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ABSTRACT

Data-Driven and Diversity-Enhanced Design of Heterogeneous Multiscale Structures

Yu-Chin Chan

The advent of metamaterials – hierarchical structures that manifest properties beyond

those found in nature through geometry rather than material composition – inspired

new possibilities and research in many fields. In mechanics, periodic metamaterials ex-

hibit behaviors ranging from unprecedented compressibility to extreme stiffness. Nu-

merous geometric classes of metamaterials with these properties have been discovered,

such as re-entrant structures, chiral patterns, trusses, and isosurfaces. Nevertheless, pe-

riodic mechanical metamaterials are limited in scope and application. Instead, aperiodic

systems, or heterogeneous multiscale structures wherein microstructural topologies dif-

fer from neighbor-to-neighbor, can achieve fine control over spatially varying properties,

leading to even more extraordinary functionalities such as programmable deformation

and crashworthiness. However, the challenges of designing these heterogeneous structures

grows alongside their geometrical and behavioral complexities. Computational methods

like topology optimization have risen to meet some of the hurdles, but they are restricted

by the computational costs of multiscale simulations, searching through vast combinatorial
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design spaces, and resolving disconnected neighboring microstructures. Recent attention

is now shifting to data-driven design, which utilizes datasets of unit cells, usually from

only one geometric class, and their pre-computed homogenized properties to alleviate

much of the computational burden. While powerful, this new paradigm is held back by

often-ignored questions pertaining to the adverse effect that the diversity and quality of

a dataset can have on data-driven design representation and synthesis.

We propose a suite of methods that take steps toward releasing the full potential of

data-driven methods, improving the diversity of metamaterials datasets to enhance the

design of complex heterogeneous multiscale structures. The methods focus on a core

hypothesis: that diverse subsets of unit cells, including those from different geometric

classes, form the basis of scalable and general data-driven synthesis frameworks. To this

end, we create an automated data selection method, METASET, that uses similarity

metrics and probabilistic Determinantal Point Processes to distill subsets that are jointly

diverse in shapes and properties. For the first time in metamaterials design, we validate

that by eliminating redundant or biased samples, small yet diverse subsets can boost the

connectivity, design performance, and scalability of data-driven search algorithms.

Leveraging the ability of a diverse subset to concisely encompass a wide design space,

we then create two data-driven frameworks, which utilize diverse unit cell “basis” classes

to seed low dimensional design representations, transforming the design of functionally

graded structures into highly efficient and effective approaches. Unlike typical methods,

ours require neither pre-defined sets of compatible basis classes nor connectivity con-

straints to achieve a well-connected design. In the first framework, we propose a new
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multiclass shape blending scheme, which generates novel microstructures as a blend of di-

verse basis classes. By taking the blending parameters as low dimensional design variables

and optimizing their distribution throughout the global structure, we can guarantee well-

connected, functionally graded designs that attain high performance across compliance

minimization and programmable shape matching problems, even with a small handful

of diverse basis classes. Finally, we propose a generative deep learning-based framework

to expand the design freedom, generality, and efficiency even further. Data from truss

and isosurface classes, traditionally expressed through very different design variables, are

incorporated into a single pipeline, from the simultaneous acquisition of a diverse and

high quality multiclass dataset, to the training of a multiclass Wasserstein Generative

Adversarial Network that compresses the classes into a unified, 10-dimensional latent rep-

resentation. With the latent variables as design variables, our framework can optimize and

synthesize exceptionally smooth grading between trusses and isosurfaces while achieving

lower maximum stress. Thus, we can automate, with high efficiency and generality, the

decision of whether to use trusses, isosurfaces, or hybrids of both, in a design. Although

our proposed methods, METASET and data-driven synthesis, are demonstrated with lin-

ear elastic mechanical applications, they are general in order to welcome the potential of

future extensions to additional domains.
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CHAPTER 1

Introduction

Possessing a variety of extraordinary properties with far-reaching impact, metama-

terials have fascinated researchers for the past few decades. Like composite materials,

the macroscopic responses of interest, or effective properties, can be calculated from a

representative microstructure; but unlike typical composites, the effective properties of

metamaterials are beyond those found in nature and stem from their intentionally hierar-

chical structure rather than their material composition [4]. These designs are traditionally

periodic, with a single repeated microstructure (otherwise known as unit cell or building

block), but can also be assembled from multiple microstructures to form aperiodic, het-

erogeneous multiscale structures that attain spatially varying behavior.

The potential applications of multiscale structures are numerous and impactful. The

idea of a “metamaterial” originates in the electromagnetic field, in which intriguing prop-

erties are achieved when the unit cell periodicity is on a scale smaller than the wavelength

of interest [5]. In particular, a wealth of research exists for optical (photonic) metamate-

rials, which can produce, e.g., negative effective refraction indices, super-resolution lenses

and invisibility cloaks [6]. In recent years, additive manufacturing has allowed easier fab-

rication of geometrically complex structures, and as a result metamaterial systems have

gained traction in other fields, including mechanics [5, 7]. Acoustic (phononic) meta-

materials are one branch of mechanical metamaterials, and can be used to control wave



26

propagation through gaseous, liquid or solid media [8, 9] or to achieve complete bandgaps

that prevent sound waves from any direction [10, 11].

This dissertation focuses on another type of mechanical multiscale structure: ones

that undergo mechanical loading. The simplest applications of these are the “ultralight

ultrastiff” structures that disobey the typical scaling laws of natural materials, which state

that strength degrades significantly as density is reduced. Since the greater surface area

and porosity from the hierarchical features allow high performance-to-weight ratios, these

are attractive as, for example, lighweight automotive and aerospace designs [4, 12, 13],

biomedical implants [14–16], and multifunctional heat exchangers [17, 18]. Reconfigurable

and adaptive elastic structures can also be created through pattern transformations and

compressive instability, such as those in cellular origami and porous structures under large

deformation [4, 19–21]. These multistable designs exhibit high energy absorption during

sudden collapses when deformed past the linear elastic regime. Along similar lines, the

buckling-induced, layer-by-layer failure mechanism of heterogeneous, functionally graded

structures, in which the geometries of the microstructures vary smoothly from neighbor

to neighbor, have been spotlighted since they can increase energy absorption compared to

periodic structures, permitting programmable deformation responses [22–24]. Multiscale

structures that can elastically recover their initial shapes after loading have also been

demonstrated in Refs. [25–28], and hold significant benefits for impact and blast protection

applications, e.g., helmets and armor [29]. Similarly, auxetic metamaterials with negative

Poisson’s ratio that expand laterally when stretched [30], unlike most natural materials

which contract, can also be utilized in damping, energy absorption, responsive devices,

tougher-yet-lightweight structures and more [31–33]. A thorough review of mechanical
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metamaterials designed based on Young’s modulus, effective density, Poisson’s ratio, and

other elastic properties not covered above, can be found in Ref. [4].

1.1. Research Motivation

It is important to note that most metamaterials research thus far involve repeating

only one unit cell throughout the entire structure – periodic structures, which can be

designed at a single scale (the unit cell). However, aperiodic, heterogeneous systems with

more than one type of microstructure can attain precise control over spatially varying

properties and are useful for applications like soft robotics, customized wearables and

energy absorption [34–37]. These are still not as commonplace since their heterogeneity

make them more difficult to design and fabricate due to the huge combinatorial design

space and geometric frustration when disparate microstructures do not connect to neigh-

boring ones [35, 38]. The scalable and efficient design of heterogeneous multiscale systems

is one of the most intriguing and necessary hurdles to surmount in order push the current

state-of-the-art into a new era of metamaterials design [39, 40]. This dissertation responds

to these challenges, summarized below, from a data-driven perspective.

1.1.1. Challenges of Traditional Design Methods

Just as a variety of functionalities are available for metamaterials and multiscale systems,

there is an abundance of design representations for unit cell morphologies – so many that

several review papers have been devoted to categorizing them; see Refs. [4, 7, 33, 41,

42]. To facilitate clarity of discussion, an important definition is used throughout this

dissertation:
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A class refers to a group of unit cells that can be generated from the

same geometric motif or design parameterization. In other words, unit

cells from each class can be created from the same parametric variables

or functions, and a design that combines multiple motifs can be called

multiclass.

Figure 1.1. Examples of geometric unit cell classes.

A few example classes are shown in Fig.1.1. It is possible for classes to coincide with

others: extreme examples are freeform topology optimized classes derived from density-

based [43] or level-set representations [44], which are general and can describe both simple

and counterintuitive shapes, thus engendering the possibility of overlaps. Apart from the

freeform classes, two of the most common geometrical families are trusses (sometimes

called lattices), and isosurface or triply periodic minimal surfaces (TPMS). Although the

advantages of certain classes have been elucidated empirically, many also have desirable

properties similar those of other classes. For example, the truss class is known to exhibit

high strength-to-weight ratio, great heat dissipation and low negative Poisson’s ratio,

while the isosurface class is known for high energy absorption and tailorable bandgaps

due to their amenability to functional grading. Both have been used in similar applications
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as well, such as lightweighting [45, 46], energy absorption [22, 47], and acoustic bandgap

tailoring [11, 48]. Although a segment of research has been devoted to comparing the

performance of different classes [24, 49, 50], these differences and overlaps frustrate the

choice of which unit cell class to utilize in a multiscale design [51]. For this reason, the

majority of the existing works manually select a specific class for their applications.

To automate some of the difficult choices faced by a designer of metamaterials and

multiscale systems, computational design synthesis can generate novel structures. These

approaches typically employ: 1) parametric shape optimization of a periodic unit cell [52–

54], 2) topology optimization (TO) of one or more microstructures, which are then assem-

bled into pre-defined sub-regions in the global macro-structure [32, 55–57]; or 3) hierar-

chical and concurrent multiscale TO that optimize the micro- and macro-scale structures

simultaneously [58, 59]. In the first approach, the general shape and parameterization of

the unit cell must be decided beforehand. Although this allows the domain knowledge

of certain desirable features (e.g., honeycomb shapes) to be chosen, it not only leaves

the designer with the question of which class to choose prior to design but also limits the

achievable properties. For the latter two TO methods, the unit cell geometries are gen-

erally represented as either pixels in 2D, voxels in 3D, or level-set fields. Although this

opens an infinite-dimensional design space to create “freeform” unit cells, designers must

still choose an initial shape since TO infamously suffers from local optima that are sensi-

tive to initial guesses. Moreover, traditional multiscale TO methods have other challenges

stemming from the extremely high dimensional design space, computational costs from

multiscale analysis, and complex formulations to ensure manufacturable and physically

connected microstructures.
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Meanwhile, recent works in the TO field have shown that multiclass heterogeneous

structures, which incorporate multiple unit cell classes, can obtain greater performance

than single-class structures [60–64]. Yet, to ensure well-connected interfaces, the “classes”

in most of these existing works are carefully pre-defined or constrained to be similar to each

other. Removing this limitation to deploy unit cell classes that cover more diverse shapes

and properties would significantly increase the generality of multiclass design methods, but

the challenges that this would bring in connectivity and efficiency have thus far not been

resolved.

1.1.2. Gaps in Data-Driven Design

To design multiclass heterogeneous structures, a promising alternative is a data-driven

approach that consists of three components (Fig. 1.2): 1) data acquisition and repre-

sentation, 2) mechanistic-based learning, and 3) multiscale structure synthesis.

The key is a large database of many unit cells and their corresponding properties. Based

on how this dataset is utilized, the approaches can be further split into two categories.

In “top-down” frameworks, the optimal macrostructure and macroscale properties are

first identified. Subsequently, the pre-computed unit cells that match the optimal target

properties while remaining well-connected can be efficiently selected through combina-

torial optimization. Thus, top-down methods can quickly explore the large design space

while improving microstructure connectivity in aperiodic structures [1, 34, 65, 66]. On the

other hand, “bottom-up” frameworks directly optimize the geometric parameters of both

the macro- and micro-structures simultaneously by closely following traditional TO [3].

