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ABSTRACT 

 

Development of Fragment Coupling Methodologies and the Application to  

Natural Product Synthesis  

 

Weiwei Wang 

 

 Small molecules such as indanes, chromanes, tetralins and their derivatives play a 

significant role in drug discovery due to their potent biological activity. This research herein 

presents a facile Brønsted acid-catalyzed allylsilane annulation methodology to generate fused ring 

systems such as indanes. The reaction goes through a homoallylic intermediate which then readily 

cyclizes to form the desired product. Different types of fused ring systems such as chromanes and 

lignan natural products can be accessed in a similar fashion using differently substituted 

allylsilanes and benzyl alcohol species. Structural complexity was rapidly built from simple 

precursors.  

The second part of the research focuses on developing a “traceless” variant of the Petasis 

Borono-Mannich reaction. A one-pot synthesis of allylic alcohols by the sulfonylhydrazide-

mediated coupling of aldehydes with alkenyl trifluoroborates was achieved. The process involves 

in situ generation of a hydrazone species and subsequent loss of N2. Further development of the 

methodology is still underway. 

 

Thesis advisor: Professor Regan J. Thomson 
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1   Chapter 1 

1.1   Introduction  

The construction of carbocyclic and heterocyclic structures has long been a vital task in organic 

synthesis. One of the main cyclization strategies is the nucleophilic addition into carbonium ions 

using alkene terminators, which has been extensively investigated and successfully applied to 

numerous natural product total syntheses. For instance, the polyene cyclization represents a 

powerful method to rapidly construct the polycyclic core of natural products in a biomimetic 

fashion.1-4 The use of alkene terminators, however, sometimes leads to a mixture of regioisomers 

due to the uncontrollable nature of the cyclization, therefore alkene isomerization is often observed 

(Scheme 1.1).5 This drawback limits the scope of its synthetic utility.  

Scheme 1.1 Alkene-terminated cyclization 

 

In 1976, Flemming and coworkers addressed this issue and proposed a solution to control the 

regioselectivity of the carbonium ion cyclization using an allylsilane terminator.6 They found out 

that by strategically placing the trimethylsilyl group on the appropriate carbon atom in the starting 

material, a single product can be made from the carbocation intermediate. This was demonstrated 

in comparison to the work of  Johnson et al.,7 in which the carbonium ion formed from the initial 

MeMe
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Me

OH

Mixture of alkene isomers

Me

Me

Me OH

Me
H+

MeMe

Me

Mixture of alkene isomers

O O

I-1 I-2
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acetal I-5 gave rise to a mixture of five products upon treatment of acid (Scheme 1.2A). On the 

contrary, the same acetal with an allylsilane functionality I-9 afforded only one product followed 

by the loss of the TMS group (Scheme 1.2B).  

Scheme 1.2 A. Johnson’s original reaction and B. Flemming’s cyclization using an allylsilane 

terminator   

 

The unique properties of silicon allows for the development of rich and diverse organosilane 

chemistry. In addition, they are relatively air-stable, nontoxic and easily prepared, rendering 

organosilanes one of the most frequently employed building blocks in organic chemistry. For 

instance, they have been widely adopted as protecting groups, reducing reagents and cross-

coupling components. Of particular interest here is the use of allylsilanes as carbon nucleophiles 

to participate in nucleophilic addition.8 

In 1982, Kumada and coworkers prepared optically active allylsilanes and unambiguously 

determined that their reactions with electrophiles proceed through an anti-SE’ pathway (Scheme 

1.3).9 A carbocation b to the silicon atom is formed upon the electrophilic addition, followed by 

elimination of the silicon group to generate a new double bond.  This phenomenon has been widely 

Me

MeO OMe

H+, MeOH
Me

OMe

H

OMe

Me

OMe

+ OMe
5 products

MeO OMe OMe

– TMS

OMe

TMS

SnCl4

TMS

single product, 79%

I-5 I-6 I-7 I-8

I-9 I-10 I-11

A. Johnson, 1973

B. Flemming, 1976
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observed and explained by the b-silicon effect.10 The b-silyl carbocation is stabilized by s–p 

conjugation via overlap between the Si-C s bond and the adjacent vacant p orbital. This strong 

hyperconjucation originates from the polarizability of the Si-C bond.  

Scheme 1.3 Electrophilic addition of allylsilanes and the b-silicon effect 

 

In the past 40 years, numerous methodologies featuring allylsilanes to generate carbocycles and 

heterocycles have been reported. Selected examples with different participating electrophiles will 

be addressed in the following sections. 

1.2   Cyclization with Activated C=O Bond 

One common type of electrophile for allylsilane addition is the activated C=O bond. For instance, 

a famous example is the Hosomi–Sakurai reaction of aldehydes and ketones, developed by Hosomi 

and Sakurai in 1976.11 Strong Lewis acids are required to activate the carbon electrophiles. 

Allylsilanes can also undergo nucleophilic addition with esters, generating multi-allylated 

products under Lewis acid catalysis.12 When such reactions are carried out in an intramolecular 

fashion, cyclic compounds can be afforded rapidly. 

1.2.1   Nucleophilic Addition into Aldehydes 

The mechanism of Lewis acid-promoted allylsilane additions into aldehydes have been extensively 

studied by chemists over the past 30 years.13 In 1994, Denmark reported the intramolecular variant 

of these reactions and found that cyclization proceeded with a strong preference for the anti-SE’ 

pathway (Scheme 1.4).14  

H

SiMe

R1
R2

R3H
E

H

SiMe

R3H

R2R1

E Nu-

H

R2R1

E H
R3
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Scheme 1.4 Intramolecular addition of an allylsilane into aldehyde  

 

Synthesis of the cyclohexyl fragment (I-18) of FK-506, an immunosuppressive natural product, 

was also carried out featuring an BF3•OEt2-mediated intramolecular allylsilane addition into 

aldehyde I-15 by Maier and coworkers (Scheme 1.5).15 

Scheme 1.5 Synthesis of the cyclohexyl fragment of FK-506 

 

In 2003, Beignet and coworkers reported an intramolecular addition between an allylsilane and an 

aldehyde using a silyl ether tether (Scheme 1.6).16  A Lewis acid such as TMSOTf was needed to 

activate the aldehyde species. Locating the silyl ether tether at the g position of the allylsilane 

allows the reaction to proceed through a better defined cyclic transition state I-20, which has been 

shown to give better stereochemical control.17 The allylsilane group would be exocyclic in the 

transition state and resemble the corresponding intermolecular reaction. High diastereoselectivity 

was achieved for the cyclic products. The tether can be later cleaved for further synthetic 

elaboration.  
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Scheme 1.6 Addition into aldehydes with silyl ether tether 

 

In 2006, Cox and coworkers substituted the diethylsilyl ether tether for a methylene group, which 

would generate substituted tetrahydropyrans as the cyclic products (Scheme 1.7).18 Due to the 

robustness of the methylene bridge, Brønsted acid activators could be investigated. Switching from 

TMSOTf to MeSO3H led to a dramatic increase in stereoselectivity. In addition to allylsilanes, 

propargyl silanes I-24 also cyclized to form allene-containing tetrahydropyrans, proving the 

versality of this methodology.  

Scheme 1.7 Addition into aldehydes without the tether 

 

1.2.2   Nucleophilic Addition into Ketones 

The first intramolecular Sakurai reaction was published in 1982 by Wilson and coworkers. During 

their study, they built a model system and generated cyclohexanone I-27 through 1,4-addition of 

allylsilanes into a,b-unsaturated ketones in the presence of BF3•OEt2. The cyclization proceeded 

smoothly to give the product in 73% yield (Scheme 1.8).19  
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Scheme 1.8 Synthesis of cyclohexanone by intramolecular allylsilane addition into ketone  

 

Fused ring systems and spirocyclic systems can also be formed using this method, depending on 

where the allylsilane side chain is placed. In 1984, Schinzer and coworkers developed a 

stereoselective route to generate spiro[4,5]decanone I-29 (Scheme 1.9). The mild Lewis acid 

ethylaluminum dichloride proved to be the optimal promotor for this reaction. When 1.1 

equivalents of EtAlCl2 was used, undesirable protodesilylation side reactions were inhibited and 

good yields were achieved.20 The major diastereomers formed represent core skeletons of some 

spirocyclic natural products such as lubimine and a-acoradiene (I-30). 

Scheme 1.9 Formation of spirocyclic structure  
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Majetich and coworkers generated fused ring structures using fluoride ion as the activator, while 

Lewis acids such as TiCl4 and BF3•OEt2 failed to give the desired compound with the presence of 

desilylation product. The results suggested that Lewis acid-catalyzed allylsilane cyclizations are 

substrate dependent.21 Fluoride ion-mediated formation of eight-membered rings were also 

investigated. Intramolecular Sakurai reactions take place via 1,6-addition into conjugated dienones 
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I-33 (Scheme 1.10).22 The methodology was later applied to two total syntheses of epi-widdrol 

using ethylaluminum dichloride as catalyst.23 

Scheme 1.10 Formation of fused ring structure using a Lewis base activator  

 

Danheiser and coworkers developed a novel [3+2] annulation strategy using allylsilanes as three-

carbon components for the synthesis of five-membered carbocycles.24 Propargyl silanes and 

trimethylsilyl allenes have also been successfully employed in such transformations to generate a 

diverse range of five-membered ring compounds such as dihydropyrrolines,25, 26 dihydrofurans,26 

isoxazoles,25 azulenes25, 27 and furans.28 The reactions appear to proceed through stepwise 

mechanisms of 1,2-silyl shift and cyclization via the rearranged carbocation after the initial 

electrophilic addition to the organosilane (Scheme 1.11). Many of them also proceed with high 

level of stereoselectivity.24  

Scheme 1.11 Danheiser’s [3+2] annulation strategy using allylsilanes 
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1.2.3   Nucleophilic Addition into Oxonium Ions 

A frequently employed electrophile for allylsilane addition is the oxonium ion species, which is 

usually generated as reaction intermediates. When they are tethered to allylsilanes, intramolecular 

cyclization takes place, usually with high level of regiocontrol because of the  b-silicon 

stabilization effect.  

One of the common methods to generate oxonium ions is through the ionization of acetals.  In 

1982, Nishiyama and coworkers developed regioselective cleavage of unsymmetrical acetals in 

the presence of allylsilanes and TiCl4 to give homoallylic ethers or five- and six-membered 

oxacyclic rings.29 The 2-methoxyethoxy methyl (MEM) ether was selected as the protecting group, 

which formed bidentate coordination with titanium tetrachloride to facilitate the elimination of the 

2-methoxyethoxy group and led to nucleophilic attack of the allylsilane (Scheme 1.12). 

Scheme 1.12 Formation of an oxacyclic ring through oxonium ion-allylsilane cyclization 
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as the dianion equivalent of 4-atom unit to generate functionalized tetrahydrofuran and 4-

methylenetetrahydropyran species (Scheme 1.13B).31-33 

Scheme 1.13 A. Mohr’s methodology using allyl silyl alcohols and B. Oriyama’s work using 

allyl silyl TMS ether 

 

Medium sized rings can also be generated in a similar fashion. In 2009, Panek and coworkers 

developed a Lewis acid promoted [5+2] annulation using chiral silyl alcohols to afford 

spirooxindoles with great stereoselectivity (Scheme 1.14). Highly functionalized compounds can 

be generated under mild reaction conditions, which can be applied towards library synthesis in 

preparation for subsequent biological evaluation.34  

Scheme 1.14 [5+2] annulation to synthesize spirooxindoles from allylsilane and acetal 
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oxacycles. Tetrahydrofurans have been successfully synthesized in this fashion, even though 5-

endo-trig cyclizations are unfavorable according to Baldwin’s rules. In 1997, Cassidy and 

coworkers developed an allylsilane metathesis/nucleophilic addition sequence to generate 

substituted tetrahydrofurans in high yields (Scheme 1.15).36 Functionalized cyclic allylsilanes 

were prepared as precursors for condensation with the aldehyde.  

Scheme 1.15 Allylsilane metathesis/nucleophilic addition sequence 

 

In 2006, Hall and coworkers reported the stereoselective synthesis of highly substituted 

tetrahydrofurans through acid-catalyzed addition of allyl silyl alcohols into aldehydes.37 The 

pseudo-diequatorial arrangement of substituents in the chair-like transition state (I-57) gave rise 

to the high diastereoselectivity (Scheme 1.16A).  

Scheme 1.16 Synthesis of A. tetrahydrofurans and B. tetrahydropyrans 
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Similar results were achieved by Ito and coworkers, who used TMSOTf as promotors to generate 

disubstituted tetrahydropyrans in high yields with high selectivity.38 A chair-like transition state 

(I-60) was again proposed (Scheme 1.16B). 

The synthesis of functionalized pyrans have also been well studied. Panek and coworkers 

developed an acid-catalyzed [4+2] annulation for the synthesis of cis-2,6-disubstituted39 and cis-

2,6-trans-5,6-trisubstituted40, 41 dihydropyrans. Research suggested that a chair-like transition state 

I-63 was favored during the cyclization, giving rise to high diastereoselectivity (Scheme 1.17A). 

The methodology was also applied to various total syntheses of natural products, which will be 

addressed later. Similarly, Roush and coworkers used b-hydroxy allylsilanes I-65 to condense with 

aldehydes in the presence of TMSOTf and generated cis-2,6-dihydropyrans through silyl-Prins 

cyclization.42 In this case, the boat-like transition state I-66 was favored (Scheme 1.17B).  

Scheme 1.17 Stereoselective synthesis of polysubstituted dihydropyrans through A. chair-like 

and B. boat-like transition states 
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derivatives under Lewis-acid catalysis (Scheme 1.18).43 According to DFT calculations, the high 

stereoselectivity arises from steric and hyperconjugation interactions taking place in the reaction 

intermediates. A chair-like transition state was proposed, which served to minimize the steric strain 

between the substituents. 

Scheme 1.18 Synthesis of tetrahydropyran using allylsilanes with a terminal silyl group 

 

Polysubstituted methylenetetrahydropyrans have been major targets for the silyl-Prins 

transformation. Markó and coworkers performed a series of studies on the Lewis acid catalyzed 

intramolecular cyclization between allylsilanes and aldehyde.44-49 The preferred pseudo-equatorial 

arrangement of substituents during the chair-like transition state (I-72) ensured the high 

diastereoselectivity of this transformation (Scheme 1.19). 

Scheme 1.19 Markó’s synthesis of polysubstituted methylenetetrahydropyrans 

 

Mariano and coworkers developed a oxidative Prins cyclization methodology which tolerates 

Lewis acid sensitive functionality.50 The a-stannyl ether species I-75 was first generated from the 

allyl silyl aldehyde, which can be readily transformed to oxonium ion I-76 by metal-based 

oxidizing agents, setting the stage for the final cyclization (Scheme 1.20). 
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Scheme 1.20 An oxidative Prins cyclization methodology 

 

Minehan and coworkers published a tandem allylation/Prins sequence, during which the 

homoallylic alcohol I-79 was generated in situ before the silyl-Prins cyclization to afford the 

tetrahydropyran (Scheme 1.21).51 The methodology was applied to a short total synthesis of 

centrolobine. This protocol takes place in environmentally benign conditions and tolerates acid 

sensitive alcohol protecting groups. Similar approach was investigated by Markó and coworkers, 

who developed a tandem ene reaction/silyl-Prins sequence to generate polysubstituted 

tetrahydrapyrans via in situ formation of the homoallylic alcohol intermediate.48  

Scheme 1.21 Tandem allylation/Prins protocol to synthesize tetrahydropyran 
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steric and electronic effects give rise to excellent stereoselectivity (Scheme 1.22). The situation 

applies to both syn- and anti-b-hydroxy allylsilanes. 

Scheme 1.22 Stereocontrol of the silyl-Prins cyclization 

 

Sometimes the silyl-Prins cyclization can be combined with other reactions to generate 

tetrahydropyrans through a cascade reaction sequence. In 2003, Ito and coworkers developed an 

allylation/Prins/Friedel–Crafts sequence for the synthesis of tricyclic scaffolds.53 The allylation 

step was much faster than the acetal formation in the presence of TiCl4 (Scheme 1.23). Two 

different aldehydes can be employed in the protocol, which allow for the synthesis of a variety of 

tricyclic compounds. Boryl-substituted allylsilanes (I-87) were used, which were essential for the 

high diastereoselectivity in the cyclization. Similarly, a stereoselective Sakurai-

Hosomi/Prins/Friedel–Crafts sequence utilizing allylsilanes and aldehyde electrophiles to generate 

trisubstituted tetrahydropyrans was reported by Reddy and coworkers in 2009.54 
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Scheme 1.23 Synthesis of substituted tetrahydropyrans through cascade reaction sequence  

 

Other than five- and six-membered rings, medium-sized ring compounds can also be accessed 

through the silyl-Prins protocol. In 1999, Suginome and coworkers reported the stereoselective 

synthesis of oxepanes via acetalization-cyclization of an enantioenriched functionalized allylsilane 

with aldehydes (Scheme 1.24).55 High levels of chirality transfer were achieved.  

Scheme 1.24 Synthesis of oxepanes 

 

Cho and coworkers developed a double Prins-type cyclization of (allenylmethyl)silane or 

allylsilane with aromatic aldehydes to generate 1,6-dioxecanes.56 This was the first example to 

employ inter- and intramolecular Prins reactions in a single process to generate entropically 

unfavorable medium-sized rings. The second condensation with allylsilane took place because the 

alternative 5-endo-trig cyclization was kinetically unfavorable according to Baldwin’s rules 

(Scheme 1.25). 
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Scheme 1.25 Synthesis of 1,6-dioxecane through double Prins-type cyclization 

 

Last but not the least, allylsilane cyclization can be combined with Cope or Claisen rearrangement 

reactions to generate functionalized cyclic compounds efficiently. In 1982, Wilson and coworkers 

developed a silicon-mediated Claisen rearrangement.19 After the silyl vinyl ether rearrangement, 

further substrate elaboration followed by allylsilane cyclization led to vinylcyclohexanone I-105 

(Scheme 1.26). The highly ordered transition state in the Claisen rearrangement gave rise to high 

stereoselectivity. 

Scheme 1.26 Allylsilane cyclization coupled to Claisen rearrangement 
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Speckamp and coworkers also investigated the silyl-mediated oxy-Cope rearrangement using vinyl 

and allylsilanes.58 

Scheme 1.27 Allylsilane cyclization coupled to oxy-Cope rearrangement 

 

1.3   Cyclization with Activated C=N Bonds 

1.3.1   Allylsilane Addition into Iminium Ions 

A classic method to generate iminium ions in situ is through adopting the Mannich-type conditions.  

Greico and coworkers developed a novel aminomethano desilylation-cyclization process in the 

presence of formaldehyde under acidic conditions (Scheme 1.28).59, 60 Five-, six-, seven- and eight-

membered rings containing nitrogen have been successfully generated under Mannich-like 

conditions.  

Scheme 1.28 Allylsilane addition into iminium ions under Mannich-type conditions  

 

In 1993, Overman and coworkers developed a stereocontrolled Mannich-type reaction using 

allylsilane amines and aldehydes (Scheme 1.29).61  The stereochemical outcome of the iminium 

ion cyclization can be modified by tuning the geometry of substituents on nitrogen. This method 

could be applied towards the synthesis of the widely occurring reduced isoquinoline rings in 

natural alkaloids.  
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Scheme 1.29 Overman’s stereocontrolled Mannich-type allylsilane addition  

 

1.3.2   Allylsilane Addition into N-Acyliminium Ions 

Allylsilane additions into N-acyliminium ions derived from lactams have been heavily 

investigated. The N-acyliminium ions are generally formed in situ from a lactam species and 

readily cyclize upon allylsilane addition. In the 1980s, Speckamp and coworkers published one of 

the early examples. Induced by protic or Lewis acids, 3-vinylpyrrolidines (I-119) or 3-

vinylpiperidines can be synthesized in high yields (Scheme 1.30).62 A chair-like transition state (I-

118) was proposed,63 as well as a preferred planar S-cis conformation of the N-acyliminium 

structure and the E geometry of the iminium structure. A combination of these effects led to high 

stereoselectivity. 

Scheme 1.30 Synthesis of 3-vinylpyrrolidine 
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could control the diastereoselectivity of the reactions. It was proposed that products were formed 

under thermodynamic control. 

Bridged bicyclic structures can also be generated in a similar fashion. Hiemstra and Speckamp 

published the synthesis of bridged azabicycles such as hydrazides (I-121)65 and medium-sized ring 

lactams (I-123 and I-124) (Scheme 1.31).66 Brønsted and Lewis acids have been employed, while 

the chair-like transition state was again proposed for the reaction intermediates. Propargyl silanes 

have also been subjected to the same reaction conditions to afford allenes.  

Scheme 1.31 Synthesis of bridged azabicycles  
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(Scheme 1.32). This method offered an additional strategy of making g-lactams and g-amino acid 
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Scheme 1.32 [3+2] cycloaddition between allylsilane and N-chlorosulfonyl isocyanate 

 

1.4   Cyclization with Other Electrophiles 

1.4.1   Allylsilane Addition with Epoxides 

It has been observed that Lewis acid-activated nucleophilic ring-opening of the epoxides gives rise 

to a stable carbocation.68, 69 When the substrate is tethered to an allylsilane moiety, intramolecular 

cyclization can take place to afford cyclic products with high efficiency. In 1984, Tan and 

coworkers reported a TiCl4-mediated epoxy-allylsilane cyclization (Scheme 1.33).70 The main 

product (I-130) isolated was the cis-isomer. It was noteworthy that such reactions are substrate-

dependent, since previous attempt to cyclize epoxy-allylsilanes by Parsons and coworkers only 

resulted in rearrangement products.71 

Scheme 1.33 Tan’s epoxy-allylsilane cyclization 
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would cyclize, affording a single product I-133 (Scheme 1.34). The other diastereomer would 

undergo rearrangement through hydride migration to afford a ketone. 

Scheme 1.34 Sulfone-directed diastereoselective cyclization of epoxy-allylsilane 

 

Frejd and coworker looked further into the Lewis acid-catalyzed cyclization of epoxy-allylsilanes, 

especially the factors determining whether rearrangement or cyclization would take place.73 It was 

observed that both the protecting groups on the substrates and the stereochemistry of the system 

played vital roles in which transformation took place.  
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to afford anti-cyclohexanol I-136 (Scheme 1.35). 

Scheme 1.35 Stereoselective synthesis of 3-methylenecyclohexan-1-ols 
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1.4.2   Allylsilane Addition with Unsaturated C–C Bonds 

Although less reactive than the C=O and C=N bonds, unsaturated carbon–carbon bonds can 

sometimes serve as good electrophiles for allylsilane addition. In 1982, Armstrong and coworkers 

discovered that allylsilanes could activate conjugated esters in a polyene cyclization to selectively 

produce exocyclic alkenes.75 The transformation was initiated by protons or mercury 

trifluoroacetate. Synthesis of (±)-albicanyl acetate (I-139) and its C-9 epimer I-140 was achieved 

using this method (Scheme 1.36). 

Scheme 1.36 Synthesis of (±)-albicanyl acetate  

 

On the other hand, Frey and coworkers studied the intramolecular anodic olefin coupling reactions 

between allylsilanes and allylic alkoxy groups.76 Five-membered carbocycle structure was 

synthesized under constant current electrolysis conditions (Scheme 1.37). Only two (I-142 and I-

143) of the four possible diastereomers were obtained.  

Scheme 1.37 Anodic olefin coupling between allylsilane and allylic alkoxy group 
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rearrangement. Upon treatment with TiCl4, highly stereoselective conjugate addition afforded a 

trichlorotitanium enolate intermediate I-145, which readily cyclized to provide polysubstituted 

cyclohexanone derivatives (Scheme 1.38).77 Structural complexity and new stereocenters can be 

rapidly generated from simple starting materials, which is expected to be useful in both diversity- 

and target-oriented syntheses. 

Scheme 1.38 Tandem Sakurai-Aldol addition using allylsilanes 

 

1.4.3   Allylsilane Addition with Carbocations 

Allylsilanes can undergo nucleophilic addition into carbocations generated in situ. In 1998, 

Pattenden and coworkers carried out the cationic carbocyclization by treating the allyl silyl alcohol 

I-147 with catalytic amount of p-TsOH (Scheme 1.39).78 Overall retention of configuration due to 

double inversion via the corresponding cobalt-p-cation was achieved as expected.  

Scheme 1.39 Enantiospecific cobaloxime p-cation initiated carbocyclization 
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facilitated coupling reactions between alcohol I-149 and allyltrimethylsilane (Scheme 1.40A).79 

De and coworkers also reported a bismuth-catalyzed deoxygenative allylation of substituted 

benzylic alcohols with allyl-TMS. Reactions were completed in 0.5–3 hours in excellent yields 

(Scheme 1.40B).80 

Scheme 1.40 Fragment coupling between benzylic alcohol and allylsilane 
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method provided a promising and novel approach for the synthesis of other pyran-containing 

natural products. 

Scheme 1.41 Total synthesis of (–)-apicularen A 

 

1.5.2   Total Synthesis of Methyl Monate C 

Pseudomonic acid C is a potent antibiotic produced by a strain of Pseudomonas fluorescens, acting 

as an effective antimicrobial agent against Gram-positive bacteria. Markó and coworkers reported 

an asymmetric total synthesis of methyl monate C (I-162), the methyl ester derivative of 

pseodomonic acid A.49 The synthesis featured an ene-intramolecular modified Sakurai cyclization 

to prepare the tetrahydropyran core I-161. Single diastereomer was obtained upon treatment with 

BF3•OEt2 through a chair-like transition state. Subsequent allylic alkylation and cross-metathesis 

enabled the insertion of the right-hand side chain (Scheme 1.42). 
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Scheme 1.42 Total synthesis of methyl monate C 

 

1.5.3   Total Synthesis of (–)-Andrographolide and (+)-Rostratone 

(–)-Andrographolide (I-166) is the main ingredient of the Asian medicinal herb Acanthaceae, 

which has been widely used in Chinese traditional treatments for inflammation. Recent studies 

confirmed its wide range of pharmacological properties including anti-inflammatory, antipyretic, 

immunostimulatory and antitumor.  

Scheme 1.43 Total synthesis of (–)-andrographolide  
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reaction proceeded smoothly upon treatment with SnCl4 despite substantial steric repulsion 

between substituents. Further elaboration of the substrate led to (–)-andrographolide. 

Asymmetric total synthesis of the antipodal labdanoid (+)-rostratone (I-169) was synthesized 

using a similar strategy (Scheme 1.44).86 The epoxy-allylsilane precursor I-167 was synthesized 

and underwent BF3•OEt2-catalyzed cyclization to afford the bicyclic iodide product I-168 in good 

yields. It was then advanced to (+)-rostratone in a biomimetic fashion through an 

oxidation/olefination sequence and protecting group manipulation. 

Scheme 1.44 Total synthesis of (+)-rostratone 
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Scheme 1.45 Total synthesis of (+)-asperolide C 

 

1.5.5   Total Synthesis of (–)-Morphine and (–)-Dihydrocodeinone 

Polycyclic alkaloids containing nitrogen can also be synthesized through allylsilane-terminated 

cyclization. One of the great examples is Overman’s total synthesis of both enantiomers of the 

natural opium alkaloids (–)-morphine (I-179) and (–)-dihydrocodeinone (I-178) (Scheme 1.46).89 

The key step involved a zinc-catalyzed allylsilane cyclization onto the iminium ion I-176. Bulky 

DBS amine protecting group was used to facilitate the preferential formation of the trans structure 

present in the natural products, leading to high diastereoselectivity. Subsequent Heck reaction and 

further substrate elaboration gave rise to the target compounds.  

Scheme 1.46 Total synthesis of (–)-morphine and (–)-dihydrocodeinone 
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1.6   Summary 

In summary, allylsilane reagents play a pivotal role in fragment coupling reactions to form new 

carbocycles. Their unique properties and ease of preparation allow for the development of many 

new methodologies over the past 40 years. With new complex natural products being discovered 

each year, synthetic need for more powerful allylsilane annulation methods will continue to grow. 
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Chapter 2 

An Allylsilane Annulation Methodology for the Synthesis of Indanes, Tetralins and Chromanes 
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2   Chapter 2 

2.1   Introduction  

Indane is a hydrocarbon compound characterized as a fused benzene and cyclopentane ring system 

(Figure 2.1). It is related to indene, an important organometallic ligand. The indanyl core is present 

in numerous natural products and synthetic compounds with desirable properties, while also 

serving as an essential motif in ligands for many chiral catalysts. Therefore, the indane chemotype 

has been extensively used in the pharmaceutical and fragrance industries.90, 91 

Figure 2.1 Selected examples of active compounds containing an indane core 

 

Due to the ubiquity and importunate of the indane moiety, it is not surprising that many methods 

for its synthesis have been reported. Numerous types of disconnections have been investigated in 
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the retrosynthetic analysis of the basic indane ring system. Some of the most common methods 

chemists have employed to generate the indane core are the Friedel–Crafts arylation, 

intramolecular nucleophilic addition, [3+2] annulation and [2+2+2] alkyne annulation (Figure 2.2).  

