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ABSTRACT 

Genomic Interrogation of Pseudomonas aeruginosa Virulence and Antimicrobial Resistance 

Nathan Pincus 

Pseudomonas aeruginosa is an important gram-negative opportunistic pathogen whose 

large genome allows it to thrive in diverse environments. There is a wide range of phenotypic 

variation within the species, which can be attributed both to variation in sequences present in 

most isolates (the core genome) or the presence or absence of sequences found in only some 

isolates (the accessory genome). In this dissertation, I present two bacterial genomics studies 

examining the relationship between the P. aeruginosa genome and phenotypes, one focusing on 

antimicrobial resistance and the other on virulence.  

Antimicrobial resistance is a major barrier to treatment of P. aeruginosa infections, with 

multidrug-resistant infections disproportionally caused by globally distributed sequence types 

(ST) known as “high-risk clones”. Examining bacterial collections from Northwestern Memorial 

Hospital, we identified a number of isolates belonging to ST298 which showed substantial drug 

resistance. ST298, along with the closely related ST446, is part of a larger clonal complex (CC) 

446, which has been previously identified as responsible for multidrug-resistant infections 

around the world. Genomic and phylogenetic analyses identified a subclade of ST298, which we 

named ST298*, that has caused repeated infections at our institution for at least 16 years and has 

thus far only been found at our institution. The estimated last common ancestor of this subclade 

was in 1980, suggesting that it may have been a problem for even longer than appreciated. Many 

isolates within this subclade harbored a large (~415 kb) plasmid, which contributed to 

antimicrobial resistance through the presence of a novel class 1 integron. We found that this 

plasmid was part of a family of large Pseudomonas genus plasmids. In this project, we both 
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uncover a prolonged local epidemic of highly drug-resistant P. aeruginosa and propose that 

CC446 is an emerging high-risk clone in need of further study. 

P. aeruginosa isolates show a wide range of virulence in infection models, but it is a 

complex and combinatorial phenotype with many contributing factors. We took a machine 

learning approach to predict virulence (high or low) of P. aeruginosa isolates based on genomic 

content. Using a training set of 115 isolates, we found that the accessory genome could be used 

to predict virulence level, with nested cross-validation accuracy ranging from 72-75% depending 

on the algorithm used. We confirmed this finding using a test set of 25 isolates where an 

accessory genome-based random forest model was able to correctly identify virulence level 72% 

of the time. Individual accessory genomic elements showed low importance in the accessory 

genome-based random forest model, which appears to be learning a diffuse genomic fingerprint. 

We also showed that core genome single nucleotide variants and whole-genome k-mers could be 

used to predict virulence. While genomic content could be used to predict virulence in P. 

aeruginosa, it was not predictive of persistence in a collection of early cystic fibrosis isolates. In 

sum, we found that there is signal within the P. aeruginosa genome that is predictive of an 

isolate’s virulence in mice. This project can serve as a starting point for future machine learning 

studies examining the relationship between bacterial genomics and diverse phenotypes. 
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CHAPTER 1 

Introduction 

Pseudomonas aeruginosa genome structure 

Pseudomonas aeruginosa is a clinically relevant gram-negative bacterium from the class 

Gammaproteobacteria1. As an opportunistic pathogen, P. aeruginosa can cause a wide variety of 

infections in susceptible patients, including skin and soft tissue infections, osteomyelitis, 

keratitis, urinary tract infections, pneumonia, and bacteremia2,3. Patients supported with 

mechanical ventilation are especially vulnerable to P. aeruginosa infection3,4. In fact, between 

2011-2014 P. aeruginosa was second only to Staphylococcus aureus as a cause of ventilator-

associated pneumonia in the United States5. Severe P. aeruginosa infections, such as pneumonia 

and bacteremia, are associated with substantial mortality6-9. In a 13-year prospective study 

examining outcomes from thousands of bloodstream infections, infections caused by P. 

aeruginosa were associated with higher mortality than those caused by S. aureus or other gram-

negative bacteria in a multivariable analysis7. In addition to severe acute infections, P. 

aeruginosa causes chronic lung infections, particularly in patients with cystic fibrosis, 

bronchiectasis, or chronic obstructive pulmonary disease2,3,10. For cystic fibrosis patients, a 

single clone can colonize a patient for decades11,12 despite standard treatment. Carriage of P. 

aeruginosa is associated with a decline in lung function and progression towards poor outcomes 

in cystic fibrosis13,14. 

P. aeruginosa, however, is not simply associated with human infection. It can be found 

ubiquitously in the environment, particularly in wet settings. In the natural environment, P. 

aeruginosa has been isolated from rivers and other bodies of water15,16, plants16,17, and soil16-18 

(even oil-contaminated soils19,20). P. aeruginosa can also be found in manmade environments, 
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particularly plumbing and water systems16,17,21-23. It can cause infections in a variety of hosts, 

including mammals24-26, insects27-30, nematodes27,29,31,32, plants24,30, and amoebae33. 

Unsurprisingly given its ability to survive in such myriad environments, the diverse metabolism 

of P. aeruginosa has made it of interest for industrial purposes such as bioremediation34-36 and 

surfactant production37. Additionally, the ability of P. aeruginosa to cause disease in a given host 

may be secondary to evolutionary pressures exerted in a different environment. For example, it is 

hypothesized that amoebae may be the original target of the P. aeruginosa type III secretion 

system (T3SS), an important virulence factor in mammalian infection4,38,39. While the role of P. 

aeruginosa as an opportunistic pathogen has been discussed, Pseudomonas species do not appear 

to be a major component of the normal human microbiome40. It can, however, at least transiently 

colonize patients, increasing risk for infection41,42. For example, in a prospective study Cohen et 

al. noted P. aeruginosa carriage in a large fraction of ICU patients (38% [13/34 patients] on 

admission and rising to 52% [11/21 patients] after one week). The majority of infections 

observed in this study in this study were caused by colonizing strains42. 

A question then arises in how P. aeruginosa is so successful as a generalist, particularly 

when some other human pathogens, such as Helicobacter pylori43, Neisseria gonorrhoeae44, and 

Mycobacterium tuberculosis complex45, show a far narrower host ranges. The answer to this 

question likely lies in the large genome of P. aeruginosa, which is diverse both in gene content 

(within and between strains) and encoded functions46-49. 

The P. aeruginosa genome sequence 

The first complete genome sequence of P. aeruginosa was described by Stover et al. in 

2000 for the well-known laboratory strain PAO146. They found that the PAO1 genome was 

approximately 6.3 Mb and contained 5,570 open reading frames (ORFs), quite large compared to 
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other bacteria that had been sequenced at the time. Of these, 2,531 (45.4%) were annotated as 

hypothetical genes with no known function. Their annotations predicted that 468 (8.4%) ORFs 

had regulatory or sensing functions. This was substantially higher (both in number and 

percentage of the genome) than other bacteria that had been sequenced at the time. The authors 

posited that large genome and abundant regulatory machinery of P. aeruginosa contribute to its 

success as a generalist46.   

Advances in whole-genome sequencing technology have led to a rapid rise in the number 

of available P. aeruginosa sequences and, with this, advances in our understanding of the P. 

aeruginosa genome and how it varies between strains. As of July 21, 2020, there are 4,660 P. 

aeruginosa genomes included in the Pseudomonas genome database, 206 of which are complete 

genomes50. Recent large studies show that the genome size of P. aeruginosa ranges from 5.5-7.6 

Mb, with an mean genome size of approximately 6.6 Mb51,52. The genome of PAO1 is therefore 

somewhat smaller than average. Correspondingly, a P. aeruginosa genome has 6-6.2 thousand 

genes on average, with the some variation due to differences in study populations48,52-54. The 

wide range of genome sizes is indicative of the sequence diversity within the species. Still, much 

of the P. aeruginosa genome remains poorly characterized48, highlighting a need for further 

study.  

Transposon sequencing studies have been conducted to look at what proportion of 

genome are important in different environments, including rich and minimal laboratory media, 

urine, sputum (patient-derived and synthetic), fetal bovine serum, and several mouse models55-59.  

One study by Poulsen et al. examined genes essential for growth on five solid media preparations 

(including media derived from urine and fetal bovine serum) in nine P. aeruginosa strains. They 

found that between 354-737 genes were essential for growth in these different conditions, with 
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variation both between strains and between conditions in the same strain. They defined 321 

genes as “core essential,” required in all strains in all conditions. Unsurprisingly, almost all of 

these are involved in metabolism, macromolecular synthesis, or cell structure and division58. 

From this one can conclude that only a minority of P. aeruginosa genes are required in any given 

environment, and that these requirements can vary between environments. This is consistent with 

the idea that the large genome of P. aeruginosa provides it with a toolbox to succeed as a 

generalist. There are even different requirements in different infection models. For example, 

flagella are important during an acute burn model but not a chronic wound model of mouse 

infection57. Further, differences in essential genes between strains show that P. aeruginosa 

strains are not functionally identical. Variation in either gene presence or functionality may make 

a given gene or pathway redundant in one strain but absolutely essential in another. 

The P. aeruginosa pangenome and its components 

 As stated above, the genome size of P. aeruginosa varies from strain to strain with a 

range of approximately 5.5-7.6 Mb51,52. This necessitates that P. aeruginosa genomes must also 

vary in gene and sequence content. This brings up a concept important in bacterial genomics, 

that of the bacterial pangenome60-64. Unlike higher eukaryotes, bacteria can participate in 

horizontal gene transfer, both within and between species. This creates the potential for extensive 

variation in gene content within a bacterial species, a finding that challenged the traditional 

species concept62,63. With this variable gene presence in mind, the bacterial genome can be split 

into two main components. Genes or sequences present in all (or almost all) strains make up a 

species’ “core genome” and can be thought of as the defining features of that species. On the 

other hand, genes or sequences that are present in only some strains make up a species’ 

“accessory genome” (sometimes also called the “flexible” or “dispensable” genome). Together, 
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all genes or sequences present in the core and accessory genomes make up a species’ 

pangenome48,52,61,63,64. 

In a given study, one can only examine the portion of the pangenome captured in the 

collection of genomes being analyzed. It is, however, possible to extrapolate from the genomes 

considered to predict how the pangenome size would change if additional isolates were 

sequenced. A bacterial pangenome can be considered to be “open” if it continues grow as new 

genomes are obtained, and conversely can be considered to be “closed” if it reaches a maximum 

size as new genomes are added61,64. Species that inhabit a highly specialized niche (particularly 

obligate symbionts or parasites) or have limited contact with other bacteria tend to have closed 

pangenomes, while generalists and members of complex microbial communities tend to have 

open pangenomes61,63,64. The concept of the bacterial pangenome was first introduced by Tettelin 

et al. in 2005 as part of a comparative study of eight Streptococcus agalactiae genomes60. In 

2008, Tettelin et al. proposed a mathematical framework to determine whether a species has an 

open or closed pangenome by fitting the change in pangenome or new genome size as additional 

strains are sequenced to a power law function. Specifically, the number of new genes identified 

as each additional genome is sequenced can be fit to the equation n = κN-α, where n is the 

number of new genes added and N is the number of genomes considered (Figure 1.1). If the 

resulting α value is ≤ 1, it is projected that new genes will continue to be identified indefinitely 

(albeit at a slowing rate) as additional genomes are added, indicating that the species has an open 

pangenome. On the other hand, if α > 1, it is projected that all genes present in the species will 

eventually be captured. Applying this method to available genomes from a number of species, 

they determined that the pangenomes of Bacillus cereus, Streptococcus pneumoniae, and 

Escherichia coli were open, while the pangenomes of S. aureus and Bacillus anthracis were 
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closed. In each of these examples, Tettelin et al. examined what is now a relatively small number 

of genomes61. As more genomes become available, the concept of an open or closed pangenome 

may need to evolve. For example, should one consider a pangenome closed if it would require 

thousands of genomes before no new genes are identified? Still, as described below it is clear 

that even when comparing over 700 genomes the P. aeruginosa pangenome has not been fully 

captured51. 
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Figure 1.1 Model of new genome and pangenome size as additional genome sequences are 

considered. (A) The amount of new genome added can be modeled using the power law function 

n = κN-α, where n is the number of new genes or amount of sequence (in bp) added and N is the 

number of genomes considered. (B) The change in pangenome size can be modeled using the 

power law function n = κNγ, where n is the pangenome size (in number of genes or total 

sequence length) and N is the number of genomes considered. Equations are from Tettelin et al., 

200861. Plots assume an open pangenome (α ≤ 1), consistent with the conclusions of Ozer et al., 

who examined the change in new genome size (in bp) within increasing numbers of genomes for 

a set of 739 P. aeruginosa genomes51. 
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  To examine a species’ pangenome or its components, the core and accessory genomes, 

one must first define these components in a collection of bacterial genomes. Multiple approaches 

have been developed to accomplish this. One method that is commonly used is to identify genes 

within each genome and then cluster them into gene or protein families (or directly compare 

gene sequences between each genome to see whether they meet a minimum threshold to be 

categorized as the same gene)31,53,65,66. Programs used for this purpose include CD-HIT67 and 

Roary68. The set of all gene clusters would then make up the pangenome for the study 

population, and individual clusters can be assigned to the core or accessory genomes based on 

their prevalence31,53,65. The Hauser laboratory, working with Dr. Egon Ozer, has taken a 

sequence-based (and therefore gene-agnostic) approach to defining the core and accessory 

genomes, and with them the pangenome. Here, a contiguous genetic sequence present in some 

genomes is defined as an accessory genomic element (AGE). The rationale behind this decision 

is that variation between strains is not limited to individual genes. A contiguous accessory 

sequence could range in size from dozens of genes (such as a genomic island, defined below) 

down to only part of a gene. This approach is also not dependent on annotation and can examine 

variable intergenic regions (such as promoters)48,69,70. Dr. Ozer has developed a suite of 

bioinformatic tools to define bacterial core and accessory genomes. The first of these, Spine, 

aligns all genomes within a collection to each other and identifies a backbone core genome of 

sequences present in a specified proportion of isolates (e.g. 100% or 95%). Next, the tool AGEnt 

is used to identify the accessory genome of each strain by identifying sequences that do not align 

back to the core genome48. Finally, clustAGE is used to compare the accessory genomes of each 

strain to each other and define all AGEs making up the pan-accessory genome of that 

population69. The pangenome could then be considered as the combination of the core genome 



 27 
and pan-accessory genome. Spine can also directly calculate and output a pangenome after 

aligning all input genomes48. In all of these tools, a default 85% sequence identity cutoff is used 

to determine whether sequences from two genomes are part of the same element (be it core or 

accessory). 

Now that the general concept of the pangenome, its components, and how it can be 

defined have been introduced, the pangenome of P. aeruginosa will be discussed. While several 

studies have examined the P. aeruginosa pangenome30,31,48,51-54,65,66,71, two in particular have 

looked into the question of whether it possesses an open or closed pangenome. Mosquera-

Rendón et al took a gene-based approach to analyze 181 genomes, defining a pangenome for this 

population of 16,820 genes. This analysis found that P. aeruginosa had a closed pangenome, 

with an estimated α of 2.3654. Ozer et al. took a sequence-based approach to analyze 739 P. 

aeruginosa genomes, finding a pangenome size of 32 Mb51, almost five times the amount of 

sequence in an average P. aeruginosa isolate. They, conversely, report that the species’ 

pangenome is open, with an estimated α of 0.6551. As such, there is disagreement regarding 

whether the P. aeruginosa pangenome will continue to grow as additional genomes are 

considered. This may have to do with the different ways the studies defined the pangenome 

(gene vs. sequence-based) or the specific populations they examined. With the finding that the 

pangenome continues to grow at over 700 P. aeruginosa isolates, I would argue that, from a 

practical perspective, it can be considered open. Regardless, these studies agree that the P. 

aeruginosa pangenome is much larger than the sequence contained in a single P. aeruginosa 

genome. Other large studies support this finding, calculating pangenome sizes of 54,272 and 

28,793 genes when considering collections of 1,311 and 1488 genomes respectively31,52. This 

large amount of diversity within the species likely explains a substantial proportion of 
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phenotypic differences between strains. Gene prevalence in the P. aeruginosa pangenome has a 

roughly U-shaped distribution, with a large number of genes that are common (in all or most 

genomes) and rare (in one or few genomes), but relatively few genes of moderate prevalence. As 

the number of genomes considered increases, new rare genes continue to be found and 

outnumber the common ones31,53,54. 

 The size of the P. aeruginosa core genome is dependent on a combination of the 

strictness by which it is defined and the number of genomes. An early study examining five 

genomes found that 5,021 genes were universally conserved71. However, as study populations 

increases in size, the number of genes found in all isolates decreases drastically. In a more recent 

study looking at a total of 181 genomes, the size of the core genome approximately halved to 

2,503 genes54. Looking at 1,311 genomes and using a strict core genome definition, Freschi et al. 

defined the core genome as being made up of only 665 genes. This is not much more than 10% 

of the average P. aeruginosa genome. The authors say that a strength of this core genome 

definition is that number of genes resembles the number essential for survival in media in 

transposon sequencing studies but acknowledge that it is very conservative52. Still, there are 

drawbacks to this strict core genome definition, such as the loss of many genes that would be 

thought of as largely characteristic of the species but are missing in a few outliers. Examples 

include the exotoxin A gene, toxA, which is missing in the outlier strain PA7, or large 

chromosomal deletions that occur in chronic cystic fibrosis isolates48,53.  Further, when working 

with draft genomes, certain sequences or genes may be excluded from the core genome simply 

because of issues related to the assembly (e.g. they are fragmented over multiple contigs or not 

captured) even if they are actually present in that strain’s genome65. With less strict core genome 

definitions (for example considering genes or sequences present in 90-95% of genomes), various 
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studies have defined core genomes ranging from 5,081-5,316 genes31,48,53,65. It is notable that this 

value is consistent with early studies comparing smaller numbers of genomes with a strict core 

definition71 and appears to be fairly stable to increases in number of genomes. For example, 

using a 90% core genome definition and examining 1488 P. aeruginosa genomes, Vasquez-Rifo 

et al. calculated a core genome size of 5170 genes31. For these reasons (better capturing genes 

generally characteristic of P. aeruginosa, less susceptibility to missing sequence in draft 

genomes, more stability as new genomes are added), I find the less conservative core genome 

definition to be generally more useful. This ensures that the core genome size is comparable 

when analyzing different populations and, as I have primarily worked with draft genomes, is less 

effected by imperfect sequencing coverage and assembly. However, the most appropriate core 

genome definition may vary depending on the population being studied and the specific question 

being asked. 

Using the less conservative core genome definition, we can begin to examine its 

properties and what features are generally characteristic of the species. As stated, P. aeruginosa 

can be thought to have a core genome that is approximately 5,081-5,316 genes31,48,53,65 or 5.8 

Mb48,51 in size. Considering an average genome size of 6.6 Mb, approximately 88% of the 

sequence in any given strain would be considered core, though this would vary based on the size 

of that strain’s accessory genome. Ozer et al. found that the core genome’s nucleotide content is 

67%, guanine and cytosine48, consistent with the understanding that P. aeruginosa is a high G+C 

content organism46. Ozer et al. also compared core gene sequences to the Clusters of 

Orthologous Groups of proteins (COG) database72. Through this, they found that approximately 

80% of core genes could be assigned to a COG group. Even so, close to 40% of core genes were 

poorly characterized (with no match in the COG database or in a COG group with no clear 
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functional prediction)48. This sizable proportion of genes with no known function even in the 

parts of the genome well conserved throughout the species illustrates how much remains to be 

learned about P. aeruginosa genome. Unsurprisingly, genes providing functions necessary for 

general bacterial life can be found in the core genome. In their early study of the P. aeruginosa 

pangenome, Mathee et al. found that most housekeeping genes are part of the core genome71. 

This agrees with analysis performed by Valot et al., who found that the core genome was 

enriched for functions related to metabolism, signal transduction, post-translational modification, 

transcription, and translation53. 

 As with the core genome, the proportion of the genome for any given isolate called as 

accessory is dependent on the strictness of the core genome definition used. Using a less strict 

core genome definition, the median accessory genome size was 912 kb in a collection of 739 P. 

aeruginosa isolates. While this is minority of sequence in any given P. aeruginosa genome, it is 

clear that accessory genome contributes the majority of sequence in the pangenome (32 Mb in 

this collection). The size of the accessory genome is strain-dependent, varying from 277 kb – 2.2 

Mb in these genomes51. This accessory sequence can include genes involved in various 

functions, such as antimicrobial resistance (AMR), bacterial pathogenicity, or 

metabolism24,47,48,65,70,71,73-76. Compared to the core genome, even less of the accessory genome 

has a predicted or known function, with Ozer et al. finding that almost 70% of accessory genes 

were poorly characterized. It also has a lower G+C content (averaging 61%)48, consistent with 

the idea that much of this sequence has origins outside of the species (perhaps originating in 

species with lower G+C content)47. Indeed, the accessory genome is enriched for signatures of 

horizontal gene transfer, such as genes associated with integrative and conjugative elements 

(ICEs), integrons, and phages48,52,71. This makes sense given the central role of horizontal gene 
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transfer in bacterial pangenomes in general62,63. However, it is important to note that not all 

accessory genes need be mobile in origin, and accessory regions can also be the result of genetic 

deletions in a portion of P. aeruginosa strains52,71,77,78. While accessory sequences can be found 

scattered throughout the P. aeruginosa chromosome (and can also be extra-chromosomal in the 

form of plasmids), they are often concentrated at locations termed “regions of genomic 

plasticity” (RGPs). These RGPs are often the result of insertion of accessory sequence at tRNA 

gene sites. Large, contiguous (10 kb or larger) accessory sequences present at RGPs are referred 

to as genomic islands47,48,71,79,80.  

Accessory genomic elements in P. aeruginosa 

Many types of genetic elements can contribute to the P. aeruginosa accessory genome. 

Often these have a mobile origin and show evidence of horizontal gene transfer47,48,71.  Some of 

these AGEs are still be capable of horizontal gene transfer, while others have become fixed 

within their resident genomes81-83. The likely origins of these horizontally acquired AGEs appear 

to be from species that P. aeruginosa would interact with in both natural and clinical 

environments. In an analysis of transcribed P. aeruginosa accessory genes, Pohl et al. identified 

homologues in a variety of species, including other Pseudomonas species, Enterobacteriaceae 

(such as K. pneumoniae and S. enterica), Burkholderia vietnamiensis, and Acidovorax species84. 

Deletions can also lead to sequences being classified as accessory in the remaining 

strains52,71,77,78. In this section, I will briefly review the types of elements that contribute to the P. 

aeruginosa accessory genome. Although the functions of many AGEs are poorly understood, the 

accessory genome can influence the biology of P. aeruginosa in a variety of ways47,48. However, 

the context in which these elements has been studied has often been from the perspective of 

examining bacterial pathogenicity or antimicrobial resistance. As such, the examples noted here 
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will focus on AGEs involved in these phenotypes. Additionally, it is not necessarily obvious if a 

given accessory sequence is part of a larger mobile element. This can require genomic context 

that may not be available. For example, with only a draft genome, it is difficult to say whether a 

given sequence is chromosomal or part of a plasmid. 

 Genomic islands are often formed by ICEs. Complete ICEs form large genomic islands 

that can mobilize by excision, mediate conjugation into a new host, and then reintegrate into the 

chromosome47,85,86. Integration often (but not always) occurs at tRNA genes87, leading to the 

association Mathee et al. observed between these sites and RGPs71. However, some ICEs have 

been degraded and have lost some or all of the machinery required for transfer, resulting in 

smaller genomic islands fixed within the genome81. Several ICE-derived genomic islands have 

been implicated in P. aeruginosa virulence in a variety of infection models24,75,76,82. These 

include genomic islands carrying the important T3SS effector gene exoU, which are perhaps 

derivatives of single original island77. P. aeruginosa ICEs harboring AMR genes have also been 

identified88,89. 

 Bacteriophages can facilitate horizontal gene transfer through transduction and can 

themselves encode important accessory genes. As such, prophages (lysogenic phages integrated 

into the host chromosome) and their remnants are major contributors to the P. aeruginosa 

accessory genome47,82,83,90-93. As has been noted, phage genes are enriched in the accessory 

genome48,52, with Ozer et al. finding an average of 124 predicted phage genes in the accessory 

genomes of 12 isolates48. As with ICEs, several prophages have been shown to contribute to 

virulence in P. aeruginosa82,92,93, including the cytotoxin-encoding φCTX93. There are also loci 

that are evolutionarily derived from bacteriophages but have lost components required for 
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complete phage production. An example here are the antibacterial proteins known as pyocins, 

which are related to bacteriophage tails83. 

 Transposable elements (including insertion sequences, composite transposons, and 

complex transposons) allow for the movement of sequence to different sites within the genome. 

Intact transposable elements are able to move within a genome through the action of a 

transposase enzyme, which mediates excision (at inverted repeats on either end of the element) 

and insertion into another site. The most basic type of these is an insertion sequence, which 

consists of a transposase flanked by inverted repeats. While insertion sequences possess only the 

machinery required for transposition, transposons can also carry additional genes unrelated to 

mobility47,94.  Transposable elements are mobile in the sense that they can move within the 

genome but can be found inserted into other elements potentially capable of horizontal gene 

transfer, such as an ICE or plasmid89,95. In P. aeruginosa, a number of transposable elements 

have been shown to be involved in AMR89,95-97.  

 Integrons are accessory elements commonly associated with AMR. At their core, they 

possess an integrase gene followed by multiple gene cassettes (on the opposite strand from the 

integrase gene). The integrase gene contains an internal promoter driving the expression of these 

gene cassettes. Gene cassettes can exist as circular DNA fragments, with insertion into an 

integron driven by the action of the integrase98,99. While integrons themselves are not mobile, 

they are generally associated with transposons (intact or defective)98,99 and can be commonly 

found as parts of larger mobile elements88,95,100,101. There are multiple classes of mobile integron, 

each characterized by the presence of a different integrase gene98. Integrons from classes 1 and 2 

have been detected in P. aeruginosa strains102, but those of class 3 have also been found in other 

Pseudomonas species103,104. Mobile integrons are evolutionarily linked with chromosomal 
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superintergrons found in a number of bacterial species (such as Vibrio species). These 

superintegrons can be >100 kb long and contain numerous cargo genes99,105,106. In P. aeruginosa, 

class 1 integrons are widespread and have been implicated in resistance to multiple classes of 

antibiotics88,95,100,101. An example from this dissertation is illustrated in Figure 2.3. 

 The role of plasmids in P. aeruginosa is less well studied than in Enterobacteriaceae94, 

but they are still an important component of the accessory genome. P. aeruginosa plasmids have 

been long implicated in AMR and heavy metal resistance107-109. They can range in size from 

several kb110 to megaplasmids well over 100 kb74,111, and often harbor other mobile elements 

such as AMR integrons and transposons74,95,112,113. In some cases P. aeruginosa plasmids possess 

conjugation machinery allowing for horizontal transfer74, while others lack their own conjugation 

machinery but can be mobilized by the presence of other plasmids113. Draft assemblies derived 

from short-read sequencing can often obscure the presence of plasmids in a given genome114. As 

long-read sequencing and complete genome assembly become more common, it is likely that 

many new P. aeruginosa plasmids will be described. 

 There are also genetic loci, known as replacement islands, which encode features 

common to most P. aeruginosa strains but possess variable gene content, placing them as part of 

the accessory genome47,115. Loci that exhibit this type of variation include those involved in 

synthesis of the lipopolysaccharide O-antigen116, the siderophore pyoverdine115, and the type IV 

pilus pilin117. These loci are under selective pressure to diversify (e.g. to avoid phage 

predation)115 and can show signatures of horizontal gene transfer115,117. Another example that 

would fall into this category would be the contact-dependent inhibition gene cdi1A. Contact-

dependent inhibition systems play a role in bacterial competition by delivering toxic effectors 

into neighboring cells. While the N-terminal portion of Cdi1A is highly conserved, it can possess 
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a variety of C-terminal toxin domains, which can presumably be swapped through horizontal 

gene transfer and recombinaiton118. One of these toxin domains was recently implicated in 

virulence in a mouse model of infection70. This type of AGE (with a variable domain in a larger 

conserved gene) would likely be missed in a gene-based examination of the accessory genome, 

highlighting the strength of taking a sequence-based approach to these analyses. 

Genetic deletions can also contribute to the accessory genome. Chromosomal deletions, 

including large deletions (>100 kb), are known to occur in P. aeruginosa, a phenomenon that has 

been specifically (but not exclusively) noted in strains colonizing patients with cystic 

fibrosis71,119,120.  Whether a sequence with variable presence secondary to chromosomal deletions 

would be considered as part of the accessory genome is dependent on both the prevalence of the 

deletion in the population being studied and the strictness of the core genome definition being 

used. As has been described, P. aeruginosa can withstand the disruption of all but several 

hundred genes58 and using a very strict core genome definition only 665 genes were classified as 

core52. Many of the remaining genes common to P. aeruginosa were likely classified as 

accessory simply because they were missing in a few genomes. Still, there are important 

examples of gene loss contributing to variation between strains. A likely case where this has 

occurred is in the accessory gene exoS, which encodes a T3SS effector. It is well appreciated that 

the T3SS effector genes exoS and exoU are nearly mutually exclusive. Most strains possess one 

of these effector genes, but few carry both121,122. It is hypothesized that this is due to the excision 

of exoS in a recombination event that coincided with the acquisition of the original exoU 

genomic island, perhaps due to partial homology observed between repeats flanking the exoS 

gene and multiple exoU islands77. PA7-like strains, taxonomic outliers in the global P. 

aeruginosa phylogeny123,124, also show evidence of gene loss compared to other members of the 
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species. These strains completely lack a T3SS locus, and, in one group, there is evidence of a 

scar containing remnants of T3SS loci genes78. It is notable that PA7-like strains are rare in P. 

aeruginosa collections51,52, and if none or few of these are present in a given collection the T3SS 

locus would likely be classified as part of the core genome. A subset of these outlier strains 

possess the outer membrane channel-encoding gene oprA, but genomic evidence (conservation 

of surrounding genes and presence of remnant sequence in other strains) suggests that its absence 

in the rest of the species is through gene loss rather than specific acquisition by these strains52,125. 

P. aeruginosa population structure 

Two large-scale phylogenetic studies have recently been conducted to examine the 

population structure of P. aeruginosa at a species-wide scale. In both of these studies, it was 

clear that the P. aeruginosa species can be divided into two major clades, with a small proportion 

of strains belonging to two to three outlier clades51,52. These clades also largely segregate by 

accessory genomic content, highlighting that the accessory and core genomes are not 

independent of each other51. While the accessory genome includes many elements with a mobile 

origin, and therefore would not necessarily be expected to follow the core genome phylogeny, it 

makes sense that this horizontal gene transfer has to occur in evolutionary time. Therefore, more 

closely related isolates would, to a certain extent, have a shared history of AGE gains and losses. 

This is an important concept to keep in mind when studying the accessory genome, showing that 

it cannot necessarily be considered as independent of the background genetic environment. Ozer 

et al. showed that a small subset of AGEs were highly discriminative between the two major 

groups. The most notable of these are two T3SS effector genes exoU and exoS. In one of these 

clades 98% of genomes are exoS+exoU-, while in the other 95% of isolates are exoU+exoS-. For 

the two major clades, within-clade core genome recombination also occurred at higher rate than 
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recombination between clades. This recombination barrier may be secondary to the clades 

occupying different niches. While Ozer et al. identified both core genome SNVs (including in 

signal transduction and metabolic genes) and AGEs (such as the T3SS effectors) that may be 

niche-adaptive, the extent to which these clades are environmentally separated is not clear at this 

time51. A recent study found that while exoS+ isolates were found in both natural and man-made 

environments, exoU+ isolates were found predominantly in man-made environments16, perhaps 

supporting the conclusion that these respective clades occupy distinct but overlapping niches. 

The most distinct outlier clade showed an average nucleotide identity of 93-94% with other 

groups51,52. While they are more closely related to the other P. aeruginosa clades than to other 

Pseudomonas species, this places them on the border of being classified as a separate species52. 

PA7 is the prototypical isolate for this clade, which is notable for a deleted (or otherwise absent) 

T3SS78,123,124. The two major P. aeruginosa clades can clearly be seen in a phylogenetic tree of 

115 isolates considered in Chapter 3. This collection also contains one PA7-like strain, which is 

apparent as an outlier in the tree (Figure 1.2). It is important to note that mid-point rooted 

phylogenetic trees (as shown here) make an underlying assumption that the genomes considered 

are evolving at the same constant rate126. In reality this may not be true, with evolutionary rate 

varying depending on the environment in which a given bacterium resides in combination with 

its genetic background. As such, while these trees are useful for comparing genetic similarity 

between isolates, caution should be taken in inferring evolutionary relationships.  

In clinical practice, P. aeruginosa is often typed through a technique called multi-locus 

sequence typing (MLST), in which a strain is assigned to a given sequence type (ST) based on 

the alleles present in seven housekeeping genes127.  Based on MLST, P. aeruginosa has been 

described as having a “nonclonal epidemic population structure”, indicating that while many 
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infections are caused by isolates from rare STs, a disproportionate number are caused by a few 

important clones127-129. In particular, specific clones are enriched as causes of acute healthcare-

associated infections, while others are overrepresented in chronic infections in cystic fibrosis 

patients. As will be elaborated in the following section, this includes STs that are enriched for 

high levels of AMR129-133.  
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Figure 1.2 Major clades of P. aeruginosa. Mid-point rooted core genome phylogenetic tree of P. 

aeruginosa isolates constructed from SNV loci present in at least 95% of genomes, annotated 

with T3SS genotype. The two main clades of P. aeruginosa are apparent by their characteristic 

T3SS genotypes. One PA7-like outlier isolate is also present. The underlying phylogenetic tree 

here is also presented in Figure 3.2 and was constructed from the genomes of the 115 P. 

aeruginosa isolates forming the training set for machine learning analysis in Chapter 3. 

  

Tree scale: 1

T3SS Genotype

exoU+exoS-

exoS+exoU-



 40 
Genetic determinants of antimicrobial resistance in Pseudomonas aeruginosa 

 Not only is P. aeruginosa able to cause severe or chronic infections as previously 

described, but it also shows a high propensity for AMR. P. aeruginosa has shown resistance to 

each of the classes of antibiotics used to treat the organism. Isolates can be classified as 

multidrug resistant (MDR) if nonsusceptible to at least one agent in ≥3 antipseudomonal classes, 

and extensively drug resistant (XDR) if nonsusceptible to at least one agent in all but ≤2 of the 

tested classes134. There have also been reports of panresistant organisms, which are not 

susceptible to any tested drugs135-137. In fact, there has even been evidence of resistance to a 

novel combination agent (ceftazidime-avibactam, a cephalosporin and β-lactamase inhibitor) in 

banked isolates collected before this drug was used clinically138. AMR poses as a challenge for 

treatment and increases the healthcare burdens of P. aeruginosa infections as MDR phenotypes 

are associated with worse patient outcomes and increased mortality8,139-141. Given all of this, it is 

unsurprising that in 2006 the Infectious Diseases Society of America named P. aeruginosa one 

of the pathogens in most dire need of new therapeutic options142. In 2017, the World Health 

Organization followed suit, classifying carbapenem-resistant P. aeruginosa as a top-priority 

pathogen for new drug development.  In their recent 2019 report, the Centers for Disease Control 

and Prevention (CDC) stated that MDR P. aeruginosa is a serious public health threat, with an 

estimated 32,600 cases and 2,700 deaths in 2017. It is, however, promising that the disease 

burden of MDR P. aeruginosa is improving (with cases down 29% from 2012), perhaps due to 

rigorous stewardship and infection control measures143. AMR in P. aeruginosa can be intrinsic 

(an innate characteristic of the species), mutational, or develop through the acquisition of AMR 

genes94,144-147. As such, both the core and accessory genomes of P. aeruginosa play important 

roles in drug resistance.  
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Intrinsic resistance 

 The P. aeruginosa genome encodes for a variety of factors which reduce its susceptibility 

to antibiotics. One of these is the chromosomally encoded β-lactamase AmpC, whose gene is 

part of the P. aeruginosa core genome. AmpC is able to hydrolyze cephalosporins and its 

expression is induced in the presence of some β-lactams but at wild-type levels of expression 

does not confer clinical resistance to antipseudomonal β-lactams53,144,148,149. Another 

chromosomal β-lactamase, OXA-50, provides additional low-level resistance150. Additional 

chromosomal resistance genes found in P. aeruginosa include the catb7 (chloramphenicol 

resistance)151, aph(3’)-IIb (aminoglycoside resistance)152,153, and fosA (fosfomycin resistance)154.   