Since this approach can leverage well-established TO formulations and does not require
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Mechanis�c-based
Learning

Mul�scale Structure
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Global Search

Figure 1.2. Three components of data-driven heterogeneous multiscale
structure design. This thesis addresses challenges in the first (acquisition
and representaiton) and last (synthesis), but still uses the second (mecha-
nistic learning).

finding the optimal target properties, it shows more promise in more realistic applica-

tions with, e.g., nonlinear mechanics or multiphysics. A few recent bottom-up methods

have achieved multiclass designs with little additional computational cost compared to

traditional TO [3, 67]. However, it is relatively less studied than top-down approaches.

In both top-down and bottom-up frameworks, generative deep learning models can

learn from the datasets to represent unit cells shapes in a compact, low-dimensional la-

tent space for optimization or fast generation of new designs [1, 68–70]. In addition,

mechanistic-based models can be trained to map microstructural shapes to their prop-

erties, extracting mechanics knowledge from the data to bypass costly homogenization

simulations and inform design decisions during synthesis [1, 71–73]. However, the core

assumption of existing data-driven works is that an optimal microstructure already ex-

ists in, or can be interpolated from, the database. Moreover, the current databases are

constrained since they are generated from a single geometry class, which can limit the

generality and optimality of the designs. As such, one critical hurdle to improving the

effectiveness of data-driven design is to improve the diversity, i.e., the coverage of a wide
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variety of properties and geometries (such as from multiple classes), of the datasets on

which they rely.

Parallel to the surge of data-driven methods is the push for data-sharing and online

communities, which could enable faster acquisition of diverse unit cell data. For example,

NanoMine [74], one of several open source databases fueled by NIST’s Materials Genome

Initiative, is an online data curation system for polymer nanocomposites. Since its cre-

ation, it has permitted microstructural design using data-driven optimization [75] as well

as deep learning [76, 77]. Building on these successes, it has been extended to MetaMine

(together forming MaterialsMine [78]), an online resource of metamaterials and design

tools. MetaMine is currently being built to allow the collection and exploration of mi-

crostructure data from multiple sources – and therefore multiple geometry classes. It will

provide advantageous resources for data-driven metamaterials and multiscale design, but

will also raise its own questions such as how to filter and search through large amounts of

data for scalable design.

While crowd-sourcing is a practical way to gather large quantities of data, differ-

ent sources of data will indubitably arrive with different levels of quantity and quality.

For example, one source may provide thousands of truss unit cells with similar Young’s

moduli, while another contributes only tens of isosurfaces but covers a wider range of

Young’s moduli. From a data-driven point of view, this presents a class imbalance prob-

lem, which can cause machine learning models to inadequately learn under-represented

features (e.g., certain shapes for generative models or properties for mechanistic models)

with less data [79]. In realistic design applications, this is also problematic since any

models learned from imbalanced and low-quality data are likely to be inaccurate, biased
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towards the over-represented class, or contain too many infeasible unit cells, leading to

less optimal designs. Synthesizing high performance and feasible designs by combining

imbalanced data from disparate classes has rarely been addressed in existing literature.

This thesis endeavors to answer the following research questions that capture the

current challenges in data acquisition, representation, and synthesis of heterogeneous

multiscale structures under data-driven frameworks:

(1) Scalability: How to distill a smaller yet diverse subset of microstructures from ex-

isting datasets to improve the efficiency of data-driven design without sacrificing

the coverage of the design space?

(2) Representation: Can a compact and unified design representation merge dis-

parate classes to discover novel microstructures that are not constrained by pre-

defined choices?

(3) Novelty: Is there a method that can efficiently generate novel unit cells that are

both hybrids of existing classes and feasible, for use in mechanistic learning and

gradient-based design synthesis?

(4) Synthesis: What design frameworks and deep learning techniques can effectively

generate heterogeneous multiscale structures with greater potential applicability

to real-world problems?

In answer to the questions above, the overarching hypothesis of this dissertation is: By

leveraging smaller yet diverse and balanced subsets of unit cells and geometrical classes

as seeds for novel heterogeneous multiscale structures, the scalability and generality of

data-driven design synthesis frameworks can be improved. In pursuit of this, a suite of

methods to complement the growing data revolution in metamaterials design, as well
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(Chapter 3)

Conclusion (Chapter 8)

Introduction (Chapter 1) Technical Background (Chapter 2)
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Down-selecting Diverse
Subsets (Chapter 5)

Figure 1.3. The structure of this dissertation.

as to fill the void in scalable multiscale TO, are proposed. An efficient algorithm is

created to down-sample diverse and balanced datasets, removing any redundancies or

biases that impede efficient design. Instead of limiting the design representation to one

geometry class, multiple classes of unit cells are combined in lower dimensional spaces via

a new multiclass shape blending scheme rooted in computer graphics, as well as a deep

generative model based on computer vision methods. The initial classes are then leveraged

as starting points to efficiently create high performing multiscale designs composed of

novel microstructures beyond the existing classes.



35

1.2. Dissertation Structure

This chapter introduced the background, motivation, and research tasks. In Chapter

2, we introduce technical concepts that form the backbone of this thesis. The remaining

chapters document the interconnected research tasks in this dissertation, which are as

follows:

• Chapter 3: Multi-Material Lattice Structure Topology Optimization.

Additive manufacturing techniques have recently enabled printing intricate,

multi-material lattice structures, or designs which are composed of networks of

trusses. However, manufacturing is imperfect; uncertainty arising from devia-

tions in geometry and the source printing material, as well as the actual loading

conditions, can affect the performance of the structures. This chapter proposes

a robust topology optimization (TO) method to design multi-material lattice

structures by performing uncertainty quantification of the design objective under

simultaneous material and load uncertainty. To accelerate the process, univariate

dimension reduction and Gauss quadrature are employed to evaluate the statisti-

cal moments of compliance. We also introduce a new, generalized multi-material

interpolation scheme that can be integrated into robust TO and which easily

scales to any number of materials. While this chapter does not use data-driven

design, it sets the foundation for later tasks with the general multi-material mix-

ing scheme that we extend to multiclass blending in Chapters 6 and 7.

• Chapter 4: Creating Multiclass Datasets for Data-Driven Design.

Data acquisition is a crucial first step in data-driven design. Although several

approaches have been developed to speed up data acquisition, they make sacrifices
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to their coverage in properties or coverage in shapes. Inverse optimization-based

data acquisition can cover wide property spaces, but leads to many redundant

shapes. Methods driven by sampling only parameters in the shape space are

fast in that the properties do not need to be calculated during acquisition, but

in turn means low coverage in property space. Hence, coverage in shapes and

properties are not one-to-one. In this chapter, we introduce methods to collect a

multiclass (truss and isosurface) unit cells dataset based on existing state-of-the-

art techniques in literature. The benefits and disadvantages of these approaches

are observed and recommendations are made. The experiment motivates the

need for the next task, diverse subset selection (Chapter 5).

• Chapter 5: Shape and Property Diverse Data Selection for Scalable

Data-Driven Multiscale Design.

An oft-neglected challenge in data-driven design of metamaterials and multi-

scale structures is the acquisition of datasets that are diverse in both shapes and

properties. This joint diversity is necessary to assemble spatially-varying designs

that meet arbitrary performance requirements while offering a selection of unit

cells that are well connected to their neighbors. However, existing approaches

use exhaustive data generation schemes to cover as many properties or shapes as

possible. Inevitably, coverage in one space is sacrificed for the other, which may

waste computational resources and affect downstream tasks such as mechanistic

learning and design synthesis.

As a solution to imbalanced or biased datasets, we propose METASET, a

probabilistic methodology to autonomously down-select small yet diverse subsets
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of unit cells. To maximize the diversity of subsets, METASET is rooted in

Determinantal Point Processes, which models the probability of a diverse subset

as the determinant of a similarity matrix containing the pairwise similarities

between every data point. A larger determinant value indicates that a set contains

less similar items that span a larger volume, and hence has greater diversity.

To obtain the similarity matrix, we propose diversity metrics for both shapes

and properties based on continuous vector representations (e.g., stiffness tensor

components for properties and deep learned latent representations for shapes).

In “top-down” data-driven design of shape matching metamaterials, we discover

that more data is not always better – small yet diverse subsets can, in fact,

improve the design performance, search algorithm efficiency, and connectivity

of heterogeneous structures. This algorithm also initializes the data acquisition

in Chapters 6 and 7, wherein diverse subsets and classes of microstructures are

utilized in design frameworks.

• Chapter 6: Data-Driven Topology Optimization of Functionally Graded

Structures with Multiclass Shape Blending.

Functionally graded structures are desirable for the gradual changes in the

shapes of neighboring microstructures, which naturally leads to better connectiv-

ity and may help reduce the error of the homogenization assumption often used

in multiscale design. However, existing TO methods to design them are limited

to a small number of pre-defined unit cells.
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Bridging the freedom of fully aperiodic structures with the efficiency and

smooth interfaces of graded designs, this chapter proposes a “bottom-up” data-

driven framework for multiclass functionally graded structures that mixes several

basis unit cell classes to create spatially-varying designs with guaranteed feasi-

bility. The major contribution is a new multiclass shape blending scheme that

generates smoothly graded microstructures without requiring compatible basis

classes or connectivity and feasibility constraints. The scheme transforms the

microscale problem into an efficient, low-dimensional one without confining the

design to predefined shapes. We perform case studies with sets of five common

truss geometries and five diversity-based freeform topologies to highlight the ver-

satility and effectiveness of our framework. We reveal that truss-type classes

consistently achieve low compliance, while diverse freeform classes reach satisfac-

tory performance across multiple applications despite being automatically chosen

without considering their compatibility.

• Chapter 7: Generative Deep Learning with Diverse and Quality Mul-

ticlass Data as Seeds for Novel Multiscale Structures.

The “bottom-up” frameworks have received less attention than their “top-

down” counterparts because they are, to some extent, reliant on traditional TO

methods – both optimize the geometric parameters of the structures. Despite

this, they show the most promise in being extensible to complex, real-world ap-

plications. To improve the generality and efficiency of these approaches even

further, we propose a generative deep learning-based approach to expand the de-

sign space not only tenfold (to 50 basis classes) compared to the previous task but
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also to incorporate both trusses and isosurfaces with a unified, latent represen-

tation. First, we show that METASET can consider multiple classes of unit cells

simultaneously using signed distance fields. Furthermore, we introduce a new

quality-augmented diversity metric such that a tradeoff between the diversity (to

improve coverage in shape and property spaces) and quality (to aid model train-

ing and design synthesis) can be tuned during subset selection. We then illustrate

that multiclass shape blending can efficiently expand a diverse and high quality

subset into a huge shape dataset containing trusses, isosurfaces, and hybrids

of both. Subsequently, we demonstrate that a Wasserstein GAN with gradient

penalty (WGAN-GP) can map multiclass shapes to a 10-dimensional latent space

without mode collapse. The latent representation is harnessed in multiscale TO

to optimize the choice of whether trusses, isosurfaces, or hybrids should be used

in heterogeneous designs. In several case studies, we validate that smooth grad-

ing between neighboring microstructures are guaranteed, thereby achieving lower

maximum stress, even when multiple morphology types are present in the design

because of the well-trained WGAN-GP.

