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ABSTRACT  

Quantitative Analytics for Spectroscopic Single-Molecule Localization Microscopy  

Janel L. Davis 

 

Single-molecule localization microscopy (SMLM) has significantly stimulated the development 

of methods to quantitatively visualize and characterize biomolecules in vitro and in situ. SMLM 

is a class of super-resolution microscopy (SRM) techniques, which exploits the “on-off” switching 

of individual fluorescent molecules to estimate their location with nanometer precision and offers 

spatial resolution up to 10 nm. However, the invaluable spectroscopic information of fluorescent 

labels has previously been overlooked in conventional SMLM. Recently developed spectroscopic 

SMLM (sSMLM), integrates a dispersive component into the traditional SMLM system to 

concurrently capture the spatial and spectral information of each single-molecule emission event. 

Thus far, the emission spectra have been used to expand the multiplexing capabilities of SMLM 

and develop functional SRM. While traditional SMLM has widely been adopted by the scientific 

community, the limited availability of software tools to process sSMLM data has hindered the 

routine use of sSMLM for SRM studies. Additionally, the benefits of using spectroscopic 

information to improve quantitative SRM have remained unexplored.  

This dissertation aims to build an image processing platform for sSMLM and develop three 

quantitative spectroscopic analysis methods for the characterization of nanostructures. First, we 

present RainbowSTORM, a freely available ImageJ plug-in, which includes functions to calibrate 

sSMLM systems, process two-dimensional and three-dimensional sSMLM data, and generate 
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pseudo-colored sSMLM image reconstructions. Second, we develop a regression method to 

evaluate spectroscopic information and reject signals from fluorescent impurities which can lead 

to molecular misidentification and degraded spatial resolution in SMLM. Using this method, we 

quantify immobilized nanorulers and improve sample identification of surface-combed DNA 

fibers. Third, we develop quantitative spectroscopic analysis for cluster extraction (qSPACE), a 

post-processing method for the sSMLM variant referred to as spectroscopic point accumulation 

for imaging in nanoscale topography (sPAINT), which captures the fluorescence induced by 

transient interactions between Nile Red (NR) dye and polymersomes. We use qSPACE to 

accurately size and count the polymersomes, while rejecting non-specific interactions between NR 

and the poly-L-lysine surface. Finally, we develop photon-accumulation enhanced reconstruction 

(PACER) which numerically increases the photon budget of fluorescent labels and estimates the 

emitter’s spatial location with improved localization precision. Using PACER, we image quantum 

dots and Alexa Fluor 647 labeled DNA nanostructures with a minimum spacing of 6 nm to uncover 

individual molecules that would be unresolvable using conventional SMLM.  
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LIST OF FIGURES 

Figure 1-1: Simplified Jablonski diagram showing various fluorescent and non-fluorescent 
states. During traditional FM experiments, a fluorophore absorbs a photon from 
the excitation beam causing an electron in the ground state (S0) to be promoted 
to the excited stated (S1). Fluorescence occurs when the excited electron 
undergoes internal conversion and vibrational relaxation resulting in a release 
of energy in the form of a photon with less energy or a longer wavelength. In 
SMLM electrons in the S1 can undergo intersystem crossing (ISC) to a triplet 
state or weakly fluorescent state. In this state many fluorophores can be reduced 
using chemical reagents (e.g. β-mercaptoethanol (BME) or 
mercaptoethylamine (MEA)) which cause transitions to more stable non-
fluorescent or dark states via to ISC. The electrons will then undergo additional 
ISC or react with oxygen (O2) and undergo non-radiative relaxation (NRR) 
returning to S0 releasing fluorescence in the process. 
 

Figure 1-2: Illustration of the Rayleigh Criterion showing the pairs of (a) resolvable, (b) 
barely resolvable and (c) unresolvable molecules. An example, showing a (d) 
200 nm fluorescent sample (ground truth), imaged using conventional 
microscopy. (e)The image appears blurred due to the diffraction limit of light. 
However, using (f) SMLM where photo-switchable or photoactivatable dyes 
and proteins are used to separate emission events in time and space. (g) The 
locations of single-molecules after Gaussian fitting and the (h) resulting super-
resolution reconstruction. 
 

Figure 1-3:  (A and B) Using probes specific to the RNA repeat expansions, FISH was used 
to monitor RNA foci and their proximity to MBNL using total internal 
reflection fluorescence. The cells were co-labeled with an antibody to MBNL1 
(green). Control iPSC-CMs were labeled with a repeat probe for DM1 (CAG)5 
in A and for DM2 (CAGG)10 in B. The distance between RNA foci and 
MBNL1 foci was quantified. Because MBNL1 foci were only readily detected 
in DM1 cardiomyocytes, the data from control and DM2 cells represent 
background signal. Thus, this method was used to measure the distance 
between RNA repeat expansions and MBNL1 in DM1. (A) RNA foci 
colocalized with MBNL1 foci in DM1 cardiomyocytes, and the distance 
between RNA foci and MBNL1 averaged 200 nm, consistent with a very close 
physical association between RNA repeat expansions and MBNL. Control 
cardiomyocytes displayed a random distribution of distances (top panel), 
reflecting the absence of RNA foci and MBNL foci. (B) In DM2 
cardiomyocytes, there was no colocalization of RNA foci with MBNL foci, 
reflecting the absence of MBNL clusters and a pattern similar to cells from 
healthy controls. Correspondingly, the distances were randomly distributed, 
similar to control iPSC-CMs (similar distribution between top and bottom 
panels). Scale bar: 5 μm (left);1 μm (right). 
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Figure 1-4: SMLM image reconstructions of (a) a representative undifferentiated (UD) cell 

and (b) a representative differentiated (DF) cell (Scale bars: 5 μm). Selected 10 
μm × 10 μm ROIs within the nucleus of the (c) UD and (d) DF cells. (Scale 
bars: 1 μm) (e) Comparison of the number of NPCs in the ROIs from 7 UD and 
7 DF cells. (f) Size histograms of the sizes of the NPCs found in both cell types. 
(g) The density of the NPC clusters within the 10 μm × 10 μm ROIs. 
 

Figure 2-1: The principle of sSMLM. (a) An example of a sSMLM detection channel which 
uses a diffraction grating to separate the spatial image (zeroth order) and 
spectral image (first order) simultaneously. For example, when a (b) 200 nm 
fluorescent sample (ground truth), is imaged using conventional microscopy 
the (c) images appears blurred due to the diffraction limit of light. However, 
using (d) SMLM where photo-switchable or photoactivatable dyes and proteins 
are used to separate emission events in time and space a (e) super-resolution 
image can be reconstructed by recording the location of each emission event. 
However, the identity of each emitter remains unknown. sSMLM can be used 
to recover this information because (f) the spectra of each emission event can 
be identified and used to reconstruct a (g) color-coded super-resolution image 
which better represents the true sample. 

Figure 3-1: (a)General sSMLM system schematic. (b) sSMLM images with the spatial and 
spectral images simultaneously captured on different parts of a detector. (c) 
RainbowSTORM workflow showing how the system calibration module 
interacts with the analysis module (d) SMLM reconstruction (e) Pseudo-
colored sSMLM reconstruction. Images of the three separate channels showing 
(f) mitochondria labeled with AF647, (g) microtubules labeled with CF660, (h) 
peroxisomes labeled with CF680, and (i) the overlay image of the three 
channels. 

Figure 3-2: Flowchart of the algorithm to generate the background image 

Figure 3-3: Flowchart of the algorithm to remove overlapping spectra 
 

Figure 3-4: Comparison of the expected spectral precision and the average spectral 
precision estimated by RainbowSTORM at different spectral photon counts 
[180 to 3800]. Inset shows the zoomed in comparison for the spectral photon 
count from 1000 to 3800. 
 

Figure 3-5: General sSMLM system schematic for 3D imaging using the astigmatism 
method. 
 

Figure 4-1: Schematics of SMLM and sSMLM experimental systems. (a) Excitation optics 
and instrumentation; (b) SMLM detection channel used to capture images of 
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cleaned and functionalized surfaces; (c) sSMLM detection channel used to 
capture spatial and spectral images simultaneously. 
 

Figure 4-2: Flowchart of the algorithm used to compare intensity thresholding and spectral 
fitting filtering methods. 
 

Figure 4-3: The origin of fluorescent impurities. MIP images (scalebars 5 µm) of unlabeled 
glass surface (a) before cleaning, (b) after plasma cleaning, and (c) after PLL 
functionalization. Comparison of the density of fluorescent impurities from 5 
different FOVs (d) before surface cleaning (BC) and after cleaning via the 
piranha solution (Pir), rinsing with potassium hydroxide and sterilization using 
UV light (KOH+UV), rinsing with Hydrochloric acid and Prop-2-anol 
(Acid+Alcohol), exposure to UV activated ozone (UV-zone) and exposure to 
argon and oxygen plasma (Plasma). Comparison of the density of fluorescent 
impurities for 5 different FOVs on surfaces (e) before and after plasma cleaning 
(as a reference) and plasma-cleaned surfaces after functionalization via PLL 
coating, silanization with a final wash of chloroform (Sil+C), BSA and NEU 
(BBS) functionalization with glucose oxidase buffer (BBS+G) and BBS water 
as the buffer (BBS+W). 
 

Figure 4-4: Representative MIP images of a bare FisherbrandTM coverslip (a) before 
cleaning, (b) after cleaning using the piranha solution, (c) after sonication in 1 
M KOH and sterilization using UV illumination, (d) after rinsing with HCl and 
prop-2-anol, (e) after cleaning with UV-activated ozone, and (f) after exposure 
to a mixture of oxygen and argon plasma. All images were captured using 532 
nm illumination at a power density of 3 kW/cm2. Scale bars are 5 μm. 
 

Figure 4-5: Variability in surface cleanliness and uniformity. (a) Comparison of standard 
chemicals previously purchased for general lab use to ultrapure chemicals 
purchased specifically for cleaning. Images of a regular coverslip cleaned with 
standard chemicals (b) and cleaned with ultrapure chemicals (c). Variability of 
uniformity using ultrapure chemicals. (d-e) fluorescence images at different 
areas on the same coverslip cleaned with the piranha solution. (f-g) 
fluorescence images at different areas on the same coverslip cleaned with KOH 
then sterilized with UV. 
 

Figure 4-6: Representative MIP images of plasma cleaned FisherbrandTM coverslips 
functionalized with (a) PLL, (b) silane with chloroform as the final rinse, (c) 
biotinylated BSA and NEU with glucose oxidase (GLOX) buffer, and (d) 
biotinylated BSA and NEU with water buffer. All images were captured using 
532 nm illumination at a power density of 3 kW/cm2. 
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Figure 4-7: (a) Representative spectra from three fluorescent impurities on a FisherbrandTM 
coverslips before cleaning. (b) Representative spectra from three fluorescent 
impurities associated with PLL functionalization. 
 

Figure 4-8: Spectroscopic analysis of functionalized coverslips. (a) Schematic of sSMLM 
detection channel with the slit closed to acquire average images and line. (b) 
Image of coverslip functionalized with biotinylated BSA and NEU with GLOX 
buffer (BBS+GLOX). (c) Line spectra of spectra from BBS+GLOX coverslip. 
(d) Average line spectra from PLL, silane with chloroform rinse, silane with 
water rinse, BBS+GLOX, and BBS+Water. 
 

Figure 4-9: Excitation dependent emission of fluorescent impurities of PLL coated plasma 
cleaned coverslips under illuminations at wavelengths of (a) 445 nm, (b) 532 
nm, and (c) 645 nm. (d) Average line spectra under illuminations at 
wavelengths of 532 nm and 645 nm. 
 

Figure 4-10: Identifying fluorescent impurities during SMLM. (a) Average spatial and 
spectral image of DNA origami nanorulers, containing two emitting points 
labeled with single AF532 and AF568 molecules 10 nm apart, immobilized on 
a PLL coated surface. Images were acquired under illuminations with power 
densities associated with conventional fluorescence imaging (0.5 kW/cm2). (b) 
Stack of 1500 frames of the spatial and spectral images of the nanoruler sample 
for sSMLM (3 kW/cm2) using the same FOV. (c) MIP images of the spatial 
and spectral of the same FOV. (d) Photon count versus time of two nanorulers 
(1,4) and two fluorescent impurities (2,3) highlighted in average and MIP of 
SSMLM images. (e) Corresponding spectra of the point sources identified in 
the average and SSMLM images representing true positive, false positive, true 
negative and false negative cases for the spectral fitting method. (f) Sensitivity 
and (g) Specificity comparison for 9 datasets using an emission intensity a 
threshold of 180 and a spectral fitting filter adjusted R2 threshold of 0.84. 
 

Figure 4-11: (a) Cartoon of the 10 nm AF532 and AF568 nanoruler. b) Representative 
spatial image and c) extracted spectra of nanorulers detected using LPD 
illumination using the field of view highlighted in Figures 4-11a-c. (d) 
Representative spatial image and e) extracted spectra of fluorescent impurities 
detected using LPD illumination using the field of view highlighted in Figures 
4-11a-c. 
 

Figure 4-12: Histograms of adjusted R2 values of average spectra from 174 locations in the 
LPD image after spectral fitting to the reference spectrum of (a) AF532 and (b) 
both AF532 and AF568 with the adjusted R2 threshold of 0.89 highlighted. 
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Figure 4-13: The number of emitters detected using HPD excitation, the number of 
nanorulers, and the number of fluorescent impurities detected under HPD 
excitation for all 9 field of views. The median is highlighted for each box plot 
 

Figure 4-14 Comparing results in minimizing artifacts induced by fluorescent impurities 
using intensity filtering and our spectral fitting methods. (a) sSMLM spatial 
and spectral MIP images of nanorulers with fluorescent impurities. (b) 
Reconstructed super-resolution images without rejecting fluorescent 
impurities; (c) result after emission intensity filtering; (d) result after spectral 
fitting. ROI 1 highlights the localized fluorescent impurities that are eliminated 
by our spectral fitting method but are misidentified by intensity filtering 
method. ROI2 highlights the case of spatial overlapping of fluorescent 
impurities and nanorulers results in higher localization uncertainty. The 
resulting super-resolution images of ROI2 are further magnified in (e) before 
filtering (standard deviation (S.D.) 52.9 nm), (f) after intensity filtering (S.D. 
40.1 nm), and (g) after spectral fitting (S.D. 22.5 nm). (h) Averaged spectra of 
fluorescent impurities and nanoruler emission. (i) Reconstructed color-coded 
super-resolution image of stretched lambda phage DNA labeled with YOYO-
1 dye on a silane functionalized surface before rejecting emission unrelated to 
the DNA-YOYO sample (resulting artifacts highlighted by white triangles); (j) 
result after intensity filtering contains artifacts from unwanted fluorescence; 
(k) result after spectral fitting specifically removed artifacts induced by 
unwanted fluorescence. 
 

Figure 5-1: (a) Chemical structure of NR; (b) Chemical structure and illustration of the 
BCP for PS assembly; (c) Illustration of the assembled PS (the green color 
represents the polar end of the BCP and the blue color represents the non-polar 
end) and the difference in the emission spectra of NR when transiently bound 
to the PS (yellow) and the PLL-coated glass substrate (red). Free non-
fluorescent NR is shown in gray; (d) Schematic of our sPAINT experimental 
setup. TL: tube lens; S: slit; G: transmission grating; L: lens; EMCCD: electron 
multiplying charge-coupled device. 
 

Figure 5-2: (a) Comparison of the average emission spectra of NR in solutions containing 
PS and sample preparation reagents (PLL and PBS) measured using a 
fluorimeter and sPAINT. (b) Representative super-resolution reconstructions 
of the PLL coated glass used as the control sample. (Scale bar: 1 μm). (c-e) 
Histograms of the emission maxima (λmax) of NR interactions in ROIs 
containing PS from three different images (six clusters were selected in each 
image). The selected spectral window (SW, 595 – 625 nm) is highlighted in 
red. (f) Reproducibility test showing the histogram of λmax from PS acquired on 
a different day with similar experimental conditions. (g) Comparison of the 
identification percent of localizations from the PS λmax histogram and 
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identification percent of localizations from the control λmax histogram as the 
window size of the SW increases (peak position of SW = 610 nm). 
 

Figure 5-3: (a) A representative reconstructed super-resolution image of the immobilized 
the PS sample and NR interactions (Scale bar: 1 μm); (b) Histogram of the λmax 
of NR interactions in three ROIs containing PS as highlighted by the yellow 
squares numbered 1-3; (c) Histogram of the λmax of non-specific NR 
interactions in the control sample. The SW used for detecting NR interactions 
with PS is highlighted in red 
 

Figure 5-4: sPAINT reconstructions before applying the spectral window for selecting PS 
for (a) example 1 and (b) example 2. Overlay of the reconstructions with the 
localizations designated as PS in cyan and localizations designated from non-
specific binding in red from (c) example 1 and (d) example 2. sPAINT 
reconstructions of the PS channel for (e) example 1 and (f) example 2. sPAINT 
reconstructions of the non-specific binding channels for (g) example 1 and (h) 
example 2 (Scale bar: 500 nm). 
 

Figure 5-5: (a) Representative super-resolution reconstruction showing individual clusters 
with varying sizes identified by the optimized density-based spatial clustering 
for applications with noise (DBSCAN) algorithm marked by the red plus signs 
(Scale bar 500 nm). (b) Comparison of the differences in the cluster counting 
accuracy using DBSCAN for trials using data with different cluster densities 
(number of nearest neighbors or number of NN), the red bar shows data 
selected based on the spectroscopic and spatial information while the blue bar 
shows data selected for analysis based on spatial information alone. 
 

Figure 5-6: Histograms of the (a) spatial photon counts, (b) spectral photon counts and (c) 
spectral precision used for sSMLM analysis from a representative image. 
 

Figure 5-7: Histograms showing the comparison between the number of NN of 
localizations with 450 photons in the spatial domain before (n=~105) and after 
application of the selected spectral window (n=~104) of (a-c) 3 control images 
and (d-f) 3 PS images. (g) Plots showing the number of clusters using 
localizations within the SW as the min-NN increases in representative PS and 
control images. The black dashed line shows the threshold used in this study. 
 

Figure 5-8: Plots showing the number of clusters with localizations with at least 450 
photons in the spatial domain as the min-NN increases in the (a) PS and control 
images. The black dashed line shows the threshold used to compare spatial 
clustering without considering the PS window. Representative super-resolution 
reconstructions of the (b) PS sample (white arrows indicate changes in PS 
morphology) and (c) the control sample after application of the clustering 
thresholds (min-NNC =30 and Int=450). (Scale bar 500 nm). 
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Figure 5-9: Clusters extracted from (a) the PS sample and (b) control based on DBSCAN 

alone; Clusters extracted from (c) the PS sample and (d) control using sPAINT 
(Scale bar: 500 nm). 
 

Figure 5-10: Localizations excluded from spectroscopic analysis based on photon number 
(Average localization uncertainty ~25 nm, Photon budget: 300-450 in the 
spatial domain). 
 

Figure 5-11: (a) The qSPACE workflow shows the (i) detected spatial localizations with the 
location of the sample highlighted by the green circles. A subset of localizations 
containing spectroscopic information is used to create a (ii) validation map that 
shows clusters with the selected spectra. All detected localizations are used for 
(iii) spatial clustering without considering spectroscopic information. (iv) 
Localizations from spatial clusters, which are spatially correlated with the 
validation map, are recovered for further analysis while artifacts are rejected. 
(v) The number, size, and morphology of the extracted sample can be further 
analyzed. (b) Detailed qSPACE flowchart outlines how spectroscopic 
information is used to recover localizations from clusters from the PS sample 
while rejecting artifacts from non-specific binding. 
 

Figure 5-12: The average percent variance in size measurements (PΔSIZE) and localization 
density for clusters as the number of localizations per cluster increases. The 
black line shows where PΔSIZE = 5%. The dashed blue and red lines indicate the 
min-NN of 35 and LD of 3.5×10-3 nm-2 required for accurate sizing. 
 

Figure 5-13: Plots showing the number of clusters at least 300 photons in the spatial domain 
as the minimum number of NN increases in the (a) PS and control images. The 
dashed black line represents the threshold used for detecting potential clusters 
for qSPACE. Representative super-resolution reconstructions of the (b) PS 
sample and (c) the control sample after application of the clustering thresholds 
(min-NNC=35 and Int=300), (d) PS sample and (e) the control sample after 
application of the clustering thresholds (min-NNC=45 and Int=300). The white 
arrows indicate morphology changes in d. (Scale bar: 500 nm). 
 

Figure 5-14: Plots showing the tuning of the min-NNv for noise removal in the validation 
channel using qSPACE with a SW window of 595-625 nm and min-NNc of 35 
for potential cluster assignment. The dashed black line shows the selected min-
NNv. 
 

Figure 5-15: (a) Histogram of the localization densities (black dashed lines indicate the 
3.5×10-3 nm-2 LD threshold) for qSPACE and (b) sPAINT; (c) Comparison of 
the global FRC curves for sPAINT (red) and qSPACE (blue). The dashed lines 
are the corresponding FRC resolution for each method at the 1/7 FRC 
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threshold; (d) Size distribution of PS (0.02 mg/mL) measured by NTA and 
qSPACE. 
 

Figure 5-16: CryoTEM image of PS sample. 
 

Figure 5-17: Representative super-resolution reconstructions of the (a) CTRL sample with 
artifacts pseudo-colored in red and misidentified PS pseudo-colored in cyan. 
The three white arrows highlight three examples of sample misidentification; 
(b) LC sample (0.02 mg/mL) with artifacts pseudo-colored in red and validated 
PS pseudo-colored in cyan; and (c) HC sample (0.2 mg/mL) with artifacts 
pseudo-colored in red and validated PS pseudo-colored in cyan (Scale bar: 1 
μm). The size distributions for the (d) misidentified PS in the CTRL samples; 
(e) validated PS in the LC samples; and (f) validated PS in the HC samples. 
Comparison between the total of number of PC found and the qSPACE VC in 
the (g) CTRL samples, (h) LC samples, and (i) HC samples. 
 

Figure 5-18: (a) Histograms showing the size distribution of artifacts identified from 4 
reconstructions of the control sample (809 clusters with average size120±4 nm) 
and clusters identified as artifacts in the LC (504 clusters with average size 
111±5 nm) and HC (501 clusters with average size 90±7 nm) PS samples by 
qSPACE. (b) Histograms showing the size distribution of artifacts identified in 
4 reconstructions of the control sample (229 clusters with average size 199±2 
nm) and clusters identified as artifacts in the LC (273 clusters with average size 
220±11 nm) and HC (186 clusters with average size 211±8 nm) PS samples by 
sPAINT (clusters formed from localizations with λmax outside the SW filter). 
 

Figure 5-19: The average emission spectra of NR in solutions containing PS and sample 
preparation reagents (BSA and NEU) measured using a fluorimeter. 
 

Figure 6-1: Schematic showing how image resolution is improved by molecular 
discrimination. (a) Due to the wave nature of light, when light comes from a 
point emitter focused by an optical imaging system, the interference can result 
in a blurred distribution of light called a PSF. (b-c) The size of the PSF sets up 
the fundamental resolution limit of an optical imaging system, namely Abbe 
diffraction limit. (d-f) In SMLM, the probable location of a single fluorescent 
molecule can be estimated from the centroid of the fluorescence diffraction 
pattern produced on a camera. The localization precision is determined by the 
photon count collected in each captured frame. The scatter plot and rendered 
image of 100 blinking events indicate a localization precision of ~30 nm. (g-i) 
Through molecular discrimination, blinking events can be combined, resulting 
in an improved localization precision of sub-3 nm. (j) Improved resolution 
using photon accumulation with respect to the number of blinking events (NB). 
White crosses denoted positions of all localizations in each test and red crosses 
denoted their centroids (upper panel). Reconstructed images only using 
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centroids (middle panel). Localization precision is calculated along the x-axis 
and its intensity was then normalized for comparison, which are 28.57 nm, 
13.24 nm, 9.02 nm, 6.40 nm, 3.89 nm, and 2.85 nm for NB=1, 5, 10, 20, 50, 
and 100, respectively (lower panel). (k) Simulated localization precision with 
respect to NB. Error bars are from 100 independent simulations. (l) The black 
line is the curve calculated by 𝜎𝜎0 √𝑁𝑁𝑁𝑁⁄ , where 𝜎𝜎0 is the localization precision 
at NB=1. 
 

Figure 6-2: Illustration of two different paths to combine all photons from the same 
molecule. Simulated stochastic emission events from the same single molecule 
(a) Simulated diffraction-limited spatial images and their respective 
reconstructed locations. (b) Sum of the photons in the diffraction-limited image 
(c) Location of the emitter after combining all photons from different blinking 
events. (d) All single molecule localizations are combined after reconstruction. 
(e) The centroid of all localizations from the same molecule. (f) The location 
of the emission events after the reconstruction based on option 1 overlaps with 
the centroid of the combined localizations after taking option 2. 
 

Figure 6-3: Experimental demonstration of PACER in achieving a 1.7-nm localization 
precision. (a) The schematic of sSMLM. (b) One frame of the spatial images 
and (c) one frame of the simultaneously acquired spectral images of the QD 
sample. (d) The scatter plot of localization events in the red dashed box in (b). 
(e) Histogram of the SC distribution. (f) Fluorescence spectra of three QDs 
after classifying by SCs using spectral intensity threshold of 300, 460, and 480 
photons, respectively, and spectral windows of 575-585 nm, 585-600 nm, and 
615-625 nm, respectively, as filtering criteria. The corresponding SC of each 
fluorescence spectrum is noted as an open circle in the plot. (g) Rendered 
sSMLM images after combining multiple emission events with NB of 1, 10, 
and 100, respectively. (h) Line profiles across two QDs in (g) with NB of 1, 
10, 100. 
 

Figure 6-4: Identification of individual QDs. (a-c) Single frames with emission from QD1, 
QD2 and QD3 respectively occurring from the same location highlighted in the 
red dashed box. (d) Normalized emission spectra of QD1, QD2 and QD3 
extracted from spectral images in (a-c). 
 

Figure 6-5: Illustration of resolution improvement using QDs through PACER. (a) 
Rendered sSMLM images after combining multiple emission events with NB 
of 1, 5, 10, 50, and 100, respectively. (b) The corresponding line profiles across 
two QDs. 
 

Figure 6-6: Experimental validation of PACER using DNA nanoruler samples. (a) 
Schematic illustration of a DNA nanoruler labeled with a pair of AF647 
featuring a predefined mark-to-mark distance. (b) Representative emission 



22 
 

 

spectra of two molecules on one nanoruler. (c) Histogram of SCs indicates the 
existence of two molecules with distinct spectral signatures on one nanoruler. 
(d) The average spectra of the two molecules separated by SC at the wavelength 
of 669 nm. (e) Schematic of a DNA nanoruler featuring mark-to-mark distance 
of 23 nm. (f) The scatter plot and (g) the rendered sSMLM image of localization 
events with colors indicating distinct spectral signatures after stage drift 
correction. (h) Comparison of molecule location in SMLM image (the dashed 
black line) and sSMLM images without (the dashed colored lines) and with 
(the solid colored lines) PACER. (i) Calculated location of molecules through 
PACER. (j) Histogram of mark-to-mark distance measured from 57 nanorulers. 
The representative results of a DNA nanoruler featuring mark-to-mark distance 
of (k-n) 11 nm and (o-r) 6 nm. 
 

