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ABSTRACT

Green Simulation

Reusing the Output of Repeated Experiments

Mingbin Feng

We introduce and advocate a new paradigm in simulation experiment design and

analysis, called “green simulation,” for the setting in which experiments are performed

repeatedly with the same simulation model but different input parameters. Green simula-

tion means reusing outputs from previous experiments to answer the question currently

being asked of the simulation model.

In this dissertation three classes of green simulation estimators are proposed: the

likelihood-ratio-based estimators, the metamodeling-based estimators, and the green

Database Monte Carlo estimators. These estimators reuse old simulation outputs in

different ways and thus have different requirements, features, and merits. We identify

conditions under which these methods are most effective, establish convergence properties

for some of the methods, and conduct numerical experiments on practical applications

such as catastrophe bond pricing and credit risk evaluation. We find that green simulation

can greatly improve computational efficiency in different applications.
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CHAPTER 1

Introduction

Consider a setting in which simulation experiments are performed repeatedly, using the

same simulation model with different values of its inputs. As we discuss in detail below,

such settings occur when a simulation model is used routinely to support a business process,

and over the lifecycle of a simulation model as it goes from development to application

in repeated simulation studies. In these settings, the standard practice is that each new

simulation experiment is designed to answer a particular question without using the output

of previous simulation experiments. We advocate a paradigm of green simulation for

repeated experiments, meaning that one should reuse output from previous experiments to

answer new questions. The benefit of green simulation is greater computational efficiency.

In this article, we show that when old simulation output is reused well, it provides greater

accuracy when combined with a new simulation experiment as opposed to what would be

achieved by the same new simulation experiment alone.

Green simulation entails a new perspective on management of simulation experiments.

The standard practice is to discard or ignore the output of a simulation experiment after it

has delivered the desired answer. When a new question arises, a new simulation experiment

is designed to answer it without using the output of previous simulation experiments.

From this perspective, running the simulation model is a computational cost or expense.

From the green simulation perspective, running the simulation model is a computational
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investment that provides future benefits, because simulation output is a valuable resource

to be used in answering questions that will be asked of the simulation model in the future.

The main contribution of this dissertation is to introduce and advocate the paradigm

of green simulation for repeated experiments and to demonstrate theoretically and exper-

imentally that it yields significant benefits in computational efficiency. Specifically, we

investigate the case in which a simulation experiment is run routinely (e.g., to support a

business process) with updated values of inputs to the simulation model. For this case,

we propose, analyze, and test three classes of green simulation estimators based on the

likelihood ratio method, the metamodeling method, and the database Monte Carlo method.

While these estimators follow the same green simulation paradigm, i.e., reuse simulation

output efficiently, the simulation output is reused differently so the resulting estimators

have different applicability, features, and merits.

This dissertation is organized as follows: The remainder of this chapter provides a

brief literature review that differentiates our work from relevant research and presents

a setting of repeated experiments that we study in this dissertation. The next three

chapters propose, analyze, and test three classes of green simulation estimators based

on the likelihood ratio method (Chapter 2), the metamodeling method (Chapter 3), and

the database Monte Carlo method (Chapter 4). The features and merits of different

green simulation estimators are studied in the respective chapters. Moreover, we compare

and contrast the theoretical properties and practical performance of the green simulation

estimators in different applications.
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1.1. Literature Review

The core idea of green simulation, reusing simulation output, has been applied to

isolated experiments that contain multiple runs. Many types of simulation experiments

use multiple runs to learn about the model’s response surface, the function that maps

the model’s inputs to a performance measure. In stochastic simulation, this performance

measure is often the expected output of the simulation model. There are metamodeling

and sensitivity analysis experiments that run the model at different input values to learn

about how the response surface varies, globally or locally. In nested simulation experiments,

an outer-level simulation generates random values of the inputs at which it is desired

to learn the value of the response surface of an inner-level simulation. For example, in

assessing the impact of uncertainty about a simulation model’s input on the conclusions

of a simulation study, this model is the inner-level simulation model, and the outer-level

simulation samples values of the inputs from an appropriate distribution. In optimization

via simulation experiments, the model is run at different input values in a search for

optimal input values. If simulation output from runs at some values of the inputs can

be reused in estimating the value of the response surface at another value of the inputs,

then experiment designs that involve multiple runs can be modified to be cheaper. It is

unnecessary to run many replications at every value of the inputs for which it is desired to

estimate the value of the response surface if estimates of these values can reuse output

from runs at other values of the inputs. For example, the nested simulation methods of

Barton et al. (2014) and Xie et al. (2014) use stochastic kriging (Ankenman et al., 2010)

to reuse output from a moderate number of runs to estimate the value of the response

surface for many values of the inputs, thus reducing the required number of runs in the
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simulation experiment. The likelihood ratio method, also known as the score function

method (Rubinstein and Shapiro, 1993; Kleijnen and Rubinstein, 1996), has also been

applied to reuse output within isolated experiments for metamodeling, sensitivity analysis,

and optimization. Database Monte Carlo (Borogovac and Vakili, 2008) has been applied

to reuse simulation outputs from idle computations (Rosenbaum and Staum, 2015) to

deliver fast and accurate answers for isolated experiments. We adopt these methods for

reusing simulation outputs across experiments.

We acknowledge that green simulation is not the first paradigm to reuse data from old

experiments to yield a better estimator in the current experiment. Another such paradigm

is the empirical Bayes framework. For example, shrinkage estimators in an empirical

Bayes framework (Efron and Morris, 1973, 1975) can improve upon the sample average of

data gathered in the current experiment as an estimator of a mean Θ by “shrinking” it

towards the mean of an empirical prior distribution for Θ. This mean of the empirical

prior distribution could be, for example, the sample average of all data gathered in all

experiments so far. This empirical Bayes approach is inefficient in our setting of repeated

simulation experiments because it does not take into account that we know the inputs

to the simulation model in every experiment. Our green simulation estimators use this

knowledge and achieve much lower mean squared error than a shrinkage estimator in

a simulation experiment we performed. The results of the experiment are reported in

Appendix B, and show that the shrinkage estimator is inappropriate in our setting: it

reuses simulation output across experiments but has little improvement on computational

efficiency.
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1.2. Repeated Experiments

One setting of repeated simulation experiments occurs when simulation supports a

business process. For example, in finance and insurance, simulation models support

pricing and risk management decisions that are made periodically. At each period, current

information, such as prices and forecasts, is used to update the inputs to the model, and a

simulation experiment is performed to answer a question about price or risk. Similarly, in

manufacturing, service, and logistics systems, simulation models can be used routinely to

provide information about expected completion times and to support decisions about such

matters as dispatching and staffing. A simulation experiment is run whenever information

is required, using inputs that describe the current state of the system.

Another setting of repeated simulation experiments occurs in the lifecycle of a simulation

model as it goes from development to application in simulation studies. First, experiments

are performed for purposes of verification and validation of the model. They may also be

performed for model calibration: to choose realistic values of unknown inputs. For these

purposes, the simulation model is run many times with different values of its inputs, to see

how its outputs change with its input, and when this behavior is reasonable and realistic.

Once model development is complete, experiments are performed for purposes such as

making predictions for particular values of the inputs, metamodeling, sensitivity analysis,

and optimization. Moreover, some simulation models are used in many simulation studies.

Consequently, each model is used in several or many experiments.

Figure 1.1 illustrates a sequence of two repeated experiments, each with a single run.

To clarify our terminology, by “a run,” we mean one or more replications of simulation

output generated with the inputs to the model held fixed. By a simulation “experiment,”
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we mean a collection of one or more runs of a simulation model, designed for the purpose

of answering a specific question. In Figure 1.1, the first experiment has a single run with

input x1, and the second experiment has a single run with input x2. Each run has r

replications. The purpose of the nth experiment is to estimate µ(xn), the mean output of

the simulation model when the input is xn. The standard practice is to estimate µ(x2)

in the second experiment using only the single run with input x2. The green question

mark in Figure 1.1 indicates the question answered in this article: “How can we reuse

the simulation output from the first experiment to improve our answer in the second

experiment?”
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Figure 1.1. Setting of repeated simulation experiments.
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CHAPTER 2

Green Simulation via the Likelihood Ratio Method

2.1. Introduction

In finance, insurance, manufacturing, service, logistic systems, and many other prac-

tical applications, simulation experiments are repeated with changes in parameters of

distributions of random variables generated in the simulation model. In this case, the

likelihood ratio (LR) method (Rubinstein and Shapiro, 1993; Kleijnen and Rubinstein,

1996) can be applied to use previous outputs in the current experiment. In particular, one

can weigh the previous outputs based on likelihood ratios to obtain unbiased estimators

in the current experiment, whose input parameters may be different from those from the

previous experiments.

In this chapter we consider three green simulation estimators based on the LR method,

or the LR estimators for short. In particular, we prove a novel theorem about how

these LR estimators converge as the number of repeated experiments increases, while the

number of simulation replications per experiment remains constant. In this setting, the

estimator based on standard Monte Carlo does not converge at all, but our LR estimators

converge at the canonical rate for Monte Carlo: variance inversely proportional to total

computational budget. They converge at this rate even though the total computational

budget includes outputs from previous experiments, which are not obviously relevant to

answering the question currently being asked of the simulation model. In addition, we
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import methods from multiple importance sampling (where importance sampling is used

for variance reduction) into the LR method (which reuses simulation output), and provide

evidence that there can be great practical value to using one of the LR estimators that we

propose.

In applications and surveys of the likelihood ratio method that we have seen, such as

Beckman and McKay (1987), Rubinstein and Shapiro (1993), Kleijnen and Rubinstein

(1996), and Glasserman and Xu (2014), there is an isolated experiment within which each

estimator reuses the output from a single run. The exception is Maggiar et al. (2015): they

construct an estimator by reusing output from multiple runs in an isolated experiment.

We reuse output from multiple runs that come from multiple experiments. Even in the

simple setting of a single run per experiment, which we analyze in this chapter, reusing

outputs from multiple experiments entails reusing outputs from multiple runs. Estimation

using multiple simulation runs, weighted based on likelihood ratios, was given the name

multiple importance sampling by Veach (1997). On multiple importance sampling, see,

for example, Hesterberg (1988, 1995), Owen and Zhou (2000), Veach and Guibas (1995),

and Veach (1997). Drawing on this literature on multiple importance sampling, Maggiar

et al. (2015) use two of the LR estimators we consider in this chapter, the individual

likelihood ratio (ILR) estimator (Section 2.2.1) and the mixture likelihood ratio (MLR)

estimator (Section 2.2.3); we also treat a new estimator, the weighted likelihood ratio

(WLR) estimator (Section 2.2.2).

The work of Maggiar et al. (2015) and the current chapter differ in setting and

findings. The key differences are that their work focuses on an isolated experiment with

a deterministic simulation model, whereas ours focuses on repeated experiments with
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a stochastic simulation model. Their goal is optimization of the response surface after

smoothing by convolution with a Gaussian kernel, to reduce the influence of numerical

noise in the deterministic simulation. They apply the likelihood ratio method to the

corresponding Gaussian random variable. Their convergence theorem describes convergence

to an optimal solution within an isolated optimization experiment with an increasing

number of iterations. Our green simulation paradigm applies broadly to stochastic

simulation, and we emphasize the setting of repeated experiments. Our convergence

theorems describe convergence of estimators of values of the response surface at some or

all points as the number of repeated experiments increases. Another difference between

the work of Maggiar et al. (2015) and our work is in the findings about the ILR and MLR

estimators. They report that the choice between ILR and MLR estimators makes “only a

small difference on the performance” of their optimization procedure when applied to a

testbed of optimization problems. In Section 2.5, we find that the difference in practical

performance between ILR and MLR estimators could be large, depending on the simulation

model of the repeated experiments in consideration. We recommend the MLR estimator,

which is theoretically superior, because we find that it can work well in practice even in

cases where the ILR estimator yields poor results.

2.2. Green Simulation via Likelihood Ratio Method

We develop green simulation estimators via the LR method in the setting of repeated

experiments with the same simulation model and some changing parameters that affect

the likelihood of simulated random variables. Let Xn represent the parameters in the nth

experiment, for example, prices observed in the market on day n or forecasted arrival rates
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for period n. We treat {Xn : n = 1, 2, . . .} as a discrete-time stochastic process taking

values in a Polish space X . We use “state” to refer to an element of X or a random

variable taking values in X , and “current” to refer to quantities associated with the nth

experiment. Thus, Xn is the current state. We suppose that the current state is observable

at the current time step n, when the current experiment needs to be run, but was not

observable earlier.

Given the current state Xn, the current simulation experiment samples a random

vector Yn according to the conditional likelihood h (·;Xn). For example, h (y;x) could be

the conditional probability density for a stock’s price to be y in one year given that the

stock’s current price is x. As another example, h (y;x) could be the conditional probability

density for the vector y of interarrival times and service times given the arrival rate x,

regarding service rate as fixed and not included in x. We will write expectations in the

form of integrals, which implicitly assumes that Yn has a conditional probability density

h (·;Xn), but this is not essential; the setting allows for continuous, discrete, and mixed

conditional distributions.

The simulation output or simulated performance of the stochastic system is F (Yn),

where the function F : Y 7→ R represents the logic of the simulation model. For example,

F (y) could be the discounted payoff of a stock option if the stock’s price in one year is

y, or F (y) could be the average customer waiting time in a queue given the vector y of

interarrival times and service times.

In the current experiment, we wish to estimate the conditional expected performance

µ(Xn) of the stochastic system given the current state Xn; µ(Xn) can also be described as
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the current expected performance. The expected performance for state x is

(2.1) µ(x) = E [F (Yn) |Xn = x] =

∫

Y
F (y)h (y;x) dy,

which is the same for all n. The purpose of the current experiment is to estimate the

current expected performance µ(Xn). This is a random variable because the current state

Xn was not observable at time step 0. Figures of merit for an estimator, such as bias and

variance, should be evaluated conditional on the current state Xn.

Standard practice in the setting of repeated experiments is to estimate µ(Xn) by the

Standard Monte Carlo (SMC) estimator

(2.2) µ̂SMC
r (Xn) =

1

r

r∑

j=1

F
(
Y (j)
n

)
,

based on running r replications of the simulation model with the parameters set according

to the current state Xn. For simplicity in notation, we have assumed that the number r of

replications is fixed, but this is not essential. We refer to
{
F
(
Y

(j)
n

)
: j = 1, . . . , r

}
as the

output of the current experiment. Clearly, µ̂SMC
r (Xn) is conditionally unbiased for µ(Xn),

given Xn. The conditional variance for state x is

(2.3) σ2(x) = Var [F (Yn) |Xn = x] =

∫

Y
(F (y)− µ(x))2 h (y;x) dy,

which is the same for all n. The conditional variance of the SMC estimator, given the

current state Xn, is σ2(Xn)/r. Thus, to reduce the conditional variance of the SMC

estimator, one must increase the number r of replications in the current experiment.
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We propose three LR estimators that reuse the output of the n−1 previous experiments

and combine it with the current (nth) experiment’s output. In the current experiment,

the target distribution appears in the conditional expectation µ(Xn) = E [F (Yn) |Xn] that

we are estimating. The target distribution has the likelihood h (·;Xn). In a previous

experiment at time step k < n, the sampling distribution had likelihood h (·;Xk). To use

the output of a previous experiment in estimating µ(Xn) in a way that is conditionally

unbiased given the state history X1, . . . , Xn, we can adjust the old output by using the

likelihood ratio between the target distribution and the sampling distribution:

(2.4) E
[
h (Yk;Xn)

h (Yk;Xk)
F (Yk)

∣∣∣∣X1, . . . , Xn

]
=

∫

Y

h (y;Xn)

h (y;Xk)
h (y;Xk)F (y) dy = µ(Xn).

In Section 2.4, we show that, under some conditions, the conditional variance of the LR

estimators goes to zero as the number n of experiments goes to infinity, even if the number

r of replications per experiment is fixed.

We make the following assumptions to support the LR estimators. Although not all of

the assumptions in the theorems are transparent, we show in Appendix A that they can

be verified in a realistic example.

(A.1) The nth simulation experiment is affected by n and the stochastic process {Xn :

n = 1, 2, . . .} only through the conditional likelihood In other words, the input state

Xn does not affect the simulation logic F .

(A.2) For any n, n′ 6= n, j, and j′, given the state Xn, Y
(j)
n is conditionally independent

of the state Xn′ and the simulated random vector Y
(j′)
n′ .

(A.3) For any n, j, and j′ 6= j, given the state Xn, the random vector Y
(j)
n simulated in

the jth replication of the nth experiment is conditionally independent of Y
(j′)
n .



25

(A.4) For all x ∈ X , the likelihoods h (·;x) have the same support Y .

(A.5) For any state x ∈ X and any y ∈ Y , the likelihood h (y;x) can be evaluated.

(A.6) For any states x, x′ ∈ X , the target-x-sample-x′ variance defined as

(2.5) σ2
x (x′) =

∫

Y

(
F (y)

h (y;x)

h (y;x′)
− µ(x)

)2

h (y;x′) dy

and the expected performance µ(x) defined in Equation (2.1) are finite.

In Assumption (A.1), it is essential for the LR method that the parameters that change

affect only likelihoods, not the simulation logic F . Assumptions (A.1) and (A.2) imply

that the current simulation experiment is not affected directly by its time index n or

by any past state Xn′ for n′ < n or by any of the output of a past experiment. We use

these assumptions on the sequence of repeated experiments to support our analysis of

the LR estimators. Assumption (A.3), which asserts that each simulation experiment has

independent replications, is made for the sake of simplicity in the analysis. It is not essential

to the LR method or its analysis: for example, it would be acceptable to use stratified

sampling within each experiment, and this would introduce the usual complications in

analyzing and estimating variance. Assumptions (A.4) and (A.5) ensure that the likelihood

ratio h (y;x) /h (y;x′) is finite and can be computed; it is not enough merely to be able to

sample according to the likelihood h (·;x). Assumption (A.6) is needed to give the LR

estimators finite conditional variance.

The need to satisfy these assumptions limits the applicability of the LR method.

Furthermore, the LR estimators could work poorly if the variances associated with

Equation (2.5) are too large. This can happen, for example, if the input x affects the

likelihood of many independent terms. These are known limitations of the LR method
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in general, not specific to green simulation. Despite them, interesting examples may fit

well into the LR framework. One such example, in Section 2.5.1, involves simulating a

random number of independent random variables and summing them. It might appear

to pose a difficulty for the LR method if Yn is a random vector including the number of

terms in the sum and every term in the sum. We avoid this difficulty by defining Yn to be

the sum and working with its likelihood, not with the joint likelihood of the number of

terms in the sum and every term in the sum. By using such techniques if necessary, the

LR method can be made to apply even to non-trivial examples. It is not always possible

to make the LR method work well; in such situations, one can use other green simulation

methods, such as those proposed in Chapter 3 and Chapter 4.

2.2.1. Individual Likelihood Ratio Estimator

Based on the fundamental idea of the LR method as expressed in Equation (2.4), for any

state x ∈ X we get the following unbiased estimator of µ(x) using outputs from the kth

experiment:

(2.6) µ̂LRk,r (x) =
1

r

r∑

j=1

h
(
Y j
k ;x
)

h
(
Y j
k ;Xk

)F
(
Y

(j)
k

)
.

Averaging these estimators from all previous experiments and the current (nth) experiment

yields the Individual Likelihood Ratio (ILR) estimator of µ(x):
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µ̂ILRn,r (x) =
1

n

n∑

k=1

µ̂LRk,r (x) =
1

n

n∑

k=1


1

r

r∑

j=1

h
(
Y

(j)
k ;x

)

h
(
Y

(j)
k ;Xk

)F
(
Y

(j)
k

)

(2.7a)

=
r∑

j=1

n∑

k=1

1

nr

h
(
Y

(j)
k ;x

)

h
(
Y

(j)
k ;Xk

)F
(
Y

(j)
k

)
.(2.7b)

The ILR estimator is so named because it contains likelihood ratios that each involve

one individual sampling distribution; this distinguishes it from the mixture likelihood

ratio estimator proposed in Section 2.2.3. In particular, µ̂ILRn,r (Xn) is our estimator of the

current expected performance µ(Xn). However, the LR method enables us to estimate

expected performance given a state x that we never used in a sampling distribution.

The ILR estimator in (2.7a) can be seen as the average of n individual likelihood ratio

estimators µ̂LRk,r (x) for k = 1, . . . , n. If the target state is the current state, i.e., x = Xn,

then µ̂LRn,r(x) is the SMC estimator. It is worth emphasizing the difference between the

present application of likelihood ratios and the typical application of importance sampling.

