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ABSTRACT

Blockchain Models and Latency-Security Guarantees for the Nakamoto Consensus

Jing Li

Bitcoin is a decentralized payment system proposed in 2008 by Nakamoto, who remains

anonymous to date. It offers an effective alternative to fiat money or centralized payment

systems with advantages on privacy, anonymity, and low international remittance fees.

The transactions in Bitcoin payment system are sent through a peer-to-peer network,

verified by network nodes, and recorded in a public ledger called blockchain.

The security of the Bitcoin payment system cannot be fully guaranteed without a rigor-

ous mathematical proof. Due to the unpredictability of adversarial miners, it is challenging

to characterize the behavior of miners and the synchronization status of blockchains in a

concise way.

Unlike classic Byzantine fault tolerant protocols, the Bitcoin protocol only admits

probabilistic guarantees. For the sake of security, it is important to derive an explicit

formula for the security guarantee as a function of the latency, which will lead to a con-

crete latency–security trade-off for the Nakamoto consensus. Since Bitcoin’s rise to fame,

many altcoins and Bitcoin hard forks have adopted the Nakamoto consensus protocol
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with very different parameters. Their parameters are mostly determined in an ad-hoc or

empirical manner. This calls for theoretical results on parameter selection with the goal

of optimizing some performance metrics.

Properties of the Bitcoin blockchain have been investigated in some depth. The live-

ness property of Bitcoin is reflected by the blockchain growth theorem and blockchain

quality theorem: the blockchain growth theorem quantifies the number of blocks added

to the blockchain during any time intervals; the blockchain quality theorem ensures the

honest miners always contribute at least a certain fraction of the blockchain. The con-

sistency property of Bitcoin is reflected by the common prefix theorem, which states if a

block is deep enough, it will eventually be adopted by all honest miners with high prob-

ability. The liveness and consistency properties of the Bitcoin backbone protocol have

been established by assuming either explicitly or implicitly that the blockchains have

finite lifespan. Also, previous probabilistic security guarantees for the Bitcoin were ex-

pressed in terms of exponential order results. As such, the asymptotic bounds are very

loose for practical use.

This thesis provides a streamlined and strengthened framework to analyze the proper-

ties of the Bitcoin protocol under several different models. Under discrete-time model, our

results include a blockchain growth theorem, a blockchain quality theorem, and a com-

mon prefix theorem of the Bitcoin backbone protocol regardless of whether the blockchains

have a finite lifespan. We also express the properties of the Bitcoin protocol in explicit

expressions rather than order optimal results. A new notion of “r-credible blockchains” is

introduced, which, together with some carefully defined “typical” events concerning block

production over time intervals, is crucial to establish probabilisitic security guarantees.
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Under continuous-time model, we develop a rigorous analysis of the liveness and consis-

tency of the Bitcoin protocol. Moreover, our analyses yield practical latency and security

bounds. For example, when the adversary controls 10% of the total mining power, a

Bitcoin block is secured with 10−3 error probability after 5 hours 20 minutes of confirma-

tion time, or with 10−10 error probability after 12 hours 15 minutes of confirmation time

(assuming all block propagation delays are within 10 seconds). To establish the tight

analysis, the arrivals of some special blocks are shown to be renewal processes, where

the moment generation functions of the inter-arrival times are rigorously derived. The

analysis is then applied to several proof-of-work longest-chain cryptocurrencies to bound

their latency and security trade-off. Guidance is also provided for parameter selection

with the goal of optimizing some performance metrics.

Following the spirit of decoupling various functionalities of the blockchain, the Prism

protocol is proposed by Bagaria, Kannan, Tse, Fanti, and Viswanath in 2018 to dramat-

ically improve the throughput while maintaining the same level of security. In addition

to Bitcoin, this thesis also extends the analyses to the liveness and consistency of Prism

blockchains.
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CHAPTER 1

Introduction

Bitcoin was invented in 2008 by Nakamoto [1]. It is an decentralized payment system

where users can send transactions over a peer-to-peer network. Bitcoin offers an alterna-

tive to fiat money or centralized payment systems: Bitcoin allows users more autonomy

over their own money without trusted intermediaries like a bank or administrator. Bitcoin

protects users’ anonymity and privacy in the sense that real-world identity is not exposed

during Bitcoin acquisitions and transactions. Bitcoin saves users from traditional banking

fees, as well as provides timely settlement of international transactions with low cost. It

is also helpful in countries suffering from hyperinflation [2]. The market capitalization of

Bitcoin is more than 200 billion USD as of October, 2020 [3], taking 75% market cap of

all cryptocurrencies.

Transactions in the Bitcoin system are maintained by miners and recorded in pub-

lic ledgers referred to as blockchain. Maintainers of the ledger are distributed parties

called miners. Producing a new block requires proof-of-work mining : a nonce must be

included such that the block’s hash value satisfies a difficulty requirement. An honest

miner follows the longest-chain rule, i.e., it always tries to mine a block at the maximum

height. As a distributed ledger technology, the Bitcoin protocol seeks the following two

properties: Liveness, i.e., the ledger (blockchain) keeps incorporating new transactions.

Consistency, i.e., all honest miners in the network agree on the same view of the ledger.
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To prove the liveness and consistency of the Bitcoin blockchains, proper modelling is re-

quired so that the behavior of honest/adversarial miners and the synchronization status

of blocks/blockchains are well characterized.

Unlike classic Byzantine fault tolerant protocols, the Bitcoin protocol only admits

probabilistic guarantees. The latency (or confirmation time) of a block in Nakamoto-

style consensus protocols depends on the desired security level. As a rule of thumb, a

transaction is regarded as “confirmed” when it is 6 blocks deep in a longest blockchain. Is

a 6-block-deep transaction “secure enough”? Moreover, what is the upper bound on the

latency that guarantees a desired security level?

In the Bitcoin protocol, the block size is around 1 MB and the block generation rate

is around 6 blocks per hour. Many altcoins and Bitcoin hard forks have adopted the

Nakamoto consensus protocol with different parameters. Are these parameters well cho-

sen? What are the trade-offs among different performance metrics (like latency, through-

put, and fault-tolerance)? How should designer select parameters to achieve a performance

goal?

The objective of this thesis is to resolve the preceding questions. We provide stream-

lined and strengthened models of the Nakamoto consensus protocol step by step in the

discrete-time lockstep synchronous setting, discrete-time non-lockstep synchronous set-

ting, and continuous-time setting, respectively. Under discrete-time model, our results in-

clude the liveness property (illustrated by a blockchain growth theorem and a blockchain

quality theorem) and the consistency property (reflected by a common prefix theorem) of

the Bitcoin backbone protocol regardless of whether the blockchains have a finite lifespan.
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Under continuous-time model, we also develop a rigorous analysis of the liveness and con-

sistency of the Bitcoin protocol via typicality. Our analyses yield practical latency and

security bounds. The analysis is then applied to several proof-of-work longest-chain cryp-

tocurrencies to bound their latency and security trade-off. Guidance is also provided for

parameter selection with the goal of optimizing some performance metrics.

1.1. The Bitcoin backbone protocol

Transactions in Bitcoin system are verified by network nodes and recorded in public

ledgers referred to as blockchain. A blockchain is a finite sequence of transaction-recording

blocks which begins with a genesis block, and every subsequent block contains a cryp-

tographic hashing of the previous one (which confirms all preceding blocks). To mine a

block requires proof of work: A nonce must be included such that the block’s hash value

satisfies a difficulty requirement. Maintainers of the ledger are distributed parties called

miners who generate blocks and maintain their own version of the blockchain. Miners join

a peer-to-peer network to inform each other of new blocks. An honest miner follows the

longest-chain rule, i.e., it always tries to mine a block at the maximum height.

Different blocks may be mined and announced at around the same time. So honest

miners may extend different blockchains depending on which blocks they hear first. This

phenomenon is called forking, which must be resolved quickly to reach timely consensus

about the ledger. An adversarial miner may wish to sabotage consensus or manipulate the

network to a consensus to its own advantage. In particular, forking presents opportunities

for double spending, which is only possible if a transaction included in the longest fork

at one time is not included in a different fork that overtakes the first one to become the
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longest blockchain. Since miners are anonymous, obviously the collective mining power

of adversarial miners must be less than half of the total mining power to ensure security

of the blockchain system.

Nakamoto [1] characterized the race between the honest miners and the adversary

as a random walk with a drift. Nakamoto showed that the probability the adversary

blockchain overtakes the honest miner’s consensus blockchain vanishes exponentially over

time as long as the collective mining power of adversarial miners is less than that of honest

miners. In this case, a Bitcoin transaction becomes (arbitrarily) secure if it is confirmed

by enough new blocks.

Garay, Kiayias, and Leonardos [4] first formally described and analyzed the Bitcoin

backbone protocol under the lockstep synchronous model, where all miners have perfectly

synchronized rounds and all miners receive the same block(s) at exactly the end of the

round. Under this model, [4] established a blockchain quality theorem, which states the

honest miners contribute at least a certain percentage of the blocks with wish probability.

Also established in [4] is a common prefix theorem, which states if a block is k blocks deep

in an honest miner’s blockchain, then the block is in all other honest miners’ blockchains

with high probability (the probability that some honest miner does not extend this block

vanishes exponentially with k). Kiayias and Panagiotakos [5] established a blockchain

growth theorem, which quantifies the number of blocks added to the blockchain during

any time interval. The blockchain growth theorem and the blockchain quality theorem

guarantee that many honest blocks will eventually become k deep in an honest miner’s

blockchain (liveness). The common prefix theorem then guarantees that an honest miner’s

k-deep block become permanent consensus of all honest miners (consistency). Thus, every
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transaction that is recorded in a sufficiently deep block in an honest miner’s blockchain

is with high probability guaranteed to remain in the transaction ledger.

The strictly lockstep synchrony model completely assumes away network delay and

failure. Several meaningful analyses have been proposed under the non-lockstep syn-

chrony model, where messages can be delayed arbitrarily but the delay is upper bounded.

A complicated analysis with strong assumptions [6] showed that the blockchain growth

theorem, the blockchain quality theorem, and the common prefix theorem remain valid

under the non-lockstep synchrony model. Also, Kiffer, Rajaraman, and Shelat [7] gave

the non-closed form results of the consistency of the Bitcoin protocol using the Markov

chains.

Most previous analyses [4,6,8,9] assumed the blockchain’s lifespan is finite, i.e., there

exists a maximum round when the blockchain system terminates. In this thesis, we drop

the finite horizon assumption and prove properties of the Bitcoin backbone protocol re-

gardless of whether or not the blockchains have a finite lifespan. We define the typical

events with respect to each interval: Instead of requiring the number of honest and adver-

sarial blocks to be typical over all time intervals which are long enough, we only require

them to be typical over all time intervals that contain a certain interval that includes the

transaction of interest. Since the probability that the number of honest and adversarial

blocks are “atypical” decreases exponentially with interval length, the sum of the proba-

bilities over all those intervals remains vanishingly small. Thus we provide performance

guarantees that are truly permanent whether or not the blockchain have a finite lifespan.
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Moreover, without the finite horizon assumption, we express the properties of the Bit-

coin backbone protocol in explicit expressions in lieu of order optimality results in some

previous analysis.

The discrete-time model eases analysis but is still a departure from reality. In 2019,

Ren [10] extended the liveness and consistency of the Bitcoin protocol assuming the

continuous-time model where mining is modelled as a Poisson point process. The proba-

bility bounds are shown to be exponential in a linear order term in the confirmation time.

In this thesis, we first build a rigorous (and simple) stochastic model for continuous-time

block mining processes and the resulting blockchains. We characterize the liveness and

consistency properties of the Bitcoin protocol under the continuous-time model. As nu-

merical results, we discuss the trade-off between performance metrics like latency, security,

and throughput. Existing analyses against all possible attacks [4, 6–9, 11] (including a

few concurrent and follow-up works [12–15]) focus on establishing asymptotic bounds us-

ing the big O(·) or big Ω(·) notation. If one works out the constants in these asymptotic

results, the latency upper bounds will be several orders of magnitude higher than the best

known lower bounds [16,17]. Thus, despite their theoretical value, existing analyses of

the Nakamoto consensus provide little guidance on the actual confirmation time, security

guarantees, or parameter selection in practice. In this thesis, we explicitly and closely

characterize the trade-off between latency and security for Nakamoto-style proof-of-work

consensus protocols. The latency results we prove are within a few hours to simple lower

bounds due to the private attack. The gap remains relatively constant at different secu-

rity levels, and is hence insignificant for high security levels but can be significant at low

security levels. For example, with a 10% adversary mining power, a mining rate of one
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block every 10 minutes, and a maximum block propagation delay of 10 seconds, a block in

the Nakamoto consensus is secured with 10−3 error probability after 5 hours 20 minutes,

or with 10−10 error probability after 12 hours 15 minutes. As a reference, due to the

private attack, one must wait for at least 1 hour 30 minutes or 8 hours 5 minutes before

confirming for 10−3 and 10−10 security levels, respectively. The analyses also extend to

other Nakamoto-style proof-of-work consensus protocols.

Some new techniques developed in this thesis may be of independent interests. Assum-

ing all block propagation delays are under a fixed amount of time, we show the arrivals

of several species of honest blocks form renewal processes. That is, the inter-arrival times

of such a process are independent and identically distributed (i.i.d.). We show that the

adversary must match the so-called double-laggers in order to succeed in any attack. Then

we derive the moment generating functions of the inter-arrival times of double-laggers.

This allows us to calculate quite accurately the probability that more double-laggers are

mined than adversarial blocks in any time interval, which leads to a close latency–security

trade-off.

1.2. The Prism backbone protocol

It is well known that the throughput of Bitcoin is severely restricted by design to

ensure security [18]. In particular, the average time interval between new blocks is set

to be much longer than the block propagation delays so that forking is infrequent [19].

Many ideas have been proposed to improve the blockchain throughput.

One way is to deal with high-forking blockchains by optimizing the forking rule. For

example, GHOST chooses the main blockchain according to the heaviest tree rule instead
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of the longest blockchain rule [19]. Inclusive, Spectre, and Phantom construct a directed

acyclic graph (DAG) structured blockchain by introducing reference links between blocks

in addition to the parent links [20–22]. However, these protocols are vulnerable to cer-

tain attacks [23–25]. Generally speaking it is difficult to secure a high-forking protocol.

Another line of work is to decouple the various functionalities of the blockchain [26,27].

With this spirit, Bagaria, Kannan, Tse, Fanti, and Viswanath [9] proposed the Prism

protocol in 2018. The Prism protocol defines one proposer blockchain and many voter

blockchains. The voter blocks elect a leader block at each level of the proposer blockchain

by vote. The sequence of leader blocks concludes the contents of all voter blocks, and

finalizes the ledger. A voter blockchain follows the Bitcoin protocol to provide security

to leader election process. With this design, the throughput (containing the content of

all voter blocks) is decoupled from the mining rate of each voter blockchain. Slow mining

rate guarantees the security of each voter blockchain as well as the leader sequence they

selected. Prism achieves security against up to 50% adversarial hashing power, optimal

throughput up to the capacity of the network, and fast confirmation latency for transac-

tions. A thorough description and analysis is found in [9], where liveness and consistency

of Prism transactions were proved assuming a finite life span of the blockchains under the

lockstep synchrony model [9]. In this thesis, we also prove the liveness and consistency

of the Prism protocol with explicit probabilistic bounds under discrete-time model.

1.3. Structure of this thesis

Next, we summarize the major contents of the following part of this thesis.



20

In Chapter 2, the general modelling of blockchains are introduced. Important concepts

which will be used throughout the chapter (like blocks, blockchains, and their prefix) are

formally defined.

In Chapter 3, we analyze the Bitcoin backbone protocol using more general discrete-

time models than previously seen in the literature. In particular, we allow the blockchains

to have unlimited lifespan and allow the block propagation delays to be arbitrary but

bounded. Under the new setting, we rigorously establish a blockchain growth property,

a blockchain quality property, and a common prefix property for the Bitcoin backbone

protocol. We have also shown that the leader sequence is permanent with high probability

after sufficient amount of wait time. As a consequnce, every honest transaction will

eventually enter the final ledger and become permanent with probability higher than

1 − ε after a confirmation time proportional to security parameter log 1
ε
. This chapter

provide explicit bounds for the properties of Bitcoin backbone protocol, which furthers

understanding of the Bitcoin protocol.

In Chapter 4, we briefly introduce the Prism backbone protocol. Under the same

discrete-time framework, we prove a blockchain growth property and a blockchain quality

property of the leader sequence. Liveness and consistency of the Prism protocol are proved

without the finite horizon assumption under both the lock-step synchronous model and

the non-lockstep synchronous model.

In Chapter 5, we prove the liveness and consistency of the Bitcoin protocol under

the continuous-time model, which is simpler and more realistic than the discrete-time

model. We also provide an explicit formula for the security guarantee as a function of the

latency, which enable us to derive a concrete latency–security trade-off for the Nakamoto
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consensus. By means of numerical analysis, the latency upper bound is shown to be close

to a lower bound due to the private attack. We quantify how the block propagation delay

bound, mining rates, and other parameters affect the latency–security trade-off. We also

apply the results to analyze existing proof-of-work longest-chain cryptocurrencies. When

the mining rate is low (compared to the block propagation delay), the obtained upper

bounds are close to the lower bounds from private mining. When the block generation

rate is high, however, our method does not give very tight results. Recent works [14,

15] have established the tight fault tolerance under high mining rate but tight bounds

on latency remain open. Another direction is to analyze the Nakamoto consensus with

dynamic participation and/or difficulty adjustment. Only asymptotic bounds exist in this

direction [8, 28] and it is interesting future work to establish concrete latency–security

bounds.

Chapter 6 concludes the thesis.
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CHAPTER 2

Definitions Common to All Models

The Bitcoin blockchain can be regarded as a growing sequence of transaction-recording

blocks which begins with a genesis block, and chains every subsequent block to a parent

block using a cryptographic hash. Formally, we define blocks and blockchains as the

following:

Definition 2.1 (Blocks). A block in a practical blockchain system is a data structure

with an identifier and a reference to its parent block. An honest genesis block is referred

to as block 0. Subsequent blocks are referred to as block 1, block 2, and so on, in the order

they are mined.

Definition 2.2 (Blockchain and height). Every block has a unique parent block that

is mined strictly before it. We use fb ∈ {0, 1, ..., b − 1} to denote block b’s parent block

number. The sequence (b0, b1, . . . , bn) defines a blockchain if b0 = 0 and fbi = bi−1 for

i = 1, . . . , n. It is also referred to as blockchain bn since bn uniquely identifies it. The

height of both block bi and blockchain bi is said to be i.

Because invalid blocks are inconsequential as far as the distributed consensus protocol

is concerned, throughout this thesis, by a block we always mean a valid block.

Definition 2.3 (k-deep block, k-deep prefix). Suppose k ∈ {1, . . . , i}. By the k-deep

block of blockchain (b0, b1, . . . , bi) we mean block bi−k+1. By the k-deep prefix of blockchain
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(b0, b1, . . . , bi) we mean blockchain bi−k. By convention, let the k-deep block and k-deep

prefix of the blockchain be the genesis block if k > i.

By Definition 2.3, a k-deep block extends a k-deep prefix of the same blockchain.



24

CHAPTER 3

Discrete-time Analysis of the Bitcoin Backbone Protocol

3.1. Introduction

In this chapter, we adopt a discrete model where activities take place in rounds. In

the Bitcoin white paper [1], Nakamoto characterized the race between the honest miners

and an adversary with less than half of the total mining power as a random walk with

a drift. Nakamoto showed that the probability the adversary blockchain overtakes the

honest miner’s consensus blockchain vanishes exponentially over time. Nakamoto argued

that the Bitcoin protocol is safe under double spending attack as long as one considers

a transaction confirmed only after enough new blocks are mined to extend the honest

blockchain. An in-depth analysis of the Bitcoin protocol was given in [29]. Several

important properties of the Bitcoin backbone protocol have been proposed in [1,4,5,8,30].

Garay, Kiayias, and Leonardos [4] gave a formal description and analysis of the Bitcoin

backbone protocol assuming a fully synchronous network, namely, mining takes place in

rounds and at the end of each round, all miners see all published blocks. Under this

model, [4] introduced a common prefix property and a blockchain quality property. The

common prefix property states if a block is k blocks deep in an honest miner’s blockchain,

then the probability that the block is not included by all other honest miners’ blockchain

decreases exponentially with k. The blockchain quality property states the honest miners

always contribute at least a certain percentage of the blockchain regardless of the strategy
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of adversarial parties. Then, [5] introduced a blockchain growth property, which quantifies

the number of blocks added to the blockchain during any time intervals.

Moreover, Nakamoto’s analysis was improved in [30] to address selfish mining. In

this case, selfish miners can introduce disagreement between honest miners and split

their hashing power. Selfish miners thus enhance their relative hashing power to win

disproportionate rewards. This strategy, however, is not designed for double spending

purposes.

The Bitcoin backbone protocol also gives birth to numerous “robust public transac-

tion ledger” protocols [26,31,32]. The preceding properties guarantee two fundamental

properties of a robust public transaction ledger: liveness and persistence. Due to the

blockchain growth property and the blockchain quality property, blocks originating from

honest miners will eventually end up at a level of more than k blocks of an honest miner’s

blockchain. Due to the common prefix property, an honest miner’s k-deep block remains

permanent.