Figure 2.2 Some of the most frequently employed indane methodologies 

 

One straightforward method to synthesize indanes is the Friedel–Crafts arylation. In 2011, Wang 

and coworkers treated the branched alkene II-1 with strongly acidic conditions, generating a 

carbocation which readily cyclized to afford the indane product (Scheme 2.1A).92 West and 

coworkers developed a similar acid-catalyzed route also using unactivated alkenes such as II-3. 

Short reaction times and good yields were achieved under reflux or microwave heating (Scheme 

2.1B).93 In 2015, Vasilyev and coworkers reported a diastereoselective synthesis of CF3-indanes,94 

with the cis-conformer being the preferred isomer (Scheme 2.1C). Anhydrous FeCl3 and FSO3H 

proved to be the most efficient activators, leading to short reaction times, good yields and 

simplicity of the reaction procedure. 
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Scheme 2.1 Selected examples of indane syntheses through Friedel–Crafts arylation 

 

Another common approach is the [3+2] cycloaddition between aromatic rings and alkenes or 

epoxides to generate the bicyclic system (Scheme 2.2). This annulation can be realized under 

oxidative and acid-catalyzed conditions. 

Scheme 2.2 Selected examples of indane syntheses through [3+2] cycloaddition 
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In 2000, Chiba and coworkers reported intermolecular [3+2] cycloaddition between alkene II-8 

and in situ generated p-quinomethane II-9 (Scheme 2.2A).95 Oxidative medium lithium 

perchlorate greatly facilitated the reaction by stabilizing the in situ generated zwitterion. In 2013, 

Budynina and coworkers developed a novel route to indanes using two cyclopropane units as 

cross-coupling partners.96 The reaction involved Lewis-acid catalyzed cyclopropane opening to 

afford enonate II-12 and styrylmalonate II-13, which underwent cyclodimerization to generate 

polysubstituted indanes (Scheme 2.2B). The products were found to be non-toxic to normal cells 

while showing significant toxicity against tumor cell lines, rendering this methodology promising 

towards anticancer studies. 

Some other strategies rely on an intramolecular nucleophilic addition to forge the carbocycle 

(Scheme 2.3).  

Scheme 2.3 Selected examples of indane syntheses through intramolecular Michael addition 
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asymmetric enamine catalytic intramolecular Michael reaction. High chemo-, regio-,  diastereo- 

and enantioselectivity was achieved (Scheme 2.3A). On the other hand, Smith and coworkers 

reported a kinetically unfavorable 5-endo-trig cyclization Michael reaction to generate complex 

indanes.98 A chiral cation facilitated the highly enantio- and diastereoselective transformation 

(Scheme 2.3B).  

A less frequently encountered method is the [2+2+2] alkyne annulation. Such reactions are often 

catalyzed by transition metals (Scheme 2.4).  

Scheme 2.4 Selected examples of indane syntheses through [2+2+2] annulation 
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allenes (II-29) catalyzed by nickel complexes (Scheme 2.4C).101 In their example, allenes were 

used as a synthetic equivalent to terminal alkynes.  

Most of the previously reported methods, however, suffer from one or more of the following 

limitations: the use of harsh or toxic reaction conditions, precious metal catalysts, complicated 

starting materials and limited substrate scope. Development of facile and mild indane 

methodologies is therefore of great interest to synthetic chemists. 

2.2   Initial Attempt Using Homoallylic Ether Substrate 

We aimed to devise a versatile and facile Lewis/Brønsted acid-catalyzed synthesis that allows for 

the rapid formation of indanes under mild conditions. The initial inspiration stemmed from the 

Thomson group’s early efforts to synthesize lignan natural products, wherein an unexpected indane 

derivative was observed as the cyclization byproduct (Scheme 2.5).  

Scheme 2.5 Formation of an indane byproduct 
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byproduct II-36 was formed in addition to the desired benzhydryl II-35. When the benzhydryl 

species was treated with TFA, full conversion to indane II-36 can be achieved.  

This intriguing discovery represents a potential methodology to synthesize indanes and inspired 

our initial retrosynthetic analysis using a convergent strategy (Scheme 2.6). We decided to target 

the homoallylic benzhydryl species II-38, which can undergo a Friedel–Crafts arylation to afford 

indanes. The benzhydryl intermediate would be derived from homoallylic ether II-39 through  

two-component coupling with an aryl species.  

Scheme 2.6 Initial retrosynthetic analysis of indanes 
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Table 2.1 Acid catalyst screen with the homoallylic ether starting material 

 

 

We sought to further optimize the reaction by exploring the potential of different solvents to 

achieve higher yields (Table 2.2).  

Table 2.2 Solvent screen with the homoallylic ether starting material 
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We hypothesized that a more polar solvent would better stabilize the positive charge generated by 

ionization of the ether starting material II-40, thereby enhancing desired reaction rates and 

minimizing byproducts derived from elimination. As expected, MeNO2 gave the best yield (Table 

2.2, Entry 6), while the remaining candidates produced no reaction or only a small amount of the 

desired prodcut. We therefore selected MeNO2 (0.1 M) and HNTf2 (10 mol%) as our optimal 

reaction conditions. Similar solvent effects were observed by Rueping and coworkers during their 

benzylation of arenes.102 

At this point we were unable to improve the yield further, and hypothesized that this was due to 

the poor ionizability of the methyl ether group. Different ionizable groups were therefore installed, 

and to our delight improved yields were observed in all cases (Table 2.3). When the readily 

ionizable trifluoacetate was used, excellent yields can be achieved (Table 2.3, Entry 4). 

Table 2.3 Ionizable group screen with the homoallylic ether starting material 
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substituents on the aryl group of the alcohol starting material. Electron-rich aromatic rings were 

necessary to facilitate the Friedel–Crafts arylation and stabilize the positive charge generated from 

ionization. We opted to explore an alternative approach despite the promising results. 

2.3   Alternative Benzhydryl Approach  

Due to the limitations of the methyl ether approach, we took a step back and re-examined our 

retrosynthetic analysis. We decided to access the same homoallylic intermediate II-43 through an 

alternative benzhydryl approach (Scheme 2.7, Route B). We envisioned that intermediate II-43 

can be generated from the benzhydryl starting material II-44, in which the second aryl group was 

pre-installed onto the substrate. This new route would allow us to 1) realize more efficient 

ionization with the alcohol ionizable group; 2) incorporate electron-deficient groups into the 

system, leading to a wider substrate scope. 

Scheme 2.7 Alternative approach to access the homoallylic intermediate 

 

In our proposed mechanism (Scheme 2.8), the benzhydryl alcohol II-44 can be readily synthesized 

through the addition of either an aryl-Grignard or aryl-lithium reagent to aldehyde II-46. The 

alcohol would ionize under acidic conditions to generate the benzhydryl cation II-47, which 

undergoes fragment coupling with allylsilane II-45 to give the targeted homoallylic intermediate 

Me
MeO

MeO

route A

route B

OMe Me

+
OMe

OMe

MeO

MeO

OH

+ TMS
Me

Me Me

MeO

MeO

BA

II-40 II-34 II-43 II-44 II-45

II-41



 61 

II-43. Protonation of the terminal alkene would give rise to the tertiary carbocation II-48, followed 

by an intramolecular Friedel–Crafts arylation to afford indane II-41. 

Scheme 2.8 Proposed mechanism for indane synthesis 

 

Fragment coupling reactions between benzhydryl alcohols and allylsilanes have been well studied 

in the previous literature (Section 1.4.3). Various Lewis and Brønsted acids such as BF3,82 InCl3,81 

BiCl3,80 FeCl3,83 TiCl484 and HBF4•OEt285 have shown superb catalytic activity for such reactions.  

Scheme 2.9 Fragment coupling between benzhydryl alcohol and allylsilane 

 

For instance, Liu and coworkers utilized FeCl3 to promote a highly-efficient allylsilane addition 

to benzhydryl alcohol II-49 (Scheme 2.9A).83 Bandi and coworkers reported a similar allylation 
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reaction using TiCl4 as catalyst, completing the reaction in one minute with excellent yield under 

mild reaction conditions (Scheme 2.9B).84 

2.3.1   Reaction Condition Optimization   

We selected commercially available methallyltrimethyl silane II-45 and the electron-rich 

benzhydryl alcohol II-44 for our optimization studies. A brief catalyst and solvent screen was 

performed to confirm that MeNO2 and HNTf2 were still the optimal candidates. To our delight, 

this combination gave us the highest yield of II-41 (Table 2.4 Entry 7). Increasing or decreasing 

the temperature did not afford an increase in yield (Table 2.4, Entry 5–6).  

Table 2.4 Solvent and catalyst screen for benzhydryl alcohol substrate 

 

 

2.3.2   Exploration of Substrate Scope 

To examine the substrate scope of our proposed transformation, the optimized conditions were 

applied to a variety of benzhydryl alcohols (Table 2.5). We were pleased to find that the system 

was mild and versatile enough to accommodate a wide range of substrates. The results were 
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grouped into several categories based on which ring the cyclization took place. We first 

investigated benzhydrols with an electron-rich aryl ring and an electron-neutral phenyl ring. The 

Friedel–Crafts arylation was anticipated to occur exclusively at the former ring. Indanes II-55a, 

II-55d and II-55e were obtained in clean reactions with high yields. In some cases, such as 

compound II-55b and II-55c, elevated temperature was required to most likely overcome the steric 

strain of cyclization due to the ortho substituents. In these two cases, a substantial increase in yield 

(~50%) was observed when the temperature was raised from 20 °C to 50 °C. We were able to 

obtain II-55f as a single isomer with cyclization occurring at the electron-rich position on 

naphthalene. Benzofuran also proved to be electron-rich enough to undergo the Friedel–Crafts 

alkylation, yielding product II-55g. While not an indane, the benzofuran chemotype is present in 

many bioactive compounds.103  

Table 2.5 Benzhydrol substrates with phenyl and electron-rich aryl rings 
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Thiophene and furan-derived starting materials showed signs of minor decomposition even when 

the reaction was run at 0 °C. Indole and methylindole containing substrates only yielded the 

uncyclized homoallylic products II-55h, possibly due to the side reaction between the indole and 

triflimide. The reduced electron density in the methylindole ring system might also be problematic. 

Non-substituted and mono-methoxy substituted phenyl rings failed to provide the desired indane 

products, which was not surprising due to the lack of electron-rich rings required for the 

cyclization. 

We also examined benzhydryl alcohol substrates with electron-rich dimethoxybenzene rings, 

where the cyclization was expected to occur (Table 2.6). Electron-deficient and electron-rich 

substituents can be effectively incorporated, giving single product with satisfying yields. To our 

delight, the aniline-containing substrate afforded a protected indane II-57d when heated to 80 ºC. 

Table 2.6 Benzhydrol substrates with one dimethoxybenzene ring 
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As the electron density of the second ring increases, however, a mixture of cyclization 

regioisomers were obtained (Table 2.7). Selectivity improves as the difference in electron density 

between the two rings increases, indicating cyclization was governed by electronic effects in this 

case. 

Table 2.7 Benzhydrol substrates with two electron-rich aryl rings 

 

Of particular interest are the benzhydrol substrates with mono-methoxy substitution. According to 

our previous studies, the mono-methoxy substituted benzhydrols all failed to yield the indane 

structure (Scheme 2.10). For meta-methoxy substituted benzhydrol II-58, the ionization was not 

efficient due to the lack of electron-donating group para to the ionization site. For para-methoxy 
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dimethoxy benzene, however, we started observing indane products in both cases (II-57g, II-57l 

and II-57m). Inspired by this outcome, we introduced the benzhydrol species with meta-methoxy 

substituent on one ring, and para-methoxy substituent on the other ring. A single regioisomer II-

69 was obtained with 60% yield. The combined results here again confirmed that this 

transformation was predominantly governed by electronic effects.  

Scheme 2.10 Benzhydrol substrates with mono-methoxy substitution 

 

In addition to aromatic rings, alkyl substituents were also successfully introduced into the products 

(Table 2.8). The spirocycle system in II-71f can be found in many natural products and bioactive 

compounds.104, 105 As the ionization site became too hindered, however, the yield was slightly 

compromised (II-71g). A primary benzylic alcohol was also employed, though we were not able 

to achieve a satisfying yield likely due to the poor ionizability of the substrate (II-71h). 
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Table 2.8 Benzhydrol substrates with alkyl substituents  

 

It was noteworthy that although II-71g was synthesized in mediocre yield, it can be otherwise 

accessed through a silane free method (Scheme 2.11). In the absence of the allylsilane, electron-

rich benzhydryl alcohols with a quaternary center can undergo acid-promoted dimerization to yield 

indane products rather efficiently. Complicated fused ring structure II-74 can also be generated.  

Scheme 2.11 Silane-free synthesis of indanes 
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According to our proposed mechanism of this intriguing transformation, an olefin species II-75 

was generated upon ionization of alcohol II-72. Olefin II-75 then dimerized under acidic 

conditions and underwent Friedel–Crafts arylation to generate the dimeric indane II-71g (Scheme 

2.12). In order to prove the feasibility of the proposed mechanism, a benzylic olefin species II-75 

was prepared. Upon treatment with HNTf2, the olefin gave rise to the dimerization product with 

full conversion. This result confirmed olefin II-75 as the reaction intermediate.  

Scheme 2.12 Proposed mechanism for the formation of dimer indane 

 

2.3.3   Synthesis of Indanes with Additional Substitution  
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Reddel, prepared allylsilane II-79 and II-80 and showed they can be used to smoothly afford 

indanes with two or more stereocenters (Table 2.9). She noticed that when a mixture of syn and 

anti diastereomers were formed (II-81a–f), the difference in A-values between the aryl and R1 

group affects the diastereoselectivity.  

Table 2.9 Substrate scope for indanes with additional substitution 
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proceeds through a Brønsted acid-catalyzed addition of allylsilane into benzaldehyde. The 

resulting benzylic alcohol II-83 would subsequently ionize under acidic conditions, trapping the 

electron-rich aryl ring, giving rise to the homoallylic intermediate II-43. A late-stage ionization of 

the olefin followed by an intramolecular Friedel–Crafts arylation would lead to the desired indane 

product as demonstrated previously (Scheme 2.13).  

Scheme 2.13 Proposed mechanism for the one-pot synthesis of indanes 

 

A variety of reaction conditions were screened. Nitromethane and HNTf2 gave the highest yield 

again as they did in the benzhydrol approach. It was noticed that as more equivalents of the 
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from the two-component coupling indane methodology. We hypothesized that the low yield was 

partially due to an inefficient allylation step, since the reaction gave only trace amount of product 

II-83 when it was ran individually in MeNO2.  

Table 2.10 Reaction condition screen for one-pot synthesis of indane 

 

 

The optimized reaction conditions were applied to some of the selected substrates. Preliminary 

data proved that indanes could be successfully synthesized in a one-pot fashion. The system 

tolerates electron-neutral, electron-rich and electron-poor aryl substituents. Two regioisomers 

were again observed for the double-electron-rich ring systems, as we had expected (Table 2.11).  

We wish to further optimize this one-pot system in the future. It represents a powerful method to 

build structural complexity from simple building blocks, and can be potentially applied to the 

syntheses of natural products and bioactive compounds. 
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Table 2.11 Substrate table for one-pot synthesis of indanes 

 

2.4   Development and Application of Type-B Allylsilanes  

So far methallyltrimethyl silane and its derivatives have been explored, which yield indane 

products with a gem-dialkyl group. We decided to label them as Type A allylsilanes. However, we 

hoped to expand our substrate scope by utilizing differently substituted allylsilanes, which would 

allow us to introduce more structural variance and render our methodology more practical.  
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acidic conditions, followed by cyclization to generate indane II-87 with an exocyclic olefin. 

Synthesis of the key intermediate II-88 can be realized through fragment coupling between the 

previously reported benzhydryl alcohol II-44 and allylsilane II-89, which we referred to as Type 

B allylsilanes (Scheme 2.14).  
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Scheme 2.14 Retrosynthetic analysis with Type B allylsilanes 

 

2.4.1   Synthesis of Type B Allylsilanes 

A few syntheses of allylsilanes with a similar substitution pattern have been reported in the 

literature,107-110 but synthetic methods for our desired Type B allylsilanes were much less well 

developed. We sought to devise a facile and general protocol to access these reagents through 

epoxide opening.  

According to some previously reported examples of regioselective addition of epoxides, cuprate 

reagents give rise to the most promising results.111-113 The initial attempt was to generate vinyl 

cuprate II-91 through addition of vinyl lithium to copper bromide facilitated by dimethyl sulfide 

ligand.112 The cuprate reagent formed in situ would readily open epoxide II-92 in a regioselective 

fashion, affording Type B allylsilane II-89a (Scheme 2.15).  

Scheme 2.15 Initial attempt using vinyl lithium reagents 
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We then turned our attention to Grignard reagents, which are more easily prepared and suitable for 

scaling-up. Freshly made vinyl magnesium bromide II-93 was subjected to copper bromide at low 

temperature to afford cuprate II-94 in situ,115 which subsequently underwent epoxide opening in 

one pot (Scheme 2.16, Route A).  

Scheme 2.16 Preliminary results using Grignard reagents 

 

Unfortunately, a mixture of regioisomers were obtained with our desired isomer being the major 

product (II-89a). We hypothesized that the formation of byproduct II-96 may have arisen from 

rearrangement of epoxysilane II-92 to aldehyde II-95, followed by 1,2-addition of the vinyl 

cuprate (Scheme 2.16, Route B).  

After screening a variety of conditions, it was found that rapidly warming the reaction to room 

temperature at the final stage, instead of slowly warming to –25 ºC, gave our desired allylsilane 

II-89a as a single regioisomer in 64% yield. One possible explanation for this seemingly 

counterintuitive phenomenon is that route A proceeded at a much faster rate under room 

temperature than route B did. Predominant formation of allylsilane II-89a was therefore achieved 

under kinetic control. Applying this method to two more vinyl Grignard substrates allowed us to 
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2.17). 
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Scheme 2.17 Synthesis of Type B allylsilanes 

 

2.4.2   Indane Substrate Scope with Type B Allylsilanes 

With the new silane reagents in hand, we applied them to our indane methodology. We first 

explored the substrate scope using the most simplified Type B allylsilane II-89a. Highest yields 

were achieved when electron-rich benzhydrol starting materials were used (Table 2.11, II-98a–c). 
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examples with Type A allylsilane, possibly due to the less efficient SN2’ cyclization pathway since 

unreacted homoallylic benzhydryl intermediates were observed. Future optimization might 

involve exploration of harsher reaction conditions and better leaving groups.  

Similarly, with an extra methyl substituent on the allylsilane, II-89b and II-89c reacted promptly 

with benzhydrols to afford indanes with up to three contiguous stereocenters. Electron-rich 

symmetrical benzhydrol II-99 gave the highest yields (Scheme 2.18). We were able to achieve 

better stereoselectivity for II-100 because of the increased steric strain on the indane backbone. 

Uncyclized intermediates, however, were again observed in both cases. 

Scheme 2.18 Synthesis of indanes using Type B allylsilane II-89b and II-89c  
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catalyzed cycloaddition to generate carbocycles.116, 117 We were particularly interested in these 

compounds, since the silyl ether functionality might serve as a suitable leaving group during 

fragment coupling to generate six-membered ring products. We labeled them Type C allylsilanes, 

which were anticipated to afford the homoallylic benzhydryl intermediate II-103 upon coupling 

with the benzyl alcohol. The intermediate II-103 would then undergo acid-catalyzed SN2’ 

displacement to afford tetralin II-104 with an exocyclic olefin. We envisioned that an acid-

catalyzed olefin isomerization would readily occur to generate the more stable, conjugated internal 

alkene II-105 (Scheme 2.19). 

Scheme 2.19 Formation of tetralin from Type C allylsilane 
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reaction conditions. Tetralin products were obtained with electron-rich benzhydryol substrates 

(Table 2.13). The modest yields were primarily due to inefficient cyclization, since uncyclized 

reaction intermediates were observed, similar to what we saw with Type B allylsilanes. This 

limitation can be partially overcome by using higher catalyst loading, but efforts in reaction 

optimization to significantly improve yields proved to be fruitless. Substrates containing only 
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electron-neutral phenyl rings and/or alkyl chains, as well as heterocycles (e.g. benzofuran) failed 

to afford cyclization products.  

Table 2.13 Synthesis of tetralins with Type C allylsilane II-106 

 

2.5.2   Synthesis of Lignan Natural Products 

The preliminary results, however, showed great potential in applying this method to the synthesis 

of tetralins and tetralin-related natural products. The structure of II-107c closely resembles the 

lignan natural product cyclogalgravin, with the difference of a single methyl group. We envisioned 

a differently-substituted Type C allylsilane would allow us to access the natural product. We 

therefore turned our attention to allylsilane II-109, a known reagent synthesized by Trost and 

coworkers from a propargyl alcohol.117 To our delight, subjecting it to our standard reaction 

conditions gave rise to cyclogalgravin (II-110a) in 78% yield. It represents a mild and highly-

efficient three-step total synthesis (two step longest linear sequence) of the natural product. 

Pycnanthuligene B (II-110c) was also synthesized in a similar fashion, isolated as an inseparable 

1:1 mixture of cyclization regioisomers. A preferred anti geometry was observed in both cases, as 

we had seen previously with Type A allylsilanes (Table 2.9). Benzhydryol substrates with alkyl 

substituents afforded tetralin products with lower yields (Table 2.14). 
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Table 2.14 Synthesis of tetralins and lignan natural products 

 

As we were examining the mass balance of these reactions, two types of byproducts were observed, 

which would explain the low-efficiency of these transformation (Scheme 2.20).  

Scheme 2.20 Formation of dimerization byproducts 
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The acid-catalyzed dimerization side reaction afforded indanes in roughly 1:1 ratio to our desired 

tetralins, similar to what we had observed with Type A allysilanes (Scheme 2.11). The undesired 

products were extremely difficult to suppress for electron-rich benzhydrols containing a quaternary 

center. 

On the other hand, unanticipated oxidation occurred during almost all of the reactions, giving rise 

to fully-conjugated naphthalene byproducts (Scheme 2.21). In some of the cases, naphthalene was 

even isolated as the major product (II-114). Optimizing reaction conditions, such as degassing the 

solvent and using air-tight vessels, did not suppress the side reaction. 

Scheme 2.21 Formation of oxidation byproducts  

 

2.5.3   Oxidation Byproducts and Naphthalene-Type Lignans 

Despite the limitation of byproducts, we saw the oxidation side reaction as an opportunity to further 

expand our substrate scope and access naphthalene-type natural products. When benzhydrol II-

117 underwent fragment coupling with Type C allylsilane,  pycnanthuligene C (II-120) was 

originally obtained as a minor oxidation byproduct in addition to the tetralins. Treating the reaction 

mixture with DDQ yielded the natural product in 73% yield over two steps (Scheme 2.22).   
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Scheme 2.22 Synthesis of pycnanthuligene C 

 

Inspired by this result, we next targeted free alcohol-containing naphthalene lignans, such as 

cinnamophilin A and sacidumlignan A. The corresponding benzhydrol substrates bearing a free 

alcohol substituent, however, failed to undergo fragment coupling with only starting materials 

recovered (Table 2.15, Entry 1). We hypothesized that the phenol may have been protonated by 

triflimide, consuming the acid catalyst before the desired transformation could occur. Various 

phenol protecting groups were therefore screened with benzhydrol II-121 (Table 2.15).   
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Unfortunately, both benzyl- and pivaloyl-protected benzhydrols failed to give the desired tetralin 

product (Table 2.15, Entry 2–3), while the TIPS-protected substrate only yielded the mono-

deprotected benzhydrol II-121 (Table 2.15, Entry 4). However, the isopropyl protecting group 

allowed for successful formation of tetralin II-122 in 49% yield (Table 2.15, Entry 5). The yield 

was compromised possibly due to ionization of the isopropyl ether under acidic conditions, which 

might have also happened with the benzyl-protected substrate.  

With the isopropyl-protected tetralin intermediate II-123 in hand, we sought proper deprotection 

conditions to unveil the phenol in the presence of methyl ethers. Initial attempts with AlCl3 only 

led to decomposition. After literature search, we discovered that treatment with BCl3 selectively 

cleaved the isopropyl group while leaving the methyl ethers intact.118 Thus, synthesis of the natural 

product 4’,5-O-didemethylcyclogalgravin (II-124) was achieved in 81% yield. On the other hand, 

subjecting II-123 to DDQ oxidation conditions led to isopropyl-protected naphthalene 

intermediate II-125, which afforded cinnamophilin A (II-126) after BCl3 promoted deprotection 

(Scheme 2.23). 

Scheme 2.23 Synthesis of 4’,5-O-didemethylcyclogalgravin and cinnamophilin A 
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Following the same cyclization-(oxidation)-deprotection sequence, highly-substituted natural 

products sacidumlignan B and sacidumlignan A were synthesized with satisfying yields (Scheme 

2.24).  

Scheme 2.24 Synthesis of sacidumlignan B and sacidumlignan A 
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We saw potential in applying this methodology to the synthesis of heterocycles such as chromanes 
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Scheme 2.25 Expansion of methodology to access heterocycles 

 

Our preliminary results suggested that heterocycles can be indeed synthesized in this fashion. 

Chromane compounds with a gem-dialkyl group were synthesized in modest to good yields using 

Type A allylsilanes (Table 2.16). 
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The methodology tolerates electron-rich and electron-poor aryl substituents. A mixture of 

inseparable diastereomers was obtained when phenyl-substituted allylsilane II-139 was used. The 

syn isomer was preferred according to nOe studies, similar to the selectivity we observed with 

Type B allylsilanes (Section 2.4.2). Benzhydryl alcohol starting materials containing a quaternary 

center failed to give the desired chromane, only elimination of the benzylic alcohol was observed.  

Type B allylsilanes were also subjected to the same starting materials (II-138). However, 

significant difficulty was met during cyclization with a large amount of uncyclized reaction 

intermediates recovered. Poor leaving group and steric strain during cyclization might be the main 

causes of the inefficiency.  

Future studies involve optimization of reaction conditions, such as investigating better leaving 

groups and exploring the substrate scope. We also see potential for enantioselective chromane 

synthesis through chiral counterion catalysis using chiral Brønsted acid catalysts.119, 120  In addition 

to the chromane chemotype, we envisioned benzoxepins can be formed using Type C allylsilanes. 

expanding our methodology to the synthesis of medium-sized rings. 

2.5.5   Summary and Outlook 

In summary, a highly efficient allylsilane fragment coupling methodology was developed. The 

mild reaction conditions allow for facile synthesis of various cyclic compounds, such as indanes 

and tetralins (Figure 2.3). A wide range of substituents can be tolerated, leading to excellent 

substrate diversity. The synthetic utility of this method was demonstrated through the total 

synthesis of seven lignan natural products and successful formation of chromanes. 
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Figure 2.3 Application of the allylsilane fragment coupling methodology 

 

2.6   Experimental Section 

Figure 2.4 Indane and benzhydrol numbering systems 

 

2.6.1   Indane Starting Material Experimental Procedure and Characterization Data 

Scheme 2.26 General method A for synthesis of starting materials through a Grignard reaction 
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sat. NH4Cl solution and extracted with Et2O. The combined organic layers were dried over Na2SO4 

and concentrated under reduced pressure. The resulting material was purified by flash column 

chromatography on silica gel with EtOAc in hexanes solvent systems.  

Scheme 2.27 General method B for synthesis of starting materials through a lithium-halogen 

exchange reaction 

 

General Method B: 4-Bromoveratrol (1.6 equiv) was dissolved in dry THF (0.33 M soln) and 

cooled to –78 ºC. A solution of nBuLi in hexanes (1.5 equiv) was added dropwise and the solution 

was allowed to stir at –78 ºC under N2 atmosphere for two hours. Aryl aldehyde or ketone II-143 

(1 equiv) was dissolved in dry THF (1 mL/ mmol II-143) and added dropwise via cannula to the 

stirred solution (1 mL/ mmol II-143 rinse). The solution was allowed to come to room temperature 

and stir for 1 hour.  At this time, all starting material was consumed as determined by TLC. The 

reaction was quenched with sat. NH4Cl solution and extracted with EtOAc. The combined organic 

layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting material 

was purified by flash column chromatography on silica gel with EtOAc in hexanes solvent 

systems.  
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2H), 5.78 (d, J = 3.1 Hz, 1H), 3.83 (s, 9H), 2.27 (d, J = 3.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) 

δ 153.4, 143.7, 139.6, 137.4, 128.7, 127.9, 126.6, 103.6, 76.5, 61.0, 56.2. All spectroscopic data 

for this compound agrees with previously reported values.121, 122  

3,5-Dimethoxybenzhydrol (SII-55b): Synthesized from 3,5-dimethoxy 

benzaldehyde (1.84 mmol) via General Method A (440 mg, 98% yield): 

1H NMR (500 MHz, CDCl3) δ 7.43 – 7.26 (m, 5H), 6.58 (d, J = 2.3 Hz, 

2H), 6.39 (t, J = 2.3 Hz, 1H), 5.79 (d, J = 3.5 Hz, 1H), 3.79 (s, 6H), 2.25 (d, J = 3.6 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 161.0, 146.4, 143.6, 128.7, 127.8, 126.7, 104.7, 99.6, 76.4, 55.5. All 

spectroscopic data for this compound agrees with previously reported values.123 

2,5-Dimethoxybenzhydrol (SII-55c): Synthesized from 2,5-

dimethoxybenzaldehyde (5.06 mmol) via General Method A (1.2 g, 97% yield): 

IR (Germanium ATR): 3418, 2934, 1591, 1492, 1213, 1038, 830 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 7.40 – 7.19 (m, 5H), 6.83 (d, J = 3.0 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H), 6.75 

(dd, J = 8.8, 3.0 Hz, 1H), 5.99 (d, J = 5.4 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.04 (d, J = 5.4 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 153.9, 151.1, 143.2, 133.2, 128.3, 127.4, 126.6, 114.2, 112.9, 

112.0, 72.4, 56.1, 55.8; HRMS (ESI): Exact mass calcd for C15H16O3 [M+Na]+, 267.0992. Found 

267.1000. 