In importance sampling, the designer of the simulation experiment chooses the sampling

distribution with the aim of reducing variance. In our LR estimators, we do not address

the choice of sampling distribution. We assume that the sampling distribution in the

current experiment is determined by the current state Xn, as is standard practice in the

setting of repeated experiments. We use likelihood ratios not to reduce variance, but to

enable reuse of simulation output based on different sampling distributions.
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Of course, the effect of likelihood ratios on variance needs to be considered. The

target-x-sample-x′ variance defined in Equation (2.5) could be more or less than the target-

x-sample-x variance σ2
x (x) = σ2(x) associated with standard Monte Carlo; in general it

could even be infinite. The target-x-sample-Xk variance σ2
x (Xk) can be estimated by

σ̂2
x (Xk) =

1

r

r∑

j=1




h
(
Y

(j)
k ;x

)

h
(
Y

(j)
k ;Xk

)F
(
Y

(j)
k

)
− µ̂LRr,Xk(x)




2

.

Based on (2.7a)

(2.8) Var
[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
=

1

n2r

n∑

k=1

σ2
x (Xk)

which can be estimated by
∑n

k=1 σ̂
2
x (Xk) /(n

2r). If none of σ2
Xn

(X1) , . . . , σ2
Xn

(Xn) is too

large, then the ILR estimator of current expected performance has lower conditional

variance
∑n

k=1 σ
2
Xn

(Xk) /(n
2r) than σ2 (Xn) /r, which is the conditional variance of the

SMC estimator. However, the ILR estimator could have higher or infinite conditional

variance.

Considering that σ2
Xn

(X1) , . . . , σ2
Xn

(Xn) may be unequal, one might try to construct

a lower-variance estimator by using unequal weights instead of the equal weights 1/n

in (2.7a). This leads to the weighted likelihood ratio estimator proposed in Section 2.2.2.

Even better results are possible if we replace the equal weights 1/n in (2.7b) with unequal

weights that depend on the random vector Y
(j)
k . This topic is addressed in the research

literature on multiple importance sampling, which leads to the mixture likelihood ratio

estimator proposed in Section 2.2.3.
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2.2.2. Weighted Likelihood Ratio Estimator

Instead of the ILR estimator (2.7a) with its equal weights 1/n, consider a weighted

average
∑n

k=1 wkµ̂
LR
k,r (x) where the weights w1, . . . , wn sum to one but may be unequal. Its

conditional variance given the state history X1, . . . , Xn is
∑n

k=1w
2
kσ

2
Xn

(Xk) /r. Choosing

the weights

(2.9) wWLR
k =

σ−2
x (Xk)∑n

k=1 σ
−2
x (Xk)

, ∀k = 1, . . . , n

that minimize the conditional variance yields the Weighted Likelihood Ratio (WLR)

estimator of µ(x):

(2.10) µ̂WLR
n,r (x) =

n∑

k=1

wWLR
k µ̂LRk,r (x) =

n∑

k=1

wWLR
k


1

r

r∑

j=1

F
(
Y

(j)
k

) h
(
Y

(j)
k ;x

)

h
(
Y

(j)
k ;Xk

)




Proposition 2.2.1. Suppose Assumptions (A.1)–(A.6) hold, for any n, r ∈ N+ and

x,X1, . . . , Xn ∈ X , the weights given in Equation (2.9) minimize the conditional variance

Var
[∑n

k=1 wkµ̂
LR
k,r (x)

∣∣X1, . . . , Xn

]
subject to the constraint

∑n
k=1wk = 1. The resulting

minimum conditional variance is

(2.11) Var
[
µ̂WLR
n,r (x)

∣∣X1, . . . , Xn

]
=

1

r
∑n

k=1 σ
−2
x (Xk)

.

Proof. The Lagrangian function for this minimization problem is

L(w1, . . . , wn, λ) =
n∑

k=1

w2
kσ

2
Xn (Xk) + λ

(
1−

n∑

k=1

wk

)
.
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From the first-order optimality condition

∂L(w1, . . . , wn, λ)

∂wWLR
k

= 2wWLR
k σ2

Xn (Xk)− λ = 0

we get wWLR
k = λ/2σ2

Xn
(Xk) for all k = 1, . . . , n. Therefore wWLR

k is proportional

to σ−2
x (Xk), and the denominator in Equation 2.9 is what is required to satisfy the

constraint
∑n

k=1w
WLR
k = 1. Substituting wWLR

k into the conditional variance formula

∑n
k=1 w

2
kσ

2
Xn

(Xk) /r yields 1/(r
∑n

k=1 σ
−2
x (Xk)) �

Proposition 2.2.2 and its proof show how much better the WLR estimator is than

(2.12) the ILR estimator and (2.14) the SMC estimator in terms of conditional variance. It

also shows (2.13) that the WLR estimator has a defensive property that the ILR estimator

lacks: the conditional variance of the WLR estimator is bounded above by that of the best

LR estimator generated from any single sampling distribution. The WLR estimator can

only be improved by including samples from another sampling distribution, even if the

associated variance is large; if so, the WLR estimator compensates by giving this sampling

distribution a small weight. Proposition 2.2.2 relies on the following lemma, which holds

due to convexity of the function that maps a to 1/a, or equivalently, due to the well-known

inequality between arithmetic and harmonic mean for non-negative numbers.

Lemma 2.2.1. For any n and a1, . . . , an > 0,
∑n

k=1 ak/n ≥ n/
∑n

k=1 a
−1
k , with strict

inequality if and only if there exist k, k′ such that ak 6= ak′.
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Proposition 2.2.2. If Assumptions (A.1)–(A.6) hold, then for any n, r ∈ N+ and

x,X1, . . . , Xn ∈ X ,

(2.12)
Var

[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]

Var
[
µ̂WLR
n,r (x)

∣∣X1, . . . , Xn

] =
1

n2

(
n∑

k=1

σ2
x (Xk)

)(
n∑

k=1

σ−2
x (Xk)

)
≥ 1

with strict inequality if σ2
x (Xk) 6= σ2

x (Xk′) for some k, k′ = 1, . . . , n; also

(2.13)
1

nr
min

k∈{1,...,n}
σ2
x (Xk) ≤ Var

[
µ̂WLR
n,r (x)

∣∣X1, . . . , Xn

]
≤ 1

r
min

k∈{1,...,n}
σ2
x (Xk) ,

and for x = Xn,

(2.14)
Var

[
µ̂SMC
r (Xn)

∣∣X1, . . . , Xn

]

Var
[
µ̂WLR
n,r (Xn)

∣∣X1, . . . , Xn

] = σ2
Xn(Xn)

n∑

k=1

σ−2
Xn

(Xk) ≥ 1

with strict inequality if σ2
Xn

(Xk) <∞ for some k < n.

Proof. By Lemma 2.2.1,
∑n

k=1 σ
−2
x (Xk)/n ≥ 1/(

∑n
k=1 σ

2
x(Xk)/n). Using this with

Equations (2.8) and (2.11), the inequality in Equation (2.12) follows.

Equation (2.13) follows from Equation (2.11) and taking the reciprocal of

max
k∈{1,...,n}

σ−2
x (Xk) ≤

n∑

k=1

σ−2
x (Xk) ≤ n max

k∈{1,...,n}
σ−2
x (Xk).

Equation (2.14) follows from Equation (2.11) and Var
[
µ̂SMC
r (Xn)

∣∣X1, . . . , Xn

]
=

σ2
Xn

(Xn)/r. �

Proposition 2.2.2 showcases the theoretical advantages of the WLR estimator using

the weights in Equation (2.9), which involve target-x-sample-Xk variances σ2
x (Xk). Unfor-

tunately, these variances are usually unknown. Therefore, in a practical implementation,
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one would replace these variances by their estimates σ̂2
x (Xk). The resulting weights would

be suboptimal, and Proposition 2.2.2 would not apply to this empirical WLR (EWLR)

estimator. As our numerical experiments show, the EWLR estimator can be worse than

the ILR and SMC estimators. In the next section we propose an estimator that enjoys

good theoretical properties, like the WLR estimator, and can be implemented without

losing its theoretical properties by estimation of weights.

2.2.3. Mixture Likelihood Ratio Estimator

In our setting of repeated experiments, we have r replications sampled from each of n

distributions. The collection of nr observations can be viewed as a stratified sample from

an equally-weighted mixture of these n distributions. The likelihood of the mixture is

denoted by h̄ (·;X1, . . . , Xn), where

(2.15) h̄ (y;x1, . . . , xn) =
1

n

n∑

k=1

h (y;xk) .

Hesterberg (1988) and Veach and Guibas (1995) advocated replacing the equal weights

1/nr in (2.7b) with “balance heuristic” weights which, in our setting, are

wMLR(Y
(j)
k ) =

h
(
Y

(j)
k ;Xk

)

nrh̄
(
Y

(j)
k ;X1, . . . , Xn

) .
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This leads to the following mixture likelihood ratio (MLR) estimator for µ(x):

(2.16)

µ̂MLR
n,r (x) =

r∑

j=1

n∑

k=1

wMLR(Y
(j)
k )

h
(
Y

(j)
k ;x

)

h
(
Y

(j)
k ;Xk

)F
(
Y

(j)
k

)

=
n∑

k=1

r∑

j=1

1

nr

h
(
Y

(j)
k ;x

)

h̄
(
Y

(j)
k ;X1, . . . , Xn

)F
(
Y

(j)
k

)
.

The MLR estimator is the LR estimator (2.6) that arises when we consider the pooled

outputs of all simulation experiments performed so far,
{
Y

(j)
k : k = 1, . . . , n, j = 1, . . . , r

}

as stratified sampling from the mixture distribution (2.15) that has likelihood h̄ with r

independent samples allocated to each of n strata (Hesterberg, 1995). It follows from this

interpretation, or immediately from the results of Veach and Guibas (1995, Section 3.2),

that the MLR estimator is conditionally unbiased for µ(x) given X1, . . . , Xn.

Proposition 2.2.3. Suppose Assumptions (A.1)–(A.6) hold, for any n, r ∈ N+ and

x,X1, . . . , Xn ∈ X , E
[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
= µ(x).

The conditional variance of the MLR estimator is better than that of the ILR estimator

(Proposition 2.2.4). The MLR estimator has a defensive property similar to that of the

WLR estimator: an upper bound on its conditional variance related to the conditional

variance of the best LR estimator from any single sampling distribution (Proposition 2.2.5).

The conditional variance of the MLR estimator can be estimated by

V̂ar
[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
=

1

r

r∑

j=1




n∑

k=1

h
(
Y

(j)
k ;x

)
F
(
Y

(j)
k

)

nh̄
(
Y

(j)
k ;X1, . . . , Xn

) − µ̂MLR
n,r (x)




2

.
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The following proposition and proof are taken from Theorem A.2 of Martino et al.

(2014), expanded to provide sufficient conditions for a strict inequality. They involve the

conditional expectation of the kth term in Equation (2.16),

(2.17)

mk(x;X1, . . . , Xn) = E
[

F (Yk)h (Yk;x)

h̄ (Yk;X1, . . . , Xn)

∣∣∣∣X1, . . . , Xn

]

=

∫

Y

F (y)h (y;x)

h̄ (y;X1, . . . , Xn)
dy

Proposition 2.2.4. Suppose Assumptions (A.1)–(A.6) hold, for any n, r ∈ N+ and

x,X1, . . . , Xn ∈ X ,

(2.18) Var
[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
≤ Var

[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
.

This inequality is strict if there exists k, k′ such that mk(x;X1, . . . , Xn) 6= mk(x;X1, . . . , Xn).

Proof. Let
{
Ỹ

(j)
k : k = 1, . . . , n, j = 1, . . . , r

}
be an i.i.d. sample according to the

mixture likelihood h̄ (·;X1, . . . , Xn) and define

µ̂MIX
n,r (x) =

n∑

k=1

r∑

j=1

1

nr

h
(
Ỹ

(j)
k ;x

)

h̄
(
Ỹ

(j)
k ;X1, . . . , Xn

)F
(
Ỹ

(j)
k

)
.

The estimators µ̂MIX
n,r (x) and µ̂MLR

n,r (x) are similar: the latter is a stratified-sampling version

of the former, with equal number of samples allocated to the n equally weighted strata;

the sampling likelihood of the k stratum is h (·;Xk). Therefore

E
[
µ̂MIX
n,r (x)

∣∣X1, . . . , Xn

]
= E

[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
= µ(x)
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where the last equality holds by Proposition 2.2.3. We have

Var
[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
− Var

[
µ̂MIX
n,r (x)

∣∣X1, . . . , Xn

]

=
1

nr

∫

Y
(F (y)h (y;x))2

(
1

n

n∑

k=1

1

h (y;Xk)
− 1

h̄ (y;X1, . . . , Xn)

)
dy ≥ 0

because by Lemma 2.2.1, for all y ∈ Y

1

n

n∑

k=1

1

h (y;Xk)
≥ 1

1
n

∑n
k=1 h (y;Xk)

=
1

h̄ (y;X1, . . . , Xn)
.

Next we observe that µ̂MLR
n,r (x) is a stratified-sampling version of µ̂MIX

n,r (x), with equal

number of samples allocated to the n equally weighted strata: the sampling likelihood of

the kth stratum is h (·;Xk). Therefore

Var
[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
≤ Var

[
µ̂MIX
n,r (x)

∣∣X1, . . . , Xn

]

and inequality is strict if there exist strata k, k′ with different means mk(x;X1, . . . , Xn) 6=

mk′(x;X1, . . . , Xn). �

The next proposition follows from Theorem 9.2 of Veach (1997) and Equation (8)

of Owen and Zhou (2000).

Proposition 2.2.5. Suppose Assumptions (A.1)–(A.6) hold, for any n, r ∈ N+ and

x,X1, . . . , Xn ∈ X , if F is a non-negative function or there exists k ∈ {1, . . . , n} such that

x = Xk, then

(2.19) Var
[
µ̂MLR
n,r (x)

∣∣X1, . . . , Xn

]
≤ 1

r
min

k∈{1,...,n}
σ2
x (Xk) +

(
1

r
− 1

nr

)
(µ(x))2.
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2.3. Green Algorithms for Likelihood-Ratio-Based Estimators

This section proposes and analyzes algorithms for the three LR estimators in the setting

of repeated experiments. The algorithms are also green, in the sense that they store and

reuse likelihood evaluations as well as simulation output. Suppose that one simulation

replication has computational cost CF , one evaluation of a likelihood has computational

cost Ch, and the computational cost of basic arithmetic operations such as addition,

multiplication, and division is negligible in comparison to these. We envision a situation

in which CF is large, Ch is smaller but need not be negligible, storage space is abundant,

and memory access is fast. We consider a sequence of experiments, indexed n = 1, 2, . . .,

of r replications each. For each experiment in the sequence, the SMC, ILR, EWLR or

MLR estimator of the current expected performance µ(Xn) is computed, and the green

simulation procedures store some information to be reused in the next experiment. We

analyze the storage requirement and computation cost of the nth experiment.

For benchmarking purposes, we first consider the SMC estimator. It has zero storage

requirement in the sense that no information is stored from one experiment to the next.

Its computation cost is rCF .

Algorithm 1 applies to the ILR and EWLR estimators. Consider the ILR estimator

µ̂ILRn,r (Xn) in (2.7). The likelihood h
(
Y

(j)
k ;Xk

)
in the denominator does not change as n

increases. Therefore we store and reuse likelihoods from one experiment to the next in

Algorithm 1. The storage requirements and non-negligible computation costs for the nth

experiment are shown on the right in Algorithm 1. The algorithm has storage requirement

2nr and computation cost rCF + nrCh for the nth experiment. The linear growth rate in

n is reassuring; it suggests that it is affordable to reuse the outputs of many experiments
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in the ILR and EWLR estimators. Compared to the ILR estimator, the EWLR estimator

requires more basic arithmetic operations to estimate the EWLR weights.

Algorithm 1 Green implementation of ILR or EWLR estimator in the nth experiment

1: Observe Xn and initialize µ̂ILRn,r (Xn)← 0 or µ̂EWLR
n,r (Xn)← 0

2: for j = 1, . . . , r do

3: Sample Y
(j)
n and evaluate F

(
Y

(j)
n

)
. rCF computation

4: Append to output storage F
(
Y

(j)
n

)
. nr storage

5: Calculate likelihood h
(
Y

(j)
n ;Xn

)
. rCh computation

6: Append to likelihood storage h
(
Y

(n)
k ;Xn

)
. nr storage

7: end for

8: Set µ̂LRr,Xk(Xn)← 1
r

∑r
j=1 F

(
Y

(j)
n

)

9: for k = 1, . . . , n− 1 do

10: for j = 1, . . . , r do

11: Retrieve F
(
Y

(j)
k

)
and h

(
Y

(j)
k ;Xk

)
from storage

12: Calculate likelihood h
(
Y

(j)
k ;Xn

)
. (n− 1)rCh computation

13: end for

14: Set µ̂LRr,Xk(Xn)← 1
r

∑r
j=1

h
(
Y

(j)
k ;Xn

)
h
(
Y

(j)
k ;Xk

)F (Y (j)
k

)

15: end for

16: if ILR estimator then

17: Set µ̂ILRn,r (Xn)← 1
n

∑n
k=1 µ̂

LR
r,Xk

(Xn) and output.

18: else EWLR estimator

19: for k = 1, . . . , n do

20: Set σ̂2
Xn

(Xk)← 1
r

∑r
j=1

(
h
(
Y

(j)
k ;Xn

)
h
(
Y

(j)
k ;Xk

)F (Y (j)
k

)
− µ̂LRr,Xk(Xn)

)2

, for k = 1, . . . , n

21: Set ŵEWLR
k ← σ̂−2

Xn
(Xk)/

∑n
i=1 σ̂

−2
Xn

(Xi), for k = 1, . . . , n

22: end for

23: Set µ̂EWLR
n,r (Xn)← 1

n

∑n
k=1 ŵ

EWLR
k · µ̂LRr,Xk(Xn) and output

24: end if
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For the MLR estimator µ̂MLR
n,r (Xn), a green algorithm is especially valuable. Inspection

of (2.15) and (2.16) suggests that the MLR estimator requires n2r likelihood evaluations:

h
(
Y

(j)
k ;x`

)
, for all j = 1, . . . , r and k, ` = 1, . . . , n. A quadratic growth rate of com-

putation cost in n could be an obstacle for using the MLR estimator when reusing the

output of many experiments. By storing and reusing likelihoods from one experiment to

the next in Algorithm 2, we avoid this quadratic growth and achieve linear growth of the

computation cost in n, as was the case for the ILR estimator. Algorithm 2 has storage

requirement 2nr and computation cost rCF + (2n− 1)rCh for the nth experiment. This

result for MLR is similar to the result for ILR, but MLR requires almost twice as many

likelihood evaluations.



39

Algorithm 2 Green implementation of MLR estimator in the nth experiment

1: Observe Xn and initialize µ̂MLR
n,r (Xn)← 0

2: for j = 1, . . . , r do

3: for k = 1, . . . , n do

4: if k < n then

5: Retrieve F
(
Y

(j)
k

)
and h̄(Y

(j)
k ) from storage

6: else

7: Sample Y
(j)
n and evaluate F

(
Y

(j)
n

)
. rCF computation

8: Append to output storage F
(
Y

(j)
n

)
. nr storage

9: Set h̄(Y
(j)
n )← 0

10: for ` = 1, . . . , n− 1 do

11: Calculate likelihood h
(
Y

(j)
n ;X`

)
. (n− 1)rCh computation

12: Set h̄(Y
(j)
n )← h̄(Y

(j)
n ) + 1

n−1
h
(
Y

(j)
n ;X`

)

13: end for

14: end if

15: Calculate likelihood h
(
Y

(j)
k ;Xn

)
. nrCh computation

16: Set h̄(Y
(j)
k )← n−1

n
h̄(Y

(j)
k ) + 1

n
h
(
Y

(j)
k ;Xn

)

17: Update/Append to likelihood storage h̄(Y
(j)
n ) . nr storage

18: end for

19: end for

20: Set µ̂MLR
n,r (Xn)← 1

nr

∑n
k=1

∑r
j=1 h

(
Y

(j)
k ;Xn

)
F
(
Y

(j)
k

)
/h̄(Y

(j)
k ) and output

2.4. Convergence of Likelihood-Ratio-Based Estimators

In this section, we analyze the convergence of the three LR estimators as the number

n of experiments grows while the number r of replications per experiment is fixed. To
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this end, we make an assumption on the stochastic process {Xn : n = 1, 2, . . .}, which

determines the sampling distributions.