However, many previous analysis on the Bitcoin protocol assumes a blockchain’s lifes-

pan is finite, i.e., there exists a maximum round when the blockchain ends. For example,

in [4,8] and [32], the good properties of blockchain hold only under typical events, i.e.,

the number of honest and adversarial blocks mined must not deviate too much from their

expected value over all long enough time intervals. The probability of typical events was

shown to depend on the blockchain’s maximum round parameter. Indeed, the probabil-

ity of the blockchain growth property, the blockchain quality property, and the common

prefix property are all expressed implicitly in terms of the blockchain’s maximum round.
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In this chapter, we drop the finite horizon assumption and prove strong properties of

the Bitcoin backbone protocol. We define the typical events with respect to each interval:

Instead of requiring the number of honest and adversarial blocks to be typical over all long

enough time intervals, we only require them to be typical over all time intervals that con-

tain a certain interval that includes the transaction of interest. Since the probability that

the number of honest and adversarial blocks are “atypical” decreases exponentially with

interval length, the sum of the probabilities over all those intervals remains vanishingly

small. Thus we provide performance guarantees that are truly permanent whether or not

the blockchain have a finite lifespan. Moreover, without the finite horizon assumption,

we express the properties of the Bitcoin backbone protocol in explicit expressions in lieu

of order optimality results in some previous analysis. The explicit expressions provide

tighter bounds and more practical references to public transaction ledger protocol design.

Some previous work [4, 8, 32] assume that all blocks broadcast during a protocol

round reach all miners by the end of that round, i.e., all miners have complete up-to-date

information by the end of each round. This is referred to as the lockstep synchronous

model. In this chapter, our analyses apply to both the lockstep synchronous model and

non-lockstep synchronous model, where a block may reach different miners after arbitrary

different delays, so that even the honest miners are never guaranteed to have identical

view of the system. In the non-lockstep synchronous model, it is only assumed that the

propagation time is bounded by T rounds, which is realistic in practice. A key idea

in this chapter is to exploit honest miners’ common information about those rounds in

which a single honest block is mined and that no other honest blocks are mined within
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T − 1 rounds before and after. Essentially all the properties developed for the lockstep-

synchronous synchronous model find their counterparts for this non-lockstep synchronous

model.

3.2. General discrete-time model

We assume the total number of miners is n, among which t miners are adversarial and

the remaining miners are honest. Assume all miners have equal hash powers (if not, we

assume they can be split into equal-power pieces). With minor abuse of notation, we use

β to denote the percentage of adversarial miners in the following part of this thesis:

β =
t

n
. (3.1)

We assume adversarial miners collectively have less than 1
2
of the total mining power in

the blockchain network, so β ∈ [0, 1
2
). Define

ξ =
1− 2β

1− β
. (3.2)

Then ξ ∈ (0, 1].

By saying “by round r” we mean all rounds up to and including round r − 1. We let

Tb denote the round during which block b is mined.

Next, we redefine concepts of miner’s view, published, credible blockchain, etc. These

definitions are similar to that in Chapter 5 but are under the discrete-time scenario.

Definition 3.1 (A miner’s view). A miner’s view at round r is a subset of all blocks

mined by round r. A miner’s view can only increase over time. A block is in its own

miner’s view from the round it is mined.



28

Definition 3.2 (A miner’s longest blockchain). A blockchain is in a miner’s view

at round r if all blocks of the blockchain are in the miner’s view at round r. A miner’s

longest blockchain at round r is a blockchain with the maximum height in the miner’s view

at round r. Ties are broken in an arbitrary manner.1

Definition 3.3 (Honest and adversarial miners). Each miner is either honest or ad-

versarial. A block is said to be honest (resp. adversarial) if it is mined by an honest (resp.

adversarial) miner. An honest block mined during round r must extend its miner’s longest

blockchain at round r.

Definition 3.4 (Publication). A block is said to be published at round r if it is included

in at least one honest miner’s view at round r. A blockchain is said to be published at

round r if all of its blocks are published at round r.

We let Pb denote the round at which block b is published. By definition 3.3, an honest

block b is published at the round it is mined. We have Tb = Pb.

Next, we introduce a few notations representing the mining process.

For r ∈ {1, 2, . . .}, let Hr denote the number of all honest blocks mined during round

r. The mining difficulty and miner’ mining powers are adjusted to be constant in all

rounds r ≥ 1.

Without loss of generality, the mining power of all miners are and the mining difficulty

are assumed to remain constant, such that the probability that an honest miner mines a

new block in every round r ≥ 1 is equal to p ∈ (0, 1).2 Note that Hr ∼ Binomial(n−t, p).
1The Bitcoin protocol favors the earliest to enter the view.
2This probability is held constant by adjusting the mining difficulty in case the mining power fluctuate
over rounds.
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Define

Xr =


1, if Hr ≥ 1

0, otherwise.
(3.3)

Xr indicates if one or more honest blocks are mined during round r or not. Let

q = 1− (1− p)n−t. (3.4)

Basically q is the probability that one or more honest blocks are mined during a round.

Then Xr ∼ Bernoulli(q). Define

Yr =


1, if Hr = 1

0, otherwise.
(3.5)

Basically Yr indicates if a single honest block is mined in round r or not. Then Yr ∼

Bernoulli((n− t)p(1− p)n−t−1).

Let Zr denote the number of adversarial blocks mined during round r (the adversarial

miners may or may not publish them). Since there are at most t adversarial miners, the

number of blocks mined in any rounds is upper bounded probabilistically. Specifically, let

S represent an arbitrary set of positive numbers. Then the probability that more than

a adversarial blocks are mined during those rounds in S does not exceed the probability

that a binomial distribution with parameter (t|S|, p) is greater than a. In other words,
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for every a ≥ 0,

P

(∑
r∈S

Zr ≤ a

)
>

bac∑
i=0

(
t|S|
i

)
pi(1− p)t|S|−i (3.6)

where |S| is the cardinality of S.

It is important to note that H1, H2, . . . are i.i.d., which form a stationary process. The

same can be said of the X and Y sequences.

In the following part of this chapter, we define as,r as the sum of the subsequence of

as, . . . , ar−1, i.e.,

as,r =
r−1∑
i=s

ai (3.7)

for all integers 1 ≤ s < r. To be specific,

Xs,r =
r−1∑
i=s

Xi, (3.8)

Ys,r =
r−1∑
i=s

Yi, (3.9)

Zs,r =
r−1∑
i=s

Zi (3.10)

for all integers 1 ≤ s < r.

Definition 3.5. Let r be a positive integer. A block or a sequence (of blocks) is said

to be permanent after round r if the block or sequence remains in the longest blockchain

in all honest miners’ views starting from round r.
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3.3. Lockstep synchronous model and analysis

In Lockstep synchronous model, if one or more blocks are published in a round, all

miners receive the block(s) at exactly the end of the round (a miner can only react to

round r blocks in round r + 1). Evidently, by the end of each round, all honest miners

are fully synchronized. We assume that during round 0, the genesis block is mined and

published.

Definition 3.6. (r-credible blockchain) Blockchain b is said to be r-credible if it has

been published by round r, and is no shorter than any blockchain published by round r.

That is to say,

Pb < r, (3.11)

and

h(b) ≥ h(k), ∀k : Pk < r. (3.12)

If there is no need to specify round r explicitly, blockchain b can also be simply called a

credible blockchain.

At round r, an honest miner must have seen all blockchains published by round r.

It follows that every honest miner’s longest blockchain must be r-credible. Similar to

Chapter 5, it is unnecessary to keep track of individual miner’s views as far as the fun-

damental security is concerned. Focusing on credible blockchains allows us to develop a

simple rigorous proof with minimal notation.
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Definition 3.7 (loner). Block b is called a loner if YTb = 1.

That is to say, a block is called a loner if it is the only honest block mined during a

round.

It is assumed that the mining difficulty is adjusted such that

q ≤ ξ

6
. (3.13)

Proposition 3.8. For r = 1, 2, . . . ,

q ≤ p(n− t) < q

1− q
. (3.14)

Proof. As Xr ∼ Bernoulli(q), we have

E[Xr] = q (3.15)

= 1− (1− p)n−t (3.16)

≤ p(n− t), (3.17)

where (3.17) is due to Bernoulli’s inequality. Moreover,

q

1− q
=

1− (1− p)n−t

(1− p)n−t
(3.18)

= (1− p)−(n−t) − 1 (3.19)

> (1 + p)n−t − 1 (3.20)

≥ p(n− t), (3.21)



33

where (3.20) is due to (1 + p)(1 − p) < 1 and (3.21) is due to Bernoulli’s inequality. By

(3.17) and (3.21),

q ≤ p(n− t) < q

1− q
. (3.22)

�

Proposition 3.9. For r = 1, 2, . . . ,

E[Yr] > q(1− q). (3.23)

Proof. According to Proposition 3.8, q ≤ 1
6
implies q < p(n− t) < 1

5
. Hence,

E[Yr] = p(n− t)(1− p)n−t−1 (3.24)

≥ p(n− t)(1− p(n− t− 1)) (3.25)

> p(n− t)(1− p(n− t)) (3.26)

> q(1− q), (3.27)

where (3.25) is due to Bernoulli’s inequality, and (3.27) holds because the function x(1−x)

is increasing on [0, 1
2
]. �

Proposition 3.10. For r = 1, 2, . . . ,

E[Zr] < E[Xr]. (3.28)
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Proof. Let Z ′r ∼ Binomial(t, p). Since Zr is dominated by Z ′r, we have

E [Zr] ≤ E[Z ′r] (3.29)

= pt (3.30)

=
t

n− t
p(n− t) (3.31)

<
t

n− t
q

1− q
(3.32)

= (1− ξ) 1

1− q
q (3.33)

≤ 1− ξ
1− ξ

6

q (3.34)

< E[Xr], (3.35)

where (3.32) is due to Proposition 3.8 and (3.35) is due to q ≤ ξ
6
. �

Definition 3.11. For all integers 1 ≤ s < r, define event

Ds,r = D1
s,r ∩D2

s,r ∩D3
s,r (3.36)

where

D1
s,r =

{
(1− ξ

6
)E[Xs,r] < Xs,r < (1 +

ξ

6
)E[Xs,r]

}
(3.37)

D2
s,r =

{
(1− ξ

6
)E[Ys,r] < Ys,r

}
(3.38)

D3
s,r =

{
Zs,r < E[Zs,r] +

ξ

6
E[Xs,r]

}
. (3.39)
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Under event D1
s,r, the number of rounds with honest block mined, Xs,r, does not

deviate from its expected value by more than a fraction of ξ
6
. Under event D2

s,r, the

number of loners Ys,r is no less than 1 − ξ
6
of its expected value. Under event D3

s,r, the

upper bound for the number of adversarial blocks is no more than its expected value plus

ξ
6
of the expectation of Xs,r. Intuitively, under Ds,r, we have 1) a “typical” number of

rounds during which at least one honest block is mined, 2)“enough” loners, and 3) the

total number of adversarial blocks is limited.

For convenience, define

η =
ξ2

180
q. (3.40)

Theorem 3.12. (Chernoff bound, [33, page 69]) Let X ∼ binomial(n, p). Then for

every η ∈ (0, 1],

P (X ≤ (1− η)pn) ≤ e−
η2pn

2 , (3.41)

and

P (X ≥ (1 + η)pn) ≤ e−
η2pn

3 . (3.42)

Lemma 3.13. For all integers 1 ≤ s < r,

P (Ds,r) > 1− 4e−η(r−s), (3.43)

where η is given in (3.40).
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Proof. We first analyze events D1, D2, and D3 separately. We have

P ((D1
s,r)

c) = P

(
|Xs,r − E[Xs,r]| ≥

ξ

6
E[Xs,r]

)
(3.44)

= P

(
Xs,r ≥ E[Xs,r] +

ξ

6
E[Xs,r]

)
+ P

(
Xs,r ≤ E[Xs,r]−

ξ

6
E[Xs,r]

)
(3.45)

≤ 2e−
ξ2

108
q(r−s), (3.46)

where (3.46) is due to Theorem 3.12.

Also,

P ((D2
s,r)

c) = P

(
Ys,r ≤ (1− ξ

6
)E[Ys,r]

)
(3.47)

≤ e−
ξ2

72
E[Ys,r] (3.48)

≤ e−
ξ2

72
(1−q)q(r−s) (3.49)

< e−
ξ2

72
(1− ξ

6
)q(r−s), (3.50)

where (3.48) is due to Theorem 3.12, (3.49) is due to Proposition 3.9, and (3.50) is due

to q ≤ ξ
6
.

Note that the moment generating function for binomial random variable Zr ∼ Binomial(t, p)

is (1− p+ peu)t (page 39 in [34]). We have

P ((D3
s,r)

c) = P

(
Zs,r ≥ E[Zs,r] +

ξ

6
E[Xs,r]

)
(3.51)

≤ P

(
Zs,r ≥ E[Zs,r] +

ξ

12
E[Zs,r] +

ξ

12
E[Xs,r]

)
(3.52)

<
E
[
eZs,ru

]
e(1+ ξ

12
)E[Zs,r]u+ ξ

12
E[Xs,r]u

(3.53)
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=
(1− p+ peu)t(r−s)

e(1+ ξ
12

)(r−s)tpu+ ξ
12

(r−s)qu
(3.54)

≤ e(e
u−1−u(1+ ξ

12
))tp(r−s)− ξ

12
qu(r−s), (3.55)

where (3.52) is due to Proposition 3.10, (3.53) holds for all u ≥ 0 due to Chernoff’s

inequality, and (3.55) is due to 1 + x ≤ ex for every x ≥ 0 (here x = p(eu − 1)). Pick

u = log(1 + ξ
12

). Then

P ((D3
s,r)

c) ≤ e(
ξ
12
−(1+ ξ

12
) log(1+ ξ

12
))tp(r−s)− ξ

12
log(1+ ξ

12
)q(r−s) (3.56)

< e−
ξ
12

log(1+ ξ
12

)q(r−s) (3.57)

< e−
ξ2

180
q(r−s) (3.58)

where (3.57) is due to (1+x) log(1+x) > x for all x > 0, and (3.58) is due to log(1+ ξ
12

) >

ξ
15

for all 0 < ξ ≤ 1.

Thus,

P (Ds,r) = 1− P ((Ds,r)
c) (3.59)

≥ 1− P ((D1
s,r)

c)− P ((D2
s,r)

c)− P ((D3
s,r)

c) (3.60)

> 1− 4e−η(r−s) (3.61)

where η is defined in (3.40), (3.61) is due to ξ2

72
(1− ξ

6
) > ξ2

180
and ξ2

108
> ξ2

180
. �

Lemma 3.14. For all integers 1 ≤ s < r, under event Ds,r, the following holds.

(1− ξ

6
)q(r − s) < Xs,r < (1 +

ξ

6
)q(r − s) (3.62)
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Ys,r > (1− ξ

3
)q(r − s) (3.63)

Zs,r < (1− 2ξ

3
)q(r − s) (3.64)

Zs,r < (1− ξ

2
)Xs,r (3.65)

Zs,r < Ys,r. (3.66)

Proof. Under Ds,r, (3.62) follows directly from (3.37).

To prove (3.63),

Ys,r > (1− ξ

6
)q(1− q)(r − s) (3.67)

> (1− ξ

6
)2q(r − s) (3.68)

> (1− ξ

3
)q(r − s), (3.69)

where (3.67) is due to Proposition 3.9 and (3.68) is due to q ≤ ξ
6
.

To prove (3.64), we have

Zs,r < E[Zs,r] +
ξ

6
E[Xs,r] (3.70)

≤ (1− ξ) q

1− q
(r − s) +

ξ

6
q(r − s) (3.71)

< (1− 2ξ

3
)q(r − s) (3.72)

where (3.70) is due to (3.39), (3.71) is due to (3.33), and (3.72) is due to q ≤ ξ
6
.

To prove (3.65), we have

Zs,r < (1− 2ξ

3
)q(r − s) (3.73)
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<
1− 2ξ

3

1− ξ
6

Xs,r (3.74)

< (1− ξ

2
)Xs,r, (3.75)

where (3.73) is due to (3.72) and (3.74) is due to (3.62).

The inequality (3.66) is straightforward by (3.64) and (3.63). �

Definition 3.15. For all integers 1 ≤ s < r, define the typical event with respect to

[s, r] as

Es,r =
⋂

0≤a<s,b≥0

Ds−a,r+b. (3.76)

The event Es,r occurs when the events Ds−a,r+b simultaneously occurs for all a, b,

i.e., the “E” events occur over all intervals that contain time interval [s, r]. The event

G represents a collection of outcomes that constrain the number of blocks mined in all

intervals that contain [s, r], including arbitrarily large intervals that terminate in the

arbitrarily far future. Intuitively, we have defined Es,r to allow the “good” properties

mentioned in Lemma 3.14 to extend to all intervals containing [s, r] under the event. It

is important to note that the typical events defined in [4, 32] requires the interval to

be bounded by b < rmax where rmax denotes a finite execution horizon. In contrast, the

typical event is defined in this thesis to allow for results for infinite horizon.

Lemma 3.16. For all integers 1 ≤ s < r,

P (Es,r) > 1− 5η−2e−η(r−s). (3.77)
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Proof. Due to the stationarity of X, Y and Z processes, P (Ds,r) = P (D1,r−s+1) for

all s, r. Evidently the probability only depends on the length of the interval r − s.

P (Ec
s,r) = P (∪0≤a<s,b≥0D

c
s−a,r+b) (3.78)

= P (∪0≤a<s,b≥0(D1,r−s+a+b+1)c) (3.79)

≤
∑

0≤a<s,b≥0

(D1,r−s+a+b+1)c) (3.80)

=
∞∑
k=0

∑
0≤a<s,b≥0:a+b=k

P ((D1,r−s+a+b+1)c) (3.81)

<
∞∑
k=0

(k + 1)P ((D1,r−s+a+b+1)c) (3.82)

<
∞∑
k=0

(k + 1)4e−η(r−s+k) (3.83)

= 4e−η(r−s)
∞∑
k=0

(k + 1)e−ηk (3.84)

=
4

(1− e−η)2
e−η(r−s). (3.85)

According to (3.13) and (3.40), η ≤ 1
6
· 1

180
= 1

1080
. The lemma is thus established using

the fact that 1− e−x ≥
√

4
5
x for all 0 ≤ x ≤ 1

1080
. �

Lemma 3.17. (Lemma 6 in [4]) A loner is the only honest block at its height.

Proof. Suppose block b is a loner and block d is a different honest block. Then

Td < Tb or Td > Tb by definition of a loner. If Td > Tb, we have h(d) ≥ h(b) + 1 since

blockchain b is published during round Tb. If Td < Tb, we have h(d) ≤ h(b) − 1 (if

h(d) ≥ h(b), block b’s height would be at least h(b) + 1). �
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Lemma 3.18. If block b is honest, then blockchain fb must be Tb-credible.

Proof. According to Definition 3.3, if block b is honest, it must extend a Tb-credible

blockchain. Thus the proof of Lemma 3.18 �

Although an honest block always extends a credible blockchain, a credible blockchain

may not end with an honest block. Moreover, an adversarial block may or may not extend

a credible blockchain and may be published anytime after it is mined.

Lemma 3.19. (Lemma 7 in [4]) Let 1 ≤ s < r be integers. Suppose an s-credible

blockchain has height `. Then all r-credible blockchains have height at least `+Xs,r.

Proof. By induction: Consider r = s + 1. If Xs = 0, then Xs,s+1 = 0. All (s + 1)-

credible blockchains have heights at least ` = ` + Xs,r. If Xs = 1, at least one honest

block is published during round s with height `+ 1. Then all (s+ 1)-credible blockchains

have heights at least `+1 = `+Xs,r. Lemma 3.19 is established for the cases of r = s+1.

Assume all r1-credible blockchains have length at least `+Xs,r1 . If Xr1 = 0, the claim

holds trivially for round r1 + 1. If Xr1 = 1, at least one honest block is published during

round r1 with height ` + Xs,r1 + 1. Then all (r1 + 1)-credible blockchains have height at

least `+Xs,r1+1 by Definition 3.6. By induction on r1, Lemma 3.19 holds. �

Lemma 3.20. For all integers 1 ≤ s < r and k ≥ 2q(r− s), under typical event Es,r,

the k-deep block and k-deep prefix of every r-credible blockchain must be mined before

round s.
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Proof. The total number of blocks mined by all miners during rounds {s, . . . , r−1}

is upper bounded by Xs,r + Zs,r. Note that

Xs,r + Zs,r <(1 +
ξ

6
)q(r − s) + (1− 2ξ

3
)q(r − s) (3.86)

<2q(r − s) (3.87)

≤k, (3.88)

where (3.86) is due to (3.62) and (3.64). Thus, the k-deep block and k-deep prefix must

be mined before round s. �

Theorem 3.21 (Blockchain growth theorem under lockstep synchronous model). Let

r, s, s1 be integers satisfying 1 ≤ s1 ≤ s < r. Then under typical event Es,r, the height

of an r-credible blockchain must be at least (1 − ξ
6
)q(r − s1) larger than the height of an

s1-credible blockchain.

Proof. Under Es,r, we have

Xs1,r > (1− ξ

6
)E[Xs1,r] (3.89)

= (1− ξ

6
)q(r − s1) (3.90)

where (3.90) is due to (3.62). According to Lemma 3.19, the height of an r-credible

blockchain is at least Xs1,r larger than that of an s1-credible blockchain. �

Theorem 3.22 (Blockchain quality theorem under lockstep synchronous model). Let

r, s, k be integers satisfying 1 ≤ s < r and k ≥ 2q(r− s). Suppose an r-credible blockchain
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has more than k blocks by round r. Under event Es,r, by round r, at least ξ
2
fraction of

the last k blocks of the blockchain are honest.

Proof. The intuition is that under typical event Es,r, an honest miner’s blockchain

grow by at least Xs,r according to Lemma 3.19. Meanwhile, the number of adversarial

blocks mined is upper bounded by (3.65). Thus, at least ξ
2
fraction of blocks must be

honest even in the worst case that all adversarial blocks are included in the blockchain.

To be precise, suppose blockchain d is r-credible and h(d) ≥ k. Denote the k-deep

block of blockchain d as block b. Let block e be the highest honest block mined before

block b on blockchain b. Then we have 0 ≤ h(e) < h(b). The relationship between these

blocks is illustrated as follows:

k blocks

e − · · · − i −
︷ ︸︸ ︷
b − · · · − d (3.91)

round s1 round r

Let s1 = Te for convenience. According to Lemma 3.19, we have s1 < s. Denote the

number of honest blocks between block b (inclusive) and block d (inclusive) as x. To prove

the theorem, it suffices to show x > ξ
2
k.

