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ABSTRACT

Finding the Needle in the Haystack:

Applying Data Science to Address Biological Questions

Albert Y. Xue

Biology is entering the exciting world of big data. Modern high-throughput ex-

perimental techniques often produce large datasets that aim to capture complex

relationships often found in biological systems. While these larger data sets contain

vast amounts of useful information, the answers are often locked behind a wall of

numbers. As a result, the big data revolution has spawned the field of data science

composed of scientific methods, algorithms, and systems to unlock useful information

using modern data science tools that blend various tools such as statistical meth-

ods, machine learning models, and data visualization pipelines. When applied to

new scientific fields, these tools accelerate the discovery and understanding of novel

scientific insights.

In my thesis, I apply modern data science tools to various biological datasets to

investigate the complex relationships and produce actionable insights that inform

future experiments. The investigated datasets are united by the common theme of
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big data and require data science tools to extract useful scientific results. In the

first project, I investigate the signal quality of peptide arrays and call attention

to the under-studied complexities of peptide behavior in mass spectrometers. For

the second project, I extract useful synthesis designs of a potential nanoparticle

cancer-immunotherapy, and I expand the capabilities of the synthesis pipeline using

supervised machine learning models. The third project creates an improved and

automated methodology to systematically label and visualize RNA folding events

in SHAPE-Seq datasets. I conclude this thesis by discussing an issue present with

many supervised learning models: how do we interpret models? I focus on deep

learning interpretation techniques as applied to medical tasks and how these current

techniques fall short of emulating clinical practices.
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CHAPTER 1

Introduction

1.1. The new age of big data in biology

Understanding and unraveling the complex world of biological systems has always

been challenging. Fortunately, modern experimental techniques generate large datasets

that capture the complicated relationships that often underlie biological systems.

Whereas previous biology experiments were limited with restricted impact, newer

high-throughput experiments allow a more comprehensive perspective to better un-

derstand the complex world of biology. These big data experiments are becoming

bountiful, and a simple Google Scholar search for “big data biology” currently pro-

duces over 1.6 million results. Recently, big data applications have led to successes

across various biological fields including metabolism1,2, genomics3,4, medicine5,6. I

define big data not in terms of the absolute size of data7 but in terms of the relative

data size increase that enables application of modern data science tools. Modern big-

data generating experiments include SAMDI, a technique that immobilizes various

peptide sequences to a surface8. SAMDI allows simultaneous probing of hundreds or

thousands of peptides in a single experiment, which represents a significant increase

over the status quo. Previous peptide profiling techniques analyze few peptide sam-

ples9,10, but SAMDI simultaneously queries hundreds to thousands of samples8 and

represents one of the many high-throughput techniques generating big data. SAMDI
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and similar jumps in data-generation capabilities allow academic research to leapfrog

from limited discoveries to broader impacts to accelerate scientific advances within

biological domains.

1.2. Finding the needle in the haystack

Big data leads to a new challenge: if big data can be represented as the haystack,

it is increasingly challenging to find the needle, or key biological insights, buried in

a sea of experimental data. These challenges span multiple issues including visual-

izing data, understanding complex relationships, or extracting actionable insights.

In terms of visualization, it is difficult to construct an effective visual for a high-

dimensional dataset.11 Though humans have highly developed visual processing cen-

ters, it is limited to three dimensions and is easily leveraged for high-dimensional

dataset. Similarly, big data means that simple 2-dimensional plots often bring an

overwhelming amount of information that is difficult to digest and understand. As a

result, traditional visualization techniques are often insufficient, and creating under-

standable visuals requires significant forethought and integration with newer tools.

This principle is generalizable across big data analysis and is especially relevant for

identifying those important nuggets of information within a dataset. The following

introductory sections explore how modern data science tools are able to tackle the

challenges present in big data. Chapters 2-4 focuses on finding the needle within the

haystack of various biological datasets.
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1.3. Solving big data with data science tools: data visualization and

machine learning

I apply tools from the field of data science, a new discipline that mixes and combines

data visualization, statistics, machine learning, and other data-related domains, to

tackle the challenges of understanding big data. Unlike traditional approaches that

concentrate on understanding one of these disciplines, data science requires famil-

iarity and usage of these tools in an integrative manner. In addition, data science

intimately combines the quantitative tools with the studied domain. For example,

my knowledge of organic chemistry improved the effectiveness of data science tools

when applied to a chemical dataset in chapter 2. As a result, a data scientist should

be able to match domain-specific hypotheses to the specific computational tool yield-

ing specific insights for subsequent experimental validation.

Of these tools, newer visualization implementations enable both flexible and pow-

erful methods to construct unique visualizations that effectively represent larger data

sets better than older implementations. These newer implementations include both

R and python open-sourced languages as well as the visual-focused tableau and

D3 frameworks. Where visual tools offer a qualitative view into big data, machine

learning tools provide a quantitative method to understand specific relationships.

Machine learning blends older statistical tools with modern optimization techniques

and have undergone revolutionary innovations in terms of flexibility, accessibility,

and power. The hallmark of machine learning is that the computer learns (optimizes

itself) to better perform a task. Due to this flexibility, these tasks are broad and
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include predictive modeling, classification, data clustering, natural-language process-

ing, decision-making systems, and more. This combination of flexibility and power

allows researchers to train a model to perform unique tasks and further understand-

ing in emerging big data experiments.

1.3.1. Refined data visualizations convey more compelling messages

I believe that data visualization, when done properly, is a good starting point for

understanding big data. Larger datasets contain far too many numbers to intuit with

a table, and identifying the correct visualization is non-trivial. For example, slight

improvements in formatting lead to dramatic improvements in visual effectiveness.

Changing the arrangement of a published SAMDI dataset visualization enables eas-

ier identification of trends that correlate with the variable of interest. This dataset

explores the relationship between peptide sequence and deacetylation activity.8 Pep-

tides are composed of a sequence of amino acids, represented as letters. Here, each

peptide has a unique pair of 19 amino acids in two variable positions (X or Z) and

are exposed to cellular lysate to measure deacetylation activity. Deacetylase is an

enzyme that leads to a chemical reaction called deacetyation and is important in

various biological process, such as stem cell differentiation.12 When arranged in a 2-

dimensional heatmap (Fig. 1.1 left), color represents the degree of deacetylation and

each row/column is an amino acid. However, this implementation does not easily

convey the effect that each amino acid has upon deacetylation. Which X-position

amino acid is associated with the highest deacetylation, or the second highest? Are
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there outlier peptides? In addition, the SAMDI experiment includes replicates, but

the heatmap representation collapses the replicates into a mean value. As a result,

it is unclear if any peptide has consistently high deacetylation activity or not. This

representation does not easily untangle the needle in the proverbial haystack.

In contrast, the right bubble chart conveys a more clear message about the data.

This representation sorts the rows/columns by mean deacetylation and scales the

bubble size by the variance across replicates. The sorted amino acids convey an

ordering of how amino acids relate to deacetylation activity and informs how to

design future experiments around peptide sequences. In addition, the bubble size

enables the user to intelligently judge whether or not to trust specific measurements;

selecting a peptide for high deacetylation is worthless if the measurement is called

into question based on noise. This formatting also displays the few peptides that buck

the trend and generates hypotheses for future experimental testing. This example

demonstrates that refined designs lead to integrated visuals that deliver more effective

messages. Well-constructed visual representations leads to a better view when finding

that needle in the haystack.

1.3.2. Interactive data visualization promotes rapid testing of effective

visual strategies

Older visualizations are often static, resulting in visuals in the form of pdfs or passive

figures. These simpler visual tools tend to explore few dimensions, which results in
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Figure 1.1. Effective visual implementation improves understanding of
complex datasets Both left and right figures display the same dataset. This data
examines deacetylation activity of 361 peptides with variable X- and Z- positions.
Color and bubble size represent activity and signal quality, respectively. The right
visual sorts the amino acids by mean activity, giving a clear ordering and effect
on activity. The right visual also integrates signal quality, informing the audience
of which peptides to focus upon, without compromising the clarity of deacetylation
activity. As a result, the right design delivers more relevant information and is
representative of careful design to understand big datasets.
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a naive perspective of a large-dimensional dataset. When a dataset contains hun-

dreds of variables, there are many thousands of combinations of 2- or 3- dimensions

and selecting the correct dimensions for basic visualization seems an impossible task.

Newer visualization tools, such as shiny or D3, are designed with user-interactivity

in mind, fostering more flexible visuals to adapt for the particular task. For ex-

ample, the right visual in Figure 1.1 contains a different message when the rows

or columns are sorted differently. However, the most effective sorting method is

not obvious. This process is not easily automated because visual effectiveness de-

pends on our human visual processing, which is not easily expressed in a computer.

Fortunately, exploring a different ordering is realizable with a small programmatic

change, as evident with a simple toggle switch in a user-interface (UI) found at

github.com/bagherilab/bubble_chart_app. By adding a simple toggle or other flex-

ible control devices, interactive visualization methods lead to figures that are better

tailored for understanding.

Interactive visual tools allow manual tuning when no good automatic optimiza-

tion method exists, such as in the dimensional stacking visual13 in Figure 1.2. Here,

the different explanatory variables are “stacked” upon one another in columns/rows

and the bubble color represents the response variable (for a detailed explanation, go

to Chapter 3). The variable stacking order has a large effect on visual clarity and

message. When comparing Figure 1.2 to Figure 1.3, the poorly-ordered first visual

is incongruous and almost random. There is a regular pattern in the bubbles but

the relationship between explanatory variables and response is not well illustrated.
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In contrast, the bottom visual has been fine-tuned and the strongest relationships

become obvious. This particular example contains 80,640 possible combinations of

variable ordering; displaying all orderings and visually selecting the most effective

one is impractical. Similarly, automatic optimization of variable ordering is non-

obvious, suggesting that human-directed tuning is required. By creating an interac-

tive UI (github.com/bagherilab/dimensional_stacking), the intuitive human visual

processing abilities are leveraged to explore and optimize the possible orderings in

a rapid testing manner. Interactive visual tools lower the barrier for exploring and

determining approaches to visualize big datasets.

1.3.3. Supervised machine learning tools perform a variety of tasks and

enable flexible hypothesis testing

Visualization tools by themselves cannot unlock the information with big data. Much

of the following work relies on supervised machine learning tools to understand var-

ious biological datasets. This reliance is due to supervised learning’s core ability to

convert the explanatory variables, X, into a response vector, Y , using a learning func-

tions (also called a model), f , and is represented as a general equation, f(X) = Y .

X is a matrix and contains rows and columns of data that represent samples and

variables (also called features), respectively. Y is typically a vector of the predicted

variable (also called the response). f is the learning equation and is adaptable to dif-

ferent instances of X and Y because of internal optimization methods that attempt

to better convert X into Y . To gauge how well a supervised learning model has fit
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Figure 1.2. A non-optimized visual does not readily display relationships
within data This dimensional stacking visual shows the relationship between eight
nanoparticle design properties (shown in rows/columns) and the response, immune
activation, shown in bubble size/color. The variables are randomly ordered in the
row/column levels and in contrast with Figure 1.3, the importance of variables and
their effect on immune activation is unclear.



23

1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4x 1x 2x 4xOligo. Density
3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5Oligo. Free Term.

PS PO PS PO PS PO PS POOligo. Backbone
1 10 100 1000[Oligonucleotide] (nM)

80
50

80
50

80
50

80
50

80
50

80
50

80
50

80
50

80
50

80
50

80
50

80
50

Core
 D

ia.
 (n

m)

C
/E

C
C

/E
C

C
/E

C
C

/E
C

C
/E

C
C

/E
C

Lip
id 

Com
p.

0x
1x

10
x

0x
1x

10
x

Pep
tid

e D
en

sit
y

C
ho

l
D

O
PE

Olig
o. 

Att. 
Che

m.

0 1225

Immune activation

Figure 1.3. A visual optimized with interactive visual tools clearly con-
veys important relationships within a dataset In contrast with Figure 1.3,
this visual has been optimized by experts in this nanoparticle design space. This
interactive process results in a clean visual that displays the important/unimportant
relationships. For example, the variable [Oligonucleotide] has the strongest effect on
immune activation and has been placed at the top level of the columns, resulting in
the general trend of immune activation increase from left to right.
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to the data, cross-validation is used where a training data subset is used to train

(optimize) the model, and a separate test dataset (randomly selected rows) is left

out for model testing.14 Performance is measured from how well the model predicts

the response within the test dataset.

Often, predicting Y is the central goal of supervised learning, but I apply su-

pervised models to extract deeper meaning and understanding within a dataset.

Modifications in f , X, or Y , allow for flexible hypothesis testing to reveal unseen re-

lationships. Put broadly, if a modification leads to increases/decreases in predictive

performance, then the modification is relevant to understanding the data. Changing

the learning function is a good starting point; they come in many different flavors,

ranging from linear to highly non-linear methods, and their performance belies the

underlying relationship between the X and Y . For example, if a non-linear model

outperforms a linear model when predicting Y , then I can conclude that there ex-

ist non-linear relationships between variables within X and with Y . Other than f ,

modifying X also lead to changes in predictive performance. By selecting different

columns of X, in a process called feature selection, model performance can be in-

creased/decreased15, suggesting that some features are more predictive or relevant

than others. For example, removing an irrelevant feature is expected to improve

model performance because the model is not led astray. Similarly, adding in redun-

dant features is not expected to improve performance. This style of hypothesis testing

is highly flexible because all combinations of features are potentially explorable, and

there are not necessarily assumptions about the features that is present in statistical
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testing (normality, independent distribution, etc.). As a result, this analysis focuses

attention towards the most relevant features for deeper investigations.

Modifying X is not limited to the columns/features, but includes modifying the

number of rows or samples. Because biological experiments are usually costly and

resource-intensive, future experiments benefit greatly if a smaller experiment yields

the same amount of information. In other words, if a supervised learning model

accurately predicts Y from a few samples, then future experiments need only syn-

thesize those few samples to train a model to predict the remaining unsynthesized

samples. Depending on how few samples are needed, this analysis expands the capa-

bilities of a typical high-throughput experiment several times over, which improves

and accelerates future discoveries.

1.4. Organization of dissertation

In this work, I apply modern data science tools to three domains. In Chapter 2,

I investigate how to improve peptide array experiments by exploring how peptide

sequence affects signal-to-noise ratio in mass spectrometry. This research focuses on

an under-explored aspect of many peptide experiments involving mass-spectrometry:

how does the peptide sequence or composition affect the quality of its signal in a

mass spectrometer? I uncover results demonstrating a strong relationship between

sequence and signal quality and show that supervised learning models lead to predic-

tive models for improving signal quality. The second project in Chapter 3 involves

discovering optimal designs of immune-activating nanoparticle with implications in
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cancer therapeutics. This work examines the relationship between nanoparticle de-

sign properties and immune activation to inform future experiments. In addition, the

supervised learning models demonstrate that relatively few synthesized nanoparticles

are able to predict immune activity of a larger set of nanoparticles, which greatly

expands experimental capabilities. The final research project in Chapter 4 focuses on

detecting interesting RNA folding events in SHAPE-Seq data and integrates interac-

tive visual UIs with a custom-made event detector. Here, there are few data points,

prohibiting application of supervised learning models and forcing me to carefully en-

gineer an event detector from simple assumptions. The final event detector enables

a systematic and quantitative method to detect events that is less prone to error

in human judgment. In the concluding remarks of Chapter 5, I address a common

concern of supervised learning models: their (lack of) interpretability. I specifically

highlight how the machine learning and medical communities are isolated, leading

to model interpretation techniques that perform well in one community, but not the

other. I state that future supervised model development and implementation should

become increasingly integrated with the end application, especially when it includes

model interpretation.
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CHAPTER 2

Machine learning on signal to noise ratios improves peptide

array design in SAMDI mass spectrometry

This work was published with Lindsey M. Szymczak and Professor Milan Mrksich in

ACS Analytical Chemistry in 2017.

2.1. Abstract

Emerging peptide array technologies are able to profile molecular activities within

cell lysates. However, the structural diversity of peptides leads to inherent differences

in peptide signal to noise ratios (S/N). These complex effects can lead to potentially

unrepresentative signal intensities and can bias subsequent analyses. Within mass

spectrometry-based peptide technologies, the relation between a peptide’s amino acid

sequence and S/N remains largely non-quantitative. To address this challenge, we

quantify and analyze mass spectrometry S/N of two peptide arrays, and we use this

analysis to portray quality of data and to design future arrays for SAMDI mass

spectrometry. Our study demonstrates that S/N varies significantly across peptides

within peptide arrays, and variation in S/N is attributable to differences of single

amino acids. We apply supervised machine learning to predict peptide S/N based

on amino acid sequence, and identify specific physical properties of the amino acids

that govern variation of this metric. This study illustrates how machine learning can
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accurately predict the S/N of a peptide given its sequence, allowing for the efficient

design of arrays through selection of high S/N peptides.

2.2. Introduction

Peptide arrays have emerged as an enabling tool for identifying biologically relevant

peptide substrates and molecular recognition sites, and hold great promise as a new

analytical method for basic and translational research in the biomedical sciences16 17.

Uses of peptide arrays include measuring changes in enzymatic activity specifically

enzymes that add or remove post-translational modifications to gain insight into dif-

ferent cellular pathways and processes18 19 20. Other applications include diagnostic or

detection-focused arrays such as differential peptide arrays to detect specific analytes

in complex mixtures21 22, or diagnose diseases23 24. Many existing methods are based

on either radioisotopic or fluorescent labels to detect reaction products25 26. These

methods introduce additional protocol steps, and for the latter, can alter natural bi-

ological activity leading to false interpretations, as when resveratrol was erroneously

found to enhance deacetylation on a peptide with an attached fluorophore27.