Figure 6-7: PACER imaging DNA origami nanogrids consisting of a 3×3 array of AF647 
fluorescent molecules with 11-nm inter-molecular spacing. (a) Schematic 
illustration of the DNA origami nanogrid labeled with 3×3 array of AF647 with 
11-nm inter-molecular spacing. (b) Conventional SMLM reconstruction of all 
stochastic blinking events. (c) All events can be separated to seven clusters 
based on their spatial locations and SCs in the extended spatial-spectral 
domain. (d) The corresponding sSMLM reconstruction with pseudo-colors 
assigned to seven clusters. (e) Locations of fluorophores calculated after 
PACER. Black circles represent the localization precision after PACER. The 
gray dashed circles represent the best guess of the location and orientation of 
the nanogrid. 
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CHAPTER 1: Introduction 

 

1.1 Background and Motivation 

Since its invention, optical imaging has enabled discoveries which have improved our 

understanding of the world around us and beyond. Fluorescence microscopy (FM) in particular, 

has been an essential tool for visualizing cells, biomolecules (e.g. proteins, nucleic acids and 

cellular vesicles), and synthetic materials (e.g. synthetic vesicles, polymer fibers, and quantum 

dots) (1, 2). As a result, many quantitative methods have been developed to maximize the amount 

of information which can be extracted from imaging experiments. For example, quantitative image 

analysis for FM has been used to quantify the number of particles within the cell (3-6), measure 

the uptake of nanoparticles by cells (7), and characterize immobilized biomolecules (8-12). 

However, due to the diffraction limit of light (13), FM cannot be used to directly visualize 

molecules and structures smaller than ~250 nm. To address the limited resolution of FM, many 

studies have been combined with electron microscopy (EM) (14) and atomic force microscopy 

(AFM) (15) which can achieve nanometer scale resolutions. However, invasive sample preparation 

steps for both EM and AFM can alter the native environment of the cells and biomolecules making 

these methods prone to artifacts which can obscure the true structure of the sample (16). 

Scientists have developed super-resolution techniques such as single-molecule localization 

microscopy (SMLM) (17, 18), stimulated emission depletion (STED) microscopy (19), and 

structured illumination microscopy (SIM) (20) to overcome the diffraction limit of light. The 

discovery of SMLM and STED led to the award of the Nobel Prize in Chemistry to Profs. Eric 

Betzig, William E. Moerner and Stefan Hell in 2014. The advancement of super-resolution 
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microscopy (SRM) has also led to the development of new quantitative analyses particularly using 

SMLM. Quantitative SMLM, has allowed scientists to count the number of subunits which make 

up a complex structure (8, 21-23), quantify the number of nanostructures in a region of interest 

(24-26), and characterize biomolecules within cells (27-29). 

 This dissertation will focus on the development of quantitative methods using a recently 

developed derivative of SMLM called spectroscopic single-molecule localization microscopy 

(sSMLM) which simultaneously captures the full emission spectrum and location of stochastically 

emitting molecules (30-32). This chapter will provide the relevant background to understand FM 

and SRM with a focus on SMLM. Additionally, this chapter will discuss the challenges of 

developing quantitative methods using SMLM. Finally, a brief summary of the remaining chapters 

of this dissertation will be provided.  

 

1.1.1 Fluorescence Microscopy 

FM is enabled by fluorophores or fluorochromes which absorb photons of a specific energy level 

and emit photons with less energy (red-shifted or with a longer wavelength with respect to the 

absorbed light) (33, 34). Figure 1-1 features a simplified Jablonksi diagram which describes the 

physical and molecular basis for the theory of fluorescence excitation and emission (35). Using 

this basic principle, scientists and engineers have developed a range of optical system, fluorescent 

molecules, labeling strategies, and experimental techniques to maximize the high contrast achieved 

using FM.  
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Figure 1-1: Simplified Jablonski diagram showing various fluorescent and non-fluorescent states. 
During traditional FM experiments, a fluorophore absorbs a photon from the excitation beam 
causing an electron in the ground state (S0) to be promoted to the excited state (S1). Fluorescence 
occurs when the excited electron undergoes internal conversion and vibrational relaxation resulting 
in a release of energy in the form of a photon with less energy or a longer wavelength. In SMLM 
electrons in the S1 can undergo intersystem crossing (ISC) to a triplet state or weakly fluorescent 
state. In this state many fluorophores can be reduced using chemical reagents (e.g. β-
mercaptoethanol (BME) or mercaptoethylamine (MEA)) which cause transitions to more stable 
non-fluorescent or dark states via to ISC. The electrons will then undergo additional ISC or react 
with oxygen (O2) and undergo non-radiative relaxation (NRR) returning to S0 releasing 
fluorescence in the process.  
 

In general, standard FM systems utilize a widefield or epifluorescence setup where 

microscopes are equipped with filter cubes which contain two filters and a dichroic mirror placed 

at a 45-degree angle (2). First, the excitation filter allows light within the excitation band to be 

transmitted to the dichroic mirror which reflects the light onto the sample labeled with 

fluorophores. When the excitation light interacts with the sample, the fluorophores absorb the light 

and emit red-shifted light which is transmitted through the dichroic mirror and emission filter to 

the detector (2). Widefield systems are the most common type of FM optical system due to its 

straightforward and relatively inexpensive design (2). Additionally, widefield FM is ideal for 
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dynamic or time-sensitive measurements. However, widefield systems have several limitations 

which include the fading of fluorophores and the detection of unwanted fluorescence from out-of-

focus fluorophores (2). 

 Fading can occur in two ways, first there is photobleaching where the fluorophores become 

unable to absorb light due to prolonged exposure to the illumination source (2). Fluorophores can 

also be quenched, meaning photons are transferred to a dark state where fluorescence is suppressed 

for a longtime period as described in Figure 1-1. Fading is particularly challenging for thick 

samples and three-dimensional (3D) imaging (1). To reduce the impact of fading, antifade buffers 

and controlling the illumination intensity have been used, however, these approaches only have a 

limited overall impact. Additionally, antifade buffers cannot always be used when imaging 

biological samples. Typically, to reduce out-of-focus background signals, total internal reflection 

fluorescence (TIRF) has been used to image molecules at the glass interface with significantly 

higher signal-to-noise ratio (SNR) (1). In a widefield system, light propagation at the interface 

between two media with different refractive indices n1 and n2 is described by Snell’s Law  

𝑛𝑛1𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑛𝑛2𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , (1-1) 

where 𝜃𝜃𝑖𝑖𝑖𝑖and 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 are the angle of incidence and the angle of refraction respectively (1). When 

illuminating the coverslip using a collimated beam, light propagates through the first medium 

(glass: n1 = nglass) to the second medium (the aqueous environment of the sample: n2 = nsample) with 

nsample < nglass,  the beam is then refracted through the glass-sample interface at an 𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 (1). 

By changing the 𝜃𝜃𝑖𝑖𝑖𝑖 to the critical angle (𝜃𝜃𝑐𝑐) which is described by sin𝜃𝜃𝑐𝑐 = 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 , the refracted 

beam propagates parallel to the surface and when  𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑐𝑐 light is propagated back into the first 

medium, thus achieving  TIRF (1). In the TIRF configuration, the excitation intensity decreases 
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exponentially with increasing distance from the glass surface along the axial direction (1). As a 

result, only fluorophores close to the surface are excited. Therefore, TIRF is only applicable for 

surface measurements, and unwanted fluorescence from out-of-focus fluorophores continues to be 

a challenge for 3D imaging and for imaging thick samples (1). 

  Alternatively, confocal and multi-photon optical systems have both been developed to 

resolve these challenges. A confocal microscope is equipped with a pinhole to prevent out-of-focus 

fluorescence from being detected (1, 2, 36). Additionally, since only fluorophores in the focal 

plane can be detected, confocal microscopes rely on laser scanning in order to capture the full 

sample (1). This makes confocal microscopy relatively slow and therefore ill-suited for imaging 

highly dynamic processes (1). Confocal microscopy is also still susceptible to fading since the out-

of-focus fluorophores are still exposed to the excitation beam. Two-photon and multi-photon 

microscopy are based on non-linear optical processes which significantly reduce fading and limit 

the detection of out-of-focus light (1). Briefly, multi-photon imaging systems rely on a single 

fluorophore absorbing two or more photons at the same time (1). To achieve this, multi-photon 

microscopes rely on high-power femtosecond mode locked pulsed lasers with a longer wavelength 

typical used for a given fluorophore (1).  Since multi-photon systems confine fluorescence to the 

focal plane, they are immune to fading and detection of fluorescence from out-of-focus 

fluorophores. This allows for improved resolution in the axial domain for 3D imaging and 

improves the image quality of thick samples (37). However, like confocal microscopes, multi-

photon microscopes also rely on laser scanning, thus limiting its applicability for imaging dynamic 

processes (1). Even when combined with deconvolution methods which numerically improve the 
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image resolution, the achievable resolution using these systems is still limited to around 200 nm 

(1, 37). 

 

1.1.2 Quantitative Fluorescence Microscopy 

In quantitative FM studies, the intensity of the detected fluorescence is used as a proxy for the 

local concentration of labeled molecules (38, 39). This is very challenging since many factors can 

affect intensity measurements, including but not limited to the brightness of the fluorescent signal, 

noise from experimental components, background signals, and the uniformity of the illumination 

beam (38). Therefore, much care and attention to detail must be taken when designing 

experimental and analysis protocols for quantitative studies (38, 39). One typical application of 

quantitative FM is to characterize the dimensions of structures and measure the distances between 

molecules. However, due to the fundamental diffraction limit of light measurements can only be 

directly measured for molecules ~250 nm apart (1, 37, 40).  

This fundamental limit is due to wave nature of light which was first described by Ernst 

Abbe (13) as 

𝑅𝑅𝑥𝑥,𝑦𝑦= λ
2𝑁𝑁𝑁𝑁

 , (1-2) 

where Rx,y is the lateral resolution, λ is the wavelength of light and NA is the numerical aperture 

of the optical system. Therefore, even with an ideal optical system, the achievable resolution is 

limited to half the wavelength of visible light. Additionally, Abbe described the axial resolution 

(Rz) as 

𝑅𝑅𝑧𝑧= 2 𝜆𝜆
𝑁𝑁𝑁𝑁2

 , (1-3) 
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The diffraction limit can be further described using Rayleigh’s criteria (𝑅𝑅𝑥𝑥,𝑦𝑦 =  0.61𝜆𝜆
𝑁𝑁𝑁𝑁

  ) which 

captures the distance at which the images of two distinct point sources can no longer be 

distinguished (Figure 1-2a-c) (37). In addition to the optical resolution limit, the spatial density of 

the image, which is dependent on the number of pixels contained in the digital image, is also 

important for achieving the highest possible image resolution (1). The Nyquist-Shannon sampling 

theory requires the sampling rate to be at least twice the highest spatial frequency in the diffraction 

limited image (1). For example, when imaging a single molecule with a full width half maximum 

(FWHM) of 200 nm the maximum pixel size of the camera should be ~FWHM/2 (1). Therefore, 

to ensure the desired image resolution is achieved, detectors with appropriate pixel sizes must be 

selected.  Figure 1-2d shows a nanostructure and Figure 1-2e shows the resulting from 

conventional microscopy.  
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Figure 1-2: Illustration of the Rayleigh Criterion showing the pairs of (a) resolvable, (b) barely 
resolvable and (c) unresolvable molecules. An example, showing a (d) 200 nm fluorescent 
sample (ground truth), imaged using conventional microscopy. (e)The image appears blurred due 
to the diffraction limit of light. However, using (f) SMLM where photo-switchable or 
photoactivatable dyes and proteins are used to separate emission events in time and space. (g) 
The locations of single-molecules after Gaussian fitting and the (h) resulting super-resolution 
reconstruction. 

 

Single-molecule imaging and spectroscopy has been achieved by imaging well separated 

fluorescent molecules (3, 41-43). The utility of this technique for performing quantitative imaging 

was first demonstrated by tracking of myosin V molecules movement along actin filaments (44). 

However, because single-molecule imaging techniques require the sparse distribution of molecules 

for direct quantitative measurements, alternative methods have been developed to characterize 

dense clusters of molecules (40, 45). For example, sequential photobleaching experiments have 

been developed to estimate the number of fluorescent proteins or dye molecules in a dense cluster 

in order to identify subunits of proteins or quantify dyes encapsulated in vesicles (8, 12). 

Additionally, Förster resonance energy transfer (FRET) has been developed to measure distances 

below the diffraction limit (46, 47). FRET experiments measure the intensity change between two 
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appropriate fluorophores which are 10 nm or less apart. The FRET efficiency (46) can be 

calculated by 

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹= 1

1+� 𝑟𝑟
𝑅𝑅0
�
6  , (1-4) 

where r is the distance between two molecules and R0 is the characteristic distance where the FRET 

efficiency is 50 percent (46). FRET probes also need to be appropriately selected so the emission 

spectrum of the donor probe (e.g. Cyanine 3) overlaps with the absorption spectrum of the reporter 

probe (e.g. Cyanine 5) (46, 47). However, FRET measurements are limited to short length scales 

(<10 nm) and do not enable direct visualization of the individual molecules (46, 47).  

 

1.1.3 Super-Resolution Microscopy 

SRM was developed to overcome the diffraction limit, thus enabling new discoveries. SIM uses 

patterned illumination, typically a grating pattern, projected onto the sample and recorded at a 

range of orientations (1, 20, 48). Frequency information is determined using Fourier analysis to 

calculate the correct spatial positions of the signals (20, 48). The resolution improvement is 

constrained by the periodicity of the grating pattern; however, other optical constraints limit the 

lateral and axial resolutions to about ~125 nm and ~300 nm respectively (20, 48-50). Though the 

resolution improvements using SIM are limited, the use of relatively low power illumination, high 

speed interference pattern generation along with standard dyes and labeling protocols has enabled 

live cell imaging with a temporal resolution on the order of milliseconds to seconds (51, 52). To 

further improve the technique, non-linear SIM which uses photo-switchable probes has been 

developed to improve the lateral resolution to 50 nm but at reduced temporal resolution on the 

order of seconds to minutes (20). 
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STED uses a donut-shaped illumination pattern where a low power illumination beam is 

used to restrict fluorescence to the central focal point with a diameter well below the diffraction 

limit (19).  Using high-power illumination of a longer wavelength than the excitation beam, 

fluorescent emission from fluorophores surrounding the central focal point are depleted (19). This 

allows only fluorophores in the central point to be recorded and enables images with ~50 nm lateral 

resolution (40, 48). Additionally, because STED uses laser scanning it has been combined with 

optical sectioning to achieve 3D imaging of both thin and thick samples with typical axial 

resolutions of ~150 nm (53). STED has also been demonstrated in live cell (54), live tissue (55), 

and live mouse (56) studies with a temporal resolution on the order of seconds. While the high-

power depletion beam is necessary for achieving the improved resolution, it can result in 

photodamage to the samples (57). To address this challenge, reversible saturated optical 

fluorescent translations (RESOLFT) a variation of STED which takes advantage of photo-

switchable fluorophores to enable reduction of emission from fluorophores surrounding the center 

point of the illumination pattern using lower power illumination was developed (57). Further, the 

development of minimal photon fluxes (MINFLUX) which uses single-molecule localization 

techniques combined with STED/RESOLFT to more precisely determine the true location of the 

detected fluorophores has allowed for sub-10 nm imaging resolutions to be achieved (58-60). Since 

STED’s illumination pattern only allows a small FOV to be excited at a time, a scanning laser is 

used to image larger FOVs. Additionally, arrays of STED illumination beams have been used to 

image dynamic processes (59). While, this eliminates the time-scale constraints of STED it makes 

large FOV imaging expensive and challenging to implement.   
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SMLM relies on the detection of “on-off” emission events from fluorescent molecules 

which allows the position of individual molecules to be estimated with high precision (17, 18). In 

order for SMLM to be achieved, multiple frames of well-spaced emission events from molecules 

at random positions in the sample are recorded.  Next, the blurred distribution of light or point 

spread function (PSF) (Figure 1-2f) of each emission event is fitted with a Gaussian and the 

location of the emitter is estimated with a localization precision (σ) (Figure 1-2g) described by (61, 

62) 

𝜎𝜎 = ��
𝑠𝑠𝑖𝑖2 + 𝑎𝑎2/12

𝑁𝑁
��

16
9

+ 4 𝜏𝜏�, 
(1-5) 

where si is the standard deviation of the Gaussian fit in the x and y directions, a is the pixel size of 

the electron multiplying charge-coupled device (EMCCD), N is the number of detected photons, 

𝜏𝜏 = 2𝜋𝜋𝑏𝑏2�𝑠𝑠𝑖𝑖
2+𝑎𝑎2/12�
𝑁𝑁𝑎𝑎2

, and b is the standard deviation of the camera background. Finally, after 

locating each emission event, a super-resolution image can be reconstructed as shown in Figure 1-

3h. To enable the “on-off” emission required for SMLM, a variety of strategies have been 

developed.  

The most common SMLM strategies are photoactivation localization microscopy (PALM) 

(17), stochastic optical reconstruction microscopy (STORM) (18, 63, 64), and point accumulation 

for imaging in nanoscale topography (PAINT) (65). PALM traditionally relies on the 

photoactivation and subsequent photobleaching of photoactivatable proteins produced by 

genetically modified cells (17, 27). Repeated photoactivation and photobleaching steps are used 

to control the random photoactivation of the proteins (17). PALM is ideal for live cell imaging 

since the cell itself produces the fluorescent proteins, however, the use of genetically modified 
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cells has made sample preparation challenging. Additionally, the limited number of fluorescent 

proteins available reduces its applicability for multicolor studies. However, these challenges are 

being overcome by the production of new photoactivable dyes and proteins for imaging live and 

fixed cells (66, 67).   Meanwhile, STORM relies on the photo-switching of specially designed 

FRET probes or dyes which react with reducing buffers (e.g. BME and MEA as described in Figure 

1-1) (18, 63, 68, 69). The photo-switching process reduces the probability of multiple fluorophores 

simultaneously emitting within the same spatial region (18, 63, 68, 69). While STORM is easier 

to implement and enables the use of a wide range of off the shelf fluorophores (70), various 

labeling strategies are required to attach the dyes to the biomolecules and cellular features being 

imaged. For example, immuno-labeling which uses antibodies chemically functionalized with 

STORM dyes requires the cell membrane to be permeabilized in order for the labels to be attached 

to the cellular targets (69). These additional sample preparation steps can introduce fluorescent 

impurities or cause artifacts which may obscure experimental results (71). PAINT relies on dyes 

which have an affinity for specific conditions (65, 72-74). For example, Nile Red (NR) is a 

fluorescent molecule which transiently binds to non-polar (hydrophobic or water repelling) 

environments and only fluoresces when bound to the target molecule (65). The transient binding 

of the freely diffusing probes, therefore, creates the “on-off” signals required for SMLM (65, 72-

74). DNA-PAINT is a variation of PAINT which uses labeled DNA molecules which transiently 

bind to complementary DNA strands (75, 76). One significant challenge for PAINT and its 

variants, is the high background fluorescence due to the freely diffusing probes (73, 76, 77). To 

address this, TIRF systems are typically used to improve the SNR. However, this limits PAINT to 

use in thin samples or surface immobilized molecules. Recently, FRET-based DNA-PAINT has 
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been developed to address this issue, however, photobleaching of the acceptor probes has limited 

its utility (78).  

Since SMLM, uses widefield imaging, a variety of optical designs have been developed to 

achieve 3D imaging. These methods include the astigmatism method which uses a cylindrical lens 

to modify the PSF in the axial domain (64). Additionally, biplane optical designs split the single 

molecule emission events into two separate channels and use the spatial information from each 

channel to estimate the axial positions of the emission events (79, 80). Additionally, 4Pi 

interferometric methods which capture the self-interference of each emission event to estimate the 

emitter’s axial location have also been developed (81, 82).  

While all three super-resolution imaging modalities allow for visualization of molecules 

with high resolutions, SMLM has unlocked the potential for a range of new quantitative analyses. 

Unlike SIM, SMLM enables much higher image resolutions (SIM: 100 nm vs SMLM: 10 nm). 

Further, SMLM captures widefield images and unlike STED variants, SMLM doesn’t require laser 

scanning or laser arrays to capture large FOVs. Although the temporal resolution is limited to the 

order of seconds to minutes and the imaging depth is limited to a few micrometers, the high 

resolution achieved by SMLM makes it useful for many quantitative applications (48, 83).  

 

1.1.4 Quantitative Single-Molecule Localization Microscopy (SMLM) 

Quantitative SMLM has facilitated our improved understanding of biomolecules both within and 

outside of cells. By taking advantage of the localization of individual molecules, many studies 

have been developed to quantify the number of biomolecules (5, 25, 84), characterize them in 

terms of their subunits (12, 21, 22, 24), size (85, 86), and volume (86). Additionally, the 
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colocalization of biomolecules have been determined by measuring the distance between two 

molecules (87). The stoichiometry of densely packed protein clusters has also been measured using 

SMLM (21, 22, 88). One requirement for quantitative SMLM is the identification of emission 

events from one or more fluorophores attached to a single biomolecule. Nearest neighbor analysis 

(89), Ripley’s K (90), pair correlation (91), and density-based clustering (92-94) are all techniques 

used to identify spatial patterns in SMLM data.  

Here we give two examples of quantitative SMLM, the first details the colocalization 

measurements of muscleblind-like (MBNL) ribonucleic acid (RNA) splicing protein and RNA 

molecules using nearest neighbor analysis from a study published in JCI Insight (87). The second 

example shows the use of cluster analysis to count and size nuclear pore clusters (NPCs) in the 

cell nucleus. We first estimate the distance between MBNL and RNA within fixed induced 

pluripotent stem cells (iPSC) from patients with Myotonic Dystrophy (DM) and healthy controls 

(87). DM is a genetic disease which is caused by repeating sequences in the autosomal genes 

resulting in prolonged skeletal muscle contraction, muscle weakness, and cardiac complications 

(87).  Figure 1-3 shows the measurement of the distance between MBNL protein immuno-labeled 

with Alexa Fluor 488 (AF488) antibodies and RNA sequences labeled with Alexa Fluor 647 

(AF647) using RNA fluorescent in situ hybridization (FISH) probes and comparing DM Type 1 

(DM1) cells relative to control (healthy) cells (Figure 1-3a) and DM Type 2 (DM2) cells relative 

to control cells (Figure 1-3b) (87). Using nearest-neighbor analysis, the center location or foci for 

labels associated with individual RNA and MBNL molecules was determined (87). The distances 

between RNA foci and the nearest MBNL foci in 14-16 cells for each type were then estimated 

using pair correlation functions (91) and the histogram plotted for the cells (Figure 1-3) (87). These 
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single cell measurements supported the hypothesis that patients with DM1 have MBNL proteins 

which are colocalized with DM1 RNA (87). 

 

 

Figure 1-3: (A and B) Using probes specific to the RNA repeat expansions, FISH was used to 
monitor RNA foci and their proximity to MBNL using total internal reflection fluorescence. The 
cells were colabeled with an antibody to MBNL1 (green). Control iPSC-CMs were labeled with a 
repeat probe for DM1 (CAG)5 in A and for DM2 (CAGG)10 in B. The distance between RNA foci 
and MBNL1 foci was quantified. Because MBNL1 foci were only readily detected in DM1 
cardiomyocytes, the data from control and DM2 cells represent background signal. Thus, this 
method was used to measure the distance between RNA repeat expansions and MBNL1 in DM1. 
(A) RNA foci colocalized with MBNL1 foci in DM1 cardiomyocytes, and the distance between 
RNA foci and MBNL1 averaged 200 nm, consistent with a very close physical association between 
RNA repeat expansions and MBNL. Control cardiomyocytes displayed a random distribution of 
distances (top panel), reflecting the absence of RNA foci and MBNL foci. (B) In DM2 
cardiomyocytes, there was no colocalization of RNA foci with MBNL foci, reflecting the absence 
of MBNL clusters and a pattern similar to cells from healthy controls. Correspondingly, the 
distances were randomly distributed, similar to control iPSC-CMs (similar distribution between 
top and bottom panels). Scale bar: 5 μm (left);1 μm (right). 
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While this approach allows for successful identification of colocalization between MBNL 

and RNA, there are several key experimental steps which need to be considered. Since the proteins 

are label with fluorophores which do not absorb the same wavelength of light, sequential 

acquisition steps using different laser lines and filter sets to image the protein and RNA are 

required. This approach presents several challenges, the first is the potential cross talk between 

fluorophores in each channel (63). To prevent this, appropriate filter cubes, fluorophores, and 

excitation strategies must be selected when designing the experiment (63). The second challenge 

is presented by the system alignment since different lasers and filter sets must be used. In order to 

prevent uneven illumination of the sample during the experiment, both lasers must be carefully 

aligned (38). Additionally, a pixel registration process can be implemented with both channels in 

order to remove any aberrations induced by the differences in the optical components used for 

each channel (76).  Sample drift between acquisition steps must also be minimized. Typically, 

landmarks in the image can be used to correct artifacts due to drifting, these landmarks can come 

from the sample itself or by adding multicolor fluorescent beads to the sample before beginning 

the experiment (76). While most of these challenges can be addressed by careful experiment 

design, the presence of any fluorescent impurities which may originate from sample preparation 

steps cannot be identified using this approach (71, 95). Fluorescence may also be generated from 

the cell itself (96, 97). For example, intrinsic fluorescence observed in DNA molecules has been 

used to reconstruct images of DNA oligonucleotides, chromatin within cells, and chromosomes 

separated from cells (98). The influence of the length and nucleotide composition of the DNA was 

also investigated in order to better understand this phenomenon (99). Additionally, non-

specifically bound probes can make it challenging to identify the fluorophores specifically bound 



40 
 

 

to the sample (73, 100). Typically, photon thresholds or a threshold on the number of emission 

events from each molecule can be used to remove unwanted emission events, however, without 

understanding the origin of these emission events it is difficult to develop methods to avoid them 

(83). 

In our second example, we immuno-labeled the NUP98 proteins in the NPCs (101) with 

AF647 antibodies and used density-based clustering analysis to identify emission events spatially 

related to individual NPCs in fixed undifferentiated (UD) (Figures 1-4a and c) and differentiated 

(DF) (Figures 1-4b and d) primary keratinocytes.  Figure 1-4e shows the comparison between the 

number of NPCs in 7 UD and 7 DF cells. We also estimated the size of the individual clusters and 

show the histograms for clusters in both cell populations in Figure 1-4f. Finally, we show a change 

in the density of the NPCs between DF and UD cells in Figure 1-4g. This study indicates that 

NPCs are more numerous and more densely distributed in UD cells than DF cells. 
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Figure 1-4: SMLM image reconstructions of (a) a representative undifferentiated (UD) cell and 
(b) a representative differentiated (DF) cell (Scale bars: 5 μm). Selected 10 μm × 10 μm ROIs 
within the nucleus of the (c) UD and (d) DF cells. (Scale bars: 1 μm) (e) Comparison of the number 
of NPCs in the ROIs from 7 UD and 7 DF cells. (f) Size histograms of the sizes of the NPCs found 
in both cell types. (g) The density of the NPC clusters within the 10 μm × 10 μm ROIs. 