(C1) The stochastic process {Xn : n = 1, 2, . . .} is ergodic.

We adopt the following definition of ergodicity, which is consistent with the well-known

Birkhoff ergodic theorem. For the class of Markov chains, this definition of ergodicity

is standard; for a Markov chain to be ergodic, it is sufficient for it to be positive Harris

recurrent and aperiodic (Nummelin, 2004; Meyn and Tweedie, 2009).

Definition 2.4.1. A stochastic process {Xn : n = 1, 2, . . .} taking values in a Polish

state space X is ergodic if

(i) it has a stationary probability measure π on the Borel σ-algebra of X , and

(ii) for any random variable f(X) that has a finite expectation under π, i.e., f ∈

L1(X ,B(X ), π),

(2.20) lim
n→∞

1

n

n∑

k=1

f(Xk) =

∫

X
f(x)dπ(x), a.s. and in L1.

The reason to make Assumption (C1) is as follows. For any target state x ∈ X , we

envision that it has a neighborhood such that, for every x′ in this neighborhood, the

sampling distribution associated with x′ is a good sampling distribution for the target

distribution associated with x. A good sampling distribution would be one for which the

target-x-sample-x′ variance σ2
x (x′) defined in (2.5) is sufficiently small. An ergodic process

returns to this neighborhood infinitely often. The consequence is that, as n → ∞, the

number of good samples to be used in estimating µ(x) also grows without bound.
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Theorem 2.4.1 shows that, under our assumptions, the conditional variance of the ILR

estimator evaluated at a fixed target state x, given the state history X1, . . . , Xn, goes

to zero at the rate O(n−1). Theorem 2.4.1 also provides a result about unconditional

variance, which may be easier to interpret.

Theorem 2.4.1. Suppose that Assumptions (A.1)–(A.6) and (C1) hold, and π is the

stationary probability measure of {Xn : n = 1, 2, . . .}. For any target state x ∈ X , if the

function σ2
x defined in Equation (2.5) is in L1(X ,B(X ), π), then

(2.21) lim
n→∞

nrVar
[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
=

∫

X
σ2
x(x
′)dπ(x′).

If, furthermore, the target-x-sample-Xn variance process {σ2
x (Xn) , n = 1, 2 . . .} is uni-

formly integrable, then

(2.22) lim
n→∞

nrVar
[
µ̂ILRn,r (x)

]
=

∫

X
σ2
x(x
′)dπ(x′).

Proof. Since the random vectors
{
Y

(j)
k : j = 1, . . . , r, k = 1, . . . , n

}
are conditionally

independent given X1, . . . , Xn, we have

(2.23)
Var

[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
= 1

n2r2

∑n
k=1

∑r
j=1 Var

[
F
(
Y

(j)
k

)
h
(
Y

(j)
k ;x

)
h
(
Y

(j)
k ;Xk

)
]

= 1
n2r

∑n
k=1 σ

2
x (Xk) .

Therefore, by ergodicity of {Xn : n = 1, 2, . . .}, we obtain (2.21):

lim
n→∞

nrVar
[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]
= lim

n→∞

1

n

n∑

k=1

σ2
x (Xk) =

∫

X
σ2
x(x
′)dπ(x′), a.s. and in L1.
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To establish (2.22), consider that

Var
[
µ̂ILRn,r (x)

]
= E

[
Var

[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]]
+ Var

[
E
[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]]

= E
[
Var

[
µ̂ILRn,r (x)

∣∣X1, . . . , Xn

]]
+ Var [µ(x)]

= E

[
1

n2r

n∑

k=1

σ2
x (Xk)

]
,

using (2.23). Therefore

lim
nr→∞

nrVar
[
µ̂ILRn,r (x)

]
= lim

n→∞
E
[

1
n

∑n
k=1 σ

2
x (Xk)

]

= E
[

lim
n→∞

1
n

∑n
k=1 σ

2
x (Xk)

]

=
∫
X σ

2
x(x
′)dπ(x′),

where the exchange of limit and expectation holds by uniform integrability, and ergodicity

of {Xn : n = 1, 2, . . .} justifies the last step. �

Corollary 2.4.1. If the corresponding conditions stated in Theorem 2.4.1 hold, then

(2.24) lim
n→∞

nrVar
[
µ̂∗n,r(x)

∣∣X1, . . . , Xn

]
≤
∫

X
σ2
x(x
′)dπ(x′), and

(2.25) lim
n→∞

nrVar
[
µ̂∗n,r(x)

]
≤
∫

X
σ2
x(x
′)dπ(x′),

where the asterisk may represent WLR or MLR.

Proof. Due to Propositions 2.2.2 and 2.2.4, under the appropriate conditions stated

in Theorem 2.4.1, the right sides of Equations (2.21) and (2.22) serve as upper bounds for

nrVar
[
µ̂∗n,r(x)

∣∣X1, . . . , Xn

]
and nrVar

[
µ̂∗n,r(x)

]
, respectively. �
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By Theorem 2.4.1 and Corollary 2.4.1, the conditional variance of any of the three LR

estimators, evaluated at a fixed target state x, given the state history X1, . . . , Xn, goes

to zero at the rate O(n−1). Because all three LR estimators are unbiased, it follows that

they are consistent as n→∞.

Theorem 2.4.1 and Corollary 2.4.1 show the asymptotic superiority of the LR estimators

to standard Monte Carlo (SMC), as the number n of repeated experiments increases. Recall,

from the discussion of Equation (2.3), that the conditional variance of the SMC estimator

for the current expected performance µ(Xn), given the state history, is σ2(Xn)/r. This

does not converge to zero as n→∞, assuming that sampling variances are positive. Yet

the LR estimators converge to the true value µ(x) as n →∞. This means that we can

obtain arbitarily high accuracy without increasing the budget r per experiment, merely

by reusing output from experiments that are repeated at each time step with budget r.

Under the assumptions of Theorem 2.4.1, reusing old simulation output is highly effective

in the sense that the variance of the LR estimators converges as O((nr)−1), which is the

standard rate of convergence for Monte Carlo in terms of the computational budget nr

expended on all experiments that were ever run.

2.5. Numerical Examples

In this section, we use two numerical examples to illustrate green simulation via the

LR method, demonstrate its value, and compare the three LR estimators with each other

and with standard Monte Carlo. First is a reinsurance example of pricing catastrophe

bonds. For this example, we verify the conditions of Theorem 2.4.1 in Appendix A, which

shows that these conditions are applicable to a realistic example. The experiment results
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conform to the theoretical predictions in that the MLR estimator was superior to the ILR

estimator, which was superior to the SMC estimator. The EWLR estimator performed

similarly to MLR when the number of experiments was small, but it was not even as good

as the ILR estimator when many experiments were run.

The second example involves measuring the credit risk of a loan portfolio. In this

example, the conditions of Theorem 2.4.1 do not hold, but the experiment results show that

green simulation via the LR method can still deliver valuable results in such a situation.

Although the ILR and EWLR estimators were not successful in this example, the MLR

estimator was superior to the SMC estimator.

2.5.1. Catastrophe Bond Pricing with Compound Losses

A catastrophe bond (“CAT bond”) is an important reinsurance contract that helps

insurance companies to hedge against losses from catastrophic events (Munich Re Geo

Risks Research, 2015). This example is relevant beyond insurance; for example, senior

tranches of structured financial instruments are essentially economic catastrophe bonds,

because they suffer credit losses only in the event of an economic catastrophe (Coval et al.,

2009). Simulation of CAT bonds can be computationally intensive, because it involves

fairly rare events in a complex geophysical model. Specifically, the example illustrates a

simple simulation for pricing hurricane CAT bonds.

In practice, reinsurance contracts are subject to periodic renewals. This is the source

of the repeated experiments: the same CAT bond is priced every period, using the

same hurricane simulation model, with parameters Xn updated to reflect the current

climatological forecast. In this example, the period is semi-annual. The state process
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{Xn : n = 1, 2, . . .} is modeled by an ergodic Markov chain. Given the state Xn, we can

simulate hurricanes that take place during the lifetime of the CAT bond and the resulting

total insured loss Yn underlying the CAT bond. Finally, we compute the payoff of the

CAT bond per dollar invested,

F (Yn) = 1{Yn≤K} + p1{Yn>K},

where 1{·} is the indicator function, K is the trigger level, and p ∈ [0, 1) is the fraction of

face value that is received if insured losses exceed the trigger level. The fair price of this

CAT bond can be obtained in terms of the expected payoff µ(Xn) = E [F (Yn) |Xn] . We

consider a hurricane CAT bond with lifetime 10 years, trigger level K = 25 million dollars,

and recovery fraction p = 0.5.

In this example, we use a simplified version of the model of Dassios and Jang (2003).

The insured loss is modeled as a compound random variable: Yn =
Mn∑
i=1

Zi
n, where Mn

denotes the number of claims and Zi
n denotes the ith claim size. In this model, Zi

n,

i = 1, 2 . . . are i.i.d. and independent of Mn. This is a popular loss model due to its

flexibility and suitability for many practical applications (Klugman et al., 2012), yet it can

provide mathematical tractability. Let the probability mass function of Mn be p(m;λn)

and the probability density of Zi
n be f(z; θn), where λn and θn are parameters determined

by the state Xn. Specifically, we take Mn to be Poisson with mean λn and Zi
n to be

exponential with mean θn. In this model, the expected payoff is

(2.26) µ(Xn) = E [F (Yn) |Xn] = E
[
p+ (1− p)1{Yn≤K}

]
= p+

∞∑

m=1

p(m;λn)F (K; θn,m)
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where p(m;λ) is the Poisson probability mass function with mean λ and F (K; θ,m) is the

Gamma cumulative distribution function with scale parameter θ and shape parameter m.

From 1981-2010, the average number of major hurricanes was 2.7 per decade and the average

cost per hurricane was about $5,000 million (Blake and Gibney, 2011). Therefore, we set

up a stochastic model of the states {Xn : n = 1, 2, . . .} and a transformation (λ, θ) = ψ(x)

so that λn is usually around 2.7 and θn is usually around 5 (measured in thousands of

millions of dollars).

In this example, the ergodic Markov chain driving the parameters of the loss model is

a stationary AR(1) process with state space X = R2, given by

Xn = µ∞ + ϕXn−1 + εn,

where {εn : n = 1, 2, . . .} is an i.i.d. sequence of bivariate normal random vectors with

mean zero and variance diag(σ2
ε), and the parameters are

µ∞ =




0

0


 , ϕ =




0.6

0.5


 , and σ2

ε =




0.82

0.52


 .

The state space X = R2 is inappropriate for parameters that must be non-negative because

they represent an expected number of hurricanes and an expected loss per hurricane. We

introduce a transformation ψ : R2 7→ (λ, λ̄)× (θ, θ̄) so that the parameters (λ, θ) = ψ(x)

lie between plausible lower and upper bounds. The transformation is sigmoidal and maps

x = [x1, x2] to

(λ, θ) = ψ(x) =

[
λ+ λ̄−λ

1+e−x1
, θ + θ̄−θ

1+e−x2

]
.
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In particular, we took (λ, λ̄) = (2, 4) as the range for expected number of hurricanes per

decade and (θ, θ̄) = (4, 6) as the range for expected loss per hurricane. To give a picture

of the variability of the parameters for repeated experiments in this example, Figure 2.1

shows histograms of the parameters λ and θ resulting from sampling from the stationary

distribution of the AR(1) process.

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Normalized histogram of λ

4 4.5 5 5.5 6
0

0.5

1

1.5
Normalized histogram of θ

Figure 2.1. Histograms of parameters sampled based on the stationary

distribution of the AR(1) process.

To clarify the model, Algorithm 3 shows how the standard Monte Carlo simulation

works.
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Algorithm 3 Standard Monte Carlo Simulation for Catastrophe Bond Pricing

1: Sample state X0 from the stationary distribution of the AR(1) process

2: for n = 1, 2, . . . , do

3: Sample state Xn from AR(1) process, conditional on Xn−1

4: Set parameters (λn, θn)← ψ(xn)

5: Set µ̂SMC
n,r (Xn)← 0

6: for j = 1, . . . , r do

7: Sample number of hurricanes M
(j)
n ∼ p(·;λn)

8: for i = 1, . . . ,M
(j)
n do

9: Sample loss for ith hurricane Z
(i,j)
n ∼ f(·; θn)

10: end for

11: Set Y
(j)
n ←

Mn∑
i=1

Zi,j
n

12: if Y
(j)
n ≤ K then

13: Set F
(
Y

(j)
n

)
← 1

14: else

15: Set F
(
Y

(j)
n

)
← p

16: end if

17: Set µ̂SMC
xn (Xn)← µ̂SMC

xn (Xn) + F
(
Y

(j)
n

)

18: end for

19: Set µ̂SMC
n,r (Xn)← µ̂SMC

n,r (Xn)/r and output

20: end for

To investigate the effectiveness of green simulation, we performed a sequence of

100 repeated simulation experiments (i.e., n = 1, 2, . . . , 100) with r = 100 replications

each. Using the same sample path {Xn : n = 1, 2, . . . , 100} and the same simulation output
{
Y

(j)
n : n = 1, 2, . . . , 100, j = 1, 2, . . . , 100

}
, we evaluated the SMC, ILR, EWLR and MLR

estimators at each period n = 1, 2, . . . , 100, in each of three states: the current state
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Xn, the central state xmi = (0, 0) corresponding to the moderate parameters λ = 3 and

θ = 5, and an extreme state xhi = (∞,∞) corresponding to extreme parameters λ = 4

and θ = 61.

For the purpose of accurately estimating the unconditional variances of the all these

estimators, we performed such a sequence of experiments 10,000 times. These 10,000

macro-replications of the sequence of experiments have independent sample paths and

simulation output. The estimated variance of a fixed-state estimator µ̂(x) of µ(x) was
10,000∑
k=1

(µ̂(k)(x) − µ(x))2/10, 000, where µ̂(k)(x) is the value of the estimator on the kth

macro-replication. Likewise, the estimated variance of a current-state estimator µ̂(Xn) of

µ(Xn) was
10,000∑
k=1

(µ̂(k)(X
(k)
n )− µ(X

(k)
n ))2/10, 000. Due to using 10,000 macro-replications,

the standard errors of these estimated variances are less than 1% of the corresponding

estimated variance.

Figure 2.2 is a log-log plot of the variances of the SMC, ILR, EWLR, and MLR

estimators for two fixed states, xmi and xhi, for each experiment n = 1, 2, . . . , 100. The fixed-

state SMC estimators µ̂SMC
n,r (xmi) and µ̂SMC

n,r (xhi) were generated by sampling according to

h (·;xmi) and h (·;xhi), respectively, in experiments distinct from the experiments described

in the preceding paragraph. The SMC variance forms a horizontal line because, for each

experiment n, µ̂SMC
n,r (xmi) and µ̂SMC

n,r (xhi) use a fixed number r of replications drawn from

the sampling distribution associated with the fixed state xmi or xhi. In addition, a black

solid line with slope −1 and intercept equal to the SMC variance is plotted for reference.

This line shows the variance of an SMC estimator with nr replications, which is the

cumulative number of replications simulated up through the nth experiment. We compare

1Strictly speaking, the extreme state xhi does not belong to the state space X = R2, but the parameter
vector (λ, θ) = (4, 6) is a limit point of the range of the transformation ψ that maps states to parameters.
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the lines for green simulation estimators against the solid lines. When they go below the

horizontal line, they have lower variance than a SMC simulation with r replications, the

budget for a single experiment. When they go near the line with slope −1, they have

variance nearly as low as a SMC simulation with nr replications, the cumulative budget for

all experiments so far. That is a major success for green simulation, because it shows that

reusing old simulation output is nearly as effective as generating new simulation output in

the current experiment.

Number of periods, n
100 101 102

10-5

10-4

10-3

10-2

period n variance for center state-x
mi

SMC
ILR
EWLR
MLR
Slope -1

Number of periods, n
100 101 102

10-5

10-4

10-3

10-2

period n variance for extreme state-x
hi

SMC
ILR
EWLR
MLR
Slope -1

Figure 2.2. Log-log plots of estimated variances of fixed-state SMC and LR

estimators for CAT bond pricing example.

We see from Figure 2.2 that the MLR estimator has lower variance than the ILR

estimator, which is consistent with (2.18). In this example, the gap between them grows
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to be substantial as the number n of repeated experiments increases: for n = 100, the

ratio between ILR and MLR variances is about 1.7 for both xmi and xhi. Initially, for

very small n, the LR estimators have higher variances than an SMC estimator based on

a simulation in the fixed state xmi or xhi. The cause is the probability that none of the

states visited so far, X1, X2, . . . , Xn, were near xmi or xhi. This event is more likely for

the extreme state xhi than for the center state xmi, which is why the higher variances

persist longer for the extreme state (for the first 5 experiments) than for the center state

(only for the first experiment). The variances of the green simulation soon become lower

than those of SMC and continue to decrease as the outputs of more experiments are

reused. After 100 experiments, the MLR estimator’s variance is over 45 times smaller

than the SMC estimator’s variance for xhi and over 95 times smaller for xmi. In other

words, by using 10,000 total replications simulated in 100 simulation experiments, with

simulation based on parameters corresponding to X1, X2, . . . , X100 and not xmi, the MLR

estimator achieves higher accuracy in estimating µ(xmi) than standard Monte Carlo with

9, 500 replications simulated based on parameters corresponding to xmi. Comparing to the

black solid reference line, we see that the green simulation estimators’ variances eventually

decrease approximately at a rate of n−1, as discussed in connection with Theorem 2.4.1.

For small n, the EWLR estimator has variance comparable to that of the MLR estimator,

but it is not competitive for large n. In the extreme state, the EWLR variance grows much

larger than the ILR variance for large n, and it does not appear to converge as O(n−1).

Next we consider the variance of the SMC and the LR estimators for the current-state

expected performance µ(Xn). Figure 2.3 shows their variances. For the first experiment

(n = 1), there is no stored simulation output from a previous experiment, so all LR
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estimators are the same as the SMC estimator. In this example, the green simulation

estimators’ variances decrease from the beginning and are always less than the SMC

variance. Otherwise, the performance of the green simulation estimators is similar to what

was seen when the state was fixed. After 100 experiments, the MLR estimator’s variance

is over 61 times smaller than the SMC estimator’s variance.

Number of periods, n
100 101 102

10-6

10-5

10-4

10-3
period n variance for the current state

SMC
ILR
EWLR
MLR
Slope -1

Figure 2.3. Log-log plot of estimated variance for current-state SMC and

LR estimators for CAT bond pricing example.

2.5.2. Credit Risk Management

In simulation for financial risk management, experiments using the same simulation model

are performed periodically, as often as daily. Information observed in the markets is used

to update parameters that affect risk, and the simulation model is run again with new
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parameters. In this example, the risk management simulation measures the credit risk

exposure of a portfolio containing loans to companies with listed equity. The asset values

of these debtor companies are observable and serve as parameters in the risk model: the

lower the asset value of a debtor company, the more likely it is to default in the future.

Thus, in our setting of repeated experiments, the current state Xn contains the current

asset values of all debtor companies.

In this example, we work with a structural model of default based on the influential

work of Merton (1974); for an exposition, see McNeil et al. (2005), for example. At any

period n, the asset value of a company equals the sum of its equity and debt values. The

equity value can be observed in the stock market and the debt value can be observed

from public records, so the asset value can be computed. For simplicity of exposition,

we assume that debt remains constant. In this model, the asset value follows geometric

Brownian motion, and a company defaults when its asset value falls below its debt. Because

geometric Brownian motion is not an ergodic process, Theorem 2.4.1 and Corollary 2.4.1

do not apply. As n increases, the current state Xn tends to drift further away from an

earlier state, such as X1. Therefore, intuition suggests that the benefit of reusing old

simulation output would diminish over time. We consider this example to show that green

simulation via the LR method nonetheless delivers valuable results.

We consider a loan portfolio whose composition remains constant over time. Many

loan portfolios are dynamic: as outstanding loans are being repaid, new loans are being

initiated. Despite the dynamic nature of such portfolios, there are lending businesses in

which portfolios retain a similar composition over time. For example, in the business of

accounts receivable, customers may place regular, periodic orders of the same size, each
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resulting in payment due in 90 days. An investment fund may target a loan portfolio with

fixed characteristics such as maturity and portfolio weights on different types of loans.