By definition, on blockchain d, all blocks at heights {h(e) + 1, . . . , h(b)− 1} are adver-

sarial, thus the number of honest blocks between block e (exclusive) and block d (inclusive)

is also x. Let y = h(d) − h(e), then the number of adversarial blocks on blockchain d

between block e (exclusive) and block d (inclusive) is y− x. Then y− x is a lower bound
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for the total number of adversarial blocks mined during rounds {s1 + 1, . . . , r − 1}. We

have

y − x ≤ Zs1+1,r. (3.92)

Under event Es,r, event Ds1+1,r occurs. Note that an (s1 + 1)-credible blockchain has

height at least h(e). By Lemma 3.21, we have h(d)− h(e) = y ≥ Xs1+1,r. Thus,

y − x ≤ Zs1+1,r (3.93)

< (1− ξ

2
)Xs1+1,r (3.94)

< (1− ξ

2
)y (3.95)

≤ y − ξ

2
k, (3.96)

where (3.93) is due to (3.92), (3.94) is due to (3.65), (3.95) is due to Lemma 3.19, and

(3.96) is due to y ≥ k. From (3.96), x > ξ
2
k is derived. �

Theorem 3.23 (Common prefix theorem under lockstep synchronous model). Let

r, s, k be integers satisfying 1 ≤ s < r and k ≥ 2q(r − s). Then the k-deep prefix of any

r-credible blockchain is permanent after round r under event Es,r.

Proof. The intuition is based on Lemma 3.17: a loner is the only honest block at

its height. If some adversarial miners wish to fork the blockchain, they must generate at

least one adversarial block for every loner after the common prefix. This can not be true

because according to (3.66): the number of loners must be greater than the number of

adversarial blocks under the typical event.
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To be precise, we prove the desired result by contradiction. Let blockchain b be the

k-deep prefix of an r-credible blockchain. If block b is the genesis block, the theorem is

trivial. Otherwise, we will show contradiction if blockchain b is not permanent after r.

Suppose round r1 ≥ r is the smallest integer such that there exists an r1-credible

blockchain (denoted as blockchain d) which does not extend blockchain b. If r1 = r, let

r2 = r. If r1 > r, let r2 = r1 − 1. Then there must exist an r2-credible blockchain that

extends blockchain b (denoted as blockchain d′). Let block e be the highest honest block

shared by blockchain d and blockchain d′. Then we have Te < s by Lemma 3.20. The

relationship between these blocks is illustrated as follows:

round r1

a − · · · − d

| (3.97)

e − · · · − b − · · · − d’

round Te round r2

Next we will show YTe+1,r2 ≤ ZTe+1,r2 . If YTe+1,r2 = 0, it is obvious. Otherwise, consider

a loner c mined during rounds {Te+1, . . . , r2}. Since blockchain e is Te-credible and block

c is mined after time Te + 1, we have h(c) > h(e) by Definition 3.6. Since blockchain d

is r1-credible and blockchain d′ is r2-credible, we have h(c) ≤ min{h(d), h(d′)}. Consider

the following two only possible cases:
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(1) If h(e) < h(c) ≤ h(b), there exists at least one adversarial block at height h(c) be-

cause all blocks between block e (exclusive) and block b (inclusive) are adversarial

by definition.

(2) If h(b) < h(c) ≤ min{h(d), h(d′)}, there is at least one adversarial block at height

h(c), because two diverging blockchains exist but loner c is the only honest block

at its height by Lemma 3.17.

Thus, for every loner c mined during rounds {Te + 1, . . . , r2}, at least one adversarial

block must be mined during rounds {Te + 1, . . . , r2} at the same height. In particular,

the adversarial block must be mined before r2 because it is published by time r2. Thus,

we have YTe+1,r2 ≤ ZTe+1,r2 .

However, since Te + 1 ≤ s and r2 ≥ r, we know DTe+1,r2 occurs under Es,r. So we

have ZTe+1,r2 < YTe+1,r2 according to (3.66). Contradiction arises. Hence the proof of the

theorem. �

3.4. Non-lockstep synchronous model and analysis

In this section, we consider the non-lockstep synchronous model where there is an

upper bound T on the delay for message delivery. That is to say, if a block is published

during round r, by round r + T , all other miners would have received the block. In this

section, the definitions of credible blockchains and typical events are similar but different

from that in Section 3.3. In the special case of T = 1, this model degenerates to the

lockstep synchronous model.

Definition 3.24. (r-credible blockchain) Blockchain b is said to be r-credible if it

has been published by round r, and is no shorter than any blockchain published by round
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r − T + 1. That is to say,

Pb < r, (3.98)

and

h(b) ≥ h(k), ∀k : Pk < r − T + 1. (3.99)

If there is no need to specify round r explicitly, blockchain b can also be simply called a

credible blockchain.

Note that in non-lockstep synchronous networks, there can be multiple r-credible

blockchains, which may or may not be of the same height.

Lemma 3.25. If block b is honest, then blockchain fb must be Tb credible.

Proof. Lemma 3.25 is obvious by Definition 3.3: if block b is honest, it must extend

a Tb-credible blockchain. �

A block is called a lagger if it is the single honest block mined during a round and

no other honest block is mined in the previous T − 1 rounds. Accordingly, we define the

following indicators for r = T, T + 1, . . . :

Vr =



1, if Hr = 1 and

Hr−1 = . . . = Hr−T+1 = 0,

0, otherwise.

(3.100)
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A block is said to be a loner if it is the only honest block during a round and no other

honest block is mined within T − 1 rounds before or after the round. Accordingly, we

define the following indicators for r = T, T + 1, . . .:

Wr =



1, if Hr = 1, Hr−1 = . . . = Hr−T+1 = 0,

and Hr+1 = . . . = Hr+T−1 = 0,

0, otherwise.

(3.101)

It is important to note that H1, H2, . . . are identically distributed, which form a stationary

process. The same can be said of the V and W sequences.

In non-lockstep synchronous networks, it is assumed that the mining difficulty is ad-

justed to be sufficiently low such that the probability that one or more honest blocks are

mined in a slot satisfies

q ≤ ξ

20T
(3.102)

where ξ is defined in (3.2).

Theorem 3.26. (Bernoulli’s inequality [35, page 55]) For every integer k ≥ 0 and

real number x > −1,

(1 + x)k ≥ 1 + kx. (3.103)

Proposition 3.27. For every r = T, T + 1, . . .,

E[Vr] > q(1− q)T (3.104)



49

> q(1− Tq). (3.105)

Proof. Here, (3.104) is due to (3.15) and Proposition 3.9 and (3.105) is due to

Bernoulli’s inequality (3.103). �

Proposition 3.28. For every r = T, T + 1, . . .,

E[Wr] > q(1− q)2T−1 (3.106)

> q(1− (2T − 1)q). (3.107)

Proof. Note that H[r] = 1 indicates Y [r] = 1, H[r] = 0 indicates X[r] = 0. Then,

(3.106) is due to (3.15) and Proposition 3.9, and (3.107) is due to Bernoulli’s inequality

(3.103). �

Proposition 3.29. For every r = T, T + 1, . . .,

E[Zr] < E[Vr]. (3.108)

Proof. Let Z ′r ∼ Binomial(t, p). Since the adversarial mining power is upper

bounded by β, we have

E[Zr] ≤ E [Z ′r] (3.109)

= pt (3.110)

=
t

n− t
p(n− t) (3.111)

= (1− ξ)p(n− t) (3.112)
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< (1− ξ) q

1− q
(3.113)

< q(1− Tq) (3.114)

≤ E[Vr], (3.115)

where (3.112) is due to (3.2), (3.113) is due to Proposition 3.8, (3.114) is due to (3.102),

and (3.115) is due to Proposition 3.27. �

We define vm(·) on Rm by

vm(a1 . . . , am) =
m∑
i=T

1{ai = 1, ai−1 = . . . = ai−T+1 = 0}. (3.116)

Likewise, we define wm(·) on Rm by

wm(a1, . . . , am) =
m−T+1∑
i=T

1{ai = 1, ai−T+1 = . . . = ai−1 = 0and ai+1 = . . . = ai+T−1 = 0}.

(3.117)

Although ai is allowed to take arbitrary real values, the indicator functions in (3.116) and

(3.117) yield a binary value. For all integers s and r satisfying T ≤ s < r, we have

Vs,r = vr−s+T−1(Hs−T+1, . . . , Hr−1) (3.118)

=
r−1∑
i=s

Vi (3.119)

and

Ws,r = wr−s+2T−2(Hs−T+1, . . . , Hr+T−2) (3.120)
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=
r−1∑
i=s

Wi (3.121)

where Vi and Wi are as defined in (3.100) and (3.101), respectively.

Lemma 3.30. For T ≤ s < r, v(·) is 1-Lipschitz and w(·) is 2-Lipschitz.

Proof. Define vi = 1{hi = 1, hi−1 = . . . = hi−T+1 = 0}, then v(hs−T+1, . . . , hr−1) =∑r−1
i=s vi. Suppose hs−T+1, . . . , hk, . . . , hr−1 changes to hs−T+1, . . . , h

′
k, . . . , hr−1. Let ` be

equal to the smaller one of k + T − 1 and r − 1. Only vk, vk+1, . . . , v` may be affected by

this change. By definition, at most one of vk+1, . . . , v` can be non-zero. Then there are

two cases before the change: 1) All of vk+1, . . . , v` are equal to 0. In this case, the change

of hk can change (increase or decrease) the value of vk by at most 1, but has no impact

on vk+1, . . . , v`. 2) There exists a j between k + 1 and `. In this case, hk must be zero

according to the definition of vj. Thus, h′k 6= 0, vj changes from 1 to 0. Meanwhile, vk

may change from 0 to 1 or remain zero, so vk + vj is not going to differ by more than 1

from of its original value. In either case, v(hs−T+1, . . . , hr−1) can change by no more than

1, so v(·) is 1-Lipschitz.

Define wi = 1{hi = 1, hi−T+1 = . . . = hi−1 = hi+1 = . . . = hi+T−1 = 0}, then

w(hs−T+1, . . . , hr+T−2) =
∑r−1

i=s wi. Suppose hs−T+1, . . . , hk, . . . , hr+T−2 changes to hs−T+1,

. . ., h′k, . . . , hr+T−2. Let m be the larger one of k−T +1 and s−T +1, let n be the smaller

one of k+T−1 and r+T−2. Only wm, . . . , wk−1, wk, wk+1, . . . , wn are possibly affected by

this change. By definition, at most two elements of wm, . . . , wn can be non-zero, and they

must be on different sides of wk. Then there are two cases: 1) There are no more than

one none-zero elements in wm, . . . , wn, in this case changing hk can not change the value
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of g by more than 2. 2) There exists an p and q satisfying m ≤ p ≤ k − 1, k + 1 ≤ q ≤ n

such that wp = 1 and wq = 1. In this case, we must have hk = 0 and h′k 6= 0 according to

the definition of wp, wq. Thus wp and wq change from 1 to 0. Meanwhile, wk may change

from 0 to 1 or remain unchanged, and wp + wk + wq can change by 1 or 2, but not more

than 2 from of its original value. So w(·) is 2-Lipschitz. �

Following (3.7), we define

Vs,r =
r−1∑
i=s

Vi, (3.122)

Ws,r =
r−1∑
i=s

Wi (3.123)

for all integers 1 ≤ s < r.

For convenience, we define

µ =
ξ2

4000T 2
q2(1− q)4T−2. (3.124)

Definition 3.31. For all integers T ≤ s < r, define event

Fs,r = F 1
s,r ∩ F 2

s,r ∩ F 3
s,r ∩ F 4

s,r (3.125)

where

F 1
s,r =

{
(1− ξ

20
)E[Vs,r] < Vs,r

}
, (3.126)

F 2
s,r =

{
Xs,r < (1 +

ξ

20
)E[Xs,r]

}
, (3.127)
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F 3
s,r =

{
(1− ξ

20
)E[Ws,r] < Ws,r

}
, (3.128)

F 4
s,r =

{
Zs,r < E[Zs,r] +

ξ

20
E[Vs,r]

}
. (3.129)

Definition 3.32. Let f be a function on Rn. Let x, x′ ∈ Rn. A function f(x1, . . . , xn)

is k-Lipschitz if |f(x)− f(x′)| ≤ k whenever x and x′ differ in at most one coordinate.

Theorem 3.33. (McDiarmid’s inequality, [36, page 40]) If f on Rn is k-Lipschitz

and X1, . . . , Xn are independent random variables, then for every t > 0,

P (f(X1, . . . , Xn) > E[f(X1, . . . , Xn)] + t) ≤ e−
2t2

nk2 , (3.130)

P (f(X1, . . . , Xn) < E[f(X1, . . . , Xn)]− t) ≤ e−
2t2

nk2 . (3.131)

Lemma 3.34. For all integers T ≤ s < r,

P (Fs,r) > 1− 4e−µ(r−s), (3.132)

where µ is given in (3.124).

Proof. Because Vr and Vs are dependent, standard Chernoff bound does not apply.

Similarly for Wr and Wr. However, due to Lemma 3.30, we have

P ((F 1
s,r)

c) = P

(
Vs,r ≤ E[Vs,r]−

ξ

20
E[Vs,r]

)
(3.133)

≤ e−
ξ2

200(r−s+T−1)
E[Vs,r]2 (3.134)

≤ e−
ξ2

200
q2(1−q)2T (r−s+T−1) (3.135)

≤ e−
ξ2

200
q2(1−q)2T (r−s) (3.136)



54

where (3.134) is due to Theorem 3.33, (3.135) is due to Proposition 3.27, and (3.136) is

due to T ≥ 1.

Similarly,

P ((F 3
s,r)

c) = P

(
Ws,r ≤ E[Ws,r]−

ξ

20
E[Ws,r]

)
(3.137)

≤ e−
ξ2

200(r−s+2T−2)
(E[Ws,r])2

(3.138)

≤ e−
ξ2

200
q2(1−q)4T−2(r−s+2T−2) (3.139)

≤ e−
ξ2

200
q2(1−q)4T−2(r−s) (3.140)

where (3.138) is due to Theorem (3.33), (3.139) is due to (3.106), and (3.140) is due to

T ≥ 1.

By Theorem 3.12,

P ((F 2
s,r)

c) = P

(
Xs,r ≥ (1 +

ξ

20
)E[Xs,r]

)
(3.141)

≤ e−
ξ2

1200
q(r−s). (3.142)

According to (3.115), E[Zs,r] < E[Vs,r]. Note that the moment generating function

for binomial random variable Zr ∼ Binomial(t, p) is (1 − p + peu)t [34]. Pick arbitrary

u > 0. We have

P ((F 4
s,r)

c) = P

(
Zs,r ≥ E[Zs,r] +

ξ

20T
E[Vs,r]

)
(3.143)

≤ P

(
Zs,r ≥ E[Zs,r] +

ξ

40T
E[Zs,r] +

ξ

40T
E[Vs,r]

)
(3.144)
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<
E[eZs,ru]

e(1+ ξ
40T

)E[Zs,r]u+ ξ
40T

E[Vs,r]u
(3.145)

=
(1− p+ peu)t(r−s)

e(1+ ξ
40T

)(r−s)tpu+ ξ
40T

q(1−q)Tu(r−s)
(3.146)

≤ e(eu−1−u(1+ ξ
40T

))tp(r−s)− ξ
40T

uq(1−q)T (r−s), (3.147)

where (3.145) is by the Chernoff inequality and (3.147) is due to 1 + x ≤ ex for every

x ≥ 0 (here x = p(eu − 1)). Let u = log(1 + ξ
40T

). Then

P ((F 4
s,r)

c) ≤ e( ξ
40T
−(1+ ξ

40T
) log(1+ ξ

40T
))tp(r−s)− ξ

40T
log(1+ ξ

40T
)q(1−q)T (r−s) (3.148)

< e−
ξ

40T
log(1+ ξ

40T
)q(1−q)T (r−s) (3.149)

< e−
ξ2

4000T2 q(1−q)T (r−s), (3.150)

where (3.149) is due to (1 + x) log(1 + x) > x for all x > 0 and (3.150) is due to

log(1 + ξ
40T

) > ξ
100T

for all ξ ∈ (0, 1] and T ≥ 1.

Since µ defined in (3.124) dominates the corresponding exponential coefficients in

(3.136), (3.140), (3.142), and (3.150), we have

P (Fs,r) = 1− P ((Fs,r)
c) (3.151)

≥ 1− P ((F 1
s,r)

c)− P ((F 2
s,r)

c)− P ((F 3
s,r)

c)− P ((F 4
s,r)

c) (3.152)

> 1− 4e−µ(r−s). (3.153)

�
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Lemma 3.35. For all integers T ≤ s < r − 2
q
, the following inequalities hold under

event Fs,r:

(1− ξ

20
)q(1− q)T (r − s) < Vs,r (3.154)

Xs,r < (1 +
ξ

20
)q(r − s) (3.155)

(1− ξ

3
)q(r − s) < Ws,r (3.156)

Zs,r < (1− 2ξ

3
)q(r − s). (3.157)

The following inequalities hold under event Fs+T,r−T :

Zs,r < (1− ξ

2
)Vs+T,r−T (3.158)

Zs,r < Ws+T,r−T . (3.159)

Proof. Under Fs,r, (3.154) follows directly from (3.126). (3.155) follows directly

from (3.127).

To prove (3.156), we write

Ws,r > (1− ξ

20
)E[Ws,r] (3.160)

> (1− ξ

20
)(1− (2T − 1)q)q(r − s) (3.161)

> (1− ξ

20
)(1− ξ

10
)q(r − s) (3.162)

> (1− ξ

3
)q(r − s), (3.163)
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where (3.160) is due to (3.128), (3.161) is due to Proposition 3.28, (3.162) is due to (3.102),

and (3.163) is due to ξ ∈ [0, 1) and T ≥ 1.

To prove (3.157),

Zs,r < E[Zs,r] +
ξ

20
E[Vs,r] (3.164)

= pt(r − s) +
ξ

20
q(1− q)T (r − s) (3.165)

=
t

n− t
(n− t)p(r − s) +

ξ

20
q(1− q)T (r − s) (3.166)

≤ (1− ξ) q

1− q
(r − s) +

ξ

20
q(1− q)T (r − s) (3.167)

≤ (1− ξ) q

1− ξ
20T

(r − s) +
ξ

20
q(r − s) (3.168)

<

(
1− 2ξ

3

)
q(r − s), (3.169)

where (3.164) is due to (3.129), (3.167) is due to Proposition 3.8, (3.168) is due to (3.102),

and (3.169) is due to ξ ∈ (0, 1].

By assumption (3.102),

T ≤ ξ

20q
(3.170)

<
ξ

40
(r − s) (3.171)

where (3.171) is by the assumption of this lemma: r − s > 2
q
. Thus,

r − s < r − s− T
1− ξ

40

(3.172)
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and

r − s < r − s− 2T

1− ξ
20

(3.173)

To prove (3.158), we begin with (3.167):

Zs,r < (1− ξ) q

1− q
(r − s) +

ξ

20
q(1− q)T (r − s) (3.174)

<

(
1− ξ

(1− q)T+1
+

ξ

20

)
q(1− q)T r − s− T

1− ξ
40

(3.175)

<

(
1− ξ

1− (T + 1)q
+

ξ

20

)
q(1− q)T r − s− T

1− ξ
40

(3.176)

<

(
1− ξ

1− (T + 1)q
+

ξ

20

)
Vs,r−T

(1− ξ
20

)(1− ξ
40

)
(3.177)

<

(
1− ξ
1− ξ

10

+
ξ

20

)
1

(1− ξ
20

)(1− ξ
40

)
Vs,r−T (3.178)

< (1− ξ

2
)Vs,r (3.179)

where (3.175) is due to (3.172), (3.176) is due to (3.103), (3.177) is due to (3.154), (3.178)

is due to q < ξ
10(T+1)

, (3.179) is due to ξ ∈ [0, 1).

To prove (3.159),

Zs,r < (1− 2ξ

3
)q(r − s) (3.180)

< (1− 2ξ

3
)q
r − s− 2T

1− ξ
20

(3.181)

< (1− ξ

3
)q(r − s− 2T ) (3.182)

< Ws+T,r−T , (3.183)
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where (3.180) is due to (3.157), (3.181) is due to (3.173), (3.182) is due to ξ ∈ [0, 1), and

(3.183) is due to (3.156). �

Definition 3.36. For all integers T ≤ s < r − 2
q
, define typical event

Gs,r =
⋂

0≤a≤s−T,b≥0

Fs−a,r+b. (3.184)

Gs,r occurs when events Fk,` simultaneously occurs for all k, `, i.e., the “F ” event occur

over all consecutive rounds containing {s, . . . , r}. The event J represents a collection

of outcomes that constrain the number of blocks mined in all those rounds, including

arbitrarily large intervals that end in the arbitrarily far future. The “good” properties in

Lemma 3.35 to extend to all those rounds under the event Gs,r.

Lemma 3.37. For all integers T ≤ s < r − 2
q
,

P (Gs,r) > 1− 5µ−2e−µ(r−s). (3.185)

Proof. Due to the stationarity of processesX, Y, Z, V , andW , P (Fs,r) = P (FT,T+r−s)

for all s, r. Evidently the probability depends on r and s only through the interval length

r − s:

P ((Gs,r)
c) = P

( ⋃
0≤a≤s−T,b≥0

(Fs−a,r+b)
c

)
(3.186)

= P

( ⋃
0≤a≤s−T,b≥0

(FT,r−s+a+b+T )c

)
(3.187)

≤
∑

0≤a≤s−T,b≥0

P ((FT,r−s+a+b+T )c) (3.188)
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=
∞∑
k=0

∑
0≤a≤s−T,b≥0,a+b=k

P ((FT,r−s+k+T )c) (3.189)

<
∞∑
k=0

(k + 1)P ((FT,r−s+k+T )c) (3.190)

<
∞∑
k=0

(k + 1)4e−µ(r−s+k) (3.191)

= 4e−µ(r−s)
∞∑
k=0

(k + 1)e−µk (3.192)

=
4

(1− e−µ)2
e−µ(r−s). (3.193)

According to (3.102) and (3.124), µ < 1
4000

. Thus, (3.185) is established using the fact

that 1− e−x > 4√
5
x for all x ∈ [0, 1

4000
]. �

Lemma 3.38. If an r-credible blockchain has height h, then the heights of all (r+T )-

credible blockchains are at least h.