 To exert bactericidal or bacteriostatic actions, antibiotics need to reach their targets in the 

bacterial periplasm or cytoplasm. One characteristic that makes P. aeruginosa less susceptible to 

antibiotics than other gram-negatives, such as E. coli, is relatively poor outer membrane 

permeability secondary to its slower primary outer membrane porin OprF146,155. Yoshimura et al. 

showed that transport across the outer membrane is the rate limiting step for P. aeruginosa 

(strain PAO1) to hydrolyze the cephalosporins cephacetrile and cephaloridine, and that this 

occurred at least 100 times slower than in E. coli K12156. P. aeruginosa also possesses a number 

of efflux systems that limit the accumulation of antibiotics (and other toxic compounds) within 

the bacterial cell. A notable example is the MexAB-OprM efflux pump, which decreases 

susceptibility to β-lactams and multiple other antibiotic classes (such as fluoroquinolones and 

tetracycline)144,146,157,158. 

Mutational resistance 

One way in which P. aeruginosa strains can develop increased resistance to β-lactam 

antibiotics (particularly antipseudomonal penicillins and cephalosporins) is through mutations 
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affecting the structure or expression of the chromosomal β-lactamase AmpC. Mutations in the 

AmpC regulatory pathway can lead to substantial increases in gene expression, resulting in 

clinically significant levels of resistance144,145. A major cause here is loss-of-function mutations 

disrupting the negative regulator AmpD, as well as its homologues AmpDh2 and AmpDh3159-162. 

Mutations in the ampC gene itself can also confer resistance to these antibiotics145. For example, 

Berrazeg et a. examined 23 AmpC variants identified in 35 clinical isolates. When expressed in 

an AmpC deficient strain background, 20 of them resulted in elevated MICs against the 

cephalosporin ceftazidime compared to the wildtype protein163.  

 The outer membrane porin OprD serves as the main channel by which carbapenems 

diffuse into P. aeruginosa144,164,165. It is therefore unsurprising that mutations which disrupt the 

function of OprD can increase carbapenem resistance and that these mutations develop 

spontaneously in the laboratory setting upon exposure to carbapenems166. Loss of OprD function 

is a major source of carbapenem resistance clinically and can occur through truncations, 

frameshifts, insertions (e.g. of an insertion sequence) and inactivating point mutations145,167-170.  

Upregulation of mexT (whose product drives expression of the MexEF-OprN efflux system) can 

also promote carbapenem resistance as it additionally represses oprD expression144,171. Along 

with mutational causes of reduced drug entry, mutations leading to overexpression of efflux 

pumps can also contribute to resistance to multiple classes of antibiotics, including 

carbapenems144-146. Indeed, MexAB-OprM efflux pump overexpression together with OprD 

disruption provides higher meropenem MICs than either change alone166. Examples of mutations 

resulting in MexAB-OprM overexpression include those causing loss-of-function of the genes 

encoding the negative regulators MexR and NalC144,172,173. 
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 The most common way that P. aeruginosa develops resistance to fluoroquinolone 

antibiotics is through mutations in their targets, specifically the DNA gyrase gene gyrA and 

topoisomerase IV gene parC144,174,175. Resistance-conferring mutations occur in a specific 

portion of each gene referred to as the quinolone resistance determining region (QRDR), a 

phenomenon that is conserved across different bacterial species176,177. Mutations in parC (e.g. 

S87L) are less common and often occur in combination with gyrA mutations (e.g. T83I)175,178,179. 

Experimentally, parC S87L and S87W mutations were not alone sufficient to raise the 

ciprofloxacin MIC of PA14, but when added onto a gyrA T83I background resulted in 

substantially higher resistance178. While overexpression of efflux pumps contributes to 

fluoroquinolone resistance, this is also more effective when coupled with existing gyrA 

mutations178. 

Acquired resistance 

 Horizontal gene transfer is a major source of AMR in P. aeruginosa. Integrons and 

transposons often carry genes encoding for a variety of resistance functions88,89,95-97,100,101. These 

acquired resistance genes can also be part of larger mobile elements, such as plasmids or 

ICEs74,88,89,95,112,113. This is notable because these acquired resistance genes often travel together, 

potentially allowing a previously susceptible strain to become MDR or even XDR in a single 

event. For example, the large conjugative plasmid pOZ176 harbors two class 1 integrons 

carrying cassettes encoding for β-lactam, aminoglycoside, and chloramphenicol resistance. 

Conjugal transfer of this plasmid was shown to increase MICs against carbapenems, 

cephalosporins, and an antipseudomonal penicillin/β-lactamase inhibitor combination in the 

recepient95. 
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 Acquired β-lactamases are an important source of resistance to multiple classes of β-

lactams. The metallo-β-lactamases (including the various IMP, VIM, and NDM enzymes) are of 

particular concern as they confer resistance to carbapenems and are commonly found as part of 

accessory elements (such as integrons and plasmids) in carbapenem resistant 

isolates95,102,112,129,132,180-186. Acquired class D OXA β-lactamases are also found in P. aeruginosa 

in addition to the chromosomal OXA-50 described previously150. These can be narrower 

spectrum, with OXA-10, for example, providing resistance to piperacillin, but not ceftazidime or 

cefepime. However, certain variants (including OXA-10 derivates) show broader spectrum 

activity, decreasing susceptibility to antipseudomonal cephalosporins (like cefepime and 

ceftazidime)187-190. OXA-198, detected on a P. aeruginosa plasmid, was shown to have 

carbapenemase activity100,191. While the KPC enzymes are associated with carbapenem 

resistance in Enterobacteriaceae (particularly Klebsiella pneumoniae), they have also been found 

in P. aeruginosa and have been identified on transposons and plasmids96,97,110,129,184,192 

 Acquired aminoglycoside resistance is often conferred by integron or transposon-borne 

aminoglycoside-modifying enzymes, which inactivate aminoglycoside antibiotics with the 

addition of functional groups. Multiple classes of these enzymes exist, each modifying 

aminoglycoside antibiotics in a different way (phosphorylation, acetylation, or adenylation)153. 

Many class 1 and 2 integrons found in P. aeruginosa possess at least one acquired 

aminoglycoside resistance gene102,129,182. Integrons and transposons also often contain acquired 

resistance genes conferring resistance to compounds other than β-lactams and aminoglycosides. 

In fact, the 3’ conserved sequence common to many class 1 integrons contains sul1 (encoding a 

sulphonamide resistance protein) and qacE∆1 (encoding a truncated but partially active small 

multidrug efflux protein conferring quaternary ammonium compound resistance)98,99,193,194. 
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Other types of acquired resistance genes found on integrons and transposons include those 

involved in resistance to chloramphenicol, fosfomycin, and disinfectants (other qac 

genes)47,101,129,182. While resistance to fluoroquinolones generally develops from mutations in 

DNA gyrase and topoisomerase IV genes144,174,175, this can also be conferred through acquired 

fluoroquinolone resistance genes. Examples include qnrVC1 and qnrVC6, which have been 

detected in P. aeruginosa on an integron and plasmid respectively195,196. The mobile colistin 

resistance genes mcr-1 and mcr-5 have also been detected in P. aeruginosa, a concerning finding 

as colistin is considered to be one of the last lines of treatment for highly resistant 

infections197,198. 

Antimicrobial resistance and high-risk clones 

As previously discussed, in clinical practice P. aeruginosa shows a nonclonal epidemic 

population structure. In particular, a disproportionate number of highly drug-resistant P. 

aeruginosa infections are caused by a small number of globally distributed STs. These are 

referred to as “high-risk clones”. Some of the most successful high-risk clones in acute infection 

are ST235, ST111, and ST175129,131,140,186,192,199-201. Even within a high-risk clone a variety of 

resistance mechanisms exit (both mutational and acquired)129,132,174, and not all isolates identified 

as part of each clone are MDR65,130,199,200. This suggests that it is not simply the acquisition of 

resistance that allows a given clone to become epidemiologically dominant. This conclusion is 

supported by the fact that isolates from rare STs can also show MDR or XDR phenotypes65,174 

while few gain the prevalence needed to be classified as high-risk clones. As a single acquisition 

of AMR does not appear to be sufficient for the establishment of a high-risk clone, the success of 

these strains may instead be due to a propensity to acquire resistance, factors which make them 
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better able to cause infections or persist in the hospital environment, or other unknown 

characteristics.  

ST235 is perhaps the best studied high-risk clone responsible for MDR acute infections. 

It a common (if not the most common) cause of MDR or XDR P. aeruginosa infections 

identified in studies from various countries130,182,192,200-202. This ST is exoU+, and accordingly 

can be found in the corresponding major P. aeruginosa clade70. In 2018, Treepong et al. 

published a genomic analysis of a collection of geographically and temporality diverse ST235 

isolates. Through phylogenetics, they estimated that the last common ancestor of this clone 

occurred in approximately 1984. Additionally, these isolates possessed a wide variety of 

acquired resistance genes (particularly those conferring aminoglycoside and extended spectrum 

β-lactam resistance)132. This is consistent with the literature as a whole, where ST235 isolates 

have been observed with incredibly diverse sets of acquired resistance genes129. While a large 

proportion of the ST235 isolates in Treepong et al.’s study possessed conserved mutations in 

gyrA and parC contributing to fluoroquinolone resistance, mutational causes of β-lactam 

resistance were more diverse. The genes ampD and oprD were commonly affected, but through a 

number of different mutations132.  

ST175 has caused regional epidemics of XDR P. aeruginosa infections in Europe, 

particularly in Spain and France140,199-201, though isolates have also been detected in Japan182 and 

the United States65. In fact, ST175 isolates made up a majority (62/81) of XDR isolates in a large 

collection of bacteremia isolates from Spain129. In contrast to ST235, ST175 genomes contain 

exoS140, placing them in the other major P. aeruginosa clade. Unlike ST235, where both 

mutations and acquired genes play a major role in AMR, much of the resistance in ST175 

appears to be mutational in origin. In an analysis of 22 ST175 isolates from Spain and France, 
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Cabot et al. observed largely conserved causes of mutational resistance (with many shared 

between 80-100% of isolates). This included mutations resulting in AmpC overexpression, 

truncation of OprD, fluoroquinolone resistance (gyrA and parC mutations), and MexXY efflux 

pump overexpression. These isolates did not possess acquired β-lactamases, but did all possess at 

least one acquired aminoglycoside resistance gene168. On the other hand, a more recent study of 

carbapenemase-producing P. aeruginosa in Spain identified 33 ST175 isolates possessing at least 

one acquired β-lactamase. The genomes of these isolates contained an average of 5.9 acquired 

resistance genes184. Together with high levels of preexisting mutational resistance, increasing 

acquired resistance mechanisms may make ST175 even more clinically problematic. 

 

Genetic determinants of virulence in Pseudomonas aeruginosa 

 A major impetus to study P. aeruginosa is its ability to cause severe, and even fatal, 

disease in humans. As has been stated, bloodstream infections with P. aeruginosa are associated 

with higher mortality than either S. aureus or other gram-negative bacteria7. In many studies of 

P. aeruginosa bacteremia or pneumonia, mortality rates are near or above 30%6,8,9,203. This raises 

the question of how P. aeruginosa is able to cause such severe disease. In other words, what are 

the factors which determine its virulence? Better understanding the pathogenicity of P. 

aeruginosa may allow for the development of anti-virulence therapies (such as T3SS or quorum 

sensing inhibitors), which could serve as adjuncts to traditional antibiotics204-206. 

 P. aeruginosa possesses a variety of systems that enable it to infect a eukaryotic host2-4. 

Virulence, however, is not a simple phenotype. P. aeruginosa strains have been shown vary 

widely in their pathogenicity in different infection models, including mice, Drosophila 

melanogaster, Galleria mellonella, Caenorhabditis elegans, and plants24,30,31,70,207. Studies show 
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that virulence in P. aeruginosa is complex and combinatorial, with multiple genetic factors (in 

both the core and accessory genomes) playing a role in increasing or decreasing its 

pathogenicity24,28,31,57,70,75,76,207,208. Further, the ability of a given strain to cause disease can vary 

between infection models24,30,209, and genes important in some models are dispensable in 

others29,57. This shows that while bacterial factors are obviously important in pathogenesis, 

interactions with hosts are necessary components of disease. From a clinical context, a 

mechanically ventilated patient in the intensive care unit, a neutropenic patient, and a patient 

with cystic fibrosis may all be predisposed to P. aeruginosa infections for different reasons, and 

different P. aeruginosa virulence factors may be important in each of these scenarios. For 

example, while a functional T3SS is associated with increased mortality in acute infection203, 

chronic infection in cystic fibrosis patients is associated with the loss of secretion210,211. Clearly, 

large-scale genomics studies are needed to disentangle how different components of the P. 

aeruginosa pangenome control its pathogenicity.  

As indicated, the ability of P. aeruginosa to cause disease is not simply due to factors 

intrinsic to the bacterium itself. Infection involves complex interactions between the bacterium, 

the host, and the broader environment. This is clear in cystic fibrosis, where impaired 

mucociliary clearance creates a permissive environment for colonization by P. aeruginosa. 

Mechanical trauma, such as occurs during mechanical ventilation, can provide a route of entry by 

which P. aeruginosa can establish infection and medical devices can serve as foci for biofilms. 

Historically, neutropenic patients are at high risk for P. aeruginosa infection, highlighting the 

role of the innate immune system in defense against this bacterial pathogen2-4 While 

acknowledging the importance of the host in infection, this dissertation focuses on role of factors 

encoded by the P. aeruginosa genome. In this section, I will provide a brief overview of several 
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of the factors influencing virulence in P. aeruginosa, with an emphasis on those contained within 

the accessory genome. 

P. aeruginosa virulence factors 

As indicated, there are a number of factors that contribute to the pathogenicity of P. 

aeruginosa2-4. Two of these, type IV pili and flagella, play important roles in both adhesion and 

motility. The average P. aeruginosa strain produces multiple type IV pili, which mediate 

twitching motility across solid surfaces and act as adhesins2,212-214. Pili-mediated adhesion and 

motility are both involved in biofilm formation2,212,215,216, and pili can act as mechanosensors 

(modulating downstream gene expression upon surface attachment)217,218. Nonpiliated mutants 

are attenuated in both murine pneumonia and keratitis models219,220. Flagella mediate swimming 

motility and are also involved in initial surface attachment (and therefore biofilm 

formation)2,215,221-223. Flagella are required for virulence in a murine pneumonia model224 and are 

likewise important in an acute burn model but are dispensable in a chronic wound model57. In the 

acute burn wound model both flagellar motility and glycosylation (which contributes to the high 

immunogenicity of these structures) play a role in virulence225. It is notable that both of these 

systems involve replacement islands, with pilin genes and flagellar glycosylation loci varying 

between strains47,117,226. Another virulence factor produced by P. aeruginosa is pyocyanin, a 

secondary metabolite which induces oxidative damage to host cells and which has been shown to 

increase virulence in a murine pneumonia model2,227,228. 

The P. aeruginosa genome encodes for a variety of secretion systems, many of which are 

implicated in pathogenicity229. The Xcp type II secretion system (T2SS) of P. aeruginosa 

secretes several toxins, including exotoxin A, two elastases, and several other proteases229-232. A 

functional Xcp T2SS was sufficient to cause lethal disease in a Toll-like receptor 2 and 4 
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knockout mouse model, though T2SS-mediated mortality was delayed relative to T3SS-mediated 

mortality233. Exotoxin A is an adenosine diphosphate-ribosyltransferase which compromises host 

cell processes by deactivating elongation factor 2 and has itself been associated with increased 

mortality in mice2,229,234.  Two other T2SS have been identified in P. aeruginosa. The first of 

these is the Hxc system, which is involved in the bacterium’s response to low phosphate 

conditions229,235,236. The third T2SS, termed Txc, is found in PA7-like strains and secretes a 

chitin-binding protein124,237. P. aeruginosa also produces three type VI secretion systems (T6SS), 

termed H1, H2, and H3. Type VI secretion is known to be important for interbacterial 

competition, but the H2- and H3-T6SS have also been shown to play roles in virulence229,238-242. 

For example, the copper-scavenging effector Azu of the H2-T6SS is important for full virulence 

in a mouse model of pneumonia, potentially by increasing bacterial fitness in a copper-starved 

environment241. 

 The T3SS is a potent and well-studied P. aeruginosa virulence factor2,4,38. As previously 

noted, it is present in most P. aeruginosa strains, but absent in the PA7-like outlier 

clade16,52,78,121,122,124. Whether it would be considered a core or accessory virulence factor 

therefore depends on the strictness of the core genome definition being used. The T3SS is a 

needle-like structure (evolutionarily linked with flagella) that injects effector proteins directly 

into the cytoplasm of a host cell38,243. Secretion is thought to be contact-mediated, but in vitro 

can be induced by calcium depletion38,244,245. The P. aeruginosa T3SS is important to 

pathogenicity in multiple model systems, including mice, G. mellonella, and amoebae25,39,246-249. 

Functional secretion appears to be important in acute infection outcomes in humans, with 

Hattemer et al. finding that secretion (as defined by detection of at least one effector or the 

secretion-pore forming PopB or PopD in vitro) was associated with higher mortality in a 
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multivariate analysis203. Four major T3SS effectors have been characterized: ExoU, ExoS, ExoT, 

and ExoY38. The exoT and exoY genes are present in almost all T3SS-possessing strains. The 

exoU and exoS genes, on the other hand, are clearly contained in the P. aeruginosa accessory 

genome (being present in approximately 70-80% and 20-30% of strains respectively) and will be 

discussed further with other accessory genomic virulence factors16,38,121,122. ExoT possesses 

GTPase activating protein and ADP-ribosyltransferase domains, which ultimately result in 

cytoskeletal disruption and proliferation inhibition in the target cell38,250,251 . It plays a smaller 

role in virulence than either ExoU or ExoS. In a mouse model of pneumonia, its presence was 

sufficient for dissemination to organs but showed a similar 50% lethal dose as a secretion-

negative mutant25. It does, however, mediate apoptosis and inhibition of would repair in 

vitro252,253.  ExoY is an adenylate cyclase and minor virulence factor38,254. In the absence of other 

known T3SS effectors, it contributes to virulence in a mouse keratitis and rat pneumonia 

model255,256.  

Virulence and the accessory genome 

As has been discussed previously, a number of genomic islands have been implicated in 

P. aeruginosa virulence24,47,75,76,82,92,93. Two notable examples are PAPI-1 and PAPI-2, which 

were first identified in the well-studied strain PA1475. Deletion of PAPI-2 decreases virulence in 

mouse models of both bacteremia and pneumonia. While PAPI-1 was only independently 

required for virulence in the bacteremia model, a dual PAPI-1/PAPI-2 deletion mutant showed 

further attenuation beyond the single PAPI-2 deletion in pneumonia76. PAPI-1 is a large (108 kb) 

transmissible ICE while PAPI-2 is a smaller (11 kb) exoU-containing island75,77,86. While much 

of the virulence conferred by PAPI-2 is attributed to exoU, studies suggest that it is not the only 

important gene in the island75,76. Multiple ORFs within PAPI-1 have been shown to be involved 
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in pathogenicity against mice or plants, but many of these are poorly characterized75. A 

chaperone-usher pilus and two two-component regulatory systems on this island are involved in 

both pathogenicity and biofilm regulation (both formation and dispersal) in PA1475,257,258. Ferrara 

et al. recently identified a PAPI-1-encoded small RNA (PesA) that enhances pyocin S3 

production and increases cytotoxicity (with increased target cell viability observed in a pesA 

deletion mutant)259. Battle et al. identified an additional PAPI-1-like island, termed PAGI-5, that 

also contributes to pathogenicity in a mouse model of pneumonia24. Other genomic islands with 

known roles in virulence include the cytotoxin-encoding prophage φCTX93 and three prophages 

and one ICE-derived element identified in the cystic fibrosis isolate LES that were required for 

full virulence in a rat chronic pneumonia model (measured through competitive index between 

wildtype and mutant strains in coinfection)47,82. 

Along with being clade-defining accessory genes51, exoU and exoS both encode for T3SS 

effectors and play an important role in the virulence of strains that contain them38. The exoU 

gene is found in a variable genomic island (with variants including PAPI-2 and ExoU islands A-

C)77. ExoU is a phospholipase which causes membrane disruption in the target cell, leading to 

high levels of cytotoxicity38,260-264. Unsurprisingly, this results in increased injury and mortality 

in an infected host25,248,261,264,265. It also may play a role in outcomes during human infection, 

with Peña et al. finding that, in a cohort of patients with P. aeruginosa bacteremia, exoU+ 

isolates were associated with early morality (a higher proportion of deaths within 5 days)140. The 

exoS gene, on the other hand, is not in a genomic island and, as previously discussed, may have 

been lost in exoU+ isolates as part of a recombination event during the acquisition of the exoU 

island47,77,266. It is homologous with ExoT and, like ExoT, also functions as both a GTPase 

activating protein and an ADP ribosyl transferase38,267-269. While ExoS is independently 
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associated with virulence in mice, its impact is smaller than that of ExoU in both a pneumonia 

and abscess model25,248. However, exoS+ strains can be just as or more virulent than exoU+ 

strains in a mouse model of bacteremia, suggesting that there must be other factors as play 

shaping their pathogenicity70.  

While PA7-like strains lack a T3SS, certain members of this clade possess their own 

characteristic toxin, exolysin A78,124,270. Exolysin A is a potent pore-forming toxin that was first 

recognized in a PA7-like isolate from a patient with hemorrhagic pneumonia270,271. This isolate 

was highly virulent in mice (causing 100% mortality in a pneumonia model at a dose of 5 x 106 

CFU) and showed in vitro cytotoxicity similar to that of an exoU+ strain, challenging the idea 

that P. aeruginosa requires a T3SS for full virulence270. Exolysin A is a two-partner secreted 

protein, and insertion of the pore requires P. aeruginosa to be in contact with the target cell (as 

evidenced by necessity of type IV pili for cytotoxicity and lack of cytotoxicity in a transwell 

experiment)270,271. When the two-partner system (exlBA) was cloned into a T3SS-deficient 

PAO1, it increased both cytotoxicity in vitro and mortality in mice270. Orthologs of the exlA gene 

have also been found in other Pseudomonas species272.  

With the large size of the P. aeruginosa pangenome31,51,52, it is almost certain that there 

are virulence-influencing AGEs that have yet to be described. Dr. Jonathan Allen in the Hauser 

laboratory recently completed a large-scale pan-accessory genome screen to identify novel AGEs 

contributing to virulence in a mouse model of bacteremia. Of 15 AGEs he identified as potential 

virulence factors, 11 were shown to be truly involved in virulence (with deletion mutants 

attenuated in the mouse model). One of these, a C-terminal toxin domain of the contact-

dependent inhibition protein Cdi1A, was selected for detailed analysis. This domain was shown 

to have tRNase activity, which was necessary for its role in pathogenicity. Further, the AGE was 
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important for virulence in multiple mouse models (bacteremia, pneumonia, and subcutaneous 

infection). The other virulence AGEs identified in this study were largely poorly characterized, 

but had features suggestive of association with genomic islands, phages, or transposons. One 

virulence AGE had homology to rearrangement hot spot-type polymorphic toxins70. Vasquez-

Rifo et al. recently performed a similar screen for accessory genes influencing virulence in a C. 

elegans infection model, examining genes both positively and negatively associated with 

virulence. They identified two genes which lowered virulence in this model (qsrO and tegN), 

with longer C. elegans survival when these genes were overexpressed. They also found that the 

presence of an active CRISPR system correlated with increased virulence. As CRISPR systems 

would act to limit the acquisition of horizontally acquired DNA, this may suggest that, while 

certain AGEs confer increased virulence, they may have a general tendency to reduce virulence 

during acute infection31. 

 

Machine learning analyses for the prediction and exploration of bacterial phenotypes 

 In Chapter 3, I take a machine learning approach to predict the virulence level of P. 

aeruginosa isolates based on the content of their genomes. As has been discussed, virulence is a 

complex phenotype with many contributing factors and varies between strains within the 

species24,30,31,70,207. With that in mind, we chose machine learning as a tool to study the 

relationship between the bacterial genome and virulence, as it provides a way to deal with this 

complexity and has been successfully applied to a number of problems in bacterial 

genomics66,273-283. In this section, I provide an overview of basic machine learning concepts and 

discuss its applications in the field of bacterial genomics. 
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Machine learning concepts 

Simply, machine learning is a process of building computational models that are “fit” to a 

training dataset. This training dataset contains a number of samples (e.g. bacterial genomes), 

each with features (e.g. gene presence/absence) and potentially labels based on the condition one 

is trying to predict (e.g. AMR). In supervised machine learning, a model is fit using a labeled 

training dataset which can then be used to predict the labels of new samples based on their 

features. In unsupervised machine learning, a model is fit using an unlabeled training dataset. 

Common uses of unsupervised machine learning include clustering and dimensionality 

reduction. Here I will focus on supervised machine learning as it is generally more relevant to 

the problem of phenotype prediction (with the phenotype serving as the label for each sample). 

Supervised machine learning can be broken down further into classification, in which the labels 

are a categorical variable (e.g. susceptible vs. nonsusceptible in AMR prediction), and 

regression, in which the labels are a continuous variable (e.g. minimum inhibitory concentration 

in AMR prediction)273,284,285.  

For a machine learning model to be useful, one must have an idea of how well it 

performs. For a classification model, it is possible to ask the question of how well the model is 

able to separate the training samples into their true classes. While this training performance is 

useful to know, it may overestimate how well the model would predict the class of new samples. 

As the model was trained to optimally separate training samples into classes based on their 

features, it may be “overfit” to intricacies of the training set that do not hold true for other 

populations (fitting on noise, rather than signal). The best way to assess model performance is 

with an external test set, a labeled dataset independent of the training dataset. Predicting the 

labels of the test set and comparing to the true labels allows one to determine how well the model 
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generalizes to new data (at least the data contained in the test set). An alternative (or adjunct) to 

an external test set is cross-validation. In k-fold cross-validation, the training set is split into k 

(e.g. 10) non-overlapping subsets (termed cross-validation folds). For each cross-validation fold, 

all training set samples not set aside as cross-validation are used to train a model. The labels of 

each sample in the cross-validation fold are then predicted with the model and compared to their 

true values. By considering performance across all cross-validation folds, one can estimate how 

well a model built using this training dataset would generalize to new data284,285. Two caveats of 

cross-validation are that it does not build a final model that can be applied to new samples (only 

providing an estimate on how it would perform) and all cross-validation samples are drawn from 

the same population as the training samples (i.e. the complete training dataset). If test samples 

originated from a population that differs from the training dataset, model performance may also 

differ (likely decreasing). 

In Chapter 3, I make use of the common supervised machine learning algorithms random 

forest, logistic regression (with L2 and elastic net regularization), and support vector machine. In 

each of these algorithms there are hyperparameters, variables which cannot be learned during 

model fitting and must instead be defined by the user (such as the regularization component “C” 

in logistic regression). The optimal (highest performing) combination of hyperparameters may 

vary depending on the dataset being used284,286. One way to identify this optimal combination is 

by testing all possible combinations of hyperparameters. In order to prevent overfitting to a 

specific dataset influencing hyperparameter choice, this can be performed within a cross-

validation loop in a process termed “grid-search cross-validation”. A final model can then be 

built using all training data and the best performing hyperparameters set from grid-search cross-

validation. The performance of this final model can then be tested against an independent test 
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set. Alternatively, grid-search cross-validation could be performed inside an outer cross-

validation loop (a process termed “nested cross-validation”) to estimate how well this approach 

would generalize to new data284. 

When both training and evaluating a model, it is important to have a performance metric 

in mind. Accuracy can seem a natural choice, as one of course wants to build a highly accurate 

model. However, there may be cases where another metric is more important (e.g. high 

sensitivity so as to not miss patients with a rare disease in a medical screening test). Additionally, 

there may be times when accuracy is a poor metric of model performance, such as when there is 

substantial class imbalance in the dataset. In an AMR classification problem, if almost all 

samples in the training dataset were susceptible, a model which simply predicts “susceptible” in 

all cases would be highly accurate in cross-validation even though it had learned no meaningful 

information about genetic contributions to AMR. It would likely generalize poorly to a test set 

with more nonsusceptible isolates. An alternative metric that can be used in cases of class 

imbalance is the F1 score, the harmonic mean of sensitivity and positive predictive value284,285. 

For the F1 score to be high, a model must both identify the majority of samples in the class of 

interest (high sensitivity) and the majority of samples predicted to be in the class of interest must 

truly be in that class (high positive predictive value). The F1 score can range from near 0 (either 

or both sensitivity and positive predictive value are very low) to 1 (both sensitivity and positive 

predictive value are perfect). F1 score is technically undefined if both sensitivity and positive 

predictive value are 0, but in machine learning implementations287 is often set to 0 in this case to 

allow analysis to continue. Another commonly used performance metric is the area under the 

receiver operating characteristic curve (AUC), which examines the relationship between the true 

positive rate and false positive rate in a model if the threshold for choosing which class to predict 
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is varied. A completely random model would show an AUC of 0.5 while a perfect model would 

show an AUC of 1284. 

In this dissertation I make use of the scikit-learn287 suite of machine learning tools 

implemented in the Python programming language, which has been employed in multiple other 

bacterial genomics studies276,277,288,289. Computational biologists also often make use of a variety 

of other machine learning libraries, including the Python-based XGboost (for gradient-boosted 

trees)275,290-292 and keras (for neural networks)277,288 and the R-based caret (multiple 

algorithms)281,293,294 and randomForest (for random forest models)282,295,296. Further detail on the 

machine learning approach I take in this dissertation is described in Chapters 3 and 5, with a 

graphical summary in Figure 3.4. 

Machine learning for AMR prediction 

 A major focus of studies using machine learning to predict bacterial phenotypes from 

genomic data has been in the field of AMR prediction, with goals of classifying strains as 

resistant or susceptible to a panel of drugs, identifying novel resistance determinants, or both. 

These studies have approached the problem of AMR prediction from different angles, utilizing a 

number of different machine learning algorithms (support vector machines, logistic regression, 

neural networks, and gradient-boosted trees) and encoding genetic information in a number of 

different formats (such as gene presence or absence, SNVs, k-mers, and even gene expression 

levels)66,274-279. Here, I highlight a few examples that are notable for their methodology and what 

they reveal about how machine learning can be applied to bacterial genomics problems. 

 Khaledi et al. used a support vector machine approach to build predictive models of 

AMR in a collection of 414 P. aeruginosa isolates. They constructed models to predict resistance 

or susceptibility to ciprofloxacin (a fluoroquinolone), tobramycin (an aminoglycoside), 
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ceftazidime (a cephalosporin), and meropenem (a carbapenem). To train these models, they used 

three types of genomic information both individually and in combination: SNVs (capturing core 

genome information), gene presence or absence (capturing pangenome variation), and gene 

expression. They took a nested cross-validation approach to estimate the performance of models 

built with each antibiotic and feature set combination. Models trained on the best-performing 

combination of genomic features all had F1 scores between 0.82 and 0.9266. There are two areas 

of potential weakness in this study. First, it would have been ideal to validate the performance of 

a final model for each antibiotic (with the best combination of genomic features) against an 

independent test set drawn from a different population. This would confirm that their models are 

truly generalizable. Second, they excluded isolates with intermediate resistance from analysis, 

simplifying the problem and potentially overestimating the performance of their models in a real-

life clinical scenario. Still, Khaledi et al. show that machine learning techniques can be 

successfully applied to predict phenotypes in P. aeruginosa. 

The types of genomic feature sets that were most predictive of resistance, and the 

individual features that were most important in making those predictions (i.e. with the highest 

feature weights in the support vector machine model), in Khaledi et al.’s study can further 

cement our understanding of AMR in P. aeruginosa. SNVs, for example, were most effective in 

predicting resistance to ciprofloxacin, with SNVs in gyrA and parC weighted highest. As 

appreciated by the authors66, mutations in these genes are the major source of fluoroquinolone  

resistance in P. aeruginosa174,175. For the other drugs, a combination of gene presence and gene 

expression was most predictive of resistance. For meropenem, disruptions in and gene expression 

of the outer membrane porin-encoding oprD were both important in predicting resistance66, 

consistent with the important role OprD plays in carbapenem entry into the bacterial cell165.  
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 Chen et al. built predictive models of AMR using a collection of 3601 Mycobacterium 

tuberculosis isolates, considering a relatively small set of 222 genomic features. Models built 

using a complex “wide and deep neural network” strategy showed high performance, with a 

mean AUC of 0.953 across all 10 drugs tested.  However, model performance was almost 

identical using the far simpler L2-regularized logistic regression algorithm (mean AUC 

0.949)277. This shows that a more complex algorithm does not necessarily yield a better-

performing model, an important point to consider when embarking on a machine learning 

project. 

 While the majority of studies have focused on classifying strains as susceptible vs. 

nonsusceptible (or resistant), it is also possible to treat AMR prediction as a regression problem. 

Nguyen et al. have applied this approach to predict minimum inhibitory concentrations (MICs) 

of antibiotics for both Klebsiella pneumoniae and Salmonella species. For both of these 

populations, they were able to predict the correct MIC (within 1 two-fold dilution, which they 

note is consistent with clinical practices) over 90% of the time for must drugs (15/20 for K. 

pneumoniae and 15/15 for Salmonella)275,292.  

Additionally, Nguyen et al. recently showed that susceptibility or resistance can be 

accurately predicted in multiple bacterial species (K. pneumoniae, M. tuberculosis, Salmonella 

enterica, and S. aureus) even when genes known to be involved in AMR are explicitly excluded 

from the analysis.  Further, these results held true even when clonality of the training genomes 

(i.e. reducing the weight of training isolates in common clades) and the frequency of resistance 

within each clade were taken into account during the model building process291. This is 

significant, as it shows that the genomic signal predictive of AMR is not limited simply to 

features directly causing resistance. Instead, genomic features causing resistance are likely 
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correlated with a number of noncausal features that can still be used for the purpose of 

prediction.  

 Břinda et al. took a different approach to predict AMR in S. pneumoniae and N. 

gonorrhoeae. They first constructed a database of genomes for each species based on their 

genomic content and AMR class. Rather than directly predicting a new isolates resistance from 

its genomic content, they identified closely related strains in the database (“genomic neighbors”) 

and assigned resistance predictions based on the labels of its closest neighbors. At least in these 

species, simply identifying the closest neighbors of an isolate generally allowed accurate 

prediction of resistance (with AUCs ranging from 0.80 to 0.98 for different species-drug 

combinations). A proposed benefit of this approach is that it could be applied rapidly even while 

isolate is still being sequenced (using long-read nanopore technology). This could allow 

resistance predictions to be made in a clinically actionable time-frame279. Along with Nguyen et 

al.’s findings, this shows that a model does not have to directly capture the cause of AMR to be 

an effective predictor279,291. 

Machine learning for other bacterial phenotypes 

To our knowledge, no previous machine learning study has examined genomic 

contributions to virulence in P. aeruginosa. Still, machine learning approaches have been applied 

to bacterial genomics problems outside of AMR prediction, including those directly relating to 

bacterial pathogenicity. A relatively early example is a study published in 2014 by Laabei et al. 

looking at cytotoxicity in 90 ST239 S. aureus isolates. Using a pre-defined set of 52 SNVs and 

indels that were identified as highly associated with cytotoxicity in their collection, they found 

that a random forest approach was successful in classifying isolates by level of cytotoxicity 

(high, medium, or low). A model trained on 60 isolates was able to correctly identify the class of 
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27/30 test isolates (only misclassifying 3 medium cytotoxicity isolates as “low”)296. However, as 

their features had been pre-selected to separate strains by cytotoxicity in their dataset before it 

was split into two training and test sets, it is likely that their model was overfit to that dataset and 

that performance would decrease if the model was applied to truly novel isolates. In my opinion, 

this highlights the care that needs to be taken in interpreting the results of machine learning 

analyses reported in the literature.  

