authored with Udayan Vaidya and Boli Xu, concerns robustness

in mechanism design, with a particular emphasis on dynamic problems of learning and

experimentation. We develop a new approach to identify the class of mechanisms that

contains a robust optimum. Notably, our approach avoids the issues associated with explicitly

solving for the worst-case scenario, allowing us to consider new applications of robustness

to dynamic problems. In particular, we use our tools to characterize the robustly optimal

dynamic mechanism in a repeated seller-buyer model and the robustly optimal mechanism

in a principal-agent model in which the agent can search à la Weitzman (1979). In the first

case, the seller offers a sequence of statically optimal random posted prices, while in the

second, a debt contract is optimal.
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Chapter 1

Prove yourself: Dynamic delegation in

promotion contests

1.1 Introduction

Matching tasks to the right workers is crucial to an organization’s success. First, produc-

tive efficiency requires that more talented workers perform more complex, non-routine tasks.

Second, workers’ success in their current tasks is informative: Organizations also allocate

tasks to learn about the workers and improve future matches. Third, a worker’s assignment

determines what he learns on the job. Assigning the right worker to the right task is then

especially important when the organization seeks to identify and develop talented workers.1

Non-routine tasks are opportunities for workers to prove themselves. Workers understand

that their career trajectories in the organization depend on the opportunities to showcase

their talents. Task allocation and workers’ motivation then interact through the organiza-

tion’s promotion decisions. Designing a good promotion system is thus both challenging and

1Former Xerox CEO Anne Mulcahy insists in Mulcahy (2010) that it is crucial to identify candidates
for promotion early and give them “developmental responsibilities” to develop strong workers and test their
abilities.
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essential for the organization’s success.2

A sound promotion system must include the task allocation process and the promotion

rule. It must also balance exploitation (delegating non-routine tasks to a worker known

to be good and eventually promoting him) and exploration (giving responsibilities to new

workers). Ignoring exploration, one misses an essential part of the story: who gets the

opportunity to prove themselves is a determining factor in promotions. In this paper, I

ask how the organization optimally designs the promotion system to motivate workers and

tackle the exploration-exploitation trade-off. I also address the following questions: How

does incentive provision affect the allocation of tasks and the promotion decision? Can the

allocation of opportunities exacerbate initial differences to induce significant disparities over

time? What characteristics of a worker increase his chance of being promoted?

I explore these questions in a centralized dynamic contest model. A principal (she) has one

prize to award, the promotion. She decides how to allocate a non-routine task sequentially

to N workers (he/they) and when to give the prize. Each worker has a type represented by

a stochastic process, and the processes are independent. When the principal allocates the

non-routine task to a worker and the worker exerts effort, the principal gets a reward that

depends on the worker’s type. The worker’s type also evolves, and the evolution of types

could reflect the principal learning about the worker’s or the worker acquiring new skills on

the job. The other workers are assigned uninformative routine tasks, and their types remain

frozen. Finally, the principal can only use the promise of future promotion to motivate the

workers. In particular, in the baseline model, I rule out transfers to focus on the interaction

2For example, Rosen (1982) insists on the importance of selecting the right person to lead an organization
as they set its course, and their decisions are “magnifies” many times. Rohman et al. (2018) note that when
employees believe that promotion decisions are efficient, they are more likely to exert effort and follow the
organization’s leaders’ directions and recommendations. The same authors also point out that “stock returns
are nearly three times the market average, voluntary turnover is half that of industry peers, and metrics
for innovation, productivity, and growth consistently outperform competitors” at companies that manage
promotion effectively.
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between the two classical and conflicting3 purposes of promotions: to “assign people to the

roles where they can contribute the most to the organization’s performance” and to provide

“incentives and rewards” (Roberts and Milgrom (1992)).

My model builds on the canonical multi-armed bandit model but departs in one critical

aspect: the arms are workers who exert effort. Hence the arms are strategic. In the classic

bandit model, when the decision maker pulls an arm, she gets a reward drawn stochasti-

cally from some fixed distribution. In some contexts, this assumption fits the behavior of

the problem inputs: In clinical trials, it is natural to think that the patients will comply.

However, in my problem, each arm corresponds to a worker whose incentives differ from the

principal’s. So, the arms are strategic. When the principal allocates the non-routine task,

her reward and the flow of information are controlled by the workers’ choices of effort, and

the workers exert effort only when compensated for it by the promise of future promotion.

To incentivize effort, the principal must eventually promote a worker, stopping exploration.

In this setting, I characterize the principal-optimal promotion contest. Solving the prin-

cipal’s problem is challenging for three reasons. As in bandit models, the first one is the

problem’s dimensionality. The set of feasible promotion contests is large. Second, the prin-

cipal’s promotion decision can depend on all workers’ types and their effort histories. So, it

introduces a degree of dependence among the workers that complicates the problem.4 Fi-

nally, the workers are strategic. Not all delegation and promotion rules incentivize effort.

The set of “implementable” promotion contests is complex.

Nevertheless, the optimal contest is simple. I prove that, as in the canonical model,

indexability holds: The optimal promotion contest takes the form of an index contest. Each

worker is assigned a number (his index ) that depends only on his type and the cost of

3As famously illustrated by the Peter’s principle described in Peter et al. (1969).
4The stoppable bandit models studied in the literature were so under the (exogenous) restriction that

the decision to freeze an arm can only depend on the state of this arm. See, for example, Glazebrook (1979)
or Fershtman and Pavan (2022b).
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incentive provision. The principal sequentially delegates the non-routine task to the worker

whose index is the highest. Eventually, she promotes the first worker whose type exceeds a

threshold. Both the worker’s index and promotion threshold are independent of the successes

and failures of the other workers. Finally, I also show that it is optimal to promote one worker

only when the principal can design the prize-sharing rule, i.e., decide to promote multiple

workers. The optimal contest is a winner-take-all contest.

In the index contest, the delegation rule mediates the competition for promotion be-

tween the workers. To understand the determinants of promotions, it is crucial to consider

the factors that affect the allocation and timing of opportunities. This has two significant

consequences: (i) for the contractual arrangements between the principal and the workers

and (ii) for the effect of initial differences on promotion decisions (especially when thinking

about discrimination in promotion practices).

First, no mention of competition needs to appear in the contractual arrangement between

each worker and the principal. One interpretation of the index contest is the following. The

principal successively offers short-term individual trial contracts to one worker at a time.

Each trial contract specifies a target and a (potentially stochastic) deadline. The worker

gets the promotion if he achieves the target before the deadline. Otherwise, the manager

offers a new trial contract to one of the other workers until a worker eventually succeeds. The

trial contracts do not rely on relative performance measures: they are independent of what

the other workers do 5 The principal uses contracts that incentivize workers separately:

the promotion thresholds do not condition on indicators of relative performance (on the

5This appears consistent with some evidence that contracts and promotion guidelines rarely mention
relative performance explicitly. For example, both Bretz Jr et al. (1989) and Bretz Jr et al. (1992) find
that less than a third of organization uses rankings explicitly. Even among organizations that use ranking
measures, they generally ”supplement other performance appraisal methods” such as the management by
objectives approach (that relies on absolute performance, see Drucker (1954)). More recently, Campbell
(2008) provides evidence that promotion decisions are made on an absolute measure of performance in
the fast food industry. Finally, anecdotal evidence suggests that organizations that used explicit ranking
appear to be abandoning it, see O’Connor (2021). Unfortunately, more evidence and data on contracts and
promotion guidelines are seldom available.
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other workers’ types). This may be surprising: why would not the principal use relative

performance to compare the candidates and select the best of them? However, it should not

be. Who gets the opportunity already summarizes the relevant ranking information. In the

index contest, other workers’ efforts and successes only affect the likelihood that the worker

will be delegated the non-routine task and, hence, get the chance to prove themselves. It is

irrelevant to the promotion decision once the worker gets the opportunity.

Second, the principal delegates the non-routine task sequentially to the workers in the

index contest. This generates significant path dependence in promotion decisions: a worker

who is not given a chance initially may never get the opportunity to prove himself, hence, will

not be promoted. In particular, early successes have an outsized impact on the probability

of promotion. They increase both the likelihood of being promoted before any of the other

workers gets the opportunity to showcase their talent and the likelihood that the worker

is allocated the non-routine task again later. One should therefore be careful where to

look to identify discrimination in promotion practices. In particular, a firm may always

promote the most qualified candidate and yet discriminates. That is because the principal

may also discriminate through the allocation of opportunities. In the context of my model,

the index delegation rule may treat different groups very differently. For example, minor

differences among workers in learning speed or the cost of effort may lead the principal to

delegate to one first. In reinforcing environments,6 this dramatically affects their promotion

chance and expected time to promotion. There, the early assignment of the non-routine task

largely determines the promotion decision. If the principal delegation rule is biased toward

one group, workers from the other group will never get an opportunity to be promoted.

Moreover, at the time of promotion, they will also appear less qualified than the promoted

worker. Their type will be lower than that of the promoted worker, and they will not have

6This includes bad news Poisson learning or realistic representations of on-the-job learning. See Definition
8 in Section 1.4.
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worked on non-routine tasks as much. This is an instance of what has been described outside

of economics as systemic discrimination: discrimination based on systemic group differences

in observable characteristics or treatment (see Bohren et al. (2022) for a treatment of systemic

discrimination within economics).

I also obtain further predictions for organizational design from my characterization. A

notable feature of the index contest is that the promotion thresholds decrease over time.

So, a worker’s type, when promoted, decreases with time. A first consequence is that fast

tracks (i.e., that a quickly promoted worker often gets another promotion soon after, see

Baker et al. (1994) and Ariga et al. (1999)) should then not be surprising. When a worker is

promoted quickly, his type upon promotion is higher. Hence, he starts from a better place

when entering a potential new promotion contest at the next level. So, his expected time to

promotion decreases: the worker is expected to be promoted again soon. Second, the type of

a worker at the time of promotion decreases the longer he stays in his current position. So,

faster-promoted workers should perform better upon promotion than more slowly-promoted

workers. Third, in the index contest, seniority is not explicit but still confers an advantage.

It becomes easier to be promoted for a worker as time passes. The index contest backloads

incentives, implicitly putting weight on seniority.7

Finally, I study multiple extensions: I relax some of the assumptions made in the model.

I show that the winner-take-all index context is optimal when the principal can design the

prize. I consider the possibility of transfers, and I study different information structures. In

my setting, if transfers are unrestricted, the manager can incentivize effort at no cost, and

the first best is achieved. However, if wages only depend on the workers’ current types and

the workers are protected by limited liability, the principal cannot freely punish a worker who

decides to shirk. So, intertemporal distortions like the ones absent transfers are reintroduced,

7Seniority has been widely used as an explicit promotion criterion (especially in public administrations),
and, although it has fallen from favor since the 1980s, it is still seen as an important determinant of promo-
tions, see Dobson (1988) or Phelan and Lin (2001).
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and the index contest (with adapted indices and promotion thresholds) is optimal. Secondly,

in the baseline model, information is symmetric. All the players observe the types of all

workers. If only the workers observe their types and can credibly communicate them to the

principal, the index contest is still implementable (and optimal). In particular, workers do

not need to observe who has been in charge of the project and how successful other workers

were.

Besides promotion decisions, my results apply to various problems in which a principal

owns an asset and wants to allocate it to the best agent among a pool of candidates of

unknown ability. This includes outsourcing and procurement decisions by firms, a venture

capitalist’s investment decision between multiple start-ups, or the CERN research board

deciding which team of researchers can use the colliders and when an experiment should be

abandoned, for example. When the principal earns rewards and learns by delegating the

asset, the optimal mechanism is an index contest.

The rest of the article is organized as follows. The related literature is discussed in

the remainder of the introduction. In Section 1.2, I formally describe the environment. In

Section 1.3, I introduce the index contest and presents its properties. In Section 1.4, I study

the implications of my findings on discrimination. In Section 1.5, I present an outline of

the proof of my main result: the optimality of the index contest. In Section 1.6, I consider

extensions. I conclude in Section 1.7 with a brief discussion of the results and lines of future

research. All proofs not in the main text are in the Appendices A.1, A.2, and supplemental

Appendix A.3.

Literature: This paper studies a dynamic contest for experimentation and characterizes

the optimal promotion contest when the principal can control the learning process. I then

use this model to study a big under-studied topic in personnel economics: how the allocation

of tasks affects promotions and worker careers. So, my paper builds on several streams of

literature.
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First, as mentioned above, I build on the canonical bandit problem solved in Gittins and

Jones (1974). Gittins et al. (2011) offer a textbook treatment. Bergemann and Valimaki

(2006) is a good survey on bandit problems (in economics). Here, the authors solve for the

optimal delegation rule when the arms are passive. Other papers in this literature consider

learning about multiple alternatives before making an (irreversible) decision. Examples

includes Austen-Smith and Martinelli (2018), Fudenberg et al. (2018), Ke and Villas-Boas

(2019), Ke et al. (2016), and Che and Mierendorff (2019). More closely related is the study of

stoppable bandit models in Glazebrook (1979). Glazebrook considers a multi-armed bandit

model in which the decision maker decides which arm to pull every period but can also

choose to freeze an arm and play it forever. He gives conditions under which indexability

is preserved. Again, all these papers are concerned with a decision problem: the arms or

alternatives are passive, and they study the optimal way to allocate attention before making

a decision absent incentive consideration. This is fundamentally different from my model. I

am interested in how organizations allocate tasks when the arms are strategic. To solve this

problem, I identify a new condition under which indexability holds in bandit superprocess

problems. I then use this condition to show that the problem’s separability is preserved.

Despite the strategic nature of the problem, the optimal delegation rule is an index rule.

A few other papers also look at bandit problems with strategic arms. The key distinction

between these papers and mine is that, in my paper, the principal is constrained in her ability

to provide incentives. In particular, there are no transfers (or only limited transfers), and

promotions are scarce. So the agents compete for the prize, which creates a strategic depen-

dence between arms. This strategic dependence is largely absent in the other papers in this

literature. In Bergemann and Välimäki (1996) and Felli and Harris (1996, 2018), a principal

allocates an asset between two strategic agents over time. The values from allocating to each

agent for the principal are initially unknown but can be learned over time. Their models,

like mine, can be understood as bandit models with strategic arms. However, in Bergemann
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and Välimäki (1996); Felli and Harris (1996, 2018), transfers are unrestricted and only affect

the “cost of utilization” of each arm, not the information the players get. This implies that

all (Markov Perfect) equilibria are efficient (or pairwise efficient in Felli and Harris (2018)).

So, the allocation policy is undistorted in any (Markov Perfect) equilibrium.8 Since the

classic Gittins index policy maximizes total surplus, the principal always chooses the agent

whose associated Gittins index is the highest. The question is then how surplus is allocated

between players. On the other hand, in my framework, the conflict of interest between the

principal and the workers prevents allocative efficiency. This is also the case in Kakade et al.

(2013), Pavan et al. (2014), Bardhi et al. (2020), or Fershtman and Pavan (2022a), who study

strategic bandit models in which the experimentation outcomes are privately observed; or in

Guo (2016) and McClellan (2017), who study versions of a 1
1
2 -arm strategic bandit model

when the principal has limited instruments. For example, in Kakade et al. (2013), Pavan

et al. (2014), Bardhi et al. (2020), or Fershtman and Pavan (2022a), to incentivize disclo-

sure, the principal needs to pay rents to the agents. The latter creates dissonance between

the principal’s and the agents’ value for experimentation and, hence, changes the relative

value of pulling one arm rather than another. In these papers, the indices are, therefore,

also distorted. Contrary to my paper, however, there is no strategic dependency between

the arms in the above papers. The presence of transfers allows them to abstract from any

linkage of incentive problems across employees. The allocation maximizes the total virtual

value and therefore follows from the standard Gittins characterization applied to the “virtual

value processes”. In my setting, this linkage of incentives is central as promotions, hence

incentives, are scarce. The principal has to promise an eventual promotion for which the

workers compete. Promise-keeping then distorts the future delegation process. In particular,

the set of implementable delegation rules in the continuation game depends on the history.

The classical approach to indexability therefore fails. Nevertheless, I show that indexability

8Although, in Felli and Harris (2018), the players’ investment decisions may be distorted.
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still holds. The indices reflect the strategic nature of the problem and the constraints it

places on both learning and exploitation. I then focus on how incentives provision distorts

the delegation and promotion rules.

My paper is related to a last stream of works on multi-agent experimentation. See, for

instance, Bolton and Harris (1999), Keller et al. (2005), Bonatti and Hörner (2011), and

Halac et al. (2017). However, the fundamental trade-offs are different. In these papers, the

agents experiment on a common bandit machine and therefore have incentives to free-ride

on each others’ costly experimentation. Free-riding is absent from my model, as each arm is

a separate agent and the agent’s types are independent. So, there is no positive externality

across workers. The central trade-off in my paper is between retaining the option value of

experimentation and motivating workers. Two other papers on multi-agent experimentation

are related. De Clippel et al. (2021) and Deb et al. (2022) also study how to select the

best agent to execute a task when the agents only care about being selected. They focus on

different trade-offs than I do. Deb et al. (2022) look at the trade-off between retaining option

value via competition and harnessing gains from collaboration, while De Clippel et al. (2021)

are interested in mechanisms guaranteeing that the agents willingly display their private

information, ensuring efficiency. My paper is complementary to theirs. It illustrates how the

principal-optimal allocation rule responds to a different environment and trade-off.

In particular, I show that the optimal allocation rule is an index contest. So, my paper also

contributes to the growing literature on the design of dynamic contests pioneered by Taylor

(1995) and extended by Halac et al. (2017), Benkert and Letina (2020), or Ely et al. (2021).

The critical difference between my paper and the rest of the dynamic contest literature is

that, in my model, the contest is centralized; i.e., the principal controls the assignment

of tasks. Therefore, the set of participants at every point is endogenous and chosen by

the principal. This is crucial for my application. Organizations control the allocation of

tasks. Therefore, the results I derive are qualitatively different from those in the rest of
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the dynamic contest literature, where the set of participants is exogeneous. Moreover, the

optimal contest in my model is a winner-take-all contest and not a prize-sharing contest as in

Halac et al. (2017) or Ely et al. (2021), for example. Comparing my results to these papers

can also help us understand when a more meritocratic (winner-take-all) system or a more

equal (prize-sharing) system helps the principal.

Finally, my paper contributes to the extensive literature on personnel economics that

studies careers in organizations (see Prendergast (1999) for a survey). I consider an envi-

ronment where learning about workers shapes their career trajectories and hence generates

career-concern incentives (Harris and Holmstrom (1982); Holmström (1999)). MacDonald

(1982a,b), or Gibbons and Waldman (1999) also emphasize the importance of learning and

task assignments in shaping career dynamics, which Pastorino (2019) empirically documents.

In these papers, tasks are equally informative. So the players’ choices do not affect learn-

ing. Instead, I focus on a setting where tasks vary in the information they generate, as in

Antonovics and Golan (2012), Canidio and Patrick (2019), or Madsen et al. (2022). These

papers, however, focus on the distortionary effects of promotions and career concerns on

risk-taking when the workers control their occupational choices. In contrast, in my paper,

the principal controls the allocation of tasks. So my paper complements their findings. In

particular, I study a trade-off that arises in task allocation problems when the principal is

primarily concerned with alleviating the time inconsistency problem of promotions, as in

Waldman (2003), which is absent in their papers. Since promotions reward past effort and

sort workers, a sound promotion system should do both. Moreover, the optimal way to

incentivize effort may be suboptimal for selection. Indeed, as mentioned above, the optimal

index contest vastly differs from the optimal dynamic contest to incentivize effort in Ely

et al. (2021). I show how the principal-optimal task allocation balances incentives provision

and selection. This trade-off is also absent from other papers that look at how firms assign

tasks and learn, such as Pastorino et al. (2004) or Bar-Isaac and Lévy (2022), in which the
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principal can incentivize each worker’s effort separately. Finally, in all the previous papers

that study learning through task allocation, the employer faces no constraints on learning.

She can assign all workers to non-routine tasks simultaneously. On the contrary, I assume

that non-routine tasks are scarce, reflecting that not all workers can simultaneously lead a

team, for example. So, my paper complements their works by studying how firms design

careers to screen and develop workers when learning opportunities are limited. In particular,

I show that the delegation process is sequential, meritocratic, and creates a significant path

dependence in promotion decisions: The principal first delegates opportunities to the best

workers as measured by their index and immediately promotes them in case of success. So,

my paper also relates to the analysis of turnover in a leadership position. This question has

been studied by, among others, Mortensen and Pissarides (1994), Atkeson and Cole (2005),

and Garrett and Pavan (2012). As in these papers, seniority matters for promotion decisions,

and I extend such finding to a multi-agent setting. Here the main difference is my focus on

the dynamic process of experimentation that leads to the promotion decision.

1.2 Model

Let (Ω, F̄ ,P) be a probability space rich enough to accommodate all the objects defined

below. A principal (she) and N workers (he/they) interact in an infinite-horizon continuous-

time stochastic game. All players discount the future at a common discount rate r > 0.9 The

principal has to decide how to delegate one non-routine task and many routine tasks among

the workers to maximize her continuation value. When the non-routine task is delegated to

one of the workers, the principal gets a flow rewards that depends on the current type of the

worker and whether the worker exerts effort. If he does, his type also evolves (stochastically).

To motivate the workers to exert effort when delegated the non-routine task, the principal

9This assumption can be relaxed: the analysis can also accommodate for random discount factors for
example.



CHAPTER 1. DYNAMIC DELEGATION IN PROMOTION CONTESTS 22

can allocate an indivisible prize that the wokers value; i.e., she can decide to promote one of

them.

1.2.1 Actions

Heuristically, at each time t, the principal and the workers play in the “stage game” depicted

in figure 1.1. Within each period [t, t + dt), the principal chooses who to delegate the non-

routine task to. The other workers are allocated routine tasks. When she delegates the

non-routine task to worker i ∈ {1, . . . , N}, worker i then decides whether to exert effort to

complete the task. If worker i exerts effort, the principal learns about worker i, gets a reward

πi (xi) that depends on worker i’s current type xi, and worker i’s type evolves (stochastically).

If he does not, the principal gets no reward and worker i’s type stay the same. The principal

then decides whether to (i) continue to experiment before allocating the prize, (ii) promote

one of the workers, or (iii) allocate the prize to an external worker (i.e. take her outside

option W ). If she chooses to continue to experiment, the next “period”, [t+ dt, t+ 2dt) the

players play the same “stage game”. If she chose to allocate the prize, her only decision in

the continuation game is who to delegate the non-routine task to. The workers then decides

whether to exert effort to complete the task. I assume that the principal can commit at time

zero to an history contingent sequence of plays, while the workers cannot.

Formally, at time t = 0, the principal commits to a history-dependent promotion contest

comprising of (i) a promotion time τ specifying when the promotion is allocated; (ii) a

promotion decision d specifying which of the workers is promoted; and (iii) a delegation rule

α that assigns at every instant the non-routine task to some worker.

The promotion time, τ , is a F̄ -measurable mapping from Ω to R. The promotion deci-

sion is a (stochastic) process d =
(
d0 = {d0t}t≥0 , . . . , d

N =
{
dNt
}
t≥0

)
, which takes value in

{0, 1}N+1 ∩ ∆N+1, where ∆N+1 is the N + 1-dimensional simplex. If diτ = 1, worker i is
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P delegates to
i ∈ {1, 2}

i decides whether to
exert effort ei ∈ {0, 1}

P gets flow payoff
eiπi(X i

t)

i’s type evolves:
X i

t+dt = X i
t + eidX i

t

P decides whether to:
(i) continue the game, or
(ii) promote j ∈ {1, , . . . , N}, or
(iii) take outside option W

Period t+ dtPeriod t

Figure 1.1: Heuristic “stage game”

promoted at time τ . d0τ = 1 stands for the principal’s decision to take her outside option.

Finally, the delegation rule α =
(
α1 = {α1

t}t≥0 , . . . , α
N =

{
αN
t

}
t≥0

)
is a (stochastic) process

which takes value in the N -dimensional simplex, ∆N . αi
t is the share of the non-routine task

worker i is responsible for at each instant t ≥ 0. The process t → αt is (at least) Borel

measurable P-a.s..10

Workers cannot commit. Each instant, they decide whether to exert effort when delegated

(a positive share of) the non-routine task. ait ∈ {0, 1} denotes the effort decision of worker

i at time t ≥ 0. The effort process generated by the decisions of worker i is ai = {ait}t≥0.

t→ ait is required to be Borel measurable P-a.s..11

1.2.2 Workers’ types

Together, the choices of effort and the delegation rule determine the evolution of the workers’

types. To describe the state dynamics, I follow the multi-parameter approach pioneered by

Mandelbaum in discrete time in Mandelbaum (1986) and in continuous time in Mandelbaum

10The filtration to which α, τ , and d are adapted to is not defined yet. This is deferred to Section 1.2.3,
after the dynamics of the workers’ types and the information structure are introduced.

11As above, a more precise measurability requirement is postponed until Section 1.2.3.
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(1987).

For all i ∈ {1, . . . , N}, let F i := {F i
t}t≥0 be a filtration in F̄ and X i = {X i

t}t≥0 be a

F i-adapted process with values in the interval X i ⊆ R. For simplicity, assume that either

X i does not reach the boundary of the set X i or the boundary is absorbing. Define

T i(t) :=

∫ t

0

aisα
i
sds, ∀ 0 ≤ t <∞. (1.1)

T i(t) is the amount of time worker i worked on the non-routine task. At time t, the type

of worker i is X i
T i(t). So worker i’s type evolves (stochastically) only when he exerts effort.

When he does not, his type is frozen. Intuitively, one can think of the evolution of the type

as follows: Nature first draw a path X i = {X i
s}s≥0 for worker i. The delegation rule and the

worker’s choices of effort then jointly control “the passage of time”, T i(t), i.e., the speed at

which the worker’s type moves along the path X i.

Define the delegation process T =
(
T 1 = {T 1(t)}t≥0 , . . . , T

N =
{
TN(t)

}
t≥0

)
. The state

of the game at time t is

XT (t) =
(
X1

T 1(t), . . . , X
N
TN (t)

)
.

{
XT (t)

}
t≥0

is a multi-parameter process adapted to the multi-parameter filtration

F :=

{
Ft̄ :=

N∨
i=1

F i
ti , t̄ = (t1, . . . , tN) ∈ [0,∞)N

}

defined on the orthant [0,∞)N .

I make the following assumptions on the types’ processes.

Assumption 1 The filtrations F i, i ∈ {1, . . . N}, are mutually independent and they satisfy
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the usual hypothesis of right-continuity and completeness.12

Assumption 1 implies that the manager does not learn anything about the type of one worker

by observing the type of another.

Assumption 2 The processes (X i,F i), i = 1, . . . , N , are Feller.13

Assumption 2 is made to guarantee that the type process has the strong Markovian property:

the distribution of future realizations only depends on the current value of the process.

The Feller property is however stronger: it also guarantees that the expectation operator

conditional on the value of the type process is continuous. This second property is not

needed, but simplifies the analysis.

Assumption 3 For all i ∈ {1, . . . , N}, if X i
0 = xi ≥ X̃ i

0 = x̃i, then, for all s ≥ 0, X i
s ≥ X̃ i

s

P-a.s..

Assumption 3 states that if a worker’s initial type increases, so does his type at any instant

t ≥ 0. Because Feller processes are time-homogeneous, it also implies that, if a worker’s type

is higher at time t along one path than along another, so is his type at any instant s ≥ t.

Assumption 4 For each i ∈ {1, . . . , N}, if t → X i
t is not continuous, then either (i)

X i
t− − X i

t > 0 at all discontinuity points t ∈ R; or (ii) X i
t− − X i

t < 0 at all discontinuity

points t ∈ R.

Assumption 4 is a restriction on the jump of the processes X i.The jumps must be“one-sided”;

i.e., if the process X i jumps up, it cannot jump down, and conversely. In particular, if X i is

a continuous process, Assumption 4 holds trivially.

Assumption 5 For all i ∈ {1, . . . , N} and for all x ∈ X i, Px

(
{τ i(x,∞) = 0}

)
= 1, where

τ i(x,∞) := inf {t ≥ 0 : X i
t ∈ (x,∞)}. Moreover, if X i jumps down, for all κ, ϵ > 0, there

exists δ > 0 such that, for all x ∈ X i, Ex

[
τ(x−δ,x+δ)

]
< ϵ.

12See, e.g., Protter (2005).
13Recall that any Feller process admits a càdlàg modification. So I always assume that Xi is càdlàg.
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Assumption 5 states that any worker can always become more productive. It simplifies the

arguments and guarantees the existence of a solution to the principal’s problem. The second

part of Assumption 5 strengthens the first part for the case in which X i jumps down. In

particular, it guarantees that the expected time X i stays in any small interval is small. I

relax this assumption in Section 1.6.1.

In Appendix A.1.1, I show that my framework accommodates all jump-diffusion pro-

cesses that satisfy mild regularity and monotonicity conditions. In particular, it includes the

commonly studied cases in which workers can be either good or bad and the principal learns

whether the worker is good or bad according to a Brownian signal or a bad news Poisson

signal. In these examples, worker i’s type at time t, X i
T i(t), is the belief that worker i is good

after he has worked for T i(t) unit of time on the project.

1.2.3 Information and Strategies

Information: The principal and the workers perfectly observe the delegation rule chosen by

the principal, and the effort decisions and types of all the workers. Information is symmetric,

but incomplete.14

Workers’ strategies: It is well-known that perfect monitoring in continuous-time games

can come with complications.15 To avoid the issue, I take a reduced form approach.

Definition 1 A dynamic delegation process is a process

T =
{
T (t) =

(
T 1(t), . . . , TN(t)

)
, t ≥ 0

}
taking values in [0,∞)N such that, for all i ∈ {1, . . . , N},

14Alternative information structures are discussed in Section 1.6.
15Continuous time is not well-ordered, and, therefore, seemingly well-defined promotion contests and

effort strategies can fail to uniquely determine the outcome of the game. For a more detailed discussion, see
Simon and Stinchcombe (1989), Bergin and MacLeod (1993), or Park and Xiong (2020) for deterministic
games, and Durandard (2022b) for stochastic games.
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1. {T (t) ≤ t̄} =
⋂N

i=1 {T i(t) ≤ ti} ∈ Ft̄ for all t̄ = (t1, . . . , tN) ∈ [0,∞)N , t ≥ 0,

2. T i(·) is nondecreasing, right-continuous, with T i(0) = 0,

3.
∑N

i=1 (T i(t) − T i(u)) ≤ t− u, ∀t ≥ u ≥ 0.

Denote by D the set of all dynamic delegation processes.16

Condition 1. in Definition 1 ensures that delegation processes are adapted to the multi-

parameter filtration F . So they are non-anticipative: they do not depend on future events.

Given a dynamic delegation process T ∈ D, define the one parameter filtration GT ={
GT
t

}
t≥0

as follows. Let ν : Ω → [0,∞)N . ν is a stopping point of F if {ν ≤ t̄} ∈ Ft̄ for all

t̄ ∈ [0,∞)N . For any stopping point ν, define the sigma-field

F(ν) :=
{
A ∈ F̄ : A ∩ {ν ≤ t̄} ∈ Ft̄, ∀t̄ ∈ [0,∞)N

}
.

Then, for all 0 ≤ t <∞, let GT
t := F(T (t)).

In the remaining of the paper, with a small abuse of notation, I will redefine promotion

contests as:

Definition 2 A promotion contest (T, τ, d) consists of a dynamic delegation process T , a

GT -stopping time τ , and a GT -optional promotion decision rule d, such that P-a.s.

T i(t) :=

∫ t

0

aisα
i
sds,

for all 0 ≤ t ≤ τ and all i = 1, . . . , N .

Denote by P the set of all promotion contests.

16In the theory of multi-parameter processes, T (t) is a stopping point in [0,∞)N and a delegation rule T
is called an optional increasing path (Walsh 1981, Walsh (1981)). It can be thought of as a multi-parameter
time change.
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Finally, a strategy profile is admissible if it uniquely defines a promotion contest after all

histories P-a.s.. I will require that the space of strategies is such that (i) any strategy profile

in which all workers change their effort decision at most once and the principal can adjust

the contest upon observing such changes is included, and (ii) if a strategy profile belongs to

the strategy space, then any ht-“truncated” strategy profile does too. The ht-“truncated”

strategy profile is the strategy profile that coincides with the original profile for any history

that does not contain ht and such that all players play a Markov continuation strategy after

history ht. Both conditions (i) and (ii) are richness conditions on the strategy space. They

are satisfied for example by the space of semi-Markov strategies or the strategy space defined

in Durandard (2022b).

In particular, condition (i) guarantees that any promotion contest can be obtained as

the outcome of an admissible strategy profile. By definition of admissibility, the set of

continuation values at any instant t ≥ 0 that can be generated in the game coincides with

the set of values generated by the set of promotion contests.

1.2.4 Payoffs and objective

At time t ≥ 0, when worker i is delegated a share αi
t of the project and exerts effort ait,

the principal gets a flow reward αi
ta

i
tπ

i
(
X i

T i(t)

)
. Worker i incurs a flow cost αi

ta
i
tc

i
(
X i

T i(t)

)
,

proportional to the fraction of the task he is responsible for. Upon promotion (at time τ),

worker i gets a payoff, gi > 0, and is now compensated for working on the non-routine

task: he gets a flow payoff αi
ta

i
tc

i
(
X i

T i(t)

)
. When the principal takes the outside option, i.e.,

allocate the promotion to an external worker, she gets W > 0.

I make the following assumption on the principal’s flow rewards and the workers’ flow

costs.

Assumption 6 (i) πi : X i → R is upper semicontinuous, nondecreasing, nonnegative, and
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such that

E
[∫ ∞

0

e−rtπi(X i
t)dt | X i

0 = x

]
<∞

for all x ∈ X . (ii) ci : X i → R is lower semicontinuous, nonincreasing, and nonnegative.

So, given a promotion contest (T, τ, d), the principal’s expected payoff is

ΠM (T, τ, d;W ) := E

[
N∑
i=1

∫ τ

0

e−rtπi(X i
T i(t))dT

i(t) + e−rτ π̄
(
XT (τ), dτ

)]
,

The workers’ expected payoffs are

U i (T, τ, d) := E
[
e−rτgdiτ −

∫ ∞

0

e−rt(1 − diτ1{t≥τ})c
i
(
X i

T i(t)

)
dT i(t)

]
.

Define also the workers’ continuations payoff at time t ≥ 0 as

U i
t (T, τ, d) := E

[
e−r(τ−t)gidiτ1t≤τ −

∫ ∞

t

e−r(s−t)(1 − diτ1{s≥τ})c
i
(
X i

T i(s)

)
dT i(s) | GT

t

]
.

Definition 3 A promotion contest (T, τ, d) is implementable if there exists a promotion

contest (α, τ, d) such that (i) there exists a (weak) Perfect Bayesian Nash equilibrium with

effort processes a in the game defined by (α, τ, d) played by the workers, and (ii) such that,

for all i ∈ {1, . . . , N},

T i(t) =

∫ t

0

αi
sa

i
sds, 0 ≤ t ≤ τ, P-a.s..

Denote by PI be the set of all implementable promotion contests.

The principal designs the promotion contest to maximize her total expected payoff among
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all implementable promotion contests:

ΠM := sup
(T,τ,d)∈PI

E

[
N∑
i=1

∫ τ

0

e−rtπi(X i
T i(t))dT

i(t) + e−rτ π̄
(
XT (τ), dτ

)]
. (Obj)

Finally, I make the following assumption.

Assumption 7 For all i ∈ {1, . . . , N}, there exists (T, τ, d) ∈ PI , with T i(t) = t for all

t ≥ 0, such that

E
[∫ τ

0

e−rtπi
(
X i

t

)
dt+ e−rτ

(
(1 − d0τ )

∫ ∞

τ

e−r(t−τ)πi
(
X i

t

)
dt+ d0τW

)]
> E

[∫ ∞

0

e−rtπi
(
X i

t

)
dt

]
.

Assumption 7 guarantees that the principal’s problem when worker i is the only candidate

is not trivial, i.e., she can do better than promote worker i immediately. It is not needed,

but it simplifies some of the arguments by restricting the number of cases to consider.

1.2.5 Discussion of the model

Before moving to the analysis, I comment on several features of the model.

A constrained multi-armed bandit model: As mentioned in the introduction, the

model is a bandit problem with strategic arms. At each instant, the principal chooses which

arm to pull (which worker to delegate) or takes her outside option. As in bandit models, the

workers’ types only evolve when they work on the project. For example, the principal learns

about a worker’s fixed but unknown potential. Implicit here is that the principal allocates

her attention only to the worker delegated the non-routine task or that performing other

jobs is not informative for the promotion. So learning is conditional on delegation. Another

example corresponds to the acquisition of new skills and on-the-job learning: the workers’

skills improve when responsible for the non-routine task.



CHAPTER 1. DYNAMIC DELEGATION IN PROMOTION CONTESTS 31

Moreover, I assume that the workers’ types are independent. The performance of one of

the workers when delegated the task is uninformative about the potential of another worker.

In particular, the workers do not learn from one another. I also focus on environments in

which the workers do not need to cooperate: in my model, there is no payoff externality.

The workers’ efforts are substitutes, and the reward the principal obtains only depends on

who is in charge of the non-routine task (and not on the types of other workers).

These assumptions are crucial. As in classic bandit models, very little can be said when

the workers’ types are correlated or when a worker’s type evolves when the principal does

not delegate the project to him.17

Multi-parameter formulation: To describe the types’ dynamics, I adopt the multi-

parameter approach pioneered by Mandelbaum in Mandelbaum (1986) for the multi-armed

bandit model. This is critical to guarantee that the types’ processes can be defined on a fixed

(exogenous) probability space. It also simplifies the analysis. It also allows capturing many

dynamic contracting environments with one unified approach. The alternative method would

be to assume that the type of each worker is defined as the solution of a stochastic differential

equation with drift, diffusion, and jump coefficients equal to zero when the workers do not

exert effort. However, such stochastic differential equations would be unlikely to admit strong

solutions.18 By taking the multi-parameter approach, I do not need to work with multiple

(endogenous) probability measures.

Only value of promotions is strategic: Another assumption of the model is the

absence of direct value in promoting someone for the principal. The flow payoff from the

non-routine task is the same whether the worker completing it has been promoted. One can

17One could relax the last assumption (the absence of payoff externalities), following the analysis in Nash
(1980) or Eliaz et al. (2021). They prove that indexability (with Nash indices) holds in multi-armed bandit
problems in which the reward from pulling an arm also depends on the states of the other arms. Nash (1980)
consider the case when arms are complements, while Eliaz et al. (2021) consider both the cases when arms
are substitutes and complements.

18See Karatzas (1984), and the discussion in Mandelbaum (1987).
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think that a given non-routine task is associated with an opening position in the organization,

for example, bringing a new product to the market. The principal allocates this same task

whether or not she has already promoted a worker. So, the promotion has no direct payoff

effect. It has, however, a strategic role. Workers value promotion. Hence, the principal uses

the promises of a future promotion to motivate the workers. In particular, upon promotion,

the workers get an exogenous prize and are compensated for their effort when working on the

non-routine task.19 This is for simplicity. It reflects the idea that the organization designs

the position so that the promoted worker willingly exerts effort and obtains a strictly positive

rent. It guarantees that the model remains tractable and allows me to focus on the interaction

between the allocation of tasks and the promotion decision.

1.3 Main Result

Lemma 1 below characterizes the set of implementable promotion contests PI . In partic-

ular, it shows that it is nonempty and, hence, that the value of the principal is finite (by

Assumption 6 (i)).

Lemma 1 A promotion contest is implementable if and only if the continuation value of

each worker is nonnegative after any possible history: For all i ∈ {1, . . . , N} and all t ≥ 0,

U i
t ≥ 0.

Its proof is in Appendix A.1.2. It follows from Lemma 1 that, in any implementable pro-

motion contest, the non-routine task is allocated to the promoted worker forever once the

promotion decision is made. The principal already spent her incentive capital. The best

thing she can do is then to delegate the task to the promoted worker. So, with a small abuse

19In Section 1.6.2, I relax this assumption and allow the principal to design the prize.
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of notation, redefine the continuation value the principal obtains upon promotion as

π̄
(
XT (τ), d

)
:= d0τW +

N∑
i=1

diτ

∫ ∞

τ

e−rtπi
(
X i

T i(τ)+t

)
dt.

The principal’s problem (Obj) is then equivalent to:

ΠM := sup
(T,τ,d)∈P

E

[
N∑
i=1

∫ τ

0

e−rtπi(X i
T i(t))dT

i(t) + e−rτ π̄
(
XT (τ), dτ

)]
,

subject to the dynamic participation constraints: for all i and all possible histories ht with

t ≤ τ ,

E
[
e−r(τ−t)gidiτ −

∫ τ

0

e−r(s−t)ci
(
X i

T i(s)

)
dT i(s) | ht

]
≥ 0.

1.3.1 Benchmark

A natural benchmark is when the principal does not need to incentivize the workers to exert

effort (which corresponds to ci(·) = 0 for all i). The problem then reduces to the standard

multi-armed bandit problem (with passive arms):

sup
(T,τ)∈D×T

E

[
N∑
i=1

∫ τ

0

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτW

]
. (Bm)

Hence, when ci(·) = 0, all promotion contests give a nonnegative continuation payoff to the

worker i after any possible history. Since the flow rewards the principal obtains when worker

i performs the non-routine task are the same before and after promotion, promoting worker

i has no direct value. It also has no strategic value when ci(·) = 0. However, it has a cost:

it restricts the principal’s future options. So the principal always wants to postpone the

promotion. When the workers do not need to be incentivized, any rationale for promotion



CHAPTER 1. DYNAMIC DELEGATION IN PROMOTION CONTESTS 34

disappears, and it is never optimal to promote a worker.

The solution of this problem is well-known. It is the index rule associated with the the

(classic) Gittins’ index. Both index rules and the Gittins’ indices are defined now.

Definition 4 A delegation process T is called an index rule if, for all i ∈ {1, . . . , N}, there

exists a F i-adapted processes Γi := {Γi
t}t≥0 such that T i(t) is flat off the set

{
t ≥ 0 : Γi

T i(t) =
N∨
j=1

Γj
T j(t)

}
P-a.s.,

where Γi
t = inf

0≤s≤t
Γi
s.

The process Γi is worker i’s index.

In continuous time, the existence of index rules is not obvious. It is proved (by construction)

in Mandelbaum (1987), El Karoui and Karatzas (1994), or El Karoui and Karatzas (1997).

For completeness, in Appendix A.2.1, I reproduce the construction in El Karoui and Karatzas

(1997) to obtain an index delegation rule associated with (arbitrary) indices
(
Γ1, . . . ,ΓN

)
,

as I will need properties specific to this construction.

Definition 5 The (classic) Gittins’ index Γg,i :=
{

Γg,i
t

}
t≥0

associated with worker (arm) i

is defined by, for all t ≥ 0,

rΓg,i
t := sup

τ>t

E
[∫ τ

t
e−rsπi(X i

s)ds | F i
t

]
E
[∫ τ

t
e−rsds | F i

t

] , (GI)

with the convention that 0
0

= −∞

Γg,i
t is the maximal constant price the principal is willing to pay to include worker i in

the pool of candidates up to time t + τ ∗; where τ ∗ is the optimal stopping time in (GI).

Γi
t captures both the payoff from exploiting arm i up to time t + τ ∗ and the value of the

information the principal obtains.
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Proposition 1 The index rule associated with the Gittin’s indices is optimal in the multi-

armed bandit problem (with passive arms).

Proposition 1 restates the well-known optimality of the Gittins’ index rule for the multi-

armed bandit problem. It is obtained as a special case of the main Theorem 1 below. Its

proof is in Appendix A.1.4.

Proposition 1 formally establishes that giving the prize to any of the candidates is never

optimal when they do not need to be incentivized. Hence, it confirms that the value of the

promotion is purely strategic in my model. When the workers do not need to be incentivized,

the principal never promotes them. However, she still takes her outside option (i.e., hire

externally) when she becomes too pessimistic any of the workers is good.

As a result, the principal only has to balance exploration and exploitation: delegating

to a new worker to learn about him or to a worker known to be good to enjoy the higher

reward obtained from the non-routine task. The Gittins’ index rule addresses this trade-off.

To see this, suppose that every time the principal delegates to worker i, she has to pay

Γi
T i(t) := inf

0≤s≤t
Γi
T i(s). By definition, it is the maximal flow price the principal would pay to

delegate to worker i from time t to t+ τ ∗. So the principal is indifferent between allocating

the task to worker i and stopping the game: her value from delegating to worker i is zero.

Following the Gittins index rule guarantees that her continuation value at all times is zero. If

she, however, were to choose a different strategy, her value would be negative. So, given such

prices, the index rule is optimal: it maximizes the profit collected by the bandit machine as

it moves up the use of the more costly arms and postpones the use of the less costly ones.

Since the prices are set to be the greatest possible to ensure the principal participation,

they maximize the profit of the bandit machine among all possible prices. The index rule,

therefore, maximizes total surplus and hence is optimal. This intuition was developed by

Weber in his proof of indexability in Weber (1992).
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However, because the Gittins’ rule never promotes any of the workers, it is not imple-

mentable: the continuation value of each worker when delegated the non-routine task is

strictly negative. Hence the need to incentivize the workers to exert effort constrains the

principal ability to learn. So the Gittins’ “prices” are too high in the index contest: the

principal would not delegate to the workers at these prices. In the next Section, I solve the

multi-armed bandit problem with strategic arms.

1.3.2 The index contest

The strategic index rule will play a crucial role. To define it formally, I need to intro-

duce the promotion thresholds, P i(·)’s, and promotion times, τ s,i’s, first. Define τ i(x,x̄) :=

inf {t ≥ 0 : , X i
t ̸∈ (x, x̄)}. For all i ∈ {1, . . . , N}, for all x ≤ x ≤ x̄ ∈ X i, let

U i(x, x, x̄) := E

[
e−rτ i

(x,x̄)gi1{Xi
τ≥x̄} −

∫ τ i
(x,x̄)

0

e−rtci(X i
t)dt | X i

0 = x

]
.

U i(x, x, x̄) is i’s continuation value when his current type is x and he exerts effort until his

type exceeds x̄ and he is promoted or his type falls below x and he “quits” and gets payoff

0. Define then i’s promotion threshold as:

P̄ i(x) :− sup
{
x̄ ≥ x : lim

x→x
U i (x, x, x̄) ≥ 0

}
.