Finally, we summarize our contributions and conclude our dissertation with recom-

mendations for future works in Chapter 8. Additional information, such as proposed

algorithms, are listed in the Appendices.
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CHAPTER 2

Technical Background

2.1. Homogenization Theory for Linear Elastic Unit Cells

In contrast to their homogeneous structural counterparts, the superior behaviors of

metamaterials are derived from their multiscale architecture rather than their constituent

materials. However, multiscale structures naturally include geometrical features that are

far smaller and more complex than the macroscopic designs. Directly simulating their per-

formance with conventional finite element analysis (FEA) necessitates fine meshes, and

hence often intractable computational expense. However, by assuming that the length

scale of the unit cell, d, is well-separated from the scale of the macrostructure, L (i.e.,

ϵ = L/d ≪ 1), one can leverage homogenization theory for periodic materials to reduce

a finely-discretized, multiscale problem to a coarser one at the global (macro-) scale. In

this homogenization-based problem, a unit cell can be designed more efficiently by char-

acterizing it by its homogenized, effective material properties, a volume average of the

macroscopic properties assuming the unit cell repeated infinitely, rather than its geom-

etry [80, 81]. Although the separation of scales is violated in heterogeneous multiscale

structures where the microstructures are no longer periodic, homogenization is often used

to bring the computational analysis into a single scale at the global level, sacrificing

some accuracy for much greater efficiency. The homogenization-based approach is used

in Chapters 5-7.
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To calculate the homogenized properties of unit cells, the most common approach is

the classic two-scale asymptotic expansion [82–84], which defines the microscale, or local

unit cell, domain as, y = (y1, y2, y3) ∈ Y , and the macroscale, or global structure, domain

as x = (x1, x2, x3) ∈ Ω. In general, the volume average of a periodic function, or material

property, is ⟨aij⟩ = 1
|Ω|

∫
Ω
aij(x,y)dΩ. To derive it, recall the governing equations of linear

elasticity:

(2.1)

∂σϵ
ij

∂xϵ
j

+ fi = 0, in Ω,

σϵ
ij = Eϵ

ijklε
ϵ
kl, in Ω,

εϵkl =
1

2

(
∂uϵ

k

∂xϵ
l

+
∂uϵ

l

∂xϵ
k

)
, in Ω.

The first equation enforces equilibrium under the body force per unit volume, f , the

second is Hooke’s law, where σ is the stress tensor, ε is the strain tensor, and E is

the elasticity tensor, which is symmetric such that Eijkl = Ejikl = Eijlk = Eklij; the

last describes the strain-displacement relationship, where u is the displacement. The

subscripts indicate Einstein notation, and the superscript ϵ denotes Y -periodicity.

The key to the asymptotic method is to use the elliptical operator,

(2.2) Aϵ =
∂

∂yi

(
aij(y)

∂

∂yj

)
= ϵ−2A1 + ϵ−1A2 + ϵ0A3,

to expand the Y -periodic material properties of the unit cell, aij(y) = aij(x,y). This al-

lows, after some manipulation, the separation of the two length scales and the replacement

of the macroscopic governing equations by homogenized local ones.
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To begin, the displacement field is expanded in terms of both length scales as:

(2.3) uϵ
i(x) = ϵ0u

(0)
i (x,y) + ϵ1u

(1)
i (x,y) + ϵ2u

(2)
i (x,y) + · · · ,

where u
(n)
i (x,y) are Y -periodic functions. Due to the strain-displacement relationship,

the strain tensor can also be expanded as

(2.4)

εϵij(x) = ϵ−1ε
(0)
ij (x,y) + ϵ0ε

(1)
ij (x,y) + ϵ1ε

(2)
ij (x,y) + · · ·

=
ϵ−1

2

(
∂u

(0)
i

∂yj
+

∂u
(0)
j

∂yi

)

+
ϵ0

2

(
∂u

(0)
i

∂xj

+
∂u

(0)
j

∂xi

+
∂u

(1)
i

∂yj
+

∂u
(1)
j

∂yi

)

+
ϵ1

2

(
∂u

(1)
i

∂xj

+
∂u

(1)
j

∂xi

+
∂u

(2)
i

∂yj
+

∂u
(2)
j

∂yi

)
+ · · · .

Combining Eq. 2.3 with Hooke’s law in Eq. 2.1 and the symmetry of E results in

(2.5)

σϵ
ij(x) = ϵ−1σ

(0)
ij (x,y) + ϵ0σ

(1)
ij (x,y) + ϵ1σ

(2)
ij (x,y) + · · · ,

= Eijkl(y)
1

2

[
ϵ−1

(
∂u

(0)
k

∂yl
+

∂u
(0)
l

∂yk

)

+ ϵ0
(
∂u

(0)
k

∂xl

+
∂u

(1)
k

∂yl

)
+ ϵ1

(
∂u

(1)
k

∂xl

+
∂u

(2)
k

∂yl

)
+ · · ·

]
.

Plugging the above into Eq. 2.1 gives:

(2.6) ϵ−2
∂σ

(0)
ij

∂yj
+ ϵ−1

(
∂σ

(0)
ij

∂xj

+
∂σ

(1)
ij

∂yj

)
+ ϵ0

(
∂σ

(1)
ij

∂xj

+
∂σ

(2)
ij

∂yj
+ fi

)
+ · · · = 0.
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By equations the ϵ−2 term to zero, a differential equation with the two length scales

in separate terms can be derived as

(2.7)
∂σ

(1)
ij

∂yj
=

∂

∂yj

[
Eijkl(y)

(
∂u

(0)
k

∂xl

+
∂u

(1)
k

∂yl

)]
= 0,

where u
(0)
ij = u

(0)
i (x) is only in terms of the macroscale.

The general solution to Eq. 2.7 is

(2.8) u
(1)
i (x,y) = −χkl

i (y)
∂u

(0)
k

∂xi

(x) + ξi(x),

where ξi(x) are constants of integration that can be considered zero in a first-order ap-

proximation. The characteristic Y -periodic displacement fields, χkl
i , are solutions of the

auxiliary local cell problem:

(2.9)

∫
Y

Eijkl
∂χmn

k

∂yi

∂νi
∂yj

dY =

∫
Y

Eijmn
∂νi
∂yj

dY, ∀νi ∈ Y,

1

|Y |

∫
Y

νidY = 0,

where ν are arbitrarily chosen Y -periodic virtual displacement fields. The second equation

is imposed so that, by the Fredholm alternative, χkl
i will have a unique solution.

Finally, equating the ϵ0 term in Eq. 2.6 to zero, taking the volume average and applying

the divergence theorem leads to the homogenized macroscopic constitutive equation:

(2.10) σ̄ij = EH
ijklε̄kl,
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where the homogenized elasticity tensor, EH is

(2.11) EH
ijkl =

1

|Y |

∫
Y

Eijpq(y)

(
δpkδql −

∂χkl
p

∂yq

)
dY.

To solve Eq. 2.9 for χkl
i and subsequently Eq. 2.11 for EH , periodic boundary con-

ditions are applied while constraining k, l = {1, 2} in 2D and k, l = {1, 2, 3} in 3D for

linearly independent combinations. Therefore, there are six possible load cases for 3D

unit cells: kl = {11, 22, 33, 12, 13, 23}. In finite element methods, the loads typically

correspond to six prescribed macroscopic unit strains:

(2.12)
ε̄11 = [1, 0, 0, 0, 0, 0]⊤, ε̄22 = [0, 1, 0, 0, 0, 0]⊤, ε̄33 = [0, 0, 1, 0, 0, 0]⊤,

ε̄23 = [0, 0, 0, 1, 0, 0]⊤, ε̄13 = [0, 0, 0, 0, 1, 0]⊤, ε̄12 = [0, 0, 0, 0, 0, 1]⊤.

The above formulations and the work in this research are in the linear elastic do-

main with small strains. For an energy-based homogenization approach [81, 85], which

sometimes used in lieu of the classical asymptotic method, the derivations are similar;

an implementation can be found in Ref. [81]. For future extensions with geometric or

material nonlinearity, however, a different homogenization approach would have to be

applied.

2.2. Traditional Topology Optimization

Over the past few decades, topology optimization (TO) continues to gain momentum

and increased applicability to a wide variety of complex design problems. In this section,

we give a high level overview of four categories of TO that are relevant to this thesis,

in order of increasing complexity: (1) density-based continuum, (2) truss-type (ground
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Figure 2.1. Conceptualization of topology optimization (TO) methods cov-
ered in this work.

structure), (3) homogenization-based periodic multiscale, and (3) homogenization-based

heterogeneous (aperiodic) multiscale. A conceptual demonstration of each type of design

are illustrated in Figs. 2.1.

The classic continuum TO problem can be described as distributing materials within

a design domain such that boundary conditions are met and a physics-based objective is

optimized. The simplest formulation is that pioneered by Ole Sigmund, the solid isotropic

material with penalization (SIMP) scheme (Fig. 2.1a), where the continuous design vari-

ables are the artificial, or “pseudo”, densities of the elements of design domain, which is

typically discretized into quadrilateral 4-node finite elements. For this reason, it is also

known as density-based TO. The material property of each element can be either “solid”
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(homogeneous material) or “void” (removed material) is expressed as a continuous inter-

polation function that penalizes intermediate values of the densities through an exponent,

p. For example, the Young’s modulus of each element e in a design containing one solid

material can be described by the standard SIMP model as [43]

(2.13) Ee = E(ρe) = ρpeE,

where ρe ∈ (0, 1] is the artificial density variable of element e such that it is greater than

some small number ρmin to avoid singularity when solving the finite element problem, and

E is the overall Young’s modulus of the solid material.

Using the so-called modified SIMP scheme, singularity in the stiffness matrix can be

circumvented by assigning a small positive number to the void phase as follows [86]:

(2.14) Ee = Ee(ρe) = ρpe(E1 − E0) + E0,

where E1 is the elastic modulus of the solid material, E0 is a small value that represents

the void phase, and p is the penalty coefficient to discourage intermediate densities within

[0, 1].
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Using an interpolation scheme, the general TO problem under linear elasticity is ex-

pressed formally as

(2.15)

minimize
ρ

J0(ρ)

subject to K(ρ)u = f ,

J1 = V (ρ)− V̄ ≤ 0,

0 ≤ ρe ≤ 1, e = 1, . . . , Nel,

where Nel is the total number of elements in the design domain, u is the displacement

vector, and f the external load vector. The volume of the structure can be V =
∑Nel

e=1 ρe

constrained by an upper limit, V̄ . This volume constraint is frequently prescribed in

TO problems where the target structural performance competes with the weight of the

structure.

One such problem is compliance minimization, a common testbed for TO methods

and equivalent to stiffness maximization, where the objective function is

(2.16) J0(ρ) = c(ρ) =

Nel∑
e=1

u⊤
e Eek

0
eue,

where the stiffness in each element, Ee, is calculated using an interpolation scheme such

as Eq. 2.14, ue are the element displacements, and k0
e are the unit local stiffness matrix.

2.2.1. Truss-Type Topology Optimization

The simple idea of adding and removing material within the design domain turns out to be

a powerful formulation. Moving beyond continuum structures, the density-based concept
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can be adapted to design truss-type multiscale structures that are built from networks of

bars connected by shared nodes (Fig. 2.1b). Instead of the quadrilateral finite elements,

however, the design variables correspond to each bar in a pre-defined network, i.e., a

ground structure. Similar to the SIMP method, the ground structure-based approaches

gradually removes structurally unnecessary bars until convergence [87]. Multiple materials

can also be assigned to different bars [29, 87].

2.2.2. Homogenization-Based Multiscale Topology Optimization

The traditional TO approach for continuum structures can also be extended to homogenization-

based multiscale TO in a relatively straightforward manner by assuming that the unit cells

are periodic and characterized by their macroscopic effective properties. Therefore, each

macroscopic element houses a unit cell or microstructure rather than solid, homogeneous

material (Fig. 2.1c). The design can then be split into two connected optimization prob-

lems at the macro- and micro- scales, solved either hierarchically or concurrently.

Taking compliance minimization as an example objective, the homogenized properties

can be integrated into the macroscale problem by now assembling the global stiffness

matrix, K, in Eq. 2.17 using the homogenized local stiffness of each unit cell. That is, we

now have

(2.17) c(ρM ,ρm) =

Nel∑
e=1

u⊤
e Ee(ρ

M)kH
e (ρ

m)ue,

where ρM and ρm are the density variables at the macro- and micro- scales, respec-

tively, Ee(ρ
M) can be found using a density-based interpolation scheme such as Eq. 2.14,
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and kH
e (ρ

m) is the effective stiffness of the unit cell at macro-element e. For details of

MATLAB implementation of homogenization-based, periodic design, the reader is encour-

aged to consult Refs. [81, 88].