 

In this example, only a single channel is used for analysis. The major concerns for this type 

of analysis is establishing appropriate parameters for cluster analysis. In this case, fluorescent 

impurities (95) and non-specifically bound probes (73, 100) can make it challenging to select 

appropriate cluster analysis parameters specifically the minimum number of points within a cluster 

and the associated cluster radius (CR) for defining clusters (83, 92). Typically, the number of 

emission events or the photons from each emission event is used to set thresholds to exclude 
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emission associated with impurities and non-specific binding (83, 95). However, these thresholds 

may also remove many emission events associated with fluorophores labeled to the NPCs. This 

can result in an under estimation of the size of the NPC clusters due to poor molecular sampling 

(the portion of the molecule which is visualized) (102). Additionally, undercounting and 

overcounting artifacts can also occur due to the exclusion of the true sample or inclusion of 

impurities and non-specifically bound probes (83). Inaccurate merging of emission events can also 

lead to erroneous spatial and temporal measurements during quantitative SMLM.  

While quantitative SMLM is a powerful tool for visualizing and characterizing 

biomolecules, there are several challenges which can result in misinterpretation of the results. 

These challenges include overcounting of blinking events, artifacts from fluorescent impurities 

and non-specific binding, undercounting due to over filtering (83), focal drift during acquisition, 

and registration of different colored imaging channels (76). In this dissertation we introduce 

sSMLM and demonstrate how it can be used to address several challenges of quantitative SMLM. 

 

1.3 Dissertation Outline 

This dissertation has three central objectives. The first will provide the necessary information 

for understanding the advancements in super-resolution imaging achieved by sSMLM. Second, 

efforts to make sSMLM more accessible by implementing an open-source ImageJ plug-in will be 

discussed. Finally, the use of spectroscopic analysis provided by sSMLM to improve quantitative 

measurements of nanostructures will be outlined using three examples. Chapter 2 of this 

dissertation will provide a review of sSMLM and is applications to date.  
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Chapter 3 will focus on the development of RainbowSTORM, a user-friendly ImageJ plug-

in, for calibrating sSMLM systems, analyzing sSMLM images, and visualizing sSMLM data. We 

also show the equations for calculating spectroscopic fields as well as the algorithms for 

performing background subtraction and identifying localizations with overlapping spectra. 

Additionally, we compare the performance of RainbowSTORM’s estimation of the spectral 

precision to the theoretical spectral precision using simulated sSMLM images.  

Chapters 4 to 6 will show examples of spectroscopic analysis for improving quantitative 

SMLM. Chapter 4 of this dissertation shows the existence and origins of fluorescent impurities in 

SMLM. We further demonstrate that these impurities are unavoidable since they originate from 

necessary sample preparation steps. To address this challenge, we developed a spectral fitting 

algorithm to identify and reject fluorescent impurities based on their spectroscopic signatures. We 

used immobilized nanorulers to establish a ground truth and define the sensitivity and specificity 

of the established method for identifying the true sample. We also show how sSMLM and its 

ability to reject fluorescent impurities can improve specificity in quantitative imaging and prevent 

misrepresentation of the structure of the true sample. We then apply our spectral fitting method to 

reject fluorescent impurities in images of immobilized DNA fibers. 

In Chapter 5, we utilized spectroscopic PAINT (sPAINT) to quantitatively image 

immobilized nanocarriers or polymersomes (PS). We first show how sPAINT can be used to 

specifically identify the PS sample. We also show that sPAINT can reduce the number of 

localizations used for image reconstruction due to the restrictive photon budget required for 

spectroscopic analysis. To address this, we developed quantitative spectroscopic analysis for 

cluster extraction (qSPACE) which combines the specificity achieved by spectroscopic analysis 
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with density-based cluster analysis to enable accurate sizing of PS under aqueous conditions. We 

then employed qSPACE to accurately size and count immobilized PS from solution with different 

PS concentrations. 

Chapter 6 of this dissertation will demonstrate how sSMLM and spectral heterogeneity 

(SH) of fluorescent molecules of the same species can be used to classify individual molecules. 

Using the molecular discrimination capabilities of sSMLM, we developed photon-accumulation 

enhanced resolution (PACER) to perform sub-2 nm precision imaging. We then show how PACER 

can be used to accurately measure the distance between fluorophores on nanorulers. We further 

show how PACER can be used to a reconstruct the image of a densely packed nanogrid sample.  

Finally, Chapter 7 will summarize the findings of this dissertation and present future 

perspectives for advancing quantitative sSMLM.  
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CHAPTER 2: Spectroscopic Single-Molecule Localization Microscopy 

(sSMLM) 

 

2.1 Introduction 

Spectroscopic single-molecule localization microscopy (sSMLM) is a correlative imaging 

technique which simultaneously records the location and the full emission spectrum of each single-

molecule emission event (30-32). Figure 2-1 shows an example of a typical grating-based sSMLM 

system (31) which separates the fluorescent signals into the zeroth order containing the spatial 

information and the first order containing the spectral information. Both signals are then captured 

on different sections of an electron multiplying charge-coupled device (EMCCD). As shown in 

Figure 2-1f and 2-1g, the spectra can be used to classify molecules using a single detection channel. 

This capability allows for a wider range of dyes to be detected during one acquisition cycle. This 

method has enabled the generation of multicolor images (30, 31, 103) as well as the development 

of new functional imaging techniques which use variations in the spectral signals to understand 

the dyes’ local environment (104-108).   This chapter will focus on the different types of sSMLM 

systems and provide a brief review of the sSMLM applications to date.  
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Figure 2-1: The principle of sSMLM. (a) An example of a sSMLM detection channel which uses 
a diffraction grating to separate the spatial image (zeroth order) and spectral image (first order) 
simultaneously. For example, when a (b) 200 nm fluorescent sample (ground truth), is imaged 
using conventional microscopy the (c) images appears blurred due to the diffraction limit of light. 
However, using (d) SMLM where photo-switchable or photoactivatable dyes and proteins are used 
to separate emission events in time and space a (e) super-resolution image can be reconstructed by 
recording the location of each emission event. However, the identity of each emitter remains 
unknown. sSMLM can be used to recover this information because (f) the spectra of each emission 
event can be identified and used to reconstruct a (g) color-coded super-resolution image which 
better represents the true sample. 

 

2.2 sSMLM System Design 

sSMLM imaging systems utilize a dispersive element, typically a prism or a grating to generate 

the spectrum of a fluorescent signal (30-32). For sSMLM, the most common designs utilize prisms, 

reflective gratings (31), or transmission gratings (109). Unlike prisms, which require the use of a 

beam splitter to split the incident beam into two paths (30, 32), transmission gratings directly split 

light at a fixed ratio without any additional optical components (109). This allows transmission 

gratings to be used for more compact sSMLM system designs (109). Meanwhile, reflective 

gratings also split light into two paths at a fixed ratio, but they require mirrors to redirect the light 
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towards the detector (31, 110, 111). In addition, gratings disperse light linearly which makes the 

spectral calibration process more straightforward than prisms which disperse light non-linearly 

(112). However, prisms have higher efficiency than both types of gratings allowing for better SNR 

of the spatial and spectroscopic signals (112). In comparison to the spatial signal captured by the 

PSF, the dispersed spectral signal typically requires a higher photon budget in order for useful 

information to be extracted (109, 112). In typical sSMLM studies, either the weighted spectral 

mean (or spectral centroid) (λSC) (30, 99) or the emission maximum (λmax) (104) of each spectrum 

is calculated and used to color-code sSMLM image reconstructions. Additionally, depending on 

the number of spectral species which need to be detected, the spectral photons required for accurate 

identification of each species can be more restrictive (30, 109).  

 

2.3 Multicolor Imaging 

Multicolor sSMLM, use samples labeled with several dyes which can be excited by the same laser 

source and each emission event is mapped to its associated dye based on its λSC (30, 109). Thus 

far, four-color sSMLM has been used to image different cellular features (30). To achieve this, a 

dual-objective 4Pi prism-based system was used in order to maximize the photons from each 

single-molecule emission event (30). However, this design requires complicated alignment and is 

limited to thin samples which can be imaged using two objective lenses (30). For grating-based 

systems, it was found that tuning the level of spectral dispersion can be used to optimize the photon 

count in the spectral domain (109). Using this strategy, three different cellular features were 

imaged using sSMLM (109). Both methods require localizations with spectral photon counts 

below a specified level to be excluded which reduces the number of localizations which are utilized 
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for image reconstruction (113). This practice can have an impact on the image quality of the 

reconstructed images, since in some case the molecular sampling requirements for accurately 

reconstructing the labeled structures fail to be met (102). This is especially challenging for grating-

based systems which have lower signal levels than prism-based systems (109, 112). Machine-

learning (ML) has presented a promising solution to improving the utilization while maintaining 

the classification accuracy (113). To demonstrate this, the utilization ratio of two-color 

classification using a spectral photon cutoff criteria of 1000 photons was ~18% while the 

utilization ratio for ML was 42%, in both cases the classification accuracy was ~99% (113). Based 

on these results, new ML modules can be developed to classify the spectra from a wider range of 

dyes acquired using grating-based systems (113).  

 sSMLM has also enabled the identification of fluorescent impurities and the detection of 

variations in the emission spectra or spectral heterogeneity (SH) of dye molecules (30, 31, 109). 

When performing two-color sSMLM, spectrally distinct fluorescent signals not associated with 

the dyes used in the experiment were observed (31). These signals are believed to originate from 

fixation chemicals (71), residues associated with the fluorophores (95), or from intrinsic 

fluorescence from the cell itself (98, 99). This observation highlights the potential for the emission 

spectra to be used to identify and remove fluorescent impurities from image reconstructions. The 

removal of fluorescent impurities can have a significant impact on quantitative studies allowing 

for more accurate parameters for quantitative methods to be established (83, 92). We further 

explore this idea in Chapters 4 and 5. sSMLM can also be used to detect SH in multicolor imaging 

studies, by further studying this phenomenon the spectra can be used as a fingerprint for individual 
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dyes (31, 111). In Chapter 6, we will show how SH can be used to achieve sub-2 nm precision 

measurements using dyes of the same species.  

Three-dimensional (3D) sSMLM has also been implemented using two strategies. The first 

strategy is the astigmatism method which is implemented by placing a cylindrical lens into the 

spatial imaging path to manipulate the PSF as the z position changes (30, 64, 114). A calibration 

process is used to map the axial position to the ellipticity of the PSF by imaging immobilized 

single-color fluorescent beads (64). This approach has allowed for four-color sSMLM imaging 

with 10 nm lateral localization precision and 20 nm axial localization precision (30). However, 

there are several challenges presented by the astigmatism approach. The first challenge is the 

further reduction in the photon levels and consequentially the localization precision of sSMLM 

due to the addition of the cylindrical lens into the spatial imaging path (115). Additionally, since 

the cylindrical lens is only placed in the path for the spatial domain, there are differences in the 

spherical aberrations experienced by the spatial and spectral paths making wavelength calibration 

of the sSMLM system challenging (115). Further, the astigmatism method is inherently 

suspectable to optical aberrations when imaging thick samples and the elliptical shape of the PSF 

results in inhomogeneous lateral precision along the axial direction (64, 115). The biplane 3D 

SMLM method uses two paths separated along two axial image planes to encode the in the z 

position of emission events and is robust against variations in lateral precision at different depths 

(79, 80, 115). By taking advantage of the spatial information encoded in the spectra, 3D biplane 

sSMLM imaging can be performed without further reduction to the SNR (115). This method has 

been demonstrated by imaging the mitochondria and microtubules in fixed cells with 20 nm lateral 

localization precision and 50 nm axial localization precision (115).  In addition to multicolor 
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imaging, sSMLM also enabled multicolor single-molecule tracking. Using sSMLM, three freely 

diffusing fluorescent molecules were tracked in live cells with 20-40 nm localization precision 

(116).  

 

2.4 Functional Imaging 

The information rich spectroscopic signatures have also been used to identify variations in the 

local environment of fluorescent molecules. Functional SRM was most clearly demonstrated by 

sPAINT, where the spectrum of Nile Red (NR) dye varies in response to the polarity of its 

environment (104, 105, 107). Thus far, sPAINT has been used to measure the polarity in the 

membranes of different amphiphilic vesicles (104, 107). Using, model 1–2 Dioleoyl-sn-glycero-

3-phosphocholine (DOPC), sphingomyelin (SM), and sphingomyelin mixed with cholesterol 

(SM+CL) vesicles, NR’s spectral response to changes in polarity were identified (104, 107).  The 

DOPC bilayer was the least ordered membrane due to the DOPC molecules which were highly 

polar and enable water molecules to move across their membranes. The SM+CL vesicles had the 

most ordered membrane due to SM+CL molecules which were highly non-polar and prevented the 

transport of water across the membrane (104). SM vesicles had membranes with intermediate 

ordering relative to DOPC and SM+CL (104). An increase in polarity resulted in a red-shift of 

NR’s fluorescence emission spectra as observed when comparing the spectra of NR in DOPC 

vesicles with λmax of 634 nm to NR in SM with λmax of 619 nm and SM+CL vesicles with λmax of 

587 nm (104). In addition, sPAINT was used to investigate changes in aggregates of proteins 

associated with Parkinson's and Alzheimer’s (α-synuclein and amyloid-β) (104, 105). sPAINT was 

also used to map the surface polarity of aggregates and fibrils formed by α-synuclein proteins 
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(105). From this study it was found that NR in association with small soluble α-synuclein 

aggregates had spectral centroids λSC of 612 nm, indicating low surface polarity while large 

insoluble fibrils had λSC of 634 nm indicating high surface polarity (105).  NR has also been used 

to investigate the membrane polarity of the plasma membrane and other organelle membranes in 

living cells (107). From this study, it was found that the NR in plasma membranes was ~30 nm 

blue-shifted relative to NR in the membranes of the endoplasmic reticulum and mitochondria 

(107). The impact of cholesterol levels on the membrane polarity in living cells was also 

investigated. By depleting cholesterol levels in the plasma membrane using methyl-beta-

cyclodextrin (MβCD), a strong red-shift of NR spectra was measured in the plasma membrane. In 

contrast, MβCD had very little impact on NR’s spectra when it was associated with organelle 

membranes (107). After adding water-soluble cholesterol (cholesterol−MβCD), the organelle 

membranes underwent a significant blue-shift and the NR spectra became closer to that of NR in 

the plasma membrane (107). These results indicate that the cellular cholesterol level regulates 

differences in the polarity of the plasma and organelle membranes (107). Additionally, NR has 

been used to image the formation of surface adlayers due to the mixture of liquids with different 

polarities with ~30 nm localization precision (108).   It is important to note that though NR serves 

as an excellent polarity sensor, NR binding is non-specific which can make it challenging to work 

with. Additionally, the high background of PAINT experiments due to freely the presence of 

diffusing NR can contribute to reduced spectral and localization precisions. To address these 

challenges, new NR derivatives have been developed to specifically target the plasma membrane 

allowing for new discoveries of lipid organization within the cell (117). Functional imaging has 

also enabled, 3D sSMLM using the astigmatism method combined with simultaneous polarization 
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sensing to track the trajectories of diffusing quantum rods (QR) (114). By detecting variations in 

the polarization and spectral signals, individual QR were identified and tracked with 8 nm lateral 

localization precision and 35 nm axial localization precision (114).  

 

2.5 High-throughput spectroscopy 

Previously, single-molecule spectroscopy was used to study individual fluorescent molecules (3, 

41, 43). However, since single-molecule analysis is limited to sparse distributions of molecules, it 

was challenging to identify rare sub-populations of fluorescent molecules. sSMLM has overcome 

this challenge since it enables the spectroscopic analysis of thousands of single-molecules in a 

single experiment. For example, using sSMLM rare conformational isomers have been discovered 

due to differences in their spectra (118). Additionally, sSMLM has led to the discovery of multiple 

reaction pathways for spectrally distinct fluorescent molecules (106).  

 

2.6 Intrinsic Fluorescence 

sSMLM was also used to identify heterogenous spectra associated with the intrinsic fluorescence 

from the polymer polymethyl methacrylate (PMMA) (110). Stochastic emission events were also 

observed in polystyrene (PS) and SU-8 (SU-8 2005) indicating that polymers used in sample 

preparation could generate unwanted fluorescence during SMLM (110).  Similarly, studies of 

DNA oligonucleotides with 20 base pairs of each type of nucleotide had distinct spectral variations 

ranging from 520 nm to 580 nm (111). Based on the distinct spectral signatures of each type of 

nucleotide, a method was developed to enable sub-10 nm imaging resolution of stretched DNA 

fibers without the use of any dyes (111). 
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2.7 Summary 

sSMLM combines sub-diffraction imaging capability with spectroscopy, unlocking new 

multiplexing, functional super-resolution imaging, and high-throughput spectroscopy 

capabilities. Recently, a number of advancements in 3D, live cell, and single-molecule tracking 

using sSMLM have been made enabling the discovery of new isomer conformations (118),  the 

measurement of the polarity of cellular membranes (106), and the tracking of proteins in living 

cells (116) to name a few examples. The following chapters of this dissertation will demonstrate 

the development of software tools for advancing sSMLM and the development of quantitative 

analyses using the spectroscopic signatures from individual emission events to improve 

characterization of biomolecules.  
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CHAPTER 3: Developing Software Tools for Spectroscopic Single-Molecule 

Localization Microscopy Analysis 

 

Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures the 

spatial locations and full spectra of stochastically emitting fluorescent single molecules. It provides 

an optical platform to develop new multi-molecular and functional imaging capabilities. While 

several open-source software suites provide sub-diffraction localization of fluorescent molecules, 

software suites for comprehensive spectroscopic analysis of sSMLM data remain unavailable. 

RainbowSTORM is an open-source, user-friendly ImageJ/FIJI plug-in for end-to-end 

spectroscopic analysis and visualization for sSMLM images. RainbowSTORM allows users to 

calibrate, preview, and quantitatively analyze emission spectra acquired using different reported 

sSMLM system designs and fluorescent labels. RainbowSTORM is a java plug-in for ImageJ 

(https://imagej.net)/FIJI (http://fiji.sc) freely available through: https://github.com/FOIL-

NU/RainbowSTORM. RainbowSTORM has been tested with Windows and Mac operating 

systems and ImageJ/FIJI version 1.52. This chapter is adapted from a preprint currently available 

on BioRxiv (119) prior to submission to Bioinformatics. 

 

3.1 Introduction 

Single-molecule localization microscopy (SMLM) (17, 18, 65) overcomes the optical diffraction 

limit by localizing stochastically emitting fluorescent molecules with high localization precision 

(typically 10-20 nm). Recently, spectroscopic single-molecule localization microscopy (sSMLM) 

(30, 31, 104), which simultaneously detects the location and full emission spectra of each emission 
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event was reported. Thus far, sSMLM has enabled multi-color imaging (30) and tracking (116) of 

as many as four different fluorescent species using a single excitation source. sSMLM has also led 

to new functional imaging capabilities through analyzing variations in the spectra of individual 

molecules. For example, sSMLM detected the polarity of the environment surrounding dye 

molecules (104) and enabled the discovery of previously undetected molecular conformations of 

dyes (106). Overall, sSMLM shows great promise to further extend existing SMLM. While a 

variety of software algorithms and packages are currently available for processing and analyzing 

traditional SMLM images (120), software tools for comprehensive spectroscopic analysis of 

sSMLM images remain unavailable. 

Here, we present RainbowSTORM, an open-source spectroscopic analysis plug-in for 

ImageJ/FIJI. RainbowSTORM leverages the functionality of the existing SMLM processing tool 

ThunderSTORM (121) to attain spatial information while providing crucial spectroscopic tools for 

system calibration as well as spectral identification and classification. RainbowSTORM uses the 

spectral centroids (or intensity-weighted spectral means) of each localized stochastic event to 

define a range of spectral colors and render pseudo-colored sSMLM super-resolution images (30, 

31, 104). Multicolor images can be generated by setting different user-defined spectral centroid 

ranges for channels with predefined colors. We provide test calibration and sSMLM images along 

with a testing protocol, and a detailed user guide which includes descriptions and workflows for 

the processes implemented in RainbowSTORM. Derivations for spectroscopic analysis (Song, et 

al., 2018) and flowcharts of the algorithms used in RainbowSTORM are included in the 

supplementary information. 
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3.2 Features and Methods 

System calibration 

RainbowSTORM calibrates sSMLM images acquired using systems, where the dispersive 

element (Figure 3-1a) can be either a grating or a prism. While grating-based systems are 

calibrated by linearly fitting pixel positions to known wavelengths (31), prism-based systems are 

calibrated using second-order (116) or third-order (30) polynomial fittings. Calibration in 

RainbowSTORM can be performed using both calibrated light sources (e.g. calibration lamps or 

multiple laser lines) and multicolor fluorescent beads. 

 

sSMLM image processing 

In addition to providing a flexible calibration tool, RainbowSTORM also includes a sSMLM 

analysis module for processing sSMLM images (Figure 3-1b). The general workflow for 

RainbowSTORM analysis is outlined in Figure 3-1c. RainbowSTORM first requires sSMLM 

images to be cropped for spatial and spectral analysis. Next two-dimensional (2D) spatial images 

and three-dimensional (3D) spatial images, captured using the astigmatism method (30, 64), can 

be processed using ThunderSTORM. Figure 3-1d shows the resulting SMLM reconstruction after 

spatial analysis. Next, RainbowSTORM removes background signals from the spectral images, 

automatically excludes emission events which spatially overlap, and previews results of 

spectroscopic analysis using the current processing parameters. Finally, RainbowSTORM 

identifies the full spectra and calculates the spectroscopic fields for all localizations. 
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Visualization and post-processing 

After processing the spectral images, pseudo-colored super-resolution reconstructions (Figure 3-

1e) are rendered using the spectral centroids and spatial coordinates of each localization. For 3D 

sSMLM images, a stack of pseudo-colored super-resolution reconstructions can be rendered, 

where images in the stack are separated by the axial position of each localization. The histograms 

of the calculated spatial and spectral fields for the processed localizations can be displayed and 

used to select subsets of the data for independent visualization. Additionally, localizations with 

large point spread function and spectrum widths as well as localizations with low photon counts 

and precisions in the spatial and spectral domains can be excluded. RainbowSTORM can also 

apply ThunderSTORM drift-correction files and assess the image quality of sSMLM images using 

Fourier Ring Correlation (FRC) analysis (102). In addition, the spectral centroid information can 

be assigned to multiple channels to create multicolor super-resolution images using the 

classification module. For example, Figures 3-1d-h shows images of the mitochondria, 

microtubules, and peroxisomes of COS-7 cells respectively labeled by Alexa Fluor 647 (AF647), 

CF660, and CF680. Figure 3-1i shows the overlay of the three images from the selected spectral 

centroid windows. After post-processing, sSMLM results can be saved. Previously saved sSMLM 

results can be loaded using the sSMLM import module for further analysis. 
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Figure 3-1: (a) General sSMLM system schematic. (b) sSMLM images with the spatial and 
spectral images simultaneously captured on different parts of a detector. (c) RainbowSTORM 
workflow showing how the system calibration module interacts with the analysis module (d) 
SMLM reconstruction (e) Pseudo-colored sSMLM reconstruction. Images of the three separate 
channels showing (f) mitochondria labeled with AF647, (g) microtubules labeled with CF660, (h) 
peroxisomes labeled with CF680, and (i) the overlay image of the three channels. 

 

3.3 Algorithms and Equations 

The algorithms and equations used for system calibration and spectral analysis of sSMLM images 

are detailed in the following sections. 

 

System Calibration 

The peak pixel positions of known wavelengths from a calibration light source or from multi-color 

emitter (e.g. Tetraspeck Microsphere, Thermofisher) are selected and fit using the least-squares 

method. Grating-based systems are calibrated by fitting the pixel positions to a straight line  (𝑦𝑦 =

𝑎𝑎 + 𝑏𝑏𝑏𝑏). Meanwhile, prism-based systems are calibrated by fitting the pixel positions and 
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corresponding wavelength information using either a second-order polynomial (𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 +

𝑐𝑐𝑏𝑏2) or a third-order polynomial (𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑏𝑏2 + 𝑑𝑑𝑏𝑏3). The coefficients a, b, c and d 

represent the offset and the coefficients of the first, second, and third orders. The resulting 

coefficients are used to calibrate the fluorescence emission spectra from single-molecule dyes or 

fluorescent proteins captured during sSMLM experiments. 

 

Global background estimation 

An averaging filter is used to estimate the background of the spectral images. Pixel values which 

are associated with the sample are identified by comparing each pixel value to a threshold. The 

threshold for this filter can be either user-defined or automatically generated. Figure 3-2 shows the 

flowchart of the algorithm used to generate background image (B) from the stack of input images 

(I). The background image is then subtracted from each frame of the input images to generate a 

stack of background-subtracted spectral images. 

 

Figure 3-2: Flowchart of the algorithm to generate the background image 
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Overlapping spectra removal 

Localizations with spectral images which overlap in space can be excluded from analysis by 

enabling the ‘Remove overlapping spectra’ checkbox on the sSMLM analysis module. The 

localization pixel shift (lps) and the spectral dispersion (sd) are used to remove the overlapping 

spectra. The lps controls the number of pixels used to capture the point spread function (PSF) of 

each localization. By default, lps is set to ±1 for a total of three pixels to capture the PSF. The sd 

captures the number of pixels which cover the spectral image (spectra pixels) and is set based on 

the sSMLM system.  Increasing either the lps or the sd will result in more localizations being 

removed as overlapping. The thresholds along the x axis is twice the number pixels to capture the 

spectra and the y axis is twice the number of pixels to capture the PSF. Figure 3-3 shows the 

flowchart of the algorithm used to determine whether the spectra are overlapping. 

 

Figure 3-3: Flowchart of the algorithm to remove overlapping spectra 
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Spectral centroid calculation 

The intensity-weighted spectral mean or the spectral centroid (λSC) of the line spectrum for each 

localization is calculated by the equation below 

λSC=
∑ 𝐼𝐼(𝜆𝜆)∗𝜆𝜆 𝜆𝜆=𝜆𝜆𝑛𝑛
𝜆𝜆=𝜆𝜆1

∑ 𝜆𝜆 𝜆𝜆=𝜆𝜆𝑛𝑛
𝜆𝜆=𝜆𝜆1

, 
(3-1) 

where λ is the wavelength between (λ1 and λn) and I is the photon count at that wavelength. 

 

Spectrum width estimation 

The line spectrum for each blinking event is fit using the least-squares method to a Gaussian 

function: 

𝑦𝑦 =  𝑎𝑎 ∗ 𝑒𝑒−
(𝑥𝑥−𝑏𝑏)2

2𝑐𝑐2  , 
(3-2) 

The coefficients a, b, and c represent the peak intensity, mean value (μ) and standard deviation (σ) 

respectively.    