We recently introduced the SAMDI mass spectrometry method, which uses MALDI

mass spectrometry to analyze peptides that are immobilized to a self-assembled

monolayer of alkanethiolates on gold (Fig. 2.1), and we have demonstrated the use

of this method for profiling enzyme specificities28, for discovering new enzymes29,

and for profiling activities in a lysate8. This method provides many benefits, in-

cluding the use of surface chemistries that are intrinsically inert to the non-specific
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adsorption of protein, the availability of a broad range of chemistries for immobi-

lization of peptides, and, most significantly, the compatibility with matrix assisted

laser desorption ionization mass spectrometry to analyze the masses of the peptide-

alkanethiolate conjugates. This ability to directly measure peptide masses30 allows

a straightforward analysis of peptide modifications by identifying the corresponding

mass shifts. This method has also been demonstrated to provide a semi-quantitative

measure of the peptides’ substrate activity8. However, the S/N of a mass peak for a

peptide often depends on its amino acid sequence, resulting in both well-suited and

poorly-suited peptides for inclusion in an array.

In practice, the signal to noise ratio (S/N) of a peptide in mass spectrometry can

vary, making certain sequences poorly compatible with the detection method31 32.

Hence, some fraction of peptides serves no useful purpose in an experiment. To

identify peptide array designs that maximize S/N, we predicted S/N from amino

acid sequences measured by SAMDI mass spectrometry. We identified amino acids

associated with high S/N peptides in two peptide arrays and used machine learning

to highlight properties that predict the relationship between amino acids and S/N.

While SAMDI-specific results are not generalizable, the method we describe can be

adapted and applied to diverse peptide array technologies.

Previous work has explored S/N relationships involving peptide charge (as with

arginine residues)33 34, or hydrophilicity, where hydrophilic proteins can be prefer-

entially detected in MALDI-MS due to easier co-crystallization with MALDI ma-

trix35 36. In addition to hydrophilicity, many specific and complex peptide-matrix
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assembled monolayer of alkanethiolates on gold. Depending on the enzyme of study,
the peptides may contain a chemical adduct, such as an acetyl group if deacetylases
are the enzymes of interest. The expected peak before enzyme treatment includes
the peptide immobilized to the alkanethiolate with the attached chemical adduct of
interest. We quantify the expected mass peak and noise using their area under the
curve to calculate peptide S/N.
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interactions can explain MALDI peptide S/N34 37 38. Single amino acids have been

reported to improve signal strength. For example, Krause and co-workers reported

that peptides containing arginine or phenylalanine typically contributed to higher

MALDI signal strength39. Additionally, the relationship between S/N and amino

acid sequence gains complexity with the addition of chemical adducts. For exam-

ple, Kolarich and coworkers reported peptides with attached N-glycans have altered

signal strengths depending on MS instrument types or subtle changes to peptides

from glycosylation40. Many studies use peptides that may have undergone oxida-

tion39 41 42 43 which likely also affects peptide signal strength. These peptide modifi-

cations introduce difficulties in signal detection and emphasize the need to integrate

computational strategies to better understand the relationship between the amino

acid sequence of a peptide and the quality of its signal. We select peptide libraries

that are unbiased in their composition to evaluate differences in S/N due to differing

amino acid sequences, and we offer a complete empirical analysis relating amino acid

composition and S/N of the peptides.

Using statistical and machine learning strategies, we investigated how amino acid

composition affects S/N in SAMDI mass spectrometry and how subtle amino acid

differences can give rise to different S/N. We focus on two peptide arrays, each

containing two consecutive variable positions (represented by all 19 amino acids ex-

cept for cysteine). The amino acids surrounding the variable positions however are

different. The two peptide arrays are Ac-GRKacXZC (K-array) and Ac-GXZHGC
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(H-array). We collected peptide spectra by SAMDI mass spectrometry and calcu-

lated the S/N of each peptide. Statistical analysis identified amino acids associated

with low or high S/N peptides. We trained machine learning models to identify

factors that predict S/N from the physical properties of the peptide’s amino acids.

We then predicted the S/N of peptides and experimentally screened for high S/N

peptides in SAMDI high-throughput data. Accurate prediction of peptide S/N from

machine learning models allows for the selection of peptides that are better suited

for inclusion in the array without costly screening.

2.3. Methods

2.3.1. Solid phase peptide synthesis.

Data was collected from K- and H-peptide array experiments. The K-peptide array

synthesis and methods have been previously published8 and contains peptides of the

form Ac-GRKacXZC, where X and Z represent all combinations of 19 amino acids

(cysteine omitted) for a total of 361 peptides. We synthesized another 361 membered

unmodified histidine peptide array with the sequence Ac-GXZHGC, referred to as

the H-array. The constant amino acids (everything except X or Z) are referred to

as the outside amino acids. Peptides were synthesized using standard solid phase

peptide synthesis on Fmoc-Rink Amide MBHA resin purchased from Anaspec. Fmoc-

protected amino acids were purchased from either Anaspec or Sigma-Aldrich. The

Fmoc-Rink Amide resin was swelled in dimethylformamide (DMF) for 30 min and

treated with 20% piperidine in DMF for 20 minutes to remove the Fmoc protecting
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group. The first Fmoc-protected amino acid was coupled to the resin with pybop

and N-methylmorpholine at a 4:4:8 ratio, which was repeated until all the amino

acids were coupled to the resin. Once the Fmoc protecting group was removed from

the final amino acid, the resin was treated with 10% acetic anhydride in DMF for 30

minutes to acetylate the N-terminus. The peptide was cleaved from the resin with a

solution of 95% tri-floroacetic acid (TFA), 2.5% triethylsilane, and 2.5% milli-q water

for 2 hours. To remove the resin, the solution was filtered and precipitated with

peptides with ethyl ether. The peptides were re-suspended in 0.1% TFA, lyophilized

and re-suspended in 0.1% TFA again. The peptides are neutralized by dilution into

50 mM Tris buffer pH 7.5 before im-mobilization.

2.3.2. Preparing peptide arrays.

Peptide arrays were prepared as described previously.28 30 Briefly, steel plates were

evaporated with 384 gold spots. The plates were soaked in an alkanethiolate solution

that self-assembles onto the gold surfaces. The alkanethiolate monolayers presented

a functional maleimide group against a background of tri(ethylene glycol). Peptides

were transferred onto the gold spots using Tecan robotics and incubated at room

temperature for 1 hour for immobilization. Peptide immobilization occurs through

conjugate addition of the thiol on the terminal cysteine residue to the maleimide.
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2.3.3. SAMDI Mass Spectrometry.

The SAMDI peptide array plates were coated with a 10 mg/mL 2’,4’,6’- Trihydroxy-

acetophenone MALDI matrix in acetonitrile. Each immobilized peptide was analyzed

in the reflector positive mode with 900 shots on an AB Sciex TOF/TOF 5800 MALDI

mass spectrometer.

2.3.4. Statistical testing to identify amino acids associated with high or

low S/N.

The S/N of all peptides were calculated by dividing the integrated product (area

under the curve) of the expected peptide peaks (the signal) by the integrated product

of a region in the spectrum devoid of peaks (the noise). The S/N for each peptide

were sorted and ranked from lowest to highest. The S/N increase for consecutive

peptides was calculated, and the low region boundary was defined as when a large

change in S/N increase occurs. Similarly, a high S/N region was identified with the

same process. This method allows different sizes for low and high regions. Amino

acid enrichment in either region was determined using the Fischer exact test, which

calculates the probability to observe at least as many amino acids in the region. Since

there were 19 amino acids, the significance threshold was determined by a Bonferroni

corrected p-value cutoff of 10-4; all reported p-values define the likelihood that the

observed number of amino acids is within the low or high regions by random chance.
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2.4. Results and Discussion

2.4.1. Experimental design.

We calculated peptide S/N using SAMDI mass spectrometry in two peptide arrays:

Ac-GRKacXZC (K-array) and Ac-GXZHGC (H-array) where X and Z represent all

combinations of 19 amino acids (cysteine omitted) for a total of 384 peptides in

each array. To investigate the relationships between specific amino acids and S/N,

we conducted statistical tests and machine learning. We applied the corresponding

results to a published peptide array data set to reveal how S/N information can

inform and serve as a guide for experimental design and analysis. In doing so, we

discovered specific amino acid interactions that can explain observed S/N-amino

acid relations. Through subsequent machine learning analysis, we identified physical

properties and amino acid positions that predict the peptide’s observed S/N. Finally,

we used our machine learning model to predict the S/N of an unknown array and a

partially synthesized array.

2.4.2. Preparation of peptide arrays.

We used solid-phase peptide synthesis to synthesize two peptide libraries containing

terminal-cysteine residues, Ac-GRKacXZC (K-array) and Ac-GXZHGC (H-array),

where X and Z represent all amino acids except cysteine for a total of 361 peptides

in each array. Steel plates with 384 gold spots were soaked in a solution of disulfides

as described earlier.24 The monolayers self-assembled onto the gold surfaces and
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presented a functional maleimide group allowing for the immobilization of thiol-

containing molecules. We treated each monolayer surface with a unique peptide,

which was immobilized to the surface through the side-chain thiol of the terminal

cysteine residues. Eleven identical arrays were printed for the experiments that

follow.

2.4.3. S/N is attributable to single amino acids in the K-array.

Comprehensive analysis of the K-array revealed general trends of single amino acids

in a peptide on the observed S/N for that peptide. We collected spectra for each

immobilized peptide on an AB Sciex 5800 MALDI mass spectrometer using reflector

positive mode. Noise was quantified as the area under the curve (AUC) of the mass

spectrum in a region devoid of signals, and the peptide signal was quantified as

AUC of the expected peptide-terminated alkanethiol mass minus the noise AUC.

Finally, we calculated S/N as the peptide’s signal AUC divided by the noise AUC

and calculated the mean for each peptide over the eleven plates in each array.

We used the Fischer exact test (Bonferroni corrected p<10-4) to determine whether

peptides with low or high S/N were enriched with specific amino acids. The corre-

sponding p-values reflect the probability that the observed number of amino acids is

within either the low or high S/N regions by random chance (gray regions in Figure

2.2A). All p-values are reported in Supplementary Figs. A.1 and A.2. We found

enrichment of peptides with X-position tryptophan and leucine in the low S/N re-

gion and enrichment of peptides with Z-position glycine in the high S/N region
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(Fig. 2.2B). This result suggests that single amino acids can have a strong effect on

a peptide’s detectability in MALDI-MS. The exceptionally low S/N of tryptophan

and leucine-containing peptides suggest that their S/N-lowering effect is particularly

strong, further suggesting that future K-arrays can disregard tryptophan and leucine

while favoring glycine.

Peptides in the K-array display a wide range of S/N-from 3.8 to 313.7 (S/N

is unitless)-demonstrating a wide range of poorly-detectable to detectable peptides

(Fig. 2.2A). Combined with the statistical tests, this result suggests that poorly-

detectable peptides can be predicted by their sequence. This observation may ex-

plain differences in MS-detectable peptide fragments after protein digestion.44 45 In

MS-based proteomics experiments, proteins are commonly digested and the frag-

ments are detected using mass spectrometry. It is rare for complete detection of

all peptide sequences digestion46 47, and incorporation of known poorly-detectable

peptide information could increase confidence of protein observation. As we demon-

strate, characterization of a MALDI-MS experimental pipeline with known peptide

sequences can inform subsequent protein quantification experiments.

2.4.4. A machine learning model predicts SAMDI-MS S/N as a function

of amino acid sequence.

We developed a machine learning model to predict the S/N of peptide-terminated

alkanethiolates in the SAMDI spectrum based on amino acid sequence with high
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Figure 2.2. Low Peptide S/N is observed in peptides containing trypto-
phan & leucine, and aspartic acid & glutamic acid, in K- and H-arrays,
respectively. Peptide S/N was averaged over 11 control plates. (A) Peptides in
the K-array were sorted according to S/N. Low/high S/N regions are identified (See
Methods). S/N ranges from 3.8 to 313.7, demonstrating that peptides vary greatly
in S/N. (B) Amino acids found in the low/high regions were found to be statistically
significant (Bonferroni corrected p<10-4) using a Fischer exact test. The reported
p-value is the chance the observed number of amino acids is within the low or high
region by random chance. Peptides with X-position tryptophan and leucine have
statistically low S/N, and peptides with Z-position glycine have statistically high
S/N. Peptides that have X-position alanine are not statistically significant and are
representative of other amino acids. (C) and (D) describe the same methods for the
H-array. S/N has a similarly large range for both arrays, but the differences in amino
acids observations suggest that dissimilar mechanisms are responsible for S/N.
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accuracy suggesting that amino acid composition drives S/N observations in a pre-

dictive manner. We trained a random forest48 machine learning model to predict

S/N based on the hydrophilic, steric, and electronic physical properties of amino

acids.49 The training data contained 361 peptides (rows) and 39 associated physical

properties for each of the X- or Z-position amino acids (resulting in 78 columns).

The response vector, or predicted variable, defines the mean S/N from the 11 control

plates. We used cross-validation, where a data sample (randomly selected rows) is

left out for model testing, to calculate the predictive power Q2 statistic14:

(2.1) Q2 = 1−
∑n

i (yi − ŷi)
2∑n

i (yi − ȳtrain)2

In this formulation, yi is the true S/N for the left-out test peptide i, ŷi is the

predicted S/N of the test peptide, ȳtrain is the sample mean of S/N in the training

set, and n is the number of cross-validated test peptides. The Q2 statistic can take

on values from −∞ to 1, where 1 represents perfect prediction and 0 is equivalent to

random performance. We create an explicit null model for each case by randomizing

the data values prior to model training; the average Q2 value of the null case was

about 0.

The K-array analysis resulted in a Q2 of 0.59 using both X- and Z-positions and

all 39 amino acid physical properties. The high Q2 value confirms our hypothesis

that S/N values can be reliably predicted from amino acid sequences. This perfor-

mance further suggests that S/N of new amino acids, such as non-natural amino
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acids, can be predicted using their known physical properties. Together these results

strongly indicate that amino acid sequence influences S/N in MALDI-MS. However,

the inability to acquire a Q2 value closer to 1 suggests that hidden variables-such

as chemical interactions with amino acids outside the X- and Z-positions-play an

important role in the overall response. These interactions are challenging to take

into account, as they cannot be characterized with physical properties alone.

2.4.5. A bubble chart illustrates the S/N as an experimental design pa-

rameter.

As a measure of data quality, the S/N becomes another experimental design pa-

rameter. When studying enzyme activity on SAMDI peptide arrays, we measure

the extent of peptide conversion with the enzyme.8 Enzyme-treated peptides can be

sorted into four categories: (i) high enzyme activity and high S/N, (ii) high enzyme

activity and low S/N, (iii) low enzyme activity and high S/N, and (iv) low enzyme

activity and low S/N. In the past, the SAMDI peptide array data was compiled

into heat-maps that portrayed only enzymatic activity. We wanted to incorporate

a metric into SAMDI array data output to differentiate between peptides that offer

reliable and valuable information (category i) from those of lesser importance.

To this end, we include S/N information to complement a previously published

experiment.8 We construct a bubble chart where each peptide is represented by a

circle, whose color represents the extent of peptide conversion to the product, and
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whose size represents normalized S/N of the peptide before enzyme treatment. Pre-

vious approaches that use a color-only heatmap give the impression that each data

point is equally valid in an analysis of the array data. However, some of the pep-

tides contribute information that is more reliable because they have smaller errors.

Observed enzyme activity on a peptide does not always correlate to significance. By

incorporating S/N in bubble size, we rule out low performance signals and focus the

analysis on high S/N ones. We illustrate this approach by replotting the heatmaps

from Kuo et al.8 to include S/N (Fig. 2.3).

In Kuo et al.8, the K-array was exposed to cell lysates, and endogenous deacety-

lase activity was quantified by measuring the fraction of deacetylated peptides with

MALDI mass spectrometry.8 Deacetylation activity was quantified as the AUC of the

modified (deacetylated) peptide divided by the AUC of both modified and unmodi-

fied peptides. AUC of each peptide is the sum of the three background-subtracted

ion peaks in MALDI-MS: H+, Na+, and K+.

This new analysis revealed additional insights into the previous data. Peptides

containing amino acids tryptophan, leucine, arginine, methionine, and lysine reflect

low S/N, suggesting that their activity profiles are less useful. Conversely, peptides

containing proline, glutamic acid, and glycine reflect high S/N, suggesting that their

activity pro-files are more useful. Peptides containing leucine exhibit low S/N exclu-

sively in the X-position, demonstrating that certain amino acids can have positional

effects on S/N. Though amino acid presence can largely explain a peptide’s S/N,

we also find that some peptides have inexplicably low S/N—such as KAA, KIT,
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Figure 2.3. Heatmap of cell lysate deacetylation activity and S/N high-
lights trustworthy peptides. Bubble color is based on deacetylase activities from
Kuo et al.8 for lysate treated ac-GRKacXZKC peptide arrays. Bubble area repre-
sents peptide S/N before lysate treatment, normalized by max S/N. Amino acids are
sorted by their general trend in peptide S/N when in either X- or Z-position. Pep-
tides containing tryptophan (W), arginine (R), methionine (M), and lysine (K) have
consistently low S/N, regardless of position. This illustration emphasizes peptides
that are both active in terms of enzymatic activity and reliable in terms of S/N. In
contrast, the highest activity peptides (darkest in color) do not necessarily give the
highest S/N (largest bubble).
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and KIQ—despite general trends suggesting that these peptides should have high

S/N. This peculiarity highlights the complexities in S/N and reinforces the utility of

machine learning strategies to predict S/N, which can be a critical design factor for

future arrays.

Testing for S/N does not supplant tightly controlled and validated peptide ar-

ray experiments. Instead, we suggest that accounting for unknown influences that

lower confidence of a signal’s true value—such as peptide synthesis inefficiencies,

side reactions, peptide loss from washing, or ionization efficiencies—can better guide

experimental design and data analysis. These influences are especially complicated

with peptide species, where it is not clear how different amino acid sequences affect

S/N. Machine learning can easily account for such effects.

2.4.6. Low S/N peptides offer unrepresentative signals.

The experiments by Kuo et al. demonstrated that low S/N peptides have higher

variance across replicates. The same K-array measurements were carried out on two

time points and across three different cellular conditions. We compared the variance

in replicates of peptides in the top 20% of S/N to those in the bottom 20%. A one-

sided F-test verified that the top 20% peptides have lower replicate variance than

the lower 20% across all three conditions and across both time points (p<10-10 for all

cases). This finding suggests that peptides with low S/N have unrepresentative (or

possibly random) signals, and they should be weighted less during analysis to avoid

misleading conclusions. To investigate further, we calculated the standard deviation
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of deacetylase activity on each peptide and plotted it against S/N (Supplementary

Fig. A.3A); peptides with lower S/N have a higher variance in deacetylase activity.

This trend was consistent for all days and for all experimental conditions, with a high

anti-correlation coefficient (ranging from -0.814 to -0.975, Supplementary Fig. A.3B),

demonstrating that peptides with low S/N can give unrepresentative measurements.

2.4.7. S/N is attributable to single amino acids in the H-array.

We investigate the H-array, Ac-GXZHGC, to analyze the generalizability of our find-

ings; that is, do S/N characteristics of peptides from the K-array also apply to other

peptide arrays? Similar to the K-array, the H-array has a wide range of S/N values,

ranging from 5.5 to 255 (Fig. 2.2C and 2.2D), reinforcing the fact that peptides span

a wide range of non-detectable to detectable signals in MALDI. The statistically low

S/N peptides contain aspartic acid and/or glutamic acid, suggesting that their syn-

thesis may be unnecessary in future experiments. Peptides with phenylalanine have

statistically high S/N values suggesting that additional phenylalanine may improve

peptide signals in the H-array.

2.4.8. Context matters: S/N characteristics are inconsistent between the

K-array and H-array.

In addition to the variable composition of amino acids, the surrounding amino acids

(those not in the X- or Z-position) play a role. Within the same array, S/N appears

consistent between positions (Supplementary Fig. A.4), suggesting that S/N remains
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largely unchanged when amino acid substitutions are made in the X- or Z-positions.

However, peptides that had the lowest S/N in the K-array contained tryptophan,

arginine and methionine; those with the lowest S/N in the H array had aspartic acid

and glutamic acid. This disparity demonstrates that S/N characteristics in one array

can be contextual and are not always consistent with a different array (Fig. 2.4).

This observation suggests that the outside amino acids—arginine and lysine in the

K-array and histidine in the H-array—strongly influence SAMDI peptide detection.

In other words, the amino acid context around X- and Z-positions influences overall

peptide detection, and partial knowledge of amino acid sequence is insufficient in

understanding S/N values.

2.4.9. Physical interactions help inform S/N differences.

S/N differences can arise from a variety of sources, including synthesis inefficiencies,

side reactions, and poor MALDI-MS ionization. Peptides with both methionine

and tryptophan have low S/N in the K-array, and both have shown sensitivity to

oxidation41 42, sequestering the relevant peaks and lowering signal strength. However,

Lee and coworkers demonstrated greater oxidation of histidine than either methionine

or tryptophan50, and Stafford and coworkers reported similar findings in oxidation

of histidine in peptide arrays41. Their results are contrary to our lack of observed

histidine oxidation (or low S/N) in either array, which remains unexplained.

In contrast to the K-array where methionine and tryptophan associate with the

lowest S/N, glutamic acid and aspartic acid have the lowest S/N in the H-array



46

K-Array H-Array

1 0
S/N S/N

10

G
E
P
N
Q
T
S
D
V
H
A
I
Y
L
F
K
M
R
W

Figure 2.4. Amino acid influence is context dependent. Amino acids are sorted
by their correlated mean peptide S/N in the K-array when in either X- or Z-positions.
Bars represent S/N normalized by the highest value within each array. The H-
array shows little agreement, suggesting that the surrounding amino acids strongly
influence S/N. The two negatively charged amino acids, aspartic and glutamic acid,
have the largest difference between the two arrays, suggesting a relation between
charge and S/N, but only within the H-array.
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(Fig. 2.4). Lysine has strongly favorable hydrogen bonding energies51, and when

in close vicinity of methionine and tryptophan, hydrogen bonding could catalyze

oxidation.51 52 Tryptophan-containing peptides have statistically low S/N specifically

when in the X-position (Fig. 2.2), which is directly adjacent to the lysine and

further supports this hypothesis. If hydrogen bonding stabilization is required for

methionine or tryptophan oxidation, then the presence of carboxylic acid groups

on acidic amino acids may be unfavorable for oxidation. To explore this concept

further, we compared methionine or tryptophan containing K-array peptides with

either glutamic or aspartic acid to those without glutamic or aspartic acid. We

applied a Mann-Whitney U test and found that peptides with one of methionine or

tryptophan and one of glutamic or aspartic acid had higher S/N values (p=0.0050)

than peptides with methionine or tryptophan without either glutamic or aspartic

acid, maybe indicating that the two acidic amino acids protect against methionine

and tryptophan oxidation.

High S/N peptides in the K-array commonly contain hydrophilic amino acids

such as glutamic acid, asparagine, and glutamine, potentially due to more efficient

crystallization within the matrix. This finding is in agreement with a report by

Fenselau and coworkers, where hydrophilic proteins were preferentially detected in

MALDI-MS due to differences in the co-crystallization35. However, the H-array has

high S/N associated with hydrophobic amino acids: proline, tyrosine, phenylalanine,

and isoleucine. The divergence in S/N of hydrophobic and hydrophilic amino acids

suggests that mechanisms leading to high S/N are different between the two arrays.
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A two sided Mann-Whitney U test (Bonferroni corrected p<2.6x10-3) reveals

peptides that contain eight amino acids in the X- or Z-position that have statistically

different S/N values between the two arrays: glutamic acid, tryptophan, aspartic

acid, methionine, arginine, lysine, glycine, and phenylalanine. This test directly

compares differences between the two arrays rather than within the array, which has

resulted in more amino acids than the Fischer exact test in Figure 2.2. Only arginine

and phenylalanine differ from Figure 2.2, and both amino acids have lower S/N in the

K-array. This result contrasts with those of Krause and coworkers where peptides

with higher numbers of arginine or phenylalanine typically contributed to higher

MALDI signal strength39 (the K-array has an additional arginine). The unusual

observation may be due to an unknown interaction with other outside amino acids,

indicating that peptide S/N should be tested for each peptide array.

2.4.10. Machine learning performance across positions and physical prop-

erties help explain S/N observations.

We trained random forest models with individual physical properties to assess the

impact each property has on S/N. Highly predictive properties (namely those with

highest Q2) suggest that the associated physical property is highly relevant and

predictive of SAMDI-MS S/N. In addition, we independently evaluated the X- and Z-

positions to see if one position reflected more predictive power. Positional differences

suggest that the amino acid position, and not merely composition, influences the

predictive power of our machine learning model.
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Using both X- and Z-positions and all physical properties, the K-array and H-

array had a Q2 of 0.59 and 0.61, respectively (Fig. 2.5). The similar Q2 values

suggest that the models reached an upper limit to predictive performance from amino

acid sequence. Predictions based on the amino acids in both X- and Z- positions

consistently performed better than predictions based solely on one position: Q2=0.22

and 0.20 for the X- and Z-positions in the K-array, respectively, andQ2=0.16 and 0.28

in the X- and Z-positions of the H-array, respectively. As expected, more complete

amino acid information results in better prediction. However, the higherQ2 for the Z-

position in the H-array suggests that positions can have varied influence on S/N. This

observation suggests that the Z-position interacts with the histidine to change S/N

detection in MALDI-MS more strongly than the X-position. In addition, the highest

single property Q2 values—0.57 and 0.54 in the K- and H-array, respectively—are

close to the Q2 value of all properties. This observation indicates that few properties

are necessary to predict S/N and that many physical properties are redundant or

uninformative.

In terms of physical properties (39 total), we do find both consistent and in-

consistent trends for the two arrays. Electronic properties (15 total) tend to be

less predictive for both arrays than steric or hydrophilic properties (Supplementary

Fig. A.5). Steric properties (16 total) and hydrophilic properties (8 total) are espe-

cially highly predictive in the K- and H-arrays, respectively. Hydrophilic properties

are highly predictive in the H-array potentially due to the hydrophilicity of glutamic
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Figure 2.5. Peptide S/N is predicted as a function of amino acid properties.
Peptide S/N was predicted using a random forest machine learning model based on
39 amino acid physical properties, shown in diamonds, of the amino acid in either
the X-position (red), Z-position (blue), or both (purple). Also, models were fit on
individual properties to identify their predictive power, shown in circles. Random
forest models contained 1000 trees and the predictive power, quantified by the Q2

metric, was calculated based on 5-fold cross-validation. All Q2 values are listed in
Supplementary Tables 1 and 2. Consistent for both peptide ar-rays, the highest Q2

values were attained when using both positions with all physical properties (purple
diamond). Z-position Q2 values (blue) are higher in the H-array, which suggests
that positions have varied predictive power on S/N. In addition, most properties
lie near the diagonal indicating that they have similar predictive power between
peptide arrays; the amino acid disagreement in Figure 2.4, however, suggests that
those properties are predictive for different reasons.
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and aspartic acid and their association with low S/N exclusively in the H-array. Sim-

ilarly, hydrophobic amino acids like proline, tyrosine, phenylalanine, and isoleucine

tend to have high S/N. This alignment explains why hydrophilic properties are pre-

dictive in the H-array. However, it is unclear why electronic properties are relatively

less predictive while steric properties are more predictive in the K-array.

Despite these differences, physical properties are similarly predictive between

the K-array and H-array (Fig. 2.5), as evident in their closeness to the diagonal.

That is, a predictive or non-predictive property remains largely the same between

arrays, but there still exist small differences between the performance of steric and

hydrophilic properties between arrays. This relation demonstrates that the same

properties govern S/N observations, but because single amino acids differ in S/N

characteristics (Fig. 2.4), these results altogether suggest that S/N values manifest

from different mechanisms between the arrays. These different mechanisms are likely

a direct result of context differences, specifically relating to the outside amino acids.

Machine learning cannot predict S/N on completely unknown peptide arrays. We

trained various machine learning models on the K-peptide array and tested them on

the H-array, and vice versa, to assess the feasibility of predicting S/N on a de novo

peptide array. We trained models for every positional combination to interrogate

exhaustively the entire space. For example, we trained a model on X-position data

in the K-array, then tested on the Z-position in the H-array, and we continued with all

combinations of positions. We also trained several types of models based on random

forest48, deep learning53, nearest neighbor regression54, and partial least squares
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regression.55 The models had the following model-specific parameters: random forest

had 1000 trees, deep learning consisted of two layers of 200 nodes with feed-forward

connections; nearest neighbors regression used 10 neighbors; and partial least squares

regression used one component, or loading vector.

All models trained on the K-array failed to predict S/N in the H-array, and vice

versa (Q2<0.1). This failure is attributable to S/N disagreement between peptide

arrays for each amino acid (Fig. 2.4), which arises from the unique outside amino

acids in the two arrays (GRKacXZC and GXZHGC). This finding reinforces the idea

that context matters: interactions with outside amino acids influences S/N.

2.4.11. Only 1/3 of peptides in an array are required for machine learning

model prediction of peptide S/N.

We investigated the minimum number of peptides in an array needed to train a

model that could accurately predict S/N of the full array. We simulated a par-

tially synthesized array by randomly selecting training peptides to predict S/N of

the non-selected peptides. The number of training peptides ranged from 5 to 350,

and each training size contained 200 repetitions of selecting random peptides. We

trained a random forest model with all 39 physical properties in both amino acid

positions. We identified the point of diminishing returns, which balances minimum

training size with maximum predictive power, by normalizing the number of training

peptides and finding the sample size closest to training size 1 and Q2=1. The point
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of diminishing returns was found to be 87 and 111 peptides for the K-array and H-

array, respectively, both of which had a Q2=0.48 (shown with arrows in Figure 2.6).

This result shows that we can partially screen future peptide arrays by synthesizing

about 100 of the planned 361-sized array, or roughly one-third, reducing the use of

resources and time. Though we cannot generalize this specific ratio to larger array

sizes, these results suggest that only a fraction requires synthesis. This machine

learning technique can prevent costly experimental screens and allow researchers to

focus on predicted a priori high S/N peptides. The null model with randomized data

performed consistently around Q2=0.

There are significant variations in the intensities of peaks in SAMDI mass spec-

trometry that can arise from different peptide sequences. SAMDI analysis of peptide

arrays demonstrates that peptide signals can have a wide range of S/N, where many

of the peptides are nearly undetectable. We find that S/N is attributable to single

amino acids, offering design choices to increase information content. However, the

underlying basis of S/N is unclear and may be due to complex interactions among

amino acids, matrix, crystallization, or ionization efficiencies. Additionally, we find

that the two arrays used in this work exhibited different S/N values for different

amino acids, demonstrating that the whole amino acid sequence can affect S/N val-

ues in MALDI-MS. Machine learning identified physical properties that predict S/N

with high accuracy. Machine learning models can be trained on a fraction of the

peptide sequences and still describe the full set of sequences, allowing early selec-

tion of high S/N peptides. Such computational models allow peptide experiments
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Figure 2.6. Peptide array S/N can be predicted from a minimal peptide
subsample. A specified number of peptides were randomly selected for training to
predict S/N of the remaining peptides using all physical properties of both X- and
Z-position amino acids. Due to computational constraints, random forest was used
with 100 trees for training set sizes from 5 to 350. The mean Q2 and 80% confidence
intervals are shown for 200 random training sets. For both peptide arrays, predictive
power increases with training size and levels out around 100 peptides. The optimal
tradeoff was identified by normalizing the number of training peptides and finding
the sample size closest to training size 1 and Q2=1. The tradeoff is shown with
arrows: 87 training peptides for K-array and 111 for H-array, which demonstrates
that machine learning can predict S/N for future peptide arrays, avoiding costly
experiments that screen for high S/N peptides. A randomized dataset performed
consistently around Q2=0.
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with high S/N arrays without costly screens or ineffective peptide library syntheses.

Additionally, accounting for S/N as a design choice can prevent inaccurate results

drawn from poor peptide measurements.

This work significantly improves and simplifies high-throughput data analysis by

factoring in data quality. The statistical and machine learning methods presented

here allow us to discover the most valuable information from peptide arrays and

plan future experiments with more confidence. As demonstrated, these methods

can inform the design of new peptide arrays using a small set of peptides. The

presented methodology and applications of S/N are adapted to maximize the in-

formation learned from peptide array experiments and can improve peptide design

across a wide range of technologies.
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CHAPTER 3

Addressing Nanomedicine Complexity with Novel

High-Throughput Screening and Machine Learning

This work is in collaboration with Gokay Yamankurt, Eric Berns, Milan Mrksich,

and Chad Mrkin and is currently under review.

3.1. Abstract

A tiny fraction of the nanomedicine design space has been explored, largely due

to the complexities of such structures and the lack of high-throughput methods to

make and analyze them. To address this challenge, we studied spherical nucleic

acids (SNAs) as a first example because they have at least 11 unique parameters

that can be systematically and independently varied to optimize performance in the

context of immune cell activation. We defined reasonable ranges of these parameters

and identified approximately 1000 therapeutic candidate structures that are qual-

itatively similar but could have significant differences in activity, thereby creating

both a synthesis and an analysis challenge. To address this challenge, we developed

a high-throughput method for making such structures at the picomole scale in a

384-well format and utilized a self-assembled monolayers for matrix-assisted laser

desorption ionization (SAMDI) mass spectrometry assay to rapidly measure innate
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immune system activation by quantitatively determining NF-κB activity. Tradition-

ally, cell-based optical assays are used for measuring these activities, but they suffer

from artifacts due to the absorption and scattering of light associated with nanostruc-

tures. Using this novel methodology, we identified structure-activity relationships

for immune activation of SNAs, and new design rules for SNA-based cancer vaccine

candidates. Finally, we utilized machine learning to quantitatively model the im-

mune activation of SNAs, and applied it to identify the minimum number of SNAs

needed to capture optimum structure-activity relationships for a given library. By

doing so, one can reduce the number of nanoparticles that need to be tested by an

order of magnitude, and still obtain the same information as from screening the en-

tire library. Importantly, these insights and techniques can be generalized to include

many other types of nanomedicines and provide a next generation screening tool for

therapeutic development.

3.2. Introduction

Nanotechnology is beginning to play a major role in developing new therapeutic

modalities. Currently, over 100 drugs based upon nanomaterials are in clinical trials

or approved for therapeutic use.56 These structures are promising because of their

multifunctionality, which directly relates to their relatively large size and often com-

plex architectures when compared with conventional small molecules or biologics.

However, due to this complexity, little attention has been paid as to how structural

changes inform biological activity. Consider, for example, spherical nucleic acids

(SNAs), which are made by chemically arranging short sequences of DNA or RNA
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around a nanoparticle core (Fig. 3.1a).57,58 SNAs exhibit properties that are substan-

tively different from the short, linear oligonucleotides that comprise them, including

the ability to actively cross mammalian cell membranes without the need for trans-

fection reagents, a resistance to nuclease degradation, and the ability to carry large

and complex cargo (such as oligonucleotides and peptides) into many cell types.59–62

These properties make SNAs an attractive candidate in cancer immunotherapy,

as structures with dual functionality can be rapidly prepared from lipids, oligonu-

cleotide adjuvants, and peptide antigens. When delivered to antigen presenting cells

(APCs), SNAs activate the immune system and, in a lymphoma model, show superior

activity compared to the same free antigen and linear oligonucleotides.60 However,

the modularity of an SNA allows for a large number of possible designs, and iden-

tifying the nanoparticle architectures best for inducing multiple aspects of cellular

immune responses, such as potency, selectivity, and efficacy, remains a challenge.

Herein, we describe a new approach for synthesizing a library of SNAs that are qual-

itatively similar but structurally distinct, in conjunction with a mass spectrometry-

based screening protocol that can rapidly and quantitatively determine the ability of

an SNA structure to activate the TLR9 pathway. In this first example, we show how

this methodology can be used to make and screen 1000 (800 of which are unique)

SNA architectures. In addition, we describe how machine learning models can be

trained with this data, and subsequently used to accurately predict the TLR9 stim-

ulatory activity of SNAs based on structural features. Significantly, these models

provide a ranking of the order of importance of eleven structural parameters as well
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as SNA drug concentration. Collectively, these insights have important implications

in designing SNA-based therapeutics. Additionally, since this methodology can be

extended to other nanotherapeutics, this work points towards a new way of designing

and optimizing nanomedicines for a wide variety of uses.

3.3. Methods

3.3.1. The Modular Design of Spherical Nucleic Acids

Immunostimulatory SNAs consist of three modular components: the nanoparticle

core, the oligonucleotide shell, and the peptide antigen, each of which can be ar-

ranged in a variety of configurations.60 To establish an appropriate library for high-

throughput evaluation, we focused on eleven properties across these components (Fig

3.1b). We used 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine (DOPE) to form liposomes that are biocompat-

ible, straightforward to synthesize, and capable of encapsulating the antigen.63 We

focused on two liposome core sizes with average diameters of 70 and 100 nm that

were made from DOPC or a mixture of 80% DOPC and 20% DOPE. The size of the

SNA can influence its rate of cellular uptake, and inclusion of DOPE in the liposomes

is believed to affect the peptide release rate and their endosomal escape, which is

important for peptide processing.64,65

The oligonucleotide shell serves two roles. It facilitates cellular uptake and serves

as the adjuvant, which activates the innate immune system in a sequence-specific

manner.60 The oligonucleotides used in the design of SNAs in the library varied in
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five ways: sequence, backbone chemistry, conjugation chemistry to the liposome, site

of lipid functionalization, and surface density of presentation by SNAs (albeit over a

narrow range). We chose a CpG DNA oligonucleotide (ODN1826) known to activate

mouse Toll-like receptor 9 (TLR9), as well as an inactive control where the CpG

motif is inverted to GpC.66,67 TLR9 is an endosomal protein that recognizes un-

methylated CpG oligonucleotides associated with bacteria and viruses.68 To explore

the importance of backbone composition, we synthesized linear oligonucleotides with

either phosphodiester (PO) or phosphorothioate (PS) backbones since PS oligonu-

cleotides are known to induce higher immune activation, but SNAs comprised of PO

backbones present activities comparable to PS structures.60,69 We evaluated distinct

strategies for conjugating oligonucleotides to the nanoparticles by preparing struc-

tures with cholesterol or DOPE, both of which insert into the liposomal cores and

can be chemically attached to the 3’- or 5’ ends of the oligonucleotides. Finally, since

oligonucleotide density is known to influence cellular uptake and protein binding of

SNAs, we evaluated the oligonucleotide surface density at 0.5, 1, and 2 pmol/cm2

(referred to as 1x, 2x and 4x, respectively).70,71 The 4x structure represents the

upper-limit of what is synthetically viable via our high-throughput procedures, at

present.

As our test case, we chose the OVA257-264 peptide from ovalbumin, a well-studied

model antigen. Since peptide properties can vary dramatically with amino acid



62

composition, we also tested a peptide antigen from the E7 protein of human pa-

pillomavirus.72 To study how the release rate of the antigen influences NF-κB acti-

vation, we evaluated SNAs wherein the antigen was either encapsulated within the

SNA architecture or hybridized to the oligonucleotide shell through a complemen-

tary oligonucleotide. As a control, we investigated how the addition of a complement

affects TLR9 stimulation.

We synthesized and tested three subsets of SNAs (OVA encapsulated SNAs, E7

encapsulated SNAs, and surface-presented OVA SNAs) representing the key possi-

ble combinations of the parameters, with a few synthesis-limited exceptions noted

below regarding lipid composition, oligonucleotide surface density, and surface con-

jugated peptide antigen (Fig. 3.1c). Variation across the eleven structural features—

spanning the nanoparticle core, the oligonucleotide chemistry, the surface presenta-

tion of oligonucleotides, and the incorporation of antigen—led to the design of a

library with 960 total SNAs, 800 of which are unique.

3.3.2. High-throughput screening of SNA libraries

To enable the screening of SNA libraries, we developed a high-throughput assay for

the rapid and quantitative measurement of cellular responses to the SNAs (Fig. 3.2a).

We cultured RAW-Blue macrophages in 384-well plates and treated each well with

a distinct SNA at four oligonucleotide concentrations between 1 nM and 1 µM (each

separated by a factor of 10). RAW-Blue cells are engineered to secrete embryonic

alkaline phosphatase (SEAP) upon activation of NF-κB, a major transcription factor
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that is activated by TLR9 signaling, as well as other signals, to regulate the immune

response. We collected the culture media and determined the concentration of SEAP

using SAMDI (Self-Assembled Monolayers for MALDI) mass spectrometry (MS), a

label-free assay for high throughput, quantitative analysis of enzymatic activity.73–76

SAMDI uses monolayers presenting a selective capture chemistry against a back-

ground of non-binding tri(ethylene glycol) groups to isolate substrates and products

from a complex mixture.76,77 Subsequent analysis of the monolayers by MALDI-MS

quantitates the amount of substrate and product, which is a direct measure of the

enzyme concentration (Fig. 3.2b and c). Here, we mixed the media containing SEAP

with a phosphorylated peptide substrate, captured the substrate and dephosphory-

lated product on monolayers, and then analyzed the samples by SAMDI. We chose

this platform for its ability to quantify enzyme activities at high throughput, without

dependence with the common optical methods, which can be negatively affected by

the light scattering and absorbance of the nanoparticles. These artifacts are diffi-

cult to correct because of their dependence on nanoparticle properties such as size,

concentration, and aggregation. Furthermore, SAMDI is compatible with small sam-

ple volumes for analysis, thereby reducing the amount of SNAs, cells, and reagents

necessary for evaluation, by 6-fold compared to the amounts used in optical assays.

With this assay, we measured the responses to 960 SNAs at four concentrations

and with two biological replicates and acquired two SAMDI spectra for each sample.

Along with standards and controls, more than 8,500 cell culture wells were used and

more than 17,000 SAMDI spectra were analyzed. These data revealed many insights
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into the importance of each structural feature, and how the combinations of features

impact immune activation. Below, we highlight some of the most prominent trends.

3.4. Results and Discussion

3.4.1. SNAs induce higher immune activation than linear oligonucleotides

Varying the design parameters of SNAs induced a broad range of immune activation

(Fig. 3.3a shows the encapsulated OVA subset with the active CpG oligonucleotide

sequence, Supplementary Figure B.1 shows the encapsulated E7 subset). Almost all

SNAs with the active oligonucleotide sequence outperformed the linear PO oligonu-

cleotide. Additionally, many SNAs, including those with a PO backbone, were more

potent than the linear oligonucleotide with the PS backbone.

3.4.2. Conjugation chemistry of oligonucleotide-liposome association sig-

nificantly affects immune activation by SNAs

With eleven design parameters under investigation, we sought to identify the relative

importance of design choices on immune activation. Multifactor analysis of variance

(ANOVA) (Supplementary Table B.1) revealed that, unsurprisingly, oligonucleotide

concentration and oligonucleotide sequence (i.e., active or control) heavily influenced

activation. After sequence, the feature that had the greatest impact on immune

activation was the lipid moiety conjugated to the oligonucleotide for liposome at-

tachment. Cholesterol conjugation resulted in higher levels of immune activation

than DOPE conjugation (P=4.8x10-16). However, SNAs with cholesterol-conjugated
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Figure 3.2. Description of assay used to measure immune activation. a,
The assay used to evaluate the structure-activity relationships between SNA proper-
ties and TLR9 activation of APCs. Libraries of SNAs are incubated with RAW-Blue
macrophages, engineered to secrete embryonic alkaline phosphatase (SEAP) into the
media, in 384-well plates. After 16 hours, the media is transferred, processed, and
mixed with a phosphorylated substrate. The solution is transferred to SAMDI plates
with 1536-spot arrays of monolayers presenting maleimides to selectively capture the
substrate and product by a maleimide-thiol reaction. b, An example SAMDI spec-
trum showing the immobilized substrate and product. Performing MALDI-MS on
the self-assembled monolayers (ie. SAMDI) results in mass spectra containing quan-
titative information on the relative amounts of substrate and product (i.e. extent
of dephosphorylation). c, An example standard curve used to convert the SAMDI
spectral data for the library into SEAP concentration.
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Figure 3.3. Visualizing the relationship between SNA design and immune
activation in the encapsulated OVA subset. a, The SEAP concentrations
observed for all active-sequence SNAs in the encapsulated OVA subset (all data
in this figure is from this subset), compared to the PO and PS versions of linear
oligonucleotides with the same active sequence. Comparison of SNAs with the active
and control sequences, broken into the groups of SNAs with b, cholesterol-conjugated
oligonucleotides and c, DOPE-conjugated oligonucleotides. d & e, Comparison of
5’ and 3’ conjugation termini of SNAs with active sequence, grouped by conjugation
chemistry. f & g, Comparison of PO and PS backbones of SNAs with active sequence,
grouped by conjugation chemistry.
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oligonucleotides without CpG motifs also induced similarly high levels of activation

at 1 µM oligonucleotide concentration (798 and 747 ng/mL SEAP for active and inac-

tive, respectively—Fig. 3.3b), indicating a sequence-independent activation of TLR9.

The linear oligonucleotide does not activate TLR9; therefore, these results indicate

that these SNAs may activate NF-κB through another mechanism. One possible ex-

planation is that cholesterol groups delivered to cells on the SNA induces additional

activation. Our cholesterol conjugation chemistry utilizes carbamates, which can be

cleaved by esterases, including sterol O-acyltransferases.78 Any potentially released

cholesterol, which is known to activate the UPR pathway in macrophages, may also

induce NF-κB activation.79

In contrast, SNAs without CpG-containing oligonucleotides conjugated to DOPE

(instead of cholesterol) lead to dramatically lower secretion of SEAP compared to

their cholesterol-conjugated counterparts (P<1x10-16, Fig. 3.3c). We conclude that

DOPE conjugation provides a way to synthesize SNAs that trigger an innate immune

response exclusively through activation of TLR9. However, the combination of TLR9

stimulation and non-specific activation by SNAs with cholesterol-conjugated oligonu-

cleotides may be advantageous for inducing a greater overall immune response.

3.4.3. Conjugation terminus of the oligonucleotide influences the immune

activation in a conjugation chemistry dependent manner

Because of the dominant effects of conjugation chemistry, we analyzed the remain-

ing SNA properties separately for SNAs with cholesterol- and DOPE-conjugated
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oligonucleotides. Interestingly, we observed differences in the preferred conjugation

terminus when different conjugation chemistries were used (Fig. 3.3e and f). With

cholesterol conjugation, 5’ conjugated SNAs showed significantly higher activity than

3’ conjugated SNAs (OVA subset: P<2.2x10-16 for all concentrations; 566 and 439

ng/mL mean SEAP at 100 nM for 5’ and 3’ conjugation, respectively), however,

DOPE-conjugated SNAs did not show a difference with conjugation terminus (OVA

subset: P=1 for all concentrations; 324 and 330 ng/mL mean SEAP at 100 nM for

5’ and 3’ conjugation, respectively). Furthermore, conjugation from the 5’ terminus

did not lead to loss of immune activation for either conjugation chemistry, which

contradicts reports that modifications at the 5’ end inactivate the TLR9 activity of

linear CpG oligonucleotides.80,81

3.4.4. Phosphorothioate oligonucleotide backbone increases immune acti-

vation compared to phosphodiester backbone

Similar to well-known trends with linear oligonucleotides, the oligonucleotide back-

bone also influenced the immunostimulatory activity of the SNAs (Table B.1 and

Fig. 3.3g, h, and i).69 SNAs with PS backbones generally outperformed their PO

counterparts (P=5x10-9 for DOPE and P=2.7x10-4 for cholesterol-conjugated SNAs).

However, a more pronounced dependence on oligonucleotide backbone was observed

with DOPE-conjugated SNAs than with cholesterol-conjugated SNAs. For DOPE-

conjugated SNAs, the mean SEAP concentrations were 191 and 463 ng/mL for PO
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and PS backbones, respectively, whereas for cholesterol-conjugated SNAs, they were

431 and 573 ng/mL (all at 100 nM).

In contrast, at the highest concentration of 1 µM, SNAs with PO oligonu-

cleotides outperformed their PS counterparts,. Notably, the activity induced by

DOPE-conjugated SNAs with PS oligonucleotides consistently decreased when the

oligonucleotide concentration increased from 100 nM to 1 µM. The DOPE-conjugated

PS linear oligonucleotide, but not the PO backbone, showed a similar reduction in

activity at 1 µM (Fig. 3.3h), suggesting that this behavior is due to the specific

stimulatory properties of the DOPE-conjugated oligonucleotide.

These results lead us to conclude that DOPE-conjugated oligonucleotides with

PS backbones provide an advantage if greater potency is desired. PS backbones

have the added benefit of resistance to nuclease degradation in vivo.82 However,

these results also show that SNAs with oligonucleotides composed of PO backbones

can achieve similar levels of activation when present at higher concentrations. While

class B CpG oligonucleotides are less effective with PO backbones, using SNAs with

PO oligonucleotides may be worth the loss in potency because of the reduction

in toxicity and cost, since the SNA structure may provide sufficient resistance to

nuclease activity.83–85
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3.4.5. Oligonucleotide density on the surface of the nanoparticle has a

small and variable impact on immune activation

Surprisingly, there was not a strong or consistent trend in how oligonucleotide den-

sity affected activity, with neither the highest or lowest densities showing the best

activity. In previous studies, SNAs with higher oligonucleotide densities led to higher

biological activity in cellular uptake and RNAse H mediated degradation of mRNA;

however, the nanoparticle designs in those studies were limited to gold cores, and

used different core sizes and oligonucleotide densities compared to this study.70,71

From these observations, we conclude that the choice of oligonucleotide density for

these constructs over this narrow density range should be based on other considera-

tions, such as stability in vivo, which is inextricably linked to potency.

3.4.6. Core diameter and lipid composition influences the immune activa-

tion of SNAs in an encapsulated peptide-specific manner

In both encapsulated SNA subsets, the lipid composition generally did not have a

significant impact on activity as determined by ANOVA (Table B.1), except for one

particular context discussed below. Additionally, core diameter was not a significant

parameter in the encapsulated OVA subset, whereas it had a significant impact with

encapsulated E7 group.

Since all combinations of parameters evaluated were both with and without pep-

tide, we were able to isolate the effects of peptide encapsulation by comparing pairs

of SNAs with identical properties except for the amount of peptide encapsulation.
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We subtracted the SEAP concentration of the SNA without peptide from the SNA

with highest peptide concentration (Fig. 3.4a). This analysis revealed that core

diameter and lipid composition were influential when E7, but not OVA, was encap-

sulated. Specifically, for the E7 subset, SNAs with 100 nm cores containing peptide

induced higher levels of NF-κB activation (P=5.7x10-5), and the magnitude of this

effect also depended on lipid composition (Fig. 3.4b). Within the subset of SNAs

with cholesterol-conjugated oligonucleotides on 100 nm cores, the SNAs with 100%

DOPC cores showed higher immune activation than 80% DOPC, 20% DOPE cores

(P=0.0011) (Fig. 3.4b). We observed no dependence between the presence of antigen

and immune activation when the antigen was OVA. (Fig. 3.4c).

These results clearly illustrate that peptide encapsulation can impact the ability

of SNAs to activate TLR9 and reveal crosstalk between the molecular components

of SNAs intended to induce innate or adaptive immunity. Unlike oligonucleotides,

the physicochemical properties of peptides vary dramatically with sequence, which

can affect their interaction with the rest of the SNA structure. For example, the

differences in isoelectric points of the peptides, which are 5.7 and 8.8 for the E7 and

OVA peptides, respectively, result in different net charges for the peptides, which

could affect their interaction with the positively charged liposome core. We conclude

that the interactions between liposomes and peptides must be taken into account

when designing and evaluating nanomedicines, as they can lead to large shifts in the

immune activation of SNAs, especially at high levels of peptide encapsulation.
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3.4.7. Effects of hybridization of complementary strands onto the SNAs

The versatility of the SNA architecture allows for alternative methods of incorpo-

rating the antigen into the structure, apart from loading in the lipid core. We

investigated one such alternative – conjugation of the antigen to a complementary

oligonucleotide, which is then hybridized to a lipid-anchored oligonucleotide. As

a control, we also synthesized SNAs with the complementary oligonucleotide but

without peptide conjugation. In these SNAs, the CpG containing oligonucleotide

is double-stranded, and thus is differentiated from SNAs with only single-stranded

oligonucleotides. In this conjugated OVA subset, we used DOPE-conjugated oligonu-

cleotides to prevent the non-specific NF-κB activation by cholesterol-conjugated

SNAs described above.

Our results show that SNAs synthesized with this strategy shared some trends

with their single-stranded counterparts. After oligonucleotide sequence, the most in-

fluential property on immune activation was backbone chemistry, with PS backbones

outperforming PO versions (Fig. 3.5a). Again, we found that the core properties of

lipid composition and core diameter were not significant.

Interestingly, for the SNAs with PS oligonucleotides, the addition of the comple-

ment oligonucleotide, either to half or to all of the anchored oligonucleotides, did not

change immune activation at concentrations of 100 nM or 1 µM, respectively (b).

Furthermore, there was no difference between SNAs composed of the complement,

with and without conjugated peptide. However, at low concentrations (10 nM),

higher complement densities led to higher immune activation. This effect may be
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Figure 3.5. Visualizing immune activation in the surface-presented OVA
subset. a, The SEAP concentrations for all active-sequence SNAs in the surface-
presented OVA subset. b, The mean SEAP concentration of PS-backbone, active-
sequence SNAs, grouped by the combinations of complement density and surface
antigen density (n = 12). c, The mean SEAP concentration of SNAs with PS-
backbone, 0% peptide and active-sequence, as a function of complement density, at
10 nM oligonucleotide concentration (n = 12). d, The mean SEAP concentration of
SNAs with PO-backbone and active-sequence, as a function of complement density,
at 1 µM oligonucleotide concentration. (100%: n = 36, 50%: n = 24, 0%: n = 12;
**: P < 0.01, ***: P < 0.001))
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a function of SNA uptake, where higher complement densities create higher charge

densities on the surface and increase the uptake of SNAs, which in turn lead to higher

immune activation. In contrast, complementation strongly reduced the activity of

PO-backbone SNAs at the highest concentration tested (1 µM). A possible explana-

tion for the decreased activity in duplexed SNAs is that the duplexing interferes with

the oligonucleotide interaction with TLR9, however, it is not clear why the interac-

tion with TLR9 would be different with PO and PS backbones. These results suggest

that the strategy of including antigens by duplexing antigen-conjugated complemen-

tary oligonucleotides is effective with PS SNAs without concern for losing activation

of TLR9.

3.4.8. Supervised machine learning captures non-linearity of property in-

teractions and confirms trends in biological importance of proper-

ties

Because many of the parameters studied were interdependent in defining the activity

of the SNAs, we trained linear and non-linear supervised learning to predict immune

activation and to evaluate the relationships between SNA properties and confirm

their relative impact.86,87 Specifically, multiple linear regression, logistic regression,

and non-linear xgboost were employed to fit training data and cross-validation of

test data was conducted using the Q2 statistic. Q2 quantifies the accuracy of the

predicted SEAP concentrations against measured values, and ranges from -∞ to 1,
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where 0 indicates no predictive power (equivalent to predicting the mean) and 1

indicates perfect prediction.14

We trained each model with all combinations of properties (i.e., 2 properties

at a time, 3 properties at a time, and so on) and analyzed their Q2 performance.

As additional properties were added to the models, the Q2 performance increased,

plateauing for most models and decreasing in the xgboost model for the surface-

presented OVA subset (Fig. 3.6a and b). Since clear non-linear trends were observed

in the data as described above, the model performance increased with the non-

linearity of the model in both subsets (mean increase from 0.53 for the linear model

to 0.83 for xgboost). Analysis of the most predictive SNA property combinations

demonstrate that highly predictive properties remain significant and informative as

more properties are introduced into the model (Supplementary Fig. B.2a and b). In

addition, the order of importance of the properties was largely consistent between

the encapsulated OVA and the surface-conjugated OVA subsets, suggesting that the

ordering is robust regardless of peptide localization.

For the encapsulated OVA and surface-presented OVA subsets, the Q2 value

stopped increasing beyond five and four properties, respectively (Fig. 3.6a). At first

glance, one might conclude that only these highly predictive properties are relevant;

however, when repeating this analysis with fixed values for sequence and concentra-

tion (the two features with the greatest impact),the Q2 values stopped increasing
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after another five properties were added (Fig. 3.6a), indicating that formerly seem-

ingly non-predictive properties do, in fact, influence immune activation (Supplemen-

tary Fig. B.2c). Taken together, these properties, which appear non-influential in a

global context, become impactful in a restricted design space.

3.4.9. Capturing maximal structure-activity relationship with minimal

SNA synthesis and evaluation

We next investigated if a similar Q2 level is attainable with fewer, randomly selected

SNA designs. This question is particularly relevant when synthesis and evaluation of

full libraries are impractical, but where exploration of a large design space is desired.

In that case, one could synthesize a random subset that would capture the most

important trends and then suggest additional candidates to evaluate. To this end,

we simulated this process by training an xgboost model on a random selection of

SNAs and testing predictions on the remaining, unselected SNAs within the three

subsets (Fig. 3.6c). We identified the point of diminishing returns, which balances

the minimum number of SNAs with maximum Q2, by calculating the sample size

closest to training size 1 and Q2=1. This point is 90, 20, and 31 SNAs (out of 336,

336, and 288 SNAs) with Q2= 0.67, 0.88, and 0.66 for encapsulated E7, encapsu-

lated OVA, and surface-presented OVA subsets, respectively. These points represent

a mean of 16% of the total number of SNAs, suggesting that a small number of

randomly selected SNAs can predict SAR of a relatively large SNA library. In prac-

tice, this external Q2 (prediction of non-synthesized SNAs) cannot be measured with
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a randomized sub-sample, but an internal Q2 can be measured by cross-validating

within the randomized sub-sample. We show that the internal and external Q2 are

highly correlated (Fig. 3.6d and Supplementary Fig. B.3), suggesting that we can

identify the point of diminishing returns as we continually synthesize random SNAs

from an arbitrary library size. Combined with the high-throughput SNA synthesis

and characterization approach described above, the machine learning analysis shows

that a combined experimental/computational method can probe and predict the

SAR of tens of thousands of SNAs with a much smaller subset (order of thousands)

of structures.

3.4.10. Conclusion

In conclusion, this work—as well as other approaches pioneered by Anderson and

Langer88,89—makes clear the need to consider the full range of structure-activity

relationships when designing nanomedicines by high-throughput processes. Although

high-throughput techniques are industry-standards in the combinatorial screening of

small molecule drugs, such approaches are just beginning to be implemented to define

structure-activity relationships for therapeutic nanoconstructs. The data presented

herein show that such properties can be strongly interrelated in non-obvious ways,

and emphasize the risks in using limited data to make global conclusions about

one structural consideration being more critical than others. This interdependence

and non-linearity are underscored when applying the non-linear machine-learning

models, as opposed to linear ones, in predicting the biological response of SNAs.
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Indeed, to realize rational approaches to vaccinology, this work makes a strong case

for the combination of high-throughput experimentation and computational analysis,

in determining the structure-activity relationships of nanomedicines in general and

SNAs in particular.
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CHAPTER 4

DUETT quantitatively identifies unknown events in nascent

RNA structural dynamics from chemical probing data

This work is in collaboration with Angela Yu and Julius Lucks and is in preparation

for submission.

4.1. Abstract

RNA molecules undergo complex structural dynamics, especially during transcrip-

tion, which influence their biological functions. Recent high-throughput chemical

probing experiments study RNA cotranscriptional folding to generate nucleotide-

resolution reactivities for each length of growing nascent RNA. However, the manual

annotation and qualitative interpretation of reactivity across these large datasets

can be nuanced, laborious, and difficult for new practitioners. We therefore devel-

oped a quantitative and systematic approach to automatically detect RNA folding

events from these datasets to reduce human bias/error and standardize event discov-

ery. Newly discovered events generate hypotheses about RNA folding trajectories

for further analysis and experimental validation. Detection of Unknown Events with

Tunable Thresholds (DUETT) identifies two types of RNA structural transitions in

cotranscriptional RNA chemical probing datasets: swing events denote large struc-

tural changes at defined points in transcription, and ramp events denote gradual
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structural refinements or relaxations that occur across multiple RNA lengths. We

employ separate methods to detect each: a method inspired by feedback control

identifies swing events, and a linear regression method identifies ramp events. Each

method relies on interpretable and independently tunable parameter thresholds that

are adjusted to match qualitative user expectations with quantitatively identified

folding events. We validate the approach by identifying known RNA structural tran-

sitions of the E. coli. signal recognition particle (SRP) RNA and the Bacillus cereus

crcB fluoride riboswitch. We identify previously overlooked RNA behavior such as

consistently heightened reactivities in the SRP about 12 nucleotide lengths before

base pair rearrangement. We then apply a sensitivity analysis to identify trade-

offs when choosing parameter thresholds. Finally, DUETT is tunable across a wide

range of contexts, enabling flexible application to study broad classes of RNA folding

mechanisms.

4.2. Introduction

RNA molecules play diverse functional roles ranging from catalysis of splicing and

peptide bond formation, regulation of mRNA processing and gene expression, and

molecular scaffolding and localization among many others.90,91 The particular RNA

structure in the cellular environment is central to these functional roles. These

structures are diverse and can precisely orient nucleotides for ligand recognition or

catalysis in specific mechanisms, and they can generally prohibit/promote interac-

tions with other cellular RNAs, proteins, and metabolites to enable the broad range

of RNA function. For example, bacteria can have simple RNA hairpin structures to
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inhibit transcription elongation92, translation initiation93, and RNA degradation.94

Bacterial RNA can even be engineered as regulatory switches for each of these pro-

cesses.95 In eukaryotes, regulatory RNAs such as microRNAs and small interfering

RNAs form hairpin structures before they are processed within the RNA interfer-

ence machinery96, and there is growing evidence that RNA structure may generally

impact many gene expression processes.97–100 Despite their importance, our ability

to interrogate RNA structures in folding regimes that match the complexities of the

cellular environment is relatively new99, and there is a wealth of knowledge yet to

be uncovered surrounding the principles of the RNA structure-function relationship.

Within the cellular RNA folding regimes, we know perhaps the least about how

nascent RNAs fold during transcription101,102. Due to timescales of RNA folding

and transcription, RNA molecules can begin to fold immediately as they emerge

from RNA polymerase.103 Local folds can form almost instantly, and as more stable

folds become possible due to an increase in available sequence, RNAs can transition

between states in a cotranscriptional folding pathway that dictate RNA function.

For example, natural RNA biosensors called riboswitches dynamically alter struc-

ture during transcription in response to ligand binding, leading ligand-dependent

structural, and ultimately regulatory, switching.104 In addition, there is emerging

evidence that cotranscriptionally-formed RNA structures influence a range of pro-

cesses in eukaryotes such as splicing105 and 3’ end processing of histone mRNAs.106
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There has thus been a great interest in developing both computational and exper-

imental approaches to uncover RNA cotranscriptional folding pathways and their

implications for cellular RNA function.

Recently, new experimental techniques characterize cotranscriptional RNA fold-

ing at nucleotide resolution107,108 by utilizing high-throughput chemical probing of

RNA structure.109 Chemical probing experiments use the structure-dependent re-

actions of probes with an RNA110,111: once folded, RNAs are treated with probes

that covalently modify RNAs preferentially at positions that are unstructured. For

example, SHAPE (selective 2’-hydroxyl acylation analyzed with primer extension)

probes attach as adducts at the 2’-OH backbone position of each nucleotide.112

Adduct positions are then mapped by reverse transcribing the RNA, sequencing

the resulting cDNAs, and analyzing the resulting reads for mutations113,114 or cDNA

truncations112,115 that are indicative of adduct position. When coupled with high-

throughput sequencing, these experiments reveal detailed reactivity patterns that

uncover RNA structural properties—highly reactive positions indicate regions of un-

structured RNA and lowly reactive positions indicate constrained regions due to

structure or interaction with other RNAs, ligands, or proteins.116–118 Recently, an

experimental variant called SHAPE-Seq probes the structure of each intermediate

length RNA during active RNA polymerase transcription.107,108 This experiment re-

sults in a matrix of reactivities, where the rows in the matrix correspond to reactivity

at each length of a growing nascent RNA chain, and the columns represent reactiv-

ity changes within specific nucleotides that reflect structural state changes during
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transcription. For example, a decrease in reactivity down a column indicates the

presence of a folding event, while an increase indicates an unfolding event during

transcription.

Cotranscriptional SHAPE-Seq has uncovered important mechanistic insights into

cotranscriptional folding pathways that underlie long-range interactions in non-coding

RNAs as well as the nature of the ligand-dependent folding bifurcations of riboswitches.

However, analysis of the cotranscriptional reactivity matrices has so far been mostly

qualitative, relying on manual identification of reactivity trends to identify key re-

gions and changes that have biological significance. As the number and complexity

of these datasets grow, quantitative and automated techniques are needed to ro-

bustly identify patterns in datasets and corroborate functional significance through

additional experimental data. This automated quantitative approach is challenging,

as SHAPE datasets that contain complete annotations with validated structures

through other methods such as crystallography are not bountiful; we lack a vast

amount of “ground truth” examples. The scarcity of training data presents difficul-

ties when defining statistical models119 and prohibits application of machine learning

models120, such as visually identifying single nucleotide variants in RNA structures

labeled by experimental experts.121 These limitations suggest that we require a sys-

tematic method that identifies RNA structural dynamics from interpretable rules.

To overcome this challenge, we sought to develop a quantitative and automated

approach to identify trends in cotranscriptional SHAPE-Seq datasets. Combining



86

approaches from control theory and linear regression, we developed two comple-

mentary methods that are suited for identifying two major patterns of reactivity

changes that are common in these datasets and are indicative of biologically rele-

vant folding transitions. Specifically, we sought a systematic detection method that

remains human-tunable across diverse contexts, and with an interpretable set of pa-

rameters. Due to RNA structural complexities and the flexibility of SHAPE-Seq

applications/implementations, we opted for a systematic approach to detect generic

events. This philosophy is common in domains with poorly defined events such as

detecting surprising instances in videos122 or identifying unknown genomic deletions

and insertions.123,124

We therefore implemented Detection of Unknown Events with Tunable Thresholds

(DUETT). DUETT detects swing events using a strategy inspired by proportional-

integral feedback control125 and detects ramp events using a linear regression ap-

proach. Swing events represent rapid structural changes that occur over few tran-

script lengths. In contrast, ramp events represent slower events that span many

transcript lengths. DUETT provides automated threshold parameter optimization,

but because SHAPE-Seq data and RNA structural dynamics vary between experi-

ments, DUETT also allows human-defined parameter-tuning to match a wide range

of experimental contexts. We first establish these methods and find parameters that

robustly identify known folding events within the E. coli SRP RNA. We extend

the same methodology to the B. cereus fluoride riboswitch and corroborate previous

manually identified transitions. In both datasets, our analysis revealed unexpected
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behavior such as subtle reactivity increases that consistently occur roughly 12 nu-

cleotide lengths before a reactivity decrease, suggesting a highly-reactive transient

structure. Finally, we provide parameter sensitivity analyses to explore the rela-

tionship between parameter values and observed RNA structural dynamics. Due

to the flexible approach and interpretable tuning parameters, we expect DUETT

to be applicable to many high-throughput experimental systems that require event

detection.

4.3. Methods

4.3.1. Event detection

Structural events are characterized by significant changes in reactivity across se-

quential transcript lengths. We consider two common yet distinct phenomena in

cotranscriptional SHAPE-Seq datasets: swing and ramp events. Swing events cor-

respond to rapid step-changes in reactivity across a limited number of transcript

lengths (matrix rows). Upswings and downswings reflect unfolding and folding tran-

sitions, respectively. Ramp events correspond to gradual changes in reactivity that

persist over many sequential transcript lengths or matrix rows, and may similarly

occur in either direction. These two qualitatively different classes of dynamic be-

havior motivate separate detection methods for each event type. Assumptions are

explicitly listed alongside their design consequences in STable C.1.
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4.3.2. Swing event detection is motivated by PI control

We detect swing events using a technique inspired by control theory. Feedback

control is widely deployed throughout the process industries to mitigate fluctuations

of key process variables about a desired system state126. One common application is

to maintain steady state behavior by taking corrective action based on the measured

deviation of controlled variables from their nominal steady state values. This strategy

is premised on the notion that major sustained deviations necessitate more aggressive

intervention than minor brief fluctuations. PI controllers scale the strength of their

corrective action both proportional to (P ) and with the integral of (I) the measured

deviation from steady state. The P and I terms thus provide a convenient framework

for quantifying the magnitude and duration by which the system has deviated from

steady state.

Swing events are characterized by abrupt changes in SHAPE-Seq reactivity dur-

ing transcript elongation. These events may also be thought of as deviations (D)

about a constant reactivity value:

(4.1) Di = zi+1 − z̄i:(i−n)

where i indexes transcript length, z is the SHAPE-Seq reactivity, and z̄i:(i−n) is the

mean reactivity within a sliding window of length n. DUETT quantifies the absolute

magnitude and duration of these deviations at each transcript length by adopting
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both P and I terms:

(4.2) Pi = Di

(4.3) Ii =
1

n

∫ i+1+n

i+1

Di

where the I term is normalized by the window size. A third quantity captures the

relative (R) magnitude of deviations:

(4.4) Ri =
Di

z̄i:(i−n)

An upswing event is detected when each of the P , I, and R (PIR) values exceed user-

defined thresholds. The P and R thresholds ensure that changes in reactivity are

sufficiently large and distinct from the local steady state to represent true RNA

structural dynamics (Figure 1). The I threshold ensures that deviations reflect

sustained changes in reactivity rather than brief noise-driven fluctuations (Figure 1).

All PIR thresholds are specified with positive values, with values of zero denoting

constant reactivity.

Downswing events are similarly detected using the additive inverse of the PIR

thresholds. The downswing R threshold requires a slight modification to retain an

equivalent magnitude to its upswing counterpart:

(4.5) Rdown =
−Rup

1 +Rup
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For example, an upswing with 50% increase relative to the local steady state

reactivity (Rup = 0.5) followed by a downswing of equivalent magnitude (Rdown =

0.33, 33% decrease) ultimately results in no net change in reactivity.

We introduced two additional threshold parameters to further mitigate the impact

of minor fluctuations driven by measurement noise. We remove swing events that are

shorter than a specified duration threshold as we assume that structurally informative

events generally persist for longer durations than noise-driven fluctuations (STable

C.1). Conversely, we merge swing events separated by a gap less than a swing event

gap threshold to reject noise-driven fluctuations that intersperse real swing events.

4.3.3. Automated parameter selection for swing event detection

DUETT provides a method to automatically select PIR thresholds for any given

dataset. Due to the subjective nature of event detection, the automated method

relies on a heuristic similar to the elbow method in cluster analysis127. The heuris-

tic identifies a threshold combination that balances lenient with stringent thresh-

olds. The automated search starts with low PIR thresholds where both noise and

real events are detected. DUETT scans over combinations of increasing PIR values

(with a user-defined window size) and records the number of detected events. We

expect that increasing thresholds removes noise and sharply decreases the number

of detected events until leveling off, forming an elbow that corresponds to detection

of true events. DUETT identifies this elbow by finding the threshold set closest to
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the origin. This elbow represents the appropriate balance between lenient and strin-

gent thresholds. If needed, the automatically identified thresholds serve as a starting

point for manual tuning.

4.3.4. Ramp event detection using linear regression

Ramp events correspond to gradual changes in reactivity over broad stretches of se-

quential transcript lengths. The swing event detection method overlooks this class

of events because it emphasizes rapid changes in reactivity constrained to brief se-

quences of transcript lengths. Instead, DUETT detects ramp events using a strategy

based on linear regression. Given a user-specified window size corresponding to the

minimum expected ramp length, lines of the form y = βx are fit within windows

sliding down each column of the SHAPE-Seq data matrix. Here, x is a vector of se-

quential integers with length equal to the window size, y is the measured reactivities

within the corresponding window, and β is a regression coefficient.

A ramp is detected when the fitted line passes three user-specified thresholds:

a maximum p-value calculated from a one sample t-test for the regression coeffi-

cient, a minimum regression coefficient (β), and a minimum Durbin-Watson Statistic

(DWS). Manual tuning of these thresholds is required to confidently detect ramp

events. Fortunately, these parameters are readily interpretable (Figure 4.1). The

p-value threshold controls the robustness of event detection against measurement

noise; low values improve specificity at the expense of sensitivity. The β threshold

constrains effect size; high values exclude relatively flat ramp events with low average
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change in reactivity. Finally, the DWS threshold tunes the selectivity of ramp ver-

sus swing event detection. Swing events yield strong positive autocorrelation among

residuals about the regression line (Figure 4.1, right panel of row 4), while residuals

associated with true ramp events are uncorrelated. A DWS threshold of unity pre-

cludes misclassification of swing events as ramps by filtering events whose sequential

residuals are positively correlated128.

4.3.5. Identifying concurrent events

Multiple events detected at similar transcript lengths likely reflect a common struc-

tural change. For example, a pair of upswings independently detected at two different

RNA positions are involved in the same structural rearrangement if they occur at

approximately the same transcript length. We label such instances as concurrent

events by applying a transcript length proximity threshold.

4.3.6. Computational development and graphical user interface

DUETT was programmed in the freely available statistical software environment

R and RStudio. We provide the source code and a graphical user interface as an R

Shiny app located at github.com/bagherilab/DUETT. The app facilitates parameter

tuning by continually updating figures as parameter values are varied by the user.

The app also provides a suite of formatting tools for generating appropriate figures

and tables.



94

4.3.7. Application to Cotranscriptional SHAPE-Seq Datasets

We apply DUETT to two RNA sequences characterized by previous SHAPE-Seq

experiments108: the E. coli SRP RNA and the B. cereus crcB fluoride riboswitch.

These published datasets were obtained from the Small Read Archive (SRA)

(http://www.ncbi.nlm.nih.gov/sra) with the BioProject accession code PRJNA342175.

The data was processed with Spats v1.01

(https://github.com/LucksLab/spats/releases/) and the scripts are located at

https://github.com/LucksLab/Cotrans_SHAPE-Seq_Tools/releases/.

4.4. Results and Discussion

We validate DUETT by identifying known cotranscriptional structural events in two

RNA molecules, the signal recognition particle (SRP) RNA from E. coli and the

fluoride riboswitch from B. cereus..108,129,130 We use the automated approach to se-

lect PIR threshold parameters and manually select the same linear ramp thresholds

across all datasets. During the automated search, the increase in PIR thresholds

causes the number of detected events to rapidly decrease until reaching an elbow

(SFig. C.1). As expected, the point closest to the origin lies at the start of the elbow

and corresponds to the automatically selected threshold values. We apply DUETT

on each of the three replicates and retain events conserved across all replicates to

decrease the likelihood of spurious events. This approach creates similar results as

averaging all replicates (SFigure C.2) but avoids scenarios where a single replicate

has anomalous values, biasing detection. We identify both known and unknown
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structural events and propose novel hypotheses for further study. We highlight pat-

terns and events that DUETT found but are difficult for a human to identify. We

conclude with sensitivity analyses to explore the relation-ship between user-defined

threshold parameters and observed events.

4.4.1. DUETT is validated on the E. coli SRP RNA and identifies un-

known structural dynamics

Previous studies showed that the E. coli SRP RNA forms an intermediate 5’ hairpin

(H1) that reforms into a long helical structure with a hairpin loop and multiple inner

loops108,129,130, which we label H2-H5. Many upramps begin at or close to the nu-

cleotide’s (nt) transcription by RNAP. This association suggests SHAPE attachment

begins almost immediately after RNAP transcription. Due to experimental limita-

tions, these short RNA fragments are difficult to detect leading to reduced signal. As

the RNA elongates, SHAPE adducts become increasingly detectable and create an

upwards linear ramp. As a result, we infer that bases with upramps close to the ini-

tial transcription site are identifying SHAPE adducts that manifest as experimental

artifacts due to their position near the 3’ end of the RNA.

4.4.1.1. DUETT identifies expected H1 hairpin formation and rearrange-

ment. Bases 14-15 and 18 have upswings around length 45 nt or upramps that

conclude around length 50 nt (Fig. 4.2). These positions remain unpaired in the

intermediate H1 hairpin, validating the upswings/upramps. This hairpin rearranges
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into the long helical structure, which DUETT identifies as downswing events be-

tween lengths 120 and 125 nt at bases 11, 14-15, and 17-18. Though observations

largely agree with expectations, the curious upswing in bases 17-18 at 106 nt differs

from the behavior of the other positions and is suggestive of increased flexibility that

expose these 3’ positions to SHAPE reactivity. We hypothesize that increased flexi-

bility is a precursor to the H1 hairpin rearrangement and occurs roughly 12 positions

beforehand.

4.4.1.2. Identification of multiple expected pairings validates DUETT.

DUETT identifies the expected dynamics of bases 26-27, 29, and 31. Upon ini-

tial transcription, bases 27 and 31 have upswings corresponding to their unpaired

state, and bases 28-29 and 31 have downswings at 100 nt that agree with the previ-

ously proposed 100 nt structure. As expected, bases 26-27 remain reactive and lack

downswings until length 110 nt, when they presumably base pair before rearrang-

ing into the final helical structure. Like bases 17-18, base 31 exhibits an upswing

roughly 12 nt lengths before its downswing event. In addition, base 27 has a simi-

lar non-detected upswing in the same location (Appendix C File 1) and correlation

analysis suggests that base 27 is similar to base 26, 29, and 31 (Appendix C File 4).

Coincidentally, when bases 26-27 or bases 29-31 pair with their respective partners,

the consecutive upswing/downswing is in the most 3’ base. This observation agrees

with bases 17-18 and supports the hypothesis that increased flexibility in the 3’ side

occurs before pairing up. We note the difficulty in manually detecting this pattern,

justifying our systematic approach.
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We provide additional validation by identifying the formation of other unpaired

positions. A cluster of upramps/upswings in bases 40-42 between lengths 55 and

85 nts corresponds to the open region in hairpin H3. Base 40 was reported to

be paired by length 100 nt108, corresponding to an undetected downswing at 94 nt

(Appendix C File 1). In contrast, bases 41-42 continue increasing reactivity. Though

base 40 has lower reactivity than bases 41-42 (Appendix C File 1), its reactivity is

higher than expected from a canonical base pair and is correlated with bases 41-42

(Appendix C File 4). Our results suggest that base 40 is more labile than previously

reported.108,129 We attribute this accessibility to relatively few canonical pairs in the

vicinity around bases 40 and 72. It is also attributable to the generally less stable

nature of GU pairs, helix ends, and near inner loops.131,132 Finally, bases 86 and

97 have upramps/upswings immediately after transcription that corroborates their

expected unpaired status.

4.4.1.3. Unexpected events highlight previously overlooked structural dy-

namics. We identify two novel and unexpected events in bases 14 (downswing), and

37 (upswing) at lengths 88 and 90 nts, respectively. These observations are discor-

dant with the previously proposed folding model of the SRP RNA: base 14 remains

unpaired in hairpin H1 and base 37 pairs up between lengths 75-100 nts. Qualita-

tively, the downswing in base 14 is concurrent with other non-detected downswings

in neighboring bases 11 and 15 (Appendix C File 1). Similarly, base 37’s upswing is

concurrent with non-detected upswings in bases 32-33, 36, and 38 (Appendix C File

1). These observations lead us to believe that the detected events are not spurious
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but lack an explanation by previously published studies and highlight the discoveries

enabled by our systematic method.

4.4.2. SHAPE-Seq event detect identifies known and novel structural dif-

ferences in a fluoride riboswitch

We apply DUETT to published SHAPE-Seq data from the B. cereus fluoride ri-

boswitch.108 The riboswitch was exposed to either fluoride-positive (10 mM NaF) or

fluoride-negative (0 mM NaF) conditions, which causes structural changes in RNA

folding.2 We apply DUETT to both conditions and compare results. We tuned

threshold parameters (STable C.2) to match expected structural dynamics such as

the series of swing events around bases 52-55 between lengths 80 and 95 nts. We

chose thresholds such that lower thresholds detect spurious events.

4.4.2.1. Detected events before 69 nt agree with expectations that struc-

tures are identical in both conditions. Before the structural divergence at 69

nt, our detected events agree with the proposed model that RNA structures are

identical in both Fluoride conditions. These shared events occur between 22 nt and

55 nt in bases 13-16, 25, 29-30, and 34 (Fig. 4.3 and Fig. 4.4). Bases 13-16, 25,

and 34 have upswings/upramps that confirm their unpaired status in both condi-

tions. Additionally, bases 12-13 and 16 have downswings around 60 nt that agree

with their pairing off prior to the 69 nt structure. Though bases 29-30 are consistent

in both conditions, the detected upswings around 48 and 53 nt disagree with the

riboswitch model; bases 29-30 are paired off within a hairpin stem, which should not
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manifest as an upswing. These results suggest that bases 29-30 undergo increased

SHAPE reactivity prior to pairing off and represents a nuanced structural dynamic.

Otherwise, the detected events before 69 nt agree between conditions, reflective of

identical RNA structures.

4.4.2.2. Identification of delayed terminator nucleation agrees with ri-

boswitch model. We validate DUETT results by identifying events that agree

with the delayed terminator nucleation. Exclusively in the 0 mM NaF condition,

bases 12-16 are expected to unpair before the 77 nt structure, allowing bases 52-

55 to pair up into a hairpin stem earlier than the 10 mM NaF condition.108 Both

conditions exhibit upswings for bases 52-55 around 73 nt due to different reasons:

increased reactivity prior to hairpin formation in the fluoride-negative condition and

unpaired bases in the fluoride-positive condition. The fluoride-negative bases imme-

diately decrease in reactivity corresponding to pairing off while the fluoride-positive

bases continue to increase in reactivity. The delayed terminator nucleation manifests

with a series of downswings around 90 nt exclusively in the 10 mM NaF condition,

which corresponds to forming the hairpin stem. In addition, bases 56 and 59 exhibit

upswings/upramps in both conditions, corroborating their unpaired nature.

We analyze events that occur after terminator formation, when RNAP transcrip-

tion is expected to halt exclusively in the fluoride-negative condition.108,133 After

about 90 nt, bases 69-71 and 74 remain unpaired in the 10 mM NaF condition and

contain upswings shortly after transcription as expected by their reactive nature (Fig.

4.4). These upswings are expectedly missing in the 0 mM NaF condition except for
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Figure 4.3. Event detector identifies RNA structural dynamics in a B.
cereus fluoride riboswitch, fluoride-negative condition. The riboswitch was
exposed to fluoride-negative (0 mM NaF) or fluoride-positive (10 mM NaF, Fig.
4.4) conditions. The SHAPE-Seq event detector identifies multiple known and novel
structural events between in the fluoride-negative condition, which is shown with
arrows linking nucleotides to previously proposed structural conformations.
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are compared to Fig. 4.3 results to examine structural divergences between the two
fluoride conditions.
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G69 (Fig. 4.3). G69 exhibits an unexpected upswing at 97 nt, which is after the

fully formed terminator stem and should not be observed. However, it was shown

that mutations that remove G69’s pairing also prevent formation of the terminator

stem, meaning that G69 pairing is one prerequisite of terminator formation.108 A

separate study, using a slightly different riboswitch sequence, found that a single

base pair in the same terminator stem area plays a pivotal role in functional termi-

nator stem formation.134 These findings coupled with the G69 upswing suggest that

a subpopulation of SRP RNA lost G69 pairing, leading to SHAPE reactivity and lost

terminator function. However, the mechanism behind G69 unpairing is unclear and

requires further work. This previously overlooked finding demonstrates DUETT’s

ability to flag interesting events for follow-up analysis.

4.4.2.3. Identified events in bases 10 and 48 corroborate long-range in-

teractions. We inspect and corroborate two previously reported long-range inter-

actions: A10-U38 and A40-U48.108,133,134 These interactions are hypothesized to in-

crease stability of the aptamer region (69 nts structure) and persist through tran-

scription of the riboswitch only when fluoride binds.108 In the 0 mM NaF condition,

we observe an upswing in A10 at length 60 nt, which corresponds to aptamer forma-

tion and increased reactivity (Fig. 2.3). Conversely, this upswing is absent in the

10 mM NaF condition because the A10-U38 interaction prohibits SHAPE reactivity

(Fig. 2.4). The other long-range interaction, A40-U48, is proposed to unpair be-

tween the 77 and 88 nt structures108, which we corroborate with an upswing in U48

at length 85 nt.



104

Additionally, A39 is situated between the two long range interactions and ex-

hibits a downswing and upswing at 70 and 88 nt, respectively, exclusively in the

fluoride-negative condition. The downswing’s existence and exclusivity are unex-

pected. Upon closer inspection, both conditions have a small undetected upswing

around 55 nt followed by a downswing (Appendix C Files 2 and 3). Qualitatively,

both conditions exhibit similar behaviors, but the events went undetected due to

our rigorous approach to include only events detected across all three replicates.

We conclude that A39 has similar SHAPE reactivity in both conditions before the

structural divergence at 77 nt, as expected. After 77 nt, A39 exhibits structural

divergence with an unexpected upswing at 88 nt that corresponds to increased reac-

tivity. Previous NMR research shows that A39 (A35 in their numbering) undergoes

local structural dynamics when no fluoride is bound and is stabilized when fluoride

is bound.134 The upswing may reflect those local structural changes. Conversely, the

fluoride-positive condition lacks this upswing due to the neighboring A10-U38 long-

range interaction and continued aptamer formation that prohibit SHAPE reactivity.

Altogether, the detected swing events in A10, A39, and U48 support the proposed

aptamer stabilization via long-range interactions.

4.4.2.4. Novel A22 dynamics identified by DUETT. We observe SHAPE hy-

peractivity in A22 via an upswing at length 59 nt in the 10 mM NaF condition;

A22 hyperactivity is associated with aptamer stabilization.108 This upswing is fol-

lowed by a sharp downswing at length 81 nt and another undetected upswing shortly

afterwards. The second upswing went undetected due to the short duration of the
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previous downswing, which causes high and low reactivity positions to lump together

during the sliding window averaging. Afterwards, the reactivity plateaus at a high

value comparable to the 69 nt structure levels. The 0 mM NaF condition has similar

dynamics but are less extreme and show up as ramps (Appendix C Files 2 and 3)

demonstrating that swing and ramp events differentiate small from large changes

as intended. We conclude that base 22 has similar dynamics (except in magnitude)

across both conditions until about length 90 nt where only the fluoride-positive condi-

tion exhibits the rebound upswing. While the fluoride-negative downswing is justified

(aptamer destabilization), the analogous fluoride-positive downswing disagrees with

the stable aptamer and lacks a mechanistic explanation. A22’s complex behavior

was overlooked earlier due to the visual upper limit (4) set in the original figure.108

While the upper limit simplifies data analysis/visualization, DUETT accounts for

all magnitudes, and the detector is partially insulated from disadvantages in human

visualizations. Altogether, DUETT identified several expected structural differences

between the fluoride conditions, and we generate multiple hypotheses on unknown

or unexpected events.

4.4.3. Tuning threshold parameters requires a tradeoff between true pos-

itive events and false positive/negative events

When choosing threshold parameters, a user balances identifying true positive events

with accidentally identifying false positive/negative events. Slight differences be-

tween detected and non-detected events highlight user preferences; if identifying
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small magnitude events (true positives) is prioritized, then thresholds can be relaxed

to avoid undetected events (false negatives).

We perform sensitivity analysis to explore the true positive/false positive tradeoff,

and we demo-strate that large events are retained despite drastic threshold parame-

ter adjustments. We highlight two scenarios in the E. coli SRP RNA dataset using a

stringent and a lenient set of PIR thresholds (additional sensitivity tests in C.1). The

stringent PIR thresholds (50% increase in each threshold) yield fewer overall events

(Fig. 4.5 right) relative to the original baseline (Fig. 4.5 center). As expected, quali-

tatively small changes are removed: the downswing at length 88 nt in base 14 and the

downswings around 100 nt in bases 28-29. We observed that base 14’s downswing is

likely non-spurious and marks a new discovery. Similarly, the downswings in bases

28-29 are attributed to their pairing off before the final structure. These removals

in the stringent scenario underscore the tradeoff that while higher thresholds lower

false positives, it can also turn true positives into false negatives. We chose a large

parameter increase but retained many of the originally detected events, suggesting

that large events have a wide acceptable range of threshold values.

On the flip side, lenient thresholds (Fig. 4.5 left) generally allow more true and

false positives. The downswing in base 11 at length 88 nt and the upswings in

bases 27, 29, and 31-32 around length 90 nt are detected with lenient thresholds. By

inspection, these events seem non-spurious and occur concurrently with other similar

events (Appendix C File 1) leading to the conclusion that these are true positives

that were original non-detected. Conversely, the lenient scenario creates potential



107

A

B Base position Base positionBase position

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

1 5 10 15 20 25 30 35 40 45

1 5 10 15 20 25 30 35 40 45

Lenient PIR thresholds (-50%) Stringent PIR thresholds (+100%)
25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

1 5 10 15 20 25 30 35 40 45

1 5 10 15 20 25 30 35 40 45

Tr
an

sc
rip

t l
en

gt
h

Original
25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

1 5 10 15 20 25 30 35 40 45

1 5 10 15 20 25 30 35 40 45

SH
AP

E
re

ac
tiv

ity
SH

AP
E

re
ac

tiv
ity

SH
AP

E
re

ac
tiv

ity

Base 40

Base 44

Base 14

Transcript length Transcript length

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

Transcript length

0
5

10

21 50 75 100 125

21 50 75 100 125

0
5

10
0

5
10

21 50 75 100 125

Base 33

SH
AP

E
re

ac
tiv

ity

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

0
5

10

21 50 75 100 125

Figure 4.5. Sensitivity analysis of user-defined thresholds illustrates the
tradeoff between true positives and false positives/negatives. A) The orig-
inal PIR thresholds (center) are compared to a lenient scenario (left, -50%) and a
stringent scenario (right, +50%). In general, lenient thresholds increase sensitiv-
ity towards small magnitude events, but false positives are introduced. Conversely,
stringent thresholds have fewer false positives, but multiple false negatives are cre-
ated instead. Large magnitude events tend to be non-sensitive towards thresholds.
B) Individual examples are highlighted.
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false positives. For example, the upswings in base 40 and 44 at lengths 121 and 112

nt, respectively, do not appear qualitatively like upswings and they lack a structural

explanation. The upswings in base 44 are especially confounding; one replicate has

increased reactivity with a potential upswing while the others remain flat. Instead,

we conclude that this detected upswing in the lenient scenario is spurious and arose by

chance due to the lenient thresholds. These findings reinforce the tradeoff between

true and false positives and that selection of parameters is ultimately subjective

and should be tailored according to user expectations. We chose drastic changes to

parameters thresholds to illustrate their effect. Fortunately, many originally detected

events remained even in the stringent scenario and few spurious events arose in the

lenient scenario, suggesting that our methodology creates concordant results across

a wide acceptable range of parameters. We provide additional sensitivity analysis on

window length and linear ramp threshold parameters in C.1.

DUETT was designed to emulate human visual inspection of cotranscriptional

SHAPE-Seq data in an efficient and systematic manner to both reduce potential

biases and discover not easily identifiable events. Cotranscriptional SHAPE-Seq cre-

ates a wealth of data as many RNAs and RNA lengths are probed. This leads to

increased complexity when interpreting the data as its cotranscriptional nature re-

quires consideration of both the structures at each length and structural transitions

between lengths. Study of riboswitches adds an additional layer of complexity in

that ligand-dependent structural changes are studied as well. When interpreting

cotranscriptional SHAPE-Seq data, it is also important to keep in mind that halted
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nascent RNA structures are probed and fleeting structural changes are difficult to

detect with this method. However, we detected some of these multi-state posi-

tions that were previously reported as events. Cotranscriptional SHAPE-Seq com-

plements aptamer structure and dynamics information known from crystallography

and NMR with the ability to probe nascent RNA structures through transcription.

Thus, DUETT quickly establishes transcription lengths and nucleotides of interest

from reactivities to be further interpreted and developed into a structural model.

We hope this method will be adopted to provide a tunable baseline across RNA

folding experiments and to identify structural events that elude visual identification

in cotranscriptional data.
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CHAPTER 5

Interpreting supervised learning models

The work presented thus far has focused on applying data science tools to understand

a dataset. These tools, especially supervised machine learning, are often criticized

for being uninterpretable leading to models that do their job, such as a predictive

task, without necessarily understanding how the model works. Because medical

diagnostics require justification, how well do we need to understand the model’s inner

workings? Can the cutting edge research of machine learning address these concerns

today? And what should the future of interpreting supervised models look like? The

following opinion piece attempts to bridge the gap between machine learning and

medical communities and present dialogue at a critical junction where data science

tools are becoming a common answer for big data challenges.

5.1. Can an AI think like a doctor?

Data-driven models, such as deep learning models, have scored multiple successes in

medical imaging tasks including identifying dermoscopic patterns135,136 or classifying

melanoma137–139 and provide promising methods for learning health systems.140,141

Deep learning models create predictions by processing data via layers of artificial

neurons that mimic neuronal activity, leading to models that create predictions on

traditionally difficult tasks, such as image analysis. Appropriately, hesitation to
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adopt these models is partially due to their black box nature142,143; deep learning

models offer accurate but inscrutable predictions. Given the need to justify medical

treatment, models require interpretation144 but models that are developed alongside

interpretation techniques are not common. A review of prognostic cancer models

found that two out of 47 models included a published explanation for patients.145

Fortunately, deep learning inscrutability is a common concern leading to rapid de-

velopments in interpretation techniques.142,146 While this research area is rapidly

growing, it is often siloed within the machine learning community, and this separa-

tion has created techniques that succeed on common machine learning tasks but do

not emulate human-level interpretations in a medical imaging context. In this opin-

ion piece, I focus on how interpretation techniques do not yet emulate how clinical

experts interpret images, and we motivate the issue with dermoscopic examples. I

discuss the goal of interpretation research in medical imaging contexts; do interpre-

tations need to emulate current human analysis or is it sufficient to offer a different

but still convincing explanation? I offer an outlook that establishes a future orga-

nization that facilitates cross-community dialogue while hosting clinically-relevant

challenges to accelerate research into clinical applications of data-driven models.

5.2. Current deep learning interpretation techniques are inconsistent

with human image analysis

I discuss how current interpretation techniques fall short of emulating human-level

medical image analysis. I divide interpretation approaches into two broad categories:
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image-specific interpretations and model-based reasonings. Image-specific interpre-

tations typically result in highlighted image regions that are relevant for a given

prediction. However, image-specific interpretations often do not identify context-

dependent visual features, such as heterogeneity or texture, that are commonly rel-

evant in medical imaging tasks. In contrast, model-based reasoning methods probe

a model’s internal logic with example images and have demonstrated that models

can identify complex visual features, such as texture. However, model-based rea-

soning does not produce interpretations for specific images resulting in inscrutable

predictions.

Image-specific interpretation techniques often focus on identifying borders or ar-

eas within an image that are relevant to a model’s prediction. These techniques

result in an outline of an object in a diverse environment such as highlighting faces

in a room147,148 or outlining a car on a busy road149 (Fig. 5.1A). The outline is

interpreted as the region that is relevant for the deep learning model’s prediction.146

Input modification is one of the main deep learning interpretation techniques146 and

is based on modifying pixels; if a modified pixel changes the model’s prediction,

then the pixel is relevant and highlighted. The focus on outlining or highlighting

relevant image segments is natural within the machine learning community because

image recognition tasks often contain multiple objects with unique shapes within a

single image. Well-studied objects include cars or pedestrians, and it is useful when

a model/interpretation technique outlines the unique shape (Fig. 5.1A).
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Image-specific interpretation techniques do not correspond well to dermoscopic

analysis. Dermatologists examine lesions by viewing dermoscopic images and di-

agnosing benign vs. melanoma-specific visual features (morphology) that range

from context-independent to context-dependent. Context-independent features are

identifiable without inspecting the surroundings, but more complex features re-

quire a larger image context. Context-independent visual features include comma-

shaped vessels that are generally benign in nature as well as serpentine or corkscrew-

shaped blood vessels that associate with malignancies.150 Context-dependent features

include variation, symmetry, homogeneity, and other complicated patterns such

as pigment networks with empty patches.150 Similarly, subtle variations and non-

uniformity in lesion color also correspond to malignancy.150 These context-dependent

visual features often require identification within the framework of the larger image,

and an outline of relevant pixels does not convey that the model understands com-

plex visual features (Fig. 5.2). For example, multiple distinct independent features

arranged asymmetrically can signal malignancy (Fig. 5.2). While each feature does

not signal malignancy by itself, the combination of features indicates malignancy

due to asymmetric/heterogeneous organization. In Fig. 5.2 left, a border does not

differentiate why the region is important. The first two examples have multiple vi-

sual features that when examined individually, each feature seems benign. When

combined, these features are asymmetric and associated with malignancy. Similarly,

the third example is a pigmented network, but empty patches become apparent only

in context of the whole network. In all examples, a standard interpretation technique
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B

A

Figure 5.1. Interpretation techniques identify the border of an object
rather the combination or context of multiple visual features Deep learning
interpretation techniques often highlight relevant pixels resulting in outlines of areas
that are relevant for a prediction. (A) In common machine learning tasks, the correct
border is often useful to understand that the model correctly identified a uniquely
shaped object within a complex background, such as the nearest car on a road. (B) In
contrast, medical image analysis requires identification of context-dependent visual
features that are not easily summarized by an outline. For example, a simple bor-
der does not convey how a model distinguishes between malignant (left) and benign
(right) lesions in dermoscopic image analysis.
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should highlight the whole lesion as relevant (left). This outline is not wrong; the

whole lesion is relevant. However, this process does not emulate how a dermatologist

might interpret these examples (Fig. 5.2 right): individual features are segmented

and identified but their aggregation forms a complex feature such as asymmetry.

Unlike image-specific interpretation, model-based reasoning methods directly probe

a model’s internal logic by selecting or synthesizing example images and examining

model behavior. One method includes optimizing an arbitrary image to cause a

specific model prediction, resulting in an image with visual features relevant for

that prediction.149,151 In one respect, model-based reasoning approaches invert the

normal image classifier by producing images that correspond to specific classes.152

The resulting images are often unnatural-looking153, but unlike image-specific in-

terpretations, they may contain complex visual features such as context-dependent

asymmetry or heterogeneity. Another approach selects images that cause a specific

prediction and identifies the visual features conserved across the selection.154 These

conserved features can be complex153, suggesting that this technique holds promise

when assessing whether a model has understood medically relevant and context-

dependent visual features. Despite these benefits, model-based reasoning techniques

do not explicitly create explanations for a specific image-diagnosis pair. This ap-

proach does not allow a clinician to scrutinize how a model arrived at a specific

diagnosis, unlike image-specific interpretations. While the machine learning expert

can analyze and verify a model’s internal rationale, the ultimate end-user, the clin-

ician and patients, will have no explanations for specific diagnoses. As a result, we
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Figure 5.2. A dermatologist’s analysis differs from a model’s interpreta-
tion output An outline of relevant pixels does not emulate how clinicians analyze
and make decisions from medical images. A standard machine learning interpreta-
tion (left) creates simple outlines around three illustrations of malignant lesions that
contain context-dependent visual features. In contrast, a possible dermatologist in-
terpretation highlights individual visual features and contextualizes the whole image
before making a diagnosis (right). Ideally, interpretations that em-late a clinician’s
reasoning enables critical analysis of internal model rationale, engenders trust, and
improves clinical adoption of high accuracy predictions.
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are left with interpretation techniques that create diagnosis-specific interpretations

or identify medically-relevant visual features, but not both, suggesting that current

methods are insufficient for clinical adoption.

5.3. The goal of model interpretation research should be explored

alongside medical standards

Model interpretation research is currently siloed within the machine learning com-

munity, leading to methods that may not be convincing for the target audience,

medical professionals and patients. While research has shown that explanations

increase human confidence in model predictions142, it is unknown what type or for-

mat of explanations are required before clinical adoption becomes widespread. Is it

enough to mimic how a clinician conducts image analysis? Is it acceptable if model

interpretations become indistinguishable from a clinician’s? Or would the medical

community require interpretations that go beyond the capabilities of a standard

clinician and reveal otherwise unattainable insights? In general, what is needed for

non-technical experts to “trust” the predictions of a machine learning model? The

answers to these questions are unclear but would have significant impact in shaping

future research directions towards a well-defined end goal. As evident in the inability

of interpretation techniques to both create image-specific interpretations and iden-

tify medically-relevant visual features, ignoring the end goal might result in methods

that do not fully convince medical experts. Though emulating the image analysis

process of a clinician is a promising direction, this path requires constant dialogue

to understand what is needed for clinical adoption.



118

5.4. Continual dialogue between medical and machine learning

communities accelerates improvement of data-driven models

The model interpretability issue is applicable across visual-based medical tasks in-

volving deep learning such as radiological diagnosis155 or converting X-ray images

from 2D to 3D.156 Because the issue spans across medical fields, community-wide di-

alogue should drive continuous assessment of data-driven models. These assessments

require centralized efforts and are not easily conducted at the individual researcher

level. For example, expertly segmented and standardized datasets provides a solu-

tion towards improving image-specific interpretations. The labeled segments allow

adaptation of current interpretation techniques to better emulate current derma-

tology. For instance, input modification methods swap a labeled segment with a

different visual feature; if a benign feature is switched with a malignant feature,

then the model should predict a higher likelihood of malignancy. Similarly, if a

single labeled segment is split into multiple distinct features, then the asymmetry

and malignancy has increased. If the model’s prediction behaves unexpectedly, then

the model is less trustworthy. These sophisticated questions become explorable and

allow experts to query the inner model workings with counterfactual scenarios, which

begins to emulate dermatology training. However, there are few standardized and

widespread dermoscopy reporting formats that are both practical and amenable to

model interpretation techniques. To the authors’ knowledge, the International Skin

Imaging Collaboration (ISIC) contains the largest publicly-available segmented der-

moscopic dataset with 1142 images with labeled globules and streaks137, only two
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visual features. Dermoscopic images encompass many more features; comprehen-

sively segmented datasets are not abundant. Clearly, lone researchers cannot solely

fix this challenge, but this relatively minor change in data reporting represents poten-

tially major improvements that are realizable through centralized efforts to explore

and communicate effective directions.

A centralized organization facilitates dialogue and interdisciplinary research to

improve model interpretation for clinical applications. Such an organization oversees

how to standardize datasets, create a platform to share data, and host community-

driven challenges to develop new methods. We take inspiration from the Dialogue

for Reverse Engineering Assessments and Methods (DREAM) consortium and Inter-

national Skin Imaging Collaboration (ISIC). DREAM broadly connects researchers

across biomedical areas157 while ISIC focuses on developing image analysis tools

for melanoma applications.137 Both organizations regularly host crowd-sourced chal-

lenges where researchers compete by creating models from public datasets, and win-

ners are awarded cash prizes, invited talks, and other rewards. DREAM challenges

has advanced network inference methods158 and the prediction of human olfactory

perception159; the 2016 ISIC challenge created a baseline for assessing various com-

putational methods and validated the value of crowd-sourced challenges in dermo-

scopic imaging.160 DREAM further incentivizes innovation by awarding prizes for

high-performance models that borrow code from other researchers, which spurred

cross-collaboration and model sharing. Within 24 hours, a competitor created the
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top-ranked model that combined their clinical experienced with other modeling meth-

ods.157 Overall, both DREAM and ISIC have created integrated and interdisciplinary

communities that a-celerate model development.

I believe that crowd-sourced DREAM or ISIC challenges are appropriate plat-

forms for tackling specific issues such as emulating human-level interpretations in

clinical applications. Specific to dermoscopic analysis, we envision an initial chal-

lenge that explores data-reporting methods amenable to both machine learning and

medical standards. It begins with multiple disparate dermoscopic datasets for com-

petitors to merge and test for optimal standardization methods. Such a challenge

requires both medical and machine learning experts to collaborate to form effective

pipelines. Once an appropriate standard is established, a second challenge leverages

the new protocol to identify effective model interpretation techniques. A panel of

both machine learning and medical experts judge model interpretations and rate

them based on correctness, clarity, and relevance to clinical practices. These tiered

challenges build upon previous successes and has been similarly applied to develop

network inference methods.158,161,162

Solving the overall dialogue gap between machine learning and clinical experts re-

quires a greater investment than a series of crowd-sourced challenges. This dialogue

gap has been prevalent for some time and is inherent in sharing and using medi-

cal data [33–36].163–166 One potential solution is creating an organization to tackle

model interpretation in clinical tasks. As with DREAM, this organization provides

a platform for the exchange of data and is especially cognizant of data issues specific
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in medical domains such as legality, ethics, and confidentiality.163 This idea is not

a unique solution and has been proposed for issues such as sharing functional MRI

data165, trauma support networks166, and clinical trial data sharing.163,164 These

varied proposals suggest that the dialogue gap stems from a common problem: few

centralized medical data organizations exist. The model interpretability challenge

has become one of a growing list of reasons to establish such an organization.

5.5. Summarizing the dialogue gap between machine learning and

medicine

Data-driven models, especially deep learning models, offer exciting opportunities

across medical imaging applications. Though research into model interpretation

techniques is growing, their applications remain limited by an inability to emulate

human-level interpretations on medical imaging tasks. Improved dialogue between

the medical and machine learning communities should help align interpretation tech-

niques with the end goal of clinical adoption. Standardization of protocols, such as

in data-reporting, has the potential to expand machine learning capabilities and

make current model interpretation techniques more useful. These solutions require

centralized efforts to explore and implement effective methods.