Proof. Lemma 3.38 is obvious by the Definition 3.24. �

Lemma 3.39. Laggers have different heights.

Proof. Suppose two laggers block b and block d with Td ≥ Tb have the same height

k. Because block d is a lagger, we must have Td ≥ Tb + T . According to Lemma 3.38, the

heights of all (Tb+T )-credible blocks are at least k. Since blockchain fd is Td-credible and

Td ≥ Tb +T , the height of block d is at least k+ 1, which contradicts the assumption. �

Lemma 3.40. Let T ≤ s ≤ r − 2
q
be integers. Suppose an s-credible blockchain has

height `. Then all r-credible blockchains have heights at least `+ Vs,r−T .
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Proof. We will prove the lemma by induction on r: Consider r = s + T . Since an

s-credible blockchain has height `, the height of an (s + T )-credible blockchain must be

at least `.

We next assume the claim holds for r = s + T, . . . , s + T + u and show that it also

holds for s+ T + u+ 1. 1) If Vs+u+1 = 0, the claim holds trivially. 2) If Vs+u+1 = 1, then

by definition of V , Hs+u = · · · = Hs+u−T+2 = 0. By induction, all (s + u + 1)-credible

blockchains have heights at least `′ = ` + Vs,s+u−T+1 = ` + Vs,s+u+1. Since Vs+u+1 = 1,

during round s+ u+ 1 at least one honest block with height `′+ 1 is broadcast. Then all

(s+T +u+1)-credible blockchains have heights at least `′+1 = `+Vs,s+u+1 by Definition

3.24.

By induction on r, Lemma 3.40 holds. �

Lemma 3.41. A loner is the only honest block at its height.

Proof. Suppose block b is a loner and block d is a different honest block. Then

Td ≤ Tb−T or Td ≥ Tb+T by definition of a loner. If Td ≥ Tb+T , we have h(d) ≥ h(b)+1

since blockchain b is published during round Tb. If Td < Tb, we have h(d) ≤ h(b) − 1 (if

h(d) ≥ h(b), block b’s height would be at least h(b) + 1). Thus the proof of Lemma

3.41. �

Lemma 3.42. For all integers T ≤ s < r − 2
q
and k ≥ 2q(r − s), under typical event

Gs,r, the k-deep block and k-deep prefix of every r-credible blockchain must be mined before

round s.
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Proof. The number of blockchain growth during rounds {s, . . . , r − 1} is upper

bounded by Xs−T,r + Zs−T,r. Under event Gs,r, event Gs−T,r occurs. Note that

Xs−T,r + Zs−T,r < (1 +
ξ

20
)q(r − s+ T ) + (1− 2ξ

3
)q(r − s+ T ) (3.194)

< (2− ξ

2
)q(r − s+ T ) (3.195)

< 2q(r − s) (3.196)

≤ k, (3.197)

where (3.194) is due to (3.155) and (3.157), (3.196) is due to (3.102) and r−s > 2
q
. Then,

the k-deep block and k-deep prefix must be mined before round s. �

Theorem 3.43 (Blockchain growth theorem under non-lockstep synchronous model).

Let r, s, s1 be integers satisfying T ≤ s1 ≤ s < r − 2
q
. Under typical event Gs,r−T , the

height of every r-credible blockchain must be at least (1− ξ
10

)(1− q)T (r − s1)q more than

the maximum height of all s1-credible blockchains.

Proof. Assume the maximum height of s1-credible blockchains is `. If event Gs,r−T

occurs, event Gs1,r−T occurs. We have

Vs1,r−T > (1− ξ

20
)(1− q)T q(r − s1 − T ) (3.198)

= (1− ξ

20
)(1− q)T q(1− T

r − s1

)(r − s1) (3.199)

> (1− ξ

20
)(1− T

r − s1

)(1− q)T (r − s1)q (3.200)

≥ (1− ξ

20
)(1− ξ

40
)(1− q)T (r − s1)q (3.201)
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> (1− ξ

10
)(1− q)T (r − s1)q, (3.202)

where (3.198) is due to (3.154), (3.201) is due to r − s1 ≥ 2
q
and (3.102), and (3.202)

is due to ξ ∈ [0, 1). By Lemma 3.40, the height of any r-credible blockchain is at least

`+ (1− ξ
10

)(1− q)T (r − s1)q. �

Theorem 3.44 (Blockchain quality theorem under non-lockstep synchronous model).

Let r, s, k be integers satisfying T ≤ s < r − 2
q
and k ≥ 2(r − s)q. Suppose an r-credible

blockchain has more than k blocks, then under event Gs+T,r−T , at least ξ
2
k of the last k

blocks of this blockchain are honest.

Proof. Suppose blockchain d is r-credible and h(d) ≥ k. Denote the k-deep block

of blockchain d as block b. Let block e be the highest honest block mined before block b

on blockchain b. Then we have 0 ≤ h(e) < h(b). The relationship between these blocks is

illustrated as follows:

k blocks

e − · · · − i −
︷ ︸︸ ︷
b − · · · − d (3.203)

round s1 round r

Let s1 = Te for convenience. According to Lemma 3.42, we have s1 < s. Denote the

number of honest blocks between block b (inclusive) and block d (inclusive) as x. To prove

the theorem, it suffices to show x > ξ
2
k.

By definition, on blockchain d, all blocks at heights {h(e) + 1, . . . , h(b)− 1} are adver-

sarial, thus the number of honest blocks between block e (exclusive) and block d (inclusive)
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is also x. Let y = h(d) − h(e), then the number of adversarial blocks on blockchain b

between block e (exclusive) and block d (inclusive) is y− x. Then y− x is a lower bound

for the total number of adversarial blocks generated during round {s1, . . . , r − 1}. We

have

y − x ≤ Zs1,r. (3.204)

Note that an (s1 + T )-credible blockchain has height at least h(e). Since blockchain d

is r-credible, by Lemma 3.40 we have

h(d)− h(e) = y ≥ Vs1+T,r−T . (3.205)

Under event Gs+T,r−T , event Fs1+T,r−T occurs. Thus,

y − x ≤ Zs1,r (3.206)

< (1− ξ

2
)Vs1+T,r−T (3.207)

< (1− ξ

2
)y, (3.208)

where (3.207) is due to (3.158). From (3.208), x > ξ
2
k is derived. �

Theorem 3.45 (Common prefix property under non-lockstep synchronous model).

Let r, s, k be integers satisfying T ≤ s < r − 2
q
and k > 2(r − s)q. If an r-credible

blockchain has a k-deep prefix, then the prefix is permanent after round r under Gs+T,r−T .
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Proof. We prove the desired result by contradiction. Let blockchain b be the k-deep

prefix of an r-credible blockchain. If block b is the genesis block, the theorem is trivial.

Otherwise, we will show contradiction if blockchain b is not permanent after r.

Suppose round r1 ≥ r is the smallest integer such that there exists an r1-credible

blockchain (denoted as blockchain d) which does not extend blockchain b. If r1 = r, let

r2 = r. If r1 > r, let r2 = r1 − 1. Then there must exist an r2-credible blockchain that

extends blockchain b (denoted as blockchain d′). Let block e be the highest honest block

shared by blockchain d and blockchain d′. Then we have Te < s by Lemma 3.20. The

relationship between these blocks is illustrated as follows:

round r1

a − · · · − d

| (3.209)

e − · · · − b − · · · − d’

round Te round r2

Next we will show YTe+T+1,r2−T ≤ ZTe+1,r2 . If YTe+T+1,r2−T = 0, it is obvious. Oth-

erwise, consider a loner c mined during rounds {Te + 1 + T, . . . , r2 − T − 1}. Since

block e is mined during round Te, every (Te + T )-credible blockchain has height at least

h(e). Since block c is honest, its height must be larger than a Tc-credible blockchain.

Since Tc ≥ Te + T + 1, we know h(c) > h(e). Since Tc ≤ r2 − T − 1 and r1 ≥ r2,

every r1-credible blockchain and r2-credible blockchain has height at least h(c). We have

h(c) ≤ min{h(d), h(d′)}. Consider the following two only possible cases:
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(1) If h(e) < h(c) ≤ h(b), there exists at least one adversarial block at height h(c) be-

cause all blocks between block e (exclusive) and block b (inclusive) are adversarial

by definition.

(2) If h(b) < h(c) ≤ min{h(d), h(d′)}, there is at least one adversarial block at height

h(c), because two diverging blockchains exist but loner c is the only honest block

at its height by Lemma 3.17.

Thus, for every loner c mined during rounds {Te + T + 1, . . . , r2 − T − 1}, at least one

adversarial block must be mined at the same height. In particular, the adversarial blocks

must be mined before r2 because it is published by time r2. Thus, we have YTe+T+1,r2−T ≤

ZTe+1,r2 .

However, since s > Te and r ≤ r2, FTe+1,r2 occurs under event Gs,r. So we have

ZTe+1,r2 < YTe+T+1,r2−T according to (3.159). Contradiction arises. Hence the proof of the

theorem. �

So far, we have analyzed the Bitcoin backbone protocol assuming unlimited lifespan

under both the lockstep synchronous model and non-lockstep synchronous model, allowing

the block propagation delays to be arbitrary but bounded. Under the new setting, we

rigorously establish a blockchain growth property, a blockchain quality property, and a

common prefix property. This framework also serves as a basis for the following analysis

of the Prism backbone protocol.
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CHAPTER 4

Analyses of the Prism Backbone Protocol

4.1. Introduction

The throughput of Bitcoin is very limited by design to ensure security [18]. In partic-

ular, the average time interval between new blocks is set to be much longer than the block

propagation delays so that forking is infrequent [19]. Many ideas have been proposed to

improve the blockchain throughput. One way is to construct high-forking blockchains

by optimizing the forking rule, which is vulnerable to certain attacks [19–25]. Another

line of work is to decouple the various functionalities of the blockchain [26, 27], under

the spirit of which Bagaria, Kannan, Tse, Fanti, and Viswanath [32] proposed the Prism

protocol in 2018. The Prism protocol defines one proposer blockchain and many voter

blockchains. The voter blocks elect a leader block at each level of the proposer blockchain

by voting. The sequence of leader blocks concludes the contents of all voter blocks, and

finalizes the ledger. A voter blockchain follows the Bitcoin protocol to provide security

to leader election process. With this design, the throughput (containing the content of

all voter blocks) is decoupled from the mining rate of each voter blockchain. Slow mining

rate guarantees the security of each voter blockchain as well as the leader sequence they

selected. Prism achieves security against up to 50% adversarial hashing power, optimal

throughput up to the capacity of the network, and fast confirmation latency for honest

transactions. A thorough description and analysis is found in [32].
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In [32], liveliness and consistency of Prism transactions were proved assuming a finite

life span of the blockchains under the lockstep synchrony model [32]. In this chapter,

we strengthen and extend the results to the non-lockstep synchrony model. This chapter

establishes the key properties for the continuous-time model. Compared with Bitcoin

blockchains whose consistency is achieved by the numerical advantage of honest blocks, the

Prism blockchains achieve consistency by the permanent voting from voter blockchains.

The Prism protocol was invented and fully described in [9]. Here we describe the

Prism backbone protocol with just enough details to facilitate its analysis.

4.2. General model of the Prism protocol

Blocks are generated in a peer-to-peer network where honest and adversarial miners

mine and publish blocks over time. The blocks are classified into m+1 categories, referred

to as 0-blocks, 1-blocks, . . . , m-blocks. A block is mined before knowing which kind of

block it is, so it contains enough information for all (m + 1) kinds of blocks. Sortition

relies on the range the new block’s hash lands in: If a miner constructs a new block whose

hash is within [jγ, jγ + γ) for j ∈ {0, . . . ,m}, the mined block is a j-block. Parameter γ

can be adjusted to control the mining rate.

Definition 4.1 (j-blocks). For j ∈ {0, . . . ,m}, we assume a genesis j-block, referred

to as j-block 0, is mined at time 0. Subsequent j-blocks are referred to as j-block 1, j-block

2, and so on, in the order they are mined in time after time 0.

Definition 4.2 (j-blockchain and height). For j ∈ {0, . . . ,m}, every non-genesis j-

block must contain the hash value of a unique parent j-block which is mined strictly earlier.

We use f ji ∈ {0, 1, ..., i − 1} to denote j-block i’s parent j-block number. The sequence
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(b0, . . . , bn) defines a j-blockchain if b0 = 0 and f jbk = bi−1 for i = 1, . . . , n. It is also

referred to as j-blockchain bn since bn uniquely identifies it. The height of both j-block bi

and j-blockchain bi is said to be i.

Definition 4.3 (A miner’s longest j-blockchain). Let j ∈ {0, 1, . . . ,m}. A j-blockchain

is in a miner’s view at round r if all blocks of the j-blockchain are in the miner’s view at

round r. A miner’s longest j-blockchain at round r is a j-blockchain with the maximum

height in the miner’s view at round r. Ties are broken in an arbitrary manner.

Definition 4.4 (Honest and adversarial miners). Each miner is either honest or ad-

versarial. Let j ∈ {0, 1, . . . ,m}. A j-block is said to be honest (resp. adversarial) if it is

mined by an honest (resp. adversarial) miner. An honest j-block mined during round r

must extend its miner’s longest j-blockchain at round r.

Definition 4.5 (Publication). Let j ∈ {0, 1, . . . ,m}. A j-block is said to be published

at round r if it is included in at least one honest miner’s view at round r. A j-blockchain

is said to be published at round r if all of its j-blocks are published at round r.

We let T jb denote the round when j-block b is mined. We let P j
b denote the round

at which block b is published. By definition 4.4, an honest j-block b is published at the

round it is mined. We have T jb = P j
b .

For j = 0, 1, . . . ,m and r = 1, 2, . . . , let Hj
r denote the total number of honest j-blocks

mined during round r. Following the definitions in the Bitcoin protocol, for j = 0, 1, . . . ,m
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and r = 1, 2, . . ., we also define

Xj
r =


1, if Hj

r ≥ 1

0, otherwise,
(4.1)

Y j
r =


1, if Hj

r = 1

0, otherwise,
(4.2)

and let Zj
r be the total number adversarial j-blocks mined during round r.

However, it does not suffice to generate a high-throughput transaction ledger by simply

putting (m + 1) Bitcoin blockchains in parallel. In particular, while all transactions in

each blockchain itself are consistent, transactions on different blockchains may contradict

each other, e.g., there may be double spending across different blockchains. In the Prism

protocol, these (m + 1) Bitcoin blockchains are building blocks. An additional process,

referred to as voting, is executed to resolve conflicts and achieve global consensus. To be

specific, block are classified into proposer blocks (0-blocks) and voter blocks (all j-blocks

with j ∈ {1, . . . ,m}). Blockchains are classified into proposer blockchains (0-blockchains)

and voter blockchains (all j-blockchains with j ∈ {1, . . . ,m}). The voting by credible

voter blockchains elects a series of proposer blocks called a credible leader sequence,

which is responsible for generating a final transaction ledger. A credible leader sequence

may or may not be a credible 0-blockchain. While the properties of Bitcoin blockchains

ensure the liveness and consistency of voter blockchains, the voting process ensures the
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liveness and consistency of credible leader sequences. Below we briefly describe voting

and transaction ledger generation.

By saying a voter j-block b votes on a height h, we mean the voter block chooses one

proposer block among all proposer blocks at height h and points to the proposer block

with a reference link. The reference link is part of the content of voter j-block b, thus it

is immutable. Obviously voter j-block b can not vote on height where the first block on

this height is mined after it.

According to the Prism protocol, when voting on a height, an honest voter block

always chooses the first observed proposer block of this height. An honest voter j-block

b votes on all heights h as long as 1) it has observed blocks on height h and 2) height

h has not been voted on by the voter block’s ancestors. An adversarial voter block may

not choose the first observed proposer block when voting. An adversarial voter block may

refuse to vote on some height or repeatedly vote on some height that has already been

voted by its ancestors.

At each height, the vote(s) from one voter blockchain is counted only once (only the

first vote is valid if there exist several). In other words, proposer blocks on the same

height receive up to m votes from m voter blockchains in total.

Definition 4.6. For positive integer h, we let Rh denote the round when the first

proposer block on height h is published.

Definition 4.7. (Reachable) By saying block d is reachable from block b (or block b

reaches block d), we mean block b points to block d by a sequence of reference links.
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Given a credible leader sequence (0, b1, . . . , bn), each credible leader block bh defines

an epoch. Added to the ledger are the blocks which are pointed to by bh, as well as

other blocks reachable from bh but have not been included in previous epochs. The

list of blocks are sorted topologically, with ties broken by their contents. Since the blocks

referenced are mined independently, there can be double spends or redundant transactions.

A transaction ledger is created by keeping only the first transaction among double spends

or redundant transactions.

Definition 4.8. (h-high prefix) For every h ∈ {0, . . . , n}, by the h-high prefix of t-

credible leader sequence (0, b1, . . . , bn) we mean the sequence of proposer blocks (0, . . . , bh).

4.3. Lockstep synchronous model and analysis

Definition 4.9. (r-credible j-blockchain) For j ∈ {0, . . . ,m}, we say j-blockchain b

is r-credible if it has been published by round r, and is no shorter than any j-blockchain

published by round r. That is to say,

P j
b < r, (4.3)

and

hj(b) ≥ hj(b), ∀k : P j
k < r. (4.4)

If there is no need to specify round r explicitly, j-blockchain b can also be simply called a

credible blockchain.
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Definition 4.10. (r-credible leader sequence) Let proposer block b1, . . . , bn be proposer

blocks at heights 1, . . . , n, respectively, where n is greater or equal to the maximum height

of all proposer blockchains published by round r. We say (0, b1, . . . , bn) is an r-credible

leader sequence if it is elected by a collection of m r-credible voter blockchains including

one j-blockchain for every j ∈ {1, . . . ,m}. That is, for every ` ∈ {1, . . . , n}, proposer

block b` receives the most votes among all proposer blocks of height ` at round r from

that collection of voter blockchains. In particular, we have n ≥ h if height h satisfies

Rh ≤ r − 1. Block b` is called an r-credible leader block. If there is no need to specify r

explicitly, an r-credible leader sequence (block) can also be simply referred to as a credible

leader sequence (block).

Note that even if all proposer blocks of height h have received zero vote, a credible

leader block of height h can still exist according to the tie breaking rule. Moreover, as

an r-credible leader sequence is defined with respect to a collection of r-credible voter

blockchains, in general there can be multiple r-credible leader sequences.

Lemma 4.11. If proposer blocks (0, b1, . . . , bn) is an r-credible leader sequence, then

0-blockchain bn is an r-credible 0-blockchain.

Proof. By definition, n is greater or equal to the maximum height of all proposer

blockchains (0-blockchains) published by round r. Thus the proof of Lemma 4.11. �

Every r-credible leader sequence determines a transaction ledger for round r. Accord-

ing to the Prism protocol, as part of its content, an honest proposer block b includes a

reference link to every proposer and voter block that is observable from it and has not

been pointed to by other reference links.
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Lemma 4.12. If j-block b is honest, then j-blockchain f jb must be T jk credible.

Proof. Lemma 4.12 is obvious since an honest j-block must extend a credible j-

blockchain. �

Definition 4.13. For all integers 1 ≤ s < r and 0 ≤ j ≤ m, define event

Dj
s,r = D1,j

s,r ∩D2,j
s,r ∩D3,j

s,r (4.5)

where

D1,j
s,r =

{
(1− ξ

6
)E[Xj

s,r] < Xj
s,r < (1 +

ξ

6
)E[Xj

s,r]

}
(4.6)

D2,j
s,r =

{
(1− ξ

6
)E[Y j

s,r] < Y j
s,r

}
(4.7)

D3,j
s,r =

{
Zj
s,r < E[Zj

s,r] +
ξ

6
E[Xj

s,r]

}
. (4.8)

We note that for integers j ∈ {0, 1, . . . ,m} and r ≥ 1, Hj
r , X

j
r , Y

j
r , and Zj

r here are

identically distributed as Hr, Xr, Yr, and Zr defined in Section 3.3. Also, for 1 ≤ s < r,

Dj
s,r is defined in the same manner as Ds,r. Thus, the proposer blockchain and all voter

blockchains satisfy similar properties as in Lemma 3.14:

Lemma 4.14. (Typical properties lemma for proposer and voter blockchain) For all

integers 1 ≤ s < r and j ∈ {0, 1, . . . ,m}, under event Dj
s,r, the following holds:

(1− ξ

6
)q(r − s) < Xj

s,r < (1 +
ξ

6
)q(r − s) (4.9)
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Y j
s,r > (1− ξ

3
)q(r − s) (4.10)

Zj
s,r < (1− 2ξ

3
)q(r − s) (4.11)

Zj
s,r < (1− ξ

2
)Xj

s,r (4.12)

Zj
s,r < Y j

s,r. (4.13)

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.14. �

Definition 4.15. For all integers 1 ≤ s < r and 0 ≤ j ≤ m, define blockchain j’s

typical event with respect to [s, r] as

Ej
s,r =

⋂
0≤a<s,b≥0

Dj
s−a,r+b. (4.14)

Lemma 4.16. For all integers 1 ≤ s < r and 0 ≤ j ≤ m,

P (Ej
s,r) > 1− 5η−2e−η(r−s) (4.15)

where η is defined in (3.40).

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.16. �



76

Since the proposer blockchain and all voter blockchains grow in the same manner as

how a Bitcoin blockchain grows, the blockchain growth lemma and blockchain growth

theorem remain valid:

Lemma 4.17. Let 1 ≤ s < r and j ∈ {0, 1, . . . ,m} be integers. Suppose an s-credible

j-blockchain has height `. Then all r-credible j-blockchains have height at least `+Xj
s,r.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.19. �

Lemma 4.18. For all integers 1 ≤ s < r, k ≥ 2q(r − s) and j ∈ {0, 1, . . . ,m}, under

typical event Ej
s,r, the k-deep block and k-deep prefix of every r-credible j-blockchain must

be mined before round s.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.20. �

Theorem 4.19 (Blockchain growth theorem for voter and proposer blockchain under

lockstep synchronous model). Let r, s, s1, j be integers satisfying 1 ≤ s1 ≤ s < r and

0 ≤ j ≤ m. Then under typical event Ej
s,r, the height of an r-credible j-blockchain must

be at least (1− ξ
6
)q(r − s1) larger than the height of an s1-credible j-blockchain.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Theorem 3.21. �

Since the protocol for voter blockchains is identical to that of Bitcoin , the blockchain

quality theorem and the common prefix theorem hold for all voter blockchains.
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Theorem 4.20 (Common prefix theorem for voter blockchain under lockstep syn-

chronous model). Let r, s, k, j be integers satisfying 1 ≤ s < r, k ≥ 2q(r − s) and

j ∈ {1, . . . ,m}. Then the k-deep prefix of any r-credible j-blockchain is permanent after

round r under event Ej
s,r.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Theorem 3.23. �

Theorem 4.21 (Blockchain quality theorem for voter blockchain under lockstep syn-

chronous model). Let r, s, k, j be integers satisfying 1 ≤ s < r, k ≥ 2q(r − s) and

j ∈ {1, . . . ,m}. Suppose an r-credible j-blockchain has more than k blocks by round r.

Under event Ej
s,r, by round r, at least ξ

2
fraction of the last k j-blocks of the j-blockchain

are honest.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Theorem 3.22. �

Theorem 4.22 (Leader sequence growth theorem under lockstep synchronous model).

Suppose integers s1, s, r satisfy 1 ≤ s1 ≤ s < r. Under event E0
s,r, the height of every

r-credible leader sequence is at least (1 − ξ
6
)(r − s1)q larger than the maximum height

of all s1-credible leader sequences and all s1-credible 0-blockchains. As a consequence,

the probability that some r-credible leader sequence is less than (1 − ξ
6
)(t − s1)q higher

than some s1-credible leader sequence or some s1-credible 0-blockchain does not exceed

5η−2e−η(r−s).

Proof. Suppose proposer blocks (0, b1, . . . , b`) is an s1-credible leader sequence, and

proposer blocks (0, d1, . . . , dn) is an r-credible leader sequence. Then by Lemma 4.11,
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0-blockchain b` is an s1-credible and 0-blockchain dn is r-credible. By Lemma 4.19, n is

greater than ` by at least `+(1− ξ
6
)(r−s1)q under event E0

s,r. Thus the proof of Theorem

4.22. �

Theorem 4.23 (Leader sequence quality theorem under lockstep synchronous model).

Let r, s, k be integers satisfying 1 ≤ s < r and k ≥ 2q(r − s). Suppose an r-credible

leader sequence has more than k blocks. Then under event E0
s,r, at least

ξ
2
k of the last k

blocks of the r-credible leader sequence are honest. As a consequence, the probability that

more than (1− ξ
2
)k of the last k blocks of some r-credible leader sequence are adversarial

does not exceed 5η−2e−η(r−s).

Proof. Suppose proposer blocks (0, b1, . . . , bn) is an r-credible leader sequence with

n ≥ k. Let h be the maximum height strictly less than n − k + 1 such that the earliest

proposer block mined on height h is honest. We have 0 ≤ h ≤ n− k. Denote the earliest

proposer block on height h as block d, then we have T 0
d = Rh < s by Lemma 4.18. Let

y = n− k − h. (4.16)

Then y lower bounds the number of adversarial blocks on heights {h+1, . . . , n−k} because

the earliest proposer blocks on these heights are adversarial by definition. Denote the

number of adversarial blocks in proposer blocks {bn−k+1, . . . , bn} as z. Then z + y lower

bounds the number of adversarial proposer blocks generated during rounds {Rh+1, . . . , r}.

We have

z + y ≤ Z0
Rh+1,r (4.17)
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< (1− ξ

2
)X0

Rh+1,r (4.18)

where (4.18) is due to (4.12).

Note that proposer block d is honest by definition. Then 0-blockchain d is Rh-credible.

According to Lemma 3.19, the minimum height of r-credible 0-blockchains is h + X0
Rh,r

,

which lower bounds the height of all r-credible leader sequences by Lemma 4.11. Thus

we have

n ≥ h+X0
Rh,r

. (4.19)

Thus, under event E0
s,r, we have

z

k
≤ z + y

k + y
(4.20)

=
z + y

n− h
(4.21)

<
(1− ξ

2
)X0

Rh,r

X0
Rh,r

(4.22)

= 1− ξ

2
(4.23)

where (4.20) is due to z ≤ k and (4.22) is due to (4.18) and (4.19). �

Lemma 4.24. Suppose positive integers s, r, and j satisfy 1 ≤ s < r and j ∈

{0, 1, . . . ,m}. Let ` = (1− ξ
6
)(r − s)q. Suppose j-blockchain b is r-credible. Under event

Ej
s,r, an honest j-block whose height is no less than hj(b)−`+1 must be mined after round

s.
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Proof. Suppose honest j-block d satisfies T jd ≤ s. Since j-blockchain d is T jd -credible,

the heights of all r-credible j-blockchains must be at least hj(d) + (1− ξ
6
)(r − s)q. Since

j-blockchain b with height hj(b) is r-credible, we have

hj(d) ≤ hj(b)− (1− ξ

6
)(r − T jd )q (4.24)

≤ hj(b)− (1− ξ

6
)(r − s)q (4.25)

< hj(b)− `+ 1 (4.26)

where (4.26) is by definition of `. Thus, an honest j-block with height greater or equal to

hj(b)− `+ 1 must be mined after round s. �

Theorem 4.25 (Leader sequence common prefix theorem under lockstep synchronous

model). Suppose positive integers k, h, s, and r satisfy k ≥ 2q(r − s) and

r ≥ Rh +
2k

ξ(1− ξ
6
)q
. (4.27)

Let

G =
⋂

j∈{1,...,m}

Ej
s,r. (4.28)

Then under event G, all r-credible leader sequences share the same h-high prefix, and

the prefix is permanent after around r. As a consequence, with probability at least 1 −

5mη−2e−η(r−s), the h-high prefix of all r-credible leader sequences is permanent after round

r.

Proof. Consider an r-credible voter j-blockchain b.
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For convenience, let ` = d2k
ξ
e. By k ≥ 2q(r−s) we know s ≥ r− k

2q
> r− 2k

ξ(1− ξ
6

)
≥ Rh.

If event G occurs, event Ej
Rh,r

occurs. By Lemma 4.19, the height of j-blockchain b is

higher than an Rh-credible j-blockchain by at least

(1− ξ

6
)(r −Rh)q ≥

2k

ξ
(4.29)

where (4.29) is due to (4.27). Then hj(b) ≥ ` because the height is an integer.

Obviously ` > k. Thus ` > 2q(r − s). According to Lemma 4.21, under event Ej
s,r, in

the last ` blocks of j-blockchain b, the number of honest ones is at least

ξ

2
` ≥ k. (4.30)

Thus, the lowest of these j-blocks, denoted as j-block d, must be on the k-deep prefix of

j-blockchain b. That is to say,

hj(b)− `+ 1 ≤ hj(d) ≤ hj(b)− k + 1. (4.31)

By Lemma 4.24, j-block d must be mined after round Rh. By the voting rule, j-blockchain

d must have voted on all heights less or equal to height h. Moreover, if event G occurs,

event Ej
s,r occurs. By Theorem 4.20, j-blockchain d and its votes (which are on the

(k − 1)-deep prefix of j-blockchain b) must be permanent after round r since.

Such claims can be said for all voter blockchains. That is to say, under event G, for

all j ∈ {1, . . . ,m} there exists a permanent honest j-blockchain which has voted on all

heights less or equal to h. Thus, the h-high prefix of all r-credible leader sequences is

permanent after round r.
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According to Lemma 4.16,

P (Gc) = P

 ⋃
j∈{1,...,m}

(
Ej
s,r

)c (4.32)

≤ mP
(
(Ej

s,r)
c
)

(4.33)

< 5mη−2e−η(r−s). (4.34)

As a consequence, with probability at least 1 − 5mη−2e−η(r−s), the h-high prefix of r-

credible leader sequences is permanent after time r. �

Corollary 4.26. Fix positive integer h. For any ε ∈ (0, 1), let

r = Rh +
2

(1− ξ
6
)ξq

(
2q

(
1

η
log

5m

εη2
+ 1

)
+ 1

)
. (4.35)

Then with probability at least 1 − ε, the h-high prefix of an r-credible leader sequence is

permanent after round r.

Proof. Let

k =

⌈
2q

(
1

η
log

5m

εη2
+ 1

)⌉
. (4.36)

Obviously

r ≥ Rh +
2k

(1− ξ
6
)ξq

(4.37)
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is satisfied. Let

s = r −
⌈

1

η
log

5m

εη2

⌉
. (4.38)

Then k ≥ 2q(r − s) is satisfied. Moreover,

5mη−2e−η(r−s) = 5mη−2e
−η

⌈
1
η

log 5m
εη2

⌉
(4.39)

≤ ε. (4.40)

Apply Theorem 4.25 with k and s given by (4.36) and (4.38), with probability at least

1−5η−2e−η(r−s) > 1−ε, the h-high prefix of an r-credible leader sequence is permanent. �

4.4. Non-lockstep synchronous model and analysis

In this model, we consider the non-lockstep synchronous model where there is an upper

bound T on the delay for message delivery. That is to say, if a block is broadcast to the

network during round r, by round r + T , all other miners would have received the block.

In the special case of T = 1, this model degenerates to the synchronous model.

Definition 4.27 (r-credible j-blockchain). For j ∈ {0, . . . ,m}, we say j-blockchain

b is r-credible if it has been published by round r, and is no shorter than any blockchain

published by round r − T . That is to say,

P j
b < r, (4.41)
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and

hj(b) ≥ hj(b), ∀k : P j
k < r − T. (4.42)

If there is no need to specify round r explicitly, j-blockchain b can also be simply called a

credible blockchain.

Definition 4.28 (r-credible leader sequence under non-lockstep synchronous model).

Let proposer block b1, . . . , bn be proposer blocks at heights 1, . . . , n, respectively, where n

is greater or equal to the maximum height of all proposer blockchains published by round

r−T . We say (0, b1, . . . , bn) is an r-credible leader sequence if it is elected by a collection of

m r-credible voter blockchains including one j-blockchain for every j ∈ {1, . . . ,m}. That

is, for every ` ∈ {1, . . . , n}, proposer block b` receives the most votes among all proposer

blocks of height ` at round r from that collection of voter blockchains. In particular, we

have n ≥ h if height h satisfies Rh ≤ r − T − 1. Block b` is called an r-credible leader

block. If there is no need to specify r explicitly, an r-credible leader sequence (block) can

also be simply referred to as a credible leader sequence (block).

Lemma 4.29. If proposer blocks (0, b1, . . . , bn) is an r-credible leader sequence, then

0-blockchain bn is an r-credible 0-blockchain.

Proof. By definition, n is greater or equal to the maximum height of all proposer

blockchains (0-blockchains) published by round r−T . Thus the proof of Lemma 4.29. �

Lemma 4.30. If j-block b is honest, then j-blockchain f jb must be T jk credible.
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Proof. Lemma 4.30 is obvious since an honest j-block must also extend a credible

j-blockchain under the non-lockstep synchronous model. �

Although an honest j-block always extends a credible j-blockchain, a credible j-

blockchain may not end with an honest j-block. Moreover, an adversarial j-block may or

may not extend a credible j-blockchain and may be published anytime after it is mined.

Suppose j ∈ {0, 1, . . . ,m}. A j-block is called a j-lagger if it is the single honest

j-block mined during a round and no other honest block is mined in the previous T − 1

rounds. Accordingly, we define the following indicators for r = T, T + 1, . . . :

V j
r =



1, if Hj
r = 1 and

Hj
r−1 = . . . = Hj

r−T+1 = 0,

0, otherwise.

(4.43)

A j-block is said to be a j-loner if it is the only honest j-block during a round and no

other honest j-block is mined within T −1 rounds before or after the round. Accordingly,

we define the following indicators for r = T, T + 1, . . .:

W j
r =



1, if Hj
r = 1, Hj

r−1 = · · · = Hj
r−T+1 = 0,

and Hj
r+1 = . . . = Hj

r+T−1 = 0,

0, otherwise.

(4.44)
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It is assumed that the mining difficulty is adjusted to be sufficiently low such that the

probability that one or more honest blocks are mined in a slot satisfies

q ≤ ξ

20T
(4.45)

where ξ is defined in (3.2) and q is the probability that one or more honest blocks are

mined during a round.

Definition 4.31. For all integers T ≤ s < r and j ∈ {0, 1, . . . ,m}, define event

Fs,r = F 1
s,r ∩ F 2

s,r ∩ F 3
s,r ∩ F 4

s,r (4.46)

where

F 1
s,r =

{
(1− ξ

20
)E[V j

s,r] < V j
s,r

}
, (4.47)

F 2
s,r =

{
Xj
s,r < (1 +

ξ

20
)E[Xj

s,r]

}
, (4.48)

F 3
s,r =

{
(1− ξ

20
)E[W j

s,r] < W j
s,r

}
, (4.49)

F 4
s,r =

{
Zj
s,r < E[Zj

s,r] +
ξ

20
E[V j

s,r]

}
. (4.50)

We note that for integers j ∈ {0, 1, . . . ,m} and r ≥ 1, Xj
r , V

j
r ,W

j
r , and Zj

r here are

identically distributed as Xr, Vr,Wr, and Zr defined in Section 3.4. Also, for 1 ≤ s < r,

F j
s,r is defined in the same manner as Fs,r. Thus, the proposer blockchain and all voter

blockchains satisfy similar properties as in Lemma 3.34 and Lemma 3.35:
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Lemma 4.32. For all integers T ≤ s < r and j ∈ {0, 1, . . . ,m},

P (F j
s,r) > 1− 4e−µ(r−s), (4.51)

where µ is given in (3.124).

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.34. �

Lemma 4.33. For all integers T ≤ s < r − 2
q
, the following inequalities hold under

event Fs,r:

(1− ξ

20
)q(1− q)T (r − s) < V j

s,r (4.52)

Xj
s,r < (1 +

ξ

20
)q(r − s) (4.53)

(1− ξ

3
)q(r − s) < W j

s,r (4.54)

Zj
s,r < (1− 2ξ

3
)q(r − s). (4.55)

The following inequalities hold under event Fs+T,r−T :

Zj
s,r < (1− ξ

2
)V j

s+T,r−T (4.56)

Zj
s,r < W j

s+T,r−T . (4.57)
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Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.35. �

Definition 4.34. For all integers T ≤ s < r− 2
q
and j ∈ {0, 1, . . . ,m}, define typical

event

Gj
s,r =

⋂
0≤a≤s−T,b≥0

F j
s−a,r+b. (4.58)

Gj
s,r occurs when events F j

k,` simultaneously occurs for all k, `, i.e., the “F ” event occur

over all consecutive rounds containing {s, . . . , r}.

Lemma 4.35. For all integers T ≤ s < r − 2
q
and j ∈ {0, 1, . . . ,m},

P (Gj
s,r) > 1− 5µ−2e−µ(r−s). (4.59)

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.37. �

Since the proposer blockchain and all voter blockchains follows essentially the same

rules as a Bitcoin blockchain, the following lemmas remain valid:

Lemma 4.36. For j ∈ {0, 1, . . . ,m}, j-laggers have different heights.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.39. �

Lemma 4.37. A j-loner is the only honest j-block at its height.
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Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.41. �

Lemma 4.38. For all integers T ≤ s < r − 2
q
, k ≥ 2q(r − s), and 0 ≤ j ≤ m, under

typical event Gj
s,r, the k-deep block and k-deep prefix of every r-credible j-blockchain must

be mined before round s.

Proof. For j = 0, 1, . . . ,m, the lemma admits essentially the same proof as that for

Lemma 3.42. �

Theorem 4.39. Let r, s, s1, j be integers satisfying T ≤ s1 ≤ s < r − 2
q
and j ∈

{0, 1, . . . ,m}. Under typical event Gj
s+T,r−T , the height of every r-credible j-blockchain

must be at least (1− ξ
10

)(1− q)T (r− s1)q more than the maximum height of all s1-credible

j-blockchains.

Proof. For j = 0, 1, . . . ,m, the theorem admits essentially the same proof as that

for Lemma 3.43. �

Since the protocol for voter blockchains is identical to that of Bitcoin , the blockchain

quality theorem and the common prefix theorem hold for all voter blockchains.

Theorem 4.40. Let r, s, k, j be integers satisfying T ≤ s < r − 2
q
, k ≥ 2(r − s)q and

j ∈ {1, . . . ,m}. Suppose an r-credible j-blockchain has more than k blocks, then under

event Gj
s,r−T , at least

ξ
2
k of the last k blocks of this j-blockchain are honest.

Proof. For j = 1, . . . ,m, the theorem admits essentially the same proof as that for

Lemma 3.44. �
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Theorem 4.41. Let r, s, k, j be integers satisfying T ≤ s < r − 2
q
, k > 2(r − s)q,

and j ∈ {1, . . . ,m}. If an r-credible j-blockchain has a k-deep prefix, then the prefix is

permanent after round r under Gj
s+T,r−T .

Proof. For j = 1, . . . ,m, the theorem admits essentially the same proof as that for

Lemma 3.45. �

Theorem 4.42 (Leader sequence growth theorem under non-lockstep synchronous

model). Suppose integers s1, s, r satisfy T ≤ s1 ≤ s < r − 2
q
. Under event G0

s,r−T , the

height of every r-credible leader sequence is at least (1− ξ
10

)(1−q)T (r−s1)q larger than the

maximum height of all s1-credible leader sequences and all s1-credible 0-blockchains. As a

consequence, the probability that some r-credible leader sequence is less than (1− ξ
10

)(1−

q)T (r− s1)q higher than some s1-credible leader sequence or some s1-credible 0-blockchain

does not exceed 5µ−2e−µ(r−s−T ).

Proof. Suppose proposer blocks (0, b1, . . . , b`) is an s1-credible leader sequence, and

proposer blocks (0, d1, . . . , dn) is an r-credible leader sequence. Then by Lemma 4.29,

0-blockchain b` is an s1-credible and 0-blockchain dn is r-credible. By Lemma 4.39, n is

greater than ` by at least ` + (1 − ξ
6
)(r − s1)q under event G0

s,r−T . Thus the proof of

Theorem 4.22. �

Theorem 4.43 (Leader sequence quality theorem under non-lockstep synchronous

model). Let r, s, k be integers satisfying T ≤ s < r − 2
q
and k ≥ 2q(r − s). Suppose an

r-credible leader sequence has more than k blocks. Then under event G0
s+T,r−T , at least

ξ
2
k of the last k blocks of the r-credible leader sequence are honest. As a consequence, the
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probability that more than (1− ξ
2
)k of the last k blocks of some r-credible leader sequence

are adversarial does not exceed 5µ−2e−µ(r−s−2T ).

Proof. Suppose proposer blocks (0, b1, . . . , bn) is an r-credible leader sequence with

n ≥ k. Let h be the maximum height strictly less than n − k + 1 such that the earliest

proposer block mined on height h is honest. We have 0 ≤ h ≤ n− k. Denote the earliest

proposer block on height h as block d, then we have T 0
d = Rh < s by Lemma 4.38. 4.18.

Let

y = n− k − h. (4.60)

Then y lower bounds the number of adversarial blocks on heights {h+1, . . . , n−k} because

the earliest proposer blocks on these heights are adversarial by definition. Denote the

number of adversarial blocks in proposer blocks {bn−k+1, . . . , bn} as z. Then z + y lower

bounds the number of adversarial proposer blocks generated during rounds {Rh+1, . . . , r}.

We have

z + y ≤ Z0
Rh,r

(4.61)

< (1− ξ

2
)V 0

Rh+T,r−T (4.62)

where (4.62) is due to (4.12).

Note that since proposer block d is mined during round Rh, then the height of an

(Rh+T )-credible blockchain is at least h. According to Lemma 3.19, the minimum height

of r-credible 0-blockchains is h+V 0
Rh+T,r−T , which lower bounds the height of all r-credible
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leader sequences by Lemma 4.29. Thus we have

n ≥ h+ V 0
Rh,r

. (4.63)

Thus, under event G0
s+T,r−T , we have

z

k
≤ z + y

k + y
(4.64)

=
z + y

n− h
(4.65)

<
(1− ξ

2
)V 0

Rh+T,r−T

V 0
Rh+T,r−T

(4.66)

= 1− ξ

2
(4.67)

where (4.64) is due to z ≤ k and (4.66) is due to (4.62) and (4.63). �

Lemma 4.44. Suppose positive integers s, r, and j satisfy T ≤ s < r − 2
q
and

j ∈ {0, 1, . . . ,m}. Let ` = (1− ξ
10

)(1− q)T (r − s)q. Suppose j-blockchain b is r-credible.

Under event Gj
s,r, an honest j-block whose height is no less than hj(b) − ` + 1 must be

mined after round s.

Proof. Suppose honest j-block d satisfies T jd ≤ s. Since j-blockchain d is T jd -credible,

the heights of all r-credible j-blockchains must be at least hj(d)+(1− ξ
10

)(1− q)T (r−s)q.