 

Spectral precision assessment 

The spectral precision (σλ) of each spectrum is estimated as reported by Song et al (Song, et al., 

2018) (122): 

𝜎𝜎𝜆𝜆 = �𝑛𝑛𝑏𝑏𝑏𝑏2 + 𝑛𝑛𝑠𝑠2 + 𝑛𝑛𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑠𝑠𝑠𝑠𝑟𝑟2  , 
(3-3) 

where ns, nbg, nro, and σsse are the shot noise, background noise, readout noise, and uncertainty of 

the spectral-shift error respectively.  

The background noise of the signal is:  
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𝑛𝑛𝑏𝑏𝑏𝑏 = �2�
1024𝐵𝐵𝑡𝑡𝜂𝜂Δλ𝑊𝑊𝑠𝑠

64𝑠𝑠Δλ ∗𝑎𝑎3∗𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃�

3Δλ𝑊𝑊𝑠𝑠(𝜂𝜂𝐼𝐼)2
, 

 

(3-4) 

where Bt is the total background of the spectral signal, 𝜂𝜂 is the quantum efficiency , Δλ is the 

spectral dispersion, Wp is the pixel size, 𝑎𝑎 = �𝜎𝜎𝑆𝑆𝑆𝑆𝐹𝐹2 + Δλ2

12
  where 𝜎𝜎𝑆𝑆𝑆𝑆𝐹𝐹   is the standard deviation 

of the fitted spectrum, 𝜎𝜎𝑆𝑆𝑆𝑆𝐹𝐹  is the standard deviation of the fitted PSF and I is the total photon 

count of the spectrum. 

The shot noise of the signal is calculated by:  

𝑛𝑛𝑠𝑠 = �2�𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆
2 +Δλ

2
12 �

𝜂𝜂𝐼𝐼
 , 

(3-5) 

The readout noise is calculated by: 

𝑛𝑛𝑟𝑟𝑟𝑟 = �1024𝜎𝜎𝑃𝑃𝑃𝑃𝑆𝑆 
3 Δλ2𝑁𝑁𝑟𝑟2

3Δλ𝑊𝑊𝑠𝑠(𝜂𝜂𝐼𝐼)2
  , 

(3-6) 

where Nr is the readout noise per pixel. 

The uncertainty of the spectral-shift error limits the spectral precision which can be achieved and 

can be quantitatively expressed as: 

𝜎𝜎𝑠𝑠𝑠𝑠𝑟𝑟 = �Δ𝜆𝜆2

12
 , 

(3-7) 

Figure 3-4 shows the comparison of the expected spectral precision and the spectral precision 

estimated with RainbowSTORM using simulated sSMLM images of single-molecule emission 

events with increasing photon counts. For the estimation, we used Δλ of 5.9 nm/pixel, 𝜎𝜎𝑆𝑆𝑆𝑆𝐹𝐹 of 22 

nm, 𝜎𝜎𝑆𝑆𝑆𝑆𝐹𝐹  of 117 nm, Nr of 1 e-, Wp of 16 μm, and η of 1. 
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Figure 3-4: Comparison of the expected spectral precision and the average spectral precision 
estimated by RainbowSTORM at different spectral photon counts [180 to 3800]. Inset shows the 
zoomed in comparison for the spectral photon count from 1000 to 3800. 

 

Three-dimensional sSMLM images 

Three-dimensional sSMLM images can be acquired using the astigmatism method (64) by placing 

a cylindrical lens in the spatial imaging path (30) as shown in Figure 3-5.   

 

Figure 3-5: General sSMLM system schematic for 3D imaging using the astigmatism method. 
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3.5  Methods 

sSMLM Optical Setup  

The sSMLM system is setup as previously described (109) and briefly described as follows. A 

642-nm CW laser was focused on the back focal plane of a Nikon Ti microscope body and 

illuminated through a 100× Total Internal Reflection Fluorescence (TIRF) objective lens and a 

numerical aperture (NA) of 1.49 (CFI Apochromat, Nikon). Fluorescence from the sample is 

collected by the objective lens and passed through a tube lens then directed to an entrance slit using 

a mirror. The entrance slit is used to confine the field of view (FOV) of the spatial image to one 

section of the electron multiplying charge-coupled device (EMCCD). The photons then pass 

through a transmission grating (100 grooves/mm, STAR100 Paton Hawksley Education Ltd) 

which splits the photons into spatial and spectral images with a ratio of ~1:3. The remaining 

photons are then passed through an imaging lens and then focused onto the EMCCD (ProEM, 

Princeton Instrument) by a second imaging lens. 

 

Sample Preparation 

COS-7 cells (ATCC) were grown in Dulbecco’s Modified Eagle Media (Gibco/Life Technologies) 

supplemented with 2-mM L-glutamine (Gibco/Life Technologies), 10% fetal bovine serum 

(Gibco/Life Technologies), and 1% penicillin/streptomycin (10,000 U mL-1, Gibco/Life 

Technologies) at 37°C with 5% CO2. The cells were plated on No. 1 borosilicate bottom eight-

well Lab-Tek Chambered coverglass with 30%-50% confluency.  The cells were fixed after 48 h 

in pre-warmed 3% paraformaldehyde and 0.1% glutaraldehyde in phosphate-buffered saline (PBS) 

for 10 min, washed with PBS twice and quenched with freshly prepared 0.1% sodium borohydride 

in PBS for 7 mins. The cells were then rinsed three times in PBS at 25°C. The fixed cells were 
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then permeabilized with blocking buffer (3% bovine serum albumin (BSA), 0.5% Triton X-100 in 

PBS) for 20 min and then incubated with primary antibodies (sheep anti-tubulin, 10 ug mL-1, rabbit 

anti-PMP70 and mouse anti-TOM-20, 5 ug mL-1) in blocking buffer for 1 hr at room temperature 

and rinsed with washing buffer (0.2% BSA, 0.1% Triton X-100 in PBS) three times. The cells 

were then incubated in donkey secondary antibody conjugates (anti-sheep AF647, anti-mouse 

CF660C and anti-rabbit CF680) in blocking buffer for 40 min and then washed three times with 

PBS and stored at 4°C. The secondary antibodies were prepared as previously described and briefly 

described here. 0.5 uL of 5mM dye (NHS-ester functionalized AF647 (Thermofisher), CF660C 

and CF680 (Biotinum)) were combined at 25°C with 100 uL of 1 mg mL-1 IgG/IgY antibodies in 

PBS and sodium bicarbonate (10 uL of 1 M). The mixture was incubated overnight then purified 

by a Nap-5 size exclusion column. The concentrated sample was then extracted using an Amicon 

Ultra-0.5 Centrifugal Filter unit to give 1-2 dyes per antibody. Finally, the absorption and emission 

spectra of the dyes were tested using a NanoDrop Spectrophotometer and then stored at 4°C.  

 

System Calibration 

Using a calibration light source (Neon lamp, 6032 Newport) reference images were captured by 

using a narrow slit. The images in the spatial domain was a narrow straight line while the spectral 

images showed multiple spectral lines representing known emission maxima related (640.23 nm, 

703.24 nm, 724.52 nm, and 743.89 nm) to the calibration light source. 
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Experimental sSMLM Data 

Imaging buffer (50 mM Tris (pH=8.0), 10 mM NaCl, 0.5 mg mL−1 glucose oxidase (Sigma, 

G2133), 2000 Uq mL−1 catalase (Sigma, C30), 10% (w/v) D-glucose, and 100 mM cysteamine) 

was added to the COS-7 cells and the cells were imaged using the sSMLM system described above. 

The exposure time was set to 10 ms, pixel size of the system was 160 nm, the analog to digital unit 

(ADU) was 4.6 e-/analog to digital count, and the electron multiplying gain (EM Gain) was 100. 

For this experiment 30000 frames were recorded. 

 

Simulated sSMLM Data 

We simulated 500 frames of sSMLM images with a back-projected pixel size of 160 nm, camera 

base level of 200 digital counts, EM Gain of 100, and ADU of 4.6 e-/analog to digital count. For 

spectral precision testing, the simulated emitter was AF647 with total photon counts of 250, 500, 

1000, 1500, 2000, 3000, 4000 and 5000. The photons from the simulated emitters were split into 

spatial and spectral images using a 1:3 ratio. The spatial image of each single-molecule event was 

modeled as a 2D gaussian with a mean of 0 and std of 0.73 pixels. A reference line spectrum for 

AF647 was convolved with the point spread function image to generate the spectral image. The 

shifted spectral image was set based on a calibration lamp with known emission maxima (485.5 

nm, 546.5 nm, 611.6 nm, and 707 nm). The locations of each localization event and its associated 

spectrum were randomly assigned.  For multicolor simulated data, reference spectra of CF660 and 

CF680 were used to generate spectral images. 
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3.4 Conclusions 

RainbowSTORM provides a plug-in for performing spectroscopic analysis of 2D and 3D sSMLM 

images acquired using both grating-based and prism-based sSMLM implementations. 

RainbowSTORM fills the need for a spectroscopic analysis platform and provides spectral 

classification methods, spectral and spatial filtering methods, pseudo-colored visualization of 

sSMLM datasets, and built-in FRC analysis. Future updates will make RainbowSTORM 

compatible with a wider range of spatial analysis platforms. Additional spectroscopic analysis 

methods such as spectral unmixing (123), machine-learning based spectral classification (113), 

and cluster analysis (104) will be added to RainbowSTORM.  
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CHAPTER 4: Quantitative sSMLM #1: Removing Artifacts from SMLM Image 

Reconstructions 

 

The existence of fluorescent impurities has been a long-standing obstacle in single-molecule 

imaging, which results in sample misidentification and higher localization uncertainty. 

Spectroscopic single-molecule localization microscopy (sSMLM) can record the full fluorescent 

spectrum of every stochastic single-molecule emission. This capability allows us to quantify the 

spatial and spectral characteristics of fluorescent impurities introduced by sample preparation 

steps, based on which we developed a method to effectively separate fluorescent impurities from 

target molecules. This chapter is adapted from a previously published article in the Journal of 

Biomedical Optics (123). 

 

4.1 Introduction 

The term fluorescent impurity usually refers to unintended fluorescence emission from unknown 

molecules or chemical complexes.  The presence of fluorescent impurities represents a long-

standing issue in single-molecule imaging and spectroscopy (3, 96, 97). To reduce the impact of 

these fluorescent impurities, stringent cleaning and sample preparation techniques need to be 

utilized (3, 96, 97). In recent years new imaging techniques, such as single-molecule localization 

microscopy (SMLM) (17, 18, 43, 63, 68, 69), emerged to offer super-resolution single-molecule 

imaging far beyond the diffraction limit of the light. However, the impact of fluorescent impurities 

on correctly interpreting single-molecule imaging results has not been thoroughly investigated (95, 

124-126). In conventional fluorescence microscopy, fluorescent impurities are often negligible due 
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to their apparent lower absorption cross-sections and weak fluorescent emissions (98, 99, 127). 

However, growing evidence has shown that fluorescent impurities significantly impacts 

SMLM by inducing imaging artifacts, which include sample misidentification and higher 

localization uncertainty in cases where fluorescent impurities overlap in space with target 

molecules (95, 125, 126). While SMLM accumulates the stochastic emissions from individual 

fluorophores and proteins to collectively render super-resolution images (17, 18, 43, 63, 69), the 

required high-power-density illumination to excite stochastic emissions also unfavorably 

intensifies emissions from fluorescent impurities (31, 110, 126). When a large number of photons 

are stochastically emitted from fluorescent impurities, they behave similarly to target molecules 

and are difficult to distinguish and remove (31, 95, 126).  Preventing sample misidentification is a 

particularly significant challenge when imaging low number density (<1 μm-2) single-molecules 

without distinct structural or morphological features (124, 125). 

Currently, the reported methods to identify target molecules in reconstructed SMLM image 

mainly rely on spatial and temporal profiling of their stochastic emissions, such as width of the 

fitted point spread function (PSF) (128), repetition rate of blinking events (21), and emission 

intensity (126, 128). Emission intensity in particular is commonly compared against a user-defined 

intensity threshold and one can remove any emission with lower intensity than the threshold, 

hoping to exclude fluorescent impurities (125, 126, 128). However, due to their diverse origins, 

emissions from fluorescent impurities can often exceed the threshold value, resulting in low 

specificity (125, 126). A more specific criterion is needed to faithfully identify target molecules 

while rejecting fluorescent impurities. The spectra of all stochastic emissions can be such 

signatures; however, existing SMLM technologies are unable to measure these spectra. Recently 
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we and other groups reported spectroscopic single-molecule localization microscope (sSMLM) 

(30, 31, 110), which simultaneously detects the spatial and spectral information of each stochastic 

fluorescent emission event. Hence, we anticipate that sSMLM, by analyzing emission spectrum of 

every stochastic emission, will provide a highly specific criterion to identify target molecules and 

to reject fluorescent impurities. In this study, we seek to answer two questions: [1] is it possible to 

reduce or ultimately eliminate fluorescent impurities and [2] can we utilize the 

emission spectra to remove fluorescent impurities from all the detected stochastic emissions in a 

low number density sample. 

 

4.2 Methods and Materials 

Coverslip cleaning 

Fisherbrand™ 22×22 mm #1.5 borosilicate coverslips (Fisher Scientific) and precleaned 

FisherFinest™ 22×22 mm #1 borosilicate coverslips (Fisher Scientific) were imaged using a 532-

nm laser at four typical power densities (1.5-5.8 kW/cm2) used in SMLM. Before imaging, the 

coverslips were air blown to remove any large particles. Additional cleaning processes were 

performed on Fisherbrand™ coverslips as described below. 

 

Piranha solution 

A beaker was cleaned and placed in a fume hood. Sulfuric acid (H2SO4) (Sigma Aldrich) was 

added to hydrogen peroxide(H2O2) (Sigma Aldrich) at a ratio of 3:1 (90 mL to 30 mL) (129). The 

coverslips were submerged in the solution for 20 mins. The coverslips were then submerged in 
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distilled nuclease-free water (Ambion, ThermoFisher) and then dried by air blowing. The piranha 

solution was allowed to cool disposal in an appropriate waste container. 

 

Potassium hydroxide (KOH) and ultra-violet (UV) light sterilization 

The coverslips were sonicated in 1 M KOH (Sigma Aldrich) for 15 mins (18). The coverslips 

were then rinsed in Milli-Q water and dried using nitrogen (N2) gas. The cleaned coverslips were 

placed in a petri dish and sterilized using UV light for 30 mins (18). 

 

Hydrochloric acid (HCl) and prop-2-anol cleaning 

Each coverslip was sequentially submerged for 30 secs in 36 % HCl (Sigma Aldrich), Milli-Q 

water, and then prop-2-anol (Sigma Aldrich) before drying with nitrogen (N2) gas (130). 

 

UV and ozone cleaning 

Coverslips were placed in the ZoneSEM Cleaner (131) (Hitachi) and exposed to ozone activated 

by UV light for 2 mins per side. 

 

Plasma cleaning 

The operating conditions for the plasma cleaner (PC 2000, South Bay Technology) for a mixture 

of argon and oxygen gas was set to use a forward power of 20 W and a minimized reflection 

power. A cleaning time of 2 mins was selected and a precleaning step was performed to clean the 

chamber. The coverslips were placed in glass petri dishes and plasma cleaned uncovered for 2 

mins (132, 133). Metal tweezers used for handling the coverslips were plasma cleaned during this 



72 
 

 

cycle. Using the cleaned tweezers, the coverslips were turned over and the exposed surface was 

cleaned using the same settings. Cleaned coverslips were stored in sealed glass petri dishes. 

 

Coverslip functionalization 

Plasma cleaned coverslips were functionalized via poly-L-lysine (PLL), (7-octen-1yl) 

trimethoxysilane (silane), and biotinylated bovine-serum albumin (BSA) and neutravidin (NEU). 

 

Poly-L-Lysine 

Coverslips were incubated in 1 ppm PLL (134) (Sigma Life Science) solution for 2 mins. The 

surface was then rinsed three times using nuclease free water (Ambion, ThermoFisher) before air 

blowing. 

 

Silanization 

A 250 mL Pyrex crystallizing dish was tripled rinsed using methanol (Sigma Aldrich) and then n-

heptane (Sigma Aldrich). Working in a chemical hood, 100 mL of n-heptane was added to the dish 

and 100 μL of silane (129, 130) (Sigma Aldrich). Coverslips were added to the silane treatment 

using tweezers and left overnight in a desiccator without a vacuum. The next day, the coverslips 

were sequentially sonicated for 5 mins in n-heptane, Milli-Q water, and finally chloroform (Sigma 

Aldrich) before drying using air. 

 

BSA-biotin-neutravidin 

Coverslips were rinsed 3 times with 500 μL phosphate-buffered saline (PBS) (Gibco, Life 
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Technologies). The coverslips were then incubated for 5 mins in 200 μL of 0.5 mg/mL 

BSA-biotin (11) (Sigma Aldrich) in PBS. The BSA-biotin solution was removed, and the coverslip 

was triple rinsed in 500 μL PBS then incubated for 5 mins in 200 μL of 0.5 mg/mL NEU (11) 

(Invitrogen, ThermoFisher) in PBS. The coverslips were then triple rinsed in 500 μL 

immobilization buffer (PBS supplemented with 10 mM of magnesium chloride (MgCl2) (Ambion, 

ThermoFisher). During imaging water was used to prevent the treatment from drying. A second 

surface with glucose-oxidase imaging buffer was also tested. 

 

Immobilization buffer and oxygen scavenger system 

Immobilization buffer containing 10 mM MgCl2 in PBS (pH 7.4) was freshly prepared and 

added to the BSA-biotin-NEU sample. The immobilization buffer was supplemented with an 

oxygen scavenging system containing 0.5 mg/mL glucose oxidase (Sigma Aldrich), 40 μg/mL 

catalase (Sigma Aldrich) and 10 % (w/v) glucose (Sigma Aldrich) and 143 mM 2-mercapethanol 

(Sigma-Aldrich). 
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Reagent purity 

Purity information for the chemical reagents and proteins used in this study is detailed in Table s4-

1 and 4-2 respectively. 

 Table 4-1: Summary of chemical reagents used in this study 

Chemical Supplier, Product Number Purity Notes 
Ethyl alcohol- 200 
proof Sigma Aldrich, 459844 ≥99.5 % ACS reagent 

2-Propanol Sigma Aldrich, 650447 99.9 % HPLC Plus 
Potassium Hydroxide 
Pellets Sigma Aldrich, 306568 99.99 % Semiconductor grade 

Hydrogen Peroxide 
Solution Sigma Aldrich, 316989 99.999 % Semiconductor grade 

Sulfuric Acid Sigma Aldrich, 258105 95 % - 98 % ACS Reagent 
α-D-Glucose, 
anhydrous Sigma Aldrich, 158968 96 %  

2-Mercaptoethanol Sigma Aldrich, 63689 ≥ 99.0 % BioUltra 
Trimethoxy(7-octen-
1-yl) silane 

Sigma Aldrich, 
452815 80 % Technical grade 

n-Heptane, anhydrous Sigma Aldrich, 246654 99 %  
Chloroform Sigma Aldrich, 650498 ≥ 99.9 % HPLC-Plus 
Hydrochloric Acid Sigma Aldrich, 339253 99.9%  

 

Table 4-2: Summary of proteins used in this study 

Protein Supplier, Product Number Purity Notes 
Glucose oxidase 
aspergillus niger Sigma Aldrich, G2133 ≥60 % Protein  

Poly-L-Lysine Sigma Aldrich, P4707 Lysine concentration 
≥0.45mmol Sterile filtered 

Neutravidin, 
lyophilized powder Thermo Scientific, 31000 14 ug/mg active 

protein Salt Free 

Albumin, Biotin 
labeled bovine, 
lyophilized powder 

Sigma Aldrich, A8549 80% protein  

Catalase Sigma Aldrich, C40 ≥10,000 units/mg 
Protein 

≤0.2 wt. % 
Thymol 
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SMLM and sSMLM experimental setup 

In these experiments, a diode-pumped solid state 532 nm laser with a maximum output power of 

300 mW was used to illuminate the sample. The laser output was filtered (LL01-532-12.5, 

Semrock) and passed through a half-wave plate and a linear polarizer to control the output 

power. The laser was then coupled to an inverted microscope body using a telescopic system and 

dichroic mirror to focus the light on the back focal plane of a Nikon CFI apochromat total 

internal reflection objective lens (100×, 1.49 numerical aperture) shown in Figure 4-1a. Adjusting 

the position of the beam path to the edge of the objective allowed for illumination at the critical 

angle at the water-coverslip interface, thus limiting the volume of material illuminated. A long-

pass filter (BLP01-532R-25, Semrock) was used to reflect the 532 nm laser. SMLM was performed 

using only position data collected using an EMCCD (iXon 512B, Andor) as shown in Figure 4-1b. 

For sSMLM, light was guided through a home-made spectrometer equipped with a 100 lines/mm 

blazed transmission grating (STAR100, Panton Hawksley Education Ltd.), which separated the 

spatial and spectrally dispersed images. The spatial and the spectral information for each emission 

event was collected simultaneously on different regions of an EMCCD (ProEm HS 512X3, 

Princeton Instruments) as shown in Figure 4-1c. 
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Figure 4-1. Schematics of SMLM and sSMLM systems. (a) Schematic of Excitation optics and 
instrumentation. (b) SMLM detection channel. This setup was used to capture images of cleaned 
and functionalized surfaces. (c) sSMLM detection channel. This setup was used to capture images 
and spectra simultaneously allowing for spectroscopic analysis of single molecules.  

 

Optical power density measurements 

We used a power meter (Newport 1918-R) with a high-power detector (Newport, 918D-SL-

OD2R) to measure the power of the excitation laser after beam expansion and before entering the 

microscope. In comparing with the power measured right after the objective lens, we found a 76% 

transmission within the microscope body. For all experiments, the power was measured 

 before entering the microscope and scaled by the transmission loss. Power density measurements 

of 1.5 kWcm-2, 3.0 kWcm-2, 4.4 kWcm-2, and 5.8 kWcm-2 at the sample plane were calculated 

from power measurements at the microscope base (25 mW, 50 mW, 75 mW, and 100 mW) and an 

illumination radius of 20 μm. The power level was adjusted by changing the angle of the linear 

polarizer. To calibrate this process, corresponding angles for each power level was 

recorded and used for all experiments. 
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Imaging procedure for quantitatively assessing the origin of fluorescent impurities 

One coverslip from each treatment was imaged under 532 nm illumination. We randomly selected 

5 positions on the coverslip and recorded 1000 frames using an integration time of 10 ms. While 

imaging cleaned surfaces a 200×200-pixel FOV was used and a 256×256-pixel FOV was used for 

imaging functionalized surfaces. For comparison, the number of fluorescent impurities were 

normalized by the area of their respective FOVs. 

 To investigate the impact of excitation power density on the number of detectable 

fluorescent impurities, FisherbrandTM (Fisher Scientific) and FisherfinestTM (Fisher Scientific) 

coverslips were imaged at four different power density levels (1.5 – 5.8 kWcm-2). For each dataset, 

a maximum intensity projection (MIP) image was generated and the number of fluorescent 

impurities per FOV was determined using the ImageJ plug-in ThunderSTORM. There was an 

average of 2.0×107 cm-2 fluorescent impurities from Fisherbrand and 1.7×107 cm-2 fluorescent 

impurities from FisherfinestTM coverslips before cleaning.  

 Since the tested power densities did not have a further impact on the number of fluorescent 

impurities, we used a typical SMLM power density of 3 kWcm-2 in our investigations. 

Spectroscopic information from the surfaces was collected by randomly selecting multiple FOVs 

on a FisherbrandTM coverslip before cleaning and a plasma cleaned coverslip functionalized with 

PLL. Each FOV was imaged until photobleaching occurred. We captured 1000 frames from the 

unprocessed coverslip and 3000 frames from the PLL coverslip under 532 nm at 3 kWcm-2 with 

20-ms integration time per frame. 
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Spectral fitting method 

We used a nonlinear least-square fitting method to fit each recorded spectrum to a reference 

spectrum. Since the recorded emission events overlapped in space, the mixed spectrum S 

attributed to each point spread function can be expressed as 

S = a1s1(x1 + d1) + a2s2(x2 + d2) + w, (4-1) 

where si(x) is the emission spectrum for each type of molecule at position x; ai is the emission 

intensity of the molecule; di is the spectral shift due to conformation heterogeneity of each dye 

molecule; and w is the error term accounting for additive noise (98).  Using this equation, 

parameters for the recorded intensity, spectral heterogeneity, and noise were used to fit 

experimentally recorded spectra to reference spectra of the dye being studied. The adjusted 

coefficient of determination (R2) was calculated as 

Radj
2 = 1 − �n−1

n−p
� SSE
SST

 , (4-2) 

where SSE is the sum of the squared residuals (SSE = ∑ �yi − f(xi)�
2n

i=1  ), SST is the total sum of 

squares (SST = ∑ (yi − y�)2n
i=1 ), n is the number of observations, and p is the number of regression 

coefficients, respectively. The adjusted R2 was used to assess the goodness of fit of the recorded 

spectrum to the reference.  

 

Establishing the ground truth within each FOV 

We selected 10-nm DNA origami nanorulers (Gattaquant) labeled with Alexa Fluor 532 (AF532) 

and Alexa Fluor 568 (AF568) to test whether the spectrum could be used to separate target 

molecules from fluorescent impurities. The nanorulers were the ideal model system for this study 

since their spacing was unable to be resolved by the 20-nm spatial resolution of SMLM but their 
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spectral separation was greater than the 3-nm spectral dispersion of our sSMLM. Though the peaks 

of emission spectra of the dyes used were well separated, both dyes can be directly excited by 532 

nm laser. The combined signal from a single resolvable pixel provided a unique spectral 

 signature, which could be used to establish a faithful ground truth for the sample in the presence 

of fluorescent impurities under low power density (LPD) excitation of 0.5 kWcm-2. We then 

tested using spectral fitting and intensity thresholding to categorize recorded emission events 

using high power density (HPD) excitation of 3 kWcm-2. 

We observed steady fluorescence emission with rather small temporal fluctuations from 

all fluorescent point emitters in the LPD condition, we used the average of the 300 frames to 

extract the spectra with high signal-to-noise ratio (SNR). The approximate location of the 

immobilized nanorulers in the sample were estimated using the average image of each FOV. 

Overlapping spectra in the average LPD images were removed from the LPD and HPD datasets. 

Consequently, a total of 15 emitters were excluded from further analysis. Due to their high 

absorption cross-section and quantum yield compared with the fluorescent impurities, we 

anticipate that the observed fluorescent emissions mainly originated from nanorulers. The minority 

of fluorescent impurities excited were removed using the spectral fitting method. The extracted 

spectra were first normalized using the emission maximum of the record spectra then fit to the 

reference spectra. We attributed fluctuations in the position of the spectra to conformation 

heterogeneity of each dye and the influence of noise was ignored in this case. From the reference 

sample for both dyes, we found that full width half maximum (FWHM) of that emission centroids 

of AF532 was 20 nm and AF568 was 40 nm. We also observed spectral shift parameters of ±10 
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and ±20 for AF532 and AF568, respectively. Since 532 nm laser illumination could directly excite 

100 % of AF532 and 42 % of AF568, each dye had to exceed the noise floor. 