3,4-Dimethoxybenzhydrol (II-44): Synthesized from veratraldehyde 

(5.11 mmol) via General Method A (1.2 g, 99% yield): 1H NMR (500 

MHz, CDCl3) δ 7.40 – 7.25 (m, 5H), 6.93 (d, J = 2.0 Hz, 1H), 6.89 (dd, J = 8.2, 2.0 Hz, 1H), 6.83 

(d, J = 8.2 Hz, 1H), 5.81 (d, J = 3.5 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 2.18 (d, J = 3.5 Hz, 1H); 
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13C NMR (126 MHz, CDCl3) δ 149.2, 148.6, 144.0, 136.7, 128.6, 127.7, 126.6, 119.1, 111.1, 

109.9, 76.2, 56.1, 56.0. All spectroscopic data for this compound agrees with previously reported 

values.124 

3,4-Methylenedioxybenzhydrol (SII-55e): Synthesized from piperonal 

(2.18 mmol) via General Method A (497 mg, 99% yield): 1H NMR (500 

MHz, CDCl3) δ 7.42 – 7.26 (m, 5H), 6.91 – 6.85 (m, 2H), 6.79 (d, J = 8.4 Hz, 1H), 5.95 (q, J = 1.4 

Hz, 2H), 5.79 (d, J = 3.4 Hz, 1H), 2.20 (d, J = 3.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 148.0, 

147.2, 143.9, 138.1, 128.6, 127.7, 126.5, 120.2, 108.2, 107.3, 101.2, 76.2. All spectroscopic data 

for this compound agrees with previously reported values. 

2-Naphthyl(phenyl)methanol (SII-55f): Synthesized from 2-

naphthaldehyde (4.95 mmol) via General Method A (1.2 g, 99% yield): 

1H NMR (500 MHz, CDCl3) δ 7.90 (s, 1H), 7.87 – 7.78 (m, 3H), 7.51 – 7.45 (m, 2H), 7.45 – 7.40 

(m, 3H), 7.38 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 6.01 (d, J = 3.5 Hz, 1H), 2.32 (d, J = 3.5 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 143.8, 141.3, 133.4, 133.0, 128.7, 128.5, 128.2, 127.8, 127.8, 

126.9, 126.3, 126.1, 125.2, 124.9, 76.5. All spectroscopic data for this compound agrees with 

previously reported values.125  

2-(1-Hydroxyphenylmethyl)benzofuran (SII-55g): Synthesized from 2-

benzofurancarboxaldehyde (4.0 mmol) via General Method A (870 mg, 

97% yield): 1H NMR (500 MHz, CDCl3) δ 7.54 – 7.47 (m, 3H), 7.45 (dq, J 

= 8.3, 0.9 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), 7.26 (td, J = 7.7, 1.4 Hz, 1H), 7.20 

(td, J = 7.5, 1.0 Hz, 1H), 6.53 (s, 1H), 5.96 (d, J = 4.5 Hz, 1H), 2.49 (d, J = 4.5 Hz, 1H); 13C NMR 

OH

O
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(126 MHz, CDCl3) δ 158.6, 155.2, 140.4, 128.8, 128.6, 128.2, 126.9, 124.5, 123.0, 121.3, 111.5, 

104.2, 70.9. All spectroscopic data for this compound agrees with previously reported values.125  

3,4’-Dimethoxybenzhydrol (II-66): 4-bromoanisole (8 mmol) 

was dissolved in dry THF (15 mL) and cooled to –78 ºC. A solution 

of nBuLi in hexanes (7.5 mmol) was added dropwise and the solution was allowed to stir at –78 

ºC under N2 atmosphere for two hours. 3-anisaldehyde (5 mmol) was dissolved in dry THF (5 mL) 

and added dropwise via cannula to the stirred solution (5 mL rinse). The solution was allowed to 

come to room temperature and stir for 1 hour.  At this time, all starting material was consumed as 

determined by TLC. The reaction was quenched with sat. NH4Cl solution and extracted with 

EtOAc (3 x 30 mL). The combined organic layers were dried over Na2SO4 and concentrated under 

reduced pressure. The resulting material was purified by flash column chromatography on silica 

gel with a 30% EtOAc in hexanes solvent system (1.2 g, 98% yield): melting point: 33.5–35.8 ºC; 

IR (Germanium ATR): 3415, 3001, 2835, 1609, 1510, 1244, 1029, 833, 694 cm–1; 1H NMR (500 

MHz, CDCl3) δ 7.26 (s, 3H), 6.98 – 6.91 (m, 2H), 6.89 – 6.84 (m, 2H), 6.80 (ddd, J = 8.3, 2.7, 1.0 

Hz, 1H), 5.77 (d, J = 3.5 Hz, 1H), 3.79 (s, 6H), 2.17 (d, J = 3.5 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 159.9, 159.2, 145.8, 136.2, 129.6, 128.0, 118.9, 114.0, 113.0, 112.1, 75.9, 55.4, 55.4;  

HRMS (ESI): Exact mass calcd for C15H16O3 [M+Na]+, 267.0992. Found 267.0998. 

3,4-Methylenedioxy-3’,4’-dimethoxybenzhydrol (SII-57h): 

Synthesized from piperonal (1.0 mmol) via General Method B (242 

mg, 84% yield): melting point: 101.5–103.5 ºC; IR (Germanium ATR): 3338, 2992, 2837, 1594, 

1505, 1235, 1140, 1021, 874, 810 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.91 (d, J = 1.8 Hz, 1H), 

6.88 (dd, J = 8.3, 1.8 Hz, 2H), 6.86 – 6.84 (m, 2H), 6.83 (d, J = 8.3 Hz, 1H), 6.77 (d, J = 8.4 Hz, 

OH
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1H), 5.94 (s, 2H), 5.72 (d, J = 3.3 Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 2.14 (d, J = 3.3 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 149.2, 148.6, 147.9, 147.1, 138.2, 136.6, 120.0, 118.8, 111.1, 109.7, 

108.2, 107.3, 101.2, 75.9, 56.1, 56.0; HRMS (ESI): Exact mass calcd for C16H16O5 [M+Na]+, 

311.0890. Found 311.0899.  

Benzo[b]furan-2-yl-(3,4-dimethoxyphenyl)carbinol (SII-57j): 

Synthesized from 2-benzofurancarboxaldehyde (2.0 mmol) via 

General Method B (475 mg, 83% yield): IR (Germanium ATR): 

3453, 3002, 2836, 1512, 1453, 1254, 1136, 1024, 809, 742 cm–1; 1H NMR (500 MHz, CDCl3) δ 

7.52 (ddd, J = 7.8, 1.3, 0.6 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.26 (ddd, J = 8.3, 7.2, 1.4 Hz, 1H), 7.21 

(ddd, J = 7.5, 7.2, 0.9 Hz, 1H), 7.06 (d, J = 2.0 Hz, 1H), 7.01 (ddd, J = 8.3, 2.0, 0.4 Hz, 1H), 6.87 

(d, J = 8.3 Hz, 1H), 6.54 (t, J = 0.9 Hz, 1H), 5.91 (d, J = 4.3 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 

2.51 (d, J = 4.3 Hz, 1H).; 13C NMR (126 MHz, CDCl3) δ 158.8, 155.2, 149.3, 149.3, 133.0, 128.2, 

124.4, 123.0, 121.3, 119.4, 111.5, 111.1, 110.0, 104.0, 70.7, 56.1, 56.1; HRMS (ESI): Exact mass 

calcd for C17H16O4 [M+Na]+, 307.0941. Found 307.0951. 

3,3’,4-Trimethoxybenzhydrol (SII-57l): Synthesized from 3-

anisaldehyde (5.0 mmol) via General Method B (1.0 g, 74% yield): 

melting point: 113.5–115.2 ºC; IR (Germanium ATR): 3392, 3089, 

2841, 1520, 1261, 1134, 1025, 798, 754 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.29 – 7.23 (m, 1H), 

6.98 – 6.92 (m, 3H), 6.89 (dd, J = 8.2, 2.0 Hz, 1H), 6.85 – 6.79 (m, 2H), 5.77 (d, J = 3.4 Hz, 1H), 

3.86 (s, 3H), 3.85 (s, 3H), 3.79 (s, 3H), 2.18 (d, J = 3.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

159.9, 149.2, 148.7, 145.7, 136.5, 129.6, 119.1, 118.9, 113.0, 112.2, 111.1, 109.9, 76.1, 56.1, 56.0, 

55.4; HRMS (ESI): Exact mass calcd for C16H18O4 [M+Na]+, 297.1097. Found 297.1107. 
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(3,4-Dimethoxyphenyl)(2-naphthyl)methanol (SII-57n): 

Synthesized from 2-naphthaldehyde (3.0 mmol) via General 

Method B (608 mg, 69% yield): melting point: 84.9–86.1 ºC; IR 

(Germanium ATR): 3334, 3053, 2837, 1591, 1511, 1232, 1135, 1021, 725 cm–1; 1H NMR (500 

MHz, CDCl3) δ 7.89 (s, 1H), 7.87 – 7.81 (m, 2H), 7.80 (d, J = 8.5 Hz, 1H), 7.51 – 7.45 (m, 2H), 

7.43 (dd, J = 8.5, 1.8 Hz, 1H), 6.96 (d, J = 1.8 Hz, 1H), 6.93 (dd, J = 8.2, 1.8 Hz, 1H), 6.83 (d, J = 

8.2 Hz, 1H), 5.95 (d, J = 3.3 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.36 (d, J = 3.3 Hz, 1H); 13C NMR 

(126 MHz, CDCl3) δ 149.2, 148.7, 141.3, 136.5, 133.4, 133.0, 128.4, 128.2, 127.8, 126.3, 126.1, 

125.0, 124.9, 119.3, 111.1, 110.0, 76.2, 56.0, 56.0; HRMS (ESI): Exact mass calcd for C19H18O3 

[M+Na]+, 317.1148. Found 317.1158.  

2,3’,4’-Trimethoxybenzhydrol (SII-57f): Synthesized from 2-

anisaldehyde (1.0 mmol) via General Method B (274 mg, 99% yield): 

melting point: 60.5–68.1 ºC; IR (Germanium ATR): 3198, 3009, 2835, 

1504, 1243, 1153, 1020, 802, 760 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.27 (td, J = 8.2, 1.7 Hz, 

1H), 7.20 (dd, J = 7.5, 1.7 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.94 (td, J = 7.5, 1.1 Hz, 1H), 6.90 

(dd, J = 8.2, 1.1 Hz, 1H), 6.86 (dd, J = 8.3, 2.0 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.02 (d, J = 5.2 

Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.02 (d, J = 5.2 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 156.9, 148.9, 148.3, 135.9, 132.2, 128.9, 127.9, 121.0, 119.0, 110.9, 110.9, 110.1, 72.2, 

56.0, 56.0, 55.6; HRMS (ESI): Exact mass calcd for C16H18O4 [M+H]+, 275.1278. Found 

275.1285.  
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3,4,4’-Trimethoxybenzhydrol (SII-57g): Synthesized from 4-

anisaldehyde (5.0 mmol) via General Method B (961 mg, 70% 

yield): 1H NMR (500 MHz, CDCl3) δ 7.28 (d, J = 8.7 Hz, 2H), 6.92 

(d, J = 2.0 Hz, 1H), 6.89 – 6.85 (m, 3H), 6.82 (d, J = 8.2 Hz, 1H), 5.76 (d, J = 3.1 Hz, 1H), 3.86 

(s, 3H), 3.85 (s, 3H), 3.79 (s, 3H), 2.18 (d, J = 3.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 159.13, 

149.13, 148.49, 136.87, 136.34, 127.91, 118.89, 113.96, 111.03, 109.77, 75.68, 56.05, 55.98, 

55.41. All spectroscopic data for this compound agrees with previously reported values.126 

3,3’,4,4’-Tetramethoxybenzhydrol (II-99): Synthesized from 

veratraldehyde (5.0 mmol) via General Method B (1.46 g, 96% 

yield): 1H NMR (500 MHz, CDCl3) δ 6.92 (d, J = 1.9 Hz, 2H), 6.88 (dd, J = 8.2, 1.9 Hz, 2H), 6.83 

(d, J = 8.2 Hz, 2H), 5.75 (d, J = 3.5 Hz, 1H), 3.87 (s, 6H), 3.85 (s, 6H), 2.19 (d, J = 3.5 Hz, 1H); 

13C NMR (126 MHz, CDCl3) δ 149.1, 148.6, 136.7, 119.0, 111.0, 109.8, 75.9, 56.1, 56.0. All 

spectroscopic data for this compound agrees with previously reported values.127 

4-(N-Acetamide)-3’,4’-dimethoxybenzhydrol (SII-57d): N-(4-

bromophenyl)acetamide (8 mmol) was dissolved in dry THF (15 

mL) and cooled to –78 ºC. A solution of nBuLi in hexanes (15 mmol) was added dropwise and the 

solution was allowed to stir at –78 ºC under N2 atmosphere for 20 min. Veratraldehyde (5 mmol) 

was dissolved in dry THF (5 mL) and added dropwise via cannula to the stirred solution (5 mL 

rinse). The solution was allowed to come to room temperature and stir for 30 min.  At this time, 

all starting material was consumed as determined by TLC. The reaction was quenched with sat. 

NH4Cl solution and extracted with EtOAc (3 x 30 mL). The combined organic layers were dried 

over Na2SO4 and concentrated under reduced pressure. The resulting material was purified by flash 
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column chromatography on silica gel with a 30% to 50% EtOAc in hexanes gradient solvent 

system (393 mg, 27% yield): IR (Germanium ATR): 3333, 3197, 3066, 2959, 2935, 1602, 1512, 

1232, 1137 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 

7.20 (s, 1H), 6.90 (d, J = 2.0 Hz, 1H), 6.87 (dd, J = 8.2, 2.0 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 5.77 

(s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 2.22 (s, 1H), 2.16 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 168.4, 

149.2, 148.6, 140.0, 137.3, 136.6, 127.3, 120.0, 119.1, 111.1, 109.8, 75.7, 56.1, 56.0, 24.8; HRMS 

(ESI): Exact mass calcd for C17H19NO4 [M+H]+, 302.1387. Found 302.1399. 

4-fluoro-3’,4’-dimethoxybenzhydrol (SII-57b): Synthesized from 

4-fluoro benzaldehyde (6.18 mmol) via General Method A (1.4 g, 

86% yield): IR (Germanium ATR): 3464, 3005, 1603, 1507, 1464, 1419, 1260, 1223, 1138, 1030, 

841, 747 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.05 – 6.99 (m, 2H), 6.90 – 

6.81 (m, 3H), 5.78 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 2.22 (s, 1H); 13C NMR (126 MHz, CDCl3) 

δ 162.3 (d, J = 245.7 Hz), 149.3, 148.7, 139.7 (d, J = 3.1 Hz), 136.5, 128.2 (d, J = 8.0 Hz), 119.0, 

115.4 (d, J = 21.4 Hz), 111.1, 109.8, 75.5, 56.1, 56.0; HRMS (ESI): Exact mass calcd for 

C15H15FO3 [M+Na]+, 285.0884. Found 285.0899. 

4-Trifluoromethyl-3’,4’-dimethoxybenzhydrol (SII-57a): 

Synthesized from 4-trifluoromethylbenzaldehyde (5.0 mmol) via 

General Method A (1.0 g, 66% yield): melting point: 77.6–81.3 ºC; 

IR (Germanium ATR): 3549, 3187, 3003, 2842, 1517, 1328, 1103, 1068, 1016, 812 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 7.59 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 6.90 – 6.85 (m, 2H), 6.85 

– 6.82 (m, 1H), 5.84 (d, J = 3.1 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 2.26 (d, J = 3.2 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ149.4, 149.0, 147.7, 136.0, 129.7 (q, JCF = 32.3 Hz), 126.7 (2C), 125.5 
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(q, JCF = 3.9 Hz, 2C), 124.3 (q, JCF = 272.0 Hz), 119.3, 111.2, 109.8, 75.7, 56.1, 56.0; HRMS 

(ESI): Exact mass calcd for C16H15F3O3 [M+Na]+, 335.0866. Found 335.0877. 

4-Bromo-3’,4’-dimethoxybenzhydrol (SII-57c): Synthesized from 

4-bromo benzaldehyde (5.0 mmol) via General Method A (1.0 g, 

62% yield): IR (Germanium ATR): 3456, 3000, 2834, 1592, 1511, 1256, 1136, 1008, 800, 600 

cm–1; 1H NMR (500 MHz, CDCl3) δ 7.48 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 6.90 – 6.86 

(m, 2H), 6.84 (d, J = 8.1 Hz, 1H), 5.77 (d, J = 3.4 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 2.22 (d, J = 

3.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 149.3, 148.9, 142.9, 136.2, 131.6, 128.3, 121.5, 119.1, 

111.1, 109.8, 75.6, 56.1, 56.0; HRMS (ESI): Exact mass calcd for C15H15BrO3 [M+Na]+, 345.0097. 

Found 345.0107. 

 1-(3,4-Dimethoxyphenyl)pentan-1-ol (SII-71c): Veratraldehyde (3 

mmol) was dissolved in dry Et2O (6 mL) and cooled to –78 ºC under N2 

atmosphere. A solution of nBuLi in hexanes (3.0 mmol) was added 

dropwise. The solution was slowly allowed to warm to room temperature and stir for 12 hours.  At 

this time, all starting material was consumed as determined by TLC and the solution was cooled 

to 0 ºC. The reaction was then quenched with sat. NH4Cl solution and extracted with Et2O (3 x 6 

mL). The combined organic layers were dried over Na2SO4 and concentrated under reduced 

pressure. The resulting oil was purified by flash column chromatography on silica gel with a 30% 

EtOAc in hexanes solvent system (673 mg, 67% yield): IR (Germanium ATR): 3403, 3003, 2932, 

1516, 1463, 1259, 1138, 1027, 808 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.91 (d, J = 1.9 Hz, 1H), 

6.86 (dd, J = 8.2, 1.9 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 4.61 (dd, J = 7.4, 6.0 Hz, 1H), 3.89 (s, 

3H), 3.87 (s, 3H), 1.85 – 1.76 (m, 2H), 1.73 – 1.64 (m, 1H), 1.44 – 1.31 (m, 3H), 1.31 – 1.17 (m, 
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2H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 149.2, 148.5, 137.8, 118.3, 111.0, 

109.1, 74.7, 56.1, 56.0, 38.9, 28.2, 22.8, 14.2; HRMS (ESI): Exact mass calcd for C13H20O3 

[M+Na]+, 247.1305. Found 247.1315. 

 1-(3,4-Dimethoxyphenyl)-2-methyl-1-propanol (SII-71b): 

Veratraldehyde (2 mmol) was dissolved in dry Et2O (9 mL), cooled to 0 

ºC and allowed to stir under N2 atmosphere. A solution of isopropylmagnesium chloride (3 mmol) 

was then added dropwise to the stirred solution. The reaction mixture was allowed to stir at 0 ºC 

for 30 min, at which point all starting material was consumed as determined by TLC. The reaction 

was quenched with sat. NH4Cl solution and extracted with Et2O (3 x 10 mL). The combined 

organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting 

material was purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes 

solvent system (383 mg, 91% yield): 1H NMR (500 MHz, CDCl3) δ 6.88 (s, 1H), 6.83 (s, 2H), 

4.29 (d, J = 7.2 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 2.00 – 1.87 (m, 1H), 1.78 (s, 1H), 1.02 (d, J = 

6.6 Hz, 3H), 0.78 (d, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 149.0, 148.5, 136.5, 119.1, 

110.8, 109.6, 80.2, 56.1, 56.0, 35.5, 19.2, 18.7. All spectroscopic data for this compound agrees 

with previously reported values.128 

1-Cyclohexyl-1-(3,4-dimethoxyphenyl)methanol (SII-71a): 

Synthesized from cyclohexanecarboxaldehyde (1.0 mmol) via General 

Method B (186 mg, 74% yield): melting point: 91.7–93.2 ºC; IR (Germanium ATR): 3497, 3002, 

2922, 2850, 1593, 1258, 1138, 1026 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.87 (d, J = 1.4 Hz, 1H), 

6.85 – 6.78 (m, 2H), 4.29 (d, J = 7.5 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 2.01 (dtd, J = 12.9, 4.5, 

4.1, 2.3 Hz, 1H), 1.85 – 1.73 (m, 2H), 1.70 – 1.53 (m, 3H), 1.36 (ddq, J = 12.6, 3.8, 2.0 Hz, 1H), 
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1.30 – 1.10 (m, 3H), 1.04 (tdd, J = 12.7, 11.3, 3.5 Hz, 1H), 0.90 (qd, J = 12.4, 3.5 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 149.0, 148.5, 136.5, 119.1, 110.8, 109.7, 79.5, 56.1, 56.0, 45.1, 29.5, 

29.3, 26.6, 26.2, 26.2; HRMS (ESI): Exact mass calcd for C15H22O3 [M+Na]+, 273.1461. Found 

273.1473. 

3,4-Dimethoxy-(1'-hydroxy-1'-methylethyl)benzene (II-72): 

Synthesized from acetone (5.0 mmol) via General Method B (721 mg, 73% 

yield): 1H NMR (500 MHz, CDCl3) δ 7.09 (d, J = 2.2 Hz, 1H), 6.98 (dd, J = 8.4, 2.2 Hz, 1H), 6.83 

(d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.70 (s, 1H), 1.58 (s, 6H); 13C NMR (126 MHz, 

CDCl3) δ 148.8, 147.9, 142.1, 116.5, 110.9, 108.4, 72.5, 56.1, 56.0, 32.0. All spectroscopic data 

for this compound agrees with previously reported values.129 

2-(3,4-Dimethoxyphenyl)haxan-2-ol (SII-71e): Synthesized from 2-

hexanone (5.0 mmol) via General Method B (1.0 g, 85% yield): IR 

(Germanium ATR): 3499, 2933, 1591, 1509, 1463, 1255, 1140, 1026, 806 cm–1; 1H NMR (500 

MHz, CDCl3) δ 7.02 (d, J = 2.2 Hz, 1H), 6.91 (dd, J = 8.3, 2.2 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 

3.89 (s, 3H), 3.87 (s, 3H), 1.84 – 1.72 (m, 2H), 1.54 (s, 3H), 1.31 – 1.09 (m, 4H), 0.85 (t, J = 7.2 

Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 148.7, 147.7, 141.1, 117.0, 110.8, 108.7, 74.7, 56.0, 56.0, 

44.1, 30.2, 26.4, 23.2, 14.2; HRMS (ESI): Exact mass calcd for C14H22O3 [M+Na]+, 261.1461. 

Found 261.1474. 

 1-(3,4-Dimethoxyphenyl)cyclohexanol (II-73): Synthesized from 

cyclohexanone (5.0 mmol) via General Method B (1.2 g, 85% yield): melting 

point: 92.1–94.0 ºC; IR (Germanium ATR): 3518, 2997, 2928, 2833, 1583, 
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1515, 1463, 1256, 1143, 1026, 975, 799, 764 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.11 (d, J = 2.2 

Hz, 1H), 7.00 (dd, J = 8.4, 2.2 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.87 – 

1.70 (m, 7H), 1.67 – 1.61 (m, 2H), 1.55 (s, 1H), 1.37 – 1.22 (m, 1H); 13C NMR (126 MHz, CDCl3) 

δ 148.8, 147.9, 142.5, 116.7, 110.9, 108.6, 73.1, 56.1, 56.0, 39.1, 25.7, 22.4; HRMS (ESI): Exact 

mass calcd for C14H20O3 [M+Na]+, 259.1305. Found 259.1314. 

3,3’,4,4’-Tetramethoxy-7-methylbenzhydrol (SII-71g): 

3,3’,4,4’-tetramethoxybenzhydrol (II-99) (0.617 mmol) was 

dissolved in dry THF (3 mL) at room temperature. Manganese (IV) oxide (4.01 mmol) was then 

added portionwise. Starting material was consumed after 36 h, as determined by TLC. The solution 

was filtered through a pad of Celite and concentrated. A portion of the resulting benzhydryl ketone 

(0.474 mmol) was dissolved in dry THF (5 mL), cooled to 0 ºC and allowed to stir under N2 

atmosphere. A solution of methylmagnesium bromide (0.947 mmol) was then added dropwise to 

the stirred solution. The reaction mixture was allowed to stir at 0 ºC for 1 hour, at which point all 

starting material was consumed as determined by TLC. The reaction was quenched with sat. 

NH4Cl solution and extracted with Et2O (3 x 10 mL). The combined organic layers were dried 

over Na2SO4 and concentrated under reduced pressure. The resulting material was purified by flash 

column chromatography on silica gel with a 50% EtOAc in hexanes solvent system (139 mg, 92% 

yield over two steps): melting point: 129.3–130.3 ºC; IR (Germanium ATR): 3513, 3001, 2934, 

1596, 1511, 1462, 1253, 1138, 1024, 811 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.98 (d, J = 2.2 Hz, 

2H), 6.90 (dd, J = 8.4, 2.2 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 3.87 (s, 6H), 3.83 (s, 6H), 2.11 (s, 

1H), 1.92 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 148.7, 148.1, 141.0, 118.2, 110.6, 109.7, 76.2, 
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56.0, 56.0, 31.5; HRMS (ESI): Exact mass calcd for C18H22O5 [M+Na]+, 341.1359. Found 

341.1372. 

1-(3,4-Dimethoxyphenyl)ethanol (II-113): Veratraldehyde (5 mmol) was 

dissolved in dry Et2O (15 mL), cooled to 0 ºC and allowed to stir under N2 

atmosphere. A solution of methylmagnesium bromide (7.5 mmol) was then added dropwise to the 

stirred solution. The reaction mixture was allowed to stir at 0 ºC for 15 min, at which point all 

starting material was consumed as determined by TLC. The reaction was quenched with sat. 

NH4Cl solution and extracted with Et2O (3 x 15 mL). The combined organic layers were dried 

over Na2SO4 and concentrated under reduced pressure. The resulting material was purified by flash 

column chromatography on silica gel with a 30% EtOAc in hexanes solvent system (659 mg, 72% 

yield): 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 1.9 Hz, 1H), 6.89 (dd, J = 8.2, 2.0 Hz, 1H), 6.83 

(d, J = 8.2 Hz, 1H), 4.86 (q, J = 6.4 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.76 (bs, 1H), 1.49 (d, J = 

6.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 149.2, 148.5, 138.7, 117.7, 111.1, 108.8, 70.4, 56.1, 

56.0, 25.2. All spectroscopic data for this compound agrees with previously reported values.130 

3,4-Methylenedioxy-4’-methoxybenzhydrol (II-117): 

Synthesized from piperonal (8.2 mmol) with 4-bromoanisole (9.6 

mmol) rather than 4-bromoveratrol via General Method B (2.34 g, 99% yield): 1H NMR (500 

MHz, CDCl3) δ 7.30 – 7.25 (m, 2H), 6.90 – 6.82 (m, 4H), 6.78 – 6.74 (m, 1H), 5.93 (s, 2H), 5.72 

(d, J = 3.4 Hz, 1H), 3.79 (s, 3H), 2.14 (d, J = 3.4 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 159.2, 

147.9, 147.0, 138.4, 136.3, 127.8, 120.0, 114.0, 108.2, 107.2, 101.2, 77.2, 75.7, 55.4. All 

spectroscopic data for this compound agrees with previously reported values.131 
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4,4’-Diisopropoxy-3,3’-dimethoxybenzhydrol (SII-123):  4-

bromo-1-isopropoxy-2-methoxy-benzene (10.0 mmol) was 

dissolved in dry THF (20 mL) and cooled to –78 ºC. A solution of nBuLi in hexanes (10.0 mmol) 

was added dropwise and the solution was allowed to stir at –78 ºC under N2 atmosphere for one 

hour. Freshly distilled ethyl formate (5.0 mmol) was added dropwise to the stirred solution. The 

solution was allowed to come to room temperature and stir for 5 hours.  At this time, all starting 

material was consumed as determined by TLC. The reaction was quenched with sat. NH4Cl 

solution and extracted with Et2O. The combined organic layers were dried over Na2SO4 and 

concentrated under reduced pressure. The resulting material was purified by flash column 

chromatography on silica gel with a 30% EtOAc in hexanes solvent system (1.21 g, 67% yield): 

IR (Germanium ATR): 3511, 2981, 1605, 1506, 1465, 1419, 1260, 1225, 1136, 1036, 953 cm–1; 

1H NMR (500 MHz, CDCl3) δ 6.93 (d, J = 1.2 Hz, 2H), 6.87 – 6.84 (m, 4H), 5.74 (d, J = 2.9 Hz, 

1H), 4.50 (hept, J = 6.1 Hz, 2H), 3.82 (s, 6H), 2.15 (d, J = 3.4 Hz, 1H), 1.36 (d, J = 6.1 Hz, 12H); 

13C NMR (126 MHz, CDCl3) δ 150.5, 146.9, 137.0, 119.1, 115.6, 110.7, 76.0, 71.6, 56.1, 22.3; 

HRMS (ESI): Exact mass calcd for C21H28O5 [M+Na]+, 383.1829. Found 383.1832. 