By defining multiple sub-problems at the microscale, i.e., by designing ρm,j,∀j ∈

[1, 2, . . . , J ], where J is the total number of different microstructures and therefore sub-

problems, one can also extend multiscale TO to design heterogeneous (aperiodic) multi-

scale structures. However, care must be taken to ensure that these disparate microstruc-

tures can connect to each other so that structural integrity is not compromised. Note that

here we call the microscale structures “microstructures” rather than “unit cells”, since

periodicity no longer applies.

With great computational resources, it is also possible to optimize fully aperiodic sys-

tems where the microscale topologies can differ at each macro-element (Fig. 2.1d). Using

traditional TO approaches, each unit cell becomes a sub-problem, and its homogenized

properties must also be re-calculated at every iteration [80]. As one can imagine, this

can quickly incur enormous, and potentially intractable, expense. For a review of existing

traditional TO methods for heterogeneous designs and their challenges, please refer to

those covered in Chapter 6.2.

2.3. Data-Driven Synthesis of Heterogeneous Multiscale Structures

Recent efforts strive to alleviate the cost of heterogeneous design with data-driven

frameworks. To this end, two approaches – “top-down” and “bottom-up” – exploit the

use of unit cell databases to accelerate the design process without sacrificing much de-

sign freedom. Since the geometry and homogenized properties are pre-computed for each
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sample, i.e., unit cell, the datasets can be leveraged for machine and deep learning, uti-

lized as look-up tables, and are recyclable for multiple applications. At their core, both

approaches are still rooted in the homogenization-based TO method.

In the bottom-up data-driven framework (Fig. 2.2(c)) the parameters at the microstruc-

tural level, e.g., volume fraction and geometric class, are directly used as design variables

in a single optimization step. Its general optimization problem is the same as Eq. 2.17

above for a compliance minimization problem. One difference is that, instead of costly,

nested homogenization loops at each iteration, the properties kH
e (ρ

m) of all microstruc-

tures are predicted by a surrogate or machine learning model of the material law. In

some cases, the design representation of the microstructures, ρm, can be simplified into a

lower-dimensional space either through parameters specific to a class (e.g., rod thickness

for trusses) or through machine and deep learning methods (e.g., latent variables from

generative models). These steps greatly expedite the design process and therefore allows

a larger number of microstructures, J ≤ Nel, to be introduced into the problem compared

to using traditional TO. However, it is still subject to the same connectivity challenges

and, as a result, existing bottom-up methods consider only a small number of pre-selected

microstructures from a single geometric class, leading to sub-optimal solutions.

On the other hand, top-down methods shown in Fig. 2.2(a) design the macro- and

micro-structures are designed sequentially. First, the macroscale topology and spatial dis-

tribution of homogenized material properties are concurrently optimized using gradient-

based methods by taking the properties as the design variables. Assuming that J = Nel
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(a different microstructure at every location), this can be written as:

(2.18)

minimize
kT

Nel∑
e=1

u⊤
e k

T
e ue

subject to K(kT
e )u = f ,

− ϕ(kT
e ) ≤ 0,

where the effective element stiffness tensors kT are design variables, and the signed L2

distance field ϕ of the property space is a constraint to limit the properties to those in

the unit cells dataset.

Next, the optimized properties serve as targets, kT
e , and a combinatorial optimiza-

tion technique can be used to search for existing microstructures in the database whose

properties match those values. These chosen microstructures are then “tiled” into the

multiscale structure. An example of this combinatorial problem is:

(2.19) minimize
l

1

Nel

Nel∑
e

∥kH
e (le)− kT

e ∥22

where kH
e (le) are the effective stiffness tensors of the unit cells selected from the dataset,

which are represented by their indices le ∈ {1, 2, . . . , G}. The total number of cells in

the dataset is G while the number to be assembled into the structure is Nel. As G and

Nel increase, the search space also grows. Hence, top-down frameworks should be able

to explore such large spaces in a scalable manner. Moreover, like with any other design

method for heterogeneous structures, they should also be able to handle compatibility

constraints on neighboring cells to ensure well-connected structures.
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Figure 2.2. Examples of two approaches in data-driven design of hetero-
geneous systems: (a,b) “top-down”, which follows a two-stage (properties
design and tiling) process [1, 2], and (c) “bottom-up” [3], which directly op-
timizes the geometries of each microstructure. Figure credits: Liwei Wang
and Dr. Daicong Da.

Despite considerable design freedom and efficiency (relative to traditional methods),

top-down methods assume that the heterogeneous microstructures have little impact on

the mechanical properties of their neighbors, and have been confined to designs in the

realm of linear elasticity. In comparison, bottom-up frameworks show more promise in

accommodating a wider range of applications, including those with nonlinear mechanics,

since they do not need to first identify target properties, which may not necessarily be

scalar. Applications of these two different approaches are exemplified in Fig. 2.2, and

reviewed in Chapters 5 (top-down) and 7 (bottom-up).
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Part 1

Multimaterial Lattice Structure Topology

Optimization
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CHAPTER 3

Robust Topology Optimization of Multi-Material Lattice

Structures

3.1. Introduction

Enabled by advancements in multi-material additive manufacturing, lightweight lattice

structures consisting of networks of strut-based unit cells have gained popularity due

to their extraordinary performance and wide array of functions. Because they consist

of many structural members and are naturally porous, they hold desirable properties,

e.g., low weight and material cost, while exhibiting extraordinary mechanical, thermal

or acoustic properties. In recent years, additive manufacturing (AM) has allowed easier

manufacture of geometrically complex lattices, and as a result the structures have gained

traction as both micro-architectured metamaterials and mesostructures.

At the microscale, for example, lattice metamaterials have been designed for negative

Poisson’s ratio [31, 89, 90], acoustic manipulation [10, 91] and energy absorption [27].

Micro- and mesoscale lattice structures have also been embedded into global structures

to achieve multifunctional heat exchangers [17, 18], and parts with high energy absorp-

tion [29, 92–94] and low weight [12, 95]. In particular, lattice structures are exceptionally

popular in the biomedical field due to their porosity, which allows biocompability with
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organic tissue, high performance-to-weight ratio, and ease of customization [14–16]. By ex-

ploiting the advancements in multi-material AM, greater performance improvements [29],

like graded stiffness [31] and a larger range of stiffness [96], are possible.

This work proposes a density-based robust topology optimization method for multi-

material lattice structures under any combination of material and load uncertainties. The

method utilizes a new generalized material interpolation scheme for an arbitrary number

of materials, and employs univariate dimension reduction and Gauss-type quadrature to

quantify and propagate uncertainty. By formulating the objective function as a weighted

sum of the mean and standard deviation of compliance, the tradeoff between optimality

and robustness can be studied and controlled. Examples of a cantilever beam lattice

structure under various material and load uncertainty cases exhibit the efficiency and

flexibility of the approach. The accuracy of univariate dimension reduction is validated

by comparing the results to the Monte Carlo approach. The general framework established

here can form the basis of future works in both continuum and multiscale structural design

with and without uncertainty.

3.2. Literature Review

In this chapter, we focus on multi-material lattice structures whose initial ground

structures are composed of periodic truss unit cells. Over the course of optimization,

as struts, or bars, are either assigned a material or removed altogether, the structure

becomes heterogeneous. Due to the large number of struts as well as the additional

materials, the design space expands significantly. Thus, to design these structures, com-

putational methods, e.g., topology optimization (TO), which automatically lays out the
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materials, are highly desirable. While multi-material TO has become more prevalent, most

methods are not applicable to lattice structures. The color level-set [97] and multiphase

phase-field [98] methods require solving the Hamilton-Jacobi and Cahn-Hilliard partial

differential equations, respectively, on a continuous domain. Therefore, they cannot de-

sign lattice structures in which each strut is a discrete element. Techniques for discrete

elements like the multi-material genetic algorithm [99] and pseudo-sensitivity [100] ap-

proaches exist, but are prohibitive for large problems. Zhang et al. [87] used the ground

structure method to iteratively remove members, applying a new variable update method

to effectively optimize multi-material trusses under multiple constraints.

Similar to Ref. [87], this work takes the strut member as an element and can either

remove or assign materials to each. Departing from the above methods, however, a

density-based approach is employed by calculating the elastic modulus based on the well-

known 3-phase standard solid isotropic material with penalization (SIMP) scheme by

Bendsøe and Sigmund [43]. It is also inspired by the modified version of SIMP that

replaces the void elastic modulus with a small number to avoid singularity during finite

element analysis (FEA) [86]. The formulation in this chapter takes SIMP a step further

by allowing multiple materials.

A few others have extended Sigmund’s 3-phase interpolation schemes to M solid phases

and can be broadly categorized into: 1) schemes that add design variables for each new

material, similar to standard and modified SIMP, and 2) schemes that limit the num-

ber of design variables in order to reduce cost. Stegmann and Lund [101] employed a

model of the first category, initially allowing more design variables but later reducing the

number using “patch” variables. They, however, followed the less stable standard SIMP
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formulation. Gaynor et al. [102] also proposed a first category scheme that, despite consid-

ering practical PolyJet manufacturing constraints, unrealistically requires the difference

between the elastic modulus of each material to be equal. From the second category, Yin

and Ananthasuresh [103] used a peak function to transform one design variable into the

modulus of multiple materials. Although it does not increase the design variables, the

function contains horizontal slopes that may cause instability, and includes several curve

parameters that must be meticulously selected by the user. Another method is Zuo and

Saitou’s ordered scheme [104], which avoids instability in its power functions but has a

complicated formulation and fluctuations in the optimization history.

It should be noted that although using less design variables does reduce the time

needed to evaluate the modulus and to update the variables, the vast majority of TO,

especially in large problems, is spent in FEA, which depends on the number of elements

in the domain. As this number generally remains the same throughout optimization

regardless of how many materials exist, it is not necessary to force a more complicated

scheme in exchange for less design variables.

Furthermore, the uncertainty in the materials and loads are considered in this work. In

AM, uncertainty is inherent in the material (e.g., variability in the powder of laser powder

bed fusion) and the build process (which can lead to inconsistent geometry). In lattice

structures, the strut dimensions and mechanical properties can vary greatly depending

on the processing conditions [105, 106]. Park et al. [107] quantified the variability in the

strut geometry by calculating the probabilistic distribution of effective diameters, then

deriving the effective elastic modulus.
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TO methods that consider geometric [108–110] and material [111, 112] uncertainties

exist for single material continuous problems. There is relatively more research for random

loads, such as Refs. [113–115]. Nonetheless, the majority of these methods use level-set

TO, projection filters to model uncertainty, or Monte Carlo to quantify uncertainty –– all

of which are difficult or impossible with multi-material lattice structures consisting of a

large number of strut elements.

3.3. Contributions

In response to the gaps identified above, we propose a new multi-material interpola-

tion scheme that is generalized for arbitrary numbers of materials, easy to implement,

and based on modified SIMP for more stability. The scheme is demonstrated on truss

structures here but easily applicable to both continuum and density-based multiscale

structures (defined in Chapter 2.2). For example, we extend it to design multiclass het-

erogeneous structures in Chapter 6) by designating each microstructural geometric class

as a “material” in the scheme.

To account for uncertainties, we use the elastic moduli of the materials directly as

the uncertain parameters. By doing so, both the uncertainty in the material and the

built geometry can be simultaneously considered by prescribing appropriate probability

distributions. Load uncertainty that can arise during application is also added for more

robust designs. Both material and load influence the part performance, which is used as

the objective function in TO; considering their variability can result in different and more

robust designs. Rather than Monte Carlo or additional filters, we suggest a weighted

sum of the mean and standard deviation of the performance criteria, e.g., compliance,
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as the objective function, where the statistical moments are calculated using univariate

dimension reduction (UDR) [116] and Gauss-type quadrature sampling.

The new generalized multi-material interpolation scheme is proposed in Section 3.4.

In Section 3.5, the deterministic formulation of the TO using the scheme is introduced,

followed by the robust formulation and details of uncertainty quantification in Section 3.6.

