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ABSTRACT

Development and Application of a Dynamic Solution Framework for Urban
Air Taxi Fleet Operation

Haleh sadat Ale-Ahmad

Urban Air Taxi (UAT) is the use case of passenger-carrying Urban Air Mobility (UAM) at
its mature state, and it offers a ubiquitous on-demand (or nearly on-demand) per-seat service that
moves passengers in urban or suburban areas using groundbreaking aircraft. However, the absence
of adominant electric vertical take-off and landing (eVTOL) aircraft technology and UAT operator
feeds the uncertainty around UAT. This dissertation focuses on outlining the concept of operations
for UAT services, defining the UAT problem, and developing and applying a dynamic solution
framework to address the stochastic and dynamic problem of UAT fleet operation. As a result, it

provides the UAT operator with a decision-making tool to achieve higher network efficiency.

To accomplish this goal, the UAT concept of operations, which involves a ubiquitous
service with air pooling and elimination of short repositioning flights, is first outlined.
Subsequently, the entities relevant to the UAT fleet operation are specified, and their associated
states and events are presented in detail. The dynamic and stochastic problem of UAT fleet
operation is modeled on a rolling horizon basis. A static and deterministic problem is solved at
each decision epoch to help the UAT operator make the dynamic operational decisions, including
acceptance and rejection of requests, routing and scheduling the aerial fleet, and assigning the
requests to flights. Based on a node-based representation of the UAT network, the snapshot

problem is modeled as a Capacitated Location-Allocation-Routing Problem with Time Windows



and Short Repositioning Elimination (CLARPTW-SRE). For narrow time windows and relatively
short minimum distance for repositioning flight legs, the corresponding MIP could be solved

quickly using commercial software, enabling its real-time application.

The proposed dynamic solution framework is subsequently implemented using a discrete-
event simulation. The impacts of various exogenous and design parameters on demand
consolidation are examined using comprehensive sensitivity analyses in a synthetic network.
Furthermore, the framework is applied to the Chicago network using a fixed fleet of UAT aircraft
and Chicago Transportation Network Providers (TNPs) demand. Augmenting the devised UAT
operational strategy with real-world data would validate the network efficiency assumptions (e.g.,
the average load factor and utilization) made by many UAM market studies and offer estimates of

the said parameters for future studies.
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Chapter 1 Introduction

1.1  Motivation

In January of 1951, a personal helicopter, which was “big enough to carry two people and
small enough to land on your lawn,” was featured on the cover of Popular Mechanics [1]. Since
then, numerous terms have been used to describe air transportation in metropolitan areas, including
helicopter air carrier, air taxi, On-Demand Aviation (ODA), On-Demand Mobility (ODM), on-

demand urban air transportation, and most recently, Urban Air Mobility (UAM) [2].

The first attempts to provide on-demand air transportation date back to the 1960s [2], where
Air General offered on-demand service in Boston with as few as 30 minutes reservation windows
using over 70 helicopters. In the early 2000s, a Small Aircraft Transportation System (SATS)
research project carried out jointly by the Federal Aviation Administration (FAA) and the National
Aeronautics and Space Administration (NASA) advocated on-demand regional services between
cities using Very Light Jets (VLJ) [2]. This idea drew a lot of interest [3], which subsequently

subsided in part due to the great recession in 2008 [2].

In recent years, with the vision of eco-friendly autonomous aircraft equipped with electric
propulsion (which enables a 10x reduction in energy costs [4]) and efficient batteries with short
charging or swapping time, the interest in urban air transportation has resurfaced. Compared to a
helicopter, electric vertical take-off and landing (eVTOL) aircraft are 4 times quieter (with Joby
claiming ~100 times quieter [5]) and 10 times less expensive [6]. Benefitting from this
revolutionary aircraft technology, the Advanced Air Mobility (AAM) [7] initiative is pursuing to
transfer cargo and passengers between urban, local, regional, and intraregional areas, while the

UAM market focuses on carrying passengers and goods within metropolitan areas [7-9]. Urban
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Air Taxi (UAT), a subset of UAM, is a ubiquitous on-demand per-seat service that transfers
passengers in urban or suburban areas using groundbreaking aircraft [8,9]. UAT does not have
fixed routes and regular schedules, distinguishing it from air metro [9] or airport shuttle [8], which

are envisioned to operate on predetermined routes.

As of February 2020, 110 UAM?! city projects were in progress worldwide [6]. More than
250 businesses were involved in UAM as of August 2020 [10]. The ride-hailing company Uber
[11], major aircraft manufacturers Airbus [12] and Boeing [13], car manufacturer Hyundai [14],
and start-ups Lilium [15], Volocopter [16], Kitty Hawk [17], and Joby Aviation [18] have shown
considerable interest in passenger AAM. In the first half of 2020, USD 907 million was invested

in UAM start-ups, which is nearly 20 times the amount invested in the whole year of 2016 [19].

UAM would be an attractive mode of transportation if it could deliver the critical promises
of being the fastest mode while safe and enjoyable and having reasonable prices while offering
multi-modal service with seamless transfers [20]. Therefore, the travel time saving is a critical
variable in choosing UAM. Using UAT could reduce travel time over shorter distances, where the
ground network is congested or the travel time is not reliable. However, for longer trips, the
difference between aerial speed and ground speed plays a significant role. In 2017, the American
Community Survey (ACS) estimated the number of workers to be nearly 152.8 million, out of
which 85.3% drive alone and 38.3% (or 58.5 million) have commuting time greater than 30
minutes [21]. Moreover, the 2006-2010 ACS suggests that in the top 10 mega counties, commuters
have a mean travel time ranging from 102 to 116 minutes and mean travel distance between 59

and 91 miles [22], and therefore, could significantly benefit from AAM.

! The UAM definition in Porsche Consulting report includes city-to-city trips as well.
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However, there are numerous barriers and challenges in launching UAM as a mass-scale

transit system [23], including:

The regulation and certification process from the U.S. Federal Aviation Administration
(FAA) and European Aviation Safety Agency (EASA) to fly large numbers of VTOL

aircraft in urban areas;

The development of reliable aircraft (especially in inclement weather) with efficient

performance for commercial use;
The advancement of battery technology to accommodate long-distance rides;

The conflict resolution between UAM and Unmanned Aerial Vehicle (UAV) specified

and operated by Air Traffic Control (ATC);
Providing the service at an affordable cost;
Safety [24,25],

Noise [26],

Life-cycle emissions, and

Required infrastructure.

In a UAM market study conducted by Booz Allen Hamilton [8], under an entirely

unconstrained (i.e., best case) scenario, the total available market value of airport shuttles and air

taxis in the U.S. is estimated to be USD 500 billion with 11 million daily trips, which corresponds

to 20% of the daily work trips across the U.S. However, willingness-to-pay, availability of the

infrastructure and their capacity, adverse weather, and limited operation hours could reduce this

market to 55,000 daily trips (i.e., 0.1% of total daily work trips in the U.S.) with an estimated USD
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2.5 billion market value in the near term. The number of UAM aircraft drops from 850,000 in the

unconstrained scenario to 4,100 in the constrained scenario.

Meanwhile, the most recent study by Roland Berger [19] estimates that by 2050, the
revenue generated by the passenger UAM industry worldwide will be USD 90 billion a year with
160,000 passenger UAM aircraft, a significant growth from the projected USD 1 billion in 2030.
To put these numbers into perspective, the total revenues of the global commercial airline market
in 2019 were USD 840 billion, and the global taxi market is estimated to be USD 300 billion in

2030.

Passenger UAM is projected to grow at a compound annual growth rate (CAGR) of 45.9%
by 2040 as Frost and Sullivan estimate [27], or 35% by 2035 (starting from 2025) as Porsche
Consulting forecasts [6]. Factors such as cost, travel time savings, transfers and stops, safety, and
noise are influential in adopting passenger UAM [8]. Booz Allen Hamilton’s UAM market study
[8] argues that high network efficiency, including high aircraft utilization and load factor?, could
increase the UAM demand by more than 200% compared to their base scenario. Uber suggests
that ridesharing economics is one of the three critical steps towards lowering costs [28]. Uber’s
argument is consistent with the Crown Consulting UAM market study [9] commissioned by
NASA, which forecasts that the on-demand point-to-point air taxi market will not be profitable by

2030, stating that the assumption of one passenger per trip is one of the main barriers.

Consequently, choosing the right UAM business model is crucial to the success of industry
players [19]. Aside from the UAM market studies [8,9], ConOps [7], and OpsCons [29] provided

by NASA and FAA, multiple players from the industry have offered their visions on passenger

2 Capacity utilization of an aircraft
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AAM and UAM [23,30-32]. Patterson et al. [33] summarize the numerous proposed visions in five
on-demand or near-on-demand passenger UAM missions: private operation, air taxi, air pooling,
semi-scheduled commuter, and scheduled commuter. The lack of consensus on the vision of
passenger UAM operations and the absence of a single player in the industry has provided an
opportunity to coordinate the UAM research according to the industry’s needs [9]. For instance,
Boeing plans to address the challenges of UAM operations by “modeling and simulating multiple

end-state operational scenarios” [30].

Similar calls have echoed in the UAM research community. Following the review of the
recent research and developments in UAM, Straubinger et al. [34] maintain that more advanced
passenger pooling and aircraft dispatching models are required. Rajendran and Srinivas [35]
review the developments of passenger UAM and the future challenges. They argue that the
dynamic routing of air taxis and integration of ground and air transportation scheduling is
underexplored and call for more research in these areas. Garrow et al. [36] present a systematic
review of the UAM literature and conclude that most studies in the literature offer a deterministic
framework for dispatching and scheduling algorithms. Consequently, they call for algorithms that
could be implemented online or use a rolling horizon framework to address the uncertainties

encountered in the UAM operation.

To address the gap in the literature, this dissertation focuses on developing a solution
framework for the stochastic and dynamic problem of ubiquitous on-demand per-seat passenger
UAT with air pooling. Among the 110 ongoing UAM and AAM city projects worldwide [6], the
sheer number of potential UAM infrastructures in some cities, such as Dubai, would accelerate the
UAM implementation. Consequently, such cities could see significant and immediate benefits

from the UAT operations solution framework devised in this study. Nonetheless, this methodology
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sets a benchmark for other use cases of passenger UAM and other city projects in the planning
process. Furthermore, augmenting the devised UAT operational strategy with real-world data
would validate the network efficiency assumptions (e.g., the average load factor and utilization)

made by many UAM market studies or offer estimates of said parameters for future studies.

Ultimately, this research aims to provide a tool for the researchers to examine various
concepts of operations and evaluate various operational strategies such as sharing schemes. The
outcomes of such studies could be valuable for the industry players and the regulators, and

therefore, could pave the way for future collaborations.

1.2  Problem Statement

UAT evolves around travelers who utilize their smartphones to request a ride within a city
or a city and its suburbs. The service is on-demand and per seat. The requests are immediate or
provide short notice, and the users expect to be served within a couple of minutes from their
requested time. A fleet of eVTOL aircraft and ground-based ride-hailing service provided by a
centralized UAT operator is available on-demand to cover the requests at competitive costs. The
UAT operator offers a multi-modal service and synchronizes its aerial and ground fleet to serve

the requests.

The UAT operator manages a fleet of homogenous vehicles and UAT aircraft in a
ubiquitous network, and it synchronizes these two modes to serve the customers. Each request is
identified by the origin, destination, requested time to begin the service, and group size. Given that
the UAT pads are ubiquitously present in a ubiquitous network, the origin and destination of the

request correspond to the desired take-off and landing sites, respectively.
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Each passenger group is flexible in their pick-up and drop-off UAT pads selection and
could be relocated on the ground within a reasonable radius from their origin or destination. This
allows the UAT operator to eliminate the short repositioning flight legs in the ubiquitous network
by relocating the requests over short distances. Additionally, the customers are willing to share a
UAT aircraft with other passengers, and consequently, the UAT operator could relocate the
passengers to consolidate customer requests and increase the aircraft load factor. As a result of
short repositioning elimination and demand consolidation, the passenger trip consists of, at most,
three legs: two ground-based legs and an aerial leg. The aerial leg is non-stop, and there is no

intermediate transfer point for passengers to change the UAT aircraft after boarding.

The UAT operator is unaware of all future requests at the beginning of the planning
horizon, and the customer requests for service arrive in real-time. As a result, the UAT operator
updates its dispatching plan through a sequential decision-making process. The UAT operator may
have a relatively short period for decision-making, particularly if there is no reservation scheme
and requests are expected to be served immediately. The acceptance or rejection decision of the
arrived requests is made at the first decision epoch after their arrival and will not change in the
subsequent decision epochs. In other words, while considering accepting a new request, the UAT
operator cannot reject the requests accepted in the previous decision epochs. However, the flight
legs assigned to the accepted requests (and therefore, the pick-up and drop-off UAT pads) could
change as long as the customers did not leave their origin. After leaving the origin for the pick-up

UAT pad, the pick-up UAT pad of the request is fixed, and its boarding time could be rescheduled.

The UAT competitive advantage is the travel time savings. As a result, if the UAT operator
chooses to serve a request, the trip delay (i.e., deviation of the request’s total trip time from its

desired trip time) cannot exceed a prespecified value, which in turn limits the wait time for the
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aerial service, the ingress and egress time, and the deviation from the shortest flight. Additionally,
the UAT operator determines when the customers should leave their origin to access the pick-up
UAT pad. The scheduling is such that the customer wait time is mainly incurred at the origin rather
than the pick-up UAT pad. However, some customers may wait at the departure gate after a
schedule change resulting from the new information (e.g., the arrival of new requests). Since the
assigned flight legs and their schedules could be updated multiple times, the requests are only
provided, in advance, with the time window during which they will be prompted to leave their

origin or board the aircraft, not the exact time.

The revenue that the UAT operator earns from serving a request is proportional to the
distance between the origin and destination of the request and its group size. The UAT operator
incurs a fixed cost per flight and a variable cost proportional to the aircraft mileage. Ultimately,
the UAT operator seeks a strategy that maximizes its net profit given the capacity, delay, and
synchronization constraints. This strategy should address request acceptance and rejection,
allocation of accepted requests to flight legs, and the sequence that UAT aircraft should serve these
flight legs. It should further handle the flight scheduling, the boarding time of each passenger

group, and the time by which the passenger groups need to leave their origin.

1.3 Contributions
Aiming to provide insights on the UAT fleet operations and its potential in terms of travel
timing savings in the urban setting, this dissertation makes the following contributions to the

passenger UAM literature:

i.  This research presents a concept of operations for UAT fleet operation in its mature
state. The proposed concept of operations involves demand consolidation and

elimination of short repositioning flight legs while providing a prespecified level of
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service. To this end, it proposes the concept of flexible pads for UAT service design,
aiming to increase the aircraft load factor (i.e., capacity utilization) and decrease the

operating costs.

ii.  This research models and solves an optimization problem with demand consolidation,
elimination of short repositioning legs, synchronized logistics, and a guaranteed level

of service.

iili.  Thisresearch offers a dynamic solution framework that utilizes the optimization model
for dynamic and stochastic UAT fleet operations, providing the UAT operator with a

decision-making tool.

iv.  This research develops a discrete-event simulation framework with sequential
decision-making problems for UAT operation as a proof of concept. This simulation
framework provides a tool that could be enhanced with other modules and models (e.g.,

demand, pricing, air traffic control) to further examine UAT operation.

v. Using a synthetic network and sensitivity analyses, this research evaluates the impact
of technological factors (such as aircraft cruising speed) and strategic and operational
decisions (such as demand consolidation strategy and the guaranteed level of service)

on UAT fleet operation.

vi.  This research provides insights on the factors associated with network efficiency, such

as aircraft utilization and average load factor, using real-world data in Chicago.

1.4 Organization

Chapter 1 presents the motivation for this dissertation, states the problem, and outlines the

dissertation’s contributions. Chapter 2 provides more details on the concept of Urban Air Mobility,
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recent developments, and the use cases suggested in the literature. Chapter 3 describes the
proposed concept of operations for UAT in its mature state and outlines the operational
assumptions used in this research. Chapter 4 presents a literature review relevant to the proposed
concept of operations for the urban air taxi problem. Chapter 5 describes the modeling components
of the UAT operational problem. Chapter 6 specifies the dynamic solution framework for the
dynamic and stochastic UAT fleet operation. Chapter 7 discusses the network definition for the
Capacitated Location-Allocation-Routing Problem with Time Windows And Short Repositioning
Elimination (CLARPTW-SRE) presented in Chapter 8. Chapter 9 provides the design of numerical
experiments, sensitivity analyses, and the outcomes for a synthetic network, while Chapter 10
presents the numerical experiments and results using the real-world data of the Chicago network.
Ultimately, Chapter 11 concludes the dissertation with a summary of the research, findings,

limitations, and suggestions for future research.
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Chapter 2 Passenger Urban Air Mobility

2.1 Overview

In January of 1951, a personal helicopter, which was “big enough to carry two people and
small enough to land on your lawn,” was featured on the cover of Popular Mechanics [1]. Since
then, numerous terms have been used to describe air transportation in metropolitan areas, including
helicopter air carrier, air taxi, On-Demand Aviation (ODA), On-Demand Mobility (ODM), on-
demand urban air transportation, and most recently, Urban Air Mobility (UAM) [2]. The media

has chosen the name flying cars regardless of the industry disapproval [37].

With the vision of autonomous aircraft equipped with electric propulsion, which enables a
10 times reduction in energy costs [4], the interest in air transportation has resurfaced. Benefitting
from revolutionary aircraft technology, the Advanced Air Mobility (AAM) [7] initiative is
pursuing to transfer cargo and passengers between urban, local, regional, and intraregional areas,
while the UAM market focuses on carrying passengers and goods within metropolitan areas [7-9].
Even though UAM covers passengers and cargo, the terminology is mainly used to refer to
passenger-carrying services in the literature [34,38-40]. As a result, passenger-carrying UAM and

UAM are used interchangeably in this dissertation.

UAM Coordination and Assessment Team (UCAT) outlines 6 UAM Maturity Level (UML)
in 3 states: initial (UML 1 and 2), intermediate (UML 3 and 4), and mature (UML 5 and 6) [41].

The capabilities of each state are defined as follows:

e UMLI1: Late-stage certification testing and operational demonstrations in limited

environment;

e UML2: Low density and complexity commercial operations with assistive automation;
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UML3: Low density, medium complexity operations with comprehensive safety

assurance automation;

UMLA4: Medium density and complexity operations with collaborative and responsible

automated systems;

UMLD5: High density and complexity operations with highly-integrated automated

networks; and

UMLG6: Ubiquitous UAM operations with system-wide automated optimization.

Table 2.1 Comparison of operations across UML 3 to 6

Number of Simultaneous

: Network Weather
Operations
UML3 - Closely-spaced UAM ports Weather-tolerant
operations
Expanded network including Low-visibility
UML4  100s high capacity UAM ports operations
UML5  1,000s Highly-distributed High-weather tolerance
including icing
UML6  10,000s Ad-hoc (ubiquitous) -

In summary, the idea of on-demand aerial operation has been around for decades. However,

UAM is a fledgling vision facilitated by recent advancements in aircraft technologies. Numerous

use cases of UAM have been discussed in the news and reports. As a result, this chapter reviews

the early and recent advancements in UAM, presents the envisioned use cases, and ultimately

reviews the projected components and characteristics of passenger-carrying UAM.
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2.2  Early Developments in UAM

Aerial operations resembling UAM could be traced back to 1963 [2] when four helicopter
carriers were offering scheduled service, mainly between major airports or an airport and
downtown area, in Los Angeles, San Francisco, New York, and Chicago. By 1967, over 1.2 million
passengers were being transferred annually. As early “air taxi” operations, more than 100
companies provided intracity transportation with advance reservations. More interestingly, based
in Boston, Air General provided on-demand service for commuters from 1962 to 1969 with a
reservation scheme as little as 30 minutes ahead of departure time. Regardless of aircraft type (i.e.,
helicopter vs. eVTOL aircraft), the Air General business model highly resembles the on-demand
passenger UAM envisioned today. However, helicopters are inefficient and noisy and have high
maintenance costs [23]. As a result, financial challenges and public acceptance significantly
reduced the early air operations for commuting purposes [2] to the point that today few cities such
as New York and S&o Paulo have large-scale commercial urban aerial transportation using
helicopters [23]. Currently, BLADE Urban Air Mobility, Inc. offers on-demand passenger aerial
service in New York City using helicopters and fixed-wing aircraft, while SkyRyde offers a similar

aerial service in Los Angeles with its fixed-wing fleet [8].

2.3 Recent Developments in UAM

Urban passenger-carrying aerial service has drawn considerable interest amongst certain
companies and communities in the past couple of years. Inspired by advancements in distributed
electric propulsion (DEP) and vertical take-off and landing (VTOL) technology, various
companies and start-ups, including the ride-hailing company Uber ® [11,42] and aircraft

manufacturers Airbus [12,43] and Boeing [13], have shown considerable interest in the at-scale

3 Uber Elevate was acquired by Joby Aviation in December 2020
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operation of passenger UAM. The United Arab Emirates (UAE), New Zealand, and Singapore are
expected to be the early adopters of passenger UAM, with Dubai’s ambitious plan for launching

the commercial service by 2022 [27].

Uber, one of the major players in the ride-sourcing industry, created much excitement
around UAM by announcing its plan to enter shared air transportation at a price comparable to its
ground ridesharing service [11,28]. UberAlIR utilizes eVTOL aircraft and is envisioned as a multi-
modal service, where Uber’s ground-based service conducts the legs from the origin to “skyport”
and from “skyport” to the destination of each trip. The flights are initially planned between suburbs
and cities with the ultimate goal of intracity shared flights. Uber had initially planned to start
eVTOL demonstrator flights in 2020 and launch commercial uberAIR flights in 2023 [28]. The
service needs to be affordable for large-scale transportation. Currently, the cost per passenger-mile
is estimated at $8.93 for helicopters. However, Uber estimates a cost per passenger-mile of $5.73,
$1.84, and $0.44 for the launch period, short term, and long term UberAlIR operation, respectively
[28]. To provide more insights on UAM, Uber Copter launched aerial service in New York in July
2019 and offered 8-minute rides from Lower Manhattan to JFK at the average cost of nearly $200
per person. The aerial service was complemented with ground-based service on both ends of the

trip [44].

Airbus has partnered with BLADE Urban Air Mobility, Inc., an air charter broker and
indirect air carrier, to gain experience from BLADE’s per-seat and on-demand aerial operations,
where passengers use an app for booking flights in the Northeast, Los Angeles, San Francisco, and
soon Mumbai [45]. BLADE also offers helicopter rides between Manhattan and commercial and
private airports with a minimum flight time of 5 minutes. BLADE Urban Air Mobility recently

started a continuous per-seat helicopter service between three BLADE Lounges located in
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Manhattan and JFK, La Guardia Airport, and Newark Liberty International Airport [45]. Its users
utilize the app to schedule their own private charter flight or crowdsourced charter, or book

individual seats on an existing flight.

Volocopter [16], the German aircraft manufacturer, has announced its plan to launch
commercial flights in Paris and Singapore in the next 2-3 years. Volocopter promotes
“Autonomous air taxi at the press of a button” and “mobility in three dimensions: urban.
autonomous. on demand”. VoloCity, the two-seater aircraft developed by VVolocopter, has received
permits to fly in manned or unmanned configurations for conducting test flights in Germany,

Singapore, Dubai, and Helsinki.

EHang [46], based in China, envisions their UAM operation as an autonomous low-altitude
short-and-medium-haul service, which would resemble on-demand bus operations rather than taxi
operations. In May 2019, EHang launched its passenger-carrying UAM service between a harbor
and a boutique hotel on an islet in China’s Zhejiang province. The service decreased the 40-minute

travel time to 5 minutes [32].

2.4  UAM Use Cases

Aside from the UAM market studies [8,9], ConOps [7], and OpsCons [29] provided by
NASA and FAA, multiple players from the industry have offered their visions on passenger AAM
and UAM [23,30-32]. Patterson et al. [33] summarize the numerous proposed visions in five on-
demand or near-on-demand passenger UAM missions: private operation, air taxi, air pooling,

semi-scheduled commuter, and scheduled commuter.

Porsche Consulting suggests five missions: personal ownership, rental, on-demand air taxi

(including sightseeing), air bus, and rescue operations [6]. The Roland Berger UAM study [19]
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covers both intracity and intercity* trips and defines three use cases: City Taxi, Airport Shuttles,
and intercity service. The City Taxi would operate within a densely populated city and is an on-
demand point-to-point non-stop service carrying 1 or 2 passengers with light luggage, while
Airport Shuttle, as the name suggests, transfer 2 to 4 passengers with luggage between airport and
take-off and landing sites within an urban area. City Taxi and Airport Shuttles cover distances
from 15 to 50 km (i.e., 9.3 to 31.1 mi), while intercity flights cover distances up to 250 km (i.e.,
155.3 mi). They estimate that by 2050, City Taxi and Airport Shuttles would, respectively,
constitute 36% and 35% of the “UAM™* trips worldwide. However, the Airport Shuttle and

intercity flights would account for 90% of the revenue.

The Booz Allen Hamilton’s UAM market study commissioned by NASA [8] identifies 36
potential markets among 16 market categories. The market categories include air commute, first
response, logistics and good delivery, public service, and rentals, among others. Four markets, in
turn, constitute the air commute market category: Airport Shuttle, Air Taxi, Train, and Bus. The
Airport Shuttle has fixed routes, while the Air Taxi service is point-to-point without fixed routes
or schedules. The Air Taxi could be viewed as the extension of Airport Shuttle with high demand
and more network coverage and bigger fleet size. The Train would be operated along the network
infrastructure (e.g., subway and train) while the Bus would replace public transportation lines (e.g.,

Greyhound).

Another UAM study commissioned by NASA [9] presents and evaluates the viability of
two use cases for passenger UAM, namely, Air Metro and Air Taxi. In this study, Air Metro

transfers 2 to 5 (with an average of 3) passengers, employing autonomous aircraft over fixed routes

4 More accurately, the intercity trips should be classified under AAM that covers local, regional, and intraregional
areas.
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with regular schedules, and therefore, resembles subway or buses. In comparison, Air Taxi
provides on-demand door-to-door per-seat service operated with a fleet of autonomous eVTOL
aircraft with 2 to 5 passenger seats. However, in the Air Taxi service, the average number of

passengers is assumed to be 1. The Air Taxi mission resembles the current ridesharing service.

In May 2020, the UAM Operational Concept (OpsCon) for passenger-carrying operations
commissioned by NASA [29] specified three use cases over three states of UAM Maturity Level:
Human-piloted Air Medical Transport (initial state), Intra-Metro Air Shuttle (intermediate state),
and Ubiquitous Air Taxi (mature state). The Air Ambulance flights are unscheduled, with about 10
UAM aircraft per metro area and 2 aircraft flying simultaneously. Intra-Metro Air Shuttle is a
scheduled or seme-scheduled service transporting 3 to 9 passengers. The trip distance is 10s of
miles, with 100s of aircraft per metro area and 10s vehicles flying simultaneously. Lastly,
Ubiquitous Air Taxi utilizes semi-autonomous or fully autonomous eVTOL aircraft with low noise,
low operating costs, and passenger capacity of 1 to 4. The service is on-demand, but one could
book their flight with advance notice. The flights are shared, carrying 1 or 2 passengers on a typical
flight. In this state, there are 100s of take-off and landing areas and 10,000s of aircraft per metro

area, with 1,000s of aircraft flying simultaneously.

In conclusion, the Urban Air Taxi (UAT) is a use case envisioned in all market analyses. It
is a ubiquitous on-demand per-seat service operated with autonomous eVTOL aircraft with low
operating costs. In this case, the network coverage is high, and numerous take-off and landing sites
provide near-ubiquitous service. However, the point-to-point service may lead to a low passenger

load factor per aircraft.
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2.5 UAM Components and Characteristics

There are many factors involved in the UAM operations. This section discusses the

passenger UAM operations characteristics in detail.

2.5.1 Aircraft

The vision of UAM is enabled by electric propulsion and vertical take-off and landing,
hence the name eVTOL. There are 95 eVTOL projects in progress across the world [19]. However,
no dominant design has yet emerged. These aircraft could be classified under five categories:
highly distributed propulsion (multicopters), quadcopters, hybrid, tilt-wing/convertible aircraft,
and fixed-wing vectored thrust concepts [19]. Table 2.2 lists some aircraft designed for passenger
UAM. These aircraft could accommodate a maximum of four passengers. Their speed varies
between 62 and 200 mph, with the battery range spanning from 19 to 186 miles with a single

charge.

Table 2.2 Features of various aircraft for UAM operations

Planning Passenger  Crew Maximum Range
Company Aircraft g g . Speed 9
Year Capacity Capacity (mi)
(mph)
Volocopter [16] VoloCity - 1 1* 68 21
Airbus [47] CityAirbus 2023 4 A 75 19
EHang [32,46] ST?NG 2019 1 A 80 22
Boeing NeXt [48] E,Zil/ng - 2 A - 50
Kitty Hawk [17] Heaviside - 1 A 180 100
Hyundai [49] S-Al - 4 1* 180 60
Joby Aviation [18] - 2024 4 1 200 150
Uber Elevate [23] - 2023 2-4 1* 150-200 100+

Note: *Envisioning future autonomy, PAV: Passenger Air Vehicle, A: Autonomous
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Uber has focused on mega commuters (who travel, one way, 90 minutes or more and 50
miles or more to work [50]) and planned its operation with an aircraft speed range of 150-200 mph
as they argue this is the speed range that electric distributed propulsion (EDP) is most efficient.
Even though Uber intends to use a homogeneous fleet in the initial stage, it contends that an
eVTOL aircraft for trips less than 50 miles does not need the maximum speed required for
performing long-distance travel [23]. Furthermore, Uber suggests that the aircraft’s battery range
should cover two 50-mile trips at maximum cruising speeding with the two corresponding take-
offs and landings plus 30 minutes reserves to meet the FAA Instrument Flight Rules (IFR) [23].
Volocopter, on the other hand, argues that aircraft with a range of 30 km (21 mi) can serve the
important airport routes in 93% of the world’s largest cities and adds that a speed range of 80-100
km/h is a trade-off between competing with ground-based transportation and avoiding the

complications resulting from higher speed [31].

The batteries could either be charged or swapped. Uber requires a charging period of fewer
than 7 minutes for continuous operation [51], while VVolocopter specifies the battery swapping time
of 5 minutes for its passenger UAM aircraft, VoloCity [16]. Similarly, the Crown Consulting

market study assumes a 2-4 minutes period for swapping batteries [9].

Volocopter claims that they have conducted the world’s first autonomous eVTOL flight in
Dubai in 2017 and public test flights at Singapore’s Marina Bay in October 2019 [16]. Wisk asserts
that in 2017, they became the first company in the U.S. to successfully fly a passenger autonomous

eVTOL aircraft [52].

There is no consensus in the community on the term used to refer to UAM passenger
aircraft. Table 2.3 lists some of the names used in the literature. UAM aircraft/vehicle is a term

used by some studies commissioned by NASA. Even though autonomous [9] and electric [33]
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VTOL aircraft are viewed as the enabler of UAT operation, in this dissertation, we use the term
UAT aircraft (or aircraft in short) for the UAT operation since the proposed methodology is

independent of the aircraft type.

Table 2.3 Terms used for referring to UAM passenger aircraft

Term Study
Personal Air Vehicle (PAV) Moore [53], Hyundai [14]
Passenger Air Vehicle (PAV) Boeing [48]

Electric Vertical Aircraft (EVA) BLADE Urban Air Mobility Inc. [45]
Autonomous Aerial Vehicle (AAV) EHang [46]

Passenger Drone Porsche Consulting [6], Roland Berger [19]

Uber [23]
Crown Consulting, Inc. [9]

Booz Allen Hamilton, Inc. [8]
Patterson et al. [33]

UAM aircraft/vehicle FAA [7]
Deloitte Consulting LLP [54]
Price et al. [29]

VTOL aircraft

2.5.2 Infrastructure

eVTOLs operations require sites for take-off and landing, picking up or dropping off
passengers, parking, and charging. For instance, Heaviside by Kitty Hawk needs a 30-foot by 30-
foot area for take-off and landing as a pad, which does not have to be paved [17]. In the urban
setting, the required infrastructure could be active helipads, the roof of the public parking [23], the

space available in cloverleaf interchanges [55], or a new infrastructure built for UAM operations.

Table 2.4 lists the various names used in the UAM community for referring to UAM
infrastructure. The use of vertiport could be traced back to 1967 [56], and it is the term used most
frequently in the literature. Regardless of the name, there is a consensus that passenger UAM
operation requires two types of facilities: a smaller one just big enough for an aircraft to land and

take off safely and a bigger one with all the supporting facilities for aircraft and passengers,



42

including charging stations and parking spots. The former is often referred to as a pad, while the

latter may have a port or hub as part of its name.

Table 2.4 Terms used for referring to UAT take-off and landing sites

Term Study

Take-off and Landing Area Vascik, 2017 [2]

Cheyno, 1967 [56]

Uber, 2016 [23]

Holmes et al., 2017 [57]

Crown Consulting, Inc., 2018 [9]
Vertiport/Vertistop Booz Allen Hamilton, Inc., 2018 [8]

Porsche Consulting, 2018 [6]

Patterson et al., 2018 [33]

Vascik and Hansman, 2019 [58]

Lilium [15]
VertiPad/VertiHub Airbus [43], McKinsey & Company, 2020 [10]
Skyport/Skystop Uber, 2018 [51]
VoloPort Volocopter [16]
Base Point EHang [32]
BLADE Lounge BLADE Urban Air Mobility Inc. [45]

NASA UCAT, 2020 [41]

Price et al., 2020 [29]

FAA, 2020 [7]

Deloitte Consulting LLP, 2020 [54]

UAM Port/Pad

Aerodrome

UAM pads and UAM ports are primarily used in the literature for passenger-carrying aerial
operations resembling the UAT use case. Consequently, we adopt the terms UAT pads and UAT
ports to specify the use case of the infrastructure clearly. UAT pad is a general term for an area
designated for take-off and landing of a single UAT aircraft and could operate as a stand-alone
facility, while UAT port is used for a facility with multiple UAT pads and all the required
supporting systems such as charging stations [29]. That being said, for simplicity, we use the term

UAT pad to refer to the UAT infrastructure, regardless of its size and available resources.
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Uber envisions that ports have a maximum capacity of 12 VTOLs [23]. McKinsey &
Company [10] envision three types of UAM infrastructure: Vertipad (small structure), Vertibase
(medium structure), and Vertihub (large structure). Vertipad and Vertibase could be either new or
retrofit, while Vertihub is a new structure. In each infrastructure, the ratio of landing and take-off
pads to the parking and charging spots is devised as 1 to 2. Vertipad, Vertibase, and Vertihub have
1, 3, and 10 landing and take-off pads, respectively. Furthermore, they assume that the
infrastructure charge is USD 150 per trip, excluding the fuel charging costs. In a small and
premium UAM market, they conclude that there should be a 24-hour average of 1 trip per hour per
UAT pad or 1 trip every 20 minutes per UAT pad during peak periods in a large and densely
populated city to break even on the fixed costs. In a medium-size and less dense city, the average
over 24 hours per UAT pad is 1 trip every 100 minutes or 1 trip every 30 minutes during peak
periods. However, to achieve very low costs and make UAM available to the public, UAT pads
across the network should accommodate one trip every 5 minutes during the peak, which could be

challenging.

2.5.3 Network Coverage

A higher number of UAT pads spread across the network leads to more significant travel
time savings. In the mature state, the ubiquitous network of UAT pads provides an opportunity for
point-to-point (also referred to as door-to-door, end-to-end) service. However, in the initial state,
the operation would be hub-to-hub [6]. A UAM market study [8] shows that the number of UAT

pads and ports significantly impacts the UAM demand.

In the 1960s, Air General utilized over 70 heliports in Boston [2]. Sdo Paulo has 193 active
helipads [23]. McKinsey & Company [10] estimate that 85 to 100 stand-alone UAT pads or UAT

ports are required for large and densely populated cities, and the number drops to 38 to 65 for
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medium-size cities. Porsche Consulting [6] projects that cities with a population of five to ten
million or more will have up to 100 stand-alone UAT pads or ports in the fully developed phase.
However, in the first phases, 5 existing heliports are sufficient for providing attractive routes, and
in the next phase, 40 UAT pads will be available in some areas. Decreasing the number of UAT
pads from 100-200 per city to 15-40 would decrease the market size by 40% [6]. The UAM
OpsCon for passenger-carrying operations commissioned by NASA [29] projects 10s of UAT pads

or ports for the intermediate state and 100s for the mature state.

2.5.4 Travel Time Saving and Trip Distance

The competitive advantage of passenger UAM is in the travel savings. Uber assumes that
a UAM trip should be at least 40% faster than the corresponding ground-based trip, while Porsche
Consulting [6] suggests UAM needs to offer at least 20% travel time savings to be competitive
with other modes. Booz Allen Hamilton’s market study finds no significant demand for mandatory
(i.e., work-related) trips that take less than 30 minutes on the ground. Furthermore, most of the

UAM demand is captured for trips that are at least 45 minutes on the ground.

Air taxi service would be more beneficial over long distances [8]. Porsche Consulting
suggests that UAM could outperform other modes of transportation for trips that are at least 20 km
(i.e., 12.4 mi) long, which is almost twice as long as the average trip distance of 11 km in the urban
settings [6]. The Roland Berger UAM study [19] specifies that trips should be at least 15 to 25 km
(i.e., 9.5 to 15.5 mi), while the intercity service will be provided for distances between 15 to 50
km (i.e., 9.3 mi to 31 mi). Additionally, a UAM market study commissioned by NASA [9]

envisions UAT trips between 10 to 70 miles.
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2.5.5 Fleet Size

The fleet size directly impacts the level of service and utilization of the fleet [59]. As a
result, the sensitivity to fleet size is often investigated in related studies [59-61]. Uber Elevate aims
for a low volume of UAM aircraft in 2023, a number between 10 to 50 aircraft [23]. Porsche
Consulting estimates that by 2035 a megacity with a population of five to ten million will not have
more than 1,000 UAM aircraft in operation [6]. For instance, they estimate that S&o Paulo requires
5 UAT pads and 120 aircraft in the initial phase, 40 pads and 390 aircraft in the expansion phase,
100 pads and 1050 aircraft in the full-service phase. In comparison, Sdo Paulo has the largest

registered fleet of 420 helicopters [23].

2.5.6 First-mile and Last-mile Service

Offering the first-mile and last-mile service would alleviate the inconvenience of the multi-
modal trips. BLADE Urban Air Mobility currently offers point-to-point service using helicopters,
seaplanes, jets, and SUVs [45]. Uber Elevate announced that uberAIR would conduct the first and
last mile of trips with its ground ride-hailing service or walk [23]. In Hyundai’s Smart Solution
Mobility vision, the UAM aircraft are connected to Purpose Built Vehicle (PBV) at hubs to provide

a multi-modal service [14].

2.5.7 Flight Sharing

The air taxi operation will be most efficient and cost-effective when aircraft are highly
utilized, and thus, passengers share the flights. Booz Allen Hamilton’s UAM market study shows
that passengers are willing to share the flight with passengers they do not know as long as they

receive a discount [8].

However, it remains unclear whether ridesharing should be limited to passengers with the

same pick-up and drop-off UAT pads or the operation should resemble ground-based ride-sourcing
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programs where multiple passengers share an aircraft despite having different pick-up or drop-off
locations. In the former case, the passengers are pooled and use one flight to get from starting UAT
pad to the ending UAT pad, and there is no intermediate stop to pick up or drop off other
passengers. We refer to this mode of sharing as air pooling. On the other hand, the latter case has

the attributes of ground-based ridesharing services and is what we refer to as air sharing hereafter.

BLADE Urban Air Mobility currently offers crowdsourcing, in which case the passenger
books the flight for their desired departure time and allows BLADE to sell any available seat.
Thus, the passenger could receive credits back for the purchased seats by other passengers [45].
Furthermore, Uber Elevate has incorporated shared flights in its envisioned operational strategy

[23].

2.5.8 Advance Reservation Time Window

Reservation schemes and the time window that customers are given to request a flight
ahead of desired departure time are significant indicators of how dynamic the evolution of
information in the system is. The more time the operator has, the more operationally optimal
strategies they could employ. Immediate requests are the ones that need to be served immediately
as opposed to advance requests, which give the operator some time before the desired service time

[62].

The emergence of very light jets (VLJs) in the early 2000s prompted Dial-A-Flight
business models on a regional level where passengers could book their flights one or a few days
in advance [3]. As an on-demand aerial mobility service, fractional ownership programs offer a

reservation window of 4 or 48 hours [63] or 8 hours [64] ahead of departure time.
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In urban air taxi operations, Air General’s users could request a flight with as little as 30-
minute notice in the 1960s. Today, BLADE Urban Air Mobility offers both immediate and
advance reservation options for its air taxi service in New York City. Immediate requests for
helicopters with just “minutes notice” to or from any airport in the area would cost between $1,575
- $1,775, while a 24-hour notice for charter flights to JFK or another local area airport would
reduce the cost to $795 - $995 [45]. Uber Elevate discusses no advance reservation [23] or one-
hour lead time [28], consistent with its on-demand service philosophy. Similarly, the UAM
OpsCon for passenger-carrying UAM envisions operations to be generally on-demand with the

option to schedule trips in advance [29].

2.5.9 Operating Costs and Passenger Price
The operating cost per passenger mile is one of the significant factors in the viability of
UAT. Efficient UAT operations, which involve high aircraft utilization, high passenger load factor,

and low empty mileage, as well as high cruise speed, decrease operating cost per passenger mile
[8].

McKinsey & Company [10] assert that the costs of UAM trips should decrease by around
80% of current helicopter rides for the service to be competitive with ground-based transportation.
They estimate the operating cost of $0.5-2.5 per seat-mile for UAM, compared to $6-8 for current
helicopter service. Moreover, the energy cost for the electric motor is estimated at $0.13/kWh vs.

the $5.5/gallon for the combustion engine.

In comparison, the cost per passenger mile is estimated at $8.93 for helicopters by Uber
Elevate, while they estimate the cost per passenger mile of $5.73, $1.84, and $0.44 for the launch
period, short term, and long term uberAIR operation [28]. Booz Allen Hamilton’s UAM market

study estimates the median operating cost per passenger mile of $9.5, $7.0, $5.5, and $4.75 for air
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pooling business model with 1, 2, 3, and 4 passenger seats, respectively. In the near future, it
expects a 5-Seat eVTOL to cost $6.25 per passenger mile. Porsche Consulting [6] projects that a
trip from the airport to the city with a 10-min flight time will be priced at $123. They estimate the
operating cost of air taxi service will be $1.8 per km (i.e., $2.9 per mile). To put these numbers
into perspective, a 22-minute flight by Skyway Air Taxi costs $950 for up to three passengers and

baggage [65].

In February 2021, Joby Aviation [5] estimated an operating cost of $95 over a 25-mi trip
using their four-seater aircraft (corresponding to 0.95¢ per available seat-mile), a 4 times cost-per-
mile improvement over a twin-engine helicopter with an operating cost of $393 for a similar trip.
Subsequently, in October 2021, Joby Aviation [66] presented cost drivers of service unit
economics at scale in 2026, shown in Table 2.5. Cost per available seat-mile (CASM) is estimated
to be 0.86¢, out of which 0.22¢ (around 25%) is the pilot cost. McKinsey and Company [67]
estimate that the cost per passenger-seat-kilometer of a piloted UAM flight could be two times

higher than an autonomous flight.

Table 2.5 Cost drivers of service unit economics at scale in 2026 by Joby Aviation

. Estimated Cost per Available Seat
Service Component

Mile (cents)
Pilot 22
Maintenance (including labor) 19
Skyport Support and Landing Fee 11
Battery and Charging 13
Aircraft and Insurance 9
Other Expenses 12

Cost per Available Seat Mile (CASM) $0.86
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For pricing, McKinsey & Company [10] project that, in a small and premium UAM market,
the charges should be $50 to $75 per passenger, depending on the number of passengers per trip,
for an intracity and metropolitan UAM travel with a distance of under 50 miles. They further assert
that for at-scale operations, the price per passenger trip should be around $25, which requires
10,000 trips per day in a large, dense, high-income city and approximately 3,500 trips per day in a
medium-size, less dense city. Porsche Consulting [6] assumes a price between $8 to $18 per minute
for the on-demand air taxi service. Additionally, in the Booz Allen Hamilton’s market study, the
maximum revenue was achieved at passenger price of ~$2.50-$2.85 per mile for 10 study areas,
including Dallas, Los Angeles, New York, and Washington D.C. Lastly, Joby Aviation estimates
the price of $3 per passenger mile given the revenue drivers of the service unit economics at scale
in 2026, shown in Table 2.6. Subsequently, the average load factor of 57.7% would result in

Passenger revenue per available seat-mile (PRASM) of $1.733.

Table 2.6 Revenue drivers of service unit economics at scale in 2026 by Joby Aviation

Average Flight Length 24 miles

Cruising Speed ~165 mph

2.3 Passengers for a 4-seater
Aircraft (i.e., 57.5%)
Turnaround Time ~6 minutes

Price per Passenger-Mile $3.00

Average Load Factor

Passenger Revenue per Available Seat Mile

2.6 Concluding Remarks

UAM is a nascent idea at the core of numerous discussions by NASA and FAA, news
coverage, reports from consulting companies, and white papers and reports by original equipment
manufacturers (OEMSs). Nonetheless, the vision has not been fully developed, and it is not currently

employed. As a result, this chapter presents the developments in UAM and reviews the envisioned
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use cases. Furthermore, it reviews the relevant components and the projected characteristics of
UAM from the industry perspective. Chapter 3 provides a review of the literature related to UAM

and UAT and aims to offer an academic perspective.
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Chapter 3 Literature Review

3.1 Overview

Transportation on Demand (TOD) [68] is the concept of moving goods or passengers from
their origin to their destination when the service is provided based on customer requests. TOD
includes ridesharing, bike-sharing, carsharing, taxi service, Transportation Network
Companies/Providers (TNCs and TNPs), and on-demand air mobility. In formulating TOD
problems, three conflicting objectives manifest themselves: minimizing operating costs,
maximizing the number of requests served (and thus maximizing the revenue), and maximizing
the level of service. The level of service could be defined in terms of deviation from desired pick-
up or delivery times. In passenger transport, wait time or excess ride time are alternative measures

of the level of service.