  Therefore, the background should not exceed 10% of the peak intensities for both dyes. 

Because AF532 could be optimally excited using 532 nm laser illumination, the influence of 

AF568 was determined by first fitting all 174 points using only the reference spectra of AF532. 

The data was then fit using both spectra and the difference in the peak adjusted R2 value was used 

to select a threshold of 0.89. Single molecules excited under LPD, which had an adjusted R2 value 

of 0.89 after spectral fitting were considered to be true nanorulers. The determined spatial and 

spectral characteristics of the nanorulers established the ground truth for each FOV. 

 

Preparation of nanoruler sample 

Nanorulers (Gattaquant) DNA origami samples were prepared by adding 1 μL of the nanorulers to 

200 μL nuclease free water (Ambion, ThermoFisher). The 10 μL of the nanoruler solution was 

deposited on a PLL coated surface via spin deposition (Laurell WS-650- 23) at 1200 

rpm for 30 secs. 

 

Imaging procedure for nanoruler samples 

One coverslip containing immobilized nanorulers was imaged under 532-nm illumination. 9 

positions on the coverslip were randomly selected and each FOV was imaged using the 

following procedure. The nanoruler sample was imaged for 4 secs (300 frames) at LPD (0.5 

kWcm-2). The observed fluorescence from the dye molecules was stable and non-blinking at this 

power density level. The power density was then increased by changing the polarizer position to 
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reach a HPD (3 kWcm-2) to allow stochastic fluorescence emission of the dye molecules. Images 

were recorded for 30 secs (1500 frames). An integration time of 20 ms was used to record each 

FOV. This data was used for sample classification as detailed in the algorithm in Figure 4-2. The 

LPD frames were averaged, and the location and spectra used as references for the single 

molecule quantification experiments. The HPD frames were used to compare the performance of 

filters based on emission intensity and spectral fitting. 

  

Sensitivity and specificity calculation 

We tested the performance of filtering emission events using the emission intensity thresholding 

and our spectral fitting method. The sensitivity of each method to correctly identify emission 

events from nanorulers and the specificity of each method to correctly remove emission events 

from fluorescent impurities was determined by identifying true positives, false positives, true 

negatives and false negatives. Nanorulers, which were correctly included by the filtering method 

were marked as true positives, while any nanorulers which were excluded were marked as false 

negatives. True negatives were any fluorescent impurities which were correctly excluded by the 

filtering method while false positives were any fluorescent impurities incorrectly marked as 

nanorulers. These definitions were used to calculate the sensitivity and specificity of each 

filtering method using the following equations:  

�Sensitivity= True Positives (True Positives+False Negatives)⁄
Specificity=True Negatives (True Negatives+False Positives)⁄ , (4-3) 
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SMLM ground truth 

To determine the locations and the number of true nanorulers and fluorescent impurities in each 

FOV under HPD excitation, incorrect localizations due to background noise were removed from 

27396 recorded points from 9 FOVs using a simple density filter. To do this, the nearest neighbors 

within a 200-nm radius of a localization were identified. For clusters with more than 5 neighbors, 

the centroid was found and localizations within a 200-nm radius were assigned to that cluster. The 

average of the localizations was used to estimate the location of the detected emitter. The estimated 

locations were classified as nanorulers or fluorescent impurities by comparing the results to the 

ground truth established using the locations and spectra from the averaged image of the same FOV 

under LPD excitation. On average, we observed 6±2 nanorulers and 35±7 fluorescent impurities 

among all 9 FOVs being measured. 

 

Threshold selection 

For both emission intensity thresholding and spectral fitting, the generated histogram from 27396 

emission events were used to select a range of possible thresholds. For intensity thresholding the 

background intensity range (120:400) was selected from the histogram of emission intensities to 

ensure an SNR of at least 6 dB. For spectral fitting the range (0.8:0.94) was selected from the 

histogram of adjusted R2 values. This range was selected since it fell between two-peak adjusted 

R2 values. Examples using an intensity threshold of 180 and a spectral fitting threshold of 0.84 

were compared due to their similar high sensitivities (~90%).  
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Filtering SMLM data 

For the intensity thresholding method, emission events with an average intensity greater than 180 

were classified as fluorescence from nanorulers and all other events were classified as fluorescent 

impurities. For spectral fitting, the spectrum was first normalized using the maximum intensity of 

the signal. The accepted spectral shift parameter was ±10 nm for AF532 and ±20 nm for AF568. 

The spectrum from each emission event in the SMLM dataset was fit to the reference and the 

adjusted R2 value determined. Emission events with an adjusted R2 value greater than 0.84 were 

classified as fluorescence from nanorulers and all other events were classified as fluorescent 

impurities. 

The localizations identified as emission events from nanorulers were then used to 

reconstruct SMLM images. For an emitter to be reconstructed, more than 5 emission events within 

a 200-nm radius of the centroid was required. The location of the emitters after each filtering 

method were compared to the known location of the nanorulers using the established ground truth. 

The sensitivity and specificity of each method was then calculated and compared. To estimate the 

size of each cluster, the standard deviation of emission events within each cluster was used (135). 
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Figure 4-2: Flowchart of the algorithm used to compare intensity thresholding and spectral fitting 
filtering methods. 

 

DNA sample preparation  

Lambda phage DNA (Thermo Scientific) was diluted to 100 ng/μL in Tris EDTA (TE) buffer (10 

mM Tris and 1 mM EDTA). YOYO-1 dye (Invitrogen) was diluted to 2 μM in TE buffer. 32 μL 

of DNA was mixed with 480 μL of YOYO-1 for a base pair to dye labeling ratio of 5:1 (132). The 

mixture was incubated for 1 hr at room temp covered using aluminum foil. The sample was then 

heated to 65 °C for 10 mins (132). 50 μL of the labeled DNA was spin stretched on silanized 

coverslips at 1200 rpm for 30 secs.   

 

DNA imaging and analysis 

A 488-nm laser was used to excite the DNA labeled with YOYO-1 dye and imaged using sSMLM. 

940 frames of the stretched DNA were captured using at an integration time of 10 ms. The recorded 

spectrum of each localization was used to calculate the spectral centroid. Color-coded sSMLM 
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images were generated using the centroid for each localization. Intensity and adjusted R2 values 

for each localization were used to generate histograms. An intensity threshold of 240 and an 

adjusted R2 threshold of 0.78 were selected and used to remove localizations unrelated to the DNA-

YOYO sample. For spectral fitting, the reference spectrum of YOYO-1 was fit to the normalized 

signal with the accepted intensities from 0 to 1.2 and the spectral shift parameter was ±5 nm. The 

reference spectrum and selected spectral shift parameter was based on measurements of YOYO-1 

bound to DNA immobilized on a glass surface. 

 

4.3 Results and Discussion 

To quantitatively understand the origin of fluorescent impurities, we first focused on the essential 

initial step in sample preparation: preparing optically transparent substrate via various established 

surface cleaning (18, 67, 129-132) and functionalization (11, 129, 130, 136) methods. We recorded 

SMLM images of the unlabeled glass substrates (Fisherbrand™, Fisher Scientific) (Figures. 4-3a-

c). As shown in Figure 4-3a, the representative MIP of SMLM images from a non-processed glass 

substrate clearly shows the existence of stochastic fluorescent emission with an average number 

density of 2.0±0.3x107cm-2 (Figure 4-3d). Without adding fluorescence dye, such observed 

stochastic emission can only be contributed by fluorescent impurities. These observed fluorescent 

impurities are likely caused by contaminants introduced during the manufacturing, packing, and 

transportation stages, which may potentially be removed by cleaning the substrate. 
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Figure 4-3: The origin of fluorescent impurities. MIP images (scalebars 5 µm) of unlabeled glass 
surface (a) before cleaning, (b) after plasma cleaning, and (c) after PLL functionalization. 
Comparison of the density of fluorescent impurities from 5 different FOVs (d) before surface 
cleaning (BC) and after cleaning via the piranha solution (Pir), rinsing with potassium hydroxide 
and sterilization using UV light (KOH+UV), rinsing with Hydrochloric acid and Prop-2-anol 
(Acid+Alcohol), exposure to UV activated ozone (UV-zone) and exposure to argon and oxygen 
plasma (Plasma). Comparison of the density of fluorescent impurities for 5 different FOVs on 
surfaces (e) before and after plasma cleaning (as a reference) and plasma-cleaned surfaces after 
functionalization via PLL coating, silanization with a final wash of chloroform (Sil+C), BSA and 
NEU (BBS) functionalization with glucose oxidase buffer (BBS+G) and BBS water as the buffer 
(BBS+W). 
 

Second, we tested literature-reported cleaning methods, including three chemical methods 

(piranha solution (129), KOH solution (18), and HCl solution (130)) and two physical methods 

(UV-ozone (131) and plasma cleaning (67, 132)). The MIP of SMLM images of the substrate after 

each cleaning method is shown in Figure 4-4.   
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Figure 4-4: Representative MIP images of a bare FisherbrandTM coverslip (a) before cleaning, (b) 
after cleaning using the piranha solution, (c) after sonication in 1 M KOH and sterilization using 
UV illumination, (d) after rinsing with HCl and prop-2-anol, (e) after cleaning with UV-activated 
ozone, and (f) after exposure to a mixture of oxygen and argon plasma. All images were captured 
using 532 nm illumination at a power density of 3 kW/cm2. Scale bars are 5 μm.  
 

As expected, we found that all tested surface cleaning methods effectively reduced the 

number of fluorescent impurities (Figure 4-3d). Using piranha solution, KOH solution, and HCl 

solution, the fluorescent impurity number density dropped to 2.5±1.4x106 cm-2, 6.4±1.1x106 cm-2, 

and 6.2±1.2 x106 cm-2, respectively. Using physical cleaning methods, the fluorescent impurity 

number density respectively dropped to 1.7±0.1 x106 cm-2 and 5.5±0.9 x105cm-2 after UV-ozone 

and plasma cleaning. The fluorescent impurity number density for each cleaning method was 

calculated using 1000 frames recorded using an integration time of 10 ms and a power density of 

3 kWcm-2. We hypothesize that while chemical cleaning methods can effectively remove the 

possible contaminants on the bare substrate, the chemical solution itself may contain new 

contaminants. Additionally, these methods require rinsing and drying, which could contribute to 

potential sources of fluorescent impurities. Further, chemical methods did not always uniformly 
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clean the surface. This was mostly due to variation in drying of the surface and the quality of the 

chemicals used in the cleaning (see demonstrations of its impact in Figure 4-5). Therefore, care 

should be taken when using chemical cleaning methods since sections of the coverslip may have 

an accumulation of chemical impurities along the direction the coverslip was rinsed. Consequently, 

these sources of fluorescent impurities, reduce the effectiveness of chemical cleaning. Figure 4-3d 

suggests that plasma cleaning is the most appropriate method in consistently minimizing the 

occurrence of the fluorescent impurities. 

 

 

Figure 4-5: Variability in surface cleanliness and uniformity. (a) Comparison of standard 
chemicals previously purchased for general lab use to ultrapure chemicals purchased specifically 
for cleaning. Images of a regular coverslip cleaned with standard chemicals (b) and cleaned with 
ultrapure chemicals (c). Variability of uniformity using ultrapure chemicals. (d-e) fluorescence 
images at different areas on the same coverslip cleaned with the piranha solution. (f-g) 
fluorescence images at different areas on the same coverslip cleaned with KOH then sterilized with 
UV. 
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After cleaning, we examined fluorescent impurities introduced by other essential sample 

preparation steps, which requires a wide variety of chemical reagents and may introduce new 

sources of fluorescent impurities. To this end, we tested three commonly used surface 

functionalization methods (PLL (136), silane (129), and biotinylated BSA with NEU or BBS (11)) 

after plasma cleaning. We found a significant increase of the fluorescent impurities after the 

functionalization process (Figure 4-3e). Figure 4-3c shows a representative SMLM MIP image 

after surface functionalization using PLL (see Figure 4-6 for results of other functionalization 

methods). Although we used chemical reagents with the highest purity grade (see Tables 4-1 and 

4-2 for purity information), we found that the trace amount of fluorescent impurities still imposed 

significant effects on the fluorescent impurities in SMLM. 

 

 
Figure 4-6: Representative MIP images of plasma cleaned FisherbrandTM coverslips 
functionalized with (a) PLL, (b) silane with chloroform as the final rinse, (c) biotinylated BSA and 
NEU with glucose oxidase (GLOX) buffer, and (d) biotinylated BSA and NEU with water buffer. 
All images were captured using 532 nm illumination at a power density of 3 kW/cm2.  
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As shown in Figure 4-3e, after treating with PLL, silane solution, and BBS, the observed 

fluorescent impurities number density increased to 1.6±0.3x107 cm-2, 1.9±0.351x107cm-2, and 

1.5±0.3x107 cm-2, respectively. Adding typical oxygen scavenging imaging buffer (containing 

glucose, glucose oxidase, catalase, and 2-mercapethanol in phosphate buffered saline (PBS) 

supplemented with 10 mM MgCl2) to BBS functionalized surfaces further increased the 

fluorescent impurities number density to 1.6±0.5x107 cm-2.  

Fluorescent impurity number densities were calculated using the same number of frames, 

integration time, and power density as aforementioned. Clearly, we observed a positive correlation 

between the fluorescent impurity number density and the use of chemicals, even at the highest 

available purity grade (3, 96). One common practice in single-molecule imaging and spectroscopy 

is to photobleach the prepared surface prior to sample introduction (96), however, any fluorescent 

impurities associated with the buffer for the sample would be ignored. Additionally, 

photobleaching could potentially damage or inactivate the functionalized surface if care is not 

taken to select the appropriate photobleaching power and wavelength (96, 97). Therefore, an 

alternative approach would be necessary to address these problems associated with the removal of 

all fluorescent impurities. In answering our first question, is it possible to reduce or ultimately 

eliminate fluorescent impurities, Figures 4-3d-e indicate that it is impractical to fully eliminate 

fluorescent impurities as long as any chemical reagent is used. These results further suggest that 

researchers should take precaution of the impact of fluorescent impurity in interpreting single-

molecule imaging results and underscores the need for a strategy is to distinguish fluorescent 

impurities in SMLM. 

We hypothesize that sSMLM is more effective to identify target molecules and reject 
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fluorescent impurities. To test this, we first recorded the spectra of fluorescent impurities 

associated with surfaces before cleaning and after functionalization. Figure 4-7a shows 

representative spectra of fluorescent impurities in Figure 4-3a. While fluorescent impurities 1 and 

2 have spectra at 569 nm and 593 nm, respectively, the spectrum of impurity 3 ranges from 566 

nm to 610 nm. 

Figure 4-7b shows three representative spectra from fluorescent impurities associated with 

PLL functionalization. We found that these fluorescent impurities displayed a significant amount 

of inhomogeneity with the different fluorescent impurities having spectra at 562 nm, 623 nm, and 

642 nm. These findings indicate that fluorescent impurities have diverse spectral characteristics 

and can emit a large number of photons when excited using high power densities. Though the 

nature of fluorescent impurities remains unknown, their spectral signatures can be used to guide 

experimental design and data analysis. 

 

 

Figure 4-7: (a) Representative spectra from three fluorescent impurities on a FisherbrandTM 
coverslips before cleaning. (b) Representative spectra from three fluorescent impurities associated 
with PLL functionalization. 
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Because surface functionalization is necessary for the proper deposition of biological 

molecules, it would be difficult to remove this step in the preparation of many samples. Therefore, 

to better understand the impurities associated with different surface functionalization methods, we 

measured the average fluorescence spectrum of coverslips treated with each method under 532-

nm illumination using sSMLM with a narrow slit as shown in Figure 4-8a-c. The average spectrum 

for each functionalization method was determined by measuring the emission spectra of multiple 

impurities (see Figure 4-8d). This study showed that each functionalization method had a distinct 

associated spectrum. The spectrum from impurities associated with PLL was found to have main 

peaks around 575 nm and 625 nm, impurities associated with silane and chloroform have a single 

peak around 585 nm, while silane impurities have having a broader spectrum and a peak around 

590 nm, BSA-biotin with NEU had the broadest spectrum with a peak around 610 nm in both 

buffer conditions as shown in Figure 4-8d.  
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Figure 4-8: Spectroscopic analysis of functionalized coverslips. (a) Schematic of sSMLM 
detection channel with the slit closed to acquire average images and line. (b) Image of coverslip 
functionalized with biotinylated BSA and NEU with GLOX buffer (BBS+GLOX). (c) Line spectra 
of spectra from BBS+GLOX coverslip. (d) Average line spectra from PLL, silane with chloroform 
rinse, silane with water rinse, BBS+GLOX, and BBS+Water.  

 

Additionally, the PLL impurities were found to be sensitive to specific wavelengths as 

shown in Figure 4-9, emission events could be detected under 532 nm and 647 nm excitation but 

not under 445 nm excitation. Using the same detection system shown in Figures 4-8a-c, the average 

spectrum from experiments using 532 nm and 647 nm are included in Figure 4-9. 
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Figure 4-9: Excitation dependent emission of fluorescent impurities of PLL coated plasma cleaned 
coverslips under illuminations at wavelengths of (a) 445 nm, (b) 532 nm, and (c) 645 nm. (d) 
Average line spectra under illuminations at wavelengths of 532 nm and 645 nm. 

 

Using sSMLM, we developed a spectral fitting method and compared it with the intensity 

thresholding method to experimentally evaluate their sensitivity in identifying target molecules 

and specificity in rejecting fluorescent impurities. We used DNA origami nanorulers (labeled with 

AF532 and AF568 with 10 nm spatial separation, Gattaquant) (137, 138) as the target molecules 

because the spacing of the dyes was beyond the spatial resolution of SMLM but their spectral 

separation was greater than the spectral dispersion of our sSMLM system. We spin-coated the 

nanorulers on PLL functionalized glass substrate. We acquired images within the same FOV using 

both low power density (LPD, 0.5 kWcm-2) and high-power-density (HPD, 3 kWcm-2) 

illuminations. LPD and HPD illuminations respectively represented the conditions of conventional 

fluorescent microscopy and SMLM (Figures 4-1a-c). Under LPD illumination, the observed 

fluorescent emissions are highly likely from the nanorulers (Figure 4-10a) (139). Additionally, 
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since photo-switching is suppressed under LPD illumination the average emission spectrum of the 

nanorulers and the minority of fluorescent impurities can be recorded. 

Therefore, to establish the ground truth, we examined and fitted the emission spectra in the 

average LPD image with known nanoruler emission spectra. Overlapping spectra in the average 

LPD images were excluded from this analysis. Detected emissions that fit the spectra of AF532 

and AF568 with an adjusted R2 value greater than 0.89 after spectral fitting were considered to be 

true nanoruler emissions. 
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Figure 4-10: Identifying fluorescent impurities during SMLM. (a) Average spatial and spectral 
image of DNA origami nanorulers, containing two emitting points labeled with single AF532 and 
AF568 molecules 10 nm apart, immobilized on a PLL coated surface. Images were acquired under 
illuminations with power densities associated with conventional fluorescence imaging (0.5 
kW/cm2). (b) Stack of 1500 frames of the spatial and spectral images of the nanoruler sample for 
sSMLM (3 kW/cm2) using the same FOV. (c) MIP images of the spatial and spectral of the same 
FOV. (d) Photon count versus time of two nanorulers (1,4) and two fluorescent impurities (2,3) 
highlighted in average and MIP of SSMLM images. (e) Corresponding spectra of the point sources 
identified in the average and SSMLM images representing true positive, false positive, true 
negative and false negative cases for the spectral fitting method. (f) Sensitivity and (g) Specificity 
comparison for 9 datasets using an emission intensity a threshold of 180 and a spectral fitting filter 
adjusted R2 threshold of 0.84.  
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Figure 4-11 shows the spectra of nanorulers and fluorescent impurities. To select a R2 

threshold for ground truth analysis, the histograms of the R2 fitting parameter before and after the 

influence of the Alexa 568 terms were assessed.  

 

Figure 4-11: (a) Cartoon of the 10 nm AF532 and AF568 nanoruler. b) Representative spatial 
image and c) extracted spectra of nanorulers detected using LPD illumination using the field of 
view highlighted in Figures 4-11a-c. (d) Representative spatial image and e) extracted spectra of 
fluorescent impurities detected using LPD illumination using the field of view highlighted in 
Figures 4-11a-c. 

 

As shown in Figure 4-12, a threshold of 0.89 was selected to include only emitters whose 

spectra included both AF532 and AF568.  
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Figure 4-12: Histograms of adjusted R2 values of average spectra from 174 locations in the LPD 
image after spectral fitting to the reference spectrum of (a) AF532 and (b) both AF532 and AF568 
with the adjusted R2 threshold of 0.89 highlighted. 

 

We acquired 1500 sSMLM images from the same FOV under HPD illumination (Figure. 

4-10b) and plotted both the spatial and spectral MIP images in Figure 4-10c. Since the nanorulers 

have already been identified in the LPD experiment, any additional fluorescent emission identified 

in HPD experiment can be treated as fluorescent impurities. Figure 4-13 shows the number of 

emitters for all 9 FOVs in the high-power density datasets (3 kWcm-2) and their categorization as 

nanorulers or fluorescent impurities after comparison to the established ground truth. 
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Figure 4-13: The number of emitters detected using HPD excitation, the number of nanorulers, 
and the number of fluorescent impurities detected under HPD excitation for all 9 field of views. 
The median is highlighted for each box plot. 

 

  We compared the sensitivities and specificities of our spectral-fitting method and the 

commonly used emission intensity thresholding method. We used the histograms for the adjusted 

R2 and emission intensity of each emission event to select a range of possible thresholds. For the 

spectral fitting method, a range of 0.80 to 0.94 was tested for the adjusted R2 values and for the 

emission intensity thresholding method a range from 120 to 400 was tested allowing the SNR to 

be at least 6 dB above the background. For fair comparison, we selected the case with ~90% 

sensitivities in both methods (Table 4-3). In this example, for the spectral fitting method emission 

spectra fitted with an adjusted R2 value greater than 0.84 were considered as positive identification 

of nanorulers, while others were considered as negative identification. On the other hand, in the 

emission intensity thresholding method stochastic emission with the intensity above 180 will be 

recognized as a nanoruler while others were categorized as a fluorescent impurity. 

We classified nanoruler identifications in the HPD experiments against the ground truth 

established in the LPD experiments into four categories: true-positive (TP), true-negative (TN), 

false-positive (FP), and false-negative (FN). Representative intensities and spectra of the four 
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categories are shown in Figure 4-10d and Figure 4-10e, respectively. As shown in Figures 4-10d.2 

and 4-10d.3, the emission intensity thresholding method would fail to remove both fluorescent 

impurities since their intensities exceed the established threshold. 

We compared the sensitivities (Figure 4-10f) and specificities (Figure 4-10g) of both 

methods using the datasets collected from 9 FOVs (see Table 4-3 for actual values). The sensitivity 

and specificity for the emission intensity thresholding method are 91±9% and 50±8%, 

respectively; the sensitivity and specificity for our spectral fitting method are 89±10% and 87±4%, 

respectively. 

While both methods showed comparable sensitivity in identifying nanorulers, the 

specificity of rejecting fluorescent impurities by our spectral fitting methods is close to two-fold 

higher than the emission intensity thresholding method. Though an 85% specificity for the 

emission intensity thresholding method can be achieved by increasing the threshold to 300, this 

will result in a 13% reduction in sensitivity. On the other hand, the threshold for the spectral fitting 

method can be increased up to 0.89 allowing for a specificity of 90% with only a 4% reduction in 

sensitivity. This study shows that the specificity of spectral fitting is less dependent on the user 

defined R2 threshold than the threshold for emission intensity thresholding. However, due to 

diverse origins of fluorescent impurities, their spectra can overlap with nanorulers (as shown in 

Figure 4-10e.2), which contributed to 13% FP identification in spectral fitting method. Further 

reducing FP identification can be accomplished by incorporating additional signatures related to 

dye photophysics, such as switching time constant (83, 140, 141) or fluorescence lifetime (140, 

141). 
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Table 4-3: Sensitivity and Specificity comparison between single molecule filtering based on 

emission intensity (threshold 180) and spectral fitting (threshold 0.84).  

  Intensity 
Threshold 

Spectral 
Fitting 

   Intensity 
Threshold 

Spectral 
Fitting 

Sensitivity 1.00 1.00  Specificity 0.62 0.91 
  0.89 0.78    0.40 0.86 
  0.80 0.80    0.47 0.89 
  1.00 1.00    0.39 0.76 
  0.86 0.86    0.47 0.86 
  1.00 1.00    0.48 0.92 
  0.86 0.86    0.60 0.87 
  1.00 1.00    0.49 0.84 
  0.75 0.75    0.56 0.89 
Average 0.91 0.89  Average 0.50 0.87 
Median 0.89 0.86  Median 0.48 0.87 
STD 0.09 0.10  STD 0.08 0.04 

 

Figure 4-14 demonstrates that our spectral-fitting method better identifies and minimizes 

artifacts caused by fluorescent impurities. Figure 4-14a shows the sSMLM spatial and spectral 

MIP images of the same nanoruler sample imaged in Figure 4-10, but from a different FOV. We 

highlighted two regions of interest (ROIs) that contain both nanorulers and fluorescent impurities. 

Figure 4-14b shows the reconstructed super-resolution image using ImageJ plug-in 

ThunderSTORM (121) without excluding fluorescent impurities. The results after emission 

intensity thresholding and spectral fitting are shown in Figures 4-14c and 4-14d, respectively. 

ROI1 is an example of a misidentified molecule. Within ROI1, among the 189 localized events 

being originally identified in Figure 4-14b, 114 events were treated by emission intensity 

thresholding method as nanorulers (Figure 4-14c). By comparing corresponding spectra of all the 

localized events (representative spectrum is shown as the black curve in Figure 4-14h) with the 
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spectroscopic signature of the nanoruler (Figure 4-10e), our spectral fitting method determined 

that none of the 189 events is from nanorulers (Figure 4-14d). 

Using the spectral fitting method in ROI1 prevented sample misidentification. Figures 4-

14e-g are the magnified view of the ROI2 shown in Figures 4-14b-d, respectively. ROI2 is an 

example of a fluorescent impurity which overlaps in space with a nanoruler. Within ROI2, among 

the localized events being originally identified in Figure 4-14e, which corresponds to a standard 

deviation (S.D.) of localizations of 52.9 nm (135). Among them, 269 events were treated by 

emission intensity thresholding method as nanorulers, which reduces the S.D. of localizations to 

40.1 nm (Figure 4-14f). After spectral fitting, we identified 103 events from the nanoruler and 

determined that 389 of the originally identified events were fluorescent impurities.  As shown in 

Figure 4-14h, the representative spectrum of nanoruler (red curve) shows distinct spectroscopic 

signatures in clear contrast with the spectrum from the fluorescent impurity (blue curve), which 

further validates the specificity of our spectral fitting method. We demonstrate here that our 

spectral fitting method can effectively reduce localization uncertainty of samples by removing 

localizations from fluorescent impurities, with approximately two-fold improved localization 

precision (S.D.: 22.5 nm) comparing with emission intensity thresholding method. 