Numerical examples of a lattice structure with a global cantilever beam shape under

different uncertainty cases is shown and discussed in Section 3.7. Finally, the conclusions

are presented in Section 3.8.

3.4. Generalized Multi-Material Interpolation Scheme

The proposed multi-material interpolation scheme follows the SIMP method, where

the continuous design variables are the artificial densities of the elements. The material

property of each element is expressed as a material interpolation function that penalizes

intermediate values of the densities through an exponent, p. For example, the Young’s

modulus of each element e in a design containing one solid material can be described by

the standard SIMP model as [43]

(3.1) Ee = E(ρe) = ρpeE,

where ρe ∈ (0, 1] is the artificial density variable of element e such that it is greater than

some small number ρmin to avoid singularity when solving the finite element problem, and

E is the overall Young’s modulus of the solid material.
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Using the so-called modified SIMP scheme, singularity in the stiffness matrix can be

circumvented by assigning a small positive number to the void phase as follows [86]:

(3.2) Ee = Ee(ρe) = ρpe(E1 − E0) + E0,

where E1 is the elastic modulus of the solid material, E0 is a small value that represents

the void phase, and p is the penalty coefficient to discourage intermediate densities within

[0, 1].

Gibiansky and Sigmund [117] showed the following 3-phase (two distinct solid ma-

terials and one void phase) scheme for composites that includes a second penalization

parameter, q:

(3.3) E(ρe·1, ρe·2) = ρpe·1[(1− ρqe·2)E1 + ρqe·2E2].

where E2 is the modulus of the second solid material, and the design variables are

ρe·1, ρe·2 ∈ [0, 1]. This model was tested by Stegmann and Lund in Ref. [101], where

the two penalty parameters had to be carefully chosen in order to converge to a global

optimum. Moreover, Eq. 3.3 follows the standard SIMP model instead of the more stable

modified version in Eq. 3.2.

In response, this work amalgamates Eq. 3.3 and the modified SIMP scheme for three

phases, without the inclusion of another penalty parameter, as follows:

(3.4)
Ee(ρe·1, ρe·2) = ρpe·1[ρ

p
e·2E2 + (1− ρpe·1)E1] + (1− ρpe·1)E0

= ρpe·1ρ
p
e·2(E2 − E1) + ρpe·1(E1 − E0) + E0,
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From the second line, it is clear that the first set of variables, ρe·1, determines the

optimal topology of the overall structure, while the second set, ρe·2, selects the material

at each solid element. This idea is demonstrated for a three phase scenario in Table 3.1.

Table 3.1. Expansion of the proposed interpolation scheme for three phases
(M = 2).

Density Variables Young’s Modulus

ρe·1 = 0, ρe·2 = 0 E0

ρe·1 = 1, ρe·2 = 0 E1

ρe·1 = 1, ρe·2 = 1 E2

This work further proposes extending Eq. 3.4 to a general material interpolation

scheme that can handle any number of materials:

(3.5) Ee(ρe·1, ρe·2, . . . , ρe·M) =
M∑
j=1

(
(Ej − Ej−1)

j∏
k=1

ρpe·k

)
+ E0,

where M is the number of distinct, non-void materials. When M = 1 and M = 2, this

scheme simplifies to the established expressions Eqs. 3.2 and 3.4.

Using the proposed Eq. 3.5, M design variables per element are required, but the

number of elements in the FEA simulation does not change when more materials are

introduced. Since the majority of the computational expense in TO is typically attributed

to FEA, the cost of additional design variables due to multiple materials is relatively small.

Based on the stable modified SIMP scheme, the proposed formulation is easily integrated

into problems with any number of materials.
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3.5. Deterministic Topology Optimization

The density-based deterministic optimization problem to minimize compliance is:

(3.6)

minimize
ρ

J0 = c(ρ) = u⊤K(ρ)u

subject to K(ρ)u = f ,

J1 =

Nel∑
e=1

(ρe·1νe)− J̄1 ≤ 0,

J2 =

Nel∑
e=1

(ρe·1ρ·2νe)− J̄2 ≤ 0,

...

JM =

Nel∑
e=1

(ρe·1ρe·2 . . . ρe·Mνe)− J̄M ≤ 0,

0 ≤ ρe·i ≤ 1, e = 1, . . . , Nel, i = 1, . . . ,M,

where ρ is the vector containing all design variables ρe·i, c is the compliance of the struc-

ture, ve is the volume of element e, u is the displacement vector, f the external load

vector, and Nel is the total number of elements. The stiffness in each element, Ee, is cal-

culated using the proposed interpolation scheme (Eq. 3.5), and the global stiffness matrix

is K(ρ) =
∑Nel

e=1 Eeke, with the unit local stiffness matrix ke. The volume ratios of solid

materials in each element are constrained by the equations J1, J2, . . . , JM and the upper

bounds of those ratios, J̄1, J̄2, . . . , J̄M .

Since the TO problem is solved with gradient-based methods, the derivative of the

compliance c(ρ) with respect to the density variables, ρe·i, is derived using the adjoint
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variable method [43] as

(3.7)
∂c(ρ)

∂ρe·i
= u⊤∂K(ρ)

∂ρe·i
u = −pρp−1

e·i

M∑
j=i

[
(Ej − Ej−1)

j∏
k=1,k ̸=i

ρpe·k

]
u⊤

e Keue,

where ue is the element displacement vector of element e.

3.6. Robust Topology Optimization

To capture uncertainty mathematically, we introduce the random variables ωm ∈ ΘM

and ωf ∈ ΘF , where ΘM and ΘF are the random sample spaces [118] corresponding to

uncertainties in the material properties and loads, respectively. Here M is the number of

uncertain solid phases as defined previously, while F is the number of uncertain external

loads.

The robust TO is then formulated as follows:

(3.8)

minimize
ρ

J0 = µ
(
c(ρ,ωm,ωf )

)
+ βσ

(
c(ρ,ωm,ωf )

)
subject to K(ρ,ωm)u = f(ωf ),

J1 =

Nel∑
e=1

(ρe·1νe)− J̄1 ≤ 0,

J2 =

Nel∑
e=1

(ρe·1ρe·2νe)− J̄2 ≤ 0,

...

JM =

Nel∑
e=1

(ρe·1ρe·2 . . . ρe·Mνe)− J̄M ≤ 0,

0 ≤ ρe·i ≤ 1, e = 1, . . . , Nel, i = 1, . . . ,M,
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where c(ρ,ωm,ωf ) is the compliance under uncertainty, characterized by its mean and

standard deviation, µ(c) and σ(c). A weighted sum of these two statistical moments using

a constant weight, β, results in a multi-objective optimization problem, which allows β

to be increased in order to put more emphasis on minimizing the variation in compliance

of the final design.

3.6.1. Uncertainty Quantification and Propagation

3.6.1.1. Multi-Material Interpolation Scheme under Uncertainty. When materi-

als uncertainty exists, an extended version of the proposed multi-material scheme (Eq. 3.5)

can be used to calculate the Young’s modulus of each element, Ee:

(3.9) Ee(ρe·1, ρe·2, . . . , ρe·M) =
M∑
j=1

[
(Ej(ωj)− Ej−1(ωj−1))

j∏
k=1

ρpe·k

]
+ E0,

where each modulus Ej(ωj) is a realization of its corresponding random variable, ωj ∈ ωm.

In the case when there is no materials uncertainty (i.e., there is only load uncertainty, or

the problem is deterministic), the above simply reverts to Eq 3.5 due to the lack of ωm.

3.6.1.2. Calculation of Statistical Moments. The material and load uncertainties

are propagated using UDR, which, when combined with Gauss-type quadrature, efficiently

reduces the moments of multivariate probability distributions into a weighted sum of

univariate functions [116]. For the method to be accurate, all random variables should be

chosen such that there are no strong interactions between them [119, 120]. Furthermore, it

is assumed that all of the random variables are mutually independent, and for notational

simplicity, they are not separated into ωm and ωf . Instead, they are lumped into ω =



65

[ωm,ωf ] ∈ ΘZ , where Z is the total number of random variables. For example, if both

material and load uncertainties are considered, Z = M + F .

The statistical moments µ(c) and σ2(c) can be expressed as

(3.10) µ
(
c(ρ,ω)

)
=

∫
ΘZ

c(ρ,ω)fω(ω) dω,

(3.11) σ2
(
c(ρ,ω)

)
=

∫
ΘZ

[
c(ρ,ω)− µ

(
c(ρ,ω)

)]2
fω(ω) dω,

where fω(ω) is the joint probability density function of the random variables.

With UDR, the compliance can be approximated by reducing it to a sum of univariate

functions. In each function, all random variables are held equal to their mean except for

one, ωj, such that

(3.12)

c(ρ,ω) ∼=
Z∑

j=1

c
(
ρ, µ(ω1), . . . , ωj, . . . , µ(ωz)

)
− (Z − 1)c

(
ρ, µ(ω1), . . . , µ(ωz)

)
=

Z∑
j=1

c(ρ,µ|µj=ωj
)− (Z − 1)c(ρ,µ).

Note that the univariate functions c(ρ,µ|µj=ωj
) are independent since the random

variables are independent, and therefore Eqs. 3.10 and 3.11 can be approximated as fol-

lows [121]:

(3.13) µ
(
c(ρ,ω)

)
=

Z∑
j=1

µ
(
c(ρ,µ|µj=ωj

)
)
− (Z − 1)c(ρ,µ),
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(3.14) σ2
(
c(ρ,ω)

)
=

Z∑
j=1

σ2
(
c(ρ,µ|µj=ωj

)
)
.

Then, utilizing one-dimensional Gauss-type quadrature to calculate the univariate

moments in Eqs. 3.13 and 3.11, the final expressions are derived as

(3.15) µ
(
c(ρ,ω)

) ∼= Z∑
j=1

[
N∑
k=1

wj·kc(ρ,µ|µj=lj·k)

]
− (Z − 1)c(ρ,µ),

(3.16) σ2
(
c(ρ,ω)

) ∼= Z∑
j=1

N∑
k=1

wj·k

[
c(ρ,µ|µj=lj·k)−

N∑
n=1

wj·nc(ρ,µ|µj=lj·n)

]2

,

where N is the number of quadrature nodes, lj·k is the kth node of the random variable

ωj, and wj·k is the corresponding weight.

Using these methods, the statistical moments of compliance can be estimated with

ZN + 1 deterministic finite element simulations, a value that is, as discussed earlier, not

dependent on the number of elements in the design domain. In comparison to tensor prod-

uct quadrature, which is an alternative univariate moment estimation method requiring

NZ FEA evaluations, UDR is much more efficient [108].
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3.6.2. Sensitivity Analysis

For gradient-based optimization of the robust problem, the derivative of the weighted

objective function with respect to each artificial density variable, ρe·i, is

(3.17)

∂J0
∂ρe·i

=
∂µ

(
c(ρ,ω)

)
∂ρe·i

+ β
∂σ

(
c(ρ,ω)

)
∂ρe·i

=
∂µ

(
c(ρ,ω)

)
∂ρe·i

+
β

2σ
(
c(ρ,ω)

) ∂σ2
(
c(ρ,ω)

)
∂ρe·i

,

where e = {1, 2, . . . , Nel} and i = {1, 2, . . . ,M}.

As in the previous section, when applying UDR to estimate the sensitivities of the

mean and variance, the random variables are fixed at their mean except for ωj, which is

sampled using Gauss-type quadrature. Thus,

(3.18)
∂µ

(
c(ρ,ω)

)
∂ρe·i

∼=
Z∑

j=1

[
N∑
k=1

wj·k
∂c(ρ,µ|µj=lj·k)

∂ρe·i

]
− (Z − 1)

∂c(ρ,µ)

∂ρe·i
,

(3.19)

∂σ2
(
c(ρ,ω)

)
∂ρe·i

∼= 2
Z∑

j=1

N∑
k=1

wj·k

[
c(ρ,µ|µj=lj·k)− µ

(
c(ρ,µ|µj=lj·k)

)]
[
∂c(ρ,µ|µj=lj·k)

∂ρe·i
−

N∑
n=1

wj·n
∂c(ρ,µ|µj=lj·n)

∂ρe·i

]
.