P̄ i(x) is the largest promotion threshold for which worker i is willing to stay in the game as

long as his type does not fall below x. Moreover P̄ i(·) is increasing.

Define also the stopping time τ s,i := inf
{
t ≥ 0 : X i

t ≥ P̄ i
(
X i

t

)}
, where X i

t := inf
0≤s≤t

X i
s

is the running minimum of X i. Theorem 2 in Section 1.5.2 shows that τ s,i is the optimal
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promotion time when worker i is the only worker. Next define the F i-adapted process hi as

hs,it := πi
(
X i

t

)
1{t<τs,i} + π̄i

(
X i

τs,i

)
1{t≥τs,i}, t ≥ 0,

where

π̄i (x) := rE
[∫ ∞

0

e−rtπi
(
X i

t

)
dt | X i

0 = x

]
.

The strategic index of worker i is defined by

Γs,i
t := inf

{
W ≥ 0 : V i(t;W ) ≤ W

}
,

where

V i(t;W ) := sup
τ≥t

E
[∫ τ

0

e−r(s−t)hs,it dt+ e−r(τ−t)W | F i
t

]
.

Worker i’s index is the “equitable surrender value”, i.e., the smallest W such that the

principal prefers to take the outside option immediately rather than to delegate to worker

i for some time before making a decision (when worker i is the only worker). Moreover,

observe that, by assumption 2, the strategic index is a function of X i
t and X i

t only: Γs,i
t =

Γs,i
(
X i

t , X
i
t

)
.

As in the classical bandit problem, it can be shown to be equal to

rΓs,i
t = sup

τ>t

E
[∫ τ

t
e−rshs,is ds | F i

t

]
E
[∫ τ

t
e−rsds | F i

t

] , (1.2)

with the convention that 0
0

= −∞. The strategic index coincides with the classical Gittins

index for the modified payoff stream {his}s≥0. In particular, Γs,i
t is the maximum price the



CHAPTER 1. DYNAMIC DELEGATION IN PROMOTION CONTESTS 38

principal is willing to pay for the possibility of including the worker in the pool of candidates.

Moreover, the second expression also makes it clear that the worker’s strategic index is similar

to the classic Gittins’ index (GI). The difference resides in what information is optimally

acquired.

Here, the workers control both the rewards and the flow of information. Moreover, their

incentives differ from the principal’s. Worker i’s strategic index then takes into account the

incentive provision problem. Since worker i only exerts effort if it increases his chance of

promotion, the principal has to motivate him to work by promising he will eventually get

the prize. However, upon promotion, collecting information has no value for the principal,

as she cannot incentivize other workers to work anymore. That’s captured in the definition

of the process hs,i: after the promotion time, the flow reward is E [πi(X i
t) | F i

τ ]. It is as if

no new information is obtained. Contrary to Gittins’ index, the strategic index ignores the

information generated after the promotion decision when assessing the value of delegating

to a worker. Interestingly, when the cost of providing incentives goes to zero (when ci → 0),

the strategic index process converges to the Gittins’ index from below pointwise P-a.s..

The index delegation rule associated with the strategic index processes
(
Γs,1, . . . ,Γs,N

)
is called the strategic index rule.

Definition 6 The index contest (i) follows the strategic index rule, (ii) promotes the

first worker i whose type reaches his promotion threshold P̄ i(X i
t), and (iii) takes the out-

side option at time τ 0 = inf
{
t ≥ 0 :

∨N
i=1 Γi

T s,i(t) ≤ W
}

if no worker was promoted before.

Figure 1.2 illustrates the index contest with two workers. Each can be good or bad. Their

types are the posterior beliefs that they are good, and the principal learns about them

according to the Poisson arrival of bad news. Initially, worker 1 is better, so the principal

first delegates to worker 1. However, too much bad news arrives. Therefore, she switches to

worker 2. Worker 2 performs well and eventually gets the promotion.
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Figure 1.2: Index contest
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Proposition 2 The index contest can be implemented in a (weak) Perfect Bayesian equi-

librium without commitment. The workers’ strategies only depends on their own type X i
T i(t),

the current running minimum of their type X i
T i(t), and whether the principal promoted a

worker. The principal’s payoff is

E

[∫ ∞

0

re−rt

N∨
i=1

Γs,i
T s,i(t)

dt

]
. (ΠM)

The proof of Proposition 2 is in Appendix A.1.3.

1.3.3 Optimality

The main result is the optimality of the index contest : despite the agency frictions, index-

ability is preserved. When deciding who to delegate the non-routine task to and who to

promote, the principal considers each worker separately. She delegates to and eventually

promotes the best worker, as measured by the value of his associated strategic index.

Theorem 1 The index contest maximizes the principal’s payoff among all implementable

promotion contests.

Theorem 1 is proved in Section 1.5. Its proof requires to address two main challenges.

First, implementable promotion contests have to balance the incentives of all workers.

So, there is no reason a priori that it treats them separately. For example, if the principal

promotes worker 1 when his type exceeds that of worker 2 by 1
2
, it creates a strategic

dependence between the arms. The optimal delegation rule may not be an index rule, and

the index of both workers 1 and 2 does not remain frozen when the other worker is in charge

of the non-routine task.

To overcome this problem, I show that the principal can treat the workers separately

(when it comes to incentive provision), i.e., she chooses N different promotion rules, each
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incentivizing one worker to exert effort. To do so, I study a relaxed problem in which

participation constraints only hold in expectations (conditional on the workers’ type). The

relaxed problem coincides with the setting where each worker can only see the evolution of

his own type. It pulls together many information sets. In that relaxed problem, workers

have to be informed when promoted to maximize the length of the experimentation phase.

Otherwise, their continuation payoff would be strictly less than the value they associate

with the promotion. Therefore the principal could delegate the project a little longer before

making her decision (which benefits the principal). So, the promotion time associated with

each worker has to be measurable with respect to their own type. As a result, it is without

loss of optimality for the principal to choose a delegation rule and N individual promotion

contracts (i.e., N individual promotion time and promotion decision that depend only on

the type of the worker).

The solution, however, needs not be a solution to the original problem, as the delegation

rule and individual promotion contracts may not be jointly implementable. Hence the prin-

cipal may be unable to keep the independent promises she made to distinct workers. I will

come back to this after describing the relaxed problem more carefully.

Second, even if each worker’s promotion time and decision depend only on his own type

process, the problem is still not a standard bandit problem. To use the techniques developed

in the bandit literature, I rewrite the flow payoff the principal gets upon promotion as the

expected payoff from delegating to the worker, conditional on the information available at the

time of promotion. Each arm is then a superprocess: each arm comprises multiple possible

reward processes, one for each individual promotion contract. So, the principal chooses both

which arm to pull and which contract to offer. In particular, when the principal pulls an

arm, the flow payoff and the information depends on the “promotion contract”.

There is no guarantee that indexability holds for superprocesses. However, in the Marko-

vian setting, there exists a condition for which it does, sometimes known as the Whittle
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condition or condition W (Whittle (1980), Glazebrook (1982)). It says that the optimal

action chosen in each state in the single-armed retirement problem is independent of the

outside option W. If for some value of the outside option, it is optimal to choose an action

rule, then it is also optimal to choose the same action rule for any other value of the outside

option (as long as the arm is not retired). If the Whittle condition holds, the bandit problem

with superprocesses is indexable.

In my setting, I show that a version of condition W for general (non-Markovian) super-

processes holds in the single-worker promotion problem. At time 0, the optimal promotion

contract in the single-worker problem is independent of the outside option (before the princi-

pal takes her outside option). That is, provided that the principal has not taken her outside

option yet, if the worker is promoted after some history, he is also promoted after this same

history when the value of the outside option is smaller. I then show that this condition is

sufficient for indexability to hold.

The index contest is the solution to this problem. To build some intuition for this result,

consider the case of two workers. Suppose that the strategic index of worker 1 is initially

higher than that of worker 2. Suppose also that the value of the principal’s outside option

equals worker 2’s index. If worker 2 were the only worker, the principal would take the outside

option immediately. The principal’s problem then reduces to the problem in which she can

only delegate to worker 1, promote worker 1, or take the outside option. The index contest

guarantees that the principal offers the optimal single agent promotion mechanism to worker

1 (as Theorem 2 in Section 1.5.2 below shows). Eventually, either worker 1 is promoted, and

the game ends, or his strategic index falls below the strategic index of worker 2, hence, below

the value of the outside option. In that case, the principal should take her outside option.

Instead, imagine that, when it happens, the value of the outside option also falls to the level

of worker 1’s strategic index. In the new continuation problem, the principal never delegates

to worker 1. However, she is willing to delegate to worker 2. In particular, she offers the
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single-player optimum promotion contract to worker 2. The index contest repeatedly plays

the single-player optimal promotion mechanism for the best current worker (as measured by

the strategic indices) until one worker is promoted or the principal takes her outside option.

Promotion happens the first time a worker’s type reaches P̄ i(X i
t). The principal takes the

outside option when there is no benefit from experimentation anymore, i.e., when Γs,i ≤ W

for all i. So, at any point in time, when one worker is delegated the project, his promotion

threshold is equal to the optimal threshold in the single-agent problem.

As mentioned above, the index contest needs not be implementable. Fortunately, it is,

as Proposition 2 shows. Intuitively, when only one worker is allocated the task, the only

promise-keeping constraint that matters is the one for the worker currently assigned the task.

All other constraints are redundant and can be ignored.

The above intuition suggests the following interpretation of the index contest. The princi-

pal approaches the workers successively. The indices’ ranking determines the order in which

the workers are approached. When the principal selects one worker, she offers him an in-

dividual trial contract. It consists of a target: the promotion threshold, and a (potentially

stochastic) deadline. If the worker achieves the target before the deadline, the principal

promotes him. He is then in charge of the non-routine task forever. Otherwise, the principal

approaches another worker until one succeeds, or the principal becomes too pessimistic and

takes her outside option. Interestingly, if the principal could reoptimize at the end of each

short-term contract (when she starts delegating to a new worker in the index contest), she

would choose the same continuation promotion contest. Every time a new worker gets an

opportunity to prove himself, the continuation mechanism is optimal for the principal.

The above interpretation of the index contest is reminiscent of promotion practices de-

scribed in the strategic management literature. For example, Stumpf and London (1981)

propose to evaluate the workers sequentially until the principal identifies a satisfactory one.
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More generally, the index contest is also related to absolute merit-based promotion systems,20

in which the first worker who meets a minimum performance target gets the promotion. My

results suggest that one should expect organizations to use absolute merit-based promo-

tion systems when it is important to fill the position with the right worker. On the other

hand, when motivating effort is more important, other promotion systems, such as the clas-

sic winner-take-all promotion contest of Lazear and Rosen (1981) or the cyclical egalitarian

contest proposed by Ely et al. (2021) may be better, and, hence, more common. Intuitively,

these promotion systems are very good at incentivizing effort but less so at ensuring that

the promoted worker’s potential is high. The index contest guarantees that the non-routine

task runs smoothly after the promotion decision is made. It balances incentives provision

and selection.

1.3.4 Features of the index contest

No commitment: Often, one may want to assume little commitment within an organiza-

tion: most of the day-to-day activities are not governed by formal contracts, it is unlikely

that the performance of a worker is verifiable. . . In my setting, the principal does not need

any commitment power, as Proposition 2 shows. The index contest is implementable even if

the principal cannot commit to the delegation rule, delegation time, or promotion decision.

Maybe even more interestingly, it does not require sophisticated coordinated punishments.

It is implementable in a (weak) Perfect Bayesian equilibrium by “grim trigger” strategies.

Moreover, each worker’s strategy only depends on his current type, the running minimum of

his type process, and whether the principal has promoted a worker yet.

Fast track: In the index contest, the promotion thresholds are decreasing over time

(as increasing functions of the running minimums of the workers’ types). So a worker’s

potential upon promotion decreases with time:

20See Phelan and Lin (2001).
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Proposition 3 (Speed and accuracy) If πi(·) = π(·) for all i ∈ {1, . . . , N} and the pro-

cesses X i’s have the same law, then the promoted worker’s type and the principal’s continu-

ation value upon promotion are nonincreasing over time P-a.s..

Proposition 3 follows from the fact that the promotion threshold is P-a.s. nonincreasing over

time. The proof is omitted.

Pushing the interpretation beyond the model, the above proposition suggests that fast

tracks21 should not be surprising. When a worker is promoted quickly, his type upon pro-

motion is high. So, when entering a potential new contest for further promotion at the

next level of the organization, he starts from a better position. In turn, it implies that his

expected time to promotion is shorter and that the worker’s chances to be promoted again

soon are high.

Seniority: Finally, the decrease over time of the promotion thresholds also has an

interesting implication for seniority. As time passes, it becomes easier for each worker to be

promoted (conditional on his type). Proposition 4 formalizes this statements.

Proposition 4 In the index contest, worker i’s promotion probability, E
[
di | GT s

t

]
and con-

tinuation value, U i
t , are non nondecreasing over time conditional on XT i(t) = x. His expected

time to a promotion is nonincreasing in t, conditional on X i
T i(t) = x.

Proposition 4 also follows immediately from the promotion threshold being nonincreasing

over time P-a.s.. The proof is omitted.

Convex compensation structure: Learning is essential when the cost of promoting the

wrong worker is high. Hence, the principal always benefits from a larger prize, as illustrated

by the following proposition.

Proposition 5 (Value of the project) The principal’s value increases with the value of

the promotion g =
(
g1, . . . , gN

)
.

21I.e., that a quickly promoted worker often gets another promotion soon after. See Baker et al. (1994)
and Ariga et al. (1999).
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Proposition 2 is immediate: Let ḡ ≥ g. Then any promotion contest feasible for the value

vector ḡ is also feasible for g.

But, she should benefit from a larger prize especially when learning is paramount. That’s

because it makes incentivizing experimentation easier and helps the principal make a better

decision. Proposition 6 confirms this point and shows that the principal acquires more

information about the promoted worker as gi increases.

Proposition 6 As gi increases, the principal learns more about worker i.

Proof of Proposition 6. Let ḡi ≥ gi. Observe first that the index of worker i is greater

when the prize is ḡi; therefore, the principal acquires information about worker i sooner.

Moreover, in the index contest with reward gi ∈
{
ḡi, gi

}
, worker i is promoted after being

responsible for the non-routine task for the time τ i(gi) = inf
{
t ≥ 0 : X i

t ≥ P̄ i(X i
t; g

i)
}

.

Note that P̄ i(·, ḡi) ≥ P̄ i(·, gi), and therefore τ i (ḡi) ≥ τ i
(
gi
)
. Putting these two observations

together concludes the proof.

Intuitively, when workers value the promotion more (i.e., the prize is bigger), they are

willing to exert effort for an extended time. So the principal can acquire more information

and make a better promotion decision.

This can help understand why many organizations have a convex compensation structure

(i.e., the bonuses paid upon promotion and the wage spread between positions increase when

moving up in the hierarchy).22 At the top of the organization, the cost of promoting the

wrong worker is potentially high. Extending the exploration phase is, therefore, valuable. A

convex compensation structure achieves this.

However, how to measure the value of information here is not obvious. I propose to use

the following definition:

22See DeVaro (2006) for example.
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Definition 7 The value of information in the promotion problem with π̃i (·) is higher than

the value of information in the promotion problem with πi (·) if, for all t ≥ 0,

∂Γs,i
t (π̃i)

∂τ s,i
≥ ∂Γs,i

t (πi)

∂τ s,i
,

P − a.s., where Γs,i
t (π) is the strategic index of worker i when the flow payoff the principal

gets when worker i with type xi leads the project is π (xi).

Intuitively, the above definition says that the benefit from waiting for one more instant before

promoting worker i is larger for π̃i than for πi, i.e., there is more to gain from acquiring

information as the cost of mistakes increases. It captures the extent to which marginal

information is actionable: whether it helps the principal to make a better decision.

Proposition 7 Let ḡ ≥ g and the value of information associated with π̃i be higher than the

value of information associated with πi, for all i ∈ {1, . . . , N}. Then

ΠM(ḡ, π̃) − ΠM(ḡ, π) ≥ ΠM(g, π̃) − ΠM(g, π). (1.3)

Proof of Proposition 7. To prove (1.3), it is enough to show that, for all i ∈ {1, . . . , N},

∂ΠM(g, π)

∂gi
is increasing in π for the order of Defintion 7.

since ΠM is nondecreasing and locally Lipschitz (by Assumption 5 and the definition of τ s,i

as πi(·) is locally bounded) in gi, hence, differentiable almost everywhere.

Consider i ∈ {1, . . . , N}. By the envelope theorem for dynamic optimization (e.g. The-

orem 1 in LaFrance and Barney (1991) and the discussion above),

∂ΠM(g, c)

∂gi
= E

[∫ ∞

0

e−rt
∂Γs,i

T s,i(t)

∂gi
dT s,i(t)

]
.
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This follows immediately from my definition of an increase in the value of information, since

∂Γs,i
T s,i(t)

∂gi
=
∂τ s,i

∂g

∂Γs,i
T s,i(t)

∂τ s,i
,

τ s,i is independent of πi, and ∂τs,i

∂g
≥ 0 by Proposition 6.

Traditionally, contest theory has suggested that the convexity of the compensation struc-

ture in organizations results from the higher return of effort at higher positions in the hierar-

chy. My results offer a complimentary story: when the returns of selecting the right worker

are high, larger bonuses let the principal experiment longer and promote a better worker.

1.4 Strategic amplification

One of the initial questions I asked was whether the allocation of opportunities could exac-

erbate initial differences to produce significant disparities over time. Because in the index

contest, the principal delegates the project sequentially and promotes the first worker whose

type reaches his promotion threshold, being delegated first is an advantage. This is especially

true if, at every step of the index contest, i.e., during every trial contract, the probability

that the worker leading the project reaches his target and hence gets the promotion is large.

In this section, I define a class of environments that I call reinforcing environments,

in which initial differences compound. In these environments, being delegated the project

leads to a significant chance of promotion. This has two main implications: First, the

timing of the first opportunity matters. A worker in charge of the non-routine task earlier

is much more likely to be promoted. So, what determines the assignment of non-routine

tasks early on is crucial to understanding who has a chance to be promoted. Secondly,

initial differences lead to substantial differences during the exploration phase. To identify

discrimination, conditioning on the potential of the workers upon promotion or their history



CHAPTER 1. DYNAMIC DELEGATION IN PROMOTION CONTESTS 49

of responsibilities in the organization may be a bad idea. Both depend on the endogenous

delegation path. If discrimination occurs in the allocation of opportunities, it will remain

undetected.

The following example illustrates the logic. Two symmetric workers compete for the

promotion. Their types’ processes X i keep track of their instantaneous (nonnegative) pro-

ductivity. When they work on the project, their productivity drifts up at a constant speed

µ. This could reflect on-the-job learning. However, they can reach a dead end. Dead ends

arrive according to a Poisson process with parameter λ. When a dead end comes, the worker

needs to devise a new strategy and restart from scratch: his type jumps to zero. So, the type

of each worker evolves according to the differential equation dX i
t = µdt if he does not reach

a dead end and jumps down to zero if he does. The principal gets a flow payoff of X i
t when

he delegates the project to worker i ∈ {1, 2}. I assume that the workers’ costs of effort are

constant and equal to c > 0 and that both associated value g > 0 to the promotion. Finally,

I assume the principal’s outside option is small and, therefore, never taken.

Let t̄ be the unique solution of

λc

∫ t̄

0

e−(r+λ)tdt = g.

The workers’ promotion thresholds are given by P̄ i(X i
t) = X i

t +µt̄. The workers’ indices can

be taken to be the worker’s types.23

In the index contest, the first worker is promoted before the second worker even has

a chance to lead the project with probability (1 − e−λt̄). Moreover, if the principal (lexi-

cographically) prefers worker 1, i.e., when indifferent, she delegates to worker 1, then the

probability that worker 2 is promoted in this environment is (1 − e−λt̄)e−λt̄. That is, worker

23For i ∈ {1, 2} , Γs,i
t = Γs(Xi

t , X
i
t) and the function Γs(·, ·) is increasing both variables. So the ranking of

the indices at any instant is the same as the ranking of types when the principal plays the associated index
delegation rule.
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2 is promoted if and only if worker 1 does not succeed initially and worker 2 does not hit a

dead end the first (and only) time he works on the non-routine task. So, when t̄ is either

small or large, worker 2’s promotion probability is close to zero. On the other hand, worker

1’s promotion probability is close to one.

The above example is simple and clearly illustrates that the sequential nature of delega-

tion exacerbates small differences in environments in which the workers’ types (and, hence,

their indices) tend to go up when they work. Under the condition below, the logic of the

above example easily extends.

Definition 8 An environment (X i, ci(·), gi, πi(·))Ni=1 is reinforcing if, there exists δ > 0

such that, for all i ∈ arg max
j∈{1,...,N}

Γi,s
0 ,

P
(
τ i ≤ τ i−(X i

0)
)
> δ, (RC)

where τ i = inf
{
t ≥ 0 : X i

t ≥ P̄ i(X i
0)
}
and τ i−(X i

0) = inf
{
t ≥ 0 : X i

t < P̄ i(X i
0)
}
.

Proposition 8 In a reinforcing environment, a worker i ̸∈ arg max
j∈{1,...,N}

Γi,s
0 ’s probability to be

promoted is bounded above by

(1 − δ)K .

where K is the cardinality of arg max
j∈{1,...,N}

Γi,s
0 .

Proof. In the index contest, every worker k ∈ arg max
j∈{1,...,N}

Γi,s
0 will be delegated the project

before worker i. The probability that each of the worker k ∈ arg max
j∈{1,...,N}

Γi,s
0 succeeds upon

being delegated the project is greater than δ. The result then follows.

A direct consequence of Proposition 8 is that if δ is large, then the first worker gets the

promotion with a considerable probability, and the other workers will not. Moreover, in large
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promotion contests with two different groups, each composed of initially identical workers,

workers from the disadvantaged group face long odds when it comes to promotions. When

the pool of candidates for promotion is large, any slight initial disadvantage is disqualifying.

The logic here is reminiscent of Cornell and Welch (1996).

My findings can help understand some of the mechanisms behind the “promotion gaps”

documented in the literature (see, for example, Bronson and Thoursie (2021), Benson et al.

(2021) and Hospido et al. (2022)). This is especially important as wage growth is known to

be closely related to job mobility, especially within firms (see Baker and Holmstrom (1995),

Lazear and Shaw (2007), or Waldman (2013) and the references therein). The main point

is that understanding and addressing the roots and causes of the different allocations of

opportunities is crucial.

1.5 Proof of Theorem 1

The proof of Theorem 1 is divided into the five following steps.

• In Section 1.5.1, I relax the problem: in particular, each worker’s dynamic participation

constraint must only hold on expectation (conditional on the worker’s own type), but

not necessarily after all possible histories.

• Section 1.5.2 solves the problem with only one worker. Its solution is given in Theorem

2. The argument adapts the logic of the proof of Theorem 1 in McClellan (2017) to

our setting.24

• In Section 1.5.3, I show that it is without loss of optimality to focus on promotion

contests such that at most one worker is promoted and such that the promotion time

of worker i is a F i-stopping time.

24See also Harris and Holmstrom (1982), Thomas and Worrall (1988), or Grochulski and Zhang (2011)
for similar ideas.
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• Next, in Section 1.5.4, I derive an upper bound on the payoff the principal can get in

any promotion contest that gives a nonnegative continuation value to all workers at all

times, using the results from the three previous steps. Proposition 11 establishes that

the principal’s payoff in any implementable promotion contest is at most (ΠM).

• Section 1.5.5 verifies that the index contest achieves the upper bound, hence proving

Theorem 1. This follows from Proposition 2.

1.5.1 The Relaxed Program

The principal solves the following optimization program:

ΠM := sup
(T,τ,d)∈P

E

[
N∑
i=1

∫ τ

0

e−rtπi(X i
T i(t))dT

i(t) + e−rτ π̄
(
XT (τ), dτ

)]
, (Obj)

subject to the dynamic participation constraints: for all i and all possible histories ht with

t ≤ τ ,

E
[
e−r(τ−t)gidiτ −

∫ τ

0

e−r(s−t)ci
(
X i

T i(s)

)
dT i(s) | ht

]
≥ 0.

As a first step in the proof, I consider the relaxed problem in which the principal can

randomize over possible stopping point. To introduce it formally, I need to define a number

of new objects. For a filtration H = {Ht}t≥0, define the set of H-randomized stopping

times as

S (H) :=
{
S ∈ N∞

0 (H) : dS ∈ M∞
+ (H), S0− = 0, S∞ ≤ 1

}
.

N∞
0 (H) is the set of H-adapted process with values in [0,∞) such that n ∈ N∞

0 (H) if n has

nondecreasing paths P-a.s.. M∞
+ (H) is the set of H-optional random measure. Observe that
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any randomized stopping time is equivalent to a Ft ⊗B([0, 1])-stopping time defined on the

enlarged filtered probability space (Ω× [0, 1],H×B([0, 1]), {Ht×B([0, 1])}t≥0,P⊗λ), where

λ is the Lebesgue measure on [0, 1].25 Finally, let C be the set of F̄ -measurable promotion

rule:

C :=

{
d : for all t ≥ 0, dt is F̄ -measurable and

N∑
i=0

dit = 1 P-a.s.

}
,

and C∗ be the set of nondecreasing promotion rule:

C∗ :=
{
d ∈ C : di’s paths are càdlàg and nondecreasing P-a.s. for i = 1, . . . , N

}
.

The set of randomized promotion contest consists of all the promotion contests such

that the promotion time τ is a randomized stopping time: τ ∈ S(GT ), and the decision rule

d belongs to C∗. It is denoted by Pr.

Consider then the relaxed program:

Π := sup
(T,τ,d)∈Pr

E

[
N∑
i=1

∫ τ

0

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

) ]
(RP)

subject to, for all i ∈ {1, . . . , N}, for all t ≥ 0, P-a.s.,

E
[
e−r(τ−τ∧t)gidiτ −

∫ τ

τ∧t
e−r(s−τ∧t)ci

(
X i

T i(s)

)
dT i(s) | F i

T i(t)

]
≥ 0. (DPC)

Proposition 9 The value of (Obj) is weakly lower than the value of (RP): ΠM ≤ Π.

Proposition 9 shows that the value of program (RP) is an upper bound on the principal’s

payoff for any implementable promotion contest. If an implementable promotion contest

25See, for example, Camboni and Durandard (2022).
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achieves this upper bound, this is the principal’s preferred one. It relaxes (Obj) in three ways.

First, it replaces the feasibility set PI by the set of all randomized promotion contests. This

will allow to prove compactness. Secondly, it only requires that the workers have nonnegative

continuation payoffs at all times P-a.s. (and not necessarily after all possible histories).

Thirdly, it pulls together all the GT
t information sets that are not F i

T i(t) measurable, hence

relaxing the constraints the principal faces. Its proof is in Appendix A.1.5.

The remaining of Section 1.5 is dedicated to the proof that the index contest achieves

the optimum in (RP).

1.5.2 The 1
1
2 -arm case

As in the classic bandit framework, the solution builds on the one arm problem. When there

is only one worker, say worker i, the relaxed problem (RP) introduced above becomes

Πi := sup
(τ,di)∈Pr,i

E

[∫ τ

0

e−rtπi
(
X i

t

)
dt+ e−rτ

(
diτ

∫ ∞

τ

e−r(t−τ)πi
(
X i

t

)
dt+ (1 − diτ )W

)]
(RPi)

subject to, for all t ≥ 0, P-a.s.,

E
[
e−r(τ−τ∧t)gidiτ −

∫ τ

τ∧t
e−r(s−τ∧t)ci

(
X i

s

)
ds | F i

t

]
≥ 0. (DPCi)

Pr,i is the set of all pairs (τ, di) such that τ is a (randomized) F i-stopping time and di is

a F i-optional decision rule in C∗. Define also PI,r,i: the set of all pairs (τ, di) ∈ Pr,i that

satisfy the constraints (DPCi).

Recall that

U i(x, x, x̄) := E
[
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

t

)
dt | x

]
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is the continuation value of the worker with X0 = x, τ = inf {t ≥ 0 : X i
t ̸∈ (x, x̄)} and

diτ = 1{Xi
τ≥x̄}. Define then

pi(P ) := inf

{
x ∈ X i : sup

p∈X i

U i(P, p, x) > 0

}
.

pi(P ) is the smallest value of x ∈ X i at which the worker is willing to keep working if he is

promoted only when his type exceed P . Finally also

Recall also that worker i’s promotion threshold is given by the (nondecreasing) function

P̄ i by

P̄ i(x) = sup
{
x̄ ≥ x : lim

x→x
U i (x, x, x̄) ≥ 0

}
.

Finally define pi(W ) as the unique solution of

Γs,i
(
pi, pi

)
= W.

Theorem 2 characterizes the solution of the single worker promotion contest: (RPi).

Theorem 2 The promotion contest

τ := inf
{
t ≥ 0 : X i

t ̸∈
[
pi(W ), P̄ i

(
X i

t

))}
and diτ := 1{Xi

τ≥P̄ i(Xi
τ)}

is optimal in the single worker problem (RPi).

Theorem 2 states that it is optimal to delegate to worker 1 until his type either (i) reaches

the promotion threshold P̄ i(X i
t), or (ii the principal becomes too pessimistic about him. To

understand why that is, recall that the flow reward (conditional on worker 1’s type) the

principal obtains when worker 1 operates the project is the same before and after promotion.

So the principal always wants to postpone her decision, as she gets more information about
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the worker at no cost if she waits. Since the worker’s type is strongly Markovian, a likely

candidate for the promotion time is the first hitting time of a threshold as high as possible.

In particular, if the cost of effort is zero, the principal promotes the worker when his type

reaches the upper boundary of X i. However, when effort is costly, this threshold is too high.

So, the principal chooses the highest threshold for which the worker is willing to exert effort

instead. If the agent’s type increases, the promotion threshold stays constant: the principal

needs to keep her promises. On the other hand, when the worker’s type decreases, the worker

becomes more pessimistic about his promotion chances. The principal then has to lower the

promotion threshold to motivate the worker. The logic is the same as in McClellan (2017):

the promotion threshold becomes laxer when the participation constraint binds.26 Because

of the monotonicity of the problem, this constraint binds precisely when the worker’s type

decreases.

Formally, the proof of Theorem 2 is based on the idea of the proof of Theorem 1 in

McClellan (2017). It follows from the five steps below:

• First consider a relaxation of problem (RPi) for which the constraint (DPCi) only

needs to hold for on a finite set of (stopping) times.

• Lemma 8 derives the Lagrangian associated with the relaxed problem as an application

of Theorem 1 in Balzer and Janßen (2002).

• In the third step, useful properties of the solution of the relaxed problem introduced

in step 1 are established.

• The fourth step identifies a promotion contest that guarantees the principal a payoff

of at least the value of the relaxed problem introduced in the first step. It is enough

to focus on promotion contests that promote worker i after good performances (as X i

26See also Harris and Holmstrom (1982), Thomas and Worrall (1988), or Grochulski and Zhang (2011).
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crosses an upper threshold from bellow) and take the outside option after bad outcomes

(when X i crosses a lower threshold from above).

• Putting everything together and letting the set of times at which (DPCi) holds grow

dense yields Theorem 2.

Steps 1, 2, and 5 are essentially the same as in the proof of Theorem 1 in McClellan (2017).

Steps 3 and 4 are new and specific to our setting. The details are in Appendix A.1.6.

Supporting Lemmas are in Appendix A.1.6.

Corollary 1 Let (τ, di) be feasible in the single worker problem (RPi) Then, for all W̄ ≥ W ,

E
[∫ τ

0

e−rtπi
(
X i

t

)
dt+ e−rτ

(
diτ π̄

i
(
X i

τ

)
+ (1 − diτ )W̄

)]
≤ E

[∫ τs,i∧τ i(pi(W̄ ))

0

e−rtπi
(
X i
)
dt

+ e−rτs,i∧τ i(pi(W̄ )
(
π̄i
(
X i

τs,i

)
1{τs,i<τ i(pi(W̄ )} + W̄1{τs,i≥τ i(pi(W̄ )}

)]
.

Proof. Observe that the set PI,r,i is independent of W̄ and that Assumption 7 is satisfied

for any W̄ ≥ W . The result follows from Theorem 2.

1.5.3 Measurable stopping

The main result of this section shows that it is enough to focus on a subset of the imple-

mentable promotion contests such that the decision to promote worker i does not depend on

the type of the other workers.

Proposition 10 The supremum in (RP) is achieved by a (randomized) promotion contest

(T, τ, d). Moreover, τ =
(∧N

i=1 τ
i
)
∧ τ 0, where τ i is a F i-stopping time, τ 0 is a GT - random-

ized stopping time, and diτ = 1 only if τ i ≤ τ =
(∧N

i=1 τ
i
)
∧ τ 0.
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Proposition 10 has two parts. The first part states that the supremum in (RP) is achieved

by a a promotion contest. It follows from Theorem 10 in Appendix A.1.7.

The second part characterizes the promotion time τ . It is the minimum of N F i-stopping

times, τ i’s, and one GT -randomized stopping time τ 0. It follows from Corollary 9 in Appendix

A.1.7.

1.5.4 An upper bound on the value of (RP)

Proposition 11 derives an upper bound on the principal’s payoff in any implementable pro-

motion contest.

Proposition 11 The value of (RP) is bounded above by

E

[∫ ∞

0

re−rt

N∨
i=1

Γs,i
T s,i(t)

dt

]
. (ΠM)

To build some intuition, it is useful to go back to the proof of indexability for superpro-

cesses.27 Start with N independent payoff processes π̃i
t, one for each superprocess. To each

of these payoff processes, associate the index process Γ̃i
t defined as the “equitable surrender

value”, i.e. the smallest W such that

W = Ṽ i
t (W ) := sup

τ≥t
E
[∫ τ

t

e−r(s−t)π̃i
sds+ e−r(τ−t)W | F i

t

]
.

This index process has the desirable property that, for all W̃ ,28

E
[∫ ∞

0

e−rtrΓ̃
i

t ∨Wdt

]
= sup

τ
E
[∫ τ

0

e−rtπ̃i
tdt+ e−rτW

]
,

27See Chapter 4 in Gittins et al. (2011) or Durandard (2022a), for example.
28See Proposition 3.2 in El Karoui and Karatzas (1994).
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where Γ̃
i

t is the lower envelope of Γ̃i
t. Whittle’s condition guarantees that one of the payoff

processes within each superprocess is such that its associated index process Γ̃i,∗ dominates

the associated index process of all other possible index processes associated with this super-

process, i.e., for all W ,

E
[∫ ∞

0

e−rtrΓ̃
i,∗
t ∨Wdt

]
≥ E

[∫ ∞

0

e−rtrΓ̃
i

t ∨Wdt

]
.

It is then possible to show that the optimal policy picks the dominating process for each

superprocess and pulls the arm whose index is the highest at each instant t.

Here, start with an implementable promotion contest (T, τ, d) ∈ PI and find N single-

arm implementable promotion contests (τ i, di) ∈ PI,i. This N single-arm implementable

promotion contests generates N payoff processes for the principal:

hit := πi(X i
t)1{t<τ i} + rπ̄i

(
X i

τ i

)
1{t≥τ i}.

By the results of Section 1.5.3, each hi can be chosen to be F i-adapted. As in the proof of

indexability for superprocesses, one would like to associate to each of these payoff processes

an index process Γi
t. However, the index process cannot be the “equitable surrender value”

in the retirement problem:

V̄ i
t (W ) := sup

τ≥t
E
[∫ τ

t

e−r(s−t)hisds+ e−r(τ−t)W | F i
t

]
.

Intuitively, this would allow the principal to break her promises and take the outside option

while the worker’s promised continuation utility is strictly positive. Hence, the retirement

problem above does not take into account the worker’s participation constraint. To overcome

this issue, consider instead the optimal retirement problem in which the principal can take

the outside option only on a set of decision times at which the continuation value of the
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worker is zero:

Ṽ i
(
t,W ; τ i, di

)
:= sup

ρ∈T s(t;hi)

E
[∫ ρ

t

e−r(s−t)hisds+ e−rρW | F i
t

]
;

where

T s(t; τ i, di) =
{
s ≥ t : U i

s(τ
i, di) = 0

}
,

and U i
s(τ

i, di) is worker i’s continuation value at time s for the single-arm promotion contest

(τ i, di) ∈ PI,i. The index process is then the “equitable surrender value” in this alternative

retirement problem. One can therefore think of the problem as a multi-armed bandit problem

in which the completion time of each task is the random duration between two times such

that the worker’s continuation is zero.

Finally, Corollary 1 guarantees that each index process is dominated (in the sense of

Whittle) by the strategic index process. The conclusion then follows from the same argu-

ments as in the nonstrategic case.

The proof of Proposition 11 is in Appendix A.1.8. The derivation of the index processes

associated with our alternative retirement problem is in Appendix A.1.8.

1.5.5 Proof of Theorem 1

By Proposition 11, any implementable promotion contest gives a payoff weakly smaller than

E

[∫ ∞

0

re−rt

N∨
i=1

Γs,i
T s,i(t)

dt

]
.
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By Proposition 2, the principal obtains an expected payoff of

E

[∫ ∞

0

re−rt

N∨
i=1

Γs,i
T s,i(t)

dt

]

in the index contest. Thus the index contest is optimal.

1.6 Extensions

In this section, I discuss multiple extensions.

1.6.1 Relaxing Assumptions 5 and 7

Assumptions 5 and 7 simplify the analysis but rule out potentially interesting settings. In

particular, Assumption 5 excludes Poisson learning with good news, a case that has received

a lot of attention in the economic literature, while Assumption 7 excludes problems in which

the principal has no outside option, i.e., in which the position has to fill internally.

However, both can be relaxed, as the Corollaries below establishes. Interestingly, both

Corollaries rely on the continuity of the principal’s value. Corollary 2 uses that the value is

continuous in the payoff from the outside option, W, while Corollary 3 uses that the value is

continuous in the process X i (in the appropriate topology). Their proofs are in supplemental

Appendix A.3.1.

Corollary 2 The index contest is still optimal when Assumption 7 does not hold. The

principal never takes the outside option.

Corollary replaces Assumption 5 with the following assumption:

Assumption 8 For all i ∈ {1, . . . , N}, there exists a sequence (X i,n)n∈N such that (i) X i,n

satisfies Assumption 5, (ii) X i,n −X i is F i-adapted, and (iii) X i = lim
n→∞

X i,n uniformly on
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compact sets P-a.s..

Hence, any process satisfying Assumptions 2, 3, and 4, but not 5 can be approximated

by a sequence of processes X i,n that satisfy 5. Assumption 8 simply guarantees that this

sequence is F i-adapted. In particular, if, for all i, the probability space
(
Ω, F̄ ,P

)
contains a

F i-Brownian motion, Assumption 8 is satisfied. Define

τ 0 := inf
{
t ≥ 0 : Γs,i

T i(t)
≤ W for all i

}
,

and

τ i := inf
{
t ≥ 0 : T i(t) > P̄ i

(
X i

T i(t)

)}
∧ τ p,i,

where τ p,i is the first tick of a Poisson clock that runs only on {X i
t = P̄ i(X i

t)} which intensity

is chosen to leave i indifferent between exerting effort or not when promoted at time τ i.

Corollary 3 Suppose that Assumption 5 is replaced with Assumption 8 and that the πi’s

are continuous. Then the index contest associated with the strategic indices Γs,i and the

promotion time τ ∗ = τ 0 ∧
∧N

i=1 τ
i is optimal.

Interestingly, Corollary 3 shows that when P̄ i(X i
t) = X i

t = X i
t the strategic index associated

to worker i is equal to the expected value of promoting i immediately: information has no

value. This is the case, for example, if worker can be good or bad, the principal learns about

worker i through the Poisson arrival of good news, the probability that worker i is good at

time t (hence his type X i
T i(t)

:= P
(
{i is good } | F i

T i(t)

)
) is too low.

1.6.2 Prize design

The main of this section establishes that when the principal can design the prize, the index

contest is still optimal, i.e., the principal prefers to allocate the entire prize to one worker
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only. Moreover, there is no value in giving multiple “smaller” promotion to a worker.

The model is identical to the one presented in Section 1.2, except for the following two

differences: (i) the prize is divisible, and (ii) the principal chooses (potentially) multiple

times at which to promote workers. Formally, at time t = 0, the principal commits to

a history-dependent promotion contest comprising of (i) a set of promotion time {τk}Kk=1

(with K ∈ N ∪ ∞) specifying when a fraction of the prize is allocated; (ii) a promotion

decision d specifying which of the workers is promoted; and (iii) a delegation rule α that

assigns at every instant the non-routine task to some worker. The promotion times, τk’s,

are GT -stopping time such that τ0 = 0 and τk < τk+1 P-a.s.. The promotion decision is

a GT -adapted (stochastic) process d =
(
d0 = {d0t}t≥0 , . . . , d

N =
{
dNt
}
t≥0

)
∈ C∗. Again d0

stands for the principal’s decision to take her outside option. Finally, the delegation rule

T =
(
T 1 = {T 1(t)}t≥0 , . . . , T

N =
{
TN(t)

}
t≥0

)
∈ D is a delegation process. The workers

only decides to exert effort ait in {0, 1} when they are delegated the non-routine task.

Finally, the following additional assumption is maintained in this section.

Assumption 9 (i) For all i ∈ {1, . . . , N}, the process {πi (X i
s)}s≥0 is a submartingale.

(ii) For all i ∈ {1, . . . , N}, the cost of effort is constant: ci (·) := ci.

Assumption 9 (i) guarantees that upon promotion, the principal always wants there is no

penalty from delegating the full project to the promoted worker. Assumption 9 (ii) simplifies

the argument.

So, given a promotion contest
(
T, {τk}Kk=1 , d

)
, the principal’s expected payoff is

ΠM
(
T, {τk}Kk=1 , d;W

)
:= E

[
K∑
k=1

(
N∑
i=1

∫ τk

τk−1

e−rtπi(X i
T i(t))dT

i(t) + e−rτk π̄
(
XT (τ), dτk

))]
,
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where

π̄ (x, d) := d0W +
N∑
i=1

E
[∫ ∞

0

e−rtπi
(
X i

dit

)
d
(
dit
)
| X i

0 = xi
]
.

The workers’ expected payoffs are

U i
(
T, {τk}Kk=1 , d

)
:= E

[
K∑
k=1

e−rτkgdiτk −
∫ ∞

0

e−rt(1 −
K∑
k=1

diτk1{t≥τk})c
idT i(t)

]
.

The principal’s objective is to design the promotion contest that maximizes her payoff among

all implementable promotion contest. As above, this is equivalent to the maximization

program:

ΠM := sup
(T,{τk}Kk=1,d)∈P

E

[
K∑
k=1

(
N∑
i=1

∫ τk

τk−1

e−rtπi(X i
T i(t))dT

i(t) + e−rτk π̄
(
XT (τ), dτk

))]
,

(Prize design)

subject to the dynamic participation constraints: for all i and all possible histories ht,

E

[
K∑
k=1

e−r(τk−t)gdiτk1{t≤τk} −
∫ ∞

t

e−rt(1 −
K∑
k=1

diτk1{t≥τk})c
idT i(t) | ht

]
≥ 0.

Theorem 3 Suppose that Assumption 9 holds. Then the index contest solves (Prize design).

Theorem 3 shows that optimal promotion contest grants the entire prize to one worker at

most. The optimal contest is a winner-take-all. This is reminiscent of the classic result in

Moldovanu and Sela (2001) of the optimality of a single prize. In our dynamic setting, fully

allocating the prize to only one worker is also optimal. The index contest is meritocratic: the

worker who performs the best (upon getting the opportunity) is promoted. This contrasts

from recent results in dynamic contest theory in which the optimal contest was shown to be

more egalitarian (see Halac et al. (2017) and Ely et al. (2021), for example).
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In supplemental Appendix A.3.2, I indicate how to modify the proof of Theorem 1 to

obtain Theorem 3. In particular, it follows the same steps. The only difference is in showing

that one can focus on promotion contests in which the promotion times are measurable.

Proposition 33 in supplemnetal Appendix A.3.2 replaces Proposition 10. The rest of the

proof is identical.

1.6.3 Transfers

I ruled out transfers for three reasons in the main model. The first and most fundamental one

was that I wanted to focus on the trade-off between the two classical promotion roles, i.e.,

incentives provision and sorting. The second reason for this restriction is empirical. In most

organizations, compensation is promotion based.29 This is the case in public administrations,

where the salary grid is fixed, for example. Finally, the analysis developed in this article

becomes intractable for general wages (although the main trade-off seems to be preserved

when workers are protected by limited liability). So a complete analysis of transfers is well

beyond the scope of my paper. Nevertheless, in this section, I point out how my model can

accommodate restricted forms of transfers.

Suppose that the principal can only choose transfers that depend on the worker’s current

type and his effort decision (i.e., pay a flow wage wi
t = wi(ait, X

i
t) to worker i at every instant

t ≥ 0) and that the workers are protected by limited liability (i.e. wi
t ≥ 0). Then the

index context is still optimal, under Assumption 4.(ii) (when the workers’ types can only

jump down), as long as πi(·) − wi(1, ·) is nondecreasing. This can be seen from the proof of

Theorem 1 directly.

29Baker et al. (1988) find that “[m]ost of the average increases in an employee’s compensation can be
traced to promotions and not to continued service in a particular position.”. See also Gibbs (1995) and
Bernhardt (1995). It is also consistent with the observed separation of roles: Compensation and benefits
managers within the human resource department have authority over the compensation structure, while
the assignment of responsibilities and tasks are made within each department by managers that can closely
monitor and supervise their team.
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For example, if the wage paid to each of the workers is a constant fraction βi ∈ [0, 1] of

the flow payoff the principal obtains (i.e., wi
t = βiπi(X i

T i(t))dT
i(t)), then the index contest

is optimal. The strategic index are computed for the payoff process (1 − βi)πi(X i(t)), effort

costs c(X i
t) − βiπi(X i(t)), and value of promotion g̃i (X i

t) := gi + βiπ̄i(X i
t) . One can then

imagine that the principal engages in Nash bargaining with the workers (with threat points

equal to their outside option) before the game starts to determine the βi’s.