5-bromo-1,3-dimethoxy-2-isopropoxybenzene: 4-bromo-2,6-

dimethoxyphenol (17.16 mmol) was dissolved in dry DMF (20 mL) followed 

by the addition of 2-bromopropane (34.32 mmol) and K2CO3 (25.74 mmol). The solution was 

heated to 90 ºC and allowed to stir under N2 atmosphere for 6 hours. The reaction was then cooled 

down to room temperature and allowed to stir overnight. Starting material was still present as 

determined by TLC, therefore more 2-bromopropane (34.32 mmol) was added and the reaction 
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was stirred overnight. At this time, all starting material was consumed and the reaction was diluted 

with H2O (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organic layers were 

washed with HCl (0.5 M, 100 mL) and H2O (100 mL), then dried over Na2SO4 and concentrated 

under reduced pressure to afford the product (4.63 g, 98% yield). IR (Germanium ATR): 2972, 

2933, 1585, 1491, 1404, 1303, 1224, 1124, 930 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.70 (s, 2H), 

4.31 (hept, J = 6.2 Hz, 1H), 3.80 (s, 6H), 1.27 (d, J = 6.2 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 

154.6, 135.5, 115.8, 109.0, 75.5, 56.4, 22.5; HRMS (ESI): Exact mass calcd for C11H15BrO3 

[M+Na]+, 297.0097. Found 297.0097. 

4,4’-Diisopropoxy-3,3’-dimethoxy-5,5’-dimethoxybenzhydrol 

(II-127): 5-bromo-1,3-dimethoxy-2-isopropoxybenzene (2.49 

mmol) was dissolved in dry THF (4 mL) and cooled to –78 ºC. A 

solution of nBuLi in hexanes (2.49 mmol) was added dropwise and the solution was allowed to 

stir at –78 ºC under N2 atmosphere for one hour. Freshly distilled ethyl formate (1.24 mmol) was 

added dropwise to the stirred solution. The solution was allowed to come to room temperature and 

stir overnight.  At this time, all starting material was consumed as determined by TLC. The reaction 

was quenched with sat. NH4Cl solution and extracted with Et2O. The combined organic layers 

were dried over Na2SO4 and concentrated under reduced pressure. The resulting material was 

purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent 

system (210.7 mg, 40% yield): IR (Germanium ATR): 3449, 2974, 2935, 1593, 1462, 1418, 1325, 

1228, 1123, 930 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.59 (s, 4H), 5.71 (d, J = 3.3 Hz, 1H), 4.34 

(hept, J = 6.3 Hz, 2H), 3.80 (s, 12H), 2.21 (d, J = 3.6 Hz, 1H), 1.29 (d, J = 6.2 Hz, 12H); 13C NMR 
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(126 MHz, CDCl3) δ 154.0, 138.8, 135.7, 104.0, 76.6, 75.4, 56.3, 22.6; HRMS (ESI): Exact mass 

calcd for C23H32O7 [M+Na]+, 443.204. Found 443.2054. 

1-(Trimethylsilyl)-2-methyl-2-butene (II-79): Followed 

same procedure as Yamamoto and coworkers132 (185 mmol 

scale, 11.7 g, 44% yield after distillation, 3.3:1 d.r.): Major 

Isomer 1H NMR (500 MHz, CDCl3) δ 5.00 (qq, J = 6.6, 1.2 Hz, 1H), 1.59 (q, J = 1.1 Hz, 3H), 1.56 

(dq, J = 6.7, 1.1 Hz, 3H), 1.46 (t, J = 1.1 Hz, 2H), -0.01 (s, 9H); Major Isomer 13C NMR (126 

MHz, CDCl3) δ 133.5, 116.9, 30.0, 18.5, 13.7, -1.1; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 

5.12 – 5.06 (m, 1H), 1.67 (p, J = 1.5 Hz, 3H), 1.52 – 1.49 (m, 5H), 0.03 (s, 9H); Minor Isomer 13C 

NMR (126 MHz, CDCl3) δ 134.1, 115.9, 26.4, 23.0, 14.1, -0.5. All spectroscopic data for this 

compound agrees with previously reported values.132  

1-(Trimethylsilyl)-2-ethyl-2-butene (II-80): Followed same 

procedure as Yamamoto and coworkers132 (46 mmol scale, 

10.22 g, 33% yield after distillation, 4:1 d.r.): Major Isomer 

1H NMR (500 MHz, CDCl3) δ 4.97 (q, J = 6.7 Hz, 1H), 1.97 (q, J = 7.7 Hz, 2H), 1.57 (d, J = 6.7 

Hz, 3H), 1.45 (s, 2H), 0.95 (t, J = 7.6 Hz, 3H), -0.01 (s, 9H); Major Isomer 13C NMR (126 MHz, 

CDCl3) δ 139.5, 115.8, 26.5, 25.0, 13.3, 12.8, -1.0; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 

5.09 (q, J = 6.9 Hz, 1H), 1.94 (q, J = 6.0 Hz, 2H), 1.55 – 1.50 (m, 5H), 0.98 (t, J = 7.4 Hz, 3H), 

0.02 (s, 9H); Minor Isomer 13C NMR (126 MHz, CDCl3) δ 139.8, 113.9, 32.0, 21.2, 14.1, 13.0, -

0.5. All spectroscopic data for this compound agrees with previously reported values.132  
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2-Phenyl-3-(trimethylsilyl)-1-propene (II-139): Followed same procedure 

as Ferraris and coworkers132 (40 mmol scale, 2.47 g, 31% yield): 1H NMR 

(500 MHz, CDCl3) δ 7.42 – 7.38 (m, 2H), 7.30 (tt, J = 6.7, 0.9 Hz, 2H), 7.26 – 7.22 (m, 1H), 5.13 

(d, J = 1.7 Hz, 1H), 4.87 (dd, J = 1.2 Hz, 1H), 2.03 (d, J = 1.1 Hz, 2H), -0.10 (s, 9H); 13C NMR 

(126 MHz, CDCl3) δ 146.8, 142.9, 128.2, 127.3, 126.5, 110.2, 26.3, -1.3. All spectroscopic data 

for this compound agrees with previously reported values.133 

2.6.2   Indane Experimental Procedures and Characterization Data 

Scheme 2.28 General method C for synthesis of indanes 

 

General Method C (standard indane reaction): Benzhydryl or benzyl alcohol II-145 (1 equiv) 

was dissolved in MeNO2 (0.1 M soln) and allowed to stir under N2 atmosphere. Alkyl silane II-

146 (1.5 equiv) was added, followed by a solution of triflimide in DCM (10 mol%). The reaction 

was allowed to stir at room temperature for 2 hours before being quenched with sat. NaHCO3 

solution. The biphasic solution was extracted with DCM and the combined organic layers were 

dried over Na2SO4. Concentration under reduced pressure followed by flash column 

chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired indane.  

Scheme 2.29 General method D for synthesis of indanes at elevated temperature 
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General Method D (indane reaction at elevated temperature): Benzhydryl or benzyl alcohol 

II-145 (1 equiv) was dissolved in MeNO2 (0.1 M soln) and allowed to stir while warming to 50 ºC 

under N2 atmosphere. Alkyl silane II-146 (1.5 equiv) was added, followed by a solution of 

triflimide in DCM (10 mol%). The reaction was allowed to stir at 50 ºC for 2 hours before being 

quenched with sat. NaHCO3 solution. The biphasic solution was extracted with DCM and the 

combined organic layers were dried over Na2SO4. Concentration under reduced pressure followed 

by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded 

the desired indane.  

5,6,7-Trimethoxy-1,1-dimethyl-3-phenylindane (II-55a): Synthesized 

from 3,4,5-trimethoxybenzhydrol (SII-55a, 0.200 mmol) and silane II-45 

via General Method C (50 mg, 80% yield): IR (Germanium ATR): 

(Germanium ATR): 2937, 1605, 1479, 1411, 1327, 1226, 1201, 1104, 1029, 

933 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.35 – 7.30 (m, 2H), 7.26 – 7.22 (m, 3H), 6.16 (d, J = 

1.0 Hz, 1H), 4.29 (ddd, J = 10.3, 7.8, 1.1 Hz, 1H), 3.96 (s, 3H), 3.86 (s, 3H), 3.69 (s, 3H), 2.31 

(dd, J = 12.5, 7.7 Hz, 1H), 1.94 (dd, J = 12.5, 10.2 Hz, 1H), 1.51 (s, 3H), 1.32 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 153.2, 150.4, 145.2, 141.4, 141.2, 136.4, 128.6, 128.5, 126.5, 103.9, 61.0, 

60.8, 56.3, 53.9, 49.8, 44.1, 29.1, 27.7; HRMS (ESI): Exact mass calcd for C20H24O3 [M+H]+, 

313.1798. Found 313.1811.  

5,7-Dimethoxy-1,1-dimethyl-3-phenylindane (II-55b): Synthesized from 

3,5-dimethoxybenzhydrol (SII-55b, 0.308 mmol) and silane II-45 via 

General Method D (58 mg, 66% yield): IR (Germanium ATR): 2999, 2834, 

1597, 1486, 1454, 1300, 1203, 1155, 1074, 1045, 933, 752, 717 cm–1; 1H 

MeO

MeO
MeO Me Me

MeO

MeO Me Me
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NMR (500 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.25 – 7.21 (m, 3H), 6.32 (dd, J = 2.2, 0.8 Hz, 

1H), 5.99 (dd, J = 2.2, 1.0 Hz, 1H), 4.33 – 4.28 (m, 1H), 3.81 (s, 3H), 3.66 (s, 3H), 2.34 (dd, J = 

12.6, 7.9 Hz, 1H), 1.95 (dd, J = 12.6, 10.0 Hz, 1H), 1.48 (s, 3H), 1.30 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 160.5, 157.3, 148.1, 145.4, 131.6, 128.6, 126.4, 101.0, 97.7, 55.6, 55.2, 53.8, 50.0, 43.6, 

28.8, 26.7; HRMS (ESI): Exact mass calcd for C19H22O2 [M+H]+, 283.1693. Found 283.1701.  

4,7-Dimethoxy-1,1-dimethyl-3-phenylindane (II-55c): Synthesized from 2,5-

dimethoxybenzhydrol (SII-55c, 0.620 mmol) and silane II-45 via General 

Method D (105  mg, 60% yield): IR (Germanium ATR): 3029, 1601, 1491, 1462, 

1358, 1255, 1215, 1064, 842, 760 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.26 – 

7.20 (m, 2H), 7.17 – 7.12 (m, 1H), 7.11 – 7.06 (m, 2H), 6.74 (d, J = 8.6 Hz, 1H), 6.65 (d, J = 8.6 

Hz, 1H), 4.46 (dd, J = 9.2, 5.9 Hz, 1H), 3.82 (s, 3H), 3.51 (s, 3H), 2.46 (dd, J = 13.0, 9.2 Hz, 1H), 

1.92 (dd, J = 13.0, 5.9 Hz, 1H), 1.36 (s, 3H), 1.36 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 151.1, 

150.9, 146.8, 141.4, 133.9, 128.1, 127.5, 125.6, 110.5, 110.0, 55.9, 55.7, 53.0, 47.2, 45.1, 28.5, 

28.3; HRMS (ESI): Exact mass calcd for C19H22O2 [M+H]+, 283.1693. Found 283.1678.  

5,6-Dimethoxy-1,1-dimethyl-3-phenylindane (II-55d): Synthesized from 

3,4-dimethoxybenzhydrol (II-44, 0.368 mmol) and silane II-45 via General 

Method C (86 mg, 82% yield): IR (Germanium ATR): 2951, 2859, 1605, 

1500, 1464, 1453, 1291, 1212, 1069, 1029, 995, 855, 748 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 7.35 – 7.30 (m, 2H), 7.26 – 7.20 (m, 3H), 6.72 (s, 1H), 6.41 (s, 1H), 4.38 – 

4.32 (m, 1H), 3.91 (s, 3H), 3.72 (s, 3H), 2.40 (dd, J = 12.4, 7.5 Hz, 1H), 1.93 (dd, J = 12.4, 9.8 Hz, 

1H), 1.39 (s, 3H), 1.24 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 148.8, 148.4, 145.7, 144.9, 136.7, 
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128.6, 128.4, 126.4, 108.1, 105.1, 56.2, 56.2, 53.5, 49.1, 43.3, 29.3, 29.1; HRMS (ESI): Exact 

mass calcd for C19H22O2 [M+H]+, 283.1693. Found 283.1702. 

5,6-Methylenedioxy-1,1-dimethyl-3-phenylindane (II-55e): Synthesized 

from 3,4-methylenedioxybenzhydrol (SII-55e, 0.189 mmol) and silane II-45 

via General Method C (39 mg, 77% yield): IR (Germanium ATR): 2954, 

1603, 1495, 1476, 1357, 1268, 1234, 1072, 1042, 979 cm–1; 1H NMR (400 

MHz, CDCl3) δ 7.35 – 7.28 (m, 2H), 7.26 – 7.19 (m, 3H), 6.67 (s, 1H), 6.32 (s, 1H), 5.92 (d, J = 

1.4 Hz, 1H), 5.89 (d, J = 1.4 Hz, 1H), 4.29 (dd, J = 10.0, 7.5 Hz, 1H), 2.39 (dd, J = 12.5, 7.5 Hz, 

1H), 1.96 (dd, J = 12.4, 10.0 Hz, 1H), 1.36 (s, 3H), 1.22 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 

147.1, 146.7, 146.2, 145.4, 138.2, 128.6, 128.4, 126.5, 105.6, 102.6, 101.1, 53.2, 48.9, 43.1, 29.2, 

29.0; HRMS (ESI): Exact mass calcd for C18H18O2 [M+H]+, 267.138. Found 267.1369.  

1,1-Dimethyl-3-phenyl-2,3-dihydro-1H-cyclopenta[a]naphthalene (II-

55f): Synthesized from 2-naphthyl(phenyl)methanol (SII-55f, 0.560 mmol) 

silane II-45 via General Method C (95 mg, 62% yield): IR (Germanium ATR): 

3052, 3025, 2958, 2863, 1601, 1513, 1495, 1363, 1029, 817, 762 cm–1; 1H 

NMR (500 MHz, CDCl3) δ 8.25 (dd, J = 8.5, 1.2 Hz, 1H), 7.88 (dd, J = 8.1, 1.4 Hz, 1H), 7.66 (d, 

J = 8.3 Hz, 1H), 7.51 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.45 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.38 – 

7.30 (m, 2H), 7.30 – 7.23 (m, 3H), 7.03 (d, J = 8.3 Hz, 1H), 4.49 (t, J = 8.9 Hz, 1H), 2.57 (dd, J = 

12.7, 8.1 Hz, 1H), 2.15 (dd, J = 12.7, 9.7 Hz, 1H), 1.78 (s, 3H), 1.58 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 146.2, 145.8, 142.9, 134.0, 130.0, 129.4, 128.6, 128.6, 128.0, 126.5, 125.7, 124.8, 124.1, 

123.8, 54.6, 49.4, 45.4, 30.3, 27.8; HRMS (ESI): Exact mass calcd for C21H20 [M+H]+, 273.1638. 

Found 273.1644.  
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1,1-Dimethyl-3-phenyl-2,3-dihydro-1H-cyclopenta[b]benzofuran (II-

55g): Synthesized from 2-(1-Hydroxyphenylmethyl)benzofuran (SII-55g, 

0.259 mmol) and silane II-45 via General Method C (49 mg, 72% yield): IR 

(Germanium ATR): 3061, 3028, 2955, 2864, 1630, 1604, 1497, 1444, 1363, 

1205, 1054, 1009, 826 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.56 – 7.51 (m, 1H), 7.47 – 7.41 (m, 

1H), 7.37 – 7.31 (m, 2H), 7.26 (m, 5H), 4.52 (dd, J = 8.5, 6.6 Hz, 1H), 2.88 (dd, J = 13.0, 8.5 Hz, 

1H), 2.32 (dd, J = 13.0, 6.6 Hz, 1H), 1.52 (s, 3H), 1.44 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

160.6, 160.5, 143.0, 130.8, 128.8, 127.6, 126.9, 125.6, 123.1, 122.6, 118.9, 112.3, 56.0, 44.0, 37.9, 

29.7, 28.9; HRMS (ESI): Exact mass calcd for C19H18O [M+H]+, 263.143. Found 263.1424. 

5-Methoxy-3-(4-methoxyphenyl)-1,1-dimethylindane (II-69): 

Synthesized from 3,4’-dimethoxybenzhydrol (SII-69, 0.650 mmol) and 

silane II-45 via General Method C (111 mg, 60% yield): IR (Germanium 

ATR): 2997, 2952, 2861, 1609, 1584, 1512, 1487, 1249, 1034 cm–1; 1H 

NMR (500 MHz, CDCl3) δ 7.17 – 7.11 (m, 2H), 7.09 (d, J = 8.3 Hz, 1H), 6.90 – 6.83 (m, 2H), 

6.77 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H), 6.40 (dd, J = 2.5, 1.1 Hz, 1H), 4.31 (dd, J = 10.3, 7.5 Hz, 1H), 

3.81 (s, 3H), 3.70 (s, 3H), 2.36 (dd, J = 12.4, 7.5 Hz, 1H), 1.93 (dd, J = 12.4, 10.3 Hz, 1H), 1.38 

(s, 3H), 1.23 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 159.0, 158.3, 147.3, 145.1, 137.1, 129.5, 

122.6, 114.0, 113.1, 110.1, 55.6, 55.4, 53.4, 48.4, 42.5, 29.3, 29.1; HRMS (ESI): Exact mass calcd 

for C19H22O2 [M+H]+, 283.1693. Found 283.1712. 
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5,6-Dimethoxy-3-(3,4-methylenedioxyphenyl)-1,1-dimethylindane (II-57h) and 5,6-

Methylenedioxy-3-(3,4-dimethoxyphenyl)-

1,1-dimethylindane (II-57i): Synthesized from 

3,4-methylenedioxy-3’,4’-dimethoxy 

benzhydrol (SII-57h, 0.507 mmol) and silane 

II-45 via General Method C (124 mg, 2.2:1 

cyclization isomer ratio, 75% yield): IR (Germanium ATR): 2999, 2862, 1605, 1501, 1487, 1440, 

1294, 1231, 1140, 1069, 1038 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.76 (d, J = 7.9 

Hz, 1H), 6.72 – 6.69 (m, 2H), 6.66 (s, 1H), 6.41 (s, 1H), 5.94 (dd, J = 5.5, 1.3 Hz, 2H), 4.27 (dd, 

J = 9.6, 7.4 Hz, 1H), 3.90 (s, 3H), 3.75 (s, 3H), 2.36 (dd, J = 12.5, 7.5 Hz, 1H), 1.87 (dd, J = 12.4, 

9.8 Hz, 1H), 1.38 (s, 3H), 1.22 (s, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 148.8, 148.4, 

147.9, 146.1, 144.8, 139.6, 136.7, 121.5, 108.6, 108.2, 108.0, 105.1, 101.0, 56.2, 56.2, 53.5, 48.8, 

43.2, 29.3, 29.1; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 6.82 (d, J = 8.1 Hz, 1H), 6.76 (d, J 

= 7.9 Hz, 1H), 6.72 – 6.69 (m, 1H), 6.66 (s, 1H), 6.34 (s, 1H), 5.90 (dd, J = 15.7, 1.5 Hz, 2H), 4.23 

(dd, J = 10.2, 7.5 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.36 (dd, J = 12.5, 7.5 Hz, 1H), 1.93 (dd, J = 

12.5, 10.2 Hz, 1H), 1.36 (s, 3H), 1.21 (s, 3H); Minor Isomer 13C NMR (126 MHz, CDCl3) δ 149.1, 

147.7, 147.1, 146.7, 146.1, 138.3, 137.8, 120.4, 111.5, 111.3, 105.5, 102.6, 101.1, 56.1, 56.1, 53.3, 

48.6, 43.0, 29.1, 29.0; HRMS (ESI): Exact mass calcd for C20H22O4 [M+Na]+, 349.141. Found 

349.142. 
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2-(5,6-Dimethoxy-3,3-dimethylindan-1-yl)benzofuran (II-57j) and 3-(3,4-Dimethoxyphenyl)-

1,1-dimethyl-2,3-dihydro-1H-

cyclopenta[b]benzofuran (II-57k): Synthesized 

from benzo[b]furan-2-yl-(3,4-dimethoxyphenyl) 

carbinol (SII-57j, 0.30 mmol) and silane II-45 via 

General Method C (50 mg, 3.3:1 cyclization 

isomer ratio, 51% yield): IR (Germanium ATR): 3059, 2996, 2862, 1605, 1502, 1454, 1295, 1254, 

1214, 1070, 1028, 855, 755 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 7.52 – 7.49 (m, 

1H), 7.46 – 7.42 (m, 1H), 7.25 – 7.17 (m, 2H), 6.73 (s, 1H), 6.71 (d, J = 0.9 Hz, 1H), 6.47 (d, J = 

0.9 Hz, 1H), 4.56 (t, J = 8.1 Hz, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 2.41 (dd, J = 12.5, 7.9 Hz, 1H), 

2.28 (dd, J = 12.5, 8.5 Hz, 1H), 1.40 (s, 3H), 1.27 (s, 3H); Minor Isomer 1H NMR (500 MHz, 

CDCl3) δ 7.54 – 7.49 (m, 1H), 7.46 – 7.41 (m, 1H), 7.26 – 7.16 (m, 2H), 6.83 (d, J = 8.2 Hz, 1H), 

6.80 – 6.76 (m, 2H), 4.46 (dd, J = 8.4, 6.7 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.85 (dd, J = 12.9, 

8.5 Hz, 1H), 2.32 – 2.27 (m, 1H), 1.52 (s, 3H), 1.42 (s, 3H); Major Isomer 13C NMR (126 MHz, 

CDCl3) δ 161.4, 155.1, 149.3, 148.5, 144.4, 133.2, 128.9, 123.5, 122.6, 120.6, 111.2, 107.8, 105.5, 

102.5, 56.3, 56.2, 48.3, 43.5, 42.5, 29.4, 29.4; Minor Isomer 13C NMR (126 MHz, CDCl3) δ 160.7, 

160.6, 149.3, 148.0, 135.5, 130.6, 125.6, 123.1, 122.7, 119.5, 118.9, 112.4, 111.5, 110.8, 56.1, 

56.1, 56.0, 43.7, 37.8, 29.8, 28.8; HRMS (ESI): Exact mass calcd for C21H22O3 [M+H]+, 323.1462. 

Found 323.1653. 
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5,6-Dimethoxy-3-(3-methoxyphenyl)-1,1-dimethylindane (II-57l) and 5-Methoxy-3-(3,4-

dimethoxy phenyl)-1,1-dimethylindane (II-

57m): Synthesized from 3,3’,4-

trimethoxybenzhydrol (SII-57l, 0.322 mmol) 

and silane II-45 via General Method C (56 mg, 

3.8:1 cyclization isomer ratio, 55% yield): IR 

(Germanium ATR): 2998, 2950, 2860, 2832, 1607, 1500, 1464, 1314, 1236, 1212, 1139, 1069, 

1030, 996, 855, 767 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 7.24 (td, J = 7.7, 0.8 Hz, 

1H), 6.83 – 6.76 (m, 3H), 6.71 (s, 1H), 6.43 (d, J = 1.0 Hz, 1H), 4.32 (dd, J = 9.1, 7.8 Hz, 1H), 

3.91 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H), 2.39 (dd, J = 12.4, 7.5 Hz, 1H), 1.93 (dd, J = 12.4, 9.7 Hz, 

1H), 1.38 (s, 3H), 1.23 (s, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 159.9, 148.8, 148.4, 

147.4, 144.9, 136.5, 129.5, 120.9, 114.2, 111.6, 108.1, 105.1, 56.2 (2C), 55.3, 53.3, 49.1, 43.3, 

29.3, 29.1; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 7.10 (d, J = 8.3 Hz, 1H), 6.86 – 6.76 (m, 

3H), 6.73 (d, J = 2.0 Hz, 1H), 6.44 (s, 1H), 4.35 – 4.28 (m, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.70 (s, 

3H), 2.44 – 2.33 (m, 1H), 1.99 – 1.89 (m, 1H), 1.40 (s, 3H), 1.23 (s, 3H); Minor Isomer 13C NMR 

(126 MHz, CDCl3) δ 159.0, 149.1, 147.7, 147.1, 145.1, 137.5, 122.6, 120.6, 113.2, 111.6, 111.3, 

110.1, 56.1, 56.1, 55.6, 53.3, 48.9, 42.5, 29.2, 29.0; HRMS (ESI): Exact mass calcd for C20H24O3 

[M+H]+, 313.1798. Found 313.1805. 
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2-(5,6-Dimethoxy-3,3-dimethylindan-1-yl)naphthalene (II-57n) and 3-(3,4-

Dimethoxyphenyl)-1,1-dimethyl-2,3-dihydro-

1H-cyclopenta[a]naphthalene (II-57o): 

Synthesized from (3,4-dimethoxyphenyl)(2-

naphthyl)methanol (SII-57n, 0.418 mmol) and 

silane II-45 via General Method C (96 mg, 8.3:1 

cyclization isomer ratio, 69% yield): IR (Germanium ATR): 2999, 2955, 2859, 2829, 1603, 1500, 

1463, 1236, 1213, 1139, 1029, 889, 819, 754 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 

7.85 – 7.78 (m, 3H), 7.72 (s, 1H), 7.54 – 7.41 (m, 2H), 7.31 (dd, J = 8.5, 1.8 Hz, 1H), 6.76 (s, 1H), 

6.41 (s, 1H), 4.52 (dd, J = 9.6, 7.7 Hz, 1H), 3.93 (s, 3H), 3.68 (s, 3H), 2.46 (dd, J = 12.5, 7.5 Hz, 

1H), 2.04 (dd, J = 12.5, 9.8 Hz, 1H), 1.43 (s, 3H), 1.28 (s, 3H); Major Isomer 13C NMR (126 MHz, 

CDCl3) δ 148.8, 148.5, 144.9, 143.0, 136.7, 133.7, 132.5, 128.3, 127.8, 127.7, 126.9 (2C), 126.1, 

125.5, 108.1, 105.2, 56.2, 56.7, 53.3, 49.3, 43.4, 29.4, 29.2; Minor Isomer 1H NMR (500 MHz, 

CDCl3) δ 8.23 (dd, J = 8.5, 1.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.49 – 

7.40 (m, 2H), 7.04 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.80 (dd, J = 8.2, 2.0 Hz, 1H), 

6.74 (d, J = 2.0 Hz, 1H), 4.42 (dd, J = 9.8, 8.0 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.53 (dd, J = 

12.6, 7.9 Hz, 1H), 2.11 (dd, J = 12.6, 9.9 Hz, 1H), 1.77 (s, 3H), 1.54 (s, 3H); Minor Isomer 13C 

NMR (126 MHz, CDCl3) δ 149.2, 147.7, 146.1, 143.0, 138.3, 134.0, 130.0, 129.4, 128.0, 125.7, 

124.8, 124.1, 123.8, 120.6, 111.6, 111.3, 56.1, 56.0, 54.7, 49.0, 45.3, 30.3, 27.7; HRMS (ESI): 

Exact mass calcd for C23H24O2 [M+H]+, 333.1849. Found 333.1855. 
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5,6-Dimethoxy-3-(2-methoxyphenyl)-1,1-dimethylindane (II-57f): 

Synthesized from 2,3’,4’-trimethoxybenzhydrol (SII-57f, 0.187 mmol) and 

silane II-45 via General Method C (42 mg, 72% yield): IR (Germanium 

ATR): 2950, 1599, 1491, 1238, 1211, 1068, 1029, 855, 752 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 7.21 (ddd, J = 8.2, 7.4, 1.8 Hz, 1H), 7.03 (dd, J = 7.6, 1.8 Hz, 1H), 6.92 (dd, 

J = 8.2, 1.0 Hz, 1H), 6.88 (td, J = 7.5, 1.0 Hz, 1H), 6.72 (s, 1H), 6.48 (s, 1H), 4.80 (t, J = 8.8, 7.9 

Hz, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.75 (s, 3H), 2.43 (dd, J = 12.4, 7.9 Hz, 1H), 1.84 (dd, J = 12.4, 

8.8 Hz, 1H), 1.33 (s, 3H), 1.26 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 157.7, 148.6, 148.3, 145.1, 

136.3, 134.3, 128.4, 127.2, 120.8, 110.5, 108.3, 105.3, 56.2, 56.2, 55.6, 51.4, 43.3, 41.4, 29.6, 29.6; 

HRMS (ESI): Exact mass calcd for C20H24O3 [M+H]+, 313.1798. Found 313.1806.  