Similar to Eq. 3.7 but with the addition of random variables, the derivative of com-

pliance under uncertainty is

(3.20)

∂c(ρ,ω)

∂ρe·i
= u⊤∂K(ρ,ω)

∂ρe·i
u

= −pρp−1
e·i

M∑
q=i

[(
Eq(ωq)− Eq−1(ωq−1)

) q∏
k=1,k ̸=i

ρpe·k

]
u⊤

e Keue,
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Figure 3.1. (a) Boundary conditions; (b) initial lattice unit cells.

where ωq ∈ ωm. This derivative can be calculated after solving K(ρ,ωm) = f(ωf ), which

is deterministic due to UDR since ωm and ωf are either held at the mean or equal to the

quadrature node according to Eqs. 3.18 and 3.19.

3.7. Numerical Examples

The robust multi-material formulation was demonstrated with a 4-phase 3D cantilever

beam under different combinations of material and load uncertainty, where each strut of

the lattice structure is one FEA element with three design variables. In all examples, the

initial structure (Fig. 3.1(a)) has dimensions 200mm × 100mm × 20mm and a total of

19, 502 elements. It is created by repeating the cubic unit cell in Fig. 3.1(b), which is

10mm× 10mm× 10mm and consists of 20 elements with 2mm diameters, and removing

overlapping struts. The uniformity of the unit cell is not guaranteed in the optimized

result, however, as individual strut elements can be removed if ρe·1 = 0. Hence, our

design is initialized as a periodic lattice structure but becomes heterogeneous as bars can

be assigned as different solid phases or removed altogether.

The FEA at each iteration is performed at the global structure scale in Altair Hyper-

Works OptiStruct, which has the capability to generate and simulate lattice structures,
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including differently oriented struts, as part of their lattice optimization module. Each

strut is modeled as a 1D CBEAM element, and has PBEAML properties with TYPE=ROD. The

material properties and their volume ratio upper limits are listed in Table 3.2, and the

boundary conditions are shown in Fig. 3.1(a).

The optimization problems are solved via the method of moving asymptotes (MMA) [122],

which is efficient despite the large number of design variables and volume constraints. The

design variables ρe·i are initially set equal to their corresponding volume ratio limits, e.g.,

ρe·1 = J̄1. To simplify the calculations, the volume of each element, ve, was assumed to

equal one. In these examples, the generalized multi-material interpolation scheme (Eq. 3.5

or 3.9) does not require high penalization, with p = 2 sufficing to drive away most in-

termediate (gray) densities. However, it is necessary to significantly increase the MMA

parameter asydecr from the default value to 0.97 in order to decrease oscillations in the

optimization history. The asyincr parameter is lowered to 1.03 for faster convergence

with a slight sacrifice to the compliance, the initial movelimit is 1.2, and the rest of the

parameters are kept at the default values recommended by Svanberg [123]. The optimiza-

tion is stopped when the relative difference between the objective function values between

two iterations is less than 1e-6.

Table 3.2. Material properties of the 4-phase examples.

Material Color Mean Young’s Modulus (MPa) Poisson’s Ratio Volume Constraint

Void - 1e-8 0.3 -
Soft Green 500 0.3 10%

Medium Blue 1000 0.3 10%
Hard Yellow 2000 0.3 10%
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For UDR, all examples use N = 8 Gauss quadrature points. Increasing the number

of points beyond this does not noticeably improve the accuracy of the estimated statis-

tical moments in comparison to Monte Carlo with 10, 000 samples; instead it escalates

the computational cost unnecessarily. In addition, the weight β in the robust objective

function J0 (Eq. 3.8) is varied to generate Pareto optimal fronts of each example, showing

the effects of the applied uncertainties. When β = 0, the objective function reverts to

the deterministic one (Eq. 3.6) and the optimal topology in this case is essentially the

deterministic one. As β is increased, more emphasis is put on minimizing the standard

deviation of compliance, i.e., the uncertainty. Three cases of uncertainty are examined

in the following sections: uncertainty in the 1) materials only, 2) load only, and 3) both

materials and load.

3.7.1. Materials Uncertainty

In the first case, the Young’s moduli of the four material phases are taken as normally

distributed random variables. Thus, each modulus is prescribed a mean and standard

deviation. The means of the soft, medium and hard materials are listed in Table 3.2;

the standard deviations are set to 100MPa each, which is equivalent to 20%, 10%, and

5% of the mean values, respectively. The load is deterministic with a magnitude of 1.5N

(Fig. 3.1(a)). Despite applying a high weight on the standard deviation of compliance,

β = 10, the history of the objective function decreases stably and monotonically overall to

10.2% of the original value in 38 iterations (Fig. 3.2). In Fig. 3.3, the tradeoff between the

the mean and standard deviation of compliance can be observed. When β is decreased,

the mean decreases while the standard deviation increases, i.e., more optimal but less
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robust solutions are found. This relationship can also be seen in Fig. 3.4, where the

robust solution has more of the medium (blue) and hard (yellow) materials, which were

assigned lower relative standard deviations (10% and 5% of their means, respectively)

than the soft material (20% of its mean).
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Figure 3.2. Optimization history of the objective function under materials
uncertainty when β = 10.
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Figure 3.3. Pareto front under materials uncertainty with different objective
function weights β.
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(a) (b)

Figure 3.4. Optimal solution under materials uncertainty when (a) β = 0
(deterministic) and (b) β = 10 (robust).

To validate the statistical moments that were estimated using UDR, the final topolo-

gies were evaluated with 10, 000 Monte Carlo samples and compared in Table 3.3. The

study shows that the UDR approximations are accurate within 3% of the Monte Carlo

results.

Table 3.3. Mean and standard deviation (Std. Dev.) of the compliance
(N ·mm) results under materials uncertainty using UDR with 8 quadrature
nodes and Monte Carlo with 10, 000 samples.

Solution Type Moment UDR/Quadrature Monte Carlo Difference

Deterministic (β = 0)
Mean 0.43036 0.43027 0.02%

Std. Dev. 0.02063 0.02087 1.15%

Robust (β = 10)
Mean 0.46244 0.46262 0.04%

Std. Dev. 0.02018 0.02072 2.61%

3.7.2. Load Uncertainty

For the example under load uncertainty, two normally distributed random variables are

considered: the magnitude and the angle of the external load applied (Fig. 3.5). The

mean of the load magnitude is 1.5N and the standard deviation is 0.225N , or 15% of the

mean, while the mean and standard deviation of the angle are 0◦ and 10◦, respectively.
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Figure 3.5. Boundary conditions with the random external load, which
varies in both magnitude (f) and angle (θ).

As before, the objective history for β = 10 is fairly smooth and stable, and the final value

is 5.67% of the initial compliance after 37 iterations (Fig. 3.6).

Unlike the case with only materials uncertainty, the robust designs are dramatically

different, with long horizontal bars of the hard (yellow) material added in order to brace

the cantilever against loads with angles that are not 0◦ (Figs. 3.8 and 3.9). Consequently,

the mean and standard deviation of compliance for the robust solutions are significantly

lower than the deterministic one (Fig. 3.7(a) and Table 3.4). Still, the Pareto optimal

front considering only robust solutions shows a similar tradeoff as before (Fig. 3.7(b)),

and once again the topology with higher b consists of stronger materials (Fig. 3.9). When

load uncertainty is considered, however, the standard deviation estimated using UDR is

not as accurate as Monte Carlo sampling, with differences higher than 10% (Table 3.4).

3.7.3. Materials and Load Uncertainties

The final case demonstrates the proposed method’s ability to capture multiple sources of

uncertainty by simultaneously considering material and load uncertainties. This example
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Figure 3.6. Optimization history of the objective function under load un-
certainty when β = 10.
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Figure 3.7. Pareto front for different objective function weights under load
uncertainty (a) including β = 0 (deterministic), and (b) showing robust
solutions only (β = 1 to β = 10).

combines the two previous ones: the same normal distributions for the three solid materials

as in Sec. 3.7.1, and the same for the load magnitude and angle as in Sec. 3.7.2, are applied.

Again, the optimization when β = 10 converges well, achieving an objective value that

is 5.71% of the initial in 34 iterations (Fig. 3.10). The Pareto frontier (Fig. 3.11) and
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Table 3.4. Compliance (N ·mm) results under load uncertainty using UDR
with 8 quadrature nodes and Monte Carlo with 10, 000 samples.

Solution Type Moment UDR/Quadrature Monte Carlo Difference

Deterministic (β = 0)
Mean 1.02900 1.04167 1.22%

Std. Dev. 0.83206 0.92341 10.87%

Robust (β = 1)
Mean 0.74000 0.74949 1.27%

Std. Dev. 0.42108 0.49094 14.23%

Robust (β = 10)
Mean 0.76359 0.77067 0.92%

Std. Dev. 0.38892 0.44047 11.70%

Figure 3.8. Optimal solution under load uncertainty when β = 0 (deter-
ministic).

(a) (b)

Figure 3.9. Optimal robust solutions under load uncertainty when (a) β = 1
and (b) β = 10.

topologies (Figs. 3.12 and 3.13) are akin to those when only load uncertainty is consid-

ered in that the mean and standard deviation of compliance for the robust solutions also
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decrease due to the formation of the hard material (yellow) bars. With the additional un-

certainty in the materials, however, the compliance increases marginally and the accuracy

of UDR deteriorates slightly (Table 3.5).
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Figure 3.10. Optimization history of the objective function under both ma-
terials and load uncertainties when β = 10.
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Figure 3.11. Pareto front for different objective function weights under both
materials and load uncertainties (a) including β = 0 (deterministic), and
(b) showing robust solutions only (β = 1 to β = 10).



77

Table 3.5. Compliance (N · mm) results under material and load uncer-
tainties using UDR with 8 quadrature nodes and Monte Carlo with 10, 000
samples.

Solution Type Moment UDR/Quadrature Monte Carlo Difference

Deterministic (β = 0)
Mean 1.03223 1.03533 0.30%

Std. Dev. 0.82331 0.92008 10.52%

Robust (β = 1)
Mean 0.74380 0.76006 2.14%

Std. Dev. 0.42198 0.49447 14.66%

Robust (β = 10)
Mean 0.77624 0.78349 0.93%

Std. Dev. 0.39135 0.45541 14.07%

Figure 3.12. Optimal solution under both materials and load uncertainties
when β = 0 (deterministic).

(a) (b)

Figure 3.13. Optimal robust solutions under both materials and load un-
certainties when (a) β = 1 and (b) β = 10.
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3.8. Conclusions

The work in this chapter proposes a new generalized material interpolation scheme

for an arbitrary number of materials, as well as the employment of UDR and Gauss-type

quadrature to quantify and propagate any combination of uncertainty in the materials

and loads. The multi-material robust TO method is demonstrated with lattice structures,

although the methods can be easily transferred to multi-material continuum structures,

as well as heterogeneous multiscale designs. The latter in particular has the potential

for high impact. Since our multi-material interpolation scheme is not limited to only

Young’s moduli, but rather general enough to be applied to any continuous value, it

can be applied to interpolate between the parameters of different microstructures in a

heterogeneous structure.

The numerical examples of 4-phase cantilever beam lattice structures reveal that the

method is efficient for large, multi-material problems with multiple sources of uncertainty.

The optimization converges stably in under 40 iterations despite nearly 20, 000 elements

and up to five random parameters. Using UDR and Gauss-type quadrature significantly

cuts down the computational expense of calculating the statistical moments of the objec-

tive function, requiring only eight FEA evaluations per iteration rather than, for example,

10, 000 using Monte Carlo simulation. Although there is some loss of accuracy with UDR,

the difference compared to the Monte Carlo approach is between 0.02% and 2.14% for the

mean of compliance, and 1.13%–14.66% for the standard deviation, which is acceptable in

exchange for the computational savings. Furthermore, by setting the objective function

as a weighted sum of mean and standard deviation, multiple designs along the Pareto
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frontier can be generated and compared to observe and regulate the effect of uncertainty

on the problem.