Since j-blockchain b with height hj(b) is r-credible, we have

hj(d) ≤ hj(b)− (1− ξ

10
)(1− q)T (r − T jd )q (4.68)

≤ hj(b)− (1− ξ

10
)(1− q)T (r − s)q (4.69)
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< hj(b)− `+ 1 (4.70)

where (4.70) is by definition of `. Thus, an honest j-block with height greater or equal to

hj(b)− `+ 1 must be mined after round s. �

Theorem 4.45 (Leader sequence common prefix theorem under non-lockstep syn-

chronous model). Suppose positive integers k, h, s, and r satisfy k ≥ 2q(r − s) and

r ≥ Rh +
2k

(1− ξ
10

)(1− q)T qξ
. (4.71)

Let

G =
⋂

j∈{1,...,m}

Gj
s+T,r−T . (4.72)

Then under event G, all r-credible leader sequences share the same h-high prefix, and

the prefix is permanent after around r. As a consequence, with probability at least 1 −

5mµ−2e−µ(r−s−2T ), the h-high prefix of all r-credible leader sequences is permanent after

round r.

Proof. Consider an r-credible voter j-blockchain b.

For convenience, let ` = d2k
ξ
e. By k ≥ 2q(r − s) we know s ≥ r − k

2q
> Rh. If event

G occurs, event Gj
Rh,r−T occurs. By Lemma 4.39, the height of j-blockchain b is higher

than an Rh-credible j-blockchain by at least

(1− ξ

10
)(1− q)T (r −Rh)q ≥

2k

ξ
(4.73)

where (4.73) is due to (4.71). Then hj(b) ≥ ` because the height is an integer.
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Obviously ` > k. Thus ` > 2q(r−s). According to Lemma 4.40, under event Gj
s+T,r−T ,

in the last ` blocks of j-blockchain b, the number of honest ones is at least

ξ

2
` ≥ k. (4.74)

Thus, the lowest of these j-blocks, denoted as j-block d, must be on the k-deep prefix of

j-blockchain b. That is to say,

hj(b)− `+ 1 ≤ hj(d) ≤ hj(b)− k + 1. (4.75)

By Lemma 4.44, j-block d must be mined after round Rh. By the voting rule, j-blockchain

d must have voted on all heights less or equal to height h. Moreover, if event G occurs,

event Gj
s+T,r−T occurs. By Theorem 4.41, j-blockchain d and its votes (which are on the

(k − 1)-deep prefix of j-blockchain b) must be permanent after round r since.

Such claims can be said for all voter blockchains. That is to say, under event G, for

all j ∈ {1, . . . ,m} there exists a permanent honest j-blockchain which has voted on all

heights less or equal to h. Thus, the h-high prefix of all r-credible leader sequences is

permanent after round r.

According to Lemma 4.34,

P (Gc) = P

 ⋃
j∈{1,...,m}

(
Gj
s+T,r−T

)c (4.76)

≤ mP
(
(Gj

s+T,r−T )c
)

(4.77)

< 5mµ−2e−µ(r−s−2T ). (4.78)
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As a consequence, with probability at least 1 − 5mµ−2e−µ(r−s−2T ), the h-high prefix of

r-credible leader sequences is permanent after time r. �

Corollary 4.46. Fix positive integer h. For any ε ∈ (0, 1), let

r = Rh +
2

(1− ξ
10

)(1− q)T ξq

(
2q

(
1

µ
log

5m

εµ2
+ 1 + 2T

)
+ 1

)
. (4.79)

Then with probability at least 1 − ε, the h-high prefix of an r-credible leader sequence is

permanent after round r.

Proof. Let

k =

⌈
2q

(
1

µ
log

5m

εµ2
+ 1 + 2T

)⌉
. (4.80)

Obviously

r ≥ Rh +
2k

ξ(1− ξ
10

)(1− q)T q
(4.81)

is satisfied. Let

s = r −
⌈

1

µ
log

5m

εµ2

⌉
− 2T. (4.82)

Then k ≥ 2q(r − s) is satisfied. Moreover,

5mη−2e−µ(r−s−2T ) = 5mη−2e
−η

⌈
1
η

log 5m
εη2

⌉
(4.83)

≤ ε. (4.84)
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Apply Theorem 4.25 with k and s given by (4.36) and (4.82), with probability at

least 1 − 5µ−2e−µ(r−s−2T ) > 1 − ε, the h-high prefix of an r-credible leader sequence is

permanent. �

So far, we have shown that in the Prism blockchains, the leader sequence is permanent

with high probability after sufficient amount of wait time. To be more specific, every

honest transaction will eventually enter the final ledger and become permanent with

probability higher than 1− ε after a confirmation time proportional to security parameter

log 1
ε
.
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CHAPTER 5

Continuous-time Analysis of the Bitcoin Backbone Protocol

5.1. Introduction

While the Nakamoto consensus protocol is simple and elegant, a rigorous analysis for

the latency–security trade-off is very challenging. As mentioned in Chapter 3, the original

Bitcoin white paper [1] only analyzed a single specific attack, called private mining attack,

which is to mine an adversarial fork in private. Nakamoto showed that the probability

the adversary’s private fork overtakes the main blockchain vanishes exponentially with

the latency.

It is not until six years later that Garay et al. [4] provided the first proof that the

Nakamoto consensus is secure against all possible attacks. One major limitation of [4] is

that their round-based lock-step synchrony model essentially abstracts away block prop-

agation delays. Several follow-up works [6, 7, 9, 11] have extended the analysis to the

∆-synchrony model in which the rounds in which different honest miners observe the

same block may differ by up to a known upper bound ∆.

So far, existing analyses against all possible attacks [4,6–9,11] (including a few con-

current and follow-up works [12–15]) focus on establishing asymptotic bounds using the

big O(·) or big Ω(·) notation. If one works out the constants in these asymptotic re-

sults, the latency upper bounds will be several orders of magnitude higher than the best

known lower bounds [16,17]. Thus, despite their theoretical value, existing analyses of
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the Nakamoto consensus provide little guidance on the actual confirmation time, security

guarantees, or parameter selection in practice.

In this chapter, we explicitly and closely characterize the trade-off between latency

and security for Nakamoto-style proof-of-work consensus protocols. The latency results

we prove are within a few hours to simple lower bounds due to the private attack. The

gap remains relatively constant at different security levels, and is hence insignificant for

high security levels but can be significant at low security levels. For example, with a 10%

adversary mining power, a mining rate of one block every 10 minutes, and a maximum

block propagation delay of 10 seconds, a block in the Nakamoto consensus is secured with

10−3 error probability after 5 hours 20 minutes, or with 10−10 error probability after 12

hours 15 minutes. As a reference, due to the private attack, one must wait for at least 1

hour 30 minutes or 8 hours 5 minutes before confirming for 10−3 and 10−10 security levels,

respectively.

Since Bitcoin’s rise to fame, numerous altcoins and Bitcoin hard forks have adopted

the Nakamoto consensus protocol with very different parameters. Those parameters are

mostly determined in an ad-hoc or empirical manner. This chapter provides theoretical

and quantitative tools to reason about the effects and trade-offs of these parameters on

different metrics in the Nakamoto consensus including confirmation time, throughput,

and fault tolerance. We use these new tools to analyze and compare various altcoins and

offer new insights and recommendations for setting parameters.

Some new techniques developed in this chapter may be of independent interests. As-

suming all block propagation delays are under ∆ units of time, we show the arrivals of

several species of honest blocks form renewal processes. That is, the inter-arrival times
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of such a process are i.i.d. We show that the adversary must match the so-called double-

laggers in order to succeed in any attack. We derive the moment generating functions of

the inter-arrival times. This allows us to calculate quite accurately the probability that

more double-laggers are mined than adversarial blocks in any time interval, which leads

to a close latency–security trade-off.

We note that several existing proofs in the literature are flawed. A recurrent subtle

mistake is to presume memorylessness of the mining process over a time interval defined

according to some miners’ views and actions. The boundaries of such an interval are in

fact complicated stopping times. In general, when conditioned on a stopping time, the

mining processes are no longer distributed as the original ones without conditioning. In

this chapter, we carefully circumvent this issue to develop a fully rigorous analysis.

Specifically, we provide an explicit formula for the security guarantee as a function

of the latency. This is equivalent to an upper bound on the latency that guarantees

any desired security level. By means of numerical analysis, the latency upper bound is

shown to be close to a lower bound due to the private attack. We also quantify how the

block propagation delay bound, mining rates, and other parameters affect the latency–

security trade-off. At last, we analyze and compare the performance and security of

several prominent proof-of-work longest-chain protocols.

Main results of this chapter are reported in [37]

5.2. Continuous-time model

Throughout this thesis, “by time t” means “during (0, t]”.
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Definition 5.1 (A miner’s view). A miner’s view at time t is a subset of all blocks

mined by time t. A miner’s view can only increase over time. A block is in its own miner’s

view from the time it is mined.

Definition 5.2 (A miner’s longest blockchain). A blockchain is in a miner’s view at

time t if all blocks of the blockchain are in the miner’s view at time t. A miner’s longest

blockchain at time t is a blockchain with the maximum height in the miner’s view at time

t. Ties are broken in an arbitrary manner.1

Definition 5.3 (Honest and adversarial miners). Each miner is either honest or ad-

versarial. A block is said to be honest (resp. adversarial) if it is mined by an honest (resp.

adversarial) miner. An honest block mined at time t must extend its miner’s longest

blockchain immediately before t.

Definition 5.4 (Publication). A block is said to be published by time t if it is included

in at least one honest miner’s view by time t. A blockchain is said to be published by time

t if all of its blocks are published by time t.

We let Tb denote the time when block b is mined. By Definition 5.2 and 5.3, an honest

block b is published from time Tb.

We assume all block propagation delays are upper bounded by ∆ units of time in the

following sense:

Definition 5.5 (Block propagation delay bound ∆). If a block is in any honest miner’s

view by time t, then it is in all miners’ views by time t+ ∆.

1The Bitcoin protocol favors the earliest to enter the view.
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The adversary is allowed to use arbitrary strategy subject to the preceding constraints.

Specifically, an adversary can choose to extend any existing blockchain. Once an adversar-

ial block is mined, its miner can determine when it enters each individual honest miner’s

view subject to the delay bound ∆ (Definition 5.5).

This treatment cannot be fully rigorous without a well-defined probability space. At

first it appears to be intricate to fully described blockchains and its probability space. One

option (adopted in [14]) is to define blockchains as branches of a random tree that depend

on the adversary’s strategies as well as the network topology and delays. Other authors

include in their probability space the random hashing outcomes, which also depend on the

adversary strategies. For our purposes it turns out to be sufficient (and most convenient)

to include no more than the mining times of the honest and adversarial blocks in the

probability space. Under a typical event in this probability space, blockchain consistency

is guaranteed under all adversarial strategies and network schedules (under ∆-synchrony).

Thus, the adversary’s strategies and the network schedules do not have to be included in

the probability space.

Definition 5.6 (Mining processes). Let Ht (resp. At) denote the total number of

honest (resp. adversarial) blocks mined during (0, t]. We assume (Ht, t ≥ 0) and (At, t ≥

0) to be independent homogeneous Poisson point processes with rate α and β, respectively.

The total mining rate of honest (resp. adversarial) miners is thus α (resp. β) blocks per

unit of time.
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Note that the adversary can in principle regulate their mining effort at will (i.e., mine

at reduced rates). But such strategies can be modeled as discarding selected adversarial

blocks. Hence, Definition 5.6 is without loss of generality.

In lieu of specifying the number of honest and adversarial miners, the proposed model

only defines their respective aggregate mining rates (they remain constant in time). This

is in the same spirit as the permissionless nature of the Nakamoto consensus.

5.3. Proof of consistency

The proof of consistency is done in two main steps: First, we identify a typical event,

which is a sufficient condition for a block to be permanent (or irreversible) once confirmed.

That is, the block will be included in all honest miners’ local longest blockchains infinitely

into the future. Second, we upper bound the probability that the typical event does

not occur. Combining the two yields an upper bound on the probability of consistency

violation.

In slightly more detail, the typical event involves a special type of honest blocks called

loners. A loner is an honest block that is not mined within ∆ units of time of other honest

blocks. Let b be a block mined at time s and included in some honest miner’s longest

blockchain at time s + t. We then prove that, if for all a ≤ s and b ≥ s + t, more loners

than adversarial blocks are mined in the time interval (a, b] (this is the typical event),

then block b is permanent. After that, we upper bound the probability that the typical

event does not occur. The probability of distribution of loners is difficult to analyze. We

define another specie of honest blocks called double-laggers. Double laggers have one-

to-one correspondence with loners but are easier to analyze since they can be shown to
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form a renewal process. We derive the moment generating function of double-laggers’

inter-arrival times. This allows to tightly bound the probability of the typical event.

For convenience and better intuition, we specifically choose the time unit to be equal

to the block propagation delay bound in this proof. Hence ∆ units of time becomes one

(new) unit of time here. This obviously normalizes the block propagation delay bound

to 1 under the new unit. Consequently, the mining rate, aka the expected number of

blocks mined per new unit of time, is equal to the expected number of blocks mined per

maximum delay. With slight abuse of notion, we still use α and β as the mining rates

under the new time unit. At the end of the analysis we will recover ∆ to arbitrary time

unit.

Definition 5.7 (t-credibility). A blockchain is said to be t-credible if it is published

by time t and its height is no less than the height of any blockchain published by time t−1.

If there is no need to specify t explicitly, the blockchain is simply said to be credible (in

context).

Once a block is published, it takes no more than 1 unit of time to propagate to all

miners. Hence at time t, an honest miner must have seen all blockchains published by t−1.

It follows that every honest miner’s longest blockchain must be t-credible. As we shall

see, it is unnecessary to keep tabs of individual miner’s views as far as the fundamental

security is concerned. Focusing on credible blockchains allows us to develop a simple

rigorous proof with minimal notation.

There can be multiple t-credible blockchains, which may or may not be of the same

height.
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Definition 5.8 (Lagger). An honest block mined at time t is called a lagger if it is

the only honest block mined during [t − 1, t]. By convention, the genesis block is honest

and is regarded as the 0-th lagger.

Definition 5.9 (Loner). An honest block mined at time t is called a loner if it is the

only honest block mined during [t− 1, t+ 1].

Lemma 5.10. A loner is the only honest block at its height.

Proof. Suppose block b mined at time t is a loner. By definition, no other honest

block is mined during [t − 1, t + 1]. By Definitions 5.1 and 5.5, block b is in all honest

miners’ views by time t+ 1. Thus, all honest blocks mined after t+ 1 must have heights

at least h(b) + 1. Similarly, if an honest block is mined before t − 1, its height must be

smaller than h(b); otherwise, block b’s height would be at least h(b) + 1. Hence, no other

honest block is at the same height as block b. �

Suppose 0 ≤ s < t. Let Hs,t = Ht−Hs denote the total number of honest blocks mined

during time interval (s, t]. Let Xs,t denote the total number of laggers mined during (s, t].

Let Ys,t denote the total number of loners mined during (s, t]. Let As,t denote the total

number of adversarial blocks mined during (s, t]. By convention, Hs,t = Xs,t = Ys,t =

As,t = 0 for all s ≥ t. Table 5.1 illustrates frequently used notations.

Although symbols like H,X, Y are reused in Chapter 3, they can be easily distinguished

because their footnote are defined to be integers in the previous Chapter.
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α collective honest mining rate
β collective adversarial mining rate
∆ upper bound on network delay
fb the block number of block b’s parent
Tb the time block b is mined
As,t total number of adversarial blocks mined during time (s, t]
Hs,t total number of honest blocks mined during time interval (s, t]
Xs,t total number of laggers mined during time interval (s, t]
Ys,t total number of loners mined during time interval (s, t]

Table 5.1. Notations

Lemma 5.11. Suppose t ≤ r. Let s denote the mining time of the highest honest

block shared by a t-credible blockchain and an r-credible blockchain. Then

Ys+1,t−1 ≤ As,r. (5.1)

Proof. Let block e denote the highest honest block shared by r-credible blockchain

d and t-credible blockchain d′ with Te = s. Let block b denote the highest block shared by

blockchains d and d′. Blocks b and e may or may not be the same block. The relationship

between these blocks is illustrated as follows:

a − · · · − · · · − d

| time r

e − · · ·− b − · · · − d’

time Te = s time t

(5.2)

If t − s ≤ 2 or no loner is mined during (s + 1, t − 1], obviously Ys+1,t−1 = 0 ≤ As,r.

Otherwise, consider loner c mined during (s+1, t−1]. We next show that c can be paired

with an adversary block mined during (s, r].
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Since blockchain e is s-credible and block c is mined after time s+ 1, we have h(c) ≥

h(e). Since blockchain d is r-credible and blockchain d′ is t-credible, we have h(c) ≤

min{h(d), h(d′)}. Consider the following two only possible cases:

(1) If h(e) < h(c) ≤ h(b), there exists at least one adversarial block at height h(c) be-

cause all blocks between block e (exclusive) and block b (inclusive) are adversarial

by definition.

(2) If h(b) < h(c) ≤ min{h(d), h(d′)}, there is at least one adversarial block at height

h(c), because two diverging blockchains exist but loner c is the only honest block

at its height by Lemma 5.10.

Thus, for every loner mined during (s + 1, t − 1], at least one adversarial block must be

mined during (s, r] at the same height. In particular, the adversarial block must be mined

before r because it is published by r. Hence (5.1) must hold. �

We now define some “typical events” alluded to at the beginning of this section.

Definition 5.12. For all s, t ≥ 0 and ε ∈ (0, 1), let

F ε
s,t =

⋂
a∈[0,s],b∈[t,∞)

{Ya+1,b−1−ε > Aa,b} (5.3)

We fix arbitrary ε ∈ (0, 1) for now. We will send ε→ 0 later.

Lemma 5.13. Suppose block b is mined by time s and is included in a t-credible

blockchain. Then, under event F ε
s,t, block b is included in all r-credible blockchains for all

r ≥ t.
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Proof. We first establish the result for r ∈ [t, t + ε] and then prove the lemma by

induction.

Fix arbitrary r ∈ [t, t + ε]. Let block e denote the highest honest block shared by an

r-credible blockchain and a t-credible blockchain that includes block b. We have

YTe+1,r−1−ε ≤ YTe+1,t−1 (5.4)

≤ ATe,r (5.5)

where (5.5) is due to Lemma 5.11. Under F ε
s,t,

Ya+1,r−1−ε > As,r (5.6)

holds for all a ∈ [0, s]. Hence for (5.5) to hold, we must have Te > s. Since s ≥ Tb by

assumption, block b must be included in blockchain e, which implies that block b must

also be included in the r-credible blockchain.

Suppose the lemma holds for r ∈ [t, t + nε] for some positive integer n. We show

the lemma also holds for r ∈ [r, t + (n + 1)ε] as follows: Let t′ = t + nε. Because F ε
s,t′

occurs under F ε
s,t and that block b is included in a t′-credible blockchain, a repetition of

the r ∈ [t, t+ ε] case with t replaced by t′ implies that block b is included in all r-credible

blockchains with r ∈ [t′, t′ + ε]. Hence lemma holds also for r ∈ [t, t+ (n+ 1)ε].

The lemma is then established by induction on n. �

Lemma 5.13 guarantees that a block with some confirmation time is permanent/irreversible

under the typical event F ε
s,t. It remains to lower bound the probability of F ε

s,t as a function

of the confirmation time t− s.
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We then derive the moment generating functions (MGF) of several types of inter-

arrival times. These will be useful in the analysis of P
(
F ε
s,t

)
.

Lemma 5.14. LetW be an exponential random variable with mean 1/α. Let the MGF

of W conditioned on W ≤ 1 be denoted as Φ0(u). Then

Φ0(u) =


α(1−eu−α)

(1−e−α)(α−u)
if u 6= α

α
1−e−α if u = α.

(5.7)

Proof. The probability density function (pdf) ofW conditioned onW ≤ 1 is simply

α

1− e−α
e−αw1{0<w<1} (5.8)

where 1{·} represents the indicator function which takes the values of 1 or 0 depending on

whether the condition in the braces holds or not. The conditional MGF is thus

Φ0(u) = E
[
euW |W ≤ 1

]
(5.9)

=

∫ 1

0

α

1− e−α
e−αweuwdw (5.10)

which becomes (5.7). �

Lemma 5.15. LetW be an exponential random variable with mean 1/α. Let the MGF

of W conditioned on W > 1 be denoted as Φ1(u). Then

Φ1(u) =
αeu

α− u
(5.11)

where the region of convergence is u ∈ (−∞, α).
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Proof. Conditioned on W > 1, the pdf of W is given by

eα(−w+1)1{w>1}. (5.12)

The conditional MGF is thus:

Φ1(u) = E
[
euW |W > 1

]
(5.13)

=

∫ +∞

1

eα(−w+1)euwdw. (5.14)

The integral converges if and only if u < α, where the result is given by (5.11). �

Recall the genesis block is the 0-th lagger. For i = 1, 2, . . . , let Xi denote the time

elapsed between the mining times of the (i − 1)-st and the i-th lagger. Let Ki denote

the number of honest blocks mined between the (i− 1)-st lagger (excluded) and the i-th

lagger (included).

Lemma 5.16. (X1, K1), (X2, K2), . . . are i.i.d.