5,6-Dimethoxy-3-(4-methoxyphenyl)-1,1-dimethylindane (II-57g): 

Synthesized from 3,4,4’-trimethoxybenzhydrol (SII-57g, 0.295 mmol) 

and silane II-45 via General Method C (60 mg, 65% yield): IR 

(Germanium ATR): 3005, 2948, 2833, 1604, 1499, 1462, 1178, 1038, 

997, 870, 821 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.14 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 

2H), 6.71 (s, 1H), 6.39 (s, 1H), 4.29 (ddd, J = 9.8, 7.5, 1.0 Hz, 1H), 3.91 (s, 3H), 3.81 (s, 3H), 3.73 

(s, 3H), 2.37 (dd, J = 12.4, 7.5 Hz, 1H), 1.89 (dd, J = 12.4, 9.8 Hz, 1H), 1.38 (s, 17H), 1.23 (s, 

3H); 13C NMR (126 MHz, CDCl3) δ 158.2, 148.7, 148.4, 144.7, 137.6, 137.0, 129.3, 114.0, 108.1, 

105.1, 56.2, 56.2, 55.4, 53.6, 48.2, 43.2, 29.2, 29.1; HRMS (ESI): Exact mass calcd for C20H24O3 

[M+H]+, 313.1798. Found 313.1803.  
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5,6-Dimethoxy-3-(3,4-dimethoxyphenyl)-1,1-dimethylindane (II-

57e): Synthesized from 3,3’,4,4’-tetramethoxybenzhydrol (II-99, 

0.302 mmol) and silane II-45 via General Method C (88 mg, 85% 

yield): IR (Germanium ATR): 2996, 2950, 2860, 1500, 1211, 1138, 

1028 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.83 (d, J = 8.1 Hz, 1H), 

6.78 (dd, J = 8.1, 2.0 Hz, 1H), 6.72 (m, 2H), 6.42 (s, 1H), 4.29 (dd, J = 9.8, 7.4 Hz, 1H), 3.91 (s, 

3H), 3.88 (s, 3H), 3.83 (s, 3H), 3.73 (s, 3H), 2.38 (dd, J = 12.4, 7.4 Hz, 1H), 1.90 (dd, J = 12.4, 

9.8 Hz, 1H), 1.39 (s, 3H), 1.23 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 149.1, 148.7, 148.4, 147.6, 

144.7, 138.1, 136.8, 120.4, 111.4, 111.3, 108.0, 105.1, 56.2, 56.2, 56.0, 56.0, 53.5, 48.7, 43.1, 29.1, 

29.1; HRMS (ESI): Exact mass calcd for C21H26O4 [M+H]+, 343.1904. Found 343.1904. 

N-(4-(5,6-Dimethoxy-3,3-dimethylindan-1-yl)phenyl)acetamide (II-

57d): 4-(N-acetamide)-3’,4’-dimethoxybenzhydrol (SII-57d, 0.201 

mmol) was dissolved in MeNO2 (0.1 M soln) and allowed to stir while 

warming to 80 ºC under N2 atmosphere. Silane II-45 (1.5 equiv) was 

added, followed by a solution of triflimide in DCM (10 mol%). The reaction was allowed to stir 

at 80 ºC for 2 hours before being quenched with sat. NaHCO3 solution. The biphasic solution was 

extracted with DCM and the combined organic layers were dried over Na2SO4. Concentration 

under reduced pressure followed by flash column chromatography on silica gel with EtOAc in 

hexanes solvent systems afforded the desired indane (64 mg, 95% yield): IR (Germanium ATR): 

3310, 3000, 2953, 1666, 1602, 1513, 1500, 1210, 1068, 909 cm–1; 1H NMR (500 MHz, CDCl3) δ 

7.45 – 7.41 (m, 2H), 7.19 – 7.15 (m, 2H), 6.71 (s, 1H), 6.37 (d, J = 0.9 Hz, 1H), 4.31 (dd, J = 9.7, 

7.5 Hz, 1H), 3.90 (s, 3H), 3.72 (s, 3H), 2.37 (dd, J = 12.4, 7.5 Hz, 1H), 2.18 (s, 3H), 1.89 (dd, J = 
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12.5, 9.8 Hz, 1H), 1.71 – 1.62 (m, 1H), 1.37 (s, 3H), 1.22 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

168.4, 148.8, 148.4, 144.8, 141.8, 136.7, 136.1, 129.0, 120.3, 108.0, 105.2, 56.2, 56.2, 53.4, 48.5, 

43.3, 29.2, 29.1, 24.7; HRMS (ESI): Exact mass calcd for C21H25NO3 [M+H]+, 340.1907. Found 

340.1919. 

3-(4-Fluorophenyl)-5,6-dimethoxy-1,1-dimethylindane (II-57b): 

Synthesized from 4-fluoro-3’,4’-dimethoxybenzhydrol (SII-57b, 0.320 

mmol) and silane II-45 via General Method C (65 mg, 67% yield): IR 

(Germanium ATR): 2952, 2861, 1604, 1502, 1290, 1212, 1068, 856, 832 

cm–1; 1H NMR (500 MHz, CDCl3) δ 7.20 – 7.14 (m, 2H), 7.03 – 6.97 (m, 2H), 6.71 (s, 1H), 6.36 

(s, 1H), 4.32 (dd, J = 9.8, 7.5 Hz, 1H), 3.91 (s, 3H), 3.73 (s, 3H), 2.39 (dd, J = 12.5, 7.5 Hz, 1H), 

1.88 (dd, J = 12.5, 9.8 Hz, 1H), 1.38 (s, 3H), 1.23 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 161.7 

(d, JCF = 243.9 Hz), 148.9, 148.5, 144.8, 141.3 (d, JCF = 3.1 Hz), 136.6, 129.8 (d, JCF = 7.8 Hz, 

2C), 115.4 (d, JCF = 21.1 Hz, 2C), 108.0, 105.2, 56.2, 56.2, 53.6, 48.3, 43.3, 29.2, 29.1; HRMS 

(ESI): Exact mass calcd for C19H21FO2 [M+Na]+, 323.1418. Found 323.1422. 

5,6-Dimethoxy-1,1-dimethyl-3-(4-(trifluoromethyl)phenyl)-indane 

(II-57a): Synthesized from 4-trifluoromethyl-3’,4’-dimethoxybenzhydrol 

(SII-57a, 0.570 mmol) and silane II-45 via General Method C (164 mg, 

82% yield): IR (Germanium ATR): 2953, 2863, 1618, 1500, 1461, 1322, 

1128, 1068, 858, 840 cm cm–1; 1H NMR (500 MHz, CDCl3) δ 7.57 (d, J = 8.0 Hz, 2H), 7.33 (d, J 

= 8.0 Hz, 2H), 6.72 (s, 1H), 6.36 (s, 1H), 4.40 (dd, J = 9.6, 7.6 Hz, 1H), 3.92 (s, 3H), 3.73 (s, 3H), 

2.42 (dd, J = 12.5, 7.6 Hz, 1H), 1.90 (dd, J = 12.5, 9.6 Hz, 1H), 1.39 (s, 3H), 1.24 (s, 3H); 13C 

NMR (126 MHz, CDCl3) δ 150.0, 149.0, 148.6, 145.0, 135.7, 128.7 (2C), 128.7 (q, JCF = 32.3 Hz), 
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125.6 (q, JCF = 3.9 Hz, 2C), 124.5 (q, JCF = 272.1 Hz), 107.9, 105.2, 56.2 (2C), 53.4, 49.0, 43.5, 

29.3, 29.1; HRMS (ESI): Exact mass calcd for C20H21F3O2 [M+H]+, 351.1566. Found 351.1572. 

3-(4-Bromophenyl)-5,6-dimethoxy-1,1-dimethylindane (II-57c): 

Synthesized from 4-bromo-3’,4’-dimethoxybenzhydrol (SII-57c, 0.400 

mmol) and silane II-45 via General Method C (119 mg, 82% yield):  IR 

(Germanium ATR): 3019, 2952, 1604, 1500, 1292, 1211, 1069, 1009, 855, 

821 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.71 

(s, 1H), 6.36 (s, 1H), 4.30 (dd, J = 9.7, 7.5 Hz, 1H), 3.91 (s, 3H), 3.73 (s, 3H), 2.39 (dd, J = 12.5, 

7.5 Hz, 1H), 1.87 (dd, J = 12.5, 9.7 Hz, 1H), 1.38 (s, 3H), 1.23 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 148.9, 148.5, 144.9, 144.8, 136.1, 131.7, 130.2, 120.1, 107.9, 105.2, 56.2, 56.2, 53.4, 

48.6, 43.4, 29.2, 29.1; HRMS (ESI): Exact mass calcd for C19H21BrO2 [M+Na]+, 383.0617. Found 

383.0617. 

3-Butyl-5,6-dimethoxy-1,1-dimethylindane (II-71c): Synthesized 

from 1-(3,4-dimethoxyphenyl)pentan-1-ol (SII-71c, 0.156 mmol) and 

silane II-45 via General Method C (33 mg, 84% yield): IR 

(Germanium ATR): 2952, 2856, 1606, 1499, 1464, 1212, 1065 cm–1; 

1H NMR (500 MHz, CDCl3) δ 6.70 (s, 1H), 6.66 (s, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.14 – 3.02 

(m, 1H), 2.14 (dd, J = 12.2, 7.3 Hz, 1H), 1.99 – 1.88 (m, 1H), 1.52 (dd, J = 12.3, 8.9 Hz, 1H), 1.46 

– 1.34 (m, 5H), 1.33 (s, 3H), 1.15 (s, 3H), 0.98 – 0.92 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 

148.4, 148.2, 144.3, 138.0, 106.8, 105.5, 56.2, 56.2, 49.1, 42.9, 42.0, 35.3, 30.2, 29.7, 29.5, 23.1, 

14.3; HRMS (ESI): Exact mass calcd for C17H26O2 [M+Na]+, 285.1825. Found 285.1842. 
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3-Isopropyl-5,6-dimethoxy-1,1-dimethylindane (II-71b): Synthesized 

from 1-(3,4-dimethoxyphenyl)-2-methyl-1-propanol (SII-71b, 0.209 

mmol) and silane II-45 via General Method C (39 mg, 76% yield): IR 

(Germanium ATR): 2951, 1605, 1499, 1463, 1289, 1211, 1073, 852 cm–1; 1H NMR (500 MHz, 

CDCl3) δ 6.67 (d, J = 1.1 Hz, 1H), 6.64 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.16 (dddd, J = 9.1, 7.7, 

4.6, 1.1 Hz, 1H), 2.21 (pd, J = 6.9, 4.6 Hz, 1H), 1.87 (dd, J = 12.5, 7.7 Hz, 1H), 1.66 (dd, J = 12.5, 

9.1 Hz, 1H), 1.32 (s, 3H), 1.15 (s, 3H), 1.03 (d, J = 6.9 Hz, 3H), 0.75 (d, J = 6.9 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 148.3, 148.1, 145.0, 136.5, 107.3, 105.4, 56.3, 56.1, 48.0, 42.5, 42.3, 30.1, 

29.4, 29.4, 21.6, 17.2; HRMS (ESI): Exact mass calcd for C16H24O2 [M+Na]+, 271.1669. Found 

271.1683. 

3-Cyclohexyl-5,6-dimethoxy-1,1-dimethylindane (II-71a): Synthesized 

from 1-cyclohexyl-1-(3,4-dimethoxyphenyl)methanol (SII-71a, 0.408 

mmol) and silane II-45 via General Method C (86 mg, 73% yield): IR 

(Germanium ATR): 2993, 2922, 2849, 1605, 1500, 1448, 1317, 1288, 1212, 

1070, 993 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.67 (s, 1H), 6.63 (s, 1H), 3.87 (s, 3H), 3.86 (s, 

3H), 3.11 (td, J = 8.4, 4.6 Hz, 1H), 1.88 (dd, J = 12.5, 7.8 Hz, 1H), 1.84 – 1.66 (m, 6H), 1.50 – 

1.42 (m, 1H), 1.38 – 1.08 (m, 10H), 1.02 – 0.88 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 148.4, 

148.0, 145.0, 136.1, 107.5, 105.5, 56.4, 56.1, 47.6, 43.5, 42.6, 40.3, 32.3, 30.1, 29.5, 27.8, 27.2, 

26.9, 26.8; HRMS (ESI): Exact mass calcd for C19H28O2 [M+Na]+, 311.1982. Found 311.1996. 

5,6-Dimethoxy-1,1,3,3-tetramethylindane (II-71d): Synthesized from 

3,4-dimethoxy-(1'-hydroxy-1'-methylethyl)benzene (II-72, 0.400 mmol) 

and silane II-45 via General Method C (75 mg, 79% yield): IR (Germanium 
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ATR): 3008, 2860, 1602, 1502, 1464, 1290, 1213, 1059, 852 cm–1; 1H NMR (500 MHz, CDCl3) δ 

6.62 (s, 2H), 3.88 (s, 6H), 1.91 (s, 2H), 1.29 (s, 12H); 13C NMR (126 MHz, CDCl3) δ 148.6, 142.8, 

105.6, 57.1, 56.2, 42.6, 31.7; HRMS (ESI): Exact mass calcd for C15H22O2 [M+Na]+, 257.1512. 

Found 257.1532. 

1-Butyl-5,6-dimethoxy-1,3,3-trimethylindane (II-71e): Synthesized from 

2-(3,4-dimethoxyphenyl)haxan-2-ol (SII-71e, 0.600 mmol) and silane II-45 

via General Method C (157 mg, 94% yield): IR (Germanium ATR): 2952, 

2859, 1605, 1502, 1464, 1288, 1212, 1149, 1057, 852 cm–1; 1H NMR (500 

MHz, CDCl3) δ 6.61 (s, 1H), 6.58 (s, 1H), 3.88 (s, 3H), 3.88 (s, 3H), 2.01 (d, J = 13.2 Hz, 1H), 

1.76 (d, J = 13.2 Hz, 1H), 1.64 – 1.56 (m, 1H), 1.55 – 1.45 (m, 1H), 1.35 – 1.27 (m, 3H), 1.29 (s, 

3H), 1.29 (s, 3H), 1.26 (s, 3H), 1.21 – 1.12 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 148.5, 148.4, 143.1, 142.3, 105.9, 105.5, 56.2, 56.1, 53.8, 45.9, 43.3, 42.5, 32.3, 31.5, 

29.8, 27.5, 23.6, 14.2; HRMS (ESI): Exact mass calcd for C18H28O2 [M+NH4]+, 294.2428. Found 

294.2441. 

5',6'-Dimethoxy-3',3'-dimethylspiro[cyclohexane-1,1'-indane] (II-71f): 

Synthesized from 1-(3,4-dimethoxyphenyl)cyclohexanol (II-73, 0.301 

mmol) and silane II-45 via General Method C (62 mg, 85% yield): IR 

(Germanium ATR): 2952, 2852, 1604, 1503, 1464, 1289, 1214, 1032, 974, 910 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 6.64 (s, 1H), 6.63 (s, 1H), 3.88 (s, 3H), 3.88 (s, 3H), 1.95 (s, 2H), 1.76 – 1.66 

(m, 3H), 1.61 – 1.53 (m, 4H), 1.51 – 1.40 (m, 2H), 1.29 (s, 6H), 1.33 – 1.22 (m, 1H); 13C NMR 

(126 MHz, CDCl3) δ 148.7, 148.5, 143.0, 143.0, 105.8, 105.6, 56.1, 56.1, 51.6, 46.9, 42.7, 40.2, 

MeO

MeO

Me

Me

Me Me

MeO

MeO
Me Me



 118 

32.2, 26.1, 23.6; HRMS (ESI): Exact mass calcd for C18H26O2 [M+NH4]+, 292.2271. Found 

292.2273. 

1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1,3,3-trimethylindane 

(II-71g): Synthesized from 3,3’,4,4’-tetramethoxy-7-

methylbenzhydrol (SII-71g, 0.102 mmol) and silane II-45 via 

General Method C (21 mg, 58% yield): IR (Germanium ATR): 

2995, 2953, 1604, 1502, 1463, 1253, 1145, 1028 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.74 (d, J = 

8.4 Hz, 1H), 6.72 (d, J = 2.2 Hz, 1H), 6.70 – 6.66 (m, 2H), 6.60 (s, 1H), 3.92 (s, 3H), 3.84 (s, 3H), 

3.83 (s, 3H), 3.78 (s, 3H), 2.34 (d, J = 12.9 Hz, 1H), 2.17 (d, J = 12.9 Hz, 1H), 1.66 (s, 3H), 1.32 

(s, 3H), 1.06 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 149.0, 148.5, 148.5, 147.0, 144.2, 144.1, 

140.4, 118.8, 110.6, 110.6, 107.6, 105.3, 59.9, 56.3, 56.1, 56.0, 55.9, 50.5, 42.9, 31.0, 31.0, 30.6; 

HRMS (ESI): Exact mass calcd for C22H28O4 [M+NH4]+, 374.2326. Found 374.2336. 

II-74: 1-(3,4-Dimethoxyphenyl)cyclohexanol (II-73, 0.205 mmol) was 

dissolved in MeNO2 (0.1 M) followed by the addition of a solution of 

HNTf2 in DCM (10 mol%). The reaction was allowed to stir at room 

temperature under N2 atmosphere for before being quenched with saturated 

aqueous NaHCO3 solution. Same workup protocol as General Method C was followed to afford 

II-X (32 mg, 70% yield). IR (Germanium ATR): 2996, 2930, 1603, 1498, 1464, 1251, 1028 cm–1; 

1H NMR (500 MHz, CDCl3) δ 6.82 (s, 1H), 6.78 (d, J = 2.2 Hz, 1H), 6.70 (s, 1H), 6.66 (d, J = 8.4 

Hz, 1H), 6.58 (dd, J = 8.4, 2.2 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 3.81 (s, 3H), 3.81 (s, 3H), 2.90 

(dd, J = 11.0, 5.6 Hz, 1H), 2.24 – 2.13 (m, 1H), 1.95 – 0.71 (m, 17H); 13C NMR (126 MHz, CDCl3) 

δ 148.7, 148.5, 147.8, 146.7, 145.9, 144.3, 137.0, 118.8, 110.6, 110.4, 108.6, 107.1, 56.6, 56.1, 
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56.0, 55.9, 54.3, 50.2, 49.7, 39.6, 37.4, 32.6, 26.2, 25.3, 24.2, 23.7, 23.4. HRMS (ESI): Exact mass 

calcd for C28H36O4 [M+Na]+, 459.2506. Found 459.2512. 

anti-5,6-Dimethoxy-1,1,2,3-tetramethylindane 

(II-81a major) and syn-5,6-Dimethoxy-1,1,2,3-

tetramethylindane (II-81a minor): Synthesized 

from  1-(3,4-dimethoxyphenyl)ethanol (II-113, 

0.268 mmol) and silane II-79 via General Method C (56 mg, 3.2:1 d.r., 89% yield): IR (Germanium 

ATR): 2954, 2867, 1608, 1501, 1464, 1405, 1288, 1212, 1049, 853, 766 cm–1; Major Isomer 1H 

NMR (500 MHz, CDCl3) δ 6.69 (s, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 2.64 (ddt, J = 10.1, 7.4, 6.2 Hz, 

1H), 1.63 – 1.52 (m, 1H), 1.28 (d, J = 6.7 Hz, 3H), 1.26 (s, 3H), 1.05 (d, J = 6.9 Hz, 3H), 0.93 (s, 

3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 148.3, 148.2, 144.7, 138.1, 106.5, 105.7, 56.3, 

56.2, 54.6, 44.7, 43.2, 26.9, 23.7, 17.3, 11.9; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 6.69 (s, 

1H), 6.65 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.14 (p, J = 7.5 Hz, 1H), 2.20 (p, J = 7.5 Hz, 1H), 

1.20 (s, 3H), 1.12 (d, J = 7.4 Hz, 3H), 1.08 (s, 3H), 0.92 (d, J = 7.5 Hz, 3H); Minor Isomer 13C 

NMR (126 MHz, CDCl3) δ 148.4, 148.2, 143.8, 138.9, 107.3, 105.9, 56.2, 56.2, 47.7, 45.6, 41.2, 

28.9, 26.3, 17.1, 10.6; HRMS (ESI): Exact mass calcd for C15H22O2 [M+Na]+, 257.1512. Found 

257.1512. 

anti-3-Butyl-5,6-dimethoxy-1,1,2-trimethylindene (II-81b major) and syn-3-Butyl-5,6-

dimethoxy-1,1,2-trimethylindene (II-81b 

minor): Synthesized from 1-(3,4-

dimethoxyphenyl)pentan-1-ol (SII-71c, 0.143 

mmol) and silane II-79 via General Method C 
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(34 mg, 2.9:1 d.r.,  87% yield): IR (Germanium ATR): 2953, 2927, 2858, 1606, 1498, 1209, 1058, 

982 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.72 (s, 1H), 6.68 (s, 1H), 3.88 (s, 3H), 

3.87 (s, 3H), 2.72 – 2.57 (m, 1H), 1.82 – 1.65 (m, 2H), 1.62 – 1.33 (m, 5H), 1.26 (s, 3H), 1.06 (d, 

J = 6.9 Hz, 3H), 0.97 – 0.94 (m, 3H), 0.93 (s, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 

148.3, 148.0, 144.9, 137.0, 107.0, 105.6, 56.3, 56.2, 51.0, 48.4, 44.7, 31.8, 29.3, 27.2, 23.9, 23.5, 

14.3, 12.8; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 6.73 (s, 1H), 6.68 (s, 1H), 3.88 (s, 3H), 

3.87 (s, 3H), 3.02 (q, J = 7.3 Hz, 1H), 2.23 (p, J = 7.3 Hz, 1H), 1.82 – 1.65 (m, 1H), 1.62 – 1.33 

(m, 5H), 1.20 (s, 3H), 1.14 (s, 3H), 0.97 – 0.94 (m, 3H), 0.90 (d, J = 7.3 Hz, 3H); Minor Isomer 

13C NMR (126 MHz, CDCl3) δ 148.3, 147.7, 144.0, 137.5, 108.1, 106.0, 56.2, 56.2, 48.0, 46.3, 

45.3, 30.9, 30.3, 28.8, 25.5, 23.3, 14.3, 10.6; HRMS (ESI): Exact mass calcd for C18H28O2 

[M+Na]+, 299.1982. Found 299.1991. 

anti-3-Isopropyl-5,6-dimethoxy-1,1,2-trimethylindene (II-81c major) and syn-3-Isopropyl-

5,6-dimethoxy-1,1,2-trimethylindene (II-81c 

minor): Synthesized from 1-(3,4-

dimethoxyphenyl)-2-methyl-1-propanol (SII-

71b, 0.216 mmol) and silane II-79 via General 

Method C (51 mg, 2.2:1 d.r.,  90% yield): IR (Germanium ATR): 2954, 2870, 1605, 1499, 1464, 

1211, 1060, 987, 851, 773 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.81 (d, J = 0.9 Hz, 

1H), 6.65 (s, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 2.91 (ddd, J = 7.3, 7.3, 0.8 Hz, 1H), 2.27 (dq, J = 7.4, 

7.4 Hz, 1H), 2.05 – 1.91 (m, 1H), 1.19 (s, 3H), 1.12 (s, 3H), 1.09 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 

6.8 Hz, 3H), 0.96 (d, J = 7.3 Hz, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 148.2, 147.3, 

144.8, 135.9, 109.5, 105.8, 56.3, 56.1, 53.0, 48.7, 45.2, 29.0, 28.1, 25.1, 24.1, 22.1, 11.3; Minor 
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Isomer 1H NMR (500 MHz, CDCl3) δ 6.72 (d, J = 1.1 Hz, 1H), 6.65 (s, 1H), 3.88 (s, 3H), 3.85 (s, 

3H), 2.68 (ddd, J = 9.6, 2.9, 1.0 Hz, 1H), 2.20 (pd, J = 7.0, 2.9 Hz, 1H), 1.86 (dq, J = 9.7, 6.9 Hz, 

1H), 1.25 (s, 3H), 1.06 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 7.1 Hz, 3H), 0.99 (d, J = 7.1 Hz, 3H), 0.93 

(s, 3H); Minor Isomer 13C NMR (126 MHz, CDCl3) δ 148.2, 147.8, 145.3, 135.3, 107.6, 105.5, 

56.3, 56.1, 54.9, 47.0, 44.8, 29.0, 27.5, 24.4, 20.3, 20.1, 14.4; HRMS (ESI): Exact mass calcd for 

C17H26O2 [M+H]+, 263.2006. Found 263.2008. 

anti-3-Cyclohexyl-5,6-dimethoxy-1,1,2-trimethylindene (II-81d major) and syn-3-

Cyclohexyl-5,6-dimethoxy-1,1,2-

trimethylindene (II-81d minor): Synthesized 

from 1-cyclohexyl-1-(3,4-dimethoxyphenyl)-

methanol (SII-71a, 0.197 mmol) and silane II-79 

via General Method C (54 mg, 1.8:1 d.r.,  91% yield): IR (Germanium ATR): 2924, 2851, 1606, 

1501, 1464, 1211, 1064, 842, 768 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.78 (s, 1H), 

6.65 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.85 (t, J = 7.2 Hz, 1H), 2.28 (p, J = 7.4 Hz, 1H), 1.97 – 

1.85 (m, 1H), 1.82 – 1.46 (m, 6H), 1.33 – 1.12 (m, 4H), 1.19 (s, 3H), 1.08 (s, 3H), 1.01 (d, J = 7.3 

Hz, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 148.3, 147.2, 144.9, 135.8, 109.9, 105.7, 

56.3, 56.1, 52.3, 48.6, 45.4, 38.4, 35.3, 32.4, 28.9, 27.2, 27.1, 26.8, 25.5, 11.1; Minor Isomer 1H 

NMR (500 MHz, CDCl3) δ 6.73 (s, 1H), 6.64 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.62 (dd, J = 9.5, 

2.9 Hz, 1H), 1.97 – 1.85 (m, 1H), 1.82 – 1.46 (m, 6H), 1.33 – 1.12 (m, 5H), 1.24 (s, 3H), 1.05 (d, 

J = 7.0 Hz, 3H), 0.92 (s, 3H); Minor Isomer 13C NMR (126 MHz, CDCl3) δ 148.3, 147.8, 145.4, 

135.3, 107.8, 105.5, 56.4, 56.1, 54.8, 47.2, 44.8, 40.3, 31.3, 30.8, 27.7, 27.5, 27.5, 27.2, 24.5, 14.6; 

HRMS (ESI): Exact mass calcd for C20H30O2 [M+NH4]+, 320.2584. Found 320.2593. 
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anti-3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1,1,2-trimethylindane (II-81e): Synthesized 

from 3,3’,4,4’-tetramethoxybenzhydrol (II-99, 0.204 mmol) and 

silane II-79 via General Method C (69 mg, 95% yield): IR 

(Germanium ATR): 2999, 2955, 2869, 2831, 1605, 1514, 1499, 1463, 

1247, 1208, 1030, 986 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.85 (d, 

J = 8.1 Hz, 1H), 6.79 (dd, J = 8.2, 2.0 Hz, 1H), 6.75 (s, 1H), 6.69 (d, J = 2.0 Hz, 1H), 6.39 (s, 1H), 

3.91 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H), 3.72 (s, 3H), 3.69 (d, J = 10.6 Hz, 1H), 1.97 (dq, J = 10.6, 

6.9 Hz, 1H), 1.34 (s, 3H), 1.02 (s, 3H), 0.98 (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

149.1, 148.6, 148.2, 147.8, 145.1, 136.5, 136.4, 121.2, 111.6, 111.1, 108.0, 105.3, 56.6, 56.2 (3C), 

56.1, 56.0, 44.7, 26.8, 23.6, 11.7; HRMS (ESI): Exact mass calcd for C22H28O4 [M+H]+, 357.206. 