Finally, we compared the performance of emission intensity thresholding and spectral 

fitting in removing artifacts induced by unwanted fluorescence when imaging DNA samples. For 

this demonstration we stretched lambda phage DNA labeled with YOYO-1 on a silane treated 

coverslip. We imaged the sample using sSMLM and color-coded the reconstructed image using 

the spectral centroid for 831 localizations as shown in Figure 4-14i. After applying an intensity 

filter with an intensity threshold of 240, the reconstructed image contained 476 localizations as 
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shown in Figure 4-14j, however, localizations unrelated to the DNA-YOYO sample were not 

completely removed. We then applied our spectral fitting method with an adjusted R2 threshold of 

0.78 and found that only 221 localizations were more specifically associated with the DNA-YOYO 

sample as shown in Figure 4-14k. The successful removal of the unwanted SMLM imaging 

artifacts is highlighted as triangles in Figure 4-14i-k, which results in a clear image after applying 

our spectra fitting method. 
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Figure 4-14: Comparing results in minimizing artifacts induced by fluorescent impurities using 
intensity filtering and our spectral fitting methods. (a) sSMLM spatial and spectral MIP images of 
nanorulers with fluorescent impurities. (b) Reconstructed super-resolution images without 
rejecting fluorescent impurities; (c) result after emission intensity filtering; (d) result after spectral 
fitting. ROI 1 highlights the localized fluorescent impurities that are eliminated by our spectral 
fitting method but are misidentified by intensity filtering method. ROI2 highlights the case of 
spatial overlapping of fluorescent impurities and nanorulers results in higher localization 
uncertainty. The resulting super-resolution images of ROI2 are further magnified in (e) before 
filtering (standard deviation (S.D.) 52.9 nm), (f) after intensity filtering (S.D. 40.1 nm), and (g) 
after spectral fitting (S.D. 22.5 nm). (h) Averaged spectra of fluorescent impurities and nanoruler 
emission. (i) Reconstructed color-coded super-resolution image of stretched lambda phage DNA 
labeled with YOYO-1 dye on a silane functionalized surface before rejecting emission unrelated 
to the DNA-YOYO sample (resulting artifacts highlighted by white triangles); (j) result after 
intensity filtering contains artifacts from unwanted fluorescence; (k) result after spectral fitting 
specifically removed artifacts induced by unwanted fluorescence. 
 

4.5  Conclusions 

We show that fluorescent impurities are unavoidable. Although thorough plasma cleaning 

significantly reduced the number of detectable fluorescent impurities, a large amount of 

fluorescent impurities can be introduced by required substrate treatments, such as surface 

functionalization. Although the true origins of fluorescent impurities remain unclear, using 



105 
 

 

sSMLM to perform spectral fitting can effectively improve the specificity of rejecting fluorescent 

impurities by nearly two-folds comparing with commonly used method while maintaining 

comparable sensitivity in identifying target molecules. Additionally, we found that the specificity 

of spectral fitting is less dependent on the user-defined R2 threshold than the intensity threshold 

for intensity filtering. This study suggests that sSMLM, with newly added spectral analysis 

capability, is a powerful tool for single-molecule studies to guide sample preparation for better 

experimental design and analysis. 
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CHAPTER 5:  Quantitative sSMLM #2: Counting and Sizing Self-Assembled 

Nanocarriers using Quantitative Spectroscopic Analysis for Cluster 

Extraction 

 

Self-assembled nanocarriers have inspired a range of applications for bioimaging, diagnostics, and 

drug delivery. Non-invasive visualization and characterization of nanocarriers are important for 

understanding their structure to function relationship. However, quantitative visualization of 

nanocarriers in the sample’s native environment remains challenging using existing technologies. 

Single-molecule localization microscopy (SMLM) has the potential to provide both high-

resolution visualization and quantitative analysis of nanocarriers in their native environment. 

However, non-specific binding of fluorescent probes used in SMLM can introduce artifacts, which 

impose challenges in quantitative analysis of SMLM images. We showed the feasibility of using 

spectroscopic point accumulation for imaging in nanoscale topography (sPAINT) to visualize self-

assembled polymersomes (PS) with molecular specificity. Furthermore, we analyzed the unique 

spectral signatures of Nile Red (NR) molecules bound to the PS to reject artifacts from non-specific 

NR bindings. We further developed quantitative spectroscopic analysis for cluster extraction 

(qSPACE) to increase the localization density by 4-fold compared to sPAINT; thus, reducing 

variations in PS size measurements to less than 5%. Finally, using qSPACE we quantitatively 

imaged PS at various concentrations in aqueous solutions with ~20-nm localization precision and 

97% reduction in sample misidentification relative to conventional SMLM. This chapter is adapted 

from a previously published article in Langmuir (142). 
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5.1 Introduction 

Nanocarriers are soft nanomaterials with particle size typically less than 500 nm in diameter and 

are frequently used as transport vehicles for other substances (143). The composition, size, 

morphology, and functionality of nanocarriers have been extensively investigated for a wide range 

of biomedical applications, including drug delivery, diagnostics and therapeutics (143). The 

visualization of nanocarriers with minimal perturbation of the nanomaterials and the surrounding 

environments are crucial steps for understanding the relationship between their structure, spatial 

distribution, and function (16, 144); however, this remains a challenge using existing imaging 

techniques. Conventional fluorescence microscopy is unable to fully resolve the nanocarriers 

because of the optical diffraction limit. Other non-optical techniques (14, 15) offer higher 

resolution (e.g. electron microscopy and atomic force microscopy); however, they often require 

restrictive sample preparations, which alter the sample’s native environment. The limitations in 

the available technologies created the need for a better solution, which can provide both high 

resolution images of nanomaterials in their native environment while simultaneously quantifying 

their structural and spatial distributions. 

Super-resolution optical microscopy allows visualization of nanomaterials with sub-

diffraction resolution and molecular specificity (16, 145-149). In particular, single-molecule 

localization microscopy (SMLM) (17, 18, 65, 66) techniques detect the stochastic emissions from 

individual fluorescent molecules, approximate their spatial coordinates with nanometer precision 

and reconstruct the image after compiling all the molecular coordinates. For quantitative 

characterization, sophisticated image processing is required to identify individual nanocarriers and 

reject background noise coming from, for example, fluorescent impurities or non-specific labeling. 
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Spatial clustering techniques such as Ripley’s K-function (90, 135), pair correlation (91), and 

density-based clustering algorithms (93, 94, 150) have been routinely applied to identify the 

boundaries of the samples in SMLM (83, 151). However, Ripley’s K-function and pair correlation 

restrict sample identification to nanocarriers exhibiting homogenous size distributions. 

Meanwhile, density-based clustering algorithms allow for the identification of a range of samples 

with inhomogeneous size and shape; however, they are sensitive to background signals and 

variations in localization density (83, 92, 151). 

Recently developed spectroscopic SMLM or sSMLM (30-32, 103, 104, 109, 110, 112, 115, 

116, 122) techniques distinguish fluorescent signals from individual molecules according to their 

emission spectra. They provide new strategies for multicolor (30-32, 109, 116) and functional 

super-resolution imaging (104-108, 110, 123). Furthermore, the spectral signatures have been used 

to identify and remove the influence from fluorescent impurities (123). The removal of non-

specific fluorescent signals, however, remains challenging since their spectral signatures are 

identical to spectral signatures from probes that are bound to the sample. In contrast, a variant of 

sSMLM referred to as spectroscopic point accumulation for imaging in nanoscale topography 

(sPAINT) (104, 105, 107, 108), has been developed to detect specific transient binding of probes, 

whose fluorescence emission spectra depends on their binding environment. For instance, sPAINT 

has been employed to image membrane hydrophobicity in liposomes and cells (104, 107), to 

observe heterogeneity of protein oligomers (105), and to characterize the formation of surface 

adlayers (108). 

In this work, we demonstrate that sPAINT can be used to quantitatively image and 

characterize nanocarriers after rejecting non-specific bindings. We use sPAINT and Nile Red (NR) 
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dye (Figure 5-1a), to image, count, and measure the size distribution of nanocarriers in an aqueous 

environment, using polymersomes (PS) as a model material. We also report a quantitative 

SPectroscopic Analysis for Cluster Extraction (qSPACE) post-processing method to increase the 

sizing accuracy by optimizing the utilization of the spatial and spectral information obtained from 

sPAINT. Finally, we validate the accuracy of qSPACE in quantifying the size distribution of PS 

using nanoparticle tracking analysis (NTA). We also used cryogenic transmission electron 

microscopy (cryoTEM) to validate the size range and morphology of the PS in the qSPACE super-

resolution image reconstructions.  

 

5.2 Results and Discussion 

PS imaging using sPAINT  

The PS is assembled from block copolymers (BCP) with the non-polar end facing inwards and the 

polar tails exposed to the aqueous interface (Figures 5-1b & 5-1c) (7). NR is well-known for its 

polarity-dependent emission spectrum (152, 153) with unique spectral variations upon binding to 

PS. Particularly, the bulk emission measurement of NR in aqueous solutions with the presence of 

PS shows a 55-nm hypsochromic shift in the emission maximum (λmax) in comparison to solutions 

without PS (Figure 5-2a). 

Figure 5-1c illustrates the sPAINT imaging principle of PS with NR. The PS sample was 

immobilized on poly-L-Lysine (PLL) coated glass substrate and imaged in phosphate buffer saline 

(PBS) solution containing 5 nM NR. The single-molecule blinking signals of free-diffusing NR 

molecules can only be detected upon transient binding to the PS or PLL substrate. The distinct 

spectral shifts of the two types of binding events are further distinguished by analyzing the single-

molecule spectra using sPAINT. As shown in Figure 5-1d, the locations and emission spectra of 
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single-molecule signals are concurrently collected after passing through a transmission diffraction 

grating (see details in the methods section). 

 

 

Figure 5-1: (a) Chemical structure of NR; (b) Chemical structure and illustration of the BCP for 
PS assembly; (c) Illustration of the assembled PS (the green color represents the polar end of the 
BCP and the blue color represents the non-polar end) and the difference in the emission spectra of 
NR when transiently bound to the PS (yellow) and the PLL-coated glass substrate (red). Free non-
fluorescent NR is shown in gray; (d) Schematic of our sPAINT experimental setup. TL: tube lens; 
S: slit; G: transmission grating; L: lens; EMCCD: electron multiplying charge-coupled device. 
 

A representative sPAINT reconstruction of PS immobilized on the PLL substrate (Figure 

5-3a) shows distinct clustered features (as highlighted by 1, 2, and 3), ranging from tens to 

hundreds of nanometers and a relatively uniform background with hollow patterns. Using the same 

concentration of NR, we imaged a control sample (CTRL, PLL substrate without PS). A 

representative sPAINT reconstruction of the control sample (Figure 5-2b) shows consistent 
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background patterns without the clustered features, suggesting a large amount of non-specific 

bindings of NR to the PLL substrate. 

 

Figure 5-2: (a) Comparison of the average emission spectra of NR in solutions containing PS and 
sample preparation reagents (PLL and PBS)) measured using a fluorimeter and sPAINT. (b) 
Representative super-resolution reconstructions of the PLL coated glass used as the control 
sample. (Scale bar: 1 μm). (c-e) Histograms of the emission maxima (λmax) of NR interactions in 
ROIs containing PS from three different images (six clusters were selected in each image). The 
selected spectral window (SW, 595 – 625 nm) is highlighted in red. (f) Reproducibility test 
showing the histogram of λmax from PS acquired on a different day with similar experimental 
conditions. (g) Comparison of the identification percent of localizations from the PS λmax 
histogram and identification percent of localizations from the control λmax histogram as the window 
size of the SW increases (peak position of SW = 610 nm). 
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Statistical analysis of 1131 single-molecule spectra collected from 18 clustered features in 

three different images of the PS sample (Figure 5-2c-e) showed the peak of the histograms from 

the images had the mean λmax of 610 with a standard deviation of 3 nm (610±3 nm). Three 

examples of the clustered features are highlighted in Figure 5-3a and their corresponding 

histograms of the λmax distribution are shown in Figure 5-3b. To identify non-specific binding 

events, we relied on the λmax values of individual single-molecule emissions from three 

representative images on the control sample each with ~105 localizations. Figure 5-3c shows a 

representative histogram of the λmax distributions from non-specific binding events. From the 

histograms from the three control images, we found that the control sample has two main 

populations with λmax of 585 nm (26±2%) and 645 nm (57±2%). Using the histograms of λmax from 

the PS, we set the peak wavelength for specifically identifying NR interactions with PS as 610 nm. 

Next, we tested various spectral window (SW) sizes and found that the most efficient SW for 

rejecting non-specific binding while specifically identifying NR interactions with PS was from 

595 nm - 625 nm (see Figure 5-2g), as highlighted by the red color in Figures 5-3b and 5-3c.We 

show three typical single-molecule spectra of NR in Figure 5-3d. They represent NR specific 

binding to PS (black curve with λmax value around 607 nm) and non-specific binding to PLL 

substrate (blue and red curves with λmax values around 571 nm and 651 nm, respectively). 
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Figure 5-3: (a) A representative reconstructed super-resolution image of the immobilized the PS 
sample and NR interactions (Scale bar: 1 μm); (b) Histogram of the λmax of NR interactions in 
three ROIs containing PS as highlighted by the yellow squares numbered 1-3; (c) Histogram of 
the λmax of non-specific NR interactions in the control sample. The SW used for detecting NR 
interactions with PS is highlighted in red 

 

We found that the average single-molecule spectrum from the localizations associated with 

PS matched the bulk measurements of NR in a PBS solution containing PS (Figure 5-2a). 

Additionally, the average spectrum from localizations with λmax > 645 nm in the control sample 

resembled the bulk measurements of NR in solutions without PS (Figure 5-2a). For sPAINT 

measurements of the average spectrum, 300 localizations from a representative image were used 

(see methods section for details). The binding events with λmax < 595 nm in the control sample are 

likely from aggregates of NR in aqueous solutions that are not resolved in the fluorimeter 

measurements (154). 

We selected SW centered around 610±3 nm based on the histograms from the PS shown 

in Figures 5-3 and Figures 5-2c-e. We then selected a 30 nm SW where the non-specific binding 

to the PLL coated glass was minimized in the control sample (PLL coated glass with no PS) while 

maximizing the size of the window to allow as much NR interactions with PS to be included 

(Figure 5-2g). The selected SW rejected 83% of the localizations from the control sample while 
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60% of localizations associated with the PS were accepted. Changing the SW window size would 

affect the percentage localizations from both the non-specific binding and the PS sample. For 

example, using a window size of 10 nm, the percentage of localizations from non-specific binding 

would be reduced to 5% and the percentage of localizations from the PS sample would be reduced 

to 23%. This change would reduce the number of localizations per cluster in both cases causing 

inaccuracy in the size and morphology during subsequent cluster analysis steps. 

Quantitative analysis of sPAINT images involves two steps. First, we selected localizations 

within SW (595-625 nm) for PS identification. We confirmed that the NR specific binding to PS 

can be separated from all other non-specific binding events using the selected SW (Figure 5-4). In 

the control samples, 17±1% of the localizations had λmax values within the SW. Meanwhile, we 

found that 58±5% of the localizations from the clusters in the PS sample were within this SW 

(Figure 5-2c). Figure 5-3b shows examples of the histograms of three regions of interest (ROIs) 

highlighted in Figure 5-3a with SW highlighted in red. Histograms of the λmax from ROIs in similar 

images (Figures 5-2d-e) show a similar distribution of localizations within SW.  
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Figure 5-4: sPAINT reconstructions before applying the spectral window for selecting PS for (a) 
example 1 and (b) example 2. Overlay of the reconstructions with the localizations designated as 
PS in cyan and localizations designated from non-specific binding in red from (c) example 1 and 
(d) example 2. sPAINT reconstructions of the PS channel for (e) example 1 and (f) example 2. 
sPAINT reconstructions of the non-specific binding channels for (g) example 1 and (h) example 2 
(Scale bar: 500 nm) 

 

 Second, we applied density-based spatial clustering of applications with noise (DBSCAN) 

optimized for clusters with heterogenous cluster densities (93) to count and size PS. DBSCAN 

(94) and its variants (92, 93, 150) are supervised learning algorithms which are routinely used for 

SMLM post-processing.  A cluster radius (CR) and a minimum number of localizations in the CR 

are user-defined to identify localizations belonging to particular clusters. We defined CR as twice 

the average localization precision (40 nm) (27, 92). Next, we identified the minimum number of 

nearest neighbors (min-NN) within the CR of each localization. The localizations were then 

ordered based on their spatial distribution and grouped into individual clusters (93). Finally, the 

number of clusters and the size of each cluster was estimated (see details of cluster analysis in the 

methods section and Figure 5-5).  
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Figure 5-5: (a) Representative super-resolution reconstruction showing individual clusters with 
varying sizes identified by the optimized density-based spatial clustering for applications with 
noise (DBSCAN) algorithm marked by the red plus signs (Scale bar 500 nm). (b) Comparison of 
the differences in the cluster counting accuracy using DBSCAN for trials using data with different 
cluster densities (number of nearest neighbors or number of NN), the red bar shows data selected 
based on the spectroscopic and spatial information while the blue bar shows data selected for 
analysis based on spatial information alone. 

 

We investigated the influence of non-specific binding on DBSCAN by comparing the 

number of clusters found by DBSCAN using localizations within SW (sPAINT) and DBSCAN 

without considering SW. For both cases, only bright localizations that contained high-precision 

spectral information (localizations at least 450 photons in the spatial domain and average spectral 

precision ~9.2 nm (122)). The photon distribution and related spectral precision information for 

the localizations used in the analysis are shown in Figure 5-6. The distribution of the spectral 

precision (Figure 5-6c) shows that the spectral precision of a typical localization used in this study 

would be sufficient to be separated from the non-specific binding with emission maxima 

populations ~30 nm away from the emission maximum of the sample. We plotted the histograms 

of the number of nearest neighbors (NN) with and without the SW filter for three different controls 

and three different PS images (Figure 5-7). We found that they followed similar distributions. We 

selected one representative control image and one representative PS image for setting clustering 
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thresholds. For sPAINT and DBSCAN, we selected min-NN thresholds by achieving the minimal 

number of clusters from the control sample. 

 

 

Figure 5-6: Histograms of the (a) spatial photon counts, (b) spectral photon counts and (c) spectral 
precision used for sSMLM analysis from a representative image. 
 
 

To select min-NN thresholds we first confirmed the distributions of NN was the same for 

all datasets. For clarity, the min-NN threshold set based on DBSCAN alone is referenced by NNC. 

Meanwhile, nearest neighbor thresholds based on sPAINT will be designated as NNV. Figures 5-

7a-c and 5-7d-f show the comparison between the histograms of NN for localizations in the control 

and PS samples with and without application of the SW. For the control and PS images the number 

of localizations was ~105 before the SW filter and ~104 the SW filter. By selecting localizations 

within the SW, the average number of NN reduced from 13 to 7 in the PS sample. Alternatively, 

in the control image the average number of NN reduced 5-fold from 10 to 2. This indicates that 

though the number of localizations was reduced for both groups, the application of the spectra-

based criteria preferentially selected localizations which were members of clusters. 
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Figure 5-7: Histograms showing the comparison between the number of NN of localizations with 
450 photons in the spatial domain before (n=~105) and after application of the selected spectral 
window (n=~104) of (a-c) 3 control images and (d-f) 3 PS images. (g) Plots showing the number 
of clusters using localizations within the SW as the min-NN increases in representative PS and 
control images. The black dashed line shows the threshold used in this study. 

 

We then tested a range of thresholds in or to achieve the minimal number of clusters from 

the control sample. For sPAINT a range of min-NNV from 5 to 20 were tested (Figure 5-7g). 

Meanwhile, for analysis based on DBSCAN alone, a range of min-NNC from 15 to 50 was tested 

(Figure 5-8a).  A threshold was selected to achieve the minimal number of clusters in the control 

without causing morphology changes in the PS image (Figure 5-8b). Using this threshold, 

localizations with too few neighbors were rejected as noise. For sPAINT, a min- NNV of 10 was 

selected while a min-NNC of 20 was selected for DBSCAN alone.  
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Figure 5-8: Plots showing the number of clusters with localizations with at least 450 photons in 
the spatial domain as the min-NN increases in the (a) PS and control images. The black dashed 
line shows the threshold used to compare spatial clustering without considering the PS window. 
Representative super-resolution reconstructions of the (b) PS sample (white arrows indicate 
changes in PS morphology) and (c) the control sample after application of the clustering thresholds 
(min-NNC =30 and Int=450). (Scale bar 500 nm) 

 

Without using SW, we found that DBSCAN was sensitive to non-specific binding events. 

We found 55 and 28 clusters with averaged size of 126 nm and 90 nm in the PS and the control 

samples, respectively, when performing DBSCAN alone using a min-NN threshold of 20 (Figures 

5-9a & 5-9b). In comparison, by first selecting signals within the SW, we found 39 and 3 clusters 

in the PS and the control samples respectively after DBSCAN using a min-NN threshold of 10 

(Figures 5-9c & 5-9d). This shows an 89% reduction in the artifacts from non-specific binding in 

the control image. While stricter min-NN thresholds can be used to reduce the influence of non-

specific binding using DBSCAN alone, we found that this often causes over-filtering (83, 135, 

151) which presents an additional challenge since it can erroneously misrepresent the morphology 

of the sample (Figure 5-8b). 
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Figure 5-9: Clusters extracted from (a) the PS sample and (b) control based on DBSCAN alone; 
Clusters extracted from (c) the PS sample and (d) control using sPAINT (Scale bar: 500 nm). 
 

sPAINT allowed us to image and quantify PS in aqueous environments. Particularly, it 

enabled the specific detection of NR to PS binding by analyzing the single-molecule emission 

spectra of each localization event. Meanwhile, sPAINT only used bright localization events (>450 

photons in the spatial domain). As a result, clusters identified by sPAINT can have low localization 

densities (LD, number of localizations in a cluster within the cluster area), which might affect the 

visualization and size measurement for PS. Therefore, we further investigated the effect of LD on 

the size measurements and visualization of the PS in sPAINT imaging, and further developed a 

quantitative spectroscopic analysis for cluster extraction (qSPACE) post-imaging processing 

method to increase LD without compromising the specificity achieved by sPAINT in the next 

section. 

 

Improving localization density using qSPACE 

While sPAINT can readily image PS, we recognized that it rejected a large portion of the 

localization events (Figure 5-10). In fact, this is a common issue in all sSMLM because the limited 
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photon budget from single-molecule emission events is further split into the spatial and spectral 

channels (30, 31, 109). Although dim molecules (300-450 photons in the spatial domain) can still 

be localized at ~25 nm precision (Figure 5-10), they are discarded since λmax cannot be estimated 

precisely (estimated spectral precision worse than15 nm (122)) due to their low photon budget. 

 

 
 

Figure 5-10: Localizations excluded from spectroscopic analysis based on photon number 
(Average localization uncertainty ~25 nm, Photon budget: 300-450 in the spatial domain) 

 

The limited number of localizations retained by sPAINT could result in clusters with low 

LD, thus leading to inaccurate measurements of the size and morphology of the PS. Although 

sPAINT is immune to photobleaching, prolonging the acquisition time to increase the LD has the 

risk of altering the shape of nanocarriers (65, 155, 156). To address this issue, we developed 

qSPACE which improved the LD by using the spectroscopic signatures from the PS to guide the 

recovery of localizations without spectra. 

The workflow of qSPACE is briefed in Figure 5-11a and a detailed workflow is shown in 

Figure 5-11b. First (Step i), all the blinking events from the spatial channel are localized after 

sPAINT imaging. Second (Step ii), localizations in SW with bright blinking events (>450 photons 

in the spatial domain) are selected and DBSCAN used to generate a high-fidelity validation map 



122 
 

 

of the spatial locations of the true PS sample. Third (Step iii), we perform DBSCAN to extract 

clusters using the localized events from the spatial channel. Then (Step iv), we compare the 

localizations identified by DBSCAN alone (Step iii) to localizations in the validation map (Step 

ii) to recover spatially correlated localizations. Localizations identified by DBSCAN alone, which 

have neighbors in the validation map, are retained and used for qSPACE image reconstruction, 

while localizations without neighbors are rejected. Finally (Step v), the new clusters with higher 

LD can be counted, sized, and visualized. 
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Figure 5-11: (a)The qSPACE workflow shows the (i) detected spatial localizations with the 
location of the sample highlighted by the green circles. A subset of localizations containing 
spectroscopic information is used to create a (ii) validation map that shows clusters with the 
selected spectra. All detected localizations are used for (iii) spatial clustering without considering 
spectroscopic information. (iv) Localizations from spatial clusters, which are spatially correlated 
with the validation map, are recovered for further analysis while artifacts are rejected. (v) The 
number, size, and morphology of the extracted sample can be further analyzed. (b) Detailed 
qSPACE flowchart outlines how spectroscopic information is used to recover localizations from 
clusters from the PS sample while rejecting artifacts from non-specific binding 
 

We quantitatively compared the sizes of PS from a representative image using sPAINT and 

qSPACE. We measured the effect of the reduced number of localizations per cluster on size 

measurements by selecting 71 sPAINT clusters with at least 40 localizations. We calculated the 

percent variance (PΔSIZE) as: 

PΔSIZE =
|D� − Dn| 

D�
, 

(5-1) 
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where D� is the final diameter of the cluster and the Dn is the estimated diameter for the cluster with 

n localizations for each cluster as the number of localizations sequentially increased.  The average 

percent variance in cluster size reduced from 48% to <5% as the number of localizations increased 

(blue line Figure 5-12). This trend was further investigated by grouping the analyzed clusters based 

on their varying sizes. We found that the majority of clusters smaller than 100 nm could be 

accurately sized with ~25 localizations per cluster. Meanwhile, clusters larger than 200 nm 

required 38 localizations per cluster for accurate sizing. 

We accounted for the variation in the size requirements for clusters of different sizes by 

using a threshold based on the localization density (LD) 

LD =
N
πr2

, (5-2) 

where N is the number of localizations in the cluster and r is the radius of the cluster. The red line 

in Figure 5-12 represents the LD for an average PS (with 113 nm diameter) as the number of 

localizations increased. Using the results from the size variation measurements we set a LD 

threshold of 3.5×10-3 nm-2 for accurate sizing.  
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Figure 5-12: The average percent variance in size measurements (PΔSIZE) and localization density 
for clusters as the number of localizations per cluster increases. The black line shows where PΔSIZE 
= 5%. The dashed blue and red lines indicate the min-NN of 35 and LD of 3.5×10-3 nm-2 required 
for accurate sizing. 

 

We found that on average 35 localizations are required to reach a stable PS size. Since the 

PS ranged in size, we used the corresponding LD of 3.5 × 10-3 nm-2 as a threshold to quantify the 

number of PS with size variations exceeding 5%. 