Decisions regarding managing TOD systems typically have three intertwined components:
request clustering, request routing, and request scheduling [68]. Request clustering aims to reduce
operational costs by creating groups of requests that are close in time and space. Request routing
finds the routes of vehicles for serving the customers. Lastly, request scheduling determines the

exact timing of each visit.

This chapter aims to review the literature related to UAM and UAT, and is organized as
follows. First, the Vehicle Routing Problem with Pick-up and Delivery (VRPPD), the class of
problems that UAT fleet operation belongs to, is discussed. Next, the relevant studies on on-
demand air mobility are reviewed. Lastly, an overview of the literature on synchronized logistics

is presented.
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3.2 Vehicle Routing Problem with Pick-up and Delivery (VRPPD)

Vehicle Routing Problem (VRP) refers to a class of problems where a set of locations
(nodes) should be visited only once by identical vehicles located at depots such that it minimizes
transportation costs. Vehicle Routing Problem with Pick-up and Delivery (VRPPD) is a
generalization of VRP, where goods should be picked up or dropped off at specific locations. When
the units moved in the transportation network are passengers, one should take the user’s
inconvenience into account, which shapes other variants of VRPPD, namely, Dial-A-Ride-

Problem (DARP) for ground transport and Dial-A-Flight-Problem (DAFP) for air transport.

VRP and its variants are generally classified based on the Quality and Evolution of
information [69]. Quality of Information reflects the uncertainty in the input data available to the
decision-maker, while the Evolution of Information reflects how the available information changes

during the execution of the plan. Based on these two dimensions, VRPs are classified as follows:
e Quality of Information: Deterministic vs. Stochastic

In deterministic problems, the input data available to the decision-maker is
deterministic, while in stochastic problems, the input data is uncertain and a random
variable. The stochasticity could be associated with demand (such as its location,

timing, or intensity), travel times, or service breakdown [70].
e Evolution of Information: Static vs. Dynamic

In static problems, all the information (regardless of its quality) is available to
the decision-maker before the planning phase. On the other hand, a problem is
classified as dynamic when one or some of its input data varies with time [70], and

consequently, part of the information is revealed during the design or execution of
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routes [69]. As the information becomes known in dynamic systems, the routes should

be adjusted in real-time in response to the new information.

Dynamic problems either have dynamic data or time-dependent data [70]. Dynamic data
changes with time and may include customer demand or travel times. Time-dependent data,
however, are known in advance and may include Vehicle Routing Problem with Time Windows
(VRPTW). Additionally, customer demand or travel times might be considered time-dependent

data if they are defined as functions of time, and therefore, they are all known in advance.

It is crucial to distinguish between dynamic problems, models, and applications [70]. A
model is considered dynamic if it explicitly models the changes of input data over time.
Nonetheless, it is possible to have static or dynamic applications of static or dynamic models. If a
dynamic model is solved only once and the analyst selects one strategy regardless of changes of
the input data over time, that constitutes a static application of a dynamic model. In contrast, if a
static model is solved repeatedly as new information is revealed in the system, it is considered a
dynamic application of a static model. In practice, dynamic and deterministic models are often
solved as a sequence of static and deterministic models [68], which is regarded as a dynamic

application of a static model.

Degrees of dynamism [71] is a measure that seeks to explain the frequency of changes and
the urgency of requests for a problem with dynamic requests. The frequency of changes refers to
how often changes in requests happen. For instance, how often a new request arrives or the
attributes of a request change. The urgency of the requests reflects the available response time. In
other words, it shows the available time window between receiving a request and serving it.
Accordingly, VRP could be weakly, moderately, or strongly dynamic. This information helps to

identify the appropriate solution methods given the trade-off between solution time and accuracy.
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For instance, in a weakly dynamic system, one has the time to achieve an optimal or near-optimal
solution. However, in a strongly dynamic system, time constraint limits the accuracy of the
solution. The degree of structural diversity [71] reflects the spatial and temporal dynamism of the
requests and highlights the high value of using stochastic information about future requests in a

network with a high degree of structural diversity.

As the new information, such as a new request for service, becomes known in a dynamic

model, three methods could be used to adjust the solution [71]:

1. Policy: In this method, a policy or rule is used to obtain new solutions. Examples of
these rules include First-Come-First-Served (FCFS) or the nearest idle vehicle for

assigning new requests to vehicles.

2. Local Heuristic Search: In this approach, the static problem is solved at the beginning
of the planning horizon using the information available to the analyst at the time. As
new requests arrive, the current solution is adjusted by employing heuristic methods

such as insertion heuristics, deletion heuristics, or interchange [72].

3. Re-optimization: In this case, the problem could be re-optimized every time new
information becomes available. Depending on the size of the problem, degree of
dynamism, and the time available for solving the problem, exact, approximate, or
heuristic methods could be employed to update the current solution with the new

information.

Dynamic VRPPD (D-VRPPD) has numerous applications in Truckload Pick-up and
Delivery Problems (TLPDP), Dial-A-Ride Problem (DARP), and Dial-A-Flight Problem (DAFP),

which are discussed in the following sections.
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3.2.1 Freight Truckload Pick-up and Delivery Problem (TLPDP)

In Truckload Pick-up and Delivery Problem (TLPDP) [73-78], a trucking company with a
fleet size of K aims to serve the requests given pick-up and drop-off locations, the earliest pick-up
time, and the latest delivery time of the job. A truck cannot serve a new request until it completes
its previous job, and therefore, TLPDP resembles on-demand services with no ride-sharing.
However, TLPDPs are associated with transferring goods, and consequently, the quality of service
is limited to deviations from desired pick-up or delivery time. Desired pick-up and delivery time
could be formulated as a hard constraint in the model, or alternatively, the delay could be included
in the objective function with a penalty term as a soft constraint [75,78]. The operator has the
option of either accepting or rejecting the requests. The acceptance and rejection decision-making
process could be rule-based [73] or be incorporated in the optimization model [75]. The objective
functions of TLPDP could cover empty distance traveled [73,75,78], penalty cost for the delay
from desired pick-up or delivery time [75,78], and revenue loss resulting from rejecting requests

[78].

Yang et al. [78] model the TLPDP as an assignment problem with timing constraints. The
offline Mixed Integer Programming (MIP) formulation seeks to find the least cost assignments
between all the nodes defined as {1, ...,K,K + 1, ..., K + N}, where K is the number of vehicles
and N is the number of jobs. The objective function covers costs associated with empty mileage,
delays in delivery times, and request rejections. Furthermore, they utilize rolling horizon strategies
for real-time implementations and compare the optimization-based methodology with three
heuristic methods. In their earlier paper, Yang et al. [75] conclude that even though optimization-
based strategy outperforms other heuristic approaches, some of the heuristic approaches are

competitive given their low computational requirements for solving the problem.



56

A special class of TLPDPs is the routing and scheduling of the drayage operations, which
refers to the regional movement of trailers and containers, either empty or loaded, by tractors
between rail yards, shippers, consignees, and equipment yards [79]. Smilowitz [79] models the
drayage operations as a Multi-Resource Routing Problem (MRRP), where multiple resources are
used to perform a series of tasks. The tasks are either well-defined or flexible. The origin,
destination, and time window of well-defined tasks are known, while either the origin or
destination of flexible tasks is unspecified. She presents a node-based model and a set partitioning
formulation, where requested tasks are partitioned into resource (i.e., tractor) routes. However, a
conservative time window is placed on all tasks to remove the time dependency between tasks. In
other words, the resources are assumed to be unavailable throughout the entire time window, even

if the duration of a task is shorter than its time window.

Smilowitz [79] uses a constant radius around the origin or destination to define the flexible
tasks. However, when a fixed radius is used for every node, a node in a dense area may have a
higher set of possible executions of a flexible task than in a sparse area [80]. To address this issue,
Francis et al. [80] propose the Variable Radius (VR) method, which limits choices for nodes in

dense regions and increases choices for nodes in more sparse areas.

The frameworks developed for TLPDPs are applicable in ubiquitous operations of UAT
without air pooling since these frameworks take the operating costs and a notion of user
inconvenience into account. Some variations of TLPDP also formulate the cost of rejecting a
request, which is relevant to UAT problems. However, the most significant difference is the

sharing economy, a critical factor to the viability of the UAT business model [9].
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3.2.2 Dial-A-Ride Problem (DARP)

Dial-A-Ride Problem (DARP) is similar to VRPPD but puts more emphasis on customer
inconvenience since it deals with passengers, not goods. DARP was initially designed for non-
profit services to senior citizens and people with disabilities, where most people share either the
same origin or destination. DARP has recently gained more tractions in health care and demand-

responsive transportation (DRT) to complement scheduled public transit [81].

In DARP, requests from customers are characterized by pick-up location, drop-off location,
desired pick-up time, and desired drop-off time. The operator must design the routes and schedules
of K vehicles such that it minimizes the operator’s objective function and meet the service
constraints. These service constraints may take wait time and ride time into account in addition to
the delay in the desired pick-up and delivery time in VRPPDWT [68]. In these problems, the
capacity of the vehicle is an operational constraint. The operator also has the option of rejecting

the requests [81].

The objective function of DARP often seeks to minimize the operating costs (such as total
travel distance, travel time, or fleet size) and user inconvenience. However, other objectives,
including maximizing operator’s profit or passenger occupancy rate and minimizing vehicle
emissions, have been studied in the literature [81]. There are three methods of formulating a multi-

objective DARP [81]:

1. In the first approach, the objective function is a weighted sum of different
objectives. This approach is most appealing when the weight of one objective
relative to another is well-defined, or all the objectives could be converted to the

same evaluation unit. For instance, when the operating cost per unit mile and the
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cost of wait time per minute are known, all the objectives could be defined in

monetary values.

2. The second approach takes advantage of a hierarchical method. It first optimizes
the most important criteria, then the second one, and so on. For instance, the DARP
is first optimized by minimizing the operating costs, and then if possible, wait
times of the passengers are minimized. This approach does not require the relative

importance of objectives and is well-suited when one objective is dominant.

3. The third approach aims to obtain the Pareto frontier of the problem. As a result, it
provides the analyst with multiple solutions and the trade-off between the
conflicting objectives. For this reason, it is not suitable for instances where one

solution is needed in a short time, for example, in the case of a dynamic DARP.

First studies on DARP date back to 1978 with Stein’s static and dynamic DARP. Later in
1980, Psaraftis used dynamic programming and developed an exact algorithm for static and
dynamic DARP with a single vehicle and immediate requests [81]. For the dynamic case, the static

case is re-optimized when a new request arrives.

The solution algorithms of DARP are classified into three groups [81]. Construction
insertion heuristics are basic, policy-based heuristics based on greedy insertion. They seek to insert
a new request to the vehicle’s route where the insertion cost is the cheapest. Even though these
heuristics are basic, they are fast and, therefore, appropriate for dynamic DARP (D-DARP)
applications with a high degree of dynamism. The second group of solution methods are exact
algorithms and include branch-and-cut, branch-and-price, and branch-and-price-and-cut

algorithms and reduction approach. The exact methods guarantee optimality and are most
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appropriate for static DARP when the problem is solved once during the planning phase, and thus,
a solution time in the range of hours is justifiable. In contrast, heuristics and metaheuristics are
utilized to obtain a solution in a shorter amount of time. These methods include Tabu Search (TA),
Simulated Annealing (SA), Variable Neighborhood Search (VNS), Large Neighborhood Search
(LNS), Genetic Algorithm (GA), and hybrid methods. The readers are referred to Cordeau and
Laporte [82] for a survey of DARP models and algorithms prior to 2007 and Ho et al. [81] for a

survey of recent developments in the field.

DARPs address the pick-up and delivery problems in the context of passenger
transportation. Therefore, they cover the constraints regarding passengers’ wait time, maximum
ride time, and the excess time incurred due to the detours. However, DARPs include ridesharing
in their formulation. As a result, besides the fact that DARPs deal with vehicle routing problems
with pick-up and delivery of passengers, they are not directly relevant to the UAT concept of
operations defined in this dissertation since DARPs consider ridesharing where passengers have

either the same origin or destination, and they may experience multiple stops along their route.

3.2.3 Dial-A-Flight Problem (DAFP)
Dial-A-Flight Problem (DAFP) was introduced by the emergence of on-demand air
mobility. Analogies could be drawn between DAFP and DARP in many aspects. However, some

of the characteristics are different [3,68]:

e In DAFP, the service is often offered at a specified set of airports, and therefore, the

operator could take advantage of the fixed network structure.

e In DARP, the requests typically share a common origin or destination, which is barely

the case with DAFP.
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e Requests in DAFP are typically placed a couple of hours in advance, giving the operator

more time to obtain an optimal solution to the routing and scheduling problem.

e Given that cost per mile of aerial operations is significantly higher than ground-based

transportation, achieving optimal or near-optimal solutions is more critical in DAFP.

e DARRP is traditionally for non-profit and social services, whereas DAFP is more
common in commercial settings. Therefore, the level of service in the two problems is

expected to be different.
e Weight constraints are considered in DAFP.

e DAFP should consider strict rules regarding pilot’s and crew flying and duty hours and

aircraft maintenance imposed by FAA.

DAFP rises in the context of per-seat on-demand air mobility, and it has been studied in
[3,59,83,84,85]. Similar to DARPs, DAFPs address vehicle routing problems with pick-up and
delivery of passengers with air sharing. Consequently, analogies could be drawn between DAFPs
and UAT fleet operations if passengers in DAFPs experience no stops on their route. However, in
DAFPs, pooling the passengers is not as challenging given that the airports are spaced far enough
that passengers do not have multiple choices for the pick-up and drop-off. Additionally, the
distances between one airport to another are long enough to warrant an empty repositioning of the

aircraft.

3.3  On-Demand Air Mobility
On-demand air mobility is a service that is offered in response to the customer’s request,
not the operator’s schedule. The first applications of on-demand air mobility using helicopters

could be traced back to the 1960s. Since then, it has appeared in the literature under various names
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[2]: Helicopter Air Carrier, Air Taxi, Metro taxi, Metrobus Intracity Air Transportation, Interurban
Short-Haul Air Transportation, Personal Air Transportation, On-Demand Aviation, On-Demand
Air Mobility, Zip Aviation, Sky Transit, On-Demand Mobility, Air Mobility on Demand, On-
Demand Urban Air Transportation, and Urban Air Mobility®. This dissertation distinguishes
between On-Demand Air Mobility and Urban Air Mobility (UAM). On-Demand air mobility refers
to on-demand aerial operations, either in urban or regional settings, while UAM refers to aerial

operations in an urban setting, which are not necessarily on demand.

On the regional scale where scheduled flights through commercial airports is an alternative
mode of travel, the demand for on-demand service mainly arises from limited schedules, congested
airports and parking lots, wait times at security checks, flight delays, missed connections, and the
distance between commercial airports and desired origin and destination [3,59]. However, on the
urban scale, the travel time saving compared to ground-based transportation is the primary drive.
On the supply side, advances in aircraft technology have reduced operating costs and
environmental impacts, and increased efficiency. The combination of these factors in demand and
supply has led to an increase in on-demand air services. Taxonomy of on-demand air mobility is

presented as follows:
e Network extent: urban vs. regional

e Aircraft type: helicopter, small piston aircraft, very light jet (VLJ), vertical take-off

and landing (VTOL)

e Per-seat vs. per-aircraft service

Non-stop flight vs. multi-stop flight

® The concept of Urban Air Mobility (UAM) defined by NASA is not limited to on-demand transportation.
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The two primary business models of passenger-carrying on-demand air mobility are
fractional ownership programs and air taxi operations. In fractional ownership programs, the
service is offered on a regional level, and customers own a share of aircraft. On the other hand, air
taxi operates on both urban and regional scale, the operator has the liberty of rejecting the requests,
and the customer might share the aircraft with other passengers. The following sections discuss

the studies on these two types of operations.

3.3.1 Fractional Aircraft Ownership Program

High acquisition, operating, and maintenance costs of aircraft have led to the emergence
of fractional ownership programs. These programs offer flights among 5500 airports compared to
500 airports for commercial airlines [64]. Fractional ownership programs are most appealing to
small- to medium-size private companies that need to fly frequently but cannot justify purchasing

and operating an entire aircraft [86].

The fractional owner orders a service with as little as 4-hour notice [63] and is entitled to
fly for certain hours annually. For instance, one-sixteenth shareowners are entitled to 50 hours
flying annually [63]. In addition to a one-time share purchase fee, the fractional owner pays a
monthly management fee and is charged an hourly usage fee for flying the aircraft [86]. On the
other hand, the operator guarantees to provide service at the customer’s request while being
responsible for crew scheduling and aircraft maintenance. There are five costs associated with the
program’s operation [64]: repositioning the aircraft while empty to the desired departure location,
upgrading to a bigger aircraft, transporting the crew using commercial airlines, the crew working
overtime, and chartering additional aircraft to serve a request. It is worth noting that repositioning
time may comprise 35% or even more of the total flight time [64], and therefore, repositioning

cost is a significant part of the operating costs. Finally, the period between the arrival time of a



63

request and the requested time for service allows the operator to optimize the operation while

considering the new requests.

Multiple studies have focused on fractional ownership programs [63,64,86-90]. These
studies differ in aircraft homogeneity, planning horizon, maintenance and crew scheduling
constraints, and the objective function. Since fractional ownership programs are operated per
aircraft, the flights are not shared, there is no intermediate stop to pick up or drop off other

passengers, and there is no need for capacity and weight constraints, as is the case in DAFP.

In these problems, the network could be presented in two ways: the nodes are the airports
(arc-based representation), or the nodes are the requests (node-based representation) [90]. Hicks
et al. [63] develop an integer multi-commodity network flow problem and then employ a branch-
and-bound approach to solve it. Yang et al. [88] introduce NETIP, a network flow model for the
aircraft scheduling problem. They show that for randomly generated data with 200 aircraft and
400 requests over a 24-hour planning horizon, NETIP would take about 7 CPU minutes to obtain
the solution. Yao et al. [64] formulate the crew pairing problem as set partitioning and obtain the
solution using column generation. They also investigate the effects of modifying demands on
improving aircraft utilization, and consequently, increasing profitability. To this end, they show
that the charter costs would be reduced significantly if slight flexibility (in the order of minutes)

on departure times were allowed.

Munari [89] develops a MIP model for per-aircraft services, which is solved using CPLEX.
The objective function only considers operating costs, and maintenance schedules are implicitly
considered as a request. The planning horizon consists of 7 days, and in total, 12 instances are
solved. Solving instances with nearly 100 requests and 50 aircraft would take about 10 minutes.

In some instances, the proposed model reduces the empty leg (i.e., ferry leg, deadhead, non-
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revenue flight) up to 16 hours compared to the solution used by the operator at the time. This

improvement is significant since flying costs are estimated between €3000 to €8000 per hour.

Munari and Alvarez [90] build on the previous aircraft routing and scheduling work by
incorporating maintenance events and service upgrade costs in the model. The objective is to
minimize the total operating cost, including repositioning and service upgrades. The network
representation is similar to Keskinocak and Tayur [87] and Martin et al. [86], where nodes of the
network are the requests that have to be served. The compact MIP is solved using GLPK, an open-
source general optimization software. The planning horizon spans over three days, and the average
number of requests in four different periods is 35.1, 40.8, 37, and 109.5 over a 3-day planning
horizon, with the average number of aircraft being 18.4, 22, 21.3, and 49.7. Yao et al. [64] had
previously examined the value of minutes of flexibility in desired pick-up and drop-off times.
Munari and Alvarez [90] further build upon this idea and consider anticipation or postponement
of the starting time of flights for 15 minutes and maintenance events for one day in their model.
Lastly, they compare the computation time of open-source GLPK with commercial CPLEX. The
results show that CPLEX could solve all the instances to optimality in less than 30 seconds.
Interestingly, for three cases with upgrades where GLPK could not find the optimal solution within
one hour, CPLEX obtained optimal solutions within seconds. These cases have combination of
(118, 93, 52), (125, 93, 51), and (121, 88, 52) as (#requests, #airports, #aircraft). These findings
highlight the significant role of the solver in obtaining an optimal solution for bigger instances

within a reasonable time.

Fractional ownership program problems (FOPPs) share many features of ubiquitous UAT
operations. However, the models in FOPPs tend to be more complex given the heterogeneous fleet

and additional constraints. The differences between FOPP and UAT are explained below:
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UAT operation is envisioned as an autonomous service, and therefore, there is no need

to consider crew flight hours and scheduling in the model.

In contrast to FOPP, the UAT fleet is assumed to be homogenous. So, there is only one

type of aircraft, and thus, no upgrade cost in the objective function.

The UAT operator is not obligated to serve all the incoming requests, and therefore, it
can reject requests when serving them is not feasible or profitable. However, in FOPPs,
the operator has to serve all the incoming requests at the cost of upgrading the aircraft

or chartering the flight.
UAT operations could be per seat, while FOPPs are per aircraft.

FOPPs do not have a strong level of dynamism, while UAT problems could be strongly

dynamic.

Air Taxi

With many similarities to fractional ownership programs, on-demand air taxi offers

regional [60,91] or urban [92] services. The major difference between the two is the ability of the

air taxi operator to reject a request, and therefore, not incur a charter or upgrade cost. Additionally,

fractional ownership programs offer per-aircraft service and non-stop flights. However, in air taxi

operations, the operator could offer per-seat services. Consequently, in air taxi operations, the

flights might be shared, there could be a transit stop, or the route may include an intermediate stop

to pick up or drop off other passengers. If air taxi operation is per seat where requests with the

same origin and destination are pooled together (i.e., air pooling), it resembles fractional ownership

programs. On the other hand, if the service is per seat with intermediate stops, the framework is

similar to DAFP.
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Currently, passenger-carrying air taxi operations defined by the US Department of
Transportation (DOT) include on-demand flights conducted with small aircraft (i.e., aircraft with
60 or fewer passenger seats and a maximum payload capacity of 18,000 Ibs or less) [93].
Depending on the aircraft seating and payload capacity, air taxi operations are conducted under 14
CFR Part 135 on-demand or Part 121 supplemental operations of the FAA regulations [94,95].
Part 135 on-demand operations cover airplanes with 30 seats or fewer and 7,500 Ibs payload or

less or rotorcraft.

A single-entity charter (also known as a private jet charter or air charter) flight is a per-
aircraft service in which an individual charters the entire aircraft on demand. A single entity charter
would also apply to a case where a group of individuals self-aggregate and charter an aircraft as a
single entity [96]. Therefore, single entity charters fall under air taxi operations for the fleet of
aircraft that meet the seating and payload capacity specifications. Despite the DOT’s definition of
air taxi operations, some distinguish between per-aircraft air taxi and air charter, and view the air
taxi business model as the less expensive option that utilizes a new generation of small aircraft

compared to air charter [97,98].

On-demand UAM would fall under the air taxi operations currently defined by FAA and
DOT. However, per-seat on-demand UAM service faces some legal challenges given the current
regulation since the UAM operator cannot play any role in consolidating the demand [99]. Current
per-seat air taxi operators circumvent these legal challenges by acting as web hosts where the lead

passenger could form a group by notifying other members [99].

The studies on air taxis cover the market and demand, facility location problems, routing
and scheduling, and system analysis using a simulation framework, each discussed in the following

sections. Since no dominant business model or aircraft type for on-demand UAM has emerged,
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studies have used various assumptions to describe or model on-demand UAM operations. Table

3.1 summarizes business models and operational assumptions of the service in the relevant studies.

Table 3.1 Business models and operational assumptions of on-demand UAM in the literature
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Note: Dashes indicate that the item is either not applicable, not available, or both. B = boarding; D = deboarding;
T = take-off; L = landing; Y = yes; A = autonomous; P = piloted

3.3.2.1 Market

Baik et al. [104] propose a Transportation Systems Analysis Model (TSAM), a four-step
modeling process that could predict the demand for air taxis. Kreimeier et al. [105] study the
feasibility of on-demand air mobility from an economic perspective. Depending on the aircraft’s

speed and the trip distance, they conclude that willingness-to-pay is in the range of 0.5-0.8 €2015/km
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for operations in 2030. Sun et al. [91] compare the competitiveness of the air taxi with car, rail,
and traditional air transportation regionally in the area covered by 29 countries in Europe. Their
goal is first to find the dominating mode of travel between air taxi and rail in 500 European cities,
and next, to identify origin-destination (OD) pairs with high demands that could benefit the most

from travel time savings.

Multiple market studies and stated preference surveys have focused on passenger UAM
adoption and mode choice [8,9,38,106-109]. Booz Allen Hamilton’s UAM market study [8] finds
that respondents were more interested in using UAM for recreational trips or trips to airports than
commuting. Younger male survey respondents who were already familiar with the concept of
UAM and individuals with higher income were more inclined to use UAM. Additionally,
respondents from Los Angeles were willing to pay nearly $0.85 more for one additional mile than

Houston respondents.

Garrow et al. [108] administered a stated preference survey with 1,405 full-time workers
with the minimum annual household incomes of $75K in Atlanta, Boston, Dallas-Fort Worth, San
Francisco Bay Area, and Los Angeles in 2019. They report that early adopters are more likely to
be frequent air travelers and frequent users of ride-hailing services. Boddupalli et al. [109] report
that younger and male individuals who are frequent users of ride-hailing services and are
characterized as tech-savvy are more likely to choose air taxis for commuting. In comparison, the
market study with 248 respondents conducted by Fu et al. [39] in Munich suggests that the air taxi
adoption rate will be higher among younger individuals (18-35 years old) and older respondents
(56-65 years old) with high income. However, they did not identify any difference in the adoption

rate based on gender.
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Al Haddad et al. [38] develop a stated preference survey with a sample size of 221 to
identify the factors that affect UAM adoption. They report that the adoption of UAM is highly
influenced by travel time savings and perceived costs, which is in line with the findings of the
UAM market studies by Booz Allen Hamilton [8], Fu et al. [39], and Boddupalli et al. [109] on

the significance of time and cost in the passenger UAM mode choice.

Boddupalli et al. [109] study air taxi mode choice for commuting purposes in the early
stages after launch using a stated preference survey. The air taxi mode in the study is battery-
powered, piloted, includes no transfer, and has two to four passenger seats. The minimum annual
individual income for the respondents is set to $100K. Among the 2,499 sampled respondents, 8
percent reported a one-way commute time of 90 minutes or more, while 27 percent and 19 percent
reported a commute time of 40 to 59 minutes and 60 to 89 minutes, respectively. They report that
the average values of in-vehicle travel time for transit, air taxi, and auto are $23.94, $26.38, and
$28.21, respectively. Finally, when individuals are offered a guaranteed ride home with Uber or
Lyft in the event the trip using transit or air taxi gets canceled, they are 1.8 times more likely to

choose the said modes.

3.3.2.2 Facility Location

Keysan [110] studies the tactical level base location and fleet allocation problem for per-
seat on-demand air transportation enabled by advances in Very Light Jets (VLJs). In the basic
solution approach, the number of required jets at each location represents the demand. However,
in the integrated solution approach, a more detailed model is developed, integrating the operational

flight scheduling with the location problem.

Using New York City (NYC) Taxi and Limousine Commission data, Rajendran and Zack

[92] estimate the potential demand for urban air taxi services based on travel time savings.
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Furthermore, they use k-means clustering to identify 21 potential UAT pads or ports based on
estimated demand distribution. They recommend that the UAT ports at the South Central Park and
JFK International Airport should accommodate nearly 150 take-offs and landings per hour. Rath
and Chow [111] formulate the UAT pad location problem as a hub location problem. The results
suggest that at least 9 UAT pads in NYC are required to achieve at least 10% market penetration.

Lastly, Fadhil [112] offers a G1S-based analysis to select the UAT pads.

3.3.2.3 Routing and Scheduling

Some studies use a simple policy for routing and scheduling of aircraft within the air taxi
simulation framework and assign the nearest idle aircraft to the request [61,113]. Fagerholt et al.
[59] employ an insertion heuristic coupled with a local search heuristic to solve the per-seat on-
demand air taxi operations with no stops. The optimization-based studies focus on the DAFP

[3,68,83-85,110,114,115]

Espinoza et al. [3] formulate the per-seat dial-a-flight problem as an integer
multicommodity network flow model with capacity, weight, and time window constraints and
solve instances with 8 aircraft and 81 requests using commercial software. They subsequently
propose [114] a parallel local search scheme to solve instances with over 300 aircraft and over
2800 requests close to optimality. Engineer et al. [83] develop a relaxation-based dynamic
programming algorithm for DAFP that, in combination with other techniques, could solve the
column generation relaxation for cases with up to 200 aircraft and 1613 requests. La Foy [115],
Campbell [84], and Reddy [85] present variations of DAFP to formulate regional air taxi

operations in Southern Africa.
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3.3.2.4 Simulation Framework

Simulation studies on the regional operations of on-demand air taxis are motivated by the
emergence of VLJs in the 2000s. Bonnefoy [60] developed a simulation framework, called Air
Taxi Network Simulator (ATNS), to duplicate the on-demand air taxi operations over one year on
the regional level in the US using a fleet size of 25 to 100 aircraft and up to 780 airports. In this
framework, passenger’s request includes the earliest pick-up and the latest drop-off time, and the
willingness of passengers to share a flight with others. Three heuristics for maintenance routing,
pilot routing, and aircraft routing are devised. The objective function for aircraft routing and pilot
assignment includes the ratio of non-revenue to revenue-generating mileage, idle time, and
location of vehicles at the end of the day. Additionally, the demand for air taxis is generated using

the gravity model.

Bonnefoy [60] further studies the impacts of demand intensity and network size. First, he
shows that for a constant number of aircraft, an increase in demand intensity results in an increase
in revenue-generating mileage. However, since the passengers have a desired time window for the
flight, this increase in demand leads to more rejected requests. More importantly, he investigates
the impact of demand intensity on system performance. For uniform distribution, the ratio of non-
revenue to revenue-generating mileage is slightly below 0.3. As the demand intensity increases,
this ratio decreases while the average number of flights per day increases. Second, he studies
network size effects using four networks ranging from 400 to 700 miles around a metropolitan
area using a fleet size of 75 aircraft. The results indicate that a bigger network results in higher
average revenue mileage and fewer flights per day per aircraft. However, the ratio of non-revenue-
to revenue-generating distances does not change. He concludes that the system’s performance is

more sensitive to demand intensity than the size of the network.
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Boyd et al. [61] similarly investigate the on-demand regional air taxi service for one week
on a small scale. They devise scenarios with 2-3 airports and 2 and 4 aircraft, while the city
distances are 70 and 140 miles. Their simulation framework is developed using the Arena software
package of Rockwell Software, which noticeably limits the modeler’s flexibility. The requests
arrive in real-time at each airport. When the number of passengers for a given destination reaches
aircraft capacity or wait time for one passenger exceeds one hour, a request for a flight is placed.
The assumptions regarding the demand limit the analysis. They disregard the spatiotemporal
distribution of the demand. Demand is set as a constant for a given origin and does not change if
more destinations are added for each origin. Furthermore, the demand is distributed uniformly over
all destinations. No maintenance is assumed for the aircraft. Additionally, the aircraft are assigned

to passengers based on the shortest distance.

The results suggest that customers’ wait time increases by decreasing the fleet size or
increasing aircraft capacity since more requests are needed to reach aircraft capacity. Additionally,
increasing the number of airports increases the number of non-revenue-generating flights.
However, the simulation logic makes an aircraft leave the gate after dropping off passengers

without picking up the passengers currently waiting at the gate.

Lee et al. [116] compare the results of a discrete event simulation model with a flow model
for air taxi operations. The flow model provides an aggregate model of air taxi operations in a
medium-range planning horizon without explicit modeling of events such as passenger arrivals or
non-revenue flights. The discrete event simulation framework is similar to Boyd et al. [61] with
some modifications. Passengers arrive at each airport according to a non-homogeneous Poisson
Process at a fare-dependent rate to control flow for each route. No maintenance or downtime is

assumed, so the aircraft are in service 24/7. The framework assumes that the duration of the delay
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and ground time of each flight are random variables. However, the numerical experiments assume
zero delay and ground time. The aircraft are homogenous with a capacity of 4 and a speed of 345
mph. The passengers wait for a maximum of W™a* before an aircraft is assigned to them based

on the shortest-distance policy.

Fagerholt et al. [59] develop a simulation framework for the air taxi service in Norway.
The operator does not have to accept all the incoming requests. However, if a request is accepted,
the exact pick-up time should be announced at the time of booking. As a result, the operator seeks
to obtain a solution to this dynamic problem in a very short time. They formulate the per-seat on-
demand air taxi operations as a special case of DAFP with no intermediate stops, which is
subsequently solved using an insertion heuristic coupled with a local search heuristic. For the
insertion cost, a multi-criteria objective based on the flight cost and a measure, which estimates
the probability of accepting future requests, is used. As a result, the acceptance and rejection
scheme developed in this study only considers the feasibility of serving a new request and not its

profitability.

An instance with 10 aircraft, 3 airports, and 200 requests over the planning horizon of one
day is solved in 1 CPU minute. The authors also examine the impacts of several strategic decisions
such as fleet size and booking policy on the number of accepted requests, time utilization, and
distance utilization. Time utilization and distance utilization increase as the number of arrived
requests increases. For arrived requests more than 50, the time utilization varies between 65 to

75%, while the distance utilization changes between 65 to 70%.

Rothfeld et al. [113] present an agent-based simulation framework as a passenger UAM
extension of the multi-agent transport simulation, MATSim. In this framework, four events are

defined for an eVTOL.: staying put (i.e., being idle), pick-up passengers, drop-off passengers, and
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flying. The customers could use a car, bike, walk, or public transportation to ingress or egress the
aerial service. Each customer looks for a UAT pad within a prespecified radius of its origin and
destination as the potential pick-up and drop-off UAT pads. Subsequently, the customer considers
the cost and travel time associated with each combination of these UAT pads and their
corresponding available ground-based modes. Therefore, the customer is the agent who chooses

the pick-up and drop-off UAT pad.

Moreover, the operator receives the request for aerial service when the customer finishes
its previous activity and sets out toward the pick-up UAT pad. If there are available UAT aircraft,
the nearest one is assigned to the request. Otherwise, the request is placed in a queue to be assigned
in future decision epochs. Lastly, the framework allows for requests to be pooled together as long
as they have the same pick-up and drop-off UAT pads and reach the pick-up UAT pad before the

scheduled boarding time of the first request.

In the following study, Rothfeld et al. [101] implement this framework in the Sioux Falls
network with 10 UAT pads and a homogenous fleet of 100 UAT aircraft. The flight level for the
cruise is set to 500 meters with a vertical speed of 10 m/s, translating to the ascend or descend
duration of 50 seconds. They further define ground-based UAM process time as a process that
includes elevator usage, security screening, or boarding the aircraft, and its duration is set to 2.5

minutes.

The results show that more than 75% of the flights are shorter than 3.1mi (or 5 km). The
mean travel time for the aerial leg is 20 minutes. The mean total trip distance is 4.5 mi (or 7.2 km),
which is on average 2.4 times longer than the straight-line distance between origin and destination
of customers. While the maximum ingress or egress distance is set to 5 km (i.e., 3.1 miles), there

IS no constraint on the ingress/egress time. The lack of temporal constraints on the customer’s
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delay is the main drawback of the framework since it has caused unacceptable ingress and egress
time. For instance, while the mean travel time for the aerial leg is 20 minutes, the mean ingress
time is 71 minutes. Lastly, they conduct sensitivity analyses to the cruising speed, vertical speed,

process time, aircraft capacity, fleet size, and the number of UAT pads.

Rajendran and Shulman [102] offer a per-seat multimodal concept of operations for UAT.
In the proposed framework, if the UAT operator accepts the customer request, it provides the
customer with the cost and duration of the service. Subsequently, the customer can reject the
operator’s offer for the aerial service. As the customers, who have chosen to use the service, arrive
at the UAT pad, they enter a queue based on their destination. The customers will wait a maximum
time of W™a* before leaving the system without being served. A UAT aircraft would arrive at a
UAT pad only when dropping off the passengers at that pad. Therefore, no empty flight is
conducted to reposition the aircraft. However, in cases where the incoming demand at a given
UAT pad is disproportionately lower than the outgoing demand, this assumption causes excessive
wait time. Additionally, a customer in the queue should wait until the number of waiting customers
reach the capacity of the aircraft, which in turn could lead to unacceptable wait times for OD pairs

with low demands.

They develop a discrete-event simulation in SIMIO. There are 500 replications, and each
simulates the air taxi operations for 30 days with 24 operating hours per day. The warm-up period
is three hours. The numerical experiment includes 5 UAT pads with 60 homogeneous UAT
aircraft. The take-off, landing, passenger loading, and passenger unloading durations are assumed
60, 75, 120, and 180 seconds, and the maximum wait time of a customer at the UAT pad before
they leave is set to 20 minutes. The average daily demand for the air taxi in the base scenario is

about 193,000, translating to an average interarrival time of 0.44 seconds. The aircraft utilization,
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mean customer’s total trip time, mean customer’s wait time, and the average number of customers
created per week are reported as the performance measures. However, it is not clear how many
passengers are served. The results show that an average trip would take 40 minutes while the
average passenger’s waiting time is 15 minutes. Aerial fleet utilization is about 34%. Lastly, the
sensitivity analyses examine the impacts of demand density, aircraft capacity, number of aircraft,

and maximum wait time on the performance measures.

Table 3.2 summarizes the simulation studies on on-demand air mobility on the regional

level.



Table 3.2 Comparison of simulation studies on on-demand air mobility
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3.4  Synchronized Logistics

Covering the first and last leg of the trip on the ground by the UAT operator in addition to
the flight would require coordinated transportation between the ground-based and aerial modes. In
the literature, this has been referred to vehicle routing problem with multiple synchronization
constraints (VRPMS) [117]. These synchronizations could be about tasks, operations, movement,
and load. Synchronization in operation concerning time could be broken into pure spatial operation
synchronization, operation synchronization with precedence, and exact operation synchronization
[117]. Location-Routing Problems (LRPs) could be classified under VRPMS, where locations and
routes are determined simultaneously. In the following sections, LRPs and some applications of

synchronized logistics are discussed.

3.4.1 Location-Routing Problems

Location-Routing Problem (LRP) [118] is a class of location problem where locations are
planned while considering the aspects of tour planning, and therefore, the relation between these
two decisions is taken into account. In the classic LRP, the locations of facilities are determined
in conjunction with vehicle tours from these locations to cover the customers. There is a cost
associated with opening each facility, and there are no vehicle tours between the facilities. In these
problems, the problem of finding the locations is strategic, while the problem of finding the routes

is tactical [118].

If the location and routing problems are solved sequentially without considering the
interrelation of these two, the problem is no longer classified as LRP. In sequential approaches,
first, the facility location problem is solved by minimizing the sum of distances between customers
and the facility, and then the routing problem is solved based on the location of the facilities in the

first step.
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Three heuristic solution approaches for solving LRPs exist [118]: clustering-based,
iterative, and hierarchical heuristics. In the cluster-based approach, the customers are grouped into
clusters. Afterward, two possible methods exist: (i) for each cluster, the location of the facility is
determined, and then VRP (or TSP in case of one vehicle) is solved for customers in each cluster,
or (ii) TSP is solved for each cluster, and then the location of the facility (i.e., depot) is determined.
Cluster-based heuristics are similar to sequential methods since there is no feedback between
routing and location problems. However, the clustering is performed while considering some
aspects of routing. As a result, cluster-based heuristics are classified under solution approaches of
LRPs. In the iterative approach, the problem is divided into two consecutive subproblems, solved
iteratively with feedback from one subproblem to another. In hierarchical heuristics, the main

problem involves solving facility location while referring to a routing subproblem in each step.

There are problems related to LRPs that are not classified as classic LRP problems. In the

following sections, the two variations that are relevant to UAT are discussed:

1. Location-Allocation-Routing Problem (LARP) or Vehicle Routing-Allocation
Problem (VRAP): This variation includes problems with vehicle routing just
between facilities (i.e., hubs or depots) but not between facilities and customers.
So, the customers are allocated to the facility simply with direct transport, and

consequently, radial distances are most relevant.

2. N-echelon Location-Routing Problem (LRP-NE): This variation includes problems
with multi-level (or echelon) intermediary facilities where each echelon has its own
vehicles that form tours to visit the facilities from the next echelon. These vehicles
could be homogeneous or heterogeneous and have their own attributes, such as

operating costs per mile, speed, and capacity. Additionally, tours at each echelon
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could have different fixed costs, and the costs associated with

opening/using/stopping at facilities could differ for each echelon.

Two-echelon location-routing problems (LRP-2Es) seek to determine the location
of the facilities while considering tour planning between facilities and between
customers. Some variations allow customer visits in the first-level routes while
others do not [119]. The first study on LRP-2E was done by Jacobsen and Madsen
[120] on a newspaper delivery system. In this system, the newspapers are first
delivered to transfer points and then from transfer points (TP) to sales points (SP).
The primary route is constructed between TPs, and the secondary route is
constructed between a TP and SP. There is a capacity constraint for the vehicles
performing primary tours. Additionally, secondary tours have the latest delivery
time and tour duration constraints. The cost of each tour consists of the fixed cost,
cost of stops, and the cost associated with tour length. In other words, Jacobsen and
Madsen [120] seek to minimize the number of routes (i.e., required vehicles), the

number of stops, and the length of the route.

It is worth mentioning that there is a subtle difference between N-echelon Location Routing
Problem (LRP-NE) and N-echelon Vehicle Routing Problem (VRP-NE). In VRP-NE, there is no
fixed cost associated with opening or using a facility, and all locations are assumed to be open

[119], while in LRP-NE, the cost of opening a facility is included in the objective function.

An analogy could be drawn between synchronized logistics of UAT (i.e., multimodal
operation with ground-based first- and last-mile service) and the two variations of LRPs discussed
above. In the UAT framework, the aircraft needs to visit the nodes corresponding to flights while

the requests are allocated to these nodes, which is similar to the tour planning between intermediary
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facilities in VARP or LRP-NE. In addition to the operating cost of the tour, there is a fixed cost
associated with each tour (i.e., acquisition and maintenance cost of the aircraft) and a cost

associated with each stop along the way (i.e., take-off and landing costs).

Since there are multiple UAT aircraft, each capable of forming one tour, multi-depot
variations of LRPs are more applicable to the UAT operations. Additionally, the limited capacity
of the aircraft calls for capacitated LRP. Finally, some variations of LRP-NE allow vehicles in the
primary tour to visit the customer’s node directly. These variations are more relevant to UAT

operations.

For the ground-based operation of UAT, two conceptual frameworks are inspired by VARP
and LRP-NE. In the first one, the requests are simply assigned to the flights, while in the second

one, there is tour planning to cover the transportation of customers to the flights.

Despite all the similarities between synchronized logistics of UAT and LRPs, there are
significant differences that make the two problems distinct. LRPs are developed in the context of
freight transportation where mostly only deliveries (e.g., newspapers delivery [120]) or only pick-
ups (e.g., milk collection [121]) are involved. However, UAT addresses pick-ups and drop-offs of
the passengers. Aside from the difference in network representation, the boarding at the UAT pads
should be synchronized such that the vehicles transferring passengers on the ground arrive at the
pad before the aircraft does, or the aircraft should be held until the vehicle arrives. Either way,
there should be a limit on the wait time of the passengers or aircraft holdings. For these reasons,

LRPs should be adjusted to be able to model UAT fleet operations.
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3.4.2 Truck and Trailer Routing Problem (TTRP)

Truck-and-Trailer Routing Problems (TTRPS) or road-train problems [122] address a class
of problems where a truck and trailer attached together leave the depot to serve the customer
demand. Due to accessibility restrictions, the trailer cannot visit all the customers. The stores (i.e.,
customers) that can be served by trailer-truck are called trailer stores, while the stores that can be
served by only a truck are called truck stores. Therefore, trailer points [123] are defined where the
trailer is detached from the truck, and the truck performs a tour to cover the truck stores. In the
classic TTRP developed by Semet and Taillard [122], the trailer is detached from the truck at the
trailer store. Therefore, the trailer points are selected among trailer stores. In a later variation, with
milk collection in Norway, the trailer is detached at a parking place so that the truck could serve
the farms. Therefore, no customer is served directly on the primary tour. TTRP models and the

solution algorithms are surveyed in [119] and [124].

TTRP is a special case of a more general class of problems, i.e., Vehicle Routing Problem
with Trailers and Transshipments (VRPTT) [125], with a fixed truck-trailer assignment, meaning
that each truck is attached to one trailer, and the transfer of the load could happen only between

this truck and the trailer at the transshipment locations [125].

TTRPs resemble synchronized logistics of the UAT because the vehicles have limited
capacity, and there are time window constraints on the deliveries. Additionally, in the classic
definition, the transfer points are located at the customers, which is similar to the operational

frameworks of UAT.

3.4.3 School Bus Routing Problem (SBRP)
School Bus Routing Problem (SBRP) involves planning the routes for a fleet of school

busses to pick up students from bus stops and drop them off at their destination (i.e., their school)
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under various constraints such as the capacity of the bus and maximum ride time of students [126].
From the 27 studies reviewed by Park and Kim [126], only 6 of them consider the subproblem of
defining bus stop location, from which only two studies take the maximum walking distance into

account.

There are two heuristic approaches for bus stop location in SBRP [126]: the location-
allocation-routing (LAR) strategy or the allocation-routing-location (ARL) strategy. In LAR
heuristics, first, the locations of bus stops are determined, and the students are allocated to these
locations. Next, the tour is planned for these selected bus stops. This approach is similar to
sequential methods discussed under LRP. Since the bus stop locations are determined without
taking the routing (for instance, the capacity of each vehicle) into account, LAR tends to generate
excessive routes. In ARL heuristics, first, the students are partitioned into clusters while
considering the vehicle's capacity, and then the location of bus stops within each cluster is
determined. Next, the vehicle route is calculated for these selected bus stops. Finally, the students
in each cluster are allocated to the stops. ARL approach is similar to cluster-based methods for
solving LRP. Chapleau et al. [127] use clustering within the ARL framework for the bus stop
location problem. Interestingly, their objective function in clustering the students involves
minimizing the number of clusters (i.e., routes) instead of minimizing the total distance. This is
most useful when vehicles’ fixed cost dominates the costs associated with the operating mileage

of the vehicle.