Found 357.2059. 

 (1R,2S,3R)-3-(3,4-Dimethoxyphenyl)-1-ethyl-5,6-dimethoxy-1,2-dimethylindane (II-81f): 

Synthesized from 3,3’,4,4’-tetramethoxybenzhydrol (II-99, 0.174 

mmol) and silane II-80 via General Method C (71 mg, 1.8:1 d.r., 97% 

yield): IR (Germanium ATR): 2995, 2956, 2831, 1605, 1512, 1503, 

1464, 1249, 1205, 1069, 1030, 853, 762 cm–1; 1H NMR (500 MHz, 

CDCl3) δ 6.85 (d, J = 8.2 Hz, 1H), 6.78 (dd, J = 8.1, 2.0 Hz, 1H), 

6.68 (d, J = 2.0 Hz, 1H), 6.66 (s, 1H), 6.38 (s, 1H), 3.90 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H), 3.72 

(s, 3H), 3.68 (d, J = 10.2 Hz, 1H), 2.15 (dq, J = 10.3, 6.8 Hz, 1H), 1.78 (dq, J = 14.9, 7.5 Hz, 1H), 

1.68 (dq, J = 14.6, 7.4 Hz, 1H), 1.02 (s, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 149.0, 148.6, 148.2, 147.8, 143.3, 137.1, 137.1, 121.1, 111.7, 111.2, 
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107.9, 105.7, 56.4, 56.3, 56.1, 56.0, 56.0, 51.0, 48.3, 31.0, 23.6, 12.4, 9.3; HRMS (ESI): Exact 

mass calcd for C23H30O4 [M+Na]+, 393.2036. Found 393.2045. 

2.6.3   Type B Allylsilane Experimental Procedures and Characterization Data 

 (Trimethylsilyl)ethylene oxide (II-92): A modified version of Croudace’s 

procedure was used134: A solution of mCPBA (77%, 50.3 g, 224 mmol)  in chloroform (370 mL) 

was added dropwise to a solution of vinyltrimethylsilane (15 g, 150 mmol) in chloroform (40 mL) 

at 0 ºC. The mixture was then gradually warmed to room temperature and allowed to stir overnight. 

The cloudy white reaction was neutralized by careful treatment with 5% aqueous NaHCO3 at 0 ºC. 

The organic layer was washed repetitively with 5% NaHCO3 (2 L) until mCPBA was no longer 

present as monitored by TLC. The organic layer was then dried over magnesium sulfate and 

concentrated under reduced pressure. The crude material was distilled at atmospheric pressure and 

110 ºC to afford the title compound as a clear oil (74% yield): 1H NMR (500 MHz, CDCl3) δ 2.91 

(dd, J = 5.8, 5.6 Hz, 1H), 2.56 (dd, J = 5.8, 4.1 Hz, 1H), 2.20 (dd, J = 5.5, 4.1 Hz, 1H), 0.06 (s, 

9H); 13C NMR (126 MHz, CDCl3) δ 44.8, 44.3, -3.7. All spectroscopic data for this compound 

agrees with previously reported values.135 

Scheme 2.30 General method for synthesis of Type B allylsilanes 

 

General Method E: A solution of copper(I) bromide dimethyl sulfide complex (1 equiv) in 

dimethyl sulfide (0.5 M soln) was charged in a round bottom flask with dry THF (0.1 M total 

solution volume) and cooled to –78 ºC under N2 atmosphere. A solution of vinyl bromide Grignard 
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in THF (0.5 M, 2 equiv) was added dropwise to the suspension. The mixture was slowly warmed 

up to –30 ºC and stirred for 10 min, then cooled back to –78 ºC. (Trimethylsilyl)ethylene oxide (1 

equiv) was added dropwise to the reaction. The mixture was then warmed up to room temperature 

and allowed to stir overnight. The reaction was quenched by addition of saturated aqueous NH4Cl 

soln and stirred for 20 min before being filtered through Celite. The organic layer was washed with 

additional NH4Cl soln. The aqueous layer was extracted with diethyl ether, dried over magnesium 

sulfate and concentrated under reduced pressure. The crude material was purified by flash column 

chromatography on silica gel with 30% ether/pentanes solvent system to afford the desired 

allylsilane. 

2-(Trimethylsilyl)but-3-en-1-ol (II-89a): Synthesized from vinyl cuprate via 

General Method E (10.5 mmol scale, 64% yield): IR (Germanium ATR): 3379, 

3077, 2953, 1628, 1248, 837 cm–1; 1H NMR (500 MHz, CDCl3) δ 5.70 (ddd, J = 17.1, 10.3, 9.6 

Hz, 1H), 5.07 (ddd, J = 10.4, 1.8, 0.6 Hz, 1H), 5.01 (ddd, J = 17.2, 1.9, 1.0 Hz, 1H), 3.80 – 3.74 

(m, 1H), 3.74 – 3.68 (m, 1H), 1.92 (ddd, J = 10.7, 9.7, 4.2 Hz, 1H), 1.48 – 1.43 (m, 1H), 0.02 (s, 

9H); 13C NMR (126 MHz, CDCl3) δ 137.2, 115.2, 62.4, 40.2, -2.9; HRMS (ESI): Exact mass calcd 

for C7H16OSi [M+Na]+, 167.0863. Found 167.0869. 

 2-(Trimethylsilyl)pent-3-en-1-ol (II-89b): Synthesized 

from 1-propenyl cuprate via General Method E (15.0 

mmol scale, 1.7:1 Z:E ratio, 73% yield): IR (Germanium 

ATR): 3354, 3008, 2954, 1648, 1251, 1095, 1049, 965, 861, 833, 749 cm–1; Major Isomer 1H NMR 

(500 MHz, CDCl3) δ 5.64 (dqd, J = 10.8, 6.8, 0.9 Hz, 1H), 5.32 – 5.21 (m, 1H), 3.77 (ddd, J = 

10.6, 8.1, 3.9 Hz, 1H), 3.65 – 3.57 (m, 1H), 2.27 (tdd, J = 11.2, 4.0, 0.9 Hz, 1H), 1.62 (dd, J = 6.8, 
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1.8 Hz, 3H), 1.38 (d, J = 8.2 Hz, 1H), 0.00 (s, 9H); Major Isomer 13C NMR (101 MHz, CDCl3) δ 

129.0, 125.8, 63.5, 33.7, 13.5, -2.7;  Minor Isomer 1H NMR (500 MHz, CDCl3) δ 5.44 (dqd, J = 

15.2, 6.3, 0.7 Hz, 1H), 5.32 – 5.21 (m, 1H), 3.71 (ddd, J = 10.7, 8.2, 4.0 Hz, 1H), 3.65 – 3.57 (m, 

1H), 1.81 (td, J = 10.4, 4.1 Hz, 1H), 1.71 (dd, J = 6.3, 1.5 Hz, 3H), 1.48 (d, J = 8.3 Hz, 1H), -0.01 

(s, 9H); Minor Isomer 13C NMR (101 MHz, CDCl3) δ 129.1, 126.6, 62.7, 38.6, 18.4, -2.8; HRMS 

(ESI): Exact mass calcd for C8H18OSi [M+Na]+, 181.1019. Found 181.102. 

3-methyl-2-(Trimethylsilyl)but-3-en-1-ol (II-89c): Synthesized from 

isopropenyl cuprate via General Method E (5.0 mmol scale, 51% yield): IR 

(Germanium ATR): 3329, 3008, 2955, 2880, 1437, 1248, 1095, 1049, 862, 834 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 4.87 (d, J = 1.5 Hz, 1H), 4.66 (d, J = 1.5 Hz, 1H), 3.84 (td, J = 11.3, 2.2 Hz, 

1H), 3.72 (ddd, J = 11.4, 8.0, 4.4 Hz, 1H), 1.94 (dd, J = 11.8, 4.4 Hz, 1H), 1.75 (s, 3H), 1.60 – 

1.59 (m, 1H), 0.03 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 144.4, 110.2, 61.8, 43.0, 23.8, -2.2;  

HRMS (ESI): Exact mass calcd for C8H18OSi [M+Na]+, 181.1019. Found 181.1022. 

2.6.4   Type B Indane Experimental Procedures and Characterization Data 

Scheme 2.31 General method for synthesis of indanes with Type B allylsilanes 

 

General Method F: Benzhydrol II-78 (1 equiv) was dissolved in MeNO2 (0.1 M) and allowed to 

stir under N2 atmosphere. Alkyl silane II-89 (1.5 equiv) was added, followed by a solution of 

triflimide in DCM (10 mol%). The reaction was allowed to stir at room temperature for 15 hours 

before being quenched with saturated aqueous NaHCO3 solution. The biphasic solution was 

+
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extracted with DCM and the combined organic layers were dried over MgSO4. Concentration 

under reduced pressure followed by flash column chromatography on silica gel with EtOAc in 

hexanes solvent systems afforded the desired indane. 

 syn-1-Phenyl-5,6-dimethoxy-3-vinylindane (II-98c): Synthesized from 

3,4-dimethoxybenzhydrol (II-44, 0.138 mmol) and 2-(trimethylsilyl)but-3-

en-1-ol (II-89a) via General Method F (21 mg, 2:1 d.r., 53% yield): IR 

(Germanium ATR): 2999, 2853, 2830, 1619, 1500, 1463, 1453, 1290, 1213, 

1185, 1082, 1029, 913, 855, 758 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.26 – 

7.23 (m, 3H), 6.71 (s, 1H), 6.43 (s, 1H), 5.88 (ddd, J = 17.1, 10.0, 8.6 Hz, 1H), 5.25 (ddd, J = 17.0, 

1.9, 0.9 Hz, 1H), 5.15 (dd, J = 9.9, 1.9 Hz, 1H), 4.24 (dd, J = 10.4, 7.3 Hz, 1H), 3.89 (s, 3H), 3.72 

(s, 3H), 3.72 – 3.70 (m, 1H), 2.74 (dt, J = 12.6, 7.2 Hz, 1H), 1.84 (dt, J = 12.6, 10.2 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ 148.7, 148.6, 145.1, 141.3, 138.3, 137.9, 128.7, 128.5, 126.6, 115.7, 

108.0, 107.1, 56.3, 56.2, 50.8, 49.2, 45.2; HRMS (ESI): Exact mass calcd for C19H20O2 [M+H]+, 

281.1536. Found 281.1542. 

 syn-5,6-Dimethoxy-1-(4-methoxyphenyl)-3-

vinylindane (II-98b major) and anti-5,6-

Dimethoxy-1-(4-methoxyphenyl)-3-

vinylindane (II-98b minor): Synthesized from 

3,4,4’-trimethoxybenzhydrol (SII-57g, 0.203 

mmol) and 2-(trimethylsilyl)but-3-en-1-ol (II-89a) via General Method F (34 mg, 2:1 d.r., 54% 

yield): IR (Germanium ATR): 3066, 2996, 2832, 1610, 1515, 1463, 1290, 1247, 1213, 1175, 1081, 

1034, 915, 857, 816 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 7.19 – 7.13 (m, 2H), 6.90 
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– 6.86 (m, 2H), 6.71 (s, 1H), 6.42 (s, 1H), 5.87 (ddd, J = 16.9, 10.0, 8.6 Hz, 1H), 5.24 (ddd, J = 

17.0, 1.9, 0.9 Hz, 1H), 5.15 (dd, J = 10.0, 1.9 Hz, 1H), 4.18 (dd, J = 10.5, 7.2 Hz, 1H), 3.88 (s, 

3H), 3.82 (s, 3H), 3.73 (s, 3H), 3.72 – 3.69 (m, 1H), 2.71 (dt, J = 12.5, 7.1 Hz, 1H), 1.79 (dt, J = 

12.5, 10.3 Hz, 1H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 158.4, 148.7, 148.5, 141.3, 138.7, 

137.8, 137.1, 129.4, 115.7, 114.1, 108.0, 107.1, 56.2, 56.2, 55.4, 50.0, 49.1, 45.4; Minor Isomer 

1H NMR (500 MHz, CDCl3) δ 7.06 – 7.00 (m, 2H), 6.85 – 6.81 (m, 2H), 6.73 (s, 1H), 6.56 (s, 1H), 

5.89 (ddd, J = 17.0, 10.0, 8.1 Hz, 1H), 5.09 (ddd, J = 17.0, 1.9, 1.0 Hz, 1H), 5.05 (ddd, J = 10.0, 

1.9, 0.8 Hz, 1H), 4.34 (dd, J = 8.2, 5.5 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 3.72 – 3.69 

(m, 1H), 2.38 (ddd, J = 12.7, 8.2, 6.0 Hz, 1H), 2.27 (ddd, J = 13.0, 7.9, 5.6 Hz, 1H); Minor Isomer 

13C NMR (126 MHz, CDCl3) δ 158.2, 148.8, 148.6, 141.5, 138.2, 138.0, 137.5, 128.8, 114.5, 114.0, 

108.1, 107.5, 56.2, 56.1, 55.4, 49.2, 48.4, 44.0; HRMS (ESI): Exact mass calcd for C20H22O3 

[M+Na]+, 333.1461. Found 333.1473. 

 syn-1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-

3-vinylindane (II-98a major) and anti-1-(3,4-

Dimethoxyphenyl)-5,6-dimethoxy-3-

vinylindane (II-98a minor): Synthesized from 

3,3’,4,4’-tetramethoxybenzhydrol (II-99, 0.291 

mmol) and 2-(trimethylsilyl)but-3-en-1-ol (II-89a) via General Method F (54 mg, 2:1 d.r., 54% 

yield): IR (Germanium ATR): 3072, 2950, 1639, 1604, 1501, 1463, 1211, 1028, 915, 855 cm–1; 

Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.84 (s, 1H), 6.82 (d, J = 1.9 Hz, 1H), 6.73 (d, J = 2.0 

Hz, 1H), 6.72 (s, 1H), 6.45 (s, 1H), 5.97 – 5.83 (m, 1H), 5.25 (dd, J = 16.7, 1.6 Hz, 1H), 5.16 (dd, 

J = 10.0, 1.9 Hz, 1H), 4.18 (dd, J = 10.5, 7.1 Hz, 1H), 3.86 (s, 6H), 3.83 (s, 3H), 3.74 (s, 3H), 3.73 

II-98a major II-98a minor
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– 3.68 (m, 1H), 2.72 (dt, J = 12.5, 7.1 Hz, 1H), 1.81 (dt, J = 12.4, 10.2 Hz, 1H); Major Isomer 13C 

NMR (126 MHz, CDCl3) δ 149.2, 148.7, 148.6, 147.8, 141.2, 138.5, 137.8, 137.5, 120.6, 115.7, 

111.4, 111.3, 108.0, 107.1, 56.3, 56.2, 56.1, 56.1, 50.5, 49.0, 45.3; Minor Isomer 1H NMR (500 

MHz, CDCl3) δ 6.85 (s, 1H), 6.80 (d, J = 1.8 Hz, 1H), 6.74 (s, 1H), 6.64 (d, J = 2.0 Hz, 1H), 6.57 

(s, 1H), 5.97 – 5.83 (m, 1H), 5.09 (dd, J = 17.1, 1.5 Hz, 1H), 5.05 (dd, J = 9.9, 1.9 Hz, 1H), 4.34 

(dd, J = 8.1, 5.9 Hz, 1H), 3.89 (s, 6H), 3.81 (s, 3H), 3.78 (s, 3H), 3.73 – 3.68 (m, 1H), 2.39 (ddd, 

J = 12.7, 8.1, 5.6 Hz, 1H), 2.29 (ddd, J = 12.8, 7.9, 5.9 Hz, 1H); Minor Isomer 13C NMR (126 

MHz, CDCl3) δ 149.1, 148.8, 148.7, 147.6, 141.4, 138.4, 138.0, 137.5, 119.8, 114.5, 111.3, 111.1, 

108.1, 107.5, 56.3, 56.2, 56.1, 56.0, 49.6, 48.4, 44.0; HRMS (ESI): Exact mass calcd for C21H24O4 

[M+Na]+, 363.1567. Found 363.158. 

1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-2-methyl-3-vinylindane (II-

100): Synthesized from 3,3’,4,4’-tetramethoxybenzhydrol (II-99, 0.197 

mmol) and (E)-2-(trimethylsilyl)pent-3-en-1-ol (II-89b) via General 

Method F (40 mg, 4:1 d.r., 57% yield): IR (Germanium ATR): 3016, 2953, 

1639, 1503, 1463, 1212, 1027, 913 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.86 (d, J = 8.2 Hz, 1H), 

6.80 (dd, J = 8.2, 2.0 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 6.69 (d, J = 1.0 Hz, 1H), 6.42 (d, J = 1.0 

Hz, 1H), 5.81 (ddd, J = 17.0, 10.0, 9.0 Hz, 1H), 5.30 – 5.21 (m, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 

3.83 (s, 3H), 3.73 (s, 3H), 3.68 (d, J = 10.1 Hz, 1H), 3.25 (t, J = 9.3 Hz, 1H), 2.03 (tq, J = 10.0, 

6.6 Hz, 1H), 1.12 (d, J = 6.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ (126 MHz, CDCl3) δ 149.2, 

148.7, 148.5, 147.9, 140.1, 138.0, 137.4, 136.2, 121.2, 117.2, 111.5, 111.2, 108.0, 107.1, 58.3, 

56.9, 56.3, 56.2, 56.1, 56.0, 53.7, 15.8;  HRMS (ESI): Exact mass calcd for C22H26O4 [M+NH4]+, 

372.2169. Found 372.2179. 
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anti-3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-

1-methyl-1-vinylindane (II-101 major) and syn-

3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1-

methyl-1-vinylindane (II-101 minor): 

Synthesized from 3,3’,4,4’-tetramethoxy-

benzhydrol (SII-57e, 0.184 mmol) and 3-methyl-2-(trimethylsilyl)but-3-en-1-ol (II-89c) via 

General Method F (42 mg, 2:1 d.r., 55% yield): IR (Germanium ATR): 2997, 2953, 1634, 1499, 

1463, 1208, 1027, 911 cm–1; Major Isomer 1H NMR (500 MHz, CDCl3) δ 6.83 (s, 1H), 6.81 – 6.77 

(m, 1H), 6.73 – 6.71 (m, 1H), 6.69 (s, 1H), 6.44 (s, 1H), 6.00 (dd, J = 17.2, 10.4 Hz, 1H), 4.91 (dd, 

J = 10.4, 1.4 Hz, 1H), 4.70 (dd, J = 17.2, 1.5 Hz, 1H), 4.19 (dd, J = 10.2, 7.1 Hz, 1H), 3.91 (s, 3H), 

3.88 (s, 3H), 3.83 (s, 3H), 3.74 (s, 3H), 2.52 (dd, J = 12.4, 7.1 Hz, 1H), 1.94 (dd, J = 12.4, 10.3 

Hz, 1H), 1.47 (s, 3H); Major Isomer 13C NMR (126 MHz, CDCl3) δ 149.1, 148.7, 147.7, 146.9, 

145.9, 140.9, 138.1, 137.5, 120.5, 111.5, 111.3, 111.1, 108.0, 106.4, 56.2, 56.2, 56.1, 56.1, 52.4, 

49.6, 49.1, 26.3; Minor Isomer 1H NMR (500 MHz, CDCl3) δ 6.84 (s, 1H), 6.81 – 6.77 (m, 1H), 

6.73 – 6.71 (m, 1H), 6.63 (s, 1H), 6.44 (s, 1H), 6.09 (dd, J = 17.4, 10.5 Hz, 1H), 5.17 (dd, J = 17.4, 

1.3 Hz, 1H), 5.11 (dd, J = 10.6, 1.3 Hz, 1H), 4.34 (dd, J = 9.8, 7.4 Hz, 1H), 3.88 (s, 6H), 3.82 (s, 

3H), 3.74 (s, 3H), 2.38 (dd, J = 12.6, 7.4 Hz, 1H), 2.08 (dd, J = 12.6, 9.8 Hz, 1H), 1.34 (s, 3H); 

Minor Isomer 13C NMR (126 MHz, CDCl3) δ 149.2, 148.7, 148.7, 148.6, 145.9, 142.4, 137.7, 

137.1, 120.5, 112.0, 111.5, 111.3, 108.0, 106.2, 56.2, 45.2, 56.1, 56.1, 52.3, 49.5, 48.5, 24.9;  

HRMS (ESI): Exact mass calcd for C22H26O4 [M+NH4]+, 372.2169. Found 372.2175. 

 

MeO

OMeMeO

MeO
Me

MeO

OMeMeO

MeO
Me

II-101 major II-101 minor



 130 

2.6.5   Type C Allylsilanes Experimental Procedures and Characterization Data 

Scheme 2.32 General method for synthesis of tetralins with Type C allylsilanes 

 

General Method G: Benzhydrol II-108 (1 equiv) was dissolved in MeNO2 (0.1 M) and allowed 

to stir under N2 atmosphere. Alkyl silane II-109 (1.5 equiv) was added, followed by a solution of 

triflimide in DCM (10 mol%). The reaction was allowed to stir at room temperature for 24 hours 

before being quenched with saturated aqueous NaHCO3 solution. The biphasic solution was 

extracted with DCM and the combined organic layers were dried over MgSO4. Concentration 

under reduced pressure followed by flash column chromatography on silica gel with EtOAc in 

hexanes solvent systems afforded the desired tetralin. 

4-Phenyl-3,4-dihydro-6,7-dimethoxy-2-methylnaphthalene (II-107a): 

Synthesized from 3,4-dimethoxybenzhydrol (II-44, 0.148 mmol) and 2-

trimethylsilylmethyl-3-trimethylsiloxy-l-propene (II-106) via General 

Method G (22 mg, 52% yield): IR (Germanium ATR): 2998, 2956, 2829, 

1605, 1510, 1464, 1452, 1401, 1309, 1270, 1232, 1112, 1030, 866, 759 cm–1; 1H NMR (500 MHz, 

CDCl3) δ 7.32 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 6.62 (s, 1H), 6.40 (s, 1H), 6.20 (q, J = 1.5 Hz, 

1H), 4.07 (t, J = 8.3 Hz, 1H), 3.88 (s, 3H), 3.69 (s, 3H), 2.58 (ddt, J = 16.7, 7.5, 1.2 Hz, 1H), 2.46 

(ddt, J = 16.7, 9.1, 1.2 Hz, 1H), 1.85 (d, J = 1.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 147.7, 

147.4, 145.2, 134.6, 128.8, 128.6, 128.3, 128.3, 126.5, 122.4, 111.9, 109.2, 56.1, 56.1, 44.3, 37.9, 

23.5; HRMS (ESI): Exact mass calcd for C19H20O2 [M+H]+, 281.1536. Found 281.1545. 

R'

OH
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4-(4-Methoxyphenyl)-3,4-dihydro-6,7-dimethoxy-2-

methylnaphthalene (II-107b): Synthesized from 3,4,4’-

trimethoxybenzhydrol (SII-57g, 0.155 mmol) and 2-

trimethylsilylmethyl-3-trimethylsiloxy-l-propene (II-106) via General 

Method G (15 mg, 30% yield): IR (Germanium ATR): 2999, 2955, 2831, 1609, 1512, 1464, 1401, 

1305, 1248, 1232, 1112, 1035, 990, 866 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.16 – 7.07 (m, 2H), 

6.87 – 6.81 (m, 2H), 6.61 (s, 1H), 6.40 (s, 1H), 6.19 (d, J = 1.6 Hz, 1H), 4.02 (dd, J = 9.2, 7.5 Hz, 

1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.70 (s, 3H), 2.54 (ddt, J = 16.7, 7.5, 1.2 Hz, 1H), 2.42 (ddt, J = 

16.7, 9.3, 1.3 Hz, 1H), 1.85 (d, J = 1.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 158.2, 147.7, 147.4, 

137.2, 134.8, 129.3, 129.2, 128.2, 122.3, 113.9, 111.8, 111.8, 109.3, 109.2, 56.1, 56.1, 55.4, 43.5, 

38.1, 23.5;  HRMS (ESI): Exact mass calcd for C20H22O3 [M+H]+, 311.1642. Found 311.1648. 

4-(3,4-Dimethoxyphenyl)-3,4-dihydro-6,7-dimethoxy-2-methyl 

naphthalene (II-107c): Synthesized from 3,3’,4,4’-

tetramethoxybenzhydrol (II-99, 0.251 mmol) and 2-

trimethylsilylmethyl-3-trimethylsiloxy-l-propene (II-106) via General 

Method G (40 mg, 46% yield): IR (Germanium ATR): 2998, 2956, 2831, 1603, 1512, 1463, 1260, 

1231, 1111, 1028, 994, 864, 768 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.81 (d, J = 8.2 Hz, 1H), 

6.79 (d, J = 2.0 Hz, 1H), 6.74 (dd, J = 8.1, 2.0 Hz, 1H), 6.62 (s, 1H), 6.40 (s, 1H), 6.20 (d, J = 1.5 

Hz, 1H), 4.01 (dd, J = 10.0, 7.5 Hz, 1H), 3.87 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 2.56 

– 2.41 (m, 2H), 1.87 (d, J = 1.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 149.0, 147.7, 147.7, 147.4, 

137.6, 134.9, 129.2, 128.2, 122.3, 120.5, 111.7, 111.4, 111.2, 109.2, 56.1 (2C), 56.0, 56.0, 44.1, 

38.1, 23.5;  HRMS (ESI): Exact mass calcd for C21H24O4 [M+H]+, 341.1747. Found 341.1751. 
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(±)-Cyclogalgravin (II-108a): Synthesized from 3,3’,4,4’-

tetramethoxy benzhydrol (SII-57e, 0.259 mmol) and (Z)-2-

trimethylsilylmethyl-2-buten-1-ol (II-109) via General Method G (72 

mg, 78% yield): IR (Germanium ATR): 2956, 1604, 1508, 1463, 1226, 

1140, 1027 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.71 (d, J = 8.2 Hz, 1H), 6.66 (d, J = 2.0 Hz, 1H), 

6.62 (s, 1H), 6.55 (dd, J = 8.2, 2.0 Hz, 1H), 6.55 (s, 1H), 6.14 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 

3.78 (s, 6H), 3.68 (d, J = 3.2 Hz, 1H), 2.39 (qd, J = 7.0, 3.0 Hz, 1H), 1.80 (s, 3H), 1.08 (d, J = 7.0 

Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 148.8, 147.7, 147.6, 147.4, 139.0, 138.3, 127.4, 127.2, 

121.2, 119.7, 113.0, 111.1, 111.0, 109.0, 56.1 (2C), 55.9, 55.9, 51.0, 42.1, 22.3, 18.8;  HRMS 

(ESI): Exact mass calcd for C22H26O4 [M+H]+, 355.1904. Found 355.1913. All spectroscopic data 

for this compound agrees with previously reported values.136, 137 

 (±)-Pycnanthulignene B (II-110c) and 

(7'R,8'S)-7'-(3',4'-Dimethoxyphenyl)-8,8'-

dimethyl-7',8'-dihydronaphtho [4,5-

d][1,3]dioxole (II-110b): Synthesized from 3,4-

methylenedioxy-3’,4’-dimethoxybenzhydrol 

(SII-57h, 0.215 mmol) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (II-109) via General Method 

G (57 mg, 1:1 regioisomer, 79% yield): IR (Germanium ATR): 3000, 2958, 2902, 1605, 1512, 

1483, 1452, 1230, 1124, 1038, 941, 871 cm–1; Pycnanthulignene B 1H NMR (500 MHz, CDCl3) δ 

6.66 (d, J = 7.9 Hz, 1H), 6.62 (s, 1H), 6.55 – 6.51 (m, 3H), 6.13 (s, 1H), 5.90 – 5.85 (m, 2H), 3.88 

(s, 3H), 3.79 (s, 3H), 3.66 (d, J = 2.8 Hz, 1H); 2.46 – 2.30 (m, 1H), 1.80 (s, 3H), 1.07 (d, J = 7.1 

Hz, 3H); Pycnanthulignene B 13C NMR (126 MHz, CDCl3) δ 147.8, 147.7, 147.6, 145.9, 139.8, 
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138.7, 127.2, 127.1, 121.3, 120.6, 113.0, 109.1, 108.2, 108.1, 100.9, 56.1, 56.1, 51.0, 42.4, 22.2, 

19.0; (7'R,8'S)-7'-(3',4'-Dimethoxyphenyl)-8,8'-dimethyl-7',8'-dihydronaphtho [4,5-d][1,3]dioxole 

1H NMR (500 MHz, CDCl3) δ 6.72 (d, J = 8.2 Hz, 1H), 6.67 (d, J = 2.1 Hz, 1H), 6.57 (s, 1H); 6.57 

(dd, J = 8.3, 2.1 Hz, 1H); 6.50 (s, 1H), 6.10 (s, 1H), 5.90 – 5.85 (m, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 

3.64 (d, J = 3.7 Hz, 1H); 2.46 – 2.30 (m, 1H), 1.79 (s, 3H), 1.07 (d, J = 7.1 Hz, 3H) (7'R,8'S)-7'-

(3',4'-Dimethoxyphenyl)-8,8'-dimethyl-7',8'-dihydronaphtho [4,5-d][1,3]dioxole 13C NMR (126 

MHz, CDCl3) δ 148.8, 147.5, 146.3, 146.1, 139.0, 138.1, 129.0, 128.3, 121.6, 119.7, 111.1, 111.0, 

110.0, 106.1, 100.8, 56.0, 55.9, 51.4, 41.7, 22.4, 18.7; HRMS (ESI): Exact mass calcd for C21H22O4 

[M+Na]+, 361.141. Found 361.1419. All spectroscopic data for this compound agrees with 

previously reported values.137, 138 

 trans-4-(4-Isopropoxy-3-methoxyphenyl)-3,4-dihydro-7-

isopropoxy-6-methoxy-2,3-dimethylnaphthalene (II-123): 

Synthesized from 4,4’-diisopropoxy-3,3’-dimethoxybenzhydrol (SII-

123, 0.112 mmol) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (II-109) 

via General Method G (23 mg, 49% yield): IR (Germanium ATR): 2973, 2928, 1603, 1508, 1465, 

1264, 1224, 1138, 1112, 1036, 941, 889 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.73 (d, J = 8.2 Hz, 

1H), 6.64 (s, 1H), 6.63 (s, 1H), 6.54 (s, 1H), 6.53 (dd, J = 8.3, 2.2 Hz, 1H), 6.11 (d, J = 1.6 Hz, 

1H), 4.50 (p, J = 6.1 Hz, 1H), 4.44 (p, J = 6.1 Hz, 1H), 3.74 (d, J = 0.9 Hz, 6H), 3.66 (d, J = 3.5 

Hz, 1H), 2.39 (qd, J = 7.0, 3.5 Hz, 1H), 1.79 (d, J = 1.4 Hz, 3H), 1.36 (dd, J = 6.1, 3.5 Hz, 6H), 

1.33 (dd, J = 6.1, 1.8 Hz, 6H), 1.08 (d, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 150.1, 

149.2, 145.9, 145.7, 138.7, 138.7, 128.2, 127.3, 121.3, 119.8, 115.5, 113.8, 113.7, 111.9, 71.7, 

MeO

iPr-O Me

Me

O-iPr
OMe



 134 

71.4, 56.2, 56.0, 51.1, 42.0, 22.4, 22.4, 22.3, 18.8;  HRMS (ESI): Exact mass calcd for C26H34O4 

[M+H]+, 411.253. Found 411.2536. 