Proof. For convenience, for n = 1, 2, . . . , let

Ln = K1 + · · ·+Kn, (5.15)

ln = k1 + · · ·+ ln. (5.16)

It is easy to see that

Xi = WLi−1+1 + · · ·+WLi (5.17)
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holds for i = 1, 2, . . . . Also, the event that Ki = ki is equivalent to the event that

WLi−1+1 ≤ 1, . . . ,WLi−1+ki−1 ≤ 1,WLi−1+ki > 1. (5.18)

Given K1 = k1, . . . , Ki = ki, the event Xi ≤ x is equivalent to the event that

Wli−1+1 + · · ·+Wli ≤ x. (5.19)

For all positive integers n, k1, k2, . . . , kn and real numbers x1, x2, . . . , xn, we have

P (X1 ≤ x1, K1 = k1, . . . , Xn ≤ xn, Kn = kn)

= P (W1 + · · ·+Wl1 ≤ x1,W1 ≤ 1, . . . ,Wl1−1 ≤ 1,Wl1 > 1, (5.20)

· · · ,

Wln−1+1 + · · ·+Wln ≤ xn,Wln−1+1 ≤ 1, . . . ,Wln−1 ≤ 1, dWln > 1) (5.21)

= P (W1 + · · ·+Wk1 ≤ x1,W1 ≤ 1, . . . ,Wk1−1 ≤ 1,Wk1 > 1)

× · · ·

× P (Wln−1+1 + · · ·+Wln ≤ xn,Wln−1+1 ≤ 1, . . . ,Wln−1 ≤ 1,Wln > 1) (5.22)

which is a product of n probabilities, where (5.22) is because W1,W2, . . . are i.i.d. More-

over, the i-th probability on the right hand side of (5.22) can be reduced as follows:

P (Wli−1+1 + · · ·+Wli ≤ x,Wli−1+1 ≤ 1, . . . ,Wli−1 ≤ 1,Wli > 1)

= P (W1 + · · ·+Wki ≤ x,W1 ≤ 1, . . . ,Wki−1 ≤ 1,Wki > 1) (5.23)
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for all i = 1, . . . , n. Applying (5.23) to (5.22) yields

P (X1 ≤ x1, K1 = k1, . . . , Xn ≤ xn, Kn = kn)

= P (X1 ≤ x1, K1 = k1) · · ·P (X1 ≤ xn, K1 = kn).

Hence the joint probability distribution of (Xi, Ki)
n
i=1 decomposes and each term takes

exactly the same form. Thus Lemma 5.16 is established. �

The loner process is not easy to characterize since whether a block mined at time t is

a loner depends not only on the past but also on future blocks (in (t, t+ 1]). In order to

count loners, we examine a tightly-related specie of honest blocks defined as follows.

Definition 5.17 (Double-lagger). The first honest block mined after a loner is called

a double-lagger.

Note that a loner is also a lagger. So whenever two laggers are mined in a row, the

former one is a lagger and the latter one is a double-lagger. As such, there is a one-to-

one correspondence between loners and double-laggers. We prove the independence of

inter-double-lagger times, and derive their MGFs, thus establishing the arrivals of double-

laggers as a renewal process.

Let Vs,t denote the total number of double-laggers mined during (s, t]. Let V1 denote

the time the first double-lagger arrives. Let J1 be the number of laggers after the genesis

block until the first double-lagger (included). For i > 1, let Vi denote the time elapsed

between the (i−1)-st and the i-th double-lagger. Let Ji be the number of laggers between

the (i− 1)-st double-lagger to the i-th double-lagger.
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Lemma 5.18. For all 0 ≤ s ≤ t,

Ys,t ≥ Vs,t − 1. (5.24)

Proof. Because loners and double-laggers appear in consecutive pairs, all but the

first double-lagger mined during (s, t] corresponds to a loner mined during (s, t]. �

Lemma 5.19. (V1, J1), (V2, J2), . . . are i.i.d.

Proof. For convenience, for n = 1, 2, . . . , let

Mn = J1 + · · ·+ Jn, (5.25)

mn = mn. (5.26)

This proof takes the same form as the proof of Lemma 5.16. It is easy to see that

Li = XMi−1+1 + · · ·+XMi
(5.27)

holds for i = 1, 2, . . . . Also, the event Ji = ji is equivalent to the event that

KMi−1+1 > 1, . . . , KMi−1+ji−1 > 1, KMi−1+ji = 1. (5.28)

Given J1 = j1, . . . , Ji = ji, the event Li ≤ ` is equivalent to

Xmi−1+1 + · · ·+Xmi ≤ `. (5.29)
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For all positive integers n, j1, . . . , jn and real numbers `1, . . . , `n, we have

P (V1 ≤ `1, J1 = j1, . . . , Ln ≤ `n, Jn = jn)

= P (X1 + · · ·+Xj1 ≤ `1, K1 > 1, . . . , Kj1−1 > 1, Kj1 = 1,

. . . ,

Xmn−1+1 + · · ·+Xmn ≤ `n, Kmn−1+1 > 1, . . . , Kmn−1 > 1, Kmn = 1) (5.30)

= P (X1 + · · ·+Xj1 ≤ `1, K1 > 1, . . . , Kj1−1 > 1, Kj1 = 1)

× · · ·

× P (Xmn−1+1 + · · ·+Xmn ≤ `n, Kmn−1+1 > 1, . . . , Kmn−1 > 1, Kmn = 1) (5.31)

which is the product of n probabilities, where (5.31) is due to Lemma 5.16, i.e., (X1, K1), (X2, K2), . . .

are i.i.d. Moreover, the i-th probability on the right hand side of (5.31) can be reduced

as:

P (Xmi−1+1 + · · ·+Xmi ≤ `,Kmi−1+1 > 1, . . . , Kmi−1 > 1, Kmi = 1)

= P (X1 + · · ·+Xji ≤ `,K1 > 1, . . . , Kji−1 > 1, Kji = 1)

(5.32)

for all i = 1, . . . , n. Applying (5.32) to (5.31) yields

=P (V1 ≤ `1, J1 = j1, . . . , Ln ≤ `n, Jn = jn) = P (V1 ≤ `1, J1 = j1) · · ·P (V1 ≤ `n, J1 = jn).

(5.33)

Hence the joint probability distribution of (Li, Ji)
n
i=1 decomposes and each term takes

exactly the same form. Thus Lemma 5.19 is established. �
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Lemma 5.20. The time from a lagger to the next double-lagger follows the same

distribution as the inter-double-lagger time.

Proof. Let blocks b, c, d be consecutive honest blocks. Evidently, Tc−Tb and Td−Tc

are i.i.d. exponential random variables. Let Q be the time elapsed from block d to the

next double-lagger. If d is a lagger, then Q does not depend on whether c is a lagger.

Thus, for all x,

P (Q ≤ x|Td − Tc > 1) = P (Q ≤ x|Td − Tc > 1, Tc − Tb > 1).

The left hand side is the cdf of the time between a lagger and the next double-lagger; the

right hand side is the cdf of inter-double-lagger time. Hence, the lemma is proved. �

For convenience we define the following function hα(u):

hα(u) = u2 − αu− αueu−α + α2e2(u−α). (5.34)

Evidently hα(u) > 0 if u ≤ 0 and hα(α) = 0. Also, hα(u) is differentiable with bounded

derivative on [0, α]. From now on, let u0 denote the smallest zero of hα(·), i.e.,

hα(u0) = 0 (5.35)

and hα(u) 6= 0 for all u ∈ [0, u0). We must have

0 < u0 ≤ α. (5.36)
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Lemma 5.21. Let V denote an inter-double-lagger time. The MGF of V is

Φ(u) = 1 +
αu− u2

u2 − αu− αue(u−α) + α2e2(u−α)
(5.37)

where the region of convergence is (−∞, u0).

Proof. The key is to study a Markov process: The initial state is a lagger. With

a known probability a double-lagger follows immediately to terminate the process. With

the remaining probability we visit a non-lagger state a geometric number of times until

we return to the initial lagger state. This allows us to write a recursion for the MGF

of the inter-double-lagger time (aka the time till the double-lagger terminal state), the

solution of which is (5.37).

By Lemma 5.19, it suffices to consider V1, the arrival time of the first double-lagger

starting from time 0. Let K denote the number of honest blocks until (including) the

first lagger and let b1, . . . , bK denote that sequence of blocks. Then blocks b1, . . . , bK−1

are non-laggers, and block bK is a lagger (it may or may not be a double-lagger).

With probability e−α, W1 > 1. In this case, block b1 is a double-lagger since the

genesis block is a lagger. We know K = 1 and V1 = W1.

With probability 1 − e−α, W1 ≤ 1. Then block b1 is not a lagger. We have W1 ≤

1, . . . ,WK−1 ≤ 1,WK > 1. Let V ′ denote the time from lagger bK to the next double-

lagger. Then we can write

V1 =


W1 if W1 > 1

W1 + · · ·+WK + V ′ if W1 ≤ 1

(5.38)
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where V ′ follows the same distribution as V1 by Lemma 5.20. Thus the MGF of V1 can

be calculated as

E
[
euV1

]
= (1− e−α)E

[
eu(W1+···+WK+V ′)

∣∣∣W1 ≤ 1
]

+ e−αE
[
euW1

∣∣∣W1 > 1
]

(5.39)

= (1− e−α)E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]
E
[
euV

′
]

+ e−αE
[
euW1

∣∣∣W1 > 1
]

(5.40)

= (1− e−α)E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]
E
[
euV1

]
+ e−αE

[
euW1

∣∣∣W1 > 1
]

(5.41)

where (5.40) is because V ′ and Wis are independent, and the fixed-point equation (5.41)

is because V ′ is identically distributed as V1.

If

(1− e−α)E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]
< 1 (5.42)

rearranging (5.41) yields

E
[
euV1

]
=

e−αE
[
euW1

∣∣∣W1 > 1
]

1− (1− e−α)E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
] . (5.43)

We shall revisit the condition (5.42) shortly.

Note that

P (K = k|W1 ≤ 1) = (1− e−α)k−2e−α, k = 2, 3, . . . . (5.44)

Hence

=E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]
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=
∞∑
k=2

P (K = k|W1 ≤ 1)× E
[
eu(W1+···+Wk)

∣∣∣K = k,W1 ≤ 1
]

(5.45)

=
∞∑
k=2

(1− e−α)k−2e−α × E
[
eu(W1+···+Wk)

∣∣∣W1 ≤ 1, . . . ,Wk−1 ≤ 1,Wk > 1
]

(5.46)

=
∞∑
k=2

(1− e−α)k−2e−α × E
[
euW1 |W1 ≤ 1

]
× · · ·×

E
[
euWk−1 |Wk−1 ≤ 1

]
× E

[
euWk |Wk > 1

]
(5.47)

=
∞∑
k=2

(1− e−α)k−2e−α Φk−1
0 (u)Φ1(u) (5.48)

= e−αΦ0(u)Φ1(u)
∞∑
k=0

(1− e−α)kΦk
0(u) (5.49)

where (5.47) is due to mutual independence of inter-arrival times and (5.48) is due to

Lemmas 5.14 and 5.15.

If

(1− e−α)Φ0(u) < 1, (5.50)

then the series sum converges to yield

E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]

=
e−αΦ0(u)Φ1(u)

1− (1− e−α)Φ0(u)
. (5.51)

Let us examine the conditions (5.42) and (5.50). Note that

(1− e−α)Φ0(u) =


1− e

u

eα

1− u
α

if u 6= α,

α if u = α.

(5.52)
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It is clear that (5.52) is less than 1 for u ≤ 0. For u > 0, because eu/u is monotone

decreasing on (0, 1) and monotone increasing on (1,+∞), there must exist u ≤ α that

satisfies (1−e−α)Φ0(u) = 1. Hence the region of convergence must be a subset of (−∞, α).

Let hα(u) be defined as in (5.34). Using (5.51), it is straightforward to show that

(1 − e−α)E
[
eu(W1+···+WK)

∣∣∣W1 ≤ 1
]

= 1 is equivalent to hα(u) = 0. Let u0 > 0 be the

smallest number that satisfies hα(u0) = 0. Then u0 exists and 0 < u0 ≤ α according to

(5.36). Also, u < u0 implies (5.42). Therefore, the region of convergence for the MGF is

(−∞, u0).

For u < u0, we have by (5.51) and Lemma 5.15:

E
[
euV1

]
=

e−αΦ1(u)(1− (1− e−α)Φ0(u))

1− (1− e−α)Φ0(u)− e−α(1− e−α)Φ0(u)Φ1(u)
(5.53)

which becomes (5.37).

�

Next, we bound the probability of typical events. It is hard to directly calculate the

probability of the event F ε
s,t, which is defined as the intersection of uncountably many

events. To circumvent this difficulty, we lower bound the probability of a “smaller” event

Gε,q
s,t , which is the intersection of a countable number of simple events.

Definition 5.22. For all ε ∈ (0, 1), q > 0, and 0 ≤ s < t, let

Gε,q
s,t =

⋂
m∈{0,1,...,d s

q
e},

n∈{0,1,... }

{Ys−mq+q+1,t+nq−q−1−ε > As−mq,t+nq}. (5.54)
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Lemma 5.23. For all ε ∈ (0, 1), q > 0, and 0 ≤ s < t,

Gε,q
s,t ⊂ F ε

s,t. (5.55)

Proof. Without loss of generality, we assume Gε,q
s,t is not empty. For every 0 ≤ a ≤

s < t ≤ b, let m be the smallest integer satisfying s − mq ≤ a and n be the smallest

integer satisfying t+ nq ≥ b. Evidently m,n ≥ 0. Then we have,

Ya+1,b−1−ε ≥ Ys−mq+q+1,t+nq−q−1−ε (5.56)

> As−mq,t+nq (5.57)

≥ Aa,b (5.58)

where (5.57) is because Gε,q
s,t occurs. As a consequence, F ε

s,t occurs. Hence the proof of

this Lemma. �

With some foresight, we define

f(u) = e(2q+2+ε)uΦ2(u) (5.59)

and

Ψ(u) =
1

u
(β + u− βΦ(u)) (5.60)

for u ∈ [0, u0). By convention, we let Ψ(0) = 1, so that Ψ is continuous on [0, u0).
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Lemma 5.24. For all ε ∈ (0, 1), q > 0, and 0 ≤ s < t,

P (Ys+q+1,t−q−1−ε ≤ As,t) ≤ f(u)e−uΨ(u)(t−s) (5.61)

for all u ∈ (0, u0).

Proof. Suppose u ∈ (0, u0). By independence of the Y and Z processes, we have

P (Ys+q+1,t−q−1−ε ≤ As,t) ≤
∞∑
j=0

P (As,t = j) · P (Ys+q+1,t−q−1−ε ≤ j) (5.62)

≤
∞∑
j=0

P (As,t = j) · P (Vs+q+1,t−q−1−ε ≤ j + 1) (5.63)

where (5.63) is due to Lemma 5.18.

If no more than j+1 double-laggers are mined during time interval (s+q+1, t−q−1−ε],

then counting from time s+ q+ 1, the (j + 2)-nd double-lagger must be mined after time

t− q − 1− ε. Due to Lemma 5.19, we have

P (Vs+q+1,t−q−1−ε ≤ j + 1) ≤ P

(
j+2∑
m=1

Vm ≥ t− s− 2q − 2− ε

)
(5.64)

where V1, V2, . . . are i.i.d. inter-double-lagger times. Using Markov’s inequality and Lemma

5.19, for all u ∈ (0, u0):

P

(
j+2∑
m=1

Vm ≥ t− s− 2q − 2− ε

)
≤ E

[
exp

(
u

( j+2∑
m=1

Vm − (t− s− 2q − 2− ε)
))]
(5.65)

= e−u(t−s−2q−2−ε)Φj+2(u). (5.66)
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Using (5.63)–(5.66), we have for u ∈ (0, u0)

P (Ys+q+1,t−q−1−ε ≤ As,t) ≤
∞∑
j=0

e−(t−s)β ((t− s)β)j

j!
e−u(t−s−2q−2−ε)Φj+2(u) (5.67)

= e−(β+u)(t−s)+(2q+2+ε)uΦ2(u)
∞∑
j=0

((t− s)βΦ(u))j

j!
(5.68)

= e(2q+2+ε)uΦ2(u)e−(t−s)(β+u−βΦ(u)) (5.69)

which becomes (5.61). �

Lemma 5.25. If β < αe−2α, then there exists some positive number u∗ < u0 such that

uΨ(u) > 0 for all u ∈ (0, u∗].

Proof. By definition, uΨ(0) = 0 and the right derivative

(uΨ(u))′+|u=0 = 1− β(Φ(u))′+|u=0 (5.70)

= −
[
−α− αe−α+u + 2u2e2(u−α) + 2u− αueu−α

(α2e2(u−a) − αu− αueu−a + u2)2
· β(−αu+ u2)

+
β(−α + 2u)

α2e2(u−a) − αu− αueu−a + u2
+ 1

]∣∣∣∣
u=0

(5.71)

= 1− β

αe−2α
. (5.72)

If β < αe−2α, we have (uΨ(u))′+|u=0 > 0. By continuity, there must exist a u∗ < u0 such

that (uΨ(u))′ > 0 and uΨ(u) > 0 for all u ∈ (0, u∗]. �

Let u1 > 0 be the smallest positive number such that Ψ(u) = 0. Note that as u→ u0,

we have Φ(u)→∞ and uΨ(u)→ −∞. By Lemma 5.25, u1 exists and u∗ < u1 < u0.
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Lemma 5.26. For all ε ∈ (0, 1), q > 0, and 0 ≤ s < t,

P
(
(F ε

s,t)
c
)
≤ min

0<u<u1

(
1 +

u+ β − uΨ2(u)

βΨ(u)

)2

× (1 + Ψ(u))
2

Ψ(u) e(2+ε)u−Ψ(u)u(t−s) (5.73)

where u1 is the smallest number such that u1Ψ(u1) = 0.

Proof. Let k = d s
q
e. By Lemmas 5.23 and 5.24 and using the union bound, we have

for u ∈ (0, u1):

P
(
(F ε

s,t)
c
)
≤ P

(
(Gε,q

s,t)
c
)

(5.74)

≤ P

 ⋃
m∈{0,1,...,k},
n∈{0,1,... }

{Ys−mq+q+1,t+nq−q−1−ε ≤ As−mq,t+nq}

 (5.75)

<
∑

m∈{0,1,...,k},
n∈{0,1,... }

f(u)e−uΨ(u)(t+nq−s+mq) (5.76)

= f(u)e−uΨ(u)(t−s)

(
k∑

m=0

e−uΨ(u)mq

)(
∞∑
n=0

e−uΨ(u)nq

)
(5.77)

<
f(u)

(1− e−uΨ(u)q)
2 e
−uΨ(u)(t−s). (5.78)

For a given u, to minimize (5.78), we set the derivative with respect to q to zero to obtain

the optimal choice:

q∗ =
log (1 + Ψ(u))

uΨ(u)
. (5.79)
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Note that by (5.60), we have

Φ(u) = 1 +
u− uΨ(u)

β
. (5.80)

We set q to q∗, plug (5.59), (5.79), and (5.80) into (5.78). Then for u ∈ (0, u1)

P
(
(F ε

s,t)
c
)
≤ e(2q∗+2+ε)uΦ2(u)(

1− 1
1+Ψ(u)

)2 e−uΨ(u)(t−s). (5.81)

=

(
1 + u−uΨ(u)

β

)2

(
Ψ(u)

1+Ψ(u)

)2 e2q∗e−uΨ(u)(t−s)+(2+ε)u (5.82)

=

(
1 +

u+ β − uΨ2(u)

βΨ(u)

)2

(1 + Ψ(u))
2

Ψ(u) e(2+ε)u−Ψ(u)u(t−s). (5.83)

This completes the proof of Lemma 5.26. �

Lastly, we recover the result for the original arbitrary time unit where the block

propagation delays are bounded by ∆ time units in lieu of 1 time unit.

Theorem 5.27 (Blockchain consistency theorem). Let α and β denote the total min-

ing rates (in blocks per unit time) of all honest and adversarial miners, respectively. Let

network delays be upper bounded by ∆ units of time. Suppose

β < αe−2α∆. (5.84)

For every s > 0, barring an event Es,t with probability P (Es,t) ≤ e−Θ(t−s), a block that is

mined by time s and included in some honest miner’s longest blockchain at time t is also
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included in all honest miners’ longest blockchains at all later times. To be precise, let

ψ(v) = 1− β (α− v)

v2 − αv − αve(v−α)∆ + α2e2(v−α)∆
. (5.85)

Let θ be the smallest positive number that satisfies ψ(θ) = 0. Then P (Es,t) is upper

bounded by

min
v∈(0,θ)

(
1 +

v + β − vψ2(v)

βψ(v)

)2

(1 + ψ(v))
2

ψ(v) e2∆v−ψ(v)v(t−s). (5.86)

Proof. To reintroduce ∆ into the result, we let τ = t∆, σ = s∆, a = α/∆, b = β/∆,

and v = u/∆. These new variables and parameters are then defined under the original

time unit. We define

φ(v) = Φ(∆v) (5.87)

ψ(v) = Ψ(∆v). (5.88)

Plugging in (5.37) and (5.60), we have

φ(v) = 1 +
av − v2

v2 − av − ave(v−a)∆ + a2e2(v−a)∆
(5.89)

ψ(v) =
b+ v − bφ(v)

v
(5.90)

= 1− b (a− v)

v2 − av − ave(v−a)∆ + a2e2(v−a)∆
. (5.91)

Suppose a block is mined at time σ and is included in a τ -credible blockchain. Applying

Lemma 5.13, the block is included in all future credible blockchains under event F ε
σ
∆
, τ
∆
.
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We then apply Lemma 5.26 with the conversion. For 0 ≤ σ < τ , we define

Eσ,τ =

( ⋃
0<ε<1

F ε
σ
∆
, τ
∆

)c

. (5.92)

Using Lemma 5.26 and letting ε→ 0, an upper bound of Eσ,τ is given by

min
v∈(0,v1)

(
1 +

v + b− vψ2(v)

bψ(v)

)2

(1 + ψ(u))
2

ψ(v) e2v∆−ψ(v)(τ−σ)v (5.93)

where v1 is the smallest positive number such that ψ(v1) = 0. Then every block mined

before σ and is in a τ -credible blockchain must be included in all credible blockchains

thereafter barring event Eσ,τ , whose probability is upper bounded by (5.93). This con-

clusion is equivalent to Theorem 5.27 (with minor abuse of notation we still use α, β, s,

and t to replace a, b, σ, and τ , respectively, to follow some convention). Thus, Theorem

5.27 is proved. �

5.4. Proof of Liveness

Definition 5.28 (Jumper). A block is called a jumper if it is the first honest block

mined at its height.2

For i = 1, 2, . . . , let Mi denote the time elapsed between the (i− 1)-st jumper and the

i-th jumper. As in Section 5.3, we use ∆ as the time unit for convenience. LetMs,t denote

the number of jumpers mined during time interval (s, t]. For simplicity, we also assume

that individual honest miners have infinitesimal mining power, so that almost surely no

individual miner mines two consecutive jumpers in a row.