Bus stop location subproblem in SBRPs covers a class of problems where the demand is
consolidated at intermediate facilities. However, it is different from LRPs since these intermediate
facilities are neither located at customer locations nor are selected from a potential set of facilities.

Additionally, in the SBRP framework, there is a limit on the maximum walking distance from the
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selected bus stop, which resembles the constraint on the maximum ingress and egress time or
distance of customers in the UAT operation. However, in SBRPs, the students share the same
destination (i.e., school) and are either picked up or dropped off, but not both. The solution
algorithms of SBRPs should be adjusted for UAT operations with demand consolidation to identify
consolidation locations for pick-up and drop-off of passengers who have a sufficiently close origin

and destination.

3.4.4 Other Applications of Synchronized Logistics

Synchronized logistics have other various applications, many of which are reviewed in
[117]. The most prominent application is in hybrid transit, which aims to synchronize flexible
demand-responsive service and fixed-route service. Another application involves synchronizing a

moving truck and a drone in a continuous network [128].

3.5 Concluding Remarks

This chapter reviews the literature relevant to UAT operations. UAT is a nearly on-demand
aerial service in a ubiquitous network UAT pads, and therefore, in many aspects, it resembles the
ground-based on-demand service. As a result, this chapter first presents the literature on vehicle
routing problems with pick-up and delivery. Subsequently, it reviews the literature specific to on-
demand air mobility use cases, namely, the fractional ownership programs and the air taxi. Lastly,
UAT is a multi-modal service, which requires synchronization between the ground and aerial

modes. Consequently, this chapter further reviews the literature on synchronized logistics.

Given the current information and visions on passenger-carrying UAM and UAT use case
presented in Chapter 2 and the relevant literature reviewed in Chapter 3, Chapter 4 defines the

underlying UAT concept of operations in this research and outlines the problem we aim to address.
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Chapter 4 Urban Air Taxi: Concept of Operations and Problem Definition

41 Overview

Urban Air Taxi (UAT), a subset of UAM, is a ubiquitous on-demand per-seat service that
moves passengers in urban or suburban areas using groundbreaking aircraft [8,9]. UAT does not
have fixed routes or regular schedules, distinguishing it from air metro [9] or airport shuttle [8],

which are envisioned to operate on predetermined routes.

Despite all the excitement around UAT, the specifics of many aspects of operations,
including the aircraft, infrastructure, network coverage, and sharing strategies, remain unclear. The
sheer number of terms used when referring to UAT aircraft and infrastructure vouch for the nascent
UAT concept. As a result, this chapter presents and introduces the concept of operations for the
UAT operations studied in this dissertation. Accordingly, the problem is defined, and the

corresponding assumptions are presented.

4.2 Urban Air Taxi Concept of Operations
This section discusses the concepts and assumptions related to the aircraft, UAT
infrastructure, network coverage, flexible pads, repositioning flight legs, demand consolidation,

and first- and last-mile trips.

4.2.1 Aircraft

The aircraft in this research is assumed to be autonomous and electric, and have vertical
take-off and landing. Hence, the UAT aircraft are autonomous eVTOLS. The cruise speed of these
aircraft is assumed to be 150 mph with at most four passenger seats. These specifications resemble
the tiltrotor aircraft developed by Joby Aviation, which has a maximum cruising speed of 200 mph

[18]. We also assume that aircraft batteries could be swapped quickly, i.e., in less than 5 minutes.
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Therefore, the batteries could be changed while the passengers are boarding or deboarding the

aircraft, eliminating the need for scheduling events specific to battery swapping.

4.2.2 Infrastructure

Even though UAT pads and UAT ports are envisioned to differ in landing, parking,
charging capacity, and available resources, we assume all the infrastructure in the network has a
sufficient number of UAT pads with full batteries and resources required for swapping the
batteries. Consequently, the UAT aircraft do not need to be routed to specific UAT pads to change

their batteries.

4.2.3 Network Coverage

UAM Coordination and Assessment Team (UCAT) outlines 6 UAM Maturity Levels
(UMLs) in 3 states: initial, intermediate, and mature [41]. As the system evolves from the initial
state to the mature state, the density of UAT pads increases to the point that in UML-6, ubiquitous

UAT service with 10,000s of simultaneous operations and ad hoc landing sites is envisioned.

Having a network with a selected number of UAT pads would help the UAT operator to
aggregate the demand, increase aircraft load factor, and consequently, improve the efficiency of
the operation. However, it would limit the service to the users that are relatively close to the UAT
pads. As the number of UAT pads increases, the coverage of UAT service increases. In the long
term, when the density of UAT pads is high, the UAT operator could provide a point-to-point
service. We refer to the first setting with a limited number of UAT pads in the initial and
intermediate states, a limited network, and the second setting with a highly distributed network of
UAT pads, a ubiquitous network. By definition, the UAT use case is associated with a ubiquitous

network [9].
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4.2.4 Flexible Pick-up and Drop-off Pads

From the UAT operator’s standpoint, one of the significant drawbacks of the ubiquitous
network is the potential for extremely short repositioning flight legs from the drop-off UAT pad
of one passenger to the pick-up UAT pad of another passenger. Furthermore, the operator would
have fewer opportunities to consolidate the demand and reduce operational costs. To address this
issue, the operator designs the UAT service with flexible pads for the passengers, where passengers
have a desired pick-up and drop-off UAT pad, but they are flexible and could be relocated (or
transferred) to a location within an acceptable radius of their origin or destination for the aerial
service. Let A4CCESS denote the radius surrounding the origin or destination of requests within

which passengers are willing to be relocated.

4.2.5 Repositioning Flight Legs

While the requests are being served in a ubiquitous network, some empty flight legs might
be too short to justify the repositioning of the aircraft. Therefore, the UAT operator could benefit
from the concept of flexible UAT pads and relocate the passengers on the ground to eliminate the
empty flight legs shorter than a threshold. Let AZMPTY denote the minimum required (straight-line)

distance between two UAT pads to justify the repositioning leg.

4.2.6 Demand Consolidation

The Crown Consulting UAM market study commissioned by NASA envisions a limited
potential market for UAT by 2030 [9]. However, the study asserts that the assumption of one
passenger per trip in their model is one of the main barriers. Hence, the UAT profitability hinges
on the aircraft load factor, and consequently, a notion of demand consolidation should be

incorporated in the UAT operation.
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There are two models of demand consolidation: air sharing and air pooling. Air sharing
service resembles ground-based ridesharing operations, where a passenger might have one or
multiple stops per trip while other passengers on the aircraft are being served. DAFP presents a
framework for modeling the air sharing service. In comparison, air pooling provides a service
where all passengers assigned to one flight leg board and deboard the aircraft at the same locations.

These locations may differ from their desired pick-up and drop-off UAT pads.

Consequently, with air pooling, passengers with sufficiently close origins and destinations
could be pooled by being picked up and subsequently dropped off at the same UAT pads. Figure
4.1 demonstrates the concept of air pooling in a ubiquitous network with flexible pads. In Figure
4.1(a), three flights must be conducted to serve the three corresponding requests in a ubiquitous
network without flexible pads. However, in Figure 4.1(b) with flexible pads, the upper and lower
requests are relocated on the ground to the desired pick-up and drop-off UAT pad of the request

in the middle, and therefore, only one flight is conducted to serve all three requests.

(a) (b)

Figure 4.1 Concept of air pooling in a ubiquitous network with flexible pads, (a) without,
and (b) with air pooling.
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Air pooling takes advantage of the existing flight legs. As demonstrated in Figure 4.1, with
air pooling, one request is served with its desired flight leg, and therefore, it undergoes no
relocation, while the other experiences two relocations, one to the pick-up UAT pad and one from
the drop-off UAT pad. To address this issue, the UAT operator could offer the service at a
discounted rate to the requests that are not served with their desired flight leg. Nonetheless, in a
more equitable setting, new flight legs should be defined between pick-up (or drop-off) of one
request and drop-off (or pick-up) of another request. In this case, each request experiences one

relocation.

The Booz Allen Hamilton’s UAM market study [8] commissioned by NASA has reported
the customers’ concerns for the high cost of the service, multiple stops per passenger trip, and the
relocations resulting from the ground-based transportation in the multimodal UAT operations [8].
Implementing air pooling in a ubiquitous network would reduce the operating costs by decreasing
the aerial mileage. Additionally, the passengers would not have multiple stops. However, it adds
a maximum of two relocations per trip compared to the point-to-point service without flexible
pads. Lastly, Booz Allen Hamilton’s UAM market study employs the air pooling business model,
where all the passengers sharing one flight are picked up and subsequently dropped off at the same

UAT pad.

4.2.7 First- and Last-Mile Service

The key to a successful UAT operation is a seamless multimodal operation where
customers can smoothly access the UAT pad on the ground and use a ride-hailing service with
negligible wait time [6]. Currently, BLADE offers ground-based transportation between the
helicopter and the aircraft [45]. Furthermore, Uber Elevate announced that uberAIR would

perform the first and last mile of trips with its ride-hailing service or walk [23]. Consequently,
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UAT can be defined as a multimodal service where the UAT operator covers the ground-based

legs of the trip in addition to the aerial leg.

Figure 4.2 depicts the concept of multimodal UAT service, where the UAT operator is
informed of the request while they are at their origin. This enables the UAT operator to assign the
pick-up UAT pad (i.e., starting UAT pad of the flight) and the drop-off UAT pad (i.e., ending UAT
pad of the flight), and schedule the aircraft while considering the availability of its fleet and the
congestion of the UAT pads. In contrast, when passengers are not flexible in the pick-up and the
drop-off UAT pads and place a request only when they reach their desired pick-up UAT pad, the
operator loses some of the flexibility it would otherwise have to operate the system more

efficiently.
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Figure 4.2 Concept of multimodal UAT operation

4.3  Problem Definition
The UAT operator manages a fleet of homogenous vehicles on the ground and UAT aircraft
in a ubiquitous network (i.e., UML-6), and it synchronizes these two modes to serve the customer

requests. Each request is identified by the origin, destination, desired pick-up and drop-off UAT
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pads, requested time to begin the service, and group size. Given that the UAT pads are ubiquitously
present in a ubiquitous network, the origin and destination of the request coincide with the desired

pick-up and drop-off UAT pad, respectively.

Each passenger group is flexible in their pick-up and drop-off UAT pads and could be
relocated on the ground within a reasonable radius from their origin or destination, which enables
the UAT operator to eliminate the short repositioning flight legs in the ubiquitous network by
relocating the passengers over short distances. Additionally, the customers are willing to share a
UAT aircraft with other passengers, and consequently, the UAT operator could relocate the
passengers to consolidate the customer requests and increase the aircraft load factor. As a result of
short repositioning elimination and demand consolidation, each request trip consists of at most
three legs: two ground-based legs and one aerial leg. The aerial leg is non-stop, and there is no

intermediate transfer point for passengers to change the UAT aircraft after boarding.

The UAT operator is unaware of all future requests at the beginning of the planning
horizon, and the customer requests for service arrive in real-time. As a result, the UAT operator
updates its dispatching plan through a sequential decision-making process. The UAT operator may
have a relatively short period for decision-making, particularly if there is no reservation scheme
and requests are expected to be served immediately. The acceptance or rejection decision of the
arrived requests is made at the first decision epoch after their arrival and will not change in the
subsequent decision epochs. In other words, while considering accepting a new request, the UAT
operator cannot reject the requests accepted in the previous decision epochs. However, the flight
legs assigned to the accepted requests (and therefore, the pick-up and drop-off UAT pads) could

change as long as the customers have not left their origin. After leaving the origin for the pick-up
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UAT pad, the pick-up UAT pad of the request is fixed, and only its boarding time could be

rescheduled.

The UAT competitive advantage is the travel time savings. As a result, if the UAT operator
chooses to serve a request, the trip delay (i.e., deviation of the request’s total trip time from its
desired trip time) cannot exceed a prespecified value, which in turn limits the wait time for the
aerial service, the ingress and egress time, and the deviation from the desired flight leg.
Additionally, the UAT operator determines when the customers should leave their origin to access
the pick-up UAT pad. The scheduling is designed so that the customer wait time is mainly incurred
at the origin rather than the pick-up UAT pad. However, some customers may have to wait at the
departure gate after a schedule change resulting from the new information (e.qg., the arrival of new
requests). Since the assigned flight legs to the requests and their schedules could be updated
multiple times, the requests are only provided, in advance, with the time window during which

they will be prompted to leave their origin or board the aircraft, not the exact time.

The revenue that the UAT operator earns from serving a request is proportional to the
distance between the origin and destination of that request and its group size. The UAT operator
incurs a fixed cost per flight and a variable cost proportional to the aircraft mileage. Ultimately,
the UAT operator seeks a strategy that maximizes its net profit given the capacity, delay, and
synchronization constraints. This strategy should address request acceptance and rejection,
allocation of accepted requests to flight legs, and the sequence that UAT aircraft should serve these
flight legs. It should further handle the flight scheduling, the boarding time of each passenger

group, and the time by which the passenger groups need to leave their origin.
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Assumptions

The analysis of UAT fleet operation in this research is based on the following assumptions

across four categories of UAT service, operational policies, fleet, and customer requests:

441

442

UAT Service

The UAT service is the envisioned use case of passenger UAM in the mature state (i.e.,
UML-6), and therefore, the UAT pad network is ubiquitous.

The UAT service is nearly on-demand, and short advance reservation windows are
allowed.

The UAT service is per seat. Air pooling, where passengers share an aircraft as long as
they are picked up and subsequently dropped off at the same UAT pads, is envisioned.
The empty repositioning flight legs need to satisfy a minimum-mileage constraint, and
therefore, short repositioning flight legs are eliminated.

The UAT operator conducts the first and last mile of the trip on the ground.

Operational Policies

The UAT operator guarantees a predefined level of service for the accepted requests. To
this end, the trip delay (i.e., deviation of the passenger’s total trip time from the desired trip
time) cannot exceed a prespecified time. Consequently, the accepted requests are provided
with the time window during which they will be prompted to leave their origin or board

the aircraft.

Each flight leg in a ubiquitous network is defined to serve a specific request. As a result, if
an intended request of a flight leg is not assigned to that flight, the flight leg will not be

served.
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The operator could either accept or reject the requests and does so in a prespecified period.
As a request gets accepted, it is guaranteed to be served regardless of the arrival of new
requests in the future.

The requests could be reassigned to a new flight leg or another aircraft as long as the
passengers have not left their origin. When a passenger group leaves its origin to the pick-
up UAT pad, its pick-up UAT pad can no longer change.

The passenger group of requests could be relocated on the ground to eliminate a short
repositioning leg or to consolidate the demand. However, to implicitly minimize the
number of relocations and avoid searching the entire space with ubiquitous UAT pads, the
location they are being relocated to should be the desired pick-up or drop-off UAT pad of
another request. In other words, the passengers cannot be relocated to an intermediary UAT
pad in the space, which is not the desired pick-up or drop-off UAT pad of any other request.
There is no intermediate transit stop. In other words, passengers do not change their aircraft
in an intermediate UAT pad.

Each passenger trip includes only one flight leg, and therefore, the passengers do not have
multiple stops while being on board.

The UAT aircraft do not have a hub, and they are spread throughout the network at the
beginning of the planning horizons and do not need to go back to a specific UAT pad at

the end of the planning horizon.
Fleet

The fleet is homogeneous, and thus, the speed and capacity in each class of the aerial and
ground-based vehicles are identical.

UAT aircraft is fully autonomous, and therefore, no crew scheduling is necessary.
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The UAT aircraft takes advantage of eVTOL technology.

The aerial fleet does not have an assigned UAT port. They are assumed to be randomly
located in the network at the beginning of the planning horizon, and they do not need to go
back to a UAT port at the end of the planning horizon.

The time required for swapping the aircraft battery is short, and the battery could be
swapped while the passengers are deboarding the aircraft. As a result, no charging slots are
scheduled.

No maintenance operations are scheduled, and therefore, the aircraft are available over the

planning horizon.
Customer Requests

Customer requests are known by their origin, destination, desired pick-up and drop-off
UAT pads, and group size. In the ubiquitous network, the desired pick-up and drop-off
UAT pads are, respectively, the same as the origin and destination.

Customers are flexible in pick-up and drop-off UAT pads for aerial service as long as the
ingress and egress time is reasonable.

The number of passengers in each request is smaller than the aircraft’s capacity.

Additionally, the passengers in one group do not split.

Limitations

The modeling assumptions in the previous section have some drawbacks:

The pricing scheme is per seat and does not provide a discount for shared flights, which

does not encourage the customers to have a bigger group size. However, Booz Allen
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Hamilton’s UAM market study shows that passengers are willing to share the flight with

passengers they do not know as long as they receive a discount [8].

e Itisassumed that every UAT port has enough capacity for UAT operations, and therefore,

the congestion at the UAT ports is not considered.
e No maintenance event is scheduled.

e Selecting an intermediary UAT pad in the ubiquitous network of UAT pads, as opposed to

the one that is the desired UAT pad of a request, may reduce the aerial mileage.

e The requests are not provided with the exact boarding time, and there is no upper bound

on the number of times a request could be rescheduled.

4.6  Concluding Remarks

UAT embodies the passenger-carrying UAM in its mature state, and therefore, the concept
of operations has not been clearly specified. At the same time, no dominant player in the industry
has yet emerged. Consequently, this chapter first discusses the aircraft, infrastructure, and network
coverage associated with the UAT service. It further proposes the concept of flexible UAT pads
for UAT service design in a ubiquitous network, suggesting that the passengers are flexible
towards their pick-up and drop-off UAT pads within a reasonable distance of their origin and
destination. This idea allows the UAT operator to move the passengers for two purposes:

eliminating the short repositioning flight legs and consolidating the demand.

Based on the proposed concept of operations for the UAT service, the problem is defined,
and the corresponding assumptions are outlined. Chapter 5 presents the Urban Air Taxi modeling

framework.
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Chapter 5 Urban Air Taxi Model

51 Overview

The Urban Air Taxi (UAT) operation has many elements that work together to provide
aerial service. However, including and tracking all these elements are not essential to modeling
the UAT fleet operation. Consequently, this chapter presents the relevant components of the UAT
fleet operation, namely, entities, state variables, events, activities and delays, and transition
functions. To this end, we borrow some of the concepts and terms used in the simulation literature.
However, the model is defined independently of a simulation framework and, therefore, could be

employed to model real-time UAT operations.

5.2 UAT Entities

Entities are discrete components that require explicit representation in the model [129].
They flow through the system and have attributes. Entities are classified into objects and agents
[130]. Objects are passive entities that do not have intelligence. In contrast, agents are active
entities that take actions, interact, learn, and adapt. In other words, agents are objects with attitudes
[130]. The UAT model involves four entity classes: dispatcher, customer request, UAT aircraft,
and flight leg; among which the last three are considered objects. The entities are discussed in

further detail as follows.

5.2.1 Dispatcher

The dispatcher is a centralized unit that receives the customer request, accepts or rejects
them, assigns the accepted requests to UAT aircraft, and schedules the ground and aerial fleet to
serve the request. At each decision epoch, the dispatcher has the information on the status and

location of customers and the status and location of its fleet, and it uses the available information
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at the time to manage the system. As a result, the dispatcher wishes to solve a static and

deterministic model of the dynamic and stochastic UAT problem at each decision epoch.

The principal component associated with the dispatcher is the policy it uses to assign the
requests to aircraft and routing and scheduling of the aerial fleet. These policies could be rule-
based such as first-come-first-served (FCFS) [74], optimization-based [78], or a hybrid approach
that employs a combination of rules and optimization [76,131]. The Capacitated Location-
Allocation-Routing Problem with Time Windows And Short Repositioning Elimination
(CLARPTW-SRE) is the proposed optimization-based policy in this dissertation and is defined in

Chapter 8.

5.2.2 UAT Aircraft

The UAT operator employs K UAT aircraft for the aerial service. Let K =
{a,,a,,..,ay, ..., ax} denote the set of functioning UAT aircraft that the operator could dispatch
over the planning horizon, where K = |KX|. At the beginning of the planning horizon, the
availability location and time of these aircraft are known. The static attributes of a;, € K are

represented by ASYTOL = (Q,, vAIR), where:

x = capacity of aircraft k. With a homogenous fleet of aircraft, Q denotes the capacity of

aircraft;

viR = cruising speed of aircraft k. v4/® denotes the cruising speed of a homogeneous fleet

of aircraft.

5.2.3 Flight Leg
Flight legs are the constituent of a UAT aircraft itinerary. A flight leg could be either an

empty (also known as deadhead, ferry leg, or non-revenue [90]) flight or a revenue-generating leg.
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The latter is associated with flights that move passengers, while the former refers to repositioning
flights that relocate a UAT aircraft to the pick-up UAT pad of a request. In aircraft routing, the
sequence of flight legs is determined, and subsequently, the routes are assigned to the aircraft. The

scheduling, on the other hand, determines the time that each flight should start.

Let #; denote flight leg i. The static attributes AX£¢ = (§;, E;, H;) of a candidate flight leg
i must be available to the UAT operator. S; is the starting point (i.e., UAT pad) of #;, E; is the

ending point of #;, and H; indicates whether the flight type is empty or revenue-generating:

T {0 empty or deadhead
©7 |1 revenue-generating

A revenue-generating flight leg has three additional attributes. AREVLEC =

(#NTND MIN +MAX) denotes the static attributes of #; where H; = 1. In a ubiquitous network,

each revenue-generating flight leg is created with the intention of serving a specific request.

Consequently, »~/NTNP denotes the intended request of revenue-generating #;. Moreover, /¥
and tM4X are, respectively, the earliest and latest time that flight leg i could be served. ™V and

M4X are defined in Equations (7.26) and (7.27), respectively.

Lastly, let F;(S;, E;, "™ P) denote a function that defines #; such that it starts at S; and

ends at E;, with intended request #~/NTNP,

5.2.4 Customer Request
The customer request or request, in short, represents a group of passengers who wish to
travel together from their origin to destination and request the multi-modal UAT service. A request

is said to arrive in the system when it places its request for UAT service and becomes known to
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the UAT operator. The accepted requests are assigned to flight legs, and their boarding time and

the time they need to leave their origin are outputs of the dispatching strategy.

Let 7. denote request r. When 7. arrives at time 4R its attributes are defined by the
vector AR*¢ = (0,, D, ,SPSRP EPSRD o rREQ) \nhere:

ARV the time 7. arrives;

0,.: origin of r.;

D,.: destination of 7.;

SPSRD: the desired pick-up UAT pad of

EPSRD: the desired drop-off UAT pad of 7;

q, the group size of ;.. In other words, each request r consists of g, passengers.

5@ the requested time for service by #;;

Consequently, given the desired pick-up and drop-off UAT pads of request r, the UAT
operator defines #25RP | the desired flight leg of request r, as #PSRP = [F;(S; = SPSRP E; =
EDSRD 4~INTND — 4~ In a ubiquitous network, S?SRP = 0, and E2SRP = D, since the UAT

pads are ubiquitously present in the space; however, the UAT model and operational policy

» @ >

TRIP I I

I Ty |

< | < I

| I | |

I : :

I ADV : DSRD | DELAY ' I

i Tr | Tr ! Tr I I

) > > > i

| J I ' i
—@ O O o—o© Time

TARV TfEQ TEARL 7DsT DN

Figure 5.1 Hlustration of temporal elements associated with request r
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presented in this research are not dependent on this assumption and, therefore, they could be

adjusted for a network with limited UAT pads.

The tuple (t2RY, AR*?) represents the static information associated with #;.. Furthermore,

Figure 5.1 illustrates the temporal elements related to 7., where:

TAPV: advance reservation time for request r, which is specified by the difference between

ADV _ . REQ ARVY.
Ty =T, = T );

the arrival time of 73 and its requested time of service (i.e., T

T,PSRD: the trip time of the desired flight leg of #5.. It is equal to the total trip time of request

r when the trip starts immediately at ‘Ef FQ and the passenger group of 7. board the aircraft at their
desired pick-up UAT pad (i.e., S?5RP) and deboard at their desired drop-off UAT pad (i.e., E2SRD)

without any ground-based transportation; T,?SRPis defined in Equation (7.28).

T,TRIP: total trip time of each passenger in 5., including ingress and egress time, aerial wait

time, and aerial service time. TTRIP = PST — ¢REQ \yhere 25T ig the time the passenger group

of 7. reach their destination.

T,PELAY: the total delay experienced by a passenger of 77, defined as the deviation of the

trip time of 7. from the desired trip time (i.e., T,PELAY = T,TRIP — TDSRD),

Consequently, TEARL denotes the earliest time the group passenger of 75 could reach their

destination. Let w represent the maximum allowed delay. The value of w is prespecified by the

operator as a proxy for the level of service. Lastly, T2V is the latest time by which the UAT

operator guarantees the passenger group of 73 would reach their destination. 7248 and 7PN are

defined in Equations (5.1) and (5.2), respectively.
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TrEARL fEQ + TTDSRD (5.1)
¢DLN _ 1EARL 4 . — TREQ + TDSRD |, (5.2)
T r T r '

5.3 State Variables

While many attributes of the entities change over time, not all are required to study the
UAT fleet operation. State variables track the values of attributes of interest and provide the
information required for describing the system at any time. From the decision-making perspective,
“A state variable is the minimally dimensioned function of history that is necessary and sufficient

to compute the decision function, the transition function, and the utility function” [132].

Let S; represent the state of the system at time t. S; is defined by using the state of three
entities, namely, requests, UAT aircraft, and flight legs. As a result, S, = (579, 5gVT0L, SLEG),

where S, is the state of the system at time t, and 57, 5¢V7L, and SFFCrepresent, respectively,
the state of requests, UAT aircraft, and flight legs at time t. These state variables remain constant
unless a relevant event in the future prompts their values to change. The state variables associated

with requests, UAT aircraft, and flight legs are discussed in the following sections.

5.3.1 Customer Request

SFEQ specifies the state of all the requests that have been placed by time ¢, i.e., 57°° =

( GREQ

rt

- eparv> Where RARY denotes all the requests arrived by time t. SREC = (¢RF?, o, TORG),
T t

Q

where qRE is the status of request r at time t, ¢, is the flight leg assigned to request r as of time

t and T9RC is the time passenger group of request r are scheduled to leave their origin as of time

REQ

t. ¢y, @re, and TR Care defined in Equations (5.3)-(5.5), respectively.
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rejected

waiting for acceptance

accepted

waiting for service

en-route to pick-up UAT pad

ingression to the departure gate

waiting for boarding (5.3)
boarding

on-board

deboarding

egression from the arrival gate

waiting for ground transportation to destination
11 en-route to destination

\12 reached destination

REQ _

ﬁ\
= I
oV ONO U wWwN R oL

REQ
rt

The status of request r at time ¢, ¢,, *, could take 14 values, as defined in Equation (5.3).
When 7. is accepted, a flight leg is assigned to it. This initial assignment could change from

acceptance until the passengers start the boarding process. Let @, denote the flight leg assigned

REQ
rt

to request r at time t when ¢~ € {1, ...,5}. The assigned flight leg will remain unchanged
afterward. Thus, let @, represent the flight leg that the passenger group of request r takes to reach

their destination. To summarize, the value of ¢, is defined in Equation (5.4).

N\A ¢3¢ €{-1,0}
e =3¢ ¢Fe(l,..,5) (5.4)
o Gl €d6,...,12}

Additionally, when 7. is accepted and a flight leg is assigned to it, the time that its
passengers should leave their origin to reach the pick-up UAT pad is also scheduled. This initial
schedule could change from the acceptance until the time passenger group of 5. leaves their origin.

Let T 9RE denote the scheduled time that the passenger group of #;. should leave the origin as of

time t for ¢ % € {1,2}. After the passengers leave the origin, this value will remain constant.
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Thus, let T 2R¢ denote the realized time that passengers of ;. left their origin. To summarize, the

value of 7986 s defined in Equation (5.5).

N\A crtQE{ 1,0}
TOR6 = { 7 ORG grt EQ e (1,2} (5.5)
TORG (REQ e (34 ..,12}

Furthermore, let 728V denote the start of service time of 7. as of time ¢, and therefore,
TSRVC > TREQ For the requests that their passenger groups have not left their origin, T3RVC
represents the earliest time passenger group of #5. could leave their origin. On the other hand, for
requests that have already left their origin, t2FV¢ is the actual time that providing the service to .
starts. Therefore, the value of 7:RVC is equal to the time the passenger group of request r left the
origin (i.e., TZRY). As a result, T3FVC is defined in Equation (5.6), where W/1°RS is the wait time
for ground-based transportation to the starting point of flight i from the origin of request r if the
were to served at time t. However, the wait time for walking is zero, and we could reasonably

assume that if the reservation window is sufficiently wide, the wait time for ride-hailing will be

zero as well.

N\A cftE =1
REQ INGRS EQ
T.rsgzvc max(r t) + W i maX(TREQ't) Crt € {0,1,2} (5.6)
TORG ¢REC € (3,4,..,12}

5.3.2 Flight Leg
SLEG represents the state of all the flight legs available flight legs by time t. Therefore,

SFEG = (SLEG epCaND) where FFANP is the set of candidate flight legs for assignment as of time
t

t and S;EC = (¢fF¢, 73 RT), where ¢/F¢ is the status of flight leg i at time t and 7;7 %" is the
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scheduled start time of flight leg i as of time t. The status of flight leg i at time t is specified by

¢LEG which could take four values as specified in Equation (5.7).

0 unassigned
1 aiting for service
S P (5.7)
in service
3 served

At the end of decision epochs, the start time of flight legs that should be conducted are

determined. As long as a flight leg has not started, its scheduled start time could change. Let #;7RT

be the scheduled start time of flight leg i for ¢5Z¢ = 1 (i.e., waiting for service). Clearly, the start

time of flight leg i will be no longer changed after the flight leg starts the service. Therefore, T3 X"

E

presents the realized start time of flight leg i for ¢ STRT §

¢ € {2,3}. In summary, the value of 7;;"%" is

defined in Equation (5.8).

N\A gl =0
STRT _ ) ~STRT LEG _ 1 (58)

Tie =\ Tt Cit
TR o e (2,3)
When the start time of a flight leg passes, the corresponding status of the flight is either in
service or served. In other words, ¢-£¢ € {2,3} implies t > 737%". For ¢kE¢ =0, ;77" is

undefined, implying that no start time is scheduled for an unassigned flight. On the contrary, when

¢hE¢ = 1, ;R has been set, but it could be updated in future decision epochs. Therefore, for t +

STRT
T..r

LEG
LEG STRT + o

t', itis possible that ¢;;** = ¢;;7" = 1 while j;

5.3.3 UAT Aircraft

The state of the UAT aircraft at time t is specified by the vector SFV7OL =

eVTOL _AVL yAVL NDSRD .
(ke The Lt~ Qker Cet Jkesc, Where:
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¢SV TOL: the status of the UAT aircraft k at time t;

tAVL: the earliest time the subsequent itinerary of UAT aircraft k could be modified, and

therefore, the time aircraft k becomes available for the future service as of time t;
L£Y™: the location of UAT aircraft k at /¢ ~; and
Qg the ordered list of non-completed flight legs assigned to UAT aircraft k as of time t;

ENPSRD: 3 binary variable, which is 1 if L4 is the drop-off UAT pad of the passengers,

but not their desired one, 0 in any other case.

The status of eVTOL k at time t, ¢&¢  °*, could take seven values, as defined in Equation

(5.9).

idle

boarding

take-off clearance

in flight (5.9
landing clearance

deboarding

\6 holding

eVTOL _
Ckt =9

Ul s W RO

Okt = {Qers - » Gitns - » Ait1Qpyl}» WETE e IS the N leg on Qy, is the ordered list of
non-completed flights (i.e., scheduled itinerary) of UAT aircraft k as of time ¢, and is subject to
change at each decision epoch. If Q;; = @, then ¢f{7°" = 0, meaning that an idle UAT aircraft
has no non-completed flight leg assigned to it. For Q;; # @, let #; = qi+; represent the first flight

LEG — 7 flight leg i is the flight leg currently performed by aircraft k as of time ¢.

leg on Q. If ¢;;
As aresult, £5fVT denotes the flight leg in service by aircraft k as of time t. #5757 is specified in

Equation (5.10).
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CRNT _ {an ker = i and g6 = 2 (5.10)

kt N\A otherwise

Additionally, let %4T denote the ordered list of flight legs on @y, that have not started
their service as of time t, ie., QAT = {qpen = Fi: ¢HE¢ = 1}. Therefore, Qy, = (RN} U

QAT if #SRNT is well defined (i.e., not N\A), and Q. = QAT otherwise.

Let /% denote the earliest time after ¢t that UAT aircraft k would become available for

the service. If aircraft k is idle or on holding at time t, it will be immediately available for future

AVL AVL

service, and therefore, iy © = t. Otherwise, if UAT aircraft k is currently serving a flight, ¢y,
is the time aircraft k completes its current flight and either becomes idle or put on hold. In other

words, T4/* = mint such that t >t and ¢fv7%" € {0,6}. L{/" is the location of aircraft k at

AVL and is a two-dimensional vector in a two-dimensional space.

At the beginning of the planning horizon, i.e., t = t,, LAVL is the initial location of the
aircraft k and TAVL is the earliest time that it could start serving the requests. Subsequently, the

value of L#/% and ={/" will be updated every time aircraft k starts a flight leg. Additionally,

NDSRD __
GPSRD = ¢,

5.4  Events

While UAT fleet operation involves many events, not all are required to model the UAT
fleet operation. We only consider the events that prompt a change in the state of the entities.
Consequently, the states of the entities change only when an event occurs. Otherwise, they remain
constant between two consecutive events. Therefore, when event v at time t,, occurs, the relevant
states get updated, and future events will be scheduled. In this section, we discuss the events

associated with the UAT entities.



108

5.4.1 Dispatcher

The dispatcher is involved in two events: the start of the decision epoch e (v;) and the end
of the decision epoch e (vf). With the start of the decision epoch e at time t = Ty$, the process of
routing and scheduling the UAT aircraft and assigning the requests to the flights given the policy
m starts. When the decision epoch e ends at e at time ¢ = 7.z, the dispatcher (re)assigns the
requests to flight legs, updates the itinerary of UAT aircraft, and (re)schedules the boarding time
of flights and the time by which the passengers should leave their origin. Figure 5.2 depicts the

events associated with the dispatcher.
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o TEPOCH !
S\ £ =
e » O
8 1.2
. 5
A P D
= 12
' 1 G
g: | O
. .
S | |2
‘-‘I '
2 :LL]
il L > Time
;
. .
- + TEPOCH
Ty TYE=Tys T;

Figure 5.2 The events associated with the dispatcher

5.4.2 Flight Leg

All flight legs are involved in four events: the start of air traffic control (ATC) clearance
for take-off, the departure of the UAT Aircraft, the landing of the UAT Aircraft, and the flight
completion. If the flight leg is revenue-generating, it is further involved in the boarding and
deboarding processes. Therefore, for an empty leg, the flight starts with ATC take-off clearance
and finishes with flight completion, whereas for a revenue-generating leg, the flight starts with the

boarding processes. These events and their sequence are shown in Figure 5.3.
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The numbered square boxes in Figure 5.3 depict the corresponding status of a flight leg
between events, i.e., ¢iZ¢ in Equation (5.7). Before a flight leg is assigned, its status is unassigned.
From the assignment until the beginning of the service, the status is waiting for service. The flight
is in service between the start and completion of the flight. Ultimately, when the flight leg is

complete, its status changes to served.
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Figure 5.3 Depiction of flight leg’s events for (a) revenue-generating flight, (b) empty flight

5.4.3 UAT Aircraft

Sequencing one or multiple flight legs forms the itinerary of a UAT aircraft. As a result,
the events of a UAT aircraft are similar to those of flight legs. The additional event is related to an
aircraft becoming idle, which is triggered when no event is scheduled for UAT aircraft k after
completing a flight at time t (i.e., 9 = ©@). The events associated with a UAT aircraft are

illustrated in Figure 5.4(b). The numbered square boxes at the bottom of Figure 5.4 depict the
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corresponding status of a UAT aircraft between events, i.e., ¢¢/7°% in Equation (5.9). Other events
such as maintenance or charging could be scheduled for a UAT aircraft; however, we have not

included those events in this dissertation.
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Figure 5.4 Depiction of events for (a) a request, and (b) its assigned UAT aircraft

5.4.4 Customer Request

The events directly related to the accepted requests, in chronological order, are: request
arrival, leaving origin, reaching the pick-up UAT pad, reaching the departure gate, arriving at the
arrival gate, reaching the designated area for ground transportation at the drop-off UAT pad,
leaving the drop-off UAT pad, and finally, reaching the destination. Figure 5.4 illustrates the
events associated with a request and its assigned UAT aircraft from the moment a request arrives

REQ -

until it reaches the destination. The numbered circles show the status of request r, i.e., ¢, - in

Equation (5.3), between the events.
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5.5  Activities and Delays

Let 77 denote the set of all discrete points in time when events occur. Thus, T =
{rl, Ty, s Ty ...,rm}, where 1, represents the time event v starts. The interevent interval t,,,; —
T, for v € {1,...,|T| — 1} could be deterministic or stochastic. Activity, also known as
unconditional wait, characterizes a period specified by the modeler and is known when it begins
(e.g., the boarding duration of passengers). Activity could be deterministic (e.g., 3 minutes), have
a statistical distribution (e.g., uniformly distributed with the range of (2,4), or be a function of the
system’s state and entity’s attributes (e.g., 2 minutes per boarding passengers). In contrast, delay,
also called conditional wait, describes a period that is not specified by the modeler and is
determined by the system’s conditions. A delay may end when a specific event occurs or a logical
condition becomes true [129]. For instance, the time a passenger might wait at the departure gate

to board a UAT aircraft is a type of delay.

Table 5.1 shows the duration of the activity between two consecutive events associated
with request r taking flight leg i. If the times are deterministic, the varibales in the table specify
the activity duration, whereas in stochastic cases, they are the mean of the activity duration. The

parameters associated with activity duration are defined in detail in Chapter 7.

The N\A in Table 5.1 implies that the duration between the two events is unknown and,

therefore, is considered a delay. As a result, a request could encounter delays at two points: First,

REQ
rt

the wait time between the requested time and leaving the origin (i.e., when ¢ = 2), and second,

the wait time between arriving at the departure gate and the beginning of the boarding process (i.e.,

REQ

when ¢,

= 5). The operation is designed so that if a passenger had to wait, they would do so at

their origin and not at the departure gate. Nonetheless, since the boarding time could be updated
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at each decision epoch, the passengers may end up waiting at the departure gate. Similarly, Table

5.2 and Table 5.3, respectively, specify the activity duration of an aircraft for empty and revenue-

generating flight legs.

Table 5.1 Duration of the activity between two consecutive events associated with request r

taking flight leg i

Current Event

Next Event

Activity Duration

Requested Time
Leave Origin

Reach Pick-up UAT Pad

Reach Departure Gate
Boarding

ATC Take-off Clearance

Departure

Landing
Deboarding

Reach Arrival Gate

Reach Drop-off UAT Pad
Leave Drop-off UAT Pad

Leave Origin

Reach Pick-up UAT Pad

Reach Departure Gate
Boarding

ATC Take-off Clearance

Departure

Landing
Deboarding

Reach Arrival Gate

Reach Drop-off UAT Pad
Leave Drop-off UAT Pad

Reach Destination

N\A
TINBND
i

DGATE
Tri
N\A
TBOARD
TTAKEOFF

FLIGHT
Ti
TLANDING
TDEBOARD

AGATE
Tri

EGR
W,
OUTBND
Tri

Table 5.2 Duration of the activity between two consecutive events associated with empty

flight leg i
Current Event Next Event Activity Duration
ATC Take-off Clearance Departure TTAKEOFF
Departure Landing TFLIGHT
Landing Flight Completion TLANDING

Table 5.3 Duration of the activity between two consecutive events associated with revenue-

generating flight leg i

Current Event

Next Event

Activity Duration

Boarding

ATC Take-off Clearance

Departure
Landing
Deboarding

ATC Take-off Clearance

Departure
Landing
Deboarding

Flight Completion

TBOARD
TTAKEOFF
FLIGHT

T;
TLANDING

TDEBOARD




113

5.6  Transition Function

The transition function specifies how the state of the system evolves from event v to event
v + 1. We denote the transition function by S™(-). Therefore, the dynamics of the system could
be represented with S, = SM ( Sz, Wr,,, ), where S is the state of the system during event v

and W, . is the exogenous information that arrives between event v and event v + 1.

The state of the system S; remains unchanged unless an event prompts the change of one
or more components of S;. Table 5.4 summarizes how the occurrence of event v at the time 7,
changes the status of accepted request r to ¢ in Equation (5.3). Similarly, Table 5.5 depicts

how an event changes the status of flight leg i for empty (H; = 0) and revenue leg (H; = 1) and

LEG
ity

eVTOL

status of aircraft k after occurrence of event v at time 7, , i.e., ¢;;.” in Equation (5.7) and ¢y,

in Equation (5.9), respectively.

Table 5.4 Status of request r after occurrence of event v at time t,, (cf,iQ)
Event v sre?  Definition
Request Arrival 0 Waiting for acceptance
Passing of Requested Service Time 2 Waiting for service
Leave Origin 3 En-route to pick-up UAT pad
Reach Pick-up UAT Pad 4 Accessing departure gate
Reach Departure Gate 5 Waiting for boarding
Boarding 6 Boarding
ATC Take-off Clearance 7 On-board
Deboarding 8 Deboarding
Reach Arrival Gate 9 ?;:ss;zlrr:gt%eslgnated area for ground
Reach Drop-off UAT Pad 10 Waiting for ground transportation to destination
Leave Drop-off UAT Pad 11 En-route to destination
Reach Destination 12 Reached destination




Table 5.5 Status of flight leg i for empty and revenue leg (¢-2
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F€) and status of aircraft k after

occurrence of event v at time 7, (¢f2' °")
Event v G ok Gict

H;=0 H;=1
(Empty) (Revenue-generating)

Boarding 1 - 2

ATC Take-off Clearance 2 2 -

Departure 3 - -

Landing 4 - -

Deboarding 5 - -

End of Deboarding Oor6 3 3

Moreover, the occurrence of the following events prompts additional changes in the system

state at time t:

Leave origin: When the passengers of request r leave their origin at time t, set T2R¢ = t.

Start of flight leg: Let #,(CerNT be the first flight leg on Qj,;+. In other words, ﬁ,fffw is the

flight leg currently performed by aircraft k as of time t. When #; = kcf+NT starts at time

t, the earliest availability of aircraft kK would correspond to the completion time of flight

leg i. Therefore:

VL _ {t + TL'SRVEMP Hi =0 (511)

kt t+ TSRVREV =1

Where T RVEMPand TSRVREVare, respectively, the time it takes to serve an empty

and revenue-generating flight leg i. Additionally, L£* = E;. Subsequently, the value of
@NDSRD

xe 7, as defined in Equation (5.12), will be updated to 1 for revenue-generating flight

leg i if it is heading to a UAT pad other than the desired UAT pad of its intended request.
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QENDSRD _ {1 Si * S?SRD if H; = 1 and 1y = /I"iINTND (5.12)

kt ~ 0 otherwise
iii.  Completion of flight leg: With the completion of #; = £V at time ¢, the completed flight
leg will be removed from Q,-. Therefore, @y = Qr¢~\{#:}. Subsequently, if Qy; = @,

then CﬁtVTOL = 0and @ﬁtDSRD = 0. However, if Q;; # @, then gﬁ’TOL =6.

The decisions made during the decision epochs also change the state of the system. The

transition function associated with the decision epochs is specified in Section 6.6.

5.7  Concluding Remarks

The UAT operation involves numerous components and events, many of which are
irrelevant to the problem of UAT fleet operation. For this reason, this chapter presents the entities
necessary to model the UAT fleet operation, namely, the dispatcher, UAT aircraft, flight legs, and
customer requests. Each entity is associated with a set of variables required to define its state in
the system. Furthermore, these entities are involved in some events with prespecified or
undetermined duration, which in turn changes their states. As a result, this chapter discusses the
state variables, the events, activities and delays, and transition functions. Based on the UAT model
defined in this chapter, Chapter 6 presents the dynamic solution framework for the UAT fleet

operation problem.
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Chapter 6 Dynamic Solution Framework

6.1  Overview

The UAT fleet operation is a dynamic and stochastic problem. Dynamic problems are often
solved as a sequence of static models on a rolling horizon approach [68], which is regarded as a
dynamic application of a static model. As a result, the UAT fleet operation problem involves a
sequential decision-making process. In these problems, the operator observes the state of the
system at a point in time and makes a decision in response. Ensuing this decision, the operator
receives a reward or incurs a cost, and the state of the system evolves as a result of the decisions

or exogenous information [133].

Consequently, in the UAT dynamic model with a sequential decision-making process, a
policy is repeatedly called to solve the deterministic and static snapshot (also called off-line or
static) problem. This chapter presents the solution framework with a sequential decision-making

process to address the dynamic and stochastic UAT fleet operation.

6.2  Decision Epoch

The periods of time when decisions are made are called decision epochs. Simple decisions
could be made at points in time. However, making more complicated decisions would take more
time. A change in the state of the system (e.g., the arrival of a new request) could trigger the
beginning of a decision epoch, or decision epochs could be scheduled at prespecified times (e.g.,
every 15 minutes). Let € = {1, 2, ..., e, ..., E} represent the set of all decision epochs, where E =

|E].

Let v5 and vE, respectively, denote the events corresponding to the start and end of

decision epoch e. Consequently, TS and 7,z represent the start time and end time of decision
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epoch e, respectively. Therefore, 7,z = T,s + TEPOCH denotes the end of decision epoch e, where

TEPOCH|s the duration of decision epoch e. We further assume that decision epochs are scheduled

at prespecified times. Let AVPP4TF= 7 s — 7,5 denote the fixed interval between the start of two

decision epochs. Consequently, in a sequential decision-making process, TEPOCH < AUPPATE for

e € €.