 (±)-4',5-O-Didemethylcyclogalgravin (II-124): 4-(4-Isopropoxy-3-

methoxy phenyl)-3,4-dihydro-7-isopropoxy-6-methoxy-2,3-dimethyl-

naphthalene (II-123, 0.151 mmol) was dissolved in DCM  (12 mL) and 

cooled to 0 ºC. BCl3 (1.0 M in DCM, 0.453 mmol, 0.453 µL) was added 

and the reaction was allowed to stir for 50 min before being quenched with MeOH. The solution 

was washed with brine, and the aqueous layer was extracted with DCM (3 x 3 mL). The combined 

organic layers were dried over MgSO4. Concentration under reduced pressure followed by flash 

column chromatography on silica gel with a 30% EtOAc in hexanes solvent system afforded the 

desired product (40 mg, 81% yield): IR (Germanium ATR): 3511, 2962, 2841, 1611, 1507, 1463, 

1449, 1357, 1265, 1219, 1092, 1031, 879 cm–1; 1H NMR (500 MHz, CDCl3) δ 6.76 (d, J = 8.1 Hz, 

1H), 6.67 (s, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.56 (dd, J = 8.1, 2.0 Hz, 1H), 6.52 (s, 1H), 6.11 (d, J 

= 1.7 Hz, 1H), 5.45 (s, 1H), 5.43 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.65 (d, J = 3.3 Hz, 1H), 2.35 

(qd, J = 7.0, 3.2 Hz, 1H), 1.78 (d, J = 1.6 Hz, 3H), 1.07 (d, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 146.3, 145.2, 144.3, 144.0, 139.0, 137.9, 127.9, 127.0, 121.2, 120.5, 114.1, 112.2, 111.8, 

110.2, 56.1, 55.9, 51.2, 42.3, 22.3, 18.9;  HRMS (ESI): Exact mass calcd for C20H22O4 [M+Na]+, 

349.141. Found 349.1428. All spectroscopic data for this compound agrees with previously 

reported values.139 
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 4-(4-Isopropoxy-3-methoxyphenyl)-7-isopropoxy-6-methoxy-2,3-

dimethylnaphthalene (II-125): trans-4-(4-Isopropoxy-3-

methoxyphenyl)-3,4-dihydro-7-isopropoxy-6-methoxy-2,3-dimethyl-

naphthalene (II-123, 0.083 mmol) was dissolved in dry DCM (6 mL) 

and DDQ (0.08 mmol, 18.1 mg) was added in one portion. The reaction was allowed to stir at 

room temperature for 30 min before being quenched with H2O (10 mL). The aqueous layer was 

extracted with DCM (3 x 3 mL) and the combined organic layers were dried over MgSO4. 

Concentration under reduced pressure followed by flash column chromatography on silica gel with 

a 30% EtOAc in hexanes solvent system afforded the title compound   (31 mg, 90% yield): IR 

(Germanium ATR): 2975, 2934, 1604, 1503, 1466, 1248, 1109, 1038, 955, 877 cm–1; 1H NMR 

(500 MHz, CDCl3) δ 7.48 (s, 1H), 7.09 (s, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.79 – 6.76 (m, 2H), 6.69 

(s, 1H), 4.72 – 4.59 (m, 2H), 3.82 (s, 3H), 3.67 (s, 3H), 2.44 (s, 3H), 2.13 (s, 3H), 1.48 – 1.40 (m, 

12H); 13C NMR (126 MHz, CDCl3) δ 150.3, 149.8, 147.0, 146.1, 137.2, 133.8, 133.5, 131.5, 127.7, 

127.6, 125.8, 122.4, 115.8, 114.1, 109.4, 106.1, 71.5, 71.0, 56.1, 55.8, 22.4, 22.3, 22.1, 21.2, 17.6;  

HRMS (ESI): Exact mass calcd for C26H32O4 [M+H]+, 409.2373. Found 409.238. 

Cinnamophilin A (II-126): 4-(4-Isopropoxy-3-methoxyphenyl)-7-

isopropoxy-6-methoxy-2,3-dimethylnaphthalene (II-125, 0.054 mmol) 

was dissolved in DCM (5 mL) and cooled to 0 ºC. BCl3 (1.0 M in DCM, 

0.162 mmol, 162 µL) was added and the reaction was allowed to stir for 

1 hour before being quenched with MeOH. Concentration under reduced pressure followed by 

flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system afforded 

the desired product (16 mg, 90% yield): IR (Germanium ATR): 3419, 2923, 1609, 1050, 1457, 
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1417, 1249, 1201, 1033, 880 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.47 (s, 1H), 7.18 (s, 1H), 7.05 

(d, J = 7.8 Hz, 1H), 6.76 (dd, J = 7.8, 1.9 Hz, 1H), 6.75 (d, J = 1.8 Hz, 1H), 6.66 (s, 1H), 5.78 (s, 

1H), 5.66 (s, 1H), 3.86 (s, 3H), 3.74 (s, 3H), 2.43 (s, 3H), 2.11 (s, 3H); 13C NMR (126 MHz, CDCl3) 

δ 146.7, 146.6, 145.0, 144.5, 137.3, 133.9, 133.0, 131.4, 128.2, 127.5, 125.9, 123.2, 114.5, 112.8, 

108.7, 104.9, 56.2, 55.8, 21.2, 17.6;  HRMS (ESI): Exact mass calcd for C20H20O4 [M+Na]+, 

347.1254. Found 347.1263. All spectroscopic data for this compound agrees with previously 

reported values.140 

trans-4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-

dimethoxy-2,3-dimethylnaphthalene (II-128): Synthesized from 

4,4’-diisopropoxy-3,3’-dimethoxy-5,5’-dimethoxybenzhydrol (II-127, 

0.197 mmol) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (II-109) via 

General Method G (63 mg, 68% yield): IR (Germanium ATR): 2971, 

2933, 1635, 1589, 1487, 1464, 1415, 1334, 1232, 1127, 937 cm–1; 1H NMR (500 MHz, CDCl3) δ 

6.44 (d, J = 1.7 Hz, 1H), 6.34 (s, 1H), 6.27 (s, 2H), 4.40 (hept, J = 6.2 Hz, 1H), 4.28 (hept, J = 6.2 

Hz, 1H), 3.87 (s, 3H), 3.72 (s, 3H), 3.71 (s, 6H), 3.63 (d, J = 3.8 Hz, 1H), 2.41 (qd, J = 7.0, 3.8 Hz, 

1H), 1.82 (d, J = 1.5 Hz, 3H), 1.30 (d, J = 6.2 Hz, 6H), 1.26 (d, J = 6.2 Hz, 6H), 1.08 (d, J = 7.1 

Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 153.5, 152.5, 149.5, 140.5, 138.8, 138.6, 134.5, 130.9, 

121.2, 115.3, 109.0, 105.0, 75.5, 75.2, 61.2, 56.0, 56.0, 52.3, 41.7, 22.7, 22.7, 22.6, 18.8; HRMS 

(ESI): Exact mass calcd for C28H38O6 [M+H]+, 471.2741. Found 471.2751.  
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 (±)-Sacidumlignan B (II-129): trans-4-(4-Isopropoxy-2,3-

dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3-dimethyl-

naphthalene (II-128, 0.066 mmol) was dissolved in DCM  (4 mL) and 

cooled to 0 ºC. BCl3 (1.0 M in DCM, 0.199 mmol, 199 µL) was added 

and the reaction was allowed to stir for 1 hour before being quenched with 

MeOH. The solution was washed with brine, and the aqueous layer was extracted with DCM (3 x 

3 mL). The combined organic layers were dried over MgSO4. Concentration under reduced 

pressure followed by flash column chromatography on silica gel with a 30% EtOAc in hexanes 

solvent system afforded the desired product (22 mg, 87% yield): IR (Germanium ATR): 3439, 

2958, 2934, 2839, 1612, 1517, 1456, 1320, 1215, 1114, 759 cm–1; 1H NMR (500 MHz, CDCl3) δ 

6.45 (s, 1H), 6.35 (s, 1H), 6.30 (s, 2H), 5.43 (s, 1H), 5.34 (s, 1H), 3.88 (s, 3H), 3.79 (s, 3H), 3.78 

(s, 6H), 3.60 (d, J = 3.5 Hz, 1H), 2.37 (qd, J = 7.1, 3.5 Hz, 1H), 1.82 (d, J = 1.5 Hz, 3H), 1.07 (d, 

J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 146.8, 146.0, 142.5, 139.3, 137.2, 136.7, 133.1, 

126.9, 121.0, 115.0, 108.2, 104.5, 61.4, 56.3 (3C), 51.9, 42.1, 22.7, 18.8; HRMS (ESI): Exact mass 

calcd for C22H26O6 [M+Na]+, 409.1622. Found 409.1629. All spectroscopic data for this compound 

agrees with previously reported values.141 

4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-

dimethoxy-2,3-dimethylnaphthalene: trans-4-(4-Isopropoxy-2,3-

dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3-dimethyl-

naphthalene (II-128, 0.029 mmol) was dissolved in dry DCM (4 mL) 

and the reaction was cooled to 0 ºC. DDQ (0.028 mmol, 6.3 mg) was 

added in one portion. The reaction was allowed to stir at 0 ºC for 30 min before being quenched 
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with H2O (10 mL). The aqueous layer was extracted with DCM (3 x 3 mL) and the combined 

organic layers were dried over MgSO4. Concentration under reduced pressure followed by flash 

column chromatography on silica gel with a 15% EtOAc in hexanes solvent system afforded the 

title compound   (6 mg, 44% yield): IR (Germanium ATR): 2972, 2033, 1577, 1462, 1399, 1336, 

1257, 1236, 1124, 1089, 981, 755 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.86 (s, 1H), 6.48 (s, 3H), 

4.50 (hept, J = 6.2 Hz, 1H), 4.49 (hept, J = 6.2 Hz, 1H), 4.04 (s, 3H), 3.80 (s, 6H), 3.63 (s, 3H), 

2.48 (s, 3H), 2.16 (s, 3H), 1.37 (d, J = 6.2 Hz, 6H), 1.33 (d, J = 6.2 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 154.0, 152.8, 148.0, 138.2, 137.5, 136.1, 134.8, 133.3, 132.9, 129.0, 122.9, 120.8, 107.2, 

101.5, 75.9, 75.2, 61.2, 56.3, 55.6, 29.9, 22.7, 22.6, 21.4, 17.8; HRMS (ESI): Exact mass calcd for 

C28H36O6 [M+Na]+, 491.2404. Found 491.2411.  

Sacidumlignan A (II-130): 4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-

isopropoxy-6,8-dimethoxy-2,3-dimethylnaphthalene (0.011 mmol) was 

dissolved in DCM (2 mL) and cooled to 0 ºC. BCl3 (1.0 M in DCM, 

0.011 mmol, 11 µL) was added and the reaction was allowed to stir for 

30 min before being quenched with MeOH. Concentration under 

reduced pressure followed by flash column chromatography on silica gel with a 30% EtOAc in 

hexanes solvent system afforded the desired product (4 mg, 98% yield): IR (Germanium ATR): 

3490, 3437, 3001, 2935, 1609, 1518, 1463, 1414, 1336, 1286, 1209, 1114, 1083, 913, 758 cm–1; 

1H NMR (500 MHz, CDCl3) δ 7.82 (s, 1H), 6.50 (s, 1H), 6.48 (s, 2H), 5.73 (s, 1H), 5.59 (s, 1H), 

4.04 (s, 3H), 3.86 (s, 6H), 3.75 (s, 3H), 2.48 (s, 3H), 2.12 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

147.3, 147.3, 139.5, 137.7, 136.5, 133.8, 133.5, 132.0, 132.0, 126.8, 122.8, 120.2, 106.8, 101.0, 

61.2, 56.5, 56.1, 21.5, 17.6; HRMS (ESI): Exact mass calcd for C22H24O6 [M+Na]+, 407.1465. 

Me

MeMeO

HO
OMe

MeO
OH

OMe



 139 

Found 407.1471. All spectroscopic data for this compound agrees with previously reported 

values.141 

Pycnanthuligene C (II-120): A mixture of cis- and trans-

dihydronaphthalene isomers were synthesized from 3,4-methylenedioxy-

4’-methoxybenzhydrol (II-117, 0.173 mmol) and (Z)-2-

trimethylsilylmethyl-2-buten-1-ol (II-109) via General Method G. The 

crude reaction mixture was then re-dissolved in dry DCM (10 mL) and DDQ (0.200 mmol, 45 mg) 

was added in one portion. The reaction was allowed to stir at room temperature for 30 min before 

being quenched with H2O (10 mL). The organic layer was separated and dried over Na2SO4. 

Concentration under reduced pressure followed by flash column chromatography on silica gel with 

a 10% EtOAc in hexanes solvent system afforded the title compound   (34 mg, 73% yield over two 

steps): IR (Germanium ATR): 2994, 2898, 1610, 1515, 1497, 1461, 1285, 1236, 1175, 1039, 1039, 

900 cm–1; 1H NMR (500 MHz, CDCl3) δ 7.47 (s, 1H), 7.15 – 7.12 (m, 2H), 7.06 – 7.01 (m, 3H), 

6.64 (s, 1H), 5.94 (s, 2H), 3.90 (s, 3H), 2.43 (s, 3H), 2.09 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

158.7, 146.9, 146.7, 137.7, 133.8, 133.1, 132.0, 131.3, 129.0, 128.9, 126.6, 114.0, 103.2, 103.2, 

100.9, 55.5, 21.1, 17.6; HRMS (ESI): Exact mass calcd for C20H18O3 [M+H]+, 307.1329. Found 

307.133. All spectroscopic data for this compound agrees with previously reported values.138 
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2.6.6   Chromane Experimental Procedures and Characterization Data 

Scheme 2.33 General method H for synthesis of chromanes 

 

General Method H: Benzyl alcohol II-138 (1 equiv) was dissolved in MeNO2 (0.1 M soln) and 

allowed to stir under N2 atmosphere. Alkyl silane II-149 (1.5 equiv) was added, followed by a 

solution of triflimide in DCM (10 mol%). The reaction was allowed to stir at room temperature 

for 2 hours before being quenched with sat. NaHCO3 solution. The biphasic solution was extracted 

with DCM and the combined organic layers were dried over Na2SO4. Concentration under reduced 

pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent 

systems afforded the desired chromane. 

2,2-dimethyl-4-phenylchroman (II-140a): Synthesized from 2-

(hydroxyphenylmethyl)phenol (0.184 mmol) and silane II-45 via General 

Method H (31 mg, 70% yield): 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.06 (m, 

6H), 6.83 (d, J = 8.2 Hz, 1H), 6.76 – 6.71 (m, 2H), 4.09 (dd, J = 12.0, 6.6 Hz, 

1H), 2.07 – 1.96 (m, 2H), 1.45 (s, 3H), 1.37 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 154.2, 145.2, 

129.9, 128.9, 128.7, 127.9, 126.7, 124.7, 120.0, 117.4, 74.7, 43.7, 40.1, 30.1, 24.4. All 

spectroscopic data for this compound agrees with previously reported values.142 
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6-Methoxy-2,2,-dimethyl-4-phenylchroman (II-140b): Synthesized 

from 2-(hydroxyphenylmethyl)-4-methoxyphenol (0.166 mmol) and 

silane II-45 via General Method H (34 mg, 76% yield): 1H NMR (500 

MHz, CDCl3) δ 7.38 – 7.17 (m, 5H), 6.77 (d, J = 8.8 Hz, 1H), 6.70 (ddd, 

J = 8.9, 3.0, 0.9 Hz, 1H), 6.29 (dd, J = 3.1, 1.0 Hz, 1H), 4.06 (dd, J = 12.0, 6.6 Hz, 1H), 3.60 (s, 

3H), 2.05 – 1.93 (m, 2H), 1.43 (s, 3H), 1.34 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 153.1, 148.3, 

145.0, 128.9, 128.7, 126.8, 125.3, 117.9, 114.7, 113.9, 74.4, 55.8, 43.8, 40.5, 30.1, 24.2. All 

spectroscopic data for this compound agrees with previously reported values.142 
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Development of a “Traceless” Petasis reaction for the Synthesis of Allylic Alcohols 
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3   Chapter 3 

3.1   Introduction 

The Thomson group has a long-standing interest in the development of highly-efficient fragment 

coupling reactions. One particular area that has inspired us in forming new carbon–carbon bonds 

is the chemistry of hydrazones. Hydrazones are usually generated through condensation between 

a hydrazine and a carbonyl species. These compounds contain a highly potent a-hydrogen, a lone 

pair of electrons conjugated with the C=N bond and a carbon atom that is both electrophilic and 

nucleophilic. Their unique chemical character, as well as their diverse biological and 

pharmacological properties have made hydrazones important building blocks for the synthesis of 

heterocyclic compounds in the past several decades.143 We were more drawn to the synthetic utility 

of hydrazones as reaction intermediates, however, which has also been heavily investigated in the 

previous literatures.  

Scheme 3.1 Hydrazones as important reaction intermediates 

 

O

R1 R2

H2NNH2

base

N

R1 R2

NH2 heat

- N2 R1 R2

HH

R1

N
R2

NH
Ts

2 n-BuLi
R1

Li
R2

O

R1 R2
H2NNHTs

acid
E+

R1

E
R2

N
H

NH2
+

O R2

R1
acid

N
H

N

R2
R1

N
H

R1

R2

A. Wolff–Kishner reduction

B. Shapiro olefination

C. Fisher indole synthesis



 144 

Some of the extremely useful reactions involving hydrazone intermediates are the Wolff–Kishner 

reduction, Shapiro olefination and Fisher indole synthesis (Scheme 3.1). The first two examples 

take advantage of the readily-fragmented nature of the hydrazone species to achieve rapid 

construction of a new carbon–carbon bond. 

The Thomson group was especially intrigued by the work of Stevens and coworkers on [3,3]-

sigmatropic rearrangement of N-allylhydrazones.144 Differently-substituted aldehydes were 

condensed with allylhydrazines to afford hydrazone III-3, which underwent thermally-induced 

sigmatropic rearrangement to afford the diazine intermediate III-4. Fragmentation of the 

intermediate through nitrogen gas loss gave rise to a series of allylated hydrocarbon products 

(Scheme 3.2).   

Scheme 3.2 Stevens’ [3,3]-sigmatropic rearrangement of N-allylhydrazones 

 

Even though the yields were not high possibly due to the harsh reaction conditions, this interesting  

transformation inspired us to look into “traceless” bond formation enabled by hydrazone 

intermediates (Scheme 3.3). During “traceless” fragment coupling reactions, the original 

functional groups that enable the transformation to occur are no longer present in the final product, 

which allows for non-obvious disconnections during retrosynthetic analysis. 
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Scheme 3.3 “Traceless” fragment coupling reaction 

 

Several literature precedents have demonstrated the synthetic utility of traceless bond formation. 

In 1980, Bertz reported a novel reaction to generate hindered cuprate reagents from aldehyde 

tosylhydrazones III-6, which can be subjected to alkylation conditions to afford branched 

hydrocarbons in excellent yields (Scheme 3.4).145 This was the first method to prepare such highly 

hindered cuprate reagents at that time. 

Scheme 3.4 Preparation of cuprate reagent from tosylhydrazone 

 

In 1977, Vedejs and coworkers published the first example of reductive alkylation of aldehyde-

derived tosylhydrazone III-12.146 Organolithium reagents readily underwent addition to afford a 

variety of alkylation products at low temperature (Scheme 3.5). However, the yields were modest 

as side reactions with the mono-lithiated tosylhydrazone intermediate could not be eliminated. The 

byproduct was converted into a nitrile and a lithium salt of p-toluenesulfonamide under basic 

conditions. 
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Scheme 3.5 Reductive alkylation of tosylhydrazones 

 

In 1990, Myers and coworkers modified Vedejs’s procedure to afford a more efficient process. 

They transformed aldehyde tosylhydrazones into stable N-tert-butyldimethylsilyl derivatives III-

18, which underwent smooth 1,2-addition with organolithium reagents in much higher yields 

(Scheme 3.6).147 They also demonstrated that nitrogen extrusion could occur in a free-radical 

pathway with saturated alkyllithium reagents, which distinguished their methodology apart from 

the precedents of Vedejs and Bertz.148 

Scheme 3.6 Myer’s modification 
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(Scheme 3.7A).149 Shortly after, they expanded the methodology to the synthesis of dienes through 

stereoselective elimination of the halogen atom, which could be achieved by using NBS as the 

halogen source (Scheme 3.7B). An ionic mechanism was proposed as the reaction proceeded in 

the dark.150 In 2011, they reported a novel hypervalent-iodide-initiated cascade of aldehydes and 

allylic hydrazides. The hydrazone intermediate III-29 was formed which then underwent oxidative 

rearrangement to afford various substituted alkenes (Scheme 3.7C).151 This methodology achieved 

a high degree of chirality transfer and was later applied to the total synthesis of multiple lignan 

natural products.152 

Scheme 3.7 Selected “traceless” hydrazone methodologies from the Thomson group  
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starting materials underwent Mitsunobu displacement with NBSH to afford III-32, which readily 

fragmented into III-33, followed by a retro-ene decomposition to afford allenes (Scheme 3.8).153 

The relative rates of Mitsunobu inversion, fragmentation and formation of diazene allowed for the 

success of the reaction cascade. 

Scheme 3.8 Myer’s allene synthesis 

 

Inspired by Myer’s work, our group looked into combining the allene synthesis protocol with 

Petasis reaction, a three-component fragment coupling developed by Nicos Petasis between an 

aldehyde, an amine and a boronic acid species (Scheme 3.9A).154   
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Former group member Dr. Mundal modified the procedure by using a hydrazine (III-40) and 

propargyl trifluoroborate salt (III-41) instead, which formed diazene III-44 in situ before going 

through retro-ene to afford the desired allene product (Scheme 3.9B).155 A hydroxy group on the 

a position of the aldehyde was necessary to direct the boronic species addition. 

Later, Dr. Diagne and coworkers expanded the substrate scope of the “traceless” Petasis reaction 

to substrates lacking a-hydroxy substituents.156 A reaction condition screen was carried out with 

the aid of high-throughput optimization, while BF3•OEt2 proved to be the most effective promotor 

(Scheme 3.10A). In subsequent work with the Schaus lab at Boston University, they were also able 

to render the transformation enantioselective using chiral BINOL-based catalysts. This 

methodology was one of the few strategies to directly synthesize enantioenriched chiral allenes 

from achiral precursors (Scheme 3.10B).157  

Scheme 3.10 Expansion of the substrate scope of allene synthesis 
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3.2   Expansion of the Methodology to Allylic Alcohols 

Encouraged by the previous development of the allene synthesis, we were interested in expanding 

the methodology to the synthesis of allylic alcohols. We envisioned this could be achieved by 

using alkenyl boronic reagents (III-57) instead of the alkynyl ones. Based on our proposed 

mechanism, the Petasis reaction would generate the allylic diazene intermediate III-58, which 

undergoes rearrangement and extrusion of nitrogen to afford allylic alcohol products (Scheme 

3.11). We expected this transformation would be more challenging to achieve than allene synthesis, 

however, due to the less nucleophilic nature of the alkenyl boronic reagents. 

Scheme 3.11 Proposed mechanism for the synthesis of allylic alcohols 

 

Our previous group member Dr. Mundal briefly investigated this transformation using 

vinylboronic acid III-57 and tosylhydrazone III-55. According to his preliminary results, allylic 

alcohol III-59 could be indeed generated in this fashion. However, the yield of alcohol was only 

21% (Scheme 3.12). 

Scheme 3.12 Dr. Mundal’s preliminary results 
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3.2.1   Preliminary Reaction Condition Optimization 

Our initial reaction condition screen commenced with the use of HNTf2 as catalyst. Commercially 

available glycolaldehyde dimer and tosyl hydrazide were pre-mixed before the addition of phenyl 

vinylboronic acid. A variety of solvents were investigated (Table 3.1). Most of them yielded little 

or no desired product except dichloromethane, which gave 28% yield (Table 3.1, Entry 6). The 

transformation was not very efficient and took a long time to complete as expected. Heating the 

reaction failed to expedite the process, while mostly decomposition of the reaction intermediates 

was observed.  

Table 3.1 Solvent screen with HNTf2 as catalyst 

 

 

We also briefly examined the effect of boronic acid equivalents and catalyst loading. Increasing 

the amount of acid catalyst might have led to slightly better yields, but not as significant as we had 

hoped (Table 3.2, Entry 1). On the other hand, the amount of boronic acid used did not seem to 

affect the reaction outcome substantially.  

 

O
O

OH

OH

+
Ts
N HH2N

+
Ph B OH

OH HNTf2 (10 mol%)

solvent, r.t., 2 days
Ph OH

III-39 III-55 III-57 III-59

Entry
1
2
3
4
5
6

Solvent
DMSO
MeNO2

toluene
MeCN
CH3Cl
DCM

Yields %
no pdt
no pdt

trace amount
messy mixture with little pdt
messy mixture with little pdt

28
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Table 3.2 The effect of reagent equivalents  

 

 

Different hydrazide candidates (III-40 and III-49) have also been subjected to the reaction 

condition, while only trace amount of the desired product was obtained. As we were examining 

the mass balance of the reaction mixture, an olefin species was recovered as the major product 

(Scheme 3.13). According to NMR and mass spectrometry studies, the byproduct most likely 

resulted from sulfonylation of our desired allylic alcohol product.  

Scheme 3.13 Isolation of a major byproduct 

 

As an attempt to suppress the byproduct formation, the reaction temperature was lowered to 0 ºC. 

We were delighted to achieve a higher yield up to 51%, but even longer time (four days) was 

required to accomplish the reaction.  
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+
Ph B OH

OH HNTf2 (mol%)

DCM, r.t., 2 days
Ph OH

equiv
III-39 III-55 III-57 III-59

Entry
1
2
3
4

Boronic acid equiv
1
1
2
3

Catalyst loading
20 mol%
50 mol%
10 mol%
10 mol%

Yields % (by NMR)
35
27
13
12
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We recognized that the strong Brønsted acid triflimide might not be the best catalyst option. 