We tested the performance of qSPACE to reject artifacts from non-specific binding and 

identify PS clusters. We used the clusters identified using the sPAINT criteria previously described 

(SW = [595-625], min-NNv = 10) as a validation map. Potential clusters (PC) were identified using 

localizations using a min-NNc of 35   to limit variations in size measurements to 5% (Figures 5-13 

& 5-14). While traditional density-based algorithms would rely on stricter clustering threshold to 

remove potential artifacts, qSPACE uses a separate channel for sample validation. Using the 

validation channel, the specificity can be tuned by adjusting the min-NNv independently (Figure 

5-14). The spatial coordinates of localizations in the validation map are compared to the spatial 

coordinates of localizations which formed potential clusters. Localizations which did not have 
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neighbors in the validation map were rejected. All other localizations can be retained as members 

of true clusters. After validation, the min-NNC (35) for selecting the potential nanocarriers 

threshold set was used for cluster assignment. 

 

 

Figure 5-13: Plots showing the number of clusters at least 300 photons in the spatial domain as 
the minimum number of NN increases in the (a) PS and control images. The dashed black line 
represents the threshold used for detecting potential clusters for qSPACE. Representative super-
resolution reconstructions of the (b) PS sample and (c) the control sample after application of the 
clustering thresholds (min-NNC=35 and Int=300), (d) PS sample and (e) the control sample after 
application of the clustering thresholds (min-NNC=45 and Int=300). The white arrows indicate 
morphology changes in d. (Scale bar: 500 nm) 

 

Due to the improved LD, all 199 PS identified by qSPACE achieved the LD threshold 

(Figure 5-15a). In contrast, 23% of the 187 PS identified by sPAINT alone fail to meet the LD 

threshold for accurate sizing (Figure 5-15b).  
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Figure 5-14: Plots showing the tuning of the min-NNv for noise removal in the validation channel 
using qSPACE with a SW window of 595-625 nm and min-NNc of 35 for potential cluster 
assignment. The dashed black line shows the selected min-NNv. 

 

Additionally, we used the Fourier ring correlation (FRC) to compare the image qualities of 

super-resolution reconstructions of PS identified using sPAINT alone with further qSPACE 

processing in a representative image. Although the localization precisions for both methods are 

comparable (sPAINT: ~20 nm; qSPACE: ~23 nm), the differences in LD affects image resolution 

(102). We calculated the global FRC resolution that takes LD into consideration as previously 

reported (102, 139). The FRC resolution is calculated as the inverse of the spatial frequency at a 

1/7 of FRC (102). We found that qSPACE had a relatively higher FRC resolution of 69 nm while 

sPAINT had an FRC resolution of 96 nm, as shown in Figure 5-15c. 
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Figure 5-15: (a) Histogram of the localization densities (black dashed lines indicate the 3.5×10-3 
nm-2 LD threshold) for qSPACE and (b) sPAINT; (c) Comparison of the global FRC curves for 
sPAINT (red) and qSPACE (blue). The dashed lines are the corresponding FRC resolution for 
each method at the 1/7 FRC threshold; (d) Size distribution of PS (0.02 mg/mL) measured by NTA 
and qSPACE. 

 

Figure 5-15d compares the size distribution of 265 PS clusters (0.02 mg/mL) in 4 different 

images measured by qSPACE and ~5000 PS measured by NTA using 5 measurements. The 

average size of PS measured by qSPACE are 96.6±2.1 nm. These results agreed well with the 

average size measured by NTA (97.6±1.4 nm). In addition, the cryoTEM image of PS (Figure 5-

16) confirmed that the size of PS ranged from 40 nm to 200 nm. X-ray scattering analysis also 

showed consistent results with a core radius of ~106 nm and shell thickness of ~14.3 nm (7). 

Notably, PS larger than 200 nm, which resulted from the crosslinking process (7), were detected 

by both NTA (3%) and qSPACE (4%). These validations suggest that qSPACE provides more 

accurate size measurement of PS and higher resolution than sPAINT alone. 
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Figure 5-16: CryoTEM image of PS sample. 

 

Quantitative characterization of PS at various concentrations 

Finally, we used qSPACE to visualize, size, and count PS at different concentrations. Figures. 5-

17a-c show representative super-resolution reconstructions of three samples containing 0, 0.02, 

and 0.2 mg/mL of PS, referred to as control (CTRL), low concentration (LC) and high 

concentration (HC) samples, respectively. The NR concentration remained constant in these three 

samples. In the CTRL image (Figure 5-17a), the clusters were predominantly identified as artifacts 

from non-specific bindings (red color). In the reconstructed LC and HC images (Figures 5-17b & 

5-17c), we identified 60 and 199 PS (cyan color), respectively. For statistical analysis, we 

performed four measurements using different areas of each sample. Figures 5-17d-f respectively 

show the size distributions of CTRL, LC and HC samples. Using qSPACE the misidentified PS in 

the control samples have an average size of 63±7.7 nm. The average sizes of identified PS are 

137.3±4.8 nm and 96.6±2.1 nm in the HC and LC samples, respectively. Presumably, aggregation 

of PS occurs more frequently in the HC samples, thus, resulting in larger PS size. 

 

 



130 
 

 

 

Figure 5-17: Representative super-resolution reconstructions of the (a) CTRL sample with 
artifacts pseudo-colored in red and misidentified PS pseudo-colored in cyan. The three white 
arrows highlight three examples of sample misidentification; (b) LC sample (0.02 mg/mL) with 
artifacts pseudo-colored in red and validated PS pseudo-colored in cyan; and (c) HC sample (0.2 
mg/mL) with artifacts pseudo-colored in red and validated PS pseudo-colored in cyan (Scale bar: 
1 μm). The size distributions for the (d) misidentified PS in the CTRL samples; (e) validated PS 
in the LC samples; and (f) validated PS in the HC samples. Comparison between the total of 
number of PC found and the qSPACE VC in the (g) CTRL samples, (h) LC samples, and (i) HC 
samples. 

 

The counting of PS confirmed the improved performance of qSPACE compared to the 

conventional DBSCAN method. Particularly, 251±93 PC (red bar in Figure 5-17g) were extracted 

in the control sample by DBSCAN without spectral analysis while only 7±3 clusters or 3% of these 

clusters were misidentified as PS by qSPACE (validated clusters or VC, cyan bar in Figure 5-17g). 

The average size of the clusters identified as artifacts (clusters correctly rejected by qSPACE) from 

the control sample was 120.1±4.1 nm. Clusters identified as artifacts in the LC and HC samples 

had similar distributions (see Figure 5-18 for the size distribution of artifacts identified by qSPACE 

and sPAINT). Additionally, 66±18 of 210±70 and 138±56 of 251±44 PC were validated as PS in 

the LC and HC samples respectively using qSPACE (Figures 5-17h & 5-175i).  
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Figure 5-18: (a) Histograms showing the size distribution of artifacts identified from 4 
reconstructions of the control sample (809 clusters with average size120±4 nm) and clusters 
identified as artifacts in the LC (504 clusters with average size 111±5 nm) and HC (501 clusters 
with average size 90±7 nm) PS samples by qSPACE. (b) Histograms showing the size distribution 
of artifacts identified in 4 reconstructions of the control sample (229 clusters with average size 
199±2 nm) and clusters identified as artifacts in the LC (273 clusters with average size 220±11 
nm) and HC (186 clusters with average size 211±8 nm) PS samples by sPAINT (clusters formed 
from localizations with λmax outside the SW filter) .  

 

We compared the relative number of PS in LC to HC using qSPACE and NTA. NTA 

analysis of the two samples indicates a 5-fold higher concentration in HC than LC sample. Using 

qSPACE, the concentration ratio between HC and LC is ~2.1. The difference in concentration 

measurements using qSPACE and NTA may come from differences in the sample preparation 

steps. While NTA measured the entire solution, the samples measured by qSPACE relied on the 

adhesion of the PS to the PLL substrate. Rinsing steps could also change the relative concentrations 
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of the sample. In short, these results suggest that qSPACE can be used to accurately size and detect 

the relative trend in the concentration variations of nanocarrier samples. 

 

5.3  Conclusions 

We outlined a strategy to quantitatively image and characterize nanocarriers with high specificity, 

molecular sampling, and ~20 nm localization precision. Using sPAINT with NR dye, we 

successfully imaged PS nanocarriers immobilized on PLL substrates and rejected 83% of non-

specific binding events by identifying the unique spectral signature of NR upon specific binding 

to PS. We further developed qSPACE to recover the discarded dim localizations in sPAINT to 

improve LD by 4-fold, reduce variations in size measurements to 5%, and improve the FRC 

resolution by 30%. Using qSPACE to count and size PS at various concentrations we reduced 

misidentification of the PS by 97% and validated our results with standard size measurements. 

qSPACE is not limited to spherical shape clusters and can be used to process distinct morphology. 

The continued development of fluorescent probes, optical systems, and imaging processing 

methods for sPAINT would enable the quantitative visualization of polymer assemblies and 

dynamics in vitro. 

 

5.4 Methods 

Polymersome preparation 

Polymersomes were fabricated based on the self-assembly of amphiphilic brush block copolymers 

poly (oligo (ethylene glycol) methyl ether methacrylate)-b-poly (oligo (propylene sulfide) 

methacrylate) (POEGMA-POPSMA), which were synthesized based on reversible addition-
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fragmentation chain transfer (RAFT) (7). POEGMA-POPS7MA8 PS were assembled using the 

thin-film hydration method as previously described (7). Briefly, 20 mg of POEGMA-POPS7MA8 

copolymer was dissolved in 150 μL dichloromethane within 1.8 mL clear glass vials 

(ThermoFisher). After desiccation to remove the solvent, the resulting thin films were hydrated in 

1 mL of phosphate-buffered saline (PBS) under shaking at 1500 rpm overnight. The suspension 

was then extruded through a 0.2 μm membrane filter. The cross-linked PS were prepared by the 

reaction of uncross-linked PS suspension (20mg/ml) with 1,2-ethanedithiol (36 μL, 0.15M in 

ethanol) through thiol-disulfide exchange reactions under shaking (1500 rpm) at room 

temperature. The obtained PS were then purified by Zeba Spin Desalting Columns (7K MWCO, 

ThermoFisher) equilibrated with PBS solution. 

 

Nile Red preparation 

A 3 mM NR (ThermoFisher) stock solution was prepared in dimethylSulfoxide (DMSO) (Sigma 

Aldrich). For sPAINT imaging the solution was further diluted to 5 nM in PBS and used freshly. 

 

Bulk fluorescence measurements 

The bulk fluorescence emission spectra of 1 mL solutions containing 1 μM of NR mixed with 100 

μL of PS (20 mg/mL in PBS), PLL solution (0.01% w/v, Sigma Aldrich), and PBS, respectively, 

were measured using a fluorimeter (SpectraMax M3, Molecular Devices). Measurements were 

recorded using 532 nm excitation. 
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Sample immobilization 

No. 1 borosilicate four-well Lab-Tek Chambered coverglass were rinsed three times using PBS 

then filled with 500 μL PLL solution (0.01% w/v, Sigma Aldrich P4707) and incubated for 30 min 

to coat the glass surface. The wells were then rinsed three times with PBS. PS was diluted to 0.2 

mg/mL (high concentration sample) and 0.02 mg/mL (low concentration sample) using PBS. 

Mixtures of 500 uL of the HC sample, LC sample along with 500 uL of PBS (control sample) were 

transferred to separate 1 mL conical tubes. The three samples were each sonicated for 5 min. The 

samples were then added to separate wells and incubated for 5 min. The samples were rinsed using 

PBS. Finally, 500 μL of freshly prepared 5 nM NR in PBS was sonicated for 5 mins and then 

added to each well for imaging. We also tested bovine albumin serum (BSA) and neutravidin 

(NEU) for sample immobilization chemicals used for the immobilization of biotinylated 

molecules. However, bulk measurements showed that this immobilization methods could provide 

a larger number of sources for sample misidentification (see Figure 5-19). 

 

 

Figure 5-19: The average emission spectra of NR in solutions containing PS and sample 
preparation reagents (BSA and NEU) measured using a fluorimeter. 
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sSMLM optical setup 

The optical setup contains an inverted optical microscope (Eclipse Ti-U with perfect-focus system, 

Nikon), equipped with a 532-nm Spectra Physics laser with 200-mW maximum output, a high 

numerical aperture total internal reflection (TIRF) objective lens (100×, NA 1.49, Nikon CFI TIRF 

apochromat) and home-made transmission spectrometer. The fluorescence was collected through 

the objective and then directed into a spectrometer consisting of a blazed transmission diffraction 

grating (300 grooves/mm, Edmund Optics) and two imaging lenses with focal lengths 100 mm and 

80 mm respectively. 60% and 40% of the emitted photons were respectively allocated for the non-

dispersed zeroth order channel and for the spectrally dispersed first order channel and recorded 

simultaneously on different regions of an electron multiplying charge-coupled device (EMCCD, 

ProEm HS 512X3, Princeton Instruments). 

 

Imaging procedure and data analysis 

The optical system was calibrated using a fluorescent lamp with the entrance slit adjusted to 10 

μm. The emission peaks at 436.5 nm, 487.7 nm, 546.5 nm, and 611.6 nm were fit with a first order 

polynomial to calculate the system’s spectral dispersion (4.3 nm/pixel). Samples were placed on 

the microscope stage and imaged using an angle slightly smaller than the TIRF mode. We used a 

532-nm laser with a power density of 1 kW/cm2 to initiate transient NR binding to PS. An EMCCD 

camera acquired images with an integration time of 30 ms. Four areas of the sample were randomly 

selected and imaged for each sample. For each FOV 50,000 frames were recorded and the spatial 

image was reconstructed using ThunderSTORM (121). ThunderSTORM was used to perform drift 

correction for each sample prior to spectral analysis. The drift correction file was saved and used 
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to correct all data prior to cluster analysis (109, 121). Events from overlapping binding events were 

removed. Additionally, localizations below the average photon count (300) in the spatial image 

were excluded.  

 

sPAINT window selection 

Spectroscopic analysis was performed using localizations with a minimum of 450 photons in the 

spatial domain using an 8 μm × 7 μm section of three different control and three different PS super-

resolution reconstructions. The corresponding spectroscopic signature for each localization in the 

spatial channel was extracted from the first-order images. The emission maximum of each 

spectroscopic signal was identified by fitting the normalized spectra to a gaussian (104). 

Localizations with emission maximum outside the calibration window (550 - 700 nm) were 

excluded. The histograms from 18 different PS from three different images (six PS per image) are 

shown in Figure 5-2c-e. Examples of emission maximum from three ROIs are shown in Figure 5-

3b. Additionally, the histogram of the emission maximum from the control sample was compared 

to the PS histograms and a SW (595 - 625 nm) for recognizing NR interactions with PS and non-

specific binding events was selected. 300 localizations with more than 500 photons in the spectral 

domain from the isolated PS were used to plot the average spectra in Figure 5-2a. Similarly, 300 

localizations with at least 500 photons in the spectral domain and λmax > 645 nm were used to plot 

the average spectra for NR interactions with PLL.  
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Cluster analysis  

We adopted a DBSCAN algorithm optimized for clusters with heterogenous cluster densities (93). 

Individual PS were identified using a density-based algorithm with a cluster radius of twice the 

average localization uncertainty (40 nm). NN analysis was performed to determine the minimum 

number of acceptable localizations within the cluster radius. Localizations that did not meet the 

minimum criteria were removed. The remaining localizations were sorted based on their NN, 

Euclidean distance between neighboring points, and spatial coordinates. To consider the influence 

of the cluster density on the analysis a reachability criterion is used. If localizations are members 

of the same cluster then the variation in the distance between those points will be less than the 

variation in the distance between points which are members of a different cluster. Using this sorted 

list, the distance to the next localization in the list is used to identify core and boundary (93) 

localizations of each cluster within a maximum reachable distance of 1 μm (based on the maximum 

PS size (7)). Localizations which were members of a separate cluster were identified when the 

variation in the distance to the next localization in the sorted list exceeds twice the standard 

deviation of reachable localizations. The diameter of each cluster was estimated as twice the 

average distance between the core location and all other localizations in the cluster. To select the 

min-NN threshold, a range of potential thresholds were tested using both the PS and control 

samples. The number of clusters resulting from the control relative to the PS sample was used to 

select the min-NN threshold. Counting accuracy for the algorithm using clusters with varying 

densities was estimated by comparing the reported clusters by the algorithm to clusters manually 

counting in 10 different 2 μm × 2 μm regions of interest in a representative super-resolution 

reconstruction. 
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Quantitative sPAINT analysis 

Cluster analysis using sPAINT relied both on the spectral and spatial information for localizations 

with at least 450 photons in the spatial domain. The localizations were then further filtered using 

a min-NN threshold. The performance of spectral analysis paired with spatial clustering was tested 

by counting the number of clusters in 5 μm × 5 μm sections of representative PS and control super-

resolution reconstructions with and without applying the SW (595 - 625 nm). A min-NN of 10 was 

selected for cluster analysis after application of the SW and a min-NN of 20 was selected for 

cluster analysis without applying the SW. The number and size of artifacts found by sPAINT 

(Figure 5-18b) were identified using localizations which were not in SW and not spatially 

correlated with any of the clusters using the SW filter. 

 

Size variation analysis 

We measured the effect of the reduced number of localizations per cluster on size measurements 

by selecting 71 sPAINT clusters with at least 40 localizations. We calculated the difference 

between the final size of the cluster and the size of the cluster as the number of localizations 

sequentially increased. The percent variance in the size was calculated as the ratio of the difference 

in size measurements as the number of localizations increased and the final size of the cluster. This 

trend was further investigated by grouping the analyzed clusters based on their varying sizes. To 

account for the different sizes of PS, we set a criterion for evaluating size measurements based on 

the LD (the number of localizations in a cluster divided by the PS cluster area detected using 

sPAINT). 
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qSPACE validation 

The validation map for qSPACE was created using the localizations after applying the SW (595 - 

625 nm) and removing isolated localizations (min-NN of 10). Potential spatial clusters were 

identified by applying a weak min-NN threshold of 35 to all localizations with at least 300 photons 

in the spatial domain. The spatial coordinates of the localizations, which formed spatial clusters 

were compared to those in the validation map. Localizations that did not have any neighbors in the 

validation map marked as artifacts. The remaining spatial localizations were used for counting and 

sizing as described in the cluster analysis section. For the qSPACE super-resolution 

reconstructions in Figure 5-16, all clusters were pseudo-colored based on their classification. The 

final qSPACE analysis was performed using 12 different 11 × 8 µm2 images acquired from 3 

samples. Four measurements were captured from each sample. 

 

Nanosight measurements 

The size distribution of a 1:104 dilution of the stock PS solution was measured using nanoparticle 

tracking analysis (Nanosight NS300, Malvern). We also tested the relative concentration of the 

high concentration and low concentration samples by testing 1:103 dilutions of the samples used 

in the sPAINT experiment. All Nanosight measurements were performed using an unlabeled 

sample and a 488-nm excitation source and five trials were performed statistical analysis using 

NTA. 
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CryoTEM measurements 

Cryogenic transmission electron microscopy (cryoTEM) of the PS samples were prepared as 

previously described (7). 4 μL of a 5 mg/mL sample was applied to a pretreated, lacey carbon 400 

mesh TEM copper grid (Electron Microscopy Sciences). The grids were plunge-frozen with a 

Gatan Cryoplunge freezer at room temperature. Images were collected using a JEOL 3200FSC 

transmission electron microscope. 
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CHAPTER 6: Quantitative sSMLM #3: Improving image resolution using 

Photon-Accumulation Enhanced Reconstruction 

 

The spatial resolution in single-molecule localization microscopy (SMLM) is limited to around 20 

nm due to the physical photon limit of individual stochastic single-molecule emissions, where all 

emissions are treated as independent events. Using spectroscopic SMLM (sSMLM), we observed 

that single-molecule emissions from the same molecular species exhibit detectable spectral 

heterogeneity, which establishes the foundation for molecular identification. Taking advantage of 

such spectral heterogeneity, we developed photon-accumulation enhanced reconstruction 

(PACER) for sSMLM to break the physical photon limit by accumulating photons over repeated 

stochastic emissions from the same dye molecule through spectral identification. Using PACER, 

we experimentally demonstrated a 1.7-nm localization precision and resolved quantum dots that 

were 6.1 nm apart by utilizing their high spectral heterogeneity (SH). We further validated the 

localization precision using two types of Alexa Fluor 647 (AF647) labeled DNA origami 

nanostructures with known feature size as small as 6 nm. This chapter is adapted from a manuscript 

in preparation for submission to PNAS. 

 

6.1 Introduction 

Pushing the limit of spatial resolution in optical nanoscopic imaging gained significant momentum 

since the award of the 2014 Nobel Prize in Chemistry to single molecule analysis and super-

resolution imaging. Super-resolution imaging technologies, such as stimulated emission depletion 

(STED) microscopy and single-molecule localization microscopy (SMLM), surpassed the 
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diffraction limit with demonstrated resolution of 10-20 nm (17, 18, 20, 157, 158). In particular, 

SMLM technologies, including photoactivated localization microscopy (PALM), stochastic 

optical reconstruction microscopy (STORM), and point accumulation for imaging in nanoscale 

topography (PAINT), employ a stochastic switching or binding approach to regulate the density 

of fluorescent blinking within a recorded image frame. Accumulating the precise localization of 

individual single molecule fluorescence events from thousands of recorded image frames allows 

for the reconstruction of a super-resolution image. Despite being widely successful, the 

prerequisite stochastic process of single molecule florescence often produces a rather limited 

number of photons, which practically restricts the localization precision of SMLM techniques to 

around 20 nm.  

To further improve the localization precision, DNA-PAINT and MINFLUX have been 

developed (58, 59, 159, 160). DNA-PAINT exploits transient binding between a docking strand 

and dye-conjugated imager strands to replace the stochastic switching process to eliminate the 

influence of photobleaching and allow the use of brighter non-blinking dyes. DNA-PAINT is 

capable of imaging discrete arrangements of fluorescent molecules with ~5 nm spacing on 

synthetic DNA nanostructures (159, 160) but more sophisticated labeling strategies are needed for 

imaging biological samples. On the other hand, MINFLUX relies on prior knowledge of the donut-

shaped illumination to triangulate the spatial location of individual emitters with greatly improved 

precision of ~2 nm, but at a reduced field of view (FOV) (58, 59).  

In fact, commonly used blinking dyes produce a large number of photons over the repeated 

occurrence of stochastic blinking events. However, due to the lack of molecular discrimination, 

the repeated stochastic blinking from the same molecule are all treated as independent events with 
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limited localization precision around 20 nm. Thus, a method to identify the molecular origin of the 

stochastic blink events and subsequently accumulate the emitted photon from the same dye 

molecule can significantly improve the localization precision, without the need to reinvent the 

labeling and imaging protocols. To illustrate this concept, let’s consider a single fluorescent 

molecule located at the center of the 1×1 µm2 FOV as a representative example (Figure 6-1a). The 

diffraction-limited imaging system forms a blurred image (Figure 6-1b), which can be 

mathematically represented by a point spread function (PSF) with a typical diffraction-limited 

resolution of ~200 nm (Figure 6-1c). The calculated centroid location of the recorded PSF is used 

to approximate the true location of the fluorescent molecule with a precision greatly exceeding the 

diffraction-limited resolution (44, 161, 162). By programmatically switching the majority of the 

fluorescent molecules to the “off” state, SMLM detects a small subset of the fluorescent molecules 

that are stochastically restored to the “on” state. The centroids of the sparsely distributed PSFs 

from a subset of molecules can be individually localized. These localized events are then 

accumulated over thousands of recorded image frames to build-up a super-resolution image. The 

localization precision in this process is inversely proportional to the square root of the photon 

number for individual blinking events (61). Figure 6-1d shows a simulated SMLM image of 100 

repeated stochastic blinking events from the same molecule, with 200 photons per stochastic 

blinking (predefined by the NA 1.49 objective at the wavelength of 550 nm) with a pixel size of 

100 nm (see Figure 6-1b). Then we superimposed Poisson noise backgrounds on these images to 

mimic the shot noise of a camera. The total photon count and noise level were adjusted to match 

the experimental conditions which can result in a localization precision of approximately 30 nm. 

We then performed reconstruction using a standard SMLM algorithm using the ThunderSTORM 
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plug-in in ImageJ (121). After reconstruction, positions of all the collected localizations were 

plotted as white crosses as shown in the upper row of Figure 6-1j. 

Conventional SMLM fits a Gaussian kernel to the diffraction limited PSF and 

approximates the centroid location to improve image resolution. To give the most basic example, 

we first consider a single fluorescent blinking event from a single fluorophore imaged by 

conventional SMLM. After capturing a single blinking event on the detector, depending on the 

detected photons, system noises, pixel size, and other factors, the location of the single molecule 

can be approximated, with a certain precision of the Gaussian kernel fitting. The localization 

precision (σ) depends on the photon counts in this particular frame and can be approximated by 

the following equation (61, 62): 

𝜎𝜎 = ��
𝑠𝑠𝑖𝑖2 + 𝑎𝑎2/12
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��
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where si is the standard deviation of the Gaussian fit in the x and y-directions; a is the pixel size of 

the CCD camera; N is the number of detected photons; 𝜏𝜏 = 2𝜋𝜋𝑏𝑏2�𝑠𝑠𝑖𝑖
2+𝑎𝑎2/12�
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; and b is the standard 

deviation of the camera background. As a result, the localization precision is proportional to the 

inverse square root of the number of detected photons. 

Since many molecules can blink multiple times during the imaging process, there is a 

chance that the same molecule blinks at a later time and can be captured by the detector. In this 

scenario, the later blinking events from the same molecule will be reconsidered by the SMLM 

algorithm and will also be plotted to the image. However, since the parameters that were used to 

approximate the location of the single molecule have variations (different background, different 
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photon yield, etc.), the possible location calculated by the Gaussian kernel fitting can be slightly 

different from the original location of the first blinking event.  

Despite the fact that the photons originated from the same molecule, each stochastic 

blinking event is individually localized at photon-number limited precision of 30 nm (Figures 6-

1e-f). Since all the photons are originated from the same molecule, in principle, repeated blinking 

events can be aggregated to accumulate a much larger photon number to improve the localization 

precision as compared to localization precision being limited to each event (Figures 6-1g-i). Figure 

6-1j shows a simulation results on how accumulating photons from different numbers of repeated 

blinking events can improve the localization precision. Their centroid, which represents the result 

of PACER, was further plotted as a red cross. In the middle row of Figure 6-1j, we calculated 500 

randomly generated cases and plot all centroids by convolving a Gaussian kernel corresponding to 

the localization precision calculated from the accumulated photon number. We further plot the 

profile along the x-axis as shown in the lower row of Figure 6-1j. When NB=1, the result shows 

the precision of conventional SMLM (28.57 nm) since PACER was not used. As NB increases, 

the localization precision improves, enhancing the resolution to 2.85 nm (10-fold improvement) 

when NB=100. Figure 6-1k shows the calculated localization precision with respect to NB. In 

conventional SMLM, the localization precision of each blinking event scales with the inverse 

square root of photon counts (61). Therefore, after PACER, the fundamental resolution can be 

redefined by using the total photons emitted from each single molecule. The analytic curve has 

great agreement with the simulated results. Based on this principle, we further plot the curve 

calculated by 
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𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑃𝑃0 √𝑁𝑁𝑁𝑁⁄ , (6-2) 

where 𝑃𝑃0 is the localization precision at NB=1 (Figure 6-1i). This trend suggests that PACER 

indeed improves the localization precision by increasing the photon counts for image 

reconstruction. 

  



147 
 

 

 

Figure 6-1: Schematic showing how image resolution is improved by molecular discrimination. 
(a) Due to the wave nature of light, when light comes from a point emitter focused by an optical 
imaging system, the interference can result in a blurred distribution of light called a PSF. (b-c) The 
size of the PSF sets up the fundamental resolution limit of an optical imaging system, namely Abbe 
diffraction limit. (d-f) In SMLM, the probable location of a single fluorescent molecule can be 
estimated from the centroid of the fluorescence diffraction pattern produced on a camera. The 
localization precision is determined by the photon count collected in each captured frame. The 
scatter plot and rendered image of 100 blinking events indicate a localization precision of ~30 nm. 
(g-i) Through molecular discrimination, blinking events can be combined, resulting in an improved 
localization precision of sub-3 nm. (j) Improved resolution using photon accumulation with respect 
to the number of blinking events (NB). White crosses denoted positions of all localizations in each 
test and red crosses denoted their centroids (upper panel). Reconstructed images only using 
centroids (middle panel). Localization precision is calculated along the x-axis and its intensity was 
then normalized for comparison, which are 28.57 nm, 13.24 nm, 9.02 nm, 6.40 nm, 3.89 nm, and 
2.85 nm for NB=1, 5, 10, 20, 50, and 100, respectively (lower panel). (k) Simulated localization 
precision with respect to NB. Error bars are from 100 independent simulations. (l) The black line 
is the curve calculated by 𝜎𝜎0 √𝑁𝑁𝑁𝑁⁄ , where 𝜎𝜎0 is the localization precision at NB=1. 
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We simulated 100 images containing a single blinking event with 200 photons using the 

same method (see Figure 6-2a). The total photon count and noise level were adjusted to match the 

experimental conditions which can result in a localization precision of an approximately 30 nm. 

We then performed reconstruction using a standard SMLM algorithm. The reconstructed position 

of each blinking event was analyzed and plotted in the lower panel. In this case, the spatial 

precision is calculated to be around 30 nm if all blinking events are considered separately, which 

is consistent with the predefined simulation condition.  

If we assume all 100 blinking events originate from the same molecule, then PACER 

method can be implemented to accumulate emitted photons to the improved spatial resolution. The 

accumulation of photons can be implemented in two alternative procedures. In option 1, we 

combined the photos from all 100 blinking events to create an accumulated image with total photon 

count of 20,000 (Figure 6-2b), which can result a much-improved localization precision 

(approximately 10x improvement). After performing reconstruction, the result was plotted in 

Figure 6-2c. However, it is worthwhile to note that this procedure is prone to the stage drifting 

error. To overcome this issue, we developed option 2 where all 100 blinking events (Figure 6-2d) 

are first localized individually. This allows for compensating stage drifting error in reference to 

the fiducial marker. The true location of the molecule can then be determined by calculating the 

centroid of all 100 localization results (Figure 6-2e). As shown in Figure 6-2f, the centroid of the 

combined localizations after taking option 2 matched the location of the emission events after the 

reconstruction based on path 1. This demonstrates that option 1 and 2 are mathematically 

equivalent when they share the same number of photons and background level. 
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Figure 6-2: Illustration of two different paths to combine all photons from the same molecule. 
Simulated stochastic emission events from the same single molecule (a) Simulated diffraction-
limited spatial images and their respective reconstructed locations. (b) Sum of the photons in the 
diffraction-limited image (c) Location of the emitter after combining all photons from different 
blinking events. (d) All single molecule localizations are combined after reconstruction. (e) The 
centroid of all localizations from the same molecule. (f) The location of the emission events after 
the reconstruction based on option 1 overlaps with the centroid of the combined localizations after 
taking option 2. 

 

Accumulating photons to improve localization precision can be accomplished if the true 

origin of the stochastic blinking can be specifically identified. This can be implemented via spatial 

clustering when the fluorescence molecules are sparsely distributed. As previously demonstrated, 

aggregating photons over prolonged detector exposure time can reach a localization precision of 

1.5 nm in well-separated single molecule tracking (44). However, imaging biological systems 

often requires much higher molecular labeling densities and thus, spatial locations alone become 

insufficient for identifying the sources of emitted photons to specific individual molecules among 

a densely packed ensemble.  

In addition to their spatial locations, the fluorescence spectra of emission events may 

provide additional dimensionality to specifically identify individual molecules for potential photon 

accumulation (161, 162). Simultaneously recording the spatial and spectral information of each 
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stochastic fluorescent emission event was recently made possible using spectroscopic single-

molecule localization microscope (sSMLM) developed by us and other groups (30, 31, 104).  In 

our previous study, we have demonstrated the use of sSMLM to identify fluorescent molecules of 

different species based on their distinct emission spectra (31). Interestingly, single-molecule 

spectroscopy studies suggest individual fluorescent molecules of the same species also exhibits 

distinct dissimilarity in their emission spectra, this phenomenon is often referred to as the spectral 

heterogeneity (SH) (30, 109). Thus, capturing the inherent SH of individual fluorescent molecules 

further enables for spectroscopic discrimination of individual molecules of the same species in 

sSMLM (41, 163). 

In this work, we report photon-accumulation enhanced reconstruction (PACER), which 

accounts for photons in repeated emission events from the same molecules through spectroscopic 

discrimination by sSMLM. Using PACER, we demonstrated a 1.7-nm localization precision using 

quantum dots (QDs), which exhibit high SH. We further showed that even with fluorophores with 

low SH (AF647), PACER resolved 6-nm spatial features in DNA origami nanostructures 

 

6.2 Results and Discussion 

Imaging Quantum dots with PACER 

We first experimentally demonstrate the feasibility of PACER in achieving sub-2-nm localization 

precision using QDs. Figure 6-3a shows the schematic of the sSMLM system. It employs a 

dispersive optical component to simultaneously capture the full fluorescent emission spectrum 

along with the spatial location of every single-molecule emission event. We chose QDs for their 

high SH due to structural variation and crystalline defects (164). The high SH enabled us to easily 
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distinguish individual QDs using their distinct fluorescence spectra. Before imaging, we sparsely 

dispersed QDs (Lumidot, #694614, Sigma-Aldrich Co.) onto cover slides. Using sSMLM, the 

captured emission spectra are associated with the locations of individual blinking events. Figure 

6-3b shows one frame of the spatial images and Figure 6-3c shows the simultaneously acquired 

spectral image of the QDs. Among all the recorded localization events, some “outliers” caught our 

attention. Specifically, the red dashed box highlights a region, within which we observed more 

frequent stochastic blinking events compared to the surroundings. The corresponding spectral 

image also appears to be much wider than the typical single QD emission spectrum. The repeated 

occurrence of single molecule blinking events within this highlighted region are spatially clustered 

in close vicinity. In conventional SMLM image reconstruction, these blinking events are treated 

independently, leading to a cluster of localizations without knowledge of their exact origins as 

shown in Figure 6-3d.  
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Figure 6-3: Experimental demonstration of PACER in achieving a 1.7-nm localization precision. 
(a) The schematic of sSMLM. (b) One frame of the spatial images and (c) one frame of the 
simultaneously acquired spectral images of the QD sample. (d) The scatter plot of localization 
events in the red dashed box in (b). (e) Histogram of the SC distribution. (f) Fluorescence spectra 
of three QDs after classifying by SCs using spectral intensity threshold of 300, 460, and 480 
photons, respectively, and spectral windows of 575-585 nm, 585-600 nm, and 615-625 nm, 
respectively, as filtering criteria. The corresponding SC of each fluorescence spectrum is noted as 
an open circle in the plot. (g) Rendered sSMLM images after combining multiple emission events 
with NB of 1, 10, and 100, respectively. (h) Line profiles across two QDs in (g) with NB of 1, 10, 
100. 

 

From the spectral image, we extracted spectral centroids (SCs) (122, 165) to represent the 

spectroscopic signature of each QD. We calculate SC as 
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𝜆𝜆𝑆𝑆𝑃𝑃 =
∑ 𝜆𝜆𝜆𝜆(𝜆𝜆)𝜆𝜆

∑ 𝜆𝜆(𝜆𝜆)𝜆𝜆
, 

(6-3) 

where 𝜆𝜆 is the emission wavelength and 𝜆𝜆(𝜆𝜆) is the spectral intensity at 𝜆𝜆. As shown in Figure 6-

3e, the SC distribution of the blinking events from the highlighted region reveals three distinct 

distributions. Such a SC distribution suggests that the highlighted region may contain three QDs 

and these QDs demonstrated distinct spectroscopic signatures, which are 580.3 ± 3.3 nm (QD1), 

592.5 ± 1.6 nm (QD2), and 619.4 ± 2.8 nm (QD3), as the result of SH. For reference, individual 

frames showing each spatial and spectral image of QD1, QD2 and QD3 with the corresponding 

emission are shown in Figure 6-4.  

 

 

Figure 6-4: Identification of individual QDs. (a-c) Single frames with emission from QD1, QD2 
and QD3 respectively occurring from the same location highlighted in the red dashed box. (d) 
Normalized emission spectra of QD1, QD2 and QD3 extracted from spectral images in (a-c). 
 
 

Based on the SCs, we can identify and classify the origin of each detected blinking event 

to one of the three QDs. The first 100 repeated blinking events originating from each of the three 

QDs after classification were further selected to demonstrate the principle of PACER. Their 

corresponding spectra and SCs were shown in Figure 6-3f. The observed SH establishes the 
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foundation for PACER to discriminate individual molecules from the ensemble populations based 

on their spectroscopic signature. In PACER, the emitted photons originated from repeated blinking 

of the same QD can all be combined to collectively improve the localization precision. Figure 6-

3g illustrates the improved localization precision with respect to increasing number of NB, where 

we overlay three rendered QDs with pseudo-colors. When NB=1 the localization precision is 

limited to 17.0 nm, corresponding to an average of 250 photons in the spatial image. Such a 

localization precision is insufficient to spatially distinguish the three QDs in the reconstructed 

image (Figure 6-3g, NB=1). After applying PACER, we can positively classify all stochastic 

blinking events to their respective true origins based on their unique heterogeneous fluorescence 

emission spectra. After classifying the origins of the blinking events, we accumulate photons from 

repeated blinking events that are from the same QD from multiple recorded frames to increase the 

total photon number and, thus, to improve the localization precision (see Figure 6-5 for rendered 

images with increasing NB to 5, 10, 50, and 100). Accumulating photons from 10 blinking events 

(Figure 6-3g, NB=10) leads to a more than 3-fold improvement in localization precision to ~4.9 

nm, where three QDs can be resolved in the reconstructed sSMLM image. When NB=100, an 

approximated 10-fold improvement in localization precision to ~1.7 nm shows that QD2 and QD3 

are 6.1 nanometers apart. Considering QDs have the mean diameter of 5.2 nm, it is possible that 

QD2 and QD3 are almost in contact. Figure 6-3h shows the line profiles of the reconstructed image 

across the QD2 and QD3 with NB of 1, 10, 100, further illustrating the improvement in localization 

precision as NB increases. 
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Figure 6-5: Illustration of resolution improvement using QDs through PACER. (a) Rendered 
sSMLM images after combining multiple emission events with NB of 1, 5, 10, 50, and 100, 
respectively. (b) The corresponding line profiles across two QDs.  

 

Imaging DNA nanorulers 

Upon successful demonstration of improved localization precision using QDs sample, we further 

experimentally validated PACER using the model system with known inter-molecular spacing. 

Figure 6-6 shows the results of PACER resolving up to 6-nm spacing in DNA nanorulers (Gatta-

Storm Nanoruler, Gattaquant GMBH) labeled with AF647 fluorescent molecules. The nanoruler 

comprises DNA origami backbone with precise placement of two fluorescence molecules at 

controllable inter-molecular spacing (137, 138) (Figure 6-6a, also see details in Methods). We 

acquired 2,000 frames with an integration time of 10 ms per frame. The recorded spectra of all the 

individual stochastic blinking from the nanoruler sample labeled with two AF647 molecules are 

plotted in Figure 6-6b and the corresponding histogram of the SCs is shown in Figure 6-6c. 

Nanoruler samples with contrast in the measured SC histogram exceeding the threshold value of 

20% are accepted. Two distinct peaks with mean SCs separated by approximately 10 nm, which 
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underlie the effect of SH of AF647, can be clearly observed in Figure 6-6c. Each individual 

molecule exhibits consistent emission spectra during stochastic switching, with the measured 

spectral precision less than 2 nm, as estimated by the Standard Deviation (S.D.) of the SC 

distribution. The averaged fluorescent spectra of the two AF647 molecules are shown in Figure 6-

6d after classification based on Figure 6-6c. 

We imaged nanorulers with inter-molecular spacing values of 23 nm (Figure 6-6e), 11 nm 

(Figure 6-6k), and 6 nm (Figure 6-6o). After classifying each localized event to one of the two 

AF647 molecules and corrected the stage drift based on the position of a fiducially marker, the 

scatterplot of all the localized blinking events is color-coded in red and green to represent the 

origins of the two AF647 molecules (Figure 6-6f). Two molecules can be readily separated with 

colors indicating distinct spectral signatures after classification as shown in Figure 6-6g. After 

PACER, the localization precision improved from 18.2 nm to 2.6 nm, as denoted by the red and 

green solid lines in Figure 6-6h. The measured distance between the images of the two molecules 

is 22.7 nm (Figure 6-6i). Figure 6-6j shows the histogram of the measured inter-molecular spacing 

from all the 57 nanoruler samples, which shows a mean value of 23.2 nm with a S.D. of 0.8 nm. It 

agrees well with the expected value of 23 ± 1 nm according to manufacturer’s specification. 

Figure 6-6k illustrates the nanorulers with an inter-molecular spacing of 11 nm. The color-coded 

scatter plot of the localization events and the reconstructed PACER image after drift correction of 

one representative sample are shown in Figures 6-6l and 6-6m, respectively. Figure 6-6n is the 

histogram of the measured inter-molecular spacing from 35 nanoruler samples, showing the mean 

spacing of 10.8 nm with a S.D. of 0.9 nm. Again, it agrees well with the expected value of 11 ± 1 

nm according to manufacturer’s specification. Finally, we performed PACER on the nanoruler 
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sample with inter-molecular spacing of 6 nm (Figure 6-6o). The corresponding results are shown 

in Figures 6-6p and 6-6q. The histogram of the measured inter-molecular spaces from 15 nanoruler 

samples shown in Figure 6-6r indicates the mean spacing of 6.1 nm with S.D. of 0.8 nm, which 

agrees well with the expected value of 6 ± 1 nm according to manufacturer’s specification. Thus, 

even in a rather challenging case, using AF647 with rather weak SH, PACER can still successfully 

resolve the fluorescent molecules at the inter-molecular spacing of 6-nm distance, which represent 

5-fold improvement in the localization precision under the identical experimental conditions. 
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Figure 6-6: Experimental validation of PACER using DNA nanoruler samples. (a) Schematic 
illustration of a DNA nanoruler labeled with a pair of AF647 featuring a predefined mark-to-mark 
distance. (b) Representative emission spectra of two molecules on one nanoruler. (c) Histogram of 
SCs indicates the existence of two molecules with distinct spectral signatures on one nanoruler. 
(d) The average spectra of the two molecules separated by SC at the wavelength of 669 nm. (e) 
Schematic of a DNA nanoruler featuring mark-to-mark distance of 23 nm. (f) The scatter plot and 
(g) the rendered sSMLM image of localization events with colors indicating distinct spectral 
signatures after stage drift correction. (h) Comparison of molecule location in SMLM image (the 
dashed black line) and sSMLM images without (the dashed colored lines) and with (the solid 
colored lines) PACER. (i) Calculated location of molecules through PACER. (j) Histogram of 
mark-to-mark distance measured from 57 nanorulers. The representative results of a DNA 
nanoruler featuring mark-to-mark distance of (k-n) 11 nm and (o-r) 6 nm. 



159 
 

 

Imaging DNA origami nanogrids 

Finally, we tested PACER in identifying individual fluorescent molecules in a densely packed 

cluster. We imaged DNA origami nanogrids (Brightness 9R, GattaQuant GMBH) consisting of a 

3×3 array of AF647 fluorescent molecules with a uniform inter-molecular spacing of 11 nm 

(Figure 6-7a). While initially being developed as a brightness standard, the same nanogrid was 

used by Stefan Hell’s group in the development MINFLUX method to represent densely packed 

fluorescent-labeled samples (58). The average number of photons recorded from AF647 molecules 

in the spatial image is 834 photons, leading to a localization precision of 9.21 nm and a spatial 

resolution of 21.69 nm. Thus, it is impossible to spatially resolve individual AF647 molecules at 

inter-molecular spacing of 11 nm from reconstructed SMLM image (Figure 6-7b). However, 

capturing the spectral signature associated with each blinking events provides additional 

information to better sperate the otherwise overlapping localization events in the extended spatial-

spectral domain. Figure 6-7c shows the scatter plot of the same localization events in the spatial-

spectral domain, with SCs of each blinking events being used to represent the spectral coordinates. 

We applied a k-means cluster analysis, a built-in function in MATLAB to classify the localization 

events into seven clusters based on the spatial coordinates and SCs and then assigned pseudo-

colors to seven clusters. Figure 6-6d is the corresponding sSMLM image with pseudo-colors to 

the seven clusters. Figure 6-6e shows the final PACER sSMLM image with an average NB of 23.7 

for the seven clusters. On average, the improved localization precision is 3.7 nm and the improved 

spatial resolution of 8.7 nm, which resolved the majority of the AF647 molecules in the nanogrid. 

The gray circles show the best guesses of the locations and orientations of the nanogrid, indicates 

a great match of six but with one molecule mislocated (the blue dot in Figure 6-7e).  This is likely 
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due to a manufacturing artifact or misidentification of fluorophores at neighboring labeling sites 

which happens to exhibit similar spectral signatures (24, 58, 159). 

 

 

Figure 6-7: PACER imaging DNA origami nanogrids consisting of a 3×3 array of AF647 
fluorescent molecules with 11-nm inter-molecular spacing. (a) Schematic illustration of the DNA 
origami nanogrid labeled with 3×3 array of AF647 with 11-nm inter-molecular spacing. (b) 
Conventional SMLM reconstruction of all stochastic blinking events. (c) All events can be 
separated to seven clusters based on their spatial locations and SCs in the extended spatial-spectral 
domain. (d) The corresponding sSMLM reconstruction with pseudo-colors assigned to seven 
clusters. (e) Locations of fluorophores calculated after PACER. Black circles represent the 
localization precision after PACER. The gray dashed circles represent the best guess of the location 
and orientation of the nanogrid. 

 

6.3 Conclusions 

In this study, we demonstrated a single-digit nanometer resolution that can be achieved by 

combining sSMLM and PACER. We first validated its feasibility of distinguishing 

molecules/particles of the same type by capturing the intrinsic SH. By using the spectroscopic 

signature as a unique identifier, photons from individual molecules can now be accumulated in 
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achieving greatly improved localization precision. We have experimentally validated sub-2-nm 

localization precision using QDs, and synthetic DNA origami nanostructures (nanorulers and 

nanogrids) with the smallest feature size of 6 nm. The experimental results indicate that 

spectroscopic signature of individual molecules would greatly benefit molecular identification and 

resolution improvement using PACER. This technique offers significantly improved localization 

precision over the conventional SMLM technique but remains compatible with the existing 

fluorescence labels and imaging protocols. The broad accessibility and the molecular-scale 

resolution can potentially provide new insights into biological phenomena and enable significant 

research progress to be made in the life sciences. 

 

6.4 Materials and Methods 

Optical setup 

The optical setup contains an inverted optical microscope (Eclipse Ti-U with perfect-focus system, 

Nikon), equipped with 645-nm and 445-nm solid-state lasers with 500-mW maximum output, a 

high numerical aperture objective lens (100×, NA1.49, Nikon CFI apochromat TIRF) for TIRF 

illumination, and a home-built transmission spectrometer. The illumination power was controlled 

by a set of linear polarizers. The imaging filter set was consisted of a laser clean-up filter (FF01-

642/10-25, Semrock), a dichroic mirror (FF649-DI01-25×36, Semrock), and a long-pass filter 

(BLP01-647R-25, Semrock) at the emission port to reject the reflected laser beam. The 

fluorescence image was then coupled into a transmission spectrometer featuring a blazed 

dispersive grating (150 grooves/mm). The image further divided into a non-dispersed zeroth-order 

spatial image and a spectrally dispersed first-order spectral image and can be simultaneously 
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collected by a high-sensitivity electron multiplying charge-coupled device (EMCCD, ProEM, 

Princeton Instruments). 

 

sSMLM imaging procedure 

 The samples were placed on the microscope stage and imaged under a TIRF objective (Nikon CFI 

apochromat 100×, 1.49 NA), with an additional magnification of 1.5× by a tube lens. We used a 

445-nm laser to excite fluorescence from QDs and a 645-nm laser to excite fluorescence from 

AF647 on DNA nanorulers and nanogrids. The illumination intensity was set to be 10 kWcm−2 

and 3 kWcm−2 to create stochastic radiations from QDs and AF647 for sSMLM imaging, 

respectively. The EMCCD camera acquired images from the monochromator with integrating time 

of 10 ms at a frame rate of 85 Hz. Unless specifically noted, 5,000 frames were recorded for 

imaging reconstruction using PACER. 

 

Preparation of quantum dots samples 

 The QD nanoparticles used in the experiment is core-shell CdSe/ZnS Lumidots™ (product #: 

694614) with mean particle size of 5.2 nm and emission peak at 610 nm. QDs were immobilized 

on a coverslip (#1.5, VWR) by spin-coating of their suspension (~100 ng/mL) and covered with 

silicon oil to protect them from photo-oxidation. 

 

DNA nanoruler and nanogrid samples 

The nanorulers was customized from Gattaquant DNA Nanotechnologies with mark-to-mark 

distances of 23 nm, 11 nm, and 6 nm, respectively. Each mark only contains one AF647 molecule. 
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All samples were delivered in solution and then immobilized on BSA-biotin-neutravidin surface 

in LabTek (VWR) chambers. 

 

sSMLM image reconstruction and rendering 

Experimentally acquired sSMLM images are split to spatial and spectral images for the 

reconstruction. We used the method described by Song et al. for background subtraction and 

spectral calibration (122). The spatial images are then analyzed by using the standard localization 

algorithm (ThunderSTORM, ImageJ plug-in (121)) to determine the locations of individual 

blinking events. The locations of molecules are used to establish a reference point to obtain their 

corresponding emission spectra from the spectral images. Image rendering is realized by 

superimposing positions of all the collected localizations after convolving a Gaussian kernel 

corresponding to the localization precision calculated from their photon number using Eqn. 6-1. 

After performing PACER, the localization precision of the molecule centroids was recalculated 

from their accumulated photon number and pseudo-color is assigned to indicate different 

molecules. 

 

Immobilization of DNA nanorulers 

The LabTek chamber (VWR) was washed three times with 500 µL PBS and then incubated with 

200 μl of BSA-biotin solution (1 mg/ml in PBS) for 5 min. After removing the BSA-biotin 

solution, the chamber was washed 3 times with 500 μl of PBS. Then the chamber was incubated 

with 200 μl of NEU solution (1 mg/ml in PBS) for 5 min and washed three times with 500 μl of 

1x PBS supplemented with 10 mM magnesium chloride (MgCl2). 1 μl of the DNA origami solution 

were diluted with 200 μl of 10 mM MgCl2. The chamber was incubated with the diluted DNA 
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origami solution for 5 min to achieve the desired surface density of DNA origami structures (~ 0.1 

μm-2) and then washed three times with 500 μl of PBS. The chamber was filled with the imaging 

buffer prior to imaging. 

 

Imaging buffer 

A standard imaging buffer was freshly made and added to the DNA nanoruler samples prior to 

imaging. It contained TN buffer (50 mM Tris and 10 mM NaCl), an oxygen scavenging system 

(0.5 mg/ml glucose oxidase (Sigma-Aldrich)), 40 μg/ml catalase (Sigma-Aldrich) and 10% (w/v) 

glucose (Sigma-Aldrich), and 143 mM βME (Sigma-Aldrich). 
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CHAPTER 7: Conclusions and Future Perspectives 

 

In this dissertation we developed RainbowSTORM, a freely available software platform for 

comprehensive spectroscopic analysis and sSMLM image reconstruction. We believe that the 

access to this software platform will facilitate the increased adoption of sSMLM thus enabling new 

discoveries and applications. Additionally, we developed three quantitative methods which used 

the spectroscopic information to specifically remove emission events from unwanted fluorescence 

(142), more accurately size nanocarriers (142), and measure the distance between fluorescent 

molecules with sub-2nm localization precision. Overall, using the full emission spectra to better 

identify emission events related to the sample allows for emission from fluorescent impurities 

(123) and non-specific binding (142) to be removed without excluding emission from the true 

sample. This prevents overcounting and undercounting artifacts. Additionally, by combining the 

specificity of spectroscopic measurements with spatial clustering analysis using qSPACE, high 

utilization of localization events can be retained, thus, preventing molecular sampling issues and 

enabling accurate sizing of molecules (142). Further, by using the SH of dyes to enable molecular 

discrimination, PACER can be used to reconstruct images with sub-10 nm resolutions. 

 Based on these findings, the methods presented in this dissertation can be further developed 

for quantitative imaging of nanostructures within cells. These methods also need to be further 

developed to facilitate 3D sSMLM of immobilized molecules and molecules in the cell. As these 

techniques become more advanced, their application to live cell imaging can further improve 

quantitative studies of biological processes using sSMLM.  
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As previously shown fluorescent impurities can be detected within cells (31), therefore 

unlabeled cells can be used as a control during experiments to allow for the identification of 

sources of intrinsic fluorescence (96-98). Additionally, the development of a library of the spectra 

of impurities associated with common sample preparation reagents (110, 123, 125) for in vitro and 

in situ imaging can be helpful when analyzing sSMLM data. sSMLM would also benefit from a 

comprehensive evaluation of fluorophores and their associated SH (30, 31, 109). Additionally, 

studies designed to understand the origin of SH can help to unlock the development of methods 

which exploit SH to enable further analysis of multicolor images and improved application of 

PACER. Quantitative super-resolution imaging can be further improved by combining 

spectroscopic analysis with additional correlative measurements which detect temporal dynamics 

or polarization of fluorescent probes. We also anticipate further development of machine-learning 

(113) and cluster analysis (104, 142) techniques which utilize spectroscopic information to 

improve the performance of sSMLM. As these methods become more advanced, we hope to 

include them in the RainbowSTORM framework in order to encourage the continued development 

of quantitative analytics for sSMLM (119). 
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