With rule-based decisions, such as first-come-first-served, or more straightforward
decisions that could be achieved within seconds, the state of the system over the decision epoch
remains unchanged. However, with more complicated decisions, the state of the system during the
decision-making process may change. This impacts the quality of the solution since the solution

was calculated given the system’s state at the beginning of the decision epoch (i.e., S; ) butshould
Ve
be implemented based on the state at the end of the decision epoch (i.e., S; ). As aresult, in these
Ve

cases, the decision should be made based on an estimate of the system’s state at the end of the
decision epoch [77]. In this research, we assume that the state of the system does not change during

the decision epoch.

6.3  Policy
Policy (or decision rule) r during the decision epoch e is a rule or function that specifies

how to select a set of actions given the state S; . and the exogenous information W; , where s
Ve Ve €

represents the start time of decision epoch e. Therefore, x, . = X™ (ST oW S) defines a policy

e Ve

function that returns the decision x; _

at time 7,z given the state S; . and the exogenous

v

information W; .. In general,  or X™ (ST A S) are interchangeably referred to as the policy
ve Ve Ve

[132].
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Decision rules are classified based on how they use past information (memoryless vs.
history-dependent) and how they make a decision (deterministic vs. randomized) [133]. In the
memoryless (i.e., Markovian) process, the previous states and decisions are reflected only through
the current state of the system. On the other hand, a history-dependent decision rule is dependent
on the previous states and decisions in the system. With deterministic decision rules, decisions are
made with certainty, while in randomized decision rules, a probability distribution is defined for

the set of possible actions.

In dynamic programming, the most elementary class of policies is the myopic policy [132],
where during each decision epoch, the decision is made using the information available at the time
and without considering any information about the future state of the system. As new information

becomes available in the subsequent epochs, the decision will be updated. Let x, . denote the
Ve

W)

e

decision yielded at the end of decision epoch e attime t,z. Furthermore, let C; <ST
Ve

vglx‘[vgl
denote the utility function of decision epoch e at time 7,s given the state S; ., exogenous
e Ve

information W; ., and the decision x, .. Therefore, the myopic policy #™¥°"T is defined as
Ve Ve

XTEMYOPT (S W. ) = min C‘L’ B (S‘L' s’ Xt s’ VV‘L'
vg Ve Ve

T s VT
v3 v3 Xr g
Ve

S) subject to the various constraints on the
v

e e

decisions at decision epoch e.

We use the CLARPTW-SRE formulation (specified in Chapter 8) as the myopic policy for
the online (or dynamic) implementation of the UAT problem. CLARPTW-SRE policy, denoted as
mCLARPTW=SRE 'is 3 myopic policy since it captures the state of the system at each decision epoch

and does not include any information on the future state of the system.
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6.4  Dynamic Input Parameters

In a dynamic setting, the demand and resources are continuously changing. At the
beginning of each decision epoch, the demand for service and the available resources for serving
this demand must be known. Therefore, the dynamic input parameters should be calculated for

decision epoch e starting at time t = T,s. The input parameters at each decision epoch are either

retrieved from exogenous sources or are calculated given the state of the system.

6.4.1 Exogenous Information
Exogenous information is the data that becomes known to the system over time from

exogenous resources. Let W, _denote the exogenous information that arrives between the start of
Ve

decision epoch e at time T,s and decision epoch e — 1 attime 7 s .- The exogenous information
5.

could be sampled from a known probability distribution or retrieved from a file of sample paths
[132]. In the UAT problem, there are two sources of exogenous information, namely, customer
request (demand) and travel times (supply). If the travel times are not known in advance, they
should be retrieved as time passes. The UAT problem has a scheduling component (e.g., boarding
times). With stochastic travel times, the actual duration of an event would deviate from the
scheduled time. Therefore, time variables have a scheduled time and a realized time, where the

latter accounts for the stochasticity and delays.

This research assumes the customer requests are stochastic while the travel times are
deterministic and known in advance. As a result, RIN4SEN  which denotes the set of newly arrived
customer requests that have not been assigned as of time t, is the only exogenous information to

the UAT system.
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6.4.2 System State

Let t =S, . denote the state of the system at the beginning of the decision epoch e.

Therefore, S, = (SFF¢, SEVTOL, SFEG). The following sections address the state of each UAT

entity.

6.4.2.1 Customer Requests

As a passenger group starts the boarding process, it no longer needs to be included in the
decision-making process. As a result, the state of the requests that have been accepted in previous
decision epochs but have not started the boarding process is an integral part of the decision-making
process. Let RFLXSTRT denote the requests that have been accepted as of time t but their associated
passenger groups have not left the origin to the pick-up UAT pad. Since these requests have not
left their origin, they could be (re-)assigned to any UAT pad and, therefore, they have flexible

pick-up (or start) UAT pad.

Once the passenger group leaves the origin, their pick-up UAT pad cannot be modified.
Consequently, let RFXPSTRT denote the accepted requests as of time t that their associated
passenger groups have left the origin to access the pick-up UAT pad but have not started the

boarding process. T2R¢ represents the actual time passenger group of request r left their origin.

For all the requests in the decision-making process, t:2V¢, which is the earliest time

serving request r could start as of time t, is calculated as follows:

RE
SRVC maX(rr Q, t) + er:vnf:)f(rREQ t) 15 (= :R%/NASGN U :RFLXSTRT
fre - —ORG ’ T FXDSTRT (5'6)
Tr 1. € R
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6.4.2.2 Flight Legs

At each decision epoch e, the requests should be assigned to candidate flight legs while the
aircraft should be routed and scheduled to serve these flight legs. Since the UAT service is nearly
on-demand, the candidate flight legs in the decision-making process could vary from one decision
epoch to another, depending on the current state of the requests in the system. Let F£4NP denote
the candidate flight legs as of time t. The definition of F4NP is explained in detail in Section

1.2.2.

6.4.2.3 UAT Aircraft

A/t defined as the earliest time as of time t after which the routing and scheduling of a
UAT aircraft could be modified, is another crucial input parameter at each decision epoch. If
aircraft k is idle or on holding at time t, it is available for future service immediately, and
therefore, 7YX = t. Otherwise, if UAT aircraft k is currently serving a flight, 7/~ is the time

A

aircraft k completes its current flight and becomes either idle or held. L{;* represents the location

of aircraft k at time 77 ~.

At the beginning of the planning horizon, i.e., t = t,, L,f}’OL is the initial location of the

aircraft k and 7j;y," is the earliest time that it could start flying. Subsequently, the value of Li;™*

and T47" will be updated every time aircraft k starts a flight leg. The details of updating 74, “ and

L{/*" are discussed in Section 5.6.

6.5 Dynamic Decisions
At the end of decision epoch e (i.e., t = 7,z), the following variables should be either

determined for the first time or get updated based on the outputs of the decision epoch.
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RACCPT: the subset of unassigned requests that get accepted during decision epoch e.

Subsequently, REF/T = RUNASGN\RACCPT - where R5™/" denotes the set of rejected
requests during decision epoch e.
T 9RG: the time when ;. € RUNASGN U RFLXSTRTmust leave its origin to reach the pick-

up UAT pad as of time t = 7.
@ye: the flight leg assigned to 75. € RE“"T as of time t = 7.

QAT an ordered list (i.e., queue) of all the flight legs (empty or revenue-generating) to

be served by aircraft k starting from Li,/“as scheduled at time ¢t = 7,z. For Q4" # @, let

QmAIT _ {qm,_ N L Ay '"’quIQ}?iA’TI}’ where g% is the " leg on QAT Let
qiim and qpy .1 represent two consecutive flight legs on Q4. If g}, is a revenue-
generating flight leg, q,‘f{,nﬂ is either a revenue-generating or an empty leg. If gi%,, is an
empty leg, g .1 could only be a revenue-generating flight leg. Moreover, for the two

consecutive flight leg #; = qp, € Q" and #; = qfins € Q" E; = S;, while

TSTRT > T cCOMP COMP ;

it , Where t;;

is the scheduled completion time of flight leg i as of time

t = 7,. The time between the scheduled completion of flight leg i and the scheduled start

time of the flight leg j is the holding time before flight leg j. Therefore, T;°*" = ¢"*T —

T LomMP _ WAIT 5 _ WAIT WAIT HOLD ;
for #; = qin € Qi Fi = thn+1 € Q" ,andn # |th |, where Tj; IS

the holding time before flight leg j as of time ¢ = 7.

737 RT: the starting time of flight leg i (either empty or revenue-generating) as of time t =

Tvg.
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6.6  Transition Function of Decision Epochs
If an event yields a decision, the system’s state is also a function of that decision. Therefore,

S

s = SM( Sz, ), where x,  is the decision made at 7,,, that results in the

Tv+1’ xTv+1

system’s state at 7,44, i.e., Sz, ,. When decision epoch e ends at t = 7,g, the decision variables

v+1°
are either determined for the first time or updated. Accordingly, the state of UAT aircraft, requests,
and flight legs will be modified as follows.

6.6.1 Customer Requests

The state of ;. € RYNASEN y RELXSTRT  REXDSTRT ot ¢ = 7 is specified by S7°° =
(¢F7?, 0., TORG). At the end of the decision epoch e € &, ¢ should be updated only for the
requests that have arrived between the beginning of decision epoch e — 1 at Tys | and the
beginning of decision epoch e at Tys. These requests had not been assigned to any flight legs prior

to 7,s, and therefore, ;. € RYNASEN At the end of the decision epoch e, all the unassigned
e v
requests should be either accepted or rejected. For the subset of :RUNASGN that got rejected during

decision epoch e (i.e., 75 € RE/CT), set ¢RF¢ = —1, while for the requests that got accepted (i.e.

RACCPT) set CREQ =1,

Furthermore, ¢, and 12R¢ for 7, € RYNASGN y RELXSTRT y REXDSTRT \will be updated

based on the decision made by using w¢LARPTW=SRE Details are outlined in Section 8.7.

6.6.2 Flight Legs

The state of #; € FFAVP at t = 7,z is specified by ;7% = (¢i7¢, 75/%"). If a request is

LEG

assigned to #; at the end of the decision epoch (i.e., #; = @, for 77.), set ¢;;"" = 1. Otherwise, set
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¢LEG = 0. Furthermore, the start time of flight leg i, 73 X", will be updated based on the decision

made by using m¢LARPTW=SRE Details are outlined in Section 8.7.

6.6.3 UAT Aircraft
The state of ¢, € X att = 7,r is specified by SF/"% = (¢/™%", 7", Lig/*, Q) , among

which, ¢&/T0L and QWAT € Qy, could be impacted by the decision made during the decision

epoch. The list of flight legs that are waiting to be served by aircraft k as of time t, Q14T will be

updated based on the decision made by using w¢tARPTW=SRE Details are outlined in Section 8.7.

When (Qy¢) g ex is determined, ¢zy ™" could change based on the two following cases:

eVTOL _
kt s — 6
Ve

I.  All the flight legs of a holding UAT aircraft are removed. In other words, ¢

(i.e., holding), and therefore, Qi ¢ # @, while Q) ., = @. In this case, set gﬁZTSOL =
Ve Vg v

0, cancel g, 2, where yi{"°" denotes the next event scheduled for UAT aircraft k
Ve

as of time t;
ii.  Anew flight leg is scheduled for an idle UAT aircraft. In other words, ¢fy 2" = 0 (i.e.,
Ve

eVTOoL

kr = 6, and set
Ve

idle), and therefore, Q. . = @, while Qy; . # @. In this case, set ¢

and schedule YV as the “start of flight leg.”

k‘L'v)é:;

6.7 Limitations
The dynamic solution framework presented in this chapter has some limitations, as listed

below:

I.  This framework covers deterministic travel times and does not tackle stochasticity in

travel times.
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Il.  The boarding time and the time the passengers need to leave their origin is subject to
change. Therefore, the passengers would be provided with a time window to leave their
origin or start boarding, rather than the exact time, which could inconvenience the

passengers.

1. The state of the system is assumed to remain constant during the decision epoch. This
assumption could cause an issue if the decision epoch is long enough for the state of

the system to change.

6.8 Concluding Remarks

In the UAT fleet operation, as the new requests arrive, the UAT operator should decide to
accept or reject the requests and update the itinerary and schedule of the aerial fleet accordingly.
Therefore, the solution framework for the UAT problem involves sequential decision making.
Consequently, a dynamic solution framework with sequential decision-making is defined in this

chapter to address the dynamic problem of UAT fleet operation.

The decision epochs are defined in advance and are spaced equally throughout the planning
horizon. The dynamic and stochastic problem of UAT fleet operation is approached on a rolling
horizon basis. The policy at each decision epoch is an optimization-based myopic policy, and it
uses the information available to the UAT operator at the time, without any attempts to include
any forecast about the future. Consequently, a Capacitated Location-Allocation-Routing Problem
with Time Windows and Short Repositioning Elimination (CLARPTW-SRE) formulation is
employed at each decision epoch to re-optimize the UAT fleet operation problem at each decision

epoch.
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Given the dynamic nature of the problem, the input information at the beginning of each
decision epoch changes. Furthermore, the specified policy provides the UAT operator with a tool
to make dynamic decisions at the end of the decision epoch. These decisions, in turn, impact the
state of the system. Therefore, this chapter presents the dynamic input parameters, the decisions to
be made based on the outputs of the decision epochs, and the transition functions at the end of the

decision epochs.

To elaborately define the optimization-based policy used at each decision epoch, Chapter
7 presents the network representation associated with CLARPTW-SRE. Subsequently,

CLARPTW-SRE formulation is presented in Chapter 8.
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Chapter 7 Capacitated Location-Allocation-Routing Problem with Time

Windows and Short Repositioning Elimination: Network Representation

7.1 Overview

This section defines the network representing the Capacitated Location-Allocation-
Routing Problem with Time Windows and Short Repositioning Elimination (CLARPTW-SRE).
With this model, the UAT operator could decide which flight legs to perform (i.e., location in
LRPs), how to assign the requests to the flight legs (i.e., allocation in LRPS), and how to route the
capacitated aircraft to conduct these flight legs (i.e., routing in RRPs) while respecting the time

windows of the flight legs and avoiding short empty repositioning flight legs.

Prior to presenting CLARPTW-SRE formulation, we define the network entities, including
candidate requests and candidate flight legs. We next present how distances and times are defined
in our model. Subsequently, we transform the UAT physical network to a node-based network by
defining the corresponding nodes and arcs. Lastly, we reduce the size of the network for faster

computational performance.

7.2  Network’s Entities
This section specifies the three sets of entities required to define the CLARPTW-SRE at

the start of decision epoch e € £, i.e., t = 7,s: candidate requests, candidate flight legs, and

available UAT aircraft.

7.2.1 Candidate Requests
Let RARY | defined in Equation (7.1), denote the set of requests that have arrived as of time

t. Candidate requests, i.e., REANP ¢ RARV defined in Equation (7.2), are the requests that have
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arrived by time t but their passenger groups have not started the boarding process. Either the
itinerary or schedule of these requests could undergo some changes, and therefore, they have to be

involved in the decision-making process at time t.

RARV = (4. TARV < ) (7.1)
REWD = {riry € RAV I €(0,1,2345))  (7.2)

Candidate requests are the union of unassigned requests (RYN4S¢N) | requests with flexible
pick-up UAT pads (RELXSTRTY "and requests with fixed pick-up UAT pads (REXPSTRT) as defined

in Equations (7.3)-(7.5), respectively. Therefore, REAND = RUNASGN y RFLXSTRT ) REXDSTRT

RUNASGN — {,,,vr = Rg‘AND’Cfo 0} (7.3)
:RFLXSTRT {,,,T 7. € RCAND.C” EQ ¢ {1, 2}} (7.4)
RESTRT = {1 . € REAVD, (REQ ¢ (3457 7.9

Unassigned requests, i.e., RINASEN are the requests that have arrived since the last

decision epoch and are waiting for acceptance or rejection. They could either get rejected, or get
accepted and have a flight assigned to them. Let RX*/CT and RACCPT denote the rejected and

accepted requests during decision epoch e, respectively. Consequently, RUNASG’V REEICT

RECCPT, where 7,5 denotes the starting time of decision epoch e.

Requests with flexible pick-up (or start) UAT pads, i.e., RELXSTRT "are the requests that

have been accepted in the previous decision epochs, but the passenger groups have not left their
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origin as of time t. Since the passengers are at their origin, they can be reassigned to any pick-up
UAT pad without rerouting and additional inconvenience. Hence, they have flexible pick-up UAT

pads.

On the other hand, Requests with fixed pick-up (or start) UAT pads, i.e., REXPSTRT are the
requests that have been accepted in the previous decision epochs, and their passenger groups have
left the origin to the starting point of the assigned flight leg, but they have not started the boarding
process as of time t. Since the passengers have left their origin and are on their way to the pick-up
UAT pad, they will not be rerouted to another UAT pad to avoid further inconvenience. Thus,
these requests have fixed pick-up UAT pads. Nonetheless, the scheduled boarding time of the

flight legs assigned to these requests could be updated.

7.2.2 Candidate Flight Legs

In a network with a limited number of UAT pads, the flight legs available to serve the
requests are limited and could be defined in advance. In contrast, in a ubiquitous network, a flight
leg could be conducted between any two points in space, and therefore, the list of available flights
is not known at the beginning of the planning horizon. Consequently, in such networks, the flight
legs are defined based on the candidate requests that should be served. Candidate flight legs at
time t, i.e., FEANP | are the flight legs that the UAT operator could offer to serve the candidate
requests REAND | FEAND s the union of desired flight legs F25RP and connecting flight legs
FENCT " and is defined in Equation (7.6). FPSRP are well-defined flight legs (or jobs, tasks)
specified for each candidate request, while FENT are composed of flexible flight legs with a
starting point or ending point (or both) different from the desired ones of the request they intend

to serve.
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TtCAND — j;'tPSRD U j;'tCNCT (76)

Additionally, let 7 denote all the flight legs #; € FEANP that start at the desired pick-up
UAT pad of their intended request, i.e., N"N?. Similarly, let F£ denotes all the flight legs #; €
FEAND that end at the desired drop-off UAT pad of #~/N"NP, Equations (7.7) and (7.8) define F?
and FE, respectively. Therefore, F5 = FEANP\FS is the set of candidate flight legs with the
starting point different from the desired pick-up UAT pad of their intended request, and ﬂf_tE =
FEAND\ FE is the set of candidate flight legs with the ending point different from the desired UAT

pad of their intended request.

F§ = (f; € FEAVP:S; = SPORD, 7, = #[NTVP) (7.7)
FE = (§ € FEANPLE; = EPSRD, 7, = 1/NTP) (7.8)

Desired and connecting flight legs are discussed in the following sections.

7.2.2.1 Desired Flight Legs

Request r (i.e., 75 € REAND) has a desired pick-up UAT pad and a desired drop-off pad,
which are denoted by S2SRP and EPSRP | respectively. Consequently, #2SRP denotes the desired
flight leg, which aims to move #. from S25%” to EP*RP without any ground-based transportation.

Thus, #P2SRP s defined as F;(S; = SPSRP, E; = EPSRD 4 INTND = 4=,

In cases where 7+ is an unassigned request or has no restriction on its pick-up UAT pad
(i.e., 7 € RYNASGN y RELXSTRT) ¢DSRD jg g feasible flight leg that could be assigned to #;.. In

contrast, for 7, € REXPSTRT the pick-up UAT pad is fixed, and therefore, only flight legs that
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have the same starting pad as the one already assigned to 7. could be included as feasible candidate
flight legs. Let FPSRP denote the set of all the feasible desired flight legs for ;. € REAND  FPSRD
is specified in Equation (7.9), where S(#;) is a function that returns the starting point of #;, and

@, denotes the flight leg that has been assigned to 7. € RELXSTRT y REXDSTRT as of time t.

DSRD
Fe

= {§DSRD. 4 € RUNASGN \j RFLXSTRTY (7.9)
U (BP0 S(250) = S(py), 77 € REXPSTRT)

7.2.2.2 Connecting Flight Legs

While the requests are being served in a ubiquitous network, some empty flight legs might
be too short to justify the repositioning. Let AEMPTY denote the minimum distance on the ground
between two UAT pads to sanction a repositioning flight leg. Figure 7.1 illustrates how introducing
connecting flight legs could eliminate short repositioning empty flight legs. Figure 7.1(a) depicts
the first availability UAT pad of aircraft k as of time t (i.e., Ly ") and two requests (i.e., 75 and
7) as well as their corrsponding desired pick-up UAT pads, desired drop-off UAT pads, and their
desired flight legs. Additionally, let the function dist(a, b) measure the distance (as the crow flies)
between point a and point b in the space.

If aircraft k were to serve only request r, a possible itinerary would be L{Y%L — SPSRD

EDSRD |f the distance between Li/" and S2SRP is below the minimum UAT flight distance, i.e.,
dist(L{Yt, SPSRDY < AEMPTY "4~ could be relocated or transferred to L#/” on the ground, and
consequently, a revenue-generating flight leg from L£Y* to EPSRD | ie., F;(S; = Li{  E; =
EDSRD 4 INTND — 4y could serve the passenger group of #; while eliminating the short

repositioning flight leg from Li/" to SPSRP,
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Aircraft first
availability UAT pad

Desired pick-up
UAT pad

Desired drop-off
UAT pad

o—Pp Desired flight leg

o--p Empty flight leg

S?SRD fq EgSRD §DSRD E?SRD 0% Connecting flight leg
Figure 7.1 Concept of connecting legs

On the other hand, if aircraft k were to serve ;. and 7 consecutively, the itinerary as
depicted in Figure 7.1(a), would be L{/% — SPSRD — EDSRD _, §DSRD _, EDSRD | the distance
between LiVL and SPSRP and the distance between E2SRP and SPSRPare both shorter than the
minimum UAT flight distance, i.e., dist(Li{", SPSRP) < AEMPTY and dist(EPSRP, §DSRD) <
AEMPTY "the passengers of . could be relocated from S2SRP to L£Y" and from SPSRP to EPSED on
the ground if they were served by a connecting flight leg that goes directly from L£Y" to SPSRP |
i.e., Fi(S; = L/t E; = SPSRD 4~ NTND — 4~ eliminating the two short repositioning flight legs.

Analogously, Figure 7.1(b) illustrates requests 7, 7+, and #5. If 77 were to be served
immediately after 77, the aircraft itinerary would include 75> — EDSRP — §PSRD — EDSRD,
which involves the empty repositioning flight between EDSRP and SPRP . In this case, two

connecting flight legs could eliminate the need for the empty flight leg: (1) F;(S; = S25FP,E; =

§DSRD . INTND
r )

77 = ) which connects the desired pick-up UAT pad of 7, to the desired pick-up

UAT pad of #;. while serving passengers of #, and (2) F;(S; = EDSRP E; = EPSRP, -/NTND —

4~r) which connects the desired drop-off UAT pad of 7y, to the desired drop-off UAT pad of 7;.
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while serving passengers of #+.. In the former case, the passengers of 7, and in the latter case the

passengers of ;. would be relocated on the ground from SP5%P to EDSRP.

On the other hand, if an aircraft were to serve », 7+, and 7 consecutively, the itinerary,
as depicted in Figure 7.1(b), would be S25RP — EDSRD — §2SRD — EDSRD . gDSRD _ EDSRD |
the distance between E2SRP and SPSRP and the distance between EPSRP and $25RPare both shorter
than the minimum UAT flight distance, i.e., dist(ESSRP,SPSRD) < AEMPTY  and
dist(ER3RP, §DSRDy < AEMPTY 'the passengers of ;. would be relocated from SP5RP to EQSRP and
from S2SRP to EPSRD on the ground if they were served by a connecting flight leg that goes directly
from EDSRD to SDSRP ie., Fi(S; = EDSRP E; = SPSRP 4~/NTND = 4= ) eliminating the two short
repositioning flight legs.

In conclusion, to eliminate a short repositioning flight leg, the passenger group of a request
could be relocated on the ground within the radius of AEMPTY from their desired UAT pads. It is
worth noting that the relocation should be within A4¢¢ESSof either the origin or destination of the
request. However, in a ubiquitous network, the origin and destination of a request coincide with
the desired pick-up and drop-off UAT pads. Introducing the connecting legs and eliminating the
short repositioning flight legs would transform the CLARPTW to CLARPTW-SRE, where SRE
stands for short repositioning elimination. Subsequently, we define five classes of connecting legs,

namely, FKE FKS F35 FEE and FES for ;. € REAND as follows.

Figure 7.2 illustrates S?SRP and E2SRP, the desired pick-up and drop-off UAT pads of 7. €
REAND respectively, as well as the desired pick-up UAT pads of all the candidate requests within
a radius of AEMPTY of EDSRD The connecting legs are defined so that they could serve #;. from

SPSRD to these pads. Let F>° denote the set of connecting legs that intend to serve ;. by flying
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between S2SRP and the desired pick-up pad of 7 € REANPwithin AUAT of EPSRP | As aresult, F35°

for ;. € REAND s defined in Equation (7.10).

‘ Desired pick-up UAT pad

SPSRD . Desired drop-off UAT pad

0% Connecting flight leg

Figure 7.2 Connecting legs intending to serve request r that start at its desired pick-up UAT
pad

Frp = {f: # = Fi(S; = SP°FP By = SPSRP, v NTND = ),

0 < dist(EDSRP, SDSRDY < AEMPTY ;. ¢ pcanpy 77 € REANP (7.10)

‘ Aircraft first
availability UAT pad

‘ Desired pick-up UAT pad
EDSRD
. Desired drop-off UAT pad

.% Connecting flight leg

Figure 7.3 Connecting legs intending to serve request r that end at its desired drop-off UAT
pad

Similarly, Figure 7.3 illustrates S2SRP and EPSRP | the desired pick-up and drop-off UAT
pads of 7. € REAND  respectively. Moreover, the first availability UAT pads of aircraft as well as
the desired drop-off UAT pads of all candidate requests within the AEMPTY of SDSRD gre depiceted.
The connecting legs are defined so that they could serve the passengers of ;. from these pads to
EPSRD | et FKE denote the set of connecting legs that serve 5 by flying between LiY” (i.e., the

fisrt availability UAT pad of aircraft k) within AEMPTY of §DSRD and EPSRD and let FEE denote
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the set of connecting legs introduced between EQSRP (i.e., the desired UAT pad) of 7, €

REAND ithin AEMPTY of §PSRD and ERSRD | intending to serve ;.. FXEand FEE are defined in
Equations (7.11) and (7.12), respectively.

FiE = b = Fi(Si = Lif " Ey = EPSFP,{NTND = 47),

CAND
0 < dist(LAYL, SPSRPY < AFMPTY . ¢ 5} 7y € R (7.11)

j:'rl:i'tE — {'ﬁi: 'ﬁi — ]Fi(Si — EgSRD,El' — E?SRD’,’,,iINTND — /Vr)'

0< dist(EQSRD’SESRD) < AEMPTY ry € REAND} 7. € REAND (7.12)

P, o - ‘ Aircraft first
-~ = I 2 "~y availability UAT pad

Desired pick-up UAT pad

\
|
|

DSRD
@)

\ AEMPTY// . Desired drop-off UAT pad

e T .% Connecting flight leg

N\ A\EMPTY S

Figure 7.4 Connecting legs intending to serve request r that neither start nor end at at its
desired UAT pads

Lastly, Figure 7.4 depicts S?SRP and EPSRP | the desired pick-up and drop-off UAT pads
of 7. € REAND  respectively. Additionally, the availability UAT pads and desired drop-off UAT
pads of candidate requests within AEMPTY radius of S2SRP and the desired pick-up UAT pads of
candidate requests within AEMPTY radius of EPSRD are illustrated. Let FX5 denote the set of
connecting legs that serve 7. by flying between the availability UAT pad a; € K within AEMPTY
of SPSRD and the desired pick-up UAT pad of 7, € REAND within AEMPTY of EPSRD Fyrthermore,
let FE5 denote the set of connecting legs that aim to serve . while connecting the desired drop-

off UAT pad of 7, € R{ANP within AFMPTY of SPSRD to the desired pick-up UAT pad of 7 €
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REAND ithin AEMPTY of EDSRD XS and FES are defined in Equation (7.13) and (7.14),

respectively.

Fre = fi = Fi(Si = Lig " E; = SPFP, /NTVD = 1),
0 < dist(Lgl", SPSRP) < AEMPTY
0< diSt(E?SRD,SSDSRD) < AEMPTY’
ay € X, r; € REANDY

7, € REAND  (7.13)

:7:'11;5;5 — {)ﬁi:#i — ]Fl'(sl' — EgSRD’Ei — S?SRD’/’,iINTND — /rr)'
0 < dist(EDSRP, SDSRD) < A\EMPTY, 7. € REAND  (7.14)
0< diSt(E?SRD,S?SRD) < AEMPTY,/I"q,/I’“S I= :R%‘AND}

In conclusion, five classes of connecting legs, namely, FXE FKS F55 FEE and FES,

could be defined for 7. € REAND . However, for 7. € REXPSTRT the pick-up UAT pad is set as
fixed, and therefore, only the connecting flight legs that have the same starting pad as the one of
the flight already assigned to ;. are feasible connecting flight legs. Let F£NCT denote all the
feasible connecting legs at time t. Therefore, Equation (7.15) defines F£N¢T, where S(#;) is a

function that returns the starting point of #;.

TtCNCT
=€ (FRFU FEPUFF U FE U FE),
/’,r I= :R%JNASGN U :R?LXSTRT}
U{fi:SF) = S(@r),
$ € (FXKEU FESUFSSu FEE U FES,
,;,Vr € :RfXDSTRT}

(7.15)

Connecting legs are introduced to eliminate the short repositioning flight legs, and
therefore, a revenue-generating flight leg must come immediately either before or after them.

Preceding flight leg #,,, refers to the revenue-generating flight leg that must be served immediately

before a connecting leg #;, suggesting #; € T_ts and #,, € FE . On the other hand, succeeding
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flight leg #; refers to the revenue-generating flight leg that must be served immediately after a

connecting leg, implying #; € jf—tE and #; € F$ . In contrast, free flight legs can freely follow each
other without any constraint. As can be seen in Figure 7.1, #; € FEE has preceding flight legs,
#; € FXS and #; € F55 have succeeding flight legs, and #; € FE° has both preceding and

succeeding flight legs.

7.2.3 Available UAT Aircraft

The UAT operator employs a fixed set of UAT aircraft, i.e., K, over the planning horizon.
Let JC_tE denote all the UAT aircraft that are conducting or have recently conducted flight leg i to
a UAT pad that is different from the desired drop-off UAT pad of #~/N"NP . %E is defined in
Equation (7.16). Asaresult, K = XK \%_f represents the set of UAT aircraft that are conducting
or have recently conducted flights leg i to a UAT pad that is the same as the desired drop-off UAT

pad of #~/NTND,

i

KE = {a) € K: GYPSRP = 1} (7.16)

7.3  Network’s Metrics

This section specifies how the distances and times are defined and calculated in the

network.

7.3.1 Distances

Let the function dist(a, b) measure the distance (as the crow flies) between point a and
point b in the space. For smaller areas, it measures the straight-line distance in Euclidean space.
However, the geodesic distance is used in bigger regions to capture the earth’s curvature.

Additionally, we define aerial distances to take into account the deviation of the aerial routes from
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the shortest path due to prohibited areas, noise reduction, and legal restrictions [91]. Lete > 0
denote the detour factor due to prohibited areas, noise reduction, and legal restrictions.
Consequently, we define the following distances:

DPP = dist(0,, D,): the distance (as the crow flies) between the origin and destination of

request r;

DMES = (1 + €) x dist(S;, E;): the aerial distance between the starting and ending point

of flight leg i;

DY, = (1 + €) x dist(L{/", S;): the aerial distance between the first availability UAT pad

of aircraft k as of time t and the starting point of flight leg i; and

Dij=(1+¢€)Xx dist(Ei,Sj): the aerial distance between flight leg i and flight leg j,
defined as the aerial distance between the ending point of flight leg i and the starting point of flight
leg j.

7.3.2 Times

This section presents the formal notations and definitions of temporal components of the

UAT problem, including the ground-based and aerial times.

7.3.2.1 Ground-based Times

Ingress duration is the time it takes to get to the departure gate from the request’s origin as
the service starts. If the passenger group of a request needs to be relocated to a pad other than its
origin, ground-based transportation will be conducted using two ground-based modes: walking
and ride-hailing. This time is shown by the circles numbered as 3 in Figure 5.4(a). Let AWALK
denote the maximum walking distance of the passengers. If dist(0,,S;) < AWALK request r

walks to the starting point of flight leg i; otherwise, the UAT operator assigns a car to the request
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to perform the relocation. Moreover, some time is spent from when the passenger group arrives at
the UAT pad or port on the ground until they reach the departure gate. This event’s duration is
denoted by the circle numbered as 4 in Figure 5.4(a) and includes the security screening before the
flight, taking the elevator, etc. Equation (7.17) defines the ingress duration of request r to flight

leg i.

TINGRS — TINEND | TDGATE (7.17)
diSt(Or, Sl)
TINBND — - (7.18)
Where:
T!NGRS: ingress duration, defined as the total time spent from when passengers of request

r leave their origin until they reach the departure gate of flight leg i;

TPGATE the time between arriving at the UAT pad or port on the ground and reaching the

departure gate of flight i for request r;

TNBND. the elapsed time associated with the ground-based transportation for accessing the

starting UAT pad of flight i from the origin of request r, as defined in Equation (7.18); and

v™: speed of ground-based mode m, where m € {WALK, DRIVE}. It is worth noting that
since the distances are calculated over Euclidean space, the speed is also estimated for traversing

the Euclidean distance. Therefore, the actual speed in the network is greater than or equal to v™.

If the requests are boarded at their desired UAT pad located at their origin, no ground-
based transportation is required, and therefore, the minimum ingress duration is equal to the time

it takes to access the departure gate (i.e., T/V6RS = TRGATE),
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Similarly, the egress duration is the elapsed time between the end of the deboarding
process and reaching the destination. The egress duration is comprised of three components: (1)
the elapsed time from reaching the arrival gate until arriving at the location designated for ground
transportation, (2) the wait time for ground-based transportation, and (3) the time it takes on the

ground to reach the destination. Accordingly, the egress time is defined in Equation (7.19):

TEGRS = TAGATE 4 yEGRS 4 T.OUTEND (7.19)

diSt(Ei, DT)

OUTBND _
TT'i - ,Vm

(7.20)

Where:

TECRS: egress duration, the total time spent from the end of the deboarding of flight leg i

until reaching the destination of request 7;

TAGATE the elapsed time for reaching the area of ground transportation from the arrival
gate flight leg i for request r;

TIOUTBND: the elapsed time associated with the ground-based transportation for reaching

the destination of request r from the ending UAT pad of flight leg i, as defined in Equation (7.20);

and

WECRS: wait time for ground transportation to the destination of request r from the ending

point of flight leg i. This value is assumed to be zero since the UAT operator knows the arrival

time of request r well in advance, i.e., WER* = 0. Therefore, TER® = T/46ATE 4 TOUTBND,
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7.3.2.2 Aerial Times

The aerial times could be defined in terms of either the time a UAT aircraft spends in the
air or the time it takes to serve a flight leg. Flight duration is defined as the time elapsed between
the take-off and landing of the UAT aircraft and comprises three components: ascending hover,
cruise, and descending hover. In comparison, the flight service time refers to the time it takes to
serve a flight leg from its start until its completion, and therefore, its duration depends on whether

the flight leg is revenue-generating (with passengers) or empty.

Flight duration is defined in Equation (7.21), while flight service times for empty and
revenue-generating legs are defined in Equations (7.22) and (7.23), respectively. Flight service
time includes ATC departure clearance and landing clearance. However, for the revenue-
generating legs, the duration of boarding and deboarding procedures should also be included in

the flight service time. Clearly, TfLGHT  TSRVEMP “and TSRVREV are zero if the distance of flight

leg i is zero.
TiFLIGHT — TASCEND + TiCRUISE + TDESCEND vi:DiLEG +0 (721)
TiSRVEMP — TTAKEOFF + TiFLIGHT + TLANDING (722)
TiSRVREV — TBOARD + TTAKEOFF + TiFLIGHT + TLANDING +TDEBOARD (723)
Where:

TFLIGHT: the flight duration of leg i, which is defined as the period between take-off and

touch down of a UAT aircraft;
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TASCEND TDESCEND. the time required by eVTOL aircraft to vertically or close to vertically

ascend and descend, respectively;
TTAKEOFF. the time it takes before the departure to receive take-off clearance from ATC;
TLANDING. the time it takes after the landing to declare the UAT pad area safe;

TSRVEMP: the flight service time of an empty flight leg, i.e., the time it takes to serve the

empty flight leg i from its start to its completion;

TSRVREV: the flight service time of a revenue-generating flight leg, i.e., the time it takes to

serve the revenue-generating flight leg i from its start to its completion; and

TLRUISE: the time spent in cruising mode from the starting point of flight leg i to its ending

point. It is estimated in Equation (7.24).

LEG .
TCRUISE _ D; _ (1+¢) x dist(S;, E;) (7.24)
L VAIR VAIR

Additionally, T, denotes the TsRVEMP of flight leg m where aircraft k repositions from
its first availability UAT pad as of time t to the starting point of flight i. Similarly, T;; denotes
TRVEMP of flight leg m, which is the leg performed for repositioning a UAT aircraft from the

ending point of flight leg i to the starting point of flight leg j.

Let TT4T denote the turnaround time, which in aviation terminology refers to the time

elapsed between the landing of an aircraft and its take-off to serve a new flight leg. Therefore,

TTAT > TLANDING _l_TDEBOARD +TBOARD + TTAKEOFF
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In summary, Figure 7.5 depicts the temporal components associated with a location change
in UAT operation. W, J°®S and W5°®* would occur at point 1 and point 7, respectively. TTAKEOFF

r

and TBO4RD are incurred at point 3, while TLANPING gnd TBOARD happens at point 6.

CRUISE
Ti

®— 'ﬁ)
T ASCEND T DESCEND
v
A
T AGATE
TgGATE ri
: TINBND TgU’I‘BND o
Origi " Pick-up Drop-off Destination
S i ndi Desired Drop-off
asired Pick- (Starting) UAT (Ending) UAT (Des P
(Desired Pick-up 2 UIAT Fad/Port)
UAT Pad/Port) Pad/Port Pad/Port

Figure 7.5 llustration of temporal components associated with a location change

7.3.2.3 Time Windows
When passengers are assigned to a flight that differs from their desired flight leg, they incur
an additional delay. Let Q™ denote the minimum delay incurred when passengers of . take #;
instead of #;- = #PSRP. QMIV is defined in Equation (7.25). For 7. to be assigned to flight leg #;,
it is necessary that QM'V < w. Clearly, QM™ = 0 for #; = #PSEP. It is worth noting that T,/Y5NP
and T2YTBNP are zero in a ubiquitous network, where the origin and destination coincide with the
desired pick-up and drop-oft UAT pads, respectively.
Q%IN
— (TT{{VBND + TiCRUISE + TrOiUTBND) (725)
_ (Trfl{\lBND + TigRUISE + T;)inBND)
Moreover, TN and tM4X are, respectively, the earliest and latest time that flight leg i

could be served. TV and M4% are calculated in Equations (7.26) and (7.27), respectively.
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MIN _ TfEQ + TINGRS V(r,i): 7. = +INTND(7.26)

MAX

T:
l

— .L.??LN _ TiSRVREV _ TEGRS V(T', l) 7y, = 4,.,1_INTND (727)

= 7N 4 o — QIN

7.3.2.4 Desired Trip Time
TPSRD | the minimum trip time corresponding to the trip time of desired flight leg of 7

without any wait time, is defined in Equation (7.28). Since in a ubiquitous network, T/N5N? and

TrOiUTBND for )ﬁi — TPSRD are zero, TTDSRD — TrgGATE + TiSRVREV + T;%GATE.

TrDSRD — Tr{LNGRS + TiSRVREV + TTI.:;GRS V(T, i): ’ﬁi — TDSRD (728)

7.4  Network Representation

7.4.1 Node-based Network Representation

In the transportation problems where a task or job must be performed between pairs of
origin and destination points (e.g., transporting goods and people or traversing a street), the
network could be modeled in two ways: (1) arc-based and (2) node-based. In the arc-based
representation, each physical arc in the transportation network corresponds to an arc in the modeled
network. However, in node-based models, each task is collapsed into one node. For instance, in an
arc-based representation, a flight from point a to point b is shown with node a, node b, and an arc

from a to b, while in a node-based representation, the flight is modeled by node ab.

As a result, in the arc-based network representation, the arcs should be traversed (i.e., arc
routing) to complete the corresponding tasks, while in node-based representations, the nodes must
be visited (i.e., node routing). The arc-based networks are typically formulated as a capacitated

multi-commaodity network flow problem or Arc Routing Problem (ARP). Specifically, ARPs could
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take advantage of the structure of a graph representing a road network since, in such cases, each
vertex represents a road junction where the degree of each vertex is usually small [134]. However,
in a ubiquitous network of UAT pads, each vertex is a UAT pad and could be linked to numerous

UAT pads.

Furthermore, the presence of time windows complicates the modeling choice. To
incorporate the time windows in the arc-based network representation, the problem could be
modeled in a time-expanded network [135] (also known as a time-space network). In time-
expanded networks, the time is discretized over the planning horizon, and subsequently, the
network is duplicated at each interval. Therefore, each node corresponds to a location at a specific
time, while each arc shows the movements in space and time. Time-expanded networks are acyclic.
However, the time discretization makes the network flow models challenging due to the problem
size. Fine discretization provides a good approximation to the continuous-time problem; however,
the problem could quickly get intractably large [135]. On the other hand, coarse discretizations
are computationally more manageable while yielding poor approximations. Boland et al. [135]
demonstrate that the loss of solution quality, i.e., the relative gap between the discretized and
continuous-time optimal solutions, in service network design problems (SNDP) could be greater
than 20%. Moreover, in the context of ARPS, a recent survey [134] suggests that many studies on
ARP with time windows transform the problem into a node routing problem, and only one of the
reviewed papers attempts to solve ARP with time windows exactly using an arc routing

formulation.

Another complicating factor in the modeling choice is the flexibility of the passengers

towards the pick-up and drop-off UAT pads. To incorporate this flexibility in a node-based
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representation, each combination of possible pick-up and drop-off pairs should be modeled as one

node, leading to a significant increase in the problem size.

Additionally, some attributes of the proposed UAT concept of operations contribute to the
model selection. For instance, whether two arcs (i.e., flights) could be served immediately after
each other depends on the requests they intend to serve (see Section 7.4.3 for more detail). This
feature is easier to incorporate in a node-based representation. The reason is that in the node
representation, an arc that intends to serve two requests is modeled using two separate nodes (i.e.,
flights), while it is represented as a single arc in an arc-based representation that should be

traversed two times to serve the two requests.

In a closely related problem, Espinoza et al. [3] formulate the per-seat on-demand dial-a-
flight problem (DAFP) as a multi-commodity network flow problem. However, they use a time-
activity network, where the nodes include activities such as performing a flight (gate nodes),
boarding a passenger (direct and indirect loading nodes), and being idle (standby nodes).
Therefore, the network representation is node-based rather than arc-based, even though it is

formulated as a network flow problem.

Consequently, we choose a node-based representation to model UAT fleet operation and
formulate it as a capacitated location-allocation-routing problem with time windows and short
repositioning elimination (CLARPTW-SRE). The UAT operator needs to decide which flight legs
to perform (or which nodes to visit) (i.e., location), how to assign the requests to the flight legs
(i.e., allocation), and how to route and schedule the capacitated aircraft to conduct these flight legs
(i.e., routing). The CLARPTW-SRE at time t is represented by a directed graph G, = (N, A;)
with the set of nodes JV; and the set of arcs A;. The arcs definitions for routing and scheduling

resemble those presented in Yang et al. [78] and Bertsimas et al. [136].
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Figure 7.6 depicts the transformation of the UAT network into the corresponding LARP
network. Figure 7.6(a) illustrates two requests, namely, ;. and r, two flight legs, namely, #; and

#;, and one aircraft, a,, while Figure 7.6 (b) demonstrates the node-based model of the UAT

network. The distance from vehicle k (i.e., UAT aircraft k) to location i (i.e., flight leg i) is the

A

distance from Lg/" to S;, i.e., DJ;,. Lastly, the distance from location i to location j in Figure

7.6(b) is the distance between E; and §;, i.e., D;;.

L 1 OOV S

—  V(r,i) € ALLT
........ > V(i,j) EcﬂtSEQ

— V(k,i) € ANT

Figure 7.6 UAT network transformation, (a) UAT network, (b) node-based model

The following sections specify how the nodes and arcs are defined in the CLARPTW-SRE

network.
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7.4.2 Nodes

Each available UAT aircraft, candidate flight leg, and candidate request is represented as a
node in V;. Thus, 2V; includes three subsets: UAT aircraft (V;¢V7OL), flight legs (IV;FES), and the
requests (]\QREQ), which are defined in Equations (7.29)-(7.31), respectively. K; denotes the set

of available UAT aircraft at time ¢, and is the same as Kif all the aircraft are functional at time t.

NEVTOL = (k: qp, € K} (7.29)
NHEG = (i §; € FEANPY (7.30)
NFEC = (i € REANDY (7.31)

Additionally, N;FLXSTRT < N REC and aVFXPSTRT < v REQ - respectively defined in
Equations (7.32) and (7.33), represent the nodes associated with requests with flexible pick-up

UAT pad (i.e., 7 € Rf**5TRT) and requests with fixed pick-up UAT pad (i.e., 7;. € REXPSTRT),

NFLXSTRT — (1. 4= RFLXSTRTY (7.32)

NVFXDSTRT — (.. 4= RFXDSTRTY (7.33)

Lastly, NV;E € N;ZEG denote the set of nodes associated with flight legs that do not end at

the desired drop-off UAT pad of their intended request. ; is defined in Equation (7.34).

NE = {i € NLEC|E; # EPSRP, 4, = 4+INTND} (7.34)
7.4.3 Arcs
A, is composed of three subsets: the initial arcs from aircraft to flight legs (AIN'T), the

sequencing arcs between flight legs (c/leQ), and the allocation arcs between requests and flight
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legs (AALCT). The existence of arc (k, i) € AT between aircraft k and flight leg i suggests that
flight leg i could potentially be served as the first flight on aircraft k’s route starting from Lz *,
while the arc (i, /) € A:"° between the nodes of flight leg i and flight leg j specifies that flight
leg j could potentially be served immediately after flight leg i. Lastly, arc (r,i) € AT between

request r and flight leg i implies that request r could be served by flight leg i. The following

sections further outline the definitions of the arc.
7.4.3.1 Initial Arcs (AN
Candidate flight legs have either the same starting UAT pad as or a different one from their

intended request (i.e., FEANP = F5 U FS). Additionally, the first availability UAT pad of the

UAT aircraft either coincides with the drop-off UAT pad of its passengers or not (i.e., X, = XK£f U
% E). Consequently, the tuple (k, i) € AT is defined depending on whether #; € FS or not and
a, € KE or not. As a result, ANT | specified in Equation (7.35), is defined as the union of three

subsets, namely, A% ¢, A%V and A°LF°F, defined in Equations (7.36)-(7.38), respectively.
AINIT — cﬂoi’REC U c/qofucc U cﬂofREE (7.35)

Figure 7.7 features connecting flight legs #; € 5, which aim to serve 75 € REAND byt
start at L™ for a,, € K. Serving 75 = +NTNP with #;, € FS5, which has a starting point different
from the desired pick-up UAT pad of its intended request r, imposes a relocation to an undesired
pick-up pad on 75.. The relocation is justified if the starting point of #; is an availability UAT pad
that coincides with the desired drop-off UAT pad of the most recent request the aircraft is serving
or has served. Therefore, #; € F5 could be conducted by aircraft k if §; = LAV" for a;, € KE. The

ending point of #; could be either the desired drop-off UAT pad of 7. (i.e., E; = EPSRP) or the
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desired pick-up point of 7, € REAND (ie., E; = EPSRP), Correspondingly, #; € FXE or #; €
FKS.

‘ Aircraft availability
UAT pad

e //D—S;b\ ‘ Desired pick-up UAT pad
) + Eg A\
/

\l | \
l\ ‘ M . /,} . Desired drop-off UAT pad

LQFL“ \EéSRD 0% Connecting flight leg

Figure 7.7 Connecting legs intending to serve request r which start at a first availability UAT
pad of aircraft k

Let Jl"fREC denote the set of (k, i) tuples where #; € T_ts starts at the availability UAT pad

a, € XE. AR is defined in Equation (7.36).

oPREC
t

A = {(k,i):ar € KE, $; € FS, LVt = 8} (7.36)

On the other hand, the first availability UAT pad of a; € f}C_,F is different from the desired
drop-off UAT pad of ;. (i.e., the most recent request it is serving or has served), imposing a
relocation from an undesired drop-off pad on ;.. The ground-based relocation is justified if the

first availability UAT pad of a; € JC_tE is the desired pick-up UAT pad of another candidate

request. Therefore, #; € F¢ could succeed the first availability of a;, € KF aslong as L4t = S;.

Let c/lofUCC denote the set of (k, i) tuples where #; € F; starts at the availability UAT pad

a;, € KE. A% is defined in Equation (7.37).

A% = (kD) an € KE f; € FE L = 5)) (7.37)
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The flight legs that start at the desired pick-up UAT pad of their intended request (i.e., #; €
FF) are not constrained to be conducted by any specific UAT aircraft. Therefore, they could be
served by any a, € KE, whose availability UAT pad coincides with the desired drop-off UAT
pad of the most recent request it is serving or has served. CAOSREE denotes the set of (k, i) tuples

where #; € F7 is the flight leg served from the availability UAT pad of a;, € KE. Since L{/" is
not necessarily the same as §; for (k,i) € Jl"fREE, an empty flight leg, which distance is not

within the short range, could be conducted prior to serving flight leg i by aircraft k. cAOfREE 5
defined in Equation (7.38).

A% = ((k,D): ay € KE £ € FE, (7.38)
DR, ¢ (0, (1 + €)AEMPTYY}

7.4.3.2 Sequencing Arcs (A; %)

Candidate flight legs could be classified as three (not mutually exclusive) groups: (1) flight
legs that start at a different UAT pad from the desired pick-up UAT pad of their intended request
(ie., #; € T_ts ), (2) flight legs that end at a different UAT pad from the desired dop-off UAT pad
of their intended request (i.e., #; € :F_tE ), (3) flight legs that start at the desired pick-up UAT pad
(i.e., #; € F7) or end at the desired drop-off UAT pad (i.e., #; € FE ) of their intended request.

Sequencing arcs (i,j) € c/leQ, which cover how two flight legs can follow each other, are

divided into three classes, namely, preceding (AFREC), succeeding (AY¢¢), and free (AFREE),

depending on the groups #; and #; are classified as. c/leQ is specified in Equation (7.39).

c/quQ = APREC y ASUCC y AFREE (7.39)
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()

Aircraft availability
UAT pad

Desired pick-up UAT pad

(b)

Desired drop-off UAT pad

SgSR
\ Desired flight leg

Connecting flight leg

Figure 7.8 Connecting legs intending to serve request r that do not start at the desired pick-
up UAT pad of request r

Figure 7.8(a) features connecting flight legs #; € F°, which aim to serve ;. € REAND byt

starts at a UAT pad different from the desired pick-up pad of #. (i.e., S2SRP). Serving 7, =

+INTND with #; € FS, which has a starting point different from the desired pick-up UAT pad of
its intended request r, imposes a relocation to an undesired pick-up UAT pad. This ground-based
relocation is justified if the starting point of #; is the desired drop-off UAT pad of another
candidate request. Therefore, #,, € F£ could precede #; as long as S; = E,,,. The ending point of
#: , as depicted in Figure 7.8(b), is either the desired drop-off UAT pad of ;. (i.e., E; = E2SRD)

or the desired pick-up UAT pad of 7, € REAND (ie., E; = SPSRP). Correspondingly, #; € FEE or

#; € FES.

Let APREC denote the set of (m, i) tuples where #,, € FE could precede #; € F5. AFREC

is defined in Equation (7.40).

c/lfREC = {(m, l'):/ﬁ'i € ?ts,’ﬁ'm € TtE’Em = Si} (740)
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Aircraft availability
UAT pad

Desired pick-up UAT pad

Desired drop-off UAT pad

Desired flight leg

\ y
\\ i // \\ // 3 "

N L BT .% Connecting flight leg
LAV~ - 2ETTE

Figure 7.9 Connecting legs intending to serve request r that do not end at the desired drop-
off UAT pad of request r

Figure 7.9(a) depicts flight legs #; € FE, which aim to serve 7. € REAND but ends at a
UAT pad different from the desired drop-off UAT pad of #;. (i.e., EZSRP), Serving ;. = #/NTNP
with #; € 7—"_tE which has an ending point different from the desired drop-off UAT pad of its
intended request r, imposes a relocation to an undesired drop-off UAT pad on #;.. This ground-
based relocation is justified if the ending point of #; is the desired pick-up UAT pad of another
candidate request. Therefore, #; € F; could succeed #; as long as E; = S;. The starting point of
#:, as depicted in Figure 7.9(b), is either the desired pick-up UAT pad of ;. (i.e., S; = S25RD), the
desired drop-off pad of #, € Rg4NP (i.e., §; = ED®RP), or the first availability UAT pad of a; €

KE (i.e., S; = L{/"). Correspondingly, #; € F55, #; € FES, or #, € FXS.

Let AFY¢“ denote the set of (i, j) tuples where #; € F7 could succeed #; € FE. AU is

defined in Equation (7.41).

AL =) fi € FEfy € FEE = S}} (7.41)
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Lastly, there is no constraint on flight legs that could succeed #; € F£ since these flight
legs end at the desired drop-off UAT pad of their intended request. Similarly, there is no constraint
on the flight legs that could precede #; € F; since these legs start at the desired pick-up UAT pad
of their intended request. Let Af*%% denote (i, ) tuples where #; € F7 could follow #; € FFf.
These two are not necessarily connected directly, and an empty flight leg might be conducted
between the two legs. AREE is defined in Equation (7.42).

AREE = {(i,)): 41 € FL, 4 € FP,

Dij e (0’ (1 + E)AEMPTY)} (742)

It is worth noting that AFREC and AZYCC are defined so that intermediary relocation pad,
the UAT pad that is not the desired one for any of the involved requests, is avoided. To further
elaborate, when defining AFREC, not all the flight legs that end at S; could precede #; € 5. In
other words, {(m, i)| #; € F5, #m € FENP,E,, = S;} & ALFEC since the ending point of £, €
FEAND is not necessarily the desired drop-off pad of its intended request (i.e., E,, #
ED*RD for vy = i TNPY If £y, € FE were to be followed by #; € 75, 14(= " ™NP) and 7. (=
+{NTNDY are both relocated to S; = E,,,, and therefore, an unnecessary relocation is incurred. As
aresult, §; = E,, becomes an intermediary relocation pad in the network for #, and #;. since it is

not the one desired by either 7 or #5.. In a network with a limited number of UAT pads, looking

for such intermediary pads, where multiple requests could be relocated to or from, could be an
alternative operational policy. However, in a ubiquitous network, with a theoretically infinite
number of UAT pads over the space, relocating requests to an intermediary pad is more challenging

since it requires a search over the entire accessible space. Furthermore, one of the objectives is to
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minimize the number of relocations and, thus, passengers inconvenience. Utilizing intermediary

UAT pads would result in two requests being relocated rather than one, which is not desirable.

To further elaborate, Figure 7.10 demonstrates how a flight leg ending at §; could not
precede #; € FEANP In this figure, four requests, namely, 77, Vs, 1y, AN 7, and their desired
pick-up and drop-off UAT pads are depicted. Additionally, SY**” and E5SRP overlap. In Figure

7.10(a), a connecting leg from S25RD to §DSRD js introduced to serve ., while in Figure 7.10(b),

another connecting leg from EpSRP to EQSRP is created to serve #,. As a result, SP5RP —
SDSRD — EDSRD and SPSRP — EDSRD — EDSRD gre valid itineraries in Figure 7.10(a) and Figure
7.10(b), respectively. However, as shown in Figure 7.10(c), S5RP — S25RP — EDSRD js not a
valid sequence of the connecting legs to serve #;. and 7, since, in this case, S2*” would act as an

intermediary relocation pad where both 7. and +-, have to relocate to.

EqDSRD
(@) e e
SDSRD
r: b »
‘ '-GSDSRD [EDSRD
. s By EDSRD
sDSRD E7D<SRD
P
EgSRD
(b) SQSRD‘ &
SDSRD .
‘ SDSRD | EDSRD EDSRD
& ’ Desired pick-up UAT pad
SDSRD ETI?SRD
P EDSRD . Desired drop-off UAT pad
© e
¢ DSRD
Sq ‘ —P Desired flight leg
DSRD
S I %G . ®—> Connecting flight leg
.SSDSRD. EIDJSRD E?SRD
SgSRD ‘ E?SRD

Figure 7.10 Depiction of preceding flight legs (a) valid, (b) valid, and (c) invalid sequence of
flight legs
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Similarly, when defining A2Y¢¢, not all the flight legs starting at E; could succeed #; €
FE. In other words, {(i, )|#; € FE, #; € FEANPE; = S;} ¢ AFUC. Furthermore, for #; € FF
ending at E;, it is possible all #; € FF with E; = S; get rejected. In other words, the intended
request of #; might be unnecessarily relocated to E;, where no succeeding legs starting at E; will
be served. Let V;2U¢C denote the set of indices of flight legs that could succeed #; € Jf—tE as of time

t. N;3UCC is defined in Equation (7.43).

NV = (j: (1)) € ATV, T = i) (7.43)

It is worth noting that connecting leg #; € FXE u FEE u FES should be served only if an
aircraft is available at its starting pad or one of its preceding flight legs is conducted. This constraint
is implicitly addressed in network construction by allowing #; to be reached in the network only
from an available aircraft at S; or its preceding legs. As a result, when connecting leg #; € FXE u
FEE U FES is served, preceding constraints are implicitly satisfied. In contrast, serving
connecting leg #; € FXS u FES does not guarantee that any of its succeeding flight legs will be
served. Therefore, succeeding constraints must be explicitly specified in the optimization problem.
Nonetheless, in rare cases, while #; € FES is in service, none of its succeeding flight legs may get

served in the re-optimization.

7.4.3.3 Allocation Arcs (AALCT)

Allocation arcs specify if 7. € REAND could be served by #; € FEAND The tuple (r,i) €
AALET implies that starting UAT pad of #; is within accessible distance of the origin of ;. and
the ending UAT pad of #; is within accessible distance of the destination of 7. AT is defined

in Equation (7.44).
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ALCT = {(r,1): dist(0,,S;) < NACCESS,
dist(D,, E;) < AACCESS, (7.44)
€ ngAND,#i € TtCAND}

Furthermore, let ANTND ¢ AALCT denote the set of (7, i) tuples where request r is the

intended request of flight leg i. ANTND is defined in Equation (7.45).

c/ZINTND — {(T‘ l) #l € TCAND' 4,.INTND} (7.45)

7.5 Network Reduction

Given the time windows associated with the flight legs and requests, the network presented
in the previous section could be reduced to increase computational efficiency. AALTTW | defined
in Equation (7.46), specifies the allocation arcs after taking the time windows into account.

Request r could be assigned to flight leg i if:

I. ~ The minimum delay incurred by assigning 7. to #; is smaller than the maximum

acceptable delay (i.e., MV < w);

ii.  The passenger group of 7. should be able to get to #; before the lastest start time

of #l (I e., TSRVC + Tr{LNGRS < T{VIAX); and

iii.  #; must start before the request r maxes out the modified maximum acceptable

delay (i.e., ToRVC + TRGATE 4 ' > ¢MIVY,

CAALCTTW {(T' l) € c/qALCT QMIN < w,

T;?RVC + TINGRS' < TMAX

TrRVC+TDGATE+ w > ,l.MIN
CAND CAND
€ REAND g, € FLANDY

(7.46)
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Where ' , the adjusted maximum acceptable delay, takes into account the time that the

passenger’s relocation on the ground is in the direction of their destination. In this case, the ground

transportation would shorten the flight time, and as a consequence, the extra time could be spent
on reaching the starting point of the flight. w’ is defined in Equation (7.47).

VDRIVE
o= (1 ; vA—) (7.47)

IR

If a flight leg i cannot serve its intended request, it is not included in the candidate flight
legs. In other words, if (7, i) & AALT™Wtor (r,i) € ANTND flight leg i should be excluded from
the set of candidate requests. Accordingly, F£4NP | defined in Equation (7.48), specifies the
adjusted candidate flight legs after excluding the flight legs that could not possibly serve their

intended requests.
jivtCAND ={$ € TtCAND: (r,i) € cﬂglLCTTW N dqéNTND} (7.48)

Furthermore, considering the availability time of the UAT aircraft and the time windows
for the flight legs, the size of A" and A:"° could be reduced. The arcs between the aircraft and
flight legs could be limited to (k, i) tuples for which aircraft k could reach flight leg i before the

latest acceptable time to serve flight leg i. Therefore, AINTTW is calculated in Equation (7.49).

cﬂéNITTW — {(k, l) € c/qéNIT: ’ﬁi € ?"EAND'

7.49
o+ T8, < o) .

Similarly, for (i,j) € A;"?, an aircraft could potentially serve flight leg j after flight leg

i if it conducted #; by starting at the earliest allowable start time, performed the repositioning flight

between #; and #;, and reached the starting point of #; before its latest allowable start time. As a

result, A;°°™" is defined in Equation (7.50).
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ASETY _ ((i,)) € ASEC . §, € FEAND, (7.50)
TMIN 4 TSRVREV 4 Ty < T]MAX} .

Consequently, (k,i) € AN and (i, ) € A" %™ would determine what flight legs

are feasible to be served under the time constraints. F4NP, defined in Equation (7.51), denotes
the candidate flight legs that are feasible to be served directly by an aircraft or followed by another
flight leg given the time windows.

"CAND
G

= {#l-: (ki) € Jlé"”TTW} (7.51)
U {#: (1) € AT}

Furthermore, for #; € FF, none of 4; (for vj € NV;sU¢C) that must follow #; might be
included in the adjusted candidate flight legs F£4NP. As a result, Algorithm 1 seeks to modify
NSUCC FE and FEAND accordingly. The algorithm repeatedly updates the succeeding flights of

fi € T_tE and if the set of succeeding nodes of #; is empty, #; will be excluded from the set of
candidate flight legs. The steps are repeated until no new flight leg is excluded from the set of

candidate flight legs.

In conclusion, Equations (7.52) define V,“E¢. The symbol ~ suggests the modified variable
after network reduction. Accordingly, AN'™ and ;" are defined in Equations (7.53) and (7.54),

respectively.
NEEC = {i: §;, € FEANDY (7.52)

AN = {(k,i) € ANTTW: | € N;EC} (7.53)

A" = {(0,)) € AT j € WO (7.54)
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Algorithm 1: Modified Candidate Flight Legs

Inputs:  ASUCC, A7EQTW FE FCAND
Outputs: FFAND FE FSUCC
CONTINUE < TRUE
jEtCAND - j;'-tCAND
while CONTINUE do:

gt"_tE « FCAND fy T_tE

for #; € f"—tE do:

]V;fUCC - {] (1’]) € c/lfUCC,I — l,’ﬁ] = :ﬁ'tCAND}

end for

FFUCC  (, € FLAND, FSUCC = gy

if FSUCC = @ then:
j;'vt(,‘AND - ﬁEAND\ﬁngCC
else:
CONTINUE < FALSE
end if
end

(7.55)

(7.56)

(7.57)

Consequently, N;¢"70 is defined in Equation (7.58). Furthermore, A#XT and ;" are

defined in Equations (7.59) and (7.60), respectively. AALCT ensures that request r could be

assigned to flight i only if flight leg i could be served given the time windows (i.e., i € N;XE9).

f\ftREQ includes the requests that could be assigned to at least one flight leg, and therefore, (r,i) €

4 ALCT
AALET

]'\‘/';eVTOL — {k (k, l) € c}(iéNIT}
c/‘z;_flLCT — {(T‘, l) € c/qiﬁLCTTW:i € N’tLEG}

NFEC = (r: (r, i) € APLCTY

(7.58)

(7.59)

(7.60)

In summary, to reduce the size of the problem and accelerate the solution time, the reduced

network G, = (W, A, ) would replace G, = (IV;, A,).
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7.6 Concluding Remark

The network associated with UAT fleet operation could be modeled in two ways: (1) arc-
based and (2) node-based. In the arc-based representation, each physical arc in the transportation
network corresponds to an arc in the modeled network. However, in node-based representation,

each task (e.g., transporting goods or people, traversing a street) is collapsed into one node.

The presence of time windows complicates the modeling choice. To incorporate the time
windows in the arc-based network representation, the problem could be modeled in a time-
expanded network. However, the time discretization makes the network flow models challenging
due to the problem size. Another complicating factor in the modeling choice is the flexibility of
the passengers towards pick-up and drop-off UAT pads. To incorporate this flexibility in a node-
based representation, each combination of possible pick-up and drop-off pairs should be modeled
as one node, leading to a significant increase in the problem size. Lastly, some attributes of the
proposed UAT concept of operations (e.g., the sequence of flight legs given the requests they

intend to serve) are easier to incorporate in a node-based representation.

Consequently, this chapter presents a node-based representation of the network associated
with the UAT problem. The revenue-generating flight legs are nodes where the aircraft should be
routed to. Additionally, the requests are represented as another set of nodes that should be allocated
to the conducted revenue-generating flight legs. As a result, the network representing the UAT
problem is modeled as a location-allocation-routing problem, where some of the candidate
revenue-generating flight legs are performed (i.e., the location is open), the requests will be
assigned to these flight legs (i.e., the allocation), and the aircraft are routed to serve the flight legs

(i.e., routing).
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Given the dynamic and on-demand nature of the problem and the ubiquitous network of
UAT pads, the set of candidate requests and flight legs vary at each decision epoch. Therefore, this
chapter first defines the relevant entities at each decision epoch. Before transforming the network,
the metrics of the network, including the distances and times, are defined in detail. Subsequently,
the UAT physical network is transformed into a node-based network. Finally, the network is

modified to reduce the network size and lower the solution time.

Chapter 8 presents the formulation for the network representing the Capacitated Location-
Allocation-Routing Problem with Time Windows and Short Repositioning Elimination

(CLARPTW-SRE) defined in this chapter.
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Chapter 8 Capacitated Location-Allocation-Routing Problem With Time
Windows and Short Repositioning Elimination (CLARPTW-SRE):

Formulation

8.1 Overview

The Capacitated Location-Allocation-Routing Problem with Time Windows and Short
Repositioning Elimination (CLARPTW-SRE) is the building block of the decision-making policy
of UAT fleet operation. At the beginning of decision epoch e € £, i.e., t = 7,5, CLARPTW-SRE
is applied to retrieve the routing and scheduling of the UAT aircraft and requests. This chapter
represents the CLARPTW-SRE model solved at each decision epoch given the network G, =

(]V‘tldqt)'

8.2  Parameters

CLARPTW-SRE is defined over the network G, = (V;, A;), with V; representing the set
of nodes and A, representing the set of arcs as of time t. Let V;¢V7L c JV; denote the set of nodes
associated with the UAT aircraft that the UAT operator could dispatch at time ¢. ]\QREQ c N is
the set nodes associated with requests to (re)allocate to flight legs at time t, where NtREQ =
NUNASGN y p\FLXSTRT \y ppFXDSTRT - prUNASGN < 7\rREQ presents the set of nodes associated
with the unassigned requests. N;"XXSTRT < v.*F? denotes the nodes related to the requests that
were accepted in the previous decision epochs and, therefore, must be served, but their pick-up
UAT pad is flexible. Similarly, ;FXPSTRT ¢ n:R%? denotes the nodes related to the requests that
were accepted in the previous decision epochs and, therefore, must be served, but they have already

left their origin and their pick-up UAT pad is fixed.
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Furthermore, let V;LE¢ < 2V, denote the set of nodes associated with revenue-generating
flight legs available at time t to serve the requests. N—tE c NEGdefines a set of nodes associated
with flight legs that do not end at the desired UAT pad of their intended request, implying that a
flight leg should succeed i € VE to justify performing such flights. As a result, N;U¢C < JV;LEG
is the set of nodes associated with succeeding flight legs of flight i < N_tE as of time t, suggesting

that flight leg i cannot be served unless one of the flight legs j € NV;2U¢C is served.

A, is comprised of three subsets: the initial arcs from aircraft to flight legs (AN'T), the
sequencing arcs between flight legs (c/leQ), and the allocation arcs between requests and flight
legs (AALET). The existence of arc (k, i) € ANT between aircraft k and flight leg i suggests that
flight leg i could potentially be served as the first flight on aircraft k’s route starting from Lg/*,
while the arc (i, ) € c/leQ between the nodes of flight leg i and flight leg j specifies that flight
leg j could potentially be served after flight leg i. Furthermore, arc (r,i) € AALCT between

request r and flight leg i implies that request r could be served by flight leg i. Lastly, ANTNP <

AALET denotes the set of (r, i) tuples where request 7 is the intended request of flight leg .

Let MV and tM4%, defined in Equations (7.26) and (7.27), denote the earliest and latest
start time of flight leg i, respectively. Additionally, T2V, defined in Equation (5.2), denotes the
latest time when the passenger group of request r must reach its destination. T5RV¢ | defined in
Euqgation (5.6), represents the earliest time that the UAT operator could start serving request r,

while i/ * denotes the earliest time UAT aircraft k would be able to modify its future itinerary,

and therefore, become available for service as of time t.

Furthermore, T/RVREV is the flight service time of a revenue-generating flight leg i, i.e.,

the time it takes to serve the revenue-generating flight leg i from its start to its completion, T,
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denotes the empty flight service time to reposition aircraft k from its first availability UAT pad as

of time ¢ to the starting point of flight i, and T;; denotes the empty flight service time to reposition
a UAT aircraft from the ending point of flight leg i to the starting point of flight leg j. Moreover,
T!NGR denotes the ingress duration and includes ground-based travel time and access time to the
departure gate. Similarly, TE°® denotes the egress duration and includes the access time from the
arrival gate to ground transportation, wait time for ground-based transportation (which is assumed

zero), and ground-based travel time to the destination. Lastly, w is the maximum acceptable delay

compared to the desired trip time.

For the pricing, let a represent the revenue of providing the UAT service per mile per
passenger, 5 be the operational cost of UAT aircraft per mile, and C denote the fixed cost of
conducting a flight leg. Lastly, y; denotes the cost of one relocation and y, represents how

exponentially worse off two relocations are compared to one.

8.3  Decision Variables

Following the notations in Bertsimas et al. [136], let y,; represent a binary variable
for (k,i) € AN Its value is 1 if flight leg i is the revenue-generating flight served by aircraft k
immediately from its availability UAT pad as of time t. Additionally, x;; for (i, j) € A;"C is 1
when revenue-generating flight leg j is served immediately after revenue-generating flight leg i.
To allocate the requests to the flight legs, z,; for (r,i) € AALCT is defined as a binary variable,
which takes the value of 1 when request r is assigned to flight leg i, O otherwise. Furthermore, p;
for i € VLEG is a binary variable, where p; = 1 implies that flight leg i will be conducted. Lastly,

TPO4RD for i € VLEC is the time revenue-generating flight i starts the boarding process.
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It is worth noting that CLARPTW-SRE is solved sequentially over the planning horizon,

and therefore, the decision variables, namely, yu;, x;;, ., p;, and 745", have a temporal

dimension. However, for notational simplicity, we drop the t index from the notations. The

variables are depicted in Figure 8.1.

LEG
Ne

REQ
NS
}l

Figure 8.1 Depiction of the binary decision variables in the CLARPTW-SRE network

8.4  Objectives

In the UAT fleet operation problem, the UAT operator seeks to maximize the revenue and
minimize its operating costs while providing an acceptable level of service. From the operator’s
perspective, the operating costs are associated with the number of flights and the mileage aircraft
fly. On the other hand, relocations cause user inconvenience. In the following sections, we discuss

the components of the objective function.
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8.4.1 Revenue
In eVTOL operation, the ascending and descending of the aircraft are relatively costly, and
therefore, trips with longer distances would have a lower cost per mile. Additionally, the UAT

operation is per-seat, and therefore, serving more passengers translates to higher revenue.

As aresult, we assume the revenue for serving r is proportional to the straight-line distance
between the request’s origin and destination (i.e., DPP) and its group size (i.e., g, ). This
assumption implies that when serving all requests is not feasible, requests that have a bigger group
size or a longer distance are more profitable to be served. Let R, denote the revenue earned by
serving request r, as defined in Equation (8.1), where a denotes the revenue per passenger per

mile.

R. = aq,DPP (8.1)

8.4.2 Aerial Fixed and Variable Costs

The total aerial distance that the UAT aircraft travels consists of empty mileage and
revenue-generating mileage. Additionally, there is a fixed cost associated with ascending and
descending of the aircraft. In terms of the energy consumed, the cost per mile is higher when an
aircraft is loaded compared to when it moves empty. As a result, one could assign different costs
for empty and loaded mileage. Without loss of generality, we assume empty and loaded mileage
have the same cost. Let 5 denote the operating cost per aerial mileage. Consequently, the cost of
the revenue-generating flight leg i is C + BD}E¢. Additionally, the cost of the empty flight leg
from the first availability pad of aircraft k as of time t to the starting pad of flight legiisC +
B D2, while the cost of the empty flight leg between the end of flight leg i and the start of flight

legjis C + B D;;.
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More concisely, the costs of revenue-generating flights (i.e., locations in LARP) could be

incorporated into the cost of preceding empty flight legs (i.e., arcs in LARP). Therefore:

CRe = (Lpg 5oC + BDY ) + (C + BDIF) (8.2)

Cij = (HDU>OC + ﬁDl]) + (C + ﬁDjLEG) (83)

Where 1 is the indicator function, implying the cost associated with the empty flight legs
becomes zero when Dp; or D;; is zero. Cy;, defined in Equation (8.2) is the total cost of serving
revenue-generating flight leg i as of time t, which includes the preceding empty flight leg from
L/ t0S;. Cij, as defined in Equation (8.3), is the total cost of serving revenue-generating flight

leg j, including the preceding empty flight leg from E; to ;.

8.4.3 Relocation Cost

In a ubiquitous network, the origin and destination of a request coincide with the desired
pick-up and drop-off UAT pads, respectively. A relocation (or transfer) occurs when a passenger
is moved one on the ground to a UAT pad other than its desired. Let CX“¢, defined in Equation
(8.4), represent the total cost of relocating request r to take flight leg i. y,; € {0, 1,2} is the
number of relocations required for request r to take flight leg i. The value of y, = 1 determines
how exponentially worse off one relocation is compared to two. For instance, Therefore, y, = 2
implies that experiencing 2 relocations has a disutility 4 times worse than experiencing 1

relocation.

CRC =y 0" (8.4)
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Let y, denote the cost of one relocation and S represent the cost of aerial mileage. As a

result, % = x suggests that 1 relocation is equivalent to x aerial miles. Therefore, a request would

be relocated once if, as a consequence, the aerial mileage were reduced by more than x. On the

other hand, % cannot be so high that it prevents the requests from relocation within AEMPTY

To elaborate, Figure 8.2 depicts the origin of request r with two candidate pick-up pads for

a flight: aircraft k located at AEMPTY™ of 0, and aircraft [ placed at AEMPTY™ Since there is no
repositioning legs within AEMPTY -radius of 0,., if the request is not relocated, a UAT aircraft from
outside of AEMPTY -radius of 0, should reposition to 0,.. To allow the relocation of the request
within AEMPTY 'the cost of moving aircraft [ to the origin of request r should be higher than the

cost of relocating the request from its origin to aircraft k. Therefore, y; < (1 + €)AEMPTY,

/Y \EMPTY

Oop.

\\\\_? 7: Lﬁé/l‘/,
= LAVE
Figure 8.2 Comparison of aerial mileage and relocation cost for short repositioning

elimination

Consequently, % = x < (1 + €)AEMPTY Given e = 0.1 and B = 1, y, should be smaller

than 1.145MPTY For instance, for AEMPTY = 0.5 milesand 1 mile, y; < 0.55and 1.1, respectively,
suggesting that a request would be relocated once if the aerial mileage (including the empty

mileage) of the resulting itinerary could be decreased by as much as 0.55 or 1.1 miles.
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8.5 CLARPTW-SRE Formulation

CLARPTW-SRE seeks to address the routing and scheduling problem and location
problem simultaneously. For routing and scheduling, we employ the model with time constraints
developed by Bertsimas et al. [136]. This formulation assumes that the network has no cycles and,
therefore, could be applied to any dynamic vehicle routing problem with time windows that are
smaller than the typical trip time. In the UAT operations, the sufficient condition to avoid cycles

(ie., 7% — o}V < TSRVREV 4 T;.) is satisfied.

The MIP formulation for CLARPTW-SRE given the state of the system at time t iS

presented as follows:

. — _0_ . _. . . s
max z 0 Rr(ZiENtLEG:(r,i)EcA‘t"LCT Zri) z CieYii + Z Cijxij

rente (ki) €AINIT (i )eAE? (8.5)

RLC
- Cri™ Zri
(ri)eAFLCT

Subject to:

i L.oo= . ; LEG
ZkENi"mL:(ki)ecA{”’T Yt z jengEe G peasre 0t T P VEEN (8.6)
Yii =1 Vi € N;eVTOL 8.7
zieNtLEG:(k,i)edqu'T l t (8.7)
Xij = Pi Vi € VLE 8.8
ZJ'EJ\QLEG,(iJ)EcﬂfEQ v t (8.8)

[BOARD > gMIN | (pAVL L T _ gMINY ) V(k, ) € AN (8.9)
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BOARD _ _BOARD
i T;
> (5" = ™) V(i) € A" (8.10)
4 (TSRVRBV 4y — (N — oiax))
tMIN < [BOARD <  MAX Vi € NHE 6.11)
Zri <1 Vr € N\ UNASGN 8.12
z IENES (1, D)eApLeT ; (8.12)
— Vr € ]\GFLXSTRT U
ZieNtLEG:(r,i)ecﬂ?LCT Ze=1 VFXDSTRT (8.13)
Zri = Py V(r, i) € AALCT (8.14)
Pi = Zpy V(r, i) € AINTND (8.15)

erNtREQ:(r,i)EcA picr Qrzri < Q Vi € NVHEC (8.16)
TPOARD > (7SRVC 4 TINGRY 7, v(r, i) € ALLCT (8.17)
rPOARD  TSRVREV 4 TEGR < ¢DIN 4 M(1 - z,) v(r, i) € ALLCT (8.18)
Pi < Z]_ENgm Pj Vie NE (8.19)

P01} Vi € NLE (8.20)
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Yii € {0,1} v(k,i) € ANIT (8.21)
x;; €{0,1} V(i) € A (8.22)
zr; € {0,1} v(r, i) € ALLCT (8.23)
tP04RP > 0 Vi € N;LEG (8.24)

Objective Function. The maximization function in Equation (8.5) is multi-objective and
is formulated as the weighted sum of the objectives, namely, revenue, fixed and variable costs of

serving the flight legs, and the disutility of the number of relocations.

Vehicle-routing. Equations (8.6)-(8.8) and (8.20)-(8.22) are the constraints that cover the
routing. Equation (8.6) specifies that flight leg i is served if it is either the first flight on an aircraft
route or it is served right after another flight leg. Equation (8.7) ensures that each aircraft serves at
most one flight leg as the first flight leg on its route. Equation (8.8) suggests that a flight leg could

be served right after flight leg i by an aircraft if flight leg i is served in the first place.

Scheduling the Flights. Equations (8.9)-(8.11) address the flight leg scheduling. Equation
(8.9) ensures that if aircraft k had flight leg i as the first flight on its route starting from L£Y" , the

boarding time of flight leg i would be at least iy

L'+ T2, given the state of the system at time ¢.
Equation (8.10) enforces that if flight leg j were served immediately after flight leg i, the boarding
time of flight leg j should be at least equal to the the boarding time of flight leg i plus the time for

serving revenue-generating flight i plus the empty flight service time to reposition the aircraft from
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the ending point of flight i to the starting point of flight j. Equation (8.11) enforces the time

windows for the start of flight legs.

Request Allocation. Equations (8.12)-(8.16) cover the location-allocation part of the
formulation and assign requests to flight legs. Equation (8.12) ensures that each unassigned request
is assigned to a flight leg at most once, while Equation (8.13) covers the requests with flexible and
fixed pick-up UAT pads. These requests must be served since they were accepted in previous
decision epochs and, therefore, must be assigned to a flight leg exactly once. Equation (8.14)
specifies that request r could be assigned to flight leg i only if flight leg i is served in the first
place. Equation (8.15) assumes that a flight leg is conducted only if it serves its intended request.
Lastly, Equation (8.16) enforces the capacity constraint of the UAT aircraft when assigning the

requests to the flights.

Requests and Flights Synchronization. Equations (8.17) and (8.18) cover the
synchronization between aerial and ground-based modes to serve the first and last mile of the trip.
Equation (8.17) indicates that flight leg i must start its boarding process after all the requests
assigned to it have reached the departure gate of flight leg i. Equation (8.18) ensures that if request
r is assigned to flight leg i, the boarding time of flight leg i should be such that the passengers of
request r arrives at their destination before the deadline (i.e., 2N in Figure 5.1). M is a big

number and should be customized for (r,i) € AALCT,
Succeeding Legs for Short Repositioning Elimination. Equation (8.19) explicitly
specifies that if flight leg i ends at a UAT pad other than the desired UAT pad of its intended

request (i.e., i € V;E) to eliminate a short repositioning flight, one flight leg j € N;3VCC starting at

that UAT pad should be served to justify the relocation.
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Decision Variables. Equations (8.20)-(8.23) are the binary constraints for the decision

variables. Lastly, Equation (8.24) specifies that 794RP is a positive real number.
8.6  Solution Method
8.6.1 Solver
The instances of CLARPTW-SRE are solved using the free academic license of Gurobi

interface implemented in Python 3.7, gurobipy 9.1, and on a machine with 3.00GHz Intel® Xeon®

CPU and 128 GB RAM.

Table 8.1 Parameters associated with optimization

Parameter Symbol Value Unit

Re-optimization interval AUPDATE 1 minutes
Acceptable gap - 5 percent
Initial time limit - 30 seconds

Table 8.1 presents the parameters associated with the optimization. The problem is re-
optimized every minute. The MIP gap is set to 5%. However, a smaller MIP gap is desirable if
achieving it takes less than 30 seconds. Therefore, after an initial time limit of 30 seconds, the MIP
gap is examined. If it is less than 5%, the Gurobi Optimizer stops. Otherwise, it continues until the

termination criteria of the 5% MIP gap is reached.
8.6.2 Warm Start

At the beginning of decisionepoch e, i.e., t = TS, the itinerary and schedule of the aircraft
could be used to provide a partial warm start to the MIP. To this end, let QREV =

{q,‘f{fEV, e, QVREV g WREV ...,q,‘:‘;fQEV‘.fREvl} denote the ordered list of revenue-generating flights
’ ’ kt

that have not started as of t = 7,s. Q¢ is defined in Equation (8.25).
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Q" ={$1 € Qe H sit ¢ =1} (8.25)

If Qii*EY # @ for a; € K att = 7,5 (i.e., there are some flights assigned to the aircraft),

the values of $;, ®;;, p; and £7°4%P, where ~ represents the warm start values, are defined as

follows:

l.  Lety,; = 1for# = q.FEY (i.e., the first revenue-generating on the aircraft itinerary that

has not started).
. Letz; =1forf = quREV , #; = quREY, and n € {1, ..., | QW REY| — 1} if |QRFEY | > 2.

~BOARD __ STRT WREV
. Letp;, =1land7; = ”S for #; € Qy;

Additionally, for 7, € R{*STRT U REXPSTRT at t = 7,5, the value of 2,; is defined as
follows:
IV. Let 2, =1for#; = ¢, suggesting flight leg i is assigned to request r.

8.7  Outputs
As an acceptable solution for CLARPTW-SRE is retrieved at the end of decision epoch
e € &, the dynamic decisions of the UAT problem are derived from the decision variables of the

CLARPTW-SRE as follows:
I, RACCPT = {4’;: ZieNtLEG:(r'i)EcﬂALCT z;=1r€ ]\QREQ} for ¢ = 7,5 represents the set of
accepted candidate requests during decision epoch e, and therefore, ngE % =1 for r;, €
Ve

(RACCPT URUNASGN) Consequently, RE¥/¢T = RCAND\RACCPT and gREQ = —1 for

7y € REFICT,
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(Zn-)(m-)E ALET = 1 implies Prep = Fi, suggesting flight leg i is assigned to request r as
of time 7.

ORG - .. .
(Tre ) e N REQ for all accepted candidate requests by the end of decision epoch e (i.e., 7;. €

Ve

RACCPTY is calculated as T28¢ = 2ieNTLE;G:(r‘i)eﬂﬁLgT(TiBOARD — T/NCGR
V V

T E )z,; as of time
e

e e

TVE'

ki) (k,0)e ANIT and (xl- j) (i))eASE determine the order of revenue-generating flight legs
Ve ! Tv‘g

]ZVAIT)

T E

Ve keNTeigTOL
1%

e

for each aircraft, and therefore, partially defines (Q - ki) (e ANIT = 1

implies that flight leg i is the first revenue-generating flight served by aircraft k taking-off

from L/%, and (xij) £o = 1 implies flight leg j is the first revenue-generating flight

. N
(l.J)Ec/lTvS
e

leg served after flight leg i. As a result, the ordered list [i,,...] for k € J\ffi‘gTOL would
define the revenue-generating flight legs assigned to UAT aircraft k. To fully specify

(Q,‘Q'QAI’ET) , the empty flight legs for repositioning the aircraft between two revenue-
Vg keNTelgTOL
Ve

generating flight legs should be added. Let i and j be two consecutive revenue-generating

flight legs for i,j € Q,‘Q‘;‘v‘g. Empty flight leg m would be added only if E; # S, leading to

the sequence of flights i, m, j on (Q,‘Q’TA;T) . In this case, ¢hE¢ . =1 (i.e., waiting
Ve kEN.,;e‘gTOL Ve

Ve

for service).
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Figure 8.3 Holding time for two consecutive revenue-generating flight legs without any
repositioning leg in between

It is worth noting that (riBOARD)ieNTLgSG explicitly determines the start time of revenue-
Ve

generating flight legs, and therefore, (rfTT’;T

Ve )ieNrL’gc
Ve

— BOARD i i
= (1; )ieNTugG, while it only has
Ve

implications for the start time of empty flight legs. Let us consider the two following cases:

l.  #; and #; are two consecutive flight legs on (QkT E) , and are both revenue-
kENeVTOL
e
H H H _ STRT _ _BOARD STRT _ _BOARD
generating, implying E; =§;. Therefore, T”vg = T , Tffvg =T , and

rlg";‘“’ TP O4RD + TSRVREV Since E; = S, the aircraft will be held after completing

. and before starting #;, and therefore, T,HOLP = ¢3TRT__ £ COMP Eigyre 8.3 depicts
l g ] j‘l' E ijg lT E

T]f‘;w for two consecutive revenue-generating flight legs without any repositioning leg in

between.

II. £, #m and #; are three consecutive flight legs on (ri E) , Where #; and #; are
keX

revenue-generating while #,,, is an empty flight leg. Similar to case (1), rfTT’;T TPOARD
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T3 RT = BOARD and ¢, COMP = BOARD 4 TSRVREV The earliest start time of #,,would

JT,E j it g
be immediately after completing #;, i.e., Tﬁfé"”, while the latest start time of #,,, would be
rf’fv’; — TRVEMP - which ensures #; starts on time. As a result, rffv}g + TRVREV <
T%TT};%" < T]._S‘T’:'/II;T _ TfrglRVEMP . Let Tr.rSl’IT"ngW — T]._S:[i}};T _ (Tiﬁ_[:gT + TiSRVREV + TT.rS‘lRVEMP>

denote the time window available for a UAT aircraft to start the empty flight leg m after

completing #; and before starting #,;. Figure 8.4 depicts T;#°LP for for two consecutive
y) JTE

e

revenue-generating flight legs with a repositioning leg in between.

ON n —a - n
STRT COMP _ _STRT | SRVREV STRT : STRT I
1T & T4 =73 L Th P _L 7SRVEMP 3]
E T.F
i vE l‘[vg ”vg ‘ i ;rvg jm J YE :
l | | |
‘ Wesssusenannanes > i
| " g . .
i Flight Leg i \ TSTRTTW | TSRVEMP i FlightLegj :
% mt g 1 ks
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| | | |
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Figure 8.4 Holding time for two consecutive revenue-generating flight legs with a
repositioning leg in between

STRT _ ..STRT
If 050 = Tix E
Ve Ve

+ T/RVREV 'the aircraft will be immediately repositioned to, and

subsequently held at the starting point of #; after completing #;. On the other extreme, if
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T,S,Z"T’ig = ¢2TRT _ TSRVEMP ' the aircraft will be held at the ending point of #; as long as

JT,E
possible and then repositioned to the starting point of #;. The former case (i.e., reposition-
first-hold-second) is best suited for a system with stochastic travel times to minimize the
probability of delays for #;. However, the latter case (i.e., hold-first-reposition-second) is

ideal for a highly reliable system where the aircraft would benefit from waiting in place
until more information becomes known. In this research with deterministic travel time, we

use the hold-first-reposition-second strategy. Therefore, T3 s = 7, < — TaRVEMP for
Ve Ve

H,, = 0 (i.e., #n is an empty flight leg) and H; = 1 (i.e., #; is revenue-generating flight
leg), Tni’r‘i’é;D = T;"Eig - rﬁfg"”’a, and ijv‘;w = 0. However, in reality, a combination of
both strategies (i.e., hold-reposition-hold) is more likely to be implemented.

Limitations

The limitations of CLARPTW-SRE formulation presented in this chapter are listed as

follows:

e The objective function does not attempt to minimize the delays. Consequently, it is
theoretically possible that the customers experience relatively high delays in a setting

with lower demand.

e The formulation is vulnerable to numerical issues. Notably, under the settings that

scheduling constraints are tight, numerical issues could make the problem infeasible.

e When requests are pooled together, among all the associated desired flight legs with

relatively close pick-up and drop-off UAT pads, the one minimizing the objective
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function should be selected in the optimal solution. Consequently, finding the optimal

solution with a 0% gap is challenging when bigger problems are solved.

8.9  Concluding Remarks

This dissertation models the dynamic and stochastic problem of UAT fleet operation on a
rolling horizon basis. A static and deterministic problem (i.e., snapshot problem) is solved at each
decision epoch to help the UAT operator make the dynamic operational decisions, including
acceptance and rejection of requests, routing and scheduling the aerial fleet, and assigning the

requests to flight legs.

To achieve this goal, the snapshot problem is modeled as a Capacitated Location-
Allocation-Routing Problem with Time Windows and Short Repositioning Elimination
(CLARPTW-SRE), based on the node-based network presented in Chapter 7. The objective
function of the MIP problem covers the revenue of the UAT operator as well as the cost associated

with the empty and revenue-generating aerial mileage.

Additionally, the user inconvenience associated with serving the requests at UAT pads
different from their desired ones is included as a relocation cost in the objective function. At the
same time, the requests are expected to move within a short radius of their origin or destination to
facilitate the elimination of short repositioning flight legs. Consequently, there is a trade-off
between relocating the requests and short repositioning elimination. With a low relocation cost,
the request would be relocated more often to reach a UAT aircraft nearby, while with a high

relocation cost, an aircraft needs to fly from further distances to serve the request.

The CLARPTW-SRE is solved using the Gurobi interface in Python, gurobipy. To reduce

the solution time, the current route and schedule of the aerial fleet at each decision epoch as a



181

feasible solution for the MIP problem. Ultimately, the outputs of CLARPTW-SRE are used to

make dynamic operational decisions.

The CLARPTW-SRE embedded in the proposed dynamic solution framework for the UAT
fleet operations is applied to a synthetic network and the Chicago network using a discrete-event
simulation. Chapter 9 and Chapter 10 present the numerical results for the synthetic and Chicago

network, respectively.
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Chapter 9 Numerical Experiments: Synthetic Network

9.1 Overview

Even though some companies (e.g., Blade) currently offer air taxi services, on-demand and
at-scale UAT operation using eVTOL technology is a conceptual system that does not exist.
Simulation is a tool that is often used to model such systems when analytical models are hard to
formulate. Simulations are less costly to implement, provide a better understanding of the system,
and provide a tool for evaluating various strategies for the system’s operation [129,137].
Therefore, simulation could be a valuable tool in a decision support system. Discrete-event
simulations (DES) are well suited for modeling systems with complex queuing theory and resource
allocation problems, whereas agent-based models (ABS) are helpful for modeling actions and

interactions of autonomous individuals [130].

From other perspectives, simulation models could be classified as static vs. dynamic,
deterministic vs. stochastic, or discrete vs. continuous [129]. Stochastic discrete-event simulation
[129,137,138] provides a framework to model UAT fleet operation and evaluate various concepts
of operations and policies. Stochasticity refers to the random processes (e.g., the arrival of
customer’s request for service) involved in the system, while discrete-event suggests that the

measures of interest or states change at discrete points in time.

The discrete-event simulation framework includes a sequencing component, which
specifies the order in which the resources (i.e., UAT aircraft) perform the required tasks (i.e.,
serving the customers). In the realm of simulation, the rule for determining this sequence is called

queuing discipline. It could be as simple as a first-come-first-served (FCFS) rule, or it could be a



183

more complicated queuing rule derived from a mathematical programming model (see, for

instance, [131,136]).

This section uses the DES to implement and evaluate the proposed dynamic solution
framework for UAT fleet operations, and it further employs CLARPTW-SRE as the basis for the

queuing discipline.

9.2  Experiment Design

9.2.1 Simulation Design

When operating UAT, consolidating the requests is only possible if requests are sufficiently
close. Therefore, we generate the requests in clusters to better understand the impacts of the
proposed consolidation scheme. Each cluster represents a town or suburb of a metropolitan area.
The centroids are located on the vertices of a square with the edges of length §. Consequently, the

network has 12 OD pairs with an average Euclidean distance of 1.1386.

Let AtUPPATE denote the interval between two decision epochs. If new requests arrive

within AtYPPATE "the problem will be re-optimized to update the system’s state. When request r
arrives at time <tARY | its attributes are defined by the vector AR =

(0,,D, ,SPSRD EDSRD o REQY \\e assume the network is ubiquitous, and therefore, the desired
pick-up and drop-off UAT pads of request r coincide with their origin and destination. The origin
0, and destination D,. of request r are randomly generated around the centroids using isotropic
Gaussian distributions with the standard deviation of a. Therefore, o represents the spread of the
demand around the centroids. The corresponding centroids of the request’s origin and destination

are randomly chosen from the four centroids. A°? denotes the minimum distance between the origin
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and destination of a request to qualify for a UAT trip. Consequently, the origin and destination of the

requests are generated so that the distance between origin and destination exceeds A°P.

The request arrival process is a Poisson process with the intensity of A. Therefore, the

interarrival times are exponentially distributed with the mean of 7/¥T = 1/ 1. 7559, the requested
service time for request r, is calculated as TARY + T, APV where TAPY is randomly drawn from a
uniform distribution with the mean of 742V /2 and the range of [0, 74PV]. Lastly, we assume that

each request has one passenger, and therefore, g, = 1.

The static attributes of a;, € K are represented by ASYTL = (Q,, vAR). We assume that
the fleet of UAT aircraft is homogenous, and therefore, their capacity and speed are denoted by Q
and vA™R respectively. Let AEMPTY denote the minimum Euclidean distance to justify an empty

repositioning flight leg.

Furthermore, the state of UAT aircraft at the beginning of the planning horizon (i.e., t =
0) is presented by S§"7°" = (¢go " 0 “ Lo - Qko» Cro > X2 aexc- The initial location of a; €
K attime t = 0 (i.e., L{Y") is randomly generated around the centroids using isotropic Gaussian
distributions with the standard deviation of o. Furthermore, all the aircraft are idle and available
at the beginning of the planning horizon, and there is no incomplete flight leg on their itinerary. In

other words, Tifg “ = 0, ¢f4 7 %% = 0, and Qi = @ for a; € K. Lastly, GRZ°FP? = 0 fora;, € K.

9.2.2 Evaluation
In a stochastic process, a sample path is defined as the sequence of sample realizations of
random variables. In other words, a sample path is a sequence of outcomes over time [132]. If ®

represents the set of all possible sample paths, let ¢ € & denotes a sample path.
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Each sample path generates an independent replication of the system that is being
simulated. Therefore, the outputs (i.e., performance measures) of simulations could be classified
either as within-replication or across-replication data. The within-replication data is summarized
to produce the across-replication outputs. Subsequently, the overall statistics are specified by using

the across-replication outputs.

Across-replication outputs are i.i.d. They are independent because different random seeds
are used for each replication, and they are identically distributed because the same model is run in
each replication to produce the outputs. They also tend to follow a normal distribution. None of

these might be true for within-replication data.

The input parameters of the simulation are called (controllable) parameter setting, or
(proposed) configuration or design [139]. Let 8 denote the input parameters (i.e., configuration)
of the simulation. These parameters could be guantitative (e.g., number of aircraft to be used for
serving the users’ requests) or qualitative (the queuing discipline for serving the users). Let L (¢)
denote the performance measure of the sample path ¢ as an across-replication output under

configuration 6. Therefore, J® = E[L9(¢)] shows the overall statistics of the simulation under

configuration 6. Since the expectation cannot be computed, we choose a sample ® € & and then

L9(¢)
|®

calculate j® = ¥ 45
The simulation for the synthetic network is designed as a steady-state simulation to
eliminate the influence of the initial conditions. Each experiment in the base-case scenario and

sensitivity analyses is replicated 30 and 20 times, respectively, where the stochasticity stems from

the customer requests and the initial locations of the UAT aircraft.
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9.2.3 Parameter Setting

In this section, we present the parameters used in the experiments. Table 9.1 summarizes
the network design parameters. Let § = 30 miles, where § is the length of the edges of the square.
With the ground speed in the range of 20-30 mph, traversing one edge would take between 60-90
minutes on the ground. We set A°? = 10 miles. Finally, the standard deviation of the isotropic

Gaussian distribution is set to 2 miles.

Table 9.1 Network parameters

Parameter Symbol Value Unit
Number of centroids - 4 -

Distance between centroids é 30 miles
Standard deviation of the Gaussian distributions o 2 miles
OD minimum distance A°P 10 miles

Table 9.2 summarizes the parameters associated with the ingress and egress of the
passengers. Since the average walking speed of adults is 3-4 mph [140], the walking speed, vWALK,
is set to 3 mph. The passengers will walk for a maximum of 5 minutes to reach a UAT pad. As a

result, the walking threshhold, A"ALX  is set to 0.25 miles.

Table 9.2 Parameters associated with the ingress and egress of the passengers

Parameter Symbol Value Unit
Euclidean driving speed in the downtown area yDRIVE 20 mph
Maximum access distance NACCESS 3 miles
Maximum walking distance AWALK 0.25 miles
Walking speed yWALK 3 mph
Elapsed time from ground transportation area to the DGATE .
departure gate of flight i for request r Tri 3 minutes
Elapsed time from the arrival gate of flight i to the ground T AGATE 5 minutes

transportation area for request r
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The speed of the vehicles on the ground over Euclidean distances (vPRIVE) is set to 20 mph.
We further assume that the maximum acceptable delay for UAT service, i.e., w, in the synthetic
network is 15 minutes. vPRIVE = 20 mph and w = 15 minutes suggest that the maximum
accessible distance on the ground is nearly 5 miles or around 2.5 miles from either the origin or
destination in a symmetric case. Consequently, we set A4€¢ESS = 3 miles, implying that the access

distance from either origin or destination is about 10% of the OD distance.

The time to reach the departure gate, including the security screening, (i.e., T24"®) and
the time to reach the ground transportation area after landing (i.e., T,5°4"%) are assumed to be
identical for all passengers and independent of the UAT port or pad design. The values of TJ¢4T%

AGATE
Tri

and for (r,i) € AALCT are set to 3 and 2 minutes, respectively.

Table 9.3 Parameters associated with flight operation

Parameter Symbol Value Unit
Number of UAT aircraft K 60 -
]Ic\l/:lgnhlgum of Euclidean distance for repositioning AEMPTY 1 miles
Aerial speed vAIR 150 mph
Boarding duration TBOARD 3 minutes
Deboarding duration TPEBOARD 2 minutes
Departure clearance TTAKEOFF 0.5 minutes
Landing clearance TLANDING 0.5 minutes
Hover ascend TASCEND 0.75 minutes
Hover descend TDESCEND 0.75 minutes
Detour factor € 0.1 -

The assumptions regarding the flight operation are presented in Table 9.3. The aerial fleet
size is fixed with 60 UAT aircraft. Multiple original equipment manufacturers (OEMS) (including
Joby Auviation [18] and Kitty Hawk [17]) have presented UAT aircraft designs with a cruise speed

of at least 180 mph, as discussed in Table 2.2. Thus, we choose the aerial speed of 150 mph. The
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detour factor of the aerial trip is assumed 0.1, which is in the range of 0.5-0.15 suggested in other

UAM studies [8,141].

The minimum Euclidean distance to justify a UAT repositioning flight, AEMPTY is set to 1
mile. With the average driving speed of 20 mph, traversing within 1 mile of both origin and
destination would take at most 6 minutes, which is well below the maximum acceptable delay of
15 minutes. This suggests that even though the aircraft within AEMPTY cannot be repositioned to

serve a request, the passengers have enough time to relocate on the ground to reach the aircraft.

The UAM market study commissioned by NASA [8] estimates the boarding duration and
deboarding duration to be in the range of 3-5 and 2-3 minutes, respectively, while Porsche
Consulting [6] estimates 3 minutes for boarding or deboarding. Accordingly, we set the boarding
and deboarding duration to 3 and 2 minutes, respectively. Additionally, we assume 30 seconds
before departure and after landing for clearance. We further assume it takes a UAT aircraft 45

seconds to ascend and 45 seconds to descend vertically.

Consequently, the turnaround time, including boarding, deboarding, and take-off and
landing clearance, is minutes, which is 6 minutes, which is consistent with the turnaround time
estimated by Joby Aviation [18] (see Table 2.6). The overhead time of serving a flight leg, either
empty or revenue-generating, includes hover ascend and descend and ATC clearance for the take-
off and after the landing, which amounts to 2.5 minutes. If the flight leg serves passengers, an
additional 5 minutes will be added to the flight service time. As a result, the overhead time of

empty and revenue-generating flight legs are 2.5 and 7.5 minutes, respectively.

Assuming the ground speed of 30 mph over long distances, an average trip would take 68.3

minutes with ground-based transportation. The parameters in Table 9.1, Table 9.2, and Table 9.3
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translate to the mean aerial distance of 37.56 miles (i.e., 1.1x 34.14). Consequently, the average
time for serving a revenue-generating flight leg is 22.5 minutes (i.e. %? x 60 + 7.5). As aresult,

the maximum service rate is 2.66 revenue-generating flights per hour per aircraft. This extreme
value corresponds to cases Where the request’s arrival rate is so high, or the requests are so close
to each other that the empty distance from the destination of one flight to the origin of the next

flight origin is close to zero in expectation.

In queuing theory, the traffic intensity or utilization p is defined as ﬁ where 1 is the
average arrival rate, u is the average service rate, and c is the number of servers. Furthermore,
letr = % represent the offered load. Utilization shows the fraction of time a server is busy, while

offered load represents the average number of busy servers [142]. Without job rejection and flight-
sharing (also called partial batch service [142]), p should be below 1 for the queue to not grow
indefinitely, and therefore, for the system to be stable. With ¢ = K = 60 and 4 = 2.66 flight per
hour per aircraft, the system can accommodate A = 128 requests for flight per hour (i.e., T'NT =

28 seconds) to achieve 80% utilization (p = 0.8).

Furthermore, the average of 22.5 minutes for serving a revenue-generating flight would
translate to the average trip time of 27.5 minutes (i.e., 22.5 + 3+ 2) for each passenger if there were
no wait time for the aerial service, and the requests were served without any ground-based
transportation. Considering a maximum delay of w = 15 minutes (in Figure 5.1), the minimum
and maximum mean trip times for passengers are 27.5 and 42.5 minutes, respectively. These
numbers correspond to travel time savings of 25.8 minutes (37.8%) to 40.8 minutes (59.7%)
compared to driving on the ground, which almost meets the 40% travel time savings rule-based

demand model suggested by Uber Elevate [23].
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The CLARPTW-SRE is formulated as a multi-objective problem, and therefore, the
objective function is a weighted sum of different objectives. Table 9.4 shows the parameters in the
objective function. Since the monetary value of one objective to another is not well-defined, we
treat these parameters as the weight of one objective relative to another. The ratio of revenue per
passenger mile to cost per mile (i.e., a/B) of 2 implies that, roughly speaking, serving a request
without pooling is profitable as long as the empty repositioning mileage is shorter than the OD
distance of the request. Furthermore, in the base-case experiment, the weight of the number of
relocations (y;) is set to zero, suggesting the disutility of the relocation from desired pick-up and
drop-off UAT pads is not explicitly considered; however, a sensitivity analysis to the value of y,

is conducted. The reason is discussed in depth in Section 8.4.3.

Table 9.4 Parameters in the objective function

Parameter Symbol Value Unit
Weight of revenue per passenger-mile of OD distance a 2 -
Weight of cost per mile of flight B 1 -
Weight of disutility of relocations from desired pads Y1 0 -
Exponential disutility of 1 relocation compared to 2 Y2 2 -
Fixed cost of conducting a flight leg C 0 -

9.2.4 Planning Horizon

Steady-state simulations run over a long time, which is specified by the analyst, to
eliminate the influence of the initial conditions. The goal of a steady-state simulation is to study
the long-run or steady-state performance of the system. However, the statistics are biased during
the warm-up period since the system starts empty and idle. Therefore, to achieve statistically

meaningful performance measures, we need to determine the simulation runtime.
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Figure 9.1 Percentage of rejected requests over arrival time windows of 1 to 10 hours for 20
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Figure 9.2 Average trip delay per request over arrival time windows of 1 to 10 hours for 20
replicationsand Q =1
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Figure 9.3 Average aerial mileage over arrival time windows of 1 to 10 hours for 20
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Figure 9.4 UAT aircraft utilization over arrival time windows of 1 to 10 hours for 20
replicationsand Q =1
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Using UAT aircraft with capacity 1, we run 30 replications of the problem over 10 hours,
with increments of one hour. Figure 9.1 through Figure 9.4, respectively, illustrate the mean of the
percentage of rejected requests, trip delay per served request, total aerial mileage (including empty
and revenue-generating mileage) per served request, and UAT aircraft utilization. After reviewing
these figures, we use an arrival time window of 8 hours (i.e., 480 minutes) to model a steady-state
system in the experiments. In other words, ISTRTARV = ( and IENDPARV = 480, where ISTRTARV

and IENDARV denote the start and end of request arrival period.

9.3  Numerical Results: Base-case Experiment

Table 9.5 summarizes the exogenous and design parameters for the base-case experiment.
It is worth noting that vPRVE js the driving speed along the Euclidean distances, and therefore, the

actual speed of the vehicles on the ground is greater than or equal to 20 mph.

Table 9.5 Exogenous and design parameters associated with the base-case experiment

JINT 4 yDRIVE vAIR ) FADY (T;ZAOI;ZD (E%i';?'

(sec) (mi) (mph) € |(mph) (min) (min) B T ) T
(min) (min)

Exogenous Parameters Design Parameters

20 2 20 0.1 | 150 15 30 2 3,2 3,2

9.3.1 Problem Size and Solution Time

For each replication, we calculate the mean and standard deviation of the number of flight
legs, requests, and arcs at each decision epoch. Subsequently, we estimate the mean of the mean
and the standard deviation for all replications. Table 9.6 summarizes the estimated mean of the

mean and standard deviation of the number of flight legs, requests, and arcs at each decision epoch.
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Table 9.6 Estimated mean of the average number of flight legs, requests, and arcs at each
decision epoch

Flight Legs Requests Arcs
Q W‘{.EG W‘?SRD W‘ENCT N‘:{EQ W‘PNASGN W‘{"'LXSTRT W‘EXDSTRT :jl{NIT c;ZleQ Q?LCT
1| 237 70 167 73 3 62 8 1977 1175 381
2| 234 69 165 78 3 62 13 2161 1059 386
3| 230 68 162 78 3 61 14 2188 1018 379
4 | 229 68 161 78 3 61 14 2192 1008 377

Table 9.7 shows the average simulation time over 30 replications and worst MIP gap, worst
MIP solution time, and worst decision time over all decision epochs for 30 replications. The
decision time, i.e., TEPOCH "includes the network transformation and reduction in addition to the
MIP solution time. Therefore, the decision time accounts for the total time required by the operator

to make a decision and is greater than the MIP solution time.

Table 9.7 Average simulation time for 30 replications and worst MIP gap, worst MIP
solution time, and worst decision time over all decision epochs for 30 replications

Aircraft Average Simulation ~ Worst MIP Solution Worst Decision Worst MIP
Capacity (Q) Time (minutes) Time (seconds) Time (seconds) Gap (%)

1 11.4 0.8 3.4 0

2 12.0 3.3 55 0

3 11.6 1.2 4.1 0

4 11.6 1.2 4.8 0

As shown in Table 9.7, using the proposed solution framework, simulating the base-case
scenario over the planning horizon of 8 hours would take, on average, nearly 12 minutes. The
worst MIP gap of all decision epochs over all the replications is 0, implying that all the MIPs are

solved to optimality. The worst MIP solution time for Q =1 is 0.8 seconds, while the worst
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decision time is 3.4 seconds. The worst-case decision time over all capacities is around 5.5

seconds, which is well below the 1-minute re-optimization interval, i.e., AVPPATE,

9.3.2 User Experience

Table 9.8 through Table 9.12 present the performance measures associated with the
requests and the provided level of service. Table 9.8 summarizes the estimated mean of
performance measures associated with the UAT aircraft average load factor over four capacity
levels. The average number of passengers per flight increases by 0.3 for Q = 2 compared to Q =
1. However, the average number of passengers per flight does not change significantly for Q = 3
and Q = 4, implying that for the designed experiment, the additional capacity is not conducive to
pooling more requests in one flight. The percentage of flights with 3 or 4 passengers is relatively
low. Additionally, in all cases with Q > 1, the majority of flights (i.e., nearly 70%) are conducted

without air pooling.

Table 9.8 Estimated mean of performance measures related to UAT aircraft load factor over
for 30 replications over Q =1, 2,3, and 4

Average  Average Percentage of Percentage of Percentage of Percentage of

g Lo Number of  ciiohts with 1 Flights with 2 Flights with 3 Flights with 4
Factor Reque_sts Request Requests Requests Requests
(%) per Flight

1 100 1 100 0 0 0

2 657 1.3 68.7 31.3 0 0

3 456 14 69.5 24.4 6.1 0

4 343 1.4 69.6 24.3 5.3 0.8

Table 9.9 summarizes the performance measures associated with served and rejected
requests. Increasing the capacity from Q = 1 to Q = 2 leads to a reduction in the rate of rejection

by almost 17%, from 23.0% to 5.8%, while the further increase in the capacity to Q = 4 results in
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a slight reduction in the percentage of rejected requests, implying that the benefits of air pooling

beyond Q = 2 is not significant for the given experiment.

Table 9.9 Estimated mean of performance measures associated with served and rejected
requests

Number of Percentage of Average OD Distance  Average OD Distance
Q Served Rejected Requests  of Served Requests of Rejected Requests
Requests (%) (miles) (miles)
1 1111 23.0 34.5 335
2 1359 5.8 34.4 324
3 1384 4.1 34.4 31.8
4 1387 3.9 34.4 316

As shown in Table 9.9, the OD distance of served requests is higher than the OD distance
of rejected requests. The difference stems from the structure of the objective function, where the
earnings are based on the distance between the origin and destination of the requests, i.e., DPP.
When serving all the requests is not possible, requests with higher DPP are more profitable to

Serve.

Table 9.10 summarizes the estimated mean of average trip delay, percentage of trip delay,
and total trip time per request over 30 replications. An average trip would take approximately 38-

40 minutes, and its value is not very sensitive to capacity increase.

Table 9.10 The estimated mean average trip delay, average of trip delay to total trip time in
percentage, and average trip time over four levels of aircraft capacity for 30 replications

Q Av_erage Trip Delay Average of Percentag_e of Trip Av_erage Trip Time
(minutes) Delay to Total Trip Time (%) (minutes)

1 118 29.2 39.5

2 109 27.4 38.6

3 108 27.0 38.4

4 10.7 26.9 38.3
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The average trip delay decreases for Q > 2 compared to Q = 1, since the system becomes
less busy. Nonetheless, the higher capacity implies more potential delays resulting from demand
consolidation and longer ground transportation. Moreover, the trip delays are constrained but not
minimized in the objective function. That being said, air pooling has reduced the average delay
per request by around 1 minute while reducing the rejection rate by at least 17%. The average

percentage of trip delay to total travel time is in the range of 26.9 to 29.2%.

Given the similar performance of UAT aircraft with capacities 2, 3, and 4 in the designed

experiment, we limit the rest of our analysisto Q = 1 and 2.
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Figure 9.5 Empirical Cumulative Distribution Function (eCDF) of the percentage of trip
delay to trip time over 30 replications for Q of (a) 1 and (b) 2

Figure 9.5 illustrates the empirical Cumulative Distribution Function (eCDF) of the
percentage of trip delay to total trip time for Q = 1 and 2. The eCDF of each replication is shown
as one graph. The plots show two slopes, a milder one up to the value of 25% on the x-axis,
followed by a sharper slope for the range of 30-40%, suggesting that the majority of the requests

(i.e., 60%) experience a percentage of trip delay between 30 and 40% of their total trip time.
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Additionally, Figure 9.5 depicts how eCDFs slightly shift from Q = 1 to Q = 2. For instance,
while 15% of the requests have a trip delay percentage smaller than 20% with Q = 1, 20% of the

request have similar delays with Q = 2.

Table 9.11 compares the performance measures associated with the user experience for
CLARPTW-SRE and CLARPTW, the formulations with and without short repositioning
elimination, respectively. With the elimination of short repositioning flight legs, the percentage of

rejected requests decreases around 2%, with a 0.4-minute decrease in the average trip delay.

Table 9.11 Comparison of performance measures associated with the user experience for
CLARPTW-SRE and CLARPTW

Q Rejected Average Trip Average Percentage of Trip Average Trip
Requests (%)  Delay (minutes) Delay to Total Trip Time (%) Time (minutes)

CLARPTW-SRE

1 230 11.8 29.2 39.5
2 58 10.9 27.4 38.6
CLARPTW

1 254 12.3 30.1 39.9
2 8.0 11.3 28.0 38.9

Table 9.12 summarizes the performance measures related to ground-based legs and the
relocations. It is worth mentioning that passengers are relocated within A4€¢ESS of their origin or
destinaton for air pooling while they are relocated within AEMPTY of desired UAT pads to eliminate
short repositioning legs. Therefore, with Q = 1, the relocations occur only to eliminate
repositioning legs conducted within the 1-mile radius (i.e., AEMPTY=1 mile) of the request’s
desired pick-up and drop-off UAT pads (which coincide with its origin and destination,
respectively), while with Q = 2, relocations could stem from demand consolidations within the 3-

mile radius (i.e., AA¢CESS= 3 miles) of the request’s origin or destination. Consequently, more
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relocations and longer ground transportation are expected as the capacity increases from Q = 1to
Q =2.

Table 9.12 Estimated mean of performance measures related to relocations and ground-
based legs of the request trip

Percentage Percentage of Percentage of Average Average

Average of Requests ge 9¢ O Ground- g
. Requests with  Requests with Ground-
Q Numberof with0 . . based
) . 1 Relocation 2 Relocations i based Travel

Relocations Relocation (%) %) Distance Time (min)

(%) (mi)
0.33 69.4 28.1 2.4 0.22 0.72
0.76 49.9 24.4 25.7 1.04 3.17

Table 9.12 verifies that the average of ground-based legs increases from 0.22 miles to 1.04
miles per request as Q increases. Corresppindingly, the average ground-based travel time increases
0.72 minutes to 3.17 minutes per request. Furthermore, the average number of relocations per
served request increases as the capacity increases. For Q = 1, 70% of the requests have no
relocation, while this number reduces to nearly 50% for Q = 2. Additionally, the values of ground-
based distance and time in Table 9.12 suggest that the speed of ground-based transportation is 18.3
and 19.7 mph for Q = 1 and 2, respectively. These values are between the speed of the two modes

of ground transportation: driving with vPRVE = 20 mph and walking with vWALX = 3 mph.

Figure 9.6 provides more detailed information on the distribution of ground-based travel
distance for Q = 1 and Q = 2. The two slopes on the plots are due to the distance criteria of 1 mile
and 3 miles for short repositioning flight legs and demand consolidation, respectively. Since only
2.45% of the requests experience 2 relocations with Q = 1, nearly all the requests have an access
distance smaller than 1 mile. With Q = 2, around 20% of the requests have a ground-based trip

distance greater than 3 miles.
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Figure 9.6 Empirical Cumulative Distribution Function (eCDF) of ground-based travel
distance over 30 replications for Q of (a) 1 and (b) 2

9.3.3 UAT Operator Costs

This section reviews the performance measures associated with the operator costs, namely,
the empty and revenue-generating aerial mileage. Table 9.13 summarizes the performance
measures associated with revenue flights, revenue mileage, and total mileage (i.e., the summation
of revenue mileage and empty mileage). The mean of revenue mileage for Q = 1 is 37.9 miles,
which is slightly over the theoretical 37.6 miles since requests with longer OD distances are more
likely to be served. The mean of revenue mileage approaches the theoretical mean as the capacity
increases. One reason is that the number of rejected requests decreases with increased capacity.
Therefore, serving requests with higher DZP is not prioritized. Second, when two requests are
pooled together, the shorter revenue flight leg is more likely to be selected. Similarly, the mean of
total aerial mileage per revenue flight decreases as  increases. The mean of total aerial mileage

per served request sharply declines from 41.3 miles for Q = 1 to 31.2 miles for Q = 2. The ratio
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of revenue flights to served requests, which is the inverse of the average passenger load of the UAT

aircraft, is 76% for Q = 2.

Table 9.13 The performance measures associated with revenue flights, revenue mileage, and
total mileage for @ =1 and 2

Mean of Mean of Total Aerial Mean of Total Aerial  Ratio of Revenue
Q Revenue Mileage per Revenue  Mileage per Served Flights to Served

Mileage (mi) Flight (mi) Request (mi) Requests (%)

37.9 41.3 41.3 100

37.6 41.0 31.3 76.2

Table 9.14 Estimated mean of performance measures associated with empty repositioning
flight legs for CLARPTW-SRE and CLARPTW

Mean of Minimum of Maximum of Percentage Percentage  Percenatge
Empty Flight Empty Flight Empty Flight of Empty of Empty of Empty to
Q Mileage (mi) Mileage (mi) Mileage (mi) Flight Legs  Flights to Revenue
within Revenue Mileage
AEMPTY (06)  Flights (%) (%)

CLARPTW-SRE

1 4386 11 44.18 0 69.98 8.97
2 516 11 44.47 0 67.16 9.23
CLARPTW

1 3.68 0.06 42.11 18.7 100.35 9.74
2 3.83 0.05 45.82 21.2 100.54 10.24

Table 9.14 highlights the importance of the short repositioning elimination (SRE) scheme
in a ubiquitous network, and it presents the performance measures associated with empty
repositioning flight legs for CLARPTW-SRE and CLARPTW, models with and without short
repositioning elimination, respectively. Without SRE, 18.7 and 21.2% of the flight legs, for Q =
1 and 2, respectively, are within distances shorter than AEMPTY = 1 mile. For CLARPTW-SRE, the
minimum of empty flight mileage is 1.1 (= 1.1 X 1 = (1 + €) x AEMPTY) miles, which is

consistent with the detour factor of 0.1 for the aerial legs and AEMPTY =1 mile. However, for
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CLARPTW, the empty flight distances could get as low as 0.05 miles. The maximum of empty
flight mileage corresponds to the legs conducted by traversing from one vertice of the square to

another diagonally.

Table 9.14 shows that the length of empty flights is about 3.7 miles on average without
SRE. However, eliminating the short repositioning legs would increase the average empty mileage
to almost 5 miles. Nonetheless, the percentage of empty to revenue mileage is around 1% lower
for CLARPTW-SRE compared to CLARPTW. Furthermore, the percentage of empty to revenue
flights is around 70% for CLARPTW-SRE, suggesting that relocation of the passengers has led to
a reduction of nearly 30% in the empty flight legs. Lastly, for CLARPTW, the percentage of empty
to revenue flights is slightly over 100%. The reason is that the almost zero empty distances and
flight times would cause the aircraft to conduct two consecutive empty flight legs in rare cases,

possibly due to time window constraints.

Table 9.15 evaluates the performance measure associated with the connecting legs, which
are conducted to eliminate the short repositioning flight legs. For Q = 1, 30% of the revenue
flights are connecting legs, 18.4% of which have the desired pick-up UAT pad, while 73.6% have
the desired drop-off UAT pad. Only 8.0% of the connecting flight legs have undesired pick-up and

drop-off pads, implying that the passengers would experience two relocations to take these flights.

Table 9.15 Estimated mean of performance measures associated with connecting flight legs

Percentage of Percentage of Percentage of Percentage of
Connecting Connecting Flights ~ Connecting Flights Connecting Flights

Q Flightsto with the Desired with Desired Drop-off ~ with Undesired Pick-up
Revenue Flights  Pick-up UAT Pad UAT Pad (%) and Drop-off UAT
(%) (%) Pads (%)

1 306 18.4 73.6 8.0

2 345 17.2 74.8 8.0
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Table 9.16 estimates the performance measures associated with aerial service time for 30
replications. The results suggest that serving a revenue and empty flight with Q = 1 would take,
on average, around 22.7 and 4.4 minutes, respectively. The total aerial service time, i.e., the total
time an aircraft is in use, per served revenue flight is around 25.8 minutes. Air pooling reduces the
total aerial service time per served request by 24%, from 25.8 minutes with Q =1 to 19.5 minutes
with Q = 2. Morover, the aircraft utilization decreases from 91% to 85% for Q = 2 compared to

Q =1 despite serving more requests.

Table 9.16 Estimated mean of performance measures associated with aerial service time

Mean of Aerial Mean of Aerial Mean of Total Mean of Total Aircraft
Service Time of  Service Time Aerial Service Aerial Service Utilization
Q Revenue Flight  of Empty Time per Time per Served (%)
(min) Flight (min) Revenue Flight Request (min)
(min)
1 227 4.4 25.8 25.8 91.1
2 225 4.6 25.6 19.5 85.0

9.3.4 UAT Operator Revenue

Table 9.17 Estimated mean of performance measures associated with passenger revenue

Total Aerial Mileage Available Seat Mile  Total Passenger Passenger Revenue

Q . per Available Seat
(mi) (ASM) Revenue (PR/a) Mile (PRASM/a)

1 45877 45,877 38,366 0.836

2 42,492 84,985 46,759 0.550

Table 9.17 presents performance measures associated with passenger revenue, where a
denotes the revenue per passenger mile. As previously discussed in Table 9.9, the rate of rejected
requests decreases by 17% from Q = 1 to 2. Nonetheless, the total aerial milage decreases around
7% by increasing Q from 1 to 2. The total passenger revenue (PR) increases nearly 22% with air
pooling as more passengers are served. However, passenger revenue per available seat mile

(PRASM) decreases from 0.836«a to 0.550«, suggesting low shared flights.
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9.4  Numerical Results: Sensitivity Analyses

Even though some companies currently offer air taxi service, on-demand and at-scale UAT
operations using eVTOL technology is a conceptual system that does not exist. Consequently,
there are uncertainties around the parameters used in the base-case experiment. Factors such as
price per minute of flight, the density of UAT pads, aerial cruising speed, and the ground-based
access time could significantly impact the UAT market [6]. For instance, Grandl et al. [6] suggest
that increasing the ground-based transportation from 5 to 15 minutes for the first and last mile of
the trip would decrease the UAT market by 20%, while reducing the cruising speed from 200 km

per hour (124 mph) to 70 km per hour (43 mph) would lead to a 30% reduction in the UAT market.

As a result, in this section, we design and conduct 11 experiments to study the sensitivity
of the performance measures to 4 exogenous and 7 design parameters. The four exogenous
parameters include the request arrival intensity (7/NT), request spread (o), driving speed (over
euclidean distance) (vPRIVE), and the detour factor of the aerial path (e). The seven design
parameters are aerial speed (v4/®), maximum acceptable delay (w), maximum advance reservation
window (74PV), the ratio of revenue per passenger mile to cost per mile (a/B), the ratio of
relocation cost to cost per mile (y,/8), boarding and deboarding duration (TB04RD TDEBOARD)

and departure gate ingress time and arrival gate egress time (T26ATE, TAGATE),

Table 9.18 summarizes the parameters in each experiment, where the bold numbers show
the value in the base-case experiment. Each experiment is replicated 20 times, where the
stochasticity is associated with requests arrival time and OD pair in addition to the initial locations

of the UAT aircraft.
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Table 9.18 Values of exogenous and design parameters used in the sensitivity experiments

INT DRIVE AIR ADV (TBOARD (T2EE,
g;ec) (ami) E’mph) ¢ 1(/mph) E‘r)nin) {min) a/B },113 TREROARR) TRt
(min) (min)
Exogenous Parameters
10,
15,
El 20, 2 20 01 |150 15 30 2 0 (3.2) (3,2)
25,
30
E2 20 é Z’ 20 01 |150 15 30 2 0 (3.2) (3,2)
8 20 2 %% 01 (150 15 30 2 0 (32 3.2)
0.05,
E4 20 2 20 815 150 15 30 2 0 (32 3.2)
0.2
Design Parameters
100,
125,
E5 20 2 20 0.1 150 15 30 2 0 (3,2 (3,2
175
5, 10,
E6 20 2 20 01 |150 15, 30 2 0 (3.2) (3,2)
20
1,5,
10, 20,
E7 20 2 20 01 |15 15 gy 2 0 (3.2) (3.2)
60
1.2,
1.5,
E8 20 2 20 01 |150 15 30 20, 0 (3.2) (3,2)
2.5,
3.0
0, 1,
E9 20 2 20 01 |150 15 30 2 2,5 (32 (3,2)
10
(2,1), (3,2),
E10 20 2 20 01 |150 15 30 2 0 53) @5 62
(3,2),
E1l 20 2 20 01 |150 15 30 2 0 (3.2) (5,4),
(10,8)
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9.4.1 Request Intensity (77/NT)

With requests arriving more frequently, more opportunities are present for demand
consolidation since more requests will have adjacent origins and destinations. In experiment E1,
six levels of demand are examined [136]: 7T = 10, 15, 20, 25, 30, and 40. With 7/¥T = 10
seconds, the demand is so high that more than 50% of requests are rejected. With 78T = 20
seconds (base case), the demand roughly meets the supply. And with 7/NT = 40 seconds, the
demand is so low that aircraft utilization is around 50%. Table 9.19 presents the estimated mean
and standard error of the mean (SEM) of the number of requests over the planning horizon for

various request interarrival times (7/NT).

Table 9.19 Estimated mean and standard error of the mean (SEM) of number of requests
over the planning horizon for various request interarrival times (7VT)

TINT 1 Number of Requests over 8 Hours

(second)  (requests/hour) Mean SEM
10 360 2,877 11.1
15 240 1,925 9.4
20 180 1,444 8.6
25 144 1,158 7.8
30 120 962 8.3
40 90 719 7.0

Table 9.20 summarizes the performance measures associated with UAT operator revenue
and costs as well as user experience for request intensity (7/T) of 10, 15, 20, 25, 30, and 40
seconds with Q = 1 and 2, while Figure 9.7 depicts the sensitivity of select performance measures
to T7INT . For Q = 2, Figure 9.7(c) shows that decreasing 7'¥T from 40 seconds (where the
utilization is about 50%) to 10 seconds (where more than 40% of the requests are rejected) would
increase the average load factor by nearly 12%. Even with the low demand intensity of 7/NT = 40

seconds, the average load factor is 60%, suggesting some flights could be shared.
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Figure 9.7 Sensitivity of performance measures to request intensity (77T ) of 10, 15, 20, 25,
30, and 40 seconds for aircraft with capacities of 1 and 2
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Table 9.20 Impacts of request intensity (7'T) on performance measures associated with
operator’s cost and revenue and user experience for Q =1 and 2

Revenue
Cost User Experience
(3]
2 a
— S|z T FE S
e Z=E 8 S < = g T - L
e —_ - — e (<] ~ o ©
~ [ 2% 2% o — o > 1<) — y—
S T 9 ax a2l 5 o) ] = > - [S)
2 238 EL Egl § s ‘D s I e S
< o wd wl o x o c c o
» N TL «<£ « o o % Y— o~ o 3 3 =
8| £ £x 52 5| 8| & sgl & 5§ &8 E.
s 5 g & 32| o 3 8 |$S| v &5 0 Zzs
] o s Se &9 <5 = S 82 @ = o & oS
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Q=1
10 952 409 727 8.0 100 40.7 0.843 59.0 124 304 0.6 0.29
15 935 411 716 85 100 39.6 0.840 40.3 122 300 0.7 0.31
20 911 412 70.1 89 100 38.4 0837 229 118 29.2 0.7 0.33
25 856 411 657 8.6 100 359 0840 101 110 273 0.8 0.38
30 75.6 406 607 7.6 100 31.7 0.848 4.3 10.1 253 0.9 0.43

40 588 400 575 6.2 100 241 0859 24 96 242 10 0.46
Q=2

10 938 286 710 85 715 571 0603 423 121 300 3.6 0.82
15 915 304 705 93 678 522 0567 213 118 293 33 0.77
20 850 312 669 91 657 46.7 0551 58 109 274 3.2 0.76
25 734 318 619 76 634 390 0540 18 101 255 3.0 0.76
30 636 324 584 65 617 326 0531 12 98 247 29 0.75
40 511 334 568 57 593 244 0513 10 96 242 26 0.70

Figure 9.7(b) suggests that the average trip delay per passenger decreases by 2 minutes for
lower utilization rates. However, even with the utilization of 50-60% for 7/NT = 40 seconds, the
average delay is 10 minutes. The reason is that the delay is not explicitly minimized in the objective

function.
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Furthermore, the percentage of empty to revenue flights is higher when the utilization is
high. Figure 9.7(e) depicts that the percentage of empty to revenue flights decreases by more than
10% by increasing 7/¥T from 10 seconds to 40 seconds. Figure 9.7(f) suggests that the percentage
of empty to revenue mileage is lower for the high and low intensity of the requests compared to

the medium request intensity.
9.4.2 Request Spread (o)

Table 9.21 Impacts of request spread (o) on performance measures associated with
operator’s cost and revenue and user experience for Q = 1 and 2

Revenue
Cost User Experience
(5]
g =3
~—~~ fovn) ~~ [
~~ o — o —
S ZE2 2 | ¢ | ® 2 | E 5 %

~ QS - 2% 2% o k3] > @ s y—

c T ax a2 B S b3} T > - o

8 S £~ £o| = o ‘T s I e =

§ SguUguglo|E 1S § 5 £
= 8x 52 52| s | § 5l & ¢ S €,

e — ~~
S kg SU %E 4 é 3|35 F a e O Z5
gl & 52 €3 25| 5|l = = |zl & B SE 8%
= = cl o5 5| © s n o 3] © c> 84 S0
£ o © °cg ©°21 & = < S| 3 S8 & s O
=1 = Oy T O oo > 04 04 S @ > o3 LE L3
) < 24 ad acx] < a o o] < >0 <F <
=1

90.8 394 36.2 46 100 406 0.874 183 11.2 280 1.6 0.73

911 412 701 89 100 384 0.837 229 118 292 0.7 0.33
90.7 427 836 124 100 370 0.810 260 123 301 04 0.18
906 442 900 155 100 36.2 0.788 281 125 305 0.2 0.11

I
(N}

596 206 199 28 916 492 0831 04 99 255 56 1.41
85.0 312 669 91 657 467 0551 58 109 274 32 0.76
89.8 39.0 838 127 548 400 0443 198 120 296 1.3 0.34
90.3 427 898 156 518 373 0407 257 124 303 0.6 0.18
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The closer the requests are spread around the centroid, and therefore, the lower is g, the
higher is the chance of eliminating the short empty distances and consolidating the demand. Table
9.21 summarizes the performance measures associated with UAT operator revenue and costs as
well as user experience for request spread (o) of 1, 2, 3, and 4 miles with Q = 1and 2, while Figure

9.8 depicts the sensitivity of select performance measures to o.

In this experiment, the ground speed of 20 mph and maximum acceptable delay of 15
minutes suggests that the requests could be relocated within an approximate radius of 5 miles.
However, the access distance is capped at 3 miles (i.e., 10% of one edge). Consequently, as shown
in Figure 9.8(c), at ¢ = 3 and 4 miles, the load factor is slightly over 50%, implying that only a

few flights are pooled. At ¢ = 1 mile, the load factor increase to more than 90%.

Figure 9.8(a) shows that decreasing o from 4 miles to 1 reduces the rejection of the request
by nearly 10% for Q = 1. However, the noticeable benefit is seen for the capacity of 2, where the
percentage of requests gets close to zero, resulting from the high number of shared flights.
Moreover, low request spread and demand consolidation lead to a 2-minute reduction in the

average trip delay per passenger and aircraft utilization of 60% at o =1 and Q = 2.

Figure 9.8(e) and (f) depict the percentage of empty to revenue flight and empty to revenue
mileage, respectively. The elimination of short repositioning flight legs depends on the distance
between the destination of one request to the origin of another. As a result, lower o would provide
higher opportunities for the elimination of short repositioning legs. The percentage of empty to
revenue flights could vary between 20 and 90%, while the percentage of empty to revenue mileage

could vary between 2.8% and 16%, depending on the spread.
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9.4.3 Driving Speed (vPRIVE)
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Table 9.22 Impacts of ground speed (vPRIVE) on performance measures associated with
operator’s cost and revenue and user experience for Q =1 and 2

Revenue
Cost User Experience
()
& a
— |z T FE 5
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c o ax o] B o D T o)) = [S)
2 g T £~ Eo]| © s ‘D s I e S
s Sg w2 wgl L ° x a S c 2
—~~ — < Y — O T Y— o~ o > =
S|l 2 3% s2 35| €| & Sl & 5 2. 5.
gl 5 F3 5@ &2 o 3 3|8 F &g 02 Zz5
=l 52 £33 23l 8| = = |28l % 5 $E =5
N S cl $S sg| o ey 0 2| @ c> 8o ©38
|2 gy 5258l el: = |s3l@ £2 sE z¢
Ll S8 8¢ &l & | a o |&x|l & S48 IF Lo
Q=1
10 90.7 411 701 88 100 38.2 0838 232 121 298 1.3 0.32
20 911 412 701 8.9 100 384 0837 229 118 29.2 0.7 0.33
30 91.0 411 692 8.7 100 384 0838 229 117 289 0.5 0.34

Q=2

10 899 390 702 91 529 399 0442 197 120 296 19 0.41
20 850 312 669 91 657 46.7 0551 58 109 274 3.2 0.76
30 826 295 635 83 687 479 0582 34 102 257 25 0.85

Ground speed would significantly impact access time and, therefore, relocation of the
passengers on the ground to eliminate short repositioning legs or to consolidate the demand. Table
9.22 summarizes the performance measures associated with UAT operator revenue and costs as
well as user experience for the ground speed (vPRIVE) of 10, 20, and 30 with Q = 1 and 2, while

Figure 9.9 depicts the sensitivity of select performance measures to vPRIVE,

Figure 9.9 illustrates that for Q = 1, the performance measures are not sensitive to the
driving speed. The reason is that with Q = 1, the ground transportation is within AEMPTY = 1 mile
(or a total of 2 miles for both the origin and destination), while vPRVE = 10 mph and w = 15

minutes provide a 2.5-mile accessible radius on the ground.
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Figure 9.9(c) shows that with the ground speed of 10 mph over euclidean distances, the
average load factor is slightly over 50% for Q = 2, implying that decreasing the ground speed from
20 mph to 10 mph will lead to nearly no demand consolidation since relocating the passengers on
the ground is so slow that there cannot be moved in time while satisfying the maximum delay of
w = 15 minutes. The average load factor could be increased to nearly 70% with a driving speed
of 30 mph, highlighting the importance of fast and reliable ground-based transportation in the
success of the proposed UAT concept of operations with demand consolidation. As a result of
higher speed and demand consolidation, the rejection rate would decrease from 23.2% to 3.4%,

and the aircraft utilization would decrease by around 8% for Q = 2.

As seen in Figure 9.9(e) and Figure 9.9(f), the percentage of empty to revenue flights
decreases nearly 7% by increasing vPRVE from 10 mph to 30 mph for Q = 2, however, the

percentage of empty to revenue mileage is not noticeably sensitive to the driving speed.

Lastly, Table 9.22 shows that, with Q = 2, the average ground travel time is 1.9 minutes
for vPRIVE =10 mph and 2.5 minutes for vPRIVE =30 mph, implying that the requests could be
relocated to further distances on the ground to take a shared flight. Moreover, the average number

of transfers doubles as the ground speed increases from 10 mph to 30 mph under Q = 2.

9.4.4 Detour Factor (€)

The detour factor specifies how the flight distance deviates from the straight-line distance
between the starting and ending point, and therefore, it directly impacts the flight service time.
With a lower detour factor, the service time would decrease, and consequently, more requests
could be served. Table 9.23 summarizes the performance measures associated with UAT operator
revenue and costs as well as user experience for the detour factor (¢) of 0.05, 0.1, 0.15, and 0.2

with Q = 1 and 2, while Figure 9.10 depicts the sensitivity of select performance measures to €.
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Table 9.23 Impacts of detour factor (€) on performance measures associated with operator’s
cost and revenue and user experience for Q = 1 and 2

Revenue
Cost User Experience
(5]
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- gz T E 5
e ZE 8 = | = o T L
o — = —~ o E 5] - (@] ©
g B o b’a bo\o = Y— 3] > <) — Y=
s 58 2= 2351 8| ¢© s |l& g FE °
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s S 8o 8ol = S 2 @ 5| S c> 8o O9
S 85 Sz 53|z |53l ¢ 85 gE g3
w I =8 & &l 2| o a ||l & =40 IE &«
Q=
0.05 914 396 70.1 98 100 394 0870 20.7 11.8 29.7 0.7 0.33
010 911 412 701 89 100 384 0837 229 118 29.2 0.7 0.33
0.15 90.7 428 695 8.2 100 37.3 0806 25.0 11.8 28.7 0.7 0.33
0.20 90.3 442 689 7.3 100 364 0.778 26.8 119 283 0.7 0.34
Q=
0.05 84.2 29.7 663 9.2 65.8 47.7 0578 3.8 10.7 274 3.2 0.77
0.10 850 312 669 9.1 65.7 46.7 0551 5.8 109 274 3.2 0.76
0.15 85.2 324 673 8.7 65.8 458 0530 7.7 111 272 3.2 0.76
0.20 854 337 674 8.3 65.8 449 0510 9.6 112 271 3.2 0.76

Table 9.23 shows that increasing the detour factor from 0.05 to 0.2 could increase the

average total aerial mileage by at least 4 miles. Correspondingly, the percentage of empty to

revenue mileage decreases, which seems to be due to high rejection rates at e = 0.2.

Additiontionally, as seen in Figure 9.10(a), the percentage of rejected requests decreases by nearly

6% for both Q = 1 and 2. Nonetheless, the detour factor does not seem to have a significant impact

on ground-based transportation, demand consolidation, and elimination of short repositioning legs.
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9.4.5 Aerial Speed (vA'R)
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175 mph for aircraft with capacities of 1 and 2



218

Table 9.24 Impacts of aerial speed (vA'®) on performance measures associated with
operator’s cost and revenue and user experience for @ =1 and 2

Revenue
Cost User Experience
[«B]
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Q=1
100 89.9 40.7 722 7.8 100 291 0.845 414 126 261 0.6 0.29
125 906 410 709 85 100 340 0.840 316 123 281 0.7 0.31
150 91.1 412 70.1 8.9 100 384 0.837 229 118 29.2 0.7 0.33
175 91.1 411 67.7 8.9 100 42.2 0.838 153 112 294 0.8 0.36
Q=
100 884 315 726 8.6 649 36.9 0546 25.7 122 254 29 0.68
125 875 314 701 9.2 65.3 426 0548 141 117 271 3.0 0.72
150 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 109 274 3.2 0.76
175 796 30.6 623 7.8 66.0 48.7 0.561 1.8 9.8 264 3.3 0.81

Table 9.24 summarizes the performance measures associated with UAT operator revenue

and costs as well as user experience for aerial speed (v4'®) of 100, 125, 150, and 175 mph with

Q = 1and 2, while Figure 9.11 depicts the sensitivity of select performance measures to the aerial

speed. Aerial speed impacts the cruise time and, therefore, the service time. Consequently, a fleet

with a higher aerial speed would serve more requests than a fleet with the same size but lower

aerial speed. Increasing the aerial speed from 100 mph to 175 mph would decrease the rejection

rate from 41.4% to 15.3% for Q = 1 and from 25.7% to 1.8% for Q = 2.
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Higher aerial speed leads to a slightly higher average number of relocations and ground-
based travel time for both Q = 1 and 2 since serving more requests would provide more
opportunities for demand consolidation. Increasing the aerial speed from 100 mph to 175 mph
leads to a 1% increase in the average load factor. Therefore, even though more requests are served

with higher aerial speed, the percentage of shared flights is uninfluenced.

Two factors would impact the percentage of empty to revenue flights, depicted in Figure
9.11(e). First, in a busy system with high utilization, the operator may have to reposition an aircraft
from farther locations to meet the time constraints, while lower utilization suggests that more
aircraft and flights would be available without violating the acceptable delay of the requests.
Second, serving more requests means serving more flight legs, and therefore, more alternatives are
available within the origin and destination of a request to eliminate short repositioning flight legs.
Consequently, the percentage of empty to revenue flights decreases by nearly 5% for Q =1 in
Figure 9.11(e), even though the utilization has not decreased. For Q = 2, the percentage of empty

to revenue flights decreases by 10%, given the decrease in rejected requests and utilization.
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9.4.6 Maximum Acceptable Delay (w)
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Figure 9.12 Sensitivity of performance measures to maximum acceptable delay (w) of 5, 10,
15, and 20 minutes for aircraft with capacities of 1 and 2
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Table 9.25 Impacts of maximum acceptable delay (w) on performance measures associated

with operator’s cost and revenue and user experience for @ =1 and 2

Revenue
Cost User Experience
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Q=1
5 85.0 413 710 89 100 351 0.836 296 41 127 0.7 0.30
10 88.3 412 703 89 100 36.8 0836 261 81 222 0.7 0.32
15 91.1 412 701 89 100 384 0.837 229 118 29.2 0.7 0.33
20 92.7 410 69.1 86 100 395 0.839 206 156 349 0.8 0.34
Q=2
5 85.0 411 715 9.0 503 353 0420 293 41 128 0.7 0.31
10 86.8 37.1 706 94 55.7 40.1 0464 194 79 219 14 0.49
15 85.0 312 669 9.1 65.7 46.7 0551 5.8 109 274 3.2 0.76
20 80.4 28.0 600 7.0 713 49.0 0612 1.0 126 296 4.1 0.92

Table 9.25 summarizes the performance measures associated with UAT operator revenue

and costs as well as user experience for maximum acceptable delay (w) of 5, 10, 15, and 20 minutes

for Q = 1 and 2, while Figure 9.12 depicts the sensitivity of select performance measures to w.

Increasing the maximum acceptable delay provides the UAT operator with more time to move the

UAT aircraft to serve the requests. Additionally, the requests could be relocated to further distances

on the ground in time to eliminate the short empty distances or consolidate the demand. As seen

in Table 9.25, as w increases, the average ground travel time and average number of relocations
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increases. However, the increase is more significant for Q = 2 compared to Q = 1, since with the
former the requests could be relocated within a 3-mile radius (i.e., A4¢“E5S), while with the latter

the requests could move with a 1-mile radius (i.e., AEMPTY),

Figure 9.12(a) shows that with w = 5 minutes, 30% of the requests get rejected. However,
increasing w to 20 minutes in combination with demand consolidation (i.e., Q = 2) would
decrease the rejection rate to 1%. Figure 9.12(c) shows that the average load factor for w =5
minutes and Q = 2 is almost 50%, suggesting that the maximum accpetable delay of 5 minutes is
too short for the requests to be relocated on the ground for demand consolidation. As w increases

to 20 minutes, the average load factor increases to 70%.

Figure 9.12(d) illustrates the utilization of the UAT aircraft. With Q = 1, as w increases,
more aircraft could be dispatched in time to serve the increasing number of requests. However,
with Q = 2, having a maximum acceptable delay of 15 and 20 minutes prompts more air pooling.
Consequently, the system becomes less busy, and the aircraft utilization for w = 20 minutes

decreases to 80%.

Figure 9.12(b) demonstrates that the average trip delay decreases with increasing the
maximum acceptable delay. While the relationship between average trip delay and the maximum
acceptable delay is linear for Q = 1, for Q = 2, the rate of increase in average trip delay is

decreasing, which could be attributed to the decreasing utilization.

Figure 9.12(e) shows that, with the decreasing utilization for Q = 2, the percentage of
empty to revenue flights decreases by 11.5%, from 71.5% at w = 10 to 60% at w = 20.

Correspondingly, the percentage of empty to revenue mileage decreases by 2.4% in Figure 9.12(f).
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9.4.7 Maximum Reservation Time Window (7742V)
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Figure 9.13 Sensitivity of performance measures to the maximum of the reservation time
window (7742") of 1, 5, 10, 20, 30, 40, and 60 minutes for aircraft with capacities of 1 and 2
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Table 9.26 Impacts maximum of advance reservation time window (742V) on performance
measures associated with operator’s cost and revenue and user inconvenience for Q = 1 and

2
Revenue
Cost User Experience
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Q=1
1 85.2 415 717 88 100 34.7 0836 30.7 145 343 06 0.28
5 85.7 415 715 90 100 350 0.835 300 142 337 06 0.29
10 86.6 414 706 90 100 356 0835 287 138 329 0.7 0.30
20 89.7 412 702 88 100 374 0838 249 127 309 07 032
30 911 412 701 89 100 384 0837 229 118 292 0.7 033
40 91.7 411 693 88 100 39.1 0838 213 111 277 08 0.35
60 90.7 411 689 87 100 396 0839 202 107 269 08 0.35
Q=2
1 828 335 719 94 620 416 0516 168 139 332 25 0.62
834 331 714 98 628 425 0521 149 135 325 26 0.64
10 836 325 704 98 637 434 0530 127 130 316 28 0.67
20 847 317 681 96 650 455 0542 84 119 295 3.0 0.72
30 85.0 312 669 91 657 46.7 0551 58 109 274 32 0.76
40 843 306 655 85 664 476 0561 41 101 255 33 0.80
60 820 300 633 80 673 482 0571 27 97 246 35 0.85

Table 9.26 summarizes the performance measures associated with UAT operator revenue

and costs as well as user experience for the maximum of the reservation time window (74P") of 1,

5, 10, 20, 30, 40, and 60 minutes for aircraft with Q = 1 and 2, while Figure 9.13 depicts the
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sensitivity of select performance measures to 74P, Knowing the requests ahead of their desired
service time provides the UAT operator with more opportunities for efficient routing of the aircraft
and demand consolidation. Consequently, as shown in Table 9.26, increasing 742" results in

higher average ground travel time and number of relocations per request.

Figure 9.13(a) shows that increasing 742V from 1 minute to 60 minutes decreases the
percentage of rejected requests by nearly 10% for Q = 1 and 14% for Q = 2. However, the benefits
are diminishing, showing no noticeable improvements beyond the maximum of 40-minute advance

notice. Figure 9.13(c) depicts the average load factor increases by 5% under Q = 2.

Figure 9.13(e) shows that the percentage of empty to revenue flight decreases by nearly
2.8% and 8.6% for Q = 1 and Q = 2, respectively. Figure 9.13(f) depicts that the percentage of
empty to revenue mileage does not go under a noticeable change for Q = 1, while it varies 1.8%

forQ = 2.

9.4.8 Ratio of Revenue per Passenger Mile to Cost per Mile (a/B)

Table 9.27 summarizes the performance measures associated with UAT operator revenue
and costs as well as user experience for the ratio of revenue per passenger mile («) to cost per mile
(B) of 1.2, 1.5, 2, 2.5, 3, and 4 for aircraft with Q = 1 and 2, while Figure 9.14 depicts the

sensitivity of select performance measures to a/f3.

Without passenger pooling, serving requests are profitable as long as aq,DfP Z
1.18(DLP + D?), where DPP is the OD distance of the request  and is approximately equal to the
revenue mileage for serving request r, g, = 1 is the group size of the request, D? denotes the
empty repositioning mileage for serving request r, and 1.1 converts the geodesic distances on the

ground to the aerial distance by taking into account the 0.1 detour factor.
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Figure 9.14 Sensitivity of performance measures to the ratio of revenue per passenger mile
to cost per mile (a/B) of 1.2, 1.5, 2, 2.5, 3, and 4 for aircraft with capacities of 1 and 2
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Table 9.27 Impacts of the ratio of revenue per passenger mile to cost per mile (a/B) on
performance measures associated with operator’s cost and revenue and user experience for

Q=1and?2
Revenue
Cost User Experience
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3 X =8 fx €| & | a o ||l & S48 &F &«
Q=1
12 828 394 525 33 100 366 0884 272 99 249 11 0.52
15 89.3 39.7 665 5.6 100 383 0863 225 111 276 0.8 0.37
2.0 911 412 70.1 89 100 384 0837 229 118 292 0.7 0.33
2.5 91.7 420 717 115 100 379 0.817 234 122 300 0.7 0.31
3.0 91.7 421 722 120 100 378 0.814 235 122 301 0.7 0.30
4.0 918 422 720 122 100 378 0.812 236 122 301 0.7 0.31
Q =
1.2 73.7 29.0 549 41 67.6 43.3 0595 133 98 248 37 0.89
1.5 817 300 636 6.6 663 461 0570 69 105 264 33 0.80
2.0 85.0 312 669 91 65.7 46.7 0551 5.8 109 274 3.2 0.76
2.5 86.7 320 69.0 11.0 65.0 46.6 0536 5.7 11.3 281 3.1 0.73
3.0 87.1 322 69.1 114 647 465 0532 6.0 11.3 283 3.0 0.72
4.0 872 323 696 116 646 46.4 0529 6.2 11.3 283 3.0 0.72

Consequently, a/B =1.2 implies that serving a request without passenger pooling is

profitable if 0.09D2P 2 DP. Considering the configuration of the synthetic network with the

demand generated around four centroids on the vertices of a square with a 30-mile edge, the value

of a/pB = 1.2 would prevent the repositioning of the aircraft from one vertex to another to serve a
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request. Therefore, the served requests are closer to each other under /£ = 1.2, which provides
more opportunities for short legs elimination and demand consolidation. As a/f increases,

serving requests with higher empty to revenue mileage become profitable.

Table 9.27 verifies that with an increase in a/ the percentage of empty to revenue flights
and empty to revenue mileage increases, while the average ground travel time, the number of
relocations, and the load factor (for Q = 2) decreases. Additionally, the percentage of the rejected
request is highest at a/f =1.2, with 27.2% for Q = 1 and 13.3% for Q =2. Even though the
percentage of rejected requests decreases as a/f increases from 1.2, it reaches its lowest value at

a/f =1.5and 2.5 for Q = 1 and 2, respectively.
Furthermore, Figure 9.14(f) shows that for% > 2.5, the percentage of empty to revenue

mileage is around 12%. However, for% < 2.5, this value could significantly decrease to 3.3%.

9.4.9 Ratio of Relocation Cost to Cost per Mile (y,/B)

Table 9.28 summarizes the performance measures associated with UAT operator revenue
and costs as well as user experience for the ratio of relocation cost to cost per mile (y,/B) of 0, 1,
2, 5, and 10 for aircraft with Q = 1 and 2, while Figure 9.15Figure 9.16 depicts the sensitivity of
select performance measures to y, /8. The value of y, is set to 2 in this experiment. The results show
that increasing y, /B from 0 to 1 increases the percentage of empty to revenue flights by nearly 4 to
5%, while at y, /B = 2, the percentage of empty to revenue flights increases to 80%. The other

performance measures are almost insensitive to increasing y, /8 from 0 to 2.
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Figure 9.15 Sensitivity of performance measures to the ratio of relocation cost to cost per
mile (y,/B) of 0, 1, 2, 5, and 10 for aircraft with capacities of 1 and 2
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Table 9.28 Impacts of the ratio of the relocation cost to cost per mile (y,/B8) on performance
measures associated with operator’s cost and revenue and user experience for Q = 1 and 2

Revenue
Cost User Experience
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Q=1
0 91.0 411 69.7 8.8 100 38.2 0.8 224 118 292 0.7 0.33
1 91.1 412 73.6 9.0 100 38.1 0.8 228 118 292 0.6 0.28
2 91.2 412 794 9.1 100 379 0.8 23.0 121 297 05 0.21
5 915 414 89.7 9.6 100 375 0.8 23.8 123 30.1 0.2 0.11
10 916 416 928 10.0 100 37.3 0.8 24.2 124 303 0.2 0.08
Q=2
0 84.3 31.0 66.3 8.9 65.8 46.4 0.6 5.7 109 274 3.2 0.77
1 845 311 719 8.9 65.7 46.2 0.6 6.0 11.0 275 3.1 0.71
2 85.2 312 798 9.2 65.7 46.2 0.6 5.9 111 278 29 0.64
5 865 316 923 9.9 65.3 459 05 6.6 114 284 2.6 0.53
10 895 334 951 95 61.2 448 05 8.8 11.7 290 2.0 0.41

Table 9.29 shows how the percentage of requests with 0, 1, and 2 relocations varies with

v1/B. As a result of increasing y,/p from 0 to 1, the percentage of requests with 2 relocations

becomes 0. Aty; /B = 10, 92.4% of the requests have 0 relocation, impacting the average load

factor. Additionally, the percentage of connecting flight legs decreases to around 7% since the cost

is high that relocating the passengers to eliminate the short repositioning legs is not beneficial.
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Table 9.29 Impacts of the ratio of the relocation cost to cost per mile (y,/B8) on performance

measures associated with relocations

Percentage Percentage Percentage Mean of Percentage
of of of Requests Empty of
Requests Requests with 2 Flight Connecting

v1/B with 0 with 1 Relocations Mileage Flights to
Relocation Relocation (%) (mi) Revenue
(%) (%) Flights (%)

Q=1

0 69.3 28.1 2.6 4.8 30.7

1 72.4 27.6 0.0 4.6 21.6

2 78.7 21.3 0.0 4.3 21.3

5 89.4 10.6 0.0 4.0 10.6

10 92.4 7.6 0.0 4.1 7.6

Q=2

0 49.2 25.0 25.8 5.0 35.3

1 52.7 23.9 23.3 4.7 30.7

2 58.7 18.4 22.9 4.3 22.9

5 69.1 8.6 22.3 4.0 9.8

10 76.4 6.4 17.2 3.7 6.6

9.4.10 Boarding and Deboarding Duration (TB04RD TDEBOARD)

Table 9.30 summarizes the performance measures associated with UAT operator revenue

and costs as well as user experience for boarding and deboarding duration (T 89ARP, TPEBOARD) of

(2,2), (3,2), (5,3), and (8,5) for aircraft with Q@ = 1 and 2, while Figure 9.16 depicts the sensitivity

of select performance measures to TBOARD and TPEBOARD = Decreasing the boarding and

deboarding time would decrease the flight service time. As seen in Figure 9.16 and Table 9.30,

with (TBOARD TDEBOARDY = (8 15) the rejection rate is 41.3% and 25.5% for Q = 1 and 2,

respectively. However, with (T B9ARD TDEBOARDY — (2 1), the rejection rate reduces to 16.6% and

2.5% for Q = 1 and 2, respectively.
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Figure 9.16 Sensitivity of performance measures to boarding and deboarding duration
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Table 9.30 Impacts of boarding and deboarding duration ( TBOARD TDPEBOARD y g
performance measures associated with operator’s cost and revenue and user experience for
Q=1and?2

Revenue
Cost User Experience
(]
8 =3
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=S s° 20 25| 5| E g 1> ¢ £ «
s |8 58 ESEGIE|S clz g £ o3
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S £ 52 £33 €3]l 3| & = |E€8] & B SE 8%
< S c® §<S gl ) s 2| © c> S84 ©8
S s g2 o2 o¢l 5|8 <L |c3l &5 & 58 &3
= > 0 0 > > .= >
E |2 28 8¢ &¢| X | a a |[f¢] X =8 ZIF I
Q=1
(2,1) 90.9 410 680 86 100 415 0840 166 112 295 08 0.36
(3,2) 911 412 701 89 100 384 0.837 229 118 292 0.7 033

(5,3) 909 413 715 91 100 344 0835 309 123 281 0.7 031
(8,5) 904 415 738 95 100 292 0.831 413 127 259 06 028
Q=2

(2,1) 803 30.7 627 80 660 484 0560 25 100 268 33 081
(3,2) 850 312 669 91 657 467 0551 58 109 274 32 0.76
(5,3) 879 316 707 100 654 430 0543 133 117 271 30 0.72
(8,5 89.0 321 741 103 648 371 0537 255 123 253 28 0.67

As the boarding and deboarding duration decreases, more requests are served, and aircraft
utilization decreases. Consequently, there is a slight increase in the average load factor under Q =
2 (1.2% ), average ground travel time, and the average number of relocations. Furthermore, Figure
9.16(e) depicts the percentage of empty to revenue flights decreases by 5.8% and 11.4% for Q =
1 and Q = 2, respectively, as (TBOARD TDEBOARDY decreases from (8,5) to (2,1), while Figure

9.16(f) demonstrates a decrease of 0.9% and 2.3% for Q = 1 and Q = 2, respectively.
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9.4.11 Arrival and Departure Gate Access Time (T2SATE, TAGATE
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Figure 9.17 Sensitivity of performance measures to arrival and departure gate access
duration (T2SATE TAGATE) of (3, 2), (5, 4), and (10, 8) minutes for aircraft with capacities of
land?2
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’ Tri

235

) on

performance measures associated with operator’s cost and revenue and user experience for

Q=1and?2
Revenue
Cost User Experience
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Q=1
(3,2 911 412 701 89 100 38.4 0.837 229 118 292 0.7 0.33
(5,4) 90.8 411 696 88 100 38.4 0.838 228 118 265 0.7 0.33
(10,8) 90.0 411 69.3 88 100 385 0.838 22.7 118 221 0.7 0.33
Q =
(32) 850 312 669 9.1 65.7 46.7 0551 5.8 109 274 3.2 0.76
(5,3) 846 311 66.2 9.0 659 46.9 0553 54 10.9 247 3.2 0.77
(85) 838 310 656 9.1 66.0 47.0 0554 5.2 10.9 206 3.2 0.77

Table 9.31 summarizes the performance measures associated with UAT operator revenue

and costs as well as user experience for arrival and departure gate access duration

DGATE
(Tr [

L

, TAGATEY of (3, 2), (5, 4), and (10, 8) for aircraft with Q = 1 and 2, while Figure 9.17

depicts the sensitivity of select performance measures to T264TE and T/4%4TE, As the results show

the performance measures are insensitive to the value of T2%4TE and T4%4™¢. However, these

values impact the total trip time and, therefore, the UAT demand.
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9.5 Concluding Remarks

Urban air taxi (UAT) is the envisioned use case of passenger Urban Air Mobility (UAM)
in its mature state. Given the ubiquitous operations of UAT, pooling the passengers and increasing
the aircraft load factor is deemed as a critical step in the success of UAT operations. However, the
absence of a dominant eVTOL aircraft technology and UAT operator feeds the uncertainty around
UAT. To this end, we examine the impacts of various exogenous and design parameters on-
demand consolidation using a dynamic solution framework through an event-based discrete-event

simulation.

The runtime of the proposed policy suggests that CLARPTW-SRE could be employed in
real time to address the UAT fleet operation problem. However, the maximum accessible distance
(AACCESS) the minimum of repositioning distance (AEMFTY), the maximum acceptable delay (w),
and the maximum of the reservation time window (74PV) significantly impact the problem size
and runtime. For narrow time windows, the routing would be limited to 1-3 flight legs, which could
be solved quickly. The shorter is AEMPTY 'the fewer is the number of connecting flight legs. Finally,
limiting A4€¢ESS and w would limit the number of requests that should be evaluated for

assignment to different flight legs.

To provide an acceptable level of service and meaningful travel time savings that warrant
the choice of UAT, the operator guarantees to limit the delay incurred due to wait times and
relocations. The results show that providing service with short delays while relocating passengers
on the ground hinges on fast and reliable ground-based transportation. For the synthetic network
used in this study, increasing the driving speed from 10 mph to 20 mph results in a 14% increase
in the average load factor. However, achieving the ground speed of 20 mph over short distances

might be challenging, particularly in downtown areas of a densely populated city. A study on travel
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time variability in Chicago using the data of transportation network providers (TNPs) shows that
the OD pairs with high travel time variability are primarily located in the downtown area and have
an average distance of nearly 3 miles [143]. Using the TNPs data in Chicago, the average speed

over Euclidean distances smaller than 3 miles is 9 mph.

Another significant factor in demand consolidation is the spread of the demand. For the
given experiment with the driving speed of 20 mph and the maximum delay of 15 minutes,
reducing the standard deviation of the Gaussian distribution of requests around the centroids from
2 miles to 1 results in a 25% increase in average load factor. Closely spread demand would result
in the average load factor of 90%, which is well beyond the range of 50%-80% estimated in
[8,141]. Nonetheless, ground speed and demand spread, as the highly influential factors in demand
consolidation, are exogenous information and are primarily beyond the control of the UAT
operator. However, special attention should be given to these factors when selecting the passenger
UAM market, particularly in the initial stages of the operation. Moreover, placing the UAM ports
in locations that could provide a short and reliable ground access time to a dense and closely spread
demand is another challenge facing the passenger-carrying UAM operations in the early stages.
Locating the UAM ports near highways or a high capacity public transit system could provide a
high access speed or a high demand density; however, whether they can provide both is highly

dependent on the specific UAM market under consideration.

Among the design parameters, aerial speed is an influential factor in reducing the rate of
rejection requests. However, it has minimal impacts on the demand consolidation and average load
factor. The results suggest that a similar rejection rate could be achieved whether using high-speed

aircraft with no demand consolidation or low-speed aircraft with demand consolidation,
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highlighting the value of the air pooling concept in developing and selecting the aircraft

technology.

Increasing the reservation time window and maximum allowed delay decreases rejection
rates and increases the average load factor. For the synthetic network in this study, the analysis
suggests no noticeable improvements beyond the maximum of 40-minute advance notice. That
being said, when the maximum acceptable delay is long enough to allow the UAT operator to
move the customers on the ground for demand consolidation and the UAT aircraft in the network
to serve them, the UAT operator could immediately serve the requests with no advance notice
required. Consequently, the maximum acceptable delay has a noticeable impact on the average
load factor. However, the maximum acceptable delay cannot be increased to the point that it

diminishes the travel time savings.

In the CLARPTW-SRE formulation, the passenger delay is modeled as a soft constraint,
and therefore, the passenger’s delay is not explicitly minimized. Consequently, even with aircraft
utilization of 40%, the average delay is about 10 minutes per passenger. Furthermore, the results
highlight how increasing the maximum of reservation time window from 1 minute to 60 minutes

would decrease the average delay by almost 4 minutes, a 26% reduction in delay.

Lastly, it is worth noting that the sensitivity analyses are conducted with a fixed demand,
which is not dependent on the service time. However, factors such as the detour factor, aerial
speed, and access time directly impact the service time and trip time savings, which changes the
UAT demand. Nonetheless, given the long distances covered in the synthetic network, the

passengers would benefit from choosing UAT even under worst-case scenarios.
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Chapter 10 Numerical Experiments: Chicago Network

10.1 Overview

This chapter implements the proposed operational policy with CLARPTW-SRE in the
Chicago network. The UAT demand for this experiment is estimated based on the Transportation
Network Providers (TNP) data in Chicago using a simplified rule-based mode choice model.
Subsequently, the experiments are designed by randomly selecting a specified fraction of the
eligible TNP demand over 5 replications. An in-depth analysis is provided for one day of UAT

operation in Chicago, and a more concise analysis is provided for a week.

In the following sections, we first present the mode choice model used to estimate UAT
demand. We subsequently introduce the TNP data for Chicago. Afterward, the experiment design
is discussed, and ultimately, the numerical results for the one day and one week of UAT operations

are reviewed.

10.2 Mode Choice Model

We use a simplified rule-based mode choice model to estimate the UAT demand in this
dissertation. Multiple market studies project that the minimum distance for passenger UAM trips
would be around 10 miles [9,19]. Meanwhile, Booz Allen Hamilton’s market study [8] finds no
significant demand for mandatory (i.e., work-related) trips that take less than 30 minutes on the
ground. Furthermore, they assert that most of the UAM demand is captured for trips that are at
least 45 minutes on the ground. Consequently, we qualify a trip for the UAT mode when the

following rules are satisfied:

1. The distance between the origin and destination of the trip is at least 10 miles (i.e.,

AP = 10 miles);
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2. The trip would take at least 45 minutes using ground-based transportation.

Furthermore, Uber Elevate [23] assumes that a UAM trip should be at least 40% faster than
the corresponding ground-based trip, while Porsche Consulting [6] suggests UAM needs to offer
at least 20% travel time savings to be competitive with other modes. Therefore, we compare the

travel time savings for the UAT demand in the experiments against these numbers.

Ultimately, a fraction of the qualified TNPs demand would use UAT as their mode of

travel. In other words, the probability of choosing UAT isn < 1.

10.3 Chicago TNP Data

Trip data of Transportation Network Provider (TNP) (also known as ridesharing
companies) for Chicago [144] includes more than 128.7M trips from 2018-11-01 to 2019-12-31.
The dataset includes pick-up and drop-off census tract and their coordinates, trip travel time in

seconds, trip distance in miles, and trip start and end time, among other attributes.

Chicago has approximately 800 census tracts, ranging from about 89,000 square feet (i.e.,
0.003 square miles) to eight square miles [145]. These census tracts have a population of about
1200 households, or 2000-4000 people [146]. For privacy reasons, the available data is
anonymized by projecting the origin and destination of trips to the centroid of their corresponding
census tracts in addition to rounding the start and end time of the trips to its nearest 15 minutes.
Therefore, the pick-up and drop-off locations and times cannot be known with precision beyond a
15-minute time interval and an 89,000 square foot (approximately 8,270 square meters) area [145].
Pick-up and drop-off census tracts are often left blank if the location is outside of Chicago [144].
Additionally, if either the pickup or drop-off census tract of a trip has fewer than three trips over

the 15 minutes period, both census tracts are left blank in the dataset [147].
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Trips with missing values for pickup and drop-off census tracts and coordinates, start and
end time, trip time, and trip distance are excluded, which reduces the number of trips to nearly
86.4M. To cover the trips that might benefit from UAT, we consider trips that are at least 10 miles
[9] and take at least 45 minutes on the ground [8]. As a result, the number of trips reduces to nearly

1.99M.

Like many real-world datasets, Chicago TNP data should be cleaned up to remove
erroneous and missing inputs. As an example of invalid entries, 106 trips have zero travel distance.
After filtering out the trips based on unreasonable trip distance, trip time, travel speed, and the

difference between trip distance and geodesic distance, the number of trips drops to nearly 1.94M.

Table 10.1 summarizes travel time, trip distance, Geodesic distance, and speed of the
qualified TNP demand for UAT service. The mean travel speed is 20.0 mph with a mean travel
time of 57.6 minutes, respectively. Figure 10.1 depicts the travel time distribution over 4 ranges
of geodesic distances. Similarly, Figure 10.2 and Figure 10.3 illustrate the travel speed and

geodesic speed (i.e., speed over geodesic distance).

Table 10.1 Summary of qualified Chicago TNP trips for UAT service

Geodesic Trip Distance  Travel Time Travel Speed
Distance (mi) (mi) (min) (mph)
Min 10.0 10.1 45.0 5.6
25™ percentile 13.5 16.8 49.3 16.9
Median 15.3 18.1 54.7 19.5
Mean 14.8 18.8 57.6 20.0
75" percentile 15.8 19.8 63.0 22.4

Max 28.8 41.6 120.0 51.2
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Figure 10.1 Boxplots of travel time over geodesic distance ranges
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Figure 10.2 Boxplots of travel speed over geodesic distance ranges
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Figure 10.3 Boxplots of geodesic speed over geodesic distance ranges

Figure 10.4 illustrates the spatial distribution of the qualified TNP demand for UAT
service. The grey polygons outline 801 census tracts in Chicago, while the lines show the trips
between origin and destination census tracts. Thicker lines imply a higher number of trips. The
majority of trips are between O’Hare International Airport, Midway International Airport, and
downtown Chicago. Five and one census tracts, respectively, are the origins and destinations of
50% of the qualified TNP demand, while 50 and 25 census tracts account for 80% of the origins

and destinations of qualified TNP demand.

Given the parameters assumed in Section 10.4.2, the desired trip time, where the requests
are served immediately without ground transportation, and subsequently, the maximum travel time
savings, are calculated for the TNP trips. Table 10.2 shows that for the nearly 1.94M TNP trips,

the mean of maximum travel time saving is 37.7 minutes with a minimum of 24.7 minutes. The
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mean of maximum travel time saving percentage is 66.5%, which is higher than 20% suggested

by Porsche Consulting [6] and 40% suggested by Uber Elevate [23].
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Figure 10.4 Spatial distribution of the qualified TNP demand for UAT service

EAST
CHICAGO

The maximum of total travel time savings is nearly 1.25M hours over 14 months. The

minimum wage for the City of Chicago, effective July 1% 2019 to July 1% 2020, is $13.00 per hour
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[148]. Therefore, the value of maximum travel time savings is estimated at USD 16.2M under an

unconstrained (i.e., best-case) scenario.

Table 10.2 Summary of maximum travel time saving for Chicago TNP trips for UAT service

Travel Time Saving (min) Travel Time Saving Percentage (%)
Min 24.7 54.9
25™ percentile 30.5 61.9
Median 35.9 65.5
Mean 37.7 66.5
75" percentile 43.9 69.8
Max 98.6 82.6

Figure 10.5 and Figure 10.6 depict the distribution of travel time saving and travel time
saving percentage under the best-case scenario. As expected, the mean of travel time saving

increases with the distance between the origin and destination.
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Figure 10.5 Maximum travel time savings over geodesic distance range
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10.4 Experiment Design

10.4.1 Simulation Design

The simulation for UAT operation in Chicago is terminating (also referred to as transient
or non-stationary). In terminating simulations, the initial state of the system at time 0 is well
specified, and the simulation ends either with stopping event «EN? or at stopping time IENDSIM,

Let TSTRTARV = min ¢/ and TENPARY = max ARV denote the start and end of the request
TER TER

arrival period. Subsequently, the simulation starts with the start of the request arrival period (i.e.,
FSTRTSIM — STRTARVY and ends when all the requests are served. Each experiment is replicated
five times, where the stochasticity stems from the customer requests and the initial locations of the

UAT aircraft.

The trip start time in Chicago TNP data is anonymized by rounding it to the nearest 15-

minute intervals. Consequently, we estimate the original trip start time by using the uniform
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distribution with the range of [0, 15]. The requested service time for request r, rfEQ, is the same

as the estimated trip start time. Let ISTRTREQ and FENDREQ denote the start and end of the

requested time for service, which are specified by the UAT operator. To generate the requests, n%

of the qualified UAT demand with 7559 e [ISTRTREQ FENDREQ] are randomly drawn.

The arrival time of request r, i.e., 728V, is calculated as 7X°¢ — T4V where TAPY is

randomly drawn from a uniform distribution with the mean of 74PV /2 and the range of [0, T4PV].

REQ __
r =

When request r arrives at time t#RV | its attributes are defined by the vector A
(0,,D, ,SPSRP EDSRD o REQ) The origin, 0, and destination, D,., of 7; are the same as the
centroid of their corresponding census tracts. We assume the network is nearly ubiquitous, with
almost 800 UAT pads. As a result, the desired pick-up and drop-off UAT pads of request r
coincide with their origin and destination. In other words, S25RP = 0,. and EPSRP = D... Lastly, it

is assumed that the group size of each request is 1.

Additionally, the fleet of UAT aircraft is homogenous, and therefore, their capacity and
speed are denoted by Q and vA'R, respectively. The state of UAT aircraft is presented by SgV70L =

Gri N il M Lt Q) apenc at t = TSTRTSIM(j e, the beginning of the planning horizon). The

initial location of @, € X (i.e., L{/" at time t = TSTRTSIM) is randomly drawn from the centroids
of census tracts using a categorical distribution, a discrete probability distribution with the weights
equal to the probability of a centroid being chosen as a destination from TNP data. Furthermore,
all the aircraft are idle and available at the beginning of the planning horizon, and there is no
incomplete flight leg on their itinerary. In other words, ti¢ © = ISTRTSIM €VTOL — 0 and Q,, =

(Z) fort = zSTRTSIM.
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10.4.2 Parameter Setting

In this section, we present the parameters used in the experiments. Table 10.3 summarizes
the design parameters associated with UAT operations. a/f =5 in Chicago network implies that
serving every request is profitable, and the requests will be rejected only if they are not feasible to be
served. 74PV is 30 minutes, suggesting that the requests for UAT service, at the earliest, could be
placed 30 minutes ahead of the desired time. The maximum delay due to schedule delay and ground-

based transportation is limited to 10 minutes, i.e., w = 10 minutes.

Table 10.3 Design parameters associated with UAT operation

Parameter Symbol Value Unit
Maximum of the reservation time window APV 30 minutes
Maximum acceptable delay 1) 10 minutes
Ratio of revenue per passenger mile to cost per mile a/B 5 -
Ratio of the relocation cost to cost per mile v1/B 0 -
Start of requested time for service FSTRTREQ 6:00 AM
End of requested time for service JENDREQ 6:59 PM

Table 10.4 summarizes the parameters associated with the ingress and egress of the
customers. The travel times between the UAT pads, which are located at the centroid of the census
tracts, are calculated using the Chicago TNPs dataset. The data shows that the average speed over
Euclidean distances smaller than 2 miles is 8.3 mph. Consequently, for the missing values of travel
times, we choose the driving speed, i.e., vPRVE  of 8.0 mph. We further assume that the maximum

acceptable delay for the Chicago UAT service, i.e., w, is 10 minutes. vPRIVE

= 8.0 mph and w =
10 minutes suggest that the maximum accessible distance on the ground from the origin or

destination of the request is nearly 1.3 miles. Consequently, we set AACCESS = 2 miles. The

remaining parameters are similar to the ones specified in Section 9.2.3.
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Parameter Symbol Value Unit
Maximum access distance AACCESS 2 miles
Euclidean driving speed in the downtown area yDRIVE 8 mph
Maximum walking distance AWALK 0.25 miles
Walking speed yWALK 3 mph
Duration from ground transportation area to the departure gate ~ T26ATE 3 minutes
Duration from arrival gate to the ground transportation area TAGATE 2 minutes
Table 10.5 Parameters associated with flight operation
Parameter Symbol Value Unit
Number of UAT aircraft K 100 -
Minimum of Euclidean distance for repositioning flight NEMPTY 05 miles
Aerial speed yAIR 150 mph
Boarding duration TBOARD 3 minutes
Deboarding duration TPEBOARD 2 minutes
Departure clearance TTAKEOFF 05 minutes
Landing clearance TLANDING 05 minutes
Hover ascend TASCEND 0.75 minutes
Hover descend TDPESCEND 0.75 minutes
Detour factor € 0.1 -

The assumptions regarding the flight operation are presented in Table 10.5. The UAT

operator has an aerial fleet with the size of K = 100. The minimum Euclidean distance to justify a

UAT repositioning flight, i.e., AEMPTY is set to 0.5 miles. With the average driving speed of 8 mph,

ground-based transportation within 0.5 miles of both the origin and destination would take at most

7.5 minutes, which is below the maximum acceptable delay of 10 minutes. This implies that while

empty repositioning within 0.5 miles of a desired UAT pad is not allowed, the passengers could

access these pads on the ground within the acceptable delay. The remaining parameters are similar

to the ones specified in Section 9.2.3.
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Consequently, the turnaround time, including boarding, deboarding, and take-off and
landing clearance, is 6 minutes, consistent with the turnaround time estimated by Joby Aviation
[18] (see Table 2.6). The overhead time of serving a flight leg, either empty or revenue-generating,
includes hover ascend and descend and ATC clearance for the take-off and after the landing, which
amounts to 2.5 minutes. If the flight leg serves passengers, an additional 5 minutes will be added
to the flight service time. As a result, the overhead time of empty and revenue-generating flight

legs are 2.5 and 7.5 minutes, respectively.

As shown in Table 10.1, the average OD distance and travel time of qualified TNP data are
14.8 miles and 57.6 minutes, respectively. Therefore, the average aerial distance is 16.3 miles (i.e.,

1.1x 14.8). Consequently, the average time for serving a revenue-generating flight leg is 14.0

minutes (i.e. 253 % 60 + 7.5).
150

As a result, the maximum service rate is 4.28 revenue-generating flights per hour per
aircraft. This extreme value corresponds to cases where the request’s arrival rate is so high, or the
requests are so close to each other that the empty distance from the destination of one flight to the
origin of the next flight origin is close to zero in expectation. Without job rejection and flight-
sharing, p should be below 1 for the queue to not grow indefinitely, and therefore, for the system
to be stable. With ¢ = K = 100 and u = 4.28 flights per hour per aircraft, the system can
accommodate A = 342.4 requests for flight per hour (i.e., T"™NT = 10.5 seconds) to achieve 80%

utilization (p = 0.8).

Furthermore, the average of 14.0 minutes for serving a revenue-generating flight would
translate to the average trip time of 19.0 minutes (i.e., 14.0 + 3+ 2) for each passenger if there were

no wait time for the aerial service, and the requests were served without any ground-based
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transportation. Considering a maximum delay of w = 10 minutes (in Figure 5.1), the minimum
and maximum mean trip times for passengers are 19.0 and 29.0 minutes, respectively. These
numbers correspond to average travel time savings of 27.7 minutes (51.1%) to 37.7 minutes
(66.5%) compared to driving on the ground. Consequently, the average travel time saving is well

above the 40% criterion suggested by Uber Elevate for the UAT service mode choice model [23].

10.4.3 UAT Demand
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Figure 10.7 Number of trips per trip start hour between Sep. 23, 2019 and Sep. 29, 2019
To examine the UAT service in a more realistic setting, we use the qualified TNP demand

for UAT service over one week, from Monday, Sep. 23 to Sunday, Sep. 29, 2019°. Figure 10.7

& A curious reader may wonder why we did not use the most recent demand from 2020. The reason is that the world
basically stopped for a period of time in 2020 due to the COVID-19 pandemic, which in turn, had a significant impact
on ridesharing operations and demand.
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demonstrates the temporal demand during the week of Sep. 23, We further assume that the UAT
service offers rides to requests that arrive between 6:00 and 18:59 since about 90% of the requests
arrive within this period. Over this period, the average number of requests per hour is 451.
However, during evening peak hours, the demand could reach 1250 requests per hour,

corresponding to the mean interarrival time of approximately 3 seconds.

Table 10.6 Average hourly qualified TNP demand over weekday and weekend of the week
of Sep. 23", 2019 from 6:00 AM to 6:59 PM

Trip Start Hour
6 7 8 9 10 11 12 13 14 15 16 17 18

Weekday
Average
Demand 431 584 498 248 68 246 466 705 886 1020 870 696 543
(hrt)

Interarrival
Time (sec)

Weekend
Average
Demand 275 75 225 44 98 206 394 391 313 378 229 177 108
(hr)

Interarrival
Time (sec)

8.3 62 72 145 529 146 77 51 41 35 41 52 66

1309 480 160 828 369 175 91 92 115 95 158 203 333

Table 10.6 summarizes the average hourly demand over the weekday and weekend of Sep.
23", We use n = 40% and 60% of the qualified TNP demand for the weekly experiment, and we
randomly select the requests given the desired fraction of demand. Table 10.7 presents the total
demand for the given fraction of qualified TNP demand for the week of Sep. 23", 2019 from 6:00
AM to 6:59 PM. We further examine the UAT operation for Monday, Sep 23", 2019, with 60%
of the qualified UAT demand. The corresponding hourly demand and interarrival time are
summarized in Table 10.8. The minimum and maximum of the interarrival time for Sep. 23" is

5.9 and 95 seconds, respectively, corresponding to 6 AM and 10 AM.
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Table 10.7 Qualified TNP demand for the week of Sep. 2379, 2019 from 6:00 AM to 6:59 PM

Qualified TNP Demand
Day of Week 100% 60% 40%
Monday 6,810 4,086 2,724
Tuesday 5,774 3,464 2,310
Wednesday 8,250 4,950 3,300
Thursday 8,152 4,891 3,261
Friday 7,320 4,392 2,928
Saturday 3,184 1,910 1,274
Sunday 1,601 961 64

Table 10.8 Hourly UAT demand and interarrival time (estimated as n = 60% of the qualified
Chicago TNPs demand) for Monday, September 23", 2019

Trip Requested Hour
6 7 8 9 10 11 12 13 14 15 16 17 18

Hourly 160 410 306 208 38 39 61 314 404 486 467 344 311
Demand
Interarrival | 59 g5 91 17.3 952 923 588 115 89 74 77 105 116
Time (sec)

10.5 Case Study: One Day

The following sections examine the performance measures associated with UAT operation
on Monday, September 23rd, 2019, with n = 60% of the qualified TNP demand and four UAT
aircraft capacity, i.e., Q =1, 2, 3, and 4. More specifically, we review the runtime and gap to
evaluate if the solution framework could be implemented in real time. Furthermore, we present the
performance measures associated with UAT operator revenue and costs in addition to user
inconvenience and trip delay. Lastly, we review the travel time savings resulting from choosing

UAT over ground-based ridesharing service.
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For each replication, we calculate the mean and standard deviation of the number of flight

legs, requests, and arcs at each decision epoch. Subsequently, we estimate the mean of the mean

and the standard deviation for all replications. Table 10.9 summarizes the estimated mean of the

mean and standard deviation of the number of flight legs, requests, and arcs at each decision epoch.

Table 10.9 Estimated mean of the mean and standard deviation of the number of flight legs,
requests, and arcs at each decision epoch

Flight Legs Requests Arcs
Q JVLEG Z7DSRD 7FCNCT ]‘v:{EQ JUNASGN 7FFLXSTRT 7FFXDSTRT | ZZINIT ;quQ AALCT
Estimated Mean of Mean Values (of Each Replication)
1| 232 125 107 130 6 106 18 9,609 6,232 2,600
2 216 111 105 131 6 93 32 10,769 4,612 2,302
3 214 109 105 132 6 92 34 11,298 4,408 2,319
4| 211 109 102 132 6 92 34 11,546 4,339 2,313
Estimated Mean of Standard Deviation (of Each Replication)
1| 123 56 72 58 3 49 9 4570 4,312 1,678
2 122 52 74 64 3 45 20 5,454 3,360 1,759
3 123 52 75 67 3 45 23 5,831 3,286 1,868
4 | 122 52 74 67 3 45 23 5,993 3,245 1,878

Figure 10.8(a)-(d) depict the emipirical Cumulitavie Density Function (eCDF) of the MIP

gap of the solution at the end of the decision epochs for Q = 1 to Q = 4, respectively. Each

replication is illustrated by one graph. While for Q = 1 nearly all the solutions have a gap under

3%, for Q = 2, 3, and 4, the gap is under 2% for approximately all the solutions. Moreover, for

Q =1, around 85% of MIPs are solved to optimality, while this number decreases to 40% and

20% for Q = 2 and Q = 4, respectively.
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Figure 10.9(a)-(d) depict the eCDF of corresponding decision time, i.e., TEPOCH  associated
with the decision epochs for Q = 1 to Q = 4, respectively. The nearly vertical slopes in the plots
seen around the 30-second mark are due to the initial time limit of 30 seconds. The longer vertical
slopes for Q > 2 compared to Q = 1 suggest that more problems are terminated in these cases at
30 seconds. Figure 10.9 suggests that the duration of almost all decision epochs is below the 1-

minute re-optimization interval (i.e., AVPPATE),

Table 10.10 presents the average simulation time over an 11-hour planning horizon for the
5 replications. Additionally, the worst cases of MIP solution time, decision time, and MIP gap over
all decision epochs and replications are reported. Table 10.10 shows that the worst case of the MIP
solution time is below the 1-minute re-optimization interval (i.e., AYPPATE) for Q = 3 and 4 and
almost 1 minute for Q = 2. The worst decision time, i.e., max TEPOCH  which is copmrised of
constructing the network and MIP solution time, is under 60 seconds for Q = 3, while for Q = 2
and 4, the decision time slightly violates the 1-minute threshold. Therefore, given the assumed
demand size and parameter settings, the solution framework has the potential for real-time

implementation.

Table 10.10 Average simulation time for 5 replications and worst MIP solution time, worst
decision time, and worst MIP gap over all decision epochs and 5 replications

Aircraft Average Simulation ~ Worst MIP Solution Worst Decision Worst MIP
Capacity (Q)  Time (minutes) Time (seconds) Time (seconds) Gap (%)

1 136.3 77.6 80.6 4.7

2 276.9 62.2 62.8 4.5

3 327.8 56.1 56.9 1.7

4 333.1 58.3 64.2 2.3
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10.5.2 UAT Operator Costs

The aerial mileage, either revenue-generating or deadhead, is associated with a cost. A high
rate of air pooling would reduce the revenue-generating mileage. Moreover, UAT aircraft
utilization indicates how long the aircraft are busy, either serving empty or revenue-generating
flight leg. Consequently, the following sections present the performance measures associated with

the revenue mileage, total aerial mileage, air pooling, utilization, and service time.

10.5.2.1 Utilization

() @=d (b) Q=2

100 S — —_r———
80
60 i = e

\ / \
j :
40 \\ 4 + :
\ h \ /

20 ‘- 1'_—

UAT Aircraft Utilization (%)

() Q=3 (d) Q=4
100

80

60

20

UAT Aircraft Utilization (%)

6 7 8 9 10 11 12 13 14 15 16 17 18 6 7 8 9 10 11 12 13 14 15 16 17 18
UAT Operation Hour UAT Operation Hour

Figure 10.10 Distribution of UAT aircraft hourly utilization over 5 replications with Q of (a)
1,(b)2,(c)3,and (d) 4

Figure 10.10 depicts the distribution of UAT aircraft hourly utilization for Q = 1 to 4. The

utilization is under 20% over off-peak hours, i.e., 10 AM to 12 PM. With Q = 1, the aircraft
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utilization is almost 100% during the morning and evening peak hours. However, with Q = 2, the
peak-hour utilization is less than 80%, while with Q = 3 and 4, it becomes less than 60%. Table
10.11 specifies that the UAT aircraft utilization over the planning horizon reduces from 73.1% for

Q = 11032.1% for Q = 4.

Table 10.11 UAT aircraft utilization over the planning horizon

Q Aircraft Utilization (%)
1 73.0
2 46.6
3 35.9
4 31.8

10.5.2.2 Empty Mileage

Table 10.12 presents the performance measures associated with empty repositioning flight
legs for CLARPTW-SRE and CLARPTW, models with and without short repositioning
elimination, respectively. Without short repositioning elimination (SRE), between 7.1 and 9.5%
of the flight legs are over short distances of shorter than 0.5 miles. For CLARPTW, the minimum
of empty flight mileage is 0.15 miles. For CLARPTW-SRE, the minimum of empty flight mileage
15 0.55 (= 1.1 x 0.5) miles, which is consistent with the detour factor of 0.1 for the aerial legs and
the radius of 0.5 miles for short repositioning elimination. The empty flight legs could be as long

as 29 miles, which is the maximum of geodesic distance in the Chigaco network (see Table 10.1).

Moreover, for CLARPTW-SRE, the mean of empty flight legs is 10.3, 8.6, 7.0, and 6.1
miles for Q = 1 to 4, respectively. There are two possible explanations for the reduction in empty
flight mileage as the UAT aircraft capacity increases. First, during air pooling, when multiple
requests are consolidated and served by one flight leg, the corresponding revenue-generating flight

leg is chosen so that, ceteris paribus, it minimizes the revenue-generating and empty mileage. With
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Q =1, the passengers could be relocated within AEMPTY = 0.5 to eliminate short repositioning
legs, while with Q > 2, the passengers practically could be moved on the ground within A4€¢ESS =
2 miles to reach another flight leg or UAT aircraft. As a result, given the 2-mile radius for access
distance and detour factor of 0.1, the empty aerial mileage could decrease by a maximum of 2.2
miles. Second, higher capacity leads to lower utilization. Therefore, the UAT aircraft could be

utilized more efficiently, which in turn could reduce the empty repositioning mileage.

Table 10.12 Estimated mean of performance measures associated with empty repositioning
flight legs

Q Mean of Minimum Maximum Percentage of  Percentage of Percentage of

Empty of Empty of Empty Empty Flights Empty to Empty Flight
Flight Flight Flight to Revenue Revenue Legs within
Mileage  Mileage Mileage Flights (%) Mileage (%)  AEMPTY (%)
(mi) (mi) (mi)

CLARPTW-SRE

1 10.35 0.56 28.33 47.0 29.9 0

2 8.70 0.55 27.17 40.0 22.0 0

3 711 0.55 27.37 39.7 17.9 0

4 6.24 0.55 28.29 41.8 16.6 0

CLARPTW

1 9.29 0.15 28.77 52.9 30.2 7.1

2 758 0.15 27.97 46.8 22.3 9.1

3 6.19 0.15 26.48 46.5 18.2 9.5

4 562 0.16 26.58 48.7 17.4 9.1

Furthermore, Table 10.12 suggests that for CLARPTW-SRE, the percentage of empty to
revenue mileage reduces from 30% for Q = 1 to 16% for Q = 4, while the percentage of empty to

revenue-generating flight legs is in the range of 40 to 47.

A connecting flight leg is shorter than the combination of original empty and revenue flight
legs. Furthermore, they offer shorter service time resulting from fewer flights and the consequent

overhead time. Therefore, when a connecting request is within reach of passengers, it is more likely
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to be included in the optimal solution. Table 10.13 evaluates the performance measure associated
with the connecting legs, which are conducted to eliminate the short repositioning flight legs. For
Q =1, nearly 15% of the revenue flights are connecting legs. For Q = 2, connecting flight legs are
about 21-23% of all flight legs since there is a higher chance of reaching a connecting flight leg
when requests are relocated within AA¢CESS= 2 miles for Q >2 compared to AEMPTY = 0.5 miles

forQ = 1.

Table 10.13 Estimated mean of performance measures associated with connecting flight legs

Percentage of Percentage of Percentage of Percentage of

Q Connecting Flights  Connecting Flights  Connecting Flights ~ Connecting Flights
to Revenue Flights  with the Desired with the Desired with Undesired Origin
(%) Origin (%) Destination (%) and Destination (%)

1 146 14.5 85.5 0.0

2 234 29.8 70.2 0.0

3 231 25.6 74.4 0.0

4 210 25.3 74.7 0.1

10.5.2.3 Revenue Mileage

Table 10.14 summarizes the performance measures associated with revenue flights,
revenue mileage, and total mileage (i.e., the summation of revenue mileage and empty mileage).
The mean of revenue-generating flight legs is in the range of 15.7 to 16.2 miles over various
aircraft capacities. As the capacity increases, the mean of revenue mileage decreases slightly. The
reasons are twofold. First, under Q = 1, not all the requests could be served. As a result, the shorter
trips, which are associated with less revenue, are more likely to get rejected. Second, during air
pooling, when one flight leg gets selected to serve multiple requests, a flight leg resulting in a

lower mileage has a higher chance of being selected.

Furthermore, with Q = 1, serving one revenue-flight would require an average of 21.1

miles, while for Q = 4, this value is reduced to 18.3 miles, primarily due to the decrease in empty
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mileage. Moreover, air pooling leads to a shorter aerial mileage per served request. Consequently,
the mean of total aerial mileage for serving one request reduces nearly 66%, from 21.1 miles for

Q = 1to 7.0 miles for Q = 4.

Table 10.14 The performance measures associated with revenue flights, revenue mileage,
and total mileage for @ =1, 2, 3, and 4

Mean of Mean of Total Aerial Mean of Total Aerial  Ratio of Revenue
Q Revenue Mileage per Revenue  Mileage per Served Flights to Served
Mileage (mi) Flight (mi) Request (mi) Requests (%)
1 16.2 21.1 21.1 100
2 158 19.3 10.8 56.2
3 1538 18.6 8.1 43.4
4 157 18.3 7.0 38.1

10.5.2.4 Air Pooling

Table 10.15 specifies the estimated mean of performance measures related to UAT aircraft
load factor over 5 replications. The average load factor is 89%, 77%, 65% for Q = 2, 3, and 4,
respectively. With Q > 2, only 22-30% of the flight legs serve only one request. Moreover, nearly
78%, 57%, and 40% of the flight legs are filled to capacity with Q = 2, 3, and 4, respectively.
Antcliff et al. [100] project that, in the long term, over 85% of the flights of a 2-seat aircraft have

2 passengers, which is comparable to 78% for UAT service using Chicago TNP demand.

Table 10.15 Estimated mean of performance measures related to UAT aircraft load factor
over for 5 replicationsover Q =1, 2, 3,and 4

Average  Average Percentage of Percentage of Percentage of Percentage of
Q Load Number of  Flights with 1  Flights with 2  Flights with 3  Flights with 4
Factor Requests Request Requests Requests Requests
(%) per Flight
1 100 1.0 100 0 0 0
2 89.0 1.8 22.0 78.0 0 0
3 76.8 2.3 26.6 16.5 56.9 0
4 654 2.6 30.6 16.7 13.1 39.6
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10.5.2.5 Service Time

Table 10.16 presents the estimated mean of the performance measures associated with
aerial service time over 5 replications. The results suggest that serving a revenue flight leg on
average would take around 14.0 minutes, regardless of the aircraft capacity. However, the service
time of empty flight legs decreases from 6.6 minutes with Q = 1 to 4.9 minutes with Q = 4, due
to the reduction in empty mileage as shown in Table 10.12. The total aerial service time, i.e., the
total time an aircraft is in use, per served revenue flight is around 16-17 minutes. Taking advantage
of air pooling reduces the total aerial service time per served request by 64%, from 17.1 minutes

with Q = 1 to 6.1 minutes with Q = 4.

Table 10.16 Estimated mean of performance measures associated with aerial service time

Mean of Aerial Mean of Aerial Mean of Total Aerial  Mean of Total Aerial
Service Time of Service Time of Service Time per Service Time per

Q Revenue Flight Empty Flight Revenue Flight (min)  Served Request (min)
(min) (min)

1 140 6.6 17.1 17.1

2 138 6.0 16.2 9.1

3 138 53 15.9 6.9

4 138 5.0 15.9 6.0

10.5.2.6 Estimated Cost per Mile (B)
Table 10.17 summarizes the estimated value of cost per mile, i.e., B, for the various
projected unit of costs. The values range from $1.15 per mile for long-term operations estimated

by Uber Elevate [28] to $12.7 per mile of piloted operation projected by Booz Allen Hamilton [8].

10.5.3 UAT Operator Revenue and Estimated Price
To evaluate the UAT operator revenue, we use three measures. Available seat miles
(ASM), total passenger revenue (PR), and passenger revenue per available seat mile (PRASM).

ASM represents the revenue-generating capacity of the fleet, while PRASM represents the
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passenger revenue earned per seat (either empty or full) miles flown by an aircraft. Since the
network is ubiquitous and all the flown mileage could potentially earn revenue, we calculate the
ASM for all the conducted flights, either empty or revenue-generating. To exclude the impacts of
the value of « (i.e., revenue per mile), we present PR and PRASM per «, i.e., PR/a and PRASM/«,

respectively.

Table 10.17 Estimated value of cost per mile for the various projected units of cost

Load

Company Unit of Cost Value Capacity  Factor B .
($/mi)
(%)

McKinsey & Company [10] cost per seat-mile  0.5-2.5 4 - 2-10
cost per 5.73, 15.0,

Uber Elevate [28] assgn er-mile 1.84, 4 65.6 4.8,
passeng 0.44 1.15

Booz Allen Hamilton [g] ~ COStPEr 9.51 1 100 95
passenger-mile

Booz Allen Hamilton [8] costper 7.0 2 89.1 12.5
passenger-mile

Booz Allen Hamilton [8] costper 5.5¢ 3 76.9 12.7
passenger-mile

Booz Allen Hamilton [g] ~ COStPEr 4.75! 4 656 125
passenger-mile

Porsche Consulting [6] cost per mile 2.9 - - 2.9

Joby Aviation [5] cost per available ) o 4 i 3.8
seat-mile

Joby Aviation [66] cost per available 4 4 4 i 2,56
seat-mile

Notes: ! Estimated based on piloted operations, 2 22 cents per available seat-mile cost of pilots is
deducted for autonomous operations

Table 10.18 presents performance measures associated with passenger revenue, where a
denotes the revenue (i.e., price) per mile. The total aerial milage decreases around 61% from Q =
1 to 4, regardless of the 14% decrease in the rejection rate (see Table 10.19). The total passenger
revenue increases by nearly 16.6% with air pooling as more passengers are served. However,

passenger revenue per available seat mile (PRASM) decreases from 0.701a to 0.526a for Q = 1
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to Q = 4. Joby Aviation [66] estimates the value of 3 for a with Q = 4, resulting to PRASM =

$1.57 based on our analysis compared to PRASM = $1.73 projected by Joby.

Table 10.18 Estimated mean of performance measures associated with passenger revenue

Passenger Revenue

Q To_tal Aerial_ Available Seat Mile  Total Passenger per Available Seat
Mileage (mi) (ASM) Revenue (PR/a) Mile (PRASM/a)

1 73516 73,516 51,508 0.701

2 43,845 87,691 59,501 0.679

3 32,952 98,855 60,132 0.608

4 28,554 114,217 60,138 0.527

Porsche Consulting [6] assumes a price between $8 and $18 per minute for the on-demand
air taxi service. Given the total flight time of 8 minutes (i.e., service time minus 6 minutes of
turnaround time), UAT operation in Chicago would cost between $64 and $144. On the other hand,
Booz Allen Hamilton’s market study sussgets a passenger price of nearly $2.50-$2.85 per mile,
leading to $45-$51 given average total mileage of 18 miles for Q = 4. These estimated price ranges
per trip are well beyond the $25 per trip for at-scale operation estimated by McKinsey & Company

[10].

10.5.4 User Experience and Level of Service

When using UAT as a mode of transportation, the customer request could get rejected, the
accepted passengers may incur a delay, and they might have to take a flight from a location that is
not their desired pick-up or drop-off UAT pad, all causing an inconvenience to the user.
Furthermore, the primary advantage of UAT compared to TNP is the travel time savings,
particularly over longer distances. Consequently, the following sections present the performance

measures associated with user experience.
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10.5.4.1 Rejections and Trip Delay

Table 10.19 summarizes the performance measures associated with served and rejected
requests. The percentage of rejected requests decreases from 14.6% to 1.1% by increasing Q from
1 to 2, and it becomes almost 0% for Q > 3. Furthermore, the revenue structure of the objective
function favors longer trips. Comparing average OD distances for served and rejected requests

verifies that rejected requests have shorter OD distances.

Table 10.19 Estimated mean of performance measures associated with served and rejected
requests

Number of Percentage of Average OD Distance  Average OD Distance
Q Served Rejected Requests  of Served Requests of Rejected Requests
Requests (%) (miles) (miles)
1 3,485 14.7 14.8 14.3
2 4,041 1.1 14.7 14.0
3 4,087 0.0 14.7 15.0
4 4,087 0.0 14.7 N\A

Table 10.20 Estimated mean of averages of trip delay, percentage of trip delay, and total trip
time per request over 5 replications

Average Trip Delay Average of Percentage of Trip  Average Trip Time
Q (minutes) Delay to Total Travel Time (%) (minutes)
1 77 27.6 26.7
2 6.7 24.8 25.7
3 6.9 25.5 25.9
4 6.9 25.5 25.9

Table 10.20 summarizes the estimated mean of averages of trip delay, percentage of trip
delay, and total trip time per request over 5 replications. The average trip delay decrease with Q >
2 compared to Q = 1, since the system becomes less busy. Nonetheless, the higher capacity
implies more potential delays resulting from demand consolidation and longer ground

transportation. The trip delay is in the range of 25-28% of the total trip time. Lastly, an average



266

trip would take approximately 26 minutes in the network and is not very sensitive to the capacity
since the maximum acceptable trip delay is constrained, and the delay is not explicitly minimized

in the objective function.

Figure 10.11 provides more detail on the temporal distribution of the rejected requests.
Most requests are rejected from 6 AM to 7 AM, which coincides with the highest hourly demand
of the planning day, as seen in Table 10.8. However, the initial location of the UAT aircraft could

be a contributing factor as well.

o @ Q=1 (b) Q=2
S 8
2
S 6 i
=
o
0 L N
6 7 8 9 10 11 12 13 14 15 16 17 18 6 7 8 9 10 11 12 13 14 15 16 17 18
Requested Hour Requested Hour

Figure 10.11 Temporal distribution of rejected requests for Q of (a) 1 and (b) 2

Figure 10.12 depicts the eCDF of the percentage of trip delay to trip time for 5 replications.
The plots are similar for Q = 2, 3, and 4, while they differ from Q = 1. The maximum of trip delay
percentage is approximately 36%. With Q = 1, nearly 35% of the requests have a trip delay
smaller than 30% of the total trip time, while for Q > 2, around 50% of the requests have a similar

trip delay percentage.
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Figure 10.12 Empirical Cumulative Distribution Function (eCDF) of the percentage of trip
delay to trip time for 5 replications with Q of (a) 1, (b) 2, (c) 3, and (d) 4

10.5.4.2 Ground Transportation

Table 10.21 summarizes the estimated mean of performance measures related to ground-
based legs of the passenger trip. With Q = 1, the average ground-based distance and time are 0.06
mi and 0.8 minutes, while with Q > 2, the average ground-based distance and time are nearly 0.5
mi and 4 minutes, respectively. The minimum length of the non-zero ground-based legs is 0.14
miles, which is below the walking threshold. The maximum of ground leg distance is 0.5 mi for
Q =1 and nearly 2 mi for Q = 2. Since the radius associated with short leg elimination and
demand consolidation is 0.5 and 2 mi, respectively, the maximum values of the ground-based legs

verify that the passenger trips include a maximum of one ground-based leg.
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Table 10.21 Estimated mean of performance measures related to ground-based legs of the
request trip

Average Minimum Maximum Average Minimum Maximum
Ground Non-zero Ground Legs Ground Legs Non-zero Ground Legs

Q Legs Ground Legs Distance Travel Time  Ground Legs Travel Time
Distance Distance (miles) (minutes) Travel Time  (minutes)
(miles) (miles) (minutes)

1 0.06 0.14 0.50 0.79 2.80 7.50

2 042 0.14 1.95 3.86 2.80 10.70

3 048 0.14 1.94 4.38 2.80 10.68

4 047 0.14 1.95 4.34 2.80 10.67

Figure 10.13 and Figure 10.14 provide more detailed information on the distribution of
ground travel distance and travel time, respectively. Figure 10.14(a) depicts that with Q = 1 nearly
85% of the passenger trips have no ground legs, while around 10 percent experience a total ground-
based travel time between 4 to 6 minutes. Figure 10.14(c) and (d) show that with Q > 3, 40% of
the requests have no ground-based legs, while the remaining 60% experience a travel time between

4 to 10 minutes.

10.5.4.3 Relocation

Table 10.22 summarizes the estimated mean of the average number of relocations per
request and the percentage of customer requests experiencing 0, 1, and 2 relocations. Table 10.22
outlines that given the demand pattern and parameters setting assumed in the experiment design,
no request would have more than 1 relocation. Moreover, the percentage of requests with 1

relocation is approximately 15%, 53%, and 60% for Q = 1, Q = 2, and Q = 3, respectively.
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Table 10.22 Estimated mean of performance measures related to relocations and ground-
based legs of the request trip

Average Number Percentage of Percentage of Percentage of
Q of Re|gcati0ns Requests with 0 Requests with 1 Requests with 2
Relocation (%) Relocation (%) Relocations (%)
1 015 85.26 14.74 0
2 053 46.83 53.17 0
3 061 39.28 60.71 0
4 061 38.58 61.42 0

10.5.4.4 Travel Time Savings

Figure 10.16 outlines the eCDF of travel time savings compared to ground-based TNP trips
for Q = 1 to 4 and 5 replications. The plots are very similar over various Q. The travel tme savings
for nearly 10% of the requests is less than 20 minutes, 70% between 20 and 40 minutes, and the
remaining 20% between 40 and 60 minutes. Correspondingly, Figure 10.15 depicts the percentage
of trip time savings over 5 replications. Nearly 95% of the requests have a trip time saving between

40% and 70%.

10.6 Case Study: One Week

This section examines the performance measures associated with UAT operation on the
week of September 23rd, 2019, with n = 40% and 60% of the qualified TNP demand with Q = 2.
Table 10.23 summarizes the selected performance measures. For n = 40%, the percentage of
empty to revenue legs varies between 33% and 53%, while the percentage of empty to revenue
mileage varies between 12% to 31%, depending on the demand pattern and intensity. Additionally,
the average load factor is estimated between 82% and 89%, except for Sunday, with an average

load factor of 74%.
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Table 10.23 Performance measures associated with the operator’s cost and revenue and user
experience for Q = 2

Revenue
Cost User Experience
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n = 40%
Mon 32 108 39 18 87 2,724 40.1 0683 0 6.3 23 38 052 326 58
Tues 26 103 31 9 85 2,310 345 0728 0 63 23 3.6 050 347 60
Wed 39 112 39 22 88 3,301 494 0668 0 65 24 3.8 052 341 59
Thu 39 115 43 24 86 3,261 483 0646 0 65 24 38 052 36.4 61
Fri 38 123 50 27 81 2929 431 0598 0 6.2 23 34 048 408 65
Sat 19 126 48 24 80 1,274 192 0599 0 6.1 23 32 046 283 54
Sun 11 127 41 9 70 641 97 0594 0 56 21 27 042 26.1 52

n = 60%

Mon 47 108 40 22 89 4,041 595 0679 11 6.7 25 39 053 322 57
Tues 39 104 33 12 87 3464 517 0718 0 6.7 25 36 05 344 59
Wed 56 11.2 39 24 89 4873 730 0671 16 6.9 25 38 052 336 58
Thu 55 112 42 25 88 4,784 709 0659 22 7.0 25 39 053 358 60
Fri 55 123 52 30 84 4317 634 0599 17 7.0 25 35 048 40.0 64
Sat 27 129 53 31 82 1910 287 0584 0 64 23 34 048 281 53
Sun 15 127 45 15 74 961 145 0597 0 56 21 28 043 26.1 52
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Assuming a price per passenger mile (i.e., @) of USD 3, the maximum passenger revenue
over an 11-hour planning horizon with a fleet of 100 UAT aircraft serving 60% of Chicago TNP
demand is approximately USD 219K. The maximum of PRASM/« is, interestingly, for Tuesday,

which has the lowest empty to revenue mileage while having a relatively high average load factor.

The average delay is between 5.7 to 7 minutes, corresponding to nearly 25% of the total
trip time of the passengers. The average ground-based travel time is between 2.8 and 3.9 minutes.
The lowest and highest average trip time savings are for Sunday and Friday, respectively, with 26

minutes (or 52%) and 40 minutes (64%).

Comparing the performance measures for n =40% and n = 60% shows many
similarities. However, the aircraft utilization, percentage of empty to revenue flights, and

percentage of empty to revenue mileage are noticeably different under the two scenarios.

10.7 Limitations
The numerical results presented in this section are based on the Chicago TNP demand.
While Chicago TNP demand provides a tool for assessing the dynamic solution framework for

UAT fleet operations in a real-world setting, it imposes the following limitations:

e The demand model for UAT was a simplified rule-based model, using a fraction of

TNP trips longer than 10 miles that would take more than 45 minutes on the ground.

e The qualified TNP demand has a specific pattern that leads to high network efficiency.
The majority of trips are between O’Hare International Airport, Midway International
Airport, and downtown Chicago. Five and one census tracts, respectively, are the
origins and destinations of 50% of the qualified TNP demand, while 50 and 25 census

tracts account for 80% of the origins and destinations of the qualified TNP demand.
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e The TNP demand is generated at the centroid of the census tracts and, therefore, has
been consolidated in some levels. However, the census tracts could be as small as 0.003

square miles.
e The group size of the requests is assumed to be 1.

Additionally, without the loss of generality, the wait time for ground-based service is
assumed to be zero at the origin. However, the results of the synthetic network analyses show that
performance measures, including the percentage of rejected requests and average load factor, are
insensitive to a fixed increase in access time. Nonetheless, the ground-based wait time could

impact the travel time savings and, therefore, the UAT demand.

10.8 Concluding Remarks

The UAM OpsCon for passenger-carrying operations commissioned by NASA [29]
projects 10s of UAT pads/ports for the intermediate state and 100s for the mature state. The
Chicago network consists of nearly 800 census tracts, each corresponding to one UAT pad or port.
The size of census tracts varies from 0.003 to 8 square miles, while Antcliff et al. [100] suggest

0.94 and 1.4 square miles per pad for the metropolitan and urban areas, respectively.

The dynamic solution framework for UAT fleet operation is implemented using a fixed
fleet of 100 UAT aircraft and 60% of Chicago TNP demand for Monday, Sep. 23", 2019, with
Q =1, 2, 3, and 4, and the week of Sep. 23'-30", 2019, with Q = 2. Porsche Consulting [6]
estimates that the modal split for a megacity like S&do Paulo is 9% and 65% for taxi and private
cars, respectively. They further estimate that the number of UAT aircraft to replace these services
is 30 and 820 UAT aircraft, respectively. However, they do not offer any estimates for the ride-

hailing services used in this analysis. Nonetheless, the results of our analysis suggest that serving
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60% of qualified Chicago TNP demand with 100 UAT aircraft with 1 passenger seat would result
in a rejection rate of 14.6%, while the aircraft utilization is almost 100% during the morning and

evening peak hours.

UAM Operational Concept (OpsCon) commissioned by NASA [29] projects 10s of UAT
aircraft would fly simultaneously under the Intra-Metro Air Shuttle intermediate state mission, a
value that increases to 1,000s for the Ubiquitous Air Taxi mature state mission. Even though this
dissertation studies the UAT service, the qualified Chicago TNP demand is well-suited for Intra-
Metro Air Shuttle. That being said, the required 100 UAT aircraft to serve 60% of qualified

Chicago TNP demand is way below 1,000s for the Ubiquitous Air Taxi.

The results for Monday show that the average number of passengers per flight (with a
passenger group size of 1) is 1.8, 2.3, and 2.6 for capacities of 2, 3, and 4. For the one-week
analysis, the average load factor varies between 74% to 89%, suggesting the average passenger
load of 1.5t0 1.8. In comparison, conventional air taxi services such as DayJet and SATSA.r report
average passenger loads of 1.3 to 1.7. [100], while UAM market study by Crown Consulting

assumes 1 passenger per ride for Air Taxi operation [9].

Booz Allen Hamilton’s UAM market study [8] suggests that high network efficiency could
increase the UAM demand by more than 200% compared to the base scenario. The network
efficiency parameters include utilization (7 hours/day vs. 4 hours/day), load factor (80% vs. 65%),
and deadend trips (20% vs 37.5%). The aircraft utilization could get to 56% for the two-seater
aircraft over a planning horizon of approximately 11 hours, which implies the utilization of nearly

6 hours/day. The average load factor for 6 days out of the 7 days in the study is more than 80%.
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Antcliff et al. [100] posit that door-to-door travel time compared to ground-based
transportation is improved by 2.0 to 3.6 times, depending on the cruise speed (120 mph vs. 200
mph) and the density of the pads. Using the actual trip time of the passengers in Chicago, our
analysis shows the travel time savings of 52% to 64%, suggesting that the ground-based travel

time is 2.3 to 2.8 times of the corresponding UAT service.

Moreover, the average trip time for passengers is about 26 minutes, which is 2.6 times
higher than the 10-minute door-to-door trip time for Air Taxi operation in a ubiquitous network,

put forward by Crown Consulting UAM market study [9].



277

Chapter 11 Conclusion

11.1 Summary and Contributions

In recent years, with the vision of eco-friendly autonomous aircraft equipped with electric
propulsion and efficient batteries with short charging or swapping time, the interest in air
transportation has resurfaced. Benefitting from this revolutionary aircraft technology, the
Advanced Air Mobility (AAM) [7] initiative is pursuing to transfer cargo and passengers between
urban, local, regional, and intraregional areas, while the Urban Air Mobility (UAM) market

focuses on carrying passengers and goods within metropolitan areas [7-9].

Urban Air Taxi (UAT) is the use case of passenger-carrying UAM at its mature state, which
offers a ubiquitous (nearly) on-demand per-seat service that moves passengers in urban or
suburban areas using groundbreaking aircraft. As of February 2020, 110 passenger-carrying AAM
city projects were in progress worldwide [6], and passenger UAM is projected to grow at a
compound annual growth rate (CAGR) of 35% by 2035, with 2025 as the starting year [6].
Additionally, in the first half of 2020, USD 907 million was invested in UAM start-ups, nearly 20

times higher than the entire of 2016 [19].

Motivated by this rapid growth, the immense interest in passenger-carrying UAM, and the
ensuing travel time savings for the users, this dissertation focuses on the stochastic and dynamic
problem of the UAT fleet operation. A UAM market study [8] argues that high network efficiency,
including high aircraft utilization and load factor, could increase the UAM demand by more than
200% compared to the base scenario. Furthermore, ride-sharing economics is projected to be one
of the three critical steps towards lowering costs [28]. Meanwhile, the UAM research community

maintains that more advanced passenger pooling and aircraft dispatching models are needed, and
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it calls for algorithms that could be implemented online or use a rolling horizon framework to

address the uncertainties encountered in the UAM operation [34,36].

Consequently, the main contributions of this dissertation include outlining the concept of
operations for UAT services, defining the UAT problem, and the development and application of
a dynamic solution framework to address the stochastic and dynamic problem of UAT fleet
operation. Hence, this dissertation provides the UAT operator with a decision-making tool to
achieve higher network efficiency. Cities aiming to start UAT operations in the near future could
immediately benefit from this solution framework for the UAT operation. Nonetheless, this
solution framework sets a benchmark for all use cases of passenger UAM for other city projects

in the planning process.

Since a dominant player in the UAM market has yet to emerge, many uncertainties
surround the UAM operations. Consequently, the relevant components of UAM and their
envisioned characteristics are reviewed first (Chapter 2). Subsequently, the UAT concept of
operations, which involves a ubiquitous service with air pooling and elimination of short
repositioning flights, is accordingly outlined (Chapter 4). The UAT operation involves numerous
components and events, many of which are irrelevant to the problem of UAT fleet operation. As a

result, the entities required for modeling the UAT fleet operation are specified (Chapter 5).

Subsequently, a dynamic solution framework with sequential decision-making on a rolling
horizon basis is proposed to address the UAT fleet operation problem (Chapter 6). A static and
deterministic problem (i.e., snapshot problem) is solved at each decision epoch to help the UAT
operator make the dynamic operational decisions, including acceptance and rejection of requests,
routing and scheduling the aerial fleet, and assigning the requests to flights. To achieve this goal,

the snapshot problem is modeled as a Capacitated Location-Allocation-Routing Problem with
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Time Windows and Short Repositioning Elimination (CLARPTW-SRE). Ultimately, the node-
based network representation for CLARPTW-SRE is specified (Chapter 7), and the MIP

formulation is presented (Chapter 8).

Given the ubiquitous nature of the UAT service, pooling the passengers and increasing the
aircraft load factor is deemed a critical step in the success of UAT operations. However, the
absence of a dominant eV TOL aircraft technology and UAT operator feeds the uncertainty around
UAT. As a result, the impacts of various exogenous and design parameters on demand
consolidation are examined using comprehensive sensitivity analyses in a synthetic network
(Chapter 9). Furthermore, the dynamic solution framework is implemented using a fixed fleet of
UAT aircraft and Chicago Transportation Network Providers (TNPs) demand (Chapter 10).
Augmenting the devised UAT operational strategy with real-world data would validate the
network efficiency assumptions (e.g., the average load factor and utilization) made by many UAM

market studies and offer estimates of the said parameters for future studies.

Ultimately, this research provides a tool for researchers to examine various concepts of
operations and evaluate different operational strategies such as sharing or pricing schemes. The

outcomes of such studies are valuable for the players from the industry as well as the regulators.

11.2 Limitations and Future Research Areas

The stochasticity in UAT fleet operation involves travel times and demand. The analysis
in this dissertation highlights that the success of air pooling hinges on reliable ground-based
transportation and the synchronization between aerial and ground-based modes. While this
research considers deterministic travel times, incorporating stochasticity of aerial and ground-

based wait times and travel times in the solution framework has a high priority for modeling real-
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world UAT operations. Another direction for future research involves incorporating the forecasted

demand in the decision-making process.

Moreover, the minimum required distance for short repositioning flight legs and the
minimum of acceptable delay significantly impact the size of the optimization problem and,
consequently, the potentials of CLARPTW-SRE for real-time application. The instances studied
in this research are solved using commercial software. However, existing heuristic methods could
be tailored, or new heuristic solution methods could be developed to solve the problem in a
reasonable time for at-scale UAT operations involving 1000s of aircraft, wider time windows, and

longer minimum distances for short repositioning legs.

This research uses a rule-based demand model for UAT, which is dependent on the distance
between the origin and destination of each request and the corresponding ground-based travel time.
Future studies could explore incorporating a pricing scheme and a more elaborate demand model

for UAT operations.

Another research area is to include air traffic control, aerial congestion, and the availability
of UAT pads in the UAT model and the decision-making process. As the technology of electric
vertical take-off and landing (eVTOL) advances and more details of battery charging or swapping
and maintenance requirements become available, these events could also be included in the model

associated with UAT fleet operation.

Finally, seamless synchronization between the aerial and ground-based mode has a pivotal
role in air pooling, lowering the operational costs, user satisfaction, and successful UAT operation.
Integrating the proposed dynamic solution framework for UAT operations with a dynamic model

for routing and assigning the vehicles on the ground is another area for future studies.
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Appendix A. Notations

SYMBOL

Decision Epoch

EPOCH
Te

AtUPDATE

UAT Aircraft

DEFINITION

Decision epoch index

Number of decision epochs

Set of decision epoch indices, € = {1, 2, ...,¢,...,E}
The event associated with the start of decision epoch e
The event associated with the end of decision epoch e
The start time of decision epoch e

The end time of decision epoch e

Length of decision epoch e; T/FOH = 1,5 — 7,

The re-optimization interval; AtVPPATE = 7 ¢ — 7 s

Ve-1

UAT aircraft k

Aerial fleet size

Set of available aircraft; X = {a,, a,, ..., ay, ..., ax}.
Capacity of aircraft k

Capacity of the aerial fleet in a homogeneous fleet
Speed of UAT aircraft k (mph)

Speed of UAT aircraft in a homogeneous fleet (mph)

The earliest time the subsequent itinerary of UAT aircraft k could be
modified as of time t.

Location of UAT aircraft k at T/ -

Ordered list of non-completed flight legs assigned to UAT aircraft k as of
time ¢

Ordered list of flight legs assigned to UAT aircraft k that have not started
as of time ¢

Ordered list of flight legs assigned to UAT aircraft k that have not started
as of time ¢



NDSRD
Clet

eVTOL
Ay

eVTOL
St

eVTOL
Ckt

Requests

TPLN

DSRD
Ty

SRVC
Tyt

AREQ

T

REQ
St

GREQ

rt

REQ
Crt

Flight Legs
fi

DSRD
r

CRNT
kt
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Binary variable, which is 1 if Lif" is the drop-off UAT pad of the
passengers, but not their desired one, 0 in any other case.

Static attributes of aircraft k, AS"T0L = (Q,, viR)

State of the UAT  aircraft at time ¢; SFV70L =

eVTOL _AVL jAVL
(Ske " Tie » Ligt »th)akex-

Status of the UAT aircraft k at time t

Request r
The intended request of flight leg i
Origin of request r
Destination of request r
Desired pick-up UAT pad of request r
Desired drop-off UAT pad of request r
Group size of request r
Arival time of request r
Requested time of service for request r
REQ ARV

Reservation time window of request r; TAPY = 1,.°% — ¢/

The latest time the passenger group of request r could reach their
destination

Minimum trip time corresponding to the desired flight leg of request r

The earliest time the passenger group of request r could start the service
and leave their origin

Static attributes of request r; AX*? = (0,, D, , 2SR EDSRD g 7REQ)
State of all the requests that have been placed by time t
State of request r as of time t

Status of request r as of time t

Flight leg i
Desired flight leg of request r

Flight leg in service by aircraft k as of time ¢t



STRT
Tit

COMP
Tit

LEG
A;

REVLEG
Ai

SiLEG
Sit ¢
Fi(Sy, E, v{"™P)
S(#)

Sets of Requests
RgAND

:R%]NASGN
:R{'LXSTRT
:thVXDSTRT
ﬁglCCPT

7—255 JCT

Sets of Flight Legs

KE
Trt

KS
Fre

SS
Frt
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Starting UAT pad of flight i
Ending UAT pad of flight i

A binary variable denoting whether flight leg i is empty (0) or revenue-
generating (1)

The earliest time that flight leg i could be served

The latest time that flight leg i could be served
Scheduled start time of flight leg i as of time t
Scheduled completion time of flight leg i as of time t
Static attributes of flight leg i, AYE¢ = (S,, E;, H;)

Additional static attributes of revenue-generating flight leg i; AREVLEG =
INTND _MIN _MAX
(””i T T )

State of flight leg i as of time t
Status of flight leg i as of time t

Function that defines #; such that it starts at §; and ends at E;, with

intended request #~/NTNP

Function that returns the starting point of #

Set of candidate requests as of time t

Set of unassigned requests as of time t

Set of requests with a flexible pick-up UAT pad as of time t
Set of requests with a fixed pick-up UAT pad as of time t
Set of accepted candidate requests during decision epoch e

Set of rejected candidate requests during decision epoch e

Set of flight legs that start at a first availability UAT pad of a UAT aircraft
and end at the desired drop-off UAT pad of a candidate request

Set of flight legs that start at a first availability UAT pad of a UAT aircraft
and end at the desired pick-up UAT pad of a candidate request

Set of flight legs that start at the desired pick-up UAT pad of a candidate
request aircraft and end at the desired pick-up UAT pad of a candidate
request



EE
Fri

?‘TE

Distances
dist(p,q)

oD
Dy

Access Times

INGRS
er’t

EGRS
er’
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Set of flight legs that start at the desired drop-off UAT pad of a candidate
request aircraft and end at the desired drop-off UAT pad of a candidate
request

Set of flight legs that start at the desired drop-off UAT pad of a candidate
request aircraft and end at the desired pick-up UAT pad of a candidate
request

Set of candidate flight legs at time ¢t

Set of feasible desired flight legs as of time ¢
Set of feasible connecting flight legs of time ¢t
Set of candidate flight legs that

Set of candidate flight legs that start at the desired UAT pad of their
intended request

Set of candidate flight legs that do not start at the desired UAT pad of their
intended request

Set of candidate flight legs that end at the desired UAT pad of their
intended request

Set of candidate flight legs that do not end at the desired UAT pad of their
intended request

Set of candidate flight legs that do not end at the desired UAT pad of their
intended request for the reduced network g, as of time t

Distance (as the crow flies) between point p and point q in the space

Distance (as the crow flies) between the origin and destination of request
T

Aerial distance of flight leg i

Aerial distance between the first availability UAT pad of aircraft k as of
time t and the starting UAT pad of flight leg i

Aerial distance between the ending UAT pad of flight leg i and the starting
UAT pad of flight leg j

Wait time as of time t for ground-based transportation from the origin of
request r to the starting UAT pad of flight leg i

Wait time as of time t for ground-based transportation from the origin of
request r to the starting UAT pad of flight leg i
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TNGRS Duration of ingress of request r to flight leg i

TECRS Duration of egress of request r from flight leg i

TINBND Time to reach the starting UAT pad of flight leg i from the origin of
Tl

request r using walking or driving

TOUTBND Time to_ reach the destinqtipn of request r from ending UAT pad of flight
m leg i using walking or driving

TDGATE Elapsed time between a}rriving at the UAT port on the ground and reaching
m the departure gate of flight i for request r

T AGATE Elqpsed time_ for reaching the area of ground transportation from the
m arrival gate flight leg i for request r

Aerial Times

TFLIGHT Flight time of flight leg i, including ascending, descending, and cruising

TLRUISE Cruise time of flight leg i

TASCEND Time elapsed in ascending for an eVTOL aircraft

TDESCEND Time elapsed in descending for an eVTOL aircraft

TTAKEOFF Time required for ATC clearance before take-off

TLANDING Time required for clearance after landing

TBOARD Duration of boarding passengers

TDPEBOARD Duration of deboarding passengers

TSRVEMP Service time of empty flight leg i

TSRVREV Service time of revenue-generating flight leg i

70 'I_'ime required to get from the first a_vailability UAT pad of aircraft k as of
kit time t to the starting UAT pad of flight leg i

T Time required to get from the ending UAT pad of flight leg i to the starting
Y UAT pad of flight leg j

TSTRTTW Time window for starting empty flight leg m as of time t

Nodes

N Nodes of the network G, as of time t

NevToL Set of nodes associated with the UAT aircraft in the network G, as of time

t



succ
Nit

ArSuUCC
Nit
NFLXSTRT

t

NFXDSTRT
t

Arcs
Ay

INIT
At

INITTW
A

FINIT
At

SEQ
Ay

cﬂfEQTW

=SEQ
Ay

ALCT
Ap
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Set of nodes associated with the UAT aircraft in the reduced network G,
as of time t

Set of nodes associated with the candidate flight legs in the network G; as
of time t

Set of nodes associated with the candidate flight legs in the reduced
network G, as of time t

Set of nodes associated with the candidate requests in the network G, as of
time t

Set of nodes associated with the candidate requests in the reduced network
G asof time t

Set of nodes associated with candidate flight legs that do not end at the
desired UAT pad of their intended request

Set of nodes associated with succeeding flight legs of flight i < J\f_tE as of
time t

Set of nodes associated with succeeding flight legs of flight i < J\f_tE in the
reduced network G, as of time ¢

Set of nodes associated with requests with flexible pick-up UAT pad
Set of nodes associated with requests with fixed pick-up UAT pad

Arc of the network G; as of time t

Initial arcs, which connect aircraft to revenue-generating flight legs, in the
network G, as of time t

Initial arcs, which connect aircraft to revenue-generating flight legs, after
considering the time windows as of time ¢t

Initial arcs, which connect aircraft to revenue-generating flight legs, in the
reduced network G, as of time ¢

Sequencing arcs, which connect two revenue-generating flight legs in the
network G, as of time t

Sequencing arcs, which connect two revenue-generating flight legs, after
considering the time windows as of time t

Sequencing arcs, which connect two revenue-generating flight legs in the
reduced network G, as of time ¢

Allocation arcs, which allocate requests to revenue-generating flight legs
in the network G; as of time t



JALCT
Ap

AINTND
oFREE
Ay
AFREE
oPREC
A"y
APREC

oSucc
A

A%S'UCC
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Allocation arcs, which allocate requests to revenue-generating flight legs
in the reduced network G, as of time t

Set of (r,i), where 7. = #~/NTND; 4INTND ¢ gALCT

Subset of AN with no constraints on the aircraft or flight legs
Subset of «4;"? with no constraints on the flight legs

Subset of AINT with preceding constraints

Subset of A;"? with preceding constraints

Subset of AINT with preceding constraints

Subset of 4. with succeeding constraints

Set of Flights for Network Reduction

j:CAND
t
j:"CAND
t
j;"i_S'UCC

Parameters
VWALK

VDRIVE

AE MPTY
AOD
AWALI(

AACCESS

€

TADV

TINT

Simulation
zSTRTARV

c:zENDARV

Adjusted candidate flight legs after excluding the flight legs that could not
possibly serve their intended requests

Adjusted candidate flight legs that are feasible to be served directly by an
aircraft or followed by another flight leg given the time windows

Connecting candidate flight legs with undesired destination UAT pad for
which the set of succeeding flight legs becomes empty

Speed of walking (mph)

Speed of driving (mph)

The minimum of Euclidean distance between two points to qualify for the
empty repositioning flight (miles)

The minimum distance between origin and destination of a request to
qualify for a UAT trip (miles)

The maximum of walking distance (miles)

The radius of the accessible area around the origin or destination of a
request for air pooling (miles)

Detour factor of the aerial trip
The maximum of the advance reservation time window, APV € [0, 74P"]

The mean of interarrival times (seconds)

Start of arrival time

End of arrival time



 STRTREQ
FENDREQ
g STRTSIM

zENDSIM

Objective Function
c

a

Decision Variables
pi

YVki

Other Notations
w

wl
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Start of request time for service
End of request time for service
Start of simulation

End of simulation

Fixed operational cost of revenue or empty flight legs

Revenue per passenger per mile

Operational cost per mile

Weight of the relocation in the objective function

Exponent of the number of relocations in the objective function
Earned revenue by serving request r

Total cost of serving revenue-generating flight leg i as of time t, which
includes the preceding empty flight leg from L#/% to S;.

Total cost of serving revenue-generating flight leg j, including the
preceding empty flight leg from E; to S;.

Total cost of relocating request r to take flight leg i

Number of relocations required for request r to take flight leg i; y,; €
{0,1,2}.

p; for i € WVEEG is 1 if flight leg i will be conducted

yii for (k, i) € ANT is 1 if flight leg i is the revenue-generating flight
served by aircraft k immediately from its availability UAT pad as of time
t; Vi € {0,1}

x;j for (i, j) € A" is 1 when revenue-generating flight leg j is served
immediately after revenue-generating flight leg i; x;; € {0,1}

z,; for (r, 1) € ALLCT is 1 when request 7 is assigned to flight leg i

TP04RD for i € IMLEC s the time revenue-generating flight i starts the
boarding process

Maximum acceptable delay

Adjusted maximum acceptable delay
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Qktn n'" leg on 9y,

QMIN Minimum delay incurred when #. takes #; instead of #; = #PSRP