In our simplified example, we consider risk management of the value at time horizon

t = 0.5 years of a portfolio in which there are two loans, both having maturity T = 5 years.

Simulation experiments are repeated weekly, i.e., with a period of ∆t = 1/52 years. In

the nth experiment, the quantity µ(Xn) being estimated is the conditional probability,

given the current asset values Xn, that the cost of defaults and anticipated defaults after t

years will exceed a threshold κ = 6. The random vector Yn that we simulate in the nth

experiment is the asset values St = [St,1, St,2] at time t, given the current asset values

S0 = [S0,1, S0,2] = Xn. For each company i = 1, 2, the marginal distribution of the asset

return St,i/S0,i is lognormal, determined by the drift ηi and volatility ςi of the geometric

Brownian motion for asset value. Specifically, η1 = 15%, η2 = 10%, ς1 = 30%, and

ς2 = 20%. The joint distribution of the asset returns St,1/S0,1 and St,2/S0,2 is specified by

a Student t copula with 3 degrees of freedom and correlation 0.5. The initial asset values

of the two companies are X0,1 = 100 and X0,2 = 90, and their debt is D1 = D2 = 85. The

loss if company i defaults is denoted ai, and a1 = 5 and a2 = 4. The discount rate is

r = 5%. The cost of a default or anticipated default by company i, as of time t, is

Li = `i(St,i) =





ai if St,i < Di

aie
−r(T−t)Φ

(
ln(St,i/Di)+(r−ς2i /2)(T−t)

ςi
√
T−t

)
if St,i ≥ Di

.

The first line of the formula represents the loss if company i defaults at time t. The second

line of the formula represents a risk-neutral conditional expectation, as of time t, of the

discounted loss at time T if company i defaults then. The portfolio’s loss is L1 + L2, the
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sum of losses over the debtor companies. The simulation output F (Yn) is 1 if L1 +L2 > κ,

and 0 otherwise. To clarify the model, Algorithm 4 shows how the standard Monte Carlo

simulation works.

Algorithm 4 Standard Monte Carlo Simulation for Credit Risk Management

1: for n = 1, 2, . . . , do

2: Sample state Xn from bivariate lognormal distribution with Student-t copula, based

on time increment ∆t, conditional on Xn−1

3: Set µ̂SMC
n,r (Xn)← 0

4: for j = 1, . . . , r do

5: Sample state Y
(j)
n from bivariate lognormal distribution with Student t copula,

based on time increment t, conditional on Xn

6: Set L
(j)
n ← `1(Y

(j)
n,1 ) + `2(Y

(j)
n,2 )

7: if L
(j)
n ≤ κ then

8: Set F
(
Y

(j)
n

)
← 1

9: else

10: Set F
(
Y

(j)
n

)
← 0

11: end if

12: Set µ̂SMC
xn (Xn)← µ̂SMC

xn (Xn) + F
(
Y

(j)
n

)

13: end for

14: Set µ̂SMC
n,r (Xn)← µ̂SMC

n,r (Xn)/r and output

15: end for

To investigate the effectiveness of green simulation, we performed a sequence of 52

simulation experiments repeated weekly (i.e., n = 1, 2, . . . , 52) with r = 1, 000 replications

each. Using the same sample path {Xn : n = 1, 2, . . . , 52} and the same simulation output
{
Y

(j)
n : n = 1, 2, . . . , 52, j = 1, 2, . . . , 100

}
, we evaluated the SMC and the LR estimators

at each period n = 1, 2, . . . , 52, in the current state Xn. For the purpose of accurately
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estimating the unconditional variances of the all these estimators, we performed such a

sequence of experiments 10,000 times. These 10,000 macro-replications of the sequence of

experiments have independent sample paths and simulation output. The estimated variance

of a current-state estimator µ̂(Xn) of µ(Xn) was
10,000∑
k=1

(µ̂(k)(X
(k)
n )−µ(X

(k)
n ))2/10, 000. These

estimated variances appear in a log-log plot in Figure 2.4, along with vertical error bars

representing their 95% approximate-normal confidence intervals.

Number of periods, n
100 101

10-6

10-5

10-4

10-3
period n MSE for the current state

SMC
ILR
EWLR
MLR

Figure 2.4. Log-log plot with error bars for estimated variances of the SMC

and LR estimators for current state estimators for credit risk example.

Figure 2.4 shows behavior for the MLR estimator similar to what was seen for the

previous example in Figure 2.3. The MLR estimator’s variance is less than the SMC

estimator’s variance, and it decreases as the number n of repeated experiments increases.
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By n = 52, it is over 17 times smaller than the SMC estimator’s variance. However, in

Figure 2.4, we see effects of the non-ergodic nature of the state process {Xn : n = 1, 2, . . .}.

Due to the positive drifts of the asset prices, debtor companies tend to become less likely

to default, so the SMC variance decreases slightly as the number of periods n increases,

instead of forming a straight line as in Figure 2.3. The dramatic effect is on the behavior of

the ILR and EWLR estimators. Their variances decrease over the first 6 experiments, but

after about 20 experiments, its variance increases again. Eventually, their variances exceed

the SMC estimator’s variance. Apparently, the difference between sampling distributions

for state X1 and X52 is likely to become so large that the use of likelihood ratios in the

ILR estimator (2.7) inflates variance. In such a situation, Proposition 2.2.2 states that the

WLR estimator is no worse than the SMC estimator. However, Proposition 2.2.2 does not

apply to the EWLR estimator, whose weights involve variance estimates. When a large

variance is underestimated, the associated weight is too large, leading to inflated variance.

The failure of the ILR and EWLR estimators and the success of the MLR estimator in

this example demonstrate the practical importance of the MLR estimator. The evident

disutility of some of the old simulation output in this example also raises a future research

question in green simulation: how to determine which old simulation output is worthwhile

to reuse in estimating the expected performance in the current state.

2.6. Conclusions and Future Research

In Section 2.4, we established theorems about the convergence of green simulation

estimators as the number of repeated experiments increases. We tested their practical

performance for small and moderate numbers of repeated experiments in two examples
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in Section 2.5. In the example of Section 2.5.1, the conditions of the theorems held. All

our LR estimators were successful in significantly reducing variance compared to standard

Monte Carlo, but MLR was the best. In the example of Section 2.5.2, the conditions of

the theorems did not hold. The MLR estimator was successful in significantly reducing

variance, whereas the ILR and EWLR estimators had problems. Consequently, among

the three LR estimators, we recommend the MLR estimator for doing green simulation

in the setting where simulation experiments are repeated with changes to parameters of

distributions of random variables generated in the simulation. The variance reduction

achieved by the LR estimators depends on several aspects of the particular example:

the stochastic process that describes changing parameters, the particular distributions

whose parameters change, and the number of repeated experiments. Under the conditions

of Theorem 2.4.1, as the number of repeated experiments increases, the LR estimators

eventually become greatly superior to standard Monte Carlo. Our experiment results

suggest that green simulation is extremely promising: in the only two examples that we

investigated, the MLR estimator achieved variance lower than standard Monte Carlo by

factors of 17 and 61 after a moderate number of repeated experiments.

Because green simulation is a new paradigm, there are several good directions for

future research. Here we call attention to a few that are most relevant to this chapter.

Some future research topics are relevant to the specific methods proposed in this

article. We found the MLR estimator to be satisfactory for our purposes. However,

further enhancements have been considered in the literature on importance sampling. For

example, Hesterberg (1995) investigated different ways to normalize weights, and Owen

and Zhou (2000) proposed to use likelihoods that appear in the MLR estimator as control
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variates. At the end of Section 2.5.2, the experiment results raised the question of which

old simulation output to reuse in green simulation. This question is worthy of investigation

in connection with the methods proposed in this article and also with other methods.

In general, there are two possible drawbacks to using all of the old simulation output.

One is that if the amount of old simulation output is extremely large, reusing more of it

generates diminishing returns in terms of improved estimator quality compared to the

computational cost of reusing it. To limit the computational cost of reuse, one could

employ hard thresholding: reusing only that subset of the old simulation output that is

deemed to be sufficiently relevant for estimating the expected performance for the target

state. The selection criterion could be, for example, the similarity of the sampling density

h(·;Xi) to the target density h(·;x) for LR estimators, or the distance from the previous

state Xi to the target state x. The other drawback to using all of the old simulation output

is that some of the old simulation output makes an estimator worse if it is reused than

if it is not reused, as seen in Section 2.5.2. To cope with this problem, one may employ

hard thresholding or soft thresholding, meaning assigning weight to simulation output in

proportion to its perceived relevance. For example, the WLR estimator can be viewed as a

soft thresholding method which gives smaller weights to outputs that are associated with

high variances. The theoretical and practical benefit of various green simulation methods

could be enhanced by good rules for selecting the subset of old simulation output to reuse.

We focused on showing that when old simulation output is reused well, it provides

greater accuracy when combined with a new simulation experiment than would be achieved

by the same new simulation alone. We analyzed how the accuracy of an answer to the

current question improves as the number of repeated experiments increases. However, it
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might be possible to answer the current question sufficiently accurately with no further

experiment. If a new simulation experiment was indeed required, one could design it in

light of the current question and the currently available information. This leads to future

research in experiment design not from a blank slate. Also, one might consider of possible

future questions when designing the current experiment, in light of knowledge of the state

process.

As a new paradigm, one may consider other green simulation methods to efficiently

reuse simulation output, which may have different features and merits than the LR

estimators studied in this chapter. The LR estimators are directly applicable only when

simulation experiments are repeated with changes to parameters of distributions of random

variables generated in the simulation, not when a changing parameter affects something

other than a distribution, e.g., numbers of servers or sizes of buffers in a simulation of a

queuing system. Even if these estimators are applicable, they would not be highly effective

if it is unlikely to visit a state that is sufficiently similar to a previously visited state,

where similarity is measured according to (2.5). Rubinstein and Shapiro (1993) address

the likelihood ratio method’s effectiveness and extensions of its applicability. More broadly

applicable green simulation methods can be designed based on metamodeling, which is

studied in the next chapter.
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CHAPTER 3

Green Simulation via Metamodeling

3.1. Introduction

The essence of green simulation is to improve the computational efficiency of a simula-

tion experiment by reusing the simulation output of repeated experiments; the LR method

studied in Chapter 2 is only one of many possible method for this new simulation analysis

and design paradigm. There are situations in which Assumptions (A.1)-(A.6) do not hold

and the LR method is inapplicable because the current state affects the simulation model

not only by affecting a parameter of a likelihood. It may also be that the LR method is

applicable, but the target-Xn-sample-Xn′ variances σ2
Xn

(Xn′) are large, making the LR

estimators ineffective.

In this chapter we consider a different green simulation method, which reuses simula-

tion output via metamodeling. Specifically, we propose two metamodeling-based green

estimators that showcase the generality of green simulation in two ways:

(1) Green simulation entails methods for reusing simulation outputs other than the LR

method, whose requirements such as Assumptions (A.1)–(A.6) are not limitations

of green simulation in general.

(2) Green simulation inspires reusing simulation output not only for repeated Monte

Carlo experiments but also for more complicated experiments such as the nested

simulation procedure proposed by Liu and Staum (2010).
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Simulation metamodeling is a popular technique that can provide robust and fast

decision support to enhance the effectiveness of the decision-making processes (see Barton

and Meckesheimer, 2006, for a review). A metamodel (model of a simulation model) aims

to provide an accurate and inexpensive approximation to the usually unknown input-output

relationship, or the response surface, dictated by the underlying simulation model. By

input-output relationship, we mean the relationship between an input state x and the

expected value of the simulation output µ(x), or expected output for short.

Figure 3.1 depicts a setting of repeated experiment and defines suitable notation and

terminology for the current chapter. It differs from Figure 1.1 in the amalgamation of

random vector Y and the simulation logic F into a general simulation replication µ̂j(x),

which denotes the jth replication of an experiment with input x. These replications are

then used to calculate the simulation output µ̂(x), which is an estimate of the expected

simulation output µ(x). Unlike the LR method, metamodeling allows the input x to affect

both the likelihood of the random vector and the parameters of the simulation logic, so

long as the simulation input-output relationship µ remains unchanged.

A usual application of metamodeling involves first running a simulation experiment

with different values of its inputs. Then, using the simulation output µ̂(x), which may

be the sample average of the replications, a metamodel µ̃(x) is fitted to approximate

the input-output relationship µ(x). Finally the fitted metamodel is used for estimation,

optimization, sensitivity analysis, or any other task that were originally asked of the

simulation experiment (see Chambers and Mount-Campbell, 2002; Kleijnen, 1998, for

example). There are choices of metamodeling techniques such as kriging (Kleijnen, 2009),

neural networks (Fonseca et al., 2003), and stochastic kriging (Ankenman et al., 2010),
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Figure 3.1. Setting of repeated simulation experiments for green simulation
via metamodeling.

each with its own features and limitations. As a first proposal for green simulation via

metamodeling, in this chapter we consider stochastic kriging for reusing simulation output.

Section 3.2 provides a review of stochastic kriging. While stochastic kriging is the only

metamodel considered in the following discussion, we acknowledge that there exist other

metamodels and techniques, such as updating ordinary least squares regression (Aiken

et al. (1991); Belsley et al. (2005)), that are suitable for sequential experiments.

In the setting of repeated experiments, we propose reusing the simulation output

from the previous and current experiments in a metamodel to enhance the computational

efficiency of the current experiment. In Section 3.3 we propose a green stochastic kriging

(GSK) estimator that reuses the simulation output of repeated Monte Carlo experiments.

We compare this GSK estimator to the LR estimators in the same two examples considered
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in Section 2.5. We find that, in the catastrophe bond pricing example, the GSK estimator

is usually worse than the LR estimators in terms of mean squared error (MSE), but it

successfully reduces the MSE as more simulation outputs are reused. While the GSK

estimator is unsuccessful in the credit risk example, it reveals limitations of the GSK

estimator and inspires future research directions. In Section 3.4 we reuse the simulation

output of a nested simulation procedure for estimating expected shortfall, which is proposed

by Liu and Staum (2010). Our numerical study shows that, after reusing the output of

15 experiments, the accuracy of our green nested simulation procedure improves upon its

baseline procedure by more than an order of magnitude.

3.2. Stochastic Kriging

In this section we review stochastic kriging based on Ankenman et al. (2010) and Liu

and Staum (2010). We use stochastic kriging to reuse the output of repeated Monte Carlo

experiment in Section 3.3 and develop a green nested simulation procedure based on the

latter in Section 3.4.

Stochastic kriging is an interpolation-based metamodeling technique. It is suitable

for simulation metamodeling because it takes account of both extrinsic uncertainty and

intrinsic uncertainty of simulation outputs.

In stochastic kriging, the expected simulation output µ(x), or the response surface, is

modeled as

(3.1) µ(x) = f(x)>β + M(x)
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where f(x) is a vector of known functions of x, β is a vector of unknown parameters of

compatible dimension, and M is a Gaussian random field (GRF) with mean zero. Treating

M as a GRF captures the uncertainty about the response surface before running simulations,

which is called the extrinsic uncertainty. In this chapter, we consider both the commonly

used second-order stationary GRF with Gaussian covariance function (Ankenman et al.,

2010) and the recently developed generalized integrated Brownian field (Salemi et al.,

2013). While selection of appropriate GRF in different applications is not the focus of

this thesis, in a catastrophe bond pricing example, we found that generalized integrated

Brownian field produces markedly superior results than that of the Gaussian covariance

function.

In addition to extrinsic uncertainty, the intrinsic uncertainty in stochastic kriging

captures the Monte Carlo noise in a stochastic simulation. The jth simulation replication

for given input x is modeled as

(3.2) µj(x) = f(x)>β + M(x) + εj(x)

where ε1(x), ε2(x), · · · are assumed to be normally distributed noise with mean zero and

variance V (x), and independent of each other and of M. The simulation output at input

xi after ni replications is given by µ̂(xi) = 1
ni

∑ni
j=1 µj(xi), which is the standard Monte

Carlo estimator of the expected simulation output, denoted by µ̂SMC
ni

(xi). The following

assumption supports the use of stochastic kriging metamodel.

(B1) Given any input state x, the simulation output µ̂(x) is normally distributed with

finite mean µ(x) and finite variance σ2
x(x).
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The reason to make Assumption (B1) is that Ankenman et al. (2010) showed that in this

case the stochastic kriging estimator has optimality properties.

Suppose that the simulation model has been run for k inputs x1, . . . , xk, referred to

as design points, and let µ̂k = [µ̂(x1), · · · , µ̂(xk)]
> represent the corresponding vector of

simulation outputs, with ni replications for input xi. We use stochastic kriging metamodel

to estimate the expected simulation output for a set of input values X1, . . . , XK , referred

to as the prediction points. Denote the vector of expected simulation outputs at the design

points and at the predictions by µk = [µ(x1), . . . , µ(xk)]
> and µK = [µ(X1), . . . , µ(XK)]>,

respectively. Based on the GRF, one can compute the k × k matrix Σkk = Cov[µk, µk]

of extrinsic covariances among µk, the k × K matrix ΣkK = (ΣKk)> := Cov[µk, µK ] of

extrinsic covariances µk and µK , and the K ×K matrix ΣKK = Cov[µK , µK ] of extrinsic

covariances among µK . Because experiments for different inputs are independent, the

intrinsic covariance matrix for µ̂k − µk is diagonal. It equals C := V N−1 where V and

N are diagonal matrices whose ith elements are receptively V (xi) and ni. For brevity

we write Σ := Σkk + C as the sum of intrinsic and extrinsic covariances for the design

points. Ankenman et al. (2010) show that the stochastic kriging estimator for µK follows

a multivariate normal distribution with mean

(3.3) µ̃K = [f(X1)>β, . . . , f(XK)>β]> + ΣKkΣ−1
(
µ̂k − [f(x1)>β, . . . , f(xk)

>β]>
)

and variance

(3.4) Var
[
µ̃K
]

= Var
[
µK |µ̂k

]
= ΣKK − ΣKkΣΣkK .
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The parameters in Equations (3.3) and (3.4) such as β and those characterizing the

GRF are unknown in practice. In practice, these unknown parameters are estimated

based on simulation outputs, as detailed in Ankenman et al. (2010) and Salemi et al.

(2013), a process known as fitting the metamodel. The output of the fitted stochastic

kriging metamodel at the prediction points is given by Equation (3.3) with the estimated

parameters plugged in. As discussed in Sections 3.3 and 3.5, the fitted metamodel is then

used for solving the original task asked of the simulation model.

3.3. Green Stochastic Kriging for Repeated Monte Carlo Experiments

In this section we apply green simulation via metamodeling to improve the compu-

tational efficiency upon a standard Monte Carlo procedure. In particular, we propose

reusing the simulation outputs of repeated Monte Carlo experiments in repeatedly fitting a

stochastic kriging metamodel. As more and more simulation outputs are reused, we expect

an improvement in the accuracy of the fitted metamodel, and as a result the efficiency

of the simulation experiment improves over time. We examine the practical performance

of the proposed GSK estimator in the catastrophe bond pricing example considered in

Section 2.5.1. Our results show that this GSK estimator succeeds in reducing mean squared

error (MSE) as more simulation output is reused.

Figure 3.2 illustrates a sequence of two repeated Monte Carlo experiments, whose

simulation outputs are reused in a metamodel to produce an accurate answer for the second

experiment. The data used for fitting the metamodel is shown in the dotted rectangle and

the usage of fitted metamodel is highlighted by a dotted line.
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Figure 3.2. Green simulation via metamodeling for repeated Monte Carlo experiments.

As discussed above, the same response surface µ is considered in the repeated experi-

ments with different values of inputs x1, x2, . . .. As a result, reusing simulation outputs in

a metamodel µ̃ can provide an accurate and efficient approximation of µ(x), even for an

input value x for which no simulation has been run before. In addition, the quality of the

metamodel is likely to improve over time, as more and more simulation output is reused.

We propose and investigate a green stochastic kriging estimator in repeated Monte Carlo

experiments in the following discussion.
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3.3.1. Green Stochastic Kriging Estimator

Consider the setting of repeated experiments with a fixed number r of replications. Let

µ̂n,r = [µ̂SMC
r (x1), · · · , µ̂SMC

r (xn)]> represent the vector of SMC estimators for the first

n experiments. In the current (nth) experiment, we propose fitting a stochastic kriging

metamodel based on µ̂n,r, and using the fitted model to estimate the current experiment’s

output. In particular, let x be the target state of the current experiment, based on

Equation (3.3), we propose the following green stochastic kriging (GSK) estimator for µ(x)

(3.5) µ̂GSKn,r (x) = f(x)>β̂ + Σ̂(x)Σ̂−1
(
µ̂n,r − [f(X1)>β̂, . . . , f(Xn)>β̂]>

)
.

where β̂ is the trend model parameter vector, Σ̂(x) is the 1×n vector of extrinsic covariances

between µ(x) and µ(X1), . . . , µ(Xn), and Σ̂ is n × n matrix of the sum of intrinsic and

extrinsic covariances among µ(X1), . . . , µ(Xn), all calculated based on fitted parameters

of the stochastic kriging metamodel.

In our experiments, we used a linear model, f(x) = x; we found that the results were

superior to using a constant model, f(x) = 1. In addition, we chose the GRF to be a

generalized integrated Brownian field (Salemi et al., 2013) and found that the results were

superior to the more common choice of GRF with a Gaussian correlation function.

For the implementation of the GSK estimator, we propose a green algorithm that

reuses previously fitted parameters to warm-start the fitting of parameters in the current

experiment. After the nth experiment, SK performs an optimization to find a vector of

parameters that make the GRF fit best to the inputs and outputs of the first n experiments.

We set the initial value in this optimization equal to the parameter vector chosen after the



70

(n − 1)st experiment. In our numerical experiments, we found that this warm-starting

significantly improved the speed and numerical stability of SK parameter-fitting.

3.3.2. Comparison between the GSK and LR estimators

In general, the GSK estimator is more broadly applicable than the LR estimators. Specifi-

cally, the GSK estimator does not require Assumptions (A.1)– (A.6), without which the LR

estimators may be infeasible or have poor practical performance. Some of the assumptions

are stringent or hard to verify in practical applications, and should be viewed as limitations

of the LR method. In contrast, Assumption (B1) for the GSK estimator can usually be

justified by the Central Limit Theorem when the number of replications is reasonable.

Even if this assumption fails, the GSK estimator may be suboptimal but can still be

implemented nevertheless. Moreover, unlike Assumption (A.1) for the LR estimator, the

input state x for the GSK estimator can affect the the simulation experiment through the

likelihood of the random vector, the parameters in the simulation logic, or both.

Consider a case where the GSK and the three LR estimators proposed in Chapter 2 are

all applicable, i.e., Assumptions (A.1)– (A.6) and (B1) hold. By substituting Equation (2.2)

into Equation (3.5), the GSK estimator can be seen as including a weighted sum of the

simulation outputs
{
F
(
Y

(j)
k

)
: k = 1, . . . , n; j = 1, . . . , r

}
. The LR estimators are also

weighted sums of the simulation outputs. However, the GSK weights behave quite

differently from the LR weights. The LR weights depend on the likelihoods associated with

the states X1, . . . , Xn, and they cannot be negative. Like weights in stochastic kriging in

general, the GSK weights depend primarily on the locations of the states X1, . . . , Xn, as

related by the extrinsic covariance function, and they can be negative.
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From an implementation standpoint, the GSK estimator requires far less storage

and is usually less computationally demanding than the LR estimators. As indicated in

Figure 3.2, in the nth experiment the GSK estimator requires storage for the simulation

input-output pairs
{(
xk, µ̂

SMC
r (xk)

)
: k = 1, . . . , n

}
and the previously fitted parameter

values for the warm-starting implementation. In contrast, all LR estimators require

storing all the replications
{(
Y

(j)
k , F

(
Y

(j)
k

))
: k = 1, . . . , n; j = 1, . . . , r

}
for computing

likelihoods and for reusing their values, not to mention storing density evaluations for green

implementations. Depending on the number of replications in each experiment, the storage

for the LR estimators may be substantially greater than that for the GSK estimator.

The two most demanding computations in the GSK estimator are the optimization in

the fitting process and the matrix inversion in the estimation step. These computations

are not excessive for reasonable number of unknown parameters and moderate number

of repeated experiments. In our experiments, in all 100 repeated experiments the GSK

estimator is much faster than all the LR estimators.

3.3.3. Numerical Experiments

In this section, we use two numerical examples to examine the practical performance of the

GSK estimator and compare it with the LR estimators. The two examples are identical

to those in Section 2.5: catastrophe bond pricing and credit risk assessment of a loan

portfolio. For brevity we do not repeat the example descriptions and focus only on the new

results of GSK estimators. In the catastrophe bond pricing example, the GSK estimator

succeeded in reducing mean squared error (MSE) as more simulation outputs are reused,

but its MSE was larger than those of the LR estimators. In the credit risk example the
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GSK estimator is was not successful: its MSE is larger than the SMC estimator. This

failure indicates certain limitations of the GSK estimator and inspires potential future

research.

To investigate the effectiveness of the GSK estimator, we performed similar experiments

as those in Section 2.5:

• For the catastrophe bond pricing example, we performed 10,000 macro replications

of sequence of n = 100 repeated experiments, each with r = 100 replications.

• For the credit risk assessment example, we performed 10,000 macro replications

of sequence of n = 52 repeated experiments, each with r = 1, 000 replications.

In each sequence of repeated experiments, we start evaluating the GSK estimator from n = 5

to avoid over-fitting in metamodeling. Similar to the experiments for the LR estimators, the

estimated MSE of a fixed-state estimator µ̂(x) of µ(x) was
10,000∑
k=1

(µ̂(k)(x)− µ(x))2/10, 000,

where µ̂(k)(x) is the value of the estimator on the kth macro-replication. Likewise,

the estimated MSE of a current-state estimator µ̂(Xn) of µ(Xn) was
10,000∑
k=1

(µ̂(k)(X
(k)
n ) −

µ(X
(k)
n ))2/10, 000. Due to using 10,000 macro-replications, the standard errors of these

estimated MSEs are less than 1% of the corresponding estimated MSE. Recall that MSE

equals variance for the SMC and LR estimators, which are unbiased.

Figures 3.3 and 3.4 are log-log plots of the estimated MSEs for the SMC, ILR, EWLR,

MLR, and GSK estimators for two fixed states and for the current state. They are

otherwise identical to Figures 2.2 and 2.3 except the dotted line, showing MSE for the

GSK estimators.

We see from both Figures 3.3 and 3.4 that the GSK MSE decreases as n increases. For

the center state, after 10 experiments the GSK MSE is comparable to the ILR variance.
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After 100 experiments, the GSK estimator’s variance is over 36 times smaller than the

SMC estimator’s variance for xmi and about 1.6 times smaller for xhi. Because xhi is

always outside the range of X1, . . . , Xn, SK must extrapolate when it estimates µ(xhi).

Extrapolation is challenging for SK, so it is a success for GSK that, for the extreme state,

its MSE becomes lower than the SMC variance after about 40 experiments, and continues

to decrease. While the MSE of the GSK estimator is larger than that of the LR estimators

in this example, the decreasing MSE of the GSK estimator nevertheless illustrates the

benefit of green simulation via metamodeling.
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Figure 3.3. Log-log plots of estimated MSEs of fixed-state SMC, LR, and
GSK estimators for CAT bond pricing example.

The catastrophe bond pricing example has provably amenable properties for the LR

methods, such as the ergodicity of the underlying input state process, which may partially

contribute to the decreasing GSK MSE too. In contrast, as discussed in Section 2.5.2 the

credit risk example has a non-ergodic state process and poses difficulties to some of the
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Figure 3.4. Log-log plots of estimated MSEs of current-state SMC, LR, and
GSK estimators for CAT bond pricing example.

LR estimators. The MSE of the GSK estimator and its 95% error bars in the credit risk

example is depicted in Figure 3.5. We see that the GSK estimator performed poorly in

this example. The reason for the poor performance of GSK in this example is as follows.

In this example, there is a strong correlation between the conditional expectation µ(Xn)

and conditional variance σ2(Xn) of the simulation output. Furthermore, σ2(Xn) can be

very small and difficult to estimate, so that the estimated conditional variance σ̂2(Xn)

can even be zero. In stochastic kriging, simulation output with lower estimated variance

receives higher weight; if lower estimated variance is correlated with lower estimated mean,

bias can result (Staum, 2009). This stochastic kriging bias is large in this example, causing

the poor performance of GSK.

The poor performance of GSK in this example reveals a drawback of green simulation via

metamodeling: the need for model validation. This suggests that, when developing methods
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Figure 3.5. Log-log plot with error bars for estimated variances of the SMC,
LR, and GSK estimators for current state estimators for credit risk example.

for green simulation via metamodeling, one cannot assume validity of the metamodel

simply because of the increasing amount of reused simulation outputs. When assessing

the effectiveness of the green metamodeling method, one should balance the improved

efficiency due to reusing simulation outputs and the efforts for model validation.

3.4. Green Nested Simulation of Expected Shortfall

In this section we develop a green nested simulation (GNS) procedure for a repeated

risk assessment problem. The work of Liu et al. (2010) and Broadie et al. (2011) both

use metamodels in nested simulation, but for isolated experiments. The GNS procedure

considers repeated experiments and reuses outputs of a nested simulation procedure,

which is more complicated than standard Monte Carlo experiment where the LR and
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GSK estimators were employed. In addition, unlike the LR and GSK estimators, which

reuse simulation outputs without changing the design of individual repeated experiments,

the GNS procedure has an innovative experiment design for reusing previous simulation

outputs. In short, the GNS procedure showcases the generality and the potential of green

simulation for different applications.

The GNS procedure is based on that of Liu and Staum (2010), which we refer to as the

baseline procedure. In particular, the baseline procedure solves the risk assessment problem

only once while the GNS procedure is suitable for the case where the risk assessment

experiment is repeated. As shown in Liu and Staum (2010), the baseline procedure can be

50 times more accurate, as measured by root mean squared error (RMSE), than a standard

nested simulation procedure with the same simulation budget. Our numerical study shows

that, after reusing the simulation output of 15 experiments, the GNS estimator is 10 times

more accurate than that of the baseline procedure, which does not reuse any simulation

output.

3.4.1. Motivating Example and Baseline Procedure

In this section we summarize the motivating example and the baseline procedure, based

on which our GNS procedure is developed.

The motivating example is an extension of that in Liu and Staum (2010). We consider

a portfolio risk assessment problem that is repeated multiple times, each with updated

input values. The portfolio in question is a portfolio of call options on the stocks Cisco

(CSCO) and of Sun Microsystems (JAVA) as shown in Table 3.1. In the table, the position

is expressed as the number of shares of stock the option owner is entitled to buy, where a



77

negative position means a short position in the call option. We refer to Liu et al. (2010)

for the source of data.

Underlying Stock Position Strike Maturity Price Interest Rate Implied Volatility
CSCO 200 $27.5 0.315 $1.65 4.82% 26.66%
CSCO -400 $30 0.315 $0.7 4.82% 25.64%
CSCO 200 $27.5 0.564 $2.5 5.01% 28.36%
CSCO -200 $30 0.564 $1.4 5.01% 26.91%
JAVA 900 $5 0.315 $0.435 4.82% 35.19%
JAVA 1200 $6 0.315 $0.125 4.82% 35.67%
JAVA -900 $5 0.564 $0.615 5.01% 36.42%
JAVA -500 $6 0.564 $0.26 5.01% 35.94%
Table 3.1. Portfolio of call options. The prices for CSCO and JAVA are
$27.15 and $5.01 in day 1.

The goal of each risk assessment experiment is to estimate the one-day expected

shortfall (ES) of the portfolio. A two-level nested simulation experiment is illustrated in

Figure 3.6: Suppose the experiment is launched at time n to facilitate later discussions on

xn

ÊS(xn)

xn,1 · · · xn,K

V̂ (xn,1) · · · V̂ (xn,K)

xn

ÊS(xn)

xn,1 · · · xn,K

Ṽ (xn,1) · · · Ṽ (xn,K)

xn,1 · · · xn,k

V̂ (xn,1) · · · V̂ (xn,k)
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Figure 3.6. Left panel: Standard two-level nested simulation for estimating
expected shortfall. Right panel: Application of metamodeling for the inner-
level model of a two-level nested simulation.
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repeated experiments. Given the current (nth) input xn, which encodes the current market

prices for CSCO and JAVA, the outer-level simulation generates K possible scenarios

xn,i for i = 1, · · · , K. Each scenario is a pair of next-day stock prices, which may be

based on historical stock return observations or Monte Carlo sampling from a stochastic

stock price model. In our experiments, the outer-level simulation randomly samples 1000

historical return observations for CSCO and JAVA. The inner-level simulation conditional

on scenario xn,i yields an estimate of the next-day portfolio value, V (xn,i), in that scenario.

The current portfolio value Vn is calculated by evaluating the options in the portfolio using

Black-Scholes option pricing formula. The one-day profit and loss (P&L) in scenario xn,i

is given by Vn − V (xn,i). Given the set of K equally probable scenarios xn,1, . . . , xn,K and

their respective P&L’s, the one-day expected shortfall is the average of the largest losses

in these scenarios. Specifically, suppose we are interested in a tail of probability α (e.g.

α = 95%), where K(1− α) is assumed to be an integer. Then one-day α-ES in the at the

current experiment is given by

(3.6) ESα(xn) =
1

K(1− α)

K(1−α)∑

i=1

[
Vn − V (xn,(i))

]

where V (xn,(i)) is the ith smallest portfolio value among those in the K scenarios. For

ease of discussions we refer to the scenarios with K(1− α) smallest portfolio values, i.e.,

xn,(i) for i = 1, . . . , K(1− α), as the tail scenarios and the other scenarios as the non-tail

scenarios.

Based on Liu and Staum (2010), the true model for the next-day portfolio value, i.e., the

inner-level simulation model, is the sum of its option’s values based on the Black-Scholes

option pricing formula. As pointed out by Liu and Staum (2010), inner-level simulation is
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not necessary in this example because the next-day’s portfolio value is a known function

of the scenario. For example, the contour plot of next-day’s value, as a function of the

stock prices for CSCO and JAVA, for the portfolio specified in Table 3.1 is depicted in

Figure 3.7. Also, 1,000 scenarios based on historical observations of one-day stock returns

are shown in Figure 3.7, where 10 tail scenarios (i.e., α = 99%) are specified as solid

stars. We study this simple example because we are able to evaluate the accuracy of the
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Figure 3.7. Contour plot of portfolio value as a function of scenario. Stars
and circles are scenarios generated from historical data.

ES estimators of different procedures. However, both the baseline procedure proposed

by Liu and Staum (2010) and our GNS procedure are designed to tackle problems where

inner-level simulation is necessary. Therefore, instead of using the closed-form formula

to evaluate options in the portfolio at each scenario, inner-level simulations (geometric

Brownian motions for stock prices) are used to estimate the option prices. Note that the
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Black-Scholes formula is nevertheless used to evaluate the current portfolio value Vn. This

is because in practice the current portfolio value is often observed from the market thus

no simulation is required.

We consider the case where the experiment above is performed repeatedly at times

n = 1, 2, . . ., each with observed market information xn at time n. The experiments are

repeated in the sense that, while the input values xn and the scenarios xn,i may be different,

the inner- and outer-level simulation models remain the same. Since we perform the same

experiment for the same portfolio (specified in Table 3.1), the portfolio value V (x) as

a function of the scenario x is the same for all experiments. So we can view V as the

unknown response surface and use metamodeling to approximate it. This viewpoint is

illustrated in the right panel of Figure 3.6. We refer to the scenarios xn,1, . . . , xn,k where

inner-level simulations are run to provide data for metamodeling as the design points. The

scenarios xn,1, . . . , xn,K whose portfolio value is approximated by the calibrated metamodel

are referred to as the prediction points. Let Ṽ (xn,i) be the metamodel output at prediction

point xn,i. The estimator for the α-ES in the baseline procedure and our GNS procedure

are both given by

(3.7) ÊSα(xn) =
1

K(1− α)

K(1−α)∑

i=1

[
Vn − Ṽ (xn,(i))

]

where Ṽ (xn,(i)) is the ith lowest value among the stochastic kriging predictions at the

predictions points.

We now motivate and summarize the baseline nested simulation procedure for the

above risk assessment problem based on Liu and Staum (2010), which solves risk as-

sessment problem only once and solves it efficiently. Given fixed simulation budget for
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each experiment, say C inner-level replications, standard practice for nested simulation

experiment is to allocate equal number of inner-level replications to all K scenarios,

which is not a desirable allocation scheme for estimating ES. We see from Equation (3.6)

that only the tail scenarios matter in estimating ES. Moreover, for common values of α

(e.g. α = 95% or 99%) there are many fewer tail scenarios than non-tail scenarios. So

the standard equal allocation to all scenarios is inefficient because the majority of the

simulation budget is wasted on non-tail scenarios. In this case, it is desirable to allocate

more simulation budget to the tail scenarios than to the non-tail scenarios, provided that

one can cheaply identify these scenarios.

The following summary of the baseline procedure is based on Liu et al. (2010), which

is designed to solve a one-day ES risk assessment problem only once and solve it efficiently.

The baseline procedure has three stages, each of which constructs or refines a stochastic

kriging metamodel. An outline of the baseline procedure is given in Figure 3.8. While we

only make remarks on some key components that are relevant to our development of the

GNS procedure, readers are referred to Liu and Staum (2010) for details of the baseline

procedure.

In the following discussion, we refer to figures that illustrate the performance of the

baseline procedure. These figures are based on one run of the baseline procedure to

estimate the 99%-ES of the scenarios randomly sampled from historical stock returns.

The baseline procedure uses a simulation budget C of 0.5 million replications, K = 1000

prediction points, a target of k1 = 50 Stage I design points and k2 = 30 Stage II design

points, n0 = 2000 replications per design point in Stages I and II, and sampling M = 300

times from the posterior distribution of portfolio value at the design points. This choice of
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Parameters: Simulation budget C, number of prediction points K, number of stage
1 design points k1, number of stage 2 design points k2, initial number of replications
per design n0, number of stage 2 posterior samples M . Observed market information
xn, current portfolio value Vn is calculated using Black-Scholes or observed from the
market.

Stage I:

I.1. Generate K prediction points by outer-level simulation (historical data or
Monte Carlo).

I.2. Generate roughly k1 Stage I design points, using Latin hypercube sampling,
within the convex hull of prediction points.

I.3. Simulate n0 replications for every Stage I design point. Create a stochastic
kriging metamodel based on the simulation outputs.

Stage II

II.1. Sample a vector of portfolio values for all prediction points from the
multivariate normal distribution with mean and variance suggested by the
Stage I metamodel. Based on M such samples, select at most k2 prediction
points that seem likeliest to be tail scenarios, and add them to the set of
design points.

II.2. Simulate n0 replications for every new Stage II design point. Create a
stochastic kriging metamodel based on the simulation outputs.

Stage III

III.1. Based on the total simulation budget C and the simulations performed in the
first two stages, allocate the remaining computational budget to all design
points. The allocation scheme is found by minimizing the posterior variance
of an ES estimator based on the likelihood of each design point being a tail
scenario.

III.2. Perform further simulation at the design points based on the above allocation
scheme. Create a stochastic kriging metamodel based on the simulation
outputs.

III.3. Compute the ES estimator in Equation (3.7) using the final metamodel.

Figure 3.8. Baseline procedure for efficient nested simulation of one-period ES.

parameters is consistent with those in Liu and Staum (2010) when the simulation budget

is small, in which case the benefit of green designs is apparent.
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Kleijnen and Van Beers (2004) argue that kriging should not be used for extrapolation.

So Stage I of the baseline procedure avoids extrapolation of stochastic kriging by selecting

design points that lie on the boundary of convex hull of the prediction points. In addition,

space-filling design points are also used to ensure an accurate metamodel in the interior

of the convex hull. Figure 3.9 shows the Stage I design points chosen for the baseline

procedure and the absolute error |Ṽ − V | of the Stage I metamodel. The error could

be substantial in many regions in the design space in Stage I, but we shall see the error

shrinks in the neighborhoods of the tail scenarios in later stages of the baseline procedure.
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Figure 3.9. Absolute error of the Stage I metamodel on one run of the baseline procedure.

Step II.1 tries to guess which scenarios belong to the tail. Based on the Stage I

stochastic kriging metamodel and in particular the posterior distribution of the portfolio

values, M random samples of portfolio values can be generated Ṽ (1), . . . , Ṽ (M). Let T
(j)
i be
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an indicator function that equals one if Ṽ
(j)
i is among the K(1− α) lowest components of

Ṽ (j). Based on the M samples, the likelihood of scenario i being a tail scenario is estimated

by q̂i :=
∑M

j=1 Ti(j)/M . Stage II design points are scenarios with highest non-zero estimated

likelihoods. It is suggested that k2 > K(1− α) to improve the chance of selecting the true

tail scenarios.