5.6. Big data and data science is the future of scientific advancement

Big data offers exciting opportunities in finally unlocking the complexities in biology

systems and engineering solutions to many of life’s problems. Though large datasets

themselves present few answers and often create larger haystacks when searching for
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the needle, I am fully confident that the development of future scientists will further

modern data science tools to efficiently tackle this problem. My work here is predi-

cated upon decades of focused work from seemingly disparate areas that only recently

became connected by the common theme of big data. If recent developments are any

indication, big data generation techniques and data science tools are accelerating in

popularity and I expect this dissertation to become rapidly eclipsed. I believe I have

only scratched the surface of learning and applying data science tools, and I have a

bright future ahead of me.
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Figure A.1. Peptide S/N is affected most by tryptophan, leucine, and
glycine in K-array peptides. The peptide’s S/N were calculated from the AUC
of the peptide peaks in each mass spectrum for 11 control plates containing Ac-
GRKacXZC peptides. Peptides were identified to have low or high S/N as shown in
shaded region in Figure 2.2 with 50 low and 30 high S/N peptides (See Methods). A
Fischer exact test (Bonferroni corrected p<10-4) was performed to determine general
trends in peptides containing specific amino acids. The reported p-value is the chance
the observed number of amino acids is within the bottom 50 or top 30 by random
chance. (A) The low S/N region was enriched with peptides having X-position tryp-
tophan, W, and leucine, L, and (B) the high S/N region was enriched with peptides
having Z-position glycine, G.
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Figure A.2. Peptide S/N is affected most by aspartic acid, glutamic acid,
and phenylalanine in H-array peptides. The peptide’s S/N were calculated
from the AUC of the peptide peaks in each mass spectrum for 11 control plates
containing Ac-GXZHGC peptides. Peptides were identified to have low or high S/N
as shown in shaded region in Figure 2.2 with 40 low and 25 high S/N peptides. A
Fischer exact test (Bonferroni corrected p<10-4) was performed to determine general
trends in peptides containing specific amino acids. The reported p-value is the chance
the observed number of amino acids is within the bottom 40 or top 25 by random
chance. (A) The low S/N region was enriched with peptides containing X- or Z-
position aspartic acid, D, and Z-position glutamic acid, E, and (B) the high S/N
region was enriched with peptides having Z-position phenylalanine, F.
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Mean S/N of Quintiles (72 peptides in each quintile)
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Figure A.3. Peptide S/N is anti-correlated with deacetylation activity stan-
dard deviation. Data is drawn from Kuo et al.8 Peptides are grouped into five quin-
tiles (72 peptides each) based on S/N, and the standard deviation across replicates for
each quintile is calculated. (A) The standard deviation of deacetylase activity versus
mean S/N of each quintile is shown for the three cellular conditions of untreated
lysate (blue), +TSA (green), and +NIC (red), and for day 0 (square) and day 6 (tri-
angle). This con-sistent trend suggests that low S/N peptides have higher variations
in deacetylase activity, which indicate that those peptides give unreliable data. (B)
The lumped correlation (r) is the Pearson correlation over all conditions and days,
and data with randomized signal S/N gives zero correlation. Within each condition
and day, signal standard deviation and mean S/N is strongly anti-correlated.
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Figure A.4. Peptide S/N stays consistent between positions, but not be-
tween peptide arrays. Peptides with specific amino acids are sorted by their
mean S/N when in either X- or Z-positions in the K-array. The two rows of bar plots
are the K-array and H-array, and both have the same amino acid order. Within
the K-array, S/N is correlated between the X- and Z-position amino acids. How-
ever, the correlation disappears between the H- and K-arrays, demonstrating that
the surrounding amino acids have an influence on peptide S/N. Conversely, peptide
with certain amino acids, such as proline, have similar S/N values on both peptide
arrays which suggests that some amino acids have a consistent effect regardless of
surrounding amino acids.
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Q2 of individual properties on K-array
Property type Physical properties X-position Z-position Both positions
Steric Substituent van der Waals volume 0.224 0.204 0.568
Steric Average volume of buried residue 0.251 0.189 0.565
Steric STERIMOL length of the side chain 0.234 0.204 0.563
Steric Radius of gyration of side chain 0.238 0.214 0.535
Hydrophobic Solvation free energy 0.228 0.173 0.525
Steric Refractivity 0.234 0.209 0.517

Steric
Distance between C-alpha and centroid of 

side chain 0.239 0.203 0.513
Steric Normalized van der Waals volume 0.238 0.199 0.508

Steric
STERIMOL maximum width of the side 

chain 0.252 0.239 0.479
Steric van der Waals parameter epsilon 0.244 0.171 0.465
Steric Average accessible surface area 0.248 0.208 0.462
Electronic Isoelectric point 0.242 0.209 0.454
Hydrophobic Retention coefficient in HPLC pH 2.1 0.227 0.221 0.445

Steric
Residue accessible surface area in 

tripeptide 0.233 0.211 0.427
Steric side chain torsion angle phi 0.237 0.174 0.395
Electronic Electron-ion interaction potential values 0.236 0.187 0.383
Hydrophobic Hydration number 0.227 0.225 0.383

Hydrophobic
Partition coefficient in thin-layer 

chromatography 0.215 0.172 0.381
Electronic aNH chemical shifts 0.244 0.221 0.375
Hydrophobic Melting point 0.233 0.213 0.375
Steric Graph shape index 0.240 0.212 0.366
Electronic pKCOOH(COOH on C_alpha) 0.212 0.162 0.363
Hydrophobic Free energy of solution in water 0.214 0.189 0.361
Electronic Polarity 0.177 0.167 0.360
Hydrophobic Retention coefficient in HPLC pH 7.4 0.153 0.185 0.333
Steric Side-chain angle theta 0.173 0.217 0.326

Electronic
Nuclear magnetic resonance (NMR) 

chemical shift of αcarbon 0.241 0.201 0.325
Electronic Amphiphilicity index 0.114 0.194 0.314
Electronic aCH chemical shifts 0.247 0.239 0.304
Steric van der Waals parameter Ro 0.156 0.107 0.291
Electronic pKNH2(NH2 on C_alpha) 0.198 0.181 0.230
Electronic Net charge 0.040 0.110 0.170

Electronic
A parameter of charge transfer donor 

capability 0.080 0.088 0.144

Electronic A parameter of charge transfer capability 0.059 0.083 0.131

Steric
STERIMOL minimum width of the side 

chain 0.016 0.046 0.086
Hydrophobic Number of hydrogen-bond donors 0.027 0.056 0.085
Electronic Positive charge 0.019 0.044 0.063
Electronic Negative charge 0.009 0.024 0.038
Electronic Localized electrical effect 0.029 0.013 0.016

Figure A.5. Predictive power of amino acid physical properties on K-array.



147

Q2 of individual properties on H-array
Property type Physical properties X-position Z-position Both positions
Hydrophobic Retention coeffïcient in HPLC pH 2.1 0.156 0.280 0.544
Hydrophobic Solvation free energy 0.167 0.292 0.535
Steric Average accessible surface area 0.168 0.291 0.501
Electronic Isoelectric point 0.139 0.304 0.479
Hydrophobic Hydration number 0.132 0.219 0.450
Hydrophobic Free energy of solution in water 0.154 0.303 0.450
Steric Substituent van der Waals volume 0.139 0.274 0.446
Electronic Polarity 0.172 0.257 0.436
Hydrophobic Retention coeffi 4.7 Hp CLPH ni tneic• 0.153 0.275 0.431
Steric Average volume of buried residue 0.147 0.310 0.407

Electronic
Nuclear magnetic resonance (NMR) 

chemical shift of αcarbon 0.151 0.315 0.406
Steric Radius of gyration of side chain 0.119 0.290 0.400

Hydrophobic
Partition coefficient in thin-layer 

chromatography 0.164 0.313 0.396
Hydrophobic Melting point 0.146 0.256 0.381
Electronic Electron-ion interaction potential values 0.134 0.290 0.377

Steric
Distance between C-alpha and centroid of 

side chain 0.136 0.287 0.376
Electronic pKCOOH(COOH on C_alpha) 0.144 0.287 0.370
Steric Refractivity 0.143 0.260 0.367
Steric STERIMOL length of the side chain 0.164 0.262 0.361

Steric
Residue accessible surface area in 

tripeptide 0.157 0.309 0.359
Electronic Localized electrical effect 0.149 0.204 0.356
Electronic αCH chemical shifts 0.129 0.244 0.350

Steric
STERIMOL maximum width of the side 

chain 0.119 0.302 0.348
Steric Normalized van der Waals volume 0.148 0.297 0.346
Electronic aNH chemical shifts 0.173 0.289 0.342
Electronic Net charge 0.131 0.193 0.323
Steric side chain torsion angle phi 0.135 0.262 0.288
Steric van der Waals parameter epsilon 0.086 0.155 0.282
Electronic Negative charge 0.119 0.173 0.279
Steric Graph shape index 0.093 0.183 0.232
Steric van der Waals parameter Ro 0.070 0.184 0.220
Electronic pKNH2(NH2 on C_alpha) 0.085 0.245 0.206
Steric Side-chain angle theta 0.075 0.176 0.182
Electronic Amphiphilicity index 0.092 0.099 0.168
Hydrophobic Number of hydrogen-bond donors 0.099 0.069 0.157

Electronic A parameter of charge transfer capability 0.029 0.081 0.104

Electronic
A parameter of charge transfer donor 

capability -0.010 0.011 0.022

Steric
STERIMOL minimum width of the side 

chain 0.003 -0.021 0.021
Electronic Positive charge -0.011 0.003 -0.009

Figure A.6. Predictive power of amino acid physical properties on H-array.
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Figure B.1. Dimensional stacking visual for encapsulated E7 subset. A
dimension-stacking plot of the active-sequence SNAs in the encapsulated E7 subset,
showing the SEAP concentration for each combination of design properties. Larger
and darker circles indicate greater SEAP concentration.
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Figure B.2. Machine learning identifies order of importance for SNA design
properties. Highest Q2 scoring property combinations are shown across different
number of properties for the a, encapsulated OVA subset, b surface-presenting OVA
subset, and c encapsulated OVA subset with active sequence and 100 nM. Bubble
areas correspond to Q2 values from Fig. 3.6. Orange and purple properties denote
exclusive and shared properties between the two subsets, respectively.
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Figure B.3. External Q2 is highly correlated with internal Q2. The non-
observable external Q2 (predicting immune activity of non-synthesized SNAs from a
synthesized subsample) is plotted against the observable internal Q2 (cross-validating
within the synthesized subsample) for all three subsets. The median line and 90%,
50% and 20% confidence intervals are shown.
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Encapsulated OVA Encapsulated E7 Surface-Presented OVA
Factor d.f. F P d.f. F P d.f. F P

Concentration 3 1240 <E-220 3 412 3E-220 3 183 5E-106
Sequence 1 381 2.0E-79 1 261 3.6E-56 1 246 1.2E-52

Conj. Chem. 1 338 4.3E-71 1 103 6.0E-24 N/A N/A N/A
Backbone 1 22.6 2.1E-06 1 3.64 0.056 1 241 8.5E-52

Conj. Term. 1 32.6 1.3E-08 1 3.34 0.068 1 2.73 0.099
Oligo. Dens. 2 5.59 0.0038 2 11.5 1.0E-05 2 2.23 0.11

Antigen Dens. 2 0.945 0.39 2 33.2 5.6E-15 2 0.673 0.51
Lipid Comp. 1 2.17 0.14 1 0.0839 0.77 N/A N/A N/A

Core Diameter 1 0.0248 0.87 1 20.4 6.6E-06 1 0.0218 0.88
Comp. Dens. N/A N/A N/A N/A N/A N/A 2 1.34 0.26

Table B.1. Multi-factor ANOVA of 3 SNA subsets
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C.1. Additional sensitivity analysis

C.1.1. Window length

We explore how window lengths affect event detection. Generally, longer window

lengths lead to higher sensitivity (more true positives) because reactivities from

shorter/earlier transcript lengths affect the average window used in PIR equations.

With a 100% longer window (SFig. C.3 right), this effect is shown with base 14,

resulting in detected upswings. As a tradeoff, spurious events are included such as

the downswing in base 37 (SFig. C.3 right). On the other hand, a shorter window

generally decreases sensitivity (SFig C.3 left). The upswings in base 40 after 75 nt

are no longer steep enough to be included and the overall number of swing events

has decreased.

A longer window does not globally increase event detection sensitivity as evident

in false negatives for downswings in base 14 at length 87 nt (SFig C.3). This obser-

vation is due to two effects. First, the transcript lengths before 87 nt have an upward

trend, and the longer window length averages over lower reactivity transcript lengths

and causes the downswing to appear less significant. Second, the integral length for

I defaults to the same value as the window length, and longer integral lengths lower

sensitivity. Instead, specifying a shorter window length (5) for the I length generally

increases sensitivity and recapitulates the downswings in bases 11 and 14 (SFig C.4).

This analysis demonstrates that longer windows and shorter windows generally

enhance and decrease sensitivity, respectively, but scenarios exist that go against
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this rule. Our detailed analysis serves as a cautionary tale that there are tradeoffs

between identifying false and true events.

C.1.2. Durbin-Watson Statistic

We provide sensitivity analysis for the Durbin-Watson statistic (DWS). We recom-

mend a default setting of one as lower values traditionally correspond to a positive

correlation, and we test a lenient (0.1) and a stringent threshold (1.5). As expected,

the lenient and stringent thresholds have more and fewer detected ramps, respec-

tively (Supplementary Fig. C.5). The lenient threshold allows linear ramps where

the residuals are not uniformly distributed down the length of the ramp. For exam-

ple, the downramp in base 14 has points clustered above and below the ramp, and we

argue that this pattern does not conform to our expectations of a ramp and appears

more like a downswing (it is detected as a downswing). In contrast, the upramp in

base 41 appears genuine but is removed with the stringent DWS. Though minor,

the flat region around length 50 nt creates a sequence of negative residuals that cor-

respond to a positive autocorrelation, which fails the stringent DWS. However, we

observe that the upramp in base 42 is preserved because it lacks a flat region as large

as in base 41. These three examples showcase how the DWS threshold parameter

removes ramps that resemble swing events

Overall, we apply large threshold changes and most qualitatively large events

are still identified in all scenarios. This demonstrates that large and clean events

can be insensitive to threshold changes, and the true positive-false positive tradeoff
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is applicable to qualitatively small or noisy events. Consequently, it is likely that

the SHAPE-Seq event detector identifies large RNA structural events with similar

accuracy as a human, but the detector can also systematically identify small events

whereas a human might not. Similarly, RNA structural events are not clearly defined

and encompass a degree of subjectivity meaning that tradeoffs between identifying

true positives and avoiding false positives/negatives must be considered. Altogether,

these complexities justify the need for our quantitative and systematic approach.

C.2. Supplementary file descriptions

Supplementary Files are found at github.com/bagherilab/DUETT. Supplementary

Files 1-3 contain the profiles for each nucleotide in SRP, fluoride-negative riboswitch,

and fluoride-positive riboswitch datasets. Upswings, downswings, upramps, and

downramps are shown with red diamonds, blue diamonds, red lines, and blue lines,

respectively. Concurrent events are denoted with a dotted green line.
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Figure C.1. Automated PIR threshold selection identifies the balance be-
tween too lenient and too stringent. DUETT provides an automated method to
select appropriate PIR thresholds for A) the SRP, B) the 0 mM NaF riboswitch, and
C) the 10 mM NaF riboswitch datasets. After scanning over potential combinations
of PIR thresholds, DUETT identifies the threshold set closest to the origin (red point
with dotted line from origin). This point corresponds to the elbow where noise is
removed but real events are retained. The horizontal axis is the sum of all three PIR
thresholds and both axes are normalized. This calculation is done in 4-dimensions
(P , I, R, and number of events) and the selected thresholds may not appear closest
to the origin when plotted in 2D.
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Figure C.2. Similar results are created when applying SHAPE-Seq event
detector to the average of replicates. Figure 4.2 shows results identified events
that are shared in each of the three replicates. Here, all three replicates are averaged
then event detection is conducted. The PIR thresholds are slightly more stringent
than in Figure 4.2 because few events pass all thresholds and are conserved in all
replicates. Each PIR threshold was increased by 0.1.
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Figure C.3. Sensitivity analysis of window length. The window length deter-
mines the number of positions that are averaged together before PIR calculation.
Longer lengths generally lead to longer memory and higher sensitivity to true pos-
itives. In contrast, shorter lengths generally leads to fewer events and false posi-
tives/negatives.
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Figure C.4. Higher I length generally lowers sensitivity and longer window
length does not always raise sensitivity. By default, I length is the same as
the window length (left) but can be specified separately (right). Lower and higher
values of I length generally increase and lower sensitivity, respectively.
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Figure C.5. Sensitivity analysis of Durbin-Watson statistic. DWS ranges
from 0-4 where 2 represents our ideal scenario, no autocorrelation in the residuals.
We present effects of lower and higher DWS thresholds and compare the quality of
fitted linear ramps. Generally, lower DWS thresholds are more lenient where lines
are fitted on less line-like segments. To simplify visual analysis, all swing events were
removed.
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# Assumption Design Implication
1 Low magnitude measurements have noise that

appear large in a proportional sense
P thresholds filter out low magnitude noise

2 High magnitude measurements have high
magnitude noise that appear large in an ab-
solute sense

R thresholds filter out high magnitude noise

3 Short-lived swing events are likely due to noise I and event length thresholds filter out short
events

4 Real swing events may become fragmented
due to noise

Merge together short but adjacent swing
events via event gap parameter

5 True linear ramps have a clean and low noise
ramp

Ramp p-value threshold filters out noisy
ramps

6 True linear ramps have a non-trivial slope β threshold (slope) filters out shallow ramps
7 Ramp residuals should be uniform down the

length of the ramp; Ramps should be longer
than swing events

Durbin-Watson Statistic threshold filters out
non-uniform residuals; avoids ramps fitted on
swing events

8 Events that occur nearby in terms of tran-
script length are likely to be related

Concurrent events are identified within a spec-
ified length

Table C.1. Explicit assumptions and design implications in the SHAPE-Seq event
detector

SRP RNA settings F riboswitch settings
PIR

Window length 9 Window length 9
P 0.3 P 0.35
I 0.025 I 0.05
R 0.1 R 0.025
I length default I length default
Noise length 4 Noise length 4
Event gap 1 Event gap 1

Ramp
Ramp length 30 Ramp length 30
p-value 1.00E-04 p-value 1.00E-04
β 0.15 β 0.15
DWS 1.25 DWS 1.25

Concurrent distance 2 Concurrent distance

Table C.2. Automated PIR and user-defined linear ramp threshold parameters for
the SRP and riboswitch examples.
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