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ABSTRACT 

Development and Application of a Dynamic Solution Framework for Urban 

Air Taxi Fleet Operation 
 

Haleh sadat Ale-Ahmad 

 

Urban Air Taxi (UAT) is the use case of passenger-carrying Urban Air Mobility (UAM) at 

its mature state, and it offers a ubiquitous on-demand (or nearly on-demand) per-seat service that 

moves passengers in urban or suburban areas using groundbreaking aircraft. However, the absence 

of a dominant electric vertical take-off and landing (eVTOL) aircraft technology and UAT operator 

feeds the uncertainty around UAT. This dissertation focuses on outlining the concept of operations 

for UAT services, defining the UAT problem, and developing and applying a dynamic solution 

framework to address the stochastic and dynamic problem of UAT fleet operation. As a result, it 

provides the UAT operator with a decision-making tool to achieve higher network efficiency. 

To accomplish this goal, the UAT concept of operations, which involves a ubiquitous 

service with air pooling and elimination of short repositioning flights, is first outlined. 

Subsequently, the entities relevant to the UAT fleet operation are specified, and their associated 

states and events are presented in detail. The dynamic and stochastic problem of UAT fleet 

operation is modeled on a rolling horizon basis. A static and deterministic problem is solved at 

each decision epoch to help the UAT operator make the dynamic operational decisions, including 

acceptance and rejection of requests, routing and scheduling the aerial fleet, and assigning the 

requests to flights. Based on a node-based representation of the UAT network, the snapshot 

problem is modeled as a Capacitated Location-Allocation-Routing Problem with Time Windows 
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and Short Repositioning Elimination (CLARPTW-SRE). For narrow time windows and relatively 

short minimum distance for repositioning flight legs, the corresponding MIP could be solved 

quickly using commercial software, enabling its real-time application.  

The proposed dynamic solution framework is subsequently implemented using a discrete-

event simulation. The impacts of various exogenous and design parameters on demand 

consolidation are examined using comprehensive sensitivity analyses in a synthetic network. 

Furthermore, the framework is applied to the Chicago network using a fixed fleet of UAT aircraft 

and Chicago Transportation Network Providers (TNPs) demand. Augmenting the devised UAT 

operational strategy with real-world data would validate the network efficiency assumptions (e.g., 

the average load factor and utilization) made by many UAM market studies and offer estimates of 

the said parameters for future studies. 
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Chapter 1 Introduction 

1.1 Motivation 

In January of 1951, a personal helicopter, which was “big enough to carry two people and 

small enough to land on your lawn,” was featured on the cover of Popular Mechanics [1]. Since 

then, numerous terms have been used to describe air transportation in metropolitan areas, including 

helicopter air carrier, air taxi, On-Demand Aviation (ODA), On-Demand Mobility (ODM), on-

demand urban air transportation, and most recently, Urban Air Mobility (UAM) [2].  

The first attempts to provide on-demand air transportation date back to the 1960s [2], where 

Air General offered on-demand service in Boston with as few as 30 minutes reservation windows 

using over 70 helicopters. In the early 2000s, a Small Aircraft Transportation System (SATS) 

research project carried out jointly by the Federal Aviation Administration (FAA) and the National 

Aeronautics and Space Administration (NASA) advocated on-demand regional services between 

cities using Very Light Jets (VLJ) [2]. This idea drew a lot of interest [3], which subsequently 

subsided in part due to the great recession in 2008 [2]. 

In recent years, with the vision of eco-friendly autonomous aircraft equipped with electric 

propulsion (which enables a 10x reduction in energy costs [4]) and efficient batteries with short 

charging or swapping time, the interest in urban air transportation has resurfaced. Compared to a 

helicopter, electric vertical take-off and landing (eVTOL) aircraft are 4 times quieter (with Joby 

claiming ~100 times quieter [5]) and 10 times less expensive [6]. Benefitting from this 

revolutionary aircraft technology, the Advanced Air Mobility (AAM) [7] initiative is pursuing to 

transfer cargo and passengers between urban, local, regional, and intraregional areas, while the 

UAM market focuses on carrying passengers and goods within metropolitan areas [7-9]. Urban 
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Air Taxi (UAT), a subset of UAM, is a ubiquitous on-demand per-seat service that transfers 

passengers in urban or suburban areas using groundbreaking aircraft [8,9]. UAT does not have 

fixed routes and regular schedules, distinguishing it from air metro [9] or airport shuttle [8], which 

are envisioned to operate on predetermined routes. 

As of February 2020, 110 UAM1 city projects were in progress worldwide [6]. More than 

250 businesses were involved in UAM as of August 2020 [10]. The ride-hailing company Uber 

[11], major aircraft manufacturers Airbus [12] and Boeing [13], car manufacturer Hyundai [14], 

and start-ups Lilium [15], Volocopter [16], Kitty Hawk [17], and Joby Aviation [18] have shown 

considerable interest in passenger AAM. In the first half of 2020, USD 907 million was invested 

in UAM start-ups, which is nearly 20 times the amount invested in the whole year of 2016 [19].  

UAM would be an attractive mode of transportation if it could deliver the critical promises 

of being the fastest mode while safe and enjoyable and having reasonable prices while offering 

multi-modal service with seamless transfers [20]. Therefore, the travel time saving is a critical 

variable in choosing UAM. Using UAT could reduce travel time over shorter distances, where the 

ground network is congested or the travel time is not reliable. However, for longer trips, the 

difference between aerial speed and ground speed plays a significant role. In 2017, the American 

Community Survey (ACS) estimated the number of workers to be nearly 152.8 million, out of 

which 85.3% drive alone and 38.3% (or 58.5 million) have commuting time greater than 30 

minutes [21]. Moreover, the 2006-2010 ACS suggests that in the top 10 mega counties, commuters 

have a mean travel time ranging from 102 to 116 minutes and mean travel distance between 59 

and 91 miles [22], and therefore, could significantly benefit from AAM. 

 
1 The UAM definition in Porsche Consulting report includes city-to-city trips as well. 
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However, there are numerous barriers and challenges in launching UAM as a mass-scale 

transit system [23], including: 

• The regulation and certification process from the U.S. Federal Aviation Administration 

(FAA) and European Aviation Safety Agency (EASA) to fly large numbers of VTOL 

aircraft in urban areas; 

• The development of reliable aircraft (especially in inclement weather) with efficient 

performance for commercial use; 

• The advancement of battery technology to accommodate long-distance rides; 

• The conflict resolution between UAM and Unmanned Aerial Vehicle (UAV) specified 

and operated by Air Traffic Control (ATC); 

• Providing the service at an affordable cost; 

• Safety [24,25], 

• Noise [26], 

• Life-cycle emissions, and 

• Required infrastructure. 

In a UAM market study conducted by Booz Allen Hamilton [8], under an entirely 

unconstrained (i.e., best case) scenario, the total available market value of airport shuttles and air 

taxis in the U.S. is estimated to be USD 500 billion with 11 million daily trips, which corresponds 

to 20% of the daily work trips across the U.S. However, willingness-to-pay, availability of the 

infrastructure and their capacity, adverse weather, and limited operation hours could reduce this 

market to 55,000 daily trips (i.e., 0.1% of total daily work trips in the U.S.) with an estimated USD 
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2.5 billion market value in the near term. The number of UAM aircraft drops from 850,000 in the 

unconstrained scenario to 4,100 in the constrained scenario. 

Meanwhile, the most recent study by Roland Berger [19] estimates that by 2050, the 

revenue generated by the passenger UAM industry worldwide will be USD 90 billion a year with 

160,000 passenger UAM aircraft, a significant growth from the projected USD 1 billion in 2030. 

To put these numbers into perspective, the total revenues of the global commercial airline market 

in 2019 were USD 840 billion, and the global taxi market is estimated to be USD 300 billion in 

2030. 

Passenger UAM is projected to grow at a compound annual growth rate (CAGR) of 45.9% 

by 2040 as Frost and Sullivan estimate [27], or 35% by 2035 (starting from 2025) as Porsche 

Consulting forecasts [6]. Factors such as cost, travel time savings, transfers and stops, safety, and 

noise are influential in adopting passenger UAM [8]. Booz Allen Hamilton’s UAM market study 

[8] argues that high network efficiency, including high aircraft utilization and load factor2, could 

increase the UAM demand by more than 200% compared to their base scenario. Uber suggests 

that ridesharing economics is one of the three critical steps towards lowering costs [28]. Uber’s 

argument is consistent with the Crown Consulting UAM market study [9] commissioned by 

NASA, which forecasts that the on-demand point-to-point air taxi market will not be profitable by 

2030, stating that the assumption of one passenger per trip is one of the main barriers.  

Consequently, choosing the right UAM business model is crucial to the success of industry 

players [19]. Aside from the UAM market studies [8,9], ConOps [7], and OpsCons [29] provided 

by NASA and FAA, multiple players from the industry have offered their visions on passenger 

 
2 Capacity utilization of an aircraft 
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AAM and UAM [23,30-32]. Patterson et al. [33] summarize the numerous proposed visions in five 

on-demand or near-on-demand passenger UAM missions: private operation, air taxi, air pooling, 

semi-scheduled commuter, and scheduled commuter. The lack of consensus on the vision of 

passenger UAM operations and the absence of a single player in the industry has provided an 

opportunity to coordinate the UAM research according to the industry’s needs [9]. For instance, 

Boeing plans to address the challenges of UAM operations by “modeling and simulating multiple 

end-state operational scenarios” [30]. 

Similar calls have echoed in the UAM research community. Following the review of the 

recent research and developments in UAM, Straubinger et al. [34] maintain that more advanced 

passenger pooling and aircraft dispatching models are required. Rajendran and Srinivas [35] 

review the developments of passenger UAM and the future challenges. They argue that the 

dynamic routing of air taxis and integration of ground and air transportation scheduling is 

underexplored and call for more research in these areas. Garrow et al. [36] present a systematic 

review of the UAM literature and conclude that most studies in the literature offer a deterministic 

framework for dispatching and scheduling algorithms. Consequently, they call for algorithms that 

could be implemented online or use a rolling horizon framework to address the uncertainties 

encountered in the UAM operation. 

To address the gap in the literature, this dissertation focuses on developing a solution 

framework for the stochastic and dynamic problem of ubiquitous on-demand per-seat passenger 

UAT with air pooling. Among the 110 ongoing UAM and AAM city projects worldwide [6], the 

sheer number of potential UAM infrastructures in some cities, such as Dubai, would accelerate the 

UAM implementation. Consequently, such cities could see significant and immediate benefits 

from the UAT operations solution framework devised in this study. Nonetheless, this methodology 
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sets a benchmark for other use cases of passenger UAM and other city projects in the planning 

process. Furthermore, augmenting the devised UAT operational strategy with real-world data 

would validate the network efficiency assumptions (e.g., the average load factor and utilization) 

made by many UAM market studies or offer estimates of said parameters for future studies. 

Ultimately, this research aims to provide a tool for the researchers to examine various 

concepts of operations and evaluate various operational strategies such as sharing schemes. The 

outcomes of such studies could be valuable for the industry players and the regulators, and 

therefore, could pave the way for future collaborations.  

1.2 Problem Statement 

UAT evolves around travelers who utilize their smartphones to request a ride within a city 

or a city and its suburbs. The service is on-demand and per seat. The requests are immediate or 

provide short notice, and the users expect to be served within a couple of minutes from their 

requested time. A fleet of eVTOL aircraft and ground-based ride-hailing service provided by a 

centralized UAT operator is available on-demand to cover the requests at competitive costs. The 

UAT operator offers a multi-modal service and synchronizes its aerial and ground fleet to serve 

the requests. 

The UAT operator manages a fleet of homogenous vehicles and UAT aircraft in a 

ubiquitous network, and it synchronizes these two modes to serve the customers. Each request is 

identified by the origin, destination, requested time to begin the service, and group size. Given that 

the UAT pads are ubiquitously present in a ubiquitous network, the origin and destination of the 

request correspond to the desired take-off and landing sites, respectively. 
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Each passenger group is flexible in their pick-up and drop-off UAT pads selection and 

could be relocated on the ground within a reasonable radius from their origin or destination. This 

allows the UAT operator to eliminate the short repositioning flight legs in the ubiquitous network 

by relocating the requests over short distances. Additionally, the customers are willing to share a 

UAT aircraft with other passengers, and consequently, the UAT operator could relocate the 

passengers to consolidate customer requests and increase the aircraft load factor. As a result of 

short repositioning elimination and demand consolidation, the passenger trip consists of, at most, 

three legs: two ground-based legs and an aerial leg. The aerial leg is non-stop, and there is no 

intermediate transfer point for passengers to change the UAT aircraft after boarding.  

The UAT operator is unaware of all future requests at the beginning of the planning 

horizon, and the customer requests for service arrive in real-time. As a result, the UAT operator 

updates its dispatching plan through a sequential decision-making process. The UAT operator may 

have a relatively short period for decision-making, particularly if there is no reservation scheme 

and requests are expected to be served immediately. The acceptance or rejection decision of the 

arrived requests is made at the first decision epoch after their arrival and will not change in the 

subsequent decision epochs. In other words, while considering accepting a new request, the UAT 

operator cannot reject the requests accepted in the previous decision epochs. However, the flight 

legs assigned to the accepted requests (and therefore, the pick-up and drop-off UAT pads) could 

change as long as the customers did not leave their origin. After leaving the origin for the pick-up 

UAT pad, the pick-up UAT pad of the request is fixed, and its boarding time could be rescheduled.  

The UAT competitive advantage is the travel time savings. As a result, if the UAT operator 

chooses to serve a request, the trip delay (i.e., deviation of the request’s total trip time from its 

desired trip time) cannot exceed a prespecified value, which in turn limits the wait time for the 
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aerial service, the ingress and egress time, and the deviation from the shortest flight. Additionally, 

the UAT operator determines when the customers should leave their origin to access the pick-up 

UAT pad. The scheduling is such that the customer wait time is mainly incurred at the origin rather 

than the pick-up UAT pad. However, some customers may wait at the departure gate after a 

schedule change resulting from the new information (e.g., the arrival of new requests). Since the 

assigned flight legs and their schedules could be updated multiple times, the requests are only 

provided, in advance, with the time window during which they will be prompted to leave their 

origin or board the aircraft, not the exact time. 

The revenue that the UAT operator earns from serving a request is proportional to the 

distance between the origin and destination of the request and its group size. The UAT operator 

incurs a fixed cost per flight and a variable cost proportional to the aircraft mileage. Ultimately, 

the UAT operator seeks a strategy that maximizes its net profit given the capacity, delay, and 

synchronization constraints. This strategy should address request acceptance and rejection, 

allocation of accepted requests to flight legs, and the sequence that UAT aircraft should serve these 

flight legs. It should further handle the flight scheduling, the boarding time of each passenger 

group, and the time by which the passenger groups need to leave their origin. 

1.3 Contributions 

Aiming to provide insights on the UAT fleet operations and its potential in terms of travel 

timing savings in the urban setting, this dissertation makes the following contributions to the 

passenger UAM literature:  

i. This research presents a concept of operations for UAT fleet operation in its mature 

state. The proposed concept of operations involves demand consolidation and 

elimination of short repositioning flight legs while providing a prespecified level of 
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service. To this end, it proposes the concept of flexible pads for UAT service design, 

aiming to increase the aircraft load factor (i.e., capacity utilization) and decrease the 

operating costs. 

ii. This research models and solves an optimization problem with demand consolidation, 

elimination of short repositioning legs, synchronized logistics, and a guaranteed level 

of service. 

iii.  This research offers a dynamic solution framework that utilizes the optimization model 

for dynamic and stochastic UAT fleet operations, providing the UAT operator with a 

decision-making tool. 

iv. This research develops a discrete-event simulation framework with sequential 

decision-making problems for UAT operation as a proof of concept. This simulation 

framework provides a tool that could be enhanced with other modules and models (e.g., 

demand, pricing, air traffic control) to further examine UAT operation. 

v. Using a synthetic network and sensitivity analyses, this research evaluates the impact 

of technological factors (such as aircraft cruising speed) and strategic and operational 

decisions (such as demand consolidation strategy and the guaranteed level of service) 

on UAT fleet operation.  

vi. This research provides insights on the factors associated with network efficiency, such 

as aircraft utilization and average load factor, using real-world data in Chicago. 

1.4 Organization 

Chapter 1 presents the motivation for this dissertation, states the problem, and outlines the 

dissertation’s contributions. Chapter 2 provides more details on the concept of Urban Air Mobility, 
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recent developments, and the use cases suggested in the literature. Chapter 3 describes the 

proposed concept of operations for UAT in its mature state and outlines the operational 

assumptions used in this research. Chapter 4 presents a literature review relevant to the proposed 

concept of operations for the urban air taxi problem. Chapter 5 describes the modeling components 

of the UAT operational problem. Chapter 6 specifies the dynamic solution framework for the 

dynamic and stochastic UAT fleet operation. Chapter 7 discusses the network definition for the 

Capacitated Location-Allocation-Routing Problem with Time Windows And Short Repositioning 

Elimination (CLARPTW-SRE) presented in Chapter 8. Chapter 9 provides the design of numerical 

experiments, sensitivity analyses, and the outcomes for a synthetic network, while Chapter 10 

presents the numerical experiments and results using the real-world data of the Chicago network. 

Ultimately, Chapter 11 concludes the dissertation with a summary of the research, findings, 

limitations, and suggestions for future research. 
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Chapter 2 Passenger Urban Air Mobility 

2.1 Overview 

In January of 1951, a personal helicopter, which was “big enough to carry two people and 

small enough to land on your lawn,” was featured on the cover of Popular Mechanics [1]. Since 

then, numerous terms have been used to describe air transportation in metropolitan areas, including 

helicopter air carrier, air taxi, On-Demand Aviation (ODA), On-Demand Mobility (ODM), on-

demand urban air transportation, and most recently, Urban Air Mobility (UAM) [2]. The media 

has chosen the name flying cars regardless of the industry disapproval [37]. 

With the vision of autonomous aircraft equipped with electric propulsion, which enables a 

10 times reduction in energy costs [4], the interest in air transportation has resurfaced. Benefitting 

from revolutionary aircraft technology, the Advanced Air Mobility (AAM) [7] initiative is 

pursuing to transfer cargo and passengers between urban, local, regional, and intraregional areas, 

while the UAM market focuses on carrying passengers and goods within metropolitan areas [7-9]. 

Even though UAM covers passengers and cargo, the terminology is mainly used to refer to 

passenger-carrying services in the literature [34,38-40]. As a result, passenger-carrying UAM and 

UAM are used interchangeably in this dissertation. 

UAM Coordination and Assessment Team (UCAT) outlines 6 UAM Maturity Level (UML) 

in 3 states: initial (UML 1 and 2), intermediate (UML 3 and 4), and mature (UML 5 and 6) [41]. 

The capabilities of each state are defined as follows: 

• UML1: Late-stage certification testing and operational demonstrations in limited 

environment; 

• UML2: Low density and complexity commercial operations with assistive automation; 
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• UML3: Low density, medium complexity operations with comprehensive safety 

assurance automation; 

• UML4: Medium density and complexity operations with collaborative and responsible 

automated systems; 

• UML5: High density and complexity operations with highly-integrated automated 

networks; and 

• UML6: Ubiquitous UAM operations with system-wide automated optimization. 

Table 2.1 compares the details of operations across UML 3 to 6. 

Table 2.1 Comparison of operations across UML 3 to 6 

 
Number of Simultaneous 

Operations 
Network Weather 

UML3 - Closely-spaced UAM ports  
Weather-tolerant 

operations 

UML4 100s 
Expanded network including 

high capacity UAM ports  

Low-visibility 

operations 

UML5 1,000s Highly-distributed 
High-weather tolerance 

including icing 

UML6 10,000s Ad-hoc (ubiquitous) - 

In summary, the idea of on-demand aerial operation has been around for decades. However, 

UAM is a fledgling vision facilitated by recent advancements in aircraft technologies. Numerous 

use cases of UAM have been discussed in the news and reports. As a result, this chapter reviews 

the early and recent advancements in UAM, presents the envisioned use cases, and ultimately 

reviews the projected components and characteristics of passenger-carrying UAM. 
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2.2 Early Developments in UAM 

Aerial operations resembling UAM could be traced back to 1963 [2] when four helicopter 

carriers were offering scheduled service, mainly between major airports or an airport and 

downtown area, in Los Angeles, San Francisco, New York, and Chicago. By 1967, over 1.2 million 

passengers were being transferred annually. As early “air taxi” operations, more than 100 

companies provided intracity transportation with advance reservations. More interestingly, based 

in Boston, Air General provided on-demand service for commuters from 1962 to 1969 with a 

reservation scheme as little as 30 minutes ahead of departure time. Regardless of aircraft type (i.e., 

helicopter vs. eVTOL aircraft), the Air General business model highly resembles the on-demand 

passenger UAM envisioned today. However, helicopters are inefficient and noisy and have high 

maintenance costs [23]. As a result, financial challenges and public acceptance significantly 

reduced the early air operations for commuting purposes [2] to the point that today few cities such 

as New York and São Paulo have large-scale commercial urban aerial transportation using 

helicopters [23]. Currently, BLADE Urban Air Mobility, Inc. offers on-demand passenger aerial 

service in New York City using helicopters and fixed-wing aircraft, while SkyRyde offers a similar 

aerial service in Los Angeles with its fixed-wing fleet [8]. 

2.3 Recent Developments in UAM 

Urban passenger-carrying aerial service has drawn considerable interest amongst certain 

companies and communities in the past couple of years. Inspired by advancements in distributed 

electric propulsion (DEP) and vertical take-off and landing (VTOL) technology, various 

companies and start-ups, including the ride-hailing company Uber 3  [11,42] and aircraft 

manufacturers Airbus [12,43] and Boeing [13], have shown considerable interest in the at-scale 

 
3 Uber Elevate was acquired by Joby Aviation in December 2020 
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operation of passenger UAM. The United Arab Emirates (UAE), New Zealand, and Singapore are 

expected to be the early adopters of passenger UAM, with Dubai’s ambitious plan for launching 

the commercial service by 2022 [27]. 

Uber, one of the major players in the ride-sourcing industry, created much excitement 

around UAM by announcing its plan to enter shared air transportation at a price comparable to its 

ground ridesharing service [11,28]. UberAIR utilizes eVTOL aircraft and is envisioned as a multi-

modal service, where Uber’s ground-based service conducts the legs from the origin to “skyport” 

and from “skyport” to the destination of each trip. The flights are initially planned between suburbs 

and cities with the ultimate goal of intracity shared flights. Uber had initially planned to start 

eVTOL demonstrator flights in 2020 and launch commercial uberAIR flights in 2023 [28]. The 

service needs to be affordable for large-scale transportation. Currently, the cost per passenger-mile 

is estimated at $8.93 for helicopters. However, Uber estimates a cost per passenger-mile of $5.73, 

$1.84, and $0.44 for the launch period, short term, and long term UberAIR operation, respectively 

[28]. To provide more insights on UAM, Uber Copter launched aerial service in New York in July 

2019 and offered 8-minute rides from Lower Manhattan to JFK at the average cost of nearly $200 

per person. The aerial service was complemented with ground-based service on both ends of the 

trip [44]. 

Airbus has partnered with BLADE Urban Air Mobility, Inc., an air charter broker and 

indirect air carrier, to gain experience from BLADE’s per-seat and on-demand aerial operations, 

where passengers use an app for booking flights in the Northeast, Los Angeles, San Francisco, and 

soon Mumbai [45]. BLADE also offers helicopter rides between Manhattan and commercial and 

private airports with a minimum flight time of 5 minutes. BLADE Urban Air Mobility recently 

started a continuous per-seat helicopter service between three BLADE Lounges located in 
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Manhattan and JFK, La Guardia Airport, and Newark Liberty International Airport [45]. Its users 

utilize the app to schedule their own private charter flight or crowdsourced charter, or book 

individual seats on an existing flight.  

Volocopter [16], the German aircraft manufacturer, has announced its plan to launch 

commercial flights in Paris and Singapore in the next 2-3 years. Volocopter promotes 

“Autonomous air taxi at the press of a button” and “mobility in three dimensions: urban. 

autonomous. on demand”. VoloCity, the two-seater aircraft developed by Volocopter, has received 

permits to fly in manned or unmanned configurations for conducting test flights in Germany, 

Singapore, Dubai, and Helsinki. 

EHang [46], based in China, envisions their UAM operation as an autonomous low-altitude 

short-and-medium-haul service, which would resemble on-demand bus operations rather than taxi 

operations. In May 2019, EHang launched its passenger-carrying UAM service between a harbor 

and a boutique hotel on an islet in China’s Zhejiang province. The service decreased the 40-minute 

travel time to 5 minutes [32]. 

2.4 UAM Use Cases 

Aside from the UAM market studies [8,9], ConOps [7], and OpsCons [29] provided by 

NASA and FAA, multiple players from the industry have offered their visions on passenger AAM 

and UAM [23,30-32]. Patterson et al. [33] summarize the numerous proposed visions in five on-

demand or near-on-demand passenger UAM missions: private operation, air taxi, air pooling, 

semi-scheduled commuter, and scheduled commuter. 

Porsche Consulting suggests five missions: personal ownership, rental, on-demand air taxi 

(including sightseeing), air bus, and rescue operations [6]. The Roland Berger UAM study [19] 
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covers both intracity and intercity4 trips and defines three use cases: City Taxi, Airport Shuttles, 

and intercity service. The City Taxi would operate within a densely populated city and is an on-

demand point-to-point non-stop service carrying 1 or 2 passengers with light luggage, while 

Airport Shuttle, as the name suggests, transfer 2 to 4 passengers with luggage between airport and 

take-off and landing sites within an urban area. City Taxi and Airport Shuttles cover distances 

from 15 to 50 km (i.e., 9.3 to 31.1 mi), while intercity flights cover distances up to 250 km (i.e., 

155.3 mi). They estimate that by 2050, City Taxi and Airport Shuttles would, respectively, 

constitute 36% and 35% of the “UAM”4 trips worldwide. However, the Airport Shuttle and 

intercity flights would account for 90% of the revenue. 

The Booz Allen Hamilton’s UAM market study commissioned by NASA [8] identifies 36 

potential markets among 16 market categories. The market categories include air commute, first 

response, logistics and good delivery, public service, and rentals, among others. Four markets, in 

turn, constitute the air commute market category: Airport Shuttle, Air Taxi, Train, and Bus. The 

Airport Shuttle has fixed routes, while the Air Taxi service is point-to-point without fixed routes 

or schedules. The Air Taxi could be viewed as the extension of Airport Shuttle with high demand 

and more network coverage and bigger fleet size. The Train would be operated along the network 

infrastructure (e.g., subway and train) while the Bus would replace public transportation lines (e.g., 

Greyhound).  

Another UAM study commissioned by NASA [9] presents and evaluates the viability of 

two use cases for passenger UAM, namely, Air Metro and Air Taxi. In this study, Air Metro 

transfers 2 to 5 (with an average of 3) passengers, employing autonomous aircraft over fixed routes 

 
4 More accurately, the intercity trips should be classified under AAM that covers local, regional, and intraregional 

areas. 
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with regular schedules, and therefore, resembles subway or buses. In comparison, Air Taxi 

provides on-demand door-to-door per-seat service operated with a fleet of autonomous eVTOL 

aircraft with 2 to 5 passenger seats. However, in the Air Taxi service, the average number of 

passengers is assumed to be 1. The Air Taxi mission resembles the current ridesharing service. 

In May 2020, the UAM Operational Concept (OpsCon) for passenger-carrying operations 

commissioned by NASA [29] specified three use cases over three states of UAM Maturity Level: 

Human-piloted Air Medical Transport (initial state), Intra-Metro Air Shuttle (intermediate state), 

and Ubiquitous Air Taxi (mature state). The Air Ambulance flights are unscheduled, with about 10 

UAM aircraft per metro area and 2 aircraft flying simultaneously. Intra-Metro Air Shuttle is a 

scheduled or seme-scheduled service transporting 3 to 9 passengers. The trip distance is 10s of 

miles, with 100s of aircraft per metro area and 10s vehicles flying simultaneously. Lastly, 

Ubiquitous Air Taxi utilizes semi-autonomous or fully autonomous eVTOL aircraft with low noise, 

low operating costs, and passenger capacity of 1 to 4. The service is on-demand, but one could 

book their flight with advance notice. The flights are shared, carrying 1 or 2 passengers on a typical 

flight. In this state, there are 100s of take-off and landing areas and 10,000s of aircraft per metro 

area, with 1,000s of aircraft flying simultaneously. 

In conclusion, the Urban Air Taxi (UAT) is a use case envisioned in all market analyses. It 

is a ubiquitous on-demand per-seat service operated with autonomous eVTOL aircraft with low 

operating costs. In this case, the network coverage is high, and numerous take-off and landing sites 

provide near-ubiquitous service. However, the point-to-point service may lead to a low passenger 

load factor per aircraft. 
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2.5 UAM Components and Characteristics 

There are many factors involved in the UAM operations. This section discusses the 

passenger UAM operations characteristics in detail. 

2.5.1 Aircraft 

The vision of UAM is enabled by electric propulsion and vertical take-off and landing, 

hence the name eVTOL. There are 95 eVTOL projects in progress across the world [19]. However, 

no dominant design has yet emerged. These aircraft could be classified under five categories: 

highly distributed propulsion (multicopters), quadcopters, hybrid, tilt-wing/convertible aircraft, 

and fixed-wing vectored thrust concepts [19]. Table 2.2 lists some aircraft designed for passenger 

UAM. These aircraft could accommodate a maximum of four passengers. Their speed varies 

between 62 and 200 mph, with the battery range spanning from 19 to 186 miles with a single 

charge. 

Table 2.2 Features of various aircraft for UAM operations 

Company Aircraft 
Planning 

Year 

Passenger 

Capacity 

Crew 

Capacity 

Maximum 

Speed 

(mph) 

Range 

(mi) 

Volocopter [16] VoloCity - 1 1* 68 21 

Airbus [47] CityAirbus 2023 4 A 75 19 

EHang [32,46] 
eHANG 

216 
2019 1 A 80 22 

Boeing NeXt [48] 
Boeing 

PAV 
- 2 A - 50 

Kitty Hawk [17] Heaviside - 1 A 180 100 

Hyundai [49] S-A1 - 4 1* 180 60 

Joby Aviation [18] - 2024 4 1 200 150 

Uber Elevate [23] - 2023 2-4 1* 150-200 100+ 

Note: *Envisioning future autonomy, PAV: Passenger Air Vehicle, A: Autonomous 
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Uber has focused on mega commuters (who travel, one way, 90 minutes or more and 50 

miles or more to work [50]) and planned its operation with an aircraft speed range of 150-200 mph 

as they argue this is the speed range that electric distributed propulsion (EDP) is most efficient. 

Even though Uber intends to use a homogeneous fleet in the initial stage, it contends that an 

eVTOL aircraft for trips less than 50 miles does not need the maximum speed required for 

performing long-distance travel [23]. Furthermore, Uber suggests that the aircraft’s battery range 

should cover two 50-mile trips at maximum cruising speeding with the two corresponding take-

offs and landings plus 30 minutes reserves to meet the FAA Instrument Flight Rules (IFR) [23]. 

Volocopter, on the other hand, argues that aircraft with a range of 30 km (21 mi) can serve the 

important airport routes in 93% of the world’s largest cities and adds that a speed range of 80-100 

km/h is a trade-off between competing with ground-based transportation and avoiding the 

complications resulting from higher speed [31].  

The batteries could either be charged or swapped. Uber requires a charging period of fewer 

than 7 minutes for continuous operation [51], while Volocopter specifies the battery swapping time 

of 5 minutes for its passenger UAM aircraft, VoloCity [16]. Similarly, the Crown Consulting 

market study assumes a 2-4 minutes period for swapping batteries [9]. 

Volocopter claims that they have conducted the world’s first autonomous eVTOL flight in 

Dubai in 2017 and public test flights at Singapore’s Marina Bay in October 2019 [16]. Wisk asserts 

that in 2017, they became the first company in the U.S. to successfully fly a passenger autonomous 

eVTOL aircraft [52]. 

There is no consensus in the community on the term used to refer to UAM passenger 

aircraft. Table 2.3 lists some of the names used in the literature. UAM aircraft/vehicle is a term 

used by some studies commissioned by NASA. Even though autonomous [9] and electric [33] 
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VTOL aircraft are viewed as the enabler of UAT operation, in this dissertation, we use the term 

UAT aircraft (or aircraft in short) for the UAT operation since the proposed methodology is 

independent of the aircraft type. 

Table 2.3 Terms used for referring to UAM passenger aircraft 

Term Study 

Personal Air Vehicle (PAV) Moore [53], Hyundai [14] 

Passenger Air Vehicle (PAV) Boeing [48] 

Electric Vertical Aircraft (EVA) BLADE Urban Air Mobility Inc. [45] 

Autonomous Aerial Vehicle (AAV) EHang [46] 

Passenger Drone Porsche Consulting [6], Roland Berger [19] 

VTOL aircraft 
Uber [23] 

Crown Consulting, Inc. [9] 

UAM aircraft/vehicle 

Booz Allen Hamilton, Inc. [8] 

Patterson et al. [33] 

FAA [7] 

Deloitte Consulting LLP [54] 

Price et al. [29] 

2.5.2 Infrastructure 

eVTOLs operations require sites for take-off and landing, picking up or dropping off 

passengers, parking, and charging. For instance, Heaviside by Kitty Hawk needs a 30-foot by 30-

foot area for take-off and landing as a pad, which does not have to be paved [17]. In the urban 

setting, the required infrastructure could be active helipads, the roof of the public parking [23], the 

space available in cloverleaf interchanges [55], or a new infrastructure built for UAM operations. 

Table 2.4 lists the various names used in the UAM community for referring to UAM 

infrastructure. The use of vertiport could be traced back to 1967 [56], and it is the term used most 

frequently in the literature. Regardless of the name, there is a consensus that passenger UAM 

operation requires two types of facilities: a smaller one just big enough for an aircraft to land and 

take off safely and a bigger one with all the supporting facilities for aircraft and passengers, 
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including charging stations and parking spots. The former is often referred to as a pad, while the 

latter may have a port or hub as part of its name.  

Table 2.4 Terms used for referring to UAT take-off and landing sites 

UAM pads and UAM ports are primarily used in the literature for passenger-carrying aerial 

operations resembling the UAT use case. Consequently, we adopt the terms UAT pads and UAT 

ports to specify the use case of the infrastructure clearly. UAT pad is a general term for an area 

designated for take-off and landing of a single UAT aircraft and could operate as a stand-alone 

facility, while UAT port is used for a facility with multiple UAT pads and all the required 

supporting systems such as charging stations [29]. That being said, for simplicity, we use the term 

UAT pad to refer to the UAT infrastructure, regardless of its size and available resources. 

Term Study 

Take-off and Landing Area Vascik, 2017 [2] 

Vertiport/Vertistop 

Cheyno, 1967 [56] 

Uber, 2016 [23] 

Holmes et al., 2017 [57] 

Crown Consulting, Inc., 2018 [9] 

Booz Allen Hamilton, Inc., 2018 [8] 

Porsche Consulting, 2018 [6]  

Patterson et al., 2018 [33] 

Vascik and Hansman, 2019 [58] 

Lilium [15] 

VertiPad/VertiHub Airbus [43], McKinsey & Company, 2020 [10]  

Skyport/Skystop Uber, 2018 [51] 

VoloPort Volocopter [16] 

Base Point EHang [32] 

BLADE Lounge BLADE Urban Air Mobility Inc. [45] 

UAM Port/Pad 
NASA UCAT, 2020 [41] 

Price et al., 2020 [29] 

Aerodrome 
FAA, 2020 [7] 

Deloitte Consulting LLP, 2020 [54] 
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Uber envisions that ports have a maximum capacity of 12 VTOLs [23]. McKinsey & 

Company [10] envision three types of UAM infrastructure: Vertipad (small structure), Vertibase 

(medium structure), and Vertihub (large structure). Vertipad and Vertibase could be either new or 

retrofit, while Vertihub is a new structure. In each infrastructure, the ratio of landing and take-off 

pads to the parking and charging spots is devised as 1 to 2. Vertipad, Vertibase, and Vertihub have 

1, 3, and 10 landing and take-off pads, respectively. Furthermore, they assume that the 

infrastructure charge is USD 150 per trip, excluding the fuel charging costs. In a small and 

premium UAM market, they conclude that there should be a 24-hour average of 1 trip per hour per 

UAT pad or 1 trip every 20 minutes per UAT pad during peak periods in a large and densely 

populated city to break even on the fixed costs. In a medium-size and less dense city, the average 

over 24 hours per UAT pad is 1 trip every 100 minutes or 1 trip every 30 minutes during peak 

periods. However, to achieve very low costs and make UAM available to the public, UAT pads 

across the network should accommodate one trip every 5 minutes during the peak, which could be 

challenging. 

2.5.3 Network Coverage 

A higher number of UAT pads spread across the network leads to more significant travel 

time savings. In the mature state, the ubiquitous network of UAT pads provides an opportunity for 

point-to-point (also referred to as door-to-door, end-to-end) service. However, in the initial state, 

the operation would be hub-to-hub [6]. A UAM market study [8] shows that the number of UAT 

pads and ports significantly impacts the UAM demand. 

In the 1960s, Air General utilized over 70 heliports in Boston [2]. São Paulo has 193 active 

helipads [23]. McKinsey & Company [10] estimate that 85 to 100 stand-alone UAT pads or UAT 

ports are required for large and densely populated cities, and the number drops to 38 to 65 for 
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medium-size cities. Porsche Consulting [6] projects that cities with a population of five to ten 

million or more will have up to 100 stand-alone UAT pads or ports in the fully developed phase. 

However, in the first phases, 5 existing heliports are sufficient for providing attractive routes, and 

in the next phase, 40 UAT pads will be available in some areas. Decreasing the number of UAT 

pads from 100-200 per city to 15-40 would decrease the market size by 40% [6]. The UAM 

OpsCon for passenger-carrying operations commissioned by NASA [29] projects 10s of UAT pads 

or ports for the intermediate state and 100s for the mature state.  

2.5.4 Travel Time Saving and Trip Distance 

The competitive advantage of passenger UAM is in the travel savings. Uber assumes that 

a UAM trip should be at least 40% faster than the corresponding ground-based trip, while Porsche 

Consulting [6] suggests UAM needs to offer at least 20% travel time savings to be competitive 

with other modes. Booz Allen Hamilton’s market study finds no significant demand for mandatory 

(i.e., work-related) trips that take less than 30 minutes on the ground. Furthermore, most of the 

UAM demand is captured for trips that are at least 45 minutes on the ground. 

Air taxi service would be more beneficial over long distances [8]. Porsche Consulting 

suggests that UAM could outperform other modes of transportation for trips that are at least 20 km 

(i.e., 12.4 mi) long, which is almost twice as long as the average trip distance of 11 km in the urban 

settings [6]. The Roland Berger UAM study [19] specifies that trips should be at least 15 to 25 km 

(i.e., 9.5 to 15.5 mi), while the intercity service will be provided for distances between 15 to 50 

km (i.e., 9.3 mi to 31 mi). Additionally, a UAM market study commissioned by NASA [9] 

envisions UAT trips between 10 to 70 miles. 
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2.5.5 Fleet Size 

The fleet size directly impacts the level of service and utilization of the fleet [59]. As a 

result, the sensitivity to fleet size is often investigated in related studies [59-61]. Uber Elevate aims 

for a low volume of UAM aircraft in 2023, a number between 10 to 50 aircraft [23]. Porsche 

Consulting estimates that by 2035 a megacity with a population of five to ten million will not have 

more than 1,000 UAM aircraft in operation [6]. For instance, they estimate that São Paulo requires 

5 UAT pads and 120 aircraft in the initial phase, 40 pads and 390 aircraft in the expansion phase, 

100 pads and 1050 aircraft in the full-service phase. In comparison, São Paulo has the largest 

registered fleet of 420 helicopters [23].  

2.5.6 First-mile and Last-mile Service 

Offering the first-mile and last-mile service would alleviate the inconvenience of the multi-

modal trips. BLADE Urban Air Mobility currently offers point-to-point service using helicopters, 

seaplanes, jets, and SUVs [45]. Uber Elevate announced that uberAIR would conduct the first and 

last mile of trips with its ground ride-hailing service or walk [23]. In Hyundai’s Smart Solution 

Mobility vision, the UAM aircraft are connected to Purpose Built Vehicle (PBV) at hubs to provide 

a multi-modal service [14]. 

2.5.7 Flight Sharing  

The air taxi operation will be most efficient and cost-effective when aircraft are highly 

utilized, and thus, passengers share the flights. Booz Allen Hamilton’s UAM market study shows 

that passengers are willing to share the flight with passengers they do not know as long as they 

receive a discount [8]. 

However, it remains unclear whether ridesharing should be limited to passengers with the 

same pick-up and drop-off UAT pads or the operation should resemble ground-based ride-sourcing 
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programs where multiple passengers share an aircraft despite having different pick-up or drop-off 

locations. In the former case, the passengers are pooled and use one flight to get from starting UAT 

pad to the ending UAT pad, and there is no intermediate stop to pick up or drop off other 

passengers. We refer to this mode of sharing as air pooling. On the other hand, the latter case has 

the attributes of ground-based ridesharing services and is what we refer to as air sharing hereafter. 

 BLADE Urban Air Mobility currently offers crowdsourcing, in which case the passenger 

books the flight for their desired departure time and allows BLADE to sell any available seat. 

Thus, the passenger could receive credits back for the purchased seats by other passengers [45]. 

Furthermore, Uber Elevate has incorporated shared flights in its envisioned operational strategy 

[23].  

2.5.8 Advance Reservation Time Window 

Reservation schemes and the time window that customers are given to request a flight 

ahead of desired departure time are significant indicators of how dynamic the evolution of 

information in the system is. The more time the operator has, the more operationally optimal 

strategies they could employ. Immediate requests are the ones that need to be served immediately 

as opposed to advance requests, which give the operator some time before the desired service time 

[62]. 

The emergence of very light jets (VLJs) in the early 2000s prompted Dial-A-Flight 

business models on a regional level where passengers could book their flights one or a few days 

in advance [3]. As an on-demand aerial mobility service, fractional ownership programs offer a 

reservation window of 4 or 48 hours [63] or 8 hours [64] ahead of departure time.  
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In urban air taxi operations, Air General’s users could request a flight with as little as 30-

minute notice in the 1960s. Today, BLADE Urban Air Mobility offers both immediate and 

advance reservation options for its air taxi service in New York City. Immediate requests for 

helicopters with just “minutes notice” to or from any airport in the area would cost between $1,575 

- $1,775, while a 24-hour notice for charter flights to JFK or another local area airport would 

reduce the cost to $795 - $995 [45]. Uber Elevate discusses no advance reservation [23] or one-

hour lead time [28], consistent with its on-demand service philosophy. Similarly, the UAM 

OpsCon for passenger-carrying UAM envisions operations to be generally on-demand with the 

option to schedule trips in advance [29]. 

2.5.9 Operating Costs and Passenger Price 

The operating cost per passenger mile is one of the significant factors in the viability of 

UAT. Efficient UAT operations, which involve high aircraft utilization, high passenger load factor, 

and low empty mileage, as well as high cruise speed, decrease operating cost per passenger mile 

[8]. 

McKinsey & Company [10] assert that the costs of UAM trips should decrease by around 

80% of current helicopter rides for the service to be competitive with ground-based transportation. 

They estimate the operating cost of $0.5-2.5 per seat-mile for UAM, compared to $6-8 for current 

helicopter service. Moreover, the energy cost for the electric motor is estimated at $0.13/kWh vs. 

the $5.5/gallon for the combustion engine. 

In comparison, the cost per passenger mile is estimated at $8.93 for helicopters by Uber 

Elevate, while they estimate the cost per passenger mile of $5.73, $1.84, and $0.44 for the launch 

period, short term, and long term uberAIR operation [28]. Booz Allen Hamilton’s UAM market 

study estimates the median operating cost per passenger mile of $9.5, $7.0, $5.5, and $4.75 for air 
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pooling business model with 1, 2, 3, and 4 passenger seats, respectively. In the near future, it 

expects a 5-Seat eVTOL to cost $6.25 per passenger mile. Porsche Consulting [6] projects that a 

trip from the airport to the city with a 10-min flight time will be priced at $123. They estimate the 

operating cost of air taxi service will be $1.8 per km (i.e., $2.9 per mile). To put these numbers 

into perspective, a 22-minute flight by Skyway Air Taxi costs $950 for up to three passengers and 

baggage [65].  

In February 2021, Joby Aviation [5] estimated an operating cost of $95 over a 25-mi trip 

using their four-seater aircraft (corresponding to 0.95¢ per available seat-mile), a 4 times cost-per-

mile improvement over a twin-engine helicopter with an operating cost of $393 for a similar trip. 

Subsequently, in October 2021, Joby Aviation [66] presented cost drivers of service unit 

economics at scale in 2026, shown in Table 2.5. Cost per available seat-mile (CASM) is estimated 

to be 0.86¢, out of which 0.22¢ (around 25%) is the pilot cost. McKinsey and Company [67] 

estimate that the cost per passenger-seat-kilometer of a piloted UAM flight could be two times 

higher than an autonomous flight. 

Table 2.5 Cost drivers of service unit economics at scale in 2026 by Joby Aviation 

Service Component 
Estimated Cost per Available Seat 

Mile (cents) 

Pilot 22 

Maintenance (including labor) 19 

Skyport Support and Landing Fee  11 

Battery and Charging 13 

Aircraft and Insurance 9 

Other Expenses 12 

Cost per Available Seat Mile (CASM) $0.86 
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For pricing, McKinsey & Company [10] project that, in a small and premium UAM market, 

the charges should be $50 to $75 per passenger, depending on the number of passengers per trip, 

for an intracity and metropolitan UAM travel with a distance of under 50 miles. They further assert 

that for at-scale operations, the price per passenger trip should be around $25, which requires 

10,000 trips per day in a large, dense, high-income city and approximately 3,500 trips per day in a 

medium-size, less dense city. Porsche Consulting [6] assumes a price between $8 to $18 per minute 

for the on-demand air taxi service. Additionally, in the Booz Allen Hamilton’s market study, the 

maximum revenue was achieved at passenger price of ~$2.50-$2.85 per mile for 10 study areas, 

including Dallas, Los Angeles, New York, and Washington D.C. Lastly, Joby Aviation estimates 

the price of $3 per passenger mile given the revenue drivers of the service unit economics at scale 

in 2026, shown in Table 2.6. Subsequently, the average load factor of 57.7% would result in 

Passenger revenue per available seat-mile (PRASM) of $1.733. 

Table 2.6 Revenue drivers of service unit economics at scale in 2026 by Joby Aviation 

Average Flight Length  24 miles 

Cruising Speed ~165 mph 

Average Load Factor 
2.3 Passengers for a 4-seater 

Aircraft (i.e., 57.5%) 

Turnaround Time  ~6 minutes 

Price per Passenger-Mile $3.00 

Passenger Revenue per Available Seat Mile 

(PRASM) 
$1.73 

2.6 Concluding Remarks 

UAM is a nascent idea at the core of numerous discussions by NASA and FAA, news 

coverage, reports from consulting companies, and white papers and reports by original equipment 

manufacturers (OEMs). Nonetheless, the vision has not been fully developed, and it is not currently 

employed. As a result, this chapter presents the developments in UAM and reviews the envisioned 



50 

 

use cases. Furthermore, it reviews the relevant components and the projected characteristics of 

UAM from the industry perspective. Chapter 3 provides a review of the literature related to UAM 

and UAT and aims to offer an academic perspective. 
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Chapter 3 Literature Review 

3.1 Overview 

Transportation on Demand (TOD) [68] is the concept of moving goods or passengers from 

their origin to their destination when the service is provided based on customer requests. TOD 

includes ridesharing, bike-sharing, carsharing, taxi service, Transportation Network 

Companies/Providers (TNCs and TNPs), and on-demand air mobility. In formulating TOD 

problems, three conflicting objectives manifest themselves: minimizing operating costs, 

maximizing the number of requests served (and thus maximizing the revenue), and maximizing 

the level of service. The level of service could be defined in terms of deviation from desired pick-

up or delivery times. In passenger transport, wait time or excess ride time are alternative measures 

of the level of service. 

Decisions regarding managing TOD systems typically have three intertwined components: 

request clustering, request routing, and request scheduling [68]. Request clustering aims to reduce 

operational costs by creating groups of requests that are close in time and space. Request routing 

finds the routes of vehicles for serving the customers. Lastly, request scheduling determines the 

exact timing of each visit. 

This chapter aims to review the literature related to UAM and UAT, and is organized as 

follows. First, the Vehicle Routing Problem with Pick-up and Delivery (VRPPD), the class of 

problems that UAT fleet operation belongs to, is discussed. Next, the relevant studies on on-

demand air mobility are reviewed. Lastly, an overview of the literature on synchronized logistics 

is presented. 
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3.2 Vehicle Routing Problem with Pick-up and Delivery (VRPPD) 

Vehicle Routing Problem (VRP) refers to a class of problems where a set of locations 

(nodes) should be visited only once by identical vehicles located at depots such that it minimizes 

transportation costs. Vehicle Routing Problem with Pick-up and Delivery (VRPPD) is a 

generalization of VRP, where goods should be picked up or dropped off at specific locations. When 

the units moved in the transportation network are passengers, one should take the user’s 

inconvenience into account, which shapes other variants of VRPPD, namely, Dial-A-Ride-

Problem (DARP) for ground transport and Dial-A-Flight-Problem (DAFP) for air transport.  

VRP and its variants are generally classified based on the Quality and Evolution of 

information [69]. Quality of Information reflects the uncertainty in the input data available to the 

decision-maker, while the Evolution of Information reflects how the available information changes 

during the execution of the plan. Based on these two dimensions, VRPs are classified as follows: 

• Quality of Information: Deterministic vs. Stochastic 

In deterministic problems, the input data available to the decision-maker is 

deterministic, while in stochastic problems, the input data is uncertain and a random 

variable. The stochasticity could be associated with demand (such as its location, 

timing, or intensity), travel times, or service breakdown [70]. 

• Evolution of Information: Static vs. Dynamic 

In static problems, all the information (regardless of its quality) is available to 

the decision-maker before the planning phase. On the other hand, a problem is 

classified as dynamic when one or some of its input data varies with time [70], and 

consequently, part of the information is revealed during the design or execution of 
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routes [69]. As the information becomes known in dynamic systems, the routes should 

be adjusted in real-time in response to the new information. 

Dynamic problems either have dynamic data or time-dependent data [70]. Dynamic data 

changes with time and may include customer demand or travel times. Time-dependent data, 

however, are known in advance and may include Vehicle Routing Problem with Time Windows 

(VRPTW). Additionally, customer demand or travel times might be considered time-dependent 

data if they are defined as functions of time, and therefore, they are all known in advance.  

It is crucial to distinguish between dynamic problems, models, and applications [70]. A 

model is considered dynamic if it explicitly models the changes of input data over time. 

Nonetheless, it is possible to have static or dynamic applications of static or dynamic models. If a 

dynamic model is solved only once and the analyst selects one strategy regardless of changes of 

the input data over time, that constitutes a static application of a dynamic model. In contrast, if a 

static model is solved repeatedly as new information is revealed in the system, it is considered a 

dynamic application of a static model. In practice, dynamic and deterministic models are often 

solved as a sequence of static and deterministic models [68], which is regarded as a dynamic 

application of a static model. 

Degrees of dynamism [71] is a measure that seeks to explain the frequency of changes and 

the urgency of requests for a problem with dynamic requests. The frequency of changes refers to 

how often changes in requests happen. For instance, how often a new request arrives or the 

attributes of a request change. The urgency of the requests reflects the available response time. In 

other words, it shows the available time window between receiving a request and serving it. 

Accordingly, VRP could be weakly, moderately, or strongly dynamic. This information helps to 

identify the appropriate solution methods given the trade-off between solution time and accuracy. 
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For instance, in a weakly dynamic system, one has the time to achieve an optimal or near-optimal 

solution. However, in a strongly dynamic system, time constraint limits the accuracy of the 

solution. The degree of structural diversity [71] reflects the spatial and temporal dynamism of the 

requests and highlights the high value of using stochastic information about future requests in a 

network with a high degree of structural diversity. 

As the new information, such as a new request for service, becomes known in a dynamic 

model, three methods could be used to adjust the solution [71]:  

1. Policy: In this method, a policy or rule is used to obtain new solutions. Examples of 

these rules include First-Come-First-Served (FCFS) or the nearest idle vehicle for 

assigning new requests to vehicles. 

2. Local Heuristic Search: In this approach, the static problem is solved at the beginning 

of the planning horizon using the information available to the analyst at the time. As 

new requests arrive, the current solution is adjusted by employing heuristic methods 

such as insertion heuristics, deletion heuristics, or interchange [72]. 

3. Re-optimization: In this case, the problem could be re-optimized every time new 

information becomes available. Depending on the size of the problem, degree of 

dynamism, and the time available for solving the problem, exact, approximate, or 

heuristic methods could be employed to update the current solution with the new 

information. 

Dynamic VRPPD (D-VRPPD) has numerous applications in Truckload Pick-up and 

Delivery Problems (TLPDP), Dial-A-Ride Problem (DARP), and Dial-A-Flight Problem (DAFP), 

which are discussed in the following sections.  
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3.2.1 Freight Truckload Pick-up and Delivery Problem (TLPDP) 

In Truckload Pick-up and Delivery Problem (TLPDP) [73-78], a trucking company with a 

fleet size of 𝐾 aims to serve the requests given pick-up and drop-off locations, the earliest pick-up 

time, and the latest delivery time of the job. A truck cannot serve a new request until it completes 

its previous job, and therefore, TLPDP resembles on-demand services with no ride-sharing. 

However, TLPDPs are associated with transferring goods, and consequently, the quality of service 

is limited to deviations from desired pick-up or delivery time. Desired pick-up and delivery time 

could be formulated as a hard constraint in the model, or alternatively, the delay could be included 

in the objective function with a penalty term as a soft constraint [75,78]. The operator has the 

option of either accepting or rejecting the requests. The acceptance and rejection decision-making 

process could be rule-based [73] or be incorporated in the optimization model [75]. The objective 

functions of TLPDP could cover empty distance traveled [73,75,78], penalty cost for the delay 

from desired pick-up or delivery time [75,78], and revenue loss resulting from rejecting requests 

[78]. 

Yang et al. [78] model the TLPDP as an assignment problem with timing constraints. The 

offline Mixed Integer Programming (MIP) formulation seeks to find the least cost assignments 

between all the nodes defined as {1, … , 𝐾, 𝐾 +  1, … , 𝐾 + 𝑁}, where 𝐾 is the number of vehicles 

and 𝑁 is the number of jobs. The objective function covers costs associated with empty mileage, 

delays in delivery times, and request rejections. Furthermore, they utilize rolling horizon strategies 

for real-time implementations and compare the optimization-based methodology with three 

heuristic methods. In their earlier paper, Yang et al. [75] conclude that even though optimization-

based strategy outperforms other heuristic approaches, some of the heuristic approaches are 

competitive given their low computational requirements for solving the problem. 
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A special class of TLPDPs is the routing and scheduling of the drayage operations, which 

refers to the regional movement of trailers and containers, either empty or loaded, by tractors 

between rail yards, shippers, consignees, and equipment yards [79]. Smilowitz [79] models the 

drayage operations as a Multi-Resource Routing Problem (MRRP), where multiple resources are 

used to perform a series of tasks. The tasks are either well-defined or flexible. The origin, 

destination, and time window of well-defined tasks are known, while either the origin or 

destination of flexible tasks is unspecified. She presents a node-based model and a set partitioning 

formulation, where requested tasks are partitioned into resource (i.e., tractor) routes. However, a 

conservative time window is placed on all tasks to remove the time dependency between tasks. In 

other words, the resources are assumed to be unavailable throughout the entire time window, even 

if the duration of a task is shorter than its time window. 

Smilowitz [79] uses a constant radius around the origin or destination to define the flexible 

tasks. However, when a fixed radius is used for every node, a node in a dense area may have a 

higher set of possible executions of a flexible task than in a sparse area [80]. To address this issue, 

Francis et al. [80] propose the Variable Radius (VR) method, which limits choices for nodes in 

dense regions and increases choices for nodes in more sparse areas. 

The frameworks developed for TLPDPs are applicable in ubiquitous operations of UAT 

without air pooling since these frameworks take the operating costs and a notion of user 

inconvenience into account. Some variations of TLPDP also formulate the cost of rejecting a 

request, which is relevant to UAT problems. However, the most significant difference is the 

sharing economy, a critical factor to the viability of the UAT business model [9].  
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3.2.2 Dial-A-Ride Problem (DARP) 

Dial-A-Ride Problem (DARP) is similar to VRPPD but puts more emphasis on customer 

inconvenience since it deals with passengers, not goods. DARP was initially designed for non-

profit services to senior citizens and people with disabilities, where most people share either the 

same origin or destination. DARP has recently gained more tractions in health care and demand-

responsive transportation (DRT) to complement scheduled public transit [81]. 

In DARP, requests from customers are characterized by pick-up location, drop-off location, 

desired pick-up time, and desired drop-off time. The operator must design the routes and schedules 

of K vehicles such that it minimizes the operator’s objective function and meet the service 

constraints. These service constraints may take wait time and ride time into account in addition to 

the delay in the desired pick-up and delivery time in VRPPDWT [68]. In these problems, the 

capacity of the vehicle is an operational constraint. The operator also has the option of rejecting 

the requests [81]. 

The objective function of DARP often seeks to minimize the operating costs (such as total 

travel distance, travel time, or fleet size) and user inconvenience. However, other objectives, 

including maximizing operator’s profit or passenger occupancy rate and minimizing vehicle 

emissions, have been studied in the literature [81]. There are three methods of formulating a multi-

objective DARP [81]: 

1. In the first approach, the objective function is a weighted sum of different 

objectives. This approach is most appealing when the weight of one objective 

relative to another is well-defined, or all the objectives could be converted to the 

same evaluation unit. For instance, when the operating cost per unit mile and the 
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cost of wait time per minute are known, all the objectives could be defined in 

monetary values. 

2. The second approach takes advantage of a hierarchical method. It first optimizes 

the most important criteria, then the second one, and so on. For instance, the DARP 

is first optimized by minimizing the operating costs, and then if possible, wait 

times of the passengers are minimized. This approach does not require the relative 

importance of objectives and is well-suited when one objective is dominant. 

3. The third approach aims to obtain the Pareto frontier of the problem. As a result, it 

provides the analyst with multiple solutions and the trade-off between the 

conflicting objectives. For this reason, it is not suitable for instances where one 

solution is needed in a short time, for example, in the case of a dynamic DARP. 

First studies on DARP date back to 1978 with Stein’s static and dynamic DARP. Later in 

1980, Psaraftis used dynamic programming and developed an exact algorithm for static and 

dynamic DARP with a single vehicle and immediate requests [81]. For the dynamic case, the static 

case is re-optimized when a new request arrives. 

 The solution algorithms of DARP are classified into three groups [81]. Construction 

insertion heuristics are basic, policy-based heuristics based on greedy insertion. They seek to insert 

a new request to the vehicle’s route where the insertion cost is the cheapest. Even though these 

heuristics are basic, they are fast and, therefore, appropriate for dynamic DARP (D-DARP) 

applications with a high degree of dynamism. The second group of solution methods are exact 

algorithms and include branch-and-cut, branch-and-price, and branch-and-price-and-cut 

algorithms and reduction approach. The exact methods guarantee optimality and are most 
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appropriate for static DARP when the problem is solved once during the planning phase, and thus, 

a solution time in the range of hours is justifiable. In contrast, heuristics and metaheuristics are 

utilized to obtain a solution in a shorter amount of time. These methods include Tabu Search (TA), 

Simulated Annealing (SA), Variable Neighborhood Search (VNS), Large Neighborhood Search 

(LNS), Genetic Algorithm (GA), and hybrid methods. The readers are referred to Cordeau and 

Laporte [82] for a survey of DARP models and algorithms prior to 2007 and Ho et al. [81] for a 

survey of recent developments in the field.  

DARPs address the pick-up and delivery problems in the context of passenger 

transportation. Therefore, they cover the constraints regarding passengers’ wait time, maximum 

ride time, and the excess time incurred due to the detours. However, DARPs include ridesharing 

in their formulation. As a result, besides the fact that DARPs deal with vehicle routing problems 

with pick-up and delivery of passengers, they are not directly relevant to the UAT concept of 

operations defined in this dissertation since DARPs consider ridesharing where passengers have 

either the same origin or destination, and they may experience multiple stops along their route.  

3.2.3 Dial-A-Flight Problem (DAFP) 

Dial-A-Flight Problem (DAFP) was introduced by the emergence of on-demand air 

mobility. Analogies could be drawn between DAFP and DARP in many aspects. However, some 

of the characteristics are different [3,68]: 

• In DAFP, the service is often offered at a specified set of airports, and therefore, the 

operator could take advantage of the fixed network structure. 

• In DARP, the requests typically share a common origin or destination, which is barely 

the case with DAFP. 
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• Requests in DAFP are typically placed a couple of hours in advance, giving the operator 

more time to obtain an optimal solution to the routing and scheduling problem.  

• Given that cost per mile of aerial operations is significantly higher than ground-based 

transportation, achieving optimal or near-optimal solutions is more critical in DAFP. 

• DARP is traditionally for non-profit and social services, whereas DAFP is more 

common in commercial settings. Therefore, the level of service in the two problems is 

expected to be different. 

• Weight constraints are considered in DAFP. 

• DAFP should consider strict rules regarding pilot’s and crew flying and duty hours and 

aircraft maintenance imposed by FAA. 

DAFP rises in the context of per-seat on-demand air mobility, and it has been studied in 

[3,59,83,84,85]. Similar to DARPs, DAFPs address vehicle routing problems with pick-up and 

delivery of passengers with air sharing. Consequently, analogies could be drawn between DAFPs 

and UAT fleet operations if passengers in DAFPs experience no stops on their route. However, in 

DAFPs, pooling the passengers is not as challenging given that the airports are spaced far enough 

that passengers do not have multiple choices for the pick-up and drop-off. Additionally, the 

distances between one airport to another are long enough to warrant an empty repositioning of the 

aircraft. 

3.3 On-Demand Air Mobility 

On-demand air mobility is a service that is offered in response to the customer’s request, 

not the operator’s schedule. The first applications of on-demand air mobility using helicopters 

could be traced back to the 1960s. Since then, it has appeared in the literature under various names 
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[2]: Helicopter Air Carrier, Air Taxi, Metro taxi, Metrobus Intracity Air Transportation, Interurban 

Short-Haul Air Transportation, Personal Air Transportation, On-Demand Aviation, On-Demand 

Air Mobility, Zip Aviation, Sky Transit, On-Demand Mobility, Air Mobility on Demand, On-

Demand Urban Air Transportation, and Urban Air Mobility5 . This dissertation distinguishes 

between On-Demand Air Mobility and Urban Air Mobility (UAM). On-Demand air mobility refers 

to on-demand aerial operations, either in urban or regional settings, while UAM refers to aerial 

operations in an urban setting, which are not necessarily on demand. 

On the regional scale where scheduled flights through commercial airports is an alternative 

mode of travel, the demand for on-demand service mainly arises from limited schedules, congested 

airports and parking lots, wait times at security checks, flight delays, missed connections, and the 

distance between commercial airports and desired origin and destination [3,59]. However, on the 

urban scale, the travel time saving compared to ground-based transportation is the primary drive. 

On the supply side, advances in aircraft technology have reduced operating costs and 

environmental impacts, and increased efficiency. The combination of these factors in demand and 

supply has led to an increase in on-demand air services. Taxonomy of on-demand air mobility is 

presented as follows: 

• Network extent: urban vs. regional 

• Aircraft type: helicopter, small piston aircraft, very light jet (VLJ), vertical take-off 

and landing (VTOL)  

• Per-seat vs. per-aircraft service 

• Non-stop flight vs. multi-stop flight 

 
5 The concept of Urban Air Mobility (UAM) defined by NASA is not limited to on-demand transportation. 
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The two primary business models of passenger-carrying on-demand air mobility are 

fractional ownership programs and air taxi operations. In fractional ownership programs, the 

service is offered on a regional level, and customers own a share of aircraft. On the other hand, air 

taxi operates on both urban and regional scale, the operator has the liberty of rejecting the requests, 

and the customer might share the aircraft with other passengers. The following sections discuss 

the studies on these two types of operations.  

3.3.1 Fractional Aircraft Ownership Program 

High acquisition, operating, and maintenance costs of aircraft have led to the emergence 

of fractional ownership programs. These programs offer flights among 5500 airports compared to 

500 airports for commercial airlines [64]. Fractional ownership programs are most appealing to 

small- to medium-size private companies that need to fly frequently but cannot justify purchasing 

and operating an entire aircraft [86].  

The fractional owner orders a service with as little as 4-hour notice [63] and is entitled to 

fly for certain hours annually. For instance, one-sixteenth shareowners are entitled to 50 hours 

flying annually [63]. In addition to a one-time share purchase fee, the fractional owner pays a 

monthly management fee and is charged an hourly usage fee for flying the aircraft [86]. On the 

other hand, the operator guarantees to provide service at the customer’s request while being 

responsible for crew scheduling and aircraft maintenance. There are five costs associated with the 

program’s operation [64]: repositioning the aircraft while empty to the desired departure location, 

upgrading to a bigger aircraft, transporting the crew using commercial airlines, the crew working 

overtime, and chartering additional aircraft to serve a request. It is worth noting that repositioning 

time may comprise 35% or even more of the total flight time [64], and therefore, repositioning 

cost is a significant part of the operating costs. Finally, the period between the arrival time of a 
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request and the requested time for service allows the operator to optimize the operation while 

considering the new requests. 

Multiple studies have focused on fractional ownership programs [63,64,86-90]. These 

studies differ in aircraft homogeneity, planning horizon, maintenance and crew scheduling 

constraints, and the objective function. Since fractional ownership programs are operated per 

aircraft, the flights are not shared, there is no intermediate stop to pick up or drop off other 

passengers, and there is no need for capacity and weight constraints, as is the case in DAFP. 

In these problems, the network could be presented in two ways: the nodes are the airports 

(arc-based representation), or the nodes are the requests (node-based representation) [90]. Hicks 

et al. [63] develop an integer multi-commodity network flow problem and then employ a branch-

and-bound approach to solve it. Yang et al. [88] introduce NETIP, a network flow model for the 

aircraft scheduling problem. They show that for randomly generated data with 200 aircraft and 

400 requests over a 24-hour planning horizon, NETIP would take about 7 CPU minutes to obtain 

the solution. Yao et al. [64] formulate the crew pairing problem as set partitioning and obtain the 

solution using column generation. They also investigate the effects of modifying demands on 

improving aircraft utilization, and consequently, increasing profitability. To this end, they show 

that the charter costs would be reduced significantly if slight flexibility (in the order of minutes) 

on departure times were allowed. 

Munari [89] develops a MIP model for per-aircraft services, which is solved using CPLEX. 

The objective function only considers operating costs, and maintenance schedules are implicitly 

considered as a request. The planning horizon consists of 7 days, and in total, 12 instances are 

solved. Solving instances with nearly 100 requests and 50 aircraft would take about 10 minutes. 

In some instances, the proposed model reduces the empty leg (i.e., ferry leg, deadhead, non-
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revenue flight) up to 16 hours compared to the solution used by the operator at the time. This 

improvement is significant since flying costs are estimated between €3000 to €8000 per hour. 

Munari and Alvarez [90] build on the previous aircraft routing and scheduling work by 

incorporating maintenance events and service upgrade costs in the model. The objective is to 

minimize the total operating cost, including repositioning and service upgrades. The network 

representation is similar to Keskinocak and Tayur [87] and Martin et al. [86], where nodes of the 

network are the requests that have to be served. The compact MIP is solved using GLPK, an open-

source general optimization software. The planning horizon spans over three days, and the average 

number of requests in four different periods is 35.1, 40.8, 37, and 109.5 over a 3-day planning 

horizon, with the average number of aircraft being 18.4, 22, 21.3, and 49.7. Yao et al. [64] had 

previously examined the value of minutes of flexibility in desired pick-up and drop-off times. 

Munari and Alvarez [90] further build upon this idea and consider anticipation or postponement 

of the starting time of flights for 15 minutes and maintenance events for one day in their model. 

Lastly, they compare the computation time of open-source GLPK with commercial CPLEX. The 

results show that CPLEX could solve all the instances to optimality in less than 30 seconds. 

Interestingly, for three cases with upgrades where GLPK could not find the optimal solution within 

one hour, CPLEX obtained optimal solutions within seconds. These cases have combination of 

(118, 93, 52), (125, 93, 51), and (121, 88, 52) as (#requests, #airports, #aircraft). These findings 

highlight the significant role of the solver in obtaining an optimal solution for bigger instances 

within a reasonable time. 

Fractional ownership program problems (FOPPs) share many features of ubiquitous UAT 

operations. However, the models in FOPPs tend to be more complex given the heterogeneous fleet 

and additional constraints. The differences between FOPP and UAT are explained below: 
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• UAT operation is envisioned as an autonomous service, and therefore, there is no need 

to consider crew flight hours and scheduling in the model.  

• In contrast to FOPP, the UAT fleet is assumed to be homogenous. So, there is only one 

type of aircraft, and thus, no upgrade cost in the objective function. 

• The UAT operator is not obligated to serve all the incoming requests, and therefore, it 

can reject requests when serving them is not feasible or profitable. However, in FOPPs, 

the operator has to serve all the incoming requests at the cost of upgrading the aircraft 

or chartering the flight. 

• UAT operations could be per seat, while FOPPs are per aircraft. 

• FOPPs do not have a strong level of dynamism, while UAT problems could be strongly 

dynamic.  

3.3.2 Air Taxi 

With many similarities to fractional ownership programs, on-demand air taxi offers 

regional [60,91] or urban [92] services. The major difference between the two is the ability of the 

air taxi operator to reject a request, and therefore, not incur a charter or upgrade cost. Additionally, 

fractional ownership programs offer per-aircraft service and non-stop flights. However, in air taxi 

operations, the operator could offer per-seat services. Consequently, in air taxi operations, the 

flights might be shared, there could be a transit stop, or the route may include an intermediate stop 

to pick up or drop off other passengers. If air taxi operation is per seat where requests with the 

same origin and destination are pooled together (i.e., air pooling), it resembles fractional ownership 

programs. On the other hand, if the service is per seat with intermediate stops, the framework is 

similar to DAFP.  
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Currently, passenger-carrying air taxi operations defined by the US Department of 

Transportation (DOT) include on-demand flights conducted with small aircraft (i.e., aircraft with 

60 or fewer passenger seats and a maximum payload capacity of 18,000 lbs or less) [93]. 

Depending on the aircraft seating and payload capacity, air taxi operations are conducted under 14 

CFR Part 135 on-demand or Part 121 supplemental operations of the FAA regulations [94,95]. 

Part 135 on-demand operations cover airplanes with 30 seats or fewer and 7,500 lbs payload or 

less or rotorcraft.  

A single-entity charter (also known as a private jet charter or air charter) flight is a per-

aircraft service in which an individual charters the entire aircraft on demand. A single entity charter 

would also apply to a case where a group of individuals self-aggregate and charter an aircraft as a 

single entity [96]. Therefore, single entity charters fall under air taxi operations for the fleet of 

aircraft that meet the seating and payload capacity specifications. Despite the DOT’s definition of 

air taxi operations, some distinguish between per-aircraft air taxi and air charter, and view the air 

taxi business model as the less expensive option that utilizes a new generation of small aircraft 

compared to air charter [97,98].  

On-demand UAM would fall under the air taxi operations currently defined by FAA and 

DOT. However, per-seat on-demand UAM service faces some legal challenges given the current 

regulation since the UAM operator cannot play any role in consolidating the demand [99]. Current 

per-seat air taxi operators circumvent these legal challenges by acting as web hosts where the lead 

passenger could form a group by notifying other members [99]. 

The studies on air taxis cover the market and demand, facility location problems, routing 

and scheduling, and system analysis using a simulation framework, each discussed in the following 

sections. Since no dominant business model or aircraft type for on-demand UAM has emerged, 
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studies have used various assumptions to describe or model on-demand UAM operations. Table 

3.1 summarizes business models and operational assumptions of the service in the relevant studies. 

Table 3.1 Business models and operational assumptions of on-demand UAM in the literature 

3.3.2.1 Market 

Baik et al. [104] propose a Transportation Systems Analysis Model (TSAM), a four-step 

modeling process that could predict the demand for air taxis. Kreimeier et al. [105] study the 

feasibility of on-demand air mobility from an economic perspective. Depending on the aircraft’s 

speed and the trip distance, they conclude that willingness-to-pay is in the range of 0.5-0.8 €2015/km 
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Antcliff et al. [100] 120 - - 114 21 
0.66, 

0.99 mi 
1-2 Y 0 

A, 

P 

Holden and Goel  

(Uber Elevate) [23] 
170 - 

3 (B), 

2 (D) 

60 (T) 

75 (L) 
- - - - 0 - 

Porsche Consulting [6] 124 - 3 - 24.8 5 min - - 0 - 

Goyal et al.  

(Booz Allen Hamilton) [8] 
125 5-15 

3-5 (B) 

2-3 (D) 
- - - 2-4 Y 0 P 

Rothfeld et al. [101] 93 - ≤ 2.5 50 - 3.1 mi 2 - - - 

Rajendran and Zack [92] 170 - - - 6 10 min - - 0 - 

Rajendran and Shulman 

[102] 
160 - 

3 (B), 

2 (D) 

60 (T) 

75 (L) 
- - 4 Y 0 - 

Ale-Ahmad and 

Mahmassani [103] 
150 10 

3 (B), 

2 (D) 

45 (T) 

45 (L) 
20 ~10 min 1-4 Y 0 A 

Note: Dashes indicate that the item is either not applicable, not available, or both. B = boarding; D = deboarding; 

T = take-off; L = landing; Y = yes; A = autonomous; P = piloted 
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for operations in 2030. Sun et al. [91] compare the competitiveness of the air taxi with car, rail, 

and traditional air transportation regionally in the area covered by 29 countries in Europe. Their 

goal is first to find the dominating mode of travel between air taxi and rail in 500 European cities, 

and next, to identify origin-destination (OD) pairs with high demands that could benefit the most 

from travel time savings. 

Multiple market studies and stated preference surveys have focused on passenger UAM 

adoption and mode choice [8,9,38,106-109]. Booz Allen Hamilton’s UAM market study [8] finds 

that respondents were more interested in using UAM for recreational trips or trips to airports than 

commuting. Younger male survey respondents who were already familiar with the concept of 

UAM and individuals with higher income were more inclined to use UAM. Additionally, 

respondents from Los Angeles were willing to pay nearly $0.85 more for one additional mile than 

Houston respondents. 

Garrow et al. [108] administered a stated preference survey with 1,405 full-time workers 

with the minimum annual household incomes of $75K in Atlanta, Boston, Dallas-Fort Worth, San 

Francisco Bay Area, and Los Angeles in 2019. They report that early adopters are more likely to 

be frequent air travelers and frequent users of ride-hailing services. Boddupalli et al. [109] report 

that younger and male individuals who are frequent users of ride-hailing services and are 

characterized as tech-savvy are more likely to choose air taxis for commuting. In comparison, the 

market study with 248 respondents conducted by Fu et al. [39] in Munich suggests that the air taxi 

adoption rate will be higher among younger individuals (18–35 years old) and older respondents 

(56–65 years old) with high income. However, they did not identify any difference in the adoption 

rate based on gender. 
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Al Haddad et al. [38] develop a stated preference survey with a sample size of 221 to 

identify the factors that affect UAM adoption. They report that the adoption of UAM is highly 

influenced by travel time savings and perceived costs, which is in line with the findings of the 

UAM market studies by Booz Allen Hamilton [8], Fu et al. [39], and Boddupalli et al. [109] on 

the significance of time and cost in the passenger UAM mode choice. 

Boddupalli et al. [109] study air taxi mode choice for commuting purposes in the early 

stages after launch using a stated preference survey. The air taxi mode in the study is battery-

powered, piloted, includes no transfer, and has two to four passenger seats. The minimum annual 

individual income for the respondents is set to $100K. Among the 2,499 sampled respondents, 8 

percent reported a one-way commute time of 90 minutes or more, while 27 percent and 19 percent 

reported a commute time of 40 to 59 minutes and 60 to 89 minutes, respectively. They report that 

the average values of in-vehicle travel time for transit, air taxi, and auto are $23.94, $26.38, and 

$28.21, respectively. Finally, when individuals are offered a guaranteed ride home with Uber or 

Lyft in the event the trip using transit or air taxi gets canceled, they are 1.8 times more likely to 

choose the said modes. 

3.3.2.2 Facility Location 

Keysan [110] studies the tactical level base location and fleet allocation problem for per-

seat on-demand air transportation enabled by advances in Very Light Jets (VLJs). In the basic 

solution approach, the number of required jets at each location represents the demand. However, 

in the integrated solution approach, a more detailed model is developed, integrating the operational 

flight scheduling with the location problem. 

Using New York City (NYC) Taxi and Limousine Commission data, Rajendran and Zack 

[92] estimate the potential demand for urban air taxi services based on travel time savings. 
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Furthermore, they use k-means clustering to identify 21 potential UAT pads or ports based on 

estimated demand distribution. They recommend that the UAT ports at the South Central Park and 

JFK International Airport should accommodate nearly 150 take-offs and landings per hour. Rath 

and Chow [111] formulate the UAT pad location problem as a hub location problem. The results 

suggest that at least 9 UAT pads in NYC are required to achieve at least 10% market penetration. 

Lastly, Fadhil [112] offers a GIS-based analysis to select the UAT pads. 

3.3.2.3 Routing and Scheduling 

Some studies use a simple policy for routing and scheduling of aircraft within the air taxi 

simulation framework and assign the nearest idle aircraft to the request [61,113]. Fagerholt et al. 

[59] employ an insertion heuristic coupled with a local search heuristic to solve the per-seat on-

demand air taxi operations with no stops. The optimization-based studies focus on the DAFP 

[3,68,83-85,110,114,115] 

Espinoza et al. [3] formulate the per-seat dial-a-flight problem as an integer 

multicommodity network flow model with capacity, weight, and time window constraints and 

solve instances with 8 aircraft and 81 requests using commercial software. They subsequently 

propose [114] a parallel local search scheme to solve instances with over 300 aircraft and over 

2800 requests close to optimality. Engineer et al. [83] develop a relaxation-based dynamic 

programming algorithm for DAFP that, in combination with other techniques, could solve the 

column generation relaxation for cases with up to 200 aircraft and 1613 requests. La Foy [115], 

Campbell [84], and Reddy [85] present variations of DAFP to formulate regional air taxi 

operations in Southern Africa. 



71 

 

3.3.2.4 Simulation Framework 

Simulation studies on the regional operations of on-demand air taxis are motivated by the 

emergence of VLJs in the 2000s. Bonnefoy [60] developed a simulation framework, called Air 

Taxi Network Simulator (ATNS), to duplicate the on-demand air taxi operations over one year on 

the regional level in the US using a fleet size of 25 to 100 aircraft and up to 780 airports. In this 

framework, passenger’s request includes the earliest pick-up and the latest drop-off time, and the 

willingness of passengers to share a flight with others. Three heuristics for maintenance routing, 

pilot routing, and aircraft routing are devised. The objective function for aircraft routing and pilot 

assignment includes the ratio of non-revenue to revenue-generating mileage, idle time, and 

location of vehicles at the end of the day. Additionally, the demand for air taxis is generated using 

the gravity model.  

Bonnefoy [60] further studies the impacts of demand intensity and network size. First, he 

shows that for a constant number of aircraft, an increase in demand intensity results in an increase 

in revenue-generating mileage. However, since the passengers have a desired time window for the 

flight, this increase in demand leads to more rejected requests. More importantly, he investigates 

the impact of demand intensity on system performance. For uniform distribution, the ratio of non-

revenue to revenue-generating mileage is slightly below 0.3. As the demand intensity increases, 

this ratio decreases while the average number of flights per day increases. Second, he studies 

network size effects using four networks ranging from 400 to 700 miles around a metropolitan 

area using a fleet size of 75 aircraft. The results indicate that a bigger network results in higher 

average revenue mileage and fewer flights per day per aircraft. However, the ratio of non-revenue- 

to revenue-generating distances does not change. He concludes that the system’s performance is 

more sensitive to demand intensity than the size of the network. 



72 

 

Boyd et al. [61] similarly investigate the on-demand regional air taxi service for one week 

on a small scale. They devise scenarios with 2-3 airports and 2 and 4 aircraft, while the city 

distances are 70 and 140 miles. Their simulation framework is developed using the Arena software 

package of Rockwell Software, which noticeably limits the modeler’s flexibility. The requests 

arrive in real-time at each airport. When the number of passengers for a given destination reaches 

aircraft capacity or wait time for one passenger exceeds one hour, a request for a flight is placed. 

The assumptions regarding the demand limit the analysis. They disregard the spatiotemporal 

distribution of the demand. Demand is set as a constant for a given origin and does not change if 

more destinations are added for each origin. Furthermore, the demand is distributed uniformly over 

all destinations. No maintenance is assumed for the aircraft. Additionally, the aircraft are assigned 

to passengers based on the shortest distance.  

The results suggest that customers’ wait time increases by decreasing the fleet size or 

increasing aircraft capacity since more requests are needed to reach aircraft capacity. Additionally, 

increasing the number of airports increases the number of non-revenue-generating flights. 

However, the simulation logic makes an aircraft leave the gate after dropping off passengers 

without picking up the passengers currently waiting at the gate. 

Lee et al. [116] compare the results of a discrete event simulation model with a flow model 

for air taxi operations. The flow model provides an aggregate model of air taxi operations in a 

medium-range planning horizon without explicit modeling of events such as passenger arrivals or 

non-revenue flights. The discrete event simulation framework is similar to Boyd et al. [61] with 

some modifications. Passengers arrive at each airport according to a non-homogeneous Poisson 

Process at a fare-dependent rate to control flow for each route. No maintenance or downtime is 

assumed, so the aircraft are in service 24/7. The framework assumes that the duration of the delay 
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and ground time of each flight are random variables. However, the numerical experiments assume 

zero delay and ground time. The aircraft are homogenous with a capacity of 4 and a speed of 345 

mph. The passengers wait for a maximum of 𝑊𝑚𝑎𝑥 before an aircraft is assigned to them based 

on the shortest-distance policy. 

Fagerholt et al. [59] develop a simulation framework for the air taxi service in Norway. 

The operator does not have to accept all the incoming requests. However, if a request is accepted, 

the exact pick-up time should be announced at the time of booking. As a result, the operator seeks 

to obtain a solution to this dynamic problem in a very short time. They formulate the per-seat on-

demand air taxi operations as a special case of DAFP with no intermediate stops, which is 

subsequently solved using an insertion heuristic coupled with a local search heuristic. For the 

insertion cost, a multi-criteria objective based on the flight cost and a measure, which estimates 

the probability of accepting future requests, is used. As a result, the acceptance and rejection 

scheme developed in this study only considers the feasibility of serving a new request and not its 

profitability.  

An instance with 10 aircraft, 3 airports, and 200 requests over the planning horizon of one 

day is solved in 1 CPU minute. The authors also examine the impacts of several strategic decisions 

such as fleet size and booking policy on the number of accepted requests, time utilization, and 

distance utilization. Time utilization and distance utilization increase as the number of arrived 

requests increases. For arrived requests more than 50, the time utilization varies between 65 to 

75%, while the distance utilization changes between 65 to 70%.  

Rothfeld et al. [113] present an agent-based simulation framework as a passenger UAM 

extension of the multi-agent transport simulation, MATSim. In this framework, four events are 

defined for an eVTOL: staying put (i.e., being idle), pick-up passengers, drop-off passengers, and 
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flying. The customers could use a car, bike, walk, or public transportation to ingress or egress the 

aerial service. Each customer looks for a UAT pad within a prespecified radius of its origin and 

destination as the potential pick-up and drop-off UAT pads. Subsequently, the customer considers 

the cost and travel time associated with each combination of these UAT pads and their 

corresponding available ground-based modes. Therefore, the customer is the agent who chooses 

the pick-up and drop-off UAT pad. 

Moreover, the operator receives the request for aerial service when the customer finishes 

its previous activity and sets out toward the pick-up UAT pad. If there are available UAT aircraft, 

the nearest one is assigned to the request. Otherwise, the request is placed in a queue to be assigned 

in future decision epochs. Lastly, the framework allows for requests to be pooled together as long 

as they have the same pick-up and drop-off UAT pads and reach the pick-up UAT pad before the 

scheduled boarding time of the first request. 

In the following study, Rothfeld et al. [101] implement this framework in the Sioux Falls 

network with 10 UAT pads and a homogenous fleet of 100 UAT aircraft. The flight level for the 

cruise is set to 500 meters with a vertical speed of 10 m/s, translating to the ascend or descend 

duration of 50 seconds. They further define ground-based UAM process time as a process that 

includes elevator usage, security screening, or boarding the aircraft, and its duration is set to 2.5 

minutes.  

The results show that more than 75% of the flights are shorter than 3.1mi (or 5 km). The 

mean travel time for the aerial leg is 20 minutes. The mean total trip distance is 4.5 mi (or 7.2 km), 

which is on average 2.4 times longer than the straight-line distance between origin and destination 

of customers. While the maximum ingress or egress distance is set to 5 km (i.e., 3.1 miles), there 

is no constraint on the ingress/egress time. The lack of temporal constraints on the customer’s 
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delay is the main drawback of the framework since it has caused unacceptable ingress and egress 

time. For instance, while the mean travel time for the aerial leg is 20 minutes, the mean ingress 

time is 71 minutes. Lastly, they conduct sensitivity analyses to the cruising speed, vertical speed, 

process time, aircraft capacity, fleet size, and the number of UAT pads. 

Rajendran and Shulman [102] offer a per-seat multimodal concept of operations for UAT. 

In the proposed framework, if the UAT operator accepts the customer request, it provides the 

customer with the cost and duration of the service. Subsequently, the customer can reject the 

operator’s offer for the aerial service. As the customers, who have chosen to use the service, arrive 

at the UAT pad, they enter a queue based on their destination. The customers will wait a maximum 

time of 𝑊𝑚𝑎𝑥 before leaving the system without being served. A UAT aircraft would arrive at a 

UAT pad only when dropping off the passengers at that pad. Therefore, no empty flight is 

conducted to reposition the aircraft. However, in cases where the incoming demand at a given 

UAT pad is disproportionately lower than the outgoing demand, this assumption causes excessive 

wait time. Additionally, a customer in the queue should wait until the number of waiting customers 

reach the capacity of the aircraft, which in turn could lead to unacceptable wait times for OD pairs 

with low demands. 

They develop a discrete-event simulation in SIMIO. There are 500 replications, and each 

simulates the air taxi operations for 30 days with 24 operating hours per day. The warm-up period 

is three hours. The numerical experiment includes 5 UAT pads with 60 homogeneous UAT 

aircraft. The take-off, landing, passenger loading, and passenger unloading durations are assumed 

60, 75, 120, and 180 seconds, and the maximum wait time of a customer at the UAT pad before 

they leave is set to 20 minutes. The average daily demand for the air taxi in the base scenario is 

about 193,000, translating to an average interarrival time of 0.44 seconds. The aircraft utilization, 
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mean customer’s total trip time, mean customer’s wait time, and the average number of customers 

created per week are reported as the performance measures. However, it is not clear how many 

passengers are served. The results show that an average trip would take 40 minutes while the 

average passenger’s waiting time is 15 minutes. Aerial fleet utilization is about 34%. Lastly, the 

sensitivity analyses examine the impacts of demand density, aircraft capacity, number of aircraft, 

and maximum wait time on the performance measures.  

Table 3.2 summarizes the simulation studies on on-demand air mobility on the regional 

level.
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Table 3.2 Comparison of simulation studies on on-demand air mobility 
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3.4 Synchronized Logistics 

Covering the first and last leg of the trip on the ground by the UAT operator in addition to 

the flight would require coordinated transportation between the ground-based and aerial modes. In 

the literature, this has been referred to vehicle routing problem with multiple synchronization 

constraints (VRPMS) [117]. These synchronizations could be about tasks, operations, movement, 

and load. Synchronization in operation concerning time could be broken into pure spatial operation 

synchronization, operation synchronization with precedence, and exact operation synchronization 

[117]. Location-Routing Problems (LRPs) could be classified under VRPMS, where locations and 

routes are determined simultaneously. In the following sections, LRPs and some applications of 

synchronized logistics are discussed. 

3.4.1 Location-Routing Problems 

Location-Routing Problem (LRP) [118] is a class of location problem where locations are 

planned while considering the aspects of tour planning, and therefore, the relation between these 

two decisions is taken into account. In the classic LRP, the locations of facilities are determined 

in conjunction with vehicle tours from these locations to cover the customers. There is a cost 

associated with opening each facility, and there are no vehicle tours between the facilities. In these 

problems, the problem of finding the locations is strategic, while the problem of finding the routes 

is tactical [118].  

If the location and routing problems are solved sequentially without considering the 

interrelation of these two, the problem is no longer classified as LRP. In sequential approaches, 

first, the facility location problem is solved by minimizing the sum of distances between customers 

and the facility, and then the routing problem is solved based on the location of the facilities in the 

first step. 
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Three heuristic solution approaches for solving LRPs exist [118]: clustering-based, 

iterative, and hierarchical heuristics. In the cluster-based approach, the customers are grouped into 

clusters. Afterward, two possible methods exist: (i) for each cluster, the location of the facility is 

determined, and then VRP (or TSP in case of one vehicle) is solved for customers in each cluster, 

or (ii) TSP is solved for each cluster, and then the location of the facility (i.e., depot) is determined. 

Cluster-based heuristics are similar to sequential methods since there is no feedback between 

routing and location problems. However, the clustering is performed while considering some 

aspects of routing. As a result, cluster-based heuristics are classified under solution approaches of 

LRPs. In the iterative approach, the problem is divided into two consecutive subproblems, solved 

iteratively with feedback from one subproblem to another. In hierarchical heuristics, the main 

problem involves solving facility location while referring to a routing subproblem in each step. 

There are problems related to LRPs that are not classified as classic LRP problems. In the 

following sections, the two variations that are relevant to UAT are discussed: 

1. Location-Allocation-Routing Problem (LARP) or Vehicle Routing-Allocation 

Problem (VRAP): This variation includes problems with vehicle routing just 

between facilities (i.e., hubs or depots) but not between facilities and customers. 

So, the customers are allocated to the facility simply with direct transport, and 

consequently, radial distances are most relevant. 

2. N-echelon Location-Routing Problem (LRP-NE): This variation includes problems 

with multi-level (or echelon) intermediary facilities where each echelon has its own 

vehicles that form tours to visit the facilities from the next echelon. These vehicles 

could be homogeneous or heterogeneous and have their own attributes, such as 

operating costs per mile, speed, and capacity. Additionally, tours at each echelon 



80 

 

could have different fixed costs, and the costs associated with 

opening/using/stopping at facilities could differ for each echelon. 

Two-echelon location-routing problems (LRP-2Es) seek to determine the location 

of the facilities while considering tour planning between facilities and between 

customers. Some variations allow customer visits in the first-level routes while 

others do not [119]. The first study on LRP-2E was done by Jacobsen and Madsen 

[120] on a newspaper delivery system. In this system, the newspapers are first 

delivered to transfer points and then from transfer points (TP) to sales points (SP). 

The primary route is constructed between TPs, and the secondary route is 

constructed between a TP and SP. There is a capacity constraint for the vehicles 

performing primary tours. Additionally, secondary tours have the latest delivery 

time and tour duration constraints. The cost of each tour consists of the fixed cost, 

cost of stops, and the cost associated with tour length. In other words, Jacobsen and 

Madsen [120] seek to minimize the number of routes (i.e., required vehicles), the 

number of stops, and the length of the route.  

It is worth mentioning that there is a subtle difference between N-echelon Location Routing 

Problem (LRP-NE) and N-echelon Vehicle Routing Problem (VRP-NE). In VRP-NE, there is no 

fixed cost associated with opening or using a facility, and all locations are assumed to be open 

[119], while in LRP-NE, the cost of opening a facility is included in the objective function.  

An analogy could be drawn between synchronized logistics of UAT (i.e., multimodal 

operation with ground-based first- and last-mile service) and the two variations of LRPs discussed 

above. In the UAT framework, the aircraft needs to visit the nodes corresponding to flights while 

the requests are allocated to these nodes, which is similar to the tour planning between intermediary 
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facilities in VARP or LRP-NE. In addition to the operating cost of the tour, there is a fixed cost 

associated with each tour (i.e., acquisition and maintenance cost of the aircraft) and a cost 

associated with each stop along the way (i.e., take-off and landing costs).  

Since there are multiple UAT aircraft, each capable of forming one tour, multi-depot 

variations of LRPs are more applicable to the UAT operations. Additionally, the limited capacity 

of the aircraft calls for capacitated LRP. Finally, some variations of LRP-NE allow vehicles in the 

primary tour to visit the customer’s node directly. These variations are more relevant to UAT 

operations. 

For the ground-based operation of UAT, two conceptual frameworks are inspired by VARP 

and LRP-NE. In the first one, the requests are simply assigned to the flights, while in the second 

one, there is tour planning to cover the transportation of customers to the flights. 

Despite all the similarities between synchronized logistics of UAT and LRPs, there are 

significant differences that make the two problems distinct. LRPs are developed in the context of 

freight transportation where mostly only deliveries (e.g., newspapers delivery [120]) or only pick-

ups (e.g., milk collection [121]) are involved. However, UAT addresses pick-ups and drop-offs of 

the passengers. Aside from the difference in network representation, the boarding at the UAT pads 

should be synchronized such that the vehicles transferring passengers on the ground arrive at the 

pad before the aircraft does, or the aircraft should be held until the vehicle arrives. Either way, 

there should be a limit on the wait time of the passengers or aircraft holdings. For these reasons, 

LRPs should be adjusted to be able to model UAT fleet operations.  
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3.4.2 Truck and Trailer Routing Problem (TTRP)  

Truck-and-Trailer Routing Problems (TTRPs) or road-train problems [122] address a class 

of problems where a truck and trailer attached together leave the depot to serve the customer 

demand. Due to accessibility restrictions, the trailer cannot visit all the customers. The stores (i.e., 

customers) that can be served by trailer-truck are called trailer stores, while the stores that can be 

served by only a truck are called truck stores. Therefore, trailer points [123] are defined where the 

trailer is detached from the truck, and the truck performs a tour to cover the truck stores. In the 

classic TTRP developed by Semet and Taillard [122], the trailer is detached from the truck at the 

trailer store. Therefore, the trailer points are selected among trailer stores. In a later variation, with 

milk collection in Norway, the trailer is detached at a parking place so that the truck could serve 

the farms. Therefore, no customer is served directly on the primary tour. TTRP models and the 

solution algorithms are surveyed in [119] and [124]. 

TTRP is a special case of a more general class of problems, i.e., Vehicle Routing Problem 

with Trailers and Transshipments (VRPTT) [125], with a fixed truck-trailer assignment, meaning 

that each truck is attached to one trailer, and the transfer of the load could happen only between 

this truck and the trailer at the transshipment locations [125]. 

TTRPs resemble synchronized logistics of the UAT because the vehicles have limited 

capacity, and there are time window constraints on the deliveries. Additionally, in the classic 

definition, the transfer points are located at the customers, which is similar to the operational 

frameworks of UAT. 

3.4.3 School Bus Routing Problem (SBRP) 

School Bus Routing Problem (SBRP) involves planning the routes for a fleet of school 

busses to pick up students from bus stops and drop them off at their destination (i.e., their school) 
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under various constraints such as the capacity of the bus and maximum ride time of students [126]. 

From the 27 studies reviewed by Park and Kim [126], only 6 of them consider the subproblem of 

defining bus stop location, from which only two studies take the maximum walking distance into 

account. 

There are two heuristic approaches for bus stop location in SBRP [126]: the location-

allocation-routing (LAR) strategy or the allocation-routing-location (ARL) strategy. In LAR 

heuristics, first, the locations of bus stops are determined, and the students are allocated to these 

locations. Next, the tour is planned for these selected bus stops. This approach is similar to 

sequential methods discussed under LRP. Since the bus stop locations are determined without 

taking the routing (for instance, the capacity of each vehicle) into account, LAR tends to generate 

excessive routes. In ARL heuristics, first, the students are partitioned into clusters while 

considering the vehicle's capacity, and then the location of bus stops within each cluster is 

determined. Next, the vehicle route is calculated for these selected bus stops. Finally, the students 

in each cluster are allocated to the stops. ARL approach is similar to cluster-based methods for 

solving LRP. Chapleau et al. [127] use clustering within the ARL framework for the bus stop 

location problem. Interestingly, their objective function in clustering the students involves 

minimizing the number of clusters (i.e., routes) instead of minimizing the total distance. This is 

most useful when vehicles’ fixed cost dominates the costs associated with the operating mileage 

of the vehicle. 

Bus stop location subproblem in SBRPs covers a class of problems where the demand is 

consolidated at intermediate facilities. However, it is different from LRPs since these intermediate 

facilities are neither located at customer locations nor are selected from a potential set of facilities. 

Additionally, in the SBRP framework, there is a limit on the maximum walking distance from the 
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selected bus stop, which resembles the constraint on the maximum ingress and egress time or 

distance of customers in the UAT operation. However, in SBRPs, the students share the same 

destination (i.e., school) and are either picked up or dropped off, but not both. The solution 

algorithms of SBRPs should be adjusted for UAT operations with demand consolidation to identify 

consolidation locations for pick-up and drop-off of passengers who have a sufficiently close origin 

and destination. 

3.4.4 Other Applications of Synchronized Logistics 

Synchronized logistics have other various applications, many of which are reviewed in 

[117]. The most prominent application is in hybrid transit, which aims to synchronize flexible 

demand-responsive service and fixed-route service. Another application involves synchronizing a 

moving truck and a drone in a continuous network [128]. 

3.5 Concluding Remarks 

This chapter reviews the literature relevant to UAT operations. UAT is a nearly on-demand 

aerial service in a ubiquitous network UAT pads, and therefore, in many aspects, it resembles the 

ground-based on-demand service. As a result, this chapter first presents the literature on vehicle 

routing problems with pick-up and delivery. Subsequently, it reviews the literature specific to on-

demand air mobility use cases, namely, the fractional ownership programs and the air taxi. Lastly, 

UAT is a multi-modal service, which requires synchronization between the ground and aerial 

modes. Consequently, this chapter further reviews the literature on synchronized logistics. 

Given the current information and visions on passenger-carrying UAM and UAT use case 

presented in Chapter 2 and the relevant literature reviewed in Chapter 3, Chapter 4 defines the 

underlying UAT concept of operations in this research and outlines the problem we aim to address.  
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Chapter 4 Urban Air Taxi: Concept of Operations and Problem Definition 

4.1 Overview 

Urban Air Taxi (UAT), a subset of UAM, is a ubiquitous on-demand per-seat service that 

moves passengers in urban or suburban areas using groundbreaking aircraft [8,9]. UAT does not 

have fixed routes or regular schedules, distinguishing it from air metro [9] or airport shuttle [8], 

which are envisioned to operate on predetermined routes. 

Despite all the excitement around UAT, the specifics of many aspects of operations, 

including the aircraft, infrastructure, network coverage, and sharing strategies, remain unclear. The 

sheer number of terms used when referring to UAT aircraft and infrastructure vouch for the nascent 

UAT concept. As a result, this chapter presents and introduces the concept of operations for the 

UAT operations studied in this dissertation. Accordingly, the problem is defined, and the 

corresponding assumptions are presented.  

4.2 Urban Air Taxi Concept of Operations 

This section discusses the concepts and assumptions related to the aircraft, UAT 

infrastructure, network coverage, flexible pads, repositioning flight legs, demand consolidation, 

and first- and last-mile trips. 

4.2.1 Aircraft 

The aircraft in this research is assumed to be autonomous and electric, and have vertical 

take-off and landing. Hence, the UAT aircraft are autonomous eVTOLs. The cruise speed of these 

aircraft is assumed to be 150 mph with at most four passenger seats. These specifications resemble 

the tiltrotor aircraft developed by Joby Aviation, which has a maximum cruising speed of 200 mph 

[18]. We also assume that aircraft batteries could be swapped quickly, i.e., in less than 5 minutes. 
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Therefore, the batteries could be changed while the passengers are boarding or deboarding the 

aircraft, eliminating the need for scheduling events specific to battery swapping. 

4.2.2 Infrastructure 

Even though UAT pads and UAT ports are envisioned to differ in landing, parking, 

charging capacity, and available resources, we assume all the infrastructure in the network has a 

sufficient number of UAT pads with full batteries and resources required for swapping the 

batteries. Consequently, the UAT aircraft do not need to be routed to specific UAT pads to change 

their batteries.  

4.2.3 Network Coverage 

 UAM Coordination and Assessment Team (UCAT) outlines 6 UAM Maturity Levels 

(UMLs) in 3 states: initial, intermediate, and mature [41]. As the system evolves from the initial 

state to the mature state, the density of UAT pads increases to the point that in UML-6, ubiquitous 

UAT service with 10,000s of simultaneous operations and ad hoc landing sites is envisioned. 

Having a network with a selected number of UAT pads would help the UAT operator to 

aggregate the demand, increase aircraft load factor, and consequently, improve the efficiency of 

the operation. However, it would limit the service to the users that are relatively close to the UAT 

pads. As the number of UAT pads increases, the coverage of UAT service increases. In the long 

term, when the density of UAT pads is high, the UAT operator could provide a point-to-point 

service. We refer to the first setting with a limited number of UAT pads in the initial and 

intermediate states, a limited network, and the second setting with a highly distributed network of 

UAT pads, a ubiquitous network. By definition, the UAT use case is associated with a ubiquitous 

network [9]. 
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4.2.4 Flexible Pick-up and Drop-off Pads 

From the UAT operator’s standpoint, one of the significant drawbacks of the ubiquitous 

network is the potential for extremely short repositioning flight legs from the drop-off UAT pad 

of one passenger to the pick-up UAT pad of another passenger. Furthermore, the operator would 

have fewer opportunities to consolidate the demand and reduce operational costs. To address this 

issue, the operator designs the UAT service with flexible pads for the passengers, where passengers 

have a desired pick-up and drop-off UAT pad, but they are flexible and could be relocated (or 

transferred) to a location within an acceptable radius of their origin or destination for the aerial 

service. Let ∆𝐴𝐶𝐶𝐸𝑆𝑆 denote the radius surrounding the origin or destination of requests within 

which passengers are willing to be relocated. 

4.2.5 Repositioning Flight Legs 

While the requests are being served in a ubiquitous network, some empty flight legs might 

be too short to justify the repositioning of the aircraft. Therefore, the UAT operator could benefit 

from the concept of flexible UAT pads and relocate the passengers on the ground to eliminate the 

empty flight legs shorter than a threshold. Let ∆𝐸𝑀𝑃𝑇𝑌 denote the minimum required (straight-line) 

distance between two UAT pads to justify the repositioning leg. 

4.2.6 Demand Consolidation 

 The Crown Consulting UAM market study commissioned by NASA envisions a limited 

potential market for UAT by 2030 [9]. However, the study asserts that the assumption of one 

passenger per trip in their model is one of the main barriers. Hence, the UAT profitability hinges 

on the aircraft load factor, and consequently, a notion of demand consolidation should be 

incorporated in the UAT operation.  
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There are two models of demand consolidation: air sharing and air pooling. Air sharing 

service resembles ground-based ridesharing operations, where a passenger might have one or 

multiple stops per trip while other passengers on the aircraft are being served. DAFP presents a 

framework for modeling the air sharing service. In comparison, air pooling provides a service 

where all passengers assigned to one flight leg board and deboard the aircraft at the same locations. 

These locations may differ from their desired pick-up and drop-off UAT pads.  

Consequently, with air pooling, passengers with sufficiently close origins and destinations 

could be pooled by being picked up and subsequently dropped off at the same UAT pads. Figure 

4.1 demonstrates the concept of air pooling in a ubiquitous network with flexible pads. In Figure 

4.1(a), three flights must be conducted to serve the three corresponding requests in a ubiquitous 

network without flexible pads. However, in Figure 4.1(b) with flexible pads, the upper and lower 

requests are relocated on the ground to the desired pick-up and drop-off UAT pad of the request 

in the middle, and therefore, only one flight is conducted to serve all three requests. 

Figure 4.1 Concept of air pooling in a ubiquitous network with flexible pads, (a) without, 

and (b) with air pooling. 
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Air pooling takes advantage of the existing flight legs. As demonstrated in Figure 4.1, with 

air pooling, one request is served with its desired flight leg, and therefore, it undergoes no 

relocation, while the other experiences two relocations, one to the pick-up UAT pad and one from 

the drop-off UAT pad. To address this issue, the UAT operator could offer the service at a 

discounted rate to the requests that are not served with their desired flight leg. Nonetheless, in a 

more equitable setting, new flight legs should be defined between pick-up (or drop-off) of one 

request and drop-off (or pick-up) of another request. In this case, each request experiences one 

relocation.  

The Booz Allen Hamilton’s UAM market study [8] commissioned by NASA has reported 

the customers’ concerns for the high cost of the service, multiple stops per passenger trip, and the 

relocations resulting from the ground-based transportation in the multimodal UAT operations [8]. 

Implementing air pooling in a ubiquitous network would reduce the operating costs by decreasing 

the aerial mileage. Additionally, the passengers would not have multiple stops. However, it adds 

a maximum of two relocations per trip compared to the point-to-point service without flexible 

pads. Lastly, Booz Allen Hamilton’s UAM market study employs the air pooling business model, 

where all the passengers sharing one flight are picked up and subsequently dropped off at the same 

UAT pad. 

4.2.7 First- and Last-Mile Service  

The key to a successful UAT operation is a seamless multimodal operation where 

customers can smoothly access the UAT pad on the ground and use a ride-hailing service with 

negligible wait time [6]. Currently, BLADE offers ground-based transportation between the 

helicopter and the aircraft [45]. Furthermore, Uber Elevate announced that uberAIR would 

perform the first and last mile of trips with its ride-hailing service or walk [23]. Consequently, 



90 

 

UAT can be defined as a multimodal service where the UAT operator covers the ground-based 

legs of the trip in addition to the aerial leg.  

Figure 4.2 depicts the concept of multimodal UAT service, where the UAT operator is 

informed of the request while they are at their origin. This enables the UAT operator to assign the 

pick-up UAT pad (i.e., starting UAT pad of the flight) and the drop-off UAT pad (i.e., ending UAT 

pad of the flight), and schedule the aircraft while considering the availability of its fleet and the 

congestion of the UAT pads. In contrast, when passengers are not flexible in the pick-up and the 

drop-off UAT pads and place a request only when they reach their desired pick-up UAT pad, the 

operator loses some of the flexibility it would otherwise have to operate the system more 

efficiently. 

4.3 Problem Definition 

The UAT operator manages a fleet of homogenous vehicles on the ground and UAT aircraft 

in a ubiquitous network (i.e., UML-6), and it synchronizes these two modes to serve the customer 

requests. Each request is identified by the origin, destination, desired pick-up and drop-off UAT 

Figure 4.2 Concept of multimodal UAT operation 
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pads, requested time to begin the service, and group size. Given that the UAT pads are ubiquitously 

present in a ubiquitous network, the origin and destination of the request coincide with the desired 

pick-up and drop-off UAT pad, respectively. 

Each passenger group is flexible in their pick-up and drop-off UAT pads and could be 

relocated on the ground within a reasonable radius from their origin or destination, which enables 

the UAT operator to eliminate the short repositioning flight legs in the ubiquitous network by 

relocating the passengers over short distances. Additionally, the customers are willing to share a 

UAT aircraft with other passengers, and consequently, the UAT operator could relocate the 

passengers to consolidate the customer requests and increase the aircraft load factor. As a result of 

short repositioning elimination and demand consolidation, each request trip consists of at most 

three legs: two ground-based legs and one aerial leg. The aerial leg is non-stop, and there is no 

intermediate transfer point for passengers to change the UAT aircraft after boarding.  

The UAT operator is unaware of all future requests at the beginning of the planning 

horizon, and the customer requests for service arrive in real-time. As a result, the UAT operator 

updates its dispatching plan through a sequential decision-making process. The UAT operator may 

have a relatively short period for decision-making, particularly if there is no reservation scheme 

and requests are expected to be served immediately. The acceptance or rejection decision of the 

arrived requests is made at the first decision epoch after their arrival and will not change in the 

subsequent decision epochs. In other words, while considering accepting a new request, the UAT 

operator cannot reject the requests accepted in the previous decision epochs. However, the flight 

legs assigned to the accepted requests (and therefore, the pick-up and drop-off UAT pads) could 

change as long as the customers have not left their origin. After leaving the origin for the pick-up 
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UAT pad, the pick-up UAT pad of the request is fixed, and only its boarding time could be 

rescheduled.  

The UAT competitive advantage is the travel time savings. As a result, if the UAT operator 

chooses to serve a request, the trip delay (i.e., deviation of the request’s total trip time from its 

desired trip time) cannot exceed a prespecified value, which in turn limits the wait time for the 

aerial service, the ingress and egress time, and the deviation from the desired flight leg. 

Additionally, the UAT operator determines when the customers should leave their origin to access 

the pick-up UAT pad. The scheduling is designed so that the customer wait time is mainly incurred 

at the origin rather than the pick-up UAT pad. However, some customers may have to wait at the 

departure gate after a schedule change resulting from the new information (e.g., the arrival of new 

requests). Since the assigned flight legs to the requests and their schedules could be updated 

multiple times, the requests are only provided, in advance, with the time window during which 

they will be prompted to leave their origin or board the aircraft, not the exact time. 

The revenue that the UAT operator earns from serving a request is proportional to the 

distance between the origin and destination of that request and its group size. The UAT operator 

incurs a fixed cost per flight and a variable cost proportional to the aircraft mileage. Ultimately, 

the UAT operator seeks a strategy that maximizes its net profit given the capacity, delay, and 

synchronization constraints. This strategy should address request acceptance and rejection, 

allocation of accepted requests to flight legs, and the sequence that UAT aircraft should serve these 

flight legs. It should further handle the flight scheduling, the boarding time of each passenger 

group, and the time by which the passenger groups need to leave their origin. 
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4.4 Assumptions 

The analysis of UAT fleet operation in this research is based on the following assumptions 

across four categories of UAT service, operational policies, fleet, and customer requests:  

4.4.1 UAT Service 

• The UAT service is the envisioned use case of passenger UAM in the mature state (i.e., 

UML-6), and therefore, the UAT pad network is ubiquitous. 

• The UAT service is nearly on-demand, and short advance reservation windows are 

allowed. 

• The UAT service is per seat. Air pooling, where passengers share an aircraft as long as 

they are picked up and subsequently dropped off at the same UAT pads, is envisioned. 

• The empty repositioning flight legs need to satisfy a minimum-mileage constraint, and 

therefore, short repositioning flight legs are eliminated. 

• The UAT operator conducts the first and last mile of the trip on the ground.  

4.4.2 Operational Policies 

• The UAT operator guarantees a predefined level of service for the accepted requests. To 

this end, the trip delay (i.e., deviation of the passenger’s total trip time from the desired trip 

time) cannot exceed a prespecified time. Consequently, the accepted requests are provided 

with the time window during which they will be prompted to leave their origin or board 

the aircraft. 

• Each flight leg in a ubiquitous network is defined to serve a specific request. As a result, if 

an intended request of a flight leg is not assigned to that flight, the flight leg will not be 

served. 
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• The operator could either accept or reject the requests and does so in a prespecified period. 

As a request gets accepted, it is guaranteed to be served regardless of the arrival of new 

requests in the future. 

• The requests could be reassigned to a new flight leg or another aircraft as long as the 

passengers have not left their origin. When a passenger group leaves its origin to the pick-

up UAT pad, its pick-up UAT pad can no longer change. 

• The passenger group of requests could be relocated on the ground to eliminate a short 

repositioning leg or to consolidate the demand. However, to implicitly minimize the 

number of relocations and avoid searching the entire space with ubiquitous UAT pads, the 

location they are being relocated to should be the desired pick-up or drop-off UAT pad of 

another request. In other words, the passengers cannot be relocated to an intermediary UAT 

pad in the space, which is not the desired pick-up or drop-off UAT pad of any other request. 

• There is no intermediate transit stop. In other words, passengers do not change their aircraft 

in an intermediate UAT pad. 

• Each passenger trip includes only one flight leg, and therefore, the passengers do not have 

multiple stops while being on board. 

• The UAT aircraft do not have a hub, and they are spread throughout the network at the 

beginning of the planning horizons and do not need to go back to a specific UAT pad at 

the end of the planning horizon. 

4.4.3 Fleet 

• The fleet is homogeneous, and thus, the speed and capacity in each class of the aerial and 

ground-based vehicles are identical. 

• UAT aircraft is fully autonomous, and therefore, no crew scheduling is necessary. 
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• The UAT aircraft takes advantage of eVTOL technology. 

• The aerial fleet does not have an assigned UAT port. They are assumed to be randomly 

located in the network at the beginning of the planning horizon, and they do not need to go 

back to a UAT port at the end of the planning horizon. 

• The time required for swapping the aircraft battery is short, and the battery could be 

swapped while the passengers are deboarding the aircraft. As a result, no charging slots are 

scheduled.  

• No maintenance operations are scheduled, and therefore, the aircraft are available over the 

planning horizon. 

4.4.4 Customer Requests 

• Customer requests are known by their origin, destination, desired pick-up and drop-off 

UAT pads, and group size. In the ubiquitous network, the desired pick-up and drop-off 

UAT pads are, respectively, the same as the origin and destination. 

• Customers are flexible in pick-up and drop-off UAT pads for aerial service as long as the 

ingress and egress time is reasonable. 

• The number of passengers in each request is smaller than the aircraft’s capacity. 

Additionally, the passengers in one group do not split. 

4.5 Limitations 

The modeling assumptions in the previous section have some drawbacks:  

• The pricing scheme is per seat and does not provide a discount for shared flights, which 

does not encourage the customers to have a bigger group size. However, Booz Allen 
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Hamilton’s UAM market study shows that passengers are willing to share the flight with 

passengers they do not know as long as they receive a discount [8]. 

• It is assumed that every UAT port has enough capacity for UAT operations, and therefore, 

the congestion at the UAT ports is not considered. 

• No maintenance event is scheduled. 

• Selecting an intermediary UAT pad in the ubiquitous network of UAT pads, as opposed to 

the one that is the desired UAT pad of a request, may reduce the aerial mileage. 

• The requests are not provided with the exact boarding time, and there is no upper bound 

on the number of times a request could be rescheduled. 

4.6 Concluding Remarks 

UAT embodies the passenger-carrying UAM in its mature state, and therefore, the concept 

of operations has not been clearly specified. At the same time, no dominant player in the industry 

has yet emerged. Consequently, this chapter first discusses the aircraft, infrastructure, and network 

coverage associated with the UAT service. It further proposes the concept of flexible UAT pads 

for UAT service design in a ubiquitous network, suggesting that the passengers are flexible 

towards their pick-up and drop-off UAT pads within a reasonable distance of their origin and 

destination. This idea allows the UAT operator to move the passengers for two purposes: 

eliminating the short repositioning flight legs and consolidating the demand. 

Based on the proposed concept of operations for the UAT service, the problem is defined, 

and the corresponding assumptions are outlined. Chapter 5 presents the Urban Air Taxi modeling 

framework.
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Chapter 5 Urban Air Taxi Model 

5.1 Overview 

The Urban Air Taxi (UAT) operation has many elements that work together to provide 

aerial service. However, including and tracking all these elements are not essential to modeling 

the UAT fleet operation. Consequently, this chapter presents the relevant components of the UAT 

fleet operation, namely, entities, state variables, events, activities and delays, and transition 

functions. To this end, we borrow some of the concepts and terms used in the simulation literature. 

However, the model is defined independently of a simulation framework and, therefore, could be 

employed to model real-time UAT operations. 

5.2 UAT Entities 

Entities are discrete components that require explicit representation in the model [129]. 

They flow through the system and have attributes. Entities are classified into objects and agents 

[130]. Objects are passive entities that do not have intelligence. In contrast, agents are active 

entities that take actions, interact, learn, and adapt. In other words, agents are objects with attitudes 

[130]. The UAT model involves four entity classes: dispatcher, customer request, UAT aircraft, 

and flight leg; among which the last three are considered objects. The entities are discussed in 

further detail as follows. 

5.2.1 Dispatcher 

The dispatcher is a centralized unit that receives the customer request, accepts or rejects 

them, assigns the accepted requests to UAT aircraft, and schedules the ground and aerial fleet to 

serve the request. At each decision epoch, the dispatcher has the information on the status and 

location of customers and the status and location of its fleet, and it uses the available information 
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at the time to manage the system. As a result, the dispatcher wishes to solve a static and 

deterministic model of the dynamic and stochastic UAT problem at each decision epoch. 

The principal component associated with the dispatcher is the policy it uses to assign the 

requests to aircraft and routing and scheduling of the aerial fleet. These policies could be rule-

based such as first-come-first-served (FCFS) [74], optimization-based [78], or a hybrid approach 

that employs a combination of rules and optimization [76,131]. The Capacitated Location-

Allocation-Routing Problem with Time Windows And Short Repositioning Elimination 

(CLARPTW-SRE) is the proposed optimization-based policy in this dissertation and is defined in 

Chapter 8. 

5.2.2 UAT Aircraft 

The UAT operator employs 𝐾  UAT aircraft for the aerial service. Let 𝒦 =

{𝒶1, 𝒶2, … , 𝒶𝑘, … , 𝒶𝐾} denote the set of functioning UAT aircraft that the operator could dispatch 

over the planning horizon, where 𝐾 = |𝒦| . At the beginning of the planning horizon, the 

availability location and time of these aircraft are known. The static attributes of 𝒶𝑘 ∈ 𝒦  are 

represented by 𝔸𝑘
𝑒𝑉𝑇𝑂𝐿 = (𝑄𝑘, 𝑣𝑘

𝐴𝐼𝑅), where: 

𝑄𝑘 = capacity of aircraft k. With a homogenous fleet of aircraft, 𝑄 denotes the capacity of 

aircraft; 

𝑣𝑘
𝐴𝐼𝑅 = cruising speed of aircraft k. 𝑣𝐴𝐼𝑅 denotes the cruising speed of a homogeneous fleet 

of aircraft. 

5.2.3 Flight Leg 

Flight legs are the constituent of a UAT aircraft itinerary. A flight leg could be either an 

empty (also known as deadhead, ferry leg, or non-revenue [90]) flight or a revenue-generating leg. 
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The latter is associated with flights that move passengers, while the former refers to repositioning 

flights that relocate a UAT aircraft to the pick-up UAT pad of a request. In aircraft routing, the 

sequence of flight legs is determined, and subsequently, the routes are assigned to the aircraft. The 

scheduling, on the other hand, determines the time that each flight should start. 

Let 𝒻𝑖 denote flight leg 𝑖. The static attributes 𝔸𝑖
𝐿𝐸𝐺 = (𝑺𝑖, 𝑬𝑖, 𝐻𝑖) of a candidate flight leg 

𝑖 must be available to the UAT operator. 𝑺𝑖 is the starting point (i.e., UAT pad) of 𝒻𝑖, 𝑬𝑖 is the 

ending point of 𝒻𝑖, and 𝐻𝑖 indicates whether the flight type is empty or revenue-generating:  

𝐻𝑖 = {
0 empty or deadhead
1 revenue-generating

 

A revenue-generating flight leg has three additional attributes. 𝔸𝑖
𝑅𝐸𝑉𝐿𝐸𝐺 =

(𝓇𝑖
𝐼𝑁𝑇𝑁𝐷, 𝜏𝑖

𝑀𝐼𝑁 , 𝜏𝑖
𝑀𝐴𝑋) denotes the static attributes of 𝒻𝑖 where 𝐻𝑖 = 1. In a ubiquitous network, 

each revenue-generating flight leg is created with the intention of serving a specific request. 

Consequently, 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷  denotes the intended request of revenue-generating 𝒻𝑖 . Moreover, 𝜏𝑖

𝑀𝐼𝑁 

and 𝜏𝑖
𝑀𝐴𝑋 are, respectively, the earliest and latest time that flight leg 𝑖 could be served. 𝜏𝑖

𝑀𝐼𝑁 and 

𝜏𝑖
𝑀𝐴𝑋 are defined in Equations (7.26) and (7.27), respectively. 

Lastly, let 𝔽𝑖(𝑺𝑖, 𝑬𝑖, 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷) denote a function that defines 𝒻𝑖 such that it starts at 𝑺𝑖 and 

ends at 𝑬𝑖, with intended request 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷. 

5.2.4 Customer Request 

The customer request or request, in short, represents a group of passengers who wish to 

travel together from their origin to destination and request the multi-modal UAT service. A request 

is said to arrive in the system when it places its request for UAT service and becomes known to 
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the UAT operator. The accepted requests are assigned to flight legs, and their boarding time and 

the time they need to leave their origin are outputs of the dispatching strategy.  

Let 𝓇𝑟  denote request r. When 𝓇𝑟  arrives at time 𝜏𝑟
𝐴𝑅𝑉 , its attributes are defined by the 

vector 𝔸𝑟
𝑅𝐸𝑄 = (𝑶𝑟 , 𝑫𝑟 , 𝑺𝑟

𝐷𝑆𝑅𝐷 , 𝑬𝑟
𝐷𝑆𝑅𝐷 , 𝑞𝑟 , 𝜏𝑟

𝑅𝐸𝑄
), where: 

𝜏𝑟
𝐴𝑅𝑉: the time 𝓇𝑟 arrives; 

𝑶𝑟: origin of 𝓇𝑟; 

𝑫𝑟: destination of 𝓇𝑟; 

𝑺𝑟
𝐷𝑆𝑅𝐷: the desired pick-up UAT pad of 𝓇𝑟; 

𝑬𝑟
𝐷𝑆𝑅𝐷: the desired drop-off UAT pad of 𝓇𝑟; 

𝑞𝑟: the group size of 𝓇𝑟. In other words, each request 𝑟 consists of 𝑞𝑟 passengers.  

𝜏𝑟
𝑅𝐸𝑄

: the requested time for service by 𝓇𝑟; 

Consequently, given the desired pick-up and drop-off UAT pads of request 𝑟, the UAT 

operator defines 𝒻𝑟
𝐷𝑆𝑅𝐷 , the desired flight leg of request 𝑟 , as 𝒻𝑟

𝐷𝑆𝑅𝐷 = 𝔽𝑖(𝑺𝑖 = 𝑺𝑟
𝐷𝑆𝑅𝐷, 𝑬𝑖 =

𝑬𝑟
𝐷𝑆𝑅𝐷, 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟) . In a ubiquitous network, 𝑺𝑟
𝐷𝑆𝑅𝐷 = 𝑶𝑟  and 𝑬𝑟

𝐷𝑆𝑅𝐷 = 𝑫𝑟  since the UAT 

pads are ubiquitously present in the space; however, the UAT model and operational policy 

Figure 5.1 Illustration of temporal elements associated with request 𝒓 
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presented in this research are not dependent on this assumption and, therefore, they could be 

adjusted for a network with limited UAT pads. 

The tuple (𝜏𝑟
𝐴𝑅𝑉, 𝔸𝑟

𝑅𝐸𝑄
) represents the static information associated with 𝓇𝑟. Furthermore, 

Figure 5.1 illustrates the temporal elements related to 𝓇𝑟, where: 

𝑇𝑟
𝐴𝐷𝑉: advance reservation time for request 𝑟, which is specified by the difference between 

the arrival time of 𝓇𝑟 and its requested time of service (i.e., 𝑇𝑟
𝐴𝐷𝑉 = 𝜏𝑟

𝑅𝐸𝑄 − 𝜏𝑟
𝐴𝑅𝑉); 

𝑇𝑟
𝐷𝑆𝑅𝐷: the trip time of the desired flight leg of 𝓇𝑟. It is equal to the total trip time of request 

r when the trip starts immediately at 𝜏𝑟
𝑅𝐸𝑄

 and the passenger group of 𝓇𝑟 board the aircraft at their 

desired pick-up UAT pad (i.e., 𝑺𝑟
𝐷𝑆𝑅𝐷) and deboard at their desired drop-off UAT pad (i.e., 𝑬𝑟

𝐷𝑆𝑅𝐷) 

without any ground-based transportation; 𝑇𝑟
𝐷𝑆𝑅𝐷is defined in Equation (7.28). 

𝑇𝑟
𝑇𝑅𝐼𝑃: total trip time of each passenger in 𝓇𝑟, including ingress and egress time, aerial wait 

time, and aerial service time. 𝑇𝑟
𝑇𝑅𝐼𝑃 = 𝜏𝑟

𝐷𝑆𝑇 − 𝜏𝑟
𝑅𝐸𝑄

, where 𝜏𝑟
𝐷𝑆𝑇 is the time the passenger group 

of 𝓇𝑟 reach their destination. 

𝑇𝑟
𝐷𝐸𝐿𝐴𝑌: the total delay experienced by a passenger of 𝓇𝑟, defined as the deviation of the 

trip time of 𝓇𝑟 from the desired trip time (i.e., 𝑇𝑟
𝐷𝐸𝐿𝐴𝑌 = 𝑇𝑟

𝑇𝑅𝐼𝑃 − 𝑇𝑟
𝐷𝑆𝑅𝐷); 

Consequently, 𝜏𝑟
𝐸𝐴𝑅𝐿 denotes the earliest time the group passenger of 𝓇𝑟 could reach their 

destination. Let 𝜔 represent the maximum allowed delay. The value of 𝜔 is prespecified by the 

operator as a proxy for the level of service. Lastly, 𝜏𝑟
𝐷𝐿𝑁 is the latest time by which the UAT 

operator guarantees the passenger group of 𝓇𝑟 would reach their destination. 𝜏𝑟
𝐸𝐴𝑅𝐿 and 𝜏𝑟

𝐷𝐿𝑁 are 

defined in Equations (5.1) and (5.2), respectively. 
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 𝜏𝑟
𝐸𝐴𝑅𝐿 = 𝜏𝑟

𝑅𝐸𝑄 + 𝑇𝑟
𝐷𝑆𝑅𝐷 (5.1) 

 𝜏𝑟
𝐷𝐿𝑁 = 𝜏𝑟

𝐸𝐴𝑅𝐿 + 𝜔 = 𝜏𝑟
𝑅𝐸𝑄 + 𝑇𝑟

𝐷𝑆𝑅𝐷 +  𝜔 (5.2) 

5.3 State Variables 

While many attributes of the entities change over time, not all are required to study the 

UAT fleet operation. State variables track the values of attributes of interest and provide the 

information required for describing the system at any time. From the decision-making perspective, 

“A state variable is the minimally dimensioned function of history that is necessary and sufficient 

to compute the decision function, the transition function, and the utility function” [132].  

Let 𝑆𝑡 represent the state of the system at time 𝑡. 𝑆𝑡 is defined by using the state of three 

entities, namely, requests, UAT aircraft, and flight legs. As a result, 𝑆𝑡 = (𝑆𝑡
𝑅𝐸𝑄 , 𝑆𝑡

𝑒𝑉𝑇𝑂𝐿 , 𝑆𝑡
𝐿𝐸𝐺), 

where 𝑆𝑡 is the state of the system at time 𝑡, and 𝑆𝑡
𝑅𝐸𝑄

, 𝑆𝑡
𝑒𝑉𝑇𝑂𝐿, and 𝑆𝑡

𝐿𝐸𝐺represent, respectively, 

the state of requests, UAT aircraft, and flight legs at time 𝑡. These state variables remain constant 

unless a relevant event in the future prompts their values to change. The state variables associated 

with requests, UAT aircraft, and flight legs are discussed in the following sections. 

5.3.1 Customer Request  

𝑆𝑡
𝑅𝐸𝑄

 specifies the state of all the requests that have been placed by time 𝑡, i.e., 𝑆𝑡
𝑅𝐸𝑄 =

(𝑆𝑟𝑡
𝑅𝐸𝑄)

𝓇𝑟∈ℛ𝑡
𝐴𝑅𝑉 , where ℛ𝑡

𝐴𝑅𝑉 denotes all the requests arrived by time 𝑡. 𝑆𝑟𝑡
𝑅𝐸𝑄 = (𝜍𝑟𝑡

𝑅𝐸𝑄 , 𝜑𝑟𝑡, 𝜏𝑟𝑡
𝑂𝑅𝐺), 

where 𝜍𝑟𝑡
𝑅𝐸𝑄

 is the status of request 𝑟 at time 𝑡, 𝜑𝑟𝑡 is the flight leg assigned to request 𝑟 as of time 

𝑡 and 𝜏𝑟𝑡
𝑂𝑅𝐺 is the time passenger group of request 𝑟 are scheduled to leave their origin as of time 

𝑡. 𝜍𝑟𝑡
𝑅𝐸𝑄

, 𝜑𝑟𝑡, and 𝜏𝑟𝑡
𝑂𝑅𝐺are defined in Equations (5.3)-(5.5), respectively. 
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 𝜍𝑟𝑡
𝑅𝐸𝑄 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
−1 rejected

0 waiting for acceptance

1 accepted

2 waiting for service

3 en-route to pick-up UAT pad

4 ingression to the departure gate

5 waiting for boarding

6 boarding

7 on-board

8 deboarding

9 egression from the arrival gate 

10 waiting for ground transportation to destination

11 en-route to destination

12 reached destination

 (5.3) 

The status of request 𝑟 at time 𝑡, 𝜍𝑟𝑡
𝑅𝐸𝑄

, could take 14 values, as defined in Equation (5.3). 

When 𝓇𝑟  is accepted, a flight leg is assigned to it. This initial assignment could change from 

acceptance until the passengers start the boarding process. Let �̃�𝑟𝑡 denote the flight leg assigned 

to request 𝑟  at time 𝑡  when 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {1,… ,5} . The assigned flight leg will remain unchanged 

afterward. Thus, let �̅�𝑟 represent the flight leg that the passenger group of request 𝑟 takes to reach 

their destination. To summarize, the value of 𝜑𝑟𝑡 is defined in Equation (5.4).  

 𝜑𝑟𝑡 = {

N\A 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {−1, 0}

�̃�𝑟𝑡 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {1,… , 5}

�̅�𝑟 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {6,… , 12}

 (5.4) 

Additionally, when 𝓇𝑟  is accepted and a flight leg is assigned to it, the time that its 

passengers should leave their origin to reach the pick-up UAT pad is also scheduled. This initial 

schedule could change from the acceptance until the time passenger group of 𝓇𝑟 leaves their origin. 

Let  𝜏 ̃𝑟𝑡
𝑂𝑅𝐺 denote the scheduled time that the passenger group of 𝓇𝑟 should leave the origin as of 

time 𝑡 for 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {1, 2}. After the passengers leave the origin, this value will remain constant. 



104 

 

Thus, let  𝜏 ̅𝑟
𝑂𝑅𝐺 denote the realized time that passengers of 𝓇𝑟 left their origin. To summarize, the 

value of 𝜏𝑟
𝑂𝑅𝐺 is defined in Equation (5.5).  

  𝜏𝑟𝑡
𝑂𝑅𝐺 = {

N\A 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {−1, 0}

 𝜏 ̃𝑟𝑡
𝑂𝑅𝐺 𝜍𝑟𝑡

𝑅𝐸𝑄 ∈ {1, 2}

 𝜏 ̅𝑟
𝑂𝑅𝐺 𝜍𝑟𝑡

𝑅𝐸𝑄 ∈ {3,4, … , 12}

 (5.5) 

Furthermore, let 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶  denote the start of service time of 𝓇𝑟 as of time 𝑡, and therefore, 

𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 ≥ 𝜏𝑟

𝑅𝐸𝑄
. For the requests that their passenger groups have not left their origin, 𝜏𝑟𝑡

𝑆𝑅𝑉𝐶  

represents the earliest time passenger group of 𝓇𝑟 could leave their origin. On the other hand, for 

requests that have already left their origin, 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶  is the actual time that providing the service to 𝓇𝑟 

starts. Therefore, the value of 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶  is equal to the time the passenger group of request 𝑟 left the 

origin (i.e., 𝜏�̅�
𝑂𝑅𝐺). As a result, 𝜏𝑟𝑡

𝑆𝑅𝑉𝐶  is defined in Equation (5.6), where 𝑊𝑟𝑖𝑡
𝐼𝑁𝐺𝑅𝑆 is the wait time 

for ground-based transportation to the starting point of flight 𝑖 from the origin of request 𝑟 if the 

were to served at time 𝑡. However, the wait time for walking is zero, and we could reasonably 

assume that if the reservation window is sufficiently wide, the wait time for ride-hailing will be 

zero as well. 

 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 =

{
 

 𝑁\𝐴 𝜍𝑟𝑡
𝑅𝐸𝑄 = −1

max(𝜏𝑟
𝑅𝐸𝑄 , 𝑡) +𝑊

𝑟𝑖,max(𝜏𝑟
𝑅𝐸𝑄

,𝑡)

𝐼𝑁𝐺𝑅𝑆 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {0,1, 2}

𝜏�̅�
𝑂𝑅𝐺 𝜍𝑟𝑡

𝑅𝐸𝑄 ∈ {3,4, . . ,12} 

 (5.6) 

5.3.2 Flight Leg 

𝑆𝑡
𝐿𝐸𝐺 represents the state of all the flight legs available flight legs by time 𝑡. Therefore, 

𝑆𝑡
𝐿𝐸𝐺 = (𝑆𝑖𝑡

𝐿𝐸𝐺)
𝒻𝑖∈ℱ𝑡

𝐶𝐴𝑁𝐷, where ℱ𝑡
𝐶𝐴𝑁𝐷 is the set of candidate flight legs for assignment as of time 

𝑡 and 𝑆𝑖𝑡
𝐿𝐸𝐺 = (𝜍𝑖𝑡

𝐿𝐸𝐺 , 𝜏𝑖𝑡
𝑆𝑇𝑅𝑇), where 𝜍𝑖𝑡

𝐿𝐸𝐺 is the status of flight leg 𝑖  at time t and 𝜏𝑖𝑡
𝑆𝑇𝑅𝑇  is the 
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scheduled start time of flight leg 𝑖 as of time t. The status of flight leg 𝑖 at time 𝑡 is specified by 

𝜍𝑖𝑡
𝐿𝐸𝐺, which could take four values as specified in Equation (5.7). 

 𝜍𝑖𝑡
𝐿𝐸𝐺 = {

0 unassigned

1 waiting for service

2 in service

3 served

 (5.7) 

At the end of decision epochs, the start time of flight legs that should be conducted are 

determined. As long as a flight leg has not started, its scheduled start time could change. Let �̃�𝑖𝑡
𝑆𝑇𝑅𝑇 

be the scheduled start time of flight leg 𝑖 for 𝜍𝑖𝑡
𝐿𝐸𝐺 = 1 (i.e., waiting for service). Clearly, the start 

time of flight leg 𝑖 will be no longer changed after the flight leg starts the service. Therefore, 𝜏�̅�
𝑆𝑇𝑅𝑇 

presents the realized start time of flight leg 𝑖 for 𝜍𝑖𝑡
𝐿𝐸𝐺 ∈ {2,3}. In summary, the value of 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇 is 

defined in Equation (5.8). 

 𝜏𝑖𝑡
𝑆𝑇𝑅𝑇 = {

N\A 𝜍𝑖𝑡
𝐿𝐸𝐺 = 0

�̃�𝑖𝑡
𝑆𝑇𝑅𝑇 𝜍𝑖𝑡

𝐿𝐸𝐺 = 1

𝜏�̅�
𝑆𝑇𝑅𝑇 𝜍𝑖𝑡

𝐿𝐸𝐺 ∈ {2, 3}

 (5.8) 

When the start time of a flight leg passes, the corresponding status of the flight is either in 

service or served. In other words, 𝜍𝑖𝑡
𝐿𝐸𝐺 ∈ {2,3} implies 𝑡 ≥ 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇 . For 𝜍𝑖𝑡
𝐿𝐸𝐺 = 0, 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇  is 

undefined, implying that no start time is scheduled for an unassigned flight. On the contrary, when 

𝜍𝑖𝑡
𝐿𝐸𝐺 = 1, 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇has been set, but it could be updated in future decision epochs. Therefore, for 𝑡 ≠

𝑡′, it is possible that 𝜍𝑖𝑡
𝐿𝐸𝐺 = 𝜍𝑖𝑡′

𝐿𝐸𝐺 = 1 while 𝜏𝑖𝑡
𝑆𝑇𝑅𝑇  ≠  𝜏𝑖𝑡′

𝑆𝑇𝑅𝑇.  

5.3.3 UAT Aircraft 

The state of the UAT aircraft at time 𝑡  is specified by the vector 𝑆𝑡
𝑒𝑉𝑇𝑂𝐿 =

(𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 , 𝜏𝑘𝑡

𝐴𝑉𝐿 , 𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝒬𝑘𝑡, 𝔈𝑘𝑡

𝑁𝐷𝑆𝑅𝐷)𝑘∈𝒦, where: 
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 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿: the status of the UAT aircraft 𝑘 at time 𝑡; 

𝜏𝑘𝑡
𝐴𝑉𝐿: the earliest time the subsequent itinerary of UAT aircraft 𝑘 could be modified, and 

therefore, the time aircraft 𝑘 becomes available for the future service as of time 𝑡; 

𝑳𝑘𝑡
𝐴𝑉𝐿: the location of UAT aircraft 𝑘 at 𝜏𝑘𝑡

𝐴𝑉𝐿; and 

𝒬𝑘𝑡: the ordered list of non-completed flight legs assigned to UAT aircraft 𝑘 as of time 𝑡; 

𝔈𝑘𝑡
𝑁𝐷𝑆𝑅𝐷: a binary variable, which is 1 if 𝑳𝑘𝑡

𝐴𝑉𝐿 is the drop-off UAT pad of the passengers, 

but not their desired one, 0 in any other case. 

The status of eVTOL 𝑘 at time 𝑡, 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿, could take seven values, as defined in Equation 

(5.9). 

 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 =

{
  
 

  
 
0 idle

1 boarding

2 take-off clearance

3 in flight

4 landing clearance

5 deboarding

6 holding

 (5.9) 

𝒬𝑘𝑡 = {𝑞𝑘𝑡1, … , 𝑞𝑘𝑡𝑛, … , 𝑞𝑘𝑡|𝒬𝑘𝑡|}, where 𝑞𝑘𝑡𝑛 is the nth leg on 𝒬𝑘𝑡, is the ordered list of 

non-completed flights (i.e., scheduled itinerary) of UAT aircraft 𝑘 as of time t, and is subject to 

change at each decision epoch. If 𝒬𝑘𝑡 =  ∅, then 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 = 0, meaning that an idle UAT aircraft 

has no non-completed flight leg assigned to it. For 𝒬𝑘𝑡 ≠  ∅, let 𝒻𝑖 = 𝑞𝑘𝑡1 represent the first flight 

leg on 𝒬𝑘𝑡. If 𝜍𝑖𝑡
𝐿𝐸𝐺 = 2, flight leg 𝑖 is the flight leg currently performed by aircraft 𝑘 as of time 𝑡. 

As a result, 𝒻𝑘𝑡
𝐶𝑅𝑁𝑇 denotes the flight leg in service by aircraft 𝑘 as of time 𝑡. 𝒻𝑘𝑡

𝐶𝑅𝑁𝑇 is specified in 

Equation (5.10). 
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 𝒻𝑘𝑡
𝐶𝑅𝑁𝑇 = {

𝑞𝑘𝑡1 𝑞𝑘𝑡1 = 𝒻𝑖  and 𝜍𝑖𝑡
𝐿𝐸𝐺 = 2

𝑁\𝐴 otherwise
 (5.10) 

Additionally, let 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 denote the ordered list of flight legs on 𝒬𝑘𝑡 that have not started 

their service as of time 𝑡 , i.e., 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 = {𝑞𝑘𝑡𝑛 = 𝒻𝑖: 𝜍𝑖𝑡

𝐿𝐸𝐺 = 1} . Therefore, 𝒬𝑘𝑡 = {𝒻𝑘𝑡
𝐶𝑅𝑁𝑇} ∪

𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 if 𝒻𝑘𝑡

𝐶𝑅𝑁𝑇 is well defined (i.e., not N\A), and 𝒬𝑘𝑡 = 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇, otherwise. 

Let 𝜏𝑘𝑡
𝐴𝑉𝐿 denote the earliest time after 𝑡 that UAT aircraft 𝑘 would become available for 

the service. If aircraft 𝑘 is idle or on holding at time 𝑡, it will be immediately available for future 

service, and therefore, 𝜏𝑘𝑡
𝐴𝑉𝐿 =  𝑡. Otherwise, if UAT aircraft 𝑘 is currently serving a flight, 𝜏𝑘𝑡

𝐴𝑉𝐿 

is the time aircraft 𝑘 completes its current flight and either becomes idle or put on hold. In other 

words, 𝜏𝑘𝑡
𝐴𝑉𝐿  = min

 
𝜏  such that 𝜏 ≥ 𝑡 and 𝜍𝑘𝜏

𝑒𝑉𝑇𝑂𝐿 ∈ {0, 6}. 𝑳𝑘𝑡
𝐴𝑉𝐿  is the location of aircraft 𝑘 at 

𝜏𝑘𝑡
𝐴𝑉𝐿, and is a two-dimensional vector in a two-dimensional space.  

At the beginning of the planning horizon, i.e., 𝑡 = 𝑡0, 𝑳𝑘𝑡0
𝐴𝑉𝐿 is the initial location of the 

aircraft 𝑘 and 𝜏𝑘𝑡0
𝐴𝑉𝐿 is the earliest time that it could start serving the requests. Subsequently, the 

value of 𝑳𝑘𝑡
𝐴𝑉𝐿  and 𝜏𝑘𝑡

𝐴𝑉𝐿  will be updated every time aircraft 𝑘  starts a flight leg. Additionally, 

𝔈𝑘𝑡0
𝑁𝐷𝑆𝑅𝐷 = 0. 

5.4 Events 

While UAT fleet operation involves many events, not all are required to model the UAT 

fleet operation. We only consider the events that prompt a change in the state of the entities. 

Consequently, the states of the entities change only when an event occurs. Otherwise, they remain 

constant between two consecutive events. Therefore, when event 𝑣 at time 𝜏𝑣 occurs, the relevant 

states get updated, and future events will be scheduled. In this section, we discuss the events 

associated with the UAT entities. 
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5.4.1 Dispatcher 

The dispatcher is involved in two events: the start of the decision epoch 𝑒 (𝑣𝑒
𝑆) and the end 

of the decision epoch 𝑒 (𝑣𝑒
𝐸). With the start of the decision epoch 𝑒 at time 𝑡 = 𝜏𝑣𝑒𝑆 , the process of 

routing and scheduling the UAT aircraft and assigning the requests to the flights given the policy 

𝜋  starts. When the decision epoch 𝑒 ends at 𝑒  at time 𝑡 = 𝜏𝑣𝑒𝐸 , the dispatcher (re)assigns the 

requests to flight legs, updates the itinerary of UAT aircraft, and (re)schedules the boarding time 

of flights and the time by which the passengers should leave their origin. Figure 5.2 depicts the 

events associated with the dispatcher. 

5.4.2 Flight Leg 

All flight legs are involved in four events: the start of air traffic control (ATC) clearance 

for take-off, the departure of the UAT Aircraft, the landing of the UAT Aircraft, and the flight 

completion. If the flight leg is revenue-generating, it is further involved in the boarding and 

deboarding processes. Therefore, for an empty leg, the flight starts with ATC take-off clearance 

and finishes with flight completion, whereas for a revenue-generating leg, the flight starts with the 

boarding processes. These events and their sequence are shown in Figure 5.3. 

Figure 5.2 The events associated with the dispatcher 
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The numbered square boxes in Figure 5.3 depict the corresponding status of a flight leg 

between events, i.e., 𝜍𝑖𝑡
𝐿𝐸𝐺  in Equation (5.7). Before a flight leg is assigned, its status is unassigned. 

From the assignment until the beginning of the service, the status is waiting for service. The flight 

is in service between the start and completion of the flight. Ultimately, when the flight leg is 

complete, its status changes to served. 

5.4.3 UAT Aircraft 

Sequencing one or multiple flight legs forms the itinerary of a UAT aircraft. As a result, 

the events of a UAT aircraft are similar to those of flight legs. The additional event is related to an 

aircraft becoming idle, which is triggered when no event is scheduled for UAT aircraft 𝑘 after 

completing a flight at time 𝑡  (i.e., 𝒬𝑘𝑡 =  ∅). The events associated with a UAT aircraft are 

illustrated in Figure 5.4(b). The numbered square boxes at the bottom of Figure 5.4 depict the 

Figure 5.3 Depiction of flight leg’s events for (a) revenue-generating flight, (b) empty flight 
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corresponding status of a UAT aircraft between events, i.e., 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 in Equation (5.9). Other events 

such as maintenance or charging could be scheduled for a UAT aircraft; however, we have not 

included those events in this dissertation. 

5.4.4 Customer Request 

The events directly related to the accepted requests, in chronological order, are: request 

arrival, leaving origin, reaching the pick-up UAT pad, reaching the departure gate, arriving at the 

arrival gate, reaching the designated area for ground transportation at the drop-off UAT pad, 

leaving the drop-off UAT pad, and finally, reaching the destination. Figure 5.4 illustrates the 

events associated with a request and its assigned UAT aircraft from the moment a request arrives 

until it reaches the destination. The numbered circles show the status of request 𝑟, i.e., 𝜍𝑟𝑡
𝑅𝐸𝑄

 in 

Equation (5.3), between the events. 

Figure 5.4 Depiction of events for (a) a request, and (b) its assigned UAT aircraft 
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5.5 Activities and Delays 

Let 𝒯  denote the set of all discrete points in time when events occur. Thus, 𝒯 =

{𝜏1, 𝜏2, … , 𝜏𝑣, … , 𝜏|𝒯|}, where 𝜏𝑣 represents the time event 𝑣 starts. The interevent interval 𝜏𝑣+1 −

𝜏𝑣  for 𝑣 ∈ {1,… , |𝒯| − 1}  could be deterministic or stochastic. Activity, also known as 

unconditional wait, characterizes a period specified by the modeler and is known when it begins 

(e.g., the boarding duration of passengers). Activity could be deterministic (e.g., 3 minutes), have 

a statistical distribution (e.g., uniformly distributed with the range of (2,4), or be a function of the 

system’s state and entity’s attributes (e.g., 2 minutes per boarding passengers). In contrast, delay, 

also called conditional wait, describes a period that is not specified by the modeler and is 

determined by the system’s conditions. A delay may end when a specific event occurs or a logical 

condition becomes true [129]. For instance, the time a passenger might wait at the departure gate 

to board a UAT aircraft is a type of delay. 

Table 5.1 shows the duration of the activity between two consecutive events associated 

with request 𝑟 taking flight leg 𝑖. If the times are deterministic, the varibales in the table specify 

the activity duration, whereas in stochastic cases, they are the mean of the activity duration. The 

parameters associated with activity duration are defined in detail in Chapter 7. 

The N\A in Table 5.1 implies that the duration between the two events is unknown and, 

therefore, is considered a delay. As a result, a request could encounter delays at two points: First, 

the wait time between the requested time and leaving the origin (i.e., when 𝜍𝑟𝑡
𝑅𝐸𝑄 = 2), and second, 

the wait time between arriving at the departure gate and the beginning of the boarding process (i.e., 

when 𝜍𝑟𝑡
𝑅𝐸𝑄 = 5). The operation is designed so that if a passenger had to wait, they would do so at 

their origin and not at the departure gate. Nonetheless, since the boarding time could be updated 
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at each decision epoch, the passengers may end up waiting at the departure gate. Similarly, Table 

5.2 and Table 5.3, respectively, specify the activity duration of an aircraft for empty and revenue-

generating flight legs. 

Table 5.1 Duration of the activity between two consecutive events associated with request 𝒓 

taking flight leg 𝒊 

Current Event Next Event Activity Duration 

Requested Time Leave Origin 𝑁\𝐴 

Leave Origin Reach Pick-up UAT Pad 𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷 

Reach Pick-up UAT Pad Reach Departure Gate 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 

Reach Departure Gate Boarding 𝑁\𝐴 

Boarding ATC Take-off Clearance 𝑇𝐵𝑂𝐴𝑅𝐷 

ATC Take-off Clearance Departure 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 

Departure Landing 𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇 

Landing Deboarding 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 

Deboarding Reach Arrival Gate 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 

Reach Arrival Gate Reach Drop-off UAT Pad 𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 

Reach Drop-off UAT Pad Leave Drop-off UAT Pad 𝑊𝑟𝑖
𝐸𝐺𝑅  

Leave Drop-off UAT Pad Reach Destination 𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷 

Table 5.2 Duration of the activity between two consecutive events associated with empty 

flight leg 𝒊 

Current Event Next Event Activity Duration 

ATC Take-off Clearance Departure 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 

Departure Landing 𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇 

Landing Flight Completion 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 

Table 5.3 Duration of the activity between two consecutive events associated with revenue-

generating flight leg 𝒊 

Current Event Next Event Activity Duration 

Boarding ATC Take-off Clearance 𝑇𝐵𝑂𝐴𝑅𝐷 

ATC Take-off Clearance Departure 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 

Departure Landing 𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇 

Landing Deboarding 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 

Deboarding Flight Completion 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 
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5.6 Transition Function 

The transition function specifies how the state of the system evolves from event 𝑣 to event 

𝑣 + 1. We denote the transition function by 𝑆𝑀(∙). Therefore, the dynamics of the system could 

be represented with 𝑆𝜏𝑣+1 = 𝑆𝑀( 𝑆𝜏𝑣 ,𝑊𝜏𝑣+1), where 𝑆𝜏𝑣 is the state of the system during event 𝑣 

and 𝑊𝜏𝑣+1 is the exogenous information that arrives between event 𝑣 and event 𝑣 + 1.  

The state of the system 𝑆𝑡 remains unchanged unless an event prompts the change of one 

or more components of 𝑆𝑡. Table 5.4 summarizes how the occurrence of event 𝜈 at the time 𝜏𝜈 

changes the status of accepted request 𝑟 to 𝜍𝑟𝜏𝜈
𝑅𝐸𝑄

 in Equation (5.3). Similarly, Table 5.5 depicts 

how an event changes the status of flight leg 𝑖 for empty (𝐻𝑖 = 0) and revenue leg (𝐻𝑖 = 1) and 

status of aircraft 𝑘 after occurrence of event 𝑣 at time 𝜏𝜈 , i.e., 𝜍𝑖𝜏𝜈
𝐿𝐸𝐺 in Equation (5.7) and 𝜍𝑘𝜏𝜈

𝑒𝑉𝑇𝑂𝐿 

in Equation (5.9), respectively. 

Table 5.4 Status of request 𝒓 after occurrence of event 𝒗 at time 𝝉𝝂 (𝝇𝒓𝝉𝝂
𝑹𝑬𝑸

) 

Event 𝝂 𝝇𝒓𝝉𝝂
𝑹𝑬𝑸

 Definition 

Request Arrival 0 Waiting for acceptance 

Passing of Requested Service Time 2 Waiting for service 

Leave Origin 3 En-route to pick-up UAT pad 

Reach Pick-up UAT Pad 4 Accessing departure gate 

Reach Departure Gate 5 Waiting for boarding 

Boarding 6 Boarding 

ATC Take-off Clearance 7 On-board 

Deboarding 8 Deboarding 

Reach Arrival Gate 9 
Accessing designated area for ground 

transportation 

Reach Drop-off UAT Pad 10 Waiting for ground transportation to destination 

Leave Drop-off UAT Pad 11 En-route to destination 

Reach Destination 12 Reached destination 



114 

 

Table 5.5 Status of flight leg 𝒊 for empty and revenue leg (𝝇𝒊𝝉𝝂
𝑳𝑬𝑮) and status of aircraft 𝒌 after 

occurrence of event 𝒗 at time 𝝉𝝂 (𝝇𝒌𝝉𝝂
𝒆𝑽𝑻𝑶𝑳) 

Event 𝝂 𝝇𝒌𝜏𝜈
𝒆𝑽𝑻𝑶𝑳 𝝇𝒊𝜏𝜈

𝑳𝑬𝑮 

  
𝑯𝒊 = 𝟎 

(Empty) 

𝑯𝒊 = 𝟏 

(Revenue-generating) 

Boarding 1 - 2 

ATC Take-off Clearance 2 2 - 

Departure 3 - - 

Landing 4 - - 

Deboarding 5 - - 

End of Deboarding 0 or 6 3 3 

Moreover, the occurrence of the following events prompts additional changes in the system 

state at time 𝑡: 

i. Leave origin: When the passengers of request 𝑟 leave their origin at time 𝑡, set 𝜏�̅�
𝑂𝑅𝐺 =  𝑡.  

ii. Start of flight leg: Let 𝒻𝑘𝑡+
𝐶𝑅𝑁𝑇 be the first flight leg on 𝒬𝑘𝑡+ . In other words, 𝒻𝑘𝑡+

𝐶𝑅𝑁𝑇 is the 

flight leg currently performed by aircraft 𝑘 as of time 𝑡.  When 𝒻𝑖 = 𝒻𝑘𝑡+
𝐶𝑅𝑁𝑇 starts at time 

𝑡, the earliest availability of aircraft 𝑘 would correspond to the completion time of flight 

leg 𝑖. Therefore: 

 𝜏𝑘𝑡
𝐴𝑉𝐿 = {

𝑡 + 𝑇𝑖
𝑆𝑅𝑉𝐸𝑀𝑃  𝐻𝑖 = 0

𝑡 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉  𝐻𝑖 = 1

 (5.11) 

Where 𝑇𝑖
𝑆𝑅𝑉𝐸𝑀𝑃and 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉are, respectively, the time it takes to serve an empty 

and revenue-generating flight leg 𝑖. Additionally, 𝑳𝑘𝑡
𝐴𝑉𝐿 = 𝑬𝑖. Subsequently, the value of 

𝔈𝑘𝑡
𝑁𝐷𝑆𝑅𝐷, as defined in Equation (5.12), will be updated to 1 for revenue-generating flight 

leg 𝑖 if it is heading to a UAT pad other than the desired UAT pad of its intended request. 
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 𝔈𝑘𝑡
𝑁𝐷𝑆𝑅𝐷 = {1 𝑺𝑖 ≠ 𝑺𝑟

𝐷𝑆𝑅𝐷 if 𝐻𝑖 = 1 and 𝓇𝑟 = 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷  

0 otherwise
 (5.12) 

iii. Completion of flight leg: With the completion of 𝒻𝑖 = 𝒻𝑘𝑡−
𝐶𝑅𝑁𝑇 at time 𝑡, the completed flight 

leg will be removed from 𝒬𝑘𝑡− . Therefore, 𝒬𝑘𝑡 = 𝒬𝑘𝑡−\{𝒻𝑖}. Subsequently, if 𝒬𝑘𝑡 =  ∅, 

then 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 =  0 and 𝔈𝑘𝑡

𝑁𝐷𝑆𝑅𝐷 = 0 . However, if 𝒬𝑘𝑡 ≠  ∅, then 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 = 6. 

The decisions made during the decision epochs also change the state of the system. The 

transition function associated with the decision epochs is specified in Section 6.6. 

5.7 Concluding Remarks 

The UAT operation involves numerous components and events, many of which are 

irrelevant to the problem of UAT fleet operation. For this reason, this chapter presents the entities 

necessary to model the UAT fleet operation, namely, the dispatcher, UAT aircraft, flight legs, and 

customer requests. Each entity is associated with a set of variables required to define its state in 

the system. Furthermore, these entities are involved in some events with prespecified or 

undetermined duration, which in turn changes their states. As a result, this chapter discusses the 

state variables, the events, activities and delays, and transition functions. Based on the UAT model 

defined in this chapter, Chapter 6 presents the dynamic solution framework for the UAT fleet 

operation problem. 
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Chapter 6 Dynamic Solution Framework  

6.1 Overview 

The UAT fleet operation is a dynamic and stochastic problem. Dynamic problems are often 

solved as a sequence of static models on a rolling horizon approach [68], which is regarded as a 

dynamic application of a static model. As a result, the UAT fleet operation problem involves a 

sequential decision-making process. In these problems, the operator observes the state of the 

system at a point in time and makes a decision in response. Ensuing this decision, the operator 

receives a reward or incurs a cost, and the state of the system evolves as a result of the decisions 

or exogenous information [133].  

Consequently, in the UAT dynamic model with a sequential decision-making process, a 

policy is repeatedly called to solve the deterministic and static snapshot (also called off-line or 

static) problem. This chapter presents the solution framework with a sequential decision-making 

process to address the dynamic and stochastic UAT fleet operation. 

6.2 Decision Epoch 

The periods of time when decisions are made are called decision epochs. Simple decisions 

could be made at points in time. However, making more complicated decisions would take more 

time. A change in the state of the system (e.g., the arrival of a new request) could trigger the 

beginning of a decision epoch, or decision epochs could be scheduled at prespecified times (e.g., 

every 15 minutes). Let ℰ =  {1, 2, … , 𝑒, … , 𝐸} represent the set of all decision epochs, where 𝐸 =

|ℰ|.  

Let 𝜈𝑒
𝑆  and 𝜈𝑒

𝐸 , respectively, denote the events corresponding to the start and end of 

decision epoch 𝑒. Consequently, 𝜏𝜈𝑒𝑆  and 𝜏𝜈𝑒𝐸  represent the start time and end time of decision 
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epoch 𝑒, respectively. Therefore, 𝜏𝜈𝑒𝐸 = 𝜏𝜈𝑒𝑆 + 𝑇𝑒
𝐸𝑃𝑂𝐶𝐻 denotes the end of decision epoch e, where 

𝑇𝑒
𝐸𝑃𝑂𝐶𝐻is the duration of decision epoch 𝑒. We further assume that decision epochs are scheduled 

at prespecified times. Let ∆𝑈𝑃𝐷𝐴𝑇𝐸= 𝜏𝜈𝑒𝑆 − 𝜏𝜈𝑒−1𝑆  denote the fixed interval between the start of two 

decision epochs. Consequently, in a sequential decision-making process, 𝑇𝑒
𝐸𝑃𝑂𝐶𝐻 ≤ ∆𝑈𝑃𝐷𝐴𝑇𝐸 for 

𝑒 ∈ ℰ. 

With rule-based decisions, such as first-come-first-served, or more straightforward 

decisions that could be achieved within seconds, the state of the system over the decision epoch 

remains unchanged. However, with more complicated decisions, the state of the system during the 

decision-making process may change. This impacts the quality of the solution since the solution 

was calculated given the system’s state at the beginning of the decision epoch (i.e., 𝑆𝜏
𝜈𝑒
𝑆
) but should 

be implemented based on the state at the end of the decision epoch (i.e., 𝑆𝜏
𝜈𝑒
𝐸
). As a result, in these 

cases, the decision should be made based on an estimate of the system’s state at the end of the 

decision epoch [77]. In this research, we assume that the state of the system does not change during 

the decision epoch. 

6.3 Policy 

 Policy (or decision rule) 𝜋 during the decision epoch 𝑒 is a rule or function that specifies 

how to select a set of actions given the state 𝑆𝜏
𝜈𝑒
𝑆
 and the exogenous information 𝑊𝜏

𝜈𝑒
𝑆
, where 𝜏𝜈𝑒𝑆 

represents the start time of decision epoch 𝑒. Therefore, 𝑥𝜏
𝜈𝑒
𝐸
= 𝑋𝜋 (𝑆𝜏

𝜈𝑒
𝑆
, 𝑊𝜏

𝜈𝑒
𝑆
) defines a policy 

function that returns the decision 𝑥𝜏
𝜈𝑒
𝐸

∗  at time 𝜏𝜈𝑒𝐸  given the state 𝑆𝜏
𝜈𝑒
𝑆

 and the exogenous 

information 𝑊𝜏
𝜈𝑒
𝑆
. In general, 𝜋 or 𝑋𝜋 (𝑆𝜏

𝜈𝑒
𝑆
,𝑊𝜏

𝜈𝑒
𝑆
) are interchangeably referred to as the policy 

[132]. 
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Decision rules are classified based on how they use past information (memoryless vs. 

history-dependent) and how they make a decision (deterministic vs. randomized) [133]. In the 

memoryless (i.e., Markovian) process, the previous states and decisions are reflected only through 

the current state of the system. On the other hand, a history-dependent decision rule is dependent 

on the previous states and decisions in the system. With deterministic decision rules, decisions are 

made with certainty, while in randomized decision rules, a probability distribution is defined for 

the set of possible actions.  

In dynamic programming, the most elementary class of policies is the myopic policy [132], 

where during each decision epoch, the decision is made using the information available at the time 

and without considering any information about the future state of the system. As new information 

becomes available in the subsequent epochs, the decision will be updated. Let 𝑥𝜏
𝜈𝑒
𝐸

 denote the 

decision yielded at the end of decision epoch 𝑒 at time 𝜏𝜈𝑒𝐸. Furthermore, let 𝐶𝜏
𝜈𝑒
𝐸
(𝑆𝜏

𝜈𝑒
𝑆
, 𝑥𝜏

𝜈𝑒
𝐸
, 𝑊𝜏

𝜈𝑒
𝑆
) 

denote the utility function of decision epoch e at time 𝜏𝜈𝑒𝑆  given the state 𝑆𝜏
𝜈𝑒
𝑆
,  exogenous 

information 𝑊𝜏
𝜈𝑒
𝑆

, and the decision 𝑥𝜏
𝜈𝑒
𝐸

. Therefore, the myopic policy 𝜋𝑀𝑌𝑂𝑃𝑇  is defined as 

𝑋𝜋
𝑀𝑌𝑂𝑃𝑇

(𝑆𝜏
𝜈𝑒
𝑆
,𝑊𝜏

𝜈𝑒
𝑆
) = min

𝑥𝜏
𝜈𝑒
𝑆

𝐶𝜏
𝜈𝑒
𝐸
(𝑆𝜏

𝜈𝑒
𝑆
, 𝑥𝜏

𝜈𝑒
𝑆
,𝑊𝜏

𝜈𝑒
𝑆
)  subject to the various constraints on the 

decisions at decision epoch e. 

We use the CLARPTW-SRE formulation (specified in Chapter 8) as the myopic policy for 

the online (or dynamic) implementation of the UAT problem. CLARPTW-SRE policy, denoted as 

𝜋𝐶𝐿𝐴𝑅𝑃𝑇𝑊−𝑆𝑅𝐸, is a myopic policy since it captures the state of the system at each decision epoch 

and does not include any information on the future state of the system. 
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6.4 Dynamic Input Parameters 

In a dynamic setting, the demand and resources are continuously changing. At the 

beginning of each decision epoch, the demand for service and the available resources for serving 

this demand must be known. Therefore, the dynamic input parameters should be calculated for 

decision epoch 𝑒 starting at time 𝑡 = 𝜏𝜈𝑒𝑆. The input parameters at each decision epoch are either 

retrieved from exogenous sources or are calculated given the state of the system. 

6.4.1 Exogenous Information 

Exogenous information is the data that becomes known to the system over time from 

exogenous resources. Let 𝑊𝜏
𝜈𝑒
𝑆
denote the exogenous information that arrives between the start of 

decision epoch 𝑒 at time 𝜏𝜈𝑒𝑆  and decision epoch 𝑒 − 1 at time 𝜏𝜈𝑒−1𝑆  . The exogenous information 

could be sampled from a known probability distribution or retrieved from a file of sample paths 

[132]. In the UAT problem, there are two sources of exogenous information, namely, customer 

request (demand) and travel times (supply). If the travel times are not known in advance, they 

should be retrieved as time passes. The UAT problem has a scheduling component (e.g., boarding 

times). With stochastic travel times, the actual duration of an event would deviate from the 

scheduled time. Therefore, time variables have a scheduled time and a realized time, where the 

latter accounts for the stochasticity and delays.  

This research assumes the customer requests are stochastic while the travel times are 

deterministic and known in advance. As a result, ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 , which denotes the set of newly arrived 

customer requests that have not been assigned as of time 𝑡, is the only exogenous information to 

the UAT system.  
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6.4.2 System State  

Let  𝑡 = 𝑆𝜏
𝜈𝑒
𝑆

 denote the state of the system at the beginning of the decision epoch 𝑒. 

Therefore, 𝑆𝑡 = (𝑆𝑡
𝑅𝐸𝑄 , 𝑆𝑡

𝑒𝑉𝑇𝑂𝐿 , 𝑆𝑡
𝐿𝐸𝐺). The following sections address the state of each UAT 

entity. 

6.4.2.1 Customer Requests 

As a passenger group starts the boarding process, it no longer needs to be included in the 

decision-making process. As a result, the state of the requests that have been accepted in previous 

decision epochs but have not started the boarding process is an integral part of the decision-making 

process. Let ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 denote the requests that have been accepted as of time 𝑡 but their associated 

passenger groups have not left the origin to the pick-up UAT pad. Since these requests have not 

left their origin, they could be (re-)assigned to any UAT pad and, therefore, they have flexible 

pick-up (or start) UAT pad. 

Once the passenger group leaves the origin, their pick-up UAT pad cannot be modified. 

Consequently, let ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇  denote the accepted requests as of time 𝑡  that their associated 

passenger groups have left the origin to access the pick-up UAT pad but have not started the 

boarding process. 𝜏�̅�
𝑂𝑅𝐺 represents the actual time passenger group of request 𝑟 left their origin. 

For all the requests in the decision-making process, 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 , which is the earliest time 

serving request 𝑟 could start as of time 𝑡, is calculated as follows: 

 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 = {

max(𝜏𝑟
𝑅𝐸𝑄 , 𝑡) +𝑊

𝑟𝑖,max(𝜏𝑟
𝑅𝐸𝑄

,𝑡)

𝐼𝑁𝐺𝑅𝑆 𝓇𝑟 ∈ ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇

𝜏�̅�
𝑂𝑅𝐺 𝓇𝑟 ∈ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇
 (5.6) 
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6.4.2.2 Flight Legs 

At each decision epoch 𝑒, the requests should be assigned to candidate flight legs while the 

aircraft should be routed and scheduled to serve these flight legs. Since the UAT service is nearly 

on-demand, the candidate flight legs in the decision-making process could vary from one decision 

epoch to another, depending on the current state of the requests in the system. Let ℱ𝑡
𝐶𝐴𝑁𝐷 denote 

the candidate flight legs as of time 𝑡. The definition of ℱ𝑡
𝐶𝐴𝑁𝐷 is explained in detail in Section 

7.2.2. 

6.4.2.3 UAT Aircraft 

𝜏𝑘𝑡
𝐴𝑉𝐿, defined as the earliest time as of time 𝑡 after which the routing and scheduling of a 

UAT aircraft could be modified, is another crucial input parameter at each decision epoch. If 

aircraft 𝑘  is idle or on holding at time 𝑡 , it is available for future service immediately, and 

therefore, 𝜏𝑘𝑡
𝐴𝑉𝐿 =  𝑡. Otherwise, if UAT aircraft 𝑘 is currently serving a flight, 𝜏𝑘𝑡

𝐴𝑉𝐿 is the time 

aircraft 𝑘 completes its current flight and becomes either idle or held. 𝑳𝑘𝑡
𝐴𝑉𝐿 represents the location 

of aircraft 𝑘 at time 𝜏𝑘𝑡
𝐴𝑉𝐿. 

At the beginning of the planning horizon, i.e., 𝑡 = 𝑡0, 𝑳𝑘𝑡0
𝐴𝑉𝐿 is the initial location of the 

aircraft 𝑘 and 𝜏𝑘𝑡0
𝐴𝑉𝐿 is the earliest time that it could start flying. Subsequently, the value of 𝑳𝑘𝑡

𝐴𝑉𝐿 

and 𝜏𝑘𝑡
𝐴𝑉𝐿 will be updated every time aircraft 𝑘 starts a flight leg. The details of updating 𝜏𝑘𝑡

𝐴𝑉𝐿 and 

𝑳𝑘𝑡
𝐴𝑉𝐿 are discussed in Section 5.6. 

6.5 Dynamic Decisions 

At the end of decision epoch 𝑒 (i.e., 𝑡 = 𝜏𝜈𝑒𝐸 ), the following variables should be either 

determined for the first time or get updated based on the outputs of the decision epoch. 
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I. ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 : the subset of unassigned requests that get accepted during decision epoch 𝑒 . 

Subsequently, ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇 = ℛ𝜏

𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁 \ ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 , where ℛ̅𝑒

𝑅𝐸𝐽𝐶𝑇
 denotes the set of rejected 

requests during decision epoch 𝑒. 

II.  𝜏 ̃𝑟𝑡
𝑂𝑅𝐺: the time when 𝓇𝑟 ∈ ℛ𝜏

𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝜏
𝜈𝑒
𝑆

𝐹𝐿𝑋𝑆𝑇𝑅𝑇must leave its origin to reach the pick-

up UAT pad as of time 𝑡 = 𝜏𝜈𝑒𝐸. 

III. �̃�𝑟𝑡: the flight leg assigned to 𝓇𝑟 ∈ ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 as of time 𝑡 = 𝜏𝜈𝑒𝐸. 

IV. 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇: an ordered list (i.e., queue) of all the flight legs (empty or revenue-generating) to 

be served by aircraft 𝑘 starting from 𝑳𝑘𝑡
𝐴𝑉𝐿as scheduled at time 𝑡 = 𝜏𝜈𝑒𝐸. For 𝒬𝑘𝑡

𝑊𝐴𝐼𝑇 ≠ ∅, let 

𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 = {𝑞𝑘𝑡1

𝑊 , … , 𝑞𝑘𝑡𝑛
𝑊 , 𝑞𝑘𝑡,𝑛+1

𝑊 , … , 𝑞
𝑘𝑡|𝒬𝑘𝑡

𝑊𝐴𝐼𝑇|
𝑊 }, where 𝑞𝑘𝑡𝑛

𝑊  is the nth leg on 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 . Let 

𝑞𝑘𝑡𝑛
𝑊  and 𝑞𝑘𝑡,𝑛+1

𝑊  represent two consecutive flight legs on 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 . If 𝑞𝑘𝑡𝑛

𝑊  is a revenue-

generating flight leg, 𝑞𝑘𝑡,𝑛+1
𝑊  is either a revenue-generating or an empty leg. If 𝑞𝑘𝑡𝑛

𝑊  is an 

empty leg, 𝑞𝑘𝑡,𝑛+1
𝑊  could only be a revenue-generating flight leg. Moreover, for the two 

consecutive flight leg 𝒻𝑖 = 𝑞𝑘𝑡𝑛
𝑊 ∈  𝒬𝑘𝑡

𝑊𝐴𝐼𝑇  and 𝒻𝑗 = 𝑞𝑘𝑡,𝑛+1
𝑊 ∈  𝒬𝑘𝑡

𝑊𝐴𝐼𝑇 ,  𝑬𝑖 = 𝑺𝑗 , while 

𝜏𝑗𝑡
𝑆𝑇𝑅𝑇 ≥ 𝜏𝑖𝑡

 𝐶𝑂𝑀𝑃, where 𝜏𝑖𝑡
 𝐶𝑂𝑀𝑃 is the scheduled completion time of flight leg 𝑖 as of time 

𝑡 = 𝜏𝜈𝑒𝐸. The time between the scheduled completion of flight leg 𝑖 and the scheduled start 

time of the flight leg 𝑗 is the holding time before flight leg 𝑗. Therefore, 𝑇𝑗𝑡
 𝐻𝑂𝐿𝐷 = 𝜏𝑗𝑡

𝑆𝑇𝑅𝑇 −

𝜏𝑖𝑡
 𝐶𝑂𝑀𝑃for 𝒻𝑖 = 𝑞𝑘𝑡𝑛

𝑊 ∈  𝒬𝑘𝑡
𝑊𝐴𝐼𝑇, 𝒻𝑗 = 𝑞𝑘𝑡,𝑛+1

𝑊 ∈  𝒬𝑘𝑡
𝑊𝐴𝐼𝑇, and 𝑛 ≠ |𝒬𝑘𝑡

𝑊𝐴𝐼𝑇|, where 𝑇𝑗𝑡
 𝐻𝑂𝐿𝐷 is 

the holding time before flight leg 𝑗 as of time 𝑡 = 𝜏𝜈𝑒𝐸. 

V. 𝜏𝑖𝑡
𝑆𝑇𝑅𝑇: the starting time of flight leg 𝑖 (either empty or revenue-generating) as of time 𝑡 =

𝜏𝜈𝑒𝐸.  
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6.6 Transition Function of Decision Epochs 

If an event yields a decision, the system’s state is also a function of that decision. Therefore, 

𝑆𝜏𝑣+1 = 𝑆𝑀( 𝑆𝜏𝑣 ,𝑊𝜏𝑣+1 , 𝑥𝜏𝑣+1) , where 𝑥𝜏𝑣+1  is the decision made at 𝜏𝑣+1  that results in the 

system’s state at 𝜏𝑣+1, i.e., 𝑆𝜏𝑣+1 . When decision epoch 𝑒 ends at 𝑡 = 𝜏𝜈𝑒𝐸, the decision variables 

are either determined for the first time or updated. Accordingly, the state of UAT aircraft, requests, 

and flight legs will be modified as follows. 

6.6.1 Customer Requests  

The state of 𝓇𝑟 ∈ ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪ ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 at 𝑡 = 𝜏𝜈𝑒𝐸  is specified by 𝑆𝑟𝑡

𝑅𝐸𝑄 =

(𝜍𝑟𝑡
𝑅𝐸𝑄 , 𝜑𝑟𝑡, 𝜏𝑟𝑡

𝑂𝑅𝐺). At the end of the decision epoch 𝑒 ∈ ℰ, 𝜍𝑟𝑡
𝑅𝐸𝑄

 should be updated only for the 

requests that have arrived between the beginning of decision epoch 𝑒 − 1  at 𝜏𝜈𝑒−1𝑆  and the 

beginning of decision epoch 𝑒 at 𝜏𝜈𝑒𝑆. These requests had not been assigned to any flight legs prior 

to 𝜏𝜈𝑒𝑆 , and therefore, 𝓇𝑟 ∈ ℛ𝜏
𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁 . At the end of the decision epoch 𝑒 , all the unassigned 

requests should be either accepted or rejected. For the subset of ℛ𝜏
𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁 that got rejected during 

decision epoch 𝑒 (i.e., 𝓇𝑟 ∈ ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇

), set 𝜍𝑟𝑡
𝑅𝐸𝑄 = −1, while for the requests that got accepted (i.e., 

𝓇𝑟 ∈ ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇), set 𝜍𝑟𝑡

𝑅𝐸𝑄 = 1.  

Furthermore, 𝜑𝑟𝑡 and 𝜏𝑟𝑡
𝑂𝑅𝐺  for 𝓇𝑟 ∈ ℛ𝑡

𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇  will be updated 

based on the decision made by using 𝜋𝐶𝐿𝐴𝑅𝑃𝑇𝑊−𝑆𝑅𝐸. Details are outlined in Section 8.7. 

6.6.2 Flight Legs 

The state of 𝒻𝑖 ∈ ℱ𝑡
𝐶𝐴𝑁𝐷 at 𝑡 = 𝜏𝜈𝑒𝐸  is specified by 𝑆𝑖𝑡

𝐿𝐸𝐺 = (𝜍𝑖𝑡
𝐿𝐸𝐺 , 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇). If a request is 

assigned to 𝒻𝑖 at the end of the decision epoch (i.e., 𝒻𝑖 = 𝜑𝑟𝑡 for 𝓇𝑟), set 𝜍𝑖𝑡
𝐿𝐸𝐺 = 1. Otherwise, set 
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𝜍𝑖𝑡
𝐿𝐸𝐺 = 0. Furthermore, the start time of flight leg 𝑖, 𝜏𝑖𝑡

𝑆𝑇𝑅𝑇, will be updated based on the decision 

made by using 𝜋𝐶𝐿𝐴𝑅𝑃𝑇𝑊−𝑆𝑅𝐸. Details are outlined in Section 8.7. 

6.6.3 UAT Aircraft 

The state of 𝒶𝑘 ∈ 𝒦 at 𝑡 = 𝜏𝜈𝑒𝐸 is specified by 𝑆𝑟𝑡
𝑒𝑉𝑇𝑂𝐿 = (𝜍𝑘𝑡

𝑒𝑉𝑇𝑂𝐿, 𝜏𝑘𝑡
𝐴𝑉𝐿 , 𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝒬𝑘𝑡), among 

which, 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 and 𝒬𝑘𝑡

𝑊𝐴𝐼𝑇 ⊆ 𝒬𝑘𝑡 could be impacted by the decision made during the decision 

epoch. The list of flight legs that are waiting to be served by aircraft 𝑘 as of time 𝑡, 𝒬𝑘𝑡
𝑊𝐴𝐼𝑇, will be 

updated based on the decision made by using 𝜋𝐶𝐿𝐴𝑅𝑃𝑇𝑊−𝑆𝑅𝐸. Details are outlined in Section 8.7. 

When (𝒬𝑘𝑡)𝑎𝑘∈𝒦 is determined, 𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 could change based on the two following cases: 

i. All the flight legs of a holding UAT aircraft are removed. In other words, 𝜍𝑘𝜏
𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿 =  6 

(i.e., holding), and therefore, 𝒬𝑘𝜏
𝜈𝑒
𝑆
≠  ∅, while 𝒬𝑘𝜏

𝜈𝑒
𝐸
=  ∅. In this case, set 𝜍𝑘𝜏

𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿 =

 0, cancel 𝜓𝑘𝜏
𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿, where 𝜓𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 denotes the next event scheduled for UAT aircraft 𝑘 

as of time 𝑡; 

ii. A new flight leg is scheduled for an idle UAT aircraft. In other words, 𝜍𝑘𝜏
𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿 =  0 (i.e., 

idle), and therefore, 𝒬𝑘𝜏
𝜈𝑒
𝑆
=  ∅, while 𝒬𝑘𝜏

𝜈𝑒
𝐸
≠  ∅. In this case, set 𝜍𝑘𝜏

𝜈𝑒
𝐸

𝑒𝑉𝑇𝑂𝐿 = 6, and set 

and schedule 𝜓𝑘𝜏
𝜈𝑒
𝐸

𝑒𝑉𝑇𝑂𝐿 as the “start of flight leg.” 

6.7 Limitations 

The dynamic solution framework presented in this chapter has some limitations, as listed 

below: 

I. This framework covers deterministic travel times and does not tackle stochasticity in 

travel times. 
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II. The boarding time and the time the passengers need to leave their origin is subject to 

change. Therefore, the passengers would be provided with a time window to leave their 

origin or start boarding, rather than the exact time, which could inconvenience the 

passengers.  

III. The state of the system is assumed to remain constant during the decision epoch. This 

assumption could cause an issue if the decision epoch is long enough for the state of 

the system to change. 

6.8 Concluding Remarks 

In the UAT fleet operation, as the new requests arrive, the UAT operator should decide to 

accept or reject the requests and update the itinerary and schedule of the aerial fleet accordingly. 

Therefore, the solution framework for the UAT problem involves sequential decision making. 

Consequently, a dynamic solution framework with sequential decision-making is defined in this 

chapter to address the dynamic problem of UAT fleet operation. 

The decision epochs are defined in advance and are spaced equally throughout the planning 

horizon. The dynamic and stochastic problem of UAT fleet operation is approached on a rolling 

horizon basis. The policy at each decision epoch is an optimization-based myopic policy, and it 

uses the information available to the UAT operator at the time, without any attempts to include 

any forecast about the future. Consequently, a Capacitated Location-Allocation-Routing Problem 

with Time Windows and Short Repositioning Elimination (CLARPTW-SRE) formulation is 

employed at each decision epoch to re-optimize the UAT fleet operation problem at each decision 

epoch. 
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Given the dynamic nature of the problem, the input information at the beginning of each 

decision epoch changes. Furthermore, the specified policy provides the UAT operator with a tool 

to make dynamic decisions at the end of the decision epoch. These decisions, in turn, impact the 

state of the system. Therefore, this chapter presents the dynamic input parameters, the decisions to 

be made based on the outputs of the decision epochs, and the transition functions at the end of the 

decision epochs.  

To elaborately define the optimization-based policy used at each decision epoch, Chapter 

7 presents the network representation associated with CLARPTW-SRE. Subsequently, 

CLARPTW-SRE formulation is presented in Chapter 8.
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Chapter 7 Capacitated Location-Allocation-Routing Problem with Time 

Windows and Short Repositioning Elimination: Network Representation 

7.1 Overview 

This section defines the network representing the Capacitated Location-Allocation-

Routing Problem with Time Windows and Short Repositioning Elimination (CLARPTW-SRE). 

With this model, the UAT operator could decide which flight legs to perform (i.e., location in 

LRPs), how to assign the requests to the flight legs (i.e., allocation in LRPs), and how to route the 

capacitated aircraft to conduct these flight legs (i.e., routing in RRPs) while respecting the time 

windows of the flight legs and avoiding short empty repositioning flight legs. 

Prior to presenting CLARPTW-SRE formulation, we define the network entities, including 

candidate requests and candidate flight legs. We next present how distances and times are defined 

in our model. Subsequently, we transform the UAT physical network to a node-based network by 

defining the corresponding nodes and arcs. Lastly, we reduce the size of the network for faster 

computational performance. 

7.2 Network’s Entities 

This section specifies the three sets of entities required to define the CLARPTW-SRE at 

the start of decision epoch 𝑒 ∈ ℰ , i.e., 𝑡 =  𝜏𝜈𝑒𝑆 : candidate requests, candidate flight legs, and 

available UAT aircraft. 

7.2.1 Candidate Requests 

Let ℛ𝑡
𝐴𝑅𝑉, defined in Equation (7.1), denote the set of requests that have arrived as of time 

𝑡. Candidate requests, i.e., ℛ𝑡
𝐶𝐴𝑁𝐷 ⊆ ℛ𝑡

𝐴𝑅𝑉 defined in Equation (7.2), are the requests that have 



128 

 

arrived by time 𝑡 but their passenger groups have not started the boarding process. Either the 

itinerary or schedule of these requests could undergo some changes, and therefore, they have to be 

involved in the decision-making process at time 𝑡. 

 ℛ𝑡
𝐴𝑅𝑉 = {𝓇𝑟: 𝜏𝑟

𝐴𝑅𝑉 ≤ 𝑡} (7.1) 

 ℛ𝑡
𝐶𝐴𝑁𝐷 = {𝓇𝑟: 𝓇𝑟 ∈ ℛ𝑡

𝐴𝑅𝑉, 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {0, 1, 2,3,4,5}} (7.2) 

Candidate requests are the union of unassigned requests (ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁), requests with flexible 

pick-up UAT pads (ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇), and requests with fixed pick-up UAT pads (ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇), as defined 

in Equations (7.3)-(7.5), respectively. Therefore, ℛ𝑡
𝐶𝐴𝑁𝐷 = ℛ𝑡

𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇  ∪  ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇. 

 ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 = {𝓇𝑟: 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 , 𝜍𝑟𝑡
𝑅𝐸𝑄 = 0} (7.3) 

 ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 = {𝓇𝑟: 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 , 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {1,2}} (7.4) 

 ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 = {𝓇𝑟: 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 , 𝜍𝑟𝑡
𝑅𝐸𝑄 ∈ {3,4,5}} (7.5) 

Unassigned requests, i.e., ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ,  are the requests that have arrived since the last 

decision epoch and are waiting for acceptance or rejection. They could either get rejected, or get 

accepted and have a flight assigned to them. Let ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇

 and ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇  denote the rejected and 

accepted requests during decision epoch 𝑒 , respectively. Consequently, ℛ𝜏
𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁 = ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇 ∪

ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇, where 𝜏𝜈𝑒𝑆 denotes the starting time of decision epoch 𝑒. 

Requests with flexible pick-up (or start) UAT pads, i.e., ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇, are the requests that 

have been accepted in the previous decision epochs, but the passenger groups have not left their 
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origin as of time 𝑡. Since the passengers are at their origin, they can be reassigned to any pick-up 

UAT pad without rerouting and additional inconvenience. Hence, they have flexible pick-up UAT 

pads.  

On the other hand, Requests with fixed pick-up (or start) UAT pads, i.e., ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 , are the 

requests that have been accepted in the previous decision epochs, and their passenger groups have 

left the origin to the starting point of the assigned flight leg, but they have not started the boarding 

process as of time 𝑡. Since the passengers have left their origin and are on their way to the pick-up 

UAT pad, they will not be rerouted to another UAT pad to avoid further inconvenience. Thus, 

these requests have fixed pick-up UAT pads. Nonetheless, the scheduled boarding time of the 

flight legs assigned to these requests could be updated. 

7.2.2 Candidate Flight Legs 

In a network with a limited number of UAT pads, the flight legs available to serve the 

requests are limited and could be defined in advance. In contrast, in a ubiquitous network, a flight 

leg could be conducted between any two points in space, and therefore, the list of available flights 

is not known at the beginning of the planning horizon. Consequently, in such networks, the flight 

legs are defined based on the candidate requests that should be served. Candidate flight legs at 

time 𝑡, i.e., ℱ𝑡
𝐶𝐴𝑁𝐷, are the flight legs that the UAT operator could offer to serve the candidate 

requests ℛ𝑡
𝐶𝐴𝑁𝐷 . ℱ𝑡

𝐶𝐴𝑁𝐷  is the union of desired flight legs ℱ𝑡
𝐷𝑆𝑅𝐷  and connecting flight legs 

ℱ𝑡
𝐶𝑁𝐶𝑇 , and is defined in Equation (7.6). ℱ𝑡

𝐷𝑆𝑅𝐷  are well-defined flight legs (or jobs, tasks) 

specified for each candidate request, while ℱ𝑡
𝐶𝑁𝐶𝑇  are composed of flexible flight legs with a 

starting point or ending point (or both) different from the desired ones of the request they intend 

to serve. 
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 ℱ𝑡
𝐶𝐴𝑁𝐷 = ℱ𝑡

𝐷𝑆𝑅𝐷 ∪ ℱ𝑡
𝐶𝑁𝐶𝑇  (7.6) 

Additionally, let ℱ𝑡
𝑆 denote all the flight legs 𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷 that start at the desired pick-up 

UAT pad of their intended request, i.e., 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷. Similarly, let ℱ𝑡

𝐸 denotes all the flight legs 𝒻𝑖  ∈

ℱ𝑡
𝐶𝐴𝑁𝐷 that end at the desired drop-off UAT pad of 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷. Equations (7.7) and (7.8) define ℱ𝑡
𝑆 

and ℱ𝑡
𝐸 , respectively. Therefore, ℱ𝑡

𝑆̅̅ ̅̅ =  ℱ𝑡
𝐶𝐴𝑁𝐷\ℱ𝑡

𝑆  is the set of candidate flight legs with the 

starting point different from the desired pick-up UAT pad of their intended request, and ℱ𝑡
𝐸̅̅ ̅̅ =

 ℱ𝑡
𝐶𝐴𝑁𝐷\ℱ𝑡

𝐸 is the set of candidate flight legs with the ending point different from the desired UAT 

pad of their intended request. 

 ℱ𝑡
𝑆 = {𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷: 𝑺𝑖 = 𝑺𝑟
𝐷𝑆𝑅𝐷 , 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷} (7.7) 

 ℱ𝑡
𝐸 = {𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷: 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷, 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷} (7.8) 

Desired and connecting flight legs are discussed in the following sections. 

7.2.2.1 Desired Flight Legs 

Request 𝑟 (i.e., 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷) has a desired pick-up UAT pad and a desired drop-off pad, 

which are denoted by 𝑺𝑟
𝐷𝑆𝑅𝐷 and 𝑬𝑟

𝐷𝑆𝑅𝐷
, respectively. Consequently, 𝒻𝑟

𝐷𝑆𝑅𝐷 denotes the desired 

flight leg, which aims to move 𝓇𝑟 from 𝑺𝑟
𝐷𝑆𝑅𝐷

 to 𝑬𝑟
𝐷𝑆𝑅𝐷

 without any ground-based transportation. 

Thus, 𝒻𝑟
𝐷𝑆𝑅𝐷 is defined as 𝔽𝑖(𝑺𝑖 = 𝑺𝑟

𝐷𝑆𝑅𝐷, 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷, 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟).  

In cases where 𝓇𝑟 is an unassigned request or has no restriction on its pick-up UAT pad 

(i.e., 𝓇𝑟 ∈ ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇), 𝒻𝑟
𝐷𝑆𝑅𝐷 is a feasible flight leg that could be assigned to 𝓇𝑟. In 

contrast, for 𝓇𝑟 ∈ ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇, the pick-up UAT pad is fixed, and therefore, only flight legs that 



131 

 

have the same starting pad as the one already assigned to 𝓇𝑟 could be included as feasible candidate 

flight legs. Let ℱ𝑡
𝐷𝑆𝑅𝐷 denote the set of all the feasible desired flight legs for 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷. ℱ𝑡
𝐷𝑆𝑅𝐷 

is specified in Equation (7.9), where 𝕊(𝒻𝑖) is a function that returns the starting point of 𝒻𝑖, and 

𝜑𝑟𝑡 denotes the flight leg that has been assigned to 𝓇𝑟 ∈ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇 as of time 𝑡. 

 

ℱ𝑡
𝐷𝑆𝑅𝐷 

= {𝒻𝑟
𝐷𝑆𝑅𝐷: 𝓇𝑟 ∈  ℛ𝑡

𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇}  

∪ {𝒻𝑟
𝐷𝑆𝑅𝐷: 𝕊(𝒻𝑟

𝐷𝑆𝑅𝐷) =  𝕊(𝜑𝑟𝑡),𝓇𝑟 ∈ ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇}  

(7.9) 

7.2.2.2 Connecting Flight Legs 

While the requests are being served in a ubiquitous network, some empty flight legs might 

be too short to justify the repositioning. Let Δ𝐸𝑀𝑃𝑇𝑌 denote the minimum distance on the ground 

between two UAT pads to sanction a repositioning flight leg. Figure 7.1 illustrates how introducing 

connecting flight legs could eliminate short repositioning empty flight legs. Figure 7.1(a) depicts 

the first availability UAT pad of aircraft 𝑘 as of time 𝑡 (i.e., 𝑳𝑘𝑡
𝐴𝑉𝐿) and two requests (i.e., 𝓇𝑟 and 

𝓇𝑠) as well as their corrsponding desired pick-up UAT pads, desired drop-off UAT pads, and their 

desired flight legs. Additionally, let the function 𝑑𝑖𝑠𝑡(𝑎, 𝑏) measure the distance (as the crow flies) 

between point a and point b in the space. 

If aircraft 𝑘 were to serve only request 𝑟, a possible itinerary would be 𝑳𝑘𝑡
𝐴𝑉𝐿 → 𝑺𝑟

𝐷𝑆𝑅𝐷 →

𝑬𝑟
𝐷𝑆𝑅𝐷. If the distance between 𝑳𝑘𝑡

𝐴𝑉𝐿 and 𝑺𝑟
𝐷𝑆𝑅𝐷 is below the minimum UAT flight distance, i.e., 

𝑑𝑖𝑠𝑡(𝑳𝑘𝑡
𝐴𝑉𝐿, 𝑺𝑟

𝐷𝑆𝑅𝐷) <  Δ𝐸𝑀𝑃𝑇𝑌, 𝓇𝑟 could be relocated or transferred to 𝑳𝑘𝑡
𝐴𝑉𝐿 on the ground, and 

consequently, a revenue-generating flight leg from 𝑳𝑘𝑡
𝐴𝑉𝐿  to 𝑬𝑟

𝐷𝑆𝑅𝐷 , i.e., 𝔽𝑖(𝑺𝑖 = 𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝑬𝑖 =

𝑬𝑟
𝐷𝑆𝑅𝐷, 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟) , could serve the passenger group of 𝓇𝑟  while eliminating the short 

repositioning flight leg from 𝑳𝑘𝑡
𝐴𝑉𝐿 to 𝑺𝑟

𝐷𝑆𝑅𝐷. 
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 On the other hand, if aircraft 𝑘 were to serve 𝓇𝑟  and 𝓇𝑠  consecutively, the itinerary as 

depicted in Figure 7.1(a), would be 𝑳𝑘𝑡
𝐴𝑉𝐿 → 𝑺𝑟

𝐷𝑆𝑅𝐷 → 𝑬𝑟
𝐷𝑆𝑅𝐷 → 𝑺𝑠

𝐷𝑆𝑅𝐷 → 𝑬𝑠
𝐷𝑆𝑅𝐷. If the distance 

between 𝑳𝑘𝑡
𝐴𝑉𝐿  and 𝑺𝑟

𝐷𝑆𝑅𝐷  and the distance between 𝑬𝑟
𝐷𝑆𝑅𝐷  and 𝑺𝑠

𝐷𝑆𝑅𝐷are both shorter than the 

minimum UAT flight distance, i.e., 𝑑𝑖𝑠𝑡(𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝑺𝑟

𝐷𝑆𝑅𝐷) <  Δ𝐸𝑀𝑃𝑇𝑌 and 𝑑𝑖𝑠𝑡(𝑬𝑟
𝐷𝑆𝑅𝐷, 𝑺𝑠

𝐷𝑆𝑅𝐷) <

Δ𝐸𝑀𝑃𝑇𝑌, the passengers of 𝓇𝑟 could be relocated from 𝑺𝑟
𝐷𝑆𝑅𝐷 to 𝑳𝑘𝑡

𝐴𝑉𝐿 and from 𝑺𝑠
𝐷𝑆𝑅𝐷 to 𝑬𝑟

𝐷𝑆𝑅𝐷 on 

the ground if they were served by a connecting flight leg that goes directly from 𝑳𝑘𝑡
𝐴𝑉𝐿 to 𝑺𝑠

𝐷𝑆𝑅𝐷 , 

i.e., 𝔽𝑖(𝑺𝑖 = 𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝑬𝑖 = 𝑺𝑠

𝐷𝑆𝑅𝐷 , 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟), eliminating the two short repositioning flight legs. 

Analogously, Figure 7.1(b) illustrates requests 𝓇𝑞 , 𝓇𝑟 , and 𝓇𝑠 . If 𝓇𝑟  were to be served 

immediately after 𝓇𝑞 , the aircraft itinerary would include 𝑺𝑞
𝐷𝑆𝑅𝐷 → 𝑬𝑞

𝐷𝑆𝑅𝐷 → 𝑺𝑟
𝐷𝑆𝑅𝐷 → 𝑬𝑟

𝐷𝑆𝑅𝐷 , 

which involves the empty repositioning flight between 𝑬𝑞
𝐷𝑆𝑅𝐷 and 𝑺𝑟

𝐷𝑆𝑅𝐷 . In this case, two 

connecting flight legs could eliminate the need for the empty flight leg: (1) 𝔽𝑖(𝑺𝑖 = 𝑺𝑞
𝐷𝑆𝑅𝐷 , 𝑬𝑖 =

𝑺𝑟
𝐷𝑆𝑅𝐷 , 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑞) which connects the desired pick-up UAT pad of 𝓇𝑞 to the desired pick-up 

UAT pad of 𝓇𝑟 while serving passengers of 𝓇𝑞, and (2) 𝔽𝑖(𝑺𝑖 = 𝑬𝑞
𝐷𝑆𝑅𝐷 , 𝑬𝑖 = 𝑬𝑟

𝐷𝑆𝑅𝐷 , 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 =

𝓇𝑟) which connects the desired drop-off UAT pad of 𝓇𝑞 to the desired drop-off UAT pad of 𝓇𝑟 

Figure 7.1 Concept of connecting legs 
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while serving passengers of 𝓇𝑟. In the former case, the passengers of 𝓇𝑞 and in the latter case the 

passengers of 𝓇𝑟 would be relocated on the ground from 𝑺𝑟
𝐷𝑆𝑅𝐷 to 𝑬𝑞

𝐷𝑆𝑅𝐷. 

On the other hand, if an aircraft were to serve 𝓇𝑞 , 𝓇𝑟, and 𝓇𝑠 consecutively, the itinerary, 

as depicted in Figure 7.1(b), would be 𝑺𝑞
𝐷𝑆𝑅𝐷 → 𝑬𝑞

𝐷𝑆𝑅𝐷 → 𝑺𝑟
𝐷𝑆𝑅𝐷 → 𝑬𝑟

𝐷𝑆𝑅𝐷 → 𝑺𝑠
𝐷𝑆𝑅𝐷 → 𝑬𝑠

𝐷𝑆𝑅𝐷. If 

the distance between 𝑬𝑞
𝐷𝑆𝑅𝐷 and 𝑺𝑟

𝐷𝑆𝑅𝐷 and the distance between 𝑬𝑟
𝐷𝑆𝑅𝐷 and 𝑺𝑠

𝐷𝑆𝑅𝐷are both shorter 

than the minimum UAT flight distance, i.e., 𝑑𝑖𝑠𝑡(𝑬𝑞
𝐷𝑆𝑅𝐷, 𝑺𝑟

𝐷𝑆𝑅𝐷) <  Δ𝐸𝑀𝑃𝑇𝑌 and 

𝑑𝑖𝑠𝑡(𝑬𝑟
𝐷𝑆𝑅𝐷 , 𝑺𝑠

𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌, the passengers of 𝓇𝑟 would be relocated from 𝑺𝑟
𝐷𝑆𝑅𝐷 to 𝑬𝑞

𝐷𝑆𝑅𝐷 and 

from 𝑺𝑠
𝐷𝑆𝑅𝐷 to 𝑬𝑟

𝐷𝑆𝑅𝐷 on the ground if they were served by a connecting flight leg that goes directly 

from 𝑬𝑞
𝐷𝑆𝑅𝐷 to 𝑺𝑠

𝐷𝑆𝑅𝐷, i.e., 𝔽𝑖(𝑺𝑖 = 𝑬𝑞
𝐷𝑆𝑅𝐷 , 𝑬𝑖 = 𝑺𝑠

𝐷𝑆𝑅𝐷 , 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟), eliminating the two short 

repositioning flight legs. 

In conclusion, to eliminate a short repositioning flight leg, the passenger group of a request 

could be relocated on the ground within the radius of Δ𝐸𝑀𝑃𝑇𝑌 from their desired UAT pads. It is 

worth noting that the relocation should be within Δ𝐴𝐶𝐶𝐸𝑆𝑆of either the origin or destination of the 

request. However, in a ubiquitous network, the origin and destination of a request coincide with 

the desired pick-up and drop-off UAT pads. Introducing the connecting legs and eliminating the 

short repositioning flight legs would transform the CLARPTW to CLARPTW-SRE, where SRE 

stands for short repositioning elimination. Subsequently, we define five classes of connecting legs, 

namely, ℱ𝑟𝑡
𝐾𝐸 , ℱ𝑟𝑡

𝐾𝑆, ℱ𝑟𝑡
𝑆𝑆, ℱ𝑟𝑡

𝐸𝐸 , and ℱ𝑟𝑡
𝐸𝑆 for 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 as follows. 

Figure 7.2 illustrates 𝑺𝑟
𝐷𝑆𝑅𝐷 and 𝑬𝑟

𝐷𝑆𝑅𝐷, the desired pick-up and drop-off UAT pads of 𝓇𝑟 ∈

ℛ𝑡
𝐶𝐴𝑁𝐷, respectively, as well as the desired pick-up UAT pads of all the candidate requests within 

a radius of Δ𝐸𝑀𝑃𝑇𝑌 of 𝑬𝑟
𝐷𝑆𝑅𝐷. The connecting legs are defined so that they could serve 𝓇𝑟 from 

𝑺𝑟
𝐷𝑆𝑅𝐷 to these pads. Let ℱ𝑟𝑡

𝑆𝑆 denote the set of connecting legs that intend to serve 𝓇𝑟 by flying 
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between 𝑺𝑟
𝐷𝑆𝑅𝐷 and the desired pick-up pad of 𝓇𝑠 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷within Δ𝑈𝐴𝑇 of 𝑬𝑟
𝐷𝑆𝑅𝐷. As a result, ℱ𝑟𝑡

𝑆𝑆 

for 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 is defined in Equation (7.10). 

ℱ𝑟𝑡
𝑆𝑆 = {𝒻𝑖: 𝒻𝑖 = 𝔽𝑖(𝑺𝑖 = 𝑺𝑟

𝐷𝑆𝑅𝐷 , 𝑬𝑖 = 𝑺𝑠
𝐷𝑆𝑅𝐷 , 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟),
0 < 𝑑𝑖𝑠𝑡(𝑬𝑟

𝐷𝑆𝑅𝐷 , 𝑺𝑠
𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌, 𝓇𝑠 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷} 
𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 (7.10) 

Similarly, Figure 7.3 illustrates 𝑺𝑟
𝐷𝑆𝑅𝐷 and 𝑬𝑟

𝐷𝑆𝑅𝐷, the desired pick-up and drop-off UAT 

pads of 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷, respectively. Moreover, the first availability UAT pads of aircraft as well as 

the desired drop-off UAT pads of all candidate requests within the Δ𝐸𝑀𝑃𝑇𝑌 of 𝑺𝑟
𝐷𝑆𝑅𝐷 are depiceted. 

The connecting legs are defined so that they could serve the passengers of 𝓇𝑟 from these pads to 

𝑬𝑟
𝐷𝑆𝑅𝐷. Let ℱ𝑟𝑡

𝐾𝐸 denote the set of connecting legs that serve 𝓇𝑟 by flying between 𝑳𝑘𝑡
𝐴𝑉𝐿 (i.e., the 

fisrt availability UAT pad of aircraft 𝑘) within Δ𝐸𝑀𝑃𝑇𝑌 of 𝑺𝑟
𝐷𝑆𝑅𝐷 and 𝑬𝑟

𝐷𝑆𝑅𝐷, and let ℱ𝑟𝑡
𝐸𝐸 denote 

Figure 7.3 Connecting legs intending to serve request 𝒓 that end at its desired drop-off UAT 

pad 

Figure 7.2 Connecting legs intending to serve request 𝒓 that start at its desired pick-up UAT 

pad 
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the set of connecting legs introduced between 𝑬𝑞
𝐷𝑆𝑅𝐷  (i.e., the desired UAT pad) of 𝓇𝑞 ∈

ℛ𝑡
𝐶𝐴𝑁𝐷within Δ𝐸𝑀𝑃𝑇𝑌  of 𝑺𝑟

𝐷𝑆𝑅𝐷 and 𝑬𝑟
𝐷𝑆𝑅𝐷 , intending to serve 𝓇𝑟 . ℱ𝑟𝑡

𝐾𝐸and ℱ𝑟𝑡
𝐸𝐸  are defined in 

Equations (7.11) and (7.12), respectively. 

ℱ𝑟𝑡
𝐾𝐸 = {𝒻𝑖: 𝒻𝑖 = 𝔽𝑖(𝑺𝑖 = 𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷 , 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟),
0 < 𝑑𝑖𝑠𝑡(𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝑺𝑟
𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌, 𝑎𝑘 ∈ 𝒦} 

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (7.11) 

ℱ𝑟𝑡
𝐸𝐸 = {𝒻𝑖: 𝒻𝑖 = 𝔽𝑖(𝑺𝑖 = 𝑬𝑞

𝐷𝑆𝑅𝐷 , 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷, 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟),

0 < 𝑑𝑖𝑠𝑡(𝑬𝑞
𝐷𝑆𝑅𝐷 , 𝑺𝑟

𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌, 𝓇𝑞 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷} 

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (7.12) 

Lastly, Figure 7.4 depicts 𝑺𝑟
𝐷𝑆𝑅𝐷 and 𝑬𝑟

𝐷𝑆𝑅𝐷, the desired pick-up and drop-off UAT pads 

of 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷, respectively. Additionally, the availability UAT pads and desired drop-off UAT 

pads of candidate requests within Δ𝐸𝑀𝑃𝑇𝑌 radius of 𝑺𝑟
𝐷𝑆𝑅𝐷 and the desired pick-up UAT pads of 

candidate requests within Δ𝐸𝑀𝑃𝑇𝑌  radius of 𝑬𝑟
𝐷𝑆𝑅𝐷  are illustrated. Let ℱ𝑟𝑡

𝐾𝑆  denote the set of 

connecting legs that serve 𝓇𝑟 by flying between the availability UAT pad 𝑎𝑘 ∈ 𝒦 within Δ𝐸𝑀𝑃𝑇𝑌 

of 𝑺𝑟
𝐷𝑆𝑅𝐷 and the desired pick-up UAT pad of 𝓇𝑠 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 within Δ𝐸𝑀𝑃𝑇𝑌 of 𝑬𝑟
𝐷𝑆𝑅𝐷. Furthermore, 

let ℱ𝑟𝑡
𝐸𝑆 denote the set of connecting legs that aim to serve 𝓇𝑟 while connecting the desired drop-

off UAT pad of 𝓇𝑞 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷  within Δ𝐸𝑀𝑃𝑇𝑌  of 𝑺𝑟

𝐷𝑆𝑅𝐷  to the desired pick-up UAT pad of 𝓇𝑠 ∈

Figure 7.4 Connecting legs intending to serve request 𝒓 that neither start nor end at at its 

desired UAT pads 
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ℛ𝑡
𝐶𝐴𝑁𝐷  within Δ𝐸𝑀𝑃𝑇𝑌  of 𝑬𝑟

𝐷𝑆𝑅𝐷 . ℱ𝑖𝑡
𝐾𝑆 and ℱ𝑖𝑡

𝐸𝑆  are defined in Equation (7.13) and (7.14), 

respectively. 

ℱ𝑟𝑡
𝐾𝑆 = {𝒻𝑖: 𝒻𝑖 = 𝔽𝑖(𝑺𝑖 = 𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝑬𝑖 = 𝑺𝑠
𝐷𝑆𝑅𝐷 , 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟),
0 < 𝑑𝑖𝑠𝑡(𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝑺𝑟
𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌,

0 < 𝑑𝑖𝑠𝑡(𝑬𝑟
𝐷𝑆𝑅𝐷, 𝑺𝑠

𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌,
𝑎𝑘 ∈ 𝒦,𝓇𝑠 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷} 

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (7.13) 

ℱ𝑟𝑡
𝐸𝑆 = {𝒻𝑖: 𝒻𝑖 = 𝔽𝑖(𝑺𝑖 = 𝑬𝑞

𝐷𝑆𝑅𝐷 , 𝑬𝑖 = 𝑺𝑠
𝐷𝑆𝑅𝐷 , 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 = 𝓇𝑟),

0 < 𝑑𝑖𝑠𝑡(𝑬𝑞
𝐷𝑆𝑅𝐷 , 𝑺𝑟

𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌,

0 < 𝑑𝑖𝑠𝑡(𝑬𝑟
𝐷𝑆𝑅𝐷, 𝑺𝑠

𝐷𝑆𝑅𝐷) < Δ𝐸𝑀𝑃𝑇𝑌, 𝓇𝑞 , 𝓇𝑠 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷} 

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (7.14) 

In conclusion, five classes of connecting legs, namely, ℱ𝑟𝑡
𝐾𝐸 , ℱ𝑟𝑡

𝐾𝑆, ℱ𝑟𝑡
𝑆𝑆, ℱ𝑟𝑡

𝐸𝐸 , and ℱ𝑟𝑡
𝐸𝑆, 

could be defined for 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷. However, for 𝓇𝑟 ∈  ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇, the pick-up UAT pad is set as 

fixed, and therefore, only the connecting flight legs that have the same starting pad as the one of 

the flight already assigned to 𝓇𝑟  are feasible connecting flight legs. Let ℱ𝑡
𝐶𝑁𝐶𝑇  denote all the 

feasible connecting legs at time 𝑡. Therefore, Equation (7.15) defines ℱ𝑡
𝐶𝑁𝐶𝑇 , where 𝕊(𝒻𝑖) is a 

function that returns the starting point of 𝒻𝑖. 

Connecting legs are introduced to eliminate the short repositioning flight legs, and 

therefore, a revenue-generating flight leg must come immediately either before or after them. 

Preceding flight leg 𝒻𝑚 refers to the revenue-generating flight leg that must be served immediately 

before a connecting leg 𝒻𝑖 , suggesting 𝒻𝑖 ∈  ℱ𝑡
𝑆̅̅ ̅̅  and 𝒻𝑚 ∈ ℱ𝑡

𝐸  . On the other hand, succeeding 

 

ℱ𝑡
𝐶𝑁𝐶𝑇 

= {𝒻𝑖: 𝒻𝑖 ∈  (ℱ𝑟𝑡
𝐾𝐸 ∪ ℱ𝑟𝑡

𝐾𝑆 ∪ ℱ𝑟𝑡
𝑆𝑆 ∪ ℱ𝑟𝑡

𝐸𝐸 ∪ ℱ𝑟𝑡
𝐸𝑆),

𝓇𝑟  ∈ ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ∪ ℛ𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇} 
∪ {𝒻𝑖: 𝕊(𝒻𝑖) =   𝕊(𝜑𝑟𝑡),

𝒻𝑖 ∈  (ℱ𝑟𝑡
𝐾𝐸 ∪ ℱ𝑟𝑡

𝐾𝑆 ∪ ℱ𝑟𝑡
𝑆𝑆 ∪ ℱ𝑟𝑡

𝐸𝐸 ∪ ℱ𝑟𝑡
𝐸𝑆),

𝓇𝑟 ∈ ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇} 

(7.15) 
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flight leg 𝒻𝑗 refers to the revenue-generating flight leg that must be served immediately after a 

connecting leg, implying 𝒻𝑖 ∈  ℱ𝑡
𝐸̅̅ ̅̅  and 𝒻𝑗 ∈ ℱ𝑡

𝑆 . In contrast, free flight legs can freely follow each 

other without any constraint. As can be seen in Figure 7.1, 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐸𝐸 has preceding flight legs, 

𝒻𝑖 ∈ ℱ𝑟𝑡
𝐾𝑆  and 𝒻𝑖 ∈  ℱ𝑟𝑡

𝑆𝑆  have succeeding flight legs, and 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐸𝑆  has both preceding and 

succeeding flight legs. 

7.2.3 Available UAT Aircraft 

The UAT operator employs a fixed set of UAT aircraft, i.e., 𝒦, over the planning horizon. 

Let 𝒦𝑡
𝐸̅̅ ̅̅̅ denote all the UAT aircraft that are conducting or have recently conducted flight leg 𝑖 to 

a UAT pad that is different from the desired drop-off UAT pad of 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 . 𝒦𝑡

𝐸̅̅ ̅̅̅ is defined in 

Equation (7.16). As a result, 𝒦𝑡
𝐸  =  𝒦\𝒦𝑡

𝐸̅̅ ̅̅̅  represents the set of UAT aircraft that are conducting 

or have recently conducted flights leg 𝑖 to a UAT pad that is the same as the desired drop-off UAT 

pad of 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷. 

 𝒦𝑡
𝐸̅̅ ̅̅̅ = {𝑎𝑘 ∈ 𝒦: 𝔈𝑘𝑡

𝑁𝐷𝑆𝑅𝐷 = 1} (7.16) 

7.3 Network’s Metrics 

This section specifies how the distances and times are defined and calculated in the 

network. 

7.3.1 Distances 

Let the function 𝑑𝑖𝑠𝑡(𝑎, 𝑏) measure the distance (as the crow flies) between point a and 

point b in the space. For smaller areas, it measures the straight-line distance in Euclidean space. 

However, the geodesic distance is used in bigger regions to capture the earth’s curvature. 

Additionally, we define aerial distances to take into account the deviation of the aerial routes from 
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the shortest path due to prohibited areas, noise reduction, and legal restrictions [91]. Let 𝜖 ≥ 0 

denote the detour factor due to prohibited areas, noise reduction, and legal restrictions. 

Consequently, we define the following distances: 

𝐷𝑟
𝑂𝐷 = 𝑑𝑖𝑠𝑡(𝑶𝑟 , 𝑫𝑟): the distance (as the crow flies) between the origin and destination of 

request 𝑟; 

𝐷𝑖
𝐿𝐸𝐺 = (1 + 𝜖) × 𝑑𝑖𝑠𝑡(𝑺𝑖, 𝑬𝑖): the aerial distance between the starting and ending point 

of flight leg 𝑖; 

𝐷𝑘𝑖𝑡
0 = (1 + 𝜖) × 𝑑𝑖𝑠𝑡(𝑳𝑘𝑡

𝐴𝑉𝐿 , 𝑺𝑖): the aerial distance between the first availability UAT pad 

of aircraft 𝑘 as of time 𝑡 and the starting point of flight leg 𝑖; and 

𝐷𝑖𝑗 = (1 + 𝜖) × 𝑑𝑖𝑠𝑡(𝑬𝑖, 𝑺𝑗): the aerial distance between flight leg 𝑖 and flight leg 𝑗 , 

defined as the aerial distance between the ending point of flight leg 𝑖 and the starting point of flight 

leg 𝑗. 

7.3.2 Times 

This section presents the formal notations and definitions of temporal components of the 

UAT problem, including the ground-based and aerial times. 

7.3.2.1 Ground-based Times 

Ingress duration is the time it takes to get to the departure gate from the request’s origin as 

the service starts. If the passenger group of a request needs to be relocated to a pad other than its 

origin, ground-based transportation will be conducted using two ground-based modes: walking 

and ride-hailing. This time is shown by the circles numbered as 3 in Figure 5.4(a). Let Δ𝑊𝐴𝐿𝐾 

denote the maximum walking distance of the passengers. If 𝑑𝑖𝑠𝑡(𝑶𝑟 , 𝑺𝑖) ≤  Δ
𝑊𝐴𝐿𝐾 , request 𝑟 

walks to the starting point of flight leg 𝑖; otherwise, the UAT operator assigns a car to the request 
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to perform the relocation. Moreover, some time is spent from when the passenger group arrives at 

the UAT pad or port on the ground until they reach the departure gate. This event’s duration is 

denoted by the circle numbered as 4 in Figure 5.4(a) and includes the security screening before the 

flight, taking the elevator, etc. Equation (7.17) defines the ingress duration of request 𝑟 to flight 

leg 𝑖. 

 𝑇𝑟𝑖
𝐼𝑁𝐺𝑅𝑆 = 𝑇𝑟𝑖

𝐼𝑁𝐵𝑁𝐷 + 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 (7.17) 

 𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷 =

𝑑𝑖𝑠𝑡(𝑶𝑟 , 𝑺𝑖)

𝜈𝑚
 (7.18) 

Where: 

𝑇𝑟𝑖
𝐼𝑁𝐺𝑅𝑆: ingress duration, defined as the total time spent from when passengers of request 

𝑟 leave their origin until they reach the departure gate of flight leg 𝑖; 

𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸: the time between arriving at the UAT pad or port on the ground and reaching the 

departure gate of flight 𝑖 for request 𝑟; 

𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷: the elapsed time associated with the ground-based transportation for accessing the 

starting UAT pad of flight 𝑖 from the origin of request 𝑟, as defined in Equation (7.18); and 

𝜈𝑚: speed of ground-based mode 𝑚, where 𝑚 ∈ {WALK, DRIVE}. It is worth noting that 

since the distances are calculated over Euclidean space, the speed is also estimated for traversing 

the Euclidean distance. Therefore, the actual speed in the network is greater than or equal to 𝜈𝑚. 

If the requests are boarded at their desired UAT pad located at their origin, no ground-

based transportation is required, and therefore, the minimum ingress duration is equal to the time 

it takes to access the departure gate (i.e., 𝑇𝑟𝑖
𝐼𝑁𝐺𝑅𝑆 = 𝑇𝑟𝑖

𝐷𝐺𝐴𝑇𝐸). 
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Similarly, the egress duration is the elapsed time between the end of the deboarding 

process and reaching the destination. The egress duration is comprised of three components: (1) 

the elapsed time from reaching the arrival gate until arriving at the location designated for ground 

transportation, (2) the wait time for ground-based transportation, and (3) the time it takes on the 

ground to reach the destination. Accordingly, the egress time is defined in Equation (7.19): 

 𝑇𝑟𝑖
𝐸𝐺𝑅𝑆 = 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸 +𝑊𝑟𝑖
𝐸𝐺𝑅𝑆 + 𝑇𝑟𝑖

𝑂𝑈𝑇𝐵𝑁𝐷 (7.19) 

 𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷 =

𝑑𝑖𝑠𝑡(𝑬𝑖, 𝑫𝑟)

𝜈𝑚
 (7.20) 

Where: 

𝑇𝑟𝑖
𝐸𝐺𝑅𝑆: egress duration, the total time spent from the end of the deboarding of flight leg 𝑖 

until reaching the destination of request 𝑟; 

𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸: the elapsed time for reaching the area of ground transportation from the arrival 

gate flight leg 𝑖 for request 𝑟; 

𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷: the elapsed time associated with the ground-based transportation for reaching 

the destination of request 𝑟 from the ending UAT pad of flight leg 𝑖, as defined in Equation (7.20); 

and 

𝑊𝑟𝑖
𝐸𝐺𝑅𝑆: wait time for ground transportation to the destination of request 𝑟 from the ending 

point of flight leg 𝑖. This value is assumed to be zero since the UAT operator knows the arrival 

time of request r well in advance, i.e., 𝑊𝑟𝑖
𝐸𝐺𝑅𝑆 = 0. Therefore, 𝑇𝑟𝑖

𝐸𝐺𝑅𝑆 = 𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 + 𝑇𝑟𝑖

𝑂𝑈𝑇𝐵𝑁𝐷. 
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7.3.2.2 Aerial Times 

The aerial times could be defined in terms of either the time a UAT aircraft spends in the 

air or the time it takes to serve a flight leg. Flight duration is defined as the time elapsed between 

the take-off and landing of the UAT aircraft and comprises three components: ascending hover, 

cruise, and descending hover. In comparison, the flight service time refers to the time it takes to 

serve a flight leg from its start until its completion, and therefore, its duration depends on whether 

the flight leg is revenue-generating (with passengers) or empty.  

 Flight duration is defined in Equation (7.21), while flight service times for empty and 

revenue-generating legs are defined in Equations (7.22) and (7.23), respectively. Flight service 

time includes ATC departure clearance and landing clearance. However, for the revenue-

generating legs, the duration of boarding and deboarding procedures should also be included in 

the flight service time. Clearly, 𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇, 𝑇𝑖

𝑆𝑅𝑉𝐸𝑀𝑃, and 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 are zero if the distance of flight 

leg 𝑖 is zero. 

 

𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇 = 𝑇𝐴𝑆𝐶𝐸𝑁𝐷 + 𝑇𝑖

𝐶𝑅𝑈𝐼𝑆𝐸 + 𝑇𝐷𝐸𝑆𝐶𝐸𝑁𝐷 ∀𝑖: 𝐷𝑖
𝐿𝐸𝐺 ≠ 0 (7.21) 

 

𝑇𝑖
𝑆𝑅𝑉𝐸𝑀𝑃 = 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 + 𝑇𝑖

𝐹𝐿𝐼𝐺𝐻𝑇 + 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 (7.22) 

 

𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 = 𝑇𝐵𝑂𝐴𝑅𝐷 + 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 + 𝑇𝑖

𝐹𝐿𝐼𝐺𝐻𝑇 + 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 + 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 (7.23) 

Where: 

𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇: the flight duration of leg 𝑖, which is defined as the period between take-off and 

touch down of a UAT aircraft; 



142 

 

𝑇𝐴𝑆𝐶𝐸𝑁𝐷 , 𝑇𝐷𝐸𝑆𝐶𝐸𝑁𝐷: the time required by eVTOL aircraft to vertically or close to vertically 

ascend and descend, respectively;  

𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹: the time it takes before the departure to receive take-off clearance from ATC; 

𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺: the time it takes after the landing to declare the UAT pad area safe; 

𝑇𝑖
𝑆𝑅𝑉𝐸𝑀𝑃: the flight service time of an empty flight leg, i.e.,  the time it takes to serve the 

empty flight leg 𝑖 from its start to its completion; 

𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉: the flight service time of a revenue-generating flight leg, i.e., the time it takes to 

serve the revenue-generating flight leg 𝑖 from its start to its completion; and 

𝑇𝑖
𝐶𝑅𝑈𝐼𝑆𝐸: the time spent in cruising mode from the starting point of flight leg 𝑖 to its ending 

point. It is estimated in Equation (7.24). 

 𝑇𝑖
𝐶𝑅𝑈𝐼𝑆𝐸 = 

𝐷𝑖
𝐿𝐸𝐺

𝜈𝐴𝐼𝑅
= 
(1 + 𝜖) × 𝑑𝑖𝑠𝑡(𝑺𝑖, 𝑬𝑖)

𝜈𝐴𝐼𝑅
 (7.24) 

Additionally, 𝑇𝑘𝑖𝑡
0  denotes the 𝑇𝑚

𝑆𝑅𝑉𝐸𝑀𝑃 of flight leg 𝑚 where aircraft 𝑘 repositions from 

its first availability UAT pad as of time 𝑡 to the starting point of flight 𝑖. Similarly, 𝑇𝑖𝑗 denotes 

𝑇𝑚
𝑆𝑅𝑉𝐸𝑀𝑃 of flight leg 𝑚, which is the leg performed for repositioning a UAT aircraft from the 

ending point of flight leg 𝑖 to the starting point of flight leg 𝑗. 

Let 𝑇𝑇𝐴𝑇denote the turnaround time, which in aviation terminology refers to the time 

elapsed between the landing of an aircraft and its take-off to serve a new flight leg. Therefore, 

𝑇𝑇𝐴𝑇 ≥ 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 + 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 + 𝑇𝐵𝑂𝐴𝑅𝐷 + 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 .  
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In summary, Figure 7.5 depicts the temporal components associated with a location change 

in UAT operation. 𝑊𝑟𝑖𝑡
𝐼𝑁𝐺𝑅𝑆 and 𝑊𝑟𝑖

𝐸𝐺𝑅𝑆 would occur at point 1 and point 7, respectively. 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 

and 𝑇𝐵𝑂𝐴𝑅𝐷 are incurred at point 3, while 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 and 𝑇𝐵𝑂𝐴𝑅𝐷 happens at point 6. 

7.3.2.3 Time Windows 

When passengers are assigned to a flight that differs from their desired flight leg, they incur 

an additional delay. Let Ω𝑟𝑖
𝑀𝐼𝑁 denote the minimum delay incurred when passengers of 𝓇𝑟 take 𝒻𝑖 

instead of 𝒻𝑖∗ = 𝒻𝑟
𝐷𝑆𝑅𝐷. Ω𝑟𝑖

𝑀𝐼𝑁 is defined in Equation (7.25). For 𝓇𝑟 to be assigned to flight leg 𝒻𝑖, 

it is necessary that Ω𝑟𝑖
𝑀𝐼𝑁 ≤ 𝜔. Clearly, Ω𝑟𝑖

𝑀𝐼𝑁 = 0 for 𝒻𝑖 = 𝒻𝑟
𝐷𝑆𝑅𝐷. It is worth noting that 𝑇𝑟𝑖∗

𝐼𝑁𝐵𝑁𝐷 

and 𝑇𝑟𝑖∗
𝑂𝑈𝑇𝐵𝑁𝐷 are zero in a ubiquitous network, where the origin and destination coincide with the 

desired pick-up and drop-off UAT pads, respectively. 

 

Ω𝑟𝑖
𝑀𝐼𝑁 

= (𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷 + 𝑇𝑖

𝐶𝑅𝑈𝐼𝑆𝐸 + 𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷) 

− (𝑇𝑟𝑖∗
𝐼𝑁𝐵𝑁𝐷 + 𝑇𝑖∗

𝐶𝑅𝑈𝐼𝑆𝐸 + 𝑇𝑟𝑖∗
𝑂𝑈𝑇𝐵𝑁𝐷)  

(7.25) 

Moreover, 𝜏𝑖
𝑀𝐼𝑁  and 𝜏𝑖

𝑀𝐴𝑋  are, respectively, the earliest and latest time that flight leg 𝑖 

could be served. 𝜏𝑖
𝑀𝐼𝑁 and 𝜏𝑖

𝑀𝐴𝑋 are calculated in Equations (7.26) and (7.27), respectively. 

Figure 7.5 Illustration of temporal components associated with a location change 
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 𝜏𝑖
𝑀𝐼𝑁 = 𝜏𝑟

𝑅𝐸𝑄 + 𝑇𝑟𝑖
𝐼𝑁𝐺𝑅𝑆  ∀(𝑟, 𝑖): 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 (7.26) 

 

𝜏𝑖
𝑀𝐴𝑋 

= 𝜏𝑟
𝐷𝐿𝑁 − 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉 − 𝑇𝑟𝑖
𝐸𝐺𝑅𝑆 

= 𝜏𝑖
𝑀𝐼𝑁 + 𝜔 − Ω𝑟𝑖

𝑀𝐼𝑁 

∀(𝑟, 𝑖): 𝓇𝑟 = 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 (7.27) 

7.3.2.4 Desired Trip Time 

𝑇𝑟
𝐷𝑆𝑅𝐷, the minimum trip time corresponding to the trip time of desired flight leg of 𝓇𝑟 

without any wait time, is defined in Equation (7.28). Since in a ubiquitous network, 𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷 and 

𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷 for 𝒻𝑖 = 𝒻𝑟

𝐷𝑆𝑅𝐷 are zero, 𝑇𝑟
𝐷𝑆𝑅𝐷 = 𝑇𝑟𝑖

𝐷𝐺𝐴𝑇𝐸 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸. 

 𝑇𝑟
𝐷𝑆𝑅𝐷 = 𝑇𝑟𝑖

𝐼𝑁𝐺𝑅𝑆 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑟𝑖

𝐸𝐺𝑅𝑆 ∀(𝑟, 𝑖): 𝒻𝑖 = 𝒻𝑟
𝐷𝑆𝑅𝐷 (7.28) 

7.4 Network Representation 

7.4.1 Node-based Network Representation 

In the transportation problems where a task or job must be performed between pairs of 

origin and destination points (e.g., transporting goods and people or traversing a street), the 

network could be modeled in two ways: (1) arc-based and (2) node-based. In the arc-based 

representation, each physical arc in the transportation network corresponds to an arc in the modeled 

network. However, in node-based models, each task is collapsed into one node. For instance, in an 

arc-based representation, a flight from point 𝑎 to point 𝑏 is shown with node 𝑎, node 𝑏, and an arc 

from 𝑎 to 𝑏, while in a node-based representation, the flight is modeled by node 𝑎𝑏.  

As a result, in the arc-based network representation, the arcs should be traversed (i.e., arc 

routing) to complete the corresponding tasks, while in node-based representations, the nodes must 

be visited (i.e., node routing). The arc-based networks are typically formulated as a capacitated 

multi-commodity network flow problem or Arc Routing Problem (ARP). Specifically, ARPs could 
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take advantage of the structure of a graph representing a road network since, in such cases, each 

vertex represents a road junction where the degree of each vertex is usually small [134]. However, 

in a ubiquitous network of UAT pads, each vertex is a UAT pad and could be linked to numerous 

UAT pads. 

Furthermore, the presence of time windows complicates the modeling choice. To 

incorporate the time windows in the arc-based network representation, the problem could be 

modeled in a time-expanded network [135] (also known as a time-space network). In time-

expanded networks, the time is discretized over the planning horizon, and subsequently, the 

network is duplicated at each interval. Therefore, each node corresponds to a location at a specific 

time, while each arc shows the movements in space and time. Time-expanded networks are acyclic. 

However, the time discretization makes the network flow models challenging due to the problem 

size. Fine discretization provides a good approximation to the continuous-time problem; however, 

the problem could quickly get intractably large [135]. On the other hand, coarse discretizations 

are computationally more manageable while yielding poor approximations. Boland et al. [135] 

demonstrate that the loss of solution quality, i.e., the relative gap between the discretized and 

continuous-time optimal solutions, in service network design problems (SNDP) could be greater 

than 20%. Moreover, in the context of ARPs, a recent survey [134] suggests that many studies on 

ARP with time windows transform the problem into a node routing problem, and only one of the 

reviewed papers attempts to solve ARP with time windows exactly using an arc routing 

formulation. 

Another complicating factor in the modeling choice is the flexibility of the passengers 

towards the pick-up and drop-off UAT pads. To incorporate this flexibility in a node-based 
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representation, each combination of possible pick-up and drop-off pairs should be modeled as one 

node, leading to a significant increase in the problem size. 

Additionally, some attributes of the proposed UAT concept of operations contribute to the 

model selection. For instance, whether two arcs (i.e., flights) could be served immediately after 

each other depends on the requests they intend to serve (see Section 7.4.3 for more detail). This 

feature is easier to incorporate in a node-based representation. The reason is that in the node 

representation, an arc that intends to serve two requests is modeled using two separate nodes (i.e., 

flights), while it is represented as a single arc in an arc-based representation that should be 

traversed two times to serve the two requests. 

In a closely related problem, Espinoza et al. [3] formulate the per-seat on-demand dial-a-

flight problem (DAFP) as a multi-commodity network flow problem. However, they use a time-

activity network, where the nodes include activities such as performing a flight (gate nodes), 

boarding a passenger (direct and indirect loading nodes), and being idle (standby nodes). 

Therefore, the network representation is node-based rather than arc-based, even though it is 

formulated as a network flow problem.  

Consequently, we choose a node-based representation to model UAT fleet operation and 

formulate it as a capacitated location-allocation-routing problem with time windows and short 

repositioning elimination (CLARPTW-SRE). The UAT operator needs to decide which flight legs 

to perform (or which nodes to visit) (i.e., location), how to assign the requests to the flight legs 

(i.e., allocation), and how to route and schedule the capacitated aircraft to conduct these flight legs 

(i.e., routing). The CLARPTW-SRE at time 𝑡 is represented by a directed graph 𝒢𝑡 = (𝒩𝑡, 𝒜𝑡) 

with the set of nodes 𝒩𝑡 and the set of arcs 𝒜𝑡. The arcs definitions for routing and scheduling 

resemble those presented in Yang et al. [78] and Bertsimas et al. [136].  
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Figure 7.6 depicts the transformation of the UAT network into the corresponding LARP 

network. Figure 7.6(a) illustrates two requests, namely, 𝓇𝑟 and 𝓇𝑠, two flight legs, namely, 𝒻𝑖 and 

𝒻𝑗 , and one aircraft, 𝒶𝑘 , while Figure 7.6 (b) demonstrates the node-based model of the UAT 

network. The distance from vehicle 𝑘 (i.e., UAT aircraft 𝑘) to location 𝑖 (i.e., flight leg 𝑖) is the 

distance from 𝑳𝑘𝑡
𝐴𝑉𝐿  to 𝑺𝑖 , i.e., 𝐷𝑘𝑖𝑡

0 . Lastly, the distance from location 𝑖 to location 𝑗 in Figure 

7.6(b) is the distance between 𝑬𝑖 and 𝑺𝑗, i.e., 𝐷𝑖𝑗. 

The following sections specify how the nodes and arcs are defined in the CLARPTW-SRE 

network. 

Figure 7.6 UAT network transformation, (a) UAT network, (b) node-based model 
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7.4.2 Nodes 

Each available UAT aircraft, candidate flight leg, and candidate request is represented as a 

node in 𝒩𝑡. Thus, 𝒩𝑡 includes three subsets: UAT aircraft (𝒩𝑡
𝑒𝑉𝑇𝑂𝐿), flight legs (𝒩𝑡

𝐿𝐸𝐺), and the 

requests (𝒩𝑡
𝑅𝐸𝑄), which are defined in Equations (7.29)-(7.31), respectively. 𝒦𝑡 denotes the set 

of available UAT aircraft at time 𝑡, and is the same as 𝒦if all the aircraft are functional at time 𝑡. 

 𝒩𝑡
𝑒𝑉𝑇𝑂𝐿 = {𝑘: 𝑎𝑘 ∈ 𝒦𝑡} (7.29) 

 𝒩𝑡
𝐿𝐸𝐺 = {𝑖: 𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷} (7.30) 

 𝒩𝑡
𝑅𝐸𝑄 = {𝑟:𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷} (7.31) 

Additionally, 𝒩𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ⊆ 𝒩𝑡

𝑅𝐸𝑄
 and 𝒩𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇 ⊆ 𝒩𝑡
𝑅𝐸𝑄

, respectively defined in 

Equations (7.32) and (7.33), represent the nodes associated with requests with flexible pick-up 

UAT pad (i.e., 𝓇𝑟 ∈ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇) and requests with fixed pick-up UAT pad (i.e., 𝓇𝑟 ∈ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇).  

 𝒩𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 = {𝑟:𝓇𝑟 ∈ ℛ𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇} (7.32) 

 𝒩𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 = {𝑟:𝓇𝑟 ∈ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇} (7.33) 

Lastly, 𝒩𝑡
𝐸̅̅ ̅̅ ̅ ⊆ 𝒩𝑡

𝐿𝐸𝐺 denote the set of nodes associated with flight legs that do not end at 

the desired drop-off UAT pad of their intended request. 𝒩𝑡
𝐸̅̅ ̅̅ ̅ is defined in Equation (7.34). 

 𝒩𝑡
𝐸̅̅ ̅̅ ̅ = {𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺|𝑬𝑖 ≠ 𝑬𝑟
𝐷𝑆𝑅𝐷 , 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷} (7.34) 

7.4.3 Arcs 

𝒜𝑡 is composed of three subsets: the initial arcs from aircraft to flight legs (𝒜𝑡
𝐼𝑁𝐼𝑇), the 

sequencing arcs between flight legs (𝒜𝑡
𝑆𝐸𝑄), and the allocation arcs between requests and flight 
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legs (𝒜𝑡
𝐴𝐿𝐶𝑇). The existence of arc (𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇 between aircraft 𝑘 and flight leg 𝑖 suggests that 

flight leg 𝑖 could potentially be served as the first flight on aircraft 𝑘’s route starting from 𝑳𝑘𝑡
𝐴𝑉𝐿, 

while the arc (𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

 between the nodes of flight leg 𝑖 and flight leg 𝑗 specifies that flight 

leg 𝑗 could potentially be served immediately after flight leg 𝑖. Lastly, arc (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 between 

request 𝑟 and flight leg 𝑖 implies that request 𝑟 could be served by flight leg 𝑖. The following 

sections further outline the definitions of the arc. 

7.4.3.1 Initial Arcs (𝒜𝑡
𝐼𝑁𝐼𝑇) 

Candidate flight legs have either the same starting UAT pad as or a different one from their 

intended request (i.e., ℱ𝑡
𝐶𝐴𝑁𝐷 = ℱ𝑡

𝑆 ∪ ℱ𝑡
𝑆̅̅ ̅̅ ). Additionally, the first availability UAT pad of the 

UAT aircraft either coincides with the drop-off UAT pad of its passengers or not (i.e., 𝒦𝑡 = 𝒦𝑡
𝐸 ∪

𝒦𝑡
𝐸̅̅ ̅̅̅). Consequently, the tuple (𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇 is defined depending on whether 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅  or not and 

𝒶𝑘 ∈ 𝒦𝑡
𝐸̅̅ ̅̅̅ or not. As a result, 𝒜𝑡

𝐼𝑁𝐼𝑇, specified in Equation (7.35), is defined as the union of three 

subsets, namely, 𝒜0
𝑡
𝑃𝑅𝐸𝐶

, 𝒜0
𝑡
𝑆𝑈𝐶𝐶

, and 𝒜0
𝑡
𝐹𝑅𝐸𝐸

, defined in Equations (7.36)-(7.38), respectively. 

 𝒜𝑡
𝐼𝑁𝐼𝑇 = 𝒜0

𝑡
𝑃𝑅𝐸𝐶

∪𝒜0
𝑡
𝑆𝑈𝐶𝐶

∪𝒜0
𝑡
𝐹𝑅𝐸𝐸

 (7.35) 

Figure 7.7 features connecting flight legs 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅ , which aim to serve 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 but 

start at 𝑳𝑘𝑡
𝐴𝑉𝐿 for 𝒶𝑘 ∈ 𝒦. Serving 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 with 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅ , which has a starting point different 

from the desired pick-up UAT pad of its intended request 𝑟, imposes a relocation to an undesired 

pick-up pad on 𝓇𝑟. The relocation is justified if the starting point of 𝒻𝑖 is an availability UAT pad 

that coincides with the desired drop-off UAT pad of the most recent request the aircraft is serving 

or has served. Therefore, 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅  could be conducted by aircraft 𝑘 if 𝑺𝑖 = 𝑳𝑘𝑡

𝐴𝑉𝐿 for 𝒶𝑘 ∈ 𝒦𝑡
𝐸. The 

ending point of 𝒻𝑖 could be either the desired drop-off UAT pad of 𝓇𝑟 (i.e., 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷) or the 
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desired pick-up point of 𝓇𝑠 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷  (i.e., 𝑬𝑖 = 𝑬𝑠

𝐷𝑆𝑅𝐷 ). Correspondingly, 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐾𝐸  or 𝒻𝑖 ∈

ℱ𝑟𝑡
𝐾𝑆.  

Let 𝒜0
𝑡
𝑃𝑅𝐸𝐶

 denote the set of (𝑘, 𝑖) tuples where 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅  starts at the availability UAT pad 

𝒶𝑘 ∈ 𝒦𝑡
𝐸. 𝒜0

𝑡
𝑃𝑅𝐸𝐶

 is defined in Equation (7.36). 

 𝒜0
𝑡
𝑃𝑅𝐸𝐶

= {(𝑘, 𝑖): 𝒶𝑘 ∈ 𝒦𝑡
𝐸 , 𝒻𝑖 ∈ ℱ𝑡

𝑆̅̅ ̅̅ , 𝑳𝑘𝑡
𝐴𝑉𝐿 = 𝑺𝑖} (7.36) 

On the other hand, the first availability UAT pad of 𝒶𝑘 ∈ 𝒦𝑡
𝐸̅̅ ̅̅̅ is different from the desired 

drop-off UAT pad of 𝓇𝑟  (i.e., the most recent request it is serving or has served), imposing a 

relocation from an undesired drop-off pad on 𝓇𝑟. The ground-based relocation is justified if the 

first availability UAT pad of 𝒶𝑘 ∈ 𝒦𝑡
𝐸̅̅ ̅̅̅ is the desired pick-up UAT pad of another candidate 

request. Therefore, 𝒻𝑖 ∈  ℱ𝑡
𝑆 could succeed the first availability of 𝒶𝑘 ∈ 𝒦𝑡

𝐸̅̅ ̅̅̅ as long as 𝑳𝑘𝑡
𝐴𝑉𝐿 = 𝑺𝑗. 

Let 𝒜0
𝑡
𝑆𝑈𝐶𝐶

 denote the set of (𝑘, 𝑖) tuples where 𝒻𝑖 ∈ ℱ𝑡
𝑆 starts at the availability UAT pad 

𝒶𝑘 ∈ 𝒦𝑡
𝐸̅̅ ̅̅̅. 𝒜0

𝑡
𝑆𝑈𝐶𝐶

 is defined in Equation (7.37). 

 𝒜0
𝑡
𝑆𝑈𝐶𝐶

= {(𝑘, 𝑖): 𝒶𝑘 ∈ 𝒦𝑡
𝐸̅̅ ̅̅̅, 𝒻𝑖 ∈ ℱ𝑡

𝑆, 𝑳𝑘𝑡
𝐴𝑉𝐿 = 𝑺𝑖} (7.37) 

Figure 7.7 Connecting legs intending to serve request 𝒓 which start at a first availability UAT 

pad of aircraft 𝒌 
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The flight legs that start at the desired pick-up UAT pad of their intended request (i.e., 𝒻𝑖 ∈

 ℱ𝑡
𝑆) are not constrained to be conducted by any specific UAT aircraft. Therefore, they could be 

served by any 𝒶𝑘 ∈ 𝒦𝑡
𝐸, whose availability UAT pad coincides with the desired drop-off UAT 

pad of the most recent request it is serving or has served. 𝒜0
𝑡
𝐹𝑅𝐸𝐸

 denotes the set of (𝑘, 𝑖) tuples 

where 𝒻𝑖 ∈  ℱ𝑡
𝑆 is the flight leg served from the availability UAT pad of 𝒶𝑘 ∈ 𝒦𝑡

𝐸. Since 𝑳𝑘𝑡
𝐴𝑉𝐿 is 

not necessarily the same as 𝑺𝑖  for (𝑘, 𝑖) ∈ 𝒜0
𝑡
𝐹𝑅𝐸𝐸

, an empty flight leg, which distance is not 

within the short range, could be conducted prior to serving flight leg 𝑖 by aircraft 𝑘. 𝒜0
𝑡
𝐹𝑅𝐸𝐸

 is 

defined in Equation (7.38). 

 
𝒜0

𝑡
𝐹𝑅𝐸𝐸

= {(𝑘, 𝑖): 𝒶𝑘 ∈ 𝒦𝑡
𝐸 , 𝒻𝑖 ∈ ℱ𝑡

𝑆,
𝐷𝑘𝑖𝑡
0 ∉ (0, (1 + 𝜖)Δ𝐸𝑀𝑃𝑇𝑌)} 

(7.38) 

7.4.3.2 Sequencing Arcs (𝒜𝑡
𝑆𝐸𝑄) 

Candidate flight legs could be classified as three (not mutually exclusive) groups: (1) flight 

legs that start at a different UAT pad from the desired pick-up UAT pad of their intended request 

(i.e., 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅  ), (2) flight legs that end at a different UAT pad from the desired dop-off UAT pad 

of their intended request (i.e., 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅  ), (3) flight legs that start at the desired pick-up UAT pad 

(i.e., 𝒻𝑖 ∈ ℱ𝑡
𝑆) or end at the desired drop-off UAT pad (i.e., 𝒻𝑖 ∈ ℱ𝑡

𝐸 ) of their intended request. 

Sequencing arcs  (𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

, which cover how two flight legs can follow each other, are 

divided into three classes, namely, preceding (𝒜𝑡
𝑃𝑅𝐸𝐶), succeeding (𝒜𝑡

𝑆𝑈𝐶𝐶), and free (𝒜𝑡
𝐹𝑅𝐸𝐸), 

depending on the groups 𝒻𝑖 and 𝒻𝑗 are classified as. 𝒜𝑡
𝑆𝐸𝑄

 is specified in Equation (7.39). 

 𝒜𝑡
𝑆𝐸𝑄 = 𝒜𝑡

𝑃𝑅𝐸𝐶 ∪𝒜𝑡
𝑆𝑈𝐶𝐶 ∪𝒜𝑡

𝐹𝑅𝐸𝐸 (7.39) 
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Figure 7.8(a) features connecting flight legs 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅ , which aim to serve 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 but 

starts at a UAT pad different from the desired pick-up pad of 𝓇𝑟  (i.e., 𝑺𝑟
𝐷𝑆𝑅𝐷 ). Serving 𝓇𝑟 =

𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 with 𝒻𝑖 ∈ ℱ𝑡

𝑆̅̅ ̅̅ , which has a starting point different from the desired pick-up UAT pad of 

its intended request 𝑟, imposes a relocation to an undesired pick-up UAT pad. This ground-based 

relocation is justified if the starting point of 𝒻𝑖  is the desired drop-off UAT pad of another 

candidate request. Therefore, 𝒻𝑚 ∈  ℱ𝑡
𝐸 could precede 𝒻𝑖 as long as 𝑺𝑖 = 𝑬𝑚. The ending point of 

𝒻𝑖 , as depicted in Figure 7.8(b), is either the desired drop-off UAT pad of 𝓇𝑟 (i.e., 𝑬𝑖 = 𝑬𝑟
𝐷𝑆𝑅𝐷) 

or the desired pick-up UAT pad of 𝓇𝑠 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (i.e., 𝑬𝑖 = 𝑺𝑠

𝐷𝑆𝑅𝐷). Correspondingly, 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐸𝐸 or 

𝒻𝑖 ∈ ℱ𝑟𝑡
𝐸𝑆.  

Let 𝒜𝑡
𝑃𝑅𝐸𝐶 denote the set of (𝑚, 𝑖) tuples where 𝒻𝑚 ∈  ℱ𝑡

𝐸 could precede 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅ . 𝒜𝑡

𝑃𝑅𝐸𝐶 

is defined in Equation (7.40).  

 𝒜𝑡
𝑃𝑅𝐸𝐶 = {(𝑚, 𝑖): 𝒻𝑖 ∈ ℱ𝑡

𝑆̅̅ ̅̅ , 𝒻𝑚 ∈  ℱ𝑡
𝐸 , 𝑬𝑚 = 𝑺𝑖} (7.40) 

Figure 7.8 Connecting legs intending to serve request 𝒓 that do not start at the desired pick-

up UAT pad of request 𝒓 
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Figure 7.9(a) depicts flight legs 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅ , which aim to serve 𝓇𝑟 ∈ ℛ𝑡

𝐶𝐴𝑁𝐷 but ends at a 

UAT pad different from the desired drop-off UAT pad of 𝓇𝑟 (i.e., 𝑬𝑟
𝐷𝑆𝑅𝐷). Serving 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷 

with 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅ , which has an ending point different from the desired drop-off UAT pad of its 

intended request 𝑟, imposes a relocation to an undesired drop-off UAT pad on 𝓇𝑟. This ground-

based relocation is justified if the ending point of 𝒻𝑖 is the desired pick-up UAT pad of another 

candidate request. Therefore, 𝒻𝑗 ∈  ℱ𝑡
𝑆 could succeed 𝒻𝑖 as long as 𝑬𝑖 = 𝑺𝑗. The starting point of 

𝒻𝑖, as depicted in Figure 7.9(b), is either the desired pick-up UAT pad of 𝓇𝑟 (i.e., 𝑺𝑖 = 𝑺𝑟
𝐷𝑆𝑅𝐷), the 

desired drop-off pad of 𝓇𝑞 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 (i.e., 𝑺𝑖 = 𝑬𝑞

𝐷𝑆𝑅𝐷), or the first availability UAT pad of 𝒶𝑘 ∈

𝒦𝑡
𝐸 (i.e., 𝑺𝑖 = 𝑳𝑘𝑡

𝐴𝑉𝐿). Correspondingly, 𝒻𝑖 ∈ ℱ𝑟𝑡
𝑆𝑆, 𝒻𝑖 ∈ ℱ𝑟𝑡

𝐸𝑆, or 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐾𝑆. 

Let 𝒜𝑡
𝑆𝑈𝐶𝐶  denote the set of (𝑖, 𝑗) tuples where 𝒻𝑗 ∈  ℱ𝑡

𝑆 could succeed 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅ . 𝒜𝑡

𝑆𝑈𝐶𝐶  is 

defined in Equation (7.41). 

 𝒜𝑡
𝑆𝑈𝐶𝐶 = {(𝑖, 𝑗): 𝒻𝑖 ∈ ℱ𝑡

𝐸̅̅ ̅̅ , 𝒻𝑗 ∈  ℱ𝑡
𝑆, 𝑬𝑖 = 𝑺𝑗} (7.41) 

Figure 7.9 Connecting legs intending to serve request 𝒓 that do not end at the desired drop-

off UAT pad of request 𝒓 
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Lastly, there is no constraint on flight legs that could succeed 𝒻𝑖 ∈  ℱ𝑡
𝐸 since these flight 

legs end at the desired drop-off UAT pad of their intended request. Similarly, there is no constraint 

on the flight legs that could precede 𝒻𝑗 ∈ ℱ𝑡
𝑆 since these legs start at the desired pick-up UAT pad 

of their intended request. Let 𝒜𝑡
𝐹𝑅𝐸𝐸  denote (𝑖, 𝑗) tuples where 𝒻𝑗 ∈ ℱ𝑡

𝑆 could follow 𝒻𝑖 ∈  ℱ𝑡
𝐸 . 

These two are not necessarily connected directly, and an empty flight leg might be conducted 

between the two legs. 𝒜𝑡
𝐹𝑅𝐸𝐸 is defined in Equation (7.42).  

 
𝒜𝑡
𝐹𝑅𝐸𝐸 = {(𝑖, 𝑗): 𝒻𝑖 ∈  ℱ𝑡

𝐸 , 𝒻𝑗 ∈ ℱ𝑡
𝑆,

𝐷𝑖𝑗 ∉ (0, (1 + 𝜖)Δ
𝐸𝑀𝑃𝑇𝑌)} 

(7.42) 

It is worth noting that 𝒜𝑡
𝑃𝑅𝐸𝐶 and 𝒜𝑡

𝑆𝑈𝐶𝐶  are defined so that intermediary relocation pad, 

the UAT pad that is not the desired one for any of the involved requests, is avoided. To further 

elaborate, when defining 𝒜𝑡
𝑃𝑅𝐸𝐶, not all the flight legs that end at 𝑺𝑖 could precede 𝒻𝑖 ∈ ℱ𝑡

𝑆̅̅ ̅̅ . In 

other words, {(𝑚, 𝑖)| 𝒻𝑖 ∈ ℱ𝑡
𝑆̅̅ ̅̅ , 𝒻𝑚 ∈  ℱ𝑡

𝐶𝐴𝑁𝐷 , 𝑬𝑚 = 𝑺𝑖} ⊄  𝒜𝑡
𝑃𝑅𝐸𝐶  since the ending point of 𝒻𝑚 ∈

 ℱ𝑡
𝐶𝐴𝑁𝐷  is not necessarily the desired drop-off pad of its intended request (i.e., 𝑬𝑚 ≠

𝑬𝑞
𝐷𝑆𝑅𝐷 for 𝓇𝑞 = 𝓇𝑚

𝐼𝑁𝑇𝑁𝐷). If 𝒻𝑚 ∈ ℱ𝑡
𝐸̅̅ ̅̅  were to be followed by 𝒻𝑖 ∈ ℱ𝑡

𝑆̅̅ ̅̅ , 𝓇𝑞(= 𝓇𝑚
𝐼𝑁𝑇𝑁𝐷) and 𝓇𝑟 (=

𝓇𝑖
𝐼𝑁𝑇𝑁𝐷) are both relocated to 𝑺𝑖 = 𝑬𝑚, and therefore, an unnecessary relocation is incurred. As 

a result, 𝑺𝑖 = 𝑬𝑚 becomes an intermediary relocation pad in the network for 𝓇𝑞 and 𝓇𝑟 since it is 

not the one desired by either 𝓇𝑞 or 𝓇𝑟. In a network with a limited number of UAT pads, looking 

for such intermediary pads, where multiple requests could be relocated to or from, could be an 

alternative operational policy. However, in a ubiquitous network, with a theoretically infinite 

number of UAT pads over the space, relocating requests to an intermediary pad is more challenging 

since it requires a search over the entire accessible space. Furthermore, one of the objectives is to 
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minimize the number of relocations and, thus, passengers inconvenience. Utilizing intermediary 

UAT pads would result in two requests being relocated rather than one, which is not desirable. 

To further elaborate, Figure 7.10 demonstrates how a flight leg ending at 𝑺𝑖  could not 

precede 𝒻𝑖 ∈  ℱ𝑡
𝐶𝐴𝑁𝐷 . In this figure, four requests, namely, 𝓇𝑟 , 𝓇𝑠, 𝓇𝑝, and 𝓇𝑞 , and their desired 

pick-up and drop-off UAT pads are depicted. Additionally, 𝑺𝑠
𝐷𝑆𝑅𝐷 and 𝑬𝑝

𝐷𝑆𝑅𝐷 overlap. In Figure 

7.10(a), a connecting leg from 𝑺𝑟
𝐷𝑆𝑅𝐷 to 𝑺𝑠

𝐷𝑆𝑅𝐷 is introduced to serve 𝓇𝑟 , while in Figure 7.10(b), 

another connecting leg from 𝑬𝑝
𝐷𝑆𝑅𝐷  to  𝑬𝑞

𝐷𝑆𝑅𝐷  is created to serve 𝓇𝑞 . As a result, 𝑺𝑟
𝐷𝑆𝑅𝐷 →

 𝑺𝑠
𝐷𝑆𝑅𝐷 → 𝑬𝑠

𝐷𝑆𝑅𝐷 and 𝑺𝑝
𝐷𝑆𝑅𝐷 → 𝑬𝑝

𝐷𝑆𝑅𝐷 → 𝑬𝑞
𝐷𝑆𝑅𝐷 are valid itineraries in Figure 7.10(a) and Figure 

7.10(b), respectively. However, as shown in Figure 7.10(c), 𝑺𝑟
𝐷𝑆𝑅𝐷 → 𝑺𝑠

𝐷𝑆𝑅𝐷 → 𝑬𝑞
𝐷𝑆𝑅𝐷 is not a 

valid sequence of the connecting legs to serve 𝓇𝑟 and 𝓇𝑞 since, in this case, 𝑺𝑠
𝐷𝑆𝑅𝐷 would act as an 

intermediary relocation pad where both 𝓇𝑟 and 𝓇𝑞 have to relocate to.  

Figure 7.10 Depiction of preceding flight legs (a) valid, (b) valid, and (c) invalid sequence of 

flight legs 
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Similarly, when defining 𝒜𝑡
𝑆𝑈𝐶𝐶 , not all the flight legs starting at 𝑬𝑖 could succeed 𝒻𝑖 ∈

ℱ𝑡
𝐸̅̅ ̅̅ . In other words, {(𝑖, 𝑗)|𝒻𝑖 ∈ ℱ𝑡

𝐸̅̅ ̅̅ , 𝒻𝑗 ∈  ℱ𝑡
𝐶𝐴𝑁𝐷, 𝑬𝑖 = 𝑺𝑗} ⊄  𝒜𝑡

𝑆𝑈𝐶𝐶 . Furthermore, for 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅  

ending at 𝑬𝑖, it is possible all 𝒻𝑗 ∈  ℱ𝑡
𝑆 with 𝑬𝑖 = 𝑺𝑗 get rejected. In other words, the intended 

request of 𝒻𝑖 might be unnecessarily relocated to 𝑬𝑖, where no succeeding legs starting at 𝑬𝑖 will 

be served. Let 𝒩𝑖𝑡
𝑆𝑈𝐶𝐶 denote the set of indices of flight legs that could succeed 𝒻𝑖 ∈ ℱ𝑡

𝐸̅̅ ̅̅  as of time 

𝑡. 𝒩𝑖𝑡
𝑆𝑈𝐶𝐶 is defined in Equation (7.43). 

It is worth noting that connecting leg 𝒻𝑖 ∈  ℱ𝑟𝑡
𝐾𝐸 ∪ ℱ𝑟𝑡

𝐸𝐸 ∪ ℱ𝑟𝑡
𝐸𝑆 should be served only if an 

aircraft is available at its starting pad or one of its preceding flight legs is conducted. This constraint 

is implicitly addressed in network construction by allowing 𝒻𝑖 to be reached in the network only 

from an available aircraft at 𝑺𝑖  or its preceding legs. As a result, when connecting leg 𝒻𝑖 ∈  ℱ𝑟𝑡
𝐾𝐸 ∪

 ℱ𝑟𝑡
𝐸𝐸 ∪ ℱ𝑟𝑡

𝐸𝑆  is served, preceding constraints are implicitly satisfied. In contrast, serving 

connecting leg 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐾𝑆 ∪ ℱ𝑟𝑡

𝐸𝑆 does not guarantee that any of its succeeding flight legs will be 

served. Therefore, succeeding constraints must be explicitly specified in the optimization problem. 

Nonetheless, in rare cases, while 𝒻𝑖 ∈ ℱ𝑟𝑡
𝐸𝑆 is in service, none of its succeeding flight legs may get 

served in the re-optimization. 

7.4.3.3 Allocation Arcs (𝒜𝑡
𝐴𝐿𝐶𝑇) 

Allocation arcs specify if 𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 could be served by 𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷. The tuple (𝑟, 𝑖) ∈

 𝒜𝑡
𝐴𝐿𝐶𝑇 implies that starting UAT pad of 𝒻𝑖 is within accessible distance of the origin of 𝓇𝑟 and 

the ending UAT pad of 𝒻𝑖 is within accessible distance of the destination of 𝓇𝑟. 𝒜𝑡
𝐴𝐿𝐶𝑇 is defined 

in Equation (7.44). 

 𝒩𝑖𝑡
𝑆𝑈𝐶𝐶 = {𝑗: (𝐼, 𝑗) ∈ 𝒜𝑡

𝑆𝑈𝐶𝐶 , 𝐼 = 𝑖} (7.43) 
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Furthermore, let 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 ⊆ 𝒜𝑡

𝐴𝐿𝐶𝑇  denote the set of (𝑟, 𝑖) tuples where request 𝑟 is the 

intended request of flight leg 𝑖. 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 is defined in Equation (7.45). 

 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 = {(𝑟, 𝑖): 𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷 , 𝓇𝑟 = 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷} (7.45) 

7.5 Network Reduction 

Given the time windows associated with the flight legs and requests, the network presented 

in the previous section could be reduced to increase computational efficiency. 𝒜𝑡
𝐴𝐿𝐶𝑇𝑇𝑊, defined 

in Equation (7.46), specifies the allocation arcs after taking the time windows into account. 

Request 𝑟 could be assigned to flight leg 𝑖 if: 

i. The minimum delay incurred by assigning 𝓇𝑟 to 𝒻𝑖 is smaller than the maximum 

acceptable delay (i.e., Ω𝑟𝑖
𝑀𝐼𝑁 ≤ 𝜔); 

ii. The passenger group of 𝓇𝑟 should be able to get to 𝒻𝑖 before the lastest start time 

of 𝒻𝑖 (i.e., 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 + 𝑇𝑟𝑖

𝐼𝑁𝐺𝑅𝑆 ≤ 𝜏𝑖
𝑀𝐴𝑋); and 

iii. 𝒻𝑖  must start before the request 𝑟 maxes out the modified maximum acceptable 

delay (i.e., 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 + 𝑇𝑟𝑖

𝐷𝐺𝐴𝑇𝐸 + 𝜔′ ≥ 𝜏𝑖
𝑀𝐼𝑁); 

 

𝒜𝑡
𝐴𝐿𝐶𝑇𝑇𝑊 = {(𝑟, 𝑖) ∈ 𝒜𝑡

𝐴𝐿𝐶𝑇: Ω𝑟𝑖
𝑀𝐼𝑁 ≤ 𝜔,

𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 + 𝑇𝑟𝑖

𝐼𝑁𝐺𝑅𝑆 ≤ 𝜏𝑖
𝑀𝐴𝑋 ,

𝜏𝑟𝑡
𝑆𝑅𝑉𝐶 + 𝑇𝑟𝑖

𝐷𝐺𝐴𝑇𝐸 + 𝜔′ ≥ 𝜏𝑖
𝑀𝐼𝑁 ,

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 , 𝒻𝑖  ∈ ℱ𝑡

𝐶𝐴𝑁𝐷} 

(7.46) 

 

𝒜𝑡
𝐴𝐿𝐶𝑇 = {(𝑟, 𝑖): 𝑑𝑖𝑠𝑡(𝑶𝑟 , 𝑺𝑖) ≤ Δ𝐴𝐶𝐶𝐸𝑆𝑆,

𝑑𝑖𝑠𝑡(𝑫𝑟 , 𝑬𝑖) ≤ Δ
𝐴𝐶𝐶𝐸𝑆𝑆,

𝓇𝑟 ∈ ℛ𝑡
𝐶𝐴𝑁𝐷 , 𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷} 
(7.44) 
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Where 𝜔′ , the adjusted maximum acceptable delay, takes into account the time that the 

passenger’s relocation on the ground is in the direction of their destination. In this case, the ground 

transportation would shorten the flight time, and as a consequence, the extra time could be spent 

on reaching the starting point of the flight. 𝜔′ is defined in Equation (7.47). 

 𝜔′ =  𝜔 (1 + 
𝜈𝐷𝑅𝐼𝑉𝐸

𝜈𝐴𝐼𝑅
) (7.47) 

If a flight leg 𝑖 cannot serve its intended request, it is not included in the candidate flight 

legs. In other words, if (𝑟, 𝑖) ∉ 𝒜𝑡
𝐴𝐿𝐶𝑇𝑇𝑊for (𝑟, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝑇𝑁𝐷, flight leg 𝑖 should be excluded from 

the set of candidate requests. Accordingly, ℱ̇𝑡
𝐶𝐴𝑁𝐷 , defined in Equation (7.48), specifies the 

adjusted candidate flight legs after excluding the flight legs that could not possibly serve their 

intended requests. 

 ℱ̇𝑡
𝐶𝐴𝑁𝐷 = {𝒻𝑖 ∈ ℱ𝑡

𝐶𝐴𝑁𝐷: (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇𝑇𝑊 ∩𝒜𝑡

𝐼𝑁𝑇𝑁𝐷} (7.48) 

Furthermore, considering the availability time of the UAT aircraft and the time windows 

for the flight legs, the size of 𝒜𝑡
𝐼𝑁𝐼𝑇 and 𝒜𝑡

𝑆𝐸𝑄
 could be reduced. The arcs between the aircraft and 

flight legs could be limited to (𝑘, 𝑖) tuples for which aircraft 𝑘 could reach flight leg 𝑖 before the 

latest acceptable time to serve flight leg 𝑖. Therefore, 𝒜𝑡
𝐼𝑁𝐼𝑇𝑇𝑊 is calculated in Equation (7.49). 

 
𝒜𝑡
𝐼𝑁𝐼𝑇𝑇𝑊 = {(𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇: 𝒻𝑖  ∈ ℱ̇𝑡
𝐶𝐴𝑁𝐷 ,

𝜏𝑘𝑡
𝐴𝑉𝐿 + 𝑇𝑘𝑖𝑡

0 ≤ 𝜏𝑖
𝑀𝐴𝑋} 

(7.49) 

Similarly, for (𝑖, 𝑗)  ∈ 𝒜𝑡
𝑆𝐸𝑄

, an aircraft could potentially serve flight leg 𝑗 after flight leg 

𝑖 if it conducted 𝒻𝑖 by starting at the earliest allowable start time, performed the repositioning flight 

between 𝒻𝑖 and 𝒻𝑗, and reached the starting point of 𝒻𝑗 before its latest allowable start time. As a 

result, 𝒜𝑡
𝑆𝐸𝑄𝑇𝑊

 is defined in Equation (7.50). 
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𝒜𝑡
𝑆𝐸𝑄𝑇𝑊 = {(𝑖, 𝑗) ∈ 𝒜𝑡

𝑆𝐸𝑄: 𝒻𝑖 , 𝒻𝑗  ∈ ℱ̇𝑡
𝐶𝐴𝑁𝐷 ,

𝜏𝑖
𝑀𝐼𝑁 + 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑖𝑗 ≤ 𝜏𝑗
𝑀𝐴𝑋} 

(7.50) 

Consequently, (𝑘, 𝑖) ∈ 𝒜𝑡
𝐼𝑁𝐼𝑇𝑇𝑊  and (𝑖, 𝑗) ∈ 𝒜𝑡

𝑆𝐸𝑄𝑇𝑊
 would determine what flight legs 

are feasible to be served under the time constraints. ℱ̈𝑡
𝐶𝐴𝑁𝐷, defined in Equation (7.51), denotes 

the candidate flight legs that are feasible to be served directly by an aircraft or followed by another 

flight leg given the time windows.  

Furthermore, for 𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅ , none of 𝒻𝑗  (for ∀𝑗 ∈  𝒩𝑖𝑡

𝑆𝑈𝐶𝐶 ) that must follow 𝒻𝑖  might be 

included in the adjusted candidate flight legs ℱ̈𝑡
𝐶𝐴𝑁𝐷. As a result, Algorithm 1 seeks to modify 

�̃�𝑖𝑡
𝑆𝑈𝐶𝐶, ℱ̃𝑡

𝐸̅̅ ̅̅ , and ℱ̃𝑡
𝐶𝐴𝑁𝐷 accordingly. The algorithm repeatedly updates the succeeding flights of 

𝒻𝑖 ∈ ℱ𝑡
𝐸̅̅ ̅̅ , and if the set of succeeding nodes of 𝒻𝑖 is empty, 𝒻𝑖 will be excluded from the set of 

candidate flight legs. The steps are repeated until no new flight leg is excluded from the set of 

candidate flight legs. 

In conclusion, Equations (7.52) define �̃�𝑡
𝐿𝐸𝐺. The symbol ~ suggests the modified variable 

after network reduction. Accordingly, �̃�𝑡
𝐼𝑁𝐼𝑇 and �̃�𝑡

𝑆𝐸𝑄
 are defined in Equations (7.53) and (7.54), 

respectively. 

 
�̃�𝑡

𝐿𝐸𝐺 = {𝑖: 𝒻𝑖 ∈ ℱ̃𝑡
𝐶𝐴𝑁𝐷} (7.52) 

 �̃�𝑡
𝐼𝑁𝐼𝑇 = {(𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇𝑇𝑊: 𝑖 ∈ �̃�𝑡
𝐿𝐸𝐺} (7.53) 

 �̃�𝑡
𝑆𝐸𝑄 = {(𝑖, 𝑗) ∈ 𝒜𝑡

𝑆𝐸𝑄𝑇𝑊: 𝑖, 𝑗 ∈ �̃�𝑡
𝐿𝐸𝐺} (7.54) 

 

ℱ̈𝑡
𝐶𝐴𝑁𝐷 

= {𝒻𝑖: (𝑘, 𝑖) ∈ 𝒜𝑡
𝐼𝑁𝐼𝑇𝑇𝑊} 

∪ {𝒻𝑖: (𝑗, 𝑖) ∈ 𝒜𝑡
𝑆𝐸𝑄𝑇𝑊} 

(7.51) 
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Algorithm 1: Modified Candidate Flight Legs  

Inputs: 𝒜𝑡
𝑆𝑈𝐶𝐶 , 𝒜𝑡

𝑆𝐸𝑄𝑇𝑊, ℱ𝑡
𝐸̅̅ ̅̅ , ℱ̈𝑡

𝐶𝐴𝑁𝐷 

Outputs: ℱ̃𝑡
𝐶𝐴𝑁𝐷, ℱ̃𝑡

𝐸̅̅ ̅̅ , �̃�𝑖𝑡
𝑆𝑈𝐶𝐶 

𝐶𝑂𝑁𝑇𝐼𝑁𝑈𝐸 ←  𝑇𝑅𝑈𝐸 

ℱ̃𝑡
𝐶𝐴𝑁𝐷 ← ℱ̈𝑡

𝐶𝐴𝑁𝐷 

while 𝐶𝑂𝑁𝑇𝐼𝑁𝑈𝐸 do: 

 ℱ̃𝑡
𝐸̅̅ ̅̅ ←  ℱ̃𝑡

𝐶𝐴𝑁𝐷 ∩ ℱ𝑡
𝐸̅̅ ̅̅  (7.55) 

 for 𝒻𝑖 ∈ ℱ̃𝑡
𝐸̅̅ ̅̅  do: 

  �̃�𝑖𝑡
𝑆𝑈𝐶𝐶 ← {𝑗: (𝐼, 𝑗) ∈ 𝒜𝑡

𝑆𝑈𝐶𝐶 , 𝐼 = 𝑖, 𝒻𝑗 ∈ ℱ̃𝑡
𝐶𝐴𝑁𝐷} (7.56) 

 end for  

 ℱ̂𝑡
𝑆𝑈𝐶𝐶 ← {𝒻𝑖 ∈ ℱ̃𝑡

𝐶𝐴𝑁𝐷: �̃�𝑖𝑡
𝑆𝑈𝐶𝐶 = ∅} 

 if ℱ̂𝑡
𝑆𝑈𝐶𝐶 ≠ ∅ then: 

   ℱ̃𝑡
𝐶𝐴𝑁𝐷 ← ℱ̃𝑡

𝐶𝐴𝑁𝐷\ℱ̂𝑡
𝑆𝑈𝐶𝐶 (7.57) 

 else:  

  𝐶𝑂𝑁𝑇𝐼𝑁𝑈𝐸 ← 𝐹𝐴𝐿𝑆𝐸 

 end if  

end  

Consequently, �̃�𝑡
𝑒𝑉𝑇𝑂𝐿 is defined in Equation (7.58). Furthermore, �̃�𝑡

𝐴𝐿𝐶𝑇 and �̃�𝑡
𝑅𝐸𝑄

 are 

defined in Equations (7.59) and (7.60), respectively. �̃�𝑡
𝐴𝐿𝐶𝑇  ensures that request 𝑟  could be 

assigned to flight 𝑖 only if flight leg 𝑖 could be served given the time windows (i.e., 𝑖 ∈ �̃�𝑡
𝐿𝐸𝐺). 

�̃�𝑡
𝑅𝐸𝑄

 includes the requests that could be assigned to at least one flight leg, and therefore, (𝑟, 𝑖) ∈

�̃�𝑡
𝐴𝐿𝐶𝑇. 

 
�̃�𝑡

𝑒𝑉𝑇𝑂𝐿 = {𝑘: (𝑘, 𝑖) ∈ �̃�𝑡
𝐼𝑁𝐼𝑇} (7.58) 

 �̃�𝑡
𝐴𝐿𝐶𝑇 = {(𝑟, 𝑖) ∈ 𝒜𝑡

𝐴𝐿𝐶𝑇𝑇𝑊: 𝑖 ∈ �̃�𝑡
𝐿𝐸𝐺} (7.59) 

 �̃�𝑡
𝑅𝐸𝑄 = {𝑟: (𝑟, 𝑖) ∈ �̃�𝑡

𝐴𝐿𝐶𝑇} (7.60) 

In summary, to reduce the size of the problem and accelerate the solution time, the reduced 

network �̃�𝑡 = (�̃�𝑡, �̃�𝑡) would replace 𝒢𝑡 = (𝒩𝑡,𝒜𝑡). 
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7.6 Concluding Remark 

The network associated with UAT fleet operation could be modeled in two ways: (1) arc-

based and (2) node-based. In the arc-based representation, each physical arc in the transportation 

network corresponds to an arc in the modeled network. However, in node-based representation, 

each task (e.g., transporting goods or people, traversing a street) is collapsed into one node.  

The presence of time windows complicates the modeling choice. To incorporate the time 

windows in the arc-based network representation, the problem could be modeled in a time-

expanded network. However, the time discretization makes the network flow models challenging 

due to the problem size. Another complicating factor in the modeling choice is the flexibility of 

the passengers towards pick-up and drop-off UAT pads. To incorporate this flexibility in a node-

based representation, each combination of possible pick-up and drop-off pairs should be modeled 

as one node, leading to a significant increase in the problem size. Lastly, some attributes of the 

proposed UAT concept of operations (e.g., the sequence of flight legs given the requests they 

intend to serve) are easier to incorporate in a node-based representation. 

Consequently, this chapter presents a node-based representation of the network associated 

with the UAT problem. The revenue-generating flight legs are nodes where the aircraft should be 

routed to. Additionally, the requests are represented as another set of nodes that should be allocated 

to the conducted revenue-generating flight legs. As a result, the network representing the UAT 

problem is modeled as a location-allocation-routing problem, where some of the candidate 

revenue-generating flight legs are performed (i.e., the location is open), the requests will be 

assigned to these flight legs (i.e., the allocation), and the aircraft are routed to serve the flight legs 

(i.e., routing).  
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Given the dynamic and on-demand nature of the problem and the ubiquitous network of 

UAT pads, the set of candidate requests and flight legs vary at each decision epoch. Therefore, this 

chapter first defines the relevant entities at each decision epoch. Before transforming the network, 

the metrics of the network, including the distances and times, are defined in detail. Subsequently, 

the UAT physical network is transformed into a node-based network. Finally, the network is 

modified to reduce the network size and lower the solution time.  

Chapter 8 presents the formulation for the network representing the Capacitated Location-

Allocation-Routing Problem with Time Windows and Short Repositioning Elimination 

(CLARPTW-SRE) defined in this chapter. 
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Chapter 8 Capacitated Location-Allocation-Routing Problem With Time 

Windows and Short Repositioning Elimination (CLARPTW-SRE): 

Formulation 

8.1 Overview 

The Capacitated Location-Allocation-Routing Problem with Time Windows and Short 

Repositioning Elimination (CLARPTW-SRE) is the building block of the decision-making policy 

of UAT fleet operation. At the beginning of decision epoch 𝑒 ∈ ℰ, i.e., 𝑡 =  𝜏𝜈𝑒𝑆, CLARPTW-SRE 

is applied to retrieve the routing and scheduling of the UAT aircraft and requests. This chapter 

represents the CLARPTW-SRE model solved at each decision epoch given the network 𝒢𝑡 =

(𝒩𝑡, 𝒜𝑡). 

8.2 Parameters  

CLARPTW-SRE is defined over the network 𝒢𝑡 = (𝒩𝑡, 𝒜𝑡), with 𝒩𝑡 representing the set 

of nodes and 𝒜𝑡 representing the set of arcs as of time 𝑡. Let 𝒩𝑡
𝑒𝑉𝑇𝑂𝐿 ⊂ 𝒩𝑡 denote the set of nodes 

associated with the UAT aircraft that the UAT operator could dispatch at time 𝑡. 𝒩𝑡
𝑅𝐸𝑄 ⊂ 𝒩𝑡 is 

the set nodes associated with requests to (re)allocate to flight legs at time 𝑡 , where 𝒩𝑡
𝑅𝐸𝑄 =

𝒩𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 ∪𝒩𝑡

𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪𝒩𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 . 𝒩𝑡

𝑈𝑁𝐴𝑆𝐺𝑁 ⊆ 𝒩𝑡
𝑅𝐸𝑄

 presents the set of nodes associated 

with the unassigned requests. 𝒩𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ⊆ 𝒩𝑡

𝑅𝐸𝑄
 denotes the nodes related to the requests that 

were accepted in the previous decision epochs and, therefore, must be served, but their pick-up 

UAT pad is flexible. Similarly, 𝒩𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 ⊆ 𝒩𝑡

𝑅𝐸𝑄
 denotes the nodes related to the requests that 

were accepted in the previous decision epochs and, therefore, must be served, but they have already 

left their origin and their pick-up UAT pad is fixed. 
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Furthermore, let 𝒩𝑡
𝐿𝐸𝐺 ⊂ 𝒩𝑡 denote the set of nodes associated with revenue-generating 

flight legs available at time 𝑡 to serve the requests. 𝒩𝑡
𝐸̅̅ ̅̅ ̅ ⊆ 𝒩𝑡

𝐿𝐸𝐺defines a set of nodes associated 

with flight legs that do not end at the desired UAT pad of their intended request, implying that a 

flight leg should succeed 𝑖 ⊆ 𝒩𝑡
𝐸̅̅ ̅̅ ̅ to justify performing such flights. As a result, 𝒩𝑖𝑡

𝑆𝑈𝐶𝐶 ⊆ 𝒩𝑡
𝐿𝐸𝐺 

is the set of nodes associated with succeeding flight legs of flight 𝑖 ⊆ 𝒩𝑡
𝐸̅̅ ̅̅ ̅ as of time 𝑡, suggesting 

that flight leg 𝑖 cannot be served unless one of the flight legs 𝑗 ∈ 𝒩𝑖𝑡
𝑆𝑈𝐶𝐶 is served.  

𝒜𝑡 is comprised of three subsets: the initial arcs from aircraft to flight legs (𝒜𝑡
𝐼𝑁𝐼𝑇), the 

sequencing arcs between flight legs (𝒜𝑡
𝑆𝐸𝑄), and the allocation arcs between requests and flight 

legs (𝒜𝑡
𝐴𝐿𝐶𝑇). The existence of arc (𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇 between aircraft 𝑘 and flight leg 𝑖 suggests that 

flight leg 𝑖 could potentially be served as the first flight on aircraft 𝑘’s route starting from 𝑳𝑘𝑡
𝐴𝑉𝐿, 

while the arc (𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

 between the nodes of flight leg 𝑖 and flight leg 𝑗 specifies that flight 

leg 𝑗  could potentially be served after flight leg 𝑖 . Furthermore, arc (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇  between 

request 𝑟 and flight leg 𝑖 implies that request 𝑟 could be served by flight leg 𝑖. Lastly, 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 ⊆

𝒜𝑡
𝐴𝐿𝐶𝑇 denotes the set of (𝑟, 𝑖) tuples where request 𝑟 is the intended request of flight leg 𝑖. 

Let 𝜏𝑖
𝑀𝐼𝑁 and 𝜏𝑖

𝑀𝐴𝑋 , defined in Equations (7.26) and (7.27), denote the earliest and latest 

start time of flight leg 𝑖, respectively. Additionally, 𝜏𝑟
𝐷𝐿𝑁, defined in Equation (5.2), denotes the 

latest time when the passenger group of request 𝑟 must reach its destination. 𝜏𝑟𝑡
𝑆𝑅𝑉𝐶  , defined in 

Euqation (5.6), represents the earliest time that the UAT operator could start serving request 𝑟, 

while 𝜏𝑘𝑡
𝐴𝑉𝐿 denotes the earliest time UAT aircraft k would be able to modify its future itinerary, 

and therefore, become available for service as of time 𝑡. 

Furthermore, 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 is the flight service time of a revenue-generating flight leg 𝑖, i.e., 

the time it takes to serve the revenue-generating flight leg 𝑖 from its start to its completion, 𝑇𝑘𝑖𝑡
0  
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denotes the empty flight service time to reposition aircraft 𝑘 from its first availability UAT pad as 

of time 𝑡 to the starting point of flight 𝑖, and 𝑇𝑖𝑗 denotes the empty flight service time to reposition 

a UAT aircraft from the ending point of flight leg 𝑖 to the starting point of flight leg 𝑗. Moreover, 

 𝑇𝑟𝑖
𝐼𝑁𝐺𝑅 denotes the ingress duration and includes ground-based travel time and access time to the 

departure gate. Similarly, 𝑇𝑟𝑖
𝐸𝐺𝑅 denotes the egress duration and includes the access time from the 

arrival gate to ground transportation, wait time for ground-based transportation (which is assumed 

zero), and ground-based travel time to the destination. Lastly, 𝜔 is the maximum acceptable delay 

compared to the desired trip time.  

For the pricing, let 𝛼 represent the revenue of providing the UAT service per mile per 

passenger, 𝛽 be the operational cost of UAT aircraft per mile, and 𝒞 denote the fixed cost of 

conducting a flight leg. Lastly, 𝛾1  denotes the cost of one relocation and 𝛾2  represents how 

exponentially worse off two relocations are compared to one. 

8.3 Decision Variables 

Following the notations in Bertsimas et al. [136], let 𝑦𝑘𝑖  represent a binary variable 

for (𝑘, 𝑖) ∈ 𝒜𝑡
𝐼𝑁𝐼𝑇. Its value is 1 if flight leg 𝑖 is the revenue-generating flight served by aircraft k 

immediately from its availability UAT pad as of time 𝑡. Additionally, 𝑥𝑖𝑗 for (𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

 is 1 

when revenue-generating flight leg 𝑗 is served immediately after revenue-generating flight leg 𝑖. 

To allocate the requests to the flight legs, 𝑧𝑟𝑖 for (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 is defined as a binary variable, 

which takes the value of 1 when request 𝑟 is assigned to flight leg 𝑖, 0 otherwise. Furthermore, 𝑝𝑖 

for 𝑖 ∈ 𝒩𝑡
𝐿𝐸𝐺 is a binary variable, where 𝑝𝑖 = 1 implies that flight leg 𝑖 will be conducted. Lastly, 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 for 𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺 is the time revenue-generating flight 𝑖 starts the boarding process.  
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It is worth noting that CLARPTW-SRE is solved sequentially over the planning horizon, 

and therefore, the decision variables, namely, 𝑦𝑘𝑖 , 𝑥𝑖𝑗 , 𝑧𝑟𝑖 , 𝑝𝑖,  and 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 , have a temporal 

dimension. However, for notational simplicity, we drop the 𝑡  index from the notations. The 

variables are depicted in Figure 8.1. 

8.4 Objectives 

In the UAT fleet operation problem, the UAT operator seeks to maximize the revenue and 

minimize its operating costs while providing an acceptable level of service. From the operator’s 

perspective, the operating costs are associated with the number of flights and the mileage aircraft 

fly. On the other hand, relocations cause user inconvenience. In the following sections, we discuss 

the components of the objective function. 

Figure 8.1 Depiction of the binary decision variables in the CLARPTW-SRE network 
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8.4.1 Revenue 

In eVTOL operation, the ascending and descending of the aircraft are relatively costly, and 

therefore, trips with longer distances would have a lower cost per mile. Additionally, the UAT 

operation is per-seat, and therefore, serving more passengers translates to higher revenue. 

As a result, we assume the revenue for serving  𝑟 is proportional to the straight-line distance 

between the request’s origin and destination (i.e., 𝐷𝑟
𝑂𝐷 ) and its group size (i.e., 𝑞𝑟 ). This 

assumption implies that when serving all requests is not feasible, requests that have a bigger group 

size or a longer distance are more profitable to be served. Let 𝑅𝑟 denote the revenue earned by 

serving request 𝑟, as defined in Equation (8.1), where 𝛼 denotes the revenue per passenger per 

mile. 

 𝑅𝑟 =  𝛼𝑞𝑟𝐷𝑟
𝑂𝐷 (8.1) 

8.4.2 Aerial Fixed and Variable Costs 

The total aerial distance that the UAT aircraft travels consists of empty mileage and 

revenue-generating mileage. Additionally, there is a fixed cost associated with ascending and 

descending of the aircraft. In terms of the energy consumed, the cost per mile is higher when an 

aircraft is loaded compared to when it moves empty. As a result, one could assign different costs 

for empty and loaded mileage. Without loss of generality, we assume empty and loaded mileage 

have the same cost. Let 𝛽 denote the operating cost per aerial mileage. Consequently, the cost of 

the revenue-generating flight leg 𝑖 is 𝒞 +  𝛽𝐷𝑖
𝐿𝐸𝐺 . Additionally, the cost of the empty flight leg 

from the first availability pad of aircraft 𝑘 as of time 𝑡 to the starting pad of flight leg 𝑖 is 𝒞 +

𝛽 𝐷𝑘𝑖𝑡
0 , while the cost of the empty flight leg between the end of flight leg 𝑖 and the start of flight 

leg 𝑗 is 𝒞 + 𝛽 𝐷𝑖𝑗.  
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More concisely, the costs of revenue-generating flights (i.e., locations in LARP) could be 

incorporated into the cost of preceding empty flight legs (i.e., arcs in LARP). Therefore: 

 𝐶�̅�𝑖𝑡
0 = (𝟙𝐷𝑘𝑖𝑡

0 >0𝒞 + 𝛽𝐷𝑘𝑖𝑡
0 ) + (𝒞 + 𝛽𝐷𝑖

𝐿𝐸𝐺) (8.2) 

 𝐶�̅�𝑗 = (𝟙𝐷𝑖𝑗>0𝒞 + 𝛽𝐷𝑖𝑗) + (𝒞 + 𝛽𝐷𝑗
𝐿𝐸𝐺) (8.3) 

Where 𝟙 is the indicator function, implying the cost associated with the empty flight legs 

becomes zero when 𝐷𝑘𝑖
0  or 𝐷𝑖𝑗 is zero. 𝐶�̅�𝑖𝑡

0  defined in Equation (8.2) is the total cost of serving 

revenue-generating flight leg 𝑖 as of time 𝑡, which includes the preceding empty flight leg from 

𝑳𝑘𝑡
𝐴𝑉𝐿 to 𝑺𝑖. 𝐶�̅�𝑗, as defined in Equation (8.3), is the total cost of serving revenue-generating flight 

leg 𝑗, including the preceding empty flight leg from 𝑬𝑖 to 𝑺𝑗. 

8.4.3 Relocation Cost 

In a ubiquitous network, the origin and destination of a request coincide with the desired 

pick-up and drop-off UAT pads, respectively. A relocation (or transfer) occurs when a passenger 

is moved one on the ground to a UAT pad other than its desired. Let 𝐶𝑟𝑖
𝑅𝐿𝐶, defined in Equation 

(8.4), represent the total cost of relocating request 𝑟  to take flight leg 𝑖 . 𝜒𝑟𝑖 ∈ {0, 1, 2}  is the 

number of relocations required for request 𝑟 to take flight leg 𝑖. The value of 𝛾2 ≥ 1 determines 

how exponentially worse off one relocation is compared to two. For instance, Therefore, 𝛾2 = 2 

implies that experiencing 2 relocations has a disutility 4 times worse than experiencing 1 

relocation.  

 𝐶𝑟𝑖
𝑅𝐿𝐶 = 𝛾1𝜒𝑟𝑖

𝛾2 (8.4) 
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Let 𝛾1 denote the cost of one relocation and 𝛽 represent the cost of aerial mileage. As a 

result, 
𝛾1 

𝛽
= 𝑥 suggests that 1 relocation is equivalent to 𝑥 aerial miles. Therefore, a request would 

be relocated once if, as a consequence, the aerial mileage were reduced by more than 𝑥. On the 

other hand, 
𝛾1 

𝛽
 cannot be so high that it prevents the requests from relocation within 𝛥𝐸𝑀𝑃𝑇𝑌.  

To elaborate, Figure 8.2 depicts the origin of request 𝑟 with two candidate pick-up pads for 

a flight: aircraft 𝑘 located at 𝛥𝐸𝑀𝑃𝑇𝑌
−

 of 𝑶𝑟 and aircraft 𝑙 placed at 𝛥𝐸𝑀𝑃𝑇𝑌
+

. Since there is no 

repositioning legs within 𝛥𝐸𝑀𝑃𝑇𝑌-radius of 𝑶𝑟, if the request is not relocated, a UAT aircraft from 

outside of 𝛥𝐸𝑀𝑃𝑇𝑌-radius of 𝑶𝑟 should reposition to 𝑶𝑟. To allow the relocation of the request 

within 𝛥𝐸𝑀𝑃𝑇𝑌, the cost of moving aircraft 𝑙 to the origin of request 𝑟 should be higher than the 

cost of relocating the request from its origin to aircraft 𝑘. Therefore, 𝛾1 < 𝛽(1 + 𝜖)𝛥𝐸𝑀𝑃𝑇𝑌. 

Consequently, 
𝛾1 

𝛽
=  𝑥 < (1 + 𝜖)𝛥𝐸𝑀𝑃𝑇𝑌. Given 𝜖 = 0.1 and 𝛽 = 1, 𝛾1 should be smaller 

than 1.1𝛥𝐸𝑀𝑃𝑇𝑌. For instance, for 𝛥𝐸𝑀𝑃𝑇𝑌 = 0.5 miles and 1 mile, 𝛾1  < 0.55 and 1.1, respectively, 

suggesting that a request would be relocated once if the aerial mileage (including the empty 

mileage) of the resulting itinerary could be decreased by as much as 0.55 or 1.1 miles. 

Figure 8.2 Comparison of aerial mileage and relocation cost for short repositioning 

elimination 



170 

 

8.5 CLARPTW-SRE Formulation 

CLARPTW-SRE seeks to address the routing and scheduling problem and location 

problem simultaneously. For routing and scheduling, we employ the model with time constraints 

developed by Bertsimas et al. [136]. This formulation assumes that the network has no cycles and, 

therefore, could be applied to any dynamic vehicle routing problem with time windows that are 

smaller than the typical trip time. In the UAT operations, the sufficient condition to avoid cycles 

(i.e., 𝜏𝑖
𝑀𝐴𝑋 − 𝜏𝑖

𝑀𝐼𝑁 < 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑖𝑗) is satisfied. 

The MIP formulation for CLARPTW-SRE given the state of the system at time 𝑡  is 

presented as follows: 

max  ∑ 𝑅𝑟(∑ 𝑧𝑟𝑖
𝑖∈𝒩𝑡

𝐿𝐸𝐺:(𝑟,𝑖)∈𝒜𝑡
𝐴𝐿𝐶𝑇

)

𝑟∈𝒩𝑡
𝑅𝐸𝑄

− ( ∑ 𝐶�̅�𝑖𝑡
0 𝑦𝑘𝑖

(𝑘,𝑖)∈𝒜𝑡
𝐼𝑁𝐼𝑇

+ ∑ 𝐶�̅�𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝒜𝑡
𝑆𝐸𝑄

)

− ∑ 𝐶𝑟𝑖
𝑅𝐿𝐶𝑧𝑟𝑖

(𝑟,𝑖)∈𝒜𝑡
𝐴𝐿𝐶𝑇

 

(8.5) 

Subject to: 

∑ 𝑦𝑘𝑖
𝑘∈𝒩𝑡

𝑒𝑉𝑇𝑂𝐿:(𝑘,𝑖)∈𝒜𝑡
𝐼𝑁𝐼𝑇

+∑ 𝑥𝑗𝑖
𝑗∈𝒩𝑡

𝐿𝐸𝐺:(𝑗,𝑖)∈𝒜𝑡
𝑆𝐸𝑄

 =  𝑝𝑖 ∀𝑖 ∈ 𝒩𝑡
𝐿𝐸𝐺 (8.6) 

∑ 𝑦𝑘𝑖
𝑖∈𝒩𝑡

𝐿𝐸𝐺:(𝑘,𝑖)∈𝒜𝑡
𝐼𝑁𝐼𝑇

≤ 1 ∀𝑘 ∈ 𝒩𝑡
𝑒𝑉𝑇𝑂𝐿 (8.7) 

∑ 𝑥𝑖𝑗
𝑗∈𝒩𝑡

𝐿𝐸𝐺,(𝑖,𝑗)∈𝒜𝑡
𝑆𝐸𝑄

≤ 𝑝𝑖 ∀𝑖 ∈ 𝒩𝑡
𝐿𝐸𝐺 (8.8) 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 ≥ 𝜏𝑖

𝑀𝐼𝑁 + (𝜏𝑘𝑡
𝐴𝑉𝐿 + 𝑇𝑘𝑖𝑡

0 − 𝜏𝑖
𝑀𝐼𝑁) 𝑦𝑘𝑖 ∀(𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇 (8.9) 
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𝜏𝑗
𝐵𝑂𝐴𝑅𝐷 − 𝜏𝑖

𝐵𝑂𝐴𝑅𝐷

≥ (𝜏𝑗
𝑀𝐼𝑁 − 𝜏𝑖

𝑀𝐴𝑋)

+ (𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑖𝑗 − (𝜏𝑗

𝑀𝐼𝑁 − 𝜏𝑖
𝑀𝐴𝑋)) 𝑥𝑖𝑗 

∀(𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

 (8.10) 

𝜏𝑖
𝑀𝐼𝑁 ≤ 𝜏𝑖

𝐵𝑂𝐴𝑅𝐷 ≤ 𝜏𝑖
𝑀𝐴𝑋 ∀𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺 (8.11) 

∑ 𝑧𝑟𝑖 ≤ 1
 𝑖∈𝒩𝑡

𝐿𝐸𝐺:(𝑟,𝑖)∈𝒜𝑡
𝐴𝐿𝐶𝑇

 ∀𝑟 ∈ 𝒩𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 (8.12) 

∑ 𝑧𝑟𝑖
𝑖∈𝒩𝑡

𝐿𝐸𝐺:(𝑟,𝑖)∈𝒜𝑡
𝐴𝐿𝐶𝑇

= 1 ∀𝑟 ∈ 𝒩𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪

𝒩𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇  

(8.13) 

𝑧𝑟𝑖 ≤ 𝑝𝑖 ∀(𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 (8.14) 

𝑝𝑖 ≤ 𝑧𝑟𝑖  ∀(𝑟, 𝑖) ∈ 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 (8.15) 

∑ 𝑞𝑟𝑧𝑟𝑖
𝑟∈𝒩𝑡

𝑅𝐸𝑄
:(𝑟,𝑖)∈𝒜𝑡

𝐴𝐿𝐶𝑇
≤  𝑄 ∀𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺 (8.16) 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 ≥ (𝜏𝑟𝑡

𝑆𝑅𝑉𝐶 +  𝑇𝑟𝑖
𝐼𝑁𝐺𝑅) 𝑧𝑟𝑖 ∀(𝑟, 𝑖) ∈ 𝒜𝑡

𝐴𝐿𝐶𝑇 (8.17) 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 + 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉 +  𝑇𝑟𝑖
𝐸𝐺𝑅 ≤ 𝜏𝑟

𝐷𝐿𝑁 +𝑀(1 − 𝑧𝑟𝑖) ∀(𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 (8.18) 

𝑝𝑖 ≤ ∑ 𝑝𝑗
𝑗∈𝒩𝑖𝑡

𝑆𝑈𝐶𝐶
 ∀𝑖 ∈ 𝒩𝑡

𝐸̅̅ ̅̅ ̅ (8.19) 

𝑝𝑖 ∈ {0,1} ∀𝑖 ∈ 𝒩𝑡
𝐿𝐸𝐺 (8.20) 
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𝑦𝑘𝑖 ∈ {0,1} ∀(𝑘, 𝑖) ∈ 𝒜𝑡
𝐼𝑁𝐼𝑇 (8.21) 

𝑥𝑖𝑗  ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝒜𝑡
𝑆𝐸𝑄

 (8.22) 

𝑧𝑟𝑖 ∈ {0,1} ∀(𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 (8.23) 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 ≥ 0 ∀𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺 (8.24) 

Objective Function. The maximization function in Equation (8.5) is multi-objective and 

is formulated as the weighted sum of the objectives, namely, revenue, fixed and variable costs of 

serving the flight legs, and the disutility of the number of relocations.  

Vehicle-routing. Equations (8.6)-(8.8) and (8.20)-(8.22) are the constraints that cover the 

routing. Equation (8.6) specifies that flight leg 𝑖 is served if it is either the first flight on an aircraft 

route or it is served right after another flight leg. Equation (8.7) ensures that each aircraft serves at 

most one flight leg as the first flight leg on its route. Equation (8.8) suggests that a flight leg could 

be served right after flight leg 𝑖 by an aircraft if flight leg 𝑖 is served in the first place. 

Scheduling the Flights. Equations (8.9)-(8.11) address the flight leg scheduling. Equation 

(8.9) ensures that if aircraft k had flight leg i as the first flight on its route starting from 𝑳𝑘𝑡
𝐴𝑉𝐿 , the 

boarding time of flight leg 𝑖 would be at least 𝜏𝑘𝑡
𝐴𝑉𝐿 + 𝑇𝑘𝑖𝑡

0  given the state of the system at time 𝑡. 

Equation (8.10) enforces that if flight leg 𝑗 were served immediately after flight leg 𝑖, the boarding 

time of flight leg 𝑗 should be at least equal to the the boarding time of flight leg 𝑖 plus the time for 

serving revenue-generating flight 𝑖 plus the empty flight service time to reposition the aircraft from 
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the ending point of flight 𝑖 to the starting point of flight 𝑗. Equation (8.11) enforces the time 

windows for the start of flight legs.  

Request Allocation. Equations (8.12)-(8.16) cover the location-allocation part of the 

formulation and assign requests to flight legs. Equation (8.12) ensures that each unassigned request 

is assigned to a flight leg at most once, while Equation (8.13) covers the requests with flexible and 

fixed pick-up UAT pads. These requests must be served since they were accepted in previous 

decision epochs and, therefore, must be assigned to a flight leg exactly once. Equation (8.14) 

specifies that request 𝑟 could be assigned to flight leg 𝑖 only if flight leg 𝑖 is served in the first 

place. Equation (8.15) assumes that a flight leg is conducted only if it serves its intended request. 

Lastly, Equation (8.16) enforces the capacity constraint of the UAT aircraft when assigning the 

requests to the flights. 

Requests and Flights Synchronization. Equations (8.17) and (8.18) cover the 

synchronization between aerial and ground-based modes to serve the first and last mile of the trip. 

Equation (8.17) indicates that flight leg 𝑖 must start its boarding process after all the requests 

assigned to it have reached the departure gate of flight leg 𝑖. Equation (8.18) ensures that if request 

𝑟 is assigned to flight leg 𝑖, the boarding time of flight leg 𝑖 should be such that the passengers of 

request 𝑟 arrives at their destination before the deadline (i.e., 𝜏𝑟
𝐷𝐿𝑁 in Figure 5.1). M is a big 

number and should be customized for (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇. 

Succeeding Legs for Short Repositioning Elimination. Equation (8.19) explicitly 

specifies that if flight leg 𝑖 ends at a UAT pad other than the desired UAT pad of its intended 

request (i.e., 𝑖 ∈ 𝒩𝑡
𝐸̅̅ ̅̅ ̅) to eliminate a short repositioning flight, one flight leg 𝑗 ∈ 𝒩𝑖𝑡

𝑆𝑈𝐶𝐶  starting at 

that UAT pad should be served to justify the relocation. 



174 

 

Decision Variables. Equations (8.20)-(8.23) are the binary constraints for the decision 

variables. Lastly, Equation (8.24) specifies that 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 is a positive real number. 

8.6 Solution Method 

8.6.1 Solver 

The instances of CLARPTW-SRE are solved using the free academic license of Gurobi 

interface implemented in Python 3.7, gurobipy 9.1, and on a machine with 3.00GHz Intel® Xeon® 

CPU and 128 GB RAM. 

Table 8.1 Parameters associated with optimization 

Parameter Symbol Value Unit 

Re-optimization interval Δ𝑈𝑃𝐷𝐴𝑇𝐸 1 minutes 

Acceptable gap - 5 percent 

Initial time limit - 30 seconds 

Table 8.1 presents the parameters associated with the optimization. The problem is re-

optimized every minute. The MIP gap is set to 5%. However, a smaller MIP gap is desirable if 

achieving it takes less than 30 seconds. Therefore, after an initial time limit of 30 seconds, the MIP 

gap is examined. If it is less than 5%, the Gurobi Optimizer stops. Otherwise, it continues until the 

termination criteria of the 5% MIP gap is reached. 

8.6.2 Warm Start 

At the beginning of decision epoch 𝑒, i.e., 𝑡 = 𝜏𝜈𝑒𝑆, the itinerary and schedule of the aircraft 

could be used to provide a partial warm start to the MIP. To this end, let 𝒬𝑘𝑡
𝑊𝑅𝐸𝑉 =

{𝑞𝑘𝑡1
𝑊𝑅𝐸𝑉, … , 𝑞𝑘𝑡,𝑛

𝑊𝑅𝐸𝑉, 𝑞𝑘𝑡,𝑛+1
𝑊𝑅𝐸𝑉 … , 𝑞

𝑘𝑡|𝒬𝑘𝑡
𝑊𝑅𝐸𝑉|

𝑊𝑅𝐸𝑉 } denote the ordered list of revenue-generating flights 

that have not started as of 𝑡 = 𝜏𝜈𝑒𝑆. 𝒬𝑘𝑡
𝑅𝐸𝑉 is defined in Equation (8.25). 
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 𝒬𝑘𝑡
𝑊𝑅𝐸𝑉 = {𝒻𝑖 ∈ 𝒬𝑘𝑡: 𝐻𝑖 = 1, 𝜍𝑖𝑡

𝐿𝐸𝐺 = 1} (8.25) 

If 𝒬𝑘𝑡
𝑊𝑅𝐸𝑉 ≠ ∅ for 𝒶𝑘 ∈ 𝒦 at 𝑡 = 𝜏𝜈𝑒𝑆 (i.e., there are some flights assigned to the aircraft), 

the values of �̂�𝑘𝑖, �̂�𝑖𝑗 , �̂�𝑖 and �̂�𝑖
𝐵𝑂𝐴𝑅𝐷, where ^ represents the warm start values, are defined as 

follows: 

I. Let �̂�𝑘𝑖 = 1 for 𝒻𝑖 = 𝑞𝑘𝑡1
𝑊𝑅𝐸𝑉 (i.e., the first revenue-generating on the aircraft itinerary that 

has not started). 

II. Let �̂�𝑖𝑗 = 1 for 𝒻𝑖 = 𝑞𝑘𝑡,𝑛
𝑊𝑅𝐸𝑉 , 𝒻𝑗 = 𝑞𝑘𝑡,𝑛+1

𝑊𝑅𝐸𝑉 , and 𝑛 ∈ {1,… , |𝒬𝑘𝑡
𝑊𝑅𝐸𝑉| − 1} if |𝒬𝑘𝑡

𝑊𝑅𝐸𝑉| ≥ 2. 

III. Let �̂�𝑖 = 1 and �̂�𝑖
𝐵𝑂𝐴𝑅𝐷 = 𝜏𝑖𝜏

𝜈𝑒
𝑆

𝑆𝑇𝑅𝑇 for 𝒻𝑖 ∈ 𝒬𝑘𝑡
𝑊𝑅𝐸𝑉. 

Additionally, for 𝓇𝑟 ∈ ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 ∪ ℛ𝑡

𝐹𝑋𝐷𝑆𝑇𝑅𝑇  at 𝑡 = 𝜏𝜈𝑒𝑆 , the value of �̂�𝑟𝑖  is defined as 

follows: 

IV. Let �̂�𝑟𝑖 = 1 for 𝒻𝑖 = 𝜑𝑟𝑡, suggesting flight leg 𝑖 is assigned to request 𝑟. 

8.7 Outputs 

As an acceptable solution for CLARPTW-SRE is retrieved at the end of decision epoch 

𝑒 ∈ ℰ, the dynamic decisions of the UAT problem are derived from the decision variables of the 

CLARPTW-SRE as follows: 

I. ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 = {𝓇𝑟 : ∑ 𝑧𝑟𝑖𝑖∈𝒩𝑡

𝐿𝐸𝐺:(𝑟,𝑖)∈𝒜𝐴𝐿𝐶𝑇 = 1, 𝑟 ∈ 𝒩𝑡
𝑅𝐸𝑄}  for 𝑡 = 𝜏𝜈𝑒𝑆  represents the set of 

accepted candidate requests during decision epoch 𝑒, and therefore, 𝜍𝑟𝜏
𝜈𝑒
𝐸

𝑅𝐸𝑄 = 1 for 𝓇𝑟 ∈

(ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 ∪ ℛ𝜏

𝜈𝑒
𝑆

𝑈𝑁𝐴𝑆𝐺𝑁) . Consequently, ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇 = ℛ𝜏

𝜈𝑒
𝑆

𝐶𝐴𝑁𝐷\ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇  and 𝜍𝑟𝜏

𝜈𝑒
𝐸

𝑅𝐸𝑄 = −1 for 

𝓇𝑟 ∈ ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇

. 
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II. (𝑧𝑟𝑖)(𝑟,𝑖)∈𝒜𝜏
𝜈𝑒
𝑆

𝐴𝐿𝐶𝑇 = 1 implies 𝜑𝑟𝜏
𝜈𝑒
𝐸
= 𝒻𝑖, suggesting flight leg 𝑖 is assigned to request 𝑟 as 

of time 𝜏𝜈𝑒𝐸. 

III. (𝜏𝑟𝑡
𝑂𝑅𝐺)

𝑟∈𝒩𝜏
𝜈𝑒
𝑆

𝑅𝐸𝑄 for all accepted candidate requests by the end of decision epoch 𝑒 (i.e., 𝓇𝑟 ∈

ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇) is calculated as 𝜏𝑟𝜏

𝜈𝑒
𝐸

𝑂𝑅𝐺 = ∑ (𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 −  𝑇𝑟𝑖

𝐼𝑁𝐺𝑅)𝑧𝑟𝑖 𝑖∈𝒩𝜏
𝜈𝑒
𝑆

𝐿𝐸𝐺:(𝑟,𝑖)∈𝒜𝜏
𝜈𝑒
𝑆

𝐴𝐿𝐶𝑇  as of time 

𝜏𝜈𝑒𝐸. 

IV. (𝑦𝑘𝑖)(𝑘,𝑖)∈𝒜𝜏
𝜈𝑒
𝑆

𝐼𝑁𝐼𝑇 and (𝑥𝑖𝑗) (𝑖,𝑗)∈𝒜𝜏
𝜈𝑒
𝑆

𝑆𝐸𝑄 determine the order of revenue-generating flight legs 

for each aircraft, and therefore, partially defines (𝒬𝑘𝜏
𝜈𝑒
𝐸

𝑊𝐴𝐼𝑇)
𝑘∈𝒩𝜏

𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿
. (𝑦𝑘𝑖)(𝑘,𝑖)∈𝒜𝜏

𝜈𝑒
𝑆

𝐼𝑁𝐼𝑇 = 1 

implies that flight leg 𝑖 is the first revenue-generating flight served by aircraft k taking-off 

from 𝑳𝑘𝑡
𝐴𝑉𝐿, and (𝑥𝑖𝑗)(𝑖,𝑗)∈𝒜𝜏

𝜈𝑒
𝑆

𝑆𝐸𝑄 = 1 implies flight leg 𝑗 is the first revenue-generating flight 

leg served after flight leg 𝑖. As a result, the ordered list [𝑖, 𝑗, … ] for 𝑘 ∈ 𝒩𝜏
𝜈𝑒
𝑆
𝑒𝑉𝑇𝑂𝐿 would 

define the revenue-generating flight legs assigned to UAT aircraft 𝑘.  To fully specify 

(𝒬𝑘𝜏
𝜈𝑒
𝐸

𝑊𝐴𝐼𝑇)
𝑘∈𝒩𝜏

𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿
, the empty flight legs for repositioning the aircraft between two revenue-

generating flight legs should be added. Let 𝑖 and 𝑗 be two consecutive revenue-generating 

flight legs for 𝑖, 𝑗 ∈ 𝒬𝑘𝜏
𝜈𝑒
𝐸

𝑊𝐴𝐼𝑇. Empty flight leg 𝑚 would be added only if 𝑬𝑖 ≠ 𝑺𝑗, leading to 

the sequence of flights 𝑖, 𝑚, 𝑗 on (𝒬𝑘𝜏
𝜈𝑒
𝐸

𝑊𝐴𝐼𝑇)
𝑘∈𝒩𝜏

𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿
. In this case, 𝜍𝑚𝜏

𝜈𝑒
𝐸

𝐿𝐸𝐺 = 1 (i.e., waiting 

for service).  
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It is worth noting that (𝜏𝑖
𝐵𝑂𝐴𝑅𝐷)𝑖∈𝒩𝜏

𝜈𝑒
𝑆

𝐿𝐸𝐺  explicitly determines the start time of revenue-

generating flight legs, and therefore, (𝜏𝑖𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇)
𝑖∈𝒩𝜏

𝜈𝑒
𝑆

𝐿𝐸𝐺
= (𝜏𝑖

𝐵𝑂𝐴𝑅𝐷)𝑖∈𝒩𝜏
𝜈𝑒
𝑆

𝐿𝐸𝐺 , while it only has 

implications for the start time of empty flight legs. Let us consider the two following cases: 

I. 𝒻𝑖  and  𝒻𝑗  are two consecutive flight legs on (𝒬𝑘𝜏
𝜈𝑒
𝐸
)
𝑘∈𝒩𝜏

𝜈𝑒
𝑆

𝑒𝑉𝑇𝑂𝐿
, and are both revenue-

generating, implying 𝑬𝑖 = 𝑺𝑗 .  Therefore, 𝜏𝑖𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷, 𝜏𝑗𝜏

𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑗
𝐵𝑂𝐴𝑅𝐷 , and 

𝜏𝑖𝜏
𝜈𝑒
𝐸

 𝐶𝑂𝑀𝑃 = 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 + 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉. Since 𝑬𝑖 = 𝑺𝑗, the aircraft will be held after completing 

𝒻𝑖 and before starting 𝒻𝑗 , and therefore, 𝑇𝑗𝜏
𝜈𝑒
𝐸

 𝐻𝑂𝐿𝐷 = 𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇− 𝜏𝑖𝜏
𝜈𝑒
𝐸

 𝐶𝑂𝑀𝑃 .  Figure 8.3 depicts 

𝑇𝑗𝜏
𝜈𝑒
𝐸

 𝐻𝑂𝐿𝐷 for two consecutive revenue-generating flight legs without any repositioning leg in 

between.  

II. 𝒻𝑖, 𝒻𝑚, and 𝒻𝑗  are three consecutive flight legs on (𝒬𝑘𝜏
𝜈𝑒
𝐸
)
𝑘∈𝒦

, where 𝒻𝑖  and  𝒻𝑗  are 

revenue-generating while 𝒻𝑚 is an empty flight leg. Similar to case (I), 𝜏𝑖𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷, 

Figure 8.3 Holding time for two consecutive revenue-generating flight legs without any 

repositioning leg in between 
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𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑗
𝐵𝑂𝐴𝑅𝐷 , and 𝜏𝑖𝜏

𝜈𝑒
𝐸

 𝐶𝑂𝑀𝑃 = 𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 + 𝑇𝑖

𝑆𝑅𝑉𝑅𝐸𝑉. The earliest start time of 𝒻𝑚would 

be immediately after completing 𝒻𝑖, i.e., 𝜏𝑖𝜏
𝜈𝑒
𝐸

 𝐶𝑂𝑀𝑃, while the latest start time of 𝒻𝑚 would be 

𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 − 𝑇𝑚
𝑆𝑅𝑉𝐸𝑀𝑃 , which ensures 𝒻𝑗  starts on time. As a result,  𝜏𝑖𝜏

𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 ≤

𝜏𝑚𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 ≤ 𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 − 𝑇𝑚
𝑆𝑅𝑉𝐸𝑀𝑃 . Let 𝑇𝑚𝜏

𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇𝑇𝑊 = 𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 − (𝜏𝑖𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 + 𝑇𝑚

𝑆𝑅𝑉𝐸𝑀𝑃) 

denote the time window available for a UAT aircraft to start the empty flight leg 𝑚 after 

completing 𝒻𝑖  and before starting 𝒻𝑗 . Figure 8.4 depicts 𝑇𝑗𝜏
𝜈𝑒
𝐸

 𝐻𝑂𝐿𝐷 for for two consecutive 

revenue-generating flight legs with a repositioning leg in between. 

If 𝜏𝑚𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑖𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 + 𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉, the aircraft will be immediately repositioned to, and 

subsequently held at the starting point of 𝒻𝑗 after completing 𝒻𝑖. On the other extreme, if 

Figure 8.4 Holding time for two consecutive revenue-generating flight legs with a 

repositioning leg in between  
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𝜏𝑚𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 − 𝑇𝑚
𝑆𝑅𝑉𝐸𝑀𝑃, the aircraft will be held at the ending point of 𝒻𝑖 as long as 

possible and then repositioned to the starting point of 𝒻𝑗. The former case (i.e., reposition-

first-hold-second) is best suited for a system with stochastic travel times to minimize the 

probability of delays for 𝒻𝑗. However, the latter case (i.e., hold-first-reposition-second) is 

ideal for a highly reliable system where the aircraft would benefit from waiting in place 

until more information becomes known. In this research with deterministic travel time, we 

use the hold-first-reposition-second strategy. Therefore, 𝜏𝑚𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 = 𝜏𝑗𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇 − 𝑇𝑚
𝑆𝑅𝑉𝐸𝑀𝑃  for 

𝐻𝑚 = 0 (i.e., 𝒻𝑚 is an empty flight leg) and 𝐻𝑗 = 1 (i.e., 𝒻𝑗  is revenue-generating flight 

leg), 𝑇𝑚𝜏
𝜈𝑒
𝐸

 𝐻𝑂𝐿𝐷 = 𝜏𝑚𝜏
𝜈𝑒
𝐸

𝑆𝑇𝑅𝑇  –  𝜏𝑖𝜏
𝜈𝑒
𝐸

 𝐶𝑂𝑀𝑃 , and 𝑇𝑗𝜏
𝜈𝑒
𝐸

 𝐻𝑂𝐿𝐷 = 0. However, in reality, a combination of 

both strategies (i.e., hold-reposition-hold) is more likely to be implemented. 

8.8 Limitations 

The limitations of CLARPTW-SRE formulation presented in this chapter are listed as 

follows: 

• The objective function does not attempt to minimize the delays. Consequently, it is 

theoretically possible that the customers experience relatively high delays in a setting 

with lower demand. 

• The formulation is vulnerable to numerical issues. Notably, under the settings that 

scheduling constraints are tight, numerical issues could make the problem infeasible. 

• When requests are pooled together, among all the associated desired flight legs with 

relatively close pick-up and drop-off UAT pads, the one minimizing the objective 
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function should be selected in the optimal solution. Consequently, finding the optimal 

solution with a 0% gap is challenging when bigger problems are solved. 

8.9 Concluding Remarks 

This dissertation models the dynamic and stochastic problem of UAT fleet operation on a 

rolling horizon basis. A static and deterministic problem (i.e., snapshot problem) is solved at each 

decision epoch to help the UAT operator make the dynamic operational decisions, including 

acceptance and rejection of requests, routing and scheduling the aerial fleet, and assigning the 

requests to flight legs. 

To achieve this goal, the snapshot problem is modeled as a Capacitated Location-

Allocation-Routing Problem with Time Windows and Short Repositioning Elimination 

(CLARPTW-SRE), based on the node-based network presented in Chapter 7. The objective 

function of the MIP problem covers the revenue of the UAT operator as well as the cost associated 

with the empty and revenue-generating aerial mileage.  

Additionally, the user inconvenience associated with serving the requests at UAT pads 

different from their desired ones is included as a relocation cost in the objective function. At the 

same time, the requests are expected to move within a short radius of their origin or destination to 

facilitate the elimination of short repositioning flight legs. Consequently, there is a trade-off 

between relocating the requests and short repositioning elimination. With a low relocation cost, 

the request would be relocated more often to reach a UAT aircraft nearby, while with a high 

relocation cost, an aircraft needs to fly from further distances to serve the request. 

The CLARPTW-SRE is solved using the Gurobi interface in Python, gurobipy. To reduce 

the solution time, the current route and schedule of the aerial fleet at each decision epoch as a 
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feasible solution for the MIP problem. Ultimately, the outputs of CLARPTW-SRE are used to 

make dynamic operational decisions.  

The CLARPTW-SRE embedded in the proposed dynamic solution framework for the UAT 

fleet operations is applied to a synthetic network and the Chicago network using a discrete-event 

simulation. Chapter 9 and Chapter 10 present the numerical results for the synthetic and Chicago 

network, respectively.
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Chapter 9 Numerical Experiments: Synthetic Network 

9.1 Overview 

Even though some companies (e.g., Blade) currently offer air taxi services, on-demand and 

at-scale UAT operation using eVTOL technology is a conceptual system that does not exist. 

Simulation is a tool that is often used to model such systems when analytical models are hard to 

formulate. Simulations are less costly to implement, provide a better understanding of the system, 

and provide a tool for evaluating various strategies for the system’s operation [129,137]. 

Therefore, simulation could be a valuable tool in a decision support system. Discrete-event 

simulations (DES) are well suited for modeling systems with complex queuing theory and resource 

allocation problems, whereas agent-based models (ABS) are helpful for modeling actions and 

interactions of autonomous individuals [130].  

From other perspectives, simulation models could be classified as static vs. dynamic, 

deterministic vs. stochastic, or discrete vs. continuous [129]. Stochastic discrete-event simulation 

[129,137,138] provides a framework to model UAT fleet operation and evaluate various concepts 

of operations and policies. Stochasticity refers to the random processes (e.g., the arrival of 

customer’s request for service) involved in the system, while discrete-event suggests that the 

measures of interest or states change at discrete points in time.  

The discrete-event simulation framework includes a sequencing component, which 

specifies the order in which the resources (i.e., UAT aircraft) perform the required tasks (i.e., 

serving the customers). In the realm of simulation, the rule for determining this sequence is called 

queuing discipline. It could be as simple as a first-come-first-served (FCFS) rule, or it could be a 
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more complicated queuing rule derived from a mathematical programming model (see, for 

instance, [131,136]).  

This section uses the DES to implement and evaluate the proposed dynamic solution 

framework for UAT fleet operations, and it further employs CLARPTW-SRE as the basis for the 

queuing discipline. 

9.2 Experiment Design 

9.2.1 Simulation Design 

When operating UAT, consolidating the requests is only possible if requests are sufficiently 

close. Therefore, we generate the requests in clusters to better understand the impacts of the 

proposed consolidation scheme. Each cluster represents a town or suburb of a metropolitan area. 

The centroids are located on the vertices of a square with the edges of length 𝛿. Consequently, the 

network has 12 OD pairs with an average Euclidean distance of 1.138𝛿. 

Let Δ𝑡𝑈𝑃𝐷𝐴𝑇𝐸  denote the interval between two decision epochs. If new requests arrive 

within Δ𝑡𝑈𝑃𝐷𝐴𝑇𝐸, the problem will be re-optimized to update the system’s state. When request 𝑟 

arrives at time 𝜏𝑟
𝐴𝑅𝑉 , its attributes are defined by the vector 𝔸𝑟

𝑅𝐸𝑄 =

 (𝑶𝑟 , 𝑫𝑟 , 𝑺𝑟
𝐷𝑆𝑅𝐷, 𝑬𝑟

𝐷𝑆𝑅𝐷, 𝑞𝑟 , 𝜏𝑟
𝑅𝐸𝑄

). We assume the network is ubiquitous, and therefore, the desired 

pick-up and drop-off UAT pads of request 𝑟 coincide with their origin and destination. The origin 

𝑶𝑟 and destination 𝑫𝑟 of request 𝑟 are randomly generated around the centroids using isotropic 

Gaussian distributions with the standard deviation of 𝜎. Therefore, 𝜎 represents the spread of the 

demand around the centroids. The corresponding centroids of the request’s origin and destination 

are randomly chosen from the four centroids. Δ𝑂𝐷 denotes the minimum distance between the origin 
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and destination of a request to qualify for a UAT trip. Consequently, the origin and destination of the 

requests are generated so that the distance between origin and destination exceeds Δ𝑂𝐷 .  

The request arrival process is a Poisson process with the intensity of 𝜆. Therefore, the 

interarrival times are exponentially distributed with the mean of 𝒯𝐼𝑁𝑇 = 1/ 𝜆. 𝜏𝑟
𝑅𝐸𝑄

, the requested 

service time for request r, is calculated as 𝜏𝑟
𝐴𝑅𝑉 + 𝑇𝑟

𝐴𝐷𝑉, where 𝑇𝑟
𝐴𝐷𝑉 is randomly drawn from a 

uniform distribution with the mean of 𝒯𝐴𝐷𝑉/2 and the range of [0, 𝒯𝐴𝐷𝑉]. Lastly, we assume that 

each request has one passenger, and therefore, 𝑞𝑟 = 1. 

The static attributes of 𝒶𝑘 ∈ 𝒦 are represented by 𝔸𝑘
𝑒𝑉𝑇𝑂𝐿 = (𝑄𝑘, 𝑣𝑘

𝐴𝐼𝑅). We assume that 

the fleet of UAT aircraft is homogenous, and therefore, their capacity and speed are denoted by Q 

and 𝜈𝐴𝐼𝑅, respectively. Let Δ𝐸𝑀𝑃𝑇𝑌 denote the minimum Euclidean distance to justify an empty 

repositioning flight leg. 

Furthermore, the state of UAT aircraft at the beginning of the planning horizon (i.e., 𝑡 =

0) is presented by 𝑆0
𝑒𝑉𝑇𝑂𝐿 = (𝜍𝑘0

𝑒𝑉𝑇𝑂𝐿 , 𝜏𝑘0
𝐴𝑉𝐿 , 𝑳𝑘0

𝐴𝑉𝐿 , 𝒬𝑘0, 𝔈𝑘0
𝑁𝐷𝑆𝑅𝐷)𝒶𝑘∈𝒦. The initial location of 𝒶𝑘 ∈

𝒦 at time 𝑡 = 0 (i.e., 𝑳𝑘0
𝐴𝑉𝐿) is randomly generated around the centroids using isotropic Gaussian 

distributions with the standard deviation of 𝜎. Furthermore, all the aircraft are idle and available 

at the beginning of the planning horizon, and there is no incomplete flight leg on their itinerary. In 

other words, 𝜏𝑘0
𝐴𝑉𝐿 = 0, 𝜍𝑘0

𝑒𝑉𝑇𝑂𝐿 = 0, and 𝒬𝑘0 =  ∅ for 𝒶𝑘 ∈ 𝒦. Lastly, 𝔈𝑘0
𝑁𝐷𝑆𝑅𝐷 = 0 for 𝒶𝑘 ∈ 𝒦. 

9.2.2 Evaluation 

In a stochastic process, a sample path is defined as the sequence of sample realizations of 

random variables. In other words, a sample path is a sequence of outcomes over time [132]. If Φ 

represents the set of all possible sample paths, let 𝜙 ∈ Φ denotes a sample path. 
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Each sample path generates an independent replication of the system that is being 

simulated. Therefore, the outputs (i.e., performance measures) of simulations could be classified 

either as within-replication or across-replication data. The within-replication data is summarized 

to produce the across-replication outputs. Subsequently, the overall statistics are specified by using 

the across-replication outputs. 

Across-replication outputs are i.i.d. They are independent because different random seeds 

are used for each replication, and they are identically distributed because the same model is run in 

each replication to produce the outputs. They also tend to follow a normal distribution. None of 

these might be true for within-replication data. 

The input parameters of the simulation are called (controllable) parameter setting, or 

(proposed) configuration or design [139]. Let 𝜃 denote the input parameters (i.e., configuration) 

of the simulation. These parameters could be quantitative (e.g., number of aircraft to be used for 

serving the users’ requests) or qualitative (the queuing discipline for serving the users). Let 𝐿𝜃(𝜙) 

denote the performance measure of the sample path 𝜙  as an across-replication output under 

configuration 𝜃. Therefore, 𝐽𝜃 = 𝔼[𝐿𝜃(𝜙)] shows the overall statistics of the simulation under 

configuration 𝜃. Since the expectation cannot be computed, we choose a sample Φ̂ ⊆ Φ and then 

calculate 𝑗̂𝜃 = ∑
𝐿𝜃(𝜙)

|Φ̂| 𝜙∈Φ̂ . 

The simulation for the synthetic network is designed as a steady-state simulation to 

eliminate the influence of the initial conditions. Each experiment in the base-case scenario and 

sensitivity analyses is replicated 30 and 20 times, respectively, where the stochasticity stems from 

the customer requests and the initial locations of the UAT aircraft.  
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9.2.3 Parameter Setting 

In this section, we present the parameters used in the experiments. Table 9.1 summarizes 

the network design parameters. Let 𝛿 = 30 miles, where 𝛿 is the length of the edges of the square. 

With the ground speed in the range of 20-30 mph, traversing one edge would take between 60-90 

minutes on the ground. We set Δ𝑂𝐷 = 10 miles. Finally, the standard deviation of the isotropic 

Gaussian distribution is set to 2 miles.  

Table 9.1 Network parameters 

Parameter Symbol Value Unit 

Number of centroids - 4 - 

Distance between centroids 𝛿 30 miles 

Standard deviation of the Gaussian distributions 𝜎 2 miles 

OD minimum distance Δ𝑂𝐷 10 miles 

Table 9.2 summarizes the parameters associated with the ingress and egress of the 

passengers. Since the average walking speed of adults is 3-4 mph [140], the walking speed, 𝜈𝑊𝐴𝐿𝐾, 

is set to 3 mph. The passengers will walk for a maximum of 5 minutes to reach a UAT pad. As a 

result, the walking threshhold, Δ𝑊𝐴𝐿𝐾, is set to 0.25 miles.  

Table 9.2 Parameters associated with the ingress and egress of the passengers 

Parameter Symbol Value Unit 

Euclidean driving speed in the downtown area 𝜈𝐷𝑅𝐼𝑉𝐸 20 mph 

Maximum access distance Δ𝐴𝐶𝐶𝐸𝑆𝑆 3 miles 

Maximum walking distance Δ𝑊𝐴𝐿𝐾 0.25 miles 

Walking speed 𝜈𝑊𝐴𝐿𝐾 3 mph 

Elapsed time from ground transportation area to the 

departure gate of flight 𝑖 for request 𝑟 
𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 3 minutes 

Elapsed time from the arrival gate of flight 𝑖 to the ground 

transportation area for request 𝑟 
𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 2 minutes 
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The speed of the vehicles on the ground over Euclidean distances (𝜈𝐷𝑅𝐼𝑉𝐸) is set to 20 mph. 

We further assume that the maximum acceptable delay for UAT service, i.e., 𝜔, in the synthetic 

network is 15 minutes. 𝜈𝐷𝑅𝐼𝑉𝐸 =  20 mph and 𝜔 =  15 minutes suggest that the maximum 

accessible distance on the ground is nearly 5 miles or around 2.5 miles from either the origin or 

destination in a symmetric case. Consequently, we set Δ𝐴𝐶𝐶𝐸𝑆𝑆 = 3 miles, implying that the access 

distance from either origin or destination is about 10% of the OD distance. 

The time to reach the departure gate, including the security screening, (i.e., 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸) and 

the time to reach the ground transportation area after landing (i.e., 𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸) are assumed to be 

identical for all passengers and independent of the UAT port or pad design. The values of 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 

and 𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 for (𝑟, 𝑖) ∈ 𝒜𝑡

𝐴𝐿𝐶𝑇 are set to 3 and 2 minutes, respectively. 

Table 9.3 Parameters associated with flight operation 

Parameter Symbol Value Unit 

Number of UAT aircraft 𝐾 60 - 

Minimum of Euclidean distance for repositioning 

flights 
Δ𝐸𝑀𝑃𝑇𝑌 1 miles 

Aerial speed 𝜈𝐴𝐼𝑅 150 mph 

Boarding duration 𝑇𝐵𝑂𝐴𝑅𝐷 3 minutes 

Deboarding duration 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 2 minutes 

Departure clearance 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 0.5 minutes 

Landing clearance 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 0.5 minutes 

Hover ascend 𝑇𝐴𝑆𝐶𝐸𝑁𝐷 0.75 minutes 

Hover descend 𝑇𝐷𝐸𝑆𝐶𝐸𝑁𝐷 0.75 minutes 

Detour factor 𝜖 0.1 - 

The assumptions regarding the flight operation are presented in Table 9.3. The aerial fleet 

size is fixed with 60 UAT aircraft. Multiple original equipment manufacturers (OEMs) (including 

Joby Aviation [18] and Kitty Hawk [17]) have presented UAT aircraft designs with a cruise speed 

of at least 180 mph, as discussed in Table 2.2. Thus, we choose the aerial speed of 150 mph. The 
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detour factor of the aerial trip is assumed 0.1, which is in the range of 0.5-0.15 suggested in other 

UAM studies [8,141].  

The minimum Euclidean distance to justify a UAT repositioning flight, Δ𝐸𝑀𝑃𝑇𝑌, is set to 1 

mile. With the average driving speed of 20 mph, traversing within 1 mile of both origin and 

destination would take at most 6 minutes, which is well below the maximum acceptable delay of 

15 minutes. This suggests that even though the aircraft within Δ𝐸𝑀𝑃𝑇𝑌 cannot be repositioned to 

serve a request, the passengers have enough time to relocate on the ground to reach the aircraft. 

The UAM market study commissioned by NASA [8] estimates the boarding duration and 

deboarding duration to be in the range of 3-5 and 2-3 minutes, respectively, while Porsche 

Consulting [6] estimates 3 minutes for boarding or deboarding. Accordingly, we set the boarding 

and deboarding duration to 3 and 2 minutes, respectively. Additionally, we assume 30 seconds 

before departure and after landing for clearance. We further assume it takes a UAT aircraft 45 

seconds to ascend and 45 seconds to descend vertically.  

Consequently, the turnaround time, including boarding, deboarding, and take-off and 

landing clearance, is minutes, which is 6 minutes, which is consistent with the turnaround time 

estimated by Joby Aviation [18] (see Table 2.6). The overhead time of serving a flight leg, either 

empty or revenue-generating, includes hover ascend and descend and ATC clearance for the take-

off and after the landing, which amounts to 2.5 minutes. If the flight leg serves passengers, an 

additional 5 minutes will be added to the flight service time. As a result, the overhead time of 

empty and revenue-generating flight legs are 2.5 and 7.5 minutes, respectively. 

Assuming the ground speed of 30 mph over long distances, an average trip would take 68.3 

minutes with ground-based transportation. The parameters in Table 9.1, Table 9.2, and Table 9.3 
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translate to the mean aerial distance of 37.56 miles (i.e., 1.1× 34.14). Consequently, the average 

time for serving a revenue-generating flight leg is 22.5 minutes (i.e. 
37.56

150
× 60 + 7.5). As a result, 

the maximum service rate is 2.66 revenue-generating flights per hour per aircraft. This extreme 

value corresponds to cases where the request’s arrival rate is so high, or the requests are so close 

to each other that the empty distance from the destination of one flight to the origin of the next 

flight origin is close to zero in expectation.  

In queuing theory, the traffic intensity or utilization 𝜌 is defined as 
𝜆

𝑐𝜇
, where 𝜆 is the 

average arrival rate, 𝜇 is the average service rate, and 𝑐 is the number of servers. Furthermore, 

let 𝑟 =
𝜆

𝜇
 represent the offered load. Utilization shows the fraction of time a server is busy, while 

offered load represents the average number of busy servers [142]. Without job rejection and flight-

sharing (also called partial batch service [142]), 𝜌 should be below 1 for the queue to not grow 

indefinitely, and therefore, for the system to be stable. With 𝑐 = 𝐾 = 60 and 𝜇 = 2.66 flight per 

hour per aircraft, the system can accommodate 𝜆 = 128 requests for flight per hour (i.e., 𝑇𝐼𝑁𝑇 =

 28 seconds) to achieve 80% utilization (𝜌 = 0.8).  

Furthermore, the average of 22.5 minutes for serving a revenue-generating flight would 

translate to the average trip time of 27.5 minutes (i.e., 22.5 + 3+ 2) for each passenger if there were 

no wait time for the aerial service, and the requests were served without any ground-based 

transportation. Considering a maximum delay of 𝜔 = 15 minutes (in Figure 5.1), the minimum 

and maximum mean trip times for passengers are 27.5 and 42.5 minutes, respectively. These 

numbers correspond to travel time savings of 25.8 minutes (37.8%) to 40.8 minutes (59.7%) 

compared to driving on the ground, which almost meets the 40% travel time savings rule-based 

demand model suggested by Uber Elevate [23]. 
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The CLARPTW-SRE is formulated as a multi-objective problem, and therefore, the 

objective function is a weighted sum of different objectives. Table 9.4 shows the parameters in the 

objective function. Since the monetary value of one objective to another is not well-defined, we 

treat these parameters as the weight of one objective relative to another. The ratio of revenue per 

passenger mile to cost per mile (i.e., 𝛼/𝛽) of 2 implies that, roughly speaking, serving a request 

without pooling is profitable as long as the empty repositioning mileage is shorter than the OD 

distance of the request. Furthermore, in the base-case experiment, the weight of the number of 

relocations (𝛾1) is set to zero, suggesting the disutility of the relocation from desired pick-up and 

drop-off UAT pads is not explicitly considered; however, a sensitivity analysis to the value of 𝛾1 

is conducted. The reason is discussed in depth in Section 8.4.3. 

Table 9.4 Parameters in the objective function 

Parameter Symbol Value Unit 

Weight of revenue per passenger-mile of OD distance 𝛼 2 - 

Weight of cost per mile of flight  𝛽 1 - 

Weight of disutility of relocations from desired pads 𝛾1 0 - 

Exponential disutility of 1 relocation compared to 2 𝛾2 2 - 

Fixed cost of conducting a flight leg 𝒞 0 - 

9.2.4 Planning Horizon 

Steady-state simulations run over a long time, which is specified by the analyst, to 

eliminate the influence of the initial conditions. The goal of a steady-state simulation is to study 

the long-run or steady-state performance of the system. However, the statistics are biased during 

the warm-up period since the system starts empty and idle. Therefore, to achieve statistically 

meaningful performance measures, we need to determine the simulation runtime.  
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Figure 9.1 Percentage of rejected requests over arrival time windows of 1 to 10 hours for 20 

replications and 𝑸 = 1 

  

Figure 9.2 Average trip delay per request over arrival time windows of 1 to 10 hours for 20 

replications and 𝑸 = 1 
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Figure 9.3 Average aerial mileage over arrival time windows of 1 to 10 hours for 20 

replications and 𝑸 = 1 

Figure 9.4 UAT aircraft utilization over arrival time windows of 1 to 10 hours for 20 

replications and 𝑸 = 1 
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Using UAT aircraft with capacity 1, we run 30 replications of the problem over 10 hours, 

with increments of one hour. Figure 9.1 through Figure 9.4, respectively, illustrate the mean of the 

percentage of rejected requests, trip delay per served request, total aerial mileage (including empty 

and revenue-generating mileage) per served request, and UAT aircraft utilization. After reviewing 

these figures, we use an arrival time window of 8 hours (i.e., 480 minutes) to model a steady-state 

system in the experiments. In other words, 𝔗𝑆𝑇𝑅𝑇𝐴𝑅𝑉 = 0 and 𝔗𝐸𝑁𝐷𝐴𝑅𝑉 = 480, where 𝔗𝑆𝑇𝑅𝑇𝐴𝑅𝑉 

and 𝔗𝐸𝑁𝐷𝐴𝑅𝑉 denote the start and end of request arrival period. 

9.3 Numerical Results: Base-case Experiment 

Table 9.5 summarizes the exogenous and design parameters for the base-case experiment. 

It is worth noting that 𝜈𝐷𝑅𝐼𝑉𝐸 is the driving speed along the Euclidean distances, and therefore, the 

actual speed of the vehicles on the ground is greater than or equal to 20 mph. 

Table 9.5 Exogenous and design parameters associated with the base-case experiment 

𝓣𝑰𝑵𝑻 

(sec) 

𝝈 

(mi) 
𝝂𝑫𝑹𝑰𝑽𝑬 

(mph) 
𝝐 

𝝂𝑨𝑰𝑹 

(mph) 

𝝎 

(min) 

𝓣𝑨𝑫𝑽 

(min) 
𝜶/𝜷 

(𝑻𝑩𝑶𝑨𝑹𝑫, 
𝑻𝑫𝑬𝑩𝑶𝑨𝑹𝑫) 
(min) 

(𝑻𝒓𝒊
𝑫𝑮𝑨𝑻𝑬,

𝑻𝒓𝒊
𝑨𝑮𝑨𝑻𝑬) 

(min) 

Exogenous Parameters Design Parameters 

20 2 20 0.1 150 15 30 2 (3, 2) (3, 2) 

9.3.1 Problem Size and Solution Time 

For each replication, we calculate the mean and standard deviation of the number of flight 

legs, requests, and arcs at each decision epoch. Subsequently, we estimate the mean of the mean 

and the standard deviation for all replications. Table 9.6 summarizes the estimated mean of the 

mean and standard deviation of the number of flight legs, requests, and arcs at each decision epoch. 
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Table 9.6 Estimated mean of the average number of flight legs, requests, and arcs at each 

decision epoch 

Table 9.7 shows the average simulation time over 30 replications and worst MIP gap, worst 

MIP solution time, and worst decision time over all decision epochs for 30 replications. The 

decision time, i.e., 𝑇𝑒
𝐸𝑃𝑂𝐶𝐻, includes the network transformation and reduction in addition to the 

MIP solution time. Therefore, the decision time accounts for the total time required by the operator 

to make a decision and is greater than the MIP solution time. 

Table 9.7 Average simulation time for 30 replications and worst MIP gap, worst MIP 

solution time, and worst decision time over all decision epochs for 30 replications  

Aircraft 

Capacity (Q) 

Average Simulation 

Time (minutes ) 

Worst MIP Solution 

Time (seconds) 

Worst Decision 

Time (seconds) 

Worst MIP 

Gap (%) 

1 11.4 0.8 3.4 0 

2 12.0 3.3 5.5 0 

3 11.6 1.2 4.1 0 

4 11.6 1.2 4.8 0 

As shown in Table 9.7, using the proposed solution framework, simulating the base-case 

scenario over the planning horizon of 8 hours would take, on average, nearly 12 minutes. The 

worst MIP gap of all decision epochs over all the replications is 0, implying that all the MIPs are 

solved to optimality. The worst MIP solution time for 𝑄 = 1 is 0.8 seconds, while the worst 

 Flight Legs Requests Arcs 

𝐐 �̃�𝐭
𝐋𝐄𝐆 �̃�𝐭

𝐃𝐒𝐑𝐃 �̃�𝐭
𝐂𝐍𝐂𝐓 �̃�𝐭

𝐑𝐄𝐐
 �̃�𝐭

𝐔𝐍𝐀𝐒𝐆𝐍 �̃�𝐭
𝐅𝐋𝐗𝐒𝐓𝐑𝐓 �̃�𝐭

𝐅𝐗𝐃𝐒𝐓𝐑𝐓 �̃�𝒕
𝑰𝑵𝑰𝑻 �̃�𝒕

𝑺𝑬𝑸
 �̃�𝒕

𝑨𝑳𝑪𝑻 

1 237 70 167 73 3 62 8 1977 1175 381 

2 234 69 165 78 3 62 13 2161 1059 386 

3 230 68 162 78 3 61 14 2188 1018 379 

4 229 68 161 78 3 61 14 2192 1008 377 
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decision time is 3.4 seconds. The worst-case decision time over all capacities is around 5.5 

seconds, which is well below the 1-minute re-optimization interval, i.e., ∆𝑈𝑃𝐷𝐴𝑇𝐸. 

9.3.2 User Experience  

Table 9.8 through Table 9.12 present the performance measures associated with the 

requests and the provided level of service. Table 9.8 summarizes the estimated mean of 

performance measures associated with the UAT aircraft average load factor over four capacity 

levels. The average number of passengers per flight increases by 0.3 for 𝑄 = 2 compared to 𝑄 = 

1. However, the average number of passengers per flight does not change significantly for 𝑄 = 3 

and 𝑄 = 4, implying that for the designed experiment, the additional capacity is not conducive to 

pooling more requests in one flight. The percentage of flights with 3 or 4 passengers is relatively 

low. Additionally, in all cases with 𝑄 > 1, the majority of flights (i.e., nearly 70%) are conducted 

without air pooling. 

Table 9.8 Estimated mean of performance measures related to UAT aircraft load factor over 

for 30 replications over 𝑸 = 1, 2, 3, and 4 

Q 

Average 

Load 

Factor 

(%) 

Average 

Number of 

Requests 

per Flight 

Percentage of 

Flights with 1 

Request 

Percentage of 

Flights with 2 

Requests 

Percentage of 

Flights with 3 

Requests 

Percentage of 

Flights with 4 

Requests 

1 100 1 100 0 0 0 

2 65.7 1.3 68.7 31.3 0 0 

3 45.6 1.4 69.5 24.4 6.1 0 

4 34.3 1.4 69.6 24.3 5.3 0.8 

Table 9.9 summarizes the performance measures associated with served and rejected 

requests. Increasing the capacity from 𝑄 = 1 to 𝑄 = 2 leads to a reduction in the rate of rejection 

by almost 17%, from 23.0% to 5.8%, while the further increase in the capacity to 𝑄 = 4 results in 
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a slight reduction in the percentage of rejected requests, implying that the benefits of air pooling 

beyond 𝑄 = 2 is not significant for the given experiment.  

Table 9.9 Estimated mean of performance measures associated with served and rejected 

requests 

Q 

Number of 

Served 

Requests 

Percentage of 

Rejected Requests 

(%) 

Average OD Distance 

of Served Requests 

(miles) 

Average OD Distance 

of Rejected Requests 

(miles) 

1 1111 23.0 34.5 33.5 

2 1359 5.8 34.4 32.4 

3 1384 4.1 34.4 31.8 

4 1387 3.9 34.4 31.6 

As shown in Table 9.9, the OD distance of served requests is higher than the OD distance 

of rejected requests. The difference stems from the structure of the objective function, where the 

earnings are based on the distance between the origin and destination of the requests, i.e., 𝐷𝑟
𝑂𝐷. 

When serving all the requests is not possible, requests with higher 𝐷𝑟
𝑂𝐷 are more profitable to 

serve. 

Table 9.10 summarizes the estimated mean of average trip delay, percentage of trip delay, 

and total trip time per request over 30 replications. An average trip would take approximately 38-

40 minutes, and its value is not very sensitive to capacity increase.  

Table 9.10 The estimated mean average trip delay, average of trip delay to total trip time in 

percentage, and average trip time over four levels of aircraft capacity for 30 replications 

Q 
Average Trip Delay 

(minutes) 

Average of Percentage of Trip 

Delay to Total Trip Time (%) 

Average Trip Time 

(minutes) 

1 11.8 29.2 39.5 

2 10.9 27.4 38.6 

3 10.8 27.0 38.4 

4 10.7 26.9 38.3 
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The average trip delay decreases for 𝑄 ≥ 2 compared to 𝑄 = 1, since the system becomes 

less busy. Nonetheless, the higher capacity implies more potential delays resulting from demand 

consolidation and longer ground transportation. Moreover, the trip delays are constrained but not 

minimized in the objective function. That being said, air pooling has reduced the average delay 

per request by around 1 minute while reducing the rejection rate by at least 17%. The average 

percentage of trip delay to total travel time is in the range of 26.9 to 29.2%. 

Given the similar performance of UAT aircraft with capacities 2, 3, and 4 in the designed 

experiment, we limit the rest of our analysis to 𝑄 = 1 and 2. 

Figure 9.5 illustrates the empirical Cumulative Distribution Function (eCDF) of the 

percentage of trip delay to total trip time for 𝑄 = 1 and 2. The eCDF of each replication is shown 

as one graph. The plots show two slopes, a milder one up to the value of 25% on the x-axis, 

followed by a sharper slope for the range of 30-40%, suggesting that the majority of the requests 

(i.e., 60%) experience a percentage of trip delay between 30 and 40% of their total trip time. 

Figure 9.5 Empirical Cumulative Distribution Function (eCDF) of the percentage of trip 

delay to trip time over 30 replications for 𝑸 of (a) 1 and (b) 2 
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Additionally, Figure 9.5 depicts how eCDFs slightly shift from 𝑄 = 1 to 𝑄 = 2. For instance, 

while 15% of the requests have a trip delay percentage smaller than 20% with 𝑄 = 1, 20% of the 

request have similar delays with 𝑄 = 2. 

Table 9.11 compares the performance measures associated with the user experience for 

CLARPTW-SRE and CLARPTW, the formulations with and without short repositioning 

elimination, respectively. With the elimination of short repositioning flight legs, the percentage of 

rejected requests decreases around 2%, with a 0.4-minute decrease in the average trip delay. 

Table 9.11 Comparison of performance measures associated with the user experience for 

CLARPTW-SRE and CLARPTW 

Q 
Rejected 

Requests (%) 

Average Trip 

Delay (minutes) 

Average Percentage of Trip 

Delay to Total Trip Time (%) 

Average Trip 

Time (minutes) 

CLARPTW-SRE 

1 23.0 11.8 29.2 39.5 

2 5.8 10.9 27.4 38.6 

CLARPTW 

1 25.4 12.3 30.1 39.9 

2 8.0 11.3 28.0 38.9 

Table 9.12 summarizes the performance measures related to ground-based legs and the 

relocations. It is worth mentioning that passengers are relocated within ∆𝐴𝐶𝐶𝐸𝑆𝑆 of their origin or 

destinaton for air pooling while they are relocated within ∆𝐸𝑀𝑃𝑇𝑌 of desired UAT pads to eliminate 

short repositioning legs. Therefore, with 𝑄 = 1 , the relocations occur only to eliminate 

repositioning legs conducted within the 1-mile radius (i.e., ∆𝐸𝑀𝑃𝑇𝑌= 1 mile) of the request’s 

desired pick-up and drop-off UAT pads (which coincide with its origin and destination, 

respectively), while with 𝑄 = 2, relocations could stem from demand consolidations within the 3-

mile radius (i.e., ∆𝐴𝐶𝐶𝐸𝑆𝑆= 3 miles) of the request’s origin or destination. Consequently, more 
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relocations and longer ground transportation are expected as the capacity increases from 𝑄 = 1 to 

𝑄 =2.  

Table 9.12 Estimated mean of performance measures related to relocations and ground-

based legs of the request trip 

Q 

Average 

Number of 

Relocations  

Percentage 

of Requests 

with 0 

Relocation 

(%) 

Percentage of 

Requests with 

1 Relocation 

(%) 

Percentage of 

Requests with 

2 Relocations 

(%) 

Average 

Ground-

based 

Distance 

(mi) 

Average 

Ground-

based Travel 

Time (min) 

1 0.33 69.4 28.1 2.4 0.22 0.72 

2 0.76 49.9 24.4 25.7 1.04 3.17 

Table 9.12 verifies that the average of ground-based legs increases from 0.22 miles to 1.04 

miles per request as 𝑄 increases. Corresppindingly, the average ground-based travel time increases 

0.72 minutes to 3.17 minutes per request. Furthermore, the average number of relocations per 

served request increases as the capacity increases. For 𝑄 =  1, 70% of the requests have no 

relocation, while this number reduces to nearly 50% for 𝑄 = 2. Additionally, the values of ground-

based distance and time in Table 9.12 suggest that the speed of ground-based transportation is 18.3 

and 19.7 mph for 𝑄 = 1 and 2, respectively. These values are between the speed of the two modes 

of ground transportation: driving with 𝜈𝐷𝑅𝐼𝑉𝐸 = 20 mph and walking with 𝜈𝑊𝐴𝐿𝐾 = 3 mph. 

Figure 9.6 provides more detailed information on the distribution of ground-based travel 

distance for 𝑄 = 1 and 𝑄 = 2. The two slopes on the plots are due to the distance criteria of 1 mile 

and 3 miles for short repositioning flight legs and demand consolidation, respectively. Since only 

2.45% of the requests experience 2 relocations with 𝑄 = 1, nearly all the requests have an access 

distance smaller than 1 mile. With 𝑄 = 2, around 20% of the requests have a ground-based trip 

distance greater than 3 miles. 
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9.3.3 UAT Operator Costs 

This section reviews the performance measures associated with the operator costs, namely, 

the empty and revenue-generating aerial mileage. Table 9.13 summarizes the performance 

measures associated with revenue flights, revenue mileage, and total mileage (i.e., the summation 

of revenue mileage and empty mileage). The mean of revenue mileage for 𝑄 = 1 is 37.9 miles, 

which is slightly over the theoretical 37.6 miles since requests with longer OD distances are more 

likely to be served. The mean of revenue mileage approaches the theoretical mean as the capacity 

increases. One reason is that the number of rejected requests decreases with increased capacity. 

Therefore, serving requests with higher 𝐷𝑟
𝑂𝐷 is not prioritized. Second, when two requests are 

pooled together, the shorter revenue flight leg is more likely to be selected. Similarly, the mean of 

total aerial mileage per revenue flight decreases as 𝑄 increases. The mean of total aerial mileage 

per served request sharply declines from 41.3 miles for 𝑄 = 1 to 31.2 miles for 𝑄 = 2. The ratio 

Figure 9.6 Empirical Cumulative Distribution Function (eCDF) of ground-based travel 

distance over 30 replications for 𝑸 of (a) 1 and (b) 2 
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of revenue flights to served requests, which is the inverse of the average passenger load of the UAT 

aircraft, is 76% for 𝑄 = 2. 

Table 9.13 The performance measures associated with revenue flights, revenue mileage, and 

total mileage for 𝑸 = 1 and 2 

Q 

Mean of 

Revenue 

Mileage (mi) 

Mean of Total Aerial 

Mileage per Revenue 

Flight (mi) 

Mean of Total Aerial 

Mileage per Served 

Request (mi) 

Ratio of Revenue 

Flights to Served 

Requests (%) 

1 37.9 41.3 41.3 100 

2 37.6 41.0 31.3 76.2 

Table 9.14 Estimated mean of performance measures associated with empty repositioning 

flight legs for CLARPTW-SRE and CLARPTW 

Q 

Mean of 

Empty Flight 

Mileage (mi) 

Minimum of 

Empty Flight 

Mileage (mi) 

Maximum of 

Empty Flight 

Mileage (mi) 

Percentage 

of Empty 

Flight Legs 

within 

∆𝐸𝑀𝑃𝑇𝑌 (%) 

Percentage 

of Empty 

Flights to 

Revenue 

Flights (%) 

Percenatge 

of Empty to 

Revenue 

Mileage 

(%) 

CLARPTW-SRE 

1 4.86 1.1 44.18 0 69.98 8.97 

2 5.16 1.1 44.47 0 67.16 9.23 

CLARPTW 

1 3.68 0.06 42.11 18.7 100.35 9.74 

2 3.83 0.05 45.82 21.2 100.54 10.24 

Table 9.14 highlights the importance of the short repositioning elimination (SRE) scheme 

in a ubiquitous network, and it presents the performance measures associated with empty 

repositioning flight legs for CLARPTW-SRE and CLARPTW, models with and without short 

repositioning elimination, respectively. Without SRE, 18.7 and 21.2% of the flight legs, for 𝑄 = 

1 and 2, respectively, are within distances shorter than ∆𝐸𝑀𝑃𝑇𝑌= 1 mile. For CLARPTW-SRE, the 

minimum of empty flight mileage is 1.1 (=  1.1 ×  1 = (1 + 𝜖) × ∆𝐸𝑀𝑃𝑇𝑌 ) miles, which is 

consistent with the detour factor of 0.1 for the aerial legs and ∆𝐸𝑀𝑃𝑇𝑌= 1 mile. However, for 
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CLARPTW, the empty flight distances could get as low as 0.05 miles. The maximum of empty 

flight mileage corresponds to the legs conducted by traversing from one vertice of the square to 

another diagonally. 

Table 9.14 shows that the length of empty flights is about 3.7 miles on average without 

SRE. However, eliminating the short repositioning legs would increase the average empty mileage 

to almost 5 miles. Nonetheless, the percentage of empty to revenue mileage is around 1% lower 

for CLARPTW-SRE compared to CLARPTW. Furthermore, the percentage of empty to revenue 

flights is around 70% for CLARPTW-SRE, suggesting that relocation of the passengers has led to 

a reduction of nearly 30% in the empty flight legs. Lastly, for CLARPTW, the percentage of empty 

to revenue flights is slightly over 100%. The reason is that the almost zero empty distances and 

flight times would cause the aircraft to conduct two consecutive empty flight legs in rare cases, 

possibly due to time window constraints. 

Table 9.15 evaluates the performance measure associated with the connecting legs, which 

are conducted to eliminate the short repositioning flight legs. For 𝑄 = 1, 30% of the revenue 

flights are connecting legs, 18.4% of which have the desired pick-up UAT pad, while 73.6% have 

the desired drop-off UAT pad. Only 8.0% of the connecting flight legs have undesired pick-up and 

drop-off pads, implying that the passengers would experience two relocations to take these flights. 

Table 9.15 Estimated mean of performance measures associated with connecting flight legs 

Q 

Percentage of 

Connecting 

Flights to 

Revenue Flights 

(%) 

Percentage of 

Connecting Flights 

with the Desired  

Pick-up UAT Pad 

(%) 

Percentage of 

Connecting Flights 

with Desired Drop-off 

UAT Pad (%) 

Percentage of 

Connecting Flights 

with Undesired Pick-up 

and Drop-off UAT 

Pads (%) 

1 30.6 18.4 73.6 8.0 

2 34.5 17.2 74.8 8.0 
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Table 9.16 estimates the performance measures associated with aerial service time for 30 

replications. The results suggest that serving a revenue and empty flight with 𝑄 = 1 would take, 

on average, around 22.7 and 4.4 minutes, respectively. The total aerial service time, i.e., the total 

time an aircraft is in use, per served revenue flight is around 25.8 minutes. Air pooling reduces the 

total aerial service time per served request by 24%, from 25.8 minutes with 𝑄 = 1 to 19.5 minutes 

with 𝑄 = 2. Morover, the aircraft utilization decreases from 91% to 85% for 𝑄 = 2 compared to 

𝑄 = 1 despite serving more requests.  

Table 9.16 Estimated mean of performance measures associated with aerial service time  

Q 

Mean of Aerial 

Service Time of 

Revenue Flight 

(min) 

Mean of Aerial 

Service Time 

of Empty 

Flight (min) 

Mean of Total 

Aerial Service 

Time per 

Revenue Flight 

(min) 

Mean of Total 

Aerial Service 

Time per Served 

Request (min) 

Aircraft 

Utilization 

(%) 

1 22.7 4.4 25.8 25.8 91.1 

2 22.5 4.6 25.6 19.5 85.0 

9.3.4 UAT Operator Revenue 

Table 9.17 Estimated mean of performance measures associated with passenger revenue  

Q 
Total Aerial Mileage 

(mi) 

Available Seat Mile 

(ASM) 

Total Passenger 

Revenue (PR/𝛼) 

Passenger Revenue 

per Available Seat 

Mile (PRASM/𝛼) 

1  45,877   45,877   38,366  0.836 

2  42,492   84,985   46,759  0.550 

Table 9.17 presents performance measures associated with passenger revenue, where 𝛼 

denotes the revenue per passenger mile. As previously discussed in Table 9.9, the rate of rejected 

requests decreases by 17% from 𝑄 = 1 to 2. Nonetheless, the total aerial milage decreases around 

7% by increasing 𝑄 from 1 to 2. The total passenger revenue (PR) increases nearly 22% with air 

pooling as more passengers are served. However, passenger revenue per available seat mile 

(PRASM) decreases from 0.836𝛼 to 0.550𝛼, suggesting low shared flights. 
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9.4 Numerical Results: Sensitivity Analyses 

Even though some companies currently offer air taxi service, on-demand and at-scale UAT 

operations using eVTOL technology is a conceptual system that does not exist. Consequently, 

there are uncertainties around the parameters used in the base-case experiment. Factors such as 

price per minute of flight, the density of UAT pads, aerial cruising speed, and the ground-based 

access time could significantly impact the UAT market [6]. For instance, Grandl et al. [6] suggest 

that increasing the ground-based transportation from 5 to 15 minutes for the first and last mile of 

the trip would decrease the UAT market by 20%, while reducing the cruising speed from 200 km 

per hour (124 mph) to 70 km per hour (43 mph) would lead to a 30% reduction in the UAT market. 

As a result, in this section, we design and conduct 11 experiments to study the sensitivity 

of the performance measures to 4 exogenous and 7 design parameters. The four exogenous 

parameters include the request arrival intensity (𝒯𝐼𝑁𝑇), request spread (𝜎), driving speed (over 

euclidean distance) (𝜈𝐷𝑅𝐼𝑉𝐸 ), and the detour factor of the aerial path (𝜖 ). The seven design 

parameters are aerial speed (𝜈𝐴𝐼𝑅), maximum acceptable delay (𝜔), maximum advance reservation 

window (𝒯𝐴𝐷𝑉 ), the ratio of revenue per passenger mile to cost per mile (𝛼/𝛽), the ratio of 

relocation cost to cost per mile (𝛾1/𝛽), boarding and deboarding duration (𝑇𝐵𝑂𝐴𝑅𝐷 , 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷), 

and departure gate ingress time and arrival gate egress time (𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 , 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸). 

Table 9.18 summarizes the parameters in each experiment, where the bold numbers show 

the value in the base-case experiment. Each experiment is replicated 20 times, where the 

stochasticity is associated with requests arrival time and OD pair in addition to the initial locations 

of the UAT aircraft. 
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Table 9.18 Values of exogenous and design parameters used in the sensitivity experiments 

 
𝓣𝑰𝑵𝑻 

(sec) 

𝝈 

(mi) 

𝝂𝑫𝑹𝑰𝑽𝑬 

(mph) 
𝝐 

𝝂𝑨𝑰𝑹 

(mph) 

𝝎 

(min) 

𝓣𝑨𝑫𝑽 

(min) 
𝜶/𝜷 

𝜸𝟏
/𝜷 

(𝑻𝑩𝑶𝑨𝑹𝑫, 
𝑻𝑫𝑬𝑩𝑶𝑨𝑹𝑫) 

(min) 

(𝑻𝒓𝒊
𝑫𝑮𝑨𝑻𝑬,

𝑻𝒓𝒊
𝑨𝑮𝑨𝑻𝑬) 

(min) 

Exogenous Parameters 

E1 

10, 

15, 

20, 

25, 

30 

2 20 0.1 150 15 30 2 0 (3,2) (3,2) 

E2 20 
1, 2, 

3, 4 
20 0.1 150 15 30 2 0 (3,2) (3,2) 

E3  20 2 
10, 20, 

30 
0.1 150 15 30 2 0 (3,2) (3,2) 

E4 20 2 20 

0.05, 

0.1, 

0.15, 

0.2 

150 15 30 2 0 (3,2) (3,2) 

Design Parameters 

E5 20 2 20 0.1 

100, 

125, 

150, 

175 

15 30 2 0 (3,2) (3,2) 

E6 20 2 20 0.1 150 

5, 10, 

15, 

20 

30 2 0 (3,2) (3,2) 

E7 20 2 20 0.1 150 15 

1, 5, 

10, 20, 

30, 40, 

60 

2 0 (3,2) (3,2) 

E8 20 2 20 0.1 150 15 30 

1.2, 

1.5, 

2.0, 

2.5, 

3.0 

0 (3,2) (3,2) 

E9 20 2 20 0.1 150 15 30 2 

0, 1, 

2, 5, 

10 

(3,2) (3,2) 

E10 20 2 20 0.1 150 15 30 2 0 
(2,1), (3,2), 

(5,3), (8,5) 
(3,2) 

E11 20 2 20 0.1 150 15 30 2 0 (3,2) 

(3,2), 

(5,4), 

(10,8) 
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9.4.1 Request Intensity (𝓣𝑰𝑵𝑻)  

With requests arriving more frequently, more opportunities are present for demand 

consolidation since more requests will have adjacent origins and destinations. In experiment E1, 

six levels of demand are examined [136]: 𝒯𝐼𝑁𝑇 = 10, 15, 20, 25, 30, and 40. With 𝒯𝐼𝑁𝑇 = 10 

seconds, the demand is so high that more than 50% of requests are rejected. With 𝒯𝐼𝑁𝑇 = 20 

seconds (base case), the demand roughly meets the supply. And with 𝒯𝐼𝑁𝑇 = 40 seconds, the 

demand is so low that aircraft utilization is around 50%. Table 9.19 presents the estimated mean 

and standard error of the mean (SEM) of the number of requests over the planning horizon for 

various request interarrival times (𝓣𝑰𝑵𝑻). 

Table 9.19 Estimated mean and standard error of the mean (SEM) of number of requests 

over the planning horizon for various request interarrival times (𝓣𝑰𝑵𝑻) 

𝒯𝐼𝑁𝑇 

(second) 
𝜆 

(requests/hour) 

 Number of Requests over 8 Hours 

 Mean SEM 

10 360  2,877 11.1 

15 240  1,925 9.4 

20 180  1,444 8.6 

25 144  1,158 7.8 

30 120  962 8.3 

40 90  719 7.0 

Table 9.20 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for request intensity (𝒯𝐼𝑁𝑇) of 10, 15, 20, 25, 30, and 40 

seconds with 𝑄 = 1 and 2, while Figure 9.7 depicts the sensitivity of select performance measures 

to 𝒯𝐼𝑁𝑇 . For 𝑄 =  2, Figure 9.7(c) shows that decreasing 𝒯𝐼𝑁𝑇  from 40 seconds (where the 

utilization is about 50%) to 10 seconds (where more than 40% of the requests are rejected) would 

increase the average load factor by nearly 12%. Even with the low demand intensity of 𝒯𝐼𝑁𝑇 = 40 

seconds, the average load factor is 60%, suggesting some flights could be shared. 
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Figure 9.7 Sensitivity of performance measures to request intensity (𝓣𝑰𝑵𝑻 ) of 10, 15, 20, 25, 

30, and 40 seconds for aircraft with capacities of 1 and 2 
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Table 9.20 Impacts of request intensity (𝓣𝑰𝑵𝑻 ) on performance measures associated with 

operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

10 95.2 40.9 72.7 8.0 100 40.7 0.843 59.0 12.4 30.4 0.6 0.29 

15 93.5 41.1 71.6 8.5 100 39.6 0.840 40.3 12.2 30.0 0.7 0.31 

20 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

25 85.6 41.1 65.7 8.6 100 35.9 0.840 10.1 11.0 27.3 0.8 0.38 

30 75.6 40.6 60.7 7.6 100 31.7 0.848 4.3 10.1 25.3 0.9 0.43 

40 58.8 40.0 57.5 6.2 100 24.1 0.859 2.4 9.6 24.2 1.0 0.46 

𝑄 = 2 

10 93.8 28.6 71.0 8.5 71.5 57.1 0.603 42.3 12.1 30.0 3.6 0.82 

15 91.5 30.4 70.5 9.3 67.8 52.2 0.567 21.3 11.8 29.3 3.3 0.77 

20 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

25 73.4 31.8 61.9 7.6 63.4 39.0 0.540 1.8 10.1 25.5 3.0 0.76 

30 63.6 32.4 58.4 6.5 61.7 32.6 0.531 1.2 9.8 24.7 2.9 0.75 

40 51.1 33.4 56.8 5.7 59.3 24.4 0.513 1.0 9.6 24.2 2.6 0.70 

Figure 9.7(b) suggests that the average trip delay per passenger decreases by 2 minutes for 

lower utilization rates. However, even with the utilization of 50-60% for 𝒯𝐼𝑁𝑇 = 40 seconds, the 

average delay is 10 minutes. The reason is that the delay is not explicitly minimized in the objective 

function. 
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Furthermore, the percentage of empty to revenue flights is higher when the utilization is 

high. Figure 9.7(e) depicts that the percentage of empty to revenue flights decreases by more than 

10% by increasing 𝒯𝐼𝑁𝑇 from 10 seconds to 40 seconds. Figure 9.7(f) suggests that the percentage 

of empty to revenue mileage is lower for the high and low intensity of the requests compared to 

the medium request intensity. 

9.4.2 Request Spread (𝝈) 

Table 9.21 Impacts of request spread (𝝈 ) on performance measures associated with 

operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

1 90.8 39.4 36.2 4.6 100 40.6 0.874 18.3 11.2 28.0 1.6 0.73 

2 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

3 90.7 42.7 83.6 12.4 100 37.0 0.810 26.0 12.3 30.1 0.4 0.18 

4 90.6 44.2 90.0 15.5 100 36.2 0.788 28.1 12.5 30.5 0.2 0.11 

𝑄 = 2 

1 59.6 20.6 19.9 2.8 91.6 49.2 0.831 0.4 9.9 25.5 5.6 1.41 

2 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

3 89.8 39.0 83.8 12.7 54.8 40.0 0.443 19.8 12.0 29.6 1.3 0.34 

4 90.3 42.7 89.8 15.6 51.8 37.3 0.407 25.7 12.4 30.3 0.6 0.18 
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Figure 9.8 Sensitivity of performance measures to request spread (𝝈) of 1, 2, 3, and 4 miles 

for aircraft with capacities of 1 and 2  
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The closer the requests are spread around the centroid, and therefore, the lower is 𝜎, the 

higher is the chance of eliminating the short empty distances and consolidating the demand. Table 

9.21 summarizes the performance measures associated with UAT operator revenue and costs as 

well as user experience for request spread (𝜎) of 1, 2, 3, and 4 miles with 𝑄 = 1 and 2, while Figure 

9.8 depicts the sensitivity of select performance measures to 𝜎. 

In this experiment, the ground speed of 20 mph and maximum acceptable delay of 15 

minutes suggests that the requests could be relocated within an approximate radius of 5 miles. 

However, the access distance is capped at 3 miles (i.e., 10% of one edge). Consequently, as shown 

in Figure 9.8(c), at 𝜎 = 3 and 4 miles, the load factor is slightly over 50%, implying that only a 

few flights are pooled. At 𝜎 = 1 mile, the load factor increase to more than 90%. 

Figure 9.8(a) shows that decreasing 𝜎 from 4 miles to 1 reduces the rejection of the request 

by nearly 10% for 𝑄 = 1. However, the noticeable benefit is seen for the capacity of 2, where the 

percentage of requests gets close to zero, resulting from the high number of shared flights. 

Moreover, low request spread and demand consolidation lead to a 2-minute reduction in the 

average trip delay per passenger and aircraft utilization of 60% at 𝜎 = 1 and 𝑄 = 2. 

Figure 9.8(e) and (f) depict the percentage of empty to revenue flight and empty to revenue 

mileage, respectively. The elimination of short repositioning flight legs depends on the distance 

between the destination of one request to the origin of another. As a result, lower 𝜎 would provide 

higher opportunities for the elimination of short repositioning legs. The percentage of empty to 

revenue flights could vary between 20 and 90%, while the percentage of empty to revenue mileage 

could vary between 2.8% and 16%, depending on the spread.  
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9.4.3 Driving Speed (𝝂𝑫𝑹𝑰𝑽𝑬)  

Figure 9.9 Sensitivity of performance measures to ground speed (𝝂𝑫𝑹𝑰𝑽𝑬) of 10, 20, and 30 

mph for aircraft with capacities of 1 and 2  
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Table 9.22 Impacts of ground speed (𝝂𝑫𝑹𝑰𝑽𝑬 ) on performance measures associated with 

operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

10 90.7 41.1 70.1 8.8 100 38.2 0.838 23.2 12.1 29.8 1.3 0.32 

20 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

30 91.0 41.1 69.2 8.7 100 38.4 0.838 22.9 11.7 28.9 0.5 0.34 

𝑄 = 2 

10 89.9 39.0 70.2 9.1 52.9 39.9 0.442 19.7 12.0 29.6 1.9 0.41 

20 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

30 82.6 29.5 63.5 8.3 68.7 47.9 0.582 3.4 10.2 25.7 2.5 0.85 

Ground speed would significantly impact access time and, therefore, relocation of the 

passengers on the ground to eliminate short repositioning legs or to consolidate the demand. Table 

9.22 summarizes the performance measures associated with UAT operator revenue and costs as 

well as user experience for the ground speed (𝜈𝐷𝑅𝐼𝑉𝐸) of 10, 20, and 30 with 𝑄 = 1 and 2, while 

Figure 9.9 depicts the sensitivity of select performance measures to 𝜈𝐷𝑅𝐼𝑉𝐸. 

Figure 9.9 illustrates that for 𝑄 = 1, the performance measures are not sensitive to the 

driving speed. The reason is that with 𝑄 = 1, the ground transportation is within ∆𝐸𝑀𝑃𝑇𝑌= 1 mile 

(or a total of 2 miles for both the origin and destination), while 𝜈𝐷𝑅𝐼𝑉𝐸 = 10 mph and 𝜔 = 15 

minutes provide a 2.5-mile accessible radius on the ground. 
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Figure 9.9(c) shows that with the ground speed of 10 mph over euclidean distances, the 

average load factor is slightly over 50% for 𝑄 = 2, implying that decreasing the ground speed from 

20 mph to 10 mph will lead to nearly no demand consolidation since relocating the passengers on 

the ground is so slow that there cannot be moved in time while satisfying the maximum delay of 

𝜔 = 15 minutes. The average load factor could be increased to nearly 70% with a driving speed 

of 30 mph, highlighting the importance of fast and reliable ground-based transportation in the 

success of the proposed UAT concept of operations with demand consolidation. As a result of 

higher speed and demand consolidation, the rejection rate would decrease from 23.2% to 3.4%, 

and the aircraft utilization would decrease by around 8% for 𝑄 = 2.  

As seen in Figure 9.9(e) and Figure 9.9(f), the percentage of empty to revenue flights 

decreases nearly 7% by increasing 𝜈𝐷𝑅𝐼𝑉𝐸  from 10 mph to 30 mph for 𝑄 =  2, however, the 

percentage of empty to revenue mileage is not noticeably sensitive to the driving speed.  

Lastly, Table 9.22 shows that, with 𝑄 = 2, the average ground travel time is 1.9 minutes 

for 𝜈𝐷𝑅𝐼𝑉𝐸 =10 mph and 2.5 minutes for 𝜈𝐷𝑅𝐼𝑉𝐸 =30 mph, implying that the requests could be 

relocated to further distances on the ground to take a shared flight. Moreover, the average number 

of transfers doubles as the ground speed increases from 10 mph to 30 mph under 𝑄 = 2. 

9.4.4 Detour Factor (𝝐) 

The detour factor specifies how the flight distance deviates from the straight-line distance 

between the starting and ending point, and therefore, it directly impacts the flight service time. 

With a lower detour factor, the service time would decrease, and consequently, more requests 

could be served. Table 9.23 summarizes the performance measures associated with UAT operator 

revenue and costs as well as user experience for the detour factor (𝜖) of 0.05, 0.1, 0.15, and 0.2 

with 𝑄 = 1 and 2, while Figure 9.10 depicts the sensitivity of select performance measures to 𝜖.  
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Figure 9.10 Sensitivity of performance measures to detour factor (𝝐) of 0.2, 0.15, 0.1, and 0.05 

for aircraft with capacities of 1 and 2 
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Table 9.23 Impacts of detour factor (𝝐) on performance measures associated with operator’s 

cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

0.05 91.4 39.6 70.1 9.8 100 39.4 0.870 20.7 11.8 29.7 0.7 0.33 

0.10 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

0.15 90.7 42.8 69.5 8.2 100 37.3 0.806 25.0 11.8 28.7 0.7 0.33 

0.20 90.3 44.2 68.9 7.3 100 36.4 0.778 26.8 11.9 28.3 0.7 0.34 

𝑄 = 2 

0.05 84.2 29.7 66.3 9.2 65.8 47.7 0.578 3.8 10.7 27.4 3.2 0.77 

0.10 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

0.15 85.2 32.4 67.3 8.7 65.8 45.8 0.530 7.7 11.1 27.2 3.2 0.76 

0.20 85.4 33.7 67.4 8.3 65.8 44.9 0.510 9.6 11.2 27.1 3.2 0.76 

Table 9.23 shows that increasing the detour factor from 0.05 to 0.2 could increase the 

average total aerial mileage by at least 4 miles. Correspondingly, the percentage of empty to 

revenue mileage decreases, which seems to be due to high rejection rates at 𝜖 =  0.2. 

Additiontionally, as seen in Figure 9.10(a), the percentage of rejected requests decreases by nearly 

6% for both 𝑄 = 1 and 2. Nonetheless, the detour factor does not seem to have a significant impact 

on ground-based transportation, demand consolidation, and elimination of short repositioning legs. 



217 

 

9.4.5 Aerial Speed (𝝂𝑨𝑰𝑹)  

Figure 9.11 Sensitivity of performance measures to aerial speed (𝝂𝑨𝑰𝑹) of 100, 125, 150, and 

175 mph for aircraft with capacities of 1 and 2  
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Table 9.24 Impacts of aerial speed ( 𝝂𝑨𝑰𝑹 ) on performance measures associated with 

operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

100 89.9 40.7 72.2 7.8 100 29.1 0.845 41.4 12.6 26.1 0.6 0.29 

125 90.6 41.0 70.9 8.5 100 34.0 0.840 31.6 12.3 28.1 0.7 0.31 

150 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

175 91.1 41.1 67.7 8.9 100 42.2 0.838 15.3 11.2 29.4 0.8 0.36 

𝑄 = 2 

100 88.4 31.5 72.6 8.6 64.9 36.9 0.546 25.7 12.2 25.4 2.9 0.68 

125 87.5 31.4 70.1 9.2 65.3 42.6 0.548 14.1 11.7 27.1 3.0 0.72 

150 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

175 79.6 30.6 62.3 7.8 66.0 48.7 0.561 1.8 9.8 26.4 3.3 0.81 

Table 9.24 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for aerial speed (𝜈𝐴𝐼𝑅) of 100, 125, 150, and 175 mph with 

𝑄 = 1 and 2, while Figure 9.11 depicts the sensitivity of select performance measures to the aerial 

speed. Aerial speed impacts the cruise time and, therefore, the service time. Consequently, a fleet 

with a higher aerial speed would serve more requests than a fleet with the same size but lower 

aerial speed. Increasing the aerial speed from 100 mph to 175 mph would decrease the rejection 

rate from 41.4% to 15.3% for 𝑄 = 1 and from 25.7% to 1.8% for 𝑄 = 2.  
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Higher aerial speed leads to a slightly higher average number of relocations and ground-

based travel time for both 𝑄 =  1 and 2 since serving more requests would provide more 

opportunities for demand consolidation. Increasing the aerial speed from 100 mph to 175 mph 

leads to a 1% increase in the average load factor. Therefore, even though more requests are served 

with higher aerial speed, the percentage of shared flights is uninfluenced. 

Two factors would impact the percentage of empty to revenue flights, depicted in Figure 

9.11(e). First, in a busy system with high utilization, the operator may have to reposition an aircraft 

from farther locations to meet the time constraints, while lower utilization suggests that more 

aircraft and flights would be available without violating the acceptable delay of the requests. 

Second, serving more requests means serving more flight legs, and therefore, more alternatives are 

available within the origin and destination of a request to eliminate short repositioning flight legs. 

Consequently, the percentage of empty to revenue flights decreases by nearly 5% for 𝑄 = 1 in 

Figure 9.11(e), even though the utilization has not decreased. For 𝑄 = 2, the percentage of empty 

to revenue flights decreases by 10%, given the decrease in rejected requests and utilization. 
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9.4.6 Maximum Acceptable Delay (𝝎) 

Figure 9.12 Sensitivity of performance measures to maximum acceptable delay (𝝎) of 5, 10, 

15, and 20 minutes for aircraft with capacities of 1 and 2  
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Table 9.25 Impacts of maximum acceptable delay (𝝎) on performance measures associated 

with operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

5 85.0 41.3 71.0 8.9 100 35.1 0.836 29.6 4.1 12.7 0.7 0.30 

10 88.3 41.2 70.3 8.9 100 36.8 0.836 26.1 8.1 22.2 0.7 0.32 

15 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

20 92.7 41.0 69.1 8.6 100 39.5 0.839 20.6 15.6 34.9 0.8 0.34 

𝑄 = 2 

5 85.0 41.1 71.5 9.0 50.3 35.3 0.420 29.3 4.1 12.8 0.7 0.31 

10 86.8 37.1 70.6 9.4 55.7 40.1 0.464 19.4 7.9 21.9 1.4 0.49 

15 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

20 80.4 28.0 60.0 7.0 71.3 49.0 0.612 1.0 12.6 29.6 4.1 0.92 

Table 9.25 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for maximum acceptable delay (𝜔) of 5, 10, 15, and 20 minutes 

for 𝑄 = 1 and 2, while Figure 9.12 depicts the sensitivity of select performance measures to 𝜔. 

Increasing the maximum acceptable delay provides the UAT operator with more time to move the 

UAT aircraft to serve the requests. Additionally, the requests could be relocated to further distances 

on the ground in time to eliminate the short empty distances or consolidate the demand. As seen 

in Table 9.25, as 𝜔 increases, the average ground travel time and average number of relocations 



222 

 

increases. However, the increase is more significant for 𝑄 = 2 compared to 𝑄 = 1, since with the 

former the requests could be relocated within a 3-mile radius (i.e., Δ𝐴𝐶𝐶𝐸𝑆𝑆), while with the latter 

the requests could move with a 1-mile radius (i.e., Δ𝐸𝑀𝑃𝑇𝑌).  

Figure 9.12(a) shows that with 𝜔 = 5 minutes, 30% of the requests get rejected. However, 

increasing 𝜔  to 20 minutes in combination with demand consolidation (i.e., 𝑄 = 2) would 

decrease the rejection rate to 1%. Figure 9.12(c) shows that the average load factor for 𝜔 = 5 

minutes and 𝑄 = 2 is almost 50%, suggesting that the maximum accpetable delay of 5 minutes is 

too short for the requests to be relocated on the ground for demand consolidation. As 𝜔 increases 

to 20 minutes, the average load factor increases to 70%. 

Figure 9.12(d) illustrates the utilization of the UAT aircraft. With 𝑄 = 1, as 𝜔 increases, 

more aircraft could be dispatched in time to serve the increasing number of requests. However, 

with 𝑄 = 2, having a maximum acceptable delay of 15 and 20 minutes prompts more air pooling. 

Consequently, the system becomes less busy, and the aircraft utilization for 𝜔 = 20 minutes 

decreases to 80%. 

Figure 9.12(b) demonstrates that the average trip delay decreases with increasing the 

maximum acceptable delay. While the relationship between average trip delay and the maximum 

acceptable delay is linear for 𝑄 = 1, for 𝑄 =  2, the rate of increase in average trip delay is 

decreasing, which could be attributed to the decreasing utilization. 

Figure 9.12(e) shows that, with the decreasing utilization for 𝑄 = 2, the percentage of 

empty to revenue flights decreases by 11.5%, from 71.5% at 𝜔 = 10  to 60% at 𝜔 =  20. 

Correspondingly, the percentage of empty to revenue mileage decreases by 2.4% in Figure 9.12(f).  
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9.4.7 Maximum Reservation Time Window (𝓣𝑨𝑫𝑽)  

Figure 9.13 Sensitivity of performance measures to the maximum of the reservation time 

window (𝓣𝑨𝑫𝑽) of 1, 5, 10, 20, 30, 40, and 60 minutes for aircraft with capacities of 1 and 2  
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Table 9.26 Impacts maximum of advance reservation time window (𝓣𝑨𝑫𝑽) on performance 

measures associated with operator’s cost and revenue and user inconvenience for 𝑸 = 1 and 

2 
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𝑄 = 1 

1 85.2 41.5 71.7 8.8 100 34.7 0.836 30.7 14.5 34.3 0.6 0.28 

5 85.7 41.5 71.5 9.0 100 35.0 0.835 30.0 14.2 33.7 0.6 0.29 

10 86.6 41.4 70.6 9.0 100 35.6 0.835 28.7 13.8 32.9 0.7 0.30 

20 89.7 41.2 70.2 8.8 100 37.4 0.838 24.9 12.7 30.9 0.7 0.32 

30 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

40 91.7 41.1 69.3 8.8 100 39.1 0.838 21.3 11.1 27.7 0.8 0.35 

60 90.7 41.1 68.9 8.7 100 39.6 0.839 20.2 10.7 26.9 0.8 0.35 

𝑄 = 2 

1 82.8 33.5 71.9 9.4 62.0 41.6 0.516 16.8 13.9 33.2 2.5 0.62 

5 83.4 33.1 71.4 9.8 62.8 42.5 0.521 14.9 13.5 32.5 2.6 0.64 

10 83.6 32.5 70.4 9.8 63.7 43.4 0.530 12.7 13.0 31.6 2.8 0.67 

20 84.7 31.7 68.1 9.6 65.0 45.5 0.542 8.4 11.9 29.5 3.0 0.72 

30 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

40 84.3 30.6 65.5 8.5 66.4 47.6 0.561 4.1 10.1 25.5 3.3 0.80 

60 82.0 30.0 63.3 8.0 67.3 48.2 0.571 2.7 9.7 24.6 3.5 0.85 

Table 9.26 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for the maximum of the reservation time window (𝒯𝐴𝐷𝑉) of 1, 

5, 10, 20, 30, 40, and 60 minutes for aircraft with 𝑄 = 1 and 2, while Figure 9.13 depicts the 
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sensitivity of select performance measures to 𝒯𝐴𝐷𝑉. Knowing the requests ahead of their desired 

service time provides the UAT operator with more opportunities for efficient routing of the aircraft 

and demand consolidation. Consequently, as shown in Table 9.26, increasing 𝒯𝐴𝐷𝑉  results in 

higher average ground travel time and number of relocations per request.  

Figure 9.13(a) shows that increasing 𝒯𝐴𝐷𝑉  from 1 minute to 60 minutes decreases the 

percentage of rejected requests by nearly 10% for 𝑄 = 1 and 14% for 𝑄 = 2. However, the benefits 

are diminishing, showing no noticeable improvements beyond the maximum of 40-minute advance 

notice. Figure 9.13(c) depicts the average load factor increases by 5% under 𝑄 = 2. 

Figure 9.13(e) shows that the percentage of empty to revenue flight decreases by nearly 

2.8% and 8.6% for 𝑄 = 1 and 𝑄 = 2, respectively. Figure 9.13(f) depicts that the percentage of 

empty to revenue mileage does not go under a noticeable change for 𝑄 = 1, while it varies 1.8% 

for 𝑄 = 2. 

9.4.8 Ratio of Revenue per Passenger Mile to Cost per Mile (𝜶/𝜷) 

Table 9.27 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for the ratio of revenue per passenger mile (𝛼) to cost per mile 

(𝛽) of 1.2, 1.5, 2, 2.5, 3, and 4 for aircraft with 𝑄 = 1 and 2, while Figure 9.14 depicts the 

sensitivity of select performance measures to 𝛼/𝛽. 

Without passenger pooling, serving requests are profitable as long as 𝛼𝑞𝑟𝐷𝑟
𝑂𝐷 ⪆

1.1𝛽(𝐷𝑟
𝑂𝐷 + �̅�𝑟

0), where 𝐷𝑟
𝑂𝐷 is the OD distance of the request 𝑟 and is approximately equal to the 

revenue mileage for serving request 𝑟, 𝑞𝑟 = 1 is the group size of the request, �̅�𝑟
0 denotes the 

empty repositioning mileage for serving request 𝑟, and 1.1 converts the geodesic distances on the 

ground to the aerial distance by taking into account the 0.1 detour factor.  
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Figure 9.14 Sensitivity of performance measures to the ratio of revenue per passenger mile 

to cost per mile (𝜶/𝜷) of 1.2, 1.5, 2, 2.5, 3, and 4 for aircraft with capacities of 1 and 2  
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Table 9.27 Impacts of the ratio of revenue per passenger mile to cost per mile (𝜶/𝜷) on 

performance measures associated with operator’s cost and revenue and user experience for 

𝑸 = 1 and 2 
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𝑄 = 1 

1.2 82.8 39.4 52.5 3.3 100 36.6 0.884 27.2 9.9 24.9 1.1 0.52 

1.5 89.3 39.7 66.5 5.6 100 38.3 0.863 22.5 11.1 27.6 0.8 0.37 

2.0 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

2.5 91.7 42.0 71.7 11.5 100 37.9 0.817 23.4 12.2 30.0 0.7 0.31 

3.0 91.7 42.1 72.2 12.0 100 37.8 0.814 23.5 12.2 30.1 0.7 0.30 

4.0 91.8 42.2 72.0 12.2 100 37.8 0.812 23.6 12.2 30.1 0.7 0.31 

𝑄 = 2 

1.2 73.7 29.0 54.9 4.1 67.6 43.3 0.595 13.3 9.8 24.8 3.7 0.89 

1.5 81.7 30.0 63.6 6.6 66.3 46.1 0.570 6.9 10.5 26.4 3.3 0.80 

2.0 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

2.5 86.7 32.0 69.0 11.0 65.0 46.6 0.536 5.7 11.3 28.1 3.1 0.73 

3.0 87.1 32.2 69.1 11.4 64.7 46.5 0.532 6.0 11.3 28.3 3.0 0.72 

4.0 87.2 32.3 69.6 11.6 64.6 46.4 0.529 6.2 11.3 28.3 3.0 0.72 

Consequently, 𝛼/𝛽 =1.2 implies that serving a request without passenger pooling is 

profitable if 0.09𝐷𝑟
𝑂𝐷 ⪆ �̅�𝑟

0 . Considering the configuration of the synthetic network with the 

demand generated around four centroids on the vertices of a square with a 30-mile edge, the value 

of 𝛼/𝛽 = 1.2 would prevent the repositioning of the aircraft from one vertex to another to serve a 
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request. Therefore, the served requests are closer to each other under 𝛼/𝛽 = 1.2, which provides 

more opportunities for short legs elimination and demand consolidation. As 𝛼/𝛽  increases, 

serving requests with higher empty to revenue mileage become profitable.  

Table 9.27 verifies that with an increase in 𝛼/𝛽 the percentage of empty to revenue flights 

and empty to revenue mileage increases, while the average ground travel time, the number of 

relocations, and the load factor (for 𝑄 = 2) decreases. Additionally, the percentage of the rejected 

request is highest at 𝛼/𝛽 =1.2, with 27.2% for 𝑄 = 1 and 13.3% for 𝑄 =2. Even though the 

percentage of rejected requests decreases as 𝛼/𝛽 increases from 1.2, it reaches its lowest value at 

𝛼/𝛽 =1.5 and 2.5 for 𝑄 = 1 and 2, respectively.  

Furthermore, Figure 9.14(f) shows that for 
𝛼

𝛽
≥ 2.5, the percentage of empty to revenue 

mileage is around 12%. However, for 
𝛼

𝛽
< 2.5, this value could significantly decrease to 3.3%. 

9.4.9 Ratio of Relocation Cost to Cost per Mile (𝜸𝟏/𝜷) 

Table 9.28 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for the ratio of relocation cost to cost per mile (𝛾1/𝛽) of 0, 1, 

2, 5, and 10 for aircraft with 𝑄 = 1 and 2, while Figure 9.15Figure 9.16 depicts the sensitivity of 

select performance measures to 𝛾1/𝛽. The value of 𝛾2 is set to 2 in this experiment. The results show 

that increasing 𝛾1/𝛽 from 0 to 1 increases the percentage of empty to revenue flights by nearly 4 to 

5%, while at 𝛾1/𝛽 = 2, the percentage of empty to revenue flights increases to 80%. The other 

performance measures are almost insensitive to increasing 𝛾1/𝛽 from 0 to 2. 
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Figure 9.15 Sensitivity of performance measures to the ratio of relocation cost to cost per 

mile (𝜸𝟏/𝜷) of 0, 1, 2, 5, and 10 for aircraft with capacities of 1 and 2  
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Table 9.28 Impacts of the ratio of the relocation cost to cost per mile (𝜸𝟏/𝜷) on performance 

measures associated with operator’s cost and revenue and user experience for 𝑸 = 1 and 2 
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𝑄 = 1 

0 91.0 41.1 69.7 8.8 100 38.2 0.8 22.4 11.8 29.2 0.7 0.33 

1 91.1 41.2 73.6 9.0 100 38.1 0.8 22.8 11.8 29.2 0.6 0.28 

2 91.2 41.2 79.4 9.1 100 37.9 0.8 23.0 12.1 29.7 0.5 0.21 

5 91.5 41.4 89.7 9.6 100 37.5 0.8 23.8 12.3 30.1 0.2 0.11 

10 91.6 41.6 92.8 10.0 100 37.3 0.8 24.2 12.4 30.3 0.2 0.08 

𝑄 = 2 

0 84.3 31.0 66.3 8.9 65.8 46.4 0.6 5.7 10.9 27.4 3.2 0.77 

1 84.5 31.1 71.9 8.9 65.7 46.2 0.6 6.0 11.0 27.5 3.1 0.71 

2 85.2 31.2 79.8 9.2 65.7 46.2 0.6 5.9 11.1 27.8 2.9 0.64 

5 86.5 31.6 92.3 9.9 65.3 45.9 0.5 6.6 11.4 28.4 2.6 0.53 

10 89.5 33.4 95.1 9.5 61.2 44.8 0.5 8.8 11.7 29.0 2.0 0.41 

Table 9.29 shows how the percentage of requests with 0, 1, and 2 relocations varies with 

𝛾1/𝛽. As a result of increasing 𝛾1/𝛽 from 0 to 1, the percentage of requests with 2 relocations 

becomes 0. At 𝛾1/𝛽 = 10, 92.4% of the requests have 0 relocation, impacting the average load 

factor. Additionally, the percentage of connecting flight legs decreases to around 7% since the cost 

is high that relocating the passengers to eliminate the short repositioning legs is not beneficial. 
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Table 9.29 Impacts of the ratio of the relocation cost to cost per mile (𝜸𝟏/𝜷) on performance 

measures associated with relocations 

𝜸𝟏/𝜷 

Percentage 

of 

Requests 

with 0 

Relocation 

(%) 

Percentage 

of 

Requests 

with 1 

Relocation 

(%) 

Percentage 

of Requests 

with 2 

Relocations 

(%) 

Mean of 

Empty 

Flight 

Mileage 

(mi) 

Percentage 

of 

Connecting 

Flights to 

Revenue 

Flights (%) 

𝑄 = 1 

0 69.3 28.1 2.6 4.8 30.7 

1 72.4 27.6 0.0 4.6 27.6 

2 78.7 21.3 0.0 4.3 21.3 

5 89.4 10.6 0.0 4.0 10.6 

10 92.4 7.6 0.0 4.1 7.6 

𝑄 = 2 

0 49.2 25.0 25.8 5.0 35.3 

1 52.7 23.9 23.3 4.7 30.7 

2 58.7 18.4 22.9 4.3 22.9 

5 69.1 8.6 22.3 4.0 9.8 

10 76.4 6.4 17.2 3.7 6.6 

9.4.10 Boarding and Deboarding Duration (𝑻𝑩𝑶𝑨𝑹𝑫, 𝑻𝑫𝑬𝑩𝑶𝑨𝑹𝑫)  

Table 9.30 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for boarding and deboarding duration (𝑇𝐵𝑂𝐴𝑅𝐷 , 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷) of 

(2,1), (3,2), (5,3), and (8,5) for aircraft with 𝑄 = 1 and 2, while Figure 9.16 depicts the sensitivity 

of select performance measures to 𝑇𝐵𝑂𝐴𝑅𝐷 and 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷.  Decreasing the boarding and 

deboarding time would decrease the flight service time. As seen in Figure 9.16 and Table 9.30, 

with (𝑇𝐵𝑂𝐴𝑅𝐷, 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 ) = (8,5) the rejection rate is 41.3% and 25.5% for 𝑄 =  1 and 2, 

respectively. However, with (𝑇𝐵𝑂𝐴𝑅𝐷, 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷) = (2,1), the rejection rate reduces to 16.6% and 

2.5% for 𝑄 = 1 and 2, respectively. 
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Figure 9.16 Sensitivity of performance measures to boarding and deboarding duration 

(𝑻𝑩𝑶𝑨𝑹𝑫, 𝑻𝑫𝑬𝑩𝑶𝑨𝑹𝑫) of (2, 1), (3, 2), (5, 3), and (8, 5) minutes for aircraft with capacities of 1 

and 2  
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Table 9.30 Impacts of boarding and deboarding duration ( 𝑻𝑩𝑶𝑨𝑹𝑫, 𝑻𝑫𝑬𝑩𝑶𝑨𝑹𝑫 ) on 

performance measures associated with operator’s cost and revenue and user experience for 

𝑸 = 1 and 2 
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𝑄 = 1 

(2,1) 90.9 41.0 68.0 8.6 100 41.5 0.840 16.6 11.2 29.5 0.8 0.36 

(3,2) 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

(5,3) 90.9 41.3 71.5 9.1 100 34.4 0.835 30.9 12.3 28.1 0.7 0.31 

(8,5) 90.4 41.5 73.8 9.5 100 29.2 0.831 41.3 12.7 25.9 0.6 0.28 

𝑄 = 2 

(2,1) 80.3 30.7 62.7 8.0 66.0 48.4 0.560 2.5 10.0 26.8 3.3 0.81 

(3,2) 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

(5,3) 87.9 31.6 70.7 10.0 65.4 43.0 0.543 13.3 11.7 27.1 3.0 0.72 

(8,5) 89.0 32.1 74.1 10.3 64.8 37.1 0.537 25.5 12.3 25.3 2.8 0.67 

As the boarding and deboarding duration decreases, more requests are served, and aircraft 

utilization decreases. Consequently, there is a slight increase in the average load factor under 𝑄 = 

2 (1.2% ), average ground travel time, and the average number of relocations. Furthermore, Figure 

9.16(e) depicts the percentage of empty to revenue flights decreases by 5.8% and 11.4% for 𝑄 =

1 and 𝑄 = 2, respectively, as (𝑇𝐵𝑂𝐴𝑅𝐷 , 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷) decreases from (8,5) to (2,1), while Figure 

9.16(f) demonstrates a decrease of 0.9% and 2.3% for 𝑄 = 1 and 𝑄 = 2, respectively. 
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9.4.11 Arrival and Departure Gate Access Time (𝑻𝒓𝒊
𝑫𝑮𝑨𝑻𝑬, 𝑻𝒓𝒊

𝑨𝑮𝑨𝑻𝑬) 

Figure 9.17 Sensitivity of performance measures to arrival and departure gate access 

duration (𝑻𝒓𝒊
𝑫𝑮𝑨𝑻𝑬, 𝑻𝒓𝒊

𝑨𝑮𝑨𝑻𝑬) of (3, 2), (5, 4), and (10, 8) minutes for aircraft with capacities of 

1 and 2 
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Table 9.31 Impacts of arrival and departure gate access duration (𝑻𝒓𝒊
𝑫𝑮𝑨𝑻𝑬, 𝑻𝒓𝒊

𝑨𝑮𝑨𝑻𝑬 ) on 

performance measures associated with operator’s cost and revenue and user experience for 

𝑸 = 1 and 2 
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𝑄 = 1 

(3,2) 91.1 41.2 70.1 8.9 100 38.4 0.837 22.9 11.8 29.2 0.7 0.33 

(5,4) 90.8 41.1 69.6 8.8 100 38.4 0.838 22.8 11.8 26.5 0.7 0.33 

(10,8) 90.0 41.1 69.3 8.8 100 38.5 0.838 22.7 11.8 22.1 0.7 0.33 

𝑄 = 2 

(3,2) 85.0 31.2 66.9 9.1 65.7 46.7 0.551 5.8 10.9 27.4 3.2 0.76 

(5,3) 84.6 31.1 66.2 9.0 65.9 46.9 0.553 5.4 10.9 24.7 3.2 0.77 

(8,5) 83.8 31.0 65.6 9.1 66.0 47.0 0.554 5.2 10.9 20.6 3.2 0.77 

Table 9.31 summarizes the performance measures associated with UAT operator revenue 

and costs as well as user experience for arrival and departure gate access duration 

(𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 , 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸) of (3, 2), (5, 4), and (10, 8) for aircraft with 𝑄 = 1 and 2, while Figure 9.17 

depicts the sensitivity of select performance measures to 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸  and 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸 . As the results show 

the performance measures are insensitive to the value of 𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸  and 𝑇𝑟𝑖

𝐴𝐺𝐴𝑇𝐸 . However, these 

values impact the total trip time and, therefore, the UAT demand. 
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9.5 Concluding Remarks 

Urban air taxi (UAT) is the envisioned use case of passenger Urban Air Mobility (UAM) 

in its mature state. Given the ubiquitous operations of UAT, pooling the passengers and increasing 

the aircraft load factor is deemed as a critical step in the success of UAT operations. However, the 

absence of a dominant eVTOL aircraft technology and UAT operator feeds the uncertainty around 

UAT. To this end, we examine the impacts of various exogenous and design parameters on-

demand consolidation using a dynamic solution framework through an event-based discrete-event 

simulation. 

The runtime of the proposed policy suggests that CLARPTW-SRE could be employed in 

real time to address the UAT fleet operation problem. However, the maximum accessible distance 

(∆𝐴𝐶𝐶𝐸𝑆𝑆), the minimum of repositioning distance (∆𝐸𝑀𝑃𝑇𝑌), the maximum acceptable delay (𝜔), 

and the maximum of the reservation time window (𝒯𝐴𝐷𝑉) significantly impact the problem size 

and runtime. For narrow time windows, the routing would be limited to 1-3 flight legs, which could 

be solved quickly. The shorter is ∆𝐸𝑀𝑃𝑇𝑌, the fewer is the number of connecting flight legs. Finally, 

limiting ∆𝐴𝐶𝐶𝐸𝑆𝑆  and 𝜔  would limit the number of requests that should be evaluated for 

assignment to different flight legs. 

To provide an acceptable level of service and meaningful travel time savings that warrant 

the choice of UAT, the operator guarantees to limit the delay incurred due to wait times and 

relocations. The results show that providing service with short delays while relocating passengers 

on the ground hinges on fast and reliable ground-based transportation. For the synthetic network 

used in this study, increasing the driving speed from 10 mph to 20 mph results in a 14% increase 

in the average load factor. However, achieving the ground speed of 20 mph over short distances 

might be challenging, particularly in downtown areas of a densely populated city. A study on travel 
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time variability in Chicago using the data of transportation network providers (TNPs) shows that 

the OD pairs with high travel time variability are primarily located in the downtown area and have 

an average distance of nearly 3 miles [143]. Using the TNPs data in Chicago, the average speed 

over Euclidean distances smaller than 3 miles is 9 mph.  

Another significant factor in demand consolidation is the spread of the demand. For the 

given experiment with the driving speed of 20 mph and the maximum delay of 15 minutes, 

reducing the standard deviation of the Gaussian distribution of requests around the centroids from 

2 miles to 1 results in a 25% increase in average load factor. Closely spread demand would result 

in the average load factor of 90%, which is well beyond the range of 50%-80% estimated in 

[8,141]. Nonetheless, ground speed and demand spread, as the highly influential factors in demand 

consolidation, are exogenous information and are primarily beyond the control of the UAT 

operator. However, special attention should be given to these factors when selecting the passenger 

UAM market, particularly in the initial stages of the operation. Moreover, placing the UAM ports 

in locations that could provide a short and reliable ground access time to a dense and closely spread 

demand is another challenge facing the passenger-carrying UAM operations in the early stages. 

Locating the UAM ports near highways or a high capacity public transit system could provide a 

high access speed or a high demand density; however, whether they can provide both is highly 

dependent on the specific UAM market under consideration. 

Among the design parameters, aerial speed is an influential factor in reducing the rate of 

rejection requests. However, it has minimal impacts on the demand consolidation and average load 

factor. The results suggest that a similar rejection rate could be achieved whether using high-speed 

aircraft with no demand consolidation or low-speed aircraft with demand consolidation, 



238 

 

highlighting the value of the air pooling concept in developing and selecting the aircraft 

technology. 

Increasing the reservation time window and maximum allowed delay decreases rejection 

rates and increases the average load factor. For the synthetic network in this study, the analysis 

suggests no noticeable improvements beyond the maximum of 40-minute advance notice. That 

being said, when the maximum acceptable delay is long enough to allow the UAT operator to 

move the customers on the ground for demand consolidation and the UAT aircraft in the network 

to serve them, the UAT operator could immediately serve the requests with no advance notice 

required. Consequently, the maximum acceptable delay has a noticeable impact on the average 

load factor. However, the maximum acceptable delay cannot be increased to the point that it 

diminishes the travel time savings.  

In the CLARPTW-SRE formulation, the passenger delay is modeled as a soft constraint, 

and therefore, the passenger’s delay is not explicitly minimized. Consequently, even with aircraft 

utilization of 40%, the average delay is about 10 minutes per passenger. Furthermore, the results 

highlight how increasing the maximum of reservation time window from 1 minute to 60 minutes 

would decrease the average delay by almost 4 minutes, a 26% reduction in delay. 

Lastly, it is worth noting that the sensitivity analyses are conducted with a fixed demand, 

which is not dependent on the service time. However, factors such as the detour factor, aerial 

speed, and access time directly impact the service time and trip time savings, which changes the 

UAT demand. Nonetheless, given the long distances covered in the synthetic network, the 

passengers would benefit from choosing UAT even under worst-case scenarios. 
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Chapter 10 Numerical Experiments: Chicago Network 

10.1 Overview 

This chapter implements the proposed operational policy with CLARPTW-SRE in the 

Chicago network. The UAT demand for this experiment is estimated based on the Transportation 

Network Providers (TNP) data in Chicago using a simplified rule-based mode choice model. 

Subsequently, the experiments are designed by randomly selecting a specified fraction of the 

eligible TNP demand over 5 replications. An in-depth analysis is provided for one day of UAT 

operation in Chicago, and a more concise analysis is provided for a week. 

In the following sections, we first present the mode choice model used to estimate UAT 

demand. We subsequently introduce the TNP data for Chicago. Afterward, the experiment design 

is discussed, and ultimately, the numerical results for the one day and one week of UAT operations 

are reviewed. 

10.2 Mode Choice Model 

We use a simplified rule-based mode choice model to estimate the UAT demand in this 

dissertation. Multiple market studies project that the minimum distance for passenger UAM trips 

would be around 10 miles [9,19]. Meanwhile, Booz Allen Hamilton’s market study [8] finds no 

significant demand for mandatory (i.e., work-related) trips that take less than 30 minutes on the 

ground. Furthermore, they assert that most of the UAM demand is captured for trips that are at 

least 45 minutes on the ground. Consequently, we qualify a trip for the UAT mode when the 

following rules are satisfied: 

1. The distance between the origin and destination of the trip is at least 10 miles (i.e.,  

Δ𝑂𝐷 = 10 miles); 
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2. The trip would take at least 45 minutes using ground-based transportation. 

Furthermore, Uber Elevate [23] assumes that a UAM trip should be at least 40% faster than 

the corresponding ground-based trip, while Porsche Consulting [6] suggests UAM needs to offer 

at least 20% travel time savings to be competitive with other modes. Therefore, we compare the 

travel time savings for the UAT demand in the experiments against these numbers. 

Ultimately, a fraction of the qualified TNPs demand would use UAT as their mode of 

travel. In other words, the probability of choosing UAT is 𝜂 < 1. 

10.3 Chicago TNP Data 

Trip data of Transportation Network Provider (TNP) (also known as ridesharing 

companies) for Chicago [144] includes more than 128.7M trips from 2018-11-01 to 2019-12-31. 

The dataset includes pick-up and drop-off census tract and their coordinates, trip travel time in 

seconds, trip distance in miles, and trip start and end time, among other attributes.  

Chicago has approximately 800 census tracts, ranging from about 89,000 square feet (i.e., 

0.003 square miles) to eight square miles [145]. These census tracts have a population of about 

1200 households, or 2000-4000 people [146]. For privacy reasons, the available data is 

anonymized by projecting the origin and destination of trips to the centroid of their corresponding 

census tracts in addition to rounding the start and end time of the trips to its nearest 15 minutes. 

Therefore, the pick-up and drop-off locations and times cannot be known with precision beyond a 

15-minute time interval and an 89,000 square foot (approximately 8,270 square meters) area [145]. 

Pick-up and drop-off census tracts are often left blank if the location is outside of Chicago [144]. 

Additionally, if either the pickup or drop-off census tract of a trip has fewer than three trips over 

the 15 minutes period, both census tracts are left blank in the dataset [147].  
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Trips with missing values for pickup and drop-off census tracts and coordinates, start and 

end time, trip time, and trip distance are excluded, which reduces the number of trips to nearly 

86.4M. To cover the trips that might benefit from UAT, we consider trips that are at least 10 miles 

[9] and take at least 45 minutes on the ground [8]. As a result, the number of trips reduces to nearly 

1.99M. 

Like many real-world datasets, Chicago TNP data should be cleaned up to remove 

erroneous and missing inputs. As an example of invalid entries, 106 trips have zero travel distance. 

After filtering out the trips based on unreasonable trip distance, trip time, travel speed, and the 

difference between trip distance and geodesic distance, the number of trips drops to nearly 1.94M. 

Table 10.1 summarizes travel time, trip distance, Geodesic distance, and speed of the 

qualified TNP demand for UAT service. The mean travel speed is 20.0 mph with a mean travel 

time of 57.6 minutes, respectively. Figure 10.1 depicts the travel time distribution over 4 ranges 

of geodesic distances. Similarly, Figure 10.2 and Figure 10.3 illustrate the travel speed and 

geodesic speed (i.e., speed over geodesic distance). 

Table 10.1 Summary of qualified Chicago TNP trips for UAT service 

 

 Geodesic 

Distance (mi) 

Trip Distance 

(mi) 

Travel Time 

(min) 

Travel Speed 

(mph) 

Min 10.0 10.1 45.0 5.6 

25th percentile 13.5 16.8 49.3 16.9 

Median 15.3 18.1 54.7 19.5 

Mean 14.8 18.8 57.6 20.0 

75th percentile 15.8 19.8 63.0 22.4 

Max 28.8 41.6 120.0 51.2 
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Figure 10.1 Boxplots of travel time over geodesic distance ranges 

Figure 10.2 Boxplots of travel speed over geodesic distance ranges 
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Figure 10.4 illustrates the spatial distribution of the qualified TNP demand for UAT 

service. The grey polygons outline 801 census tracts in Chicago, while the lines show the trips 

between origin and destination census tracts. Thicker lines imply a higher number of trips. The 

majority of trips are between O’Hare International Airport, Midway International Airport, and 

downtown Chicago. Five and one census tracts, respectively, are the origins and destinations of 

50% of the qualified TNP demand, while 50 and 25 census tracts account for 80% of the origins 

and destinations of qualified TNP demand. 

Given the parameters assumed in Section 10.4.2, the desired trip time, where the requests 

are served immediately without ground transportation, and subsequently, the maximum travel time 

savings, are calculated for the TNP trips. Table 10.2 shows that for the nearly 1.94M TNP trips, 

the mean of maximum travel time saving is 37.7 minutes with a minimum of 24.7 minutes. The 

Figure 10.3 Boxplots of geodesic speed over geodesic distance ranges 
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mean of maximum travel time saving percentage is 66.5%, which is higher than 20% suggested 

by Porsche Consulting [6] and 40% suggested by Uber Elevate [23].  

The maximum of total travel time savings is nearly 1.25M hours over 14 months. The 

minimum wage for the City of Chicago, effective July 1st 2019 to July 1st 2020, is $13.00 per hour 

Figure 10.4 Spatial distribution of the qualified TNP demand for UAT service 
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[148]. Therefore, the value of maximum travel time savings is estimated at USD 16.2M under an 

unconstrained (i.e., best-case) scenario.  

Table 10.2 Summary of maximum travel time saving for Chicago TNP trips for UAT service 

Figure 10.5 and Figure 10.6 depict the distribution of travel time saving and travel time 

saving percentage under the best-case scenario. As expected, the mean of travel time saving 

increases with the distance between the origin and destination. 

  

 Travel Time Saving (min) Travel Time Saving Percentage (%) 

Min 24.7 54.9 

25th percentile 30.5 61.9 

Median 35.9 65.5 

Mean 37.7 66.5 

75th percentile 43.9 69.8 

Max 98.6 82.6 

Figure 10.5 Maximum travel time savings over geodesic distance range 
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10.4 Experiment Design 

10.4.1 Simulation Design 

The simulation for UAT operation in Chicago is terminating (also referred to as transient 

or non-stationary). In terminating simulations, the initial state of the system at time 0 is well 

specified, and the simulation ends either with stopping event 𝓋𝐸𝑁𝐷 or at stopping time 𝔗𝐸𝑁𝐷𝑆𝐼𝑀. 

Let 𝔗𝑆𝑇𝑅𝑇𝐴𝑅𝑉 = min
𝑟∈ℛ𝐴𝑅𝑉

𝜏𝑟
𝐴𝑅𝑉 and 𝔗𝐸𝑁𝐷𝐴𝑅𝑉 = max

𝑟∈ℛ𝐴𝑅𝑉
𝜏𝑟
𝐴𝑅𝑉 denote the start and end of the request 

arrival period. Subsequently, the simulation starts with the start of the request arrival period (i.e., 

𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀 = 𝔗𝑆𝑇𝑅𝑇𝐴𝑅𝑉) and ends when all the requests are served. Each experiment is replicated 

five times, where the stochasticity stems from the customer requests and the initial locations of the 

UAT aircraft.  

The trip start time in Chicago TNP data is anonymized by rounding it to the nearest 15-

minute intervals. Consequently, we estimate the original trip start time by using the uniform 

Figure 10.6 Maximum travel time savings percentage over geodesic distance range 
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distribution with the range of [0, 15]. The requested service time for request 𝑟, 𝜏𝑟
𝑅𝐸𝑄

, is the same 

as the estimated trip start time. Let 𝔗𝑆𝑇𝑅𝑇𝑅𝐸𝑄  and 𝔗𝐸𝑁𝐷𝑅𝐸𝑄  denote the start and end of the 

requested time for service, which are specified by the UAT operator. To generate the requests, 𝜂% 

of the qualified UAT demand with 𝜏𝑟
𝑅𝐸𝑄 ∈ [𝔗𝑆𝑇𝑅𝑇𝑅𝐸𝑄 , 𝔗𝐸𝑁𝐷𝑅𝐸𝑄] are randomly drawn. 

 The arrival time of request 𝑟, i.e., 𝜏𝑟
𝐴𝑅𝑉, is calculated as 𝜏𝑟

𝑅𝐸𝑄 − 𝑇𝑟
𝐴𝐷𝑉 , where 𝑇𝑟

𝐴𝐷𝑉  is 

randomly drawn from a uniform distribution with the mean of 𝒯𝐴𝐷𝑉/2 and the range of [0, 𝒯𝐴𝐷𝑉]. 

When request 𝑟  arrives at time 𝜏𝑟
𝐴𝑅𝑉 , its attributes are defined by the vector 𝔸𝑟

𝑅𝐸𝑄 =

 (𝑶𝑟 , 𝑫𝑟 , 𝑺𝑟
𝐷𝑆𝑅𝐷, 𝑬𝑟

𝐷𝑆𝑅𝐷, 𝑞𝑟 , 𝜏𝑟
𝑅𝐸𝑄

), The origin, 𝑶𝑟, and destination, 𝑫𝑟, of 𝓇𝑟 are the same as the 

centroid of their corresponding census tracts. We assume the network is nearly ubiquitous, with 

almost 800 UAT pads. As a result, the desired pick-up and drop-off UAT pads of request 𝑟 

coincide with their origin and destination. In other words, 𝑺𝑟
𝐷𝑆𝑅𝐷 = 𝑶𝑟 and 𝑬𝑟

𝐷𝑆𝑅𝐷 = 𝑫𝑟. Lastly, it 

is assumed that the group size of each request is 1.  

Additionally, the fleet of UAT aircraft is homogenous, and therefore, their capacity and 

speed are denoted by Q and 𝜈𝐴𝐼𝑅, respectively. The state of UAT aircraft is presented by 𝑆𝑡
𝑒𝑉𝑇𝑂𝐿 =

(𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 , 𝜏𝑘𝑡

𝐴𝑉𝐿 , 𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝒬𝑘𝑡)𝒶𝑘∈𝒦 at 𝑡 = 𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀(i.e., the beginning of the planning horizon). The 

initial location of 𝒶𝑘 ∈ 𝒦 (i.e., 𝑳𝑘𝑡
𝐴𝑉𝐿 at time 𝑡 = 𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀) is randomly drawn from the centroids 

of census tracts using a categorical distribution, a discrete probability distribution with the weights 

equal to the probability of a centroid being chosen as a destination from TNP data. Furthermore, 

all the aircraft are idle and available at the beginning of the planning horizon, and there is no 

incomplete flight leg on their itinerary. In other words, 𝜏𝑘𝑡
𝐴𝑉𝐿 = 𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀, 𝜍𝑘𝑡

𝑒𝑉𝑇𝑂𝐿 = 0, and 𝒬𝑘𝑡 =

 ∅ for 𝑡 = 𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀. 
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10.4.2 Parameter Setting 

In this section, we present the parameters used in the experiments. Table 10.3 summarizes 

the design parameters associated with UAT operations. 𝛼/𝛽 = 5 in Chicago network implies that 

serving every request is profitable, and the requests will be rejected only if they are not feasible to be 

served. 𝒯𝐴𝐷𝑉 is 30 minutes, suggesting that the requests for UAT service, at the earliest, could be 

placed 30 minutes ahead of the desired time. The maximum delay due to schedule delay and ground-

based transportation is limited to 10 minutes, i.e., 𝜔 = 10 minutes. 

Table 10.3 Design parameters associated with UAT operation 

Parameter Symbol Value Unit 

Maximum of the reservation time window 𝒯𝐴𝐷𝑉 30 minutes 

Maximum acceptable delay 𝜔 10 minutes 

Ratio of revenue per passenger mile to cost per mile  𝛼/𝛽 5 - 

Ratio of the relocation cost to cost per mile 𝛾1/𝛽 0 - 

Start of requested time for service 𝔗𝑆𝑇𝑅𝑇𝑅𝐸𝑄 6:00  AM 

End of requested time for service 𝔗𝐸𝑁𝐷𝑅𝐸𝑄 6:59 PM 

Table 10.4 summarizes the parameters associated with the ingress and egress of the 

customers. The travel times between the UAT pads, which are located at the centroid of the census 

tracts, are calculated using the Chicago TNPs dataset. The data shows that the average speed over 

Euclidean distances smaller than 2 miles is 8.3 mph. Consequently, for the missing values of travel 

times, we choose the driving speed, i.e., 𝜈𝐷𝑅𝐼𝑉𝐸 , of 8.0 mph. We further assume that the maximum 

acceptable delay for the Chicago UAT service, i.e., 𝜔, is 10 minutes. 𝜈𝐷𝑅𝐼𝑉𝐸 = 8.0 mph and 𝜔 = 

10 minutes suggest that the maximum accessible distance on the ground from the origin or 

destination of the request is nearly 1.3 miles. Consequently, we set Δ𝐴𝐶𝐶𝐸𝑆𝑆 =  2 miles. The 

remaining parameters are similar to the ones specified in Section 9.2.3. 
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Table 10.4 Parameters associated with the ingress and egress of the customers 

Parameter Symbol Value Unit 

Maximum access distance Δ𝐴𝐶𝐶𝐸𝑆𝑆 2 miles 

Euclidean driving speed in the downtown area 𝜈𝐷𝑅𝐼𝑉𝐸 8 mph 

Maximum walking distance Δ𝑊𝐴𝐿𝐾 0.25 miles 

Walking speed 𝜈𝑊𝐴𝐿𝐾 3 mph 

Duration from ground transportation area to the departure gate  𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 3 minutes 

Duration from arrival gate to the ground transportation area 𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 2 minutes 

Table 10.5 Parameters associated with flight operation 

Parameter Symbol Value Unit 

Number of UAT aircraft 𝐾 100 - 

Minimum of Euclidean distance for repositioning flight Δ𝐸𝑀𝑃𝑇𝑌 0.5 miles 

Aerial speed 𝜈𝐴𝐼𝑅 150 mph 

Boarding duration 𝑇𝐵𝑂𝐴𝑅𝐷 3 minutes 

Deboarding duration 𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 2 minutes 

Departure clearance 𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 0.5 minutes 

Landing clearance 𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 0.5 minutes 

Hover ascend 𝑇𝐴𝑆𝐶𝐸𝑁𝐷 0.75 minutes 

Hover descend 𝑇𝐷𝐸𝑆𝐶𝐸𝑁𝐷 0.75 minutes 

Detour factor 𝜖 0.1 - 

The assumptions regarding the flight operation are presented in Table 10.5. The UAT 

operator has an aerial fleet with the size of 𝐾 = 100. The minimum Euclidean distance to justify a 

UAT repositioning flight, i.e., Δ𝐸𝑀𝑃𝑇𝑌, is set to 0.5 miles. With the average driving speed of 8 mph, 

ground-based transportation within 0.5 miles of both the origin and destination would take at most 

7.5 minutes, which is below the maximum acceptable delay of 10 minutes. This implies that while 

empty repositioning within 0.5 miles of a desired UAT pad is not allowed, the passengers could 

access these pads on the ground within the acceptable delay. The remaining parameters are similar 

to the ones specified in Section 9.2.3. 
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Consequently, the turnaround time, including boarding, deboarding, and take-off and 

landing clearance, is 6 minutes, consistent with the turnaround time estimated by Joby Aviation 

[18] (see Table 2.6). The overhead time of serving a flight leg, either empty or revenue-generating, 

includes hover ascend and descend and ATC clearance for the take-off and after the landing, which 

amounts to 2.5 minutes. If the flight leg serves passengers, an additional 5 minutes will be added 

to the flight service time. As a result, the overhead time of empty and revenue-generating flight 

legs are 2.5 and 7.5 minutes, respectively. 

As shown in Table 10.1, the average OD distance and travel time of qualified TNP data are 

14.8 miles and 57.6 minutes, respectively. Therefore, the average aerial distance is 16.3 miles (i.e., 

1.1× 14.8). Consequently, the average time for serving a revenue-generating flight leg is 14.0 

minutes (i.e. 
16.3

150
× 60 + 7.5).  

As a result, the maximum service rate is 4.28 revenue-generating flights per hour per 

aircraft. This extreme value corresponds to cases where the request’s arrival rate is so high, or the 

requests are so close to each other that the empty distance from the destination of one flight to the 

origin of the next flight origin is close to zero in expectation. Without job rejection and flight-

sharing, 𝜌 should be below 1 for the queue to not grow indefinitely, and therefore, for the system 

to be stable. With 𝑐 = 𝐾 =  100 and 𝜇 =  4.28 flights per hour per aircraft, the system can 

accommodate 𝜆 = 342.4 requests for flight per hour (i.e., 𝑇𝐼𝑁𝑇 = 10.5 seconds) to achieve 80% 

utilization (𝜌 = 0.8).  

Furthermore, the average of 14.0 minutes for serving a revenue-generating flight would 

translate to the average trip time of 19.0 minutes (i.e., 14.0 + 3+ 2) for each passenger if there were 

no wait time for the aerial service, and the requests were served without any ground-based 
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transportation. Considering a maximum delay of 𝜔 = 10 minutes (in Figure 5.1), the minimum 

and maximum mean trip times for passengers are 19.0 and 29.0 minutes, respectively. These 

numbers correspond to average travel time savings of 27.7 minutes (51.1%) to 37.7 minutes 

(66.5%) compared to driving on the ground. Consequently, the average travel time saving is well 

above the 40% criterion suggested by Uber Elevate for the UAT service mode choice model [23]. 

10.4.3 UAT Demand 

To examine the UAT service in a more realistic setting, we use the qualified TNP demand 

for UAT service over one week, from Monday, Sep. 23 to Sunday, Sep. 29, 20196. Figure 10.7 

 
6 A curious reader may wonder why we did not use the most recent demand from 2020. The reason is that the world 

basically stopped for a period of time in 2020 due to the COVID-19 pandemic, which in turn, had a significant impact 

on ridesharing operations and demand. 

Figure 10.7 Number of trips per trip start hour between Sep. 23, 2019 and Sep. 29, 2019 
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demonstrates the temporal demand during the week of Sep. 23rd. We further assume that the UAT 

service offers rides to requests that arrive between 6:00 and 18:59 since about 90% of the requests 

arrive within this period. Over this period, the average number of requests per hour is 451. 

However, during evening peak hours, the demand could reach 1250 requests per hour, 

corresponding to the mean interarrival time of approximately 3 seconds. 

Table 10.6 Average hourly qualified TNP demand over weekday and weekend of the week 

of Sep. 23rd, 2019 from 6:00 AM to 6:59 PM 

 Trip Start Hour 

 6 7 8 9 10 11 12 13 14 15 16 17 18 

Weekday 

Average 

Demand 

(hr-1) 

431 584 498 248 68 246 466 705 886 1020 870 696 543 

Interarrival 

Time (sec) 
8.3 6.2 7.2 14.5 52.9 14.6 7.7 5.1 4.1 3.5 4.1 5.2 6.6 

Weekend 

Average 

Demand 

(hr-1) 

27.5 7.5 22.5 44 98 206 394 391 313 378 229 177 108 

Interarrival 

Time (sec) 
130.9 480 160 82.8 36.9 17.5 9.1 9.2 11.5 9.5 15.8 20.3 33.3 

Table 10.6 summarizes the average hourly demand over the weekday and weekend of Sep. 

23rd. We use 𝜂 = 40% and 60% of the qualified TNP demand for the weekly experiment, and we 

randomly select the requests given the desired fraction of demand. Table 10.7 presents the total 

demand for the given fraction of qualified TNP demand for the week of Sep. 23rd, 2019 from 6:00 

AM to 6:59 PM. We further examine the UAT operation for Monday, Sep 23rd, 2019, with 60% 

of the qualified UAT demand. The corresponding hourly demand and interarrival time are 

summarized in Table 10.8. The minimum and maximum of the interarrival time for Sep. 23rd is 

5.9 and 95 seconds, respectively, corresponding to 6 AM and 10 AM. 
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Table 10.7 Qualified TNP demand for the week of Sep. 23rd, 2019 from 6:00 AM to 6:59 PM 

 Qualified TNP Demand  

Day of Week 100% 60% 40% 

Monday 6,810  4,086  2,724  

Tuesday 5,774  3,464  2,310  

Wednesday 8,250  4,950  3,300  

Thursday 8,152  4,891  3,261  

Friday 7,320  4,392  2,928  

Saturday 3,184  1,910  1,274  

Sunday 1,601 961  640 

Table 10.8 Hourly UAT demand and interarrival time (estimated as 𝜼 = 60% of the qualified 

Chicago TNPs demand) for Monday, September 23rd, 2019 

 Trip Requested Hour 

 6 7 8 9 10 11 12 13 14 15 16 17 18 

Hourly 

Demand 
608 410 396 208 38 39 61 314 404 486 467 344 311 

Interarrival 

Time (sec) 
5.9 8.8 9.1 17.3 95.2 92.3 58.8 11.5 8.9 7.4 7.7 10.5 11.6 

10.5 Case Study: One Day 

The following sections examine the performance measures associated with UAT operation 

on Monday, September 23rd, 2019, with 𝜂 = 60% of the qualified TNP demand and four UAT 

aircraft capacity, i.e., 𝑄 = 1, 2, 3, and 4. More specifically, we review the runtime and gap to 

evaluate if the solution framework could be implemented in real time. Furthermore, we present the 

performance measures associated with UAT operator revenue and costs in addition to user 

inconvenience and trip delay. Lastly, we review the travel time savings resulting from choosing 

UAT over ground-based ridesharing service. 
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10.5.1 Problem Size, Runtime, and Gap 

For each replication, we calculate the mean and standard deviation of the number of flight 

legs, requests, and arcs at each decision epoch. Subsequently, we estimate the mean of the mean 

and the standard deviation for all replications. Table 10.9 summarizes the estimated mean of the 

mean and standard deviation of the number of flight legs, requests, and arcs at each decision epoch. 

Table 10.9 Estimated mean of the mean and standard deviation of the number of flight legs, 

requests, and arcs at each decision epoch 

Figure 10.8(a)-(d) depict the emipirical Cumulitavie Density Function (eCDF) of the MIP 

gap of the solution at the end of the decision epochs for 𝑄 = 1 to 𝑄 = 4, respectively. Each 

replication is illustrated by one graph. While for 𝑄 =  1 nearly all the solutions have a gap under 

3%, for 𝑄 = 2, 3, and 4, the gap is under 2% for approximately all the solutions. Moreover, for 

𝑄 = 1, around 85% of MIPs are solved to optimality, while this number decreases to 40% and 

20% for 𝑄 = 2 and 𝑄 = 4, respectively. 

 Flight Legs Requests Arcs 

𝐐 �̃�𝐭
𝐋𝐄𝐆 �̃�𝐭

𝐃𝐒𝐑𝐃 �̃�𝐭
𝐂𝐍𝐂𝐓 �̃�𝐭

𝐑𝐄𝐐
 �̃�𝐭

𝐔𝐍𝐀𝐒𝐆𝐍 �̃�𝐭
𝐅𝐋𝐗𝐒𝐓𝐑𝐓 �̃�𝐭

𝐅𝐗𝐃𝐒𝐓𝐑𝐓 �̃�𝒕
𝑰𝑵𝑰𝑻 �̃�𝒕

𝑺𝑬𝑸
 �̃�𝒕

𝑨𝑳𝑪𝑻 

Estimated Mean of Mean Values (of Each Replication) 

1 232 125 107 130 6 106 18 9,609 6,232 2,600 

2 216 111 105 131 6 93 32 10,769 4,612 2,302 

3 214 109 105 132 6 92 34 11,298 4,408 2,319 

4 211 109 102 132 6 92 34 11,546 4,339 2,313 

Estimated Mean of Standard Deviation (of Each Replication) 

1 123 56 72 58 3 49 9 4,570 4,312 1,678 

2 122 52 74 64 3 45 20 5,454 3,360 1,759 

3 123 52 75 67 3 45 23 5,831 3,286 1,868 

4 122 52 74 67 3 45 23 5,993 3,245 1,878 
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Figure 10.8 eCDF of MIP Gap for 5 replications and 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 

Figure 10.9 eCDF of decision time in seconds for 5 replications and 𝑸 of (a) 1, (b) 2, (c) 3, 

and (d) 4 
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Figure 10.9(a)-(d) depict the eCDF of corresponding decision time, i.e., 𝑇𝑒
𝐸𝑃𝑂𝐶𝐻, associated 

with the decision epochs for 𝑄 = 1 to 𝑄 = 4, respectively. The nearly vertical slopes in the plots 

seen around the 30-second mark are due to the initial time limit of 30 seconds. The longer vertical 

slopes for 𝑄 ≥ 2 compared to 𝑄 = 1 suggest that more problems are terminated in these cases at 

30 seconds. Figure 10.9 suggests that the duration of almost all decision epochs is below the 1-

minute re-optimization interval (i.e., ∆𝑈𝑃𝐷𝐴𝑇𝐸). 

Table 10.10 presents the average simulation time over an 11-hour planning horizon for the 

5 replications. Additionally, the worst cases of MIP solution time, decision time, and MIP gap over 

all decision epochs and replications are reported. Table 10.10 shows that the worst case of the MIP 

solution time is below the 1-minute re-optimization interval (i.e., ∆𝑈𝑃𝐷𝐴𝑇𝐸) for 𝑄 = 3 and 4 and 

almost 1 minute for 𝑄 = 2. The worst decision time, i.e., max𝑇𝑒
𝐸𝑃𝑂𝐶𝐻 , which is copmrised of 

constructing the network and MIP solution time, is under 60 seconds for 𝑄 = 3, while for 𝑄 = 2 

and 4, the decision time slightly violates the 1-minute threshold. Therefore, given the assumed 

demand size and parameter settings, the solution framework has the potential for real-time 

implementation. 

Table 10.10 Average simulation time for 5 replications and worst MIP solution time, worst 

decision time, and worst MIP gap over all decision epochs and 5 replications  

Aircraft 

Capacity (𝑄) 

Average Simulation 

Time (minutes) 

Worst MIP Solution 

Time (seconds) 

Worst Decision 

Time (seconds) 

Worst MIP 

Gap (%) 

1 136.3 77.6 80.6 4.7 

2 276.9 62.2 62.8 4.5 

3 327.8 56.1 56.9 1.7 

4 333.1 58.3 64.2 2.3 
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10.5.2 UAT Operator Costs 

The aerial mileage, either revenue-generating or deadhead, is associated with a cost. A high 

rate of air pooling would reduce the revenue-generating mileage. Moreover, UAT aircraft 

utilization indicates how long the aircraft are busy, either serving empty or revenue-generating 

flight leg. Consequently, the following sections present the performance measures associated with 

the revenue mileage, total aerial mileage, air pooling, utilization, and service time. 

10.5.2.1 Utilization 

Figure 10.10 depicts the distribution of UAT aircraft hourly utilization for 𝑄 = 1 to 4. The 

utilization is under 20% over off-peak hours, i.e., 10 AM to 12 PM. With 𝑄 = 1, the aircraft 

Figure 10.10 Distribution of UAT aircraft hourly utilization over 5 replications with 𝑸 of (a) 

1, (b) 2, (c) 3, and (d) 4 
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utilization is almost 100% during the morning and evening peak hours. However, with 𝑄 = 2, the 

peak-hour utilization is less than 80%, while with 𝑄 = 3 and 4, it becomes less than 60%. Table 

10.11 specifies that the UAT aircraft utilization over the planning horizon reduces from 73.1% for 

𝑄 = 1 to 32.1% for 𝑄 = 4. 

Table 10.11 UAT aircraft utilization over the planning horizon 

Q Aircraft Utilization (%) 

1 73.0 

2 46.6 

3 35.9 

4 31.8 

10.5.2.2 Empty Mileage 

Table 10.12 presents the performance measures associated with empty repositioning flight 

legs for CLARPTW-SRE and CLARPTW, models with and without short repositioning 

elimination, respectively. Without short repositioning elimination (SRE), between 7.1 and 9.5% 

of the flight legs are over short distances of shorter than 0.5 miles. For CLARPTW, the minimum 

of empty flight mileage is 0.15 miles. For CLARPTW-SRE, the minimum of empty flight mileage 

is 0.55 (= 1.1 × 0.5) miles, which is consistent with the detour factor of 0.1 for the aerial legs and 

the radius of 0.5 miles for short repositioning elimination. The empty flight legs could be as long 

as 29 miles, which is the maximum of geodesic distance in the Chigaco network (see Table 10.1).  

Moreover, for CLARPTW-SRE, the mean of empty flight legs is 10.3, 8.6, 7.0, and 6.1 

miles for 𝑄 = 1 to 4, respectively. There are two possible explanations for the reduction in empty 

flight mileage as the UAT aircraft capacity increases. First, during air pooling, when multiple 

requests are consolidated and served by one flight leg, the corresponding revenue-generating flight 

leg is chosen so that, ceteris paribus, it minimizes the revenue-generating and empty mileage. With 
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𝑄 = 1, the passengers could be relocated within Δ𝐸𝑀𝑃𝑇𝑌 = 0.5 to eliminate short repositioning 

legs, while with 𝑄 ≥ 2, the passengers practically could be moved on the ground within Δ𝐴𝐶𝐶𝐸𝑆𝑆 = 

2 miles to reach another flight leg or UAT aircraft. As a result, given the 2-mile radius for access 

distance and detour factor of 0.1, the empty aerial mileage could decrease by a maximum of 2.2 

miles. Second, higher capacity leads to lower utilization. Therefore, the UAT aircraft could be 

utilized more efficiently, which in turn could reduce the empty repositioning mileage. 

Table 10.12 Estimated mean of performance measures associated with empty repositioning 

flight legs  

Q Mean of 

Empty 

Flight 

Mileage 

(mi) 

Minimum 

of Empty 

Flight 

Mileage 

(mi) 

Maximum 

of Empty 

Flight 

Mileage 

(mi) 

Percentage of 

Empty Flights 

to Revenue 

Flights (%) 

Percentage of 

Empty to 

Revenue 

Mileage (%) 

Percentage of 

Empty Flight 

Legs within 

∆𝐸𝑀𝑃𝑇𝑌 (%) 

CLARPTW-SRE 

1 10.35 0.56 28.33 47.0 29.9 0 

2 8.70 0.55 27.17 40.0 22.0 0 

3 7.11 0.55 27.37 39.7 17.9 0 

4 6.24 0.55 28.29 41.8 16.6 0 

CLARPTW 

1 9.29 0.15 28.77 52.9 30.2 7.1 

2 7.58 0.15 27.97 46.8 22.3 9.1 

3 6.19 0.15 26.48 46.5 18.2 9.5 

4 5.62 0.16 26.58 48.7 17.4 9.1 

Furthermore, Table 10.12 suggests that for CLARPTW-SRE, the percentage of empty to 

revenue mileage reduces from 30% for 𝑄 = 1 to 16% for 𝑄 = 4, while the percentage of empty to 

revenue-generating flight legs is in the range of 40 to 47.  

A connecting flight leg is shorter than the combination of original empty and revenue flight 

legs. Furthermore, they offer shorter service time resulting from fewer flights and the consequent 

overhead time. Therefore, when a connecting request is within reach of passengers, it is more likely 
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to be included in the optimal solution. Table 10.13 evaluates the performance measure associated 

with the connecting legs, which are conducted to eliminate the short repositioning flight legs. For 

𝑄 =1, nearly 15% of the revenue flights are connecting legs. For 𝑄 ≥ 2, connecting flight legs are 

about 21-23% of all flight legs since there is a higher chance of reaching a connecting flight leg 

when requests are relocated within ∆𝐴𝐶𝐶𝐸𝑆𝑆= 2 miles for 𝑄 ≥2 compared to ∆𝐸𝑀𝑃𝑇𝑌= 0.5 miles 

for 𝑄 = 1. 

Table 10.13 Estimated mean of performance measures associated with connecting flight legs 

Q 

Percentage of 

Connecting Flights 

to Revenue Flights 

(%) 

Percentage of 

Connecting Flights 

with the Desired 

Origin (%) 

Percentage of 

Connecting Flights 

with the Desired 

Destination (%) 

Percentage of 

Connecting Flights 

with Undesired Origin 

and Destination (%) 

1 14.6 14.5 85.5 0.0 

2 23.4 29.8 70.2 0.0 

3 23.1 25.6 74.4 0.0 

4 21.0 25.3 74.7 0.1 

10.5.2.3 Revenue Mileage 

Table 10.14 summarizes the performance measures associated with revenue flights, 

revenue mileage, and total mileage (i.e., the summation of revenue mileage and empty mileage). 

The mean of revenue-generating flight legs is in the range of 15.7 to 16.2 miles over various 

aircraft capacities. As the capacity increases, the mean of revenue mileage decreases slightly. The 

reasons are twofold. First, under 𝑄 = 1, not all the requests could be served. As a result, the shorter 

trips, which are associated with less revenue, are more likely to get rejected. Second, during air 

pooling, when one flight leg gets selected to serve multiple requests, a flight leg resulting in a 

lower mileage has a higher chance of being selected.  

Furthermore, with 𝑄 = 1, serving one revenue-flight would require an average of 21.1 

miles, while for 𝑄 = 4, this value is reduced to 18.3 miles, primarily due to the decrease in empty 
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mileage. Moreover, air pooling leads to a shorter aerial mileage per served request. Consequently, 

the mean of total aerial mileage for serving one request reduces nearly 66%, from 21.1 miles for 

𝑄 = 1 to 7.0 miles for 𝑄 = 4. 

Table 10.14 The performance measures associated with revenue flights, revenue mileage, 

and total mileage for 𝑸 = 1, 2, 3, and 4 

Q 

Mean of 

Revenue 

Mileage (mi) 

Mean of Total Aerial 

Mileage per Revenue 

Flight (mi) 

Mean of Total Aerial 

Mileage per Served 

Request (mi) 

Ratio of Revenue 

Flights to Served 

Requests (%) 

1 16.2 21.1 21.1 100 

2 15.8 19.3 10.8 56.2 

3 15.8 18.6 8.1 43.4 

4 15.7 18.3 7.0 38.1 

10.5.2.4 Air Pooling 

Table 10.15 specifies the estimated mean of performance measures related to UAT aircraft 

load factor over 5 replications. The average load factor is 89%, 77%, 65% for 𝑄 = 2, 3, and 4, 

respectively. With 𝑄 ≥ 2, only 22-30% of the flight legs serve only one request. Moreover, nearly 

78%, 57%, and 40% of the flight legs are filled to capacity with 𝑄 = 2, 3, and 4, respectively. 

Antcliff et al. [100] project that, in the long term, over 85% of the flights of a 2-seat aircraft have 

2 passengers, which is comparable to 78% for UAT service using Chicago TNP demand. 

Table 10.15 Estimated mean of performance measures related to UAT aircraft load factor 

over for 5 replications over 𝑸 = 1, 2, 3, and 4 

Q 

Average 

Load 

Factor 

(%) 

Average 

Number of 

Requests 

per Flight 

Percentage of 

Flights with 1 

Request 

Percentage of 

Flights with 2 

Requests 

Percentage of 

Flights with 3 

Requests 

Percentage of 

Flights with 4 

Requests 

1 100 1.0 100 0 0 0 

2 89.0 1.8 22.0 78.0 0 0 

3 76.8 2.3 26.6 16.5 56.9 0 

4 65.4 2.6 30.6 16.7 13.1 39.6 
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10.5.2.5 Service Time 

Table 10.16 presents the estimated mean of the performance measures associated with 

aerial service time over 5 replications. The results suggest that serving a revenue flight leg on 

average would take around 14.0 minutes, regardless of the aircraft capacity. However, the service 

time of empty flight legs decreases from 6.6 minutes with 𝑄 = 1 to 4.9 minutes with 𝑄 = 4, due 

to the reduction in empty mileage as shown in Table 10.12. The total aerial service time, i.e., the 

total time an aircraft is in use, per served revenue flight is around 16-17 minutes. Taking advantage 

of air pooling reduces the total aerial service time per served request by 64%, from 17.1 minutes 

with 𝑄 = 1 to 6.1 minutes with 𝑄 = 4. 

Table 10.16 Estimated mean of performance measures associated with aerial service time  

Q 

Mean of Aerial 

Service Time of 

Revenue Flight 

(min) 

Mean of Aerial 

Service Time of 

Empty Flight 

(min) 

Mean of Total Aerial 

Service Time per 

Revenue Flight (min) 

Mean of Total Aerial 

Service Time per 

Served Request (min) 

1 14.0 6.6 17.1 17.1 

2 13.8 6.0 16.2 9.1 

3 13.8 5.3 15.9 6.9 

4 13.8 5.0 15.9 6.0 

10.5.2.6 Estimated Cost per Mile (𝛽) 

Table 10.17 summarizes the estimated value of cost per mile, i.e., 𝛽 , for the various 

projected unit of costs. The values range from $1.15 per mile for long-term operations estimated 

by Uber Elevate [28] to $12.7 per mile of piloted operation projected by Booz Allen Hamilton [8]. 

10.5.3 UAT Operator Revenue and Estimated Price 

To evaluate the UAT operator revenue, we use three measures. Available seat miles 

(ASM), total passenger revenue (PR), and passenger revenue per available seat mile (PRASM). 

ASM represents the revenue-generating capacity of the fleet, while PRASM represents the 
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passenger revenue earned per seat (either empty or full) miles flown by an aircraft. Since the 

network is ubiquitous and all the flown mileage could potentially earn revenue, we calculate the 

ASM for all the conducted flights, either empty or revenue-generating. To exclude the impacts of 

the value of 𝛼 (i.e., revenue per mile), we present PR and PRASM per 𝛼, i.e., PR/𝛼 and PRASM/𝛼, 

respectively. 

Table 10.17 Estimated value of cost per mile for the various projected units of cost 

Table 10.18 presents performance measures associated with passenger revenue, where 𝛼 

denotes the revenue (i.e., price) per mile. The total aerial milage decreases around 61% from 𝑄 = 

1 to 4, regardless of the 14% decrease in the rejection rate (see Table 10.19). The total passenger 

revenue increases by nearly 16.6% with air pooling as more passengers are served. However, 

passenger revenue per available seat mile (PRASM) decreases from 0.701𝛼 to 0.526𝛼 for 𝑄 = 1 

Company Unit of Cost Value Capacity 

Load 

Factor 

(%) 

𝜷 

($/mi) 

McKinsey & Company [10] cost per seat-mile 0.5-2.5 4 - 2-10 

Uber Elevate [28] 
cost per 

passenger-mile 

5.73, 

1.84, 

0.44 

4 65.6 

15.0, 

4.8, 

1.15 

Booz Allen Hamilton [8] 
cost per 

passenger-mile 
9.51 1 100 9.5 

Booz Allen Hamilton [8] 
cost per 

passenger-mile 
7.01 2 89.1 12.5 

Booz Allen Hamilton [8] 
cost per 

passenger-mile 
5.51 3 76.9 12.7 

Booz Allen Hamilton [8] 
cost per 

passenger-mile 
4.751 4 65.6 12.5 

Porsche Consulting [6] cost per mile 2.9 - - 2.9 

Joby Aviation [5] 
cost per available 

seat-mile 
0.95 4 - 3.8 

Joby Aviation [66] 
cost per available 

seat-mile 
0.642 4 - 2.56 

Notes: 1 Estimated based on piloted operations, 2 22 cents per available seat-mile cost of pilots is 

deducted for autonomous operations 
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to 𝑄 = 4. Joby Aviation [66] estimates the value of 3 for 𝛼 with 𝑄 = 4, resulting to PRASM = 

$1.57 based on our analysis compared to PRASM = $1.73 projected by Joby.  

Table 10.18 Estimated mean of performance measures associated with passenger revenue  

Q 
Total Aerial 

Mileage (mi) 

Available Seat Mile 

(ASM) 

Total Passenger 

Revenue (PR/𝛼) 

Passenger Revenue 

per Available Seat 

Mile (PRASM/𝛼) 

1  73,516   73,516   51,508  0.701 

2  43,845   87,691   59,501  0.679 

3  32,952   98,855   60,132  0.608 

4  28,554   114,217   60,138  0.527 

Porsche Consulting [6] assumes a price between $8 and $18 per minute for the on-demand 

air taxi service. Given the total flight time of 8 minutes (i.e., service time minus 6 minutes of 

turnaround time), UAT operation in Chicago would cost between $64 and $144. On the other hand, 

Booz Allen Hamilton’s market study sussgets a passenger price of nearly $2.50-$2.85 per mile, 

leading to $45-$51 given average total mileage of 18 miles for 𝑄 = 4. These estimated price ranges 

per trip are well beyond the $25 per trip for at-scale operation estimated by McKinsey & Company 

[10]. 

10.5.4 User Experience and Level of Service 

When using UAT as a mode of transportation, the customer request could get rejected, the 

accepted passengers may incur a delay, and they might have to take a flight from a location that is 

not their desired pick-up or drop-off UAT pad, all causing an inconvenience to the user. 

Furthermore, the primary advantage of UAT compared to TNP is the travel time savings, 

particularly over longer distances. Consequently, the following sections present the performance 

measures associated with user experience.  
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10.5.4.1 Rejections and Trip Delay 

 Table 10.19 summarizes the performance measures associated with served and rejected 

requests. The percentage of rejected requests decreases from 14.6% to 1.1% by increasing 𝑄 from 

1 to 2, and it becomes almost 0% for 𝑄 ≥ 3. Furthermore, the revenue structure of the objective 

function favors longer trips. Comparing average OD distances for served and rejected requests 

verifies that rejected requests have shorter OD distances.  

Table 10.19 Estimated mean of performance measures associated with served and rejected 

requests 

Q 

Number of 

Served 

Requests 

Percentage of 

Rejected Requests 

(%) 

Average OD Distance 

of Served Requests 

(miles) 

Average OD Distance 

of Rejected Requests 

(miles) 

1  3,485  14.7 14.8 14.3 

2  4,041  1.1 14.7 14.0 

3  4,087  0.0 14.7 15.0 

4  4,087  0.0 14.7 N\A 

Table 10.20 Estimated mean of averages of trip delay, percentage of trip delay, and total trip 

time per request over 5 replications 

Q 
Average Trip Delay 

(minutes) 

Average of Percentage of Trip 

Delay to Total Travel Time (%) 

Average Trip Time 

(minutes) 

1 7.7 27.6 26.7 

2 6.7 24.8 25.7 

3 6.9 25.5 25.9 

4 6.9 25.5 25.9 

Table 10.20 summarizes the estimated mean of averages of trip delay, percentage of trip 

delay, and total trip time per request over 5 replications. The average trip delay decrease with 𝑄 ≥ 

2 compared to 𝑄 = 1, since the system becomes less busy. Nonetheless, the higher capacity 

implies more potential delays resulting from demand consolidation and longer ground 

transportation. The trip delay is in the range of 25-28% of the total trip time. Lastly, an average 
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trip would take approximately 26 minutes in the network and is not very sensitive to the capacity 

since the maximum acceptable trip delay is constrained, and the delay is not explicitly minimized 

in the objective function. 

Figure 10.11 provides more detail on the temporal distribution of the rejected requests. 

Most requests are rejected from 6 AM to 7 AM, which coincides with the highest hourly demand 

of the planning day, as seen in Table 10.8. However, the initial location of the UAT aircraft could 

be a contributing factor as well.  

Figure 10.12 depicts the eCDF of the percentage of trip delay to trip time for 5 replications. 

The plots are similar for 𝑄 = 2, 3, and 4, while they differ from 𝑄 = 1. The maximum of trip delay 

percentage is approximately 36%. With 𝑄 = 1, nearly 35% of the requests have a trip delay 

smaller than 30% of the total trip time, while for 𝑄 ≥ 2, around 50% of the requests have a similar 

trip delay percentage.  

Figure 10.11 Temporal distribution of rejected requests for 𝑸 of (a) 1 and (b) 2 
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10.5.4.2 Ground Transportation 

Table 10.21 summarizes the estimated mean of performance measures related to ground-

based legs of the passenger trip. With 𝑄 = 1, the average ground-based distance and time are 0.06 

mi and 0.8 minutes, while with 𝑄 ≥ 2, the average ground-based distance and time are nearly 0.5 

mi and 4 minutes, respectively. The minimum length of the non-zero ground-based legs is 0.14 

miles, which is below the walking threshold. The maximum of ground leg distance is 0.5 mi for 

𝑄 = 1 and nearly 2 mi for 𝑄 ≥ 2. Since the radius associated with short leg elimination and 

demand consolidation is 0.5 and 2 mi, respectively, the maximum values of the ground-based legs 

verify that the passenger trips include a maximum of one ground-based leg. 

Figure 10.12 Empirical Cumulative Distribution Function (eCDF) of the percentage of trip 

delay to trip time for 5 replications with 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 
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Table 10.21 Estimated mean of performance measures related to ground-based legs of the 

request trip 

Q 

Average 

Ground 

Legs 

Distance 

(miles) 

Minimum 

Non-zero 

Ground Legs 

Distance 

(miles) 

Maximum 

Ground Legs 

Distance 

(miles) 

Average 

Ground Legs 

Travel Time 

(minutes) 

Minimum 

Non-zero 

Ground Legs 

Travel Time 

(minutes) 

Maximum 

Ground Legs 

Travel Time 

(minutes) 

1 0.06 0.14 0.50 0.79 2.80 7.50 

2 0.42 0.14 1.95 3.86 2.80 10.70 

3 0.48 0.14 1.94 4.38 2.80 10.68 

4 0.47 0.14 1.95 4.34 2.80 10.67 

Figure 10.13 and Figure 10.14 provide more detailed information on the distribution of 

ground travel distance and travel time, respectively. Figure 10.14(a) depicts that with 𝑄 = 1 nearly 

85% of the passenger trips have no ground legs, while around 10 percent experience a total ground-

based travel time between 4 to 6 minutes. Figure 10.14(c) and (d) show that with 𝑄 ≥ 3, 40% of 

the requests have no ground-based legs, while the remaining 60% experience a travel time between 

4 to 10 minutes. 

10.5.4.3 Relocation 

Table 10.22 summarizes the estimated mean of the average number of relocations per 

request and the percentage of customer requests experiencing 0, 1, and 2 relocations. Table 10.22 

outlines that given the demand pattern and parameters setting assumed in the experiment design, 

no request would have more than 1 relocation. Moreover, the percentage of requests with 1 

relocation is approximately 15%, 53%, and 60% for 𝑄 = 1, 𝑄 = 2, and 𝑄 ≥ 3, respectively. 
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Figure 10.13 eCDF of ground legs distance in miles for 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 

Figure 10.14 eCDF of ground legs travel time in minutes for 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 
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Table 10.22 Estimated mean of performance measures related to relocations and ground-

based legs of the request trip 

Q 
Average Number 

of Relocations  

Percentage of 

Requests with 0 

Relocation (%) 

Percentage of 

Requests with 1 

Relocation (%) 

Percentage of 

Requests with 2 

Relocations (%) 

1 0.15 85.26 14.74 0 

2 0.53 46.83 53.17 0 

3 0.61 39.28 60.71 0 

4 0.61 38.58 61.42 0 

10.5.4.4 Travel Time Savings 

Figure 10.16 outlines the eCDF of travel time savings compared to ground-based TNP trips 

for 𝑄 = 1 to 4 and 5 replications. The plots are very similar over various 𝑄. The travel tme savings 

for nearly 10% of the requests is less than 20 minutes, 70% between 20 and 40 minutes, and the 

remaining 20% between 40 and 60 minutes. Correspondingly, Figure 10.15 depicts the percentage 

of trip time savings over 5 replications. Nearly 95% of the requests have a trip time saving between 

40% and 70%. 

10.6 Case Study: One Week 

This section examines the performance measures associated with UAT operation on the 

week of September 23rd, 2019, with 𝜂 = 40% and 60% of the qualified TNP demand with 𝑄 = 2. 

Table 10.23 summarizes the selected performance measures. For 𝜂 = 40%, the percentage of 

empty to revenue legs varies between 33% and 53%, while the percentage of empty to revenue 

mileage varies between 12% to 31%, depending on the demand pattern and intensity. Additionally, 

the average load factor is estimated between 82% and 89%, except for Sunday, with an average 

load factor of 74%.  
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Figure 10.16 eCDF of the trip time saving in minutes for 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 

Figure 10.15 eCDF of the percentage of trip time saving for 𝑸 of (a) 1, (b) 2, (c) 3, and (d) 4 
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Table 10.23 Performance measures associated with the operator’s cost and revenue and user 

experience for 𝑸 = 2 
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Cost  User Experience 
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𝜂 = 40% 

Mon 32 10.8 39 18 87 2,724 40.1 0.683 0 6.3 23 3.8 0.52 32.6 58 

Tues 26 10.3 31 9 85 2,310 34.5 0.728 0 6.3 23 3.6 0.50 34.7 60 

Wed 39 11.2 39 22 88 3,301 49.4 0.668 0 6.5 24 3.8 0.52 34.1 59 

Thu 39 11.5 43 24 86 3,261 48.3 0.646 0 6.5 24 3.8 0.52 36.4 61 

Fri 38 12.3 50 27 81 2,929 43.1 0.598 0 6.2 23 3.4 0.48 40.8 65 

Sat 19 12.6 48 24 80 1,274 19.2 0.599 0 6.1 23 3.2 0.46 28.3 54 

Sun 11 12.7 41 9 70 641 9.7 0.594 0 5.6 21 2.7 0.42 26.1 52 

𝜂 = 60% 

Mon 47 10.8 40 22 89 4,041 59.5 0.679 1.1 6.7 25 3.9 0.53 32.2 57 

Tues 39 10.4 33 12 87 3,464 51.7 0.718 0 6.7 25 3.6 0.5 34.4 59 

Wed 56 11.2 39 24 89 4,873 73.0 0.671 1.6 6.9 25 3.8 0.52 33.6 58 

Thu 55 11.2 42 25 88 4,784 70.9 0.659 2.2 7.0 25 3.9 0.53 35.8 60 

Fri 55 12.3 52 30 84 4,317 63.4 0.599 1.7 7.0 25 3.5 0.48 40.0 64 

Sat 27 12.9 53 31 82 1,910 28.7 0.584 0 6.4 23 3.4 0.48 28.1 53 

Sun 15 12.7 45 15 74 961 14.5 0.597 0 5.6 21 2.8 0.43 26.1 52 

  



273 

 

Assuming a price per passenger mile (i.e., 𝛼) of USD 3, the maximum passenger revenue 

over an 11-hour planning horizon with a fleet of 100 UAT aircraft serving 60% of Chicago TNP 

demand is approximately USD 219K. The maximum of PRASM/𝛼 is, interestingly, for Tuesday, 

which has the lowest empty to revenue mileage while having a relatively high average load factor. 

The average delay is between 5.7 to 7 minutes, corresponding to nearly 25% of the total 

trip time of the passengers. The average ground-based travel time is between 2.8 and 3.9 minutes. 

The lowest and highest average trip time savings are for Sunday and Friday, respectively, with 26 

minutes (or 52%) and 40 minutes (64%). 

Comparing the performance measures for 𝜂 = 40%  and 𝜂 = 60%  shows many 

similarities. However, the aircraft utilization, percentage of empty to revenue flights, and 

percentage of empty to revenue mileage are noticeably different under the two scenarios.  

10.7 Limitations 

The numerical results presented in this section are based on the Chicago TNP demand. 

While Chicago TNP demand provides a tool for assessing the dynamic solution framework for 

UAT fleet operations in a real-world setting, it imposes the following limitations: 

• The demand model for UAT was a simplified rule-based model, using a fraction of 

TNP trips longer than 10 miles that would take more than 45 minutes on the ground. 

• The qualified TNP demand has a specific pattern that leads to high network efficiency. 

The majority of trips are between O’Hare International Airport, Midway International 

Airport, and downtown Chicago. Five and one census tracts, respectively, are the 

origins and destinations of 50% of the qualified TNP demand, while 50 and 25 census 

tracts account for 80% of the origins and destinations of the qualified TNP demand. 
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•  The TNP demand is generated at the centroid of the census tracts and, therefore, has 

been consolidated in some levels. However, the census tracts could be as small as 0.003 

square miles.  

• The group size of the requests is assumed to be 1. 

Additionally, without the loss of generality, the wait time for ground-based service is 

assumed to be zero at the origin. However, the results of the synthetic network analyses show that 

performance measures, including the percentage of rejected requests and average load factor, are 

insensitive to a fixed increase in access time. Nonetheless, the ground-based wait time could 

impact the travel time savings and, therefore, the UAT demand. 

10.8 Concluding Remarks 

The UAM OpsCon for passenger-carrying operations commissioned by NASA [29] 

projects 10s of UAT pads/ports for the intermediate state and 100s for the mature state. The 

Chicago network consists of nearly 800 census tracts, each corresponding to one UAT pad or port. 

The size of census tracts varies from 0.003 to 8 square miles, while Antcliff et al. [100] suggest 

0.94 and 1.4 square miles per pad for the metropolitan and urban areas, respectively. 

The dynamic solution framework for UAT fleet operation is implemented using a fixed 

fleet of 100 UAT aircraft and 60% of Chicago TNP demand for Monday, Sep. 23rd, 2019, with 

𝑄 = 1, 2, 3, and 4, and the week of Sep. 23rd-30th, 2019, with 𝑄 = 2. Porsche Consulting [6] 

estimates that the modal split for a megacity like São Paulo is 9% and 65% for taxi and private 

cars, respectively. They further estimate that the number of UAT aircraft to replace these services 

is 30 and 820 UAT aircraft, respectively. However, they do not offer any estimates for the ride-

hailing services used in this analysis. Nonetheless, the results of our analysis suggest that serving 
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60% of qualified Chicago TNP demand with 100 UAT aircraft with 1 passenger seat would result 

in a rejection rate of 14.6%, while the aircraft utilization is almost 100% during the morning and 

evening peak hours. 

UAM Operational Concept (OpsCon) commissioned by NASA [29] projects 10s of UAT 

aircraft would fly simultaneously under the Intra-Metro Air Shuttle intermediate state mission, a 

value that increases to 1,000s for the Ubiquitous Air Taxi mature state mission. Even though this 

dissertation studies the UAT service, the qualified Chicago TNP demand is well-suited for Intra-

Metro Air Shuttle. That being said, the required 100 UAT aircraft to serve 60% of qualified 

Chicago TNP demand is way below 1,000s for the Ubiquitous Air Taxi. 

The results for Monday show that the average number of passengers per flight (with a 

passenger group size of 1) is 1.8, 2.3, and 2.6 for capacities of 2, 3, and 4. For the one-week 

analysis, the average load factor varies between 74% to 89%, suggesting the average passenger 

load of 1.5 to 1.8. In comparison, conventional air taxi services such as DayJet and SATSAir report 

average passenger loads of 1.3 to 1.7. [100], while UAM market study by Crown Consulting 

assumes 1 passenger per ride for Air Taxi operation [9]. 

Booz Allen Hamilton’s UAM market study [8] suggests that high network efficiency could 

increase the UAM demand by more than 200% compared to the base scenario. The network 

efficiency parameters include utilization (7 hours/day vs. 4 hours/day), load factor (80% vs. 65%), 

and deadend trips (20% vs 37.5%). The aircraft utilization could get to 56% for the two-seater 

aircraft over a planning horizon of approximately 11 hours, which implies the utilization of nearly 

6 hours/day. The average load factor for 6 days out of the 7 days in the study is more than 80%. 
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Antcliff et al. [100] posit that door-to-door travel time compared to ground-based 

transportation is improved by 2.0 to 3.6 times, depending on the cruise speed (120 mph vs. 200 

mph) and the density of the pads. Using the actual trip time of the passengers in Chicago, our 

analysis shows the travel time savings of 52% to 64%, suggesting that the ground-based travel 

time is 2.3 to 2.8 times of the corresponding UAT service. 

Moreover, the average trip time for passengers is about 26 minutes, which is 2.6 times 

higher than the 10-minute door-to-door trip time for Air Taxi operation in a ubiquitous network, 

put forward by Crown Consulting UAM market study [9]. 
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Chapter 11 Conclusion 

11.1 Summary and Contributions 

In recent years, with the vision of eco-friendly autonomous aircraft equipped with electric 

propulsion and efficient batteries with short charging or swapping time, the interest in air 

transportation has resurfaced. Benefitting from this revolutionary aircraft technology, the 

Advanced Air Mobility (AAM) [7] initiative is pursuing to transfer cargo and passengers between 

urban, local, regional, and intraregional areas, while the Urban Air Mobility (UAM) market 

focuses on carrying passengers and goods within metropolitan areas [7-9]. 

Urban Air Taxi (UAT) is the use case of passenger-carrying UAM at its mature state, which 

offers a ubiquitous (nearly) on-demand per-seat service that moves passengers in urban or 

suburban areas using groundbreaking aircraft. As of February 2020, 110 passenger-carrying AAM 

city projects were in progress worldwide [6], and passenger UAM is projected to grow at a 

compound annual growth rate (CAGR) of 35% by 2035, with 2025 as the starting year [6]. 

Additionally, in the first half of 2020, USD 907 million was invested in UAM start-ups, nearly 20 

times higher than the entire of 2016 [19]. 

Motivated by this rapid growth, the immense interest in passenger-carrying UAM, and the 

ensuing travel time savings for the users, this dissertation focuses on the stochastic and dynamic 

problem of the UAT fleet operation. A UAM market study [8] argues that high network efficiency, 

including high aircraft utilization and load factor, could increase the UAM demand by more than 

200% compared to the base scenario. Furthermore, ride-sharing economics is projected to be one 

of the three critical steps towards lowering costs [28]. Meanwhile, the UAM research community 

maintains that more advanced passenger pooling and aircraft dispatching models are needed, and 
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it calls for algorithms that could be implemented online or use a rolling horizon framework to 

address the uncertainties encountered in the UAM operation [34,36]. 

Consequently, the main contributions of this dissertation include outlining the concept of 

operations for UAT services, defining the UAT problem, and the development and application of 

a dynamic solution framework to address the stochastic and dynamic problem of UAT fleet 

operation. Hence, this dissertation provides the UAT operator with a decision-making tool to 

achieve higher network efficiency. Cities aiming to start UAT operations in the near future could 

immediately benefit from this solution framework for the UAT operation. Nonetheless, this 

solution framework sets a benchmark for all use cases of passenger UAM for other city projects 

in the planning process. 

Since a dominant player in the UAM market has yet to emerge, many uncertainties 

surround the UAM operations. Consequently, the relevant components of UAM and their 

envisioned characteristics are reviewed first (Chapter 2). Subsequently, the UAT concept of 

operations, which involves a ubiquitous service with air pooling and elimination of short 

repositioning flights, is accordingly outlined (Chapter 4). The UAT operation involves numerous 

components and events, many of which are irrelevant to the problem of UAT fleet operation. As a 

result, the entities required for modeling the UAT fleet operation are specified (Chapter 5). 

Subsequently, a dynamic solution framework with sequential decision-making on a rolling 

horizon basis is proposed to address the UAT fleet operation problem (Chapter 6). A static and 

deterministic problem (i.e., snapshot problem) is solved at each decision epoch to help the UAT 

operator make the dynamic operational decisions, including acceptance and rejection of requests, 

routing and scheduling the aerial fleet, and assigning the requests to flights. To achieve this goal, 

the snapshot problem is modeled as a Capacitated Location-Allocation-Routing Problem with 
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Time Windows and Short Repositioning Elimination (CLARPTW-SRE). Ultimately, the node-

based network representation for CLARPTW-SRE is specified (Chapter 7), and the MIP 

formulation is presented (Chapter 8). 

Given the ubiquitous nature of the UAT service, pooling the passengers and increasing the 

aircraft load factor is deemed a critical step in the success of UAT operations. However, the 

absence of a dominant eVTOL aircraft technology and UAT operator feeds the uncertainty around 

UAT. As a result, the impacts of various exogenous and design parameters on demand 

consolidation are examined using comprehensive sensitivity analyses in a synthetic network 

(Chapter 9). Furthermore, the dynamic solution framework is implemented using a fixed fleet of 

UAT aircraft and Chicago Transportation Network Providers (TNPs) demand (Chapter 10). 

Augmenting the devised UAT operational strategy with real-world data would validate the 

network efficiency assumptions (e.g., the average load factor and utilization) made by many UAM 

market studies and offer estimates of the said parameters for future studies.  

Ultimately, this research provides a tool for researchers to examine various concepts of 

operations and evaluate different operational strategies such as sharing or pricing schemes. The 

outcomes of such studies are valuable for the players from the industry as well as the regulators. 

11.2 Limitations and Future Research Areas 

The stochasticity in UAT fleet operation involves travel times and demand. The analysis 

in this dissertation highlights that the success of air pooling hinges on reliable ground-based 

transportation and the synchronization between aerial and ground-based modes. While this 

research considers deterministic travel times, incorporating stochasticity of aerial and ground-

based wait times and travel times in the solution framework has a high priority for modeling real-
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world UAT operations. Another direction for future research involves incorporating the forecasted 

demand in the decision-making process. 

Moreover, the minimum required distance for short repositioning flight legs and the 

minimum of acceptable delay significantly impact the size of the optimization problem and, 

consequently, the potentials of CLARPTW-SRE for real-time application. The instances studied 

in this research are solved using commercial software. However, existing heuristic methods could 

be tailored, or new heuristic solution methods could be developed to solve the problem in a 

reasonable time for at-scale UAT operations involving 1000s of aircraft, wider time windows, and 

longer minimum distances for short repositioning legs.  

This research uses a rule-based demand model for UAT, which is dependent on the distance 

between the origin and destination of each request and the corresponding ground-based travel time. 

Future studies could explore incorporating a pricing scheme and a more elaborate demand model 

for UAT operations. 

Another research area is to include air traffic control, aerial congestion, and the availability 

of UAT pads in the UAT model and the decision-making process. As the technology of electric 

vertical take-off and landing (eVTOL) advances and more details of battery charging or swapping 

and maintenance requirements become available, these events could also be included in the model 

associated with UAT fleet operation. 

Finally, seamless synchronization between the aerial and ground-based mode has a pivotal 

role in air pooling, lowering the operational costs, user satisfaction, and successful UAT operation. 

Integrating the proposed dynamic solution framework for UAT operations with a dynamic model 

for routing and assigning the vehicles on the ground is another area for future studies. 
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Appendix A. Notations 

SYMBOL DEFINITION 

Decision Epoch 

𝑒 Decision epoch index 

𝐸 Number of decision epochs 

ℰ Set of decision epoch indices, ℰ =  {1, 2, … , 𝑒, … , 𝐸} 

𝜈𝑒
𝑆 The event associated with the start of decision epoch 𝑒 

𝜈𝑒
𝐸 The event associated with the end of decision epoch 𝑒 

𝜏𝜈𝑒𝑆 The start time of decision epoch 𝑒 

𝜏𝜈𝑒𝐸 The end time of decision epoch 𝑒 

𝑇𝑒
𝐸𝑃𝑂𝐶𝐻 Length of decision epoch 𝑒; 𝑇𝑒

𝐸𝑃𝑂𝐶𝐻 = 𝜏𝜈𝑒𝐸 − 𝜏𝜈𝑒𝑆  

Δ𝑡𝑈𝑃𝐷𝐴𝑇𝐸 The re-optimization interval; Δ𝑡𝑈𝑃𝐷𝐴𝑇𝐸 = 𝜏𝜈𝑒𝑆 − 𝜏𝜈𝑒−1𝑆  

UAT Aircraft 

𝒶𝑘 UAT aircraft 𝑘 

𝐾 Aerial fleet size 

𝒦 Set of available aircraft; 𝒦 = {𝒶1, 𝒶2, … , 𝒶𝑘 , … , 𝒶𝐾}. 

𝑄𝑘 Capacity of aircraft 𝑘 

𝑄 Capacity of the aerial fleet in a homogeneous fleet 

𝜈𝑘
𝐴𝐼𝑅 Speed of UAT aircraft 𝑘 (mph) 

𝜈𝐴𝐼𝑅 Speed of UAT aircraft in a homogeneous fleet (mph) 

𝜏𝑘𝑡
𝐴𝑉𝐿 

The earliest time the subsequent itinerary of UAT aircraft 𝑘 could be 

modified as of time 𝑡. 

𝑳𝑘𝑡
𝐴𝑉𝐿 Location of UAT aircraft 𝑘 at 𝜏𝑘𝑡

𝐴𝑉𝐿 

𝒬𝑘𝑡 
Ordered list of non-completed flight legs assigned to UAT aircraft 𝑘 as of 

time 𝑡 

𝒬𝑘𝑡
𝑊𝐴𝐼𝑇 

Ordered list of flight legs assigned to UAT aircraft 𝑘 that have not started 

as of time 𝑡 

𝒬𝑘𝑡
𝑊𝑅𝐸𝑉 

Ordered list of flight legs assigned to UAT aircraft 𝑘 that have not started 

as of time 𝑡 
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𝔈𝑘𝑡
𝑁𝐷𝑆𝑅𝐷 

Binary variable, which is 1 if 𝑳𝑘𝑡
𝐴𝑉𝐿  is the drop-off UAT pad of the 

passengers, but not their desired one, 0 in any other case. 

𝔸𝑘
𝑒𝑉𝑇𝑂𝐿 Static attributes of aircraft 𝑘, 𝔸𝑘

𝑒𝑉𝑇𝑂𝐿 = (𝑄𝑘, 𝑣𝑘
𝐴𝐼𝑅) 

𝑆𝑡
𝑒𝑉𝑇𝑂𝐿 

State of the UAT aircraft at time 𝑡;  𝑆𝑡
𝑒𝑉𝑇𝑂𝐿 =

(𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 , 𝜏𝑘𝑡

𝐴𝑉𝐿 , 𝑳𝑘𝑡
𝐴𝑉𝐿 , 𝒬𝑘𝑡)𝒶𝑘∈𝒦 . 

𝜍𝑘𝑡
𝑒𝑉𝑇𝑂𝐿 Status of the UAT aircraft 𝑘 at time 𝑡 

Requests 

𝓇𝑟 Request 𝑟 

𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 The intended request of flight leg 𝑖 

𝑶𝑟 Origin of request 𝑟 

𝑫𝑟 Destination of request 𝑟 

𝑺𝑟
𝐷𝑆𝑅𝐷 Desired pick-up UAT pad of request 𝑟 

𝑬𝑟
𝐷𝑆𝑅𝐷 Desired drop-off UAT pad of request 𝑟 

𝑞𝑟 Group size of request 𝑟 

𝜏𝑟
𝐴𝑅𝑉 Arival time of request 𝑟 

𝜏𝑟
𝑅𝐸𝑄

 Requested time of service for request 𝑟 

𝑇𝑟
𝐴𝐷𝑉 Reservation time window of request 𝑟; 𝑇𝑟

𝐴𝐷𝑉 = 𝜏𝑟
𝑅𝐸𝑄 − 𝜏𝑟

𝐴𝑅𝑉. 

𝜏𝑟
𝐷𝐿𝑁 

The latest time the passenger group of request 𝑟  could reach their 

destination 

𝑇𝑟
𝐷𝑆𝑅𝐷 Minimum trip time corresponding to the desired flight leg of request 𝑟 

𝜏𝑟𝑡
𝑆𝑅𝑉𝐶  

The earliest time the passenger group of request 𝑟 could start the service 

and leave their origin 

𝔸𝑟
𝑅𝐸𝑄

 Static attributes of request 𝑟; 𝔸𝑟
𝑅𝐸𝑄 = (𝑶𝑟 , 𝑫𝑟 , 𝑺𝑟

𝐷𝑆𝑅𝐷 , 𝑬𝑟
𝐷𝑆𝑅𝐷, 𝑞𝑟 , 𝜏𝑟

𝑅𝐸𝑄
), 

𝑆𝑡
𝑅𝐸𝑄

 State of all the requests that have been placed by time 𝑡 

𝑆𝑟𝑡
𝑅𝐸𝑄

 State of request 𝑟 as of time 𝑡 

𝜍𝑟𝑡
𝑅𝐸𝑄

 Status of request 𝑟 as of time 𝑡 

Flight Legs 

𝒻𝑖 Flight leg 𝑖 

𝒻𝑟
𝐷𝑆𝑅𝐷 Desired flight leg of request 𝑟 

𝒻𝑘𝑡
𝐶𝑅𝑁𝑇 Flight leg in service by aircraft 𝑘 as of time 𝑡 



292 

 

𝑺𝑖 Starting UAT pad of flight 𝑖 

𝑬𝑖 Ending UAT pad of flight 𝑖 

𝐻𝑖 
A binary variable denoting whether flight leg 𝑖 is empty (0) or revenue-

generating (1) 

𝜏𝑖
𝑀𝐼𝑁 The earliest time that flight leg 𝑖 could be served 

𝜏𝑖
𝑀𝐴𝑋 The latest time that flight leg 𝑖 could be served 

𝜏𝑖𝑡
𝑆𝑇𝑅𝑇 Scheduled start time of flight leg 𝑖 as of time 𝑡 

𝜏𝑖𝑡
𝐶𝑂𝑀𝑃 Scheduled completion time of flight leg 𝑖 as of time 𝑡 

𝔸𝑖
𝐿𝐸𝐺 Static attributes of flight leg 𝑖, 𝔸𝑖

𝐿𝐸𝐺 = (𝑺𝑖, 𝑬𝑖, 𝐻𝑖) 

𝔸𝑖
𝑅𝐸𝑉𝐿𝐸𝐺 

Additional static attributes of revenue-generating flight leg 𝑖; 𝔸𝑖
𝑅𝐸𝑉𝐿𝐸𝐺 =

(𝓇𝑖
𝐼𝑁𝑇𝑁𝐷, 𝜏𝑖

𝑀𝐼𝑁 , 𝜏𝑖
𝑀𝐴𝑋) 

𝑆𝑖
𝐿𝐸𝐺 State of flight leg 𝑖 as of time 𝑡 

𝜍𝑖𝑡
𝐿𝐸𝐺 Status of flight leg 𝑖 as of time 𝑡 

𝔽𝑖(𝑺𝑖, 𝑬𝑖, 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷) 

Function that defines 𝒻𝑖  such that it starts at 𝑺𝑖  and ends at 𝑬𝑖 , with 

intended request 𝓇𝑖
𝐼𝑁𝑇𝑁𝐷 

𝕊(𝒻) Function that returns the starting point of 𝒻 

Sets of Requests 

ℛ𝑡
𝐶𝐴𝑁𝐷 Set of candidate requests as of time 𝑡 

ℛ𝑡
𝑈𝑁𝐴𝑆𝐺𝑁 Set of unassigned requests as of time 𝑡 

ℛ𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 Set of requests with a flexible pick-up UAT pad as of time 𝑡 

ℛ𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 Set of requests with a fixed pick-up UAT pad as of time 𝑡 

ℛ̅𝑒
𝐴𝐶𝐶𝑃𝑇 Set of accepted candidate requests during decision epoch 𝑒 

ℛ̅𝑒
𝑅𝐸𝐽𝐶𝑇

 Set of rejected candidate requests during decision epoch 𝑒 

Sets of Flight Legs 

ℱ𝑟𝑡
𝐾𝐸 

Set of flight legs that start at a first availability UAT pad of a UAT aircraft 

and end at the desired drop-off UAT pad of a candidate request 

ℱ𝑟𝑡
𝐾𝑆  

Set of flight legs that start at a first availability UAT pad of a UAT aircraft 

and end at the desired pick-up UAT pad of a candidate request 

ℱ𝑟𝑡
𝑆𝑆 

Set of flight legs that start at the desired pick-up UAT pad of a candidate 

request aircraft and end at the desired pick-up UAT pad of a candidate 

request 
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ℱ𝑟𝑡
𝐸𝐸 

Set of flight legs that start at the desired drop-off UAT pad of a candidate 

request aircraft and end at the desired drop-off UAT pad of a candidate 

request 

ℱ𝑟𝑡
𝐸𝑆 

Set of flight legs that start at the desired drop-off UAT pad of a candidate 

request aircraft and end at the desired pick-up UAT pad of a candidate 

request 

ℱ𝑡
𝐶𝐴𝑁𝐷  Set of candidate flight legs at time 𝑡 

ℱ𝑡
𝐷𝑆𝑅𝐷 Set of feasible desired flight legs as of time 𝑡 

ℱ𝑡
𝐶𝑁𝐶𝑇 Set of feasible connecting flight legs of time 𝑡 

ℱ𝑖𝑡
𝑆𝑈𝐶𝐶 Set of candidate flight legs that  

ℱ𝑡
𝑆 

Set of candidate flight legs that start at the desired UAT pad of their 

intended request 

ℱ𝑡
𝑆̅̅ ̅̅  

Set of candidate flight legs that do not start at the desired UAT pad of their 

intended request 

ℱ𝑡
𝐸 

Set of candidate flight legs that end at the desired UAT pad of their 

intended request 

ℱ𝑡
𝐸̅̅ ̅̅  

Set of candidate flight legs that do not end at the desired UAT pad of their 

intended request 

ℱ̃𝑡
𝐸̅̅ ̅̅  

Set of candidate flight legs that do not end at the desired UAT pad of their 

intended request for the reduced network �̃�𝑡 as of time 𝑡 

Distances 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) Distance (as the crow flies) between point p and point q in the space 

𝐷𝑟
𝑂𝐷 

Distance (as the crow flies) between the origin and destination of request 

𝑟 

𝐷𝑖
𝐿𝐸𝐺 Aerial distance of flight leg 𝑖 

𝐷𝑘𝑖𝑡
0  

Aerial distance between the first availability UAT pad of aircraft 𝑘 as of 

time 𝑡 and the starting UAT pad of flight leg 𝑖 

𝐷𝑖𝑗 
Aerial distance between the ending UAT pad of flight leg 𝑖 and the starting 

UAT pad of flight leg 𝑗 

Access Times 

𝑊𝑟𝑖𝑡
𝐼𝑁𝐺𝑅𝑆 

Wait time as of time 𝑡 for ground-based transportation from the origin of 

request 𝑟 to the starting UAT pad of flight leg 𝑖 

𝑊𝑟𝑖
𝐸𝐺𝑅𝑆 

Wait time as of time 𝑡 for ground-based transportation from the origin of 

request 𝑟 to the starting UAT pad of flight leg 𝑖 
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𝑇𝑟𝑖
𝐼𝑁𝐺𝑅𝑆 Duration of ingress of request 𝑟 to flight leg 𝑖 

𝑇𝑟𝑖
𝐸𝐺𝑅𝑆 Duration of egress of request 𝑟 from flight leg 𝑖 

𝑇𝑟𝑖
𝐼𝑁𝐵𝑁𝐷 

Time to reach the starting UAT pad of flight leg 𝑖  from the origin of 

request 𝑟 using walking or driving 

𝑇𝑟𝑖
𝑂𝑈𝑇𝐵𝑁𝐷 

Time to reach the destination of request 𝑟 from ending UAT pad of flight 

leg 𝑖 using walking or driving 

𝑇𝑟𝑖
𝐷𝐺𝐴𝑇𝐸 

Elapsed time between arriving at the UAT port on the ground and reaching 

the departure gate of flight 𝑖 for request 𝑟 

𝑇𝑟𝑖
𝐴𝐺𝐴𝑇𝐸 

Elapsed time for reaching the area of ground transportation from the 

arrival gate flight leg 𝑖 for request 𝑟 

Aerial Times 

𝑇𝑖
𝐹𝐿𝐼𝐺𝐻𝑇 Flight time of flight leg 𝑖, including ascending, descending, and cruising 

𝑇𝑖
𝐶𝑅𝑈𝐼𝑆𝐸 Cruise time of flight leg 𝑖 

𝑇𝐴𝑆𝐶𝐸𝑁𝐷 Time elapsed in ascending for an eVTOL aircraft 

𝑇𝐷𝐸𝑆𝐶𝐸𝑁𝐷 Time elapsed in descending for an eVTOL aircraft 

𝑇𝑇𝐴𝐾𝐸𝑂𝐹𝐹 Time required for ATC clearance before take-off  

𝑇𝐿𝐴𝑁𝐷𝐼𝑁𝐺 Time required for clearance after landing  

𝑇𝐵𝑂𝐴𝑅𝐷 Duration of boarding passengers 

𝑇𝐷𝐸𝐵𝑂𝐴𝑅𝐷 Duration of deboarding passengers 

𝑇𝑖
𝑆𝑅𝑉𝐸𝑀𝑃 Service time of empty flight leg 𝑖 

𝑇𝑖
𝑆𝑅𝑉𝑅𝐸𝑉 Service time of revenue-generating flight leg 𝑖 

𝑇𝑘𝑖𝑡
0  

Time required to get from the first availability UAT pad of aircraft 𝑘 as of 

time 𝑡 to the starting UAT pad of flight leg 𝑖 

𝑇𝑖𝑗 
Time required to get from the ending UAT pad of flight leg 𝑖 to the starting 

UAT pad of flight leg 𝑗 

𝑇𝑚𝑡
𝑆𝑇𝑅𝑇𝑇𝑊 Time window for starting empty flight leg 𝑚 as of time 𝑡 

Nodes 

𝒩𝑡 Nodes of the network 𝒢𝑡 as of time 𝑡 

𝒩𝑡
𝑒𝑉𝑇𝑂𝐿 

Set of nodes associated with the UAT aircraft in the network 𝒢𝑡 as of time 

𝑡 
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�̃�𝑡
𝑒𝑉𝑇𝑂𝐿 

Set of nodes associated with the UAT aircraft in the reduced network �̃�𝑡 
as of time 𝑡 

𝒩𝑡
𝐿𝐸𝐺 

Set of nodes associated with the candidate flight legs in the network 𝒢𝑡 as 

of time 𝑡 

�̃�𝑡
𝐿𝐸𝐺 

Set of nodes associated with the candidate flight legs in the reduced 

network �̃�𝑡 as of time 𝑡 

𝒩𝑡
𝑅𝐸𝑄

 
Set of nodes associated with the candidate requests in the network 𝒢𝑡 as of 

time 𝑡 

�̃�𝑡
𝑅𝐸𝑄

 
Set of nodes associated with the candidate requests in the reduced network 

�̃�𝑡 as of time 𝑡 

𝒩𝑡
𝐸̅̅ ̅̅ ̅ 

Set of nodes associated with candidate flight legs that do not end at the 

desired UAT pad of their intended request 

𝒩𝑖𝑡
𝑆𝑈𝐶𝐶 

Set of nodes associated with succeeding flight legs of flight 𝑖 ⊆ 𝒩𝑡
𝐸̅̅ ̅̅ ̅ as of 

time 𝑡 

�̃�𝑖𝑡
𝑆𝑈𝐶𝐶 

Set of nodes associated with succeeding flight legs of flight 𝑖 ⊆ 𝒩𝑡
𝐸̅̅ ̅̅ ̅ in the 

reduced network �̃�𝑡 as of time 𝑡 

𝒩𝑡
𝐹𝐿𝑋𝑆𝑇𝑅𝑇 Set of nodes associated with requests with flexible pick-up UAT pad 

𝒩𝑡
𝐹𝑋𝐷𝑆𝑇𝑅𝑇 Set of nodes associated with requests with fixed pick-up UAT pad 

Arcs 

𝒜𝑡 Arc of the network 𝒢𝑡 as of time 𝑡 

𝒜𝑡
𝐼𝑁𝐼𝑇 

Initial arcs, which connect aircraft to revenue-generating flight legs, in the 

network 𝒢𝑡 as of time 𝑡 

𝒜𝑡
𝐼𝑁𝐼𝑇𝑇𝑊 

Initial arcs, which connect aircraft to revenue-generating flight legs, after 

considering the time windows as of time 𝑡 

�̃�𝑡
𝐼𝑁𝐼𝑇 

Initial arcs, which connect aircraft to revenue-generating flight legs, in the 

reduced network �̃�𝑡 as of time 𝑡 

𝒜𝑡
𝑆𝐸𝑄

 
Sequencing arcs, which connect two revenue-generating flight legs in the 

network 𝒢𝑡 as of time 𝑡  

𝒜𝑡
𝑆𝐸𝑄𝑇𝑊

 
Sequencing arcs, which connect two revenue-generating flight legs, after 

considering the time windows as of time 𝑡 

�̃�𝑡
𝑆𝐸𝑄

 
Sequencing arcs, which connect two revenue-generating flight legs in the 

reduced network �̃�𝑡 as of time 𝑡 

𝒜𝑡
𝐴𝐿𝐶𝑇 

Allocation arcs, which allocate requests to revenue-generating flight legs 

in the network 𝒢𝑡 as of time 𝑡  
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�̃�𝑡
𝐴𝐿𝐶𝑇 

Allocation arcs, which allocate requests to revenue-generating flight legs 

in the reduced network �̃�𝑡 as of time 𝑡 

𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 Set of (𝑟, 𝑖), where 𝓇𝑟 = 𝓇𝑖

𝐼𝑁𝑇𝑁𝐷; 𝒜𝑡
𝐼𝑁𝑇𝑁𝐷 ⊆ 𝒜𝑡

𝐴𝐿𝐶𝑇 

𝒜0
𝑡
𝐹𝑅𝐸𝐸

 Subset of 𝒜𝑡
𝐼𝑁𝐼𝑇 with no constraints on the aircraft or flight legs 

𝒜𝑡
𝐹𝑅𝐸𝐸 Subset of 𝒜𝑡

𝑆𝐸𝑄
 with no constraints on the flight legs 

𝒜0
𝑡
𝑃𝑅𝐸𝐶

 Subset of 𝒜𝑡
𝐼𝑁𝐼𝑇 with preceding constraints 

𝒜𝑡
𝑃𝑅𝐸𝐶 Subset of 𝒜𝑡

𝑆𝐸𝑄
 with preceding constraints 

𝒜0
𝑡
𝑆𝑈𝐶𝐶

 Subset of 𝒜𝑡
𝐼𝑁𝐼𝑇 with preceding constraints 

𝒜𝑡
𝑆𝑈𝐶𝐶  Subset of 𝒜𝑡

𝑆𝐸𝑄
 with succeeding constraints 

Set of Flights for Network Reduction 

ℱ̇𝑡
𝐶𝐴𝑁𝐷 

Adjusted candidate flight legs after excluding the flight legs that could not 

possibly serve their intended requests 

ℱ̈𝑡
𝐶𝐴𝑁𝐷 

Adjusted candidate flight legs that are feasible to be served directly by an 

aircraft or followed by another flight leg given the time windows 

ℱ̂𝑡
𝑆𝑈𝐶𝐶 

Connecting candidate flight legs with undesired destination UAT pad for 

which the set of succeeding flight legs becomes empty 

Parameters 

𝜈𝑊𝐴𝐿𝐾 Speed of walking (mph) 

𝜈𝐷𝑅𝐼𝑉𝐸 Speed of driving (mph) 

Δ𝐸𝑀𝑃𝑇𝑌 
The minimum of Euclidean distance between two points to qualify for the 

empty repositioning flight (miles) 

Δ𝑂𝐷 
The minimum distance between origin and destination of a request to 

qualify for a UAT trip (miles) 

Δ𝑊𝐴𝐿𝐾 The maximum of walking distance (miles) 

Δ𝐴𝐶𝐶𝐸𝑆𝑆 
The radius of the accessible area around the origin or destination of a 

request for air pooling (miles) 

𝜖 Detour factor of the aerial trip 

𝒯𝐴𝐷𝑉 The maximum of the advance reservation time window, 𝑇𝑟
𝐴𝐷𝑉 ∈ [0,𝒯𝐴𝐷𝑉] 

𝒯𝐼𝑁𝑇 The mean of interarrival times (seconds) 

Simulation 

𝔗𝑆𝑇𝑅𝑇𝐴𝑅𝑉 Start of arrival time 

𝔗𝐸𝑁𝐷𝐴𝑅𝑉 End of arrival time 
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𝔗𝑆𝑇𝑅𝑇𝑅𝐸𝑄 Start of request time for service 

𝔗𝐸𝑁𝐷𝑅𝐸𝑄 End of request time for service 

𝔗𝑆𝑇𝑅𝑇𝑆𝐼𝑀 Start of simulation 

𝔗𝐸𝑁𝐷𝑆𝐼𝑀 End of simulation 

Objective Function 

𝒞 Fixed operational cost of revenue or empty flight legs 

𝛼 Revenue per passenger per mile 

𝛽 Operational cost per mile 

𝛾1 Weight of the relocation in the objective function 

𝛾2 Exponent of the number of relocations in the objective function 

𝑅𝑟 Earned revenue by serving request 𝑟 

𝐶�̅�𝑖𝑡
0  

Total cost of serving revenue-generating flight leg 𝑖 as of time 𝑡, which 

includes the preceding empty flight leg from 𝑳𝑘𝑡
𝐴𝑉𝐿 to 𝑺𝑖. 

𝐶�̅�𝑗 
Total cost of serving revenue-generating flight leg 𝑗 , including the 

preceding empty flight leg from 𝑬𝑖 to 𝑺𝑗. 

𝐶𝑟𝑖
𝑅𝐿𝐶 Total cost of relocating request 𝑟 to take flight leg 𝑖 

𝜒𝑟𝑖 
Number of relocations required for request 𝑟 to take flight leg 𝑖;  𝜒𝑟𝑖 ∈
{0, 1, 2}. 

Decision Variables 

𝑝𝑖 𝑝𝑖 for 𝑖 ∈ 𝒩𝑡
𝐿𝐸𝐺 is 1 if flight leg 𝑖 will be conducted 

𝑦𝑘𝑖 
𝑦𝑘𝑖 for (𝑘, 𝑖) ∈ 𝒜𝑡

𝐼𝑁𝐼𝑇  is 1 if flight leg 𝑖 is the revenue-generating flight 

served by aircraft k immediately from its availability UAT pad as of time 

𝑡; 𝑦𝑘𝑖 ∈ {0,1} 

𝑥𝑖𝑗   
𝑥𝑖𝑗  for (𝑖, 𝑗) ∈ 𝒜𝑡

𝑆𝐸𝑄
 is 1 when revenue-generating flight leg 𝑗 is served 

immediately after revenue-generating flight leg 𝑖; 𝑥𝑖𝑗  ∈ {0,1} 

𝑧𝑟𝑖  𝑧𝑟𝑖 for (𝑟, 𝑖) ∈ 𝒜𝑡
𝐴𝐿𝐶𝑇 is 1 when request 𝑟 is assigned to flight leg 𝑖 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 

𝜏𝑖
𝐵𝑂𝐴𝑅𝐷 for 𝑖 ∈ 𝒩𝑡

𝐿𝐸𝐺 is the time revenue-generating flight 𝑖  starts the 

boarding process 

Other Notations 

𝜔 Maximum acceptable delay 

𝜔′ Adjusted maximum acceptable delay 
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𝑞𝑘𝑡𝑛 𝑛𝑡ℎ leg on 𝒬𝑘𝑡 

Ω𝑟𝑖
𝑀𝐼𝑁 Minimum delay incurred when 𝓇𝑟 takes 𝒻𝑖 instead of 𝒻𝑖∗ = 𝒻𝑟

𝐷𝑆𝑅𝐷 

 