Figure 3.10 shows the new Stage II design points and the absolute error of Stage II

metamodel. Although we selected k2 = 30, on this particular run only 27 design points

were added in Stage II: the other scenarios’ values were never among the 10 lowest in

M = 300 samples. In this particular run, all 10 tail scenarios were selected as Stage

II design points, which is a success for the baseline procedure. Although the Stage II

metamodel worsens compared to Stage I metamodel in some regions, it has much smaller

absolute error in the region around potential tail scenarios.

Given likelihood estimates q̂i, a reasonable estimator of ES is

(3.8) w>(Y∗1K − YK), where wi =
q̂i

K(1− α)
for i = 1, . . . , K.

The allocation of remaining simulation budget to design points is determined by minimizing

the posterior variance of the ES estimator in Equation (3.8). Liu and Staum (2010) show

the following optimization problem solves a simplified version of the desired variance

minimization problem

(3.9) min
n1,...,nk

{
U>V N−1U

∣∣∣∣∣
k∑

i=1

ni = C, ni ≥ n0, ∀i = 1, . . . , k

}
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Figure 3.10. Absolute error of the Stage II metamodel on one run of the
baseline procedure.

where U := (Σkk + V /n0)
−1w and the covariance matrices come from the Stage II

metamodel. Problem (3.9) can be solved efficiently (Bitran and Hax (1981); Bretthauer

et al. (1999)).

Figure 3.11 shows the allocation of simulation budget of the baseline procedure.

The simulation budget is spent mostly on design points that are tail scenarios or in

their neighborhoods. Simulation efforts near tail scenarios can improve the inference by

stochastic kriging metamodel about the portfolio values in tail scenarios. Figure 3.12 shows

the absolute error of the Stage III metamodel. Due to significant simulation efforts devoted

to regions around tail scenarios, the error in estimation portfolio value of the tail scenario

decreases dramatically from Stage II to Stage III. The error is large in some regions that

are far from the tail scenarios, which does not affect the accuracy of estimating ES.
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Figure 3.11. Number of simulation replications allocated to each design
point on one run of the baseline procedure.

As shown in the numerical study in Liu and Staum (2010), the the baseline procedure

attains a root mean squared error (RMSE) “dozens of times smaller than a standard

simulation procedure.” In the next section, we develop a green nested simulation procedure

that can be significantly more accurate than the baseline procedure by reusing simulation

outputs.

3.5. Green Nested Simulation Procedure of Expected Shortfall

In this section we present a nested green simulation (GNS) procedure for the repeated

risk assessment problem. Note that the baseline procedure in Figure 3.8 always starts

“from scratch”, whereas our GNS procedure incorporates preexisting simulation outputs
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Figure 3.12. Absolute error of the Stage III metamodel on one run of the
baseline procedure.

from previous experiments. As the amount of preexisting simulation outputs increase, the

GNS procedure attains higher accuracy in estimating ES.

Given the success of the baseline procedure, when the risk assessment experiment is

run repeatedly with different inputs, it may be a reasonable approach to simply apply

the baseline procedure repeatedly, as outlined in Figure 3.13. By merely repeating the

baseline procedure, which starts from scratch every time, we expect the same accuracy

from its estimator regardless of how many times the experiment is repeated.

We propose a green nested simulation procedure outlined in Figure 3.14. Our procedure

is similar to the baseline procedure: a three-stage procedure with similar or even identical

steps in each stage. In particular, Figure 3.14 differs from Figure 3.13 only in Stage

I: reuses previous simulation outputs as the starting point of the three-stage baseline
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Parameters: C,K, k1, k2, n0,M
Initialization: Observe the current market information xn.
Stage I. Implement Stage I in Figure 3.8.
Stage II. Implement Stage II in Figure 3.8.
Stage III. Implement Stage III in Figure 3.8.

Figure 3.13. Repetition of baseline procedure to estimate ES in the nth experiment.

procedure. The simulation effort in Stage I of the baseline procedure is greatly reduced

and the remaining, unused budget will be allocated to Stage III where the accuracy of the

ES will be improved. In contrast, our green simulation procedure recycles all simulation

outputs available. As time progresses more experiments are repeated so the amount of

preexisting simulation outputs accumulates, we expect the accuracy of the resulting green

ES estimator to improve.

Our green procedure in Figure 3.14 differs from Figure 3.13 in only two steps: step I.2

has an extra augmentation design and an extra recycling step after the experiment is done,

both are ideas based on the general green simulation paradigm. The augmentation step

is designed in a way to fully utilize all preexisting outputs but still avoid extrapolation

of the resulting Stage I metamodeling. If without the recycling step, i.e., no preexisting

simulation output is available, the three main stages of our procedure are identical to

those in Figure 3.13. In the following discussion, we view the previous Figures 3.9- 3.12 as

the first of a sequence of repeated experiments, whose outputs are recycled and reused in

the future.

We argue that, in complicated experiments such as nested simulations, it is important

to have thoughtful designs for green simulation or reusing simulation outputs may not be

beneficial or effective. Figure 3.15 depicts a sequence of two repeated experiments: The
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Parameters: C,K, k1, k2, n0,M
Initialization: Observe the current market information xn.
Stage I.

I.1. Implement I.1. in Figure 3.8
I.2. If no previous simulation output exists, implement I.2. in Figure 3.8.

Otherwise, if there is simulation output at some previous design
points , consider the convex hull of both those design points and the current
prediction points. Add prediction points that lie on the boundary of this
convex hull as new Stage I design points.

I.3. Simulate n0 replication for every new Stage I design point. Augment the
preexisting stochastic kriging metamodel with the new simulation output.

Stage II. Implement Stage II in Figure 3.8.
Stage III. Implement Stage III in Figure 3.8.
Recycling Simulation Outputs: Recycle all Stage III design points as well as their
sample mean, variance, and number of replications. Also recycle the Stage III
stochastic kriging model. These are the preexisting simulation outputs to be reused by
future experiments.

Figure 3.14. Green simulation procedure to estimate ES for T periods..

heat map in Figure 3.15 shows the absolute error for the Stage III metamodel from the

first experiment, the solid boxed area is the convex hull of prediction points of the first

experiment, the arrow shows a possible change of the input values from the first to the

second experiment, and the circles and stars shows the prediction points for the second

experiment. We see that the Stage III metamodel from the first experiment has substantial

absolute error outside the convex hull of its prediction points, which is reasonable because

stochastic kriging metamodel is ineffective for extrapolation. In the second experiment, 9

out 10 tail scenarios lie outside the convex hull of the first experiment’s prediction points.

If one directly proceeded to Stage II with the previous Stage III metamodel, none of

these 9 tail scenarios would be identified as potential tail scenarios. Then Stage III will

mistakenly allocates significant simulation budget around non-tail scenarios. The resulting
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ES estimator will be worse than simply repeating the baseline procedure in the second

experiment.
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Figure 3.15. Absolute error of Stage III metamodel in the first experiment
and 1,000 prediction points in the second experiment. Convex hull of the
first experiment’s prediction points is shown in the diamond-shape region.
Change of input values is shown as a solid arrow.

The aforementioned weakness of the above simplistic approach suggests the importance

of augmenting Stage I in the baseline procedure rather than skipping it entirely. In

particular, based on the design principle of the baseline procedure, we propose an possible

augmentation in the GNS procedure, i.e., Step I.2 in Figure 3.14, so as to avoid extrapolation

of Stage I stochastic kriging metamodel. Specifically, in the second experiment, the Stage

I metamodel is an augmentation or refinement of the Stage III metamodel in the first

experiment: Consider the convex hull of previous design points and the current prediction
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points. Prediction points that lie on this convex hull are added as new Stage I design

points and used to augment the previous Stage III stochastic kriging metamodel. As a

result, no prediction point requires extrapolation of this augmented metamodel.

Figure 3.16 shows that the augmentation step successfully handles this “adversarial”

example. The absolute error |Ṽ − V | of the augmented Stage I metamodel is reasonable

for all prediction points in the second experiment. Comparing Figure 3.15 and Figure 3.16

we see drastic differences in the absolute error around the tail scenarios. More importantly,

this improvement is achieved by adding only 4 new Stage I design points, which, based

on our choice of design parameters, is only a fraction of that in the baseline procedure

(k1 = 50) and requires less than 2% of the per-experiment simulation budget.
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Figure 3.16. Absolute error of the augmented Stage I metamodel in the
second experiment.
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Figure 3.17 shows the new Stage II design points and the absolute error |Ṽ − V | of

Stage II metamodel in the second experiment. The improvement over the augmented Stage

I metamodel is not visually significant, which is a success of our augmentation design.

Moreover, all 10 tail scenarios are included as design points in the Stage II metamodel,

which is precisely the goal of Stage II.
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Figure 3.17. Absolute error of the Stage II metamodel on one run of the
green procedure in the second experiment.

The strength of our GNS procedure is well illustrated in Figure 3.18, which depicts the

allocation the second experiment’s simulation budget among all design points considered

in both experiments. First of all, similar to Stage III of the baseline procedure, most of the

simulation budget is allocated to design points that are tail scenarios or near tail scenarios.

Secondly, by reusing the first experiment’s simulation output the GNS augmentation step
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in Stage I uses far less simulation budget than the case without any previous simulation

output (e.g. 4 new design points in the augmentation step versus k1 = 50 new Stage I

design points in the baseline procedure). These savings allow for a larger budget to be

allocated in later stages of the GNS procedure. As discussed above, the augmented Stage

I metamodel has high quality and leads to correct identification of tail scenarios. In the

example that we have shown so far, some tail scenarios in the second experiment receives

more than three times as much simulation budget than the tail scenarios in the first

experiment. Such high concentration of simulation budget on tail scenarios significantly

increases the accuracy of the ES estimator, which is the goal of this GNS procedure. Last

but not least, Stage III in our GNS procedure has a flexible design that, if needed, can

allocate simulation budget to previous design points, if doing so can improve the accuracy

of the resulting ES estimator.

Figure 3.19 shows the absolute error |Ṽ − V | of Stage III metamodel in the second

experiment. We see a significant improvement of the Stage III metamodel over the Stage

II metamodel, especially in the neighborhoods of the tail scenarios. This improvement is a

result of the intelligent budget allocation scheme of the baseline procedure.

To examine the practical performance of our GNS procedure, we conduct a numerical

study for 15 repeated experiments on 100 independent sample paths of stock prices. In

particular, the stock prices in each sample path are modeled as geometric Brownian motions

whose drift and volatility parameters are estimated from historical return observations. In

each sample path, the experiments are repeated daily for 15 days. Each experiment has

1,000 design points, all are obtained on historical return observations. For each sequence of

repeated, we apply the repeated baseline procedure in Figure 3.13 and our GNS procedure



94

$24
$25

$26
$27

$28
$29

$30
$31

$32

$4.5

$5.0

$5.5

$6.0

0

1

2

3

4

5

6

x 10
4

 

Stock Price of CSCOStock Price of JAVA

 

In
ne

r−
le

lv
el

 S
im

ul
at

io
n 

R
ep

lic
at

io
ns

Design points that are tail scenarios
Other design points

Figure 3.18. Number of simulation replications allocated to all design points
considered in both the first and the second experiments.

in Figure 3.14. Design parameters of both procedures are the same and are consistent

with the discussions above. We acknowledge that it is a conceptual flaw to perform daily

risk assessment for the same portfolio of options, particularly with the same maturities in

each experiment. Despite this conceptual flaw, this example is simple enough for intuitive

graphical display yet sufficiently complicated to illustrate green simulation design in nested

simulation experiments.

Figure 3.20 shows the relative root mean squared error (RRMSE) of the repeated base-

line and the GNS procedures’ ES estimators, along with their 95% error bars. The repeated

baseline procedure’s RRMSE is shown by black dotted line and the GNS procedure’s

RRMSE is shown by green solid line. The RRMSEs for both procedures coincide in the

first experiment because there is no preexisting simulation output so the two procedures
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Figure 3.19. Absolute error of the Stage III metamodel on one run of the
green procedure in the second experiment.

are identical. As a benchmark, the RRMSE of the repeated baseline procedure remains at

a constant level. In contrast, the GNS procedure’s estimator has improving accuracy as

more simulation outputs are reused. In the 15th experiment, with the same simulation

budget, the GNS procedure’s is about 10 times more accurate than the baseline procedure.

More importantly, the GNS procedure seems to have much room for improving accuracy

beyond the 15th experiment.

3.6. Future Research Directions

Despite the success of our GNS procedure for its improving accuracy in repeated nested

simulation experiments, it has a few weaknesses that we will address in the following

discussions.
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3.6.1. Metamodeling with many design points

Fitting a metamodel with many design points can be a challenging task, especially for

stochastic kriging. Large numbers of design points usually leads to excessive computations

and numerical difficulties. If some of the design points are close to each other, then the

fitting and prediction may encounter numerical difficulty. In our GNS procedure, the

number of design points is likely to increase from one experiment to the next. Moreover,

for the motivating example that we consider, the design points are likely to be densely

located in regions where the portfolio value is low (near tail scenarios). As the preexisting

simulation output accumulates as more experiments are done, we will eventually be fitting
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a stochastic kriging metamodel with many design points and using it for predictions.

Consequently, in our numerical study, the GNS procedure in the 15th experiment can be

over one hundred times slower than the repeated baseline procedure and this gap is likely

to widen as more experiments are repeated.

In future research we may address this challenge using some of the following methods:

(1) Reuse simulation output selectively. When abundant simulation output is available

from past experiments, it is not always a good idea to reuse all of it in the current

experiment. The credit risk problem studied in Section 2.5.2 is one such example.

In these cases it may be beneficial to discard the irrelevant or even misleading

simulation output and only reuse the output that is most informative for the

current experiment. By reusing simulation output selectively we can limit the

number of design points when creating the stochastic kriging metamodels in the

GNS procedure. Selecting the available simulation output in a meaningful way is

an important research question that we will attempt to tackle in the future.

(2) Consider other metamodeling techniques. While we considered stochastic kriging

exclusively in the GNS procedure, one can design similar nested simulation

procedure that uses other metamodeling techniques such as regression, splines,

and neural networks, among others. Each metamodeling technique has its own

features and drawbacks. Neural networks, for example, is a popular technique in

many big-data applications and can handle many design points.

(3) Select representative design points. When there are many design points that are

clustered in different regions, it may be a good ideas to use a representative design

point for each cluster when fitting a metamodel. Well-chosen representative design
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points may contain almost as much information as all design points but lead to a

much less computationally demanding metamodel.

3.6.2. Green simulation designs with fixed accuracy

The GNS procedure as well as the previous LR and GSK estimators are all fixed-budget

simulation designs. There is also great interest in the literature, such as Tongarlak et al.

(2011) and Chen and Li (2014), for fixed-accuracy simulation designs. To be specific, if the

decision maker has a prespecified error tolerance and abundant computational resources

then a fixed-accuracy simulation design is appropriate.

Green simulation as new paradigm is applicable to both fixed-budget and fix-accuracy

designs. For example, we can easily modify our GNS procedure from a fix-budget to a

fixed-accuracy procedure by changing the budget allocation scheme in Stage III. Specifically,

instead of solving optimization problem (3.9), we can solve

(3.10) min
n1,...,nk

{
k∑

i=1

ni

∣∣∣∣∣U
>V N−1U ≤ v∗, ni ≥ n0,∀i = 1, . . . , k

}

where v∗ is a given constant that relates to the maximum allowable posterior variance

of the ES estimator. The constraint U>V N−1U ≤ v∗ may seem complicated at the

first glance, but its left hand side can be written as
∑k

i=1 U
2
i Vi/ni where U and V are

constants. There may be efficient algorithm for solving (3.10) by examining its optimality

conditions. Based on the encouraging results from the GNS procedure, we envision that

this fixed-accuracy procedure can also be benefited from reusing preexisting simulation

outputs.
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CHAPTER 4

Green Simulation via Database Monte Carlo

4.1. Introduction

In this chapter, we develop and analyze a new green simulation procedure that reuses

simulation outputs using Database Monte Carlo (Borogovac and Vakili, 2008). Similar to

the green LR estimators studied in Chapter 2, we consider the convergence properties of

the proposed green Database Monte Carlo (DBMC) estimator.

When simulation is used as a decision support tool for routine tasks, its usage often

follows a cyclic pattern: Firstly, the current state of the system, such as market price of a

stock, is observed and used as the input for the simulation model. Based on the observed

input, a time-constrained simulation experiment is run so that an answer is delivered within

the given time limit, e.g. half a working day. When an experiment is repeated routinely,

e.g, the decision support cycle finishes when an answer is delivered for the current task, the

computational resource remains idle until the next experiment begins. We propose adding

a simulation investment step in the above cycle so that such idle resource can be invested

to improve the computational efficiency of future experiments. The split of available

computations into simulation experiment and simulation investment fits the framework

of Database Monte Carlo (Borogovac and Vakili, 2008), which constructs databases of

simulation outputs and then use them as quasi-control variates to improve the accuracy

of subsequent experiments. A fundamental building block for our green Database Monte
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Carlo (GreenDB) procedure is the recent method of Database Monte Carlo for simulation

on demand by Rosenbaum and Staum (2015), which views the database construction as

one-time computational investment that benefits all future experiments. Particularly, after

the constructing a “good” database, it can be used to provide good quasi-control variates

for multiple experiments to improve their speed and accuracy. In the DBMC for simulation

on demand framework, the database remains unchanged after initial construction. So the

efficiency of their method depends heavily on the quality of the database. In contrast, our

GreenDB procedure repeatedly make simulation investments into database to enhance

it over time. Consequently, in addition to improved efficiency due to DBMC, the our

GreenDB procedure’s efficiency improves over time, as more experiments are repeated and

more simulation investment is made.

As alluded above, the efficiency of our GreenDB depends on how well we invest the

idle resources. A simulation budget allocation problem is considered to maximize the

variance reduction of our GreenDB estimator. This problem is similar to those studied in

security pricing by simulating stochastic differential equations, such as Duffie and Glynn

(1995) and Boyle et al. (1997). The solution leads to a dynamic allocation policy of the

idle computational resource. The optimal objective value also suggests a possible rate of

convergence of our GreenDB estimator. Results in our numerical study show that the

GreenDB estimator has improving accuracy as more experiments are repeated and more

simulation investment is made, despite a fixed time constraint and fixed investment in

each experiment.
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4.2. Mathematical Framework

This section specifies a mathematical framework for developing a green DBMCsimula-

tion procedure in the remainder of this chapter. We first describe simulation output as a

function of inputs using the concept of random fields then present a setting of repeated

experiments where the same simulation model is run repeatedly with changing inputs.

Let X ⊆ Rs be the set of all possible inputs, or the input space, for a simulation model

of interest. Given an input x ∈ X , or a point in the input space, a simulation experiment

is run and the simulation output is regarded as a random variable: denote it F (x). In this

article we consider the simulation output F as a random field (Staum, 2009). Specifically,

the simulation output is a measurable function F : X × Ω 7→ R, where Ω is a probability

space with probability measure P on it. The mean function µ : X 7→ R, which is also

known as the response surface, is defined by

(4.1) µ(x) = E[F (x)] =

∫

Ω

F (x, ω)dP(ω), ∀x ∈ X .

The covariance function σ : X × X 7→ R and the correlation function ρ : X × X 7→ [−1, 1]

of the random field are given by

(4.2) σ(x, x′) :=

∫

Ω

F (x, ω)F (x′, ω)dP− µ(x)µ(x′)

and

(4.3) ρ(x, x′) :=
σ(x, x′)√
σ2
xσ

2
x′

, where σ2
x = σ(x, x).
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As is standard in analyzing Monte Carlo simulations, we assume that σ2
x < ∞ for all

x ∈ X so that all simulation outputs have finite variance.

Given a point x ∈ X , the goal is to estimate µ(x) by a simulation experiment. In some

cases, such as rare event simulations, one may estimate µ(x) by running the simulation

model at a different point x′. To avoid ambiguity, we refer to the point at which µ is

estimated, say x, as the prediction point and the point at which the simulation model

is run as the design point, whether or not these points coincide. A useful feature of

the random field description is the probabilistic dependence between the simulation

outputs F (x) and F (x′) when the simulation is run at different points x, x′ ∈ X . Such

dependence represents the effect of common random numbers in simulating the same

model at different points. Control variates is a popular variance reduction technique

that improves simulation efficiency by leveraging dependency between random variables.