1.6.4 Different information structures

Finally, the workers’ types are assumed to be observable by all the players: by both the other

workers and the principal. Interestingly, the index promotion contest remains optimal if each

worker only observes his type and the principal does not observe the evolution of the types,

but the workers can reveal their current type to the principal credibly. Hence it is easily

seen that it is weakly dominant for the workers to reveal their type to the principal when

X i
t = X i

t or X i
t = P̄ i

(
X i

t

)
, which is the only information the principal need to implement

the index contest. Verifiability is important here: the same result cannot be obtained with

cheap talk communication only.

1.7 Conclusion

I study the design of centralized dynamic contests in a general environment. Workers are

heterogeneous and strategic. They have to be incentivized to exert effort, and their types

evolve (stochastically) when they work. I showed that despite the richness of the model, the

solution is simple and takes the form of an index contest.

My analysis is limited to the specific extension of the multi-armed bandit model I consider,

and I do not suggest that my findings would hold in different environments. Some of the

assumptions, such as the independence of the type processes, appear crucial and very hard to
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relax in a significant manner (although one could consider a particular form of conditional

independence for multi-parameter processes, known as condition F4, see El Karoui and

Karatzas (1997) or Walsh (1981) for example). However, the intuition behind the result is

valid in other environments. For example, when the information about the project’s success

is private and cannot be credibly communicated but the uncertainty is small, results from

the multi-armed bandit literature suggest that index contest would still perform well. This

can be seen directly by inspecting the principal’s payoff in the index contest (ΠM). When the

uncertainty is small, the lower envelopes of the index processes associated with the case in

which the principal observes the workers’ types directly or observes a signal are close. Still,

characterizing the specific form of the optimal mechanism when the workers have private

information about the outcome of the delegation process would be interesting.

More generally, the idea that the endogenous allocation of opportunities or the endoge-

nous acquisition of information affects the final decision when allocating an asset or promot-

ing a worker is very natural and deserves more attention in future research.
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Chapter 2

Under Pressure: Comparative Statics

for Optimal Stopping Problems in

Non-stationary Environments

2.1 Introduction

A large body of literature has employed optimal stopping problems to model many different

decision processes, such as optimal pricing and information acquisition problems where a

decision-maker must determine the optimal time to take a particular action. These problems

are often nonstationary, as the decision environment can change suddenly or gradually over

time. For example, in the optimal pricing setting, a firm’s cash flow variance may suddenly

rise in periods of crisis. Decision-makers may also receive information at varying speeds, with

some news arriving gradually and others suddenly revealed. Additionally, decision-makers

often operate under the pressure of a (possibly stochastic) deadline.

However, following the seminal contribution by Wald (1947) and Shiryaev (1967), most

of the literature has focused on stationary environments where the decision-maker faces the
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same problem and has the same tools at every point in time. The reason for such restriction

is mainly technical. Abandoning stationary environments poses new challenges to standard

solution techniques and typically results in the lack of close-form solutions (see, for example,

Fudenberg et al. (2018)). This paper aims to go beyond these technical limitations and show

that interesting comparative statics can still be obtained in a large class of nonstationary

optimal stopping problems, even without relying on close-form solutions.

Our paper has three main contributions. First, we formulate a general optimal stopping

problem that can represent a wide variety of non-stationary environments (including those

mentioned above) and find conditions under which this problem has a well-defined solution.

Second, we show that in monotone environments, i.e., when the problem’s time dependence

is “monotone”, we can still derive clean comparative statics results despite the lack of closed-

form solutions. For example, we show that when the optimal stopping problem is monotone,

the optimal continuation region enlarges or shrinks over time depending on whether the

problem is monotone increasing or decreasing. Third, we specialize our model and use our

comparative static results to analyze the tradeoff between timing and quality of the decisions

in information acquisition problems where the environment is non-stationary, e.g., when the

decision maker faces a (potentially stochastic) deadline, receives or processes information at

variable speed (possibly even in chunks), or learns about a relevant parameter that is not

binary (as in Fudenberg et al. (2018)).

We study a general optimal stopping problem where a decision maker chooses among

different possible alternatives whose values evolve according to a general diffusion process.

Formally our decision-maker solves

V (t, x) = sup
τ

E(t,x)

[∫ τ

t

e−
∫ s
t r(u,Xu)duf(s,Xs)ds+ e−

∫ τ
t r(s,Xs)dsg (Xτ )

]
, (V)
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subject to

Xt+s = Xt +

∫ t+s

t

µ(u,Xu)du+

∫ t+s

t

σ(u,Xu)dBu;

where the discount rate, as well as the drift µ and the variance σ of the diffusion process

depend both on time t and on the state Xt.

In this general setting, standard methods to solve optimal stopping problems may fail,

as we do not know a priori whether the Hamilton-Jacobi-Bellman equation associated with

the problem has a smooth solution. Our first main result shows that, under some mild

regularity conditions, the value function is smooth and is indeed the unique Lp-solution of

the HJB equation. This technical result is crucial: it ensures we can derive properties and

comparative statics of the value function and the stopping regions even without reaching a

closed-form solution.

Our second contribution is to show that the continuation region of our optimal stopping

problem (strictly) shrinks over time intervals where the value function (strictly) decreases

with time and, on the contrary, enlarges over time intervals where the value function (strictly)

increases with time.In other words, the set of states x at which the decision maker chooses to

stop the drift-diffusion process (strictly) decreases or increases in the set inclusion order over

a time interval when the value function decreases or increases in that time interval. Proving

the strict part of this result is particularly challenging as, in principle, it requires knowledge

of the cross derivative of the value function. To overcome this challenge, we develop a new

argument based on partial differential equation results and the Hopf boundary lemma.

To illustrate the power of this comparative static, we focus on (strictly) monotone (in-

creasing or decreasing) optimal stopping problems, where the value function V (x, t) is globally

(strictly) monotone and the continuation region is connected at each instant. In this case,

our result implies that when the value function is (strictly) decreasing in time, an upper
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boundary that (strictly) decreases in time and a lower boundary that (strictly) increases in

time delimit the continuation region. The upper and lower boundaries move in the opposite

direction when the value function is (strictly) increasing in time. As we show, the bound-

aries’ dynamic has clear empirical predictions, for example, regarding the speed and quality

of decisions.

Next, we specialize our model to capture a classical information acquisition problem

where a decision maker chooses between two possible alternatives while learning about some

relevant parameter. In this setting, the link between the speed and accuracy of decisions

has been at the core of recent developments in economics, psychology, and neuroscience.

Accuracy here is the probability of making the correct decision given the true value of the

parameter. Wald’s classical sequential sampling model assumes that the relevant parameter

is binary and the learning process is time-stationary. As a result, the belief process is time-

stationary, and the stopping boundaries are constant (in the belief space), which implies

that the time of a decision is uncorrelated with accuracy. However, multiple binary choice

experiments in neuroscience documented interesting correlation patterns between the time

and accuracy of decisions (see, for example, the survey by Ratcliff et al. (2016)), questioning

the problem’s time-stationarity.

In this setting, where shirking boundaries implies decreasing accuracy, and enlarging

boundaries implies increasing accuracy, our results allow us to rationalize such speed-accuracy

tradeoff and relate it to the problem’s time dependence. If the problem is monotone increas-

ing, then accuracy increases in the stopping time; if the problem is monotone decreasing,

then accuracy decreases in the stopping time.1 We then derive natural conditions on the

primitives under which the optimal stopping problem is monotone.2

Accuracy is increasing (decreasing) over time when (i) learning speed increases (decreases)

1Decision accuracy always increases in the decision time when the decision time is exogenous. However,
if the decision-maker optimally chooses when to stop, accuracy may be lower when she chooses to stop later.

2It is easy to check whether any given optimal stopping problem is monotone, using the same approach.
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in time or (ii) the discount rate decreases (increases) over time (i.e., the decision maker values

the future more over time). For example, our model predicts that slower investment choices

are indicative of better decisions in financial markets that are getting more opaque (e.g.,

due to financial innovations or crises) and of worse decisions in financial markets that are

getting more transparent (e.g. due to the regulatory effort). Also, if one cares progressively

more about the future when they get older (as suggested, for example, by Trostel and Taylor

(2001) or Kureishi et al. (2021)), then the decision quality increases over time.

Importantly, since our main result holds locally, we can also capture curvilinear relations

between time and accuracy that consistently arise in both perceptual and cognitive testing

(see, for example, Ratcliff et al. (2016) and Chen et al. (2018)). In our setting, accuracy can

increase and then decrease over time due, for example, to non-monotone changes in learning

speed, which can initially increase due to experience gains but eventually decreases as the

decision maker becomes increasingly tired.

So far, we have only addressed gradual changes in the optimal stopping problem. How-

ever, considering abrupt changes is at least as crucial for many decisions where time pressure

is of the essence. A decision maker can miss an opportunity if they do not seize it in time.

For example, a competitor may preempt the decision-maker by hiring the worker or buying

the asset the decision-maker was considering. Sometimes even when the possibility and the

value of taking an action are constant over time, the learning process might change abruptly.

For example, while during the quarter investors may gather information about the company

performance and outlook gradually, it is typically in the earning release report and in the

subsequent press conference that most information is disclosed to the market creating huge

fluctuation in the market price.

Our third main contribution is to show that our environment accommodates also for all

these abrupt changes in the optimal stopping problem both in terms of the information and

the actions available to the decision maker. Thus our results can be extended to derive
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comparative statics even in settings where the decision maker operates under the pressure of

a (potentially stochastic) deadline and in settings where information arrives both gradually

and abruptly (according to a jump diffusion process).

The main challenge to overcome to prove the result is that the HJB equation in these

settings is an integro-differential equation, which in turn would render any local argument

not directly applicable. However, our key contribution is to show that we can use a time

change argument to trace back these abrupt changes to our optimal stopping problem of

a general diffusion process (without jumps). This dramatically simplifies the problem as

it implies that we can find the solution by using the local HJB equation of our auxiliary

stopping problem.

As a result, we show that the accuracy of slower decisions will be lower (higher) when

the time pressure from a stochastic deadline increases (decreases) over time or when there

is a fixed deadline.3 From an applied perspective, this means, for example, that over time

we should expect worse decisions in markets becoming increasingly competitive and better

decisions when competition is fading away. Similarly, we show that slower decisions are more

accurate in settings where the arrival rate of abrupt information increases (e.g., due to a rise

in media coverage) and less accurate when this arrival rate decreases over time.

The last contribution of our paper is to show that our environment also accommodates

sequential sampling problems whose relevant parameter is not binary. As the seminal paper

by Fudenberg et al. (2018) highlighted, these settings are time nonstationary as information

about the relevant parameter is contained not only in the value of the signal process but

also in the time that has passed without the DM taking a decision. Fudenberg et al. (2018)

focus on the speed-accuracy tradeoff when the relevant parameter is normally distributed.

3Here, we assume that the decision-maker must take action at the deadline. However, our results also
apply to the case where the decision maker gets a fixed payoff at some (possibly stochastic) deadline. We show
that slower decisions are less (more) accurate when the time pressure from a stochastic deadline increases
(decreases) over time or when there is a fixed deadline if this deadline payoff is sufficiently low (high).



CHAPTER 2. UNDER PRESSURE 74

They show that, as time goes by, if no stopping boundary is hit, the decision makers become

more convinced that there is not much difference in taking one action rather than the other,

and the accuracy of the decision decreases. In section xxx, we show that we can embed

their model into ours and obtain their result using our comparative statics. Also, we use

our machinery to extend their result about decreasing accuracy also to settings where the

expected value of taking the right decision remain constant, i.e., settings where the decision-

makers do not become more pessimistic about the relevance of making the right decisions.

We also highlight conditions under which accuracy increases in the stopping time.

Other relevant literature. Beyond Fudenberg et al. (2018), our paper is related to

the vast literature on dynamic information. The seminal works by Wald (1947), Arrow

et al. (1949), and Shiryaev (1967), analyze the optimal stopping problem of a decision maker

that needs to choose when to stop learning and which decision to take in a time stationary

environment, where the actions available and the learning process are constant over time.

More recently, Moscarini and Smith (2001), Che and Mierendorff (2019), and Zhong (2022)

endogenized the learning process by allowing the agent to select signal precision, direction of

learning, and which type of signal to use respectively. Even these papers, however, focus on

time-stationary problems where the actions and the learning processes available (with their

associated costs) do not depend on time.4

Relatively few papers abandoned the tractability of stationary environments. Leaving the

binary setting, Fudenberg et al. (2018) and Tajima et al. (2016) focus on problems where the

decision maker gradually learns a relevant parameter that is normally distributed. In such

a setting, the action of continuing learning loses value over time at any given state: more

information has been gathered, and less uncertainty is left. As a result, these environments

are non-stationary and display shrinking boundaries. Within the neuroscience literature,

4In these models, the decision maker optimally adapt their learning process to her belief. However, for
any given belief, time has no impact.
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Rapoport and Burkheimer (1971) studied, in discrete time, a sequential sampling problem

with a deterministic deadline, and Frazier and Yu (2007) extended the analysis to consider

a stochastic deadline whose arrival rate increases over time. To the best of our knowledge,

our paper is the first to address, in full generality, optimal stopping problems in time-

nonstationary environments, providing local (and global) comparative static results that

apply to many different settings: e.g., with increasing or decreasing time pressure, discount

rates, and speed of learning (including both gradual and abrupt arrival of information).5

The core of our applied results relates to the tradeoff between speed and accuracy, a

tradeoff also demonstrated by several recent studies in psychology and neuroscience (Bolsi-

nova et al. (2017); Molenaar et al. (2018); Chen et al. (2018); Goldhammer et al. (2014,

2015)). These studies document how, even after controlling for person and task, the relation

between accuracy and response time can be negative, positive, and even curvilinear, with

accuracy first increasing and then decreasing over time (or vice-versa) depending on the ex-

perimental setting. Most of this literature, however, took a positive stand, abstracting away

from the question of whether such a pattern can arise from optimal decision-making.6 Our

model takes a normative stand, highlighting how all the dependencies mentioned above can

be the result of optimal responses of a decision-maker to different information acquisition

problems. In so doing, our model can shed light on the determinants of these patterns.

5Quah and Strulovici (2013) provide comparative statics about how the stopping time changes when the
decision maker become more or less patient.

6For example, some papers simply assume that the decision-maker takes one choice or the other whenever
the sampling process hits one of two constant boundaries. They focus on estimating the parameters (e.g.,
initial belief, possibly variable speed of learning, reaction time, etc.) that better fit this model without asking
whether using two constant boundaries is optimal. Few exceptions in this literature take optimality into
consideration, e.g., Drugowitsch et al. (2012), but they typically rely on numerical rather than analytical
solutions.
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2.2 Setting

We study an optimal stopping problem in continuous time, where a risk neutral decision

maker sequentially chooses whether or not to stop a nonstationary diffusion process X =

{Xt}t≥0 on the open (possibly unbounded) interval X := [x, x̄] ⊆ R. To this end, let(
Ω, {Ft}t≥0 ,F ,P

)
be a filtered probability space whose filtration {Ft}t≥0 satisfies the usual

conditions.7 Denote by YT = [0, T ) × X , with T ∈ (0,+∞], the product set of times and

states, by T the set of F -stopping times taking values in [0, T ], and by T (t), t ∈ [0, T ), the

set of F -stopping time taking values in [t, T ].8 If the decision maker chooses to stop the

diffusion process at time t, she can take one of two alternative actions (a and b), delivering

expected payoffs ga(Xt) and gb(Xt) respectively. For simplicity, we assume that gi : X̄ → R

belongs to C2,α(X̄ ) and that ga−gb has at most one zero at xc ∈ X . On the other hand, if the

decision maker does not stop, she obtains a flow payoff of f(t,Xt), with f : [0, T ) ×X → R

twice continuously differentiable, and the diffusion process evolves according to

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, P-a.s., (2.1)

where B is the standard one-dimensional Brownian motion. Both the drift µ : [0, T )×X and

the volatility σ : [0, T ) ×X → R++ are allowed to vary with time s and the current state of

the process Xs. For simplicity, we assume that µ and σ are twice continuously differentiable,

and that the endpoints x and x̄ are (possibly unattainable) absorbing states.

7See for example Protter (2005).
8A F-stopping time is a map τ : Ω → R+ ∪ {∞} such that {τ ≤ t} ∈ Ft for each t ≥ 0 and T (t) :=

{τ stopping time : τ ≥ t P-a.s.}.
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Formally, at every time t and state Xt = x, the decision maker solves

V (t, x) = sup
τ

E(t,x)

[∫ τ

t

e−
∫ s
t r(u,Xu)duf(s,Xs)ds+ e−

∫ τ
t r(s,Xs)dsg (Xτ )

]
, (V)

subject to

Xt+s = x+

∫ t+s

t

µ(k,Xk)dk +

∫ t+s

t

σ(k,Xk)dBk;

where E(t,x) is the expectation operator associated with the process X starting at (t, x).

V (t, x) is the value function associated to our problem. Payoff are discounted at the (possibly

stochastic) rate r(t, x), where r : [0, T ) × X → R+ is twice continuously differentiable. We

denote by r := inf
(t,x)∈YT

r(t, x) and, for simplicity, we assume that X is bounded if r = 0.

We assume that f : (0, T ] ×X → R and g : X → R are such that

E(t,x)

[
sup

t≤s≤T

∫ s

t

e−
∫ s
t r(u,Xu)duf(s,Xs)ds+ e−

∫ s
t r(s,Xs)dsg (Xt)

]
<∞

Remark 1 A standard assumption in the study of control and stopping problems is uniform

ellipticity: there exists λ > 0 such that, for all (t, x), σ(t, x) > λ. It is usually needed to

guarantee that the Hamilton-Jacobi-Bellman equation has a solution. Here, we only assume

that strict ellipticity holds, i.e., σ(t, x) > 0. It is enough for our purpose and we do not want

to rule out the interesting case of Brownian learning or the possibility that learning slows

down to zero as times goes to ∞ for example.

Finally, we assume that at an endpoint xe ∈ {x, x̄}, f(t, xe) − rg(xe) ≤ 0 for all t ≥ 0.

This guarantees that it is optimal to stop immediately when the diffusion process exits X .

As a first step we note that, the stochastic differential equation (2.1) has a unique strong

solution and that the process X is Markovian (see Chapter 21 in Kallenberg (2006)). There-
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fore, following the classical theory in Markovian stopping problems we can focus on the

stopping region:

S := {(t, x) ∈ YT : V (t, x) = g(x)} , (2.2)

and its complement, the continuation region

C := {(t, x) ∈ YT : V (t, x) > g(x)} = Sc. (2.3)

By standard result in the theory of optimal stopping (e.g. Corollary 2.9 in Peskir and

Shiryaev (2006)), the smallest optimal stopping time for (V) is

τS := inf
{
t′ ≥ 0 :

(
t+ t′, X

(t,x)
t′

)
∈ S

}
. (2.4)

Finally we define several functional spaces, which are used in the analysis. Let W 1,2,p(YT ),

1 ≤ p ≤ ∞ denote the space of functions that are (i) twice differentiable almost everywhere

in space, (ii) once differentiable almost everywhere in time, and (iii) all of whose weak

derivatives are in Lp(YT ). It is often referred to as a Sobolev space. Also let W 1,2,p
loc (YT )

denote the space of all functions f such that the restriction of f on any compact subset

Y of YT is in the Sobolev space W 1,2,p(Y). C0(YT ) is the space of continuous functions on

the domain YT . For k, k′ ∈ N, α ∈ (0, 1], Ck,k′,α is the space of functions that are k times

continuously differentiable with respect to the time variable t with α
2
-Hölder continuous

derivatives and k′ times continuously differentiable with respect to the space variable x,

with α-Hölder continuous derivatives. Formal definitions are given in Appendix B.1.



CHAPTER 2. UNDER PRESSURE 79

2.3 Analysis and results

Our main contribution is to identify a class of environments we call monotone environ-

ments, in which the continuation region’s boundaries are strictly monotone. First, we in-

troduce the tools we need for our analysis in Section 2.3.1. Then, we define Monotone

environments and prove our main result in Section 2.3.2.

In this section, we maintain the following assumption.

Assumption 10 The value function (V) is continuous on [̄0, T ) ×X .

Assumption 10 is usually easy to check in applications and holds under standard assumptions

on the primitives. For example, Lemma 3 in Section 2.4 provides conditions under which V

is continuous in our applications. The techniques used in the proof easily extends to different

cases.9

2.3.1 Optimal stopping problems: toolbox

We show that the value function is the unique Lp-solution of the Hamilton-Jacobi-Bellman

equation. This is a crucial to derive comparative static results on the shape of the continu-

ation region without solving the problem explicitly. Consider


max

{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
= 0 in YT ,

v(t, x) = g(x) on ∂YT .

(HJB)

9Theorem 1 in Durandard and Strulovici (2022) provides alternative conditions that guarantee continuity
of V in a wide variety of problems.
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L is the infinitesimal generator associated with X. It is defined as follows: for all (t, x) ∈ YT ,

for all ϕ(t, x) ∈ W 1,2,p (YT ),

L(t,x)ϕ(t, x) =
1

2
σ2(t, x)ϕxx(t, x) + µ(t, x)ϕx(t, x).

So,

(
∂t + L(t,x) − r(t, x)

)
v(t, x) = vt(t, x) +

1

2
σ2(t, x)vxx(t, x) + µ(t, x)vx(t, x) − v(t, x).

Definition 9 A function v ∈ W 1,2,p
loc (YT )∩C0(̄[0, T )×X ) is an Lp-solution of the Hamilton-

Jacobi-Bellman equation (HJB) if (i) u = b on ∂[0, T ) ×X , and (ii)

max
{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
≥ 0

a.e. in YT , where vt(t, x), vx(t, x) and vxx(t, x) are the weak derivatives of u.10

Theorem 4 Suppose the value function is continuous and grows at most linearly (Assump-

tion 10). Then the value function (V) is the unique Lp-solution of the Hamilton-Jacobi-

Bellman equation:


max

{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
= 0 in YT ,

v(t, x) = g(x) on ∂YT .

(HJB)

Moreover, V is continuously differentiable and twice continuously differentiable with respect

to x with α-Hölder continuous derivatives in the continuation region: V ∈ C1,2,α (C).

The proof of Theorem 4 relies on Theorem 1 in Durandard and Strulovici (2022).11 Hence,

10The requirement that the inequality is satisfied almost everywhere is meaningful, because if u ∈
W 1,2,p (YT ), then its weak derivatives up to the second order are uniquely well defined almost everywhere.

11As noted in Durandard and Strulovici (2022), the results in this paper applies for stochastic discount
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we can apply this result locally: for any point (t, x) with x ̸= xc, Theorem 1 in Durandard

and Strulovici (2022) then guarantees that the value function is the unique Lp solution of


max

{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
= 0 in Cδ(t, x),

v(t, x) = V (t, x) on ∂Cδ(t, x),

where Cδ(t, x) is a cylindrical neighborhood of (t, x). If g is smooth, this conclude the proof.

However, when g is not differentiable at xc, the above argument fails as the Assumptions

of Theorem 1 in Durandard and Strulovici (2022) are not satisfied. We overcome this dif-

ficulty by proving that for all t ∈ [0, T ), there exists a small neighborhood of (t, xc) ∈ YT ,

Cδ(t, x
c), such that it is never optimal to stop in Cδ(t, x

c) (Proposition 12 below). The result

then follows from Theorem 1 in Durandard and Strulovici (2022) applied to value function

in this neighborhood.

Finally, the last statement follows from standard (interior) a priori estimates for the

solutions of parabolic equations.

The following proposition 12 used in the second step is of independent interest too.

Proposition 12 Suppose that g1
′
(x) ̸= g2

′
(xc). Then V (t, xc) > g(xc) for all t ∈ [0, T ), i.e.,

the DM never stops when Xt = xc.

Hence, the idea that the decision maker will never stop at a convex kink, as waiting a

infinitesimal amount of time guarantee him a strictly higher payoff, has often been used in

the study of stopping problem (see, for example, Dixit et al. (1994), Décamps et al. (2006),

or Dixit (2013)).

In particular, it underlies the intuition behind smooth pasting and the smoothing effect

of the Brownian motion, which goes as follows: Suppose that the value function exhibits an

factor when r is regular.
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x-convex kink. Consider the following problem: at this point (t, xc), the decision maker can

choose to wait for a small interval of time dt or stop and obtain V (t, xc). If she waits, the

decision-maker can observe the evolution of X and stop on either side of xc, at which points,

she resumes the optimal paths of play, hence obtaining V (t + dt,Xdt). The average payoff

she obtains is greater than the payoff from investing at the indifference point itself since the

value function V has a convex kink at xc. This remains true even though this average payoff

must be discounted and the decision-maker potentially has to pay a flow cost for waiting.

The reason is the following one. By standard properties of non-degenerate diffusions, the

expected gain from delaying the decision is proportional to |gx(xc+) − gx(xc−)|
√
dt, while

the cost due to discounting is of order dt. When dt is small the former effect dominates. As

a result, the decision-maker is better off waiting: a “contradiction”. So the value function

cannot exhibit x-convex kinks and the stopping region S does not contain (t, xc).

Proposition 12 formalizes this intuition. Its proof is technical and relies on a local time

argument. It guarantees that when g ̸∈ C2 (X ), its kink (which is necessary at xc) is in the

continuation region for all t ≥ 0. This allows us to prove our first main result: Theorem 4.

2.3.2 Main result: monotone environments

Having introduced the main tool for our analysis: the Hamilton-Jacobi-Bellman equation,

we are now ready to state and prove our main result. First we define locally monotone

environments. They are characterized by a set of conditions, under which Theorem 5 and 6

shows that the boundaries of the continuation regions are locally monotone.

Definition 10 The optimal stopping problem (V) is locally monotone on the time interval

(t, t̄) if the value function V (t, x) is monotone in time on (t, t̄); i.e., for all x ∈ X , t→ V (t, x)

is monotone on (t, t̄).

It is locally monotone increasing on (t, t̄) if t→ V (t, x) is nondecreasing on (t, t̄) for
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all x ∈ X , and it is locally monotone decreasing on (t, t̄) if t→ V (t, x) is nonincreasing

on (t, t̄) for all x ∈ X .

We say that the optimal stopping problem (V) is monotone if it is globally monotone

(i.e., (t, t̄) = (0, T )).

Finally, we define strictly monotone environments.

Definition 11 The optimal stopping problem V is locally strictly monotone on the time

interval (t, t̄) if

(i) It is locally monotone on the time interval (t, t̄);

(ii) The value function V is strictly monotone in time in the continuation region

on the time interval (t, t̄); i.e., for all (t, x) ∈ C ∩ (t, t̄) × X , Vt(t, x) < 0 or, for all

(t, x) ∈ C ∩ (t, t̄) ×X , Vt(t, x) > 0;

(iii) σt(t, x)Vxx(t, x) ≤ 0, µt(t, x)Vx(t, x) ≤ 0, rt(t, x)V (t, x) ≥ 0, and ft(t, x) ≤ 0 for all

(t, x) ∈ C ∩ (t, t̄) × X if Vt(t, x) ≤ 0; and σt(t, x)Vxx(t, x) ≥ 0, µt(t, x)Vx(t, x) ≥ 0,

rt(t, x)V (t, x) ≤ 0, and ft(t, x) ≥ 0 for all (t, x) ∈ C ∩ (t, t̄) ×X , if Vt(t, x) ≥ 0.

If the value function is strictly decreasing in time in the continuation region, the stopping

problem is strictly monotone decreasing. If the value function is strictly increasing in

time in the continuation region, the stopping problem is strictly monotone increasing.12

We say that the optimal stopping problem (V) is strictly monotone if it is globally

strictly monotone (i.e., (t, t̄) = (0, T )).

Our first comparative static results shows that the continuation region is monotone (in

the set inclusion order) in monotone environments. Theorem 5 shows that the continuation

12The derivatives in the statements (ii) and (iii) are standard derivatives. They are well-defined in the
continuation region as a consequence of Theorem 4.
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region is weakly increasing. It follows immediately from the local monotonicity of the value

function.

Theorem 5 Suppose the value function is continuous and grows at most linearly (Assump-

tion 10). Then

1. If the optimal stopping problem is locally monotone decreasing on (t, t̄), the optimal

continuation region C is nonincreasing (in the set inclusion order) on (t, t̄).

2. If the optimal stopping problem is locally monotone increasing on (t, t̄), the optimal

continuation region C is nondecreasing (in the set inclusion order) on (t, t̄).

Proof of Theorem 5. We only prove the Theorem in the locally monotone decreasing

case, as the proof of the second case is similar. Consider the optimal stopping problem (V)

and suppose that it is locally monotone decreasing on (t, t̄). Then the function

t→ V (t, x) − g(x)

is nonincreasing on (t, t̄). Therefore, for all t ∈ (t, t̄), (t, x) ∈ C ⇒ [t, t] × {x} ⊆ C.

Our second main Theorem 6 states that the continuation region is strictly monotone in

the sense of Definition 12 below.

Definition 12 [Strict set order] The continuation region is strictly increasing over time if,

for t̄ > t, the t-sections of the continuation region, Ct := {(t, x) ∈ C : x ∈ X}, are such that

Ct ⊂ Ct̄ and ∂Ct ⊂ C◦
t̄ .

The continuation region is strictly decreasing over time if, for t̄ > t, the t-section of the

continuation region are such that Ct̄ ⊂ Ct and ∂Ct̄ ⊂ C◦
t .

Remark 2 If the continuation region is strictly monotone in the sense of definition 12, its

boundary can be written as the union of strictly monotone functions.
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Theorem 6 Suppose the value function is continuous and grows at most linearly (Assump-

tion 10).

1. If the optimal stopping problem is locally strictly monotone decreasing on (t, t̄),

the optimal continuation region C is strictly decreasing.

2. If the optimal stopping problem is locally strictly monotone increasing on (t, t̄),

the optimal continuation region C is strictly increasing.

The proof of Theorem 6 is more challenging than that of Theorem 5, as it requires the

knowledge of the cross derivative of the value function at the boundary. To overcome this

issue, we develop a new argument based on partial differential equation results and the Hopf

boundary lemma. Proof of Theorem 6. We prove the theorem in the case that the

optimal stopping problem is locally strictly monotone decreasing on (t1, t̄2). The case in

which the optimal stopping problem is locally strictly monotone increasing is similar. By

Theorem 5, the stopping region is locally decreasing. So, there remains to show that the

boundaries are strictly monotone when they are in X .

The proof is by contradiction. Suppose that there exists t, t̄ ∈ [0, T ) and B ∈ X such

that (t, B) and (t̄, B) ∈ ∂C and such that there exists x < B with (t̄, x) ∈ C. Note that we

can always find t̄ such that this last condition holds. For the rest of the proof, we assume

that for all (t, x) ∈ C ∩ t, t̄) × X , x ≤ B, i.e. we are looking at an “upper boundary” of the

continuation region. The proof when for all (t, x) ∈ C ∩ t, t̄) ×X , x ≥ B is identical.

Let ϵ > 0 and consider the rectangular domain Y := [t, t̄) × (B − ϵ, B) with parabolic

boundary ∂Y := ([t, t̄] × ({B − ϵ} ∪ {B})) ∪ ({T} × (B − ϵ, B)). We can choose ϵ such that

the rectangular domain is contained in the continuation region. By Theorem 4, we know
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that the value function is the unique Lp-solution of the boundary value problem


vt(t, x) + σ(t,x)2

2
vxx + µ(t, x)vx(t, x) − r(t, x)v(t, x) + f(t, x) = 0 if (t, x) ∈ Y ,

v(t, x) = V (t, x) if (t, x) ∈ ∂Y .

By Corollary 3 in Durandard and Strulovici (2022), Vt ∈ C0
(
Ȳ
)
. Then, Theorem 3.5.10 in

Friedman (2008) guarantees that Vt(t, x) ∈ C1,2,α ([t, t̄) × (B − 2ϵ, B)) and solves


vtt(t, x) + σ(t,x)2

2
vtxx + µ(t, x)vtx(t, x) − r(t, x)vt(t, x)

= −σ(t, x)σt(t, x)vxx(t, x) − µt(t, x)vx(t, x) + rt(t, x)v(t, x) − ft(t, x) if (t, x) ∈ Y ,

vt(t, x) = Vt(t, x) if (t, x) ∈ ∂Y .

Therefore, on Y ,

vtt(t, x) +
σ(t, x)2

2
vtxx + µ(t, x)vtx(t, x) − r(t, x)vt(t, x)

= −σ(t, x)σt(t, x)vxx(t, x) − µt(t, x)vx(t, x) + rt(t, x)v(t, x) − ft(t, x)

≥ 0,

where the inequality follows from condition (iii) in Definition 11. Then, by Hopf’s boundary

Lemma (Lemma 1.23 in Wang (2021)), vtx(t, B) > 0 for all t ∈ (t, t̄) such that vtx(t, B)

exists. But, for all t ∈ (t, t̄), V (t, B) = g(x) ⇒ vt(t, B) = Vt(t, B) = ∂
∂t
g(x) = 0 and

therefore vtx(t, B) = 0. So if there exists (t, B) ∈ (t, t̄) × {B} such that vtx(t, B) is well

defined, we have a contradiction. This follows from Theorem 2.1 in Wang (1992), since

V ∈ C1,2,α ([t, t̄) × (B − 2ϵ, B)) by Theorem 4.

Thus, the upper boundary of the continuation cannot be flat. This concludes the proof.
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Remark 3 From the proof of Theorem 6, one can see that condition (iii) in Definition 11

can be slightly relaxed. It is enough that, at all boundary points, there exists a neighborhood

such that, in its intersection with the continuation region, we have

σt(t, x)vxx(t, x) + µt(t, x)vx(t, x) − rt(t, x)v(t, x) + ft(t, x) ≤ 0,

when the stopping problem is locally monotone decreasing, and

σt(t, x)vxx(t, x) + µt(t, x)vx(t, x) − rt(t, x)v(t, x) + ft(t, x) ≥ 0.

when the stopping problem is locally monotone increasing. Condition (iii) in Definition 11

is sufficient for this.

Theorems 5 and 6 relates local conditions of the environment to local characteristics of the

continuation and stopping regions. Therefore, they are only useful if one can check whether

an environment satisfies the prerequisite conditions or if monotone problems are prevalent.

This turns out to be the case. For example, finite time optimal stopping problem with time-

stationary primitives are easily shown to be monotone. In Section 2.4, we also show that

many information acquisition problems are monotone, and the techniques we develop can be

used to check whether any specific stopping problem is monotone.

Finally, Theorems 5 and 6 gives conditions under which the dynamics of the boundaries of

the continuation region are characterized locally. However, they only provide limited global

information on the continuation region. For example, it may be connected or not.

To obtain a global characterization in monotone environment, we strengthen our assump-

tions. Assume that

Assumption 11 (SC) For all t ∈ [0, T ), the mapping x → f(t, x) +
(
L(t,x) − r(t, x)

)
g(x)
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is nondecreasing on (x, xc] and nonincreasing on [xc, x̄).

Assumption 11 says that the value of waiting one extra instant is decreasing the further away

we go from the indifference point xc. To see this, formally, observe that, when g is smooth,

by Itô’s formula, for all (t, x) ∈ YT ,

V (t, x) − g(x) = sup
τ

E(t,x)

[∫ τ

0

e−
∫ s
0 r(u,Xu)du

(
f(s,Xs) +

(
L(s,Xs) − r(t, x)

)
g(Xs)

)
ds

]
.

It implies that t-section of the continuation region are convex.

Proposition 13 Suppose that the single crossing Assumptions 10 and 11 hold. Then there

exist functions b, b̄ : R+ → X such that

S =
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
.

When g is smooth and x→ f(t, x) +
(
L(t,x) − r(t, x)

)
g is monotone, the result is standard.

See, e.g., Villeneuve (2007). Unfortunately the argument is not easily adaptable to our case.

We provide a new proof based on the HJB equation in Appendix B.4.

As a corollary of Theorems 5, 6, and Proposition 13.

Corollary 4 Suppose that Assumptions 10 and 11 hold, and that the problem is globally

monotone.

1. If the optimal stopping problem is monotone decreasing, there exists a càglàd non-

decreasing function b : R+ → X ∪ {−∞} and a càdlàg nonincreasing function b̄ ::

R+ → X ∪ {+∞} with b(T ) ≤ xc ≤ b̄(T ) such that

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
.
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When the optimal stopping problem is strictly monotone decreasing, if b̄(t) < x̄,

then t → b̄(t) is strictly decreasing on [t, T ); and if b(t) > x, then t → b(t) is

strictly increasing on [t, T ).

2. If the optimal stopping problem is monotone increasing, there exists a càglàd non-

increasing function b : R+ → X and a càglàd nondecreasing function b̄ : R+ → X with

b(0) < xc < b̄(0) such that

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
.

When the optimal stopping problem is strictly monotone increasing, if b̄(t̄) < x̄,

then t → b̄(t) is strictly increasing on [0, t̄); and if b(t̄) > x, then t → b(t) is

strictly decreasing on [0, t̄).

Proof of Corollary 4. The existence of the boundaries b and b̄ follows from Proposition

13, and the bounds b(T ) ≤ xc ≤ b̄(T ) from Proposition 12. The monotonicity follows

from Theorem 5 and 6. Finally since V is continuous, S is closed, and, hence, b is upper

semincontinuous and b̄ is lower semicontinuous. Together with their monotonicity properties,

this guarantees that they are càdlàg or càglàd.

Finally, in monotone decreasing stopping problems, one can also show that the stopping

boundaries are continuous under a small strengthening of assumption 11(SC).

Assumption 12 (SSC) For all t ∈ [0, T ), the mapping x → f(t, x) +
(
L(t,x) − r

)
g(x)

is nondecreasing on (x, xc] and there exists a unique x−(t) ∈ [x, xc] such that, for all

x ∈ (x, xc],x < x−(t) ⇒ f(t, x) +
(
L(t,x) − r(t, x)

)
g(x) < 0 and x > x−(t) ⇒ f(t, x) +(

L(t,x) − r
)
g(x) > 0.

Similarly, for all t ∈ [0, T ), the mapping x→ f(t, x)+
(
L(t,x) − r(t, x)

)
g(x) nonincreasing

on [xc, x̄) and there exists a unique x+(t) ∈ [xc, x̄] such that, for all x ∈ [xc, x̄), x > x+(t) ⇒
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f(t, x) +
(
L(t,x) − r(t, x)

)
g(x) < 0 and x > x+(t) ⇒ f(t, x) +

(
L(t,x) − r(t, x)

)
g(x) < 0.

Assumption 12 yields useful properties of the stopping and continuation regions.

Lemma 2 Suppose that Assumptions 10 and 12(SSC) hold, then

{
(t, x) ∈ YT : x ∈

(
x−(t), x+(t)

)}
⊆ C.

The proof of Lemma 2 is in Appendix B.4. So, if for all t ∈ [0, T ), the mapping x →

f(t, x) +
(
L(t,x) − r(t, x)

)
g(x) satisfies strong single crossing on (x, xc] and on [xc, x̄), we

have

S ⊂
{

(t, x) ∈ YT : f(t, x) +
(
L(t,x) − r(t, x)

)
g(x) < 0

}
. (2.5)

The above property of the stopping region has a surprising consequence for the regularity of

the free boundary in monotone decreasing environments. It implies that the free boundary

is continuous. This is established in Proposition 14.

Proposition 14 Suppose that the optimal stopping problem is monotone decreasing and

that Assumptions 10 and 12 hold. Then the stopping boundaries t → b(t) and t → b̄(t)

are continuous on [t, T ) and on [t̄, T ), respectively; with t = inf {t ≥ 0 : b(t) > −∞} and

t̄ = inf {t ≥ 0 : b(t) > −∞}.

The proof of Proposition 14 is technical and can be found in Appendix B.4.

Remark 4 The argument above works in monotone decreasing environment. When the

environment is monotone increasing, it does not. That’s because when the process X starts

from a point (t0+ϵ, x) with ϵ > 0, then, as time passes, it will move away from the boundary.

On the contrary, in the proof above, we relied on the fact that X moves towards the boundary.
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Intuitively, the diffusion does not “see” the discontinuities of the boundaries in the increasing

environment.

Remark 5 Propositions 13 and 14 and Corollary 4 are proved for a time independent stop-

ping reward g. They remain valid when g is non-stationary under the following additional

assumptions: (i) The function g : [̄0, T )×X → R grows at most linearly: there exists Cg such

that |g(t, x)| < Cg (1 + t+ |x|). (iii) g can be represented as the maximum of two smooth

functions: g = g1 ∨ g2, with

• gi : [̄0, T ) ×X → R, i = 1, 2, belongs to C2,α(̄[0, T ) ×X ).

• For all t ∈ [0, T ), x → g1(t, x) − g2(t, x) is strictly monotone and crosses zero at

xc(t) ∈ X .

Secondly, in Assumptions 11 and 12, we need x → f(x, t) +
(
∂t + L(t,x) − r

)
is nonde-

creasing on (x, xc(t)] and nonincreasing on on [xc(t), x̄).

Finally, in the definition of a locally strictly monotone environment, we need that g1 is

supermodular in (t, x) and g2 is submodular in (t, x) if the stopping problem is strictly decreas-

ing, and that g1 is submodular in (t, x) and g2 is supermodular in (t, x) if the environment

is strictly increasing.

When these conditions hold, our proofs extends without modification.

2.4 Applications

To illustrate the power of our main result, we use it to derive new and interesting predic-

tions in non-stationary information acquisition problems with binary decision.

In these settings, there is an unknown payoff relevant state µ and two possible actions.

The decision maker can learn about µ. She decides when to stop acquiring information and
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what action to take upon stopping. The payoff of the decision maker depends on the state

of the world, her action, and how much information she acquired.

Sections 2.4.1 develop useful tools need to map information acquisition problems to our

general setting. In Section 2.4.2, we introduce the problem of a decision maker who learns

about a binary state and tries to match it with her action, similar to the classic Wald’s

problem. However, we assume that the information acquisition technology changes over time.

When learning’s speed increases, accuracy increases, and when learning’s speed decreases,

accuracy decreases. In Section 2.4.3, we show that when the relevant state is not binary and

the information technology is stationary, the decision maker’s decision becomes less accurate

as time passes. A particular instance of this problem is studied in the seminal paper by

Fudenberg et al. (2018). Finally in Section 2.4.4, we consider the effect abrupt changes at

stochastic time have on the problem. For example, we look at the possibility that the decision

maker faces a stochastic deadline at which she either have to take action immediately or the

state is perfectly revealed.

2.4.1 Convex Stopping Problems

In stopping problems in which the decision maker makes a final decision upon stopping,

the value function is typically convex (see Proposition 15). As a result, it becomes easy to

check whether the environment is locally strictly monotone and thus whether Theorem 6

applies.

First we provide a formal definition for a convex environment.

Definition 13 An environment is said to be convex if

1. The function g : X̄ → R, x→ g(x) is convex.

2. For all t ∈ [0, T ), the function x→ f(t, x) is convex.
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3. The discount factor r is constant: for all (t, x) ∈ YT , r(t, x) = r.

4. If r = 0, then assume that (i) the value function (V) grows at most linearly and (ii)

there exists ϵ > 0 and t̄ ∈ [0,∞) such that f(t, x) < −ϵ for all t ≥ t̄ and x ∈ X .13

Then we prove that convex environments entail convex value functions.

Proposition 15 In a convex environment the value function (V) is convex in x for all

t ∈ [0, T ).

The proof of Proposition 15 follows from a discrete time approximation argument and a useful

result on the propagation of convexity due to Bergman et al. (1996). It is in Appendix B.5.1.

Moreover, we can show the following.

Lemma 3 In a convex environment, if f : YT → R and g : [̄0, T ) × X → R are Lipschitz

continuous the value function (V) is continuous.

Lemma 3, together with condition 4 of Definition 13, if r = 0, or Lemma 2 in Durandard

and Strulovici (2022), if r > 0, guarantees that the value function is continuous and grows

at most linearly in convex stopping problems. Its proof is in Appendix B.5.1.

As a corollary, we obtain conditions under which a convex optimal stopping problem is

strictly monotone.

Corollary 5 A convex stopping problem is (globally) strictly monotone if

(i) It is monotone;

(ii) The value function V is strictly monotone in time in the continuation region;

i.e., for all (t, x) ∈ C, Vt(t, x) < 0 or, for all (t, x) ∈ C, Vt(t, x) > 0;

(iii) σt(t, x) ≤ 0, µt(t, x)Vx(t, x) ≤ 0, and ft(t, x) ≤ 0 for all (t, x) ∈ C if Vt(t, x) ≤ 0; and

σt(t, x) ≥ 0, µt(t, x)Vx(t, x) ≥ 0, and ft(t, x) ≥ 0 for all (t, x) ∈ C, if Vt(t, x) ≥ 0.
13If T < ∞, condition (ii) holds vacuously.
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2.4.2 Non-stationary learning about a binary state

One of the classical questions in Sequential Analysis concerns the testing of two simple

hypotheses about the sign of the drift of an arithmetic Brownian motion. For a textbook

treatment, see Peskir and Shiryaev (2006), Chapter VI. Formally, suppose that a decision

maker observes a process Yt

Yt = µt+ σBt,

whose drift µ is unknown and B is a standard Brownian motion. Based on observations

of the process Y , one wants to test sequentially the hypotheses H0 : µ < 0 and H1 : µ ≥

0. In the Bayesian formulation of this sequential testing problem, the drift µ is a binary

random variable taking values in {−1, 1}. X0 is the decision maker’s prior belief that µ = 1.

Moreover, µ and B are independent. The accuracy and urgency of a decision is governed

by a gain function together with a constant cost c > 0 of observation per unit of time and

a discount rate r ≥ 0. The problem then consists of finding a decision time τ and rule

d ∈ {−1, 1} to maximize the expected total gain:

E
[
e−rτ

(
a1{d=1,µ=1} + b1{d=−1,µ=−1}

)
−
∫ τ

0

e−rtcdt

]
,

where a and b are nonnegative. Since Shiryaev (1967), it has been well-known that the

sequential testing problem admits an equivalent formulation as the following stationary op-

timal stopping problem in which the state Xt is conditional probability of the drift taking

value 1 at time t:14

sup
τ
E [Xτ ∨ (1 −Xτ ) − cτ ]

14There is a one-to-one correspondence between the observation and belief process.
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where

Xt+s = Xt +

∫ s

t

2
µ

σ
Xu(1 −Xu)dBu.