An area where machine learning techniques have been repeatedly applied is to questions 

of host tropism and pathogenic potential of bacterial isolates280,283,297-299. Lupolva et al., for 

example, used pangenome content to train support vector machine models to classify the host 

source of E. coli (human or bovine) and S. enterica serovar Typhimurium (human, avian, bovine, 

or swine) isolates. The models developed could predict the proper host of E. coli isolates 83% of 

the time, while for S. enterica isolates accuracy ranged from 67% to 90% depending on the host 

source283. Something that has likely contributed to success of these studies is that host 

associations (or type of infection caused) in the studied organisms often cluster phylogenetically, 

resulting in a clear genetic signal that could be detected by the machine learning approaches 

employed. At a more high-level scale, investigators have examined whether it is possible to use 

genome content to separate pathogens from nonpathogens298,299. A particularly ambitious study 

by Barash et al. examined the genomes of 17,881 pathogenic and 3274 nonpathogenic human-

colonizing bacteria. They found that a support-vector machine approach was highly successful in 

predicting pathogenicity, with an average F1 score of 0.897 in cross-validation. Their definition 

of pathogenicity, however, was quite broad and defined based on purely metadata associated 

with each of the genomes. No P. aeruginosa genomes were classified as nonpathogenic299. In an 
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adjacent field, machine learning has been applied to predict host tropism of bacteriophages from 

viral sequence with an AUC of >0.85 for nine bacterial genera300.  

Studies have begun to look at whether the genome of an infecting isolate can be used to 

predict patient outcomes. Recker et al. focused on patient mortality caused by two S. aureus 

clonal complexes (CC22 and CC30). By looking at each clonal complex individually they were 

able to limit the amount of genetic variation in their dataset, allowing them to consider any SNV 

in a gene (if nonsynonymous and not in a mobile genetic element) or intergenic region as a 

single feature. Using random forest models, they found that that predictive models based on 

these genetic features had AUCs of 0.75 (CC22) and 0.79 (CC30). This suggests that bacterial 

genetic variation, at least in closely related groups of isolates, may be moderately predictive of 

patient outcomes, but the authors did not further confirm this using an external test set282. A 

recent study conducted by Lapp et al. highlights the challenges of trying to predict clinical 

outcomes, finding that bacterial genomics, patient characteristics, and the combination of the two 

were all only weak predictors of whether a given Klebsiella pneumoniae isolate was identified as 

colonizing or infecting a patient294. Further studies are needed to elucidate the extent to which 

the bacterial genome (alone or in combination with patient factors) can be used to predict patient 

outcomes, as well as how this varies by infecting pathogen, type of infection, and outcome in 

question. 

 While generally using established machine learning frameworks287,290,293, the studies I 

have described largely employed their own pipelines for data processing, analysis, and 

interpretation. This creates a barrier to entry to biologists with limited computational or machine 

learning experience. With that in mind, some groups are beginning to focus on making more 

universal and user-friendly machine learning applications specifically for problems related to 
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bacterial genomics. One such example this is in a recent publication by Lees et al., where the 

authors have added a machine learning pipeline to the existing bacterial genome-wide 

association study (GWAS) software pyseer. This pipeline builds elastic net models from 

genomic data (optionally weighted by population structure) that can be used to both predict 

phenotype in new samples and estimate the heritability of the phenotype in question (the extent 

to which it is controlled by the genetic information supplied). They applied their approach to 

number of previously published datasets with phenotypes including AMR and disease vs. 

colonization. The authors state that their approach can be used without coding experience, but it 

does still require comfort with a command line interface and ideally use of an external 

bioinformatic tools to generate the genomic feature set301. I expect future packages by Lees et al. 

or others will push the barrier to entry even lower, likely leading to large increases in the number 

of studies incorporating machine learning techniques into their analyses.  

 

Introduction to the current work 

 Over the past decade, the field of bacteriology has undergone a sea change with rapid 

increases in the number whole genome sequences following advances in next-generation 

sequencing technology. This has included a large effort in the Hauser laboratory to sequence P. 

aeruginosa isolates, both from Northwestern Memorial Hospital and from other sites. However, 

the wealth of genomic information this has generated poses new challenges in both analysis and 

interpretation and has necessitated a revolution in the way that we think about bacterial research. 

To this end, I present two large-scale comparative genomics studies examining antimicrobial 

resistance and virulence in P. aeruginosa. In Chapter 2, I take a phylogenomic approach to 

uncover a prolonged epidemic of a highly resistant P. aeruginosa subclade at NMH and describe 
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a large, novel plasmid present in many of these strains. In Chapter 3, I show that machine 

learning techniques can be used to predict the virulence of P. aeruginosa isolates from genomic 

information.  
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CHAPTER 2 

Identifying and characterizing a prolonged local epidemic of extensively drug-resistant 

Pseudomonas aeruginosa at Northwestern Memorial Hospital 

 

Chapter-Specific Acknowledgements 

The work described in this chapter was primarily conducted as part of Pincus et al. 

2019302. This was a collaborative project, and the work conducted by my coauthors was essential 

to its completion. In particular, Dr. Kelly Bachta performed antimicrobial susceptibility testing to 

determine minimum inhibitory concentrations (MICs) of the described antibiotics for each 

isolate.  Dr. Egon Ozer performed the complete genome assembly of PABL048 from the 

combined long- and short-read sequence data and performed some of the in silico sequence 

typing and draft genome assembly for this project. Additionally, I used multiple scripts written 

by Dr. Ozer to perform some of the genomic analyses in this study. Though not exhaustive, these 

included several scripts for generating multiple sequence alignments based on short reads and/or 

assembled genomes and subsequent filtering and masking steps as well as the script used for in 

silico sequence typing. Dr. Jonathan Allen’s observation of a cluster of AMR genes present in a 

subset of genetically related isolates from Northwestern Memorial Hospital was the catalyst that 

started this project, and his input early in the project identified which strains possessed these 

AMR genes. Much of the short-read sequencing data used in this project was generated by 

various members of the Hauser laboratory prior to the project’s initiation. I have further 

indicated in the methods associated with this project in Chapter 5 which analyses and 

experiments were performed by or with the help of other laboratory members and which analyses 

I performed using scripts written by Dr. Ozer. I generated all of the figures in this chapter. 
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Introduction 

Pseudomonas aeruginosa is a major cause of serious nosocomial infections. 

Antimicrobial resistance (AMR) in P. aeruginosa is frequent and limits treatment options, which 

has led the Infectious Disease Society of America142 and the World Health Organization303 to list 

this bacterium as a priority pathogen for the development of new antimicrobials. Surveillance of 

highly drug-resistant P. aeruginosa is critical to better understand its epidemiology and limit its 

spread. 

Multilocus sequence typing (MLST) has identified distinct patterns in the epidemiology 

of multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa infections. 

While sporadic isolates may demonstrate high AMR, a large proportion of MDR/XDR infections 

are caused by a relatively small number of globally distributed sequence types (ST) termed 

“high-risk clones”129,131,140,192,199,200. Known high-risk clones such as ST235, ST111, and ST175 

may possess a variety of resistance determinants, both horizontally acquired and 

mutational129,132,168, suggesting that these clones’ high potential for acquiring AMR plays a role 

in their survival and spread in human populations131. While these STs are relatively common, 

other high-risk clones also contribute to drug-resistant infections worldwide129,131,186,199, and it is 

likely that additional high-risk clones have yet to be described. 

In this study, we investigated clonal complex (CC) 446, containing major STs 446 and 

298, as a potential emerging high-risk clone. We describe the global distribution of this lineage 

and the presence of highly resistant isolates at both our institution and others. In doing so, we 

identified the persistence of an XDR ST298 subclade (ST298*) possessing a large novel AMR 

plasmid at one academic medical center for at least 16 years. 
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Results 

Geographic Distribution of CC446 Isolates 

In the process of investigating P. aeruginosa strains from collections obtained at a single 

medical center (Northwestern Memorial Hospital – NMH), we noted an unusually large 

representation of isolates with the closely related ST298 and ST446 genotypes. BURST analysis 

identified these STs, which are single locus variants, as central members of a larger CC 

consisting of 20 STs. This CC was termed CC446 after the likely group founder (Figure 2.1). 

We next used in silico MLST to screen six P. aeruginosa patient and healthcare 

environmental strain collections from Chicago, Boston, and Spain (a total of 1259 isolates) for 

CC446 isolates and identified 54 (Table 2.1). Additionally, we screened 2483 P. aeruginosa 

genomes previously deposited in the NCBI database to identify another 38 CC446 isolates 

(Table 2.1). In total, we identified 92 CC446 isolates (49 ST298 and 43 ST446, Table 2.2). All 

CC446 isolates in this study were either ST298 or ST446, suggesting that these are the dominant 

clinical STs in this clonal complex. Whole-genome sequences were available for each of these 

isolates, and several had been previously published65,73,74,100,304. We also found multiple instances 

of CC446 strains mentioned in the literature and the PubMLST database for which whole-

genome sequences were not available180,181,192,305-308.  These CC446 isolates were cultured from 

North America, South America, Europe, Asia, and Oceania, indicating that CC446 is globally 

distributed (Figure 2.2). 
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Figure 2.1 Global optimal eBURST diagram showing sequence types in CC446. Each sequence 

type is represented as a node with lines connecting single locus variants. ST446 (light green) was 

identified as the likely founder of the clonal complex because it possessed the largest number of 

single locus variants.  Subgroup founders (ST298 and ST1963) are indicated in dark green.    

A B
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Table 2.1 Sequenced CC446 Isolates and Collection Source 

Collection # Isolates ST298 
(#) 

ST446 
(#) 

Total 
CC446 

(#) 
Location Source Years 

PABL 100 9 2 11 NMH Blood cultures 1999-2003 

MolEpi 301 10 4 14 NMH 
Microbiology and 

Molecular Epidemiology 
Lab 

2002-2009 

PA-NM 99 4 1 5 NMH Patient samples 2013-2018 

Hosp_Env 58 1 6 7 
Chicago 
Metro 
Area 

Health care facility 
environments (e.g. sinks) 2017-2018 

BWH 100 2 1 3 Boston Patient samples 2015-2016 
PASP 601 2 12 14 Spain Blood cultures 2008-2009 

NCBI 2483 21 17 38 Variousa Publicly available 
genome sequences - 

aUSA, Argentina, Belgium, Canada, Columbia, France, Germany, Netherlands, Pakistan, 

Portugal, Spain. 

NMH: Northwestern Memorial Hospital, Chicago, USA. 
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Table 2.2 Whole Genome Sequenced CC446 P. aeruginosa Isolates Included in This Study 

 

  

Name Colection Alternative Name ST Location Year BioSample Accession SRA Accession Genome Size (bp) Contigs/Scaffolds (#)
PABL020 PABL NA 298 NMH 2000 SAMN09831335 NA 6759755 509
PABL021 PABL NA 298 NMH 2000 SAMN09831336 NA 6506522 512
PABL022 PABL NA 298 NMH 2000 SAMN09831337 NA 6968177 152
PABL036 PABL NA 298 NMH 2001 SAMN09831349 NA 7226411 375
PABL040 PABL NA 298 NMH NA SAMN09831352 NA 6837974 431
PABL048 PABL NA 298 NMH 2001 SAMN09831360 NA 7294576 2
PABL056 PABL NA 298 NMH 2001 SAMN09831367 NA 7331427 663
PABL067 PABL NA 298 NMH 2001 SAMN09831378 NA 6884951 576
PABL072 PABL NA 446 NMH 2001 SAMN09831383 NA 6726822 165
PABL088 PABL NA 298 NMH 2002 SAMN09831398 NA 7174621 350
PABL097 PABL NA 446 NMH 2002 SAMN09831407 NA 6897023 246

PS1793 MolEpi NA 298 NMH NA SAMN12162657 NA 7266255 119
PS1796 MolEpi NA 298 NMH NA SAMN12162658 NA 7269149 138
PS1797 MolEpi NA 298 NMH NA SAMN12162659 NA 7265792 160
PS1875 MolEpi NA 298 NMH 2007 SAMN12162660 NA 7071643 227
PS1882 MolEpi NA 298 NMH 2007 SAMN12162661 NA 7228492 223
PS1884 MolEpi NA 446 NMH 2007 SAMN12162662 NA 6740329 124
PS1893 MolEpi NA 298 NMH 2007 SAMN12162663 NA 7223965 252
PS1900 MolEpi NA 298 NMH 2007 SAMN12162664 NA 7233292 243
PS1934 MolEpi NA 298 NMH 2007 SAMN12162665 NA 7219953 254
PS1946 MolEpi NA 446 NMH 2007 SAMN12162666 NA 6881977 165
PS1948 MolEpi NA 446 NMH 2007 SAMN12162667 NA 6883295 171
PS1955 MolEpi NA 298 NMH 2007 SAMN12162668 NA 6822019 234
PS1977 MolEpi NA 446 NMH 2007 SAMN12162669 NA 6607435 123
PS2027 MolEpi NA 298 NMH 2008 SAMN12162670 NA 6818562 234

PA-NM-015 PA-NM NA 298 NMH 2014 SAMN12162671 NA 6661543 104
PA-NM-069 PA-NM NA 298 NMH 2017 SAMN12162672 NA 7204989 229
PA-NM-074 PA-NM NA 446 NMH 2017 SAMN12162673 NA 6735376 99
PA-NM-079 PA-NM NA 298 NMH 2017 SAMN12162674 NA 7199132 217
PA-NM-088 PA-NM NA 298 NMH 2017 SAMN12162675 NA 7201493 222
ENVO278 Hosp_Env NA 446 Chicago, USA 2018 SAMN12162676 NA 6980029 330
ENVO281 Hosp_Env NA 446 Chicago, USA 2018 SAMN12162677 NA 6837357 108
ENVO304 Hosp_Env NA 446 Chicago, USA 2018 SAMN12162678 NA 6862184 117
OENV015 Hosp_Env NA 298 Chicago, USA 2017 SAMN12162679 NA 6861252 137
OENV043 Hosp_Env NA 446 Schaumburg, USA 2017 SAMN12162680 NA 6773683 101
OENV069 Hosp_Env NA 446 Barrington, USA 2017 SAMN12162681 NA 6834888 288
OENV139 Hosp_Env NA 446 Chicago, USA 2017 SAMN12162682 NA 6786588 108
BWH011 BWH NA 298 Boston, USA 2015 SAMN12162683 NA 7075697 125
BWH031 BWH NA 298 Boston, USA 2015 SAMN12162684 NA 7035660 101
BWH069 BWH NA 446 Boston, USA 2016 SAMN12162685 NA 7005703 133
PASP010 PASP NA 446 Spain 2008 SAMN12162686 NA 7164540 185
PASP063 PASP NA 446 Spain 2008 SAMN12162687 NA 6870678 89
PASP107 PASP NA 446 Spain 2008 SAMN12162688 NA 6837137 104
PASP118 PASP NA 298 Spain 2008 SAMN12162689 NA 6981866 120
PASP145 PASP NA 446 Spain 2008 SAMN12162690 NA 6980829 131
PASP163 PASP NA 446 Spain 2008 SAMN12162691 NA 6929527 130
PASP170 PASP NA 446 Spain 2008 SAMN12162692 NA 6859625 96
PASP174 PASP NA 446 Spain 2008 SAMN12162693 NA 7072736 141
PASP199 PASP NA 446 Spain 2008 SAMN12162694 NA 7115419 155
PASP363 PASP NA 298 Spain 2008 SAMN12162695 NA 6906610 140
PASP368 PASP NA 446 Spain 2008 SAMN12162696 NA 6977667 145
PASP375 PASP NA 446 Spain 2009 SAMN12162697 NA 6785831 103
PASP418 PASP NA 446 Spain 2009 SAMN12162698 NA 6813780 106
PASP614 PASP NA 446 Spain 2009 SAMN12162699 NA 6784771 107

AXPE NCBI BL22 298 USA NA SAMN02360735 SRR1014184 6997218 12
JARI NCBI PA103 298 NA NA SAMN02951864 SRX2736379 6711305 262
JIEQ NCBI BWH060 298 NA 2013 SAMN02402444 SRX422978 6763011 18
JIEX NCBI BWH053 298 NA 2013 SAMN02402437 SRX422944 6840259 25
JTMS NCBI AZPAE15054 298 Bogota, Columbia 2012 SAMN03105751 NA 6647129 101
JTMZ NCBI AZPAE15047 298 Victoria, Argentina 2012 SAMN03105744 NA 6898282 123
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Table 2.2 Continued 

 

NMH: Northwestern Memorial Hospital, Chicago, USA. 
  

Name Colection Alternative Name ST Location Year BioSample Accession SRA Accession Genome Size (bp) Contigs/Scaffolds (#)
JTND NCBI AZPAE15025 446 Madrid, Spain 2011 SAMN03105740 NA 6978967 109

JTNM NCBI AZPAE15034 298 Bilbao, Spain 2011 SAMN03105731 NA 6794620 92

JTPH NCBI AZPAE14987 298 Koln, Germany 2010 SAMN03105684 NA 6855155 121

JTTS NCBI AZPAE14870 298 Victoria, Argentina 2007 SAMN03105569 NA 6899104 112

JTYJ NCBI AZPAE14437 298 Canada 2010 SAMN03105448 NA 6714753 99

JTZF NCBI AZPAE13876 446 Portugal 2010 SAMN03105426 NA 6795623 153

JUMF NCBI 953_PAER 446 Seattle, USA 2012-2013 SAMN03198173 SRX762871 7045281 899

JUNG NCBI 928_PAER 298 Seattle, USA 2012-2013 SAMN03198146 SRX762844 6624059 890

JUNH NCBI 927_PAER 298 Seattle, USA 2012-2013 SAMN03198145 SRX762843 6654556 474

JUZD NCBI 637_PAER 298 Seattle, USA 2012-2013 SAMN03197837 SRX762535 6734429 1750

JVFW NCBI 468_PAER 298 Seattle, USA 2012-2013 SAMN03197662 SRX762360 6803974 278

JVGC NCBI 462_PAER 298 Seattle, USA 2012-2013 SAMN03197656 SRX762354 6898892 140

JVPD NCBI 230_PAER 298 Seattle, USA 2012-2013 SAMN03197421 Not Usable 6919796 136

LLMB NCBI WH-SGI-V-07172 446 France 1992 SAMN04128510 SRX1437077 7091160 104

LLMY NCBI WH-SGI-V-07227 298 USA 1995 SAMN04128533 SRX1437100 7059764 124

LLNC NCBI WH-SGI-V-07231 446 USA 1995 SAMN04128537 SRX1437104 6610758 110

LLOJ NCBI WH-SGI-V-07385 446 France 1991 SAMN04128570 SRX1437137 7037854 168

LLPI NCBI WH-SGI-V-07421 298 USA 2005 SAMN04128595 SRX1437162 6874120 135

LLQA NCBI WH-SGI-V-07494 446 USA 2005 SAMN04128613 SRX1437180 6367706 137

LLRE NCBI WH-SGI-V-07633 298 USA 2005 SAMN04128643 SRX1437210 6942577 138

LLRF NCBI WH-SGI-V-07634 446 USA 2005 SAMN04128644 SRX1437211 6870291 156

LLSF NCBI WH-SGI-V-07685 298 USA 2005 SAMN04128670 SRX1437237 6895101 151

LLTF NCBI WH-SGI-V-07711 446 USA 2008 SAMN04128696 SRX1437263 7567509 305

LLTL NCBI WH-SGI-V-07251 446 Netherlands 1997 SAMN04128702 SRX1437269 6945431 125

LLUT NCBI WH-SGI-V-07297 446 Pakistan 1998 SAMN04128736 SRX1437303 6772578 132

MPVG NCBI CLB24232 298 NA NA SAMN05774262 SRX2410572 7087679 185

MPVJ NCBI CLB24412 446 NA NA SAMN05774265 SRX2410578 7094206 203

NMPT NCBI 53014 446 Belgium 2013 SAMN07344900 NA 7050840 383

NMPU NCBI 53012 446 Belgium 2013 SAMN07344899 NA 7042955 588

NMPV NCBI 53011 446 Belgium 2012 SAMN07344898 NA 7005891 934

NMPW NCBI 41437 446 Belgium 2010 SAMN07344897 NA 7100137 586

S04_90 NCBI S04 90 446 Rotterdam, Netherlands 2013 SAMN03396926 SRX976879 7259150 2
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Figure 2.2 Global distribution of CC446. World map indicates countries where CC446 isolates 

have been detected. Countries with at least one isolate associated with a genome analyzed in this 

study are shaded blue. Countries in which a CC446 isolate has been reported (in the literature or 

PubMLST database305) but no genome was available are shaded in black. 
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Antimicrobial Resistance of CC446 Isolates 

We had access to the 54 CC446 isolates from the Chicago, Boston, and Spain collections 

and performed microbroth-dilution antibiotic susceptibility testing on them (Table 2.3). Overall, 

52% (28/54) of the isolates were MDR, of which 54% (15/28) were XDR. AMR was most 

prevalent in isolates collected at NMH, with 77% (23/30) of isolates MDR and 61% (14/23) of 

those XDR. In particular, almost all NMH ST298 isolates (21/23, 91%) were MDR, of which 

many (13/21, 62%) were XDR. Of the 14 Spanish CC446 isolates, four ST446 isolates were 

MDR, one of which was XDR. One of three CC446 isolates from Boston was MDR. In contrast 

to isolates collected from patient samples, none of the seven healthcare environmental CC446 

isolates were MDR. Additionally, four XDR ST298 strains from NMH showed nonsusceptibility 

to recently developed β-lactam/β-lactamase inhibitor combinations ceftazidime-avibactam and 

ceftolozane-tazobactam on disk diffusion testing (Table 2.3). The high prevalence of MDR/XDR 

isolates in this study, coupled with the global distribution of CC446 (Figure 2.2) and previous 

reports of AMR in this clonal complex65,74,100,192,307, support the classification of CC446 as an 

emerging high-risk clone.  

 

  



Table 2.3 Antibacterial Susceptibility Testing of CC446 P. aeruginosa Included in This Study 

Microbroth-dilution antimicrobial susceptibility testing and MIC determination performed by Dr. Kelly Bachta 

 

Name ST Location
in1697 

Presence
ST298* 

Subclade
Gent Cep Ctz Pip/Tazo Mero Az Cipro Col Ctz/Avi Ceftol/Tazo MDR XDR

PABL020 298 NMH + 8 - ns 8 4 16 16 - ns 16 - ns 64 - ns 1 21 25 +

PABL021 298 NMH + 16 - ns 4 8 8 16 - ns 32 - ns 64 - ns 0.5 23 24 +

PABL036 298 NMH ± + >128 - ns 16 - ns 4 64 - ns 8 - ns 16 - ns 32 - ns 1 22 23 + +

PABL040 298 NMH + 4 8 4 16 4 - ns 16 - ns 32 - ns 1 24 25 +

PABL048 298 NMH + + >128 - ns 16 - ns 4 64 - ns 4 - ns 16 - ns 32 - ns 1 22 23 + +

PABL056 298 NMH + + >128 - ns 16 - ns 2 64 - ns 4 - ns 32 - ns 32 - ns 1 23 24 + +

PABL067 298 NMH ± + >128 - ns 16 - ns 4 64 - ns 4 - ns 32 - ns 32 - ns 1 18 - ns 19 - ns + +

PABL088 298 NMH + + >128 - ns 16 - ns 4 32- ns 16 - ns 32 - ns 4 - ns 0.5 25 26 + +

PS1793 298 NMH + + >128 - ns 16 - ns 64 - ns 64 - ns 16 - ns 16 - ns 32 - ns 1 16 - ns 19 - ns + +

PS1796 298 NMH + + >128 - ns 16 - ns 64 - ns 64 - ns 16 - ns 16 - ns 32 - ns 1 17 - ns 18 - ns + +

PS1797 298 NMH + + >128 - ns 32 - ns 64 - ns 128 - ns 16 - ns 8 32 - ns 1 17 - ns 18 - ns + +

PS1875 298 NMH + + >128 - ns 8 2 64 - ns 8 - ns 8 16 - ns 1 21 21 +

PS1882 298 NMH + + >128 - ns 8 2 64 - ns 16 - ns 8 16 - ns 1 25 27 +

PS1893 298 NMH + + >128 - ns 8 4 64 - ns 16 - ns 16 - ns 32 - ns 1 23 24 + +

PS1900 298 NMH + + >128 - ns 4 2 32- ns 8 - ns 8 16 - ns 1 24 25 +

PS1934 298 NMH + + >128 - ns 16 - ns 2 128 - ns 16 - ns 16 - ns 8 - ns 0.5 27 29 + +

PS1955 298 NMH + 2 8 8 16 16 - ns 16 - ns 16 - ns 0.5 21 24 +

PS2027 298 NMH + 4 4 4 16 32 - ns 16 - ns 16 - ns 1 25 31 +

PA-NM-069 298 NMH + + >128 - ns 16 - ns 4 64 - ns 32 - ns 32 - ns 64 - ns 4 - ns 24 25 + +

PA-NM-079 298 NMH + + >128 - ns 16 - ns 4 64 - ns 32 - ns 32 - ns 32 - ns 1 23 23 + +

PA-NM-088 298 NMH + + >128 - ns 16 - ns 4 64 - ns 32 - ns 32 - ns 32 - ns 1 24 25 + +

PABL022 298 NMH 2 4 1 4 4 - ns 4 <0.25 1 28 28
PA-NM-015 298 NMH 2 2 2 4 0.5 4 <0.25 1 26 26
OENV015 298 Chicago 4 4 2 8 8 - ns 4 <0.25 1 28 29
BWH011 298 Boston 2 4 2 4 8 - ns 8 32 - ns 1 24 25
BWH031 298 Boston 0.5 16 - ns 32 - ns 16 32 - ns 64 - ns 32 - ns 1 21 26 +

PASP118 298 Spain 2 4 2 8 16 - ns 8 <0.25 1 24 27
PASP363 298 Spain 2 1 1 4 0.5 4 <0.25 1 25 28
PABL072 446 NMH 2 4 4 16 1 16 - ns 16 - ns 1 21 24
PABL097 446 NMH 4 8 2 4 0.5 4 16 - ns 1 23 23
PS1884 446 NMH 2 1 2 4 1 8 <0.25 1 24 23
PS1946 446 NMH 4 8 8 32 - ns 16 - ns 8 32 - ns 1 24 22 +

PS1948 446 NMH 8 - ns 8 16 - ns 32 - ns 16 - ns 8 32 - ns 1 23 22 + +

PS1977 446 NMH 1 2 4 32 - ns 1 8 <0.25 1 24 24
PA-NM-074 446 NMH <0.25 4 4 8 2 16 <0.25 0.5 28 27

Minimum Inhibitory Concentration (µg/mL) Zone Diameter (mm)

75 



Table 2.3 Continued 

 

Gent:	gentamicin,	Cep:	cefepime,	Ctz:	ceftazidime,	Pip/Tazo:	piperacillin-tazobactam,	Mero:	meropenem,	Az:	aztreonam,	Cipro:	

ciprofloxacin,	Col:	Colistin,	Ctz,	Ctz/Avi:	ceftazidime-avibactam,	Ceftol/Tazo:	ceftolozane-tazobactam.	

NMH:	Northwestern	Memorial	Hospital,	Chicago,	USA.	

±:	Heterogenous	presence	of	in1697	in	some	colonies.	

ns:	non-susceptible	(intermediate	and	resistant);	Clinical	Laboratory	Standards	Institute,	MIC	Interpretive	Standards	(µg/mL),	

2018.	

MDR:	ns	to	at	least	one	drug	in	>=	3	classes	tested,	XDR:	ns	to	at	least	one	drug	in	all	but	<=2	classes	tested	

Name ST Location
in1697 

Presence
ST298* 

Subclade
Gent Cep Ctz Pip/Tazo Mero Az Cipro Col Ctz/Avi Ceftol/Tazo MDR XDR

OENV043 446 Chicago 2 4 2 8 0.5 16 - ns <0.25 1 27 28
OENV069 446 Chicago 4 2 2 4 0.5 8 <0.25 1 28 28
OENV139 446 Chicago 2 4 2 8 1 8 <0.25 0.5 24 25
ENVO278 446 Chicago <0.25 4 4 4 2 16 - ns <0.25 1 27 25
ENVO281 446 Chicago 2 4 2 4 1 8 <0.25 1 25 26
ENVO304 446 Chicago 4 2 1 4 0.5 4 <0.25 1 24 24
BWH069 446 Boston 4 4 2 8 8 - ns 8 <0.25 1 22 23
PASP010 446 Spain 2 2 16 - ns 16 0.5 8 <0.25 1 23 24
PASP063 446 Spain 2 4 16 - ns 128 - ns 16 - ns 8 <0.25 1 21 21 +
PASP107 446 Spain 2 1 1 4 1 4 <0.25 0.5 26 26
PASP145 446 Spain 4 4 1 4 8 - ns 4 <0.25 1 24 24
PASP163 446 Spain 2 1 1 4 1 4 <0.25 1 25 25
PASP170 446 Spain 2 16 - ns 32 - ns 64 - ns 1 16 - ns <0.25 1 27 26 +
PASP174 446 Spain 2 2 2 16 0.5 8 <0.25 1 25 25
PASP199 446 Spain 2 16 - ns 32 - ns 64 - ns 4 32 - ns <0.25 1 25 25 +
PASP368 446 Spain 4 8 1 4 0.5 4 0.5 1 23 22
PASP375 446 Spain 2 2 1 8 1 4 <0.25 1 22 23
PASP418 446 Spain 8 - ns 32 - ns 16 - ns 128 - ns 32 - ns 16 - ns 1 1 21 23 + +
PASP614 446 Spain 2 4 4 16 1 16 - ns 0.5 1 21 22

Minimum Inhibitory Concentration (µg/mL) Zone Diameter (mm)

76 
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Identification of AMR Integron in1697 in NMH ST298 Isolates 

To determine the genetic basis for the high rates of AMR in ST298 isolates from NMH, 

we identified resistance genes from their whole genome sequences using the ResFinder 

database309. We identified a locus containing multiple AMR genes present in 16 MDR ST298 

isolates from NMH. This locus was present in 76.2% (16/21) of MDR ST298 isolates from 

NMH, and 81.3% (13/16) of these isolates were XDR (Table 2.3). Characterization of this locus 

revealed it to be a novel class 1 integron designated in1697 (Figure 2.3). As is common for class 

1 integrons, it consists of a 5’ conserved segment (5’-CS) containing the intl1 integrase gene and 

a promoter driving cassette expression, several resistance gene cassettes, and a 3’ conserved 

segment (3’-CS) containing sul1 (sulphonamide resistance) and qacE∆1 (quaternary ammonium 

compound, QAC, resistance)98. Gene cassettes in in1697 include the β-lactamase blaOXA-10, 

aminoglycoside resistance genes aadB and aadA10e, and QAC resistance gene qacF. Isolates 

with in1697 showed high levels of gentamicin resistance (>128 µg/mL) not seen among other 

CC446 isolates tested. These findings suggest that a novel integron, in1697, contributes to the 

antibiotic resistance of some CC446 isolates. 
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Figure 2.3. Diagram of AMR class I integron in1697. In1697 consists of a 5’ conserved segment 

(5’-CS) with the integrase intI1 and promoter Pc, AMR cassettes, and a 3’ conserved segment 

(3’-CS) of qacE∆1 and sul1. Complete attC recombination sites were identified downstream of 

qacF and aadB, and truncated attC sites were identified downstream of blaOXA-10 and 

aad10Ae. In1697 appears to be part of transposable-like element that includes a partial tni 

transposon operon and has as its borders IRi and IRt (25-bp imperfect [92% identity] inverted 

repeats). 
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Identification of a large AMR plasmid in NMH ST298 isolates 

To investigate the genomic context of in1697, we performed long-read sequencing and 

complete genome construction for one in1697-positive isolate from NMH (PABL048). This 

yielded a 6,879,622 bp bacterial chromosome and revealed that in1697 is located on a large 

plasmid (414,954 bp) that we named pPABL048 (Figure 2.4). The plasmid pPABL048 contains 

496 coding sequences, some of which were predicted to encode for antimicrobial/disinfectant 

resistance proteins, heavy metal resistance proteins, and chemotaxis proteins (Supplementary 

Table 2.1). Screening both the PABL048 chromosome and plasmid against the virulence factor 

database identified several predicted virulence factors on the plasmid with 3 related to Type IV 

pili and 1 potentially related to carbon storage regulation (Supplementary Table 2.2)310. 

Sequencing reads for all isolates containing in1697 showed substantial alignment to pPABL048 

(generally >90% sequence coverage) with few SNVs (≤4), indicating that these isolates contain 

very similar plasmids. The exception is PS1875 (57.6% alignment), which is missing a large 

contiguous portion of the plasmid (Table 2.4 and Figure 2.5). In1697 was not found outside the 

context of pPABL048. We compared read alignments of in1697 containing isolates to the 

PABL048 chromosome and plasmid (excluding PS1875 and PABL048 itself). The median depth 

of plasmid alignments was on average 1.47 times the median depth of chromosome alignments, 

suggesting that pPABL048 is present at a low copy number (Table 2.5). In summary, pPABL048 

is a large ST298-associated plasmid containing a novel AMR class 1 integron. 
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Figure 2.4 Diagram of the large AMR plasmid pPABL048. Rings (from in to out) show GC 

skew, GC%, coding sequences, and position in bp.  The location of in1697 is highlighted in red. 
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Table 2.4 Alignment of CC446 Isolates to pPABL048 

 
  

Name Percent Alignmenta SNVsb in1697 
PABL020 15.6 296
PABL021 0.8 0
PABL022 5.7 113
PABL036 99.4 2 +

PABL036-GentR 99.8 2 +
PABL036-GentS 4.1 94
PABL040 4.0 64
PABL048-c1 4.1 93
PABL048-c2 4.1 93
PABL056 99.4 3 +
PABL067 4.1 87

PABL067-GentR 99.9 1 +
PABL067-GentS 4.1 93
PABL072 4.7 422
PABL088 94.5 3 +
PABL097 4.4 467
PS1793 98.8 4 +
PS1796 98.7 4 +
PS1797 98.7 4 +
PS1875 57.6 1 +
PS1882 99.7 3 +
PS1884 6.6 395
PS1893 99.7 0 +
PS1900 99.8 3 +
PS1934 99.7 1 +
PS1946 4.4 462
PS1948 4.4 466
PS1955 3.9 77
PS1977 6.0 140
PS2027 3.9 73

PA-NM-015 5.3 600
PA-NM-069 93.4 1 +
PA-NM-074 6.0 287
PA-NM-079 93.4 2 +
PA-NM-088 93.4 1 +
ENVO278 6.2 318
ENVO281 6.2 310
ENVO304 8.7 2099
OENV015 4.5 606
OENV043 4.1 501
OENV069 5.4 119
OENV139 4.1 535
BWH011 3.7 162
BWH031 3.8 199
BWH069 4.2 206
PASP010 4.2 275
PASP063 6.1 273
PASP107 5.5 141
PASP118 5.6 98
PASP145 4.1 420
PASP163 6.5 391
PASP170 5.8 171
PASP174 7.4 381
PASP199 8.2 519
PASP363 5.2 597
PASP368 4.6 471
PASP375 5.9 176
PASP418 5.8 174
PASP614 5.8 157
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Table 2.4 Continued 

 

aPercentage of total length of pPABL048 covered by aligned sequences. When reads were 

available genomes were aligned to pPABL048 with BWA using a minimum depth cutoff of 5 

reads.  When only contigs were available genomes were aligned with NUCmer. 

bSNVs after filtering masked positions. 

c: experimentally cured of pPABL048, GentR: derived from gentamicin resistant colony, GentS: 

derived from gentamicin sensitive colony. 