Database Monte Carlo (Borogovac and Vakili, 2008) extends control variates to more

general settings when the control variate’s mean is replaced by its estimate. Database

Monte Carlo for Simulation on Demand (Rosenbaum and Staum, 2015) articulates the

order of implementation of Database Monte Carlo so that an accurate answer can be

delivered quickly. We provide a brief review of these methods in Section 4.3.

We now present a setting of repeated experiment where the same simulation model is

run with different prediction points at different times. Suppose that one experiment is run

at time n, n = 1, 2, · · · ; the goal of this nth experiment is to estimate µ(Xn), where Xn

be the nth prediction point. We treat {Xn : n = 1, 2, · · · } as a discrete time stochastic

process taking values in the input space X . We assume that Xn is observable at time n,
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but was not observable earlier. Moreover, the prediction points can only be observed but

the user of the simulation model cannot control their dynamics.

We now introduce terminologies and notations for databases in repeated experiment

setting. As alluded before, in the nth experiment the simulation model may be run at

a design point that is different from the nth prediction point. In particular we may run

simulation at a design point x̃ and store the outputs in one experiment then reuse these

outputs to improve efficiency of future experiments. The storage of such outputs is called

the database and the point x̃ is called the database point ; for convenience we refer to a

database by its database point. Let {X̃k : k = 1, 2, · · · } be a database sequence taking

values in the input space X . The input space may be continuous or discrete, but in this

article we assume that it is bounded so that the dispersion of given point set is well-defined.

This sequence may be deterministic (e.g., low discrepancy sequence) or stochastic (e.g.,

a discrete time stochastic process). In later discussions it is desirable to run simulation

at the same database at different times so we shall describe how the database sequence

is visited. Let s(k) : N 7→ N be a visit schedule such that X̃s(k) is the database point at

which the kth experiment is run. The visit schedule may be a deterministic function of

time k ∈ N (e.g., s(k) = b
√
kc) or be chosen at each time k according to some policy

as in Section 4.3.2. For simplicity we assume that s(1) = 1 thus the first experiment

is run at the first database in the sequence and that s(n) ≤ max{s(k) : k < n} + 1 so

the visit schedule does not “skip” any database in the sequence X̃n; it can “revisit” any

database that has been visited before. The database sequence {X̃k : k = 1, 2, · · · } and the

design schedule s(k) are both modeling choices by the user. Consequently, in contrast to

prediction points, the user can choose the database point X̃s(n) for the nth experiment.
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For example if one chooses X̃n = Xn and s(n) = 1 for n = 1, 2, · · · then all experiments

are run at the first prediction point X1. One contribution in this chapter is providing

insights to choosing good database sequence {X̃k} and visit schedule s(k) that improves

computation efficiency for repeated experiments.

4.3. Green Simulation via Database Monte Carlo

In this section we develop a green simulation procedure that reuses simulation outputs

to improve computational efficiency in repeated experiments. In each experiment, the

proposed procedure not only delivers accurate answers quickly but also invests simulation

efforts to improve the efficiency of future experiments. As more simulation investments

are made, the answer delivered can be arbitrarily accurate.

We first review Database Monte Carlo for Simulation on Demand and related methods.

Given a prediction point x ∈ X , the Standard Monte Carlo (SMC) estimator for µ(x) is

given by

(4.4) µ̂SMC
r (x) =

1

r

r∑

j=1

F (j)(x)

where the outputs F (1)(x), · · · , F (r)(x) are r independent replications of the simulation

model run at point x. The SMC estimator is often used in practice for its simplicity

and theoretical justifications such as the Law of Large Numbers and the Central Limit

Theorem. The SMC estimator has variance σ2
x/r but may be reduced by various variance

reduction techniques that take advantages of certain properties of the simulation model.

For example, control variate (CV) is a variance reduction technique that takes advantages

of correlation between random variables. For simplicity of exposition we consider only a
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single CV. Suppose the F (x′) is chosen as a CV for F (x), a classical CV estimator of µ(x)

has the form

(4.5) µ̂CVr (x;x′) = µ̂SMC
r (x)− β

[
µ̂SMC
r (x′)− µ(x′)

]

where:

• The simulation is run for r independent replications: those in µ̂SMC
r (x) are

dependent with those µ̂SMC
r (x′) since they are simulated using common random

numbers.

• The CV coefficient β is usually chosen to minimize the variance of µ̂CVr (x;x′).

The optimal coefficient is β∗ = Cov[F (x), F (x′)]/Var[F (x′)], provided that the

required population quantities are available. The resulting estimator has zero

bias and minimized variance (1 − (ρ(x, x′))2)σ2
x/r, i.e., variance reduction of

1/(1− (ρ(x, x′))2).

The classical CV (4.5) assumes that the CV expectation µ(x′) is known, which may not be

true in all applications. When µ(x′) is not known, studies show that F (x′) can still be used

as a quasi-CV (Emsermann and Simon, 2002) or CV with estimated mean (Pasupathy

et al., 2012) by replacing µ(x′) with its estimate. Database Monte Carlo with control

variate (DBCV) is one such method that replaces µ(x′) with µ̂SMC
R (x′) for some large R.

Mathematically, a DBCV estimator of µ(x) has the form

(4.6) µ̂DBCVr,R (x;x′) = µ̂SMC
r (x)− β

[
µ̂SMC
r (x′)− µ̂SMC

R (x′)
]
.
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We see that R independent replications of F (x′) are required for estimating µ̂SMC
R (x′)

in (4.6). These R replications constitute a database at x′. DBCV is effective when R� r,

which is assumed in subsequent discussions. In practice the database stores the SMC

estimate µ̂SMC
R (x′) instead of the individual replications, nevertheless we say that the

database has size R. Due to the use of quasi-CV, the variance-minimizing coefficient β

and the resulting minimum variance are different from those of classical CV. Readers are

encouraged to find details in Emsermann and Simon (2002), Borogovac and Vakili (2008),

and Pasupathy et al. (2012), among others. In this chapter we consider an approximate

variance of µ̂DBCVr (x;x′) for simplicity in later analysis. Let β = β(x;x′) be the optimal

CV coefficient when F (x′) is used as a classical CV for F (x), then

Var[µ̂DBCVr,R (x;x′)] = Var[µ̂CVr (x;x′)] + β2Var[µ̂SMC
R (x′)](4.7a)

=
(1− (ρ(x, x′))2)

r
σ2
x +

β2

R
σ2
x′(4.7b)

≈
[

1

R
+

(1− (ρ(x, x′))2)

r

]
σ2
x(4.7c)

where the approximation follows if F (x) and F (x′) are similar so that σ2
x′ ≈ σ2

x and β ≈ 1.

Despite being an approximation,(4.7) showcases a main feature of the minimum variance

of DBCV estimator (see Equation (6) in Rosenbaum and Staum (2015)): it converges to

zero as the database’s size R grows to infinity and the magnitude of the correlation ρ(x, x′)

converges to 1.

At the first glance, the DBCV estimator (4.6) may be computationally expensive

because it requires running R + 2r replications of the simulation model. Database Monte

Carlo for Simulation on Demand (DBSD) is an attractive procedure that uses the DBCV
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estimator to deliver accurate answers quickly by separating the construction of the database

from the estimation of expected simulation output. A basic version of DBSD can be

summarized in the following two steps:

(1) Before the prediction point x is observed, choose a database point x′ and run

r +R replications at x′(construction of a database).

(2) After the prediction point x is observed, run r replications at x and deliver

µ̂DBMC(x) in (4.6) as an estimate for µ(x) (estimation of µ(x)).

In the procedure above, it takes only r replications between observing x and delivering an

estimate of µ(x). Database construction is done prior to observing the prediction point

and hence is not considered part of the estimation task. Moreover, database construction

can potentially improve the efficiency of many future experiments and hence is one form

of simulation investment. The computation patterns in the DBSD procedure is applicable

in many practical settings: usually there is a time limit (e.g., during working hours)

between observing the input of a simulation and delivering an answer via simulation, but

computational resources may be available after an answer is delivered (e.g., after working

hours), when one can made simulation investments that can benefit future experiments.

4.3.1. Basic Green Database Monte Carlo with Control Variate

In the original proposal of DBSD, database construction is a one-time investment, i.e.,

the locations and sizes of databases remain unchanged once constructed. Consequently

the DBCV estimator is conditionally biased given constructed databases and the variance

reduction it provides is limited by the quality of the available databases. In the context

of repeated experiment, we propose a green simulation procedure in which simulation
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investments are made repeatedly: new databases maybe constructed and existing databases

may grow in size over time. At each time n, we suppose that the simulation model can

run a total of r +R replications: an answer must be delivered after r replications while

the remaining R more replications, the simulation investment, can be run before the

next experiment begins. For clarity, we consider two types of simulation investment:

augmentation, which adds more replications to an existing database and initiation, which

runs simulation at a new database point and constructs a new database. We propose the

following Green Database Monte Carlo procedure for the nth experiment:

(1) Suppose at the beginning of time n there are kn databases {X̃1, · · · X̃kn} with

sizes R1 + r, · · · , Rkn + r; all these databases have r replications that were run

using common random numbers.

(2) After prediction point Xn is revealed, choose one database, say X̃k̃n
, as a quasi-CV.

(3) Run r replications at Xn using the same common random numbers as those in

the databases.

(4) Deliver

(4.8) µ̂GreenDBr

(
Xn; X̃k̃n

)
= µ̂DBCVr,Rk∗n

(
Xn; X̃k̃n

)

as an estimate of µ(Xn), where the parameter βn is chosen to minimize the

variance of µ̂GreenDBr

(
Xn; X̃k̃n

)
. Estimation of βn is discussed in Section 4.3.2.

(5) After delivering the answer, run R replications at X̃s(n) based on the database

sequence {X̃n} and visit schedule s(n). This maybe an augmentation to an

existing database if s(n) ∈ {1, · · · , kn} or initiation of a new database at X̃s(n)

otherwise.
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Similar to DBSD, GreenDB delivers accurate answers quickly after a prediction point is

revealed. In contrast to the one-time investment in DBSD, GreenDB makes simulation

investment repeatedly in repeated experiments. As more investments are made, either

existing databases grow in size or more databases are constructed, or both. As a result,

GreenDB is superior than DBSD in repeated experiments.

4.3.2. Designing Practical Green Database Monte Carlo Procedures

Under some conditions, a well-designed GreenDB procedure can produce converging

estimators similar to those in Feng and Staum (2015), which can achieve arbitrary accuracy

as more and more simulation investment is made. We will supply more details to the

basic GreenDB procedure and consider designing an efficient procedure. In particular, we

will specify: Construction of the initial database; selection of quasi-CV among existing

databases; and estimation of the CV coefficient β̂. Lastly we consider a simulation

investment allocation problem whose solution provides useful insights in choosing database

sequence {X̃k} and visit schedule s(k).

For the first database, consider the first experiment with prediction point X1, when

there is no preexisting database. Since an answer is required within r replications of

the simulation model, without any other variance technique (e.g. importance sampling)

one should simply run r replications at X1 and estimate µ(X1) by µ̂SMC
r (X1). Given a

database sequence {X̃k} and visit schedule s(k), the remaining R replications of simulation

investment should be run at X̃s(1) = X̃1. When a database is first initiated, its size

is R. Note that r of these R replications should serve as common random numbers

for estimations at future prediction points. The database initiated at time 1 may be a
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quasi-CV for future experiments. However, as discussed later, a new database may not

always be candidate as quasi-CV immediately after initiation.

While selection of quasi-CV among existing databases and estimation of β̂ are not

our focuses, we review some theoretical criteria and practical suggestions for these tasks.

Theoretically, in classical CV one should select a database X̃k̃n
such that |ρ(Xn, X̃k̃n

)| is

maximized to achieve maximum variance reduction. However, in general the correlation

function ρ(x, x′) for a given simulation model may be prohibitively complicated, if possible

at all, to optimize. In many practical applications, outputs of the same simulation model

are highly correlated when run at similar inputs. Then, as a common practical alternative,

one may choose the “nearest neighbor” database of the prediction point

(4.9) X̃k̃n
= arg min

X̃k∈{X̃1,··· ,X̃kn}
{‖X̃k −Xn‖2}.

For example, the above rule is used in the numerical examples of Rosenbaum and Staum

(2015).

Estimation of β̂ in DBCV has been studied by Pasupathy et al. (2012) that accounts

for the use of estimated mean and Avramidis and Wilson (1993) that eliminates the bias,

among others. We did not consider applying those techniques to GreenDB in this chapter,

it remains for future research. As suggested by Rosenbaum and Staum (2015), we estimate

β̂ by linear regression of F (1)(Xn), · · · , F (r)(Xn) on F (1)(X̃k̃n
), · · · , F (r)(X̃k̃n

).

The database sequence {X̃k} and the visit schedule s(k) are the two key factors in design-

ing an efficient GreenDB procedure. In particular, we are interested in developing GreenDB

estimator such that Var[µ̂GreenDBr

(
Xn; X̃k̃n

)
] → 0 as n → ∞. We will consider some

requirements for {X̃k} and s(k) so that the convergence is fast. Assume that ρ(x, x′)→ 1
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as ‖x− x′‖2 → 0 for all x, x′ ∈ X . Based on (4.7) we have Var
[
µ̂GreenDBr

(
Xn; X̃k̃n

)]
→ 0

as n→∞ if

(c1) ‖Xn − X̃k̃n
‖2 → 0 as n→∞, and

(c2) Rk∗n →∞ as n→∞.

Consider the bounded metric space1 (X , ‖ · ‖2), the nth dispersion (Niederreiter, 1992,

Definition 6.2) of the database sequence {X̃k} by

dn := sup
x∈X

min
1≤k≤n

‖x− X̃k‖2.

Then we have ‖Xn − X̃k̃n
‖2 ≤ dn for all n = 1, 2, · · · . Therefore a sufficient condition for

(c1) is dn → 0 as n→∞, which implies that the database sequence is space-filling and

more and more databases are initiated as time progresses. Based on studies of Quasi-Monte

Carlo (QMC), we propose using low-discrepancy sequence in X for {X̃n : n = 1, 2, · · · }.

Since a fixed simulation investment of R replications is made to database construction

in each experiment. The condition (c2) requires that s(k) revisits all databases infinitely

many times as time progresses. We now solve a simulation investment allocation problem

whose optimal solution leads to a visit schedule that satisfies the requirements above

and fast convergence of the resulting GreenDB estimator. Let Cn = nR be the total

simulation investment budget for database construction by the end of the nth experiment.

For simplicity, we assume that the decision variables kn and Rn are continuous and that

kn ·Rn = Cn. Effectively, we are assuming that all databases have the same size. In future

research, we may investigate more sophisticated resource allocation schemes such that

databases have different sizes in different regions of the input space. The goal is to find an

1The input space X is assumed to be bounded.
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optimal allocation so as to maximize variance reduction in (4.7). Then a visit schedule

s(k) can be formulated using a dynamic policy that approximately matches the optimal

solution k∗n and R∗n at each time n.

Assume that 1 − (ρ(x, x′))2 ≤ c1‖x − x′‖α2 for some c1, α ∈ R+ for all x, x′ ∈ X . It

follows from Niederreiter (1992) that the dispersion of some s-dimensional low-discrepancy

sequence (Solbol and Halton sequences, for example) is bounded by dn ≤ c2k
−1/s
n for some

c2 ∈ R+. Then we have 1− (ρ(Xn, X̃k∗n))2 ≤ c1‖x− x′‖α2 ≤ dn ≤ cN
−α/s
n where c = c1 · cα2 .

Consequently the simulation investment allocation problem is given by

(4.10)
min

kn,Rn∈R+

1
Rn

+ c
r
k
−α/s
n

s.t. Rnkn = Cn

Substituting Rn = Cn/kn = (nR)/kn into the objective then we may minimize the scaler-

valued function f(kn) = kn
(nR)

+ c
r
k
−α/s
n . Clearly f is a convex function therefore its

minimizer is given by

(4.11)
df(kn)

dkn
= 0⇒ k∗n = (nR)

s
α+s

(c · α
r · s

) s
α+s

, R∗n = (nR)
α
α+s

( r · s
c · α

) s
α+s

.

The optimal solution (4.11) shows that:

(1) For any α, c1, c2, s > 0 and for any r, R > 0, k∗n → ∞ and R∗n → ∞ as

n → ∞. In other words, as more simulations are done and more simulation

investments are made, both the number and the size of databases increase indefi-

nitely. As shown in the previous discussions, these are sufficient conditions for

Var[µ̂GreenDBr

(
Xn; X̃k̃n

)
]→ 0 as n→∞. In other words, the GreenDB estimator

can be arbitrarily accurate as more and more simulation investment is made.
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(2) For large n and fixed r, R, c1, and c2, the k∗n decreases with α and R∗n increases

with α. This suggest that for larger α one should construct less databases that are

sparser but with larger size. This is because for larger α the prediction point and

the chosen quasi-CV may be further apart but still achieve a particular correlation

level, which is bounded by the dispersion of the database sequence in the allocation

problem. Note that α measures the correlation of simulation outputs associated

with two similar inputs: the larger the α the higher the correlation.

(3) The optimal objective, and hence the variance reduction, is of order O(n−α/(α+s)).

This suggests that, if sup{σ2
x : x ∈ X} < ∞, then the variance of our green

estimator converges at rate O(n−α/(α+s)).

Exact implementation of optimal solution (4.11) suggests that, in the (n + 1)th

repeated experiment, invest (R∗n+1 − Rn∗) replications in the k∗n existing databases and

R∗n+1 replications in k∗n+1 − k∗n new databases, which raises practical difficulties: The

optimal solution may not be integral; More importantly investing in multiple databases

in each experiment may not be desirable. Instead, we suggest the following dynamic

policy for the visit schedule Let {X̃1, · · · , X̃kn} be the existing databases time n and let

R1 + r, · · · , Rkn + r be their sizes. The design schedule s(n) at time n satisfies:

(1) If kn < k∗n where k∗n is the optimal solution in (4.11), then s(n) = kn + 1 so a new

database is initiated with size R.

(2) Otherwise, if kn ≥ k∗n, then s(n) = min{k : Rk = min{Rk′ : k′ = 1, · · · , kn}} so

one existing database with minimum size is augmented (break ties in order of

initiations).
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According to the policy, simulation investment is made to one database in each experiment,

which simplifies the implementation of the GreenDB procedure. By adding investment

into the database with the minimum size, the policy aims to balance the size in all existing

database. One drawback of the policy is that any newly initiated database has size R

and only increments by at most R in each subsequent experiment. When n is large, new

database may be significantly smaller than other existing databases, which results in

much worse variance reduction. As a remedy, we suggest that a database can only be a

candidate for quasi-CV if its size is no more than R less than that of the first database.

This additional safeguard ensures improving quality of the quasi-CV and fast convergence

of the resulting GreenDB estimator. We will examine the practical performance of the

GreenDB procedure by numerical examples in Section 4.4.

4.4. Illustration

To illustrate the essences of our procedure, we consider a repeated experiment that

estimates the probability of a random variable exceeds a given threshold, where the random

variable in question changes in each experiment. The simulation model in this experiment

is simple so that the mean and covariance function of the corresponding random field can

be derived analytically, which enables us to closely examine the practical performance of

the proposed GreenDB procedure.

Let X = [xmin, xmax] ⊂ R be the input space and ω ∼ Unif(0, 1) be the underlying

source of randomness for a given simulation model F . For given input x ∈ X and realization

ω, the simulation output is given by F (x, ω) = 1{x · ω > γ} where 1 is the indicator

function and γ ∈ R.
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Clearly this is a 1-dimensional problem and therefore s = 1. For any x, x′ ∈ [xmin, xmax],

the mean function for the above simulation model is given by

µ(x) = Pr
(
U >

γ

x

)
= 1− γ

x
, ∀x ∈ [xmin, xmax]

and the covariance function is given by

σ(x, x′) = E[F (x) · F (x′)]− E[F (x)] · E[F (x′)]

= P
(
U > γ

min{x,x′}

)
− P

(
U > γ

x

)
· P
(
U > γ

x′

)

=
(

1− γ
min{x,x′}

)
−
(
1− γ

x

)
·
(
1− γ

x′

)

=
(

min{x,x′}−γ
min{x,x′}

)
·
(

γ
max{x,x′}

)
.

Then one can show that for any x, x′ ∈ [xmin, xmax]

(ρ(x, x′))2 = σ(x,x′)√
σ2
xσ

2
x′

=

(
min{x,x′}−γ
min{x,x′}

)2
·
(

γ
max{x,x′}

)2(
min{x,x′}−γ
min{x,x′}

)
·
(

γ
min{x,x′}

)
·
(

max{x,x′}−γ
max{x,x′}

)
·
(

γ
max{x,x′}

)
= min{x,x′}−γ

max{x,x′}−γ = 1− max{x,x′}−min{x,x′}
max{x,x′}−γ

so 1− (ρ(x, x′))2 ≤ c1|x− x′|α for c1 = (xmin − γ)−1 and α = 1. The database sequence

is chosen as X̃n = xmin + (xmax − xmin)hn for all n = 1, 2, · · · where h1, h2, · · · is the

Halton sequence. This means the nth dispersion of the database sequence is bounded by

dn ≤ 2(xmax − xmin)/n; so c2 = 2(xmax − xmin). Moreover, the optimal control variate

coefficient is given by

β∗ =
σ(x, x′)

σ2
x′

=





x′·(x−γ)
x·(x′−γ)

if x′ ≥ x

x′

x
if x′ < x
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This optimal coefficient is used in the following numerical illustration. Note that for

general simulation models the mean and covariance functions are too complicated to be

derived analytically, so the parameters c1, c2, α, and β need to be estimated. This remains

for future research.

Given prediction point Xn at time n, the goal of the nth simulation experiment is to

estimate

(4.12) µ(Xn) = E[F (Xn)] = Pr(Xn · ω > γ), where ω ∼ Unif(0, 1).

For simplicity, the prediction points are Xn ∼ Unif(xmin, xmax), which forms a trivial

stationary stochastic process with stationary distribution Xn ∼ Unif(xmin, xmax). We

suppose that r = 200 and R = 1000 to emulate practical situations (4 hours to perform

estimation task and 20 hours for simulation investment). General features of the GreenDB

procedure, as discussed below, remains the same for wide range of parameters 0 < γ <

xmin < xmax <∞. For illustration purpose we choose xmin = 10, xmax = 12, and γ = 8

and so k∗n =
√

10n.

To investigate the effectiveness of the GreenDB procedure, we performed a sequence

of 1,000 experiments, each with r = 200 replications for estimation and R = 1000 for

simulation investment. Using the same sample path {Xn : n = 1, 2, · · · , 1000}, we

evaluated two estimators for µ(Xn): µSMC
r (Xn) and µGreenDBr (Xn; X̃k̃n

). To accurately

estimate the unconditional variance, we performed such a sequence of experiments 10,000

times. These 10,000 macro-replications of the sequence of experiments have independent

sample paths and simulation output. The estimated variance of an estimator µ̂(Xn) of

µ(Xn) was
∑10,000

i=1 (µ̂(i)(X
(i)
n )−µ(X

(i)
n ))/10, 000, where µ̂(X

(i)
n ) is the value of the estimator
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in the nth experiment on the ith macro-replication. Due to using 10, 000 macro-replications,

the standard errors of these estimated variances are less than 0.01% of the corresponding

estimated variances (error bars are too narrow to show clearly in the figure).

100 101 102 103
10-5

10-4

10-3

SMC

GreenDB

Slope = −

α

α+ s

Figure 4.1. Log-log plot of estimated variances for Standard Monte Carlo
and Green Simulation estimators for random prediction points Xn.

Figure 4.1 is a log-log plot of the variances of two estimators for each experiment n =

1, 2 · · · , 1, 000. The horizontal solid blue line is the variance of SMC estimator with r

replications, and the dotted green line is the variance of our GreenDB estimator. The

SMC variance forms a horizontal line because all experiments are identical the simulation

model is the same and all prediction points have the same distribution. We first compare

the dotted green line against the horizontal line to examine the effectiveness of our green

simulation procedure. For the first experiment (n = 1), there is no database constructed

from a previous experiment, so the GreenDB coincides with the SMC estimator. For all
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later experiments (n ≥ 2), when databases are available, the GreenDB variance is less

than that for the SMC variance. It is clear that the variance of the GreenDB estimator

decreases over time while the SMC estimators’ variance remain the same. In the 1,000th

experiment, the GreenDB estimator’s variance is about 50 times smaller than the SMC

estimator’s variance, or equivalently a variance reduction of 50. This high accuracy for

the GreenDB is achieved with the same estimation time as that for the SMC estimator,

which showcases the advantage of our green simulation procedure.

A black solid line with slope − α
α+s

and the same intercept as the solid blue line is

plotted in Figure 4.1 for reference. This slope is expressed in log-log scale, which indicates a

convergence rate of O(n−α/(α+s)) for the variance of an estimator that has such slope in the

figure. This is the convergence rate of the optimal objective for the simulation investment

allocation problem (4.10). By comparing the right part of the green line (say n ≥ 100)

with the black line, it seems the GreenDB variance converges at rate O(n−α/(α+s)). We

elaborate this point in the next paragraph.

A red star in Figure 4.1 splits the dotted green line into two segments that are visually

different: the left segment forms a curve and the right segment forms a line. On one

hand, the left segment is the warm up period in our procedure where the number and

size of the databases constructed by our procedure are significantly different from the

optimal solution (4.11). In addition, in this warm up period there are few databases so the

prediction point and its closest database could be significantly different, rendering (4.7) an

unreliable approximation. In this case the actual variance reduction is hard to predict by

the optimal objective of (4.10). On the other hand, after warming up the right segment
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forms a straight line whose slope is close to the predicted value of −α/(α + s), when

comparing to the solid black line.
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APPENDIX A

Verifying the Conditions of Theorem 2.4.1 for

the Catastrophe Bond Pricing Example

In this appendix, we verify the conditions of Theorem 2.4.1 and for the catastrophe

bond (CAT bond) pricing example. In this example, the underlying state process {Xn : n =

1, 2, . . .} is AR(1), so it is ergodic. Recall that the loss in the CAT bond pricing example

is given by Yn =
Mn∑
i=1

Zi
n. Conditional on Xn = x, and denoting φ(x) = (λ, θ), the number

Mn of claims is Poisson distributed with mean λ and independent of {Zi
n : i = 1, . . . ,Mn},

which are independent random variables, exponentially distributed with mean θ. The

conditional distribution of Yn given Xn places probability mass h(0;x) = e−λ on y = 0

and has probability density

h(y;x) =
∞∑

m=1

λm

m!
e−λ

ym−1e−y/θ

Γ(m)θm
=

√
λ

θy
e−λ−y/θI1

(
2

√
λy

θ

)

for y > 0, where Γ is the Gamma function and I1 is the modified Bessel function of the

first kind of order 1.

We will first establish two lemmas that are useful for verifying the conditions of

Theorem 2.4.1 for the CAT bond pricing example. Define the domain K = (0,∞) ×

(0,∞)× R and the functions A : K 7→ R and a : K × (0,∞) 7→ R by

(A.1) A(k) =

∫ ∞

0

a(k, y)dy, where a(k, y) =
e−k1y+k3

√
y

√
y

I1(k2
√
y) ≥ 0.
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Lemma A.0.1. The function A is continuous on K.

Proof. For any k, k′ ∈ K, we have

|A(k)− A(k′)| ≤
∫∞
N
a(k, y)dy +

∫∞
N
a(k′, y)dy +

∫ N
0
|a(k, y)− a(k′, y)| dy.

For any k ∈ K and ε > 0, we will show that there exist N > 0 and δ > 0 such that the

right side is bounded above by ε if ‖k − k′‖2 < δ. First, we will show that, for any k ∈ K

and ε > 0, there exists N1 > 0 such that
∫∞
N1
a(k, y)dy ≤ ε/3. Applying the same argument

to k′ ∈ K, there exists N2 such that
∫∞
N2
a(k′, y)dy ≤ ε/3. We then let N = max{N1, N2}.

Finally, we show that for any k ∈ K, ε > 0, and N > 0, there exists some δ > 0 such that

∫ N
0
|a(k, y)− a(k′, y)| dy ≤ ε/3 if ‖k − k′‖2 ≤ δ.

First, it is proved by Luke (1972) that Γ(ν + 1)(2/y)νIν(y) < cosh(y) for y > 0 and

ν > −1/2. Taking ν = 1 in this inequality, and observing that cosh(y) < ey, we have

I1(y) < (y/2)ey. Let k̃1 = k1/2 > 0. Then

a(k, y) = e−k1y+k3
√
y

√
y

I1(k2
√
y)

< e−k1y+k3
√
y

√
y

(
k2
√
y

2
ek2
√
y
)

≤ k2e(k2+k3)
2/(4k̃1)

2
e−k̃1y =: Ce−k̃1y,

where the second inequality holds because (k2 + k3)
√
y − k̃1y ≤ (k2 + k3)2/(4k̃1), and the

constant C > 0 is defined for ease of notation. Therefore
∫∞
N
a(K, y)dy ≤ C

∫∞
N
e−k̃1ydy =

C(e−Nk̃1/k̃1). Take

N1 = − ln[εk̃1/3C]

k̃1

= −2 ln[(εk1)/(6C)]

k1

.

Then
∫∞
N1
a(K, y)dy ≤ ε/3.
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The function I1 is a solution of Bessel’s differential equation, so it is continuous on (0,∞).

Consequently, the function ã : K× (0,∞) 7→ R defined as ã(k, y) := e−k1y+k3
√
yI1(k2

√
y) =

a(k, y)
√
y is continuous on K × [0,∞). Choose any δ0 > 0 and define the compact

neighborhood Nk(δ0) := {k′ ∈ K : ‖k − k′‖2 ≤ δ0}. The function ã is continuous on the

compact set Nk(δ0) × [0, N ]. Therefore, it is uniformly continuous on Nk(δ0) × [0, N ].

Consequently, there exists δ ∈ (0, δ0] such that, for all (k, y), (k′, y′) ∈ Nk(δ0)× [0, N ] that

satisfy ‖(k, y)− (k′, y′)‖2 ≤ δ, we have |ã(k, y)− ã(k′, y′)| ≤ ε/(6
√
N). Therefore, for any

k′ ∈ K such that ‖k − k′‖2 ≤ δ, we have

∫ N

0

|a(k, y)− a(k′, y)| dy =

∫ N

0

1√
y
|ã(k, y)− ã(k′, y)| dy ≤ ε

6
√
N

∫ N

0

1√
y
dy =

ε

3
.

�

Define the domain KB = (0,∞)× (0,∞)× (0,∞) and the functions B : KB 7→ R and

b : KB × (0,∞) 7→ R by

B(k) =

∫ ∞

0

b(k, y)dy, where b(k, y) =
e−k1y√
y

[I1(k2
√
y)]2

I1(k3
√
y)
≥ 0.

Lemma A.0.2. If K̄ ⊂ K is compact, then sup{A(K)|K ∈ K̄} <∞. If K̄B ⊂ KB is

compact, then sup{B(K)|K ∈ K̄B} <∞.

Proof. Because A is continuous in K, by Lemma A.0.1, and K̄ ⊂ K is compact, it

follows that sup{A(K)|K ∈ K̄} = max{A(K)|K ∈ K̄} <∞.
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For any k ∈ KB, let k∗ = max{k2, k3} and k∗ = min{k2, k3}. Then it follows from

Theorem 2.1 of Laforgia (1991) that

b(k1, k2, k3, y) <
e−k1y√
y

[
e2(k∗−k∗)

√
y k
∗

k∗

]
I1(k2

√
y) = a(k1, k2, 2(k∗ − k∗), y).

Therefore B(k1, k2, k3) ≤ A(k1, k2, 2(k∗ − k∗)) for any k ∈ KB. Moreover, the compactness

of K̄B implies the compactness of the set

K∗ := {(k1, k2, 2(k∗ − k∗))|(k1, k2, k3) ∈ K̄B, k∗ = max{k2, k3}, k∗ = min{k2, k3}},

which is a subset of K. Therefore sup{B(K)|K ∈ K̄B} ≤ sup{A(K)|K ∈ K∗} <∞. �

Proposition A.0.1. In the catastrophe bond example, if λ̄ ≥ λ > 0 and 2θ >

θ̄ ≥ θ > 0, then for any target state x ∈ R2,
∫
R2 σ

2
x (x′) dπ(x′) < ∞ and the sequence

{σ2
x (Xn) , n = 1, 2 . . .} is uniformly integrable.

Proof. Consider any target state x ∈ R2 and any sampling state x′ ∈ R2. The

likelihood ratio is `x(y;x′) = h(y;x)/h(y;x′). Because the simulation output F (Yn) is

between 0 and 1, for all n, the target-x-sample-x′ variance σ2
x (x′) defined in Equation (2.5)

satisfies

0 ≤ σ2
x (x′) ≤ E

[
(F (Yn) `x(Yn;x′))2|Xn = x′

]
≤ E

[
(`x(Yn;x′))2|Xn = x′

]
.

To establish the desired conclusions, it suffices to show that this conditional second moment

has a finite upper bound over x′ ∈ R2, for any fixed x ∈ R2. Denote (λ, θ) = ϕ(x) > 0 and
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(λ′, θ′) = ϕ(x′). We have

E
[
(`x(Yn;x′))2|Xn = x′

]
=

(
e−λ

e−λ′

)2

e−λ
′
+

∞∫

0

(
h(y;x)

h(y;x′)

)2

h(y;x′)dy.

The first term is bounded above by eλ̄−2λ. For the second term, we have

(A.2)

∞∫
0

(
h(y;x)
h(y;x′)

)2

h(y;x′)dy =
∞∫
0

[√
λ
θy
e−λ−

y
θ I1
(

2
√

λy
θ

)]2
√

λ′
θ′y e

−λ′− y
θ′ I1

(
2
√
λ′y
θ′

)dy
=

√
λ2θ′

λ′θ2
eλ
′−2λ

∞∫
0

1√
y
e
−
(

2θ′−θ
θθ′

)
y

[
I1
(

2
√

λy
θ

)]2
I1

(
2
√
λ′y
θ′

) dy

=
√

λ2θ′

λ′θ2
eλ
′−2λB

(
2θ′−θ
θθ′

, 2
√

λ
θ
, 2
√

λ′

θ′

)
.

For all x′ ∈ R2, we have that (λ′, θ′) = ϕ(x′) is in a compact set [λ, λ̄]× [θ, θ̄] that does

not contain zero. On this set, the arguments of B are all bounded so

{(
2θ′ − θ
θθ′

, 2

√
λ

θ
, 2

√
λ′

θ′

)
|(λ′, θ′) ∈ [λ, λ̄]× [θ, θ̄]

}
= K̄B

is compact. Thus, it follows from the second claim of Lemma A.0.2 that Equation (A.2)

has a finite upper bound over x′ ∈ R2. �
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APPENDIX B

Ineffective Output Reusage by Shrinkage Estimator

Number of periods, n
100 101 102

10-6

10-5

10-4

10-3
period n MSE for the current state

SMC
ILR
WLR
MLR
GSK
Slope -1
Shrinkage

Figure B.1. Log-log plot of estimated variances for current-state estimators
for CAT bond pricing example.

In this appendix we consider a simple shrinkage estimator with an empirical Bayes

derivation and examine its practical performance in the repeated experiment setting.

Shrinkage estimation is initially studied in Stein et al. (1956) and James and Stein (1961)

then it was studied in a empirical Bayes framework in Efron and Morris (1973) and Efron

and Morris (1975).
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Number of periods, n
100 101

10-6

10-5

10-4

10-3
period n MSE for the current state
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ILR
WLR
MLR
GSK
Shrinkage

Figure B.2. Log-log plot with error bars for estimated MSEs for current
state estimators for credit risk example.

In the empirical Bayes framework, the unknown quantities µ(X1), . . . , µ(Xn) are

assumed to be i.i.d. samples from a some prior distribution, whether parametric or not. If

this prior distribution was known, then one can apply classical Bayesian estimation to derive

the posterior distribution of µ(Xn) given the data, or in our setting the nth experiment

outputs {F (Y
(j)
n ) : j = 1, · · · , r}. The essence of empirical Bayes is to learn the prior

distribution directly from data, or from all simulation outputs {F (Y
(j)
k ) : k = 1, · · · , n; j =

1, · · · , r} in the repeated experiment setting then infer the posterior distribution of µ(Xn)

using this learned prior and the nth experiment outputs {F (Y
(j)
n ) : j = 1, · · · , r}. Often

the posterior mean in the parametric empirical Bayes framework turns out to be a weighted
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average between the sample mean of the current simulation outputs (the local estimator)

and the sample mean of all simulation outputs (the global estimator), so the local average

is shrunk towards the global average hence the name “shrinkage estimator”.

We thought that empirical Bayes and the resulting shrinkage estimator as described

above reuses simulation outputs inefficiently. First of all, the i.i.d. assumptions of the

expected performances µ(X1), . . . , µ(Xn) does not take into account of their dependence

due to the stochastic process {Xn}. Secondly, the global average may be different from

the current expected performance, so the local average may be shrunk towards a wrong

quantity. Lastly and most importantly, in the repeated experiment setting, the total

number of simulation outputs increases over time but the number of simulation output for

each experiment is fixed. Therefore, as more and more simulation outputs are reused, one

has better estimate of the prior distribution so the empirical Bayes estimator will converge

to a classical Bayes estimator. So as more simulation outputs are reused, the posterior

variance of such empirical Bayes will converge to a fixed level but does not converge to

zero. We will illustrate our points using a variant of the well-known James-Stein estimator,

which can be viewed as the posterior mean of a hierarchical normal-normal model in a

empirical Bayes framework.

Assume that the current expected performance follows a normal distribution with

mean µ and variance σ2, µ(Xn) ∼ N(µ, σ2). Given the current state Xn, or equivalently

given µ(Xn), assume that the sample average of the current simulation outputs is normally

distributed with mean µ(Xn) and variance σ2(Xn), i.e., µ̂SMC
r (Xn) = 1

r

∑r
j=1 F (Y

(j)
n ) ∼

N(µ(Xn), σ2(Xn)). Then in a classical Bayesian framework the posterior distribution of
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µ(Xn) given the sample average µ̂SMC
r (Xn) is

µ(Xn)|µ̂SMC
r (Xn) ∼ N

(
Bµ+ (1−B)µ̂SMC

r (Xn), (1−B)σ2
)
, B =

σ2

σ2 + σ2(Xn)
.

Using the empirical Bayes ideas, we estimate the hyperparameters µ and σ2 by the sample

mean and sample variance of all simulation outputs {F (Y
(j)
k ) : k = 1, · · · , n; j = 1, · · · , r}.

In addition σ2(Xn) is estimated by the sample variance of the current simulation outputs

{F (Y
(j)
n ) : j = 1, · · · , r}. The resulting shrinkage estimator is the empirical Bayes posterior

mean, i.e.,

µShrinkagen,r (Xn) = B̂

(
1

nr

n∑

k=1

r∑

j=1

F (Y
(j)
k )

)
+(1−B̂)

(
1

r

r∑

j=1

F (Y (j)
n )

)
, B̂ =

σ̂2

σ̂2 + σ̂2(Xn)

where σ̂2 and σ̂2(Xn) are the global and local sample variances, respectively.

Figure 2.3 show the performance of the shrinkage estimator for fixed states in the

CAT bond pricing example, as compared to the other estimators proposed in the new

manuscript. While the other lines in the figure are identical to those in Figure 4 of the

manuscript, the additional brown solid line shows the MSE of the shrinkage estimator. In

this example, the global sample average is indicative of the average level of the expected

performance µ(X) for X ∼ π(x) where π(x) is the stationary distribution of the state

process {Xn}. So the local estimator shrinks towards a correct global mean on average

and hence the shrinkage estimator is somewhat better than the standard Monte Carlo

estimator in terms of MSE. However, since the amount of local information remains fixed,

i.e., r replications, the variance of the shrinkage estimator only converges to a fixed level.

Therefore the MSE of the shrinkage estimator levels off over time, which was what we
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expected. As shown in Figure 2.3, the shrinkage estimator is much worse than the other

estimators proposed in the manuscript in terms of MSE.

Figure 2.4 show the performance of the shrinkage estimator for fixed states in the

credit risk example. In this example, the performance of shrinkage estimator is almost

distinguishable to that of the standard Monte Carlo estimator. This is because we are

estimating a very small default probability and the variance of the local sample average is

very small compared to the global sample variance. Consequently the shrinkage parameter

B̂ is close to zero so the shrinkage estimator is close to the standard Monte Carlo estimator.

Both examples illustrates that shrinkage estimator is not appropriate for repeated

experiments, therefor we decided not to consider it as a tool for reusing simulation outputs

in green simulation.
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