2Ties are broken in a deterministic manner.
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Lemma 5.29. The inter-jumper times M1,M2, . . . are i.i.d. and Mi − 1 follows an

exponential distribution with mean 1/α.

Proof. Let b0 = b be the 0-th jumper and and let block bi denote the i-th jumper

after block b. Until Tbi + 1 when block bi is in all honest miners’ views, all honest miners

except block bi’s miner (who is negligible) are mining at heights no higher than h(bi).

From Tbi + 1, it takes exponential time with mean 1/α to mine the next jumper. Due to

the memoryless nature of the honest mining process, M1,M2, . . . are i.i.d. (the jumpers

form a renewal process). �

Using Lemma 5.29, it is straightforward to establish the following result concerning

the height of longest (or credible) blockchains over time.

Definition 5.30. Let F (·, k, α) be the cumulative distribution function (cdf) of the

Erlang distribution with shape parameter k and scale parameter α.

Lemma 5.31 (Blockchain Growth Lemma). For all 0 ≤ s < t, every honest miner’s

longest blockchain at time t must be at least n higher than every honest miner’s longest

blockchain at time s with probability no less than

F (t− s− 1− n, n, α). (5.94)

Proof. If t− s < 1 then F (t− s− 1−n, n, α) = 0, so the lemma holds trivially. We

assume t − s > 1. All jumpers mined during (s, t − 1] must be in every honest miner’s

views by t, where the first jumper is higher than the miner’s longest blockchain at time s

and the last jumper is no higher than the miner’s longest blockchain at time t. Hence the
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probability of interest is no less than P (Ms,t−1 ≥ n). The event that n or more jumpers

are mined on (s, t − 1] is the same as that n inter-jumper times can fit in a duration of

t− 1− s, i.e.,

P (Ms,t−1 ≥ n) = P (M1 + · · ·+Mn ≤ t− s− 1) (5.95)

where M1, . . . ,Mn are i.i.d. inter-jumper times. This probability is equal to

P ((M1 − 1) + · · ·+ (Mn − 1) < t− s− 1− n)

= F (t− s− 1− n, n, α)

(5.96)

where (5.96) is because M1− 1, . . . ,Mn− 1 are i.i.d. exponential random variables whose

sum has the Erlang distribution with shape parameter n and rate α. �

With the preceding techniques, we can establish the following probabilistic bound for

blockchain quality or liveness.

Lemma 5.32 (Blockchain Liveness Theorem). Let 0 ≤ s < t − 1. In every honest

miner’s longest blockchain at time t, the probability that n or more of those blocks are

honest blocks mined during (s, t) is lower bounded by

∞∑
i=0

e−β(t−s) (β(t− s))i

i!
F (t− s− i− n− 1, i+ n, α). (5.97)

Proof. SinceMs,t−1 jumpers are mined during (s, t−1] (with different heights), and

at most As,t of them are matched by adversarial blocks, the number of surplus jumper

blocks lower bounds the number of honest blocks in any honest miner’s longest blockchain
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that are mined during (s, t]. The said probability is thus lower bounded by

P (Ms,t−1 − As,t ≥ n) =
∞∑
i=0

P (As,t = i)P (Ms,t−1 ≥ i+ n) (5.98)

=
∞∑
i=0

e−β(t−s) (β(t− s))i

i!
P (M1 + · · ·+Mi+n ≤ t− s− 1) (5.99)

which is equal to (5.97). �

5.5. Latency-Security tradeoff of the Bitcoin protocol

Given a desired security level, Theorem 5.27 provides an upper bound of the con-

firmation time needed to achieve it. In this section, we analyze a private attack which

establishes a minimum confirmation time needed for the security level.

With the lower bound and upper bound of confirmation time, we provide practical

numerical results on the latency-security tradeoff of the Bitcoin blockchain in this section.

The effect of block generation rate is also discussed.

5.5.1. Private attack

Definition 5.33 (Private attack). A private attack strategy on block b, denoted as ζb,

is described as follows:

• As soon as b is mined, the adversary starts to mine a private adversarial blockchain

that extends block fb.

• Starting from (including) block b, every newly mined honest block enters all other

honest miners’ view exactly ∆ units of time thereafter.
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As alluded to in Section 5.2, the adversary is given the advantage of manipulating

block propagation times subject to the delay bound (Definition 5.5). We say the private

attack on block b is successful at time t if the privately mined adversarial blockchain at

time t is at least as long as one t-credible blockchain (so that the adversarial blockchain

can be published to make some honest miners reverse block b).

Without loss of generality, we assume that honest miners always mine on top of the

earliest longest blockchain in case multiple longest blockchains are in an honest miner’s

view. If an honest block is not a jumper, then once its propagation is subject to the

maximum delay, it loses to some other honest block at the same height and hence does

not make into any later credible blockchain even if the adversary takes no action at all.

Hence, without loss of generality, we assume the adversary attacks a jumper block b which

is referred to as the 0-th jumper in this subsection.

Lemma 5.34. If the adversary performs the private attack ζb on a jumper b and

publishes no block during [Tb − ∆, Tb + t] with t > 0, then the height of the i-th jumper

mined during (Tb, Tb + t) is h(b) + i. Also, the height of all (Tb + t)-credible blockchains is

no greater than h(b) +MTb,Tb+t.

Proof. By the private attack strategy in Definition 5.33, starting from block b,

no adversarial blocks are published on those heights by Tb + t. Thus, the jumpers mined

during [Tb, Tb+t) have consecutive heights, and the height of a (Tb+t)-credible blockchain

is no higher than that of the last jumper mined before Tb + t. Hence the proof of the

lemma. �
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Theorem 5.35 (Latency–security lower bound). Given 0 ≤ s < t−∆, under an event

Bs,t, a block b mined at time s that is included in an honest miner’s longest blockchain

at time t will not be in some honest miner’s longest blockchains at some later time under

the private attack ζb, where

P (Bs,t) =
∞∑
i=1

e−β(t−s) (β(t− s))i

i!

(
1− F

(
t− s

∆
− i− 1, i, α∆

))
(5.100)

where F (·, n, a) is defined in Definition 5.30.

Proof. Using the normalized time unit, we convert the original condition t− s > ∆

to t − s > 1. If block b is not a jumper, it will not be included in any honest miner’s

longest blockchain at t when the adversary takes no action, so there is nothing to prove

in this case.

If block b is a jumper, the adversary performs the private attack ζb and begins to

mine blocks from height h(b). The private attack is successful at time t if the adversary

mines more blocks than the number of competing jumpers. Because jumpers are subject

to one unit of propagation delay, only jumpers mined until time t − 1 are competitive.

Specifically, the private attack is successful under this event:

Bs,t = {As,t ≥Ms,t−1 + 1}. (5.101)

Again, let M1,M2, . . . denote i.i.d. inter-jumper times. The probability of success can be

lower bounded by

P (Bs,t) =
∞∑
i=1

P (As,t = i)P (Ms,t−1 ≤ i− 1) (5.102)
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Figure 5.1. Bitcoin’s latency–security trade-off with α + β = 1/600 blocks
per second and ∆ = 10 seconds.

=
∞∑
i=1

e−β(t−s) (β(t− s))i

i!
P (M1 + · · ·+Mi > t− s− 1) (5.103)

=
∞∑
i=1

e−β(t−s) (β(t− s))i

i!
(1− F (t− s− i− 1, i, α)). (5.104)

Once converted to the original time unit, i.e., with α, β, s and t replaced by α∆, β∆,

s/∆, and t/∆, respectively, this result becomes (5.100). �
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5.5.2. Numerical results

The latency–security trade-off under several different sets of parameters is plotted in

Figure 5.1. The mining rate is set to Bitcoin’s one block per 600 seconds, or α+β = 1/600

blocks/second. In Bitcoin, the block size is about 1 MB. The propagation delay of Bitcoin

blocks fluctuates over the years with an overall decreasing trend [38]; the 90th percentile

of block propagation is 4 seconds on average as of July 2020. Since ∆ in our model needs

to be an upper bound on propagation delay, we assume ∆ = 10 seconds for a 1 MB

Bitcoin block. The latency upper (resp. lower) bounds are computed using Theorem 5.27

(resp. Theorem 5.35). In Figure 5.1, all bounds appear to be exponential in latency (this

is also rigorously established by Theorem 5.27.)

It is instructive to examine concrete data points in Figure 5.1: If the adversarial share

of the total network mining rate is 10%, then a confirmation time of 5 hours 20 minutes

is sufficient to achieve 10−3 security level, and 12 hours 15 minutes achieve 10−10 security

level. These results are within 4 hours of the corresponding lower bounds due to the

private attack. If the adversarial share of the mining rate increases to 25%, then 16 hours

20 minutes and 37 hours 20 minutes of confirmation times achieve 10−3 and 10−10 security

levels, respectively, and the gap between the upper and lower bounds is about 12 hours.

The gap is essentially constant under at security levels (a pair of corresponding curves

are almost parallel in the figure). The gap is relatively insignificant at high security levels

but can be significant at low security levels.
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5.5.3. Remarks

First, we note that most previous analyses on the Nakamoto consensus assume a finite

lifespan of the protocol [4,32], that is, a maximum round number is defined, at which

round the protocol terminates. The probability of consistency depends on the maximum

round number.

In contrast, this thesis does not assume a finite lifespan. Theorem 5.27 states that,

barring a small probability event, a confirmed block remains permanently in all miners’

longest blockchains into the arbitrary future.

Second, for technical convenience, we regard a block in a miner’s longest blockchain to

be confirmed after a certain amount of time elapses since the block is mined or enters the

miner’s view. Nakamoto [1] originally proposed confirming a block after it is sufficiently

deep in an honest miner’s longest blockchain. We believe both confirmation rules are easy

to use in practice. But the two confirmation rules imply each other in probability:

Let

κ(λ, ε) = min

{
k : e−λ

∞∑
i=k

λi

i!
≤ ε

}
. (5.105)

Then for every τ > 0, the probability that κ((α + β)τ, ε) or more blocks are mined in

τ units of time is no greater than ε. For example, we learn from Figure 5.1 that 5.58

hours of latency guarantees a security level of 0.0005. Using (5.105), we obtain that

κ(5.58 × 6, 0.0005) = 55. Hence if one counts 55 confirmation blocks, it implies that at

least 5.58 hours have elapsed with error probability 0.0005. In all, 55 confirmation blocks
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guarantees 10−3 security level, assuming that at most 10% of the total mining power is

adversarial.

At 10% adversarial mining power, Nakamoto [1] estimated that confirming after six

blocks beats private attack at least 99.9% of the time. In contrast, 55 confirmation blocks

guarantees the same security level regardless of what attack the adversary chooses to

employ. We also note that while on average six blocks take only one hour to mine, with

probability 10−3 it takes 2.75 hours or more to mine.

5.5.4. Effect of block generation rate

The latency–security trade-off has already been shown in Figure 5.1 for the Bitcoin pro-

tocol parameters. Figure 5.2 illustrates how the trade-off changes if the block generation

rate increases by 10 folds (to 1 block per minute), with everything else held the same. It

is not surprising to see that the latency is much shorter under the higher block generation

rate in this particular case.

Figure 5.3 illustrates the confirmation time needed for different security levels, block

generation rates, and block propagation delays. As expected, the latency is larger with

longer block propagation delay and/or stronger security level requirement. Interestingly,

increasing the block generation rate first reduces latency but eventually causes the latency

to rise without bound. The intuition is as the block generation rate keeps increasing, more

confirmation time is needed due to heavy forking From the graph, with the Bitcoin block

propagation delay around 10 seconds, a sweet spot for block generation rate is between

40 and 100 blocks per hour in terms of optimizing latency.
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Figure 5.2. Latency–security trade-off with ∆ = 10 seconds and 25% per-
centage of adversarial mining.

We recall that Theorem 5.27 requires the honest-to-adversarial mining ratio to be

bounded by

β

α
< e−2α∆. (5.106)

This is because αe−2α∆ is the exact rate that loners are mined. Beyond the ratio in (5.106),

this thesis provides no security guarantee. This is marked as the “calculation bound” in

Figure 5.3. Note that (5.106) is a sufficient but not necessary condition for the consistency
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Figure 5.3. Latency required for different propagation delays. The percent-
age of adversarial mining is 25%.
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of the Nakamoto consensus. The sufficient and necessary condition is given in [14,15]:

β

α
<

1

1 + α∆
. (5.107)

This is marked as the fundamental bounds in Figure 5.3.

5.6. Analysis of existing systems

5.6.1. Methodology

5.6.1.1. Metrics. The performance metrics of a Nakamoto-style protocol include la-

tency for a given security level, throughput, and fault tolerance (the upper limit of the

fraction of adversarial mining in a secure system). This section numerically computes

the trade-off between different performance metrics of popular Nakamoto-style systems

(Bitcoin Cash, Ethereum, etc.) and discuss their parameter selections.

We remark that the throughput metric can be defined in a few different ways, ranging

from the “best-case” throughput where the adversarial miners follow the protocol, to the

“worst-case” throughput where the adversarial miners not only mine empty blocks but also

use a selfish mining type of attack [4,39] to push honest blocks out of longest blockchains.

In this thesis, we choose to focus on the “best-case” throughput, which is the throughput

under normal operation and is perhaps what protocol designers have in mind when setting

parameters.

5.6.1.2. Block propagation delay. The above metrics crucially depend on the block

generation rate (or the total mining rate in the system), maximum block size, and block

propagation delay. The former two are explicitly specified in the protocol. The block

propagation delay, however, depends on network conditions. Block propagation delays
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in the Bitcoin network have been measured in [18, 40, 41]. Such measurements are in

general lacking for other systems. It is observed in [18] that there is a linear relationship

between propagation delays and block size.

In this section, we let the maximum block propagation delay be determined by the

block size S (in KB) according to the following formula:

∆ = aS + b. (5.108)

We determine the coefficients a and b using propagation delay data from Bitcoin and

Ethereum monitoring websites. In Bitcoin, the block size is about 1 MB. We assume

∆ = 10 seconds for a 1 MB Bitcoin block as illustrated in subsection 5.5.2. According

to [42], the 90th percentile of Ethereum block propagation is 1.75 seconds for an average

block size of 25 KB. We round it up to 2 seconds for an upper bound. Using these data

points, we estimate a = 0.008 and b = 1.79.

5.6.2. The latency–throughput trade-off

A larger block size may benefit throughput by carrying more transactions. On the other

hand, the larger block size increases the propagation delay, which causes longer latency.

A protocol designer may want to find a sweet spot that leads to the most desirable latency

and throughput.

Figure 5.4 illustrates the minimum latency required to achieve given throughput ac-

cording to Theorem 5.27 (it is actually a latency upper bound). For several target through-

put numbers (20, 30, 40, 50, and 60 KB per second), we also mark the corresponding block
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sizes (in KB) and block generation rates (in seconds per block) to achieve the best la-

tency bound. For example, the best latency bound is 2 hours and 25 minutes for a target

throughput of 20 KB per second (at 10−10 security level, 25% percentage adversarial min-

ing). This latency can be achieved by setting the block size to 208 KB and the block

generation rate to one block every 10.4 seconds.
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Protocol=
Maximum
block size

Generation
rate

Propagation
delay (seconds)

Latency: 10−3

security level
Latency:10−6

security level
Latency: 10−10

security level
Throughput
(KB/second)

Fault
tolerance

Bitcoin 1 MB 6 10 < 15h 45m < 24h 45m < 37h 50m 1.7 49.7%
BCH 8 MB 6 67.4 < 21h 55m < 34h 10m < 50h 30m 13.3 48.0%
BSV 2000 MB 6 1.6×104 N/A N/A N/A N/A 3.6%

Litecoin 1 MB 24 10 < 4h 40m < 7h 15m < 10h 55m 6.7 48.8%
Zcash 2 MB 48 18.2 < 4h 40m < 7h 15m < 10h 40m 26.7 45.8%

Ethereum 0.183 MB 240 3.3 < 50m < 1h 20m < 1h 55m 12.2 46.2%

Table 5.2. Parameters and performances of Nakamoto-style Protocols. The
percentage of adversarial mining power is 25%. In formula (5.108), a =
0.008 and b = 1.79.

5.6.3. Case Studies in the Current Ecosystem

Some proof-of-work protocols attempt to better Bitcoin by inflating the block size (Bitcoin

Cash, Bitcoin SV) or increasing the block generation rate (Litecoin). This subsection dis-

cusses the performance of these Bitcoin-like protocols. Table 5.2 describes the parameters,

estimated propagation delay, and performances of the aforementioned protocols.

5.6.3.1. BCH. Bitcoin Cash (BCH) is a hard fork of Bitcoin from 2017. BCH aims to

increase the throughput by increasing the maximum block size to 8 MB while remaining

the same block generation rate as Bitcoin [43]. As a result, the latency is increased

from around 37 hours to 50 hours for 10−10 security level. Had BCH increase the block

generation rate (instead of the block size) by eight times, it would have obtained the same

eight fold throughput improvement while at the same time shortened the latency by a

factor of eight or so.

5.6.3.2. BSV. Bitcoin SV (BSV) was created in 2018 by forking BCH. BSV intended

to reduce transaction fees by adjusting the protocol with even larger block sizes upper

bounded by 2 GB [44]. However, the 2 GB block size will cause very long propagation

delay. According to the fundamental fault tolerance bound (5.107), we see that BSV’s

security can not be guaranteed unless the adversary controls less than 3.6% of the total
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mining power. In reality, the only reason BSV has not observed a problem because it

has low interests and the blocks its miners produce are nowhere close to 2 GB. However,

when BSV starts to operate at its intended capacity, its 3.6% fault tolerance will become

a major issue.

5.6.3.3. Litecoin. Litecoin is also a fork of the Bitcoin Core client that dates back to

2011. Litecoin decreases the block generation time from 10 minutes to 2.5 minutes per

block [45]. For Litecoin, the latency is 10 hours 55 minutes, and the current throughput

is 6.7 KB per second (for 10−10 security level and 25% percentage of adversarial mining

power). From Figure 5.4, one can see that a latency less than 2 hours can be achieved

with a throughput of 6.7 KB per second. This can be achieved by increasing the block

generation rate and decreasing the block size.

5.6.3.4. Zcash. Proposed in 2016, Zcash is aims to provide enhanced privacy features.

In 2017, Zcash doubled the maximum block size from 1 MB to 2 MB [46]. Zcash also de-

creased the block interval from 10 minutes to 1.25 minutes [47]. Similar to Litecoin, ZCash

can be improved by increasing the block generation rate (higher throughput) and/or de-

creasing block size (shorter latency).

5.6.3.5. Ethereum. The second largest cryptocurrency platform Ethereum has the block

generation rate of 15 seconds per block [48,49]. The maximum gas consumption for each

Ethereum block is 12.5×106. Given that 21000 gas must be paid for each transaction

and 68 gas must be paid for each non-zero byte of the transaction [31], we estimate the

maximum block size of an Ethereum block is 183 KB. Ethereum increases the block gen-

eration rate and decrease the block size. From Figure 5.4, for the throughput of around

12 KB per second, the latency bound is around 1 hour and 40 minutes, which is close to
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the current confirmation time of 1 hour and 55 minutes. The parameters of Ethereum

seem to be well-chosen.

5.6.3.6. Summary. In general, most of Nakamoto-style cryptocurrencies start with Bit-

coin as the baseline and aim to improve its throughput. Since Bitcoin has a very low block

generation rate, the best option according to a principled method is to increase its block

generation rate. Additional improvements can be obtained by decreasing the block size

and further increasing the block generation rate. This will not only increases throughput

but also shortens the latency. Unfortunately, almost all the systems we looked at went

in the opposite direction to increase the block size, partly due to a lack of principled

methodology. The only exception is Etheruem; Etheruem’s parameters are very close to

the optimal ones recommended in Figure 5.3.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we have analyzed the Bitcoin backbone protocol and the Prism backbone

protocol using more general models than previously seen in the literature. Under discrete-

time model, we allow the blockchains to have unlimited lifespan and allow the block

propagation delays to be arbitrary but bounded. Under the new setting, we rigorously

establish a blockchain growth property, a blockchain quality property, and a common

prefix property for the Bitcoin backbone protocol. Under this framework, we have also

proved a blockchain growth property and a blockchain quality property of the leader

sequence in the Prism protocol. We have also shown that the leader sequence is permanent

with high probability after sufficient amount of wait time. As a consequnce, every honest

transaction will eventually enter the final ledger and become permanent with probability

higher than 1− ε after a confirmation time proportional to security parameter log 1
ε
. This

thesis provides explicit bounds for the Bitcoin and the Prism backbone protocols.

Under the continuous-time model, we rigorously establish the liveness and consistency

properties of the Bitcoin blockchains. We also derive both upper bound and lower bound

of confirmation time given a desired security level. Concrete latency–security trade-off for

the Nakamoto consensus is derived and applied to analyze existing proof-of-work longest-

chain cryptocurrencies.

When the mining rate is low (compared to the block propagation delay), the ob-

tained upper bounds are close to the lower bounds from private mining. When the block
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generation rate is high, however, our method does not give very tight results. Recent

works [14,15] have established the tight fault tolerance under high mining rate but tight

bounds on latency remain open. Another direction is to analyze the Nakamoto consensus

with dynamic participation and/or difficulty adjustment. Only asymptotic bounds exist in

this direction [8,28] and it is interesting future work to establish concrete latency–security

bounds.
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