Considering our goal to eventually render this methodology enantioselective, we turned our 

attention to the chiral BINOL-based catalysts, which have shown superb activity during the 

previous synthesis of allenes.157 

Figure 3.1 Chiral BINOL-based catalysts 

 

A series of chiral BINOL-based catalysts were prepared following previously reported procedure 

(Figure 3.1).157 Reaction conditions were investigated again, with a focus on temperature and 

additive effects. Commercially available (R)-BINOL (III-62) was first subjected to the screen. It 

was discovered that addition of dry molecular sieves improved the yields in both DCM and 

chloroform (Table 3.3, Entry 3 and Entry 5). Heating the reaction mixture to ~45 ºC also 

significantly increased the efficiency of the desired transformation. However, a long reaction time 

was still required in order to reach full conversion, as monitored by TLC. Reaction in chloroform 

gave similar yield than its DCM counterpart, unfortunately it was much messier with inseparable 

byproduct isolated along with the allylic alcohol product. 
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Table 3.3 Temperature and additive effect 

 

 

The Br2- (III-63) and CF3-substituted (III-64) chiral BINOL catalysts were also examined (Table 

3.4). Both displayed superior reactivity at lower catalyst loading (20 mol%) comparing to BINOL 

(50 mol%).  

Table 3.4 Examination of substituted BINOL catalysts 

 

 

O
O

OH

OH

+
Ts
N HH2N

+
Ph B OH

OH III-62 (50 mol%)
conditions

2 days
Ph OH

III-39
III-55 III-57 III-59

Entry
1
2
3
4
5

Solvent
DCM
DCM
DCM

Chloroform
Chloroform

Temperature
r.t.

45 ºC
45 ºC
45 ºC
45 ºC

Additives
none
none
M.S.
none
M.S.

Yields %
no pdt

20
32

no pdt
40 (minor impurity)

O
O

OH

OH

+
Ts
N HH2N

+
Ph B OH

OH catalyst (20 mol%)
additive, 45 ºC

2 days
Ph OH

III-39
III-55 III-57 III-59

Entry
1
2
3
4
5
6

Catalyst
III-64

III-64

III-64

III-63

III-63

III-63

Solvent
DCM
DCM

Chloroform
DCM
DCM

Chloroform

Additives
none
M.S.
M.S.
none
M.S.
M.S.

Yields %*

30
50
38
37
53
28

* Yields were approximated, due to minor impurities in the products
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Similar trends were observed, with higher yields obtained in the presence of molecular sieves. 

The (S)-Br2-BINOL gave slightly better results (Table 3.4, Entry 5). Considering its relatively 

shorter synthetic preparation than III-64, it was selected as the standard catalyst in subsequent 

studies. 

We also noticed the presence of a background reaction based on our catalyst-free trial. Allylic 

alcohol III-59 was isolated in ~10% yield in the absence of BINOL catalysts (Scheme 3.14), which 

is something to be concerned about if we wish to develop an enantioselective route using chiral 

catalysts in the future. 

Scheme 3.14 Background reaction 

 

In addition to phenyl vinyl boronic acid, we explored additional boronic reagents. Our collaborator 

Prof. Scott Schaus at Boston University reported a series of asymmetric Petasis reactions catalyzed 

by chiral biphenols. Various styrylboronic acid derivatives were examined while the boronates 

gave rise to enhanced yields and stereoselectivity in many cases, especially diethyl styrylboronate 

III-66 (Scheme 3.15A).158, 159 In 2013, Xin and coworkers also developed a catalytic asymmetric 

Petasis reaction between vinylboronates, salicylaldehyde and secondary amines. High yields and 

enantioselectivity using BINOL-based catalysts (Scheme 3.15B).160  

 

 

 

O
O

OH

OH

+
Ts
N HH2N

+
Ph B OH

OH
M.S.

DCM, 45 ºC, 2 days
10%

Ph OH

III-39
III-55 III-57 III-59
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Scheme 3.15 Previously reported asymmetric Petasis reactions using vinyl boronates 

 

We decided to synthesize styrylboronate ester III-66, which showed superior reactivity in Schaus’s 

asymmetric Petasis reactions. Esterification of boronic acid III-57 afforded the desired boronate 

ester smoothly following previously reported protocol, no further purification was carried out. 

When subjected to the standard reaction conditions, no significant difference in yield was observed 

(Table 3.5, Entry 1).  

Hoping to further optimize the reaction, we also sought additional additives that might help 

facilitate the transformation. In 2015, Szabó and coworkers published an asymmetric allyboration 

of ketones catalyzed by similar chiral BINOL-derivatives.161 They discovered that catalytic 

amount of tBuOH promoted the reaction whereas MeOH and iPrOH failed to give the same results. 

It was believed that tertiary alcohols such as tBuOH might have helped regenerate the BINOL 

catalyst. In the asymmetric “traceless” Petasis methodology previously published by the Thomson 

group, three equivalents of tBuOH were also utilized as promotor.157 When we applied the same 

condition to our reaction, an increase in yield was indeed observed (Table 3.5, Entry 2). However, 
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the discrepancy was not significant enough to conclude that tBuOH served as an active species in 

enhancing the efficiency of this transformation.  

In the meantime, (R)-Ph2-BINOL (III-51) was prepared according to literature procedure and 

examined with boronate ester III-66. Unfortunately, a much messier reaction mixture was obtained 

and no isolated yield could be obtained (Table 3.5, Entry 3).  

Table 3.5 Further optimization with boronate ester 

 

 

Our final effort to optimize this reaction with boronate ester III-66 was to experiment a variety of 

hydrazide species. Based on the Thomson group’s previous studies of the “traceless” Petasis 

methodologies, the reaction outcome was partially determined by electronic effects. The electron 

density of the substituents on the hydrazides needs to be fine-tuned in order to facilitate both the 

initial nucleophilic addition into the aldehyde and the late-stage fragmentation of the diazene 

intermediate. 

Following previously reported procedures,156 differently substituted hydrazides were synthesized 

from the corresponding sulfonyl chloride precursors. When subjected to the standard reaction 

conditions, none of the hydrazides led to enhanced yields (Scheme 3.16). A significant amount of 

byproduct was isolated when hydrazide III-40 was used. Although its exact structure could not be 

O
O

OH

OH

+
Ts
N HH2N

+
Ph B OEt

OEt catalyst (20 mol%)
additives

M.S., 45 ºC 
DCM, 2 days

Ph OH

III-39
III-55 III-66 III-59

Entry
1
2
3

Catalyst
III-63

III-63

III-51

Additives
none
tBuOH
tBuOH

Yields %
51
60

NA (messy)
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confirmed yet due to difficulties in purification, it was likely the diazene intermediate or a 

derivative of the diazene based on NMR and GC/MS studies of the crude reaction mixture.  

Scheme 3.16 Exploration of alternative hydrazide species 

 

3.2.2   Expansion of the Substrate Scope 

Having established a preliminary system for the “traceless” Petasis reaction, we looked into 

expanding the substrate scope beyond aromatic compounds. To our delight, alkyl chains and rings 

could be incorporated into the product in addition to the phenyl moiety (Table 3.6), simply by 

using commercially available vinyl boronic acids III-75 and III-76.  

Table 3.6 Incorporating alkyl groups into the product 

 

Considering our goal to eventually render this reaction enantioselective, we aimed to install a 

stereogenic center in the product. The most simplified boron reagent that would allow us to achieve 
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this is 2-phenylpropene-1-boronic ester III-80. While efforts to access these reagents are still 

underway due to synthetic difficulties, we successfully prepared the trifluoroborate salt derivative 

III-83 based on Dr. Mundal’s unpublished results. Phenyl acetylene was converted to vinyl iodide 

III-82 using Schwartz’s reagent, followed by installation of the trifluoroborate group (Scheme 

3.17). Crude product was applied directly to the Petasis reactions.  

Scheme 3.17 Synthesis of 2-phenylpropene-1-trifluoroborate salt  

 

With the methyl-substituted vinyl boronic reagent III-83 in hand, we promptly subjected it to the 

previously optimized reaction conditions. We were encouraged to achieve a 60% yield of the 

branched allylic alcohol III-84 (Table 3.7, Entry 1), and wondered if the system could be further 

optimized with the new trifluoroborate salt.  

An additive screen was first performed. We were inspired by the work of May and coworkers, who 

developed a series of asymmetric addition of aryl trifluoroborates and vinyl boronic acids to 

conjugated ketones.162, 163 They reported the use of Mg(OtBu)2 or tBuOH to accelerate the reaction. 

These additives were postulated to be acting as proton transfer agents during the transformation. 

When we adopted Mg(OtBu)2 in the Petasis reactions, good yields were achieved, comparable to 

the results obtained with tBuOH promotor (Table 3.7, Entry 2). Lithium bromide has also been 

employed to facilitate trifluoroborate addition into conjugated ketone in the previous literature.162 
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However, it only led to unsatisfying yields in our reaction (Table 3.7, Entry 3). Similarly, known 

fluoride scavenger silyl chloride gave rise to a very messy/inseparable reaction mixture (Table 3.7, 

Entry 4). 

Table 3.7 Additive screen with trifluoroborate salt 

 

 

Temperature of the system was also examined. Attempts to simplify the reaction setup by running 

it at room temperature led to significantly reduced yields and increased amount of byproducts, 

indicating that vinyl boronic reagents are much less reactive than their alkynyl counterparts (Table 

3.8, Entry 2). Due to the low boiling point of dichloromethane, carrying out the reaction at higher 

temperature was challenging. We solved the problem by using the microwave. Unfortunately, no 

improved yield was observed at 70 ºC aside from higher level of decomposition, even though the 

reaction was terminated after only 2 hours (Table 3.8, Entry 3). Similar result was obtained with 

running the reaction at 45 ºC in the microwave (Table 3.8, Entry 4). 

 

 

O
O

OH

OH

+
Ts
N HH2N

+
Ph OH

III-55

III-63 (20 mol%)
additives

M.S., 45 ºC 
DCM, 2 days

III-84

Me
BF3K

III-39 III-83

Me

Entry
1
2
3
4
5

Additive
tBuOH (3 equiv)

Mg(OtBu)2 (0.1 equiv)
LiBr (1 equiv)

TBSCl (1 equiv)
nBu4NCl (0.1 equiv)

Yields %
60
60
10

messy, mixed pdts
messy, mixed pdts
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Table 3.8 Temperature screen with trifluoroborate salt  

 

 

A brief solvent screen was performed to confirm that dichloromethane was indeed the optimal 

choice. Both dichloroethane and trifluorotoluene afforded a much messier reaction mixture with 

higher byproduct to product ratio (Table 3.9). 

Table 3.9 Solvent screen with trifluoroborate salt 

 

 

It was noteworthy that a background reaction was again observed with the trifluoroborate salt III-

83. Allylic alcohol III-84 could be synthesized in up to 46% yield in the absence of BINOL 

catalysts with optimized reaction conditions (Scheme 3.18). 

 

O
O

OH

OH

+
Ts
N HH2N

+

III-55

III-63 (20 mol%)
Mg(OtBu)2 (0.1 equiv)

temperature
M.S., DCM

III-84

Me
BF3K

III-39 III-83

Ph OH
Me

Entry
1
2
3
4

Temperature
45 ºC (heating, 2 days)

r.t.
70 ºC (mw, 2 hrs)
45 ºC (mw, 12 hrs)

Yields %
60
10

messy, mixed pdts
messy, mixed pdts

O
O

OH

OH

+
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N HH2N

+

III-55

III-63 (20 mol%)
Mg(OtBu)2 (0.1 equiv)

45 ºC, M.S., 2 days
solvent

III-84

Me
BF3K

III-39 III-83

Ph OH
Me

Entry
1
2
3

Solvent
DCM
DCE

trifluorotoluene

Yields %
60

messy, mixed pdts
messy, mixed pdts
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Scheme 3.18 Background reaction with trifluoroborate salt 

 

While examining the mass balance of the “traceless” Petasis reaction, two major byproducts III-

85 and III-86 were isolated in addition to the recovered catalyst (Figure 3.2). According to NMR 

and GC/MS studies, they were likely derived from the interaction between the hydrazide and 

trifluoroborate salt. Elucidation of their exact structure and mechanism of formation is still 

underway. 

Figure 3.2 Mass balance study of the “traceless” Petasis reaction 
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We hypothesized that some of the byproducts were formed due to oxidation of the reagents. 

However, efforts to suppress byproduct formation by utilizing deoxygenated solvent proved to be 

fruitless. 

We also tested a series of hydrazide species. Arene-N-sulfonyl hydrazides with electron-donating 

and electron-withdrawing substituents were synthesized based on previously reported protocol. 

Those containing electron-deficient arenes afforded lower yields comparing to  hydrazides with 

iPr and Me substituents (Table 3.10). Reasons for this trend are still under investigation. The boc-

protected hydrazide was also subjected to the Petasis reaction. However, no desired product was 

obtained. 

Table 3.10 Hydrazide screen with trifluoroborate salt 

 

Encouraged by the preliminary results with 2-phenylpropene-1-trifluoroborate III-83, we prepared 

the trifluoroborate salt III-89 containing an alkyl substituent from alkyne following a similar 

method. Allylic alcohol III-90 was achieved in 25% yield (Scheme 3.19). We hypothesized that 

lower nucleophilicity of the alkyl-substituted trifluoroborate reagent led to decreased yield 

comparing to its aromatic counterpart.  
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 164 

Scheme 3.19 Investigation of alkyl-substituted trifluoroborate salt 

 

As optimization of the three-component coupling reaction hit a bottleneck, we looked into the 

possibility of further increasing the overall yield through a two-step sequence. This alternative 

route might help eliminate some of the byproducts and give us more flexibility in terms of solvent 

selection. During Dr. Mundal’s preliminary studies of “traceless” Petasis reaction using 

styrylboronic acid III-57, Boc-protected hydrazide III-91 underwent condensation with a few 

carbonyl compounds smoothly to afford hydrazone products (Scheme 3.20). Although further 

fragmentation of the resulting hydrazones were not investigated extensively, we were hopeful that 

our optimized system could afford the desired product in this fashion.   

Scheme 3.20 Addition of vinyl boronic acids to Boc hydrazides by Dr. Mundal 
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Condensation between Boc-hydrazide and glyoxylic acid afforded the desired hydrazone III-93 

with no further purification needed. Subsequent Petasis reaction with trifluoroborate salt afforded 

a mixture of products which were hard to isolate. However, NMR spectra indicated the presence 

of hydrazide III-99 in the crude reaction mixture, although further fragmentation and alkene walk 

turned out to be problematic. Attempts were made to improve the reaction efficiency by screening 

different solvents, while dichloromethane turned out to be the best candidate for trifluoroborate 

addition again (Scheme 3.21A). Similar results were obtained when glycolaldehyde (Scheme 

3.21B) and Cbz-hydrazide III-101 (Scheme 3.21C) were utilized.  

Scheme 3.21 Stepwise analysis of the three-component coupling 
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Similar to the previously reported allene methodology using alkynyl trifluoroborate,155 aldehydes 

containing an a-hydroxy directing group were necessary to facilitate the intermolecular addition 

with the boron species. When we subjected the Bn-protected aldehyde III-46 to our standard 

conditions, no desired Petasis product was obtained (Scheme 3.22) 

Scheme 3.22 The importance of a-hydroxy directing group 

 

3.2.3   Final Optimization Using Excess Amount of Trifluoroborate Salt 

For a long time we were unable to improve the yield beyond 60%, which eventually prompted us 

to examine the equivalents of reagents used. Increasing the amount of aldehyde or hydrazide did 

not have any significant effect on the reaction outcome. When three equivalents of the 

trifluoroborate salt III-83 was used, however, we were delighted to achieve 88% yield of the allylic 

alcohol product (Scheme 3.23A). Reaction time could also be shortened to 24 hours in order to 

prevent decomposition.  

Scheme 3.23 Higher equivalence of trifluoroborate salt 
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Encouraged by this result, excess amount of alkyl-substituted vinyl trifluoroborate III-89 was 

employed, which also gave rise to improved yield (25% to 45%, Scheme 3.23B) with minor 

impurities in the product.  

Due to solubility issue of the trifluoroborate salt in dichloromethane, we wondered if a more polar 

solvent would better assist the Petasis reaction. However, switching to MeCN failed to improve 

the yield, affording only 53% of the desired alcohol III-84. 

With the new reaction conditions in hand, we decided to perform another comprehensive 

additive/catalyst screen. Lewis acid Sc(OTf)3 did not outperform the substituted chiral BINOL-

based catalysts (Table 3.11, Entry 3), while tBuOH and phenol gave surprisingly high yields (Table 

3.11, Entry 6–7). 

Table 3.11 Additive/catalyst screen with excess amount of trifluoroborate salt  
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Catalyst/Additive 2
III-63 (20 mol%)

-
Sc(OTf)3 (20 mol%)
III-63 (20 mol%)

(S)-BINOL (20 mol%)
tBuOH (3 equiv)

Phenol (20 mol%)
BF3•OEt2 (1 equiv, distilled)

III-64 (20 mol%)
III-63 (20 mol%)

Entry
1
2
3
4
5
6
7
8
9

10

Yields %
81
60
52
88
20
80
67
20
64
60
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With excess amount of trifluoroborate salt, it was discovered that the effect of Mg(OtBu)2 additive 

was almost negligible under the catalysis of (S)-Br2-BINOL (Entry 1). Efficiency of the catalyst-

free background reaction also increased (46% to 60%, Entry 2). May and coworkers proposed a 

fluoride dissociation pathway of the trifluoroborate reagent, which was confirmed by adding 

exogenous fluoride – all reactivity was eliminated.162 Such evidence was not observed with our 

methodology (Table 3.11, Entry 10). 

One final attempt to re-optimize the methodology was to examine new arene-sulfonyl hydrazides. 

According to our previous studies, electron-rich hydrazides both gave rise to higher yields (Table 

3.10). We therefore prepared trimethyl-substituted phenyl sulfonyl hydrazide III-104. It worked 

extremely well as we had expected without any additives, affording the product in 90% yield 

(Scheme 3.24A). Interestingly, this hydrazide failed to yield Petasis reaction with alkyl-substituted 

trifluoroborate salt or boronic acids, giving rise to little to no desired product (Scheme 3.24B/C).   

Scheme 3.24 Exploration using trimethyl-substituted phenyl sulfonyl hydrazide 
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Although aldehyde starting materials lacking an a-hydroxy directing group failed to yield the 

desired Petasis product (benzaldehyde, decanal, etc.), we were interested in exploring alternative 

substrates bearing an a-hydroxy group. Summer undergraduate student researcher Rebekah 

Reynolds prepared optically enriched protected aldehyde III-105 with a phenyl substitution. It 

underwent “traceless” Petasis reaction to afford allylic alcohol III-106 in 30% yield with minor 

impurities (Scheme 3.25). 

 Scheme 3.25 Reynolds’ preliminary result with alternative aldehyde substrate 

 

We synthesized a few dimethoxypropane-protected aldehyde substrates based on previously 

reported procedure157 and subjected them to our optimized reaction conditions. Differently-

substituted allylic alcohol products were obtained, albeit in lower yields (Table 3.12). Preparation 

and exploration of more aldehyde substrates are underway. 

Table 3.12 Exploration of alternative aldehyde substrates 

 

 

+
Ts
N HH2N

+
Ph Ph

Me

Ph BF3K
Me

III-105 III-55 III-106III-83

O
O

Me Me

OH (R)-Br2-BINOL (20 mol%)
Mg(OtBu)2 (0.1 equiv)

45 ºC, M.S.
DCM, 1 day

30% OH

+
Ts
N HH2N

+

III-55

III-63 (20 mol%)

45 ºC, M.S.
DCM, 1 day

III-109

Me
BF3K

III-83 (3 equiv)

Ph OH
Me

O O

OH

Me Me

R

R = iPr, III-107
R = -CH2Ph, III-108

R

Ph OH
Me

Me

Ph OH
Me

PhMe
III-109a, 20% III-109b, 45%

*Yields were approximated due to difficulties in separation
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A mechanism was proposed for the Petasis reaction with two possible reaction pathways based on 

preliminary data (Scheme 3.26). The presence of background reactions (Scheme 3.18) suggested 

that a racemic pathway was possible, during which the trifluoroborate salt underwent a hydroxy-

directed addition without catalyst exchange, affording racemic allylic alcohol products. However, 

the intermediate could also potentially go through a catalytic pathway, during which the boron 

species undergoes catalyst exchange with the BINOL group before the addition (III-112), 

generating enantioenriched intermediate III-113. Hydrazone rearrangement/decomposition 

through the conformer with minimized allylic 1,3-strain would give rise to (S)-III-84. 

Unfortunately, preliminary product analysis using chiral HPLC showed little or no 

enantioselectivity so far under current reaction conditions, indicating the dominant pathway was 

likely the racemic one, or that the diol catalyst used provided no selectivity. Exploration of other 

catalysts will be needed for future work. 

Scheme 3.26 Proposed reaction pathways for the “traceless” Petasis reaction 
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3.3   Summary 

In summary, we developed a novel “traceless” Petasis reaction to synthesize differently-substituted 

allylic alcohols. This multi-component coupling methodology potentially enables rapid access to 

complicated molecules from simple precursors. Future studies involve further expansion of the 

substrate scope by exploring different carbonyl substrates and boron reagents. Efforts to render 

this transformation enantioselective are also underway.  

3.4   Experimental Section 

1-iodo-2-phenylpropene (III-82): A solution of trimethylaluminum in hexanes (2.0 

M, 50 mL) was added to Cp2ZrCl2 (10 mmol, 2.92 g) in dry DCM (50 mL) at –23 ºC 

under N2 atmosphere. Then water (30 mmol, 540 µL) was carefully added. After 5 min, 

phenylacetylene in dry DCM (25 mL) was added dropwise using cannula. The mixture was stirred 

for 15 min before a solution of iodine (37.5 mmol, 9.52 g) in dry THF (40 mL) was added dropwise. 

Reaction was then warmed up and stirred at room temperature for 2 hours. The light yellow 

solution was cooled to –78 ºC and carefully quenched with water (20 mL). It was then warmed up 

to room temperature, diluted with diethyl ether (100 mL) and filtered through celite. The filtrate 

was washed with 0.5 M sodium thiosulfate solution (100 mL), dried over sodium sulfate and 

concentrated under reduced pressure. Flash column chromatography on silica gel using hexanes 

afforded a light yellow oil (3.8 g, 78% yield). 1H NMR (500 MHz, CDCl3) δ 7.32 – 7.20 (m, 5H), 

6.45 – 6.43 (m, 1H), 2.21 (d, J = 1.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 147.4, 141.6, 128.6, 

128.0, 126.2, 79.3, 24.5. All spectroscopic data for this compound agrees with previously reported 

values.164 

Ph
I

Me
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 (2-phenylprop-1-en-1-yl)trifluoroborate (III-83): A solution of nBuLi (4.82 

mmol) in hexanes was added dropwise to 1-iodo-2-phenylpropene (III-82, 4.02 

mmol) in dry THF (14 mL) at –78 ºC under N2 atmosphere. After 15 min, B(OiPr)3 (6.03 mmol) 

was added via syringe. The reaction was allowed to warm up to room temperature and stir for 2 

hours. The mixture turned from light yellow to cloudy white. Methanol (4 mL) was added at 0 ºC, 

then KHF2 (24 mmol) in water (5 mL) was added through addition funnel at 0 ºC dropwise. 

Reaction turned clear and was stirred at 0 ºC for 1 hour. Concentration under reduced pressure 

afforded white solids, which were dried overnight. Acetone (10 mL) was added to the mixture, 

which was stirred at 45 ºC for 30 min before filtered through celite and washed with acetone. The 

filtrate was concentrated in vacuum, redissolved in acetone (3 mL), followed by addition of diethyl 

ether (20 mL). White solids crashed out, which were collected through filtration (746 mg, 83% 

yield). The product was subjected to Petasis reaction without further purification.  

4-phenylbut-2-en-1-ol (III-59): Glycolaldehyde dimer (0.1 mmol) and tosyl 

hydrazide (III-55, 0.2 mmol) were dissolved in dry dichloromethane with 4Å molecular sieves 

(100 mg). The mixture was stirred at room temperature for 1 hour under N2 atmosphere before the 

addition of trans-2-phenylvinylboronic ester (1.0 M solution in toluene, 0.2 mL), (S)-Br2-BINOL 

(III-63, 20 mol%) and tBuOH (0.6 mmol). A condenser was attached and the reaction was stirred 

at 45 ºC for 48 hours under N2 atmosphere. Concentration under reduced pressure followed by 

flash column chromatography on silica gel with 25% EtOAc in hexanes solvent system afforded 

the desired alcohol (19 mg, 60% yield). 1H NMR (500 MHz, CDCl3) δ 7.30 (dd, J = 8.2, 6.8 Hz, 

2H), 7.23 – 7.17 (m, 3H), 5.92 – 5.83 (m, 1H), 5.76 – 5.66 (m, 1H), 4.13 (d, J = 5.8 Hz, 2H), 3.39 

OHPh

Ph
BF3K

Me
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(d, J = 6.7 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 140.1, 131.8, 130.4, 128.7, 128.6, 126.3, 63.7, 

38.8. All spectroscopic data for this compound agrees with previously reported values.165 

2-decen-1-ol (III-78): Glycolaldehyde dimer (0.1 mmol) and 

tosyl hydrazide (III-55, 0.2 mmol) were dissolved in dry dichloromethane with 4Å molecular 

sieves (100 mg). The mixture was stirred at room temperature for 1 hour under N2 atmosphere 

before the addition of trans-1-octen-1-ylboronic acid (0.2 mmol), (S)-Br2-BINOL (III-63, 20 

mol%) and tBuOH (0.6 mmol). A condenser was attached and the reaction was stirred at 45 ºC for 

48 hours under N2 atmosphere. Concentration under reduced pressure followed by flash column 

chromatography on silica gel with 20% EtOAc in hexanes solvent system afforded the desired 

alcohol (19 mg, 60% yield). 1H NMR (500 MHz, CDCl3) δ 5.76 – 5.58 (m, 2H), 4.08 (d, J = 4.3 

Hz, 2H), 2.09 – 1.97 (m, 2H), 1.41 – 1.16 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H), 13C NMR (126 MHz, 

CDCl3) δ 133.8, 128.9, 64.1, 32.4, 32.0, 29.3, 29.3, 22.8, 14.3. All spectroscopic data for this 

compound agrees with previously reported values.166 

4-Phenylpent-2-en-1-ol (III-84): Glycolaldehyde dimer (0.1 mmol) and 

tosyl hydrazide (III-55, 0.2 mmol) were dissolved in dry dichloromethane 

with 4Å molecular sieves (100 mg). The mixture was stirred at room temperature for 1 hour under 

N2 atmosphere before the addition of potassium (2-phenylprop-1-en-1-yl)trifluoroborate (III-83, 

0.6 mmol), (S)-Br2-BINOL (III-63, 20 mol%) and Mg(OtBu)2 (0.02 mmol). A condenser was 

attached and the reaction was stirred at 45 ºC for 24 hours under N2 atmosphere. Concentration 

under reduced pressure followed by flash column chromatography on silica gel with 20% EtOAc 

in hexanes solvent system afforded the desired alcohol (28 mg, 88% yield). 1H NMR (500 MHz, 

CDCl3) δ 7.37 – 7.32 (m, 2H), 7.27 – 7.23 (m, 3H), 5.92 (ddt, J = 15.4, 6.7, 1.4 Hz, 1H), 5.70 (dtd, 

OHMe

OHPh

Me
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J = 15.4, 5.9, 1.4 Hz, 1H), 4.16 (dt, J = 5.9, 1.2 Hz, 2H), 3.53 (p, J = 7.0 Hz, 1H), 1.53 (brs, 1H), 

1.42 (d, J = 7.0 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 145.6, 137.6, 128.6, 127.9, 127.3, 126.3, 

63.8, 42.1, 21.2. All spectroscopic data for this compound agrees with previously reported 

values.167 

III-90: Glycolaldehyde dimer (0.1 mmol) and tosyl hydrazide 

(III-55, 0.2 mmol) were dissolved in dry dichloromethane 

with 4Å molecular sieves (100 mg). The mixture was stirred at room temperature for 1 hour under 

N2 atmosphere before the addition of trifluoroborate III-89 (0.6 mmol), (S)-Br2-BINOL (III-63, 

20 mol%) and Mg(OtBu)2 (0.02 mmol). A condenser was attached and the reaction was stirred at 

45 ºC for 24 hours under N2 atmosphere. Concentration under reduced pressure followed by flash 

column chromatography on silica gel with 15% EtOAc in hexanes solvent system afforded the 

desired alcohol (24 mg, 45% yield). IR (Germanium ATR): 3328, 2955, 2923, 2853 cm–1; 1H 

NMR (500 MHz, CDCl3) δ 5.60 – 5.56 (m, 2H), 4.09 (d, J = 4.3 Hz, 2H), 2.16 – 2.08 (m, 1H), 

1.36 – 1.21 (m, 15H), 0.98 (d, J = 6.7 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 139.6, 127.1, 64.1, 37.0, 36.5, 32.1, 29.9, 29.8, 29.5, 27.4, 22.8, 20.5, 14.3. HRMS (ESI): 

Exact mass calcd for C13H26O [M+Na]+,  221.1876. Found 221.1877. 

 

 

 

 

 

 

Me
OH
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