The solution to this problem consists of two constant boundaries in the belief space. When

the posterior probability that µ = 1 exceeds an upper threshold, the decision maker takes

action d = 1, and when the posterior probability that µ = 1 falls below a lower threshold, she

takes action d = 0. A complete characterization of the solution can be found in Peskir and

Shiryaev (2006), Chapter VI. As upper and lower threshold on the posteriors are constant

over time, the accuracy of both decisions is also constant in time. So, in the classical model,

the timing of decisions is uncorrelated with accuracy.

In this section, we extend the above problem to settings in which the information ac-

quisition technology (i.e. the observation process) is not stationary, to capture observed

relations between speed and accuracy, and relate them to primitives of the model.15 By

standard arguments, the problem is equivalent to a an optimal stopping problem, where the

underlying process is the conditional probability that the drift is 1: Xt := P (µ = 1 | Ft). In

particular, the state variable X is a [0, 1]-valued martingale. However the diffusion governing

the evolution of X needs not be stationary anymore:

Xt+s = Xt +

∫ s

t

σ(u,Xu)dBu,

where σ(u,Xu) measures the speed of learning. Implicit in the above formulation is that

information acquisition is gradual. Moreover, we will also assume that the decision maker

can never learn the state perfectly and that the information acquisition technology is such

that

15nnnnnLiterature
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Assumption 13 Suppose that (i) σ ∈ C2,α ([0,∞) ×X ), (ii) σ̄(x) := sup
t∈[0,T )

σ(t, x) is Lips-

chitz, that (iii) inf
{
t ≥ 0 : X̄t ∈ {x, x̄}

}
= ∞ P-a.s. where X̄ is the unique strong solution

of

X̄t = x+

∫ t

0

σ̄(Xs)dBs.,

and that (iv), for all ϵ > 0,

lim
x→x

Px

(
τ̄(xc) > M

)
≥ 1 − ϵ and lim

x→x̄
Px

(
τ̄(xc) > M

)
≥ 1 − ϵ,

where τ̄(xc) = inf
{
t ≥ 0 : X̄t = xc

}
.

Assumption 13 guarantees that the continuation region in the sampling problem is bounded.

The decision maker’s problem is then

V s(t, x) = sup
τ

E(t,x)

[
e−r(τ−t)aXτ ∨ b(1 −Xτ ) −

∫ τ

t

e−r(s−t)cds

]
, (V s)

subject to

Xt+s = Xt +

∫ t+s

t

σ(u,Xu)dBu.

So the above problem can be seen as a particular instance of the general problem in Section

2.3 where the following holds:

Assumption 14 (i) T = ∞ and x̄ and x are inaccessible. (ii) g1 and g2 are affine and

nonnegative. (iii) For all (t, x) ∈ Yt, f(t, x) ≤ −c for some c > 0. (iv) For all (t, x) ∈ YT ,

µ(t, x) = 0.

In particular, assumption 12 (SSC) is satisfied. Moreover, we have
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Proposition 16 If t→ σ(t, x) is strictly decreasing, then the optimal stopping problem (V s)

is strictly monotone decreasing.

If t → σ(t, x) is strictly increasing, then the optimal stopping problem (V s) is strictly

monotone increasing.

Intuitively, when σ(t, x) decreases over time, the speed at which the decision maker obtains

information decreases over time. So starting from a later time, she is in a worse position:

she needs to acquire information for a longer period of time to get the same amount of

information. The proof of Proposition 16 is in Appendix B.5.2.

As a corollary of the above Proposition 16, Corollary 4, and Proposition 14, we have

Proposition 17 Under assumption 13, the optimal stopping region S in (V s) is given by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,

where

• t→ b̄(t) is strictly decreasing and continuous and t→ b(t) is strictly increasing

and continuous on [0,∞) if t→ σ(t, x) is strictly decreasing; and

• t → b̄(t) is strictly increasing and t → b(t) is strictly decreasing on [0,∞) if

t→ σ(t, x) is strictly increasing.

The proof of Proposition 16 is in Appendix B.5.2. The above proposition summarizes how

the decision boundaries, and therefore the posterior beliefs at the time of decision, change

over time. As a result, Proposition 17 has direct implications about the evolution of accuracy

over time. In particular, accuracy decreases (increases) over time when the upper boundary

decreases (increases) or when the lower boundary increases (decreases) over time.
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2.4.3 Learning about a non-binary state

Section 2.4.2 relates the speed-accuracy trade-off to the speed of learning. In this section,

we consider an alternative explanation following the seminal work of Fudenberg et al. (2018).

Hence, the fact that the belief process is stationary when the state is drawn from a binary

distribution turns out to be special. For any other (non-degenerate) prior, the probability

that the state µ is above or below zero for example is non-stationary (see Proposition 19

below). In this section, we therefore reconsider the sequential sampling problem when the

state is drawn from a non-binary distribution.

We start with the “uncertain difference” Drift Diffusion Model of Fudenberg et al. (2018).

An agent has to decide between two alternatives {l, r}. She is uncertain about the utilities

θ =
(
θl, θr

)
associated with each choice and pays a constant running cost c > 0 to observe

Brownian signals of the true utility. They show that, when the agent believe that θ is

distributed according to a bivariate normal distribution (where each component’s variance

is σ2
0 > 0), the stopping time is the first exit time from a shrinking continuation region.

That the boundaries decreases implies that the accuracy of the decision is decreasing over

time (Theorem 1 in Fudenberg et al. (2018)). Accuracy is defined as the probability of

making the correct decision (i.e., choosing r when θr ≥ θl and conversely). Note that, this

definition of accuracy does not take into account the magnitude of the difference. An error

is defined similarly whether
∣∣θl − θr

∣∣ is large or not. This characteristic appears crucial in

their setting with normal prior: agent’s will make less accurate decisions in those problems

for which
∣∣θl − θr

∣∣ is small, i.e. problems for which making the right decision is relative less

important.

The purpose of this section is to highlight how we can view their setting as a special

case of ours, and how, using our machinery, we can extend their result of accuracy being

decreasing over time even to cases where the decision makers do not become pessimistic on
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the relevance of making the right decisions.

Formally, their problem can be seen to be equivalent to the following problem:

V (t, x) := sup
τ

E(t,x) [Xτ ∨ 0 − c(τ − t)] ,

subject to

X(t,x)
s = x+

∫ s

t

√
2σ2

0α

α2 + uσ2
0

dBu,

where Bk is a standard Brownian motion, c > 0 is a constant running cost, and α > 0 is

the noise of the Brownian signal in the original hypothesis testing problem. This problem

can be interpreted as one in which the decision maker chooses between an alternative that

delivers value 0 and one that delivers value θl − θr unknown, where E(θl − θr) = X and the

speed of learning decreases over time.

Since the above problem satisfies Assumptions 13 and 14 (with σ̄(x) =
√
2σ2

0α

α2 ), we can

use Proposition 17 to characterize the shape of the continuation region.

Proposition 18 The continuation region in the above problem is

C :=
{

(t, x) ∈ [0,∞) × R : b(t) < x < b̄(t)
}
,

where t → b̄(t) and t → b(t) are two continuous boundaries, with b̄(t) = −b(t) for all t ≥ 0.

Moreover, b̄(·) is strictly decreasing.

The proof is in Appendix B.5.3. As shown by Fudenberg et al. (2018), such shape of the

boundaries corresponds to accuracy being decreasing in the stopping time (see Theorem 2

in Fudenberg et al. (2018)).

Note that in Fudenberg et al. (2018), two forces push toward the decrease in accuracy.
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First, the speed of learning decreases, so there is less incentive for the DM to continue

acquiring information as time passes by. Second, as time goes by and no decision is taken,

the expected payoff difference between the two action fades away, so the benefit of taking the

right decision also vanishes. In order to isolate the effect of the decrease in learning speed,

we propose a certain difference drift diffusion model, where the payoff difference between the

actions is constant and known. In this more conservative model, we show that the negative

correlation between the time and accuracy of decisions still arises.

Our certain difference drift diffusion model is similar to the classical hypothesis testing

problem. The value of choosing an alternative is either 0 or 1 depending on the sign of the

true state µ. However, contrary to the classical Wald model, the unknown parameter µ is

not binary. It is a real-valued random variable distributed according to F ∈ ∆(R). The

decision maker observes

Yt = µt+ σBt,

and chooses a decision time τ and rule d ∈ {−1, 1} to maximize the expected total gain:

E
[
e−rτ

(
a1{d=1,µ≥0} + b1{d=−1,µ<0}

)
−
∫ τ

0

e−rtcdt

]
,

where a, b ≥ 0, c > 0, and r ≥ 0. We assume that 0 < F (0) < 1 to make the problem

nontrivial.

From the filtering argument in Ekström and Vaicenavicius (2015), the problem admits

the following equivalent optimal stopping formulation:

V nb(t, x) = sup
τ≥t

E(t,x)

[
e−r(τ−t) (aXτ ∨ b(1 −Xτ )) −

∫ τ

t

e−r(s−t)cds

]
, (V nb)
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where

Xt+s = Xt +

∫ s

t

σ (u,Xu) dBu

is the decision maker’s belief that µ is nonnegative, and σ(t, x) ∈ (0, 1) is the volatility of

the decision maker’s beliefs. Moreover,

Proposition 19 (i) σ ∈ C2,α. (ii) For all x ∈ (0, 1), t→ σ(t, x) is strictly decreasing if the

support of F contains more than 2 elements.

Proposition 19 follows immediately from the proof of Proposition 3.8 and Corollary 3.10 in

Ekström and Vaicenavicius (2015).

Thus, as a consequence of Propositions 16 and 19 (which implies that σ is bounded above

by a constant), we have

Corollary 6 Suppose that F is not binary. The optimal stopping region S in (V s) is given

by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,

where t→ b̄(t) is strictly decreasing and continuous and t→ b(t) is strictly increasing

and continuous on [0,∞).

Note that our result is not tied to one particular prior over µ (e.g., normal). Accuracy is

decreasing in the decision time independently of the decision maker’s prior F as long as it is

not binary. In this sense, the predictions obtained in the classical Wald model (with binary

prior) are not robust.
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2.4.4 Learning with Stochastic Deadline

In this section, we consider information acquisition problems where the nature of the

problem faced by the DM can change abruptly at a random deadline. For example, the DM

may be forced to make a decision, may lose the opportunity to make the decision, or the

true state may be revealed, when the deadline realizes. At any time before the deadline, the

DM chooses whether to take action d ∈ {−1, 1} or to acquire more information about an

unknown parameter µ ∈ {−1, 1} that determines the action’s payoff 1{µ=d}. If the decision

maker chooses to acquire information (at a flow cost c), she observes the realization of a

signal process and updates her belief. Formally, at time t, the DM’s belief that µ = 1 is

Xt = X0 +

∫ t

0

σ(s,Xs)dBs,

After the deadline realizes, learning stops.

We consider Markov deadlines that realize according to a Poisson time-dependent arrival

rate a(t, x) which can also depend on the DM’s belief.16 The DM’s problem then consists of

finding a decision time τ and a rule d ∈ {−1, 1} to maximize the expected total gain given

the presence of a stochastic deadline. The accuracy and urgency of a decision are determined

by a gain function together with a stochastic deadline that arrives at a random time δ, and

a payoff at the deadline f(δ, d, µ). The expected total gain is

E
[
1{δ≥τ}

(
1{d=1,µ=1} + 1{d=−1,µ=−1}

)
+ 1{δ<τ}f(δ, d, µ) − (τ ∧ δ)c

]
.

As in the previous section, the optimal information acquisition problem admits the equiv-

16In the appendix B.5.4, we define the set of all Markov deadlines and show that it is well approximated
by the class of Markov deadlines characterized by an arrival rate a(t, x).
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alent optimal stopping formulation:

V δ(t, x) := sup
τ∈T

E
[
Xτ ∨ (1 −Xτ )χ{τ≤δ} + f(δ,−1, Xδ) ∨ f(δ, 1, Xδ)χ{τ>δ} − (τ ∧ δ)c

]
, (V δ)

subject to

Xt = X0 +

∫ t

0

σ(s,Xs)dBs,

where Xt is the decision maker belief that µ = 1 at time t and, with a small abuse of notation

f(t, d,X) := Xf(t, d, 1) + (1−X)f(t, d,−1). We also assume that the volatility of the belief

process is smooth (i.e., σ ∈ C2,α).

This problem appears different from the stopping problems we considered above. How-

ever, in Appendix B.5.4, we show that we can reformulate it to fit our framework:

V δ(t, x) = sup
τ∈T (t)

E(t,x)

[
e−

∫ τ
0 a(s,Xs)ds (Xτ ∨ (1 −Xτ ) − cτ)

+

∫ τ

0

e−
∫ t
0 a(s,Xs)ds

(
f̄(t,Xt) − ct

)
a(t,Xt)dt

]
.

subject to

Xt+s = Xt +

∫ t+s

t

σ(u,Xu)dBu.

Different f have different interpretations. First, we study the case where the true state

is revealed at a stochastic deadline. Second, we consider the case where the DM is forced

to make a decision at the stochastic deadline. Finally, we consider the case where the DM

gets a zero payoff at the stochastic deadline. This last case is also equivalent to the problem

in which the decision maker has to pay a constant flow cost c to acquire information and
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discount the future at rate a(t, x).

Drift diffusion model with Eureka moment: Suppose that, at the deadline, the deci-

sion maker perfectly learns the true state µ. In this case, when the deadline realizes the DM

stops immediately, makes the correct decision and obtains a payoff of 1. Then

Proposition 20 Suppose that Assumption 13 holds. The optimal stopping region S of an

optimal sampling problem is given by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,

where

• t → b̄(t) is strictly decreasing and continuous and t → b(t) is strictly increas-

ing and continuous on [0,∞) if t → a(t, x) is strictly decreasing and t → σ(t, x) is

nonincreasing; and

• t → b̄(t) is strictly increasing and t → b(t) is strictly decreasing on [0,∞) if

t→ a(t, x) is strictly increasing and t→ σ(t, x) is nondecreasing.

The proof is in Appendix B.5.4.

Forced decision: Suppose that at the deadline, the decision maker has to make a de-

cision, i.e., she cannot acquire additional information. This case corresponds to assum-

ing f(δ, d, µ) =
(
a1{d=1,µ=1} + b1{d=−1,µ=−1}

)
. Thus, if the deadline realizes, the DM gets

Xδ ∨ (1 −Xδ). In this case, we have

Proposition 21 Suppose that Assumption 13 holds. The optimal stopping region S of an

optimal sampling problem is given by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,
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where

• t → b̄(t) is strictly decreasing and continuous and t → b(t) is strictly increas-

ing and continuous on [0,∞) if t → a(t, x) is strictly increasing and t → σ(t, x) is

nonincreasing; and

• t → b̄(t) is strictly increasing and t → b(t) is strictly decreasing on [0,∞) if

t→ a(t, x) is strictly decreasing.

The proof of Proposition 21 is the same as the proof of Proposition 20, hence omitted.

Time preferences and accuracy: Finally we study the case where the decision maker

gets a zero at the deadline. This is equivalent to the problem in which the decision maker

has to pay a constant flow cost c to acquire information and discount the future at rate

a(t, x), and therefore allows us to relate the decision’s maker time preference to the accuracy

of decisions.

Proposition 22 Suppose that Assumption 13 holds. The optimal stopping region S of an

optimal sampling problem is given by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,

where

• t → b̄(t) is strictly decreasing and continuous and t → b(t) is strictly increas-

ing and continuous on [0,∞) if t → a(t, x) is strictly increasing and t → σ(t, x) is

nonincreasing; and

• t → b̄(t) is strictly increasing and t → b(t) is strictly decreasing on [0,∞) if

t→ a(t, x) is strictly decreasing and t→ σ(t, x) is nondecreasing.
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Again, the proof of Proposition 22 is the same as the proof of Proposition 20, hence omitted.

Proposition 22 shows that the slope of the boundary is closely related to the slope of the

discount rate. In particular, they coincides when the information acquisition technology is

stationary. So the decrease of accuracy over time observed in many binary choice experiment

in neuroscience is rationalized by an increasing discount rate. On the other hand, accuracy

is increasing over time when the decision maker becomes more patient over time.
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Chapter 3

A Best-Responses Approach to

Robustness

3.1 Introduction

Real world mechanisms and contracts are often simple and hardly responsive to the details

of the environment. However, most of the mechanism design literature identifies mechanisms

that do not share these features: Optimal mechanisms usually respond dramatically to small

changes, failing to rationalize standard organizational practices. Addressing this critique, the

literature on robustness has successfully identified intuitive mechanisms that provide good

performance guarantees and are largely independent of the environment. Yet, despite the

simple structure of the robustly optimal mechanisms, the analysis largely lacks simplicity.

The difficulty often stems from the need to simultaneously determine mechanisms that

achieve a good guarantee and the worst-case scenario. In this paper, we develop a new

approach to identify classes of mechanisms that contain a robust optimum. Notably, our

approach avoids the issues associated with explicitly solving for the worst-case scenario.

While theoretically interesting, characterizing one specific robustly optimal mechanism does
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not need to be the ultimate goal. Instead, we are often interested in whether a robustly

optimal mechanism possesses certain features. Is it linear, separable, or static? What

uncertainty does it protect against? These are questions about sets of potentially-optimal

mechanisms and sets of deviations by Nature. Such questions are the focus of our paper.

Our general framework considers a decision maker choosing an alternative from a set

D, followed by an adversarial Nature choosing from a set N . The decision maker seeks to

maximize her worst-case payoff π(d, n). Our main results provide simple conditions that

guarantee that an optimal worst-case mechanism belongs to some set D∗ ⊆ D. We do so by

considering a subset of Nature’s responses N∗ ⊆ N , such that D∗ and N∗ have a mutual-

best-response property. Specifically, we require that when the decision maker chooses an

element of D∗, Nature can minimize her payoff by choosing an element of N∗, i.e., Nature

has a best-response in N∗. Conversely, the decision maker has a best-response in D∗ when

Nature plays an element of N∗. Notably, the conditions in Theorem 8 are tight, so this

recipe can be applied to any robust decision problem.

The advantages of this approach are twofold. First, our proposed conditions are often

easy to check and rely on familiar best-response reasoning or replication arguments. Second,

identifying a class of mechanisms as containing an optimizer — rather than identifying the

exactly optimal mechanism — is often the largest hurdle in the analysis. Once the analyst

identifies a convenient D∗ that contains a robustly optimal mechanism, it is often simple to

identify an exact robustly optimal mechanism d∗ ∈ D∗. Put differently, the tools we develop

are specialized to their intended function: identifying particular properties of a robustly

optimal mechanism. After presenting the main results, we show how to operationalize them

across various examples and highlight instances where our results simplify the argument.
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3.1.1 Related Literature

Our core methodological contribution lies within the fruitful literature on robust mecha-

nism design, which identifies simple mechanisms providing payoff guarantees to the principal

in unknown environments. This literature includes Frankel (2014), Garrett (2014), Carroll

(2015), and Carroll and Meng (2016), as well as many more recent developments. Our start-

ing point is different. Rather than identifying a particular optimal mechanism, we focus

on sets of mechanisms. This approach presents one major advantage: When solving for a

specific robustly optimal mechanism, one must find a strategy by Nature that constrains the

principal to the lowest payoff guarantee. In other words, one must explicitly construct the

saddle point of the game between Nature and the decision-maker. This is the approach fol-

lowed in Carroll (2015), Carroll (2017), Libgober and Mu (2021), and Che and Zhong (2021),

for example. By focusing on a class of mechanisms instead, we can often avoid solving for

Nature’s equilibrium strategy, simplifying the proofs.

Our approach is closer to the perspective put forward in Chassang (2013), Walton and

Carroll (2022), or Deb and Roesler (2021), that provides conditions on the environment

such that a robustly-optimal mechanism has desirable features. Contrary to these papers,

which are still interested in directly characterizing the robustly optimal mechanism, we

propose first determining the general properties the optimal mechanism should possess. As

we demonstrate, identifying a class of good mechanisms instead of the optimal ones allows

for bypassing the delicate constructive arguments these papers rely on by invoking different

minimax theorems. Moreover, recent advances in developing such tools, including Brooks

and Du (2021), further increase the scope of our methods.

Our approach also offers a critique of the robust design objective. Namely, optimal worst-

case mechanisms are often determined by peculiar choices of Nature, which constrains the

principal to some maximal payoff. Every mechanism that achieves this bound is worst-case
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optimal.

This begs two questions. First, by what criteria should we rank different robustly optimal

mechanisms? Second — perhaps ironically — how sensitive are robustly optimal mechanisms

to the model’s description and the choices afforded to Nature? Some recent work has exam-

ined these questions. For example, see Dworczak and Pavan (2022) consider an information

design problem in which multiple information structures achieve the payoff guarantee. An

additional refinement that resembles admissibility selects the “best” among these worst-case

optima.

Che and Zhong (2021) study a multi-dimensional screening similar setup to Deb and

Roesler (2021). Rather than allowing Nature to choose any feasible information structure

for the agent, they impose additional structure on the ambiguity set. As a result, they find

that pure bundling need not be robustly optimal, and sub-bundling may emerge. Walton

and Carroll (2022) proceed in a complementary direction. Rather than Nature choosing

something that enters the agents’ decisions (such as information or the available alterna-

tives), Nature chooses among a set of possible functions that map a contract to the output

distribution. They provide conditions directly on such functions that ensure that linear con-

tracts are optimal without committing to any particular structure of the agent’s underlying

problem.

In addition to our methodological contribution, we use our methodology to analyze two

new applications: robustness in a dynamic screening environment and robustness when

contracting for search. In Section 3.4, we study the problem of a seller who is unsure

about the evolution of a buyer’s valuation but who knows the mean in each period. In this

setting, we show that one robustly optimal dynamic mechanism consists of a sequence of

static mechanisms. Each static mechanism coincides with the one identified by Carrasco et al.

(2018). The argument is related to Baron and Besanko (1984): when the buyer’s type evolves

deterministically, an optimal dynamic mechanism is a memoryless sequence of optimal static
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mechanisms. However, if the agent accrues more information between interactions with the

principal, static mechanisms need not be optimal. Our contribution is to show that when

the principal faces ambiguity about the agent’s type process, she protects herself by acting

as if the evolution of the agent’s type was deterministic, i.e., as if the information asymmetry

between the seller and buyer were maximal.

The closest result is by Libgober and Mu (2021), but there are some differences in the

setup. The primary difference is that their agent purchases the good at most once, whereas

our agent interacts with the principal in every period. One could also view the multi-

period interaction as similar to Carroll (2017), Deb and Roesler (2021), and Che and Zhong

(2021) who consider a multi-dimensional type in a static setting. In their case and ours, the

principal protects against the worst-case joint distribution of types. However, our setting

introduces complexities in that the selling mechanism may be dynamic, the agent may be

forward-looking, and both may face uncertainty about the future.

Finally, in Section 3.5, we show that debt contracts are robustly optimal when the agent

can sequentially search à la Weitzman (1979) and the set of projects is unknown to the

principal. Therefore, this application is related to a large literature that has tried to provide

foundations for debt contracts. Most of these papers have focused on contracting frictions

(see, e.g., Gale and Hellwig (1985), Povel and Raith (2004), Hébert (2018), and Chaigneau

et al. (2022), and the references therein) or information acquisition (as, for example, Dang

et al. (2013), Yang (2020), and Malenko and Tsoy (2020)). A notable exception is Antic

(2014), which provides a robustness rationale for debt contracts when the agent’s technol-

ogy has the MLRP property but is unknown to the principal. In particular, his results

build on and extend those of Innes (1990). Our approach suggests a different explanation:

Debt contracts maximize potential experimentation and thus align the principal and agent’s

incentives when the agent has to search for the best option.
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3.2 Main Result

Our framework is general and encompasses a large class of robust decision problems. A

decision maker (she) has access to a set of alternatives D, with typical element denoted

d ∈ D. She faces Knightian uncertainty about the possible actions available to an adversarial

Nature. These actions belong to some set N . After the decision maker chooses d ∈ D, Nature

chooses some n ∈ N . The resulting payoff of the decision maker is given by π : D×N → R.

The decision-maker wishes to maximize her worst-case payoff against Nature, so she seeks

to solve

sup
d∈D

inf
n∈N

π(d, n) (3.1)

At the outset, we place no assumptions on D,N, or π, so this framework captures various ro-

bust maximization problems. For instance, D could be a set of prices, wages, or mechanisms.

N could denote the possible distributions of buyer values, dynamic information structures,

or outside options. The payoff π could incorporate equilibrium selection, maximization by

another agent, or regret relative to a full-information benchmark.

“Solving” such a problem involves identifying a set of alternatives D∗ ⊆ D within which

an optimizer lives. That is, we wish to find D∗ satisfying

sup
d∈D∗

inf
n∈N

π(d, n) = sup
d∈D

inf
n∈N

π(d, n).

Our main results provides conditions under which the above equality holds for a given D∗.

We do so by considering a complementary set N∗ ⊆ N which include Nature’s best-responses

to elements of D∗.

Theorem 7 Suppose there exist sets D∗ ⊆ D and N∗ ⊆ N such that

(1) ∀n∗ ∈ N∗, supd∈D∗ π(d, n∗) = supd∈D π(d, n∗)



CHAPTER 3. ROBUSTNESS 113

(2) infn∈N∗ supd∈D∗ π(d, n) = supd∈D∗ infn∈N∗ π(d, n)

(3) ∀d∗ ∈ D∗, infn∈N∗ π(d∗, n) = infn∈N π(d∗, n)

Then, supd∈D∗ infn∈N π(d, n) = supd∈D infn∈N π(d, n)

Proof.

sup
d∈D

inf
n∈N

π(d, n) ≤ sup
d∈D

inf
n∈N∗

π(d, n) (N∗ ⊆ N)

≤ inf
n∈N∗

sup
d∈D

π(d, n) (minimax inequality)

= inf
n∈N∗

sup
d∈D∗

π(d, n) (1)

= sup
d∈D∗

inf
n∈N∗

π(d, n) (2)

= sup
d∈D∗

inf
n∈N

π(d, n) (3)

≤ sup
d∈D

inf
n∈N

π(d, n) (D∗ ⊆ D)

Conditions (1) and (3) in Theorem 7 involve familiar “best response” logic on the part

of the decision maker or Nature, taking the other as given. These conditions are often

simple to check and follow by a replication argument. Condition (2) is a minimax equality

that may not hold in all environments. However, a large class of problems involves an

objective function π that is already bilinear. Alternatively, linearity may be inherited from

the particular structure of D∗ or N∗.

In cases where we do not expect the minimax equality (2) to hold, we can still proceed

with a slightly weaker assumption, as described in the following result.

Theorem 8 Fix D∗ ⊆ D. There exists N∗ ⊆ N such that

(1’) supd∈D infn∈N∗ π(d, n) = supd∈D∗ infn∈N∗ π(d, n)
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(3) ∀d∗ ∈ D∗, infn∈N∗ π(d∗, n) = infn∈N π(d∗, n)

if and only if supd∈D∗ infn∈N π(d, n) = supd∈D infn∈N π(d, n)

The proof parallels Theorem 7 and can be found in Appendix C.1.

Relative to Theorem 7, Theorem 8 replaces the joint requirements of (1) and (2) with a

weaker requirement of (1’). (3) remains unchanged. In many cases, Nature’s best response,

when restricted to N∗, can be computed explicitly, simplifying the verification of (1’).

Notably, the conditions (1’) and (3) in Theorem 8 are tight. That is if we begin by

assuming that for some D∗ ⊆ D, supd∈D∗ infn∈N π(d, n) = supd∈D infn∈N π(d, n), then

letting N∗ = N satisfies conditions (1’) and (3). As a consequence, Theorem 8 pins down

the essence of every result showing robust optimality: if robust optimality can be shown,

Theorem 8 applies.

Finally, one caveat is that our results only imply ϵ-optimality of D∗. Because we did

not impose any structure on the problem, a maximizer does not need to exist. However, in

most practical applications, it is desirable to find an exactly-optimal mechanism and, hence,

show that one exists. We conclude this section by closing the gap under some additional

topological assumptions.

Corollary 7 Suppose the conditions of Theorem 7 or 8 hold. Additionally suppose that D∗

is compact and infn∈N∗ π(·, n) is upper semi-continuous. Then, there exists d∗ ∈ D∗ such

that

inf
n∈N

π(d∗, n) = sup
d∈D

inf
n∈N

π(d, n)

In particular, if π(·, n) is upper semi-continuous for each n ∈ N∗, then infn∈N∗ π(·, n) is

also upper semi-continuous and Corollary 7 applies. This assumption holds widely across

applications. Finally, we provide an additional tool in Theorem 13 in Appendix C.7 to extend

our results when D∗ is not closed.
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3.3 Applications

Having presented the main tools of our paper, we demonstrate how our approach applies to

several well-known papers in the literature. We highlight instances where our focus on sets

of mechanisms, in conjunction with Theorems 7 and 8, significantly simplifies the analysis.

3.3.1 Linear contracts are robustly optimal as in Carroll (2015)

In our first application, we show how to apply our results to obtain Carroll (2015)’s linearity

result. Carroll’s setup is as follows. A principal P contracts with an agent A, who takes

a costly action (c, F ) ∈ R+ × ∆ (R+) that produces some nonnegative stochastic output

y ∈ R+. The action is not observable. Only the output is. Thus payment to the agent can

depend only on the realization y and potential (cheap talk) messages exchanged between the

agent and the principal before the agent takes action.

A technology A describes the agent’s actions. A technology A is a compact subset of

R+ × ∆ (R+). The agent knows A, but the principal does not. Instead, the principal only

knows a compact subset A0 of the available actions, and she believes that A can be any

compact superset of A0. Moreover, Carroll imposes the following non-triviality assumption

on A0: there exists (c, F ) ∈ A0 such that EF [y] − c > 0. That is, the principal knows that

she benefits from hiring the agent.

Next, we define the space of contracts the principal can offer. Carroll (2015) restricts

attention to continuous deterministic payment functions w : R+ → R+ (Theorem 1 in Carroll

(2015)) and later shows that screening by offering menus of deterministic contracts cannot

improve the principal’s guarantee (Theorem 4 in Carroll (2015)). Our methodology allows

us to consider a more general set of mechanisms: We allow the principal to offer any menu

of randomized contracts. So, D is the set of all menus of lotteries over measurable functions

w : R+ → R+.
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We can now summarize the timing of the game:

1. P offers a menus of randomized contracts.

2. A, knowing A, decides which randomized contract G to accept.

3. A observes g ∼ G and chooses which action (c, F ) ∈ A to take.

4. Output y ∼ F is realized.

5. Payoff’s are received: y − wg(y) to P and wg(y) − c to A.

As in Carroll’s, the agent’s behavior is simple as he maximizes expected utility. Given

technology A, he picks the randomized contract G∗ and action (c∗, F ∗) that maximizes his

payoff.1

From now on, our focus is on the principal’s problem. P evaluates a menu by its worst-

case expected payoff over technologies (and, when the agent is indifferent, equilibrium ac-

tions). So, P solves

sup
d∈D

inf
A⊃A0

π (d,A) , (3.2)

where

π(d,A) := inf
(G∗

n,(c
∗
n,F

∗
n))n

lim
n→∞

EF ∗
n

[
y − EG∗

n
[wg(y)]

]
.

subject to

lim
n→∞

EF ∗
n

[
Eg∼G∗

n
[wg(y)] − c∗n

]
= sup

G∈d, (c,F )∈A
EF [Eg∼G [wg(y)] − c] .

1Because we did not assume that the offered menu was compact or that w is upper semi-continuous,
there does not need to exist an agent optimal randomized contract and action. In that case, we let the agent
chooses any maximizing sequence.
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The principal’s problem may appear daunting: the set of mechanisms is huge, Nature

has many possible deviations, and even the payoff function π is complicated. Fortunately,

Theorem 7 allows us to consider a simpler problem. Define

• D∗ := {d ∈ D : d = {w : R+ → R, y → αy} , α ≥ 0}: the set of singleton menu that

offers one linear contract, and

• N∗ :=
{
A : A = A0 ∪ (0, δ{y}), y ∈

[
0,
∨

(c,F )∈A0
(Eỹ∼F [ỹ] − c)

]}
: the set of technolo-

gies that includes the known sets A0 and a unique other options (0, δ{y}), where y is

less than the maximum surplus of the known actions.

For d ∈ D∗ and n ∈ N∗, π rewrites

π (d, n) = (1 − α)y + i

αy ≥
∨

(c,F )∈A0

(αEỹ∼F [ỹ] − c)

 .

Then, as a consequence of Theorem 7, we get

Proposition 23 There exists a robustly optimal linear contract. Moreover, the principal

does not benefit from offering menus over randomized contracts.

The proof is in Appendix C.2.

3.3.2 Learning and robustness as in Libgober and Mu (2021)

For our second application, we provide a simple proof of the main result of Libgober and Mu

(2021) using our techniques. As in the previous subsection, this again guarantees that the

principal cannot benefit from using more complex mechanisms, thus extending the result in

Libgober and Mu (2021) to the case where the principal can offer any dynamic mechanism.

We start by introducing their setup. They consider a standard durable good monopolist

dynamic pricing problem and add the possibility of buyer learning. A seller sells a durable
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good at time t = 1, 2, . . . , T , with T ∈ N ∪ {∞}. A single buyer is present at time t = 1

and can choose whether and when to buy. The buyer and seller discount their payoff by a

factor δ ∈ (0, 1). Finally, the product is costless for the seller to produce. The buyer has

unit demand and obtains value δtv from purchasing the object at time t, where v ∈ V ⊂ R+

is drawn from a distribution F ∈ ∆(V ) and fixed over time.

At time t = 0, the seller commits to a potentially random dynamic selling mechanism.

A selling mechanism consists of a sequence of message spaces and associated mapping from

messages to allocations that determines whether the buyer sells and the associated price:

(Mt, σ : Mt → {0, 1} × R+)Tt=1.
2 We denote by D the set of all (pure) dynamic selling

mechanisms and by ∆(D) the set of all random dynamic selling mechanisms. Similarly, we

denote by Dt the set of all (pure) dynamic selling mechanisms up to time t and by ∆(Dt)

the set of all random dynamic selling mechanisms up to time t. Given a dynamic selling

mechanism, the buyer then maximizes his expected payoff given the learning processes in

the game generated by the mechanism.3 In particular, they assume that the buyer does

not directly know v, but instead learns through signals that arrive over time, via some

information structure. Following them, we define a dynamic information structure as:

• A set of possible signals for every time t ≥ 1, i.e., a sequence of sets (St)
T
t=1, and

• Probability distributions given by It : V ×St−1×Dt → ∆(St), for all t with 1 ≤ t ≤ T .

To interpret the above distribution, note that the distribution over signals at time t could

potentially depend on the buyer’s valuation v, the history of signal realization up to t,

and the realized mechanism up to time t. So, as in Libgober and Mu (2021), information

flexibly depends on the realized mechanism. That is, we focus on the Stackelberg equilibrium

2Libgober and Mu (2021) restricts their analysis to dynamic random prices. Our approach allows for
any dynamic selling mechanism. In particular, the principal can screen the private information the agent
may have about the learning process.

3In particular, the buyer knows the information arrival process and is Bayesian about what information
will be received in the future.
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in the game played by the principal and Nature rather than the Nash equilibrium, which

distinguishes our model from most papers in the robustness literature.

Together, the (random) dynamic selling mechanism d ∈ ∆(D) and the information pro-

cess I = (It)
T
t=1 determine a set of possible outcomes; i.e., times at which the buyer acquires

the good with positive probabilities and associated prices. We are interested in the minimal

seller payoff guarantee, i.e., the seller’s payoff when evaluated as if the information pro-

cess chosen by Nature and equilibrium selection were the worst possible, given the offered

mechanism:

sup
d∈∆(D)

inf
I∈N

π (d, I) , (3.3)

where

π (d, I) := inf
x
E

[
T∑
t=1

xtδ
tpt

]
,

subject to the sequence x of payments maximizing the buyer’s expected payoff in the game

induced by d.

Finally, for simplicity, we make the following additional assumption to guarantee existence

(which is absent from Libgober and Mu (2021)).

Assumption 15 There exists p > inf (supp(F )) such that

p
(
1 − Ḡ(p)

)
≥ inf (supp(F )) ,

where Ḡ is the “pressed” distribution associated to F , as defined in Libgober and Mu (2021),

i.e., the distribution of EF [v | v ≤ r] when r ∼ F .

Again, the problem faced by the principal appears complex. Fortunately, using the tools
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developed above, we can dramatically simplify it by considering pure “static” posted price

mechanism. As a consequence of Theorem 7, we obtain:

Proposition 24 There exists a robust optimal (random) dynamic selling mechanism that

posts a constant price p∗. Moreover, the principal does not benefit from offering a more

complex mechanism.

The proof of Proposition 24 is in Appendix C.3.

3.3.3 Multidimensional screening as in Deb and Roesler (2021)

We highlight our approach in the multi-dimensional screening problem of Deb and Roesler

(2021). We slightly simplify their setup to ease exposition.

A seller has K goods for sale, and the buyer’s valuation is given by a type θ = (θ1, . . . , θK).

We assume that the set of feasible types is Θ := [θl, θh]K , and θ is drawn from some ex-

changable distribution F ∈ ∆(Θ). A type-θ buyer’s valuation for a bundle b ⊆ {1, . . . , K}

is assumed to be additive across items: u(b, θ) =
∑

i∈b θi.

The buyer does not directly observe her type. Rather, she observes a signal of her

willingness-to-pay, which Deb and Roesler describe as “learning.” Because the buyer’s payoff

is linear in θ, the only relevant statistic is the buyer’s expected valuation for each component

θi. Let N denote the set of distributions over posterior expected valuations that some signal

structure induces. We will refer to the buyer’s posterior expected valuation as her interim

type.

The seller will design a sales mechanism to maximize his worst-case payoff against Na-

ture’s choice of N . A mechanism consists of a message space M , an allocation function q,

and a transfer function t. The allocation describes a distribution over bundles that the buyer

will receive, q : M → ∆(2K), and the transfer is the expected payment from the agent to

the principal t : M → R. Finally, we impose an individual rationality constraint that, for all
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θ, there exists some m ∈ M that gives type θ a positive expected payoff. Let D denote the

set of all such mechanisms.

Given a mechanism d = (M, q, t), a reporting strategy is a function σ : Θ → ∆(M) that

maps the buyer’s interim type into chosen messages. Let Σ(d) denote the set of best-response

reporting strategies for the buyer. The seller’s objective function is thus to solve

max
d∈D

inf
n∈N,σ∈Σ(d)

E(n,σ)[t(m)] , (3.4)

where the expectation is taken over both Nature’s draw of the interim type according

to n and the buyer’s reporting strategy σ. The goal is to find a class of mechanisms that

maximizes this payoff.

With the setup concluded, we show how our framework easily surmounts this problem.

While the setup does not immediately fit into our framework because of the additional

constraint on the buyer’s best-responses, it can be handled by appropriately defining the

chosen mechanism.

We say that a mechanism is interim direct and incentive compatible if M = Θ, and for

all θ ∈ Θ,

Eb∼q(θ)

∑
i∈b

θi − t(θ) ≥ Eb∼q(θ′)

∑
i∈b

θi − t(θ′) (3.5)

The above is the standard notion of incentive compatibility applied to the buyer’s ex-

pectation of her type after observing some signal. By the standard Revelation Principle

argument, there is no loss in restricting attention to mechanisms of this form. The main

advantage of looking at this class of mechanisms is that it directly incorporates the buyer’s

best-response into the seller’s payoff. For a given interim type distribution G ∈ ∆(Θ), the
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seller’s expected payoff from a direct, incentive-compatible mechanism d = (Θ, q, t) is

∫
Θ

t(θ)dG(θ)

We will show the optimality of a restricted class of direct, incentive-compatible mech-

anisms. We say that a mechanism d is a random pure bundling mechanism if it is direct,

incentive compatible, and additionally satisfies that t is continuous,

q(θ)(b) > 0 =⇒ b = {1, . . . , K} or b = ∅, and∑
i

θi =
∑
i

θ′i =⇒ q(θ) = q(θ′)

A random pure bundling mechanism either sells the entire bundle or nothing to the

buyer and is measurable with respect to the buyer’s total valuation. Let D∗ denote the set

of random pure bundling mechanisms.

We now find the set of distributions by Nature, N∗, which rationalize D∗ according to

Theorem 7. We say that G ∈ N is a total value signal if

θ ∈ supp(G) =⇒ θ1 = θ2 = . . . = θK .

As the name suggests, a total-value signal can be generated by simply informing the

buyer of her expected valuation for the grand bundle θ̄ =
∑
θi. Due to the exchangeable

prior assumption, after being informed of the total valuation, the buyer’s posterior expected

valuation for each good will be θ̄
K

. Let N∗ denote the set of total value signals.

Proposition 25 (Deb and Roesler (2021), Theorem 3) Let D∗ denote the set of ran-

dom bundling mechanisms and N∗ the set of total-value signals.

1. For any G ∈ N∗, supd∈D,σ∈Σ(d) E(σ,G)[t(m)] = supd∈D∗ EG[t(θ)]
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2. For any d ∈ D∗, infG∈N EG[t(θ)] = infG∈N∗ EG[t(θ)]

3. supd∈D∗ infG∈N∗ EG[t(θ)] = infG∈N∗ supd∈D∗ EG[t(θ)]

As a result, there exists a worst-case optimal random pure bundling mechanism.

The complete proof is in Appendix C.4. A few technicalities aside, the argument is a

straightforward application of Theorem 7. First, given any total-value signal of Nature, the

seller’s problem simplifies to a single-dimensional maximization for the grand bundle. In

this case, we already know that a posted price for the grand bundle is optimal, which can

be approximated by a continuous mechanism with arbitrary precision. Second, given any

random pure-bundling mechanism, it is without loss to restrict attention to Nature informing

the buyer of the valuation for the total good. Finally, the Sion minimax theorem conditions

are satisfied due to the continuity of t.

3.4 Robust dynamic screening

In this section, we consider a new application and show how our results can be applied to

simplify dynamic robust contracting problems. A principal can sell one unit of a good to an

agent every period 1 ≤ t ≤ T , with T ∈ N ∪ {∞}. The principal, however, does not know

the distribution of the agent’s valuations or the process through which they evolve. Instead,

she only knows the mean of the distribution at each time t. That is, we assume that the

principal faces distributional uncertainty.

Formally, let vt ∈ Vt ⊆ [0, V̄ ] with V̄ ∈ R+ denote the agent’s type in period t. The seller

is uncertain about the distribution F ∈ ∆
(∏T

t=1 Vt

)
of (vt)t∈N, but knows the sequence of

first moments: (v̄t)t∈N. So the set of distributions the seller entertains is

N :=

{
F ∈ ∆

(
T∏
t=1

Vt

)
: EF [vt] = v̄t, for all 1 ≤ t ≤ T

}
.
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We assume that the principal commits to a (potentially random) dynamic selling mech-

anism to maximize her worst-case payoff guarantee:

sup
d∈D

inf
n∈N

π (d, n) ,

where

π(d, n) := inf
(xt)

T
t=1

En

[
T∑
t=1

δtptxt

]
,

and (xt)
T
t=1 is a sequence of buying probabilities that is optimal for the agent in the problem

defined by mechanism d.

Proposition 26 There exists a robust ϵ-optimal dynamic selling mechanism that charges

the static robustly optimal (random) price each period.

The proof of Proposition 26 is in Appendix C.5.

Corollary 8 The sequence of random posted prices that induces the distribution Pt over

prices in period t, 1 ≤ t ≤ T , with

Pt(p) :=


0 if p ≤ p

t

ln(p)−ln(pt)
ln(V̄ )−ln(pt)

if p
t
≤ p ≤ V̄ ,

and p
t
is the solution to p

(
1 + ln

(
V̄
)
− ln

(
p
t

))
= v̄t, is robustly optimal.

The proof of the above Corollary is in Appendix C.5.
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3.5 Robust Contracting for Search

We conclude the present paper with a more extensive application to a novel robust contract-

ing problem: how to incentivize an agent to search through alternatives. Robustness enters

due to the principal’s limited knowledge of the agent’s available alternatives.

We show that debt contracts maximize a principal’s worst-case payoff against all sets

of alternatives that an agent may have access to. In particular, debt contracts neither

distort the order in which an agent searches through alternatives nor provide an incentive

to terminate the search early. Debt contracts are, therefore, a natural class of contracts

when the moral hazard problem of the agent is not a one-time effort decision but a dynamic

optimization problem that involves uncertainty. This provides a rationale for the use of debt

contracts for financing in risky environments such as R&D and entrepreneurship.

3.5.1 Model

A principal (“the investor”) contracts with an agent (“the entrepreneur”), who engages in

costly sequential search to produce a profitable project. The agent’s efforts and search are

not observable, only the realized value of the project he presents to the principal.

A project is described by a pair (c, F ) ∈ R+ × ∆(Y ), where Y = [0, Y max] ⊆ R+. In

the language of Weitzman (1979), this is a “Pandora’s box.” The interpretation is that the

agent exerts a cost of c to learn the realized value of the project, which is a priori distributed

according to F .

At the outset, the agent is aware of the set of feasible projects A = ((ci, Fi))
n
i=0, while

the principal only knows one of one possible project A0 := {(c0, F0)}. In an extension, we

describe this knowledge as stemming from the agent’s strategic disclosure decision. For now,

we leave this knowledge as exogenous. We assume A is finite, and A0 satisfies a non-triviality

assumption that EF0 [y] − c0 > 0.
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The principal’s only incentive tool is a wage contract w : Y → R+. The contract describes

the agent’s monetary payment for a given project realization. When a project of value y is

realized, the agent receives w(y), and the principal receives y − w(y). We assume that the

contract w satisfies two-sided limited liability, so w(y) ∈ [0, y]. That is, the principal decides

what share of the profits each player receives. Both players are risk neutral.

Given a wage contract w and a true set of available projects A, the agent engages in

Weitzman search (with recall). The agent’s strategy will be described as a function of two

state variables: the agent’s best realization of y and the collection of unsampled projects S̄.

Thus, a strategy will be a function σ : Y × 2A → 2A ∪ ∅. Where σ(y, S̄) = s means that the

agent will sample project s ∈ A \ S̄ next, and σ(y, S̄) = ∅ means the agent has chosen to

stop searching and present y to the principal. Let Σ(w,A) denote the set of optimal search

strategies for the agent. For a given strategy σ, we write Eσ to denote the expectation with

respect to the induced distribution over the agent’s search. We abusively write i ∈ σ to

denote the event that project (ci, Fi) is explored according to strategy σ.

We summarize the timing of the model as follows:

1. The principal observes (c0, F0) ∈ A

2. The principal sets contract w

3. Knowing A, the agent sequentially searches according to σ ∈ Σ(w,A)

4. Agent payoff of Eσ[w(y) −
∑

i ci1[i∈σ]] and principal payoff of Eσ[y − w(y)]

The principal’s objective is to determine a wage contract w that maximizes the worst-

case payoff against all supersets of the known project A0. Formally, given a realized set of

projects A and wage contract w, the principal’s payoff is

VP (w | A) = sup
σ∈Σ(w,A)

Eσ[y − w(y)].
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The principal evaluates wage contracts by their worst-case realization of A, and therefore

seeks to solve

VP = sup
w

inf
A⊇A0

VP (w | A).

Our focus is on identifying what wage contract solves the principal’s problem. In the

next section, we present the analysis and introduce the form of an optimal contract: the

debt contract.

3.5.2 Analysis

We begin by recalling the solution to the sequential search problem in Weitzman (1979). For

a given project (ci, Fi) and wage contract w define the reservation value rwi (or index ) as the

unique solution to

ci =

∫
[w(y) − rwi ]+dFi(y).

We write ri with no subscript to denote the reservation value when the agent collects the

entire profit w(y) = y. The agent’s optimal strategy is to search projects in descending order

of their reservation value. The agent concludes search whenever she has opened a prize y

for which w(y) is larger than the remaining reservation values. Notice that the agent assigns

no value to realizations below the index rw when she considers the order in which to search.

This motivates the inspection of a special class of contracts.

A contract w is a z−debt contract if w(y) = [y − z]+. In such a contract, the principal

collects all returns up to the debt level z, after which the agent is the residual claimant and

collects the rest. We are now ready to state the main result.

Theorem 9 Let r0 denote the index of (c0, F0). The r0-debt contract maximizes Vp.
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The proof of Theorem 9 proceeds in two steps. Denote the r0-debt contract by w0. First,

we show that for any A ⊇ A0, VP (w0 | A) ≥ VP (w0 | A0). Then, we show that when A = A0,

w0 attains the maximal surplus. Together, we conclude that w0 must be worst-case optimal.

We say that a contract w is order-preserving if for all pairs (c1, F1) and (c2, F2) and

corresponding r1 ≥ r2, if rw2 > 0 then rw1 ≥ rw2 . In words, if the agent preferred to search

project 1 before 2 when she collected the entire profit, as long as project 2 is profitable under

w, she still prefers to search 1 first.

Notice that a contract being order-preserving does not directly say anything about the

values at which an agent will stop searching and is, therefore, not explicitly a statement

about the principal’s payoff. We consider this in a related definition. We say that a contract

w satisfies Independence of Irrelevant Alternatives (IIA) if for all A0 = (c0, F0) and all

A ⊇ A0, if EF0 [w(y)] − c0 ≥ 0, then VP (w | A) ≥ VP (w | A0).

The following proposition uniquely ties these two properties to debt contracts.

Proposition 27 The following are equivalent:

1. w is order-preserving

2. w satisfies IIA

3. w is a debt contract

Proof.

We show that a debt contract must be order-preserving and satisfies IIA, and leave the

converse to Appendix C.6. These properties boil down to a simple observation. Let wz be a

z-debt contract. Then, for any (c, F ) with index r,

rwz = r − z. (3.6)
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Equation (3.6) follows immediately from the construction of the index and the definition

of a debt contract. Because debt contracts have an additive effect on any project’s index,

they must be order-preserving.

We can also directly argue that any debt contract satisfies IIA. Consider any z− debt

contract w, and any A0 = (c0, F0) such that EF0 [w(y)] − c0 > 0. This implies rw0 > 0, and

the agent searches project (c0, F0) when restricted to A0. Now consider any superset A ⊇ A0

and an optimal strategy σ ∈ Σ(w,A) that presents the highest realization when stopping.

Fix any sequence of draws and optimal stopping decision of the agent. There are two

cases. If project (c0, F0) was searched, then the distribution of the maximal draw must

first order stochastically dominate the case in which the agent only has access to A0. Since

y − w(y) is weakly increasing, this results in a higher payoff for the principal.

Alternatively, if (c0, F0) was never searched, the agent opened another project (ci, Fi) and

realized some yi such that w(yi) > rw0 > 0. This implies that the agent surpassed the debt

level, as otherwise w(yi) = 0. Therefore, yi − w(yi) = z. Since z is the principal’s maximal

payoff with a z-debt contract, this dominates the case when just A0 is available.

Proposition 27 clears the first hurdle for Theorem 9: when using the r0-debt contract,

the principal’s worst-case is that A = A0. Second, it is immediate to see that the r0-debt

contract w0 leaves the agent with no expected surplus:

EF0 [w0(y)] − c0 = EF0 [(y − r0)
+] − c0 = 0. (3.7)

Therefore, when restricted to A0, the principal attains the maximum value from the r0-debt

contract:

VP (w0 | A0) = EF0 [y] − c0 = max
w

VP (w | A0).
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Together with Proposition 27, this proves Theorem 9 and identifies the principal’s worst-

case value is simply the total surplus of the known project:

VP = EF0 [y] − c0.

3.5.3 Suboptimality of Linear Contracts

To highlight the differences in our setup relative to Carroll (2015), it is useful to study how

linear contracts perform in this dynamic environment. Again fix some A0 = (c0, F0) and

consider the wage contract wlin(y) = αy, which attempts to extract the whole surplus from

the agent. This implies

α =
c0

EF0 [y]
.

When there are no other projects, performs as well as the r0-debt contract by construc-

tion. However, this contract does not satisfy IIA and is susceptible to being “crowded out”

by an alternative project which is better for the agent but worse for the principal. The index

rlin for the known project solves

c0 =

∫
(wlin(y) − rlin)+dF (y).

Plugging in the expression for α, we see that rlin = 0. Now consider the alternative

project (0, δx), where δx is a Dirac mass on some x > 0. This project has a strictly positive

index and αx > 0. Therefore, under wlin, the agent will search (0, δx) and never proceed to

(c0, F0). Since this is true regardless of x, we get:

inf
A⊇A0

VP (wlin | A) = 0.
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In fact, we showed that there is no linear contract which achieves the principal’s value

VP . Within the set of linear contracts, it is impossible to simultaneously extract the agent’s

full surplus when only A0 is realized and guarantee a positive payoff against any A ⊇ A0.

This leads to a natural question: is the r0-debt contract uniquely worst-case optimal?

Unfortunately, not quite, as the following proposition shows. Recall that VP is the principal’s

payoff guarantee under r0.

Proposition 28 A contract w satisfies infA⊇A0 VP (w | A) = VP if and only if

1. w(y) = 0 for all y ≤ VP

2. EF0 [w(y)] = c0

Proposition 28 identifies the key properties for robust optimality, and the proof is identical

to Theorem 9. In particular, w must impose a minimum debt level of VP , but need not go as

high as r0. This guarantees that (c0, F0) cannot be crowded out by an alternative project at

a loss to the principal. If the agent stops before searching (c0, F0), the principal must attain

the maximal value of VP .

This implies that the principal’s worst case is that no other projects are available to the

agent. Condition 2 says that, in this case, the principal takes the entire surplus.

We conjecture that the non-zero debt level generalizes readily to more intricate contract-

ing environments. For example, the principal could know that A0 contains more than a

single project or may be able to condition payments on multiple realizations that the agent

provides. We find this to be an intriguing direction to pursue in future work.
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Appendix A

Appendix to Chapter One

A.1 Appendix A

A.1.1 Jump-Diffusion Processes

On a probability space (Ω,F ,P), for all i ∈ {1, . . . , N}, let Bi = {Bi
t} be Brownian motion

adapted to F i and P i = {P i
t } be a homogeneous Poisson point process adapted to F i, such

that P i and Bi are independent, and the (Bi, P i) and (Bj, P j) are mutually independent for

i ̸= j. Let Ñ i(ds, dz) = N i(ds, dz)−mi(dz)ds be the Poisson martingale measure generated

by P i, where N i(ds, dz) is the (homogeneous) Poisson counting measure generated by P i

and mi(dz) is the Lévy measure on R \ {0} generated by P i.

The type of worker i, X i, is a stochastic process with values in the open set X i ⊆ R1

and evolves according to the (potentially degenerate) jump-diffusion stochastic differential

equation:

X i
ti = xi +

∫ ti

0

µi(X i
s)ds+

∫ ti

0

σi(X i
s)dB

i
s +

∫ ti

0

∫
R+

ki(X i
s− , z)Ñ i(ds, dz), (A.1)

1For simplicity, assume that Xi either does not reach the boundary of the set or that they are absorbing.
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where xi ∈ X i, and ti is the cumulative effort worker i has put into the project up to time

t: ti = T i(t) =
∫ t

0
αi
sa

i
sdt. If ki = 0, (A.1) is a continuous stochastic differential equation

and the type of worker i is a diffusion process. The σ-field F i
ti contains all the information

accumulated on worker i when he has put total effort ti into the project.

I will make the following assumptions:

Assumption 16 For all i ∈ {1, . . . , N}, µi : X i → R, σi : X i → R is locally Lipschitz

continuous and grows at most linearly.

Assumption 17 For all i ∈ {1, . . . , N},

•
∫
R\{0}

|z|2

1+|z|2dm
i(z) <∞;

• There exists ρ : R \ {0} → R+ such that
∫
R\{0} ρ(z)2dπ(z) < ∞ and such that

|ki(x, z) − ki(y, z)| ≤ ρ(z) |x− y|; and

• For all x, y ∈ Q and z ∈ R \ {0}, x+ ki(x, z) ≥ y + ki(y, z).

The first condition in Assumption 17 is a restriction on the set of possible jump processes.

It is standard in the theory of jump-diffusion and is satisfied by all stable processes. It is

satisfied if m is a finite measure which admits a second-order moment, for example.

Assumptions 16 and 17 are sufficient for the existence of a strong solution of (A.1) and

the validity of a comparison theorem.

Lemma 4 Under Assumptions 16 and 17, the stochastic differential equation (A.1) has a

unique strong solution.

Proof of Lemma 4. This follows from Theorem 310 in Rong (2006).

An immediate consequence of Lemma 4 and Proposition 2.1 in Wang (2010) is that the

process X i is Feller.
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Next, I show that it also satisfy the other Assumptions I made in Section 1.2.2, under some

additional conditions. Assumption 3 holds by Theorem 295 in Rong (2006). Assumption 4

is satisfied if, for all i ∈ {1, . . . , N}, for all x ∈ X i, (i) either ki(x, z) ≥ 0; or (ii) ki(x, z) ≤ 0.

Finally, Assumption 5 holds if σi(x) > 0 for all x ∈ X i or if µi(x) > 0 for all x such that

σi(x) = 0. This can be seen from an application of Girsanov’s theorem, Bluementhal’s 0-

1 law, and the Dvoretzky, Erdos, and Kakutani theorem (Theorem 9.13 in Karatzas and

Shreve (1998)).

A.1.2 Proof of Lemma 1

I first show that in any implementable promotion contest, each worker’s continuation value

after any history is nonnegative. I prove the contrapositive. Let (T, τ, d) be a promotion

contest and suppose that U i
t (T, τ, d) < 0 for some i ∈ {1, . . . , N} and t ≥ 0 after some

history. I claim that the promotion contest (T, τ, d) is not implementable, i.e., there is no

(weak) Perfect Bayesian equilibrium that generates it. To see this, note that sequential

rationality is violated for worker i: were he to stop exerting effort forever (which is an

admissible strategy by condition (ii)), his continuation payoff would be nonnegative. So

(T, τ, d) is not implementable.

Next I show that any promotion contest that gives a nonnegative continuation value to

each worker after any history is implementable. Let (T, τ, d) be such a promotion contest.

Consider the strategies {ait = 1}t≥0, for all i ∈ {1, . . . , N} and the principal’s choosing the

contest defined by

({
αi
t = dT s,i(t)

dt

}
t≥0

, τ, d

)
as long as ait = 1 for all workers and taking

her outside option immediately otherwise. The above strategy profile is admissible. By

condition (i), it is feasible. Moreover, it is immediate to see that no worker has a profitable

deviation: if worker i deviates, he gets a continuation payoff of 0, while, if he does not, he

gets a continuation payoff of U i
t ≥ 0. The result then follows.
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A.1.3 Proof of Proposition 2

I first show that the index contest can be implemented in a (weak) Perfect Bayesian equilib-

rium. Consider the following strategies
{
ait = 1{t≤τ0∧

∧N
i=1 τ

s,i} + di
τ0∧

∧N
i=1 τ

s,i1{t>τ0∧
∧N

i=1 τ
s,i}

}
t≥0

,

for all i ∈ {1, . . . , N}, and

({
αi
t = dT s,i(t)

dt

}
t≥0

, τ 0 ∧
∧N

i=1 τ
s,i, ds

)
.

By Theorem 7.1 in El Karoui and Karatzas (1997), the principal has no profitable devi-

ation. There remains to show that no worker has a profitable deviation. This follows from

the structure of the index contest.

The delegation rule T s is an index delegation rule, and, hence, each T s,i is flat of the set

{
t ≥ 0 : Γs,i

T i(t)
=

N∨
j=1

Γs,j
T j(t)

}
P-a.s..

But, for all i = 1, . . . , N , Γi
T s,i(t) decreases only on the set

{
X i

T s,i(t) = M i
T s,i(t)

}
by lemma 10,

and, therefore, using Assumption 5, for almost every t, if worker i is delegated the project,

then Γi
T s,i(t) > Γi

T s,i(t). In this case, only worker i is delegated the project (i.e., at most one

worker exerts effort at almost every instant t ≥ 0.).

To see this, note that, by Proposition 10 in Kaspi and Mandelbaum (1998), the sets

Di =
{
t ≥ 0 : σi(Γi

t−) > t
}

are F i-totally inaccessible. So two arms pulled simultane-

ously cannot start an excursion by an upward jump of at least one of their indices (nec-

essarily from the value of their common minimum Γ). This can be seen this by con-

tradiction. Suppose not, i.e., two workers i and j are delegated simultaneously at time

t. This implies that both T i(t) belongs to Di and T j(t) belongs to Dj, and both Γi
T s,i(t)

and Γj
T s,j(t)

are strictly decreasing at t. So let Γ be a point from which Γi
T s,i(t) starts

an excursion from its minimum. Then, if Γj
T s,j(t)

jumps upward from its minimum Γ,{
Γj
t− = Γ, Γj

t−ϵ > Γ for all ϵ > 0
}
∩ Dj ̸= ∅. But

{
Γj
t− = Γ, Γj

t−ϵ > Γ for all ϵ > 0
}

is a pre-

dictable set, and therefore
{

Γj
t− = Γ, Γj

t−ϵ > Γ for all ϵ > 0
}
∩ Dj = ∅: a contradiction.
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Therefore if the indices of two arms start an excursion from a level set Γ at the same time,

it must be from a point of continuity for both Γi
T s,i(t) and Γj

T s,j(t)
. But, then, the priority

rule defined in (A.8) specifies which of the two arms is pulled first and until the end of its

excursion.

It follows that the continuation value of worker i during an excursion when his type is

X and his minimum is X coincides with the continuation value in the single agent problem

when his type is X and his minimum is X, which, by theorem 2, is nonnegative.

Finally, for all j ̸= i, Γj
T s,j(t)

= Γj
T s,j(t)

. But, on Γj
T s,j(t)

= Γj
T s,j(t)

,
{
X i

T s,j(t) = Xj
T s,j(t)

}
. So

the continuation value of worker j is zero by Theorem 2, and no unemployed worker wants

to quit.

Thus no worker has a profitable deviation, as it is easily seen that the cost from delaying

the moment they get the reward by shirking is always greater than the saved effort cost when

the continuation value of a worker is nonnegative as, for all s ≥ 0,

e−rsU i
t ≤ U i

t ,

and the continuation value U i
t only depends on the current state of the game which remains

fixed when the worker shirks.

The second part of Proposition 2 follows from the Martingale argument in El Karoui and

Karatzas (1994). It is reproduced in Lemma 28 in Appendix A.2.1 for completeness.

A.1.4 Proof of Proposition 1

Let ci(·) := 0 for all i ∈ {1, . . . , N}. Then P̄ i(x) = sup {x ∈ X i} for all i ∈ {1, . . . , N}, and

the result follows from Theorem 1.



APPENDIX A. APPENDIX TO CHAPTER ONE 148

A.1.5 Proof of Proposition 9

I show that any implementable promotion contest (T, τ, d) is feasible for the relaxed program.

Let (T, τ, d) ∈ P i be an implementable promotion contest. Let i ∈ {1, . . . , N} and t ≥ 0.

By the law of iterated expectations, one has

E
[
e−r(τ−τ∧t)g1{d=i} −

∫ τ

τ∧t
e−r(s−τ∧t)cdT i(s) | F i

T i(t)

]
= E

[
E
[
e−r(τ−τ∧t)g1{d=i} −

∫ τ

τ∧t
e−r(s−τ∧t)cdT i(s) | GT

t

]
| F i

T i(t)

]
= E

[
U i
t | F i

T i(t)

]
≥ 0;

where the second equality is by definition and the inequality follows from lemma 1. Therefore

any promotion contest (T, τ, d) ∈ PI is feasible in (RP).

By Lemma 5 below, for any promotion contest, we can find a payoff equivalent promotion

contest with d ∈ C∗. So for any d is feasible in the original problem, there is a d feasible in

the new problem that gives the same payoff to the principal. Finally, by Lemma 6 below, the

set of stopping times T is a subset of S
(
GT
)
. Therefore the set of randomized promotion

contest Pr is a superset of P , and, hence, and the result follows: Π ≥ ΠM .

Lemma 5 For all promotion contest (T, τ, d), there exists an alternative promotion contest

(T, τ, d̃) with d̃it monotone P-a.s. for all i ∈ {0, 1, . . . , N} such that (T, τ, d) and (T, τ, d̃) give

the same payoff to the principal and to all the workers.

Proof of Lemma 5. Let (T, τ, d) be a promotion contest. Define d̃ as follows: for all

t ≥ 0,

∀i ∈ {1, . . . , N} , d̃it = diτ1{t≥τ} and d̃0t = d0τ1{t≥τ} + 1{t<τ}.
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Clearly, d̃i is P-a.s. monotone. Furthermore, (T, τ, d) and (T, τ, d̃) gives the same payoff to

all the players since dτ = d̃τ . Finally d̃ is GT -adapted, and therefore (T, τ, d̃) is a promotion

contest.

Lemma 6 The set of G-stopping times T (G) can be identified with the set of extreme points

of S (G).

Proof of Lemma 6. Any G-stopping time τ can be identified with the random stopping

time Sτ defined as Sτ (t) := 1{t≥τ}, which is easily seen to be an extreme point of S (G). On

the other hand, if S(·) ̸= 1{·≥τ} for some G-stopping time, there exists s̄ ∈ (0, 1) such that

the processes S1 and S2 defined by

S1
t :=

1

s̄
S(t) ∧ s̄ and S2

t :=
1

1 − s̄
S(t) ∨ (1 − s̄)

are different elements of S (G). But then, S is not an extreme point of S (G).

A.1.6 Omitted Proofs for Section 1.5.2

Proof of Theorem 2

Step 1: Define Qi :=
{
xiq, 0 ≤ q ≤ Q+ 1

}
⊆ X i, a grid of points in the state space such

that xi0 := X i
0 and xiq+1 < xiq for all i = 1, . . . , N and q = 0, . . . Q.

I solve the stopping problem with constraints:

Πi
Q := sup

(τ,di)

E
[∫ τ

0

e−rtπi
(
X i

t

)
dt+ e−rτ

(
diτ

∫ ∞

τ

e−r(t−τ)πi
(
X i

t

)
dt+ (1 − diτ )W

)]
(RRPi)

subject to, for all q = 0, . . . , Q,

E
[
e−rτgidiτ +

∫ τ

τ∧τ i(xi
q)

e−rtci
(
X i

t

)
dt

]
≥ 0, (RDP(xiq))
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where τ i(xiq) = inf
{
t ≥ 0 : X i

t ≤ xiq
}

.

Lemma 7 The value of relaxed problem (RRPi) is weakly greater than the value of problem

(RPi): Πi
Q ≥ Πi.

Proof of lemma 7. Any feasible (τ, d) in (RPi) satisfies all the (RDP(xiq)) constraints by

Lemma 21 in Appendix A.1.7. So the choice set in (RRPi) is weakly larger than the choice

set in RPi, and Πi
Q ≥ Πi.

Step 2: To accommodate the constraints, set up the Lagrangian associated with (RRPi).

Lemma 8 There exists (λ0, . . . , λQ) ∈ RQ+1
+ with (λq > 0 if and only if (RDP(xiq)) is

binding for τ i(xiq)) such that problem (RRPi) is equivalent to the unconstrained pure stopping

problem:

Πi
Q = sup

(τ,di)

E

[∫ τ

0

e−rt

(
πi(X i

t) −
Q∑

q=0

λqc
i
(
X i

t

)
1{t≥τ(xi

q)}

)
dt

+ e−rτdiτ

(
Q∑

q=0

λqg
i +

∫ ∞

τ

e−r(t−τ)πi(X i
t)dt

)
+ e−rτ (1 − diτ )W

]
(A.2)

Lemma 8 follows from Theorem 1 in Balzer and Janßen (2002).

Proof of lemma 8. For (τ := ϵ, di = 1), ϵ > 0 small, all constraints are slack. So Theorem

1 in Balzer and Janßen (2002) applies: there exist Lagrange multipliers (λq)
Q
q=0 ∈ RQ+1

+ such

that the optimal promotion time and decision rule, (τ, di), solve

Πi
Q = sup

(τ,di)

E
[∫ τ

0

e−rtπi(X i
t)dt+ e−rτ

(
diτ

∫ ∞

τ

e−r(t−τ)πi(X i
t)dt+ (1 − diτ )W

)]

+

Q∑
q=0

λqE

[
e−rτgidiτ −

∫ τ

τ∧τ i(xi
q)

e−rtci
(
X i

t

)
dt

]

Rearranging yields (A.2).
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Step 3: Identify a promotion contest that gives the principal a payoff weakly higher

than the value of (RRPi).

Let τ iq := inf
{
t ≥ 0 : X i

t ̸∈
(
xiq+1, x

i
q

)}
. Define g̃i := gi if X i only jumps up and

ḡi := inf

{
g̃ ≥ 0 : inf

q∈{0,...,Q−1}
inf

x∈(xi
q+1,x

i
q)
E

[
e−rτ iq g̃ −

∫ τ iq

0

e−rtci
(
X i

t

)
dt | x

]
≥ gi

}
. (A.3)

if X i only jumps down. Finally, let P̃ i(x) be defined as P̄ i(x) but for gi replaced by g̃i. Then

Proposition 29 Let

P̃ i
Q (x) :=

Q∑
q=0

P̃ i(xiq)1{x∈(xi
q+1,x

i
q]}.

The pair
(
τ̄Q, d

Q) ∈ P i with

τQ := inf
{
t ≥ 0 : X i

t ̸∈
[
piQ, P̃

i
Q
(
X i

t

))}
and di,QτQ := 1{Xi

τQ≥P̃ i
Q

(
Xi

τQ

)
}

gives a weakly greater payoff to the principal than any feasible promotion contest in (RRPi).

The intuition for the above proposition is clear. The principal always wants to wait

and obtains as much information as possible before making a final and irreversible decision.

Her option value of waiting is always positive. On the other hand, her cost of waiting is

null since, conditionally on choosing to promote the worker, her continuation value is a

martingale. The promotion contest
(
τQ, d

Q) guarantees that the principal waits as long as

possible before making a decision.

Proof of Proposition 29. Distinguish two cases corresponding to the two cases of

Assumption 4.

• X i only jumps up. Let (τ ∗, d∗) be the optimal promotion contest in (RRPi) given by

Lemma 13 in Appendix A.1.6. The payoff the principal gets from
(
τQ, d

Q) is weakly
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greater than the value of (DRRPi) since τQ ≥ τ ∗ P-a.s. and the principal takes her

outside option when X i falls below the same level piQ in both cases. This concludes

the proof.

• X i only jumps down. Let τ̄Q be the optimal stopping time in (DRRPi) given by

Lemma 16 in Appendix A.1.6. By Lemma 15 in Appendix A.1.6, the value associated

with τ̄Q is weakly greater than the value of (RRPi). But the payoff the principal gets

from
(
τQ, d

Q) is weakly greater than the value of (DRRPi) since τQ ≥ τ̄Q P-a.s. and

the principal takes her outside option when X i falls below the same level piQ in both

cases. This concludes the proof.

Step 4: Finally Theorem 2 is obtained by letting the grid Q become finer and finer.

Proof of Theorem 2. Let (Qn)n∈N ⊆ 2X i
be a sequence of grids in X i such that

Qn ⊆ Qn+1 for all n ∈ N and such that lim
n→∞

X n is dense in X i. Let (τn, dn)n∈N be the pair

given by Proposition 29. Define

τ ∗ := inf
{
t ≥ 0 : Xt ̸∈

[
p∗, P̄ i(Xτ∗)

)}
,

and d∗τ∗ := 1{Xτ∗=P (Xτ∗ )};

where p∗ is an accumulation point of
(
piQn

)
n∈N

. Along a subsequence, (τn, dn)n∈N converges

to (τ ∗, d∗) P-a.s. (as g̃iQn → gi). Since, for all n ∈ N, Πi
Qn ≥ Πi, it follows that (τ ∗, d∗) yields

a value greater than Πi to the principal.

But, (τ ∗, d∗) is feasible in (RPi); i.e., (τ ∗, d∗) satisfies the dynamic participation constraint

(DPCi). This follows from Lemma 18. Therefore (τ ∗, d∗) is optimal in (RPi).

There remains to show that p∗ := pi, which follows from noting that otherwise (τ̃ ∗, d̃∗)
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with

τ̃ ∗ := inf
{
t ≥ 0 : Xt ̸∈

[
pi, P̄ i(Xτ∗)

)}
,

and d̃∗τ∗ := 1{Xτ∗=P (Xτ∗ )}

yields a greater payoff to the principal.

Supporting Lemmas for the proof of Theorem 2

Supporting Lemmas for Step 3: First characterize the solution
(
τQ, d

Q) of (RPi). Let

xiW := sup

{
x ∈ X i : E

[∫ ∞

0

e−rtπi
(
X i

t

)
dt | x

]
+

Q∑
q=0

λqg
i ≤ W

}
.

Lemma 9 There exists
(
τQ, d

Q) that solves (A.2) with (i) τQ := inf {t ≥ 0 : X i
t ̸∈ S (t)},

where S (t) is a correspondence constant on [τ i(xiq), τ
i(xiq+1)) for all q ∈ {0, . . . , Q}, such

that S (t) ∩ {x ∈ X i : x < xiW} =
(
−∞, piQ

)
for some threshold piQ ∈ X i and S(τ i(xiq)) =

S(τ i(xiq+1)) if (RDP(xiq)) is not binding at τ i(xiq+1), and (ii) di,QτQ = 1{Xi
τQ≥xi

W }.

Moreover P (diτ = 0) > 0.

Proof of Lemma 9. Let Ā = (A0, . . . , AQ) with A = 1{Xi
t∈(xi

q+1,x
i
q]}. The process (X i

t , Ā)

on the extended state space
{

(x, t0, . . . , tQ) ∈ X i × {0, 1}Q+1 : x ≥ x
}

inherits the Feller

property from X i under P. The result then follows from Theorem 11 in Appendix A.2.2. In
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particular, for all q ∈ {0, . . . , Q}, the value function with Aq = 1 is given by

Vq(x) := sup
τ,di

E

[∫ τ∧τ i(xi
q+1)

0

e−rt

(
πi(X i

t) −
q∑

k=0

λkc
i
(
X i

t

))
dt

+ e−rτ∧τ i(xi
q+1)

{
V
q

(
Xi

τi(xiq+1)

) (X i
τ i(xi

q+1)

)
1{τ≥τ i(xi

q+1)}

+ 1{τ<τ i(xi
q+1)}

[
diτ

(
Q∑

q=0

λqg
i +

∫ ∞

τ

e−r(t−τ)πi(X i
t)dt

)
+ (1 − diτ )W

]}
| x

]
.

(A.4)

It is clear that diτ = 1 if and only if E
[∑Q

q=0 λqg
i +
∫∞
τ
e−r(t−τ)πi(X i

t)dt | F i
τ

]
≥ W , and

therefore that di only depends on X i
τ , as X i is Feller, and, hence, has the strong Markov

property. So

Vq(x) = sup
τ

E

[∫ τ∧τ i(xi
q+1)

0

e−rt

(
πi(X i

t) −
q∑

k=0

λkc
i
(
X i

t

))
dt

+ e−rτ∧τ i(xi
q+1)

{
V
q

(
Xi

τi(xiq+1)

) (X i
τ i(xi

q+1)

)
1{τ≥τ i(xi

q+1)}

+ 1{τ<τ i(xi
q+1)}

(
Q∑

q=0

λqg
i +

∫ ∞

τ

e−r(t−τ)πi(X i
t)dt

)
∨W

}
| x

]
.

From Theorem 11 in Appendix A.2.2 again, the smallest optimal stopping time is given by

τQ := inf

{
(x, q) : Vq(x) =

Q∑
q=0

λqg
i + E

[∫ ∞

0

e−rtπi
(
X i

t

)
dt | x

]}
.

There remains to show that the stopping region Sq on
[
τ i(xiq), τ

i(xiq+1)
)

can be taken to be
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such that

Sq ∩
{
x ∈ X i : x < xiW

}
=

{
x ∈ X i : x ≥ xiq+1 and

Vq(x) =

Q∑
q=0

λqg
i + E

[∫ ∞

0

e−rtπi
(
X i

t

)
dt | x

]}
=
[
pi
q
, P̄ i

q

)
.

By Lemma 10, Vq(x) is nondecreasing in x. It follows that, if x′ ≤ xiW is such that

x′ ∈ Sq, then

{
x ∈ X i : x ≤ x′

}
⊆ Sq

To see this, note that by Lemma 10, for all x′′ ≤ x′, W = Vq(x
′) ≤ Vq(x

′′) ≥ W , and, hence,

Vq(x
′′) = W . Therefore, it is optimal for the principal to stop at x′′ and take her outside op-

tion, and Sk∩{x ∈ X i : x ≤ xiW} = (−∞, pi
k
) or (−∞, pi

q
] with pi

q
:= sup {x ∈ Sq : x ≤ xiW}.

Furthermore, I claim that pi
q
≤ pi

q+k
for all k ∈ {1, . . . , Q− q}. This follows from the

definition of V q since ci ≥ 0 and λj ≥ 0 for all j ≥ 0. Letting p := inf
{
pi
q

: pi
q
> −∞

}
if

there exists pi
q
> −∞, one sees that the principal stops and takes her outside option (if she

ever does) the first time X i
t enters

(
−∞, piQ

)
or
(
−∞, piQ

]
.

Note here that Vq(x) is right-continuous and increasing, hence upper semicontinuous.

Therefore, on (−∞, xiW ), the stopping region is open, and hence Sq∩(−∞, xiW ) =
(
−∞, piQ

)
.

There remains to show that P (diτ = 0) > 0. The proof is by contradiction. So suppose

not. Then the value of the principal is given by E
[∫∞

0
e−rtπi (X i

t) dt
]
, which contradicts

Assumption 7. This concludes the proof.

Lemma 10 The Vq’s defined in (A.4) are nondecreasing in x.

Proof of lemma 10. The proof is by induction. By definition VQ+1(x) := W for all x and
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hence is nondecreasing.

Now let 0 ≤ q ≤ Q and assume that, for k ≥ q+ 1, Vk is nondecreasing in x. I show that

Vq(x) = esssup
τ≥0

E

[∫ τ∧τ(xi
q+1)

0

e−rt

(
πi(X i

t) − ci
(
X i

t

) q∑
k=0

λk

)
dt

+ e−rτ∧τ i(xi
q+1)

{
V
q

(
Xi

τi(xiq+1)

) (X i
τ i(xi

q+1)

)
1{τ≥τ i(xi

q+1)}

+ 1{τ<τ i(xi
q+1)}

(
Q∑

q=0

λqg
i +

∫ ∞

τ

e−r(t−τ)πi(X i
t)dt

)
∨W

}
| x

]

is weakly increasing in x.

Let x̄ ≥ x, and let τx be an optimal stopping time associated with V (x), which exists by

Theorem 11. From the definition of V q in (A.4),

Vq(x̄) ≥E

[∫ τx∧τ i(xi
q+1)

0

e−rt

(
πi(X i

t) − ci
(
X i

t

) q∑
k=0

λk

)
dt

+ e−rτx∧τx(xi
q+1)

{
V
q

(
Xi

τx(xiq+1)

) (X i
τx(xi

q+1)

)
1{τx≥τx(xi

q+1)}

+ 1{τx<τx(xi
q+1)}

(
Q∑

q=0

λqg
i +

∫ ∞

τx
e−r(t−τx)πi(X i

t)dt

)
∨W

}
| x̄

]
,

where τx(xiq+1) := inf
{
t ≥ 0 : X i,x

t ≤ xiq+1

}
≤ τ(xiq+1) P-a.s. by Assumption 3.

But, from the definition of the Vk’s, since ci (X i
t) ≥ 0 and λq+k ≥ 0, k ∈ {1, . . . , Q− q},

note that Vq(x) ≥ Vq+k(x) for all k ∈ {1, . . . , Q− q} and all x ≥ xiq+1. Using that X i,x̄

τx(xi
q+1)

≥
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X i,x

τx(xi
q+1)

,

Vq(x̄) ≥ E
[ ∫ τx∧τ i(xi

q+1)

0

e−rsπi(X i
s)ds−

q∑
k=0

λk

∫ τx∧τ i(xi
k+1)

0

e−rsci
(
X i

s

)
ds

+ e−rτx∧τ(Xp+1)

(
V
q

(
X

i,x

τx(xiq+1)

)(X i
τx(xi

q+1)
)1{τx(xi

q+1)≤τx}

+ 1{τx<τx(xi
q+1)}

(
Q∑

q=0

λqg
i +

∫ ∞

τx
e−r(t−τx)πi(X i

t)dt

)
∨W

)
| x̄
]
.

Since the Vq+k’s are nondecreasing by the induction hypothesis, πi is nondecreasing and

ci (X i
t) is nonincreasing by Assumption 3,

Vq(x̄) ≥ E
[ ∫ τx∧τ i(xi

q+1)

0

e−rsπi(X i
s)ds−

q∑
k=0

λk

∫ τx∧τ i(xi
q+1)

0

e−rsci
(
X i

s

)
ds

+ e−rτx∧τ i(xi
q+1)

(
V
q

(
Xi

τi(xiq+1)

) (Xτ i(xi
q+1)

)
1{τ i(xi

q+1)≤τx}

+ 1{τx<τ i(xi
q+1)}

(
Q∑

q=0

λqg
i +

∫ ∞

τx
e−r(t−τx)πi(X i

t)dt

)
∨W

)
| x
]

= Vq(x),

as the integrand is P-a.s. smaller. Since x̄ ≥ x are arbitrary, Vq is nondecreasing in x.

Thus, by induction, Vq is nondecreasing for all 0 ≤ q ≤ Q, and the proof is complete.

Next distinguish two cases, corresponding to the two cases of Assumption 4.

X i only jumps up:

Lemma 11 Assume that X i only jumps up. There exists
(
τQ, d

Q) that solves (RRPi) with

(i) τQ := inf
{
t ≥ 0 : X i

t ̸∈
[
pi, P̄ i

Q (t)
)}

, for some threshold pi ∈ X i and process P̄ i
Q(·)

constant on [τ i(xiq), τ
i(xiq+1)) for all q ∈ {0, . . . , Q} with P̄ i

Q(τ i(xiq)) = P̄ i
Q(τ i(xiq+1)) if

(DRDP(xiq)) is not binding at xiq+1., and (ii) di,QτQ = 1{Xi
τQ≥P̄ i

Q(τQ))}.
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Proof of Lemma 11. After applying Lemma 9, there remains to show that S(t) ∩

{x ∈ X i : x ≥ xiW} =
[
P̄ i
Q (x) ,∞

)
for some P̄ i

Q(·) constant on [τ i(xiq), τ
i(xiq+1)) for all q ∈

{0, . . . , Q}. For all q, define

P̄ i
q := inf

{
x ∈ Sq : x ≥ xiW

}
,

But x ≥ P̄ i
q implies that x ∈ Sq. To see this, note that, starting from x ≥ P̄ i

q , d
i
τ = 1

P-a.s.. So, at x, the principal’s continuation value is

Vq(x) = E

[∫ τQ

0

e−rsπ
(
X i

s

)
ds−

q∑
k=0

λk

∫ τQ

0

e−rsci
(
X i

s

)
ds

+ e−rτQ

[∫ ∞

τQ

e−r(t−τQ)πi
(
X i

t

)
dt+

Q∑
q=0

λqg
i

] ∣∣∣∣x
]

≤ E
[∫ ∞

0

e−rtπi
(
X i

t

)
dt | x

]
+

Q∑
q=0

λqg
i,

Therefore it is optimal for the principal to stop at x and promote the worker.

Thus the principal stops and promotes the worker the first time X i
t enters

(
P̄ i
q(Xi

t)
,∞
)

or

[
P̄ i
q(Xi

t)
,∞
)

. Note here that P
({
τ(P̄ i

q ,∞) = 0
}
| X i

t = P̄ i
q

)
= 1, the stopping times τ(P̄ i

q ,∞)

and τ[P̄ i
q ,∞) are indistinguishable. Moreover, π̄i is right-continuous by the Portmanteau theo-

rem, as πi is increasing upper-semicontinuous and X i is Feller, and therefore the two stopping

times give the same payoffs to the principal and to the worker. So, one can assume that

Sj
q ∩ [xiW∞) = [P̄ i

q ,∞).

Letting P̄ i
Q
(
X i

t

)
:= P̄ i

q(Xi
t)

yields the desired result.

Lemma 12 Every constraint (RDP(xiq)) is binding in the problem (RRPi).

Proof. Let (τ, d) be the solution of (RRPi) given by Lemma 11.

Observe that at least one constraint is binding, for otherwise the solution would coincide



APPENDIX A. APPENDIX TO CHAPTER ONE 159

with that of the unconstrained problem, i.e., the worker is never promoted, which violates

all the constraints.

Next, I show that (RDP(xiq)) for q = 0 is binding. Let q∗ be the first binding constraint.

If q∗ = 0, I am done. So suppose not. Then

E
[
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

t

)
dt

]
> 0.

By Lemma 11, on the random interval [0, τ i(xiq∗)), the solution consists in a stationary

promotion threshold P̄0 and a stationary threshold piQ such that the principal takes her

outside option at piQ. However, since (RDP(xiq)) is not binding at xi0, there exists P > P̄0

such that

E

[
e−rτ i

[P,∞)
∧τ i(xi

1)gi1{τ i
[P,∞)

<τ i(xi
1)} −

∫ τ i
[P,∞)

∧τ i(xi
1)

0

e−rtci
(
X i

t

)
dt

]
= 0.

Let τ(P ) be defined as τ(P ) := inf
{
t ≥ 0 : X i

t ̸∈
[
piQ, P

)}
on [0, τ i(xi1)) and τ(P ) = τ on

[τ i(xi1),∞). Note that τ(P ) is feasible in the relaxed problem (RRPi) and yields a higher

payoff for the principal (strictly if W > 0); a contradiction. So (RDP(xiq)) for q = 0 is

binding.

Similarly, one can show that (RDP(xiq)) for q = 1, . . . , Q are binding. To see this, suppose

not, i.e., (RDP(xiq)) is not binding for some q ∈ {1, . . . , Q}. Let q ≥ 1 be the smallest q such

that (RDP(xiq)) is not binding. Let q̃ > q be the next binding constraint, with q̃ = Q+ 1 if

all constraints q ≥ q are lax. Then on the random interval
[
τ i(xiq−1), τ

i(xq̃)
)

, by Proposition

11, the optimal stopping time is stationary and the worker is promoted if and only if his
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type exceeds P̄ i
Q

(
xiq−1

)
. At τ i(xiq−1), the continuation value of the worker is zero:

E

[
e−rτ∧τ i(xi

q̃)gi1{τ<τ i(xi
q̃)∧τ i(piQ)}

∫ τ∧τ i(xi
q̃)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q−1)

]
= 0.

But, by Assumption 3,

E

[
e−rτ∧τ i(xi

q̃)gi1{τ<τ i(xi
q̃)∧τ i(piQ)} −

∫ τ∧τ i(xi
q̃)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q−1)

]

≥ E

[
e−rτ∧τ i(xi

q̃)gi1{τ<τ i(xi
q̃)∧τ i(piQ)} −

∫ τ∧τ i(xi
q̃)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q)

]

> 0,

a contradiction.

So all (RDP(xiq)) constraints are binding. The next lemma describes the solution to

(RRPi).

Lemma 13 Assume that X i only jumps up. Define the process

P̄ i
Q(t) :=

Q∑
q

P̄ i
(
X i

τ i(xi
q)

)
1{[τ i(xi

q),τ
i(xi

q+1)}.

The pair (τ ∗, d∗) with

τ ∗ = inf
{
t ≥ 0 : X i

t ̸∈
(
pi, P̄ i

Q(t)
)}
,

and d∗τ∗ = 1{Xi
τ∗=P̄ i

Q(τ∗)}

solves (RRPi).

Proof. From Lemma 16, there remains to show that P̄ i
q = P̄ i

(
X i

τ i(xi
q)

)
. This follows from

Lemma 12: because the (RDP(xiq)) constraint is binding at every q ∈ Q, the continuation
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value of worker is zero at τ i(xiq), so the worker is indifferent between quitting and continuing

at τ i(xiq). Observing that P̄ i(x) is increasing in x, the result follows.

X i only jumps down: Introduce a new stopping problem with constraints. Here one

can assume, without loss of generality, that, for all q ∈ {0, . . . , Q}, P̃ i(xiq) ∈ Q or P̃ i(xiq) ≥ xi0

(using Assumption 5), and that xiQ < piQ. Otherwise, consider a sequence of grids Qm with

xiQn → inf X i. By the last statement of Lemma 9, eventually xiQn < pi
Qn

.

Consider then

Π̄i
Q := sup

τ
E

[∫ τ∧τ i(piQ)

0

e−rtπi
(
X i

t

)
dt

+ e−rτ∧τ i(piQ)
(
1{τ≤τ i(piQ)} ˜̄πi

(
X i

τ

)
+ 1{τ>τ i(piQ)}W

)]
(DRRPi)

subject to, for all q = 0, . . . , Q such that xiq ≥ piQ,

E
[
e−rτgi1{τ ≤ τ i(piQ)} +

∫ τ

τ∧τ i(xi
q)

e−rtci
(
X i

t

)
dt

]
≥ 0; (DRDP(xiq))

where piQ is the threshold optimal threshold obtained in Lemma 9, and

˜̄πi (x) :=


E
[∫∞

τ
e−r(t−τ)πi (X i

t) dt | x
]

if x ∈ Q,

−∞ otherwise.

Exactly as in step 2 and 3, by Theorem 1 in Balzer and Janßen (2002) and Theorem 11

in Appendix A.2.2,

Lemma 14 There exists τ̄Q that solves (DRRPi) with τ̄Q := inf {t ≥ 0 : X i
t ̸∈ S (t)}, where

S (t) is a correspondence constant on [τ i(xiq), τ
i(xiq+1)) for all q ∈ {0, . . . , Q} with S(τ i(xiq)) =

S(τ i(xiq+1)) if (DRDP(xiq)) is not binding at τ i(xiq+1). Moreover, for all t ≥ 0 and all

q ∈ {0, . . . , Q}, S(t) ∩
(
xiq+1, x

i
q

)
= ∅.
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The value of problem (DRRPi) is weakly greater than the value of (RRPi).

Lemma 15 The value of (DRRPi) is (weakly) greater than the value of (RRPi): Π̄i
Q ≥ Πi

Q.

Proof of Lemma 15. Consider the optimal stopping time τQ for problem (RRPi) given by

Lemma 9. I claim that there exists a feasible stopping time in (DRRPi) that gives a payoff

of Πi
Q to the principal.

To see this, observe that if Sq ∩ (xiq, x
i
q+1) ∩ {x ∈ X i : x ≥ xiW} = ∅ for all q, I am done.

So suppose not, i.e., Sq ∩ (xiq, x
i
q+1) ∩ {x ∈ X i : x ≥ xiW} ≠ ∅ for some q ∈ {0, . . . , Q}.

So, when X i
t ∈ (xiq+1, x

i
q], the principal finds it optimal to stop at x̃ ∈ Sq ∩ (xiq, x

i
q+1) ∩

{x ∈ X i : x ≥ xiW}. Her continuation value is

E
[∫ ∞

0

e−rtπi
(
X i

t

)
dt | x̃

]
,

which is equal to

E

[∫ τ i

(xiq+1,x
i
q)

∧τ i(piQ)

0

e−rtπi
(
X i

t

)
dt

+ e
−rτ i

(xiq+1,x
i
q)

∧τ i(piQ)
∫ ∞

τ i

(xiq+1,x
i
q)

∧τ i(piQ)

e
−r

(
t−τ i

(xiq+1,x
i
q)

∧τ i(piQ)

)
πi
(
X i

t

)
dt | x̃

]
.

Thus the the stopping time τ̃ defined by

τ̃ := τQ + inf
{
t ≥ 0 : X i

τ+t ̸∈
(
xiq+1, x

i
q

)}
1{Xi

τ∈(xi
q+1,x

i
q)}.

gives the same payoff to the principal as τQ. Next, note that it is feasible. This follows from
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noting that, by definition of g̃i,

E

[
e−rτ̃ g̃i1{Xi

τQ∈S
(
Xi

τQ

)
} −

∫ τ̃

τ̃∧τ i(xi
q)

e−rtci
(
X i

t

)
dt

]

≥ E

[
e−rτQgi1{Xi

τQ∈S
(
Xi

τQ

)
} −

∫ τQ

τQ∧τ i(xi
q)

e−rtci
(
X i

t

)
dt

]

≥ 0;

where the second inequality follows from (RDP(xiq)).

Repeating the above construction for all q such that Sq∩(xiq, x
i
q+1)∩{x ∈ X i : x ≥ xiW} ≠

∅ proves the claim.

Therefore the value of (DRRPi) is (weakly) greater than the value of (RRPi): Π̄i
Q ≥ Πi

Q.

Next note that the optimal stopping region in (DRRPi) can be taken to be [P̄ i
q ,∞) for

some P̄ i
q ≥ xiq on each random interval [τ i(xiq), τ

i(xiq+1)).

Lemma 16 There exists τ̄Q that solves (DRRPi) with τQ := inf
{
t ≥ 0 : X i

t ̸∈
[
piQ, P̄

i
Q (t)

)}
,

where P̄ i
Q(·) is a process constant on [τ i(xiq), τ

i(xiq)) for all q ∈ {0, . . . , Q} with P̄ i
Q(τ i(xiq)) =

P̄ i
Q(τ i(xiq+1)) if (DRDP(xiq)) is not binding at τ i(xiq+1).

Proof of Lemma 16. After applying Lemma 14, there remains to show that S(t) ∩

{x ∈ X i : x ≥ xiW} =
[
P̄ i
Q (t) ,∞

)
for some process P̄ i

Q(·) constant on [τ i(xiq), τ
i(xiq)), for all

q ∈ {0, . . . , Q}.

For all q, define

P̄ i
q := inf

{
x ∈ Sq : x ≥ xiq+1

}
,

By Lemma 14, the optimal stopping time τ̄Q is such that, on [τ i(xiq), τ
i(xiq+1)), τ̄Q is the first

entry time in Sq, with P̄ i
q := inf

{
x ∈ Sq : x ≥ xiq+1

}
≥ xiq. Therefore the first entry time
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into Sq ∩ {x ∈ X i : x ≥ xiW} (if it happens) occurs when X i crosses P̄ i
q from below (as X i

only jumps down). Since Sq is a subset of the finite grid Q, the inf is attained and one can

take Sq ∩ [xiW∞) = [P̄ i
q ,∞).

Letting P̄ i
Q (t) := P̄ i

q(Xi
t)

gives the desired result.

Lemma 17 Every constraint (DRDP(xiq)) is binding in the problem (DRRPi).

Proof. Let τ̄Q be the optimal stopping time for (DRRPi) given by Lemma 16. Observe

first that at least one constraint is binding, for otherwise the solution would coincide with

that of the unconstrained problem, i.e., the worker is never promoted, which violates all the

constraints.

Next, I show that (DRDP(xiq)) for q = 0 is binding. Let q∗ be the first binding constraint.

If q∗ = 0, I am done. So suppose not. Then

E
[
e−rτ g̃idiτ −

∫ τ

0

e−rtci
(
X i

t

)
dt

]
> 0.

By lemma 14, on the random interval [0, τ i(xiq∗)), the solution consists in a stationary pro-

motion threshold P̄0. However, since (DRDP(xiq)) is not binding at xi0, there exists P > P̄0

such that

E

[
e−rτ i

[P,∞)
∧τ i(xi

1)∧τ i(piQ)g̃i1{τ i
[P,∞)

<τ i(xi
1)∧τ i(piQ)} −

∫ τ i
[P,∞)

∧τ i(xi
1)∧τ i(piQ)

0

e−rtci
(
X i

t

)
dt

]
= 0.

But then, choosing

τ̃(ω) =


inf
{
t ≥ 0 : X i

t ̸∈
[
piQ, P

)}
if inf

{
t ≥ 0 : X i

t ̸∈
[
piQ, P

)}
≤ τ i(xi1),

τ̄Q otherwise,

instead of τ̄Q is feasible in the relaxed problem (DRRPi) and yields a higher payoff for the
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principal. So (DRDP(xiq)) for q = 0 is binding.

Similarly, I can show that (DRDP(xiq)) for q = 1, . . . , Q such that xiq ≥ piQ are binding.

To see this, suppose not, i.e., (DRDP(xiq)) is not binding for some q ∈ {1, . . . , Q}. Let q ≥ 1

be the smallest q such that (DRDP(xiq)) is not binding. Let q̃ > q be the next binding

constraint, with q̃ = Q + 1 if all constraints q ≥ q are lax. Then on the random interval[
τ i(xiq−1), τ

i(xq̃)
)

, by Proposition 11, the optimal stopping time is stationary and the worker

is promoted if and only if his type exceeds P̄ i
Q

(
τ i(xiq−1)

)
. At τ i(xiq−1), the continuation value

of the worker is zero:

E

[
e−rτ̄Q∧τ i(xi

q̃)∧τ
i(piQ)g̃i1{τ̄Q<τ i(xi

q̃)∧τ i(piQ)}

−
∫ τ̄Q∧τ i(xi

q̃)∧τ
i(piQ)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q−1)

]
= 0.

But, by Assumption 3,

E

[
e−rτ̄Q∧τ i(xi

q̃)∧τ
i(piQ)g̃i1{τ̄Q<τ i(xi

q̃)∧τ i(piQ)}

−
∫ τ̄Q∧τ i(xi

q̃)∧τ
i(piQ)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q−1)

]

≥ E

[
e−rτ̄Q∧τ i(xi

q̃)∧τ
i(piQ)g̃i1{τ̄Q<τ i(xi

q̃)∧τ i(piQ)}

−
∫ τ̄Q∧τ i(xi

q̃)∧τ
i(piQ)

0

e−rtci
(
X i

t

)
dt | X i

τ i(xi
q)

]

> 0,

a contradiction.

So all (DRDP(xiq)) constraints are binding.

Supporting Lemma for Step 4:
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Lemma 18 For x ∈
(
xiq+1, x

i
q

]
and x ≥ xiq, worker i’s continuation value after any history

before promotion with
(
X i

t , X
i
t

)
= (x, x) is nonnegative.

Proof of Lemma 18. Worker i’s continuation value is

U i
t := E

[
e−r(τ−t)gidiτ −

∫ τ

t

e−r(s−t)ci
(
X i

s

)
ds | F i

t

]
.

Since τ ∗Q and d∗Q only depends on
(
X i, X i

)
and

(
X i, X i

)
has the strong Markov property

(as X is a Feller process), the continuation value of worker i is a function of
(
X i

t , X
i
t

)
:

U i
t :− U i

(
X i

t , X
i
t

)
.

Moreover, by construction, for all x, U i (x, x) = 0 and x → U i(x, x) is nondecreasing on[
x, P̄ i (x)

)
. This follows from Assumption 3 and from ci (·) being nonincreasing. Therefore,

after any history before promotion with
(
X i

t , X
i
t

)
= (x, x),

U i
t = U i

(
X i

t , X
i
t

)
= U i (x, x) ≥ U i (x, x) = 0.

This concludes the proof.

A.1.7 Omitted Proofs for Section 1.5.3

The proof of the first part of Proposition 10 is provided in Appendix A.1.7. Appendix A.1.7

presents supporting lemmas needed in the proof. The second part is proved in Appendix

A.1.7.

First part of Proposition 10: Existence of an optimal promotion contest in (RP)

The goal of this section is to prove the first part of Proposition 10, i.e., that a (randomized)

promotion contest that promotes solves (RP).

Theorem 10 A solution to (RP) exists.
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The logic of the proof is standard. It relies on the following two properties: (i) the feasible

set is compact and (ii) the objective is upper semi-continuous. However the proof is technical.

The set of all randomized promotion contests is a complicated object. Showing that it is

compact in a suitable topology is not immediate. In particular, because the information

the principal has at time t, GT
t , is endogenous, we cannot prove existence directly from a

weak∗ compactness argument as is done in Bismut (1979) or Pennanen and Perkkiö (2018) for

stopping problems. We cannot guarantee that the weak∗ limit of the maximizing sequence of

stopping times and promotion decision is adapted to the “right” filtration. To overcome this

issue, I will use the concept of weak convergence of filtration from the theory of “extended

weak convergence” introduced now.2

Let R(H) the set of H-regular processes. A process A = {At}t≥0 is regular if it is of

class (D) and its left-continuous version A− and its predictable projection pA are indistin-

guishable.3 The space of H-regular processes is a Banach space, whose dual can be identified

with the space of H-optional random measure. A formal statement is found in Pennanen

and Perkkiö (2018), Theorem 1.4

Definition 14 A sequence of filtrations
(
Fn = {Fn

t }t≥0

)
n∈N converges weakly to a filtra-

tion F = {Fn
t }t≥0 if, for every A ∈ F∞, E [1A | Fn

· ] → E [1A | F·] in probability for the

Skorokhod topology. We write Fn →w F .

I then proceed in two steps:

• First we show that for all delegation rule T and randomized promotion decision d,

there exists an optimal GT -(randomized) stopping time S∗. This part is standard and

builds on the duality results derived in Bismut (1978),5 and used in Bismut (1979) and

2See Coquet et al. (2001) for an introduction.
3For a more detailed presentation, see Dellacherie and Meyer (1982), remark 50 d), or Bismut (1978).
4See also the section on random measure of Dellacherie and Meyer (1982), Theorem 2 in Bismut (1978),

or Proposition 1.3 in Bismut (1979).
5See also Dellacherie and Meyer (1982).
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Pennanen and Perkkiö (2018) to obtain both the weak compactness of the feasible set

and the (weak) continuity of the objective. This is done in Lemma 22.

• Next we construct a maximizing sequence of promotion contest (T, τ, d) that has a

convergent subsequence. We show, in Lemma 23, that the limit of this subsequence

is a solution of (RP) using results from the theory of “extended weak convergence”

derived in Coquet et al. (2001) and Coquet and Toldo (2007). This is done in the proof

of Theorem 10.

Proof of theorem 10. The value Π of problem (RP) is equal to

Π = sup
(T,d)∈D×C∗ such that d is GT -optional

Π (T, d) ,

where Π(T, d) is defined by (RP(T,d)) in Lemma 22.

Consider a maximizing sequence (T n, dn)n∈N ⊆ D × C∗ such that

lim
n→∞

Π (T n, dn) = Π.

By Lemmas 19 and 20, the set D × C∗ is (sequentially) compact in the product topology.

So there exists a subsequence (T nk , dnk)k∈N ⊆ (T n, dn)n∈N that converges to some (T ∗, d∗) ∈

D × C∗. Furthermore, d∗ is GT ∗
-optional.

To see this, observe that, for all K and all k̄ ≥ K, dnk̄ is
(
GT ∗
t ∨

∨
k≥K G

Tnk

t

)
-adapted

and, therefore, d∗ is
(
GT ∗ ∨

∨
k≥K GTnk

)
-adapted, for all K. By Proposition 1 in Coquet

et al. (2001), GTnk → GT ∗
as k → ∞. So

(
GT ∗ ∨

∨
k≥K GTnk

)
→w GT ∗

as K → ∞. Then,

for all t, E
[
d∗t |

(
GT ∗
t ∨

∨
k≥K G

Tnk

t

)]
→ E

[
d∗t | GT ∗

t

]
in probability, and hence P-a.s. along a

subsequence, as K → ∞. But, for all t ≥ 0 and all K, d∗t = E
[
d∗t |

(
GT ∗
t ∨

∨
k≥K G

Tnk

t

)]
. So

d∗t = E
[
d∗t | GT ∗

t

]
for all t ≥ 0. The result then follows from the optional projection theorem

(Theorem 2.7 in Bain and Crisan (2008)) as d∗ is càdlàg.
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Therefore, by Lemma 23,

lim
n→∞

Π (T nk , dnk) = Π (T ∗, d∗) = Π.

The conclusion then follows from Lemma 22.

Supporting Lemma for Theorem 10

Lemma 19 The set of optional increasing paths, D, is (sequentially) compact for the se-

quential convergence defined by: for all K compact subset of R+, all continuous function

f : R+ → R and all i ∈ {1, . . . , N},

T n → T ⇔
∫
K

f(t)dT in(t) →
∫
K

f(t)dT i(t) P-a.s.,

uniformly in K.

Proof of Lemma 19. Recall that we can identify the set of feasible delegation rule with

the set of Fs-adapted multi-process α =
(
α1, . . . , αN

)
, where αt =

(
α1
t , . . . , α

N
t

)
∈ ∆N is the

Radon-Nikodym derivative of T evaluated at t: dT (t)
dt

.

By Theorem 2.2 and the first Corollary in Becker and Mandrekar (1969), the set of pro-

gressively measurable multi-parameter random measures taking values in ∆N is sequentially

compact under the sequential convergence defined by: for all K compact subset of R+, all

continuous function f : R+ × ∆N → R,

An → A if and only if, ∀i ∈ {1, . . . , N} ,
∫
K

∫ 1

0

f (t, αt) dA
i
t

n
(ω)dt→

∫
K

f
(
t, αi

)
dAi

t(ω)dt P-a.s.,

uniformly in K.

In particular, this implies that the set of delegation rule is sequentially precompact under
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the sequential convergence defined by: for allK compact subset of R+, all continuous function

f and all i ∈ {1, . . . , N},

T n → T ⇔
∫
K

f(t)dT in(t) →
∫
K

f(t)dT i(t) P-a.s.;

uniformly in K, since any control A ∈ D generates a unique delegation rule T .

There remains to show that it is closed: So far, we have obtained the limit T in the sense

of the above as a progressively measurable process. We still need to verify that the limit T

is an increasing optional path, i.e., that it satisfies condition 1.-3. of definition 1. Conditions

2. and 3. are easily seen to hold. Condition 1. follows from the P-almost sure convergence

of T i,n(t) → T i(t) for all t, which is seen to hold by choosing the constant function f(t) = 1.

Lemma 20 The set of nondecreasing randomized promotion decision C∗ is sequentially com-

pact for the sequential convergence defined by:

dn → d if and only if ∀t ≥ 0, i ∈ {0, . . . , N}, di,nt (ω) → dit(ω), P-a.s..

Proof of Lemma 20. By Theorem 2.2 and the first Corollary in Becker and Mandrekar

(1969), the set of promotion decision C is sequentially compact for the sequential convergence

defined by: for all K compact subset of R+ and all continuous function f : R+ ×∆N+1 → R

dn → d if and only if

∫
K

N∑
i=0

f(t, i)di,nt (ω)dt→
∫
K

N∑
i=0

f(t, i)dit(ω)dt P-a.s.,

uniformly in K. We first show that C∗ is closed in C for the above convergence, and, hence,

that C∗ is (sequentially) compact in the above sense.

Consider a sequence (dn)n∈N in C∗ such that dn → d for some d ∈ C. Let i ∈ {0, . . . , N}.
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Then, for all continuous function f : R+ → R and all compact set K,

∫
K

f(t)di,nt (ω)dt→
∫
K

f(t)dit(ω)dt, P-a.s.,

uniformly in K. But
(
di,nt (ω)

)
n∈N is a sequence of bounded (by 1) càdlàg monotone function,

since dn ∈ C∗. By Helly’s selection theorem, there exists a subsequence
(
di,nk
t (ω)

)
k∈N ⊆(

di,nt (ω)
)
n∈N such that di,nk

t converges to some nondecreasing càdlàg function d̄it(ω) pointwise

almost everywhere on R+. But then, by the dominated convergence theorem, for all K

compact,

∫
K

f(t)di,nk
t (ω)dt→

∫
K

f(t)d̄it(ω)dt.

So, by uniqueness of the limit, dit = d̄it (in the sense of the topology of Becker, i.e., P×ℓ-a.e.),

and therefore dit is nondecreasing P-a.s..

There remains to show that it implies that, for all t ≥ 0, di,nt (ω) → dit(ω), P-a.s.. This

follows from Lebesgue differentiation theorem, the right continuity of both di,n and di, the

fact that the convergence is uniform in K, and the Moore-Osgood theorem.

Lemma 21 Let (T, S, d) be a promotion contest. (T, S, d) satisfies (DPC) if and only if

(T, S, d) satisfies, for all i ∈ {1, . . . , N}, for all F i-stopping times τ̃ ,

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)
dS(τ)

]
≥ E

[∫ ∞

0

(
e−rτgidiτ1{τ<τ̃} −

∫ τ∧τ̃

0

e−rtci
(
X i

T i(t)

)
dt

)
dS(τ)

]
.

Proof of Lemma 21. (⇒) This follows from lemma 29. (DPC) implies that, for all
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τ ′ ≤ τ ∈ T
(
F i

T i(·)

)
,

E
[∫ ∞

0

(
e−r(τ−τ ′)gidiτ −

∫ τ

τ ′
e−r(s−τ ′)ci

(
X i

T i(s)

)
dT i(s)

)
dS(τ) | F i

T (τ ′)

]
≥ 0;

which, by lemma 29 implies that

+∞ ∈ arg max
τ̃∈T i

E

[∫ ∞

0

(
e−rτ∧τ̃gid̃iτ∧τ̃1{τ<τ̃} −

∫ τ∧τ ′

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)
dS(τ)

]
.

(⇐) The other direction follows directly from Lemma 29.

Lemma 22 Let T be a delegation rule and d be a GT -optional promotion decision. Then

there exists a GT -(randomized) stopping time S∗ that solves

Π(T, d) := sup
S

E

[∫ ∞

0

(
N∑
i=1

∫ τ

0

e−rtπi(X i
T i(t))dT

i(t) + e−rτ π̄
(
XT (τ), dτ

))
dS(τ)

]
(RP(T,d))

subject to, for all i ∈ {1, . . . , N}, for all t ≥ 0, P-a.s.,

E
[∫ ∞

0

(
e−r(τ−τ∧t)gidiτ −

∫ τ

τ∧t
e−r(s−τ∧t)ci

(
X i

T i(s)

)
dT i(s)

)
dS(τ) | F i

T i(t)

]
≥ 0. (DPC)

Proof of Lemma 22. The set of GT -randomized stopping times S
(
GT
)

is

σ
(
M∞(GT ),R(GT )

)
-compact by Lemma 2 in Pennanen and Perkkiö (2018), where R(GT )

is the set of regular processes equipped with the norm ∥y∥ = sup
τ

E [yτ ] and M∞(GT ) is

the space of random stopping time. So the set of feasible GT -randomized stopping times is

σ
(
M∞(GT ),R(GT )

)
-compact as a closed subset of a σ

(
M∞(GT ),R(GT )

)
-compact set. To

see this, consider (Sn)n∈N a sequence of feasible GT -randomized stopping time that converges

to some S.6

6It is enough to prove sequential closeness since the dual of a normed space is a Banach space by Theorem
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Let
(
1
a
{·<0}

)
a∈N

be a sequence of continuous functions such that, for all a, 1a
{·<0} ≤ 1{·<0}

and 1
a
{·<0} → 1{·<0} pointwise.7 Lemma 21 implies that, for all a ∈ N, for all i ∈ {1, . . . , N}

and all F i
T i(·)-stopping time τ̃ ,

lim
n→∞

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)
dSn(τ)

]
≥ lim

n→∞
E
[∫ ∞

0

(
e−rτgidiτ1

a
{τ−τ̃<0} −

∫ τ∧τ̃

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)
dSn(τ)

]
.

But, for all (T, d) ∈ D × C∗ with d GT -optional and all a ∈ N, both the processes

e−rtgidit −
∫ t

0

e−rsci
(
X i

T i(s)

)
dT i(s),

and e−rtgidit1
a
{t−τ̃<0} −

∫ t∧τ̃

0

e−rsci
(
X i

T i(s)

)
dT i(s)

have continuous paths P-a.s. and are GT -optional. Therefore they belong to R
(
GT
)
. The-

orem 1 in Pennanen and Perkkiö (2018) and Theorem 6.39 in Aliprantis and Border (2006)

implies that the bilinear form

R
(
GT
)
×M∞

+

(
GT
)
→ R

(Y, S) → E
[∫ ∞

0

YτdS(τ)

]

is continuous. So, we have

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
≥ E

[∫ ∞

0

(
e−rτgidiτ1

a
{τ−τ̃<0} −

∫ τ∧τ̃

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
.

6.8 in Aliprantis and Border (2006) and the Eberlein-Šmulian Theorem (Theorem 6.34 in Aliprantis and
Border (2006)) then implies that the set of randomized stopping time is also sequentially compact.

7It is easily seen that such a sequence exists.
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Taking the limit of the right-hand side as a → ∞, by Lebesgue dominated convergence

theorem (applied twice), we obtain

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
≥ E

[∫ ∞

0

(
e−rτgidiτ1{τ<τ̃} −

∫ τ∧τ̃

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
.

Lemma 21 again implies that (T, S, d) is a feasible promotion contest; and thus the set of all

feasible GT -randomized stopping time is closed, hence compact.

To conclude, there remains to show that the objective function is continuous in S. This

follows from the same argument as above by Theorem 1 in Pennanen and Perkkiö (2018)

and Theorem 6.39 in Aliprantis and Border (2006).

Thus, by Weierstrass’s maximum theorem, a solution to (RP) exists (since the feasible

set is nonempty).

Lemma 23 (Theorem 5 in Coquet and Toldo (2007)) Let (T n, dn)n∈N ⊆ PT ∗
be a se-

quence of pairs of delegation rules and promotion decision such that T n → T in the sense

of Lemma 19 and dn → d in the sense of Lemma 20. Suppose that d GT -optional. Then

Π (T n, dn) → Π(T, d).

Proof of Lemma 23. The proof follows from the proof of the second case of Theorem 5 in

Coquet and Toldo (2007). To see this, observe that the process Y n :=
(
X1

T 1,n(t), . . . , X
N
TN,n(t)

)
is quasi-left continuous for all n ∈ N, and, therefore, Aldous’ criterion for tightness8 holds

by Proposition 3 in Coquet and Toldo (2007). Moreover, for all t ≥ 0, T n(t) → T (t) P-a.s..

So Proposition 1 in Coquet et al. (2001) implies that GTn →w GT . Finally, since each X i is

continuous in probability, we have Y n → Y :=
(
X1

T 1(t), . . . , X
N
TN (t)

)
in probability.

8See equation (1) in Coquet and Toldo (2007) for a definition.
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Therefore we obtain the desired result by Theorem 5 in Coquet and Toldo (2007), upon

noting that the proof applies to our constrained stopping problem (RP(T,d)) provided that:

(i) If Sn → S for the σ
(
M∞ (GT ∨

∨
n GTn)

,R
(
GT ∨

∨
n GTn))

-convergence, then S is

feasible in the (RP(T,d)), i.e., (T, S, d) satisfies all the constraints (DPC).

(ii) The objective function
∑N

i=1

∫ τ

0
e−rtπi(X i

T i(t))dT
i
n(t) + e−rτ π̄

(
XT (τ), dn

)
converges to∑N

i=1

∫ τ

0
e−rtπi(X i

T i(t))dT
i(t) + e−rτ π̄

(
XT (τ), d

)
in R

(
GT ∨

∨
n GTn)

.

Start with (i). Consider a sequence of feasible promotion contests (T n, Sn, dn)n∈N that

converges to some (T, S, d), in the senses defined above. Suppose first that ci is continuous.

The result for general ci’s then follows by an approximation argument. Let T ≥ 0. For all

i ∈ {1, . . . , N} and all stopping times τ ≤ T ,

e−rτgdi,nτ −
∫ τ

0

e−rsci
(
X i

T i
n(s)

)
dT i

n(s) → e−rτgidiτ −
∫ τ

0

e−rsci
(
X i

T i(s)

)
dT i(s),

uniformly over τ ≤ T P-a.s.. Let ϵ > 0. By Egorov theorem (Theorem 10.39 in Aliprantis

and Border (2006)), the convergence is uniform on a set O ⊆ Ω with P (ω ∈ O) ≥ 1 − ϵ
C1

,

where C1 > 2
(
g + sup ci

r

)
. So, there exists N such that for all n ≥ N and all τ ≤ T ,

∣∣∣∣e−rτgidi,nτ −
∫ τ

0

e−rtci
(
X i

T i
n(t)

)
dT i

n(t) −
(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)∣∣∣∣ < ϵ

on O. But then, for all n ≥ N and all τ ≤ T ,

E

[ ∣∣∣∣e−rτgidi,nτ −
∫ τ

0

e−rtci
(
X i

T i
n(t)

)
dT i

n(t) −
(
e−rτgdiτ −

∫ τ

0

e−rtci
(
X i

T i(s)

)
dT i(t)

)∣∣∣∣1O(ω)

+

∣∣∣∣e−rτgidi,nτ −
∫ τ

0

e−rtci
(
X i

T i
n(t)

)
dT i

n(t) −
(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)∣∣∣∣1Oc(ω)

]

≤ ϵ

2
+
ϵ

2
= ϵ.
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So

sup
τ≤T

E
[∣∣∣∣e−rτgidi,nτ −

∫ τ

0

e−rtci
(
X i

T i
n(t)

)
dT i

n(t) −
(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

)∣∣∣∣]
→ 0,

as n→ ∞. But, for all T ≥ 0,

sup
τ

E
[∣∣∣∣e−rτgidi,nτ −

∫ τ

0

e−rsci
(
X i

T i
n(s)

)
dT i

n(s) −
(
e−rτgidiτ −

∫ τ

0

e−rsci
(
X i

T i(s)

)
dT i(s)

)∣∣∣∣]
≤ sup

τ
E

[∣∣∣∣e−rτ∧Tgi
(
di,nτ∧T − diτ∧T

)
−
(∫ τ∧T

0

e−rsci
(
X i

T i
n(s)

)
dT i

n(s) −
∫ τ∧T

0

e−rsci
(
X i

T i(s)

)
dT i(s)

) ∣∣∣∣
+
∣∣e−rτ∧Tgi

(
di,nτ − diτ + diτ∧T − di,nτ∧T

)∣∣
+

∣∣∣∣∫ τ

τ∧T
e−rsci

(
X i

T i
n(s)

)
dT i

n(s) −
∫ τ

τ∧T
e−rsci

(
X i

T i(s)

)
dT i(s)

∣∣∣∣
]

≤ sup
τ≤T

E

[∣∣∣∣e−rτ∧Tgidi,nτ∧T − e−rτ∧Tgidiτ∧T

−
(∫ τ∧T

0

e−rtci
(
X i

T i
n(t)

)
dT i

n(t) −
∫ τ∧T

0

e−rtci
(
X i

T i
n(t)

)
dT i(t)

) ∣∣∣∣
]

+ e−rTC1.

Therefore,

sup
τ

E
[∣∣∣∣e−rτgidi,nτ −

∫ τ

0

e−rsci
(
X i

T i(s)

)
dT i

n(s) −
(
e−rτgidiτ −

∫ τ

0

e−rsci
(
X i

T i(s)

)
dT i(s)

)∣∣∣∣]→ 0.

So,9

e−rtgidi,nt −
∫ t

0

e−rsci
(
X i

T i(s)

)
dT i

n(s) → e−rtgidit −
∫ t

0

e−rsci
(
X i

T i(s)

)
dT i(s) in R

(
GT ∨

∞∨
n=0

GTn

)
9All the processes have continuous paths and are adapted to GT ∨

∨∞
n=0 GTn

, so they belong to
R
(
GT ∨

∨∞
n=0 GTn)

.
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Letting
(
1
a
{·<0}

)
a∈N

be a sequence of continuous functions such that, for all a, 1a
{·<0} ≤ 1{·<0}

and 1
a
{·<0} → 1{·<0} pointwise as in the proof of 22, we obtain, by Theorem 1 in Pennanen

and Perkkiö (2018) and Theorem 6.39 in Aliprantis and Border (2006), for all a ∈ N and all

F i-stopping time τ̃ ,

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rsci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
= lim

n→∞
E
[∫ ∞

0

(
e−rτgidi,nτ −

∫ τ

0

e−rsci
(
X i

T i,n(s)

)
dT i,n(s)

)
dSn(τ)

]
≥ lim

n→∞
E
[∫ ∞

0

(
e−rτgidi,nτ 1

a
{τ−τ̃<0} −

∫ τ∧τ̃

0

e−rsci
(
X i

T i,n(s)

)
dT i,n(s)

)
dSn(τ)

]
= E

[∫ ∞

0

(
e−rτgidiτ1

a
{τ−τ̃<0} −

∫ τ∧τ̃

0

e−rsci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
.

where the inequality follows from Lemma 21. Taking the limit of the right-hand side as

a→ ∞, by Lebesgue dominated convergence theorem (applied twice), we obtain

E
[∫ ∞

0

(
e−rτgidiτ −

∫ τ

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
≥ E

[∫ ∞

0

(
e−rτgidiτ1{τ<τ̃} −

∫ τ∧τ̃

0

e−rtci
(
X i

T i(s)

)
dT i(s)

)
dS(τ)

]
.

If ci is not continuous, we can find a sequence of continuous function ci,n that converge to

ci pointwise such that
∫ τ

0
ci(X i

T i(s))dT
i(s) →

∫ τ

0
ci,n(X i

T i(s))dT
i(s) for all τ P-a.s.. We then

obtain the same inequality by the Lebesgue dominated convergence theorem. Then Lemma

21 implies that (T, S, d) satisfies (DPC).

To conclude, there remains to show (ii). This is done exactly as in the first part of the

proof of (i).
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Second part of Proposition 10: Characterization of the promotion time

Lemma 24 Suppose that the promotion contest (T, τ, d) solves (RP). If worker i is promoted

at time t, then {τ = t} ∈ F i
T i(t).

Proof. I will prove the contrapositive. So let (T, τ, d) be an implementable promotion

contest with {τ = t} such that i is promoted. Suppose that {τ = t} ̸∈ F i
T i(t). I want to show

that (T, τ, d) is not optimal.

Since {τ = t} ̸∈ F i
T i(t), P

(
{τ = t} | F i

T i(t)

)
∈ (0, 1). But then

Ũ i
t := E

[
e−r(τ−t)gidiτ −

∫ τ

t

e−r(s−t)ci
(
X i

T i(s)

)
dT i(s) | F i

T i(t)

]
< gi.

To see this, suppose not, i.e., Ũ i
t ≥ g. Then

gi ≤ Ũ i
t = E

[
e−r(τ−t)gidiτ −

∫ τ

t

e−r(s−t)ci
(
X i

T i(s)

)
dT i(s) | F i

T i(t)

]
≤ E

[
e−r(τ−t)gidiτ | F i

T i(t)

]
⇔E

[
e−r(τ−t)diτ | F i

T i(t)

]
= 1

⇒P
(
{τ = t} ∩ {diτ = 1} | F i

T i(t)

)
= 1.

This is a contradiction. So Ũ i
t < gi.

Consider then the promotion contest
(
T̃ , τ̃ , d̃

)
with T̃ := T on [0, τ) and T̃ j(t) = T j(τ)

if j ̸= i and T̃ j(t) = t − τ if j = i on [τ, τ̃ ], d̃ ∈ arg max
d∈∆N+1

E
[
π̄i
(
X i

T i(τ̃)

)
diτ̃ + d0τ̃W | GT̃

τ̃

]
subject to djτ = 0 for all j ̸∈ {0, i}, and τ̃ is chosen to be the optimal continuation promotion

contest in the single i-arm problem after time t starting at time t with

E
[
e−r(τ̃−t)gidiτ̃ −

∫ τ̃

t

e−r(s−t)ci
(
X i

T i(s)

)
dT i(s) | F i

T i(τ)

]
= Ũ i

τ ,
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given by Theorem 2.10

Finally observe that
(
T̃ , τ̃ , d̃

)
is feasible. The payoffs of all workers j ̸= i are the same

after any history of the game. The payoff of player i is unchanged before τ (by the law of

iterated expectations and the definition of τ) and nonnegative on the random interval (τ, τ̃ ]

as τ̃ is chosen i-arm feasible.

Theorem 2 then guarantees that the alternative promotion contest
(
T̃ , τ̃ , d̃

)
yields a

strictly higher payoff for the principal than the original promotion contest (T, τ, d). This

concludes the proof.

A consequence of the above lemma is that we can think of the principal as choosing N

promotion times, one for each agent, and one retiring time τ 0, instead of just one τ . Formally,

Corollary 9 Let (T, τ, d) be a promotion contest solving (RP). Then τ =
(∧N

i=1 τ
i
)
∧ τ 0,

where τ i is a F i-stopping time, τ 0 is a GT -stopping time, and i is promoted only if τ i ≤ τ =(∧N
i=1 τ

i
)
∧ τ 0.

Proof. Define, for all i ∈ {1, . . . , N},

τ i(ω) :=


τ(ω) if ω ∈ {ω ∈ Ω : diτ = 1}

+∞ otherwise

;

and

τ 0(ω) :=


τ(ω) if ω ∈ {ω ∈ Ω : d0τ = 1}

+∞ otherwise

.

By lemma 24, each τ i is a F i-stopping time. The result follows.

10I.e., set the value of the running minimum such that the above equation holds.
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A.1.8 Omitted Proofs for Section 1.5.4

Proof of Proposition 11

From Proposition 10, we can assume without loss of optimality that τ =
(∧N

i=1 τ̄
i
)
∧τ 0, where

τ i is a F i
T i(·)-stopping time, τ 0 is a GT

t -stopping time, and that dit = 1{τ i≤τ≤t}, i ∈ {0, . . . , N}.

Then (T, τ, d) generates the following GT
t -adapted reward processes

hit = πi(X i
t)1{t<T i(τ)} + rπ̄i

(
X i

T i(τ)

)
1{t≥T i(τ)}, i = 1, . . . , N,

Moreover let h0t = rW , t ≥ 0, i.e., I consider an alternative problem in which the outside

option is an N + 1th arm that can be pulled at any instant and gives a flow payoff of rW

to the principal. Let (T, τ, d) be a feasible promotion contest. This relaxes the principal

problems. Observe that

E

[
N∑
i=1

∫ τ

0

πi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

)]
= E

[
N∑
i=0

∫ ∞

0

hiT i(t)dT̃
i(t)

]
;

with T̃ (t) = T (t) if t ≤ τ and, for all i ∈ {0, . . . , N} and t ≥ τ , T̃ i(t) = di(t− τ) + T i(τ).

Define τ̄ i := T i(τ i); and let τ i0 be the solution of

sup
τ0

E

[
e−rτ̄ i∧τ0gidi1{τ̄ i≤τ0} −

∫ τ̄ i∧τ0

0

e−rtci
(
X i

t

)
dt

]
,

where the supremum is taken over all F i-stopping times. Then τ̄ i ∧ τ i0 ≥ T i(τ) P-a.s.. To

see this, note that, by definition of τ i0 and Lemma 29, for all τ i0 < τ̃ ≤ τ̄ i,

E

[
e−rτ̄ i∧τ̃gi1{τ̄ i≤τ̃} −

∫ τ̄ i∧τ̃

τ̄ i0

e−rtci
(
X i

t

)
dt | F i

τ i0

]
< 0

⇒ E

[
e−rτ i∧T i,−1(τ̃)gi1{τ i≤T i,−1(τ̃)} −

∫ τ i∧T i,−1(τ̃)

T i,−1(τ i0)

e−rtci
(
X i

T i(t)

)
dT i(t) | F i

τ i0

]
< 0,
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where T i,−1(t) := inf {s : T i(s) > t}. Therefore τ̄ i ∧ τ i0 ≥ T i(τ) P-a.s..

So, for all i = 1, . . . , N , P-a.s.,

hit ≤ h̃it := πi
(
X i

t

)
1{t<τ̄ i∧τ i0)} + rπ̄i

(
X i

τ̄ i∧τ i0
, d̃i
)
1{t≥τ̄ i∧τ i0};

where d̃it = 1{τ̄ i≤τ i0∧t}. Then

E

[
N∑
i=1

∫ τ

0

πi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

)]
= E

[
N∑
i=0

∫ ∞

0

hi
T̃ i(t)

dT̃ i(t)

]

≤ E

[
N∑
i=0

∫ ∞

0

h̃i
T̃ i(t)

dT̃ i(t)

]
.

Moreover, (τ i0 ∧ τ̄ i, d̃i) is feasible in the single i-arm problem. To see this, note that

E
[
e−rτgi1{τ i≤τ} −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

]
≥ 0

implies that

E

[
e−rτ i0∧τ̄ igi1{τ̄ i≤τ i0} −

∫ τ i0∧τ̄ i

0

e−rtci
(
X i

t

)
dt

]

= sup
S

E
[∫ ∞

0

e−rτ̃gi1{τ i≤τ̃}dS(τ̃) −
∫ ∞

0

∫ τ̃

0

e−rtci
(
X i

t

)
dtdS(τ̃)

]
≥ 0

since

E
[∫ ∞

0

e−rτ̃gi1{τ̄ i≤τ̃}dS(τ̃) −
∫ ∞

0

∫ τ̃

0

e−rtci
(
X i

t

)
dtdS(τ̃)

]
= E

[
e−rτ̄ igi1{τ̄ i≤τ̃} −

∫ ∞

0

e−rsci
(
X i

t

)
(1 − S(t)) dt

]
= E

[
e−rτgi1{τ i≤τ} −

∫ τ

0

e−rtci
(
X i

T i(t)

)
dT i(t)

]
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for S(t) = 1 − q̃i(t) + 1{t=τ i}q̃
i(τ) and q̃i(t) = e−r(T i,−1(t)−t)

1{t≤τ} where T i,−1(t) := inf
{
s :

T i(s) > t
}

. Then, by definition of τ i0 and Lemma 29, for all τ̃ ≤ τ i0 ∧ τ̄ i,

E

[
e−rτ̄ i∧τ i0gi1{τ̄ i≤τ i0} −

∫ τ̄ i∧τ i0

τ̃

e−rtci
(
X i

t

)
dt | F i

τ̃

]
≥ 0.

Thus (τ̄ i ∧ τ i0, d̃i) is feasible in the single i-arm problem.

Therefore, by Proposition 30 in Appendix A.1.8 and Theorem 3.7 in El Karoui and

Karatzas (1997), since Γi
·

(
h̃i
)

is F i-adapted,

E

[
N∑
i=1

∫ τ

0

πi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

)]
≤ E

[
N∑
i=0

∫ ∞

0

e−rtrΓi
T̃ ∗,i(t)

(
h̃i
)
dT̃ ∗,i(t)

]

= E

[∫ ∞

0

e−rtr
N∨
i=0

Γi
T̃ ∗,i(t)

(
h̃i
)
dt

]

where T̃ ∗ is any delegation strategy satisfying the synchronization identity and Γ0
t = W for

all t ≥ 0.

Then Lemma 27 and Corollary 1 implies that, for all W̄ ≥ W ,

E
[∫ ∞

0

e−rtrΓi
t

(
h̃i
)
∨ W̄dt

]
= E

[∫ ρ(W̄ ;h̃i)

0

e−rth̃itdt+ e−rρ(W ;hi)W̄

]
≤ E

[∫ ∞

0

re−rtΓs,i
t ∨ W̄dt

]
,

(A.5)

where ρ(W̄ ;hi) := inf
{
t ≥ 0 : Γi

t

(
h̃i
)
≤ W

}
.

We conclude following the proof of indexability for superprocesses in Durandard (2022a).

Let

Γ−i
t (h̃−i) = ∨j ̸=iΓ

j
T ∗,j(t+T ∗,i(t))(h̃

j) and Γ̄
−i,K
t (h̃−i) =

∞∑
k=0

Γ−i
σk(h̃−i)1{t∈[σk,σk+1)},
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with σk = inf
{
t ≥ 0 : Γ−i

t (h̃−i) ≤ Γ−i
0 − k

K
Γ−i
0

}
for some K large. Then

E

[
N∑
i=1

∫ ∞

0

e−rtrΓi
T̃ ∗,i(t)

(
h̃i
)
dT̃ ∗,i(t)

]

≤ E
[∫ ∞

0

e−rtrΓi
T̃ ∗,i(t)

(
h̃i
)
dT̃ ∗,i(t) +

∫ ∞

0

e−rtrΓ̄
−i,K

T̃ ∗,−i(t)
(h̃−i)dT̃ ∗,−i(t)

]
≤ E

[∫ ∞

0

e−rtrΓi
T̄K,i(t)

(
h̃i
)
dT̄K,i(t) +

∫ ∞

0

e−rtrΓ̄
−i,K

T̄K,−i(t)(h̃
−i)dT̄K,−i(t)

]
;

where T̄K is an optimal index strategy for the two arms bandits with rewards Γi
t(h

i) and

Γ̄
−i,K
t (h−i) giving priority to arm −i, using Theorem 3.7 in El Karoui and Karatzas (1997)
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again. Letting τ k = inf
{
t ≥ 0 : Γi

t(h̃
i) ≤ Γ−i

0 − k−1
K

Γ−i
0

}
and τ 0 = 0, we have

E
[∫ ∞

0

e−rtrΓi
T̄K,i(t)

(
h̃i
)
dT̄K,i(t) +

∫ ∞

0

e−rtrΓ̄
−i,K

T̄ ∗,−i(t)(h̃
−i)dT̄K,−i(t)

]
= E

[
K∑
k=0

e−rσk

∫ τk+1

τk
e−rtrΓi

t(h̃
i)dt+ e−rτk+1

∫ σk+1

σk

e−rtrΓ̄
−i,K
t (h̃−i)dt

]

= E

[
K∑
k=0

e−rσk

(∫ τk+1

0

e−rtrΓi
t(h̃

i)dt−
∫ τk

0

e−rtrΓi
t(h̃

i)dt

)

+ e−rτk+1

rΓ̄
−i,K
σk (h̃−i)

(
e−rσk − e−rσk+1

)]

= E

[
K∑
k=0

(
e−rσk − e−rσk+1

)(∫ τk+1

0

e−rtrΓi
t(h̃

i)dt

)

+ +e−rτk+1

rΓ̄
−i,K
σk (h̃−i)

(
e−rσk − e−rσk+1

)]

≤ E

[
K∑
k=0

(
e−rσk − e−rσk+1

)(∫ λk+1

0

e−rtrΓs,i
t dt+

∫ τk+1

λk+1

e−rtrΓ̄
−i,K
σk (h̃−i)dt

)

+ e−rτk+1

rΓ̄
−i,K
σk (h̃−i)

(
e−rσk − e−rσk+1

)]

= E

[
∞∑
k=0

(
e−rσk − e−rσk+1

)∫ λk+1

0

e−rtrΓs,i
t dt+ e−rλk+1

rΓ̄
−i,K
σk (h̃−i)

(
e−rσk − e−rσk+1

)]

≤ E
[∫ ∞

0

e−rtrΓs,i
TK,i(t)

dTK,i(t) +

∫ ∞

0

e−rtrΓ̄
−i,K
TK,−i(t)(h̃

−i)dTK,−i(t)

]
,

where λk = inf
{
t ≥ 0 : Γs,i

t ≤ Γ−i
0 − k−1

K
Γ−i
0

}
, λ0 = 0, and TK is an optimal strategy for the

two arms bandits with rewards Γs,i
t and Γ̄

−i,K
t (h−i). The first inequality follows from (A.5)

and the independence of Γs,i and Γ−i,K (as Γi is F i-adapted and Γ−i,K is F−i-adapted and

the filtrations are independent).

As K goes to infinity, Γ−i,K
t (h̃−i) → Γ−i

t (h̃−i) for all t ≥ 0, P-a.s.. By Lemma 19, TK

converges to some T along a subsequence. By Lebesgue dominated convergence theorem



APPENDIX A. APPENDIX TO CHAPTER ONE 185

(applied twice) and Theorem 3.7 in El Karoui and Karatzas (1997), we obtain

E

[
N∑
i=0

∫ ∞

0

e−rtrΓs,i

T̃ ∗,i(t)

(
h̃i
)
dT̃ ∗,i(t)

]

≤ E
[∫ ∞

0

e−rtrΓs,i
T ∗,i(t)dT

∗,i(t) +

∫ ∞

0

e−rtrΓ̄
−i
T ∗,−i(t)(h̃

−i)dT ∗,−i(t)

]
,

where T ∗ is an optimal index strategy for the two arms bandits with rewards Γi
t and Γ̄

−i
t (h̃−i).

Reproducing the same argument for all j ̸= i, we have

E

[
N∑
i=1

∫ τ

0

πi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

)]
≤ E

[
N∑
0=1

∫ ∞

0

e−rtrΓs,i
T s,i(t)

dT s,i(t)

]

= E

[∫ ∞

0

e−rtr
N∨
i=1

Γs,i
T s,i(t)

dt

]
.

This concludes the proof.

Supporting Lemmas for the proof of Proposition 11

Let (τ i, di) ∈ PI,r,i. As above, define the process hi as

hit := πi(X i
t)1{t<τ i} + rπ̄i

(
X i

τ i , d
i
)
1{t≥τ i}, t ≥ 0

Consider the family of stopping problems: for all t ≥ 0,

Ṽ i
(
t,W ; τ i, di

)
:= ess sup

ρ∈T s(t;τ i,di)

E
[∫ ρ

t

e−r(s−t)hisds+ e−r(s−t)W | F i
t

]
(A.6)
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where

T s(t; τ i, di) =
{
s ≥ t : U i

s(τ
i, di) = 0

}
,

and

U i
s(τ

i, di) = E

[
e−rτ igidi −

∫ τ i

s

e−rtci
(
X i

t

)
dt | F i

s

]

is the continuation value of worker i. Let ρ(t,W ; τ i, di) be the smallest optimal stopping

time in the problem (A.6) with outside option W .11 In what follows, we will abuse a little

notation and denote ρ(0,W ; τ i, di) as ρ(W ; τ i, di).

Lemma 25 The mapping

W → Ṽ i
(
0,W ; τ i, di

)
:= sup

ρ∈T s(0;τ i,di)

E
[∫ ρ

0

e−r(s−t))hisds+ e−rρW

]

is convex, nondecreasing, and locally Lipschitz, with

lim
W→∞

Ṽ i
(
0,W ; τ i, di

)
−W = 0,

Proof of Lemma 25. We first show that the W → Ṽ i (0,W ; τ i, di) is nondecreasing.

Observe that for all W ′ ≥ W ≥ 0 and all ρ ∈ T s(0; τ i, di), we have

E
[∫ ρ

0

e−rshisds+ e−rρW ′
]
≥ E

[∫ ρ

0

e−rshisds+ e−rρW

]
.

It follows that W → Ṽ i (0,W ; τ i, di) is nondecreasing.

Next we show that W → Ṽ i (0,W ; τ i, di) is convex. Let α ∈ (0, 1) and W,W ′ ≥ 0. We

11Existence of an optimal stopping time follows from the standard Snell envelope argument.
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have

Ṽ i
(
0, αW + (1 − α)W ′; τ i, di

)
= ess sup

ρ∈T s(0;τ i,di)

E
[∫ ρ

0

e−rshisds+ e−rρ (αW + (1 − α)W ′)

]
≤ αess sup

ρ∈T s(0;τ i,di)

E
[∫ ρ

0

e−rshisds+ e−rρW

]
+ (1 − α)ess sup

ρ∈T s(t;τ i,di)

E
[∫ ρ

0

e−rshisds+ e−rρW ′
]

= αṼ i
(
0,W ; τ i, di

)
+ (1 − α)Ṽ i

(
0,W ′; τ i, di

)
;

where we used that the supremum of the sum is less than the sum of the supremum. So

W → Ṽ i (0,W ; τ i, di) is convex on [0,∞).

Taken together, these first two results implies that W → Ṽ i (0,W ; τ i, di) is locally Lip-

schitz, as a convex function is locally Lipschitz in the interior of its domain and W →

Ṽ i (0,W ; τ i, di) being nondecreasing implies that it is continuous at zero.

There remains to show that Ṽ i(0,W ; τ i, di) −W → 0. Note that

Ṽ i(0,W ; τ i, di) −W ≤ E
[∫ ∞

0

e−rt
(
πi
(
X i

t

)
−W

)+
dt

]
→ 0,

asW → ∞ by the monotone convergence theorem. Since Ṽ i(0,W ; τ i, di) ≥ 0 (as U i
0−(τ i, di) =

0 by convention), we have the desired result.

Lemma 26 The mapping W → Ṽ i (0,W ; τ i, di) is differentiable almost everywhere P-a.s.

with

∂Ṽ i (0,W ; τ i, di)

∂W
= E

[
e−rρ(W ;τ i,di)

]
, a.e.. (A.7)
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Proof of Lemma 26. Let δ > 0. Observe that

Ṽ (0,W + δ; τ i, di) = E

[∫ ρ(W+δ;τ i,di)

0

e−rthisds+ e−ρ(W+δ;τ i,di)(W + δ)

]

≥ E

[∫ ρ(W ;τ i,di)

0

e−rthisds+ e−ρ(W ;τ i,di)(W + δ)

]

= Ṽ (0,W ; τ i, di) + δE
[
e−rρ(W ;τ i,di)

]
.

Similarly,

Ṽ (0,W − δ; τ i, di) ≥ E

[∫ ρ(W ;τ i,di)

0

e−rthisds+ e−ρ(W ;τ i,di)(W − δ)

]

= Ṽ (0,W ; τ i, di) − δE
[
e−rρ(W ;τ i,di)

]
.

Therefore

Ṽ i(0,W ; τ i, di) − Ṽ i(0,W − δ; τ i, di)

δ
≤ E

[
e−rρ(W ;τ i,di)

]
≤ Ṽ i(0,W + δ; τ i, di) − Ṽ i(0,W ; τ i, di)

δ
.

By Alexandrov’s Theorem (Theorem 7.28 in Aliprantis and Border (2006)), W → Ṽ i(0,W +

δ; τ i, di) is differentiable almost everywhere and it derivative is continuous almost everywhere.

Letting δ → 0, for almost every W , we then have

∂Ṽ i(0,W ; τ i, di)

∂W
≤ E

[
e−rρ(W ;τ i,di)

]
≤ ∂Ṽ i(0,W ; τ i, di)

∂W
.

This concludes the proof.
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For all i ∈ {1, . . . , N}, define the hi-index processes

Γi
t

(
hi
)

:= inf
{
W ≥ 0 : Ṽ i

(
u,W ; τ i, di

)
= W for u = sup

{
y ≤ t : U i

y(τ
i, di) = 0

}}
,

and their lower envelope Γi
t (hi) := inf

0≤s≤t
Γi
s(h

i).

Lemma 27 For all W ,

Ṽ i
(
0,W ; τ i, di

)
= E

[∫ ρ(W ;τ i,di)

0

hisds+ e−rρ(W ;τ i,di)W

]

= E

[∫ ρ(W ;τ i,di)

0

e−rtrΓi
t

(
hi
)
dt+ e−rρ(W ;τ i,di)W

]
.

Proof of Lemma 27. By Lemma A.7,

∂Ṽ i (0,W ; τ i, di)

∂W
= E

[
e−rρ(W ;τ i,di)

]
a.e..

By Lemma 25, Ṽ i (0,W ; τ i, di) is locally Lipschitz, hence absolutely continuous. Therefore

Ṽ i
(
0, W̄ ; τ i, di

)
− W̄ − Ṽ i

(
0,W ; τ i, di

)
+W =

∫ W̄

W

(
E
[
e−rρ(W̃ ;τ i,di)

]
− 1
)
dW̃ .

Letting W̄ → ∞ and using Lemma 25, we get

Ṽ i
(
0,W ; τ i, di

)
−W =

∫ ∞

W

(
1 − E

[
e−rρ(W̃ ;τ i,di)

])
dW̃ .
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Then

Ṽ i
(
0,W ; τ i, di

)
−W = E

[∫ ∞

W

(
1 − e−rρ(W̃ ;τ i,di)

)
dW̃

]
= E

[∫ ∞

W

r

∫ ∞

0

e−rt
1{t≤ρ(W̃ ;τ i,di)}dtdW̃

]
= E

[∫ ∞

0

re−rt

∫ ∞

W

1{t≤ρ(W̃ ,τ i,di)}dW̃dt

]
,

by Fubini’s theorem (twice). But,

t ≤ ρ(W̃ ; τ i, di) ⇔ ∀s ≤ t such that U i
s(τ

i, di) = 0, Ṽ i
(
s, W̃ ; τ i, di

)
> W̃

⇔ ∀s ≤ t, Γi
s

(
hi
)
> W̃

⇔ Γi
t

(
hi
)
> W̃ .

Therefore

Ṽ i
(
0,W ; τ i, di

)
−W = E

[∫ ∞

0

re−rt

∫ ∞

W

1{Γi
t(h

i)>W̃}dW̃dt

]
= E

[∫ ∞

0

re−rt
(
Γi
t(h

i) −W
)+
dt

]
;

and the results follows.

Finally,

Proposition 30 (Whittle Computation)

Φ(0,W ) := sup
(T,τ̄1,...,τ̄N ),T i(τ̄ i)∈T s(0;τ i,di)

E

[
N∑
i=1

∫ τ̄ i

0

e−rthiT i(t)dT
i(t) + e−r

∨
τ̄ iW

]

≤ sup
T

E

[
N∑
i=1

∫ ∞

0

e−rtrΓi
T i(t)

(
hi
)
∨WdT i(t)

]
.
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Proof of Proposition 30. This follows from the double inequality: on {U i
t (τ i, di) = 0},

Φ−i(t̄−i,W ) ∨ Ṽ i
(
ti,W ; τ i, di

)
≤ Φ(t̄,W ) ≤ Φ−i(t̄−i,W ) + Ṽ i

(
ti,W ; τ i, di

)
−W.

But then, on
{
Ṽ i (t,W ; τ i, di) = W

}
∩ {U i

t (τ i, di) = 0}, Φ−i(t̄−i,W ) = Φ(t̄,W ), and it is

optimal to retire arm i. It follows that the optimal stopping time τ(W ) is weakly smaller

than
∑N

i ρ
i (W ; τ i, di). Then, by the same argument as in the proof of Lemma 26,

∂Φ(0,W )

∂W
= E

[
e−rτ(W )

]
.

Integrating, we get

Φ(0,W ) −W =

∫ ∞

W

(
1 − E

[
e−rτ(W̃ )

])
dW̃

≤ E
[∫ ∞

W

(
1 − e−r

∑N
i ρi(W̃ ;τ i,di)

)
dW̃

]

where the inequality follows from τ(W ) ≤
∑N

i ρ
i (W ; τ i, di). By Theorem 3.7 in El Karoui

and Karatzas (1997),

E
[∫ ∞

W

(
1 − e−r

∑N
i ρi(W̃ ;τ i,di)

)
dW̃

]
+W

is the value of the bandit problem with decreasing rewards Γi
t (hit), and the result follows.
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A.2 Appendix B

A.2.1 The strategic index policy

We construct the index delegation rule T Γ associated with the index processes
(
Γ1, . . . ,ΓN

)
following El Karoui and Karatzas (1997). We define T Γ pointwise on Ω. Let ω ∈ Ω, and

define

• σi(W ) = inf {t ≥ 0 : Γi
t ≤ W}.

• Di is the set of discontinuities of the function W → σi(W ). D :=
⋃N

i=1D
i.

• Di =
{
t ≥ 0 : σi

(
Γi
t−

)
> t
}

=
⋃

W∈Di [σi(W ), σi(W−)). The intervals in Di are the

flat stretches of the function Γi
t. D :=

⋃N
i=1Di.

• Bi is the set of discontinuities of the function t→ Γi
t. B :=

⋃N
i=1B

i.

• Bi :=
{
W > 0 : Γi

σi(W−) < W
}

=
⋃

t∈Bi(Γ
i
t,Γ

i
t− ]. The intervals in Bi are the flat

stretches of the function W → σi(W ). B :=
⋃N

i=1 Bi.

• τ 0(W ) =
∑d

i=1 σ
i(W ), 0 ≤ m <∞.

• N(t) = inf {W ≥ 0 : τ 0(W ) ≤ t}, 0 ≤ t,W <∞.

For all i = 1, . . . , N , and all t ̸∈ D, define

T Γ,i(t) := σi(N(t)−).

For t ∈ D, we still need to decide which arm to pull in the case that more than one arm

achieves the highest index. In that case, we specify a priority rule: if the indices of two

or more workers are the same at a time point of discontinuity, the principal delegates to
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the worker with smallest i. Formally, for t ∈ D, observe that t ∈ [τ 0(W ), τ 0(W−)) with

W = N(t) ∈ D. Define then

y0 = y0(W ) := τ 0(W ),

and, recursively,

yi := yi(W ) := yi−1(W ) − ∆σi(W ) =
i∑

j=1

σj(W−) +
N∑

j=i+1

σj(W ),

where ∆σi(W ) := σi(W ) − σi(W−). Set Li(W ) := [yi−1(W ), yi(W )), so that L(m) =⋃N
i=1 L

i(m). In particular, yN = τ 0(W−), and Li(W ) = ∅ if σi is continuous at W . Now find

the unique k = k(t) ∈ {1, . . . , N} for which t ∈ Lk(m), and write

N∑
i=1

T Γ,i(t) = (t− yk−1) + yk−1 =
k−1∑
j=1

σj(W−) + (t− yk−1 + σk(W ))
N∑

j=k+1

σj(W ).

We then take

T Γ,i(t) :=


σi(W−) if i = 1, . . . , k(t) − 1

σi(W ) + t− yk(t)−1 if i = k(t)

σi(W ) if i = k(t) + 1, . . . , N

(A.8)

for t ∈ D.

Proposition 31 The vector T Γ is an index delegation rule associated with the index pro-

cesses
(
Γ1, . . . ,ΓN

)
.
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Proof of proposition 31. We show that T Γ(t) is flat off the set

{
t ≥ 0 : Γi

TΓ,i(t) =
N∨
j=1

Γj
TΓ,j(t)

}
P-a.s..

Observe that, by construction, for all W ≥ 0,

N∨
j=1

Γj
TΓ,j(t)

≤ W ⇔ Γj
TΓ,j(t)

≤ W for all i⇔ σi(W ) ≤ T Γ,i(t) for all i

⇒ τ 0(W ) ≤ t⇔ N(t) ≤ W for all 0 ≤ t.

Moreover, by construction, we also have, for all t ≥ 0,

Γj
σi(N(t)−)

≤ Γj
TΓ,i(t)

≤ Γj
σi(N(t))

≤ N(t);

using that T Γ,i is nondecreasing, since T Γ,i(τ 0(W )) = σi(W ) for all W ≥ 0 implies that

T Γ,i(τ 0(N(t))) ≤ T Γ,i(t) ≤ T Γ,i(τ 0(N(t)−)).

So
∨N

j=1 Γj
TΓ,j(t)

≤ N(t), and, thus,
∨N

j=1 Γj
TΓ,j(t)

= N(t).

Then N(t) ̸∈ Bi ⇒ Γi
TΓ,i(t) = N(t), and, therefore,

0 ≤
∫ ∞

0

1{Γi
TΓ,i(t)

<
∨N

j=1 Γ
j

TΓ,j(t)
}dT

Γ,i(t) =

∫ ∞

0

1{Γi
TΓ,i(t)

<N(t)}dT
Γ,i(t)

≤
∫ ∞

0

1{N(t)∈Bi}dT
Γ,i(t) = 0,

where the last equality holds as N(t) ∈ Bi implies that T Γ,i(t−) = σi(N(t)−) = σi(N(t)) =

T Γ,i(t) is flat at t. Then

N∑
i=1

∫ ∞

0

1{Γi
TΓ,i(t)

<
∨N

j=1 Γ
j

TΓ,j(t)
}dT

Γ,i(t) = 0,
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and the result follows.

Next we recall one classic results from the study of bandit problems, which is used in the

proof of Proposition 2.

Lemma 28 For all i = 1, . . . , N ,

Ẽ
[∫ ∞

0

e−rths,i
T s,i(t)

dT s,i(t)

]
= E

[∫ ∞

0

e−rtrΓs,i
T s,i(t)

dT s,i(t)

]
. (A.9)

A similar statement is used in the proof of Theorem 8.1 in El Karoui and Karatzas

(1994); and a proof follows from the arguments there and from Lemma 7.5 in El Karoui and

Karatzas (1997). We reproduce it below for completeness.

Proof of lemma 28. By proposition 3.2 in El Karoui and Karatzas (1994),

U i
t = e−rt

[
V i
(
t; Γs,i

t

)
− Γs,i

t

]
+

∫ t

0

e−ru
(
hs,iu − rΓs,i

u

)
du

is a F i-martingale with càdlàg paths, and, hence, by lemma 4.6 in El Karoui and Karatzas

(1997) an F̃ i-martingale. Then

Ẽ
[∫ ∞

0

e−r(t−T s,i(t))dU i
T s,i(t)

]
= Ẽ

[ ∫ ∞

0

e−rt
(
hs,i
T s,i(t)

− rΓi
T s,i(t)

)
dT s,i(t)

+

∫ ∞

0

e−r(t−T s,i(t))d
(
e−rT s,i(t)

(
V i
(
T s,i(t); Γi

T s,i(t)

)
− Γi

T s,i(t)

))]
= 0.

Observe that, by lemma 7.5 in El Karoui and Karatzas (1997) and the definition of the
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strategic index policy,

∫ ∞

0

e−r(t−T s,i(t))d
(
e−rT s,i(t)

(
V i
(
T s,i(t); Γi

T s,i(t)

)
− Γi

T s,i(t)

))
=
∑
m∈Di

∫ yi(m)

yi−1(m)

e−r(t−T s,i(t))d
(
e−rT s,i(t)

(
V i
(
T s,i(t); Γi

T s,i(t)

)
− Γi

T s,i(t)

))
=
∑
m∈Di

e−r(yi−1(m)−σi(m))
(
e−rT s,i(t)

(
V i
(
T s,i(t); Γi

T s,i(t)

)
− Γi

T s,i(t)

)) ∣∣∣∣t=yi(m)

t=yi−1(m)

=
∑
m∈Di

e−ryi−1(m)

(
e−r∆σi(m)

(
V i
(
T s,i(yi(m)); Γi

T s,i(yi(m))

)
− Γi

T s,i(yi(m))

)
−
(
V i
(
T s,i(yi−1(m)); Γi

T s,i(yi−1(m))

)
− Γi

T s,i(yi−1(m))

))
.

Lemma 7.5 in El Karoui and Karatzas (1997) again implies that P-a.s.

V i
(
T s,i(yk−1(m)); Γi

T s,i(yk−1(m))

)
− Γi

T s,i(yk−1(m)) = 0

= V i
(
T s,i(yk(m)); Γi

T s,i(yk(m))

)
− Γi

T s,i(yk(m)).

Therefore

Ẽ
[∫ ∞

0

e−r(t−T s,i(t))dU i
T s,i(t)

]
= Ẽ

[∫ ∞

0

e−rt
(
h∗,i
T s,i(t)

− rΓi
T s,i(t)

)
dT s,i(t)

]
= 0;

and (A.9) holds.
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A.2.2 Useful Results on Optimal Stopping

I will be interested in the following problem. Let Yt ∈ Dr. Consider

sup
τ∈T

E [Yτ ] . (A.10)

Lemma 29 τ solves (A.10) if and only if, for all τ ′ ≤ τ ,

E[Yτ | Fτ ′ ] ≥ E[Yτ ′ | F ′
τ ],

and, for all τ ′ ≥ τ ,

E[Yτ | Fτ ] ≥ E[Yτ ′ | Fτ ].

Proof of lemma 29. (⇒) This is immediate. To see this, observe that the contrapositive

is the following. Suppose that there exists τ ′ ≤ τ such that

E[Yτ | Fτ ′ ] < E[Yτ ′ | F ′
τ ],

or τ ′ ≥ τ such that

E[Yτ | Fτ ] < E[Yτ ′ | Fτ ],

then τ does not solve (A.10), which is obviously true.

(⇐) Let τ be a Markov time and suppose that, for all τ ′ ≤ τ ,

E[Yτ | Fτ ′ ] ≥ E[Yτ ′ | Fτ ′ ],
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and, for all τ ′ ≥ τ ,

E[Yτ | Fτ ] ≥ E[Yτ ′ | Fτ ].

Let τ̃ be any Markov time. I then have

E[Yτ ] = E
[
Yτ1{τ≤τ̃} + Yτ1{τ>τ̃}

]
= E

[
E [Yτ | Fτ ]1{τ≤τ̃} + E [Yτ | Fτ̃ ]1{τ>τ̃}

]
≥ E

[
E [Yτ∨τ̃ | Fτ ]1{τ≤τ̃} + E [Yτ∧τ̃ | Fτ̃ ]1{τ>τ̃}

]
= E

[
E
[
Yτ̃1{τ≤τ̃} | Fτ

]
+ E

[
Yτ̃1{τ>τ̃} | Fτ̃

]]
= E [Yτ̃ ]

where the second equality follows from the law of iterated expectations and the Fτ ∧ Fτ̃ -

measurability of 1{τ>τ̃} and 1{τ≤τ̃}, the inequality follows by assumption, the third equality

follows from the same measurability conditions, and the last equality from the law of iterated

expectation again. Since τ̃ was arbitrary, τ solves (A.10).

Finally, I need the following extension of Theorem 2.4 in Peskir and Shiryaev (2006),

which relaxes the assumption on G and V.

Theorem 11 (Theorem 2.4 in Peskir and Shiryaev (2006)) Let X be a càdlàg Feller

process with values in X defined on the filtered probability space
(
Ω, {Ft}t≥0 ,F ,P

)
, where

{Ft}t≥0 satisfies the usual conditions. Let π, G be measurable function from X to R such

that

E
[

sup
0≤t≤∞

∫ t

0

e−rtπ(Xt)dt+ e−rtG(Xt)

]
<∞.
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Consider the family of optimal stopping problem

Vt := esssup
τ≥t

E
[ ∫ τ

t

e−r(s−t)p(Xs)ds+ e−r(τ−t)G(Xτ ) | Ft

]
, (A.11)

where the sup is taken over all Ft-Markov time τ ≥ t. Then Vt = V (Xt) P-a.s., where

V (Xt) := esssup
τ≥t

E
[∫ τ

t

e−r(s−t)p(Xs)ds+ e−r(τ−t)G(Xτ ) | Xt

]
,

and, for all Markov time θ ≥ t,

Vt = V (Xt)

= esssup
τ≥t

E
[ ∫ τ∧θ

t

e−r(s−t)p(Xs)ds+ e−r(τ∧θ−t)
(
V (Xθ)1{θ≤τ} +G(Xτ )1{τ<θ}

)
| Xt

]
.

Finally the Markov time

τ ∗t := inf {s ≥ t : V (Xs) = G(Xs)} ,

is the smallest optimal Markov time for Vt.

Proof of theorem 11. Consider the family of optimal stopping problems

Vt := esssup
τ≥t

E
[ ∫ τ

t

e−r(s−t)p(Xs)ds+ e−r(τ−t)G(Xτ ) | Ft

]
, (A.12)

Note that Vt is a well-defined Ft-measurable random variable by lemma 1.3 in Peskir and

Shiryaev (2006), so that the process {Vt}t≥0 is adapted.

Define

Zt :=

∫ t

0

e−rsp(Xs)ds+ e−rtVt.
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Zt is the Snell envelope of (i.e., the smallest supermartingale with càdlàg paths that domi-

nates) the process

Yt :=

∫ t

0

e−rsp(X i
s)ds+ e−rtG(Xt).

By theorem 2.2 in Peskir and Shiryaev (2006),

τ ∗t := inf {s ≥ t : Ys = Zs}

= inf {s ≥ t : Vs = G(Xs)}

is the smallest optimal Markov time for the problem (A.12). Furthermore,

{
Zs∧τ∗t , Fs, t ≤ s ≤ ∞

}
is a martingale. The processes Y and Z are càdlàg, progressively measurable, nonnegative,

and agrees at t = ∞. Furthermore E
[

sup
0≤t≤∞

Yt

]
< ∞. It follows that Z is class D, hence

uniformly integrable.

By the optional sampling theorem for uniformly integrable càdlàg martingale (Theorem

7.29 in Kallenberg (2006)), for all Markov time θ ≥ t,

Vt = esssup
τ≥0

E
[ ∫ τ∧θ

t

e−r(s−t)p(Xs)ds+ e−r(τ∧θ−t)
(
Vθ1{θ≤τ} +G(Xs)1{τ<θ}

)
| Ft

]
. (A.13)

But, by the strong Markov property for Feller processes (Theorem 19.17 in Kallenberg

(2006)), for all stopping time τ <∞,

Vτ = V (Xτ )P-a.s..
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In particular, Vτ does not depend on the history prior to τ , and equation (A.13) becomes,

for all Markov time θ ≥ t, θF1
t− ,

V (Xt) = esssup
τ≥t

E
[ ∫ τ∧θ

t

e−r(s−t)p(Xs)ds+ e−r(τ∧θ−t)
(
V (Xθ)1{θ≤τ} +G(Xτ )1{τ<θ}

)
| Xt

]
.

Finally τ ∗t becomes

τ ∗t = inf {s ≥ t : V (Xs) = G(Xτ )} .

This concludes the proof.

A.3 Supplemental Appendix

A.3.1 Omitted Proofs for Section 1.6.1

Proof of Corollary 2. Suppose that Assumption 7 is violated. Then there exists i ∈

{1, . . . , N} such that

sup
(τ,d)∈PI,r,i

E
[∫ τ

0

e−rtπi
(
X i

t

)
dt+ e−rτ

(
(1 − d0τ )

∫ ∞

τ

e−r(t−τ)πi
(
X i

t

)
dt+ d0τW

)]
≤ E

[∫ ∞

0

e−rtπi
(
X i

t

)
dt

]
.

Let ϵ > 0. Define W i as

W i := inf {W : Assumption 7 holds with W} ,

and let W̃ =
∨N

i=1W
i + ϵ > W . For W̃ , Assumption 7 holds. So, by Theorem 1, the

optimal implementable promotion contest is the index contest. Letting ϵ → 0, we see
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that the index contest is also optimal with outside option W̃ . Finally observe that for i

such that W i =
∨N

i=1W
i, it must be that, for all x such that P

(
τ i(−∞,x] <∞

)
> 0, with

τ i(−∞,x] := inf {t ≥ 0 : X i
t ≤ x},

E
[∫ ∞

0

e−rtπi
(
X i

t

)
dt | X i

0 = x

]
≥ W i.

But Γs,i
t ≥ E

[∫∞
0
e−rtπi (X i

t) dt | X i
t

]
for all t ≥ 0, P-a.s.. Therefore, the principal never

takes the outside option W̃ , and thus the index contest is optimal in the original problem

too.

Proof of Corollary 3. For simplicity, suppose that Assumption 5 holds for all j ̸= i.

Suppose that, for all n ∈ N, X i,n satisfies Assumption 5, and that X i = lim
n→∞

X i,n uniformly

on compact sets P-a.s.. Let Γs,i,n be the strategic index process associated with worker i

and τ s,i,n his promotion time when his type process is given by X i,n. Define also τ s,i :=

inf
{
t ≥ 0 : X i

t ≥ P̄ i
(
X i

t

)}
. Observe then that, for almost all t ≥ 0,

Γs,i,n
t → Γs,i

t , P−a.s.,

where

rΓs,i
t := sup

τ>0

E
[∫ τ

t
e−r(s−t)πi (X i

s)1{s≤τs,i} + π̄i
(
X i

τs,i

)
1 | F i

t

]
E
[∫ τ

t
e−r(s−t)ds | F i

t

] .

For all n ∈ N, by Theorem 1, the principal’s value is given by

E

[∫ τn

0

e−rtπi
(
X i

T i
n(t)

)
dT i

n(t) +
∑
j ̸=i

∫ τn

0

e−rtπj
(
Xj

T j
n(t)

)
dT j

n(t) + e−rτn π̄
(
Xn

Tn(τn), d
n
)]
,

where Tn is the index rule associated with the indices Γs,j’s, j ̸= i, and Γs,i,n,

τn := inf {t ≥ 0 : T j(t) ≥ τ s,j or T i(t) ≥ τ s,i,n}, and dn is the optimal promotion rule.
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Next, observe that if there exists x such that P̄ i(x) = x, τ s,i,n ̸→ τ s,i. To see this, simply

note that, for all n ∈ N, P
(
τ i = 0 | X i

t = x
)

= 0. But, by Lemma 2 in Pennanen and Perkkiö

(2018), τ s,i,n → τ i ∈ S (F i), at least along a subsequence.

So, as n → ∞, passing to a subsequence if necessary, Tn → T where T is the index rule

associated with the strategic indices Γs,j’s, τn → τ ∗ with τ ∗ = τ i
∧

j ̸=i τ
s,j, and dn → d with

dit = 1 only if T i(t) ≥ τ i and djt = 1 only if T j(t) ≥ τ s,j, j ̸= i. By Theorem 6.39 in Aliprantis

and Border (2006) and the Lebesgue dominated convergence theorem,

E

[∫ τn

0

e−rtπi
(
X i

T i
n(t)

)
dT i

n(t) +
∑
j ̸=i

∫ τn

0

e−rtπj
(
Xj

T j
n(t)

)
dT j

n(t) + e−rτn π̄
(
Xn

Tn(τn), d
n
)]

→ E

[
N∑
j=1

∫ τ∗

0

e−rtπj
(
Xj

T j(t)

)
dT j(t) + e−rτ π̄

(
XT (τ∗), d

)]
.

Note that the principal’s value is continuous in X i. This is easily deduced as the difference

in values is bounded by

E
[∫ ∞

0

e−rt
∣∣πi
(
X i

t

)
− πi

(
X i,n

t

)∣∣ dt] .
Therefore, the randomized promotion contest (T, τ ∗, d) is optimal. Finally, one easily deduce

from both the optimality and the limit characterization that τ i = inf{t ≥ 0 : X i
t > P̄ i(X i

t)}∧

τ p,i, where τ p,i is the first tick of a Poisson clock that runs only when X i
t = P̄ i(X i

t)} with

the intensity that leaves i indifferent between exerting effort or not if promoted at time τ i.
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A.3.2 Proof of Theorem 3

As in the proof of 1, consider the relaxed program:

Π := sup
(T,{τk}Nk=1,d)∈Pr

E

[
N∑
i=1

∫ τ

0

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτ π̄

(
XT (τ), d

) ]
(RP(P-d))

subject to, for all i ∈ {1, . . . , N}, for all t ≥ 0, P-a.s.,

E

[
K∑
k=1

e−r(τk−t)gdiτk1{t≤τk} −
∫ ∞

t

e−rt(1 −
K∑
k=1

diτk1{t≥τk})c
idT i(t) | F i

T i(t)

]
≥ 0. (DPC)

By the same arguments as in the proof of Proposition 9,

Proposition 32 The value of (Prize design) is weakly lower than the value of (RP): ΠM ≤

Π.

Next, a straightforward adaptation of the proof of Theorem 10 in Appendix A.1.7 yields:

Theorem 12 A solution to (RP(P-d)) exists.

Finally, I show that any promotion contest that allocate the entire prize upon at once

can be improved upon. This follows from Proposition 33 below.

Proposition 33 (RP(P-d)) admits a solution (T, {τk}Kk=1 , d) such that K = 1 P-a.s..

Theorem 3 then follows from Theorem 1.

Proof of Proposition 33. Let
(
T, {τk}Kk=1 , d

)
be a solution of (RP(P-d)), which exists

by Theorem 12. τ1 is the smallest promotion time. The continuation value of the principal

at τ1 is

e−rτiΠM
τ1

:=e−rτ1 π̄
(
XT (τ1), dτ1

)
+ E

[
K∑
k=2

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτk π̄

(
XT (τk), dτk

))
| GT

τ1

]
.
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By Assumption 9(i),

π̄
(
XT (τ1), dτ1

)
≤ d0τ1W +

N∑
i=1

diτ1 π̄
i
(
X i

T i(τ1)

)
.

If
∑N

i=0 d
i
τ = 1, we are done. So suppose not. Observe then that

E

[
K∑
k=2

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτk π̄

(
XT (τk), dτk

))
| GT

τ1

]
(A.14)

≤ (1 −
N∑
i=0

diτ1) sup
(T,{τk},d)∈PI,r(τ1)

E

[
K∑
k=1

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t)

+ e−rτk π̄
(
XT (τk), dτk

))
| GT

τ1

]
, (A.15)

where PI,r(τ1) is the set of implementable continuation contest that coincides with (T, τ, d)

up to time τ1. To see this, let T∗ be the continuation delegation process generated by(
T, {τk}Kk=1 , d

)
after time τ 1 so that :

K∑
k=2

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτk π̄

(
XT (τk), dτk

))

=
N∑
i=1

∫ ∞

0

e−rtπi
(
X i

T i(τ1)+T i
∗(t)

)
dT i

∗(t) P-a.s..

Then, letting X i
0 be any process taking value in X 0 and π0(x) = W for all x ∈ X 0,

sup
(T,{τk},d)∈PI,r(t)

E

[
K∑
k=1

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t) + e−rτk π̄

(
XT (τk), dτk

))
| GT

τ1

]

≥ E−rτ1E

[
N∑
i=0

∫ ∞

0

e−rtπi

(
X i

T i(τ1)+
Ti∗(t)

1−
∑N

i=0
diτ1

)
d

(
T i
∗(t)

1 −
∑N

i=0 d
i
τ1

)
| GT

τ1

]
,
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as T i
∗(t)

1−
∑N

i=0 d
i
τ1

is implementable by a promotion contest when the total information in the

game is restricted to GT∗ and, more information benefits the principal. So

(1 −
N∑
i=0

diτ1) sup
(T,{τk},d)∈PI,r(t)

E

[
K∑
k=1

N∑
i=1

(∫ τk

τk−1

e−rtπi
(
X i

T i(t)

)
dT i(t)

+ e−rτk π̄
(
XT (τk), dτk

))
| GT

τ1

]

≥ e−rτ1E

[
N∑
i=0

∫ ∞

0

e−rtπi

(
X i

T i(τ1)+
Ti∗(t)

1−
∑N

i=0
diτ1

)
dT i

∗(t) | GT
τ1

]

But, by a time-change argument, for qi∗(t) := e−r(T i
∗
−1

(t)−t), where T i
∗
−1

(·) is the generalized

inverse of T i
∗(·),

E

[
N∑
i=0

∫ ∞

0

e−rtπi
(
X i

T i(τ1)+T i
∗(t)

)
dT i

∗(t) | GT
τ1

]
= E

[
N∑
i=0

∫ ∞

0

e−rtqi∗(t)π
i
(
X i

T i(τ1)+t

)
dt | GT

τ1

]
,

and

E

[
N∑
i=0

∫ ∞

0

e−rtπi

(
X i

T i(τ1)+
Ti∗(t)

1−
∑N

i=0
diτ1

)
dT i

∗(t) | GT
τ1

]

= E

[
N∑
i=0

∫ ∞

0

e−rtqi∗(t)π
i

(
X i

T i(τ1)+
t

1−
∑N

i=0
diτ1

)
dt | GT

τ1

]
.

By definition qi is GT∗-adapted. Furthermore, for all i ∈ {1, . . . , N},

sup
τ∈T (Fi)

E
[∫ τ

0

e−rt

(
πi
(
X i

t

)
− πi

(
X i

t

1−
∑N

i=0
diτ1

))
dt | xi0 = X i

T i(τ)

]
= 0. (A.16)

Hence, I claim that τ ∗ = 0 is optimal in the above problem. To see this, argue by contra-

diction, i.e., suppose not. Then the smallest optimal stopping time, which exists by Snell’s
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theorem, is τ̃ > 0. By Lemma 29, there exists t ≥ 0 such that

E
[∫ τ̃

t

e−rs

(
πi
(
X i

s

)
− πi

(
X i

s

1−
∑N

i=0
diτ1

))
ds | F i

t

]
> 0.

The above inequality is equivalent to

∫ ∞

t

e−rsE
[(
πi
(
X i

s

)
− πi

(
X i

s

1−
∑N

i=0
diτ1

))
1{s≤τ̃} | F i

t

]
ds > 0

⇔
∫ ∞

t

e−rsE
[
E
[(
πi
(
X i

s

)
− πi

(
X i

s

1−
∑N

i=0
diτ1

))
| F i

s

]
1{s≤τ̃} | F i

t

]
ds > 0

by Fubini’s theorem, the law of iterated expectations, and the fact that τ̃ is a F i-stopping

time. But, for all s ∈ [t,∞),

E
[
πi
(
X i

s

)
| F i

s

]
≤ E

[
πi

(
X i

s

1−
∑N

i=0
diτ1

)
| F i

s

]

by Assumption 9 (i): a contradiction. So, for all i ∈ {1, . . . , N}, (A.16) holds. Similarly,

(A.16) is easily seen to hold for i = 0. Thus by Lemma 5 in Kaspi and Mandelbaum (1998),

E

[
N∑
i=0

∫ ∞

0

e−rtqi∗(t)

(
πi
(
X i

T i(τ1)+t

)
− πi

(
X i

t

1−
∑N

i=0
diτ1

))
dt

]
≤ 0

⇔ E

[
N∑
i=0

∫ ∞

0

e−rtπi
(
X i

T i(τ1)+T i
∗(t)

)
dT i

∗(t) | GT
τ1

]

≤ E

[
N∑
i=0

∫ ∞

0

e−rtπi

(
X i

T i(τ1)+
Ti∗(t)

1−
∑N

i=0
diτ1

)
dT i

∗(t) | GT
τ1

]
.

Thus (A.14) holds. But then, the randomized promotion contest that promotes worker i at

time τ1 with probability diτ1 and otherwise play the optimal continuation contest yields a

higher payoffs to the principal than (T, {τk}Kk=1 , d). This concludes the proof.
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Appendix B

Appendix to Chapter Two

B.1 Definitions

We define properties of domains and functional spaces that are used for our main results. Let

x ∈ R and y = (t, x) ∈ R+ × R. For z ∈ {x, y} and R > 0, let BR(z) = {z′ : |z′ − z| < R}

be the open ball of radius centered at z. Define also CR(t, x) the R-cylindrical neighborhood

of (t, x): CR(t, x) := [t, t+R) ×BR(x).

B.1.1 Function spaces, norms, and regularity properties

Let Y be an open subset of R+ × R. We will write Y ′ ⊂⊂ Y to indicate that (i) Y ′ is

precompact1 and (ii) Ȳ ′ ⊂ Y . On Y , we define C0 (Y), Lp (Y ), Hα,β (Y), and W 1,2,p (Y).2

The space C0 (Y) is the space of continuous functions on Y endowed with the sup-norm

topology. Lp (Y) is the space of Lebesgue integrable functions with finite Lp-norm.

Next, we give the definitions of Hα,β (Y ) and W 1,2,p (Y).

1Recall that a set is precompact if its closure is compact.
2If α = β, we will simply write Hα (Y).
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Definition 15 The Hölder space Hα,β (Y), 0 < α, β < 1, is the space of functions u : Y → R

such that

∥u∥Hα,β(Y ) = ∥u∥L∞(Y) + sup
(t,x),(t′,x′)∈Y

|u(t, x) − u(t′, x′)|
|t− t′|α + |x− x′|β

<∞.

Remark 6 All the functions in the Hölder space Hα,β (Y) are continuous. This follows from

the norm being finite.

To define the Sobolev space W 1,2,p(Y), we first need to define weak derivatives.

Definition 16 A function f ∈ L1(Y) is weakly differentiable with respect to Y =

{y1, . . . , yn}, with yi ∈ {t, x1, . . . , xd} for all i = 1, . . . , n, if there exists a function ∆Y ∈

L1(Y) such that ∫
Y
f(y)∂y1,...,ynϕ(y)dy = (−1)n

∫
Y

∆Y (y)ϕ(y)dy,

for all smooth test functions ϕ with compact support.

The function ∆Y is called the Y weak partial derivative of f and denoted fy1...yn.

Remark 7 Weak derivatives are well-defined as one can show that they are unique in L1:

if ∆Y and and ∆̃Y are weak derivatives with respect to {y1, . . . , yn}, then ∆Y = ∆̃Y almost

everywhere. Moreover, from the definition of weak derivatives and Schwarz’s theorem, one

sees that, if Y and Ỹ are permutations of one another, then ∆Y = ∆Ỹ almost everywhere.

Definition 17 For p ∈ [1,∞], the Sobolev space W 1,2,p (Y) is the space of functions u :

Y → R, such that u is in Lp (Y) and its weak derivatives ut, uxi
, and uxixj

exists, for all

i, j = 1, . . . , d, and are also in Lp (Y). It is normed by

∥u∥W 1,2,p(Y ) = ∥u∥Lp(Y) + ∥ut∥Lp(Y) + ∥ux∥Lp(Y) + ∥uxx∥Lp(Y) .

uxx =
(
uxixj

)d
i,j=1

is the symmetric matrix of weak second order derivatives.
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We also define the local version of these spaces. A function u belong to C0
loc (Y) if for all

Y ′ ⊂⊂ Y , u ∈ C0(Y ′). The spaces Hα,β
loc (Y),Lp

loc (Y), and W 1,2,p
loc (Y) are defined similarly.

Finally, we recall the notions of weak convergence in Lp(Y) and W 1,2,p(Y).

Definition 18 Let p ∈ [1,∞). A sequence of functions (fn)n∈N ⊆ Lp(Y) converges weakly

in Lp(Y) to some function f if and only if, for all g ∈ Lq(Y) with 1
p

+ 1
q

= 1,

∫
Y
fng →

∫
Y
fg.

B.2 Relation between classic, Lp- and viscosity solu-

tions

In the proof of Proposition 13, we need the concept of viscosity solutions. We recall both

the definition of viscosity solution and the relation between and viscosity and Lp-solutions

below.

Definition 19 An continuous function v : [̄0, T )×X → R is a viscosity subsolution (respec-

tively, supersolution) of (HJB) if (i) v(t, x) ≤ g(x) (respectively, ≥ g(x)) on ∂[0, T ) × X ,

and (ii) for all (t, x) ∈ YT and all φ ∈ C1,2(YT ) such that v ≤ φ (respectively v ≥ φ) in YT

and v(t, x) = φ(t, x),

max
{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
φ(t, x) + f(t, x)

}
≥ 0(

respectively, max
{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
φ(t, x) + f(t, x)

}
≤ 0
)
.

u is a viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.

Lemma 30 Let u be an Lp-solution of (HJB). Then u is a viscosity solution of (HJB).
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Proof. This follows from the proof of Proposition 2.10 in Crandall et al. (2000). The proof

in that paper is local and applies to operators that satisfy degenerate ellipticity. See also

Lemma 5 in Durandard and Strulovici (2022).

B.3 Omitted proofs for Section 2.3.1

Proof of Theorem 4. By Assumption 10 and the definition of V (t, x), we have V ∈

C
(̄
[0, T ) ×X

)
and v(t, x) = g(x) on ∂YT . There remains to show that V is an Lp-solution

of (HJB) in YT . Let (t̃, x̃) ∈ YT . Distinguish two cases:

• Either g is C2 in a neighborhood of x̃. Let ϵ > 0 be such that Cϵ(t̃, x̃) ⊂ YT and

and g ∈ C2 (Bϵ(x̃)). Let τCϵ
:= inf

{
t ≥ 0 : (t,Xt) ̸∈ Cϵ(t̃, x̃)

}
. By the Snell envelope

theorem, for all (t, x) ∈ Cϵ(t̃, x̃),

V (t, x) = sup
τ∈T (t)

E(t,x)

[∫ τ∧τCϵ

0

e−
∫ s
t r(u,Xu)duf(s,Xs)ds

+ e−
∫ τ∧τCϵ
t r(u,Xu)du

(
V
(
τCϵ , XτCϵ

)
1{τ≥τD} + g (Xτ )1{τ<τD}

) ]
.

By Assumption 10, V is continuous. So there exists λ > 0 such that σ(t, x) > λ on

Cϵ(t̃, x̃) by the continuity of σ and Weierstrass theorem. Theorem 1 in Durandard and

Strulovici (2022)3 then guarantees that V is the unique Lp-strong solution of


max

{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
= 0 if (t, x) ∈ Cϵ(t̃, x̃),

v(t, x) = V (t, x) if (t, x) ∈ ∂Cϵ(t̃, x̃).

3Theorem 1 in Durandard and Strulovici (2022) is still valid for r = r(t, x) under our assumption.
Moreover, it holds also for r = 0. Hence r > µ̄2 > 0 is only used in the proof of the comparison principle
(Proposition 5). When X is bounded, which we assume when r = 0, the proof is seen to hold. Alternatively,
the same result follows from Proposition 4 and Theorem 2 of Durandard and Strulovici (2022), which holds
as their proofs do not use that r is strictly positive.
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• or there is no neighborhood Bδ(x̃) of x̃ such that g is C2 on Bϵ(x̃). Then x = xc.

Since the continuation region C is open (since g is continuous and V is too by As-

sumption 10), there exists ϵ > 0 small, such that Cϵ(t̃, x̃) ⊂ YT ⊆ C. Let τCϵ
:=

inf
{
t ≥ 0 : (t,Xt) ̸∈ Cϵ(t̃, x̃)

}
. By the Snell envelope theorem, for all (t, x) ∈ Cϵ(t̃, x̃),

V (t, x) = E(t,x)

[∫ τCϵ

0

e−
∫ s
t r(u,Xu)duf(s,Xs)ds+ e−r

∫ τCϵ
t r(u,Xu)duV

(
τCϵ , XτCϵ

)]
.

Since V is continuous by Assumption 10 and σ(t, x) > λ for some λ > 0 on Cϵ(t̃, x̃) by

the continuity of σ and Weierstrass theorem, Theorem 1 in Durandard and Strulovici

(2022) then guarantees that V is the unique Lp-strong solution of


(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x) = 0 if (t, x) ∈ Cϵ(t̃, x̃),

v(t, x) = V (t, x) if (t, x) ∈ ∂Cϵ(t̃, x̃).

Since
(
t̃, x̃
)

was arbitrary, V is the unique Lp-strong solution of (HJB).

Finally, let (t̃, x̃) ∈ C. Since C is open (since g is continuous and V is too by Assumption

10), there exists δ > 0 such that Cδ(t̃, x̃) ⊂ C. By the first part of the proof, V is the unique

Lp-solution of
(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x) = 0 if (t, x) ∈ Cδ(t̃, x̃),

v(t, x) = V (t, x) if (t, x) ∈ ∂Cδ(t̃, x̃).

Under our maintained assumptions, any solution of the above equation is in C1,2,α
(
Cδ(t̃, x̃)

)
by standard results in the theory of partial differential equations, see, e.g., Theorem 3.5.10

in Friedman (2008). So V ∈ C1,2,α (C).

Proof of Proposition 12. Let tc ≥ 0 such that (tc, xc) ∈ YT and consider the process X
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starting at (tc, xc). Define θ := g′′ ({xc}).4 Since g has a convex kink at xc, θ > 0. For ϵ > 0,

let τϵ := inf {t ≥ 0 : Xt ̸∈ (xc − ϵ, xc + ϵ)} and δ > 0. Since τϵ ∧ δ is an admissible stopping

time,

V (tc, xc) − g(xc) ≥ E(tc,xc)

[
e−

∫ τϵ∧δ
t r(u,Xu)dug(Xτϵ∧δ) −

∫ τϵ∧δ

0

e−
∫ s
t r(u,Xu)duf(s,Xs)ds

]
.

(B.1)

Next, observe that, by Itô’s formula, the processes {gi(Xt)}t≥0, i = 1, 2, are continuous local

semi-martingales. Applying Itô-Tanaka-Meyer formula (Theorem 22.5 in Kallenberg (2006))

yields

g (Xt) = g(x) +

∫ t

0

µ(s,Xs)g
′(Xs)ds+

∫ t

0

σ(s,Xs)g
′(Xs)dBs +

1

2

∫
X
Lx
t dg

′′(x),

where Lx
t is the local time process, which we can choose continuous almost surely. We used

that Lx
s = 0 for x ̸∈ X . Therefore g(Xt) is a continuous semi-martingale and by Itô’s product

rule (and Fubini’s theorem),

e−r
∫ t
0 r(u,Xu)dug(Xt) − g(x) =

∫ t

0

e−
∫ s
0 r(u,Xu)du (µ(s,Xs)g

′(Xs) − r(s,Xs)g(Xs)) ds

+

∫ t

0

σ(s,Xs)g
′(Xs)dBs +

1

2

∫
X

∫ t

0

e−
∫ s
0 r(u,Xu)dudLx

sdg
′′(x).

Taking expectations and by the optional sampling theorem, the right-hand side of (B.1) is

4The second derivative of g is interpreted here as a measure, since g is convex.
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equal to

E(tc,xc)

[∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)du (f(s,Xs) + µ(s,Xs)g

′(Xs) − r(s,Xs)g(Xs)) ds

+
1

2

∫
X

∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)dudLx

sdg
′′(x)

]
.

Since dg′′(x) is absolutely continuous everywhere except at xc, the above simplify to

E(tc,xc)

[∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)du

(
f(s,Xs) + µ(s,Xs)g

′(Xs) +
σ(s,Xs)

2

2
g̃′′(Xs) − r(s,Xs)g(Xs)

)
ds

+
1

2
θ

∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)dudLxc

s

]
,

where g̃′′(x) = g′′(x)1{x ̸=xc}. Since gi ∈ W 2,∞
loc (X ), i = 1, 2, the first integrand is bounded

below by some constant −K < 0. Therefore

V (tc, xc) − g(xc) ≥ θE(tc,xc)

[∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)dudLxc

s

]
−Kδ.

By Lemma 4.1 in De Angelis (2022),5 there exists a constant C > 0 such that

E(tc,xc)

[∫ τϵ∧δ

0

e−
∫ s
0 r(u,Xu)dudLxc

s

]
> C

√
δ.

Thus

V (tc, xc) − g(xc) ≥ θC
√
δ −Kδ,

and the right-hand side is strictly positive for δ > 0 small enough. This concludes the proof.

5The proof is done in the case that µ(t, x) = 0 and σ(t, x) is independent of time, but the argument
easily extends to our case. The only requirement is that σ(t, x) > λ̄ in a neighborhood of (tc, xc).
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B.4 Omitted proofs for Section 2.3.2

Proof of proposition 13. By Theorem 4, the value function is the unique Lp-solution of

the HJB equation


max

{
g(x) − v(t, x),

(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x)

}
= 0 in YT

v(t, x) = g(x) on ∂YT .

(HJB)

Moreover, it is C1,2 in the continuation region. Let b̄(t) = inf {x ∈ [xc, x̄) : (t, x) ∈ S} and

ṽ(t, x) =


v(t, x) if t < b(t)

g(x) if t ≥ b(t).

Then ṽ(t, x) is a viscosity solution of the HJB equation by Assumption 11. Moreover, by

the comparison principle in Durandard and Strulovici (2022) (Proposition 5), there is a

unique viscosity solution.6 Therefore v(t, x) = ṽ(t, x) and S ∩ {(t, x) ∈ R+ ×X : x ≥ xc} ={
(t, x) ∈ R+ ×X : x ≥ b̄(t)

}
.

By the same argument, we obtain S∩{(t, x) ∈ R+ ×X : x ≤ xc} = {(t, x) ∈ R+ ×X : x ≤ b(t)},

with b(t) = sup {x ∈ (x, xc] : (t, x) ∈ S}.

Proof of Lemma 2. If {(t, x) ∈ YT : x ∈ (x−(t), x+(t))} = ∅, we are done. So suppose

not and let (t̃, x̃) ∈ {(t, x) ∈ YT : x ∈ (x−(t), x+(t))}. Define

τ̄ := inf
{
t ≥ 0 : X

(t̃,x̃)
t ̸∈

(
x−(t+ t̃), x+(t+ t̃)

)}
.

6Again, if r = 0, it is seen from the proof of the comparison principle in Durandard and Strulovici (2022)
that it holds when X is bounded, which we assume when r = 0.
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Then, as in the proof of Proposition 12,

V (t̃, x̃) − g(x̃) ≥ E(t̃,x̃)

[∫ τ̄

0

e−
∫ s
0 r(u,Xu)du

(
f(s,Xs) + µ(s,Xs)g

′(Xs)

σ(s,Xs)
2

2
g̃′′(Xs) − r(s,Xs)g(Xs)

)
ds

+
1

2
θ

∫ τ̄

0

e−
∫ s
0 r(u,Xu)dudLxc

s

]
,

where θ := g′′({xc}) > 0. Since P (τ̄ > 0) = 1,

V (t̃, x̃) − g(x̃) > 0,

and it is not optimal to stop at
(
t̃, x̃
)
.

Proof of Proposition 14. Since the optimal stopping problem is monotone decreasing,

by Theorem 5, the stopping region is given by

S :=
{

(t, x) ∈ R+ ×X : x ̸∈
(
b(t), b̄(t)

)}
,

where b : R+ → X is càdlàg nondecreasing and b̄ :: R+ → X is càdlàg nonincreasing, with

b(T ) ≤ xc ≤ b̄(T ). So we only need to prove that the boundaries are left-continuous too.

The proof is by contradiction. Suppose that there exists t̄ ∈ [0, T ) such that b̄ or b is

discontinuous at t. For the rest of the proof, we will assume that b̄ is discontinuous at t̄.

The proof for b is identical. Since b̄ is càdlàg nonincreasing, b̄(t̄−) > b̄(t̄). Let a, b ∈ X be

such that (a, b) ⊂ (b̄(t̄), b̄(t̄−)) and consider the rectangular domain Y := [t, t̄) × (a, b) with

parabolic boundary ∂Y := ([t, t̄] × ({a} ∪ {b})) ∪ ({T} × (a, b)). Using Lemma 2 and (2.5),
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we can choose t and (a, b) such that

f(s, x) +
(
L(t,x) − r(t, x)

)
g(x) < −δ on Y (B.2)

for some δ > 0 small.

Moreover, by Theorem 4, V is the unique Lp-solution of the boundary value problem


(
∂t + L(t,x) − r(t, x)

)
v(t, x) + f(t, x) = 0 if (t, x) ∈ Y ,

v(t, x) = V (t, x) if (t, x) ∈ ∂Y .

Let ϕ ∈ C∞
c ([a, b])7 such that ϕ(x) ≥ 0 and

∫ b

a
ϕ(x)dx = 1. Then, multiplying the above

equality by ϕ and integrating, we have

∫ t̄

t

∫ b

a

(
Vt(s, x) + f(s, x) +

(
L(s,x) − r(s, x)

)
V (s, x)

)
ϕ(x)dxds = 0.

for all t ∈ [t, t̄). By Fubini’s theorem,

∫ t̄

t

∫ b

a

Vt(t, x)ϕ(x)dxds =

∫ b

a

∫ t̄

t

Vt(t, x)dsϕ(x)dx

=

∫ b

a

(V (t̄, x) − V (t, x))ϕ(x)dx

<

∫ b

a

(g(x) − g(x))ϕ(x)dx

= 0.

where the inequality follows from the fact that V (t, x) > g(x) for all (t, x) ∈ Y , as it is a

7C∞
c ([a, b]) is the set of infinitely many times differentiable function supported in the interior of [a, b].
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subset of the continuation region. Therefore, for all t ∈ [t, t̄),

∫ t̄

t

∫ b

a

(
f(s, x) +

(
L(s,x) − r(s, x)

)
V (s, x)

)
ϕ(x)dxds > 0. (B.3)

Moreover, integrating by parts, for all t ∈ [t, t̄),

∫ t̄

t

∫ b

a

(
f(s, x) +

(
L(s,x) − r(s, x)

)
V (s, x)

)
ϕ(x)dxds

=

∫ t̄

t

∫ b

a

(
(f(s, x) − r(s, x)V (s, x))ϕ(x) + V (s, x)L(s,x)

∗ ϕ(x)
)
dxds;

where L∗ is the adjoint of L: for all ψ ∈ C∞ (YT ),8

L(t,x)
∗ ψ(t, x) :=

∂2

∂x2

(
σ2(t, x)

2
ψ(t, x)

)
− ∂

∂x
(µ(t, x)ψ(t, x)) .

For s ∈ [t, t̄),

∫ b

a

V (s, x)L(s,x)
∗ ϕ(x)dx

=

∫ b

a

1{L(s,x)
∗ ϕ(x)<0}V (s, x)L(s,x)

∗ ϕ(x)dx+

∫ b

a

1{L(s,x)
∗ ϕ(x)≥0}V (s, x)L(s,x)

∗ ϕ(x)dx

≤ C |s− t̄|
∫ b

a

1{L(s,x)
∗ ϕ(x)≥0}L

(s,x)
∗ ϕ(x)dx+

∫ b

a

g(x)L(s,x)
∗ ϕ(x)dx

= C |s− t̄|
∫ b

a

1{L(s,x)
∗ ϕ(x)≥0}L

(s,x)
∗ ϕ(x)dx+

∫ b

a

ϕ(x)L(s,x)g(x)dx.

The inequality follows from the two inequalities V (t, x) ≥ g(x) and V (s, x) ≤ g(x)+C |s− t̄|

for some C > 0 (since t→ V (t, x) is Lipschitz, as V belongs to W 1,2,p (Y)). The last equality

8L is well defined as σ(t, ·) and µ(t, ·) are piecewise C2(X ) for all t ∈ [0, T ).
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is obtained by integration by parts. Let

ϕ̄(t) :=

∫ t̄

t

∫ b

a

1{L(s,x)
∗ ϕ(x)≥0}L

(s,x)
∗ ϕ(x)dxds ≥ 0, t ∈ [t, t̄).

Then, for all t ∈ [t, t̄),

∫ t̄

t

∫ b

a

(
f(s, x) +

(
L(s,x) − r(s, x)

)
V (s, x)

)
ϕ(x)dxds

≤
∫ t̄

t

∫ b

a

(
f(s, x) +

(
L(s,x) − r(s, x)

)
g(x)

)
ϕ(x)dxds+ ϕ̄C |t− t̄|2

≤ −δ(t̄− t) + ϕ̄C |t− t̄|2 ,

where we used (B.2) and that ϕ integrates to 1 to obtain the second inequality. But then

there exists t ∈ [t, t̄) such that

∫ t̄

t

∫ b

a

(
f(s, x) +

(
L(s,x) − r(s, x)

)
V (s, x)

)
ϕ(x)dxds ≤ 0,

which contradicts (B.3).

This concludes the proof.

B.5 Omitted proofs for Section 2.4

B.5.1 Omitted proofs for Section 2.4.1

Proof of Proposition 15. For all n ∈ N , let Tn(t) be the set of stopping times in T (t)

taking value in

Tn(t) :=
{
sk : s0 = 0 and sk+1 = sk + 2−n for all k ∈ N

}
∩ [0, T ∧ n].
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Observe that, for all n ∈ N, Tn(t) ⊆ Tn+1(t). Define

Vn(t, x) := sup
τ∈Tn(t)

E(t,x)

[∫ τ

t

e−r(s−t)f(s,X(t,x)
s )ds+ e−r(τ−t)g (Xτ )

]
.

Then Vn(T ∨ n, x) = g(x) is convex in x. By Theorem 2 in Bergman et al. (1996), convexity

is preserved for one dimensional diffusion. Therefore, for all t ∈ (T ∧ n− 2−n, T ∧ n),

x→ E(t,x)

[
e−r(T∧n−t)g (XT∧n)

]
is convex in x. Moreover, by Fubini’s theorem,

E(t,x)

[∫ T∧n

t

e−r(s−t)f(s,Xs)ds

]
=

∫ T∧n

t

E(t,x)

[
e−r(s−t)f(s,Xs)

]
ds.

Then, using Theorem 2 in Bergman et al. (1996) again, for all t ∈ (T ∧ n− 2−n, T ∧ n) and

all s ∈ (t, T ∧ n),

x→ E(t,x)

[
e−r(s−t)f(s,Xs)

]
is convex. Therefore, for all t ∈ (T ∧ n− 2−n, T ∧ n),

x→ E(t,x)

[∫ T∧n

t

e−r(s−t)f
(
s,X(t,x)

s

)
ds

]

is convex, and thus

Vn(t, x) = E(t,x)

[
e−r(T∧n−t)g

(
X

(t,x)
T∧n

)]
+ E(t,x)

[∫ T∧n

t

e−r(s−t)f (s,Xs) ds

]
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is also convex in x for all t ∈ (T ∧ n− 2−n, T ∧ n). At time T ∧ n− 2−n, the value function

is given by the dynamic programming equation:

Vn
(
T ∧ n− 2−n, x

)
= max

{
g(x),E(T∧n−2−n,x)

[
e−r2−n

Vn (T ∧ n,XT∧n) +

∫ T∧n

T∧n−2−n

e−r(s−(T∧n−2−n))f(s,Xs)ds

]}
,

which is convex in x as the maximum of two convex functions. Proceeding recursively shows

that x→ Vn(t, x) is convex (in x) for all t ∈ [0, T ∧ n].

To conclude the proof, note that Vn converges pointwise to V as n → ∞, and, hence,

V (t, x) is convex in x.

To see this, let M > 0 and consider the alternative stopping problems

V M(t, x) := sup
τ∈T (t)

E
[∫ τ

t

e−r(s−t)f(s,Xs)ds+ e−r(τ−t)g (Xτ ) ∧M
]

;

and

V M
n (t, x) := sup

τ∈Tn(t)
E
[∫ τ

t

e−r(s−t)f(s,Xs)ds+ e−r(τ−t)g (Xτ ) ∧M
]

;

By the monotone convergence theorem, V M
n (t, x) ↑ Vn(t, x) and V M(t, x) ↑ V (t, x) as M →

∞. Consider then τ ∈ T (t) and let τn := inf {τ̃ ∈ Tn(t) : τ̃ ≥ τ P-a.s.}. Then τn ∈ Tn(t)

and τn → τ P-a.s. as n→ ∞. By the dominated convergence theorem,

∣∣∣∣∣E(t,x)

[∫ τ

t

e−r(s−t)f(s,Xs)ds+ e−r(τ−t)g (Xτ ) ∧M
]

− E(t,x)

[∫ τn

t

e−r(s−t)f(s,Xs)ds+ e−r(τn−t)g (Xτn) ∧M
] ∣∣∣∣∣

≤ E(t,x)

[∣∣∣∣∫ τn

τ

e−r(s−t)f(s,Xs)ds+ e−r(τ−t)g (Xτ ) ∧M − e−r(τn−t)g (Xτn) ∧M
∣∣∣∣]→ 0
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as n→ ∞ (since either e−rτg(Xτ )∧M is continuous and uniformly integrable and e−rsf(s,Xs)

is integrable if r > 0, or g(·) ∧M is bounded and continuous, f is locally bounded, and we

can focus on τ such that E [τ ] < K for some K > 0 by Lemma 32 below if r = 0). Therefore,

lim inf
n→∞

V M
n (t, x) ≥ V M(t, x),

and, since V M
n (t, x) ≤ V M(t, x) for all (t, x) ∈ YT and all n ∈ N, it follows that V M

n converges

pointwise to V M as n→ ∞. Moreover, since Tn(t) ⊆ Tn+1(t), V
M
n ↑ V M . Therefore, we can

interchange the order of the limits (using that V (t, x) is locally bounded as a consequence

of Lemma 2 in Durandard and Strulovici (2022) if r > 0 and of condition 4. in Definition 13

if r = 0). Thus, Vn converges pointwise to V as n→ ∞.

Proof of Lemma 3. By proposition 15, for all t ∈ [0, T ), x → V (t, x) is convex, hence,

locally Lipschitz continuous on X . Moreover, since V (t, ·) is convex, it can only jump up

on ∂X . But g(x) ≤ V (t, x), and, therefore, V (t, ·) is locally Lipschitz continuous on X̄ . So

to show that V is continuous, it is enough to show that t → V (t, x) is continuous for all x.

This follows from lemma 31 below.

Lemma 31 Suppose that condition 4. of Definition 13 and that the functions f : YT → R

and g : [̄0, T ) × X → R are Lipschitz continuous. Then, for all x ∈ X̄ , t → V (t, x) is

continuous.

Proof of Lemma 31. Let x ∈ X̄ . If x ∈ {x, x̄}, V (t, x) = g(x) for all t ≥ 0, and we are

done. So suppose that x ∈ X and let t, t′ ∈ [0, T ) with t′ ≥ t. Let

V M(t, x) := sup
τ∈T (t)

E
[∫ τ

t

e−r(s−t)f(s,Xs)ds+ e−r(τ−t)g (Xτ ) ∧M
]

;

and observe that V M ↑ V pointwise by the monotone convergence theorem (since V is

locally bounded by condition 4. in Definition 13 if r = 0 and by Lemma 2 in Durandard and
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Strulovici (2022) otherwise). So, for all ϵ > 0, there exists M such that

|V (t′, x) − V (t, x)| ≤
∣∣V (t′, x) − V M(t′, x)

∣∣+
∣∣V M(t′, x) − V M(t, x)

∣∣+
∣∣V M(t, x) − V (t, x)

∣∣
≤
∣∣V M(t′, x) − V M(t, x)

∣∣+ 2ϵ.

Thus, it is enough to show that t→ V (t, x) is continuous for g bounded. So suppose that g

is bounded for the remaining of the proof.

Then, by Snell’s envelope theorem, for all t̄ ≥ 0,

|V (t′, x) − V (t, x)| ≤ sup
τ

E

[∫ τ∧t̄

0

e−rs
∣∣∣f (s+ t′, X t′,x

s

)
− f

(
s+ t,X t,x

s

)∣∣∣ ds
+ e−rτ

1{τ≤t̄}

∣∣∣g (X t′,x
τ

)
− g

(
X t,x

τ

)∣∣∣ ]

+ E(t′,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]

+ E(t,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]
,

where the supremum is taken over all stopping time if r > 0 and over all stopping times

satisfying the conditions of Lemma 32 below if r = 0.

If r = 0, this implies, using Lemma 32, that, for all ϵ > 0, we can choose t̄ such that

E(t′,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]

+ E(t,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]

≤ E(t,x)

[
e−rt̄

1{τ≥t̄}2M
]
∨ E(t′,x)

[
e−rt̄

1{τ≥t̄}2M
]

< ϵ.

If r > 0, by standard estimates (e.g Lemma 2 and Lemma 9 in Durandard and Strulovici
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(2022)), for all ϵ > 0, we can choose t̄ such that

E(t′,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]

+ E(t,x)

[
e−rt̄

1{τ≥t̄} |V (t̄, Xt̄)|
]

≤ 2E(t,x)

[
e−rt̄

1{τ≥t̄}K (1 + t̄+ |Xt̄|)
]
∨ E(t′,x)

[
e−rt̄

1{τ≥t̄}K (1 + t̄+ |Xt̄|)
]

< ϵ,

where K > 0 is a constant.

Let ϵ > 0. In the remaining of the proof, we then take t̄ such that

|V (t′, x) − V (t, x)| ≤ sup
τ

E

[∫ τ∧t̄

0

e−rs
∣∣∣f (s+ t′, X t′,x

s

)
− f

(
s+ t,X t,x

s

)∣∣∣ ds
+ e−rτ

1{τ≤t̄}

∣∣∣g (X t′,x
τ

)
− g

(
X t,x

τ

)∣∣∣ ]+ ϵ.

Since g and f are Lipschitz continuous, there exists C > 0 such that

|V (t′, x) − V (t, x)| ≤ E

[
Ct̄ ∧ 1

(
|t′ − t| + sup

0≤s≤t̄

∣∣∣X t′,x
s −X t,x

s

∣∣∣)]+ ϵ.

But, by standard estimates (see, e.g., Theorem 2.5.9 in Krylov (2008) and Hölder inequality),

E

[
sup
0≤s≤t̄

∣∣∣X t′,x
s −X t,x

s

∣∣∣ ] ≤ K
(
1 + |x|2

)√
t′ − t

where K > 0 depends on t̄ and the bounds on σ and µ only. Thus t→ V (t, x) is continuous

in t for all x ∈ X̄ .

Lemma 32 Suppose that g is bounded, and that condition 4. in Definition 13 holds. Then,

for all κ > 0, there exists Tκ such that P(t,x) (τS < Tκ) < κ for all (t, x) ∈ YT . Moreover,

there exists a constant K > 0 such that, for all (t, x) ∈ YT , E(t,x) [τS ] < K.
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Proof of Lemma 32. If T <∞, we are done, so suppose not. Without loss of generality,

assume that t̄ = 0. Since g is bounded (say by M > ϵ) and τS is optimal, there exists N > 0

and δ ∈ (0, 1) such that, for all (t, x) ∈ YT ,

P(t,x) (τS < N) > δ. (B.4)

To see this, observe that for all (t, x) ∈ YT ,

−M ≤ V (t, x) ≤ E(t,x)

[
M −

∫ τS

0

ϵds

]
.

Then

E(t,x) [τS ] ≤ 2M

ϵ
,

and, therefore,

P(t,x)

(
τS <

4M

ϵ

)
>

1

4
.

Importantly, observe that the bound on P(t,x) (τS < N) holds uniformly over (t, x) ∈ YT .

Therefore, for all t ≥ 0,

P (τS − t < N | Ft) > δ.

Fix (t, x) ∈ YT . Then

P(t,x) (kN ≤ τS < kN +N) = P(t,x) (τS ≥ kN) − P(t,x) (τS ≥ kN +N) ≥ δP(t,x) (τS ≥ kN) ,
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and, therefore,

P(t,x) (τS ≥ kN +N) ≤ (1 − δ)P (τS ≥ kN) .

By induction,

P(t,x) (τS ≥ kN) ≤ (1 − δ)k.

This proves the first claim of the lemma. To obtain the second claim, note that

τS ≤
∞∑
k=0

(k + 1)N1{τS≥kN}.

Taking expectations, we get

E(t,x) [τS ] ≤ N
∞∑
k=0

(k + 1)(1 − δ)k := K <∞.

B.5.2 Omitted proofs for Section 2.4.2

Proof of Proposition 16. As noted before, Assumption 14 implies that 12 is satisfied.

Moreover, by Lemma 3, V s is continuous and, by Assumption 14 and Lemma 9 in Durandard

and Strulovici (2022) if r = 0 or Lemma 2 in Durandard and Strulovici (2022) if r > 0, the

value function grows ar most linearly. So Assumption 10 also holds. Since V s is convex, there

remains only to show that V s is nonincreasing and strictly decreasing in the continuation

region when t → σ(t, x) is strictly decreasing; and that V s is nondecreasing and strictly

increasing in the continuation region when t→ σ(t, x) is strictly increasing.

We only prove the first statement as the proof of the second one follows the exact same
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steps with the obvious changes.

For all t ∈ [0, T ], define At :=
∫ t

0
a(s,Xt)ds with a(s, x) := σ(t′−t+s,x)2

σ(s,x)2
and Vt :=

inf {s ≥ 0 : As > t}, the (generalized) inverse of At. Let Y := {Yt = XVt}t≥0 be the strong

Feller process defined by the infinitesimal generator LY = 1
a(t,x)

LX . Observe that Y and

X(t′,x) are identically distributed by construction. Define also T Y , the set of Y -adapted stop-

ping times. From proposition 7.9 in Kallenberg (2006), we have that for all τ Ft-stopping

time, Aτ is a FY
t -stopping time, and τ = VAτ P-a.s.. It follows that

V s(t, x) = sup
τ∈T

E(t,x)

[
e−rτg(Xτ ) −

∫ τ

0

e−rscds

]
= sup

τ∈T
E(t,x)

[
e−rτg(Xτ ) −

∫ τ

0

e−rsc
a(s,Xs)

a(s,Xs)
ds

]
= sup

τ
E(t,x)

[
e−rVAτ g(XVAτ

) −
∫ VAτ

0

ce−rVAs
1

a(VAs , XVAs
)
dAs

]
= sup

τ∈T Y

E(t,x)

[
e−rVτ g(XVτ ) −

∫ τ

0

ce−rVs
1

a(Vs, XVs)
ds

]
≥ sup

τ∈T Y

E(t,x)

[
e−rVτ g(Yτ ) −

∫ τ

0

ce−rVsds

]
= sup

τ∈T Y

E(t,x)

[
e−rτq(τ)g(Yτ ) −

∫ τ

0

ce−rsq(s)ds

]
≥ sup

τ∈T Y

E(t,x)

[
e−rτg(Yτ ) −

∫ τ

0

ce−rsds

]
= V (t′, x),

where the first inequality follows from the fact that a(s,Xs) > 1, the second inequality

from the fact that q(s) = e−r(Vs−s) is nondecreasing so the later problem can be seen as

a constrained version of the above problem (where τ has to be smaller than the random

deadline whose (random) cumulative distribution function is given by 1 − 1
q(t)

), and the last

equality from the fact that Y and X(t′,x) are identically distributed for a(s, x) = σ(t′−t+s,x)2

σ(s,x)2
.

Finally, if (t, x) ∈ C, the optimal stopping time is strictly positive, and, therefore, the
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first inequality is seen to be strict. This concludes the proof.

Proof of Proposition 17. The result follows immediately from Proposition 16 and

Theorem 6 if the stopping boundaries are locally bounded away from {x, x̄}. This follows

from Lemma 33 below.

Lemma 33 Suppose that Assumptions 13 and 14 holds. Then the endpoints of the domain

x and x̄ are in the optimal stopping region of the sampling problem for all t ∈ [0, T ).

Proof of Lemma 33. Observe that, for all x ∈ X , the value function in the sampling

problem V s is weakly smaller than

V̄ (x) := sup
τ∈T

Ex

[
e−rτg

(
X̄τ

)
−
∫ τ

0

e−rtcdt

]
,

subject to

X̄t = x+

∫ t

0

σ̄(Xs)dBs.

This follows from the same argument as in the proof of Lemma 16. Then, from Snell

envelope’s theorem, the continuation region in the sampling problem is a subset of the

continuation region associated with V̄ :

C V̄ :=
{
x ∈ X̄ : V̄ (x) > g(x)

}
= [b, b̄],

with b ≤ xc ≤ b̄, where we used that X̄ is strongly Markov and Proposition 13. So to prove

the lemma, we can simply show that

x̄, x ̸∈ C V̄ .

Observe first that, by Assumption 13, either b̄ ∈ X or b ∈ X , for, otherwise, V̄ (x) = −∞: a
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contradiction. Without loss of generality assume that b̄ ∈ X . There remains to show that b

in X . Suppose not. Then

g(x) = lim
x→x

g(x) ≤ lim
x→x

V̄ (x) = lim
x→x

Ex

[
e−rτ̄(b̄)g(b̄) −

∫ τ̄(b̄)

0

ce−rtdt

]
< 0,

where the last inequality follows from Assumption 13. But g is nonnegative by Assumption

14: a contradiction. So b ∈ X . This concludes the proof.

B.5.3 Omitted proof for Section 2.4.2

Proof of Proposition 18. Assumptions 13 and 14 hold (with σ̄(x) =
√
2σ2

0α

α2 ). The result

then follows from Proposition 17. Finally, the symmetry of the boundaries is obtained from

the symmetry of the original problem.

B.5.4 More general deadline structure for Section 2.4.4

Formally, to define stochastic deadlines, we need to enlarge the filtered probability space to

(Ω × [0, 1],F × B([0, 1]), {Ft}t≥0,P ⊗ λ), where λ is the Lebesgue measure on [0, 1]. The

extended probability space allows for the randomization device needed for deadlines to be

stochastic. All the objects defined on Ω are extended to Ω × [0, 1] in the obvious way.

Definition 20 A map δ : Ω× [0, 1] → [0,∞] is a stochastic deadline if it is a Ft⊗B([0, 1])-

stopping time. We will denote by D the set of all stochastic deadlines.

The probability that the deadline d arrives before time t is given by the optional stochastic

measure F δ on R defined by:

F δ(t, ω) :=

∫ 1

0

1{δ(ω,u)≤t}du, P-a.s..
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In this sense, we can interpret a stochastic deadline as a distribution over stopping times.9

The DM’s problem then consists of finding a decision time τ and a rule d ∈ {−1, 1} to

maximize the expected total gain given the presence of a stochastic deadline. The accuracy

and urgency of a decision are determined by a gain function together with a stochastic

deadline δ and a payoff at the deadline f(µ, d). The expected total gain is

E
[
1{τ≤δ}

(
1{d=1,µ=1} + 1{d=−1,µ=−1}

)
+ 1{δ<τ}f(δ, d, µ)

]
.

We assume that f(·, d) is an affine function of 1{µ=1}. Then, as in the previous section, the

optimal information acquisition problem admits the equivalent optimal stopping formulation:

V δ(t, x) := sup
τ∈T

E
[
Xτ ∨ (1 −Xτ )χ{τ≤δ} + f(δ,−1, Xδ) ∨ f(δ,−1, Xδ)χ{τ>δ}

]
, (V δ)

subject to

Xt = X0 +

∫ t

0

σ(s,Xs)dBs,

where Xt is the decision maker belief that µ = 1 at time t. We also assume that the volatility

of the belief process is smooth (i.e., σ ∈ C2,α).

Due to the presence of a stochastic deadline, this problem appears different from the

stopping problems we considered above. However, in the appendix we show that we can

reformulate it to fit our framework. First, we show that it is without loss of generality

that every Markovian stochastic deadline can be seen as a deadline that arrives at a under

Assumption 18 below . First, observe that

9We can also define a stochastic deadline directly as a distribution over stopping times. The proof of the
equivalence between these two definitions is available upon request.
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Proposition 34 For all functions g and f , all δ ∈ D, and all τ ∈ T ,

E
[
g(Xτ )χ{τ≤δ} + f(δ,Xδ)χ{τ>δ}

]
= E

[
(1 − F δ

τ )g(Xτ ) +

∫ τ

0

f(t,Xt)dF
δ
t

]
.

Proof of Proposition 34. Let δ ∈ D, d ∈ {−1, 1} and τ ∈ T . Recall that F δ
t =∫ 1

0
1{δ(ω,u)≤t}du. Then

E
[
g(Xτ )χ{τ≤δ} + f(δ(ω, u), d,Xδ(ω, u))1{τ>δ}

]
= E

[
g(Xτ )

∫ 1

0

1{δ(ω,u)≥τ}du+

∫ 1

0

f(δ(ω, u), d,Xδ(ω,u))1{τ>δ(ω,u)}du

]
= E

[
g(Xτ )

∫ 1

0

1{
F

δ(ω,u)
τ ≤u

}du+

∫ 1

0

f(δ(ω, u), d,Xδ(ω,u))1{τ>δ(ω,u)}du

]
= E

[
(1 − F δ

τ )g(Xτ ) +

∫ τ

0

f(δ, d,Xδ)dF
δ
t

]
,

where we used Fubini’s theorem and the independence of τ and B([0, 1]) to get the first

equality and proposition 4.9 of chapter 0 in Revuz and Yor (2013) to get the last one.

Next, for all δ, define At through the bijection

F δ
t = 1 − e−At .

Assumption 18 Suppose that r > 0. The process At is a nonnegative continuous additive

functional with

At :=

∫ t

0

a(s,Xs)dsP-a.s.,

where the function a : YT → [r,∞) is twice continuously differentiable with α-Hölder deriva-

tives.
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That is, we assume that the deadline arrives at rate a(t,Xt). Then

V δ(t, x) = sup
τ∈T (t)

E(t,x)

[
e−

∫ τ
0 a(s,Xs)dsXτ ∨ (1 −Xτ ) +

∫ τ

0

e−
∫ t
0 a(s,Xs)dsf(t,Xt)a(t,Xt)dt

]
.

subject to

Xt+s = Xt +

∫ t+s

t

σ(u,Xu)dBu.

Next, we present two useful lemmas.

Lemma 34 For all t ∈ [0, T ), the value function (V δ) is convex in x.

Proof of Lemma 34. By the same argument as in the proof of Proposition 16, we see

that, for all (t, x) ∈ YT ,

V d(t, x) = sup
τ∈T (t)

E(t,x)

[
e−

∫ τ
0 a(s,Xs)dsg(Xτ ) +

∫ τ

0

e−
∫ t
0 a(s,Xs)dsf(t,Xt)a(t,Xt)dt

]
= sup

τ∈T Y (t)

E(t,x)

[
e−(τ−t)g(Xτ ) +

∫ τ

0

e−tf(Vt, Yt)dt

]
,

where Y is the strong Feller process with generator 1
a(t,x)

L(t,x), T Y (t) is the set of stopping

time adapted to the filtration generated by Y , and Vt =
∫ t

0
1

a(s,Xs)
ds is twice continuously

differentiable with α-Hölder derivatives as a consequence of Assumption 18. As a result,

Proposition 15 applies and the value function is convex in x for all t ∈ [0, T ).

Lemma 35 The value function (V δ) is continuous and bounded.

Proof of Lemma 35. This follows immediately from Lemmas 34 and 31 as in the proof

of Lemma 3.

Proof of Proposition 20. By Lemma 35, the value function V δ is continuous. By

Lemma 34, it is convex in x, and thus sign (σt(t, x)Vxx(t, x)) = sign (σt(t, x)). Moreover, by
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Proposition 34, in this setting the flow payoff of the principal is f(t, x) = a(t, x). So, when

a(t, x) is strictly decreasing, at(t, x) (V (t, x) − 1) ≥ 0, since V (t, x) ≤ 1; and when a(t, x) is

strictly decreasing, at(t, x) (V (t, x) − 1) ≥ 0, since V (t, x) ≤ 1. From Remark 3, we can then

apply Corollary 4 if V is monotone in t, strictly so in the stopping region. This follows from

the same argument as the proof of Proposition 16 and the fact that rate of arrival of news

is monotone over time. So Corollary 4 applies and we obtain the desired result.
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Appendix C

Appendix to Chapter Three

C.1 Proof of Theorem 8

Suppose (1′) and (3) hold for some N∗ ⊆ N . Then,

sup
d∈D

inf
n∈N

π(d, n) ≤ sup
d∈D

inf
n∈N∗

π(d, n) (N∗ ⊆ N)

= sup
d∈D∗

inf
n∈N∗

π(d, n) (1’)

= sup
d∈D∗

inf
n∈N

π(d, n) (3)

≤ sup
d∈D

inf
n∈N

π(d, n) (D∗ ⊆ D)

So supd∈D infn∈N π(d, n) = supd∈D∗ infn∈N π(d, n), as desired.

To show the converse, suppose that

sup
d∈D

inf
n∈N

π(d, n) = sup
d∈D∗

inf
n∈N

π(d, n)

Then this immediately implies conditions (1’) and (3) for N∗ = N .
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C.2 Proof of Proposition 23

As in the main text, consider

• D∗ := {d ∈ D : d = {w : R+ → R, y → αy} , α ≥ 0}: the set of singleton menu that

offers one linear contract, and

• N∗ :=
{
A : A = A0 ∪ (0, δ{y}), y ∈

[
0,
∨

(c,F )∈A0
(Eỹ∼F [ỹ] − c)

]}
: the set of technolo-

gies that includes the known sets A0 and a unique other option (0, δ{y}), where y is

less than the maximum surplus of the known actions.

Then, for d ∈ D∗ and n ∈ N∗, π rewrites

π (d, n) = (1 − α)y + i

αy ≥
∨

(c,F )∈A0

(αEỹ∼F [ỹ] − c)

 .

To conclude, there only remains to show that conditions (1), (2), and (3) of Theorem 7 hold.

Note that, WLOG, we can focus on menus over random contracts such that, for any w in

the support of the lottery, π (w, n) <∞.

First, we show that for all n ∈ N∗, there exists d ∈ D∗ that maximizes π(d, n). To

see this, let d be any menus over randomized contracts and let wn be the contract that

maximizes π(w, n) among those in the support of the lottery chosen by the agent whose

technology is n = A0 ∪
{(

0, δ{y}
)}

for some y ∈
[
0,
∨

(c,F )∈A0
(Eỹ∼F [ỹ] − c)

]
. Consider then

singleton menu that offers the linear contract with slope α = wn(y)
y

. Distinguish two cases:

(i) either π (y → αy, n) = ∞ and we are done, (ii) or π (y → αy, n) < ∞, in which case

π ({y → αy}, n) = π ({wn}, n) ≥ π (d, n). So, for all n ∈ N∗, the principal has a best

response in D∗. Next, note that it is obvious that, for each d ∈ D∗, Nature has a best
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response in N∗: it can simply pick the y that minimizes π(d, n). Finally, we show that

sup
d∈D∗

inf
n∈N∗

π (d, n) = inf
n∈N∗

sup
d∈D∗

π (d, n) .

Letting

i(s) =

{
0 if s is true + ∞ otherwise,

this is equivalent to

sup
α≥0

inf
y∈[0,

∨
(c,F )∈A0

(Eỹ∼F [ỹ]−c)]
(1 − α)y + i

αy ≥
∨

(c,F )∈A0

(αEỹ∼F [ỹ] − c)


= inf

y∈[0,
∨

(c,F )∈A0
(Eỹ∼F [ỹ]−c)]

sup
α≥0

(1 − α)y + i

αy ≥
∨

(c,F )∈A0

(αEỹ∼F [ỹ] − c)

 ,

which holds by Theorem 2 in Geraghty and Lin (1984).

Then Theorem 7 guarantees that there exists a robustly ϵ-optimal singleton menu that

offers a linear contract. To conclude, there remains to show existence. WLOG, we can

assume that α ∈ [0, ᾱ] for some ᾱ > 0, hence that the set of linear contract is compact.

Existence then follows if α → π(α, n)
n∈N∗

is upper-semicontinuous, which is easy to verify by

Berge’s theorem.

C.3 Proof of Proposition 24

Let N∗ be the set of all information processes such that the associated demand curve, G, is

a continuous c.d.f. with G̃ (Ev∼F [v]) = 1. Here, G(p) is the buying probability at price p at

time 1. Let D∗ be the set of mechanism that randomizes over constant posted price p ∈ R+

in every period.
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By the replacement lemma (Lemma 1) in Libgober and Mu (2021), we know that when

the principal uses a constant posted price mechanism with pt = p ∈ R+ for all t, Nature has

a best-response among the class of information processes that reveals information in period

t = 1 only. By Proposition 1 in Libgober and Mu (2021), Nature’s best response is then

the “pressed” distribution Ḡ associated with F , which is continuous on [v,Eṽ∼F [v]] with

Ḡ (v) = F (v) and Ḡ (Eṽ∼F [v]) = 1. So condition (2) of Theorem 7 holds.

Furthermore, by classic results from the theory of durable good monopolist (see, e.g.,

Stokey (1979) or Riley and Zeckhauser (1983)), the principal optimal mechanism when facing

a constant demand curve is a constant posted price mechanism, i.e., it can be found in D∗.

To see this, simply note that the principal’s problem is the same as the one in which the

buyer’s valuation are fixed and distributed according to G. So, condition (1) of Theorem 7

holds.

Finally, when Nature is restricted to choose information processes from N∗ and the prin-

cipal is restricted from choosing random constant posted price mechanisms, the principal’s

value is

sup
P∈D∗

inf
G∈N∗

∫ ∞

0

p (1 −G(p)) dP (p),

which, by Sion’s minimax theorem, is equal to

inf
G∈N∗

sup
P∈D∗

∫ ∞

0

p (1 −G(p)) dP (p).

So condition (3) of Theorem 7 holds.

Theorem 7 then guarantees that an ϵ-optimal robust selling mechanism can be found

among the class of randomized constant posted price mechanisms.

There only remains to show that the principal does not need to randomize, which is
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immediate from Proposition 1 in Libgober and Mu (2021), since

sup
P∈D∗

inf
G∈N∗

∫ ∞

0

p (1 −G(p)) dP (p) = sup
P∈D∗

∫ ∞

0

p
(
1 − Ḡ(p)

)
dP (p).

Moreover, existence also follows as the “pressed” distribution Ḡ is continuous on the convex

closure of supp(F ), and p = inf{v : v ∈ supp(F )} is not optimal by Assumption 15.

C.4 Proof of Proposition 25

Points 1 and 2 follow by replication. Given that the agent only learns her total valuation for

the bundle, the problem reduces to a one-dimensional maximization in which a posted-price

for the grand bundle is optimal. This is the pointwise limit of grand-bundle mechanisms with

continuous transfers. Conversely, given that a random bundling mechanism is measurable

with respect to the buyer’s total valuation, it is without loss for Nature to only reveal this

information.

Finally, the minimax equality (3) holds once we restrict to (D∗, N∗). The objective

function is a bilinear form
∫
t dG, and we have restricted t to be continuous. Additionally,

D∗ is convex and N∗ is convex and compact. So Theorem 7 gives the existence of a robustly ϵ-

optimal random bundling mechanism. Existence then follows from Helly’s selection theorem,

since the transfers must be nondecreasing, and the continuity of π(t, G) for all G ∈ ∆ ([0, N ])

in the topology associated with pointwise convergence.
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C.5 Proof of Proposition 26 and Corollary 8

Proof of Proposition 26: Let N∗ consists in the set of randomization over deterministic

type processes:

N∗ := {F ∈ N : ∀2 ≤ t ≤ T, vt = ft(v1)F -a.s. for some function ft : V1 → Vt} .

Let D∗ be the set of (non-adaptive) sequence of posted prices in [0, v̄t]:

D∗ := ∆

(
T∏
t=1

[0, v̄t]

)
.

Then, for any P ∈ D∗ and F ∈ N∗, we have

π(P, F ) =
T∑
t=1

δt
∫ v̄t

0

(1 − Ft(pt))ptdPt(pt)

Next observe that, by Theorem 4’ (and the remark afterwards) in Baron and Besanko

(1984), for all F ∈ N∗, the principal has a best response in D∗. It is also easy to see that,

for all (non-adaptive) sequence of random posted prices in [0, v̄t], Nature has a best response

in N∗. Consider, for example, the set of probability distributions over all sequences (vt)
T
t=1,

where vt ∈
[
0, V̄

]
such that Ev∼F [vt] = v̄t. This is a subset of N∗, which can generate every

demand curve 1 − Ft(p), 1 ≤ t ≤ T . Clearly, for each P ∈ D∗, a minimizer for Nature can

then be found in N∗. Therefore, to conclude using Theorem 7, there only remains to show

that condition (3) holds. This follows from Sion’s minimax theorem and Theorem 13. To see

this, note that any F is nonnegative nondecreasing and bounded by 1, hence is a nonnegative

Borel function bounded by 1. Therefore F belongs to the closure (for the topology associated

with the pointwise convergence) of the set of continuous functions on [0, V̄ ] bounded by 1.

Finally, f →
∫ V̄

0
fdPt(p) is continuous by the dominated convergence theorem.
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So, by Theorem 7, there exists a robust ϵ-optimal mechanism that consists in a sequence

of random posted prices.

Proof of Corollary 8: This follows immediately from Proposition 26 and Proposition

5 in Carrasco et al. (2018).

C.6 Proof of Proposition 27

For the next constructions, we will rely heavily on the projects Ay = (y − x, δy) and Ax =

(0, δx) for y > x > 0. Let ry and rx denote the corresponding indices. By construction

ry = rx = x. Under any contract w, the indices are rwy = w(y) − (y − x) and rwx = w(x).

Order-preserving =⇒ debt contract:

First, we show that if w is order-preserving, then it is non-decreasing. Suppose to the

contrary that for some y > x, w(y) < w(x). Then, w reverses the order of projects (0, δy)

and (0, δx), so w is not order preserving.

Next, we show that if w is order-preserving, it is 1-Lipschitz. That is, for any y > x,

w(y) − w(x) ≤ y − x. Fix any y > x. Consider the contracts Ay and Ax. If rwy ≤ 0, then

w(y) − (y − x) ≤ 0, meaning w(y) −w(x) ≤ y − x because w(x) ≥ 0. If rwy > 0, then by the

order preserving property, we must have rwy = rwx , giving us w(y) − (y − x) = w(x), so we

have linearity: w(y) − w(x) = y − x.

The same argument shows that for any x such that w(x) > 0, y > x implies w(y)−w(x) =

y − x, meaning that the contract has a slope of 1 above x. Fix any x > 0 with w(x) > 0

and y > x. Then ry = rx = x > 0, and rwx > 0. By the order-preserving property, rwy = rwx ,

implying w(y) − w(x) = y − x.

Finally, we show that any 1-Lipschitz and monotone contract with the previous property

is a debt contract. Define z = inf{x | w(x) > 0}. Since w is 1-Lipschitz, and therefore

continuous, we have limx→z− w(x) = limx→z+ w(x) = 0. Therefore, w(x) = (x− z)+, so w is
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a z-debt contract.

IIA =⇒ debt contract: The outline of the proof is largely the same as the previous

section, but we work with the principal’s payoff rather than the agent’s. First, we show

that if w satisfies IIA, it must be non-decreasing. Suppose to the contrary that y > x and

w(y) < w(x). Then,

VP (w | {(0, δy), (0, δx)}) = x− w(x) < y − w(y) = VP (w | {(0, δy)}).

Since the principal is made worse-off by the inclusion of the project (0, δx), this violates IIA.

Next, we show that if w satisfies IIA, it must be continuous. Suppose towards the contrary

that w has a discontinuity at some y > 0. Since w is non-decreasing, this is an upwards

jump. Then x−w(x), the principal’s payoff, has a downwards jump discontinuity at y. For

small enough values of ϵ > 0,

VP (w | {(0, δy−ϵ), (0, δy)}) = y − w(y) < (y − ϵ) − w(y − ϵ) = VP (w | {(0, δy−ϵ)}),

which violates IIA.

Finally, we show that for any x such that w(x) > 0, y > x implies w(y) − w(x) = y − x.

First, consider any ϵ < w(x), and the projects (ϵ, δx) and (0, δy). If w satisfies IIA, we require

VP (w | {(ϵ, δx), (0, δy)}) ≥ VP (w | {(ϵ, δx)}),

which implies

x− w(x) ≤ y − w(y) (C.1)

Alternatively, consider projects A′
x = (0, δx) and A′

y = (w(y) − w(x) + ϵ, δy). Notice by

construction that rwx = w(x) and rwy = w(x) − ϵ. If w satisfies IIA, we require
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VP (w | {A′
x, A

′
y}) ≥ VP (w | {A′

y}),

which implies

x− w(x) ≥ y − w(y). (C.2)

Combining equations (C.1) and (C.2) gives the desired result that if w(x) > 0 and y > x,

then w(y) − w(x) = y − x. The same continuity argument as in the order-preserving case

concludes that w is a debt contract.

C.7 Extending the minimax theorem

Theorem 13 Let X and Y be subsets of a metrizable space and π : X×Y → R be a function

such that

1. for all x ∈ X, inf
y∈Y

π(x, y) = inf
y∈Ȳ

π(x, y), and

2. sup
x∈X

inf
y∈Y

π(x, y) = inf
y∈Y

sup
x∈X

π(x, y).

Then

sup
x∈X

inf
y∈Ȳ

π(x, y) = inf
y∈Ȳ

sup
x∈X

π(x, y).
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Proof. The statement follows from the following chain of inequalities:

inf
y∈Ȳ

sup
x∈X

π(x, y) ≥ sup
x∈X

inf
y∈Ȳ

π(x, y)

= sup
x∈X

inf
y∈Y

π(x, y)

= inf
y∈Y

sup
x∈X

π(x, y)

≥ inf
y∈Ȳ

sup
x∈X

π(x, y).

The first equality follows from condition 1., the second from condition 2., and the last

inequality follows from the inclusion Y ⊆ Ȳ .
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