  

Name Percent Alignmenta SNVsb in1697 
AXPE 5.5 52
JARI 6.0 115
JIEQ 3.2 92
JIEX 3.3 109
JUMF 7.0 935
JUNG 3.0 24
JUNH 2.8 35
JUZD 5.4 22
JVFW 5.4 43
JVGC 5.4 40
LLMB 4.6 501
LLMY 6.0 129
LLNC 5.6 112
LLOJ 4.5 462
LLPI 6.0 118
LLQA 6.6 369
LLRE 5.1 442
LLRF 4.0 481
LLSF 6.0 599
LLTF 86.8 5311
LLTL 4.4 440
LLUT 4.3 360
MPVG 82.4 3424
MPVJ 5.5 406
S04_90 6.5 64
JTMS 5.4 786
JTMZ 4.6 472
JTND 3.8 463
JTNM 5.6 205
JTPH 5.6 205
JTTS 4.6 472
JTYJ 5.6 207
JTZF 4.5 382
JVPD 4.7 799
NMPT 5.1 546
NMPU 5.1 546
NMPV 5.1 546
NMPW 5.1 546



 83 
PABL020: 

 
PABL021: 

 
PABL022 

 
PABL036: 

 
PABL036-GentR: 

 
PABL036-GentS: 

 
PABL040: 

 
PABL048-c1: 

 
PABL048-c2: 

 
PABL056: 

 
PABL067: 

 
PABL067-GentR: 

 
 
PABL067-GentS: 



 84 

 
PABL088: 

 
PS1793: 

 
PS1796: 

 
PS1797: 

 
PS1875: 

 
PS1882: 

 
PS1893: 

 
PS1900: 

 
PS1934: 

 
PS1955: 

 
PS2027: 

 
 
PA-NM-015: 



 85 

 
PA-NM-069: 

 
PA-NM-079: 

 
PA-NM-088: 

 
Figure 2.5 Visualization of NMH ST298 isolate read alignments to pPABL048. For strains with 

heterogenous plasmid presence (PABL036 and PABL067) alignments for the original reads, 

reads from sequencing a gentamicin resistant colony (GentR) and reads from sequencing a 

gentamicin sensitive colony (GentS) are shown. For PABL048, alignments of reads from two 

colonies experimentally cured of pPABL048 (c1 and c2) are shown. 
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Table 2.5 Comparison of Alignment Depth of in1697-Containing Isolates to the PABL048 

Chromosome and Plasmid 

 

GentR: derived from gentamicin resistant colony   

Name Percent Aligned 
Chromosome

Median Depth 
Chromosome

Percent Aligned 
Plasmid

Medium Depth 
Plasmid

Plasmid Depth / 
Chromosome Depth

PABL036 98.32 169 99.37 169 1.00
PABL056 98.34 136 99.40 172 1.26

PABL067-GentR 98.08 37 99.89 57 1.54
PABL088 97.96 115 94.50 142 1.23
PS1793 98.19 79 98.77 125 1.58
PS1796 97.93 33 98.72 34 1.03
PS1797 97.72 25 98.68 42 1.68
PS1882 98.67 53 99.66 71 1.34
PS1893 98.76 54 99.68 81 1.50
PS1900 98.82 60 99.78 84 1.40
PS1934 98.67 39 99.71 105 2.69

PA-NM-069 99.01 78 93.42 119 1.53
PA-NM-079 98.96 64 93.41 88 1.38
PA-NM-088 98.95 59 93.41 86 1.46
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Two ST298 strains from NMH, PABL036 and PABL067, expressed a heterogeneous 

pattern of resistance. That is, some colonies from the same culture stock expressed high levels of 

gentamicin resistance while others did not. Whole genome sequencing confirmed that this 

variable pattern of resistance was associated with the presence or absence of the AMR plasmid 

pPABL048 (Table 2.4 and Figure 2.5). This discrepancy accounts for the lack of in1697 in our 

initial whole-genome sequence of PABL067. These findings indicate that pPABL048 can be 

spontaneously lost by some strains, which could potentially cause inaccurate antibiotic 

susceptibility results. 

To explore the function of the plasmid, we generated plasmid-cured variants of PABL048 

(PABL048-c1 and PABL048-c2, Table 2.4 and Figure 2.5) and tested the impact of pPABL048 

on AMR. Isolates lacking the plasmid showed reduced MICs to gentamicin and piperacillin-

tazobactam compared to their isogenic partners possessing the plasmid (Table 2.6), indicating 

that pPABL048 encodes for resistance to these antibiotics.  
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Table 2.6 Minimum Inhibitory Concentrations (MICs) of ST298* P. aeruginosa isolates with 

and without pPABL048 

Microbroth-dilution antimicrobial susceptibility testing and MIC determination performed by Dr. 

Kelly Bachta 

    MICs (µg/mL) 

Name pPABL048 Gent Cep Ctz Pip/Tazo Mero Az Cipro Col 

PABL048 + >128 - 
ns 8 2 64 – ns 8 - ns 32 - ns 32 - ns 0.5 

PABL048-c1  4 4 4 16 4 – ns 16 - ns 16 - ns 0.5 

PABL048-c2  8 – ns 4 4 16 4 - ns 16 - ns 16 - ns 0.5 

PABL036-GentR + >128 - 
ns 8 4 32 - ns 8 - ns 16 - ns 32 - ns 0.5 

PABL036-GentS  4 4 4 16 8 - ns 16 - ns 32 - ns 0.5 

PABL067-GentR + >128 - 
ns 8 4 64 – ns 8 – ns 32 – ns 32 – ns 0.5 

PABL067-GentS  4 4 4 16 4 - ns 16 - ns 32 - ns 0.5 

Gent: gentamicin, Cep: cefepime, Ctz: ceftazidime, Pip/Tazo: piperacillin-tazobactam, Mero: 

meropenem, Az: aztreonam, Cipro: ciprofloxacin, Col: Colistin. 

ns: non-susceptible (intermediate and resistant); Clinical Laboratory Standards Institute, MIC 

Interpretive Standards (µg/mL), 2018. 

c: experimentally cured of pPABL048, GentR: derived from gentamicin resistant colony, GentS: 
derived from gentamicin sensitive colony.  
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Phylogenetic Analysis of CC446 

To better understand the relationships between CC446 isolates included in this study, we 

constructed a recombination-corrected maximum likelihood phylogenetic tree based on core 

genome alignment to the PABL048 chromosome (Figure 2.6).  We found that while ST298 and 

ST446 are closely related, they are phylogenetically distinct. The majority (21/30) of CC446 

isolates from NMH clustered in a distinct ST298 subclade (designated ST298*), which was not 

seen in any of the other collections. Both pPABL048 and in1697 are exclusive to this subclade. 

ST298* isolates were collected between 2000 and 2017 (with pPABL048 first detected in 2001). 

While ST298* was only detected at NMH, ST298 and ST446 isolates outside of this subclade 

were also present at NMH. This suggests a prolonged local epidemic of ST298* had occurred in 

addition to the general circulation of other CC446 isolates. ST298* isolates showed high levels 

of AMR, while sporadic CC446 isolates from NMH were largely sensitive to antimicrobials, the 

exceptions being the ST446 isolates PS1946 (MDR) and PS1948 (XDR) (Table 2.3). Clustering 

the CC446 isolates using the hierBAPS algorithm311 supported the definition of ST298* as a 

distinct subclade of ST298. It is notable that hierBAPS analysis also split ST446 into two 

subclades, a finding which was not investigated further (Figure 2.7).  

We used Bayesian phylogenetic analysis to construct a time-scaled phylogenetic tree of 

17 ST298* isolates with available collection dates (Figure 4). The most recent common ancestor 

for ST298* is estimated to have arisen in the year 1980 (mean 1980.9, 95% HPD interval 

1973.8-1987.4). Based on this analysis, ST298* has been evolving at a rate of 1.80 (95% HPD 

interval 1.32-2.29) core genome SNVs/year. This is comparable to previous estimates in non-

hypermutable P. aeruginosa12,312.  
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Figure 2.6. Recombination-corrected maximum likelihood phylogenetic tree of the CC446 

isolates included in this study based on core genome alignment to the chromosome of PABL048. 

(A) Midpoint-rooted circular tree annotated (from inner to outer rings) with sequence type, 

collection of origin, and the presence of in1697. (B) Unrooted radial tree with sequence type and 

subclade indicated by blue (ST446), green (ST298), and grey (ST298*) outlines. Isolates 

collected from NMH are indicated with purple circles. 
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Figure 2.7 Genetic clustering with the hierBAPS algorithm agrees with the designation of the 

ST298* subclade. Mid-point rooted circular recombination-corrected maximum likelihood 

phylogenetic tree of the CC446 isolates included in this study. Annotations with sequence type, 

hierBAPS cluster assignment, and subclade (with ST298* isolates shaded grey). Only the first 

level of hierBAPS clustering is shown.  
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Figure 2.8. Time-scaled phylogenetic tree of ST298* isolates. Tips indicate date of isolation. 

Root is the estimated last common ancestor of these isolates (mean 1980.9, 95% HPD interval 

1973.8-1987.4). The presence of in1697 is indicated by shaded bars on the right, with light grey 

indicating heterogenous presence in only some colonies for a given isolate. 

  

1970 1980 1990 2000 2010 2020

PA-NM-088

PS1955

PS1893

PS1934

PS1882

PABL056

PABL036

PS2027

PS1900

PS1875

PABL067

PABL088

PABL021

PABL020

PABL048

PA-NM-069

PA-NM-079



 93 
Mutational Resistance in ST298* 

While pPABL048, likely through in1697, contributes to increased resistance to 

aminoglycosides and penicillins, acquired AMR genes do not explain the resistance of ST298* 

isolates to other antibacterials. We investigated whether mutations could explain these resistance 

patterns. PABL048 harbors a T83I substitution in GyrA and a S87L substitution in ParC that in 

combination confer high fluoroquinolone resistance178. PABL048 also possesses a 4 amino acid 

deletion (residues 12-15) and 3 single amino acid substitutions in NalC compared to the 

reference strain PAO1. While the impact of these mutations is unknown, inactivation of NalC 

increases resistance to multiple antibacterials through MexAB-OprM efflux pump 

overproduction146. Mutations impacting the porin OprD can play a role in carbapenem 

resistance144. ST298* isolates, all of which are meropenem non-susceptible, show multiple 

amino acid substitutions of unclear significance in OprD compared to PAO1. The ST298* 

isolates with the highest meropenem resistance (PS2027, PA-NM-069, PA-NM-079, PA-NM-

088) show both amino acid deletions from residues 12-54 as well as amino acid substitutions in 

residues 2-10 (Figure 2.9). Ceftazidime resistance in the ST298* isolates PS1793, PS1796 and 

PS1797 is likely secondary to a deletion of amino acid residues 2-30 in AmpD, leading to AmpC 

overproduction149 (Figure 2.10). These three isolates also share 2-amino-acid substitutions in the 

plasmid-borne OXA-10, which may confer extended spectrum β-lactamase activity. These 

substitutions include the G157D substitution previously seen in the extended spectrum OXA-10 

variant OXA-14187 as well as a F153S substitution (Figure 2.11). These findings suggest that 

ST298* isolates have accumulated mutations that confer antibiotic resistance. 
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Figure 2.9 Multiple alignment of OprD protein sequences from ST298* isolates. Deviations 

from the consensus sequence are highlighted in pink. The sequence for PAO1 OprD is included 

as a reference. 
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Figure 2.10 Multiple alignment of AmpD protein sequences from ST298* isolates. Deviations 

from the consensus sequence are highlighted in pink. The sequence for PAO1 AmpD is included 

as a reference. 
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MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
MH FD SVTGWVRGVRHCP SPN FN LRPQGDAV SL L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
M- - - - - - - - - - - - - - - - - - - - - - - - - - - - - S L L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
M- - - - - - - - - - - - - - - - - - - - - - - - - - - - - S L L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR
M- - - - - - - - - - - - - - - - - - - - - - - - - - - - - S L L V I HN I SL PPGQFGTGKVQA F FQNR LDPNEHPY FEE I RH L T V SAH F L I ERDGA I TQFV SCHDR

AWHAGV SCFDGREACND F SLG I E L EGTDT EPYTDAQYT A L AGL T R L LRAA FPG I T PER I QGHCD I A PERKTDPGEA FDWSRYRAGL TD SK EET
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Figure 2.11 Multiple alignment of OXA-10 protein sequences from ST298* isolates possessing 

in1697, highlighting potential extended spectrum OXA-10 variants. Deviations from the 

consensus sequence are highlighted in pink. The sequence for OXA-10 and OXA-14 (a known 

extended spectrum variant) is included as a reference. For PABL067, sequence from a 

gentamicin resistant colony (GentR) is considered.  
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Comparative Genomics of pPABL048 

While pPABL048 appears to be exclusive to ST298*, evidence of related plasmids can be 

seen in other isolates, including LLTF and MPVG from this study (Table 2.4). We identified 16 

complete plasmids with substantial sequence alignment (≥70% coverage) to pPABL048 in 

multiple Pseudomonas species (Table 2.7), suggesting that pPABL048 is part of a family of large 

Pseudomonas genus plasmids. No similar plasmids were found in available sequences from non-

Pseudomonas Gammaproteobacteria. We defined the “plasmid backbone” as sequence positions 

present in 16/17 of these plasmids (Figure 2.12A). While in1697 is not part of the backbone, 

other genetic features, such as replication and partitioning genes, a chemotaxis locus, putative 

pilus locus, and a tellurium resistance locus are common to these plasmids. The “backbone” 

replication protein gene common to these plasmids has not been characterized. Of note, other 

cases of integron-mediated AMR have been described in this family of plasmids95,185,313. To 

identify additional Pseudomonas isolates that may carry pPABL048-like plasmids, we screened 

publicly available draft genomes and identified 32 with >70% alignment to pPABL048 (Table 

2.8). Phylogenetic analysis of all 63 pPABL048-like sequence alignments show that they do not 

appear to segregate by species (Figure 2.12B-C). Additionally, ST298* pPABL048 alignments 

form a distinct group, showing that pPABL048 itself has not been previously reported. These 

results that pPABL048 is a novel member of a family of large Pseudomonas genus plasmids. 

  



Table 2.7 Previously Identified Pseudomonas Genus Plasmids With >70% Alignment to pPABL048 

 

aBased on BLASTn with pPABL048 as query. 

bBased on NUCmer alignment of plasmid to pPABL048 reference.  

Name Species GenBank Accession Size (bp) Strain Collection Date Strain ST Query Coveragea Query Identitya Percent Alignmentb SNVsb

pPABL048 aeruginosa NA 414954 PABL048 2001 298 NA NA NA NA
AR439_plasmid_unnamed2 aeruginosa CP029096.1 437392 AR439 NA 179 92% 99% 91.6 5265

p12939-OXA aeruginosa MF344569.1 496436 NA NA NA 89% 99% 88.1 5873
pJB37 aeruginosa KY494864.1 464804 FFUP_PS_37 NA NA 87% 99% 86.3 8372

RW109_plasmid_1 aeruginosa LT969519.1 555265 RW109 NA 111 85% 99% 84.6 2673
pOZ176 aeruginosa KC543497.1 500839 PA96 2000 1129 85% 99% 84.1 7775

AR_0356_plasmid_unnamed2 aeruginosa CP027170.1 438531 AR_0356 NA 1006 85% 99% 83.9 4080
AR441_plasmid_unnamed3 aeruginosa CP029094.1 438529 AR441 NA 1006 85% 99% 83.9 4082

pBM413 aeruginosa CP016215.1 423017 PA121617 2012 389 82% 99% 82.6 6511
p727-IMP aeruginosa MF344568 430173 NA NA NA 78% 99% 77.4 6146
pA681-IMP aeruginosa MF344570.1 397519 NA NA NA 73% 98% 73.8 6067
pR31014-IMP aeruginosa MF344571.1 374000 NA NA NA 70% 99% 70.2 5396
pRBL16 citronellolis CP015879.1 370338 SJTE-3 2015 NA 82% 99% 82.8 6095

P19E3_plasmid_p1 koreensis CP027478.1 467568 P19E3 2014 NA 85% 99% 85.5 5635
pTTS12 putida CP009975.1 583900 S12 1989 NA 84% 98% 82.0 7776

pSY153-MDR putida KY883660.1 468170 SY153 2012 NA 81% 98% 81.3 6321
p12969-DIM putida KU130294.1 409102 12969 2013 NA 78% 98% 77.1 9631

98 
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Table 2.8 Pseudomonas Genus Genomes With >70% Alignment to pPABL048 

 

aCC298 Pseudomonas aeruginosa genome included in this study, see Table 2.2. 

bBased on NUCmer alignment of plasmid to pPABL048 reference.  

Name Species Biosample Accession Refseq Accession Percent Alignmentb SNVsb

AZPAE14689 aeruginosa SAMN03105468 GCF_000794545.1 94.28 5430
WH-SGI-V-07698 aeruginosa SAMN04128683 GCF_001453725.1 92.84 4699
WH-SGI-V-07237 aeruginosa SAMN04128543 GCF_001450005.1 92.75 4888

105777 aeruginosa SAMN03076164 GCF_001560865.1 87.7 7875
WH-SGI-V-07253 aeruginosa SAMN04128704 GCF_001452905.1 87.32 5736

WH-SGI-V-07711 (LLTF)a aeruginosa SAMN04128696 GCF_001452765.1 86.77 5859
AZPAE14838 aeruginosa SAMN03105539 GCF_000794335.1 86.41 7898
AZPAE14863 aeruginosa SAMN03105562 GCF_000790145.1 86.01 5576
GTC 10899 monteilii SAMD00031681 GCF_001753835.1 85.69 5970

AZPAE14956 aeruginosa SAMN03105654 GCF_000791685.1 85.38 8605
BWHPSA028 aeruginosa SAMN02360700 GCF_000481145.1 84.65 2380
isolate 15.111a aeruginosa SAMEA3296128 GCF_001374055.1 84.63 2608

WH-SGI-V-07492 aeruginosa SAMN04128611 GCF_001453185.1 84.31 5944
M140A aeruginosa SAMN04966044 GCF_001750425.1 84.19 6462

Stone 130 aeruginosa SAMN01779569 GCF_000478465.2 84.19 7688
WCHP16 sp. SAMN05415086 GCF_001695625.1 84.04 6975

PI1 sp. SAMN03262487 GCF_000812405.1 83.69 8870
AZPAE14840 aeruginosa SAMN03105541 GCF_000789555.1 83.63 7822

WH-SGI-V-07709 aeruginosa SAMN04128694 GCF_001452755.1 83.09 8635
WH-SGI-V-07378 aeruginosa SAMN04128563 GCF_001450265.1 82.89 4436

AZPAE14872 aeruginosa SAMN03105571 GCF_000790355.1 82.85 8196
NBRC 111118 sp. SAMD00031653 GCF_001320085.1 82.55 8084
AZPAE14871 aeruginosa SAMN03105570 GCF_000790325.1 82.35 5936

PA13SY16 aeruginosa SAMN04966046 GCF_001750225.1 82.1 6501
CLB24232 (MPVG)a aeruginosa SAMN05774262 GCF_001909485.1 81.88 3619

S12 putida SAMN02470946 GCF_000287915.1 81.75 7777
WH-SGI-V-07300 aeruginosa SAMN04128737 GCF_001454265.1 81.35 5850

GTC 10897 monteilii SAMD00031680 GCF_001319945.1 81.07 7501
AZPAE14827 aeruginosa SAMN03105528 GCF_000795365.1 80.62 4334

P179 sp. SAMN01779567 GCF_000478485.2 80.2 9103
Isolate 10% 5 aeruginosa SAMEA3296136 GCF_001374215.1 80.07 9236

WH-SGI-V-07165 aeruginosa SAMN04128503 GCF_001449465.1 72.85 6947
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Figure 2.12 Comparative genomic analysis of pPABL048. (A) Linear diagram of pPABL084 

showing coding sequences (light blue) and the plasmid backbone (black) defined as positions 

present in at least 16 of 17 similar plasmids. In1697 is indicated in red. Plasmid backbone 

features including putative replication (rep) and partitioning (par) genes, chemotaxis locus (che), 

putative pili locus (pil), and tellurium resistance locus (ter) are indicated in dark blue. (B) 

Midpoint-rooted circular and (C) unrooted radial maximum likelihood phylogenetic trees based 

on alignment of 63 Pseudomonas genus sequences to pPABL048. Sequences (ST298* read 

alignments, complete plasmids, and draft genomes) with >70% alignment to pPABL048 by 

length were included, and SNVs in positions present in 62/63 alignments (plasmid backbone) 

were considered. The circular tree is annotated with species (inner ring) and collection (outer 

ring). On the radial tree, pPABL048 alignments from ST298* isolates are indicated.  
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Discussion 

 In this study, we identified a subclade of CC446, termed ST298*, that is responsible for a 

prolonged epidemic of XDR P. aeruginosa infections at NMH from at least 2001 through 2017. 

Extensive antimicrobial resistance in ST298* was due in part to the presence of the large novel 

AMR plasmid pPABL048, but ST298* isolates lacking this plasmid were still universally MDR. 

The long-term persistence of ST298* P. aeruginosa is clinically significant, both from the 

standpoint of infection prevention at this institution and in highlighting the potential risk posed 

by CC446 at healthcare centers in general. Additionally, with its global distribution and multiple 

incidents of high AMR both from this study and other reports in the literature65,74,100,192,307, we 

provide evidence that CC446 is an emerging high-risk lineage of P. aeruginosa.  

While we were able to identify the XDR subclade ST298* at NMH and show that it has 

repeatedly caused highly AMR infections, we lack additional epidemiological data to link these 

cases. However, our findings suggest the existence of a persistent reservoir for ST298* isolates 

over the last two decades. We hypothesize that this reservoir could be within NMH itself, from a 

common source outside the hospital (e.g. a long-term acute care hospital), or more widespread 

throughout Chicago healthcare settings. It is notable that the estimated date of emergence of the 

last common ancestor for the ST298* subclade (1980, Figure 2.8) is nearly 20 years prior to the 

opening of the current NMH inpatient facility in 1999. It is important to note that only a limited 

number of isolates from Chicago came from sources outside of NMH, and we were unable to 

determine the extent to which ST298* has spread throughout the region. It will be critical to 

assess whether this lineage is unique to NMH or more widespread. As such, future work 

integrating both microbiological and epidemiological approaches is needed to identify the 

reservoir and geographic spread of ST298*. 
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The plasmid pPABL048 containing the AMR integron in1697 has contributed to the 

XDR phenotypes of ST298* isolates. While pPABL048 is unique to ST298*, it is part of a 

family of large Pseudomonas genus plasmids. The involvement of both pPABL048 and related 

plasmids in drug-resistant infections95,185,313 highlights the clinical importance of this plasmid 

family. Further investigation is needed to determine the impact of the pPABL048 family of 

plasmids on bacterial phenotypes that could contribute to increased persistence or fitness, with a 

specific focus on predicted virulence factors that may affect adhesion, motility, and carbon 

storage (Supplementary Table 2.2). 

 Although recognized high-risk clones such as ST235, ST111, and ST175 are enriched for 

antibiotic resistance and cause a large proportion of MDR/XDR infections 

worldwide129,140,192,199,200, relatively susceptible isolates from these STs also occur65,130,199,200. 

Additionally, the genetic basis for AMR in these STs are diverse129,132, suggesting that the 

propensity to acquire antibiotic resistance is a hallmark of high-risk clones. Our findings show 

that CC446 has many of these same features. Although our study documents XDR ST298* 

isolates only at a single institution, CC446 organisms as a whole are responsible for clinically-

significant infections worldwide (Figure 2.2). While not all CC446 isolates tested in this study 

were MDR/XDR, the frequency of these phenotypes unmasks the high potential for AMR within 

this clonal complex. Previous findings support this, with multiple geographically distinct reports 

of MDR CC446 isolates65,74,100,192,307. Mechanisms of resistance among these isolates are varied 

and include other AMR plasmids74,100, extended spectrum β-lactamases (e.g. VIM-

2)74,180,181,192,306, and chromosomal mutations73,74,100,307. These findings are consistent with the 

assertion that CC446 represents an emerging high-risk clone with the potential to cause further 

MDR outbreaks.   
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CHAPTER 3 

Using the Pseudomonas aeruginosa genome to predict virulence in a mouse model of 

bacteremia 
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Introduction 

 Pseudomonas aeruginosa is a ubiquitous gram-negative opportunistic pathogen that 

infects a variety of hosts. Its ability to cause severe acute infections in susceptible patients and 

chronic infections in individuals with cystic fibrosis, coupled with increasing rates of 

antimicrobial resistance, make it an organism of particular concern to the medical 

community2,49,142. The P. aeruginosa species, however, is not monolithic. Instead, it shows a 

large degree of genomic diversity both through polymorphisms and differences in gene 

content47,51,52. As routine whole genome sequencing becomes increasingly feasible, 

understanding how these genomic differences impact the pathogenicity of P. aeruginosa may 

allow clinicians to rapidly identify infections at increased risk for poor outcomes and researchers 

to select the most high-yield strains for further study. 

 As with other bacteria, the genome of P. aeruginosa can be divided into a core genome, 

made up of sequences common to the species, and an accessory genome, made up of sequences 

present in some strains but not others47,48. While only 10-15% of a typical strain’s genome is 

accessory, when combined from all strains these sequences comprise the vast majority of the P. 

aeruginosa pangenome48,51,54. Variations in both the core and accessory genomes impact the 

virulence of any given P. aeruginosa strain. Core genome mutations that accumulate in P. 

aeruginosa strains during chronic infection of cystic fibrosis patients lead to decreased in vitro 

virulence markers208, and these strains have attenuated virulence in animal models of acute 

infection27. Genomic islands, major components of the accessory genome, are enriched for 

predicted virulence factors315. Several genomic islands in P. aeruginosa, including those 

containing the type III secretion system (T3SS) effector gene exoU, have been shown to enhance 
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pathogenicity in multiple infection models24,75,76. We recently identified, within the accessory 

genome, multiple novel virulence determinants in a mouse model of bacteremia70. Conversely, a 

study using a Caenorhabditis elegans model identified several P. aeruginosa accessory genes 

whose presence reduced virulence31. Further, the presence of active CRISPR systems was 

associated with increased virulence31, supporting the hypothesis that many horizontally 

transferred elements are genetic parasites with respect to the host bacterium63. Because of its role 

in both increasing and decreasing the pathogenicity of individual P. aeruginosa strains, the 

accessory genome may serve as a useful predictor of an isolate’s virulence. This prediction, 

however, is not as simple as detecting individual virulence or anti-virulence factors. For 

example, exoU is a recognized virulence factor whose disruption dramatically attenuates a 

strain’s ability to cause disease25,261, but some strains naturally lacking exoU are more virulent 

than those possessing the gene70. As virulence is a complex and combinatorial phenotype, the 

strategy taken to study it must be appropriately robust to that complexity.   

 In supervised machine learning, samples belonging to known classes are used to build a 

computational model which can then predict the class of new samples273. Supervised machine 

learning is an increasingly important tool in bacterial genomics and has been extensively applied 

to the prediction of antimicrobial resistance and identification of potential resistance 

determinants. This approach has proven successful in a variety of species and using a variety of 

genomic features66,274-279. These studies benefited from readily available whole genome 

sequencing and resistance data, as well as an often easily explainable phenotype. Researchers 

have also begun to apply machine learning techniques to predict bacterial pathogenicity. 

Examples include using discriminatory single nucleotide variants (SNVs) to predict 

Staphylococcus aureus in vitro cytotoxicity296, using variation in core genome loci to predict 
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patient mortality in specific S. aureus clones282, and using predicted perturbations in protein 

coding sequences to classify Salmonella strains as causing either gastrointestinal or 

extraintestinal infections280. A support vector machine approach has been used to distinguish the 

transcriptomes of P. aeruginosa in human infection compared to in vitro growth281.  However, to 

our knowledge there has been no study directly modeling P. aeruginosa pathogenicity from 

genomic content.  

 In this study, we utilize a supervised machine learning approach to predict P. aeruginosa 

virulence in a mouse model of bloodstream infection based on genomic content. We found that 

there is signal within the accessory genome predictive of virulence, a finding validated using an 

independent test set of isolates. The predictions appear to be through the detection of a diffuse 

genetic fingerprint rather than individual virulence or anti-virulence genes. The core genome also 

showed predictive signal for virulence. 

 

Results 

Genomic and Virulence Characterization of P. aeruginosa Strains 

To assess whether the P. aeruginosa genome can be used to predict a given isolate’s 

virulence, we needed a large number of P. aeruginosa isolates with known whole genome 

sequences and in vivo virulence data. We used two previously reported collections: 98 archived 

isolates from adults with bacteremia at Northwestern Memorial Hospital (NMH) in Chicago, 

USA316 and 17 isolates from children with Shanghai fever, a P. aeruginosa infection presenting 

with sepsis and gastrointestinal symptoms, at Chang Gung Children’s Hospital in Taiwan317 

(Table 3.1). These 115 isolates formed our training set. We performed whole genome sequencing 

for each of the isolates that had not been previously sequenced. Likewise, we supplemented 
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previously reported virulence data70,317 with additional experiments (Supplementary Table 3.1) to 

approximate the colony forming units (CFU) of each bacterial isolate necessary to cause pre-

lethal illness in 50% of mice using a bacteremia model. From these data, we estimated a 

modified 50% lethal dose (mLD50, termed as such because it includes pre-lethal illness) for each 

of the 115 P. aeruginosa isolates (Table 3.2). The isolates showed a median mLD50 of 6.9 log10 

CFU but a wide range of pathogenicity in mice, varying by over 100-fold in the dose required to 

cause severe disease, as was previously reported for the NMH isolates70. For the purpose of this 

study, we classified isolates with an estimated mLD50 below the median value for the group as 

“high virulence” and the remainder as “low virulence” (Figure 3.1). These results provided a 

large collection of P. aeruginosa isolates with known whole genome sequences and virulence in 

a mouse bacteremia model. 

We performed a phylogenomic analysis to assess the diversity of the core genomes of all 

115 isolates in the training set (Figure 3.2). The core genome phylogenetic tree showed that the 

isolates are largely nonclonal and were found in both major clades of the species, which are 

mainly differentiable by the near-mutually exclusive presence of the T3SS effector genes exoS or 

exoU51,52. One distinct outlier isolate from the PA7-like clade was also present in the collection51. 

The exoU+ clade contained a larger proportion of highly virulent isolates than the exoS+ clade.  

Although some clusters of closely related isolates shared the same virulence class, both major 

clades contained high- and low-virulence isolates. 
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Table 3.1 P. aeruginosa Isolates Included in This Study 

 

Name
Train/Test 

Set
Location

BioSample 
Accessionb

Genome 
Size (bp)

Contigs (#)
Virulence (High: Rounded 
LD50 < Train Set Median)

Initial Report of Isolate
Initial Report of 

Sequencing
Report of Assembly 
Used in This Study

PABL001 Train
Chicago, 

USA
SAMN09831318 6856138 156 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL002 Train
Chicago, 

USA
SAMN09831319 6792893 126 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL003 Train
Chicago, 

USA
SAMN09831320 6406489 212 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL004 Train
Chicago, 

USA
SAMN09831321 6480052 133 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL006 Train
Chicago, 

USA
SAMN09831322 6812450 467 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL007 Train
Chicago, 

USA
SAMN09831323 6381929 105 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL009 Train
Chicago, 

USA
SAMN09831324 6819960 431 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL010 Train
Chicago, 

USA
SAMN09831325 6857215 457 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL011 Train
Chicago, 

USA
SAMN09831326 6626407 266 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL012 Train
Chicago, 

USA
SAMN09831327 6584048 2 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020) / This Study
This Study

PABL013 Train
Chicago, 

USA
SAMN09831328 6768256 180 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL014 Train
Chicago, 

USA
SAMN09831329 6491067 288 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL015 Train
Chicago, 

USA
SAMN09831330 6518289 318 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL016 Train
Chicago, 

USA
SAMN09831331 6453620 132 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL017 Train
Chicago, 

USA
SAMN09831332 6528721 1 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020) / This Study
This Study

PABL018 Train
Chicago, 

USA
SAMN09831333 6357732 336 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL020 Train
Chicago, 

USA
SAMN09831335 6756276 495 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL021 Train
Chicago, 

USA
SAMN09831336 6504687 503 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL022 Train
Chicago, 

USA
SAMN09831337 6968177 152 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL023 Train
Chicago, 

USA
SAMN09831338 6415121 216 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL024 Train
Chicago, 

USA
SAMN09831339 6486560 297 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL026 Train
Chicago, 

USA
SAMN09831340 6541241 136 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL027 Train
Chicago, 

USA
SAMN09831341 6673341 318 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL028 Train
Chicago, 

USA
SAMN09831342 6366972 106 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL029 Train
Chicago, 

USA
SAMN09831343 6963015 611 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL030 Train
Chicago, 

USA
SAMN09831344 6370252 184 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL031 Train
Chicago, 

USA
SAMN09831345 6757528 170 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL032 Train
Chicago, 

USA
SAMN09831346 6515492 178 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL034 Train
Chicago, 

USA
SAMN09831347 6598709 133 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL035 Train
Chicago, 

USA
SAMN09831348 6782268 319 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL036 Train
Chicago, 

USA
SAMN09831349 7226449 375 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study
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Table 3.1 Continued 

 

Name
Train/Test 

Set
Location

BioSample 
Accessionb

Genome 
Size (bp)

Contigs (#)
Virulence (High: Rounded 
LD50 < Train Set Median)

Initial Report of Isolate
Initial Report of 

Sequencing
Report of Assembly 
Used in This Study

PABL037 Train
Chicago, 

USA
SAMN09831350 6977344 140 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL038 Train
Chicago, 

USA
SAMN09831351 6820361 234 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL040 Train
Chicago, 

USA
SAMN09831352 6838534 432 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL041 Train
Chicago, 

USA
SAMN09831353 6712192 219 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL042 Train
Chicago, 

USA
SAMN09831354 6922755 208 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL043 Train
Chicago, 

USA
SAMN09831355 6277849 271 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL044 Train
Chicago, 

USA
SAMN09831356 6961975 392 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL046 Train
Chicago, 

USA
SAMN09831358 6206873 87 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL047 Train
Chicago, 

USA
SAMN09831359 6585916 203 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL048 Train
Chicago, 

USA
SAMN09831360 7294576 2 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019)
Pincus et al., CID 

(2019)

PABL049 Train
Chicago, 

USA
SAMN09831361 6861902 221 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL051 Train
Chicago, 

USA
SAMN09831362 6227393 254 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL052 Train
Chicago, 

USA
SAMN09831363 6609700 218 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL053 Train
Chicago, 

USA
SAMN09831364 6814304 286 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL054 Train
Chicago, 

USA
SAMN09831365 6972705 232 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL055 Train
Chicago, 

USA
SAMN09831366 6779537 190 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL056 Train
Chicago, 

USA
SAMN09831367 7222869 353 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL057 Train
Chicago, 

USA
SAMN09831368 6428244 393 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL058 Train
Chicago, 

USA
SAMN09831369 6910579 231 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL059 Train
Chicago, 

USA
SAMN09831370 6761248 237 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL060 Train
Chicago, 

USA
SAMN09831371 6473694 216 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL061 Train
Chicago, 

USA
SAMN09831372 6391296 104 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL062 Train
Chicago, 

USA
SAMN09831373 6889022 202 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL063 Train
Chicago, 

USA
SAMN09831374 6863118 428 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL064 Train
Chicago, 

USA
SAMN09831375 6912173 513 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL065 Train
Chicago, 

USA
SAMN09831376 6695382 454 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL066 Train
Chicago, 

USA
SAMN09831377 6791517 285 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL067 Train
Chicago, 

USA
SAMN09831378 6802331 328 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL068 Train
Chicago, 

USA
SAMN09831379 6396063 124 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL069 Train
Chicago, 

USA
SAMN09831380 6650002 159 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL070 Train
Chicago, 

USA
SAMN09831381 6536641 194 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL071 Train
Chicago, 

USA
SAMN09831382 6554431 234 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL072 Train
Chicago, 

USA
SAMN09831383 6726621 164 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study
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Table 3.1 Continued 

 

Name
Train/Test 

Set
Location

BioSample 
Accessionb

Genome 
Size (bp)

Contigs (#)
Virulence (High: Rounded 
LD50 < Train Set Median)

Initial Report of Isolate
Initial Report of 

Sequencing
Report of Assembly 
Used in This Study

PABL073 Train
Chicago, 

USA
SAMN09831384 6351380 127 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL074 Train
Chicago, 

USA
SAMN09831385 6754467 207 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL075 Train
Chicago, 

USA
SAMN09831386 6756836 433 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL076 Train
Chicago, 

USA
SAMN09831387 6429295 145 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL077 Train
Chicago, 

USA
SAMN09831388 6395399 103 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL078 Train
Chicago, 

USA
SAMN09831389 6435111 211 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL079 Train
Chicago, 

USA
SAMN09831390 6568448 909 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL080 Train
Chicago, 

USA
SAMN09831391 6561442 249 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL081 Train
Chicago, 

USA
SAMN09831392 6648976 480 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL082 Train
Chicago, 

USA
SAMN09831393 6988878 190 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL083 Train
Chicago, 

USA
SAMN09831394 6631960 121 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL084 Train
Chicago, 

USA
SAMN09831395 6722847 203 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL085 Train
Chicago, 

USA
SAMN09831396 7043013 269 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL086 Train
Chicago, 

USA
SAMN09831397 6936883 213 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS (2020) This Study

PABL088 Train
Chicago, 

USA
SAMN09831398 7153658 277 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL089 Train
Chicago, 

USA
SAMN09831399 6761681 184 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL090 Train
Chicago, 

USA
SAMN09831400 6834993 176 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL091 Train
Chicago, 

USA
SAMN09831401 6734477 345 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL092 Train
Chicago, 

USA
SAMN09831402 6733564 205 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL093 Train
Chicago, 

USA
SAMN09831403 6951684 395 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL094 Train
Chicago, 

USA
SAMN09831404 6986084 414 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL095 Train
Chicago, 

USA
SAMN09831405 6524119 161 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study

PABL096 Train
Chicago, 

USA
SAMN09831406 6673595 148 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL097 Train
Chicago, 

USA
SAMN09831407 6897174 246 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Pincus et al., CID  (2019) This Study

PABL098 Train
Chicago, 

USA
SAMN09831408 6473620 410 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL100 Train
Chicago, 

USA
SAMN09831409 6935034 218 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL101 Train
Chicago, 

USA
SAMN09831410 6756723 438 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL102 Train
Chicago, 

USA
SAMN09831411 6424468 126 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL103 Train
Chicago, 

USA
SAMN09831412 6711993 192 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL104 Train
Chicago, 

USA
SAMN09831413 6731743 176 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL105 Train
Chicago, 

USA
SAMN09831414 6887663 122 Low

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL106 Train
Chicago, 

USA
SAMN09831415 6677390 202 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PABL107 Train
Chicago, 

USA
SAMN09831416 6615031 112 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Bachta et al., Nat Commun 
(2020) / Allen et al., PNAS 

(2020)
This Study
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Table 3.1 Continued 

 

aIsolated from ascites fluid. All other isolates in this study were from blood cultures 

bFor all isolates, the version of the assemblies used in this study are available at 

https://github.com/nathanpincus/PA_Virulence_Prediction 

  

Name
Train/Test 

Set
Location

BioSample 
Accessionb

Genome 
Size (bp)

Contigs (#)
Virulence (High: Rounded 
LD50 < Train Set Median)

Initial Report of Isolate
Initial Report of 

Sequencing
Report of Assembly 
Used in This Study

PABL108 Train
Chicago, 

USA
SAMN09831417 6602827 202 High

Scheetz et al., Diagn Microbiol 
Infect Dis  (2009)

Allen et al., PNAS  (2020) This Study

PAC1 Train Taiwan SAMN14970706 7605607 4 High Chuang et al., Gut  (2014) This Study This Study

PAC6 Train Taiwan SAMN14970707 6560636 1 High Chuang et al., Gut  (2014)
Bachta et al., Nat Commun 

(2020) / This Study
This Study

S10a Train Taiwan SAMN14970708 6798627 143 High Chuang et al., Gut  (2014)
Bachta et al., Nat Commun 

(2020) / This Study
This Study

S11 Train Taiwan SAMN14970709 6446879 123 High Chuang et al., Gut  (2014) This Study This Study
S12 Train Taiwan SAMN14970710 6383022 99 High Chuang et al., Gut  (2014) This Study This Study
S13 Train Taiwan SAMN14970711 6736624 121 High Chuang et al., Gut  (2014) This Study This Study
S14 Train Taiwan SAMN14970712 7164601 180 High Chuang et al., Gut  (2014) This Study This Study
S15 Train Taiwan SAMN14970713 6341129 91 High Chuang et al., Gut  (2014) This Study This Study
S16 Train Taiwan SAMN14970714 7164497 178 Low Chuang et al., Gut  (2014) This Study This Study
S17 Train Taiwan SAMN14970715 7033494 143 High Chuang et al., Gut  (2014) This Study This Study
S2 Train Taiwan SAMN14970716 6312249 77 High Chuang et al., Gut  (2014) This Study This Study
S3 Train Taiwan SAMN14970717 6321387 117 High Chuang et al., Gut  (2014) This Study This Study
S4 Train Taiwan SAMN14970718 6525413 138 High Chuang et al., Gut  (2014) This Study This Study
S5 Train Taiwan SAMN14970719 6543702 106 High Chuang et al., Gut  (2014) This Study This Study
S7 Train Taiwan SAMN14970720 6175995 87 High Chuang et al., Gut  (2014) This Study This Study
S8 Train Taiwan SAMN14970721 6367209 103 High Chuang et al., Gut  (2014) This Study This Study
S9 Train Taiwan SAMN14970722 6427741 97 High Chuang et al., Gut  (2014) This Study This Study

PASP048 Test Spain SAMN14970723 6757144 110 High Peña et al., AAC  (2012) This Study This Study
PASP146 Test Spain SAMN14970724 6330026 59 High Peña et al., AAC  (2012) This Study This Study

PASP170 Test Spain SAMN12162692 6859625 96 Low Peña et al., AAC  (2012) Pincus et al., CID  (2019)
Pincus et al., CID 

(2019)
PASP198 Test Spain SAMN14970725 6279554 75 High Peña et al., AAC  (2012) This Study This Study
PASP204 Test Spain SAMN14970726 6798486 88 High Peña et al., AAC  (2012) This Study This Study
PASP208 Test Spain SAMN14970727 6855539 173 High Peña et al., AAC  (2012) This Study This Study
PASP251 Test Spain SAMN14970728 6875145 85 High Peña et al., AAC  (2012) This Study This Study
PASP269 Test Spain SAMN14970729 6411445 71 High Peña et al., AAC  (2012) This Study This Study
PASP309 Test Spain SAMN14970730 7020830 145 High Peña et al., AAC  (2012) This Study This Study
PASP315 Test Spain SAMN14970731 6910212 128 High Peña et al., AAC  (2012) This Study This Study
PASP352 Test Spain SAMN14970732 6712762 78 High Peña et al., AAC  (2012) This Study This Study
PASP388 Test Spain SAMN14970733 7012486 160 Low Peña et al., AAC  (2012) This Study This Study
PASP398 Test Spain SAMN14970734 6465306 99 Low Peña et al., AAC  (2012) This Study This Study
PASP415 Test Spain SAMN14970735 6074119 62 High Peña et al., AAC  (2012) This Study This Study
PASP450 Test Spain SAMN14970736 6994850 179 Low Peña et al., AAC  (2012) This Study This Study
PASP453 Test Spain SAMN14970737 6794060 162 High Peña et al., AAC  (2012) This Study This Study
PASP471 Test Spain SAMN14970738 6492447 94 High Peña et al., AAC  (2012) This Study This Study
PASP475 Test Spain SAMN14970739 6494538 114 High Peña et al., AAC  (2012) This Study This Study
PASP496 Test Spain SAMN14970740 6432527 82 Low Peña et al., AAC  (2012) This Study This Study
PASP499 Test Spain SAMN14970741 7121993 174 Low Peña et al., AAC  (2012) This Study This Study
PASP518 Test Spain SAMN14970742 7043592 264 Low Peña et al., AAC  (2012) This Study This Study
PASP527 Test Spain SAMN14970743 6818948 135 High Peña et al., AAC  (2012) This Study This Study
PASP612 Test Spain SAMN14970744 6962611 209 Low Peña et al., AAC  (2012) This Study This Study
PASP639 Test Spain SAMN14970745 7145660 144 Low Peña et al., AAC  (2012) This Study This Study
PASP657 Test Spain SAMN14970746 6836322 134 Low Peña et al., AAC  (2012) This Study This Study
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Table 3.2 Estimated mLD50 Values for Isolates Included in this Study 

 

Name
Estimated LD50 

(log10 CFU)
Standard 
Deviation

Rounded LD50 
(log10 CFU)

PABL001 6.69 0.10 6.7
PABL002 6.36 0.28 6.4
PABL003 6.49 0.21 6.5
PABL004 7.48 4.63 7.5
PABL006 6.50 0.10 6.5
PABL007 6.45 0.34 6.5
PABL009 7.28 0.23 7.3
PABL010 7.43 12.40 7.4
PABL011 7.11 0.16 7.1
PABL012 5.85 0.12 5.8
PABL013 6.23 0.11 6.2
PABL014 7.27 8.60 7.3
PABL015 7.40 0.53 7.4
PABL016 6.30 0.06 6.3
PABL017 6.79 0.16 6.8
PABL018 7.14 23.98 7.1
PABL020 7.53 20.99 7.5
PABL021 7.44 13.65 7.4
PABL022 6.63 0.03 6.6
PABL023 6.63 0.03 6.6
PABL024 6.49 0.12 6.5
PABL026 6.56 0.24 6.6
PABL027 8.28 0.04 8.3
PABL028 7.52 3.15 7.5
PABL029 6.59 18.11 6.6
PABL030 6.84 0.22 6.8
PABL031 6.53 0.89 6.5
PABL032 6.71 0.05 6.7
PABL034 6.76 0.44 6.8
PABL035 6.95 6.24 6.9
PABL036 7.00 23.74 7.0
PABL037 6.99 0.12 7.0
PABL038 7.40 0.00 7.4
PABL040 7.19 4.23 7.2
PABL041 6.64 0.16 6.6
PABL042 7.31 0.14 7.3
PABL043 8.10 5.09 8.1
PABL044 7.20 22.56 7.2
PABL046 7.00 152.45 7.0
PABL047 7.04 14.15 7.0
PABL048 7.04 175.91 7.0
PABL049 6.11 0.14 6.1
PABL051 7.49 2.85 7.5
PABL052 7.69 0.13 7.7
PABL053 7.00 5.89 7.0
PABL054 6.92 0.08 6.9
PABL055 6.97 0.06 7.0
PABL056 7.66 6.86 7.7
PABL057 7.26 0.11 7.3
PABL058 7.60 0.12 7.6
PABL059 7.35 0.27 7.3
PABL060 6.78 20.20 6.8
PABL061 6.46 0.34 6.5
PABL062 7.52 0.29 7.5
PABL063 7.20 0.75 7.2
PABL064 7.43 1.34 7.4
PABL065 7.91 6.94 7.9
PABL066 7.67 2.17 7.7
PABL067 7.36 0.17 7.4
PABL068 6.53 0.01 6.5
PABL069 7.02 0.09 7.0
PABL070 6.51 0.05 6.5
PABL071 7.28 0.05 7.3
PABL072 6.70 0.33 6.7
PABL073 6.87 0.11 6.9
PABL074 7.30 0.30 7.3
PABL075 6.94 0.34 6.9
PABL076 6.94 0.23 6.9
PABL077 6.70 0.57 6.7
PABL078 6.77 0.60 6.8
PABL079 6.56 0.22 6.6
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Table 3.2 Continued 

 

Name
Estimated LD50 

(log10 CFU)
Standard 
Deviation

Rounded LD50 
(log10 CFU)

PABL080 7.12 0.48 7.1
PABL081 7.57 0.05 7.6
PABL082 7.84 0.11 7.8
PABL083 6.42 0.07 6.4
PABL084 6.58 9.88 6.6
PABL085 6.70 0.30 6.7
PABL086 7.15 6.18 7.2
PABL088 7.42 3.68 7.4
PABL089 7.32 0.08 7.3
PABL090 6.67 0.12 6.7
PABL091 7.15 0.39 7.1
PABL092 7.66 0.18 7.7
PABL093 6.31 1.32 6.3
PABL094 7.11 0.46 7.1
PABL095 6.68 12.02 6.7
PABL096 6.54 0.14 6.5
PABL097 6.64 0.16 6.6
PABL098 7.00 0.06 7.0
PABL100 6.88 0.35 6.9
PABL101 6.86 0.35 6.9
PABL102 6.25 0.79 6.2
PABL103 8.15 0.08 8.1
PABL104 7.93 0.14 7.9
PABL105 7.66 0.14 7.7
PABL106 6.45 0.45 6.4
PABL107 6.35 0.03 6.4
PABL108 6.83 0.21 6.8
PAC1 6.33 0.07 6.3
PAC6 6.10 0.06 6.1
S10 5.98 0.12 6.0
S11 6.17 0.11 6.2
S12 6.50 0.10 6.5
S13 6.27 1.90 6.3
S14 6.81 11.14 6.8
S15 6.36 2.34 6.4
S16 7.17 0.12 7.2
S17 6.81 0.07 6.8
S2 6.32 0.02 6.3
S3 6.05 0.13 6.1
S4 6.02 0.03 6.0
S5 5.97 0.09 6.0
S7 6.33 0.11 6.3
S8 6.14 0.13 6.1
S9 6.70 0.15 6.7

PASP048 6.54 0.14 6.5
PASP146 6.41 1.94 6.4
PASP170 7.40 0.15 7.4
PASP198 6.47 0.30 6.5
PASP204 6.31 5.95 6.3
PASP208 6.29 2.37 6.3
PASP251 6.32 0.22 6.3
PASP269 6.39 0.04 6.4
PASP309 6.68 0.10 6.7
PASP315 6.49 7.38 6.5
PASP352 6.64 0.30 6.6
PASP388 7.23 6.37 7.2
PASP398 7.32 0.12 7.3
PASP415 6.77 0.45 6.8
PASP450 7.86 0.26 7.9
PASP453 6.28 0.26 6.3
PASP471 6.31 3.40 6.3
PASP475 6.32 0.21 6.3
PASP496 7.43 6.69 7.4
PASP499 7.35 0.01 7.3
PASP518 7.04 0.21 7.0
PASP527 6.31 0.08 6.3
PASP612 7.11 0.18 7.1
PASP639 7.38 0.12 7.4
PASP657 7.83 0.06 7.8
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Figure 3.1 Cumulative distribution function of estimated mLD50 values for the 115 training 

isolates in a mouse model of bacteremia. Isolates with estimated mLD50 values less than the 

median value (red dashed line) were designated as high virulence, with the remainder designated 

as low virulence. 
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Figure 3.2 Core genome comparisons for the training set of 115 P. aeruginosa isolates. Mid-

point rooted core genome phylogenetic tree of the 115 training isolates constructed from SNV 

loci present in at least 95% of genomes, annotated with T3SS genotype, geographic source, and 

virulence level. 
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We next defined the accessory genome of each of the 115 isolates in the training set. The 

accessory genome can be divided into accessory genomic elements (AGEs), discrete sequences 

found in the genomes of some isolates but not others48. For the purpose of this study, 

noncontiguous accessory sequences were grouped and considered as a single AGE if they were 

perfectly correlated (present and absent from the same isolates in the training set). Sets of 

accessory sequences totaling less than 200 bp were excluded from analysis. Using this approach, 

a total of 3,013 AGEs, with mean length 4,059 bp, median length 672 bp, and forming a pan-

accessory genome of 12.2 Mb, were identified in these isolates (Supplementary Table 3.2). A 

Bray-Curtis dissimilarity heatmap of AGE presence/absence, weighted by the length of each 

AGE, shows that there is considerable accessory genomic variability in our collection (Figure 

3.3A). Consistent with previous findings51, the clade containing exoS and the clade containing 

exoU largely separate based on accessory genomic content, as evidenced by both Bray-Curtis 

dissimilarity and multiple correspondence analysis. Similar to the core genome phylogenetic 

analysis, some clusters of isolates with similar accessory genomes share a virulence rank, but 

both high and low virulence isolates show diverse AGE content (Figure 3.3). 
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Figure 3.3 Accessory genome comparisons for the training set of 115 P. aeruginosa isolates. (A) 

Bray-Curtis dissimilarity heatmap comparing AGE presence in the 115 training isolates, 

weighted by AGE length, and accompanying neighbor joining tree. Isolates are annotated (from 

left to right) by T3SS genotype, geographic source, virulence level, and the dissimilarity 

heatmap. A higher value indicates that two isolates have more similar accessory genomes. 

Multiple correspondence analysis (MCA) performed based on AGE presence/absence in the 115 

training set isolates and annotated based on (B) T3SS genotype and (C) virulence level. The first 

two dimensions, and the percentage of variance they explain, are shown. 
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Evaluating Machine Learning Models Predicting P. aeruginosa Virulence Based on Accessory 

Genome Content 

We hypothesized that as the P. aeruginosa accessory genome is variable between 

strains47,48,71 and includes multiple known virulence determinants24,70,75, it would contain 

information predictive of strain virulence in mice. To test this hypothesis, we took a supervised 

machine learning approach (Figure 3.4). Through this approach, we tested the performance of 

four commonly used machine learning algorithms: random forest, L2-regularized logistic 

regression, elastic net logistic regression, and support vector classifier. Accessory genome 

content, in the form of AGE presence/absence, was used as features, and virulence level (high or 

low) was used as labels during modeling. During model construction, optimal hyperparameters 

were chosen using grid-search cross-validation. Here, all possible combinations of 

hyperparameters were tested through 10-fold cross-validation. The best-performing combination 

was then used to build a final model. Model performance was estimated using 10-fold nested 

cross-validation. In this process, grid-search cross-validation was performed within an outer 

cross-validation loop. For each training fold in this outer loop, a model was built through grid-

search cross-validation, and its performance was tested against the cross-validation fold. Nested 

cross-validation does not return a final machine learning model but instead examines how 

multiple models perform against held-out data. This process provides an estimate of how well a 

model trained through a given strategy will generalize to new data. 

All four algorithms performed similarly, with mean nested cross-validation accuracies of 

0.75 (95% CI 0.69-0.80) for random forest, 0.75 (95% CI 0.65-0.85) for L2-regularized logistic 

regression, 0.72 (95% CI 0.65-0.79) for elastic net logistic regression, and 0.74 (95% CI 0.67-

0.81) for support vector classifier. Other performance metrics showed similar ranges of values 



 120 
(Figure 3.5). Notably, the accuracy of all four algorithms was substantially higher than the null 

accuracy of simply predicting all isolates to be the majority class, which in this case was the 

prevalence of low virulence isolates (0.51). This indicates that there is signal in the accessory 

genome predictive of virulence in P. aeruginosa. Since all four machine learning algorithms 

performed similarly in nested cross-validation, we chose the random forest approach for further 

investigation. 
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Figure 3.4 Overview of the machine learning pipeline. AGE: accessory genomic element, CV: 

cross-validation.
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Figure 3.5 Nested 10-fold cross-validation performance of machine learning algorithms in 

predicting P. aeruginosa virulence in mice based on accessory genomic content. (A) Random 

forest, (B) L2-regularized logistic regression, (C) elastic net logistic regression, and (D) support 

vector classifier algorithms were tested. Accuracy, sensitivity, specificity, positive predictive 

value (PPV), area under the receiver operating characteristic curve (AUC), and F1 score were 

determined for each cross-validation fold (black dots). The mean and 95% confidence interval of 

each statistic are indicated in red.  
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We next evaluated whether sample size limited the performance of the random forest 

approach. We tested how accuracy of a model changed with increasing training set size, both 

against training and cross-validation examples (Figure 3.6A). While the training and cross-

validation performance for the random forest model did not completely converge as more 

training examples were added, the learning curve showed that we are unlikely to see substantial 

improvement in cross-validation accuracy with additional training isolates. A caveat to this result 

is that the learning curve can only consider AGEs contained in the training set and cannot 

account for the impact of additional AGEs (or different patterns of AGE carriage) found when 

including new genetically distinct isolates. Learning curves for the other machine learning 

algorithms similarly showed that there is unlikely to be substantial improvement in cross-

validation accuracy if we were to increase the number of training isolates (Figure 3.6B-D). 

To further probe the characteristics of the random forest approach, we built a final 

random forest model using all 115 isolates in the training set. The out-of-bag accuracy 

(performance on the out-of-bag samples not included in each of the 10,000 decision trees making 

up the random forest) of this model was 0.75 (Table 3.3), which is consistent with our nested 

cross-validation results. When assessed against the training isolates, the model showed an 

accuracy of 0.79, consistent with the trend in training accuracies observed in the learning curve 

(Table 3.3 and Figure 3A). The training accuracy can be thought of as an idealized maximal 

performance and supports the conclusion that additional training examples are unlikely to 

substantially improve the model.  
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Figure 3.6 Learning curves showing change in mean training accuracy and cross-validation 

accuracy in predicting P. aeruginosa virulence as increasing numbers of isolates are used with 

different machine learning algorithms. (A) Random forest, (B) L2-regularized logistic 

regression, (C) elastic net logistic regression, and (D) support vector classifier algorithms were 

tested. Mean training accuracy (red line) and cross-validation accuracy (green line) are shown. 

Shading indicates the 95% confidence interval. Assessments at each number of training 

examples were through 10-fold nested cross-validation. 
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Table 3.3 Performance of the Accessory Genome Random Forest Model Against the Training 

Set of 115 P. aeruginosa Isolates 

Out-of-bag 
Accuracy  

Training 
Accuracy 

Training 
Sensitivity 

Training 
Specificity 

Training 
PPV 

Training 
AUC 

Training 
F1 

0.75 0.79 0.84 0.75 0.76 0.91 0.80 
 

 

We next investigated which AGEs were most critical in making a prediction of high or 

low virulence in this model. We calculated the permutation importance (the mean decrease in 

model accuracy when a given feature is randomly permuted) for each AGE. To do this, we 

randomly permuted each AGE 100 times and the determined the impact on out-of-bag accuracy. 

Overall, individual features showed low importance in the predictions made by the model, with 

permutation of the most important AGE causing only a mean 1% drop in model accuracy (Figure 

3.7A). The vast majority of features (2,979/3,013; 98.9%) had no impact on out-of-bag accuracy 

when randomly permuted (Supplementary Table 3.2), indicating that the machine learning model 

based decisions on a genomic signature predictive of virulence level rather than by identifying 

individual virulence or anti-virulence factors. If a given AGE is randomly permuted, it appears 

that other correlated features compensate for it. Each individual AGE was included as a feature 

in a minority of the 10,000 decision trees, with the most prevalent AGE appearing in only 148 

trees in the final model (Figure 3.7B). As such, it was not possible for a single AGE to have a 

large impact on the prediction of virulence.  
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Figure 3.7 Evaluation of features in the random forest model predicting P. aeruginosa virulence 

based on accessory genomic content. (A) Out-of-bag permutation importance for the 10 most 

important AGEs in the random forest model, showing decrease in accuracy when these AGEs 

were randomly permuted. Permutation importance testing was performed 100 times, with the 

results of each test represented by the width of the black lines and the mean and 95% confidence 

interval indicated in red for each AGE. (B) Histogram indicating how many trees within the 

random forest model contained each AGE (feature), out of a total of 10,000 trees.  
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To further assess the apparent redundancy in our feature set, we randomly divided the 

3,013 AGEs in the training set into 2, 4, and 10 subsets and evaluated the performance of random 

forest models built using only these subsets through nested cross-validation. We found that even 

when training on only a smaller subset of the accessory genomic features, model accuracy 

remained mostly unchanged (Figure 3.8A-C). We next tested dividing the training AGEs into 

100 random subsets, finding the average mean nested cross-validation accuracy across all subsets 

to be still 0.67. Performance of many subsets did deteriorate at this level of data reduction (with 

14 subsets having a mean accuracy < 0.6), indicating that in some cases the remaining AGEs 

lacked sufficient signal to be good predictors of virulence (Figure 3.8D). Together, these findings 

provide additional evidence that a broad genetic fingerprint, rather than individual virulence or 

anti-virulence factors, is being used to classify strains as high or low virulence. Further, it is 

consistent with a recent finding that antimicrobial resistance in several species can be accurately 

predicted by only considering variation in a small subset of core genes (and excluding known 

resistance genes)291. 

With the low permutation importance of any individual AGE, one must be cautious in 

drawing conclusions about their role in virulence. However, looking at the AGEs most predictive 

of virulence class and how they relate to one another may provide insights into genomic 

characteristics that are associated with, though not necessarily causative of, differences in 

pathogenicity. All of the ten most predictive AGEs in the random forest model were more 

prevalent in low virulence isolates (Table 3.4, Supplementary Table 3.3). Expanding this analysis 

to all AGEs with non-zero permutation importance showed that 32/34 were more prevalent in 

low virulence isolates (Supplementary Table 3.2). This is consistent with the finding that 

horizontally acquired genetic elements, major components of the accessory genome47,63, can 



 128 
incur a fitness cost on the host bacterium63. While some genomic islands encode virulence 

factors315, many horizontally acquired elements can have a parasitic relationship with the 

bacterium63. The AGE with the highest permutation importance aligns to a gene encoding for the 

conjugative protein TraD, perhaps suggesting a general association of conjugative elements with 

reduced virulence. Four of the top ten AGEs are comprised of sequences from the same “bin” in 

clustAGE analysis. This indicates that in at least some strains they are located near each other on 

the genome (i.e. part of a single, larger element). One of these four AGEs encodes an integrative 

and conjugative element (ICE) protein. These findings suggest that these AGEs are markers for a 

larger variable element common in low virulence strains. Two other AGEs are part of the same 

gene encoding a hypothetical protein. Finally, genes encoding for arsenic resistance are highly 

prevalent in low virulence isolates, perhaps suggesting either that this resistance comes at a cost 

or that strains adapted to survive heavy metal exposure are less able to cause disease in animals. 

It is also important to consider that reduced virulence in our mouse model does not necessarily 

equate to an overall reduction in bacterial fitness. A fitness cost in the experimental condition we 

are measuring may be associated with increased fitness in other scenarios (such as environmental 

persistence). 
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Figure 3.8 Nested 10-fold cross-validation accuracy of a random forest model in predicting P. 

aeruginosa virulence when trained on random subsets of accessory genomic features. The 3,013 

AGEs in the training set were randomly split into (A) 2, (B) 4, and (C) 10 subsets and the 

accuracy of models trained using each of these subsets of features was estimated through nested 

cross-validation. The nested cross-validation accuracy obtained when all features are used for 

training (as in Figure 3.5A) is included for reference. For each subset, accuracy seen in each 

cross-validation fold are shown in black with the mean accuracy and 95% confidence interval 

indicated in red. The 3,013 AGEs in the training set were then split into (D) 100 subsets and the 

accuracy of models trained using each subset estimated through nested cross-validation. The 

mean nested cross-validation accuracy of each subset is shown in blue with the mean across all 

subsets indicated in red.  



Table 3.4. AGEs Most Predictive of Virulence in the Accessory Genome Random Forest Model 

AGE 
Mean OOB 
Permutation 
Importance 

Subelements 
Total 

Length 
(bp) 

Total 
Prevalence 

Prevalence 
High 

Virulence 

Prevalence 
Low 

Virulence 
Putative Annotationa 

unique_grp 
_5582 0.0100 bin364_se00006 433 0.417 0.161 0.661 TraD 

unique_grp 
_6841 0.0069 bin610_se00004 902 0.304 0.107 0.492 Hypothetical protein 

unique_grp 
_1425 0.0063 bin20_se00056 1717 0.330 0.125 0.525 

TetR/AcrR family 
Transcriptional regulator, 

Short chain dehydrogenase  
unique_grp 

_6842 0.0063 bin610_se00005 369 0.296 0.089 0.492 Hypothetical protein 

unique_grp 
_6989 0.0063 bin654_se00007 436 0.313 0.107 0.508 Intergenic region 

unique_grp 
_1437 0.0062 bin20_se00073 

bin20_se00075 2009 0.339 0.125 0.542 

SoxR, MerR family DNA-
binding transcriptional 
regulator, ICE relaxase 

PFGI-1 class, Hypothetical 
protein 

unique_grp 
_8120 0.0058 bin987_se00001 

bin1807_se00001 2821 0.339 0.125 0.542 

AsrR family transcriptional 
regulators, Arsinic 

transporter, Arsenate 
reductase, ArsH, 

Hypothetical protein 
unique_grp 

_1423 0.0057 bin20_se00054 
bin20_se00057 1278 0.348 0.125 0.559 Type II glyceraldehyde-3-

phosphate dehydrogenase 
unique_grp 

_1435 0.0057 bin20_se00069 509 0.365 0.143 0.576 Hypothetical protein 

unique_grp 
_5112 0.0057 bin258_se00005 419 0.357 0.143 0.559 ArsH 

 

aBased on annotation of any ORF with at least 50 bp overlap with the AGE sequence when blasted against the Pseudomonas Genome 

Database50 
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Assessing Model Performance with an Independent Test Set 

The nested cross-validation performance of our random forest model provided an 

estimate of how well it would generalize to new P. aeruginosa isolates. To follow up on this, we 

applied the final random forest model built using all 115 training isolates to an independent test 

set of P. aeruginosa isolates to examine how well it predicted their virulence. As our test set, we 

selected 25 genetically diverse P. aeruginosa isolates previously cultured from patients with 

bacteremia in Spain between 2008-20096 and which we have whole genome sequenced (Table 

3.1 and Figure 3.9). The virulence of each isolate was assessed in the mouse model of 

bacteremia, and isolates were classified as high or low virulence using the same threshold 

(estimated mLD50 of 6.9 log10 CFU) defined for the training set (Figure 3.10, Supplementary 

Table 3.1, and Table 3.2). The test set was more pathogenic on average than the training set, with 

15/25 (60%) of isolates classified as high virulence. This means that a trivial model uniformly 

predicting high virulence would show an accuracy of 0.6, higher than the null accuracy (0.51) of 

the training set. However, as the model we are testing was trained on a dataset in which low 

virulence is the majority class (prevalence 0.51), we would not expect this to occur. We 

identified which of the 3,013 AGEs used as training features were present in each of the test 

isolates. Adding these isolates to a Bray-Curtis dissimilarity heatmap of AGE presence/absence 

showed that the test set is also relatively diverse in accessory genomic content (Figure 3.11A), a 

finding supported by multiple correspondence analysis (Figure 3.11B-D). 
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Figure 3.9 Core genome comparisons for the training set of all 140 P. aeruginosa isolates 

considered in this study. Mid-point rooted core genome phylogenetic tree of the 115 training 

isolates and 25 test isolates constructed from SNV loci present in at least 95% of genomes, 

annotated (from inner to outer rings) with dataset, T3SS genotype, geographic source, virulence 

level, and accuracy of prediction by the accessory genome random forest model for test set 

isolates. Arrowheads indicate examples of incorrectly classified test set strains whose closest 

core and accessory genomic neighbor(s) show a discordant virulence phenotype. 
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Figure 3.10 Cumulative distribution function of estimated mLD50 values for the 25 P. 

aeruginosa isolates making up the independent test set in a mouse model of bacteremia. Isolates 

with estimated mLD50 values less than the median estimated mLD50 of the training set (red 

dashed line) were designated as high virulence, with the remainder designated as low virulence. 
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Figure 3.11 Accessory genome comparisons for the training set of all 140 P. aeruginosa isolates 

considered in this study. (A) Bray-Curtis dissimilarity heatmap comparing presence of the 3,013 

AGEs identified in the training set in all 140 isolates, weighted by AGE length, and 

accompanying neighbor joining tree. Isolates are annotated (from left to right) by dataset, T3SS 

genotype, geographic source, virulence level, accuracy of prediction by the accessory genome 

random forest model in test set isolates (arrowheads highlighting specific incorrectly classified 

test set strains as in Figure 3.9), and the dissimilarity heatmap. A higher value indicates that two 

isolates have more similar accessory genomes. Multiple correspondence analysis (MCA) 

performed on all 140 isolates in both the training and test sets, considering only the 3,013 AGEs 

defined from the training set and annotated based on (B) T3SS genotype, (C) virulence level, and 

(D) dataset. The first two dimensions, and the percentage of variance they explain, are shown.  
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We used the random forest model built with the training set accessory genomic and 

virulence information to predict the virulence of each isolate in the test set based on AGE 

presence or absence. Model performance on the test set (Table 3.5 and Figure 3.12A) was 

comparable to the estimates made through nested cross-validation. For example, the test set 

accuracy of 0.72 was comparable to the mean nested cross-validation accuracy of 0.75 (95% CI 

0.69-0.80). This suggests that our predictive model of virulence is broadly applicable, even when 

tested against geographically distinct isolates. Several of the misclassified isolates in the test set 

appear to be exceptions in virulence when compared to their closest neighbor(s) in the core 

genome phylogenetic tree and the accessory genome heatmap (Figures 3.9 and 3.11A). Difficulty 

classifying these exceptional isolates is consistent with the notion that the model predictions are 

based on genomic signatures which perhaps approximate phylogenetic relationships. Closely 

related isolates that differ in virulence from the majority of their genomic neighbors would 

therefore be expected to be misclassified. 

While it was reassuring that the random forest model performed similarly against the test 

set as in nested cross-validation, we wanted to ensure that the accuracy observed did not simply 

occur by chance. We randomly permuted the predicted virulence of the 25 test set isolates to 

model the null distribution of test set accuracies that we would expect if no link between 

accessory genome content and virulence existed in the test set. After one million permutations, 

an accuracy of at least 0.72 was found in 53,476 cases (one-sided p = 0.053) (Figure 3.12B). The 

test set performance observed is therefore unlikely if the accessory genome does not predict 

virulence. Limiting factors include the small sample size of the independent test set, as is evident 

from the discrete possible accuracies when the predictions were permuted, and that we would not 

expect the model to perform better against new data than it did during nested cross-validation. 
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Table 3.5 Performance of Random Forest Models Trained Using Different Genomic Features 

Against the 25 Test Isolates 

Feature 
Set  Accuracy Sensitivity Specificity PPV AUC F1 

AGEs 0.72 0.80 0.60 0.75 0.77 0.77 
Core 
SNVs 0.72 0.67 0.80 0.83 0.69 0.74 

8-mers 0.60 0.53 0.70 0.73 0.63 0.62 
10-mers 0.68 0.73 0.60 0.73 0.72 0.73 

 
PPV: positive predictive value, AUC: area under the receiver operating characteristic curve 
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Figure 3.12 Performance of the random forest model trained on accessory genomic content in 

predicting virulence in an independent test set of 25 isolates. (A) Receiver operating 

characteristic curve for predictions of the 25 test set isolates using the random forest model 

(AUC = 0.77). (B) Permutation analysis showing the likelihood of predicting test virulence with 

an accuracy of at least 0.72 if no true link between virulence and accessory genomic content 

existed. The predicted virulence of the 25 test isolates were randomly permuted 1 million times, 

and the resulting null distribution of possible model accuracies is shown. The vertical red line 

indicates the true accuracy of the random forest model in predicting test set virulence (one-sided 

p = 0.053). 
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Addressing Model Limitations by Removing Isolates with Intermediate Levels of Virulence 

While the models generated thus far showed that the accessory genome is predictive of P. 

aeruginosa virulence in mice, limitations inherent to our binary classification of virulence may 

have constrained their performance. The first lies in the resolution of the mLD50 estimates used 

as the basis for these classes. Because of the practical limitations of testing over 100 isolates in 

mice, many isolates were tested with only two or three doses. This leads to uncertainty in the 

dose required to cause severe disease (Supplementary Table 3.1 and Table 3.2). Second, isolates 

with mLD50 estimates close to the cutoff may actually be quite similar, both in their virulence 

and in their genomic makeup, but still be assigned to different virulence classes. To assess the 

extent to which this ambiguity influenced the results, we repeated the machine learning pipeline 

using the random forest algorithm after removing intermediate virulence isolates (the middle 

third of estimated mLD50 values). This enforced a greater separation of isolates classified as high 

and low virulence (Figure 3.13A). Even with a third fewer training isolates, nested cross-

validation performance was similar to when all training isolates were included, with a mean 

accuracy of 0.76 (95% CI 0.67-0.85) (Figure 3.13B). The learning curve, however, showed a 

greater distance between the training and cross-validation scores (Figure 3.13C). This suggests a 

higher potential performance when intermediate virulence isolates are removed. The benefit of 

having a clearer boundary between high and low virulence would likely become apparent with a 

larger training set, though the number needed and degree of improvement is unclear. 
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Figure 3.13 Performance of the random forest algorithm in predicting P. aeruginosa virulence 

from accessory genomic content when intermediate virulence isolates (middle 3rd of estimated 

mLD50 values) were removed. (A) Cumulative distribution function of estimated mLD50 values 

after removing intermediate virulence isolates. Isolates with estimated mLD50 values less than 

the median value in the complete training set (red dashed line) were designated as high virulence, 

with the remainder designated as low virulence. (B) Nested 10-fold cross-validation performance 

of the random forest model, including accuracy, sensitivity, specificity, positive predictive value 

(PPV), area under the receiver operating characteristic curve (AUC), and F1 score. The results 

for each cross-validation fold are shown in black with the mean and 95% confidence interval of 

each statistic indicated in red. (C) Learning curve showing change in mean training accuracy (red 

line) and cross-validation accuracy (green line) with increasing training set sizes. Shading 

indicates the 95% confidence interval. Assessments at each number of training examples were 

through 10-fold nested cross-validation. 
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Incorporating Test Set Isolates into the Accessory Genome Model 

After using the 25 additional isolates as an independent test set, we next examined their 

impact on nested cross-validation performance if they were included in the training set. As this 

changed the median estimated mLD50, we performed the modeling using both the median of the 

115 training set isolates and the median of all 140 isolates as the cutoff for high/low virulence 

(Figure 3.14A). These models performed similarly, both to each other and to the results seen 

with only the original training set. The mean nested cross-validation accuracy was 0.72 (95% CI 

0.65-0.79) when using the median mLD50 cutoff of the 115 training isolates and 0.69 (95% CI 

0.60-0.78) when using the median mLD50 cutoff of all 140 isolates (Figure 3.14C and E). It is 

notable that adding an additional 25 isolates to the training set (and considering the new AGEs in 

these isolates) did not result in an improvement in model performance. The learning curves, 

however, showed greater overfitting of the model when the all-isolates median cutoff was used, 

with a larger separation between the training and cross-validation accuracies (Figure 3.14D and 

F). This suggests the choice of cutoff between high and low virulence isolates may become more 

important with increasing training set sizes. Removing intermediate virulence isolates resulted in 

similar nested cross-validation performance and learning curves as seen when performing this 

analysis on the original training isolates (Figure 3.14B, G, and H). 
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Figure 3.14 Performance of the random forest algorithm in predicting virulence from accessory 

genomic content when all 140 tested P. aeruginosa isolates were used to train the model. 

Cumulative distribution functions of estimated mLD50 values considering (A) all 140 tested 

isolates and (B) after removing intermediate virulence isolates. Isolates were designated as high 

or low virulence based on whether their estimated mLD50 was lower than the median value in the 

training isolates (red dashed line) or all isolates (purple dashed line). Nested cross-validation 

performance when defining high virulence based on the median estimated mLD50 in the (C) 

training isolates, (E) all tested isolates, and (G) after removing intermediate virulence isolates, 

including accuracy, sensitivity, specificity, positive predictive value (PPV), area under the 

receiver operating characteristic curve (AUC), and F1 score. The results for each cross-validation 

fold are shown in black with the mean and 95% confidence interval of each statistic indicated in 

red. Learning curves showing change in mean training accuracy (red line) and cross-validation 

accuracy (green line) with increasing training set sizes when defining high virulence based on the 

median estimated mLD50 in the (D) training isolates, (F) all tested isolates, and (H) after 

removing intermediate virulence isolates. Shading indicates the 95% confidence interval. 

Assessments at each number of training examples were through 10-fold nested cross-validation. 
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Modeling P. aeruginosa Virulence with Features Incorporating Core Genome Information 

Thus far we have shown that the accessory genome of P. aeruginosa is predictive of 

strain virulence. The accessory genome and core genome are correlated with each other, as can 

be seen from previous reports51 and by comparing core and accessory genome measures of strain 

relatedness (Figures 3.2 and 3.3). As such, the accessory genome contains implicit information 

about the core genome. Still, it is possible that our focus on the accessory genome misses 

important core features predictive of virulence. To address this possibility, we defined our 

feature set in two additional ways and examined the performance of random forest models 

trained using these features. First, we considered core genome SNVs. Here we used one-hot 

encoding in our machine learning pipeline to convert SNVs from nucleotides into binary 

variables interpretable by the algorithm. Second, we used whole genome k-mer counts, which 

encode information about variability in both the accessory and core genome. K-mers are defined 

by dividing the genome into overlapping sequences of length k. We considered k-mer lengths of 

both 8 and 10 bp. Unlike the AGE feature set used previously, which considered the presence 

and absence of accessory elements, the k-mer feature sets additionally capture polymorphisms 

within these elements. We estimated the performance of approaches using these feature sets 

through nested cross-validation and then assessed how well final models built with each were 

able to predict the virulence of the 25 independent test set isolates.  

A random forest approach using core genome SNVs as features performed worse on 

average in nested cross-validation than when using accessory genomic features, with a mean 

accuracy of 0.65. However, its 95% confidence interval (0.55-0.75) still overlapped with those 

seen for the accessory genomic models (Figure 3.15A). Therefore, some information important 

for determining virulence level may be missed by not considering the accessory genome. 
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Another explanation is that more strains may be needed to model this substantially more 

complex feature set, as there were 440,116 core genome SNV loci detected in our training set. 

As the confidence intervals overlap, we must be careful drawing conclusions about the relative 

predictive power of the core and accessory genomes. The final model trained with core genome 

SNV features showed an accuracy of 0.72 on the independent test set. This was identical to the 

test set accuracy seen for the accessory genomic model but with a lower sensitivity and higher 

specificity (Table 3.5). Despite its lower nested cross-validation accuracy, we cannot say 

whether the accessory genome or core genome are superior in predicting virulence. 

The random forest approach using k-mer counts as features performed similarly to the 

accessory genome models in nested cross-validation, with a nested cross-validation accuracy of 

0.71 (95% CI 0.58-0.83) when 8-mer counts were used and 0.69 (95% CI 0.63-0.76) when 10-

mer counts were used (Figure 3.15B and D). This suggests that no additional predictive 

information was gained from incorporating core genome features, and that AGE 

presence/absence encodes the same information in a smaller feature set. The learning curve for 

the model trained on 8-mer counts showed overfitting, with a large discrepancy between the 

training and cross-validation accuracies (Figure 3.15C). This suggests that performance would 

improve with a larger training set, and perhaps that the increased complexity of the 8-mer feature 

set makes it more difficult to learn from than the presence or absence of AGEs. The final model 

trained with 8-mer features showed an accuracy of 0.60 on the test set, while the final model 

trained on the 10-mer feature set showed an accuracy of 0.68 (Table 3.5). The performance of 

the 8-mer feature set was more variable in nested cross-validation, with a wider range in its 95% 

confidence interval, and it is possible that lower model stability contributed to its poorer 

performance against the test set.  
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Figure 3.15 Performance of the random forest algorithm in predicting P. aeruginosa virulence 

when 8-mer counts, 10-mer counts, or core genome SNVs were used as model features. Nested 

cross-validation performance when using (A) core genome SNVs, (B) 8-mer counts, and (D) 10-

mer counts, including accuracy, sensitivity, specificity, positive predictive value (PPV), area 

under the receiver operating characteristic curve (AUC), and F1 score. The results for each cross-

validation fold are shown in black with the mean and 95% confidence interval of each statistic 

indicated in red. (C) Learning curve showing change in mean training accuracy (red line) and 

cross-validation accuracy (green line) when using 8-mer counts as features as increasing 

numbers of isolates are used to train the random forest model. Shading indicates the 95% 

confidence interval. Assessments at each number of training examples were through 10-fold 

nested cross-validation. Learning curves were not constructed when using core genome SNV or 

10-mer counts as features for reasons of computational feasibility. 
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Simulating Scenarios Where There is No Relationship Between the Accessory Genome and 

Virulence and When a Single AGE Perfectly Predicts Virulence 

In the course of conducting this study, two questions arose regarding how our machine 

learning approach would respond to different scenarios. We saw that there was signal in the 

accessory genome predictive of virulence class, but as a comparison we wanted to test how our 

machine learning approach would perform if there was no relationship between an isolate’s 

accessory genome and our phenotype of interest, in this case virulence. We also saw that a 

random forest model of virulence appeared to be making predictions based on a diffuse genomic 

signal rather than the presence of specific virulence or anti-virulence factors. This raised the 

question of how our models would perform if virulence class was controlled by a single factor. 

We investigated both of these questions by simulating scenarios where virulence phenotype of 

the training set was randomly shuffled (breaking the link between accessory genomic content 

and phenotype) and estimated the performance of different machine learning algorithms with or 

without the addition of a perfectly predictive feature. To account for variation in results based on 

how the phenotype was permuted, this process repeated 10 times and the mean nested cross-

validation accuracy from each replicate was compared (Figure 3.16). 

When there was no signal between accessory genome content and phenotype mean nested 

cross-validation accuracy was approximately 0.5 (with mean nested cross-validation accuracy 

averaging 0.47-0.51 across the 10 seeds tested) regardless of algorithm choice (Figure 3.16). 

This serves as a negative control to provide more evidence that there is true signal in the 

accessory genome predictive of virulence. When an artificial feature is added that perfectly 

predicts phenotype, accuracy increases for all algorithms tested. However, the degree of 

improvement varied by algorithm. Notably, random forest showed the smallest improvement in 
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nested cross-validation accuracy (mean 0.65), while elastic net logistic regression (mean 1) and 

support vector classifier (mean 0.92) showed much higher performance (Figure 3.16). This can 

be attributed to differences in the way these algorithms learn from the training data. At each node 

of each decision tree in the random forest, only a subsample of potential features are tested. 

When the number of features is much larger than the number of samples, as is the case for the 

AGEs in our training set, many trees would never test a given feature. This limits the ability of 

that feature to influence model predictions. As the random forest algorithm performed similarly 

to all other algorithms in predicting virulence based on accessory genomic content (Figure 3.5), 

it is unlikely that there is a single AGE is highly predictive of phenotype in the P. aeruginosa 

isolates. The L1-regularization component of elastic net logistic regression can set the weight of 

uninformative features to 0 (effectively removing them from the model), which may explain why 

it was best able to learn from a single perfectly predictive feature. More investigation would be 

needed to test how different algorithms would react to the phenotype being dictated by the 

combination of a small number of features, but a similar pattern may arise in that scenario.  
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Figure 3.16 Mean nested cross-validation accuracy of machine learning algorithms in predicting 

a randomly permuted phenotype based on accessory genomic content and after adding an 

artificial perfectly predictive AGE. L2-regularized logistic regression (LR), random forest (RF), 

elastic net logistic regression (EN), and support vector classifier (SVC) algorithms were tested. 

Nested cross-validation accuracy was determined when using the 3,013 AGEs for the 115 

training isolates to predict (control) and after adding an additional feature identical to the labels 

(perfectAGE). This process was repeated using 10 random seeds (indicated by color), with the 

mean and 95% confidence interval between seeds indicated in red.   
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Evaluating Machine Learning Models Predicting Persistence or Eradication from Early Cystic 

Fibrosis P. aeruginosa Isolates Based on Genomic Content 

 As a comparison to our work using the P. aeruginosa genome to predict an isolate’s 

virulence in mice, we investigated whether the genome could be used to predict whether an 

isolate is persistent or eradicated in the lungs of cystic fibrosis patients. To do this, we 

investigated a collection of 207 early cystic fibrosis isolates collected as part of the Early 

Pseudomonas Infection Control (EPIC) Clinical Trial318,319 for which we possess both whole-

genome sequencing data and know whether the isolate was persistent or eradicated in the study 

patient. The majority (0.72) of these isolates were eradicated (Supplemental Table 3.4). A core 

genome phylogenetic tree showed that both persistent and eradicated isolates are genetically 

diverse (Figure 3.17). It is important to note that as this collection does not contain PA7-like 

outlier strains, the scale of this phylogenetic tree differs from trees considering the collection we 

used to examine the relationship between the P. aeruginosa genome and virulence in mice (e.g. 

Figure 3.2). We defined the accessory genome of each of the 207 cystic fibrosis isolates. This 

identified a total of 4156 AGEs, with a mean length of 3875 bp, median length of 756 bp, and 

forming a pan-accessory genome size of 16.1 Mb (Supplemental Table 3.5). Alignment of 

sequencing reads from these isolates to PAO1 identified 308,999 variant core genome SNV loci. 

 We used the machine learning approach described in Figure 3.4 to estimate how well the 

accessory genome is able to predict whether an isolate is persistent or eradicated. However, as 

accuracy can be a poor measure of model performance in unbalanced datasets, F1 score was used 

for hyperparameter selection during grid-search cross-validation and considered as the primary 

outcome metric. In nested cross-validation, the mean F1 score was low (0.26), showing that the 

accessory genome was a poor predictor of whether an isolate was persistent or eradicated. 
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Additionally, the mean accuracy (0.56) was lower than simply picking the majority class (0.72), 

as F1 score was maximized at the expense of accuracy (Figure 3.18A). Examination of the 

learning curve for the F1-tuned approach showed a large gap between the training F1 score and 

the cross-validation F1 score, suggesting that performance may improve with increasing sample 

size. However, as there is no upward trend in F1 score as the training size increases, an 

appreciable improvement may not be possible with a realistic number of samples (Figure 3.18B). 

When accuracy was instead used for hyperparameter selection, the optimal model exclusively 

classifies isolates as the majority class. This leads to a mean cross-validation accuracy of 0.72, a 

specificity of 1, and a sensitivity, PPV, and F1 score of 0 (Figure 3.18C). In the learning curve 

the training and cross-validation scores have already converged by the largest sample size tested, 

suggesting that there will be no further improvement in the model with increasing sample size 

(Figure 3.18D). Similarly, when core genome SNVs were used to train a random forest model, 

an F1-tuned approach performed poorly in nested cross-validation (mean F1 score 0.21), and an 

accuracy-tuned approach produced models that primarily pick the majority class (mean accuracy 

0.71 and mean specificity 0.99) but never correctly identify a persistent isolate (mean sensitivity 

and F1 0) (Figure 3.19). Altogether, these findings show that in our dataset the P. aeruginosa 

genome is not predictive of whether an isolate is persistent or eradicated during early cystic 

fibrosis infection. 
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Figure 3.17 Core genome comparisons for the collection of 207 early cystic fibrosis P. 

aeruginosa isolates. Mid-point rooted core genome phylogenetic tree of the 115 training isolates 

constructed from SNV loci present in at least 95% of genomes, annotated by clinical outcome 

(persistent or eradicated). 
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Figure 3.18 The accessory genome is not predictive of persistence or eradication in a collection 

of early cystic fibrosis isolates. Nested cross-validation performance when using F1 score (A) or 

accuracy (C) to select hyperparameters during grid-search cross-validation including accuracy, 

sensitivity, specificity, positive predictive value (PPV), area under the receiver operating 

characteristic curve (AUC), and F1 score. The results for each cross-validation fold are shown in 

black with the mean and 95% confidence interval of each statistic indicated in red. Learning 

curves showing change in mean training accuracy (red line) and cross-validation accuracy (green 

line) with increasing training set sizes when using F1 score (B) or accuracy (D) to select 

hyperparameters during grid-search cross-validation. Shading indicates the 95% confidence 

interval. Assessments at each number of training examples were through 10-fold nested cross-

validation. 
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Figure 3.19 Core genome SNVs are not predictive of persistence or eradication in a collection of 

early cystic fibrosis isolates. Nested cross-validation performance when using F1 score (A) or 

accuracy (B) to select hyperparameters during grid-search cross-validation including accuracy, 

sensitivity, specificity, positive predictive value (PPV), area under the receiver operating 

characteristic curve (AUC), and F1 score. The results for each cross-validation fold are shown in 

black with the mean and 95% confidence interval of each statistic indicated in red. 
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Discussion 

 In this study, we have shown that a signal exists in the P. aeruginosa accessory genome 

that is predictive of an isolate’s virulence in a mouse model of infection. This finding was 

consistent across a variety of machine learning algorithms. Results for the random forest 

approach were validated using an independent test set of clinical isolates collected from a 

geographically distinct source, showing the broad applicability of the P. aeruginosa accessory 

genome in predicting virulence. We additionally showed that the core genome, alone or in 

combination with the accessory genome, is also predictive of virulence, but the ability of models 

trained on this information to generalize to the independent test set was less conclusive. These 

types of genetic features were substantially more complex, and models trained from them may 

benefit from increasing sample size. The machine learning analyses conducted here serve as a 

framework to further investigate the relationship between the genome of a bacterium and its 

phenotype. 

 The random forest model trained on accessory genomic information classified isolates as 

high or low virulence based on a diffuse genomic signature rather than by detecting a small 

number of virulence or anti-virulence factors. The genomic signature detected may approximate 

lineage, echoing the recent finding that genomic neighbors are highly predictive of antimicrobial 

resistance in Streptococcus pneumoniae and Neisseria gonorrhoeae279. Supporting this 

conclusion is the finding that individual AGEs showed low importance in random forest model 

predictions and that models could be built using only a random tenth of the total AGEs without a 

dramatic loss of performance. Further, some of the misclassified test set strains were virulence 

outliers relative to their phylogenetic neighbors. Still, information encoded in the genome is not 

necessarily simply phylogenetic. This was shown in recent study by Khaledi et al. using genomic 
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and transcriptomic features to predict antimicrobial resistance in P. aeruginosa. They tested the 

influence of phylogenetics on their resistance predictions through “block cross-validation”, in 

which they enforced that training and cross-validation folds contained non-overlapping sequence 

types. This resulted in modest reductions in performance but showed that resistance could be 

predicted even when testing against phylogenetically distinct isolates66. Future studies should 

determine the extent to which P. aeruginosa virulence correlates with phylogenetic relationships. 

While individual AGEs showed low importance in model predictions, it is relevant that 

all of the ten most important AGEs included in our model were associated with low virulence. 

This supports the earlier finding that the presence of specific P. aeruginosa accessory genes can 

reduce virulence in C. elegans and that active CRISPR systems, which would limit acquisition of 

foreign DNA and new AGEs, are associated with higher virulence in that model31. While certain 

AGEs enhance virulence70, many AGEs (e.g. parasitic phages, plasmids, or ICEs) may decrease 

virulence through mechanisms such as dysregulation of regulatory networks, insertion into 

important genes, or imposition of an additional metabolic burden. The latter possibility could be 

assessed by examining the in vitro growth rate of the isolates included in this study and 

determining whether AGEs predictive of low virulence were associated with slower growth. In 

addition, it could be determined whether deletion of these AGEs resulted in an increased growth 

rate. This should be accompanied by a systematic investigation into the types of AGEs that are 

associated with low and high virulence. We focused on virulence in a mouse model of acute 

infection, and as such certain bacterial genetic factors important in the hospital setting may not 

apply. Antimicrobial resistance, for example, can be an important prognostic factor for patient 

outcomes140 but would not be relevant in this model. Future studies should examine the types of 
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AGEs that are associated with, and ultimately causal of, both increased and decreased virulence 

and how this varies between infection models. 

 Our random forest model built on accessory genomic features showed similar 

performance in nested cross-validation as when the model was applied to an independent test set 

of 25 isolates. By looking at the test set isolates that were classified incorrectly, we can learn 

why the model sometimes failed. Some incorrect predictions may be because of mLD50 values 

near the threshold between high and low virulence, leading to ambiguity in their true virulence 

level. An example of this scenario is the isolate PASP518, whose estimated mLD50 of 7.0 log10 

CFU is near the cutoff of less than 6.9 log10 CFU for high virulence. This highlights inherent 

limitations of this study: that virulence exists on a continuum not neatly divided into binary 

classes and that the limited number of mice tested for each isolate creates uncertainty in the 

estimations of the mLD50 values. Both of these factors could decrease the accuracy of our 

models. To address these limitations, we examined how the model performs when excluding 

intermediate virulence isolates. In this condition, a random forest approach performed similarly 

in nested cross-validation with a third less samples and learning curve analysis showed a 

potential for higher accuracy with increasing sample size (Figure 3.13). On the other hand, as 

mentioned above some of the incorrect predictions in the test set were exceptions in virulence 

compared to closely related isolates. For example, PASP251 has an estimated mLD50 of 6.3 log10 

CFU, while its nearest four phylogenetic neighbors all have estimated mLD50 values of greater 

than 7 log10 CFU. This could be because PASP251 possesses additional virulence determinants 

in the form extra accessory genes or distinct core genome polymorphisms. In either case, 

PASP251 is a particularly interesting isolate for future study. An alternative explanation is that, 

while geography does not seem to play a role in model performance as a whole, the closely 
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related isolates from Chicago have acquired common mutations or genes modifying their 

virulence. An increased sample size may ameliorate the problem of isolates being misclassified 

by allowing for finer resolution of subgroups that are associated with high or low virulence, 

especially if the model were able to learn new and more discriminatory patterns of features. 

Learning curve analysis for the random forest approach (Figure 3.6A) suggests the impact of 

adding more isolates would be limited, but this cannot account for new or more predictive 

features that could arise from increasing the amount of genetic data available.  

 As whole genome sequencing becomes an increasingly routine component of clinical 

microbiology practice, it will create the opportunity to risk-stratify patients based on the genome 

of an infecting bacteria and influence treatment decisions in real-time. The ability of the genome 

to predict antibiotic resistance has been established66,274,275,277,279, opening the door for sequence 

analysis to supplement or replace traditional antimicrobial susceptibility testing if routine 

sequencing becomes commonplace. This study serves as a proof of concept that the P. 

aeruginosa genome can be used to predict its pathogenicity. This is notable because, with its 

relatively large and complex genome, P. aeruginosa has the potential to be more difficult to 

evaluate through machine learning modeling than other bacterial species. For example, in a study 

performed by Hyun et al., AMR prediction models for P. aeruginosa tended to have worse 

performance than those for S. aureus or E. coli278. We also considered a genetically diverse 

population, compared to the simpler scenario examined by some other studies which focused on 

variation within a specific clone282,296. Future studies are needed to expand beyond virulence in 

mice and provide a more complete understanding of the role genetic variation plays the ability of 

P. aeruginosa to cause disease. An area of particular interest is in predicting patient outcomes 

from the genome of an infecting isolate. Large retrospective studies using archived isolates with 
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corresponding clinical data would allow for exploration of the relative importance that bacterial 

and patient factors play in predicting patient outcomes, as has been shown for specific S. aureus 

clones282. This could improve the sophistication of current diagnostics and allow clinicians to 

rapidly identify patients at highest risk for poor outcomes. 
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CHAPTER 4 

Discussion 

 

 In this dissertation, I have described two projects examining antimicrobial resistance and 

virulence in Pseudomonas aeruginosa. One was a genomic epidemiology study in which we 

uncovered a clone that has caused a prolonged epidemic at our institution and characterized a 

large plasmid which contributed to its resistance. In the other, we used a machine learning 

approach to show that the P. aeruginosa genome can be used to predict virulence in a mouse 

model of infection. While these studies may seem distinct, they are tied together by a unifying 

thread of bacterial genomics. As bacterial whole genome sequencing becomes an increasingly 

practical tool in the clinical microbiology laboratory, I expect that the gap between these two 

areas of research will continue to narrow. Ultimately, the goal of both studies was to use the P. 

aeruginosa genome to better track and understand bacterial phenotypes. They employed many of 

the same techniques, including whole-genome sequencing and assembly, sequence alignment, 

and phylogenetics. In these chapters, I have laid the foundation for future work to further 

investigate the epidemic subclade ST298* and its resistance plasmid and to interrogate additional 

P. aeruginosa phenotypes via machine learning. In this section, I provide context to the results of 

these studies and propose future directions for additional research. 

 

Prolonged epidemic of XDR ST298* P. aeruginosa at Northwestern Memorial Hospital 

In Chapter 2, I describe the repeated isolation of a specific highly drug-resistant P. 

aeruginosa subclade (termed ST298*) for at least 16 years from patients at Northwestern 

Memorial Hospital (NMH), with time-scaled phylogenetic analysis suggesting that the ST298* 
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subclade was established substantially earlier. ST298* shows high levels of antimicrobial 

resistance (AMR), driving the high rate of drug resistance seen in CC446 isolates from NMH. 

This is in part due to the presence of a large AMR plasmid containing a novel class I integron, 

which in many cases pushed isolates from multidrug resistant (MDR) to extensively drug 

resistant (XDR). This plasmid is so far unique to ST298* but is a member of a family of large 

Pseudomonas genus plasmids. While ST298* P. aeruginosa has caused a prolonged local 

epidemic of drug resistant infections, CC446 more broadly has caused drug resistant infections 

around the globe. 

The results of this study have both general and local significance. Broadly, they indicate 

the importance of CC446 as an emerging high-risk clone. Locally, this work uncovers the 

existence a source of highly drug resistant P. aeruginosa infections at our institution. Identifying, 

and hopefully eradicating, the reservoir of ST298* would be critical to prevent future infections 

and lower the burden of drug resistance in the hospital environment. While the AMR plasmid 

(pPABL048) and integron (in1697) have not been detected outside of the ST298* subclade thus 

far, it is possible it could facilitate the spread of resistance to other Pseudomonas isolates. 

Further, in1697 if found in only a small portion of pPABL048. Examining other roles 

pPABL048 plays in the physiology or pathogenicity of ST298* may help us better understand 

the biology this subclade, high-risk clones in general, and large Pseudomonas plasmids. 

CC446 as an emerging global high-risk clone 

 One of the major motivations of this project was to show that CC446 has not only caused 

a local epidemic at NMH (in the form of ST298*) but that it also represents an emerging high-

risk clone. The isolates included in our study and previous reports in the literature and PubMLST 

database show that CC446 has a global distribution, with cases found on five 
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continents65,73,74,100,180,181,192,304-308. Further, multiple studies (including our own) reported at least 

MDR (non-susceptibility to a drug in ≥3 classes) in one or more CC446 

isolates65,73,74,100,192,306,307. Two other studies each noted carbapenem resistance and the VIM-2 

metallo-β-lactamase in an ST298 isolate180,181. These characteristics (global spread and repeated 

drug-resistant infections) are the key indicators of a high-risk clone129,131.  

An important question regarding CC446’s status as an emerging high-risk clone is 

whether it continues to cause outbreaks of drug-resistant infections globally. An updated 

literature search found an additional 12 studies reporting ST298 or ST446 isolates (either from 

patients or in the hospital environment) not captured in our original study167,169,183,184,202,320-326. 

These studies were published between September 2018 and June 2020, and identified CC446 

isolates in the United States, Canada, China, Indonesia, Iran, Ireland, Myanmar, South Korea, 

Spain, Russia. Detection of CC446 in Indonesia, Iran, Ireland, and Myanmar was not noted in 

our original study, highlighting that extent of global spread for this clone is even greater than 

previously appreciated.  Notably, nine of these studies report concerning AMR (either 

carbapenem nonsusceptibility or explicit multidrug resistance)167,169,183,184,202,321,323-325. A 

surveillance study of sites in five states led by the Centers for Disease Control and Prevention 

(CDC) highlights the importance and spread of CC446 in drug-resistant P. aeruginosa infections 

in the United States. They sequenced 128 of 129 carbapenem-resistant isolates submitted to the 

CDC as part of this study (106/129 of which were confirmed to be carbapenem resistant on 

repeat testing by the CDC). ST298 was the second most common ST identified with 10 isolates, 

second only to the global epidemic strain ST235 (14 isolates)202. 

As appreciated in Chapter 2, the CC446 isolates in these studies showed AMR through 

diverse mechanisms. Carbapenem resistance in a set of ST446 isolates from four Russian 
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hospitals was largely explainable (7/8 isolates) by an insertion sequence disrupting oprD167. 

Similarly, four carbapenem non-susceptible ST446 isolates from Oregon showed a premature 

stop codon leading to truncation of OprD169. On the other hand, a carbapenem resistant ST446 

isolate from Spain harbored the metallo-β-lactamase IMP-8, while an isolate from Myanmar 

contained VIM-2. Both of these isolates also contained one or more acquired aminoglycoside 

resistance genes184,324. 

Even in cases where concerning drug resistance was not described, there were findings 

that may be relevant to CC446’s global spread. Moghadam et al. found that ST446 was common 

in urine samples from prostate and bladder cancer patients at an Iranian hospital (11.8% of total 

P. aeruginosa isolates). These were not carbapenem resistant but still showed some AMR, with 

3/8 resistant to ceftazidime and 5/8 resistant to gentamicin326. Moloney et al. described 4 ST298 

P. aeruginosa isolates from two washbasin U-bends in a Dublin Dental University Hospital 

clinic and an additional isolate from a washbasin U-bend in a second nearby hospital322. The 

authors did not test for AMR in these isolates, but this study provides an example of ST298 P. 

aeruginosa establishing itself in a healthcare environmental reservoir.  

Altogether, the evolving literature suggests that CC446 continues to be a global problem 

clade, with numerous new cases reported since the completion of our original study. This 

cements its status as an emerging, if not already established, high-risk clone. As such, further 

surveillance is needed to monitor for new or larger outbreaks and determine whether CC446 is 

increasing in clinical significance over time.  

Potential reservoirs for ST298* 

 We identified a total of 21 ST298* isolates (all of which were MDR and 13/21 of which 

were XDR) that were collected from NMH over the course of 16 years. This suggests the 
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existence of a stable reservoir from which ST298* P. aeruginosa periodically emerges to cause 

drug-resistant infections. Further, time-scaled phylogenetic analysis estimates that the last 

common ancestor of these isolates occurred in approximately 1980. This is relevant because the 

current NMH inpatient facility opened in 1999, suggesting that ST298* began diverging (and 

likely had acquired the AMR plasmid) prior to its opening. It is notable that this new facility is 

on the same campus as the prior hospital and is connected to buildings that predate this estimated 

last common ancestor (e.g. the Olson Pavilion, opened 1979). Our earliest ST298* isolate 

(PABL020) was collected in 2000, shortly after the opening of the new facility. Identifying the 

reservoir of ST298* is important from a public health perspective and is necessary to end this 

prolonged epidemic and prevent future highly drug-resistant infections caused by this subclade. 

As stated in Chapter 2, this reservoir could be within NMH itself (perhaps seeded by an already-

diverging ST298* population), at an outside site from which patients are admitted to NMH (such 

as a long-term acute care hospital or skilled nursing facility), or more widely distributed in the 

Chicago metropolitan area. An important limitation in our current study is that we did not 

possess epidemiological data about the isolate collection beyond date of isolation. For example, 

we do not know the patient room or ward from which these isolates were collected and whether 

the affected patients were linked by common facilities that could serve as an infection source. 

This makes it impossible to pinpoint the reservoir of ST298* based on the evidence we have 

now. Future work will need to incorporate epidemiological data, including chart review of 

patients infected with ST298* isolates and targeted sampling of the healthcare environment. 

With that in mind, it is important discuss the potential reservoirs for ST298* to develop a 

framework for these future studies. 
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A recent study performed by Chng et al. at a tertiary care center in Singapore found that, 

for multiple pathogenic species (Elizabethkingia anopheles, Staphylococcus aureus, 

Acinetobacter baumannii), isolates collected from the hospital environment could be genetically 

linked to previously collected patient isolates from either that hospital or others in Singapore. 

Some of these linked patient isolates were collected over eight years prior327. This provides 

evidence healthcare settings can drive prolonged outbreaks like we see in ST298*. Further, it is 

possible that admissions to NMH or discharges to other facilities could drive transmission and 

spread the outbreak. This can be illustrated by a study of transmission in a regional Klebsiella 

pneumoniae outbreak performed by Snitkin et al., where a nursing home provided a link for 

transmission between an acute care hospital and a long-term acute care hosptital328. 

 Water systems are a prime candidate for the ST298* reservoir and as such deserve 

increased attention. Maloney et al. cultured ST298 P. aeruginosa from washbasin U-bends322. 

This is consistent with our study, where 7 CC446 isolates (6 ST446 and 1 ST298) isolates were 

collected from sinks in healthcare facilities in the Chicago metropolitan area as part of the 

healthcare environmental collection. None of these were ST298* and all were susceptible to 

antibiotics, but they did not originate from NMH where all ST298* isolates thus far have been 

identified. While Olivia Pura, an undergraduate researcher in the Hauser laboratory, sampled one 

or more sinks at NMH while assembling the healthcare environmental collection, only one 

isolate (which was not CC446) was collected at this site. As such, it is possible that we have 

simply not sampled the right locations. It is well established that P. aeruginosa can colonize 

water systems, which can then serve as likely foci for hospital outbreaks21-23. It has been shown 

that P. aeruginosa can incorporate into biofilms on common plumbing materials under 

experimental conditions329 and that P. aeruginosa is biofilm-associated in sink taps23. This 
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biofilm lifestyle may promote the formation of a stable and persistent reservoir. A particularly 

insightful example of the importance of water systems in infection control is that of a prolonged 

outbreak (2006-2016) of another opportunistic pathogen, Sphingomonas koreensis, at the NIH 

clinical center investigated by Johnson et al. They cultured water systems (e.g. water, sinks, 

plumbing components) in rooms where patients were identified as infected as well as other 

possible sources of exposure, identifying a number of environmental isolates genetically related 

to those causing infections. Because the phylogenetic structure of this cluster was broadly 

diverse and replaced sinks became culture-positive over time they were able to infer that the 

colonization occurred deep within the water system shortly after the NIH clinical center was 

constructed in 2004. Finally, they were able to prevent additional infections by increasing 

chlorination and hot water temperature at the clinical center, showing that this type of 

investigation is actionable330.   

While water systems are the most likely reservoir for ST298*, it is possible that 

colonization of other surfaces plays an important role. Chng et al. were able to detect multiple 

pathogenic bacteria (including P. aeruginosa) on surfaces in hospital rooms, including both sinks 

and dry surfaces. Further, they showed that clones of multiple species (particularly E. anopheles, 

Serratia marcescens, and Staphylococcus haemolyticus) were persistent in the hospital 

environment over a period of approximately 1.5 years327. The increased exposure of these 

surfaces to both decontamination procedures and desiccation make it less likely that they serve as 

the ultimate reservoir, but the disinfectant resistance genes on in1697 may promote transient 

colonization of surfaces by ST298* and provide opportunities for patient infection. Colonized or 

infected patients may also serve as a vector for the spread of ST298*. 
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 As stated, future work is needed to identify the reservoir of ST298*. The Hauser and 

Ozer laboratories have continued to collect P. aeruginosa isolates from NMH. As these isolates 

are sequenced for other purposes, they should be screened for the occurrence of ST298* and the 

presence of pPABL048. This is important to determine whether this prolonged epidemic is still 

ongoing or whether the plasmid has disseminated. It will also be important to, where possible, 

acquire epidemiologic data on patients infected by ST298* isolates through retrospective chart 

review. This will determine if there are clusters of cases which share a floor or hospital room as 

well as other epidemiologic links (e.g. common procedures). Additionally, it could uncover 

whether the patients were admitted to the hospital from a common location, such as the same 

long-term acute care hospital. Recently collected ST298* isolates would be the most useful 

targets for chart review, as they may point to areas currently colonized by ST298*. After chart 

review, the best next step would be systematic environmental sampling following the approach 

Johnson et al. used to identify the reservoir of S. koreensis in the NIH Clinical Center330. Water 

systems from areas where patients could have been exposed (both patient rooms and common 

systems) should be sampled and cultured either in the hospital or if relevant in an outside site. If 

sinks or drains colonized by ST298* P. aeruginosa were detected, it could prompt sampling 

deeper in the water system to attempt to identify a root source.  

As noted in Chapter 2 it is possible that ST298* is more widespread in healthcare settings 

throughout the region and has not been previously detected simply for a lack of screening. With 

that in mind, NMH should collaborate with other Chicago institutions to screen banked isolates 

for the presence of ST298*. To alleviate the cost of sequencing, initial screening could be done 

in a rapid manner through either MLST or targeted PCR of sequence specific to ST298* or 

pPABL048. Of particular importance would be Lurie Children’s Hospital, which in 2012 moved 
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to a primary facility adjacent to NMH. Collaboration here could potentially reveal if this move 

was associated with the acquisition of ST298*. 

Finally, in the process of investigating the potential reservoir of ST298* it would also be 

useful to examine the characteristics of the patients who were infected by these isolates. This 

subclade has clearly been successful in that it has caused repeated infections at NMH over an 

extended period of time. This may be due, at least in part, to its high level of AMR, but it is 

unknown if its mutational and acquired resistance mechanisms (or other genomic characteristics 

of ST298*) come at a cost to acute pathogenicity. Notably, all eight ST298* isolates included as 

part of the training set in Chapter 3 were classified as low virulence in the mouse model of 

bacteremia (Table 2.3 and Table 3.1). While virulence in mice does not necessarily equate to 

pathogenicity during human infection, it would be useful to know if patients who are infected by 

ST298* have more significant underlying disease or immune compromise than those infected by 

other P. aeruginosa strains.  

Characterization of the large AMR plasmid pPABL048 

The novel AMR plasmid pPABL048 contributes to the high level of resistance in ST298* 

through the presence of the class I integron in1697, with many in1697-containing isolates 

showing an XDR phenotype. However, this integron makes up only a fraction of pPABL048, 

which is 415,954 bp in size and contains 496 coding sequences. More study is needed to 

understand the role of pPABL048 in ST298* and to compare it to other related plasmids. The 

development of plasmid-cured PABL048 in this study provides an ideal tool to investigate 

plasmid-mediated phenotypes. 

In this study, I described a novel large plasmid identified at NMH that is a member of a 

family of large Pseudomonas genus plasmids, many of which are associated with AMR95,185,313. 
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Cazares et al. recently described two additional members of this plasmid family in clinical P. 

aeruginosa isolates from Thailand. Alignments detected these plasmids in four isolates from two 

distinct P. aeruginosa clades. Further, they performed comparative genomics analyses 

characterizing this plasmid family. The 13 complete plasmid sequences which they compared to 

their two novel plasmids were also considered in the plasmid comparative genomic analyses 

conducted in our study (Table 2.7)331. As such, their findings can provide insights relevant to 

pPABL048. Cazares et al. show that, in addition to being found in multiple Pseudomonas 

species, these plasmids have been detected in both Asia and Europe and from both clinical and 

environmental sources. They found that the plasmid family has a conserved core genome of 

approximately 261 genes, encoding for functions similar to what I described in the pPABL048 

plasmid backbone (Figure 2.12). This core genome included genes encoding the conjugal 

transfer proteins TraG, TraB, and TraV331. In our annotations of pPABL048, a gene encoding 

TraB is present adjacent to a gene encoding an unspecified conjugal transfer protein, suggesting 

these conjugative proteins are also present on pPABL048 and raising the possibility that it could 

be transmitted to other Pseudomonas strains (Supplementary Table 2.1). Additionally, they 

found a diverse accessory genome among the 15 plasmids that included a large number of AMR 

genes331.  

Cazares et al. postulated that these plasmids may be in the IncP-2 incompatibility group 

due to previous experiments performed on pOZ176331. However, pOZ176 also contained 

additional putative replication and partitioning genes95. These additional genes were present in 

the related plasmid p12969-DIM (notably along with a IncQ2-type replication system), while the 

IncP-2 type replication and partitioning genes were not185. The pPABL048 replication and 

partitioning genes were part of the plasmid backbone (Figure 2.12A), and as noted by Sun et al. 
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in the p12969-DIM study185, the backbone replication gene has not been characterized. This 

suggests that the IncP-2 incompatibility group is likely not a core characteristic of this plasmid 

family, but instead that at least two of these plasmids have acquired additional replication and 

partitioning systems from known groups. As with our analyses, Cazares et al. identified through 

alignment the likely presence of this plasmid family in a number of Pseudomonas genus draft 

genomes331. 

For the final experiment in their study, Cazares et al. showed the transfer of plasmids 

pOZ176 and p1 (whose sequences are included in our study) from their parent strains into the 

Pseudomonas flourescens strain SBW25. This could be due to the conjugal transfer genes 

present in the plasmid core genome described above. However, pOZ176 carries a operon 

containing a number of conjugal transfer genes, including trbBCDEJLFGI and several others95, 

that are not present in pPABL048 or the other previously described plasmid p12969-DIM185. 

Conjugation has been attempted in the related plasmids p12969-DIM and pSY153-MDR without 

success185,313. In p12969-DIM this can be explained by the fact that these plasmids are likely 

Pseudomonas genus restricted, as the authors only tested conjugation into Escherichia coli185. 

However, pSY153-MDR was also unable to be conjugated into the P. aeruginosa strain 

PAO1313. As such, it is possible that conjugation is not a fundamental characteristic of this 

plasmid family. However, it is clear that they can at the very least acquire systems that allow for 

their transfer. The simultaneous presence of another plasmid with intact conjugation machinery 

may also be able to mediate transfer. The ability of pPABL048 to transfer via conjugation should 

be tested. Neither pOZ176 nor p1 conferred a fitness cost on P. fluorescens SBW25 in KB media 

in a competition assay. Further, a sizable proportion of the competitors acquired the plasmids, 
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showing the risk that conjugal transfer could play in the spread of AMR by this plasmid 

family331. 

Beyond conjugation, there are multiple other ways in which pPABL048 could impact the 

phenotypes of ST298* isolates that warrant investigation. Screening pPABL048 against the 

virulence factor database310 identified three potential virulence factors related to type IV pili and 

the plasmid backbone includes both a chemotaxis locus and a putative pilus locus (Figure 2.12 

and Supplementary Table 2.2). Type IV pili are known to play important roles in motility, 

adhesion, aggregation, and DNA binding (and in some species DNA uptake)2,212,332,333. With that 

in mind, PABL048 motility and cell adhesion (to cells or surfaces) should be tested in the 

presence or absence of pPABL048 using previously described assays213,214,223. As noted in 

Chapter 2, three ST298* isolates contain an uncharacterized variant of the plasmid-borne β-

lactamase OXA-10 that may confer extended spectrum activity, particularly towards ceftazidime. 

Dr. Kelly Bachta and I are collaborating with the Center for Structural Genomics of Infectious 

Diseases to obtain the crystal structure of this novel OXA-10 variant, which can be compared to 

the existing structure of OXA-10334 to determine whether there are any structural factors that 

may contribute to extended spectrum activity. Dr. Bachta is testing whether this variant confers 

ceftazidime resistance by expressing both OXA-10 and the novel variant in PAO1 and PA14 and 

observing impact on MICs. The impact of pPABL048 on fitness in animal models of infection, 

including bacteremia and pneumonia, should also be characterized. 

The Hauser laboratory has now performed long-read MinION sequencing on four 

additional ST298* isolates: PABL020 (ST298* isolate with only 15.6% alignment to 

pPABL048), PS1793 (which contains the novel OXA-10 variant), PS1875 (which has in1697 but 

is missing a large contiguous segment of pPABL048), and PA-NM-088 (a recent ST298* 
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isolate). Assembling complete genomes for these isolates and comparing to the PABL048 

chromosome and plasmid will provide insights into the evolution and divergence of pPABL048-

like plasmids in ST298*. 

In the course of working with PABL048 and its plasmid-cured variant, I encountered a 

phenotype associated with the carriage of pPABL048 that warrants further investigation. That is, 

late stationary phase cultures of plasmid-cured PABL048 appear to precipitate out of solution 

when left without shaking while the parental PABL048 strain remains suspended. This 

phenotype was also observed in other ST298* isolates, where isolates lacking the plasmid 

(PABL040 and PS2027) precipitated while an isolate possessing the plasmid (PA-NM-088) 

remained largely suspended. The exception was PABL020, which based on read alignment lacks 

the majority of pPABL048 sequence (Appendix I). The time-scaled phylogenetic tree shows that 

PABL020 is on the deepest branch within the ST298* subclade (Figure 2.8), and the isolate 

contains sequence aligning to 15.6% of the plasmid (Table 2.4). ST298 strains outside of this 

subclade did not precipitate (Appendix I). Systematic experiments are needed to fully 

characterize this phenotype to both better understand the conditions provoking it and ensure that 

it can be consistently replicated. Still, its observation raises interesting questions about the 

biology of pPABL048. It is somewhat unexpected that we see a precipitation phenotype upon 

plasmid loss, as plasmids are often associated with increased aggregation (including in cases 

where they encode pilus systems)335-337. It is possible that this phenotype is secondary to the 

adaption of ST298* to the carriage of pPABL048 and is unmasked upon its loss, as it is well 

known that carriage of plasmids can lead to compensatory mutations in the bacterial 

chromosome63,338,339. Additionally, the fact that several ST298* isolates lacking the plasmid 

show the same precipitation phenotype as plasmid-cured PABL048 supports the conclusion that 
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pPABL048 was most likely acquired a single time by the subclade and has subsequently been 

lost in several isolates. This is also supported by the presence of the plasmid on multiple 

branches of the ST298* time-scaled phylogenetic tree (Figure 2.8), and our observation that the 

plasmid can be lost in both natural (heterogenous presence in PABL036 and PABL067) and 

experimental (plasmid-cured PABL048) conditions. It is possible that an ancestor of PABL020 

also contained this plasmid and that retention of a portion of it explains the lack of precipitation 

phenotype. Once this phenotype is better characterized, the region of the plasmid present in 

PABL020 would be a good place to start in understanding its mechanism. This phenotype also 

increases the necessity to observe the plasmid’s impact on motility and adhesion.  

 

A machine learning approach to predict P. aeruginosa virulence in mice from genomic data 

 In Chapter 3, I use machine learning to investigate whether the genome of P. aeruginosa 

is predictive of strain virulence in a mouse model of bacteremia. Models trained using accessory 

genomic information (in the form of AGE presence or absence) were able to predict level of 

virulence (high or low), with a mean nested cross-validation accuracy ranging from 0.72 to 0.75 

depending on the algorithm used. This demonstrates that there is signal in the P. aeruginosa 

accessory genome predictive of virulence. We confirmed this finding using an independent test 

set, where a random forest model trained on accessory genomic information predicted virulence 

with an accuracy of 0.72. Further, we showed that core genome information (in the form of core 

genome SNVs) and whole-genome information (in the form of k-mer counts) can also be used to 

predict virulence. 

 While individual factors increasing or decreasing the virulence of P. aeruginosa have 

been well described, we show that the genome as a whole can be used, with moderate 
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performance, to predict an isolate’s virulence. Further study into how these genome-based 

models make their predictions would improve our understanding of what dictates variation in 

pathogenicity between P. aeruginosa isolates. Importantly, our accessory genome random forest 

model made predictions based on a diffuse genomic signature rather than the presence or absence 

of individual AGEs. This raises questions regarding what strategies would be most effective in 

identifying novel virulence or anti-virulence factors from genomic data. Unlike virulence in 

mice, the P. aeruginosa genome was not able to predict persistence or eradication in early cystic 

fibrosis isolates. Comparing these two scenarios may provide insights into the type of 

phenotypes that can be predicted using genomic information alone. Finally, the machine learning 

methodology employed in this study can be used as a framework for future studies investigating 

the relationship between the bacterial genome and diverse phenotypes. This includes both 

simpler phenotypes (such as cytotoxicity or growth rate) where models may be able to predict 

with higher accuracy or identify causal features, and more actionable phenotypes (such as patient 

morality) where model predictions could serve as a guide for clinical practice and identify high-

risk infections.  

The P. aeruginosa genome is predictive of virulence in mice 

Our results showing that the P. aeruginosa genome possesses signal predictive of 

virulence in a mouse model helps move us beyond the established understanding the individual 

factors can increase or decrease pathogenicity24,25,31,70,75,76,208,261 and towards a more global 

understanding of intraspecific variation in P. aeruginosa virulence. Still, it is not clear from the 

current study how our models use this genomic information to predict virulence. In Chapter 3, 

we discussed that the accessory genome random forest model appeared to be basing its 

predictions on a diffuse genomic signature, and that this signal perhaps resembled phylogenetic 
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structure. Studies focusing on AMR prediction have shown that both simply identifying an 

isolate’s closest genomic neighbors in a labeled database can accurately predict resistance level 

and that models can be highly predictive even when phylogeny is corrected for by ensuring that a 

test isolate’s closest neighbors were not used to train the model66,279. While seemingly 

conflicting, these results are not necessarily inconsistent. For example, a clade may have 

acquired an accessory gene or chromosomal mutation conferring resistance recently in 

evolutionary history. This would cause closely related isolates to show a similar phenotype even 

if it was not conserved deeper in the phylogenetic tree, and the same causal features may also be 

present on different branches. As noted in Chapter 3, the simplest way to test whether 

phylogenetic structure is playing a large role in our virulence predictions may be through a 

“block cross-validation” strategy similar to that utilized by Khaledi et al. Here, they grouped 

isolates into blocks by ST and assigned blocks to the training and cross-validation folds rather 

than individual isolates66. Grouping isolates by ST may not be the best way to rule out the 

influence of phylogenetics on model predictions as isolates from different sequence types can 

still be very closely related if they are in the same clonal complex (e.g. ST298 and ST446). Other 

options would be to expand to clonal complexes or use an algorithm such as hierBAPs340 to 

cluster isolates into subpopulations before dividing into blocks. It would be possible to perform 

this analysis in a stepwise fashion, seeing how model performance changes as increasingly large 

portions of the phylogenetic tree are grouped into blocks. At the highest level, we could ask the 

question of whether a model built on isolates from the exoS+ clade shows any predictive power 

against isolates from the exoU+ clade. A recent study by Nguyen et al. took a different approach, 

instead correcting for phylogeny during the model building process by putting greater weight on 
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isolates from rare clades (and conversely less weight on any given isolate from a common 

clade)291. 

 Our ability to predict virulence was moderate. Using a random forest approach, models 

built using accessory genomic features, core genome SNVs, whole-genome 8-mers, and whole 

genome 10-mers showed mean nested cross-validation accuracies of 0.75, 0.65, 0.69, and 0.71 

respectively (Figures 3.5 and 3.15). These approaches performed similarly when a final model 

was used to predict the virulence of the test set, with accuracies of 0.72, 0.72, 0.6, and 0.68 

respectively (Table 3.5). As discussed in Chapter 3, limitations in our study related to how 

isolates were assigned a virulence class may have decreased the performance of our models. 

Briefly, virulence is continuous and not neatly split into binary classes and error in our mLD50 

estimations could lead to isolates being assigned incorrectly. Additionally, our sample size was 

limited by the large number of mice required to perform these experiments, which did not lend 

itself easily to a high-throughput assay. This is particularly apparent in our test set, which 

contained only 25 isolates. Learning curve analysis suggests that performance would not 

necessarily improve with more samples, at least for the accessory genome models, but that may 

at least in part be secondary to the difficulties in assigning isolates to a clear virulence class. That 

our machine learning approach performed as well as observed given these limitations makes our 

findings all the more impressive. Still, the limitations we encountered in this study will be 

important to consider when designing future machine learning experiments. 

 In this study, we used AGE presence or absence, core genome SNVs, and whole-genome 

k-mers as model features, but these are not the only ways to represent genomic information. 

Other types of genomic features may allow for the same information to be presented in a more 

compact form, potentially reducing both model complexity (and through this computational 
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demands) and overfitting. For example, considering only nonsynonymous SNVs would reduce 

the size of our core genome SNVs feature set while focusing on the features that would be most 

likely to have functional impacts. A drawback here is that this may lead to the exclusion of 

important SNVs in noncoding regions. Additionally, there are graph-based methods to condense 

k-mers into more interpretable features termed “unitigs”341. As noted in Chapter 1, an alternative 

to using AGE presence or absence as accessory genomic features would be to consider gene or 

protein families67,68. This may result in features which are easier to interpret but may also result 

in the loss of important accessory sequences that are either domains within a gene or are part of 

intergenic regions. The type of genomic information used should be thoughtfully considered 

when designing future machine learning studies. 

 A strength of our study is that we explicitly examined how model performance was 

impacted by our sample size through learning curve analyses. This allowed us to conclude, for 

example, that the ability of our accessory genome models to predict virulence was unlikely to 

substantially improve with additional samples (Figure 3.6) but that there was more room for 

improvement if moderate virulence isolates were excluded (Figure 3.13C), suggesting that the 

challenge of assigning isolates to a given virulence class was a limiting factor. Similar analyses 

have been conducted in other machine learning studies. For example, Nguyen et al. evaluated 

changes in the accuracy of models predicting AMR in Salmonella with increasing training set 

size275. However, this practice is not currently standard among studies using machine learning to 

predict bacterial phenotypes. This leads to unanswered questions regarding how much genomic 

information is needed to predict different phenotypes in examined bacterial populations, which 

could have important implications in both one’s understanding of the results (e.g. the extent 
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performance was limited by insufficient training data) and the design of future machine learning 

studies.  

Model predictions are not based on individual virulence or anti-virulence factors 

 In our random forest model of virulence trained using accessory genomic content, all 

AGEs included showed low permutation importance, with the highest ranked AGE lowering out-

of-bag accuracy by only 1% on average when randomly permuted. In fact, almost all AGEs 

(2,979/3,013) could be permuted without any change in model accuracy (Supplementary Table 

3.2). We further showed that we could randomly subset the AGE feature set down to at least a 

tenth of its initial size with little loss of performance (Figure 3.8). Together, these findings 

suggest that there is a high degree of redundancy in the accessory genomic feature set. In our 

simulation analyses, we found that the random forest algorithm was least sensitive to the 

presence of a single causative feature (Figure 3.16), but since our accessory genome models 

showed equivalent nested cross-validation performance regardless of algorithm choice (Figure 

3.5) it is unlikely that examining models built using other algorithms would have uncovered 

individual highly predictive AGEs.  As we discussed in Chapter 3, our model appears to be 

learning a diffuse genomic signature which may, at least in part, approximate phylogenetic 

structure. This may be a reason why we are able to predict virulence to a similar extent when 

using different types of genomic features (AGEs, core genome SNVs, k-mers). The core and 

accessory genomes are not independent of each other, which can be seen by the finding that the 

two major P. aeruginosa clades defined from a core genome phylogenetic tree also largely 

cluster by accessory genome content51.  

Our conclusions should also serve as a cautionary note when interpreting the results of 

other machine learning studies. If we had not considered permutation importance and instead 
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used a different metric of feature importance, such as Gini importance (the default for random 

forest in scikit-learn287) or ranking features by coefficient in the regularized logistic regression 

model, it may have been less obvious that individual AGEs played a very small role in model 

predictions. If we simply had a list of the AGEs that were “most important”, it may have led us 

to overestimate how large a role they play in virulence. Similarly, if we had included a feature 

selection step to reduce the number of features used to train the final model, each of the retained 

features would have a greater impact on model predictions. This could be similarly misleading, 

as they could not be disentangled from highly correlated features that were excluded. Features 

responsible for causing a phenotype are not necessary to build a highly predictive model in a 

system as complicated as the bacterial genome279,291. In studies modeling AMR, the detection of 

genes or variants known to play a role in resistance is often used as evidence that the model in 

question can identify resistance factors276,278,342. While this proves that these models can identify 

true resistance elements, it does not mean that novel features identified through these approaches 

are necessarily going to impact AMR. In a study modeling patient mortality in two S. aureus 

clones, Recker et al. highlighted a number of loci as predictive of mortality in their models. They 

selected one of these, the known virulence factor capA, for further analysis. They identified a 

SNV is this gene resulting in defective capsule production, and therefore susceptibility to killing 

by neutrophils, in isolates from six patients who survived infection282.  While this is a promising 

result, it cannot prove that defective capsule production contributed to the survival of the 

infected patients or guarantee that any of the other predictive loci are involved in pathogenesis. 

Any genomic features identified as predictive in these modeling approaches are hypotheses. 

Microbiologic studies are required to prove that they are actually playing a role in that 

phenotype. 
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One of our original goals when embarking on this project was to see if machine learning 

could be used not only to predict virulence but also to identify novel virulence factors. A recent 

project in the Hauser laboratory, described in Allen et al. 2020, performed a pan-accessory 

genome wide screen to identify novel AGEs that contribute to virulence in P. aeruginosa70. In 

this study, candidate AGEs were identified that both correlated with virulence and showed 

homology to known virulence factors (in the MvirDB343 and Effective344 databases). This 

approach was successful, and for 11/15 tested AGEs virulence in mice was attenuated when that 

AGE was deleted70.  This approach was not unbiased, and by its design could only identify 

AGEs which resembled known virulence factors. It was thought that our machine learning 

approach may allow us to identify novel virulence (or anti-virulence) determinants in a less 

constrained manner. We did observe an association of the most important AGEs with low 

virulence. All of the top 10 AGEs, and 32/34 of the AGEs with non-zero permutation 

importance, were more prevalent in low virulence isolates (Table 3.4 and Supplementary Table 

3.2). As stated in Chapter 3, this should prompt further investigation into whether AGEs have a 

tendency to impose fitness costs that could lead to reduced virulence. However, for the reasons 

described above it is clear that we cannot use the models developed in this study to identify 

novel virulence factors. This highlights the importance of problem formulation when designing a 

computational study. The approach best suited to predicting a phenotype may not be the same 

approach that is best suited to identifying individual features that are causal of that phenotype. 

As stated above, powerful predictors can be developed even when causative features are not 

considered279,291.   

An alternative approach to identifying genomic features causing increased or decreased 

virulence would be through a bacterial genome-wide association study (GWAS), a technique that 
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has been a major focus of development in the past several years. GWAS is a well-established 

technique in eukaryotic genomics (particularly humans), but the presence of accessory genomes 

and extensive horizontal gene transfer creates challenges not seen in higher eukaryotes345. An 

important factor in bacterial GWAS approaches is control for the effects of population structure, 

which attempts to reduce the effect of spurious correlations between genotype and phenotype 

that are simply the result of this structure345-347. This may allow for unbiased searches while still 

limiting the number of false positives (features that are associated with, but not causative of, the 

phenotype). Two main ways in which this population structure is accounted for is through linear 

mixed models346,348 and through phylogenetic tree-based methods347,349. Some of the tools 

developed for bacterial GWAS, such as treeWAS, have been designed to examine associations 

between both core genome SNVs and accessory genes with the phenotype, though not 

necessarily at the same time347. Bacterial GWAS has been used to explore factors associated with 

antimicrobial resistance341,346,347, invasive disease vs. carriage in Neisseria meningitidis347, 

pyomyositis vs. carriage in S. aureus350, and gastric cancer from Helicobacter pylori infection351. 

As with the machine learning approaches, any hits identified through these screens are 

hypotheses and would need to be tested to determine whether they indeed play a causal role in 

the phenotype in question. 

Comparing predictive models of P. aeruginosa virulence in mice and persistence in cystic 

fibrosis patients 

As discussed, there was signal in the P. aeruginosa genome predictive of virulence, 

regardless of whether accessory genome AGEs, core genome SNVs, or whole-genome k-mers 

were used as features in the machine learning models. This, however, was not the case when we 

attempted to predict persistence in isolates from the EPIC Clinical Trial. When tuning our 
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models based on F1 score to account for class imbalance, the resulting F1 scores in nested cross-

validation were quite low (0.26 when using AGEs and 0.21 when using core genome SNVs). 

When we instead tuned our models based on accuracy, the optimal solution was to simply call 

isolates eradicated (exclusively when training on AGEs and near-exclusively when training on 

core genome SNVs) (Figures 3.18 and 3.19). 

From one perspective, the negative finding that the P. aeruginosa genome is not 

predictive of persistence or eradication in early cystic fibrosis raises our confidence that there is 

true genomic signal predictive of P. aeruginosa virulence in mice. It shows that, while the ability 

of genomic information to predict virulence in mice was moderate, we cannot expect to see the 

same response for all phenotypes. This is supported by the findings of our simulation analyses, 

where randomly shuffling which isolates were classified as high or low virulence resulted in 

nested cross-validation accuracies near 0.5 (Figure 3.16). This is what one would expect to find 

in the case where the features possess no predictive signal. The performance we observed when 

tuning models based on accuracy also illustrates the danger of relying on accuracy as the only 

outcome metric, especially in cases with class imbalance in the training dataset. For the results of 

a machine learning study to be meaningful it is essential that an appropriate outcome metric be 

used (both during model training and performance evaluation), and a critical eye for this must be 

taken when interpreting the literature. 

The question remains why we were unable to predict persistence in early cystic fibrosis 

isolates. It is well known that cystic fibrosis patients can be persistently colonized by a single P. 

aeruginosa clone11,12,352, with one study showing through sequencing the carriage of a single 

clone (which diversified into subpopulations) over 32 years11.  It is possible that whether a given 

strain is able to establish long-term colonization is largely stochastic or determined by factors 
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other than the bacterium itself. There could be far more eradicated isolates that were never 

detected, simply because they had already been cleared (or not yet acquired) at the time of 

sampling. Similarly, it is possible that isolates we classified as eradicated could persist (at least 

for a period of time) under different scenarios, and that isolates we classified as persistent may 

not ultimately establish prolonged colonization. This possibility is apparent in the phylogenetic 

tree of this isolate collection (Figure 3.17), where closely related isolates can be seen belonging 

to both classes. A question this raises is whether any P. aeruginosa isolate is then able to 

colonize a cystic fibrosis patient, either by chance or if given the right environment. This would 

be inconsistent with the finding that certain P. aeruginosa clones have caused large or prolonged 

epidemics in cystic fibrosis patients. The most famous of these is LES (the Liverpool Epidemic 

Strain), which has spread out of the United Kingdom, and another example is the DK1 clone in 

Denmark11,129,133,353,354.  Additionally, isolates possessing the gene exoS appear to be 

overrepresented in P. aeruginosa from cystic fibrosis patients compared to what is seen in acute 

infection121,128.  Isolates from the natural environment appear to also be enriched for exoS 

presence16, so this predilection could be in part due to exposure and increased susceptibility of 

cystic fibrosis patients to P. aeruginosa in general. That would not, however, account for the 

success of epidemic strains in the cystic fibrosis population. 

The definition of persistence used in this study (detection of an isolate closely related to 

the first isolate for that patient at a later study date) could have exacerbated the stochasticity 

described above and contributed to the poor performance of our machine learning models. The 

EPIC clinical trial followed patients for only 18 months318, and an isolate did not have to be 

detected throughout the entire study period to be called persistent. As such, it would not be 

impossible that an isolate we defined as eradicated actually colonized a patient for the same 



 186 
amount of time as another isolate we defined as persistent. A stricter definition of persistence 

(e.g. carriage of a given clone for a minimum of 5 years) may reveal that there is a greater 

importance of bacterial factors in chronic colonization of cystic fibrosis patients. Unfortunately, 

this is outside of the scope of the data we have from the EPIC Clinical Trial. 

As stated above, another possibility is that patient or environmental factors largely dictate 

whether a given Pseudomonas strain is able to successfully colonize the cystic fibrosis lung. 

Even if the bacterial genome plays a role in persistence, these confounding factors may mask 

their impact. Our mouse experiments were performed with an inbred mouse strain in a controlled 

environment. While this does not remove all sources of experimental variance, this is far less 

than what one would expect in clinical study. For example, ages of patients in the EPIC trial 

ranged from 1-12 years318. Additionally, patients were assigned to one of four antibiotic 

treatment arms. While these treatment arms showed no significant impact on study outcomes318, 

they could have still had an impact on the persistence of individual isolates. The degree of lung 

pathology in different patients, or differences in their microbiomes or environmental exposures, 

may also be important factors in whether a given strain is able to persist. These potential 

confounding factors should be considered when designing future studies evaluating the 

relationship between bacterial genomics and phenotype, particularly when studying clinical 

collections and patient outcomes.  

Machine learning as a tool to interrogate P. aeruginosa phenotypes 

In this project we have established a machine learning approach to predict P. aeruginosa 

virulence in mice from genomic features. The framework laid out in this study can be applied to 

a variety of scenarios investigating the relationship between the P. aeruginosa genome and 

diverse phenotypes. For example, we have already used this approach to show that the P. 
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aeruginosa genome is not predictive of persistence in early cystic fibrosis isolates, at least in the 

conditions evaluated in the EPIC Clinical Trial. Moving forward, I see two main avenues for 

future studies. The first would be to focus on phenotypes which are simpler or more amenable to 

high-throughput screening than mouse virulence, which could avoid some of the limitations of 

our present study. The second would be to focus on clinical outcomes, such as patient mortality 

in acute infection. This would be more challenging, but the models developed could be clinically 

actionable and help understand how large a role bacterial factors play in patient outcomes.   

 As previously discussed, practical limitations in our mouse model create uncertainty in 

our virulence estimates, and virulence in mice was not easily separable into binary classes. 

Further, virulence is a complex phenotype likely dictated by the combinatorial effects of 

numerous genetic factors. Examining simpler phenotypes may allow us to avoid at least some of 

these limitations. This could result in higher model performance and a greater potential to 

identify predictive features. A first step here would be to examine in vitro growth rate. As noted 

in Chapter 3, almost all AGEs with non-zero permutation importance in our accessory genome 

model of virulence were more prevalent in low-virulence isolates. We posited that this might be 

due to fitness costs imposed by the accessory genome. Examining whether the accessory genome 

can be used to predict growth rate, and if any specific AGEs are predictive of increased or 

decreased growth rate, would help us understand the extent to which the accessory genome is a 

metabolic burden. Additional in vitro assays that could serve as the basis for machine learning 

studies include cytotoxicity, adhesion, or resistance to killing by immune cells. In many of these 

scenarios there may still be issues with continuous phenotypes that are not easily divided into 

discrete classes. If the data cluster into clear groups, it may be simple to frame a given phenotype 

as a classification problem. On the other hand, with sufficiently precise data and a large enough 
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sample size, it may be possible to take a regression strategy rather than a classification strategy 

for machine learning. This has been done with AMR prediction, predicting MICs rather than 

resistance vs. susceptibility275,292.   

With simpler phenotypes and larger datasets, it may be possible identify predictive 

features that play a potential role in the phenotype in question. This would be consistent with 

studies predicting AMR, where known resistance determinants are often highly ranked in their 

models275,278,342. These predictive features would form testable hypothesis for further 

microbiologic experiments. As described previously, machine learning studies could be 

supplemented with bacterial GWAS if a main goal is to identify potential causal elements.  

Other options would be to examine virulence in simpler model organisms, such as C. 

elegans27,29,31,32, G. mellonella29,30, D. melanogaster27-29, or even plants24,30. These infection 

models would scale easier than mice, which would allow us to both screen a larger number of P. 

aeruginosa isolates and estimate virulence with more precision. If the same strains were tested in 

different model organisms, it would be possible to assess if virulence in one organism can be 

used to predict virulence in another. Features predictive of virulence in multiple infection models 

would be ideal targets for further analysis.  

Applying machine learning to clinical phenotypes would be more challenging, as 

highlighted by the poor performance of the P. aeruginosa genome in predicting persistence in 

early cystic fibrosis and mixed results in the literature. This, however, only increases the 

necessity for additional studies to move the field forward. When modeling patient mortality in 

specific S. auerus clones, Recker et al. found that genomic features could predict mortality with 

an area under the receiver operating characteristic curve (AUC) of 0.75 for CC22 and 0.79 for 

CC30282. A recent study by Lapp et al. found that the ability of the K. pneumoniae genome to 
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differentiate between isolates causing infection or simply colonization was relatively poor, with 

AUC values showing an inter-quartile range of 0.55-0.61294. If bacterial factors are not predictive 

of patient outcomes, it is still an important finding and would suggest that future studies should 

focus on patient, environmental, or treatment factors that influence disease outcomes.  

In machine learning studies examining the predictive power the bacterial genome in 

clinical phenotypes, it would also be important to consider the impact of patient factors (such as 

age or comorbidities). This would allow us to compare whether bacterial or patient factors are 

more predictive of outcomes, and whether there is any benefit of considering them together. For 

example, it may be that the combination of a particularly virulent bacterial isolate with an 

especially vulnerable (e.g. immunocompromised) host creates the highest risk for poor outcomes. 

Another possibility would be that genomic determinants of bacterial virulence are important to 

cause disease in an otherwise healthy patient but are dispensable in one who is already severely 

compromised. In their study of mortality caused by S. aureus clones, Recker et al. found that for 

CC22, bacterial genotype (AUC 0.75) was more predictive than clinical features (AUC 0.66) and 

there appeared to be additional benefit of using these together along with bacterial phenotypic 

features (AUC 0.84). In the other clone, CC30, bacterial genotype (AUC 0.79) was more 

predictive than clinical features (AUC 0.5) and little benefit was observed when combining these 

together with bacterial phenotype (AUC 0.81)282. As they only report single AUC values for each 

condition (based on out-of-bag performance in their random forest models)282, it is unclear 

whether these differences in performance are significant. A cross-validation approach may be 

better suited to compare the effectiveness of different feature sets. On the other hand, Lapp et al. 

found that patient and bacterial features resulted in similarly weak predictors294. To our 
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knowledge, no study thus far has compared the influence of bacterial genomics and clinical 

factors on patient outcomes in P. aeruginosa infections. 

The highest priority clinical phenotype for our machine learning approach would be 

patient mortality during acute infection. A model predictive of patient mortality would be 

clinically actionable by identifying patients at increased risk for poor outcomes. Previous studies 

have suggested that the presence of exoU may be associated with quicker time-to-death140 and 

that an MDR phenotype or inappropriate therapy (due to drug resistance) can be associated with 

worse outcomes140,141, but no study to date has examined whether the genome as a whole is 

predictive of patient mortality. It would be difficult to conduct clinical studies prospectively. The 

best approach, at least to start, would then be retrospective analysis of existing studies with 

banked or already-sequenced isolates. Another question that could be explored through our 

machine learning approach would be whether there is a genomic signature that differentiates 

clinical and environmental P. aeruginosa isolates. Investigating this could resemble a previous 

study that used the pangenomes of Salmonella enterica and E. coli to predict host source 

(human, avian, bovine, or swine)283 and could take advantage of public databases to analyze a 

large number of genomes. It would also be useful to revisit persistence in cystic fibrosis patients. 

For the EPIC Clinical Trial, it would be possible to determine whether the incorporation of 

clinical data improves the performance of our machine learning models. With a new dataset, we 

could examine whether bacterial factors become important when using a stricter definition of 

persistence that requires chronic carriage.  
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CHAPTER 5 

Materials and Methods 

 

Materials and Methods used in Chapter 2. Identifying and characterizing a prolonged local 

epidemic of extensively drug-resistant Pseudomonas aeruginosa at Northwestern Memorial 

Hospital 

Bacterial Isolates 

Several collections of P. aeruginosa isolates available in the Hauser laboratory were 

evaluated (Table 2.1). These include 3 cohorts of isolates collected from patients and clinical 

settings at Northwestern Memorial Hospital (NMH) in Chicago: 100 bloodstream isolates 

collected 1999-2003 (“PABL”)316, 301 isolates from clinical specimens and hospital 

environments collected 2002-2009 (“MolEpi”), and 99 isolates from patient samples collected 

2013-2018 (“PA-NM”). Other patient isolates screened included 601 bloodstream isolates 

collected from 10 public hospitals in Spain between 2008-20096 and 100 isolates from patient 

samples collected at Brigham and Women’s Hospital (BWH) in Boston between 2015-2016. 

Also included were 58 P. aeruginosa isolates collected from multiple healthcare facility 

environments (e.g. sinks) in the Chicago metropolitan area between 2017-2018. While these 

isolates were not collected from patients, they are healthcare associated and could be of human 

origin or serve as a reservoir for potential infections. CC446 isolates were identified from these 

collections through post-sequencing in silico MLST using allele sequences and MLST profiles 

listed in the PubMLST database305. Both Dr. Egon Ozer and I performed in silico MLST 

analyses using a script written by Dr. Egon Ozer. 
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In addition to the isolates described above, 2483 P. aeruginosa genomes previously 

deposited in the NCBI database (accessed October 26, 2017, deposited 2006-2017) were 

screened using in silico MLST to identify CC446 isolates. Dr. Egon Ozer performed this screen. 

The 38 CC446 isolates identified in this screen were included in the genomic analyses performed 

in this study.  

Antimicrobial Resistance Determination 

Minimum inhibitory concentrations (MICs) against 8 antibacterial agents from 7 

antipseudomonal classes were determined for each CC446 isolate included in this study that was 

available for testing using microbroth dilution. MICs were determined in triplicate using the 

broth microdilution protocol by Wiegand, et al.355 and are reported in Table 2.3 and Table 2.6.  

The following antibiotics were prepared from commercially available sources and were used to 

assess MICs: gentamicin, cefepime, ceftazidime, piperacillin-tazobactam, meropenem, 

aztreonam, ciprofloxacin, and colistin. Where discordant values were obtained, the median was 

used. Dr. Kelly Bachta performed antimicrobial susceptibility testing and determined MICs for 

the tested CC446 isolates. Isolates were classified as susceptible or non-susceptible (intermediate 

and resistant) to each antibiotic based on 2018 Clinical and Laboratory Standards Institute 

(CLSI) breakpoints310. An isolate was classified as multidrug resistant (MDR) if it was non-

susceptible to at least one antibiotic from ≥3 classes tested and classified as extensively drug 

resistant (XDR) if non-susceptible to at least one antibiotic from ≥5 classes tested (susceptible to 

antibiotics tested from ≤2 classes)134. 

Susceptibility to ceftazidime-avibactam and ceftolozane-tazobactam was assessed 

through Kirby-Bauer disk diffusion testing using HardyDisk AST disks (Hardy Diagnostics). 
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Isolates were classified as susceptible or non-susceptible based on 2018 CLSI breakpoints310. I 

performed this experiment with Dr. Kelly Bachta. 

BURST Analysis 

 To investigate the relationships between ST298, ST446, and other related sequence types, 

BURST analysis was performed using the goeBURST algorithm356 as implemented in 

PHYLOViZ (v2.0)357, and the resulting clonal complex containing these sequence types was 

identified. All Pseudomonas aeruginosa sequence types listed in the PubMLST database 

(accessed August 12, 2019) were considered305.  

Whole Genome Sequencing 

To construct a complete genome sequence for PABL048, long-read sequencing was 

performed on a PacBio RS II machine at the University of Maryland Institute for Genome 

Sciences. PacBio raw data were corrected and assembled using HGAP assembler (SMRT 

Analysis 2.3.0), Canu assembler (v1.2)358, and Celera assembler (v8.2)359. The assemblers were 

run using default settings. Resulting contigs were combined and circularized using Circlator 

(v1.5.1)360. The final assembly was polished using Quiver (SMRT Analysis 2.3.0). Indel errors 

were corrected with Pilon (v1.21)361 using 100-bp paired-end reads generated on an Illumina 

HiSeq 2000 system, with an average read coverage of 190-fold. The genome was annotated 

through the NCBI Prokaryotic Genome Annotation Pipeline362 and has been deposited to 

GenBank with the accession numbers CP039293.1 (chromosome) and CP039294.1 (plasmid). I 

prepared genomic DNA of PABL048. LB broth overnight culture (4 mL) was resuspended in 2 

mL PBS. Genomic DNA was extracted using a Promega Maxwell Cell DNA Purification Kit, 

pooling the eluants of 3 extractions using 400 uL resuspended culture each. Library preparation 

and sequencing were then performed by the University of Maryland Institute for Genome 
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Sciences. Dr. Egon Ozer performed the complete genome assembly and deposited the genome to 

NCBI. 

Potential virulence factors present within the PABL048 chromosome and plasmid were 

identified using the VFanalyzer pipeline to screen against the virulence factor database 

(VFDB)310. 

CC446 isolates were whole genome sequenced using Illumina HiSeq and MiSeq 

platforms. Sequencing was performed at Northwestern University Feinberg School of Medicine 

and at the University of Maryland Institute for Genome Sciences. Preparation of libraries for 

sequencing was performed by various members of the Hauser laboratory, including myself. 

Sequencing reads were trimmed using Trimmomatic (v0.36)363 to remove low-quality bases and 

assembled into draft genome contigs using SPAdes (v3.9.1)364. Contigs shorter than 200 bp were 

filtered out. Both Dr. Egon Ozer and I performed draft genome assemblies. I additionally 

performed short-read sequencing to investigate heterogenous plasmid presence in PABL036 and 

PABL067 and to confirm plasmid curing in PABL048. Genomic DNA was extracted from LB 

broth overnight cultures using a Promega Maxwell Cell DNA Purification Kit. Libraries were 

prepared using a Nextera XT kit and run using a MiSeq Reagent Kit v3 (600 cycle) on an 

Illumina MiSeq instrument to yield 2 x 300 bp paired-end reads.  

Sequence Alignment 

 All CC446 genomes were aligned to the complete genome sequence of PABL048, with 

separate alignments to the PABL048 chromosome and pPABL048 plasmid. Both the 

chromosome and plasmid were indexed with BWA (v0.7.15) using the command “bwa index” 

and samtools (v0.1.19-44428cd)365 using the command “samtools faidx”.  I then determined 
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regions of the chromosome and plasmid that are repetitive for later masking using a custom 

script written by Dr. Egon Ozer which blasts 500 bp fragments of the sequence against itself. 

For isolates with reads available (Table 2.2), read-trimming was performed with 

Trimmomatic (v0.36)363 to remove low quality bases, and alignment was then performed using 

BWA (v0.7.15) with the BWA-MEM algorithm366. Alignments were then sorted and indexed 

using samtools (v0.1.19-44428cd)365 with commands “samtools sort” and “samtools index”. 

Single nucleotide variants (SNVs) relative to the reference were called using the mpileup 

function of samtools (v0.1.19-44428cd)365 with the following settings: -E (recalculate extended 

BAQ), -M 0 (cap mapping quality at 0), -Q 25 (skip bases with BAQ less than 25), -q 30 (skip 

alignments with mapQ less than 30), -m 2 (minimum gapped reads for indel candidates of 2), -D 

(output per-sample DP in binary call format [BCF]), -S (output per-sample strand bias P-value in 

BCF), and -g (generate BCF output). The resulting bcf file was viewed using bcftools (v0.1.19-

44428cd) and I generated the final fasta-format alignment using a custom script written by Dr. 

Egon Ozer as follows. SNVs were filtered if they failed to meet 1 or more of the following 

criteria: minimum SNV quality score of 200, minimum read consensus of 75%, minimum of 5 

reads covering the SNV position, maximum of 3 times the median read depth of the total 

alignment, minimum of 1 read in either direction covering the SNV position, homozygous under 

the diploid model, and not within a repetitive region as determined by BLAST alignment of 

fragments of the reference sequence against itself. Any positions in the reference sequence with 

SNVs that passed the above filters were changed to the SNV base. Positions with SNVs that did 

not pass the above filters were changed to a missing base character. Non-SNV positions with 

coverage of fewer than 5 reads were also changed to a missing base character. For 13 NCBI 

genomes usable reads were not available, so draft genome contigs were aligned to PABL048 
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using NUCmer (v3.1)367 with SNVs within repetitive regions masked (replaced with “N”). I 

performed the NUCmer alignments using a custom script written by Dr. Ozer. 

 Alignments of reads from the NMH CC446 isolates to pPABL048 were visualized with 

Tablet (v1.19.09.03)368 using the sorted BAM files generated above. 

For subsequent phylogenetic analysis, alignments of all CC446 isolates to the PABL048 

chromosome were concatenated into a single fasta file. The core genome was defined as all non-

missing and non-filtered positions present in 91 (98%) of the 92 genomes. Bases in all non-core 

positions were replaced by the corresponding base in the PABL048 reference. I performed core 

genome filtering using a custom script written by Dr. Egon Ozer.  

Phylogenetic Analysis 

 A maximum likelihood phylogenetic tree was constructed based on core genome 

alignments to PABL048 using RAxML (v8.2.11)369. Tree construction was performed using a 

gamma model of rate heterogeneity (-m GTRGAMMA) with 1000 rapid bootstraps (-f  a -N 

1000) to assess support. The phylogenetic tree was corrected for the impact of recombination 

using ClonalFrameML (v1.11-3-g4f12f23) with default settings370. The recombination-corrected 

phylogenetic tree was visualized and annotated using iTOL371. I then masked predicted 

recombinant regions in the core genome alignment using a custom script written by Dr. Egon 

Ozer. 

 Clustering of CC446 isolates was performed using the hierBAPS algorithm as 

implemented in the rhierbaps (v1.1.2) package in R (v3.6.0)311,340,372. The recombination-filtered 

core genome alignment was used as input, the maximum number of populations (n.pops) set to 

20, and the maximum depth of clustering (max.depth) set to 2. 
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 To model the evolution of the ST298* subclade, a time-scaled phylogenetic tree was 

constructed for bacteria from this subclade with known isolation dates (Supplementary Tables 1 

and 2). Recombination-filtered core genome alignments of these isolates to the PABL048 

chromosome were extracted, and the recombination-corrected maximum likelihood tree was 

pruned to contain only these isolates using the ape package (v5.1) in R373,374. These, along with 

isolation dates, were used as input for Bayesian analysis. I generated the input file for this 

analysis from the recombination-filtered alignments, pruned tree, and isolation dates using a 

custom script written by Dr. Egon Ozer (which I modified to accept a yyyy-MM-dd date format).  

Bayesian analysis was performed using BEAST (v2.5.1) with a gamma site model, strict clock 

rate, Yule tree prior, and chain length of 100 million, sampling every 1000 states375. Sampled 

states were analyzed with Tracer (v1.7.1) to determine the clock rate and last common ancestor 

date for ST298*, considering the first 10% of states as burn-in376. SNVs/year were determined by 

multiplying estimated clock rate (SNVs per site per year) by PABL048 chromosome size. To 

construct the final time-scaled tree, TreeAnnotator (v2.5.1) was used to form a maximum clade 

credibility tree from the sample trees with node heights as common ancestor heights, using the 

first 10% of trees as burn-in. The time-scaled tree was visualized using FigTree (v1.4.4).  

Determination of Heterogenous Plasmid Presence in ST298* and Curing Plasmid from 

PABL048  

 ST298 isolates from NMH were screened for heterogenous resistance to gentamicin by 

patching individual colonies onto LB agar supplemented with gentamicin (50 µg/mL). 

Gentamicin-resistant and -sensitive colonies of PABL036 and PABL067 were selected for 

further analysis. These underwent MIC testing and whole genome sequencing as described 
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above. Plasmid presence and chromosomal SNVs were determined by read alignment to the 

PABL048 complete genome.  

To cure pPABL048 from PABL048, we used a combination of sodium dodecyl sulfate 

(SDS) and elevated temperature377. Colonies were inoculated into 5 mL LB with 2% SDS, 

cultured at 42ºC for approximately 24 hours, and plated on LB agar with irgasan (5 µg/mL). 

Colonies were then screened for loss of gentamicin resistance on LB agar supplemented with 

gentamicin (50 µg/mL) and irgasan (5 µg/mL) as a marker for pPABL048 presence. Loss of 

pPABL048 was confirmed through whole genome sequencing and alignment as described above.  

Characterization of in1697, pPABL048, and Plasmid Comparative Genomics 

  The AMR integron in1697 was identified through detection of several AMR genes in 

multiple NMH ST298 isolates using the ResFinder database309. Dr. Jonathan Allen identified this 

set of AMR genes and which isolates possessed them (with the exception of PABL067, an isolate 

with heterogenous presence of the AMR plasmid where these genes were lacking in our initial 

sequence, see above). I then characterized them as being part of a novel class 1 integron. The 

sequence of this locus was referenced against the PABL048 complete genome to determine its 

genomic context. In1697 was further characterized through sequence alignment of translated 

coding sequences to the NCBI non-redundant protein database and through the INTEGRALL 

integron database378, through which it was assigned the unique name in1697. 

 Plasmids similar to pPABL048 were identified using BLASTn, separately screening P. 

aeruginosa, non-aeruginosa Pseudomonas, and non-Pseudomonas Gammaproteobacteria 

sequences in the NCBI nucleotide database (nr/nt). This identified 16 plasmids with a minimum 

of query coverage of 70% (Table 2.7). SPINE (v0.3) was used to determine the plasmid 

backbone of pPABL048 based on sequences conserved in 16/17 complete plasmids analyzed48.  
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 To identify other isolates which harbor plasmids similar to pPABL048, 3133 

Pseudomonas genus draft genomes cataloged by the Pseudomonas Genome Database (accessed 

January 2019)50 were aligned to pPABL048 using NUCmer as described above and screened for 

genome sequences with >70% alignment by length (Table 2.8). A 98% “core” sequence 

alignment to pPABL048 (considering all non-missing and non-filtered positions in 62/63 

sequences) was determined. A maximum likelihood phylogenetic tree was constructed to show 

relationships between these plasmids using RAxML (GTRGamma model, 1000 rapid 

bootstraps)369. 

Mutational Resistance Analysis 

To examine the role of mutational resistance in the observed AMR phenotype, a panel of 

PABL048 genes was screened for mutations known to confer resistance in P. aeruginosa145.  In 

cases where resistance is imparted through specific gain-of-function mutations, translated coding 

sequences were screened for previously reported alleles known to be involved in resistance. In 

cases where resistance is conferred from loss-of-function mutations (e.g. gene disruption), 

translated coding sequences were compared to that of PAO1 as a reference to assess for gross 

changes in the amino acid sequence. The genomes of ceftazidime-resistant ST298* isolates 

PS1793, PS1796, and PS1797 were similarly screened to investigate mechanisms of ceftazidime 

resistance. Protein sequences for OprD, AmpD, and OXA-10 were extracted for isolates in the 

ST298* subclade and multiple sequence alignment was performed using CLC Sequence Viewer 

(v8.0) with default parameters.  For OprD and AmpD, the PAO1 protein sequence was incuded 

as a reference. For OXA-10, the sequence of OXA-10 and known variant OXA-14 were included 

as a reference. For PABL067, OXA-10 protein sequence was extracted from the assembly of a 

gentamicin resistant colony. 
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Materials and Methods used in Chapter 3. Using the Pseudomonas aeruginosa genome to 

predict virulence in a mouse model of bacteremia 

Bacterial Isolates 

A training set of P. aeruginosa isolates for use in the machine learning analyses was 

established as follows. A total of 98 isolates previously collected at NMH in Chicago, USA from 

1999-2003 from adults with P. aeruginosa bacteremia316 were selected after exclusion of 2 

isolates that had been collected from patients with a history of cystic fibrosis. An additional 17 

isolates from pediatric patients with Shanghai Fever collected at Chang Gung Children’s 

Hospital in Taiwan from 2003-2008317 were included. This yielded a training set size of 115 

isolates. A genetically diverse independent test set of 25 isolates was selected from a larger 

cohort of isolates collected from patients with bacteremia in Spain between 2008-20096 (Table 

3.1).  

Mouse Model of Bacteremia 

Female 6- to 9-week-old BALB/c mice were infected via tail-vein-injection in a model of 

bacteremia as previously described317. Isolates were plated from freezer stocks onto lysogeny 

broth (LB) agar, and single colonies were inoculated into MINS broth379 and grown overnight at 

37 ºC. Overnight cultures were then subcultured in fresh MINS broth for approximately 3 hours 

at 37 ºC. Cultures were resuspended in PBS before dilution to the target dose, and 50 μL was 

injected into each mouse via the tail vein. Inocula, in CFUs, were then determined by serial 

dilution, plating, and colony counts. Mice were monitored for the development of severe disease 

over 5 days, with mice exhibiting endpoint disease euthanized and scored as dead. Each isolate 

was tested at a minimum of 2 doses, with 3-5 mice per dose (minimum 9 total mice per isolate) 

(Supplementary Table 3.1). Many of the mouse experiments included in this study were 
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previously reported as part of other studies. In particular, the majority of experiments with the 

NMH strains were performed as part of Allen et al., 202070. Some experiments with the Taiwan 

isolates PAC1 and PAC6 were performed as part of Chuang et al., 2014317. Many of these 

experiments (in particular all conducted prior to 2017) were conducted by other members of the 

Hauser laboratory prior to the initiation of this project, including by Dr. Jonathan Allen and Dr. 

Egon Ozer.  

A modified 50% lethal dose (mLD50) for each isolate was estimated from the above 

experiments using the drc package (v3.0-1)380 in R (v3.6.1)372. One outlier experiment for strain 

S2, which caused 20% mortality at a dose of ~7.2 log10 CFU, was excluded as doses of ~6.3 and 

~6.8 log10 CFU caused 80% and 100% mortality, respectively, in other experiments. Percent 

mortality as a function of dose (in units of log10 CFU) was modeled using a two-parameter log-

logistic function and binomial data type. Experiments were weighted by number of mice. These 

models were used to estimate the mLD50 for each isolate, which was then rounded to the nearest 

tenth (Table 3.2). Cumulative distribution functions were constructed in R to examine the 

distribution of virulence in the isolates. Isolates with rounded mLD50 estimates below the median 

were classified as high virulence, with the remainder classified as low virulence.  

All experiments were approved by the Northwestern University Institutional Animal Care 

and Use Committee in compliance with all relevant ethical regulations for animal testing and 

research. 

Whole Genome Sequencing and Assembly 

Short-read whole genome sequencing was performed for all isolates using either Illumina 

HiSeq or MiSeq platforms to generate paired-end reads. Much of this sequencing was performed 

before the initiation of this project and facilitated by various members of the Hauser laboratory. 
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Genomic DNA was extracted from LB broth overnight cultures using Promega Maxwell Cell 

DNA Purification Kits. Library preparation was performed by the University of Maryland or by 

members of the Hauser laboratory. Sequencing was performed by the University of Maryland 

(HiSeq) or in the Hauser laboratory (MiSeq). I performed library preparation for 17/25 of the 

Spanish isolates included in the test set using Nextera XT library preparation kits. 

Reads were trimmed using Trimmomatic (v0.36)363, with Nextera adapter removal, a 

sliding window size of 4 bp with average quality threshold of 15, and a minimum trimmed read 

length of 36 bp. Draft genomes were assembled from trimmed paired-end reads using SPAdes 

(v3.9.1)364 with the careful and automatic read coverage cutoff options. I further filtered draft 

genomes to remove contigs shorter than 200 bp, with less than 5-fold mean read coverage, or 

with alignment to phiX, using a custom script written by Dr. Egon Ozer. Even using only 

trimmed reads, the mean coverage of each filtered assembly was at least 24-fold. Many of the 

whole genome sequences used in this study were previously reported as parts of other 

studies70,246,302. Draft genomes originally assembled through different methodologies were re-

assembled as described above.  

For several genomes (PABL012, PABL017, PABL048, PAC1, and PAC6), long-read 

sequencing and hybrid assembly was performed. Briefly, genomes were sequenced on the 

PacBio RS II platform by the University of Maryland Institute for Genome Sciences. Raw data 

were assembled using the HGAP assembler (SMRT Analysis v2.3.0), Canu assembler (v1.2)358, 

and Celera assembler (v8.2)359, all using default settings. Contigs were combined and 

circularized using Circlator (v1.5.1)360. Assemblies were polished using Quiver (SMRT Analysis 

v2.3.0). Indel errors were corrected using Pilon (v1.21)361 using paired-end reads generated on 

Illumina HiSeq or MiSeq platforms. Dr. Egon Ozer performed the hybrid assembly for these 
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isolates. The complete genome for PABL048 was generated as part of the work conducted in 

Chapter 2 and its associated sequencing and assembly are described in detail in the methods 

associated with that chapter. 

The initial report of each isolate, its sequencing, and the assembly used in this study are 

listed in Table 3.1. For all isolates, the version of the genome assemblies used in this study are 

available on GitHub (https://github.com/nathanpincus/PA_Virulence_Prediction). 

Phylogenetic Analysis 

kSNP (v3.0.21) was used to generate 95% core genome parsimony phylogenetic trees for 

both 115 isolates in the training set and all 140 isolates in the training and test sets, using fasta 

files as input. The Kchooser program was used to select the optimum k-mer size of 21, and SNP 

loci present in at least 95% of input genomes were used to make the trees381. The phylogenetic 

trees were annotated and plots generated using iTOL (v4)371. 

Accessory Genome Determination 

Accessory genomes for the 115 P. aeruginosa isolates in the training set were determined 

using the programs Spine (v0.3.2), AGEnt (v0.3.1), and ClustAGE (v0.8)48,69. Spine was used 

with Prokka382-annotated genbank files for each isolate as input to generate a core genome of 

sequences present in at least 95% of isolates. AGEnt was then used to determine the accessory 

genome of each isolate based on comparison to the core genome. The accessory genomes of all 

115 isolates were then compared using ClustAGE to identify shared sequences using an 85% 

identity cutoff. ClustAGE identifies the longest continuous accessory sequences as “bins” and 

the portions of these bins that differ from isolate to isolate as “subelements”69,70.  As part of this 

process, the read correction feature of ClustAGE was used to identify sequences present in the 

original sequencing reads that were missed during genome assembly. All perfectly correlated 
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subelements identified through clustAGE were collapsed into a single feature, termed a “unique 

group (of subelements)” using a custom R script. For the purpose of this study, accessory 

genomic elements (AGEs) were defined as all unique groups totaling ≥ 200 bp. A dataframe of 

all AGEs in the training isolates served as the accessory genome feature set in subsequent 

machine learning analyses. To generate AGE features present in all genomes (both the original 

training and test sets), this process was repeated using all 140 P. aeruginosa isolates as input. 

 To determine which AGEs from the training set were present in the test set, clustAGE 

was run using the training set read-corrected subelement sequences (for all subelements ≥ 50 bp) 

from the 115 training isolates as a reference AGE set with the “--AGE” option and comparing to 

the draft genomes of all isolates in the test set, with read correction to identify any sequences 

present that were not included in draft genome assembly. This identified which portions of each 

subelement were found in the test set with an 85% identity cutoff. An AGE (defined as a unique 

group of subelements) was called as present if at least 85% of the screened length was detected 

using a custom R script. Screened length was used to no penalize unique groups where some 

subelements were too small to be output by clustAGE. 

 To examine the relationships between accessory genomes in the training isolates, their 

AGE content was compared using the subelement_to_tree.pl utility from ClustAGE. This 

calculated the Bray-Curtis dissimilarity between each isolate based on AGE presence or absence, 

with the impact of each AGE weighted by its length. A neighbor joining tree was constructed 

from 1000 bootstrap replicates using the matrix of Bray-Curtis dissimilarities. For consistency 

with the definition of AGE used in this study, unique groups of subelements ≥200 bp were used 

as input for subelement_to_tree.pl rather than the default subelements, necessitating the creation 

of custom input files. The neighbor joining tree and associated heatmap of Bray-Curtis 
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dissimilarities were annotated and visualized with iTOL (v4)371. To examine the accessory 

genomic relatedness of the 25 test set isolates based on training-set derived AGEs, the training 

set AGE calls defined above were added and Bray-Curtis dissimilarity calculations, and neighbor 

joining tree construction was repeated. To further evaluate the relationships between accessory 

genomes, multiple correspondence analysis (MCA) was performed based on the presence or 

absence of AGEs in the 115 training isolates. Additionally, MCA was perfumed considering 

which of the training isolate AGEs were identified all 140 isolates. MCA was performed in R 

(v3.6.1)372 using the FactoMineR (v2.3)383 package (“MCA” function) and visualized using the 

factoextra (v1.0.6) package (“fviz_mca_ind” function). 

Sequence Alignment and Core SNV Calling 

Sequence alignment of paired-end Illumina reads for each genome to the reference 

genome PAO1 (RefSeq accession NC_002516) was performed as described in the methods 

associated with Chapter 2. Briefly, reads were trimmed with Trimmomatic (v0.36)363 and aligned 

to PAO1 with BWA (v0.7.15)366. Loci passing inclusion criteria were called as having the PAO1 

base or a SNV base for each genomic position, with the remainder of positions converted to 

gaps. PAO1 alignments for all 115 training isolates were concatenated and SNV positions 

present in fewer than 95% of genomes were filtered. I then removed invariant sites using a 

custom script written by Dr. Egon Ozer, yielding a final 95% core variant SNV site alignment.  

This core variant SNV alignment was used as the SNV feature set in subsequent machine 

learning analyses, with a one-hot-encoding step added to the pipeline to convert SNV loci into 

multiple binary variables. This feature set was defined in the test set by considering the genomic 

positions identified as variant in the training set. I extracted the sequence present at these variant 



 206 
positions in the PAO1 alignments for each of the 25 test set isolates to create a SNV feature set 

corresponding to that used in the training set using a custom python script. 

K-mer Counts 

 K-mer counts (using either 8 or 10 bp k-mers) were determined for each genome using 

KMC3 (v3.0.0)384. All k-mers occurring at least once in each genome’s fasta file were identified 

using the kmc application (k-mer size of 8 or 10, multi-fasta input format, include k-mers 

occurring at least once, maximum k-mer count of 1677215), and a count file was generated using 

the kmc_dump application. KMC3 run settings were modeled off of Nguyen et al, 2019275. All 

unique k-mers identified in the training set of 115 P. aeruginosa genomes were used to construct 

a dataframe of k-mer counts for each genome using a custom python script. This served as k-mer 

feature set in subsequent machine learning analyses.  

To define the k-mers feature set present in the 25 test set isolates, k-mer counts were 

determined using KMC3 as above. A custom python script was then used to create a dataframe 

of counts for all k-mers previously identified in the training set.   

Predicting Virulence Based on Genomic Features 

Machine learning analyses were performed using the sci-kit learn library (v0.21.2)287 in 

Python (v3.6.9). The general workflow for the machine learning pipeline is described in Figure 

3.4. A training dataset of features (AGEs, k-mers, or core SNVs) and labels (high/low virulence) 

was defined. A machine learning algorithm (random forest, L2-regularized logistic regression, 

elastic net logistic regression, or support vector classifier) was chosen, and a grid of relevant 

hyperparameters to test were defined. A machine learning model was then trained using the 

selected algorithm, with hyperparameter tuning performed through grid-search cross-validation. 

A 10-fold stratified cross-validation strategy was used. This generated a final model which can 
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be used to predict the virulence class of new isolates. Concurrently the generalization 

performance of this model was estimated through nested cross-validation. In this process, grid-

search cross-validation was performed within an outer 10-fold stratified cross-validation loop. 

The performance of a grid-search cross-validation tuned model against each cross-validation fold 

was determined (including accuracy, sensitivity, specificity, positive predictive value, area under 

the receiver operating characteristic curve, and F1 score). The mean and 95% confidence interval 

of the nested cross-validation results were determined and plotted with the values for each fold 

using R (v3.6.1)372 with the tidyverse library suite (v1.2.1)385.  

For the random forest algorithm, the number of trees was set to 10,000 and 

“max_features”, “min_samples_split”, “min_samples_leaf”, “criterion”, and “max_depth” were 

varied as hyperparameters during grid-search cross-validation. The logistic regression algorithm 

was considered using L2 regularization (penalty = “l2”) and elastic net regularization (penalty = 

“elasticnet”) separately. For L2-regularized logistic regression, the “lbfgs” solver was used, 

“max_iter” was set to 10,000, and “C” was varied as a hyperparameter during grid-search cross-

validation. For elastic net logistic regression, the “saga” solver was used, “max_iter” was set to 

10,000, and “C” and “l1_ratio” were varied as hyperparameters. For the support vector classifier 

algorithm, the radial basis function kernel was used, and “C” and “gamma” were varied as 

hyperparameters during grid-search cross-validation. 

In some cases, learning curves were created to examine how training and nested cross-

validation accuracy varied with increasing training test size. For this, the dataset was split into 

training and cross-validation folds through 10-fold stratified cross-validation. Subsets of 

examples were then drawn from each training fold ranging from 25% to 100% of the training 

fold size. On each subset, a model was trained through the grid-search cross-validation approach 
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described above. The mean and 95% confidence interval for training and cross-validation 

accuracies at each number of examples were then determined and plotted.  

For the case of the final random forest model trained on AGE presence/absence in the 

115 training isolate, training performance was measured by predicting virulence of the training 

set and comparing to the true values. Additionally, the number of component decision trees was  

Code used for machine learning analyses to predict virulence from genomic data, 

including details on hyperparameters used during grid-search cross-validation, and for plotting 

the results are available on GitHub. Input data for these analyses (including all AGE, core SNV, 

and k-mer feature sets) are also available on GitHub 

(https://github.com/nathanpincus/PA_Virulence_Prediction). 

Random Forest Permutation Importance 

Out-of-bag permutation importance for the random forest model of virulence based on 

accessory genomic content trained on the complete training set of 115 P. aeruginosa isolates was 

determined using the “oob_importances” function in the rfpimp (v1.3.4) Python package 

(https://github.com/parrt/random-forest-importances). This measures the decrease in accuracy in 

predicting out-of-bag samples (samples not used to train a given decision tree in the random 

forest) if a feature is randomly permuted. As the impact of permuting a given feature on model 

accuracy may depend on how it is permuted, this process was repeated a total of 100 times. The 

mean permutation importance was then calculated for each AGE and the 10 AGEs with the 

highest mean permutation importance were plotted using a custom R script (Supplementary 

Table 3.2 and Figure 3.7A). 

The putative annotation of the top 10 AGEs identified by permutation importance was 

determined by blast search of subelement sequences against the Pseudomonas Genome 
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Database50 and including the annotation of any ORF for which at least 50 bp were contained in 

the AGE. 

Evaluating Random Forest Model Performance with an Independent Test Set 

The random forest model trained on AGE presence/absence in the 115 training isolates 

was tested against the independent test set of 25 isolates. The training-set AGEs identified in 

these 25 isolates were used as features, and the predicted virulence classes were compared to the 

actual virulence for these isolates. This was used to calculate testing accuracy, sensitivity, 

specificity, positive predictive value, area under the receiver operating characteristic curve, and 

F1 score and to plot the receiver operating characteristic curve. This approach was also used to 

assess the performance of random forest models trained on core genome SNVs, 8-mers, and 10-

mers against the independent test set of 25 isolates. 

For the accessory genome model, the probability of seeing the observed test set accuracy 

by chance if there were no true association between the predicted virulence (and therefore 

accessory genome) of an isolate and its true virulence was estimated through permutation testing. 

The predicted virulence classes for the 25 test isolates were randomly permuted 1 million times 

and compared to the true values to create a null distribution of possible model accuracies. The 

observed test set accuracy was compared to this null distribution to estimate a one-sided p value. 

Code and input data used for these analyses are available on GitHub 

(https://github.com/nathanpincus/PA_Virulence_Prediction). 

Simulating the Performance of Accessory Genome Models When Phenotype is Randomly 

Permuted and a Perfectly Predictive AGE is Added 

 The accessory genome feature set of 3,013 AGEs for the 115 training isolates was used as 

the starting feature set for the purpose of the simulations. Labels were assigned to be equivalent 
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to the proportion of low (59) and high (56) virulent isolates seen in this study and randomly 

shuffled. Nested cross-validation was conducted to estimate generalization performance models 

trained using these AGE features and shuffled labels with the random forest, L2-regularized 

logistic regression, elastic net logistic regression, or support vector classifier algorithms as 

described above. Additionally, an additional perfectly predictive feature (identical to the labels) 

was added to the AGE feature set and nested cross-validation was repeated to observe the extent 

to which this improved model accuracy. As performance could vary depending on how the labels 

were randomly assigned, this process was repeated using 10 random seeds. The mean nested 

cross-validation accuracy (with and without the perfectly predictive AGE) for each seed was 

plotted for each algorithm, along with the mean and 95% confidence interval between seeds, 

using R (v3.6.1)372 with the tidyverse library suite (v1.2.1)385. 

Predicting Persistence or Eradication in a Collection of Early Cystic Fibrosis P. aeruginosa 

Isolates from Genomic Features 

A set of 207 P. aeruginosa isolates collected from early infection in cystic fibrosis 

patients was considered. These isolates were originally collected as part of the Early 

Pseudomonas Infection Control (EPIC) program318,319. The first isolate from each of 207 patients 

was considered and classified as persistent if another isolate with <1000 SNVs was collected 

from the same patient at a later study visit. Both draft genome assemblies and paired-end 

sequencing reads for each isolate were obtained from Dr. Maulin Soneji, who also performed 

SNV comparisons to call isolates as persistent or eradicated. The classification of each isolate as 

persistent or eradicated was obtained from Dr. Sumitra Mitra. 
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To analyze population structure of these early cystic fibrosis isolates, a 95% core genome 

phylogenetic tree was constructed from the draft genomes using kSNP (v3.0.21)381  as described 

above and visualized and annotated with iTOL (v4)371. 

Both accessory and core genome feature sets were defined as described above. For the 

accessory genome feature sets, AGEs (unique groups of subelements ≥200 bp) were considered. 

For the core genome feature set, variant SNV positions based on 95% core genome read 

alignment to PAO1 were considered. 

Machine learning analysis was performed using the random forest algorithm and 

generalization performance estimated using nested cross-validation as described above with the 

follow modification. In order to account for class imbalance (between eradicted and persistant 

isoaltes) in the dataset an additional hyperparameter , “class_weight”, was added with the 

options “balanced” (scale the cost of misclassifying an isolate during model training by the 

prevalence of its class), “balanced_subsample” (as with balanced but independently for each 

decision tree in the random forest), and “None” (the default, no weighting by class prevalence). 

In addition, as accuracy can be a poor or misleading performance metric in unbalanced datasets, 

hyperparameter selection during grid-search cross-validation was performed using F1 score as 

the scoring metric. This was compared to results from using accuracy as the scoring metric 

during grid-search cross-validation. For the accessory genome feature set, learning curves were 

constructed for both the F1-tuned and accuracy-tuned approaches, with the change in the relevant 

scoring metric as the training sample size increases plotted. 
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Appendix I 

Precipitation phenotype in some ST298* isolates 

 

 

Isolates tested include (from left to right) PABL048 (ST298*, plasmid+), PABL048-c1 (ST298*, 

plasmid-), PABL022 (ST298, non-ST298*), PABL040 (ST298*, plasmid-), PS2027 (ST298*, 

plasmid-), PA-NM-088 (ST298*, plasmid+), BWH011 (ST298, non-ST298*), BWH031 (ST298, 

non-ST298*), PASP118 (ST298, non-ST298*), and PABL020 (ST298*, plasmid-). Isolates were 

inoculated from LB agar into 5 mL LB broth and incubated overnight with shaking at 37 oC. 

Cultures were photographed after removal from the incubator (A) and after leaving at room 

temperature without shaking for approximately 50 hours (B). ST298* isolates containing the 

plasmid (PABL048 and PA-NM) remained largely suspended in the media, while ST298* 

isolates lacking the plasmid (PABL048-c1, PABL040, and PS2027) precipitated resulting in an 

appreciable pellet. ST298* isolate PABL020 did not precipitate even though it does not possess 

sequence aligning to the majority of pPABL048. The non-ST298* isolates tested remained 

largely suspended in the media. 