With the rise of highly functional, multi-material lattice structures built by AM, this

work offers a simple solution to efficiently and robustly design these complex structures.

Possible extensions of this work include but are not limited to: applying objectives more

complicated than compliance; assigning targeted properties to achieve functionally graded

structures; incorporating microstructure design within a multiscale framework that also

optimizes the global geometry; and optimizing multi-material conformal lattice-skin struc-

tures.
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Part 2

Diverse Metamaterials Datasets for Scalable

Data-Driven Design
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CHAPTER 4

Creating Multiclass Metamaterials Datasets for Mechanical

Design

To examine the current state-of-the-art and motivate why attention needs to be placed

on the data acquisition and representation step of data-driven design frameworks, this

chapter first reviews recent data generation methods in the metamaterials and multiscale

structural design field. Then, we illustrate the pitfalls of these methods by demonstrating

two common data gathering pipelines: 1) property-driven sampling using inverse topology

optimization (TO), and 2) shape-driven sampling by taking advantage of parameterized

geometries or functions. The two approaches are applied to two different unit cell design

representations, i.e., geometry classes – trusses and isosurfaces. The intention is that

these datasets could later be leveraged in a design framework that integrates multiple

classes.

4.1. Literature Review

When generating unit cells data, research has primarily been focused on a property-

driven approach combining conventional TO with sampling strategies and parallel com-

puting to efficiently populate large (e.g., greater than 10, 000 unit cells) databases that

cover as broad a range of properties as possible. In most cases, the TO is density-based

with the objective of minimizing the error between a unit cell’s actual properties and the

targets, e.g., the elasticity tensor, Young’s modulus, or Poisson’s ratio. Schumacher et al.
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generated representative unit cells using TO, then converted pixels to continuous signed

distance fields to smoothly generate new unit cells and create families of unit cells [34].

In our past work, an initial set of 2D unit cells were optimized using TO, then iteratively

morphed using stochastic shape perturbation to reach 88, 000 structures [124]. Similarly,

Zhu et al. built massive databases of up to 388, 000 2D unit cells and 88, 000 3D unit cells

using both TO and random pixel/voxel flipping [66]. Rather than solving an inverse TO

problem as in the works above, the target Young’s moduli are converted to constraints,

and level-set TO is used to maximize the effective conductivity in Ref. [125]. This formu-

lation naturally avoids internal voids, which are undesirable during manufacturing. The

traditional TO problems of minimizing mass [126] or maximizing stiffness [127] can also

be applied to build libraries of unit cells that are optimal for a specified range of applied

stresses. Despite the ability to cover a large property space, starting from TO can be

burdensome, especially in 3D. Additionally, optimal solutions may not be found for all of

the prescribed targets (e.g., only 36% of the targets were successfully met in Ref. [128],

and 60% in Ref. [125]), wasting computational resources.

Under the shape-driven umbrella, a possible brute-force alternative is to simply enu-

merate all possible 0/1 pixel combinations in a unit cell, such as in Ref. [129], but this

is feasible only for small unit cells. Instead, Panetta et al. parameterize lattice unit

cells using nodes and connecting edges, and develop several heuristic rules to generate

and search through up to 16, 221 connected unit cells [65]. In a related approach, the

authors of Ref. [130] exploited crystallographic cubic symmetry operations to quickly

build a lattice dataset from a minimal number of initial bars and nodes; the downside is

that they only generated 144 structures, though the method could be extended to create
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more. However, these methods are specific to lattice structures, and cannot be applied to

metamaterials with other representations.

Another challenge is that the substantial size of most of these databases, particularly

for unit cells that require fine resolutions to preserve complicated features, can consume

huge amounts of memory, e.g., trillions of voxels in Refs. [66, 131], and be inefficient

to query. Reducing high-dimensional unit cell representations before design exploration

and optimization is therefore a crucial step. To this end, the authors of Ref. [131] fitted

parameters such as beam thickness and orientation to 15, 000 voxelated unit cells. The

parameters were then compressed even further using principal component regression, and

the principal directions were utilized to navigate the property space. Alternatively, in our

previous work, we reduced the dimension of the unit cells with spectral shape descriptors

based on the Laplace-Beltrami (LB) operator, a low dimensional representation popu-

larized by the computer vision community for shape retrieval and analysis. By solving

a general eigenvalue problem, a vector known as the LB spectrum, or Shape-DNA, was

obtained to characterize a wide variety of freeform shapes [124]. We have also used large

datasets and generative deep learning methods, like variational autoencoder (VAE), to

learn abstract, low-dimensional latent representations of unit cells [1].

Instead of reducing the dimension of the data, Ref. [132] compressed the size of their

database by selecting a representative subset based on material properties, which allowed

them to more efficiently fit a data-driven property prediction model. Another approach

is to parameterize the property space: The authors in Ref. [66] and Ref. [133] fit function

approximations of the database’s property space using level-sets and the method of moving
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least squares, respectively, enabling macrostructure optimization and unit cell mapping

in terms of the properties.

It is important to note that these databases were built on the assumption that the

chosen class, i.e., geometric representation, will offer optimal choices for the pre-specified

application. We challenge this assumption and, in later chapters, explore methods to

expand the design space by merging multiple classes into the same design framework.

As the first step in that goal, this chapter investigates whether state-of-the-art data

acquisition methods are truly suitable for data-driven multiclass design through concrete

examples.

4.2. Strategies to Acquire Data with Different Representations

To pare down the complexity of creating a bounty of data, we choose two popular

classes of mechanical metamaterials that display a variety of desirable properties, yet can

be generated with less design variables than in freeform (e.g., voxelated) shapes. These are

the truss and isosurface classes. The former is known to exhibit high strength-to-weight

ratios and great heat dissipation, and is widespread in the AM community due to ease

of manufacturing. The latter contains bio-inspired geometries that can be expressed as

analytical functions, and is popular for energy absorption, functionally graded structures

and tailorable bandgaps. For thorough reviews on these classes, see Refs. [4, 7, 33, 41, 42].

Existing computational design methods for both rely on the designer’s choice to select the

exact class a priori to multiscale design [24, 36, 50, 134–136]. They are excellent choices

to study whether eliminating the disjunction in current metamaterials design by bringing

multiple classes into the same design space can 1) reveal the advantages of each class, and
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2) merge the beneficial features of different classes to generate creative designs (however,

these research questions are explored later in Chapter 7).

One argument against this multiclass approach might be that traditional TO could

produce a database of freeform shapes similar to truss or isosurface structures. To answer,

previous works have already demonstrated that conventional TO suffers from many com-

putational cons due to high dimensionality, is not easily scalable to complex physics during

data generation [1, 34, 66, 124], and may have low manufacturability, hence limiting the

potential of data-driven heterogeneous design in impactful, real-world applications.

To calculate the linear elastic effective properties of each unit cell of both classes, we

use classical asymptotic homogenization [84] with a constituent material commonly used

in computational methods, Young’s modulus E = 200 MPa and Poisson’s ratio ν = 0.3.

4.2.1. Property-Driven Generation of Trusses

Truss, or lattice, structures are represented as “bars-and-nodes”: a list of the (x, y, z)

coordinates of the nodes, as well as the connections between nodes, and the thickness

of the bars. In a ground structure-based approach (Chapter 2.2.1), an initial topology

containing many bars is defined. Each bar can be taken away to form a new “child”

structure. By assigning a binary 0/1 design variable to each bar, a shape-driven sampling

could take all possible combinations of the bars to form a large database. However, to

offer a wider variety of child structures, the ground structure needs to contain many initial

bars, which also leads to a large number of combinations as well as a high possibility of

obtaining infeasible structures with disconnected members. Naively enumerating over all
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possibilities would be inefficient. In this section, a property-driven, inverse TO approach

such as in Refs. [34, 66, 124] is used instead. Its pros and cons are then discussed.

4.2.1.1. Inverse Optimization via Genetic Algorithm. Many existing data-driven

works like the ones reviewed above generate large databases that cover a wide range of

desired properties via TO. Following this, we generate a truss structure database using

discrete genetic algorithm (GA), which evolves a population of candidate children at each

iteration until the fitness function is minimized. Different from the existing works, all

children created by GA are saved into the database without regard for their optimality.

This is akin to the approaches in Refs. [66, 124] that use inverse TO to generate an initial

dataset, then use stochastic perturbation to expand the data.

Orthotropic symmetry is used to reduce the design space to only a quarter of the full

cubic unit cell. Because of the symmetry, there are 12 independent linear elastic coeffi-

cients, E1, E2, E3, ν12, ν13, ν23, ν21, ν31, ν32, G12, G23, G31, where Ei are Young’s moduli, νij

are Poisson’s ratios, and Gij are shear moduli. For simplicity, only 6 are taken as proper-

ties of interest: E1, E2, E3, ν12, ν13, ν23. Optimal Latin hypercube sampling (OLHS) [137]

is used to optimally select a space-filling set of 70 targets, p∗, in the 6-D property space

over the range Ei ∈ [10(− 3), Eg
i s], νij ∈ [−1, 1], where Egs

i is the effective Young’s modu-

lus of the ground structure in the i-th direction. Since the ground structure contains the

maximum number of bars, its modulus value is the theoretical upper bound.
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An inverse problem is solved to minimize the Frobenius norm of the difference between

the target properties and the actual properties of the unit cell, acting similarly to a least-

squares multi-objective function [65]:

(4.1)

minimize
x

1

2
∥p∗ − pH(x)∥2F

subject to K(x)u = f ,

x = xi ∈ {0, 1}, i = 1, 2, . . . , N,

where p∗ is the 6-D vector of target properties, pH(x) is the corresponding vector of the

homogenized properties of the unit cell, K(x)u = f is the linear elasticity constraint, and

x is the vector of N binary design variables.

After reassembling the full structure by reflecting across the three symmetry planes,

numerical homogenization is used to calculate the effective properties. Then, following

Refs. [66, 124], 30 new targets are selected in the normal directions of uniform samples

on the boundary of the initial property space. This process is visualized in a 3D space in

Fig. 4.1.

Two ground structures with different topologies are chosen based on our user experi-

ence in an attempt to diversify the database (Fig. 4.2). The first has a truncated cube

shape with 13 design variables (bars), and the second is a combination of the classical

FCC and BCC trusses with 28 design variables. After 100 total targets were optimized

for each ground structure, any structures with disconnected features were removed for a

final count of 9, 392 structures. The [E1, E2, ν12] property space of the truss database is

shown in Fig. 4.3.
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Figure 4.1. Example of sampling on the boundary of an existing property
space (blue) to obtain new targets (green dots) in the normal direction (red
vectors).

(a) Truncated cube
(latTrunCube)

(b) FCC + BCC
(latFccBcc)

Figure 4.2. Two ground structures used to generate the truss database.

Despite the ability of GA to rapidly populate the database through the candidate

children, it generates many similar structures. This can be seen by the striated grouping

of data samples in the property space (Fig. 4.3), and in the examples in Fig. 4.4. In

addition, there are still many empty areas in the property space, although the possible

properties could be limited by the chosen ground structure. Indeed, this highlights a

critical but heretofore overlooked problem in the data acquisition of unit cells: datasets
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are highly dependent on the heuristics and user bias used to create them. These short-

comings can be seen in other databases reviewed above, yet the impact of these biased

data distributions on the downstream data-driven tasks has not been directly addressed.

Rather, the common solution is to sidestep the issue by continuing to generate as much

data as possible until the property no longer expands and the theoretical bounds have been

approximated. An efficient and general method is needed to acquire or compress datasets

such that they have high diversity in shapes and properties.

Figure 4.3. The E1 − ν12 property space of the truss structure database
created via GA from two ground structures.

Figure 4.4. Three examples of visually similar FCC + BCC structures found
by GA.
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4.2.2. Shape-Driven Collection of Isosurfaces

We now investigate the shape-driven sampling approach by collecting a set of isosur-

faces. Many structures found in nature, such as block co-polymers and molecules in lipid

systems [138], can be described mathematically using minimal surfaces [139]. The clas-

sical triply periodic minimal surfaces (TPMS), e.g., Diamond, Primitive and Gyroid, are

commonly used to design functionally graded structures in the TO field [22, 36, 50, 134].

The classical TPMS and, in general, isosurface structures can be generated from level

set functions, where each coordinate (x, y, z) within the design domain of the unit cell, D,

informs whether that point is on the surface of the structure, Γ, inside the solid region,

Ω, or in a void region. This is expressed as

(4.2)



f(X, Y, Z)− t < 0 (X, Y, Z) ∈ Ω

f(X, Y, Z)− t = 0 (X, Y, Z) ∈ Γ

f(X, Y, Z)− t > 0 (X, Y, Z) ∈ D/(Ω ∪ Γ)

,

where X = 2πx, Y = 2πy, Z = 2πz, and t is the isovalue that controls where the surface

is defined. Thus, the solid isosurface structure is

(4.3) f(X, Y, Z) ≤ t

and varying t is equivalent to changing the volume fraction of the structure (Fig. 4.5).

4.2.2.1. Generation via Known Surface Functions. In Ref. [140], von Schnering and

Nesper proposed that periodic isosurfaces – specifically, TPMS – can be approximated as
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Figure 4.5. Varying the volume fraction of an isosurface structure by setting
t ∈ [−1, 1].

periodic Fourier series of the form:

(4.4)
∑
hkl

∥F(hkl)∥ · cos
(
(2π(hx+ ky + lz)− α(hkl)

)
= 0,

where (hkl) are the Miller indices of the reciprocal lattice plane, α(hkl) is the phase shift,

and ∥F(hkl)∥ is the amplitude of the structure factor, which, as introduced above, describes

the diffraction pattern of incident X-ray beams on a crystal structure [140, 141].

In total, 36 triply periodic level surface functions from Refs. [36, 140, 142] and one

quasi-periodic from Ref. [38] can be collected from existing literature to constitute an

isosurface database. For each function, a family of unit cells is formed by varying t,

which changes both the density and mechanical properties continuously without relying

on TO (see the smooth curves formed by most of the families in the property space in

Fig. 4.6). The additional parameters in the quasi-periodic function (“qpCallanan”), which

are chosen via OLHS over the range a, b, c ∈ [−5, 5], α ∈ {0, 1, 2, 3}, are capable of creating

a variety of shapes (Fig. 4.6).

On the other hand, only a few feasible structures can be obtained from the periodic

functions, which have only one parameter each – not enough to generate a large database.

Moreover, just like the truss database, there can be overlaps in the shapes of the generated
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structures (Fig. 4.7). Although all of these provide convenient expressions to generate a

dataset, they are based on geometrical descriptions only and therefore do not guarantee

wide coverage of the property space (Fig. 4.6).

Figure 4.6. The E1−ν12 property space of the isosurface database generated
by 36 existing periodic and 1 quasi-periodic surface functions.

Figure 4.7. Examples from different periodic isosurface functions with sim-
ilar topology (tpbsDG, tpbsGp1, pnsCI2Y, respectively).

4.3. Imbalanced Datasets and Their Implications for Data-Driven Design

Consider, then, one of the goals of this thesis: to combine all trusses and isosurfaces

into a single, multiclass dataset so that they can be synthesized under the same framework.
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Figure 4.8. Class distribution of the example multiclass database. Here
‘lattice’ refers to truss structures generated by GA, and ‘iso’ refers to iso-
surface structures generated by known periodic surface functions.

From Fig. 4.8, the discrepancy of the number of samples between the truss and isosurface

classes is clear. If we use this combined dataset for the next steps in data-driven design,

i.e., mechanistic learning and design synthesis, it is perceivable that the biases and low

diversity may affect the accuracy of any predictive models we train, and could lower the

chances of finding optimal designs due to lack of valuable data in sparse regions or too

many infeasible, redundant data.
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Figure 4.9. To fill the current gap in data generation for design, methods
are needed to pool data from different geometric classes to create a diverse
and balanced dataset, then, optionally, to efficiently expand the dataset
using methods that can simultaneously handle multiple classes. The shapes
with solid colors are existing data, and those with colored borders/white
interiors are new data created to expand the datasets.

Although this was a contrived, and perhaps extreme, example, class imbalance is a

critical concern in design scenarios where data is sourced from distinct shape representa-

tions, such as in our goal, or when data is collected from multiple sources (e.g., Materi-

alsMine [78]), or multiple physics domains. Such imbalance can impede the performance

of data-driven models since during training they may not see enough of the smaller class

to learn it as well as the more abundant class [79, 143]. Moreover, the redundant shapes

can also lead to problems during both model training and the design search process, and

diminish the creativity (i.e., novelty) of generated designs. The state of this example mul-

ticlass database exemplifies a diversity and quality problem that may occur in data-driven

design.
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To deal with these inconsistencies, it is necessary to develop a general sampling method

that can create balanced, diverse and valuable metamaterials datasets for data-driven de-

sign (Fig. 4.9). The hypothesis is that data-driven design methods can more efficiently dis-

cover novel and high performance designs by using balanced and diverse training datasets.

The next task (Chapter 5) addresses this challenge through a methodology that leverages

both shape and property diversity metrics to select smaller yet diverse subsets of metama-

terial unit cells. With this method, we provide evidence of the impact that imbalance can

have on the scalability and designed performance of multiscale structures by comparing

the use of imbalanced datasets against diverse subsets in data-driven design methods.
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CHAPTER 5

Shape and Property Diverse Subset Selection for Scalable

Data-Driven Metamaterials Design

5.1. Introduction

Metamaterials are drawing increased attention for their ability to achieve a variety

of non-intuitive properties that stem from their intentionally hierarchical structures [34].

While they traditionally consist of one unit cell that is repeated everywhere, multiple

unit cells (or microstructures in this context), can also be assembled to create aperiodic

mechanical metamaterials with, e.g., spatially-varying or functionally gradient proper-

ties [34, 36]. Over the past few years, conventional computational methods have been

adapted to design such complex multiscale structures, including topology optimization

(TO) of the microstructures within a fixed macroscale structure [57, 126], and hierarchical

and concurrent multiscale TO that design both the macrostructure and a pre-specified

number of unique microstructures [58, 59, 115]. However, as the desire to attain even

more intricate behaviors grows, so too does the complexity of the design process, which

must account for the expensive physical simulations and, in aperiodic structures, the vast

combinatorial design space and disconnected neighboring microstructures [34, 35].

To combat costly physical simulations and immense, often intractable, geometrical

design spaces, data-driven design of mechanical metamaterials is an promising and in-

creasingly popular method. Using a pre-computed dataset of unit cells, a multiscale
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structure can be quickly filled via combinatorial search algorithms, and machine learning

models can be trained to accelerate the process (Fig. 5.1). However, the dependence on

data induces a unique challenge: An imbalanced dataset containing more of certain shapes

or physical properties can be detrimental to the efficacy of data-driven approaches. In an-

swer, we posit that a smaller yet diverse set of microstructures leads to scalable search over

the design space and unbiased learning. To select such subsets, we propose METASET, a

methodology that 1) uses similarity metrics and positive semi-definite kernels to jointly

measure the closeness of microstructures in both shape and property spaces, and 2) incor-

porates Determinantal Point Processes for efficient subset selection. Moreover, METASET

allows the trade-off between shape and property diversity so that subsets can be tuned for

various applications. Through the design of 2D metamaterials with target displacement

profiles, we demonstrate that smaller, diverse subsets can indeed improve the search pro-

cess as well as structural performance. By eliminating inherent overlaps in a dataset of

3D unit cells created with symmetry rules, we also illustrate that our flexible method can

distill unique subsets regardless of the metric employed. Our diverse subsets are provided

publicly for use by any designer.1

5.2. Literature Review

Multiscale topology optimization (TO) methods have been used for the design of het-

erogeneous structural systems, but the scope has been limited thus far. The simplest

methods assume a periodic unit cells within the macrostructure, which allows efficient

optimization at the cost of sub-optimal designs [57, 144]. For higher design freedom,

other multiscale TO methods divide a macro-structure into several subregions of periodic

1https://github.com/lychan110/metaset

https://github.com/lychan110/metaset
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METASET: Selection of Diverse and
Valuable Data
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Figure 5.1. A high-level overview of data-driven metamaterials design, and
how our proposed method, METASET, fits in. As an example, we show
CH , the homogenized elastic tensor, as the unit cell properties.

designs [59, 115] or assume fully aperiodic microstructure designs [80, 145]. However,

existing gradient-based TO techniques have several fundamental limitations that impede

their capability of scaling up to more realistic, larger scale designs. These underlying

challenges include: (a) “curse of dimensionality” induced from the design space cover-

ing multiple scales, (b) combinatorial search associated with high dimensional geometric

design, (c) tradeoffs between the higher accuracy of full-scale, physics-based simulations

and lower cost of homogenization, and (d) difficulties ensuring manufacturability (e.g.,

ensuring fabrication constraints are met and/or that neighboring microstructures are con-

nected).

Capitalizing on advances in computing power, data-driven metamaterials design can

be a more efficient and therefore enticing solution to the computational challenges above.

Its success hinges on pre-computed unit cell libraries or datasets, which can avoid costly
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on-the-fly physical simulations and multiscale TO in huge design spaces, as well as pro-

vide candidate unit cells that are better connected to their neighbors. Fig. 5.1 shows an

overview of two common approaches in data-driven design: global optimization methods,

and machine learning (ML) based methods. In the first case, combinatorial optimiza-

tion algorithms can be used to directly search for the set of unit cells that realize a

target macroscale behavior while minimizing or constraining the boundary mismatch be-

tween neighboring cells [34, 35, 66]. From another perspective, data-driven methods can

use the dataset to train ML models that further accelerate design. For example, they

have been used to rapidly predict homogenized physical properties as part of the opti-

mization loop [71, 124, 128, 132]. Additionally, deep generative models inspired by the

computer vision field (e.g., generative adversarial networks [77] and variational autoen-

coders [1]) can learn embedded geometric descriptors that act as reduced dimensional

design variables, and construct new designs such as optical 2D metamaterials [68, 146]

almost instantaneously. Accelerated by data-driven techniques, challenging designs such

as spatially-varying displacement profiles and nonlinear behavior that are prohibitively

expensive via conventional methods are now tangible.

5.2.1. “Top-Down” Data-Driven Design Frameworks

Through the homogenization-based approach (Chapter 2.2.2), multiscale design methods

can achieve efficiency near that of single-scale methods. A pre-computed dataset further

expedites heterogeneous design by allowing us to fully explore the unit cells “off-line”.

That is, we can utilize combinatorial search algorithms to assemble an aperiodic structure
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from unit cell designs in the dataset without having to perform homogenization on-the-

fly. In this chapter, we focus on a particular data-driven approach: a “top-down” design

framework that first designs the optimal properties of each microstructure, then tiles the

matching unit cells. It is briefly reviewed below.

5.2.1.1. Stage 1: Identification of Target Properties. Assuming that a large data-

base of unit cells has been obtained (using, for example, the techniques summarized in

Chapter 4), the first stage of “top-down” multiscale design is to identify the optimal

properties of the spatially varying microstructures. In general, these methods can be dis-

tinguished by whether the macrostructure topology is fixed a priori or allowed to change.

For both, employing traditional optimization at the macroscale is often used as a system-

atic way to find the target property distribution. In existing data-driven works, common

optimization objectives for the macroscale structure are to minimize compliance, strains

or mass [38, 66, 126], or to achieve target deformation profiles [1, 30, 34, 37, 124].

For fixed topology, a straightforward method is performing combinatorial optimiza-

tion, trying possible microstructures until the macroscopic objective and connectivity

constraints are met [35, 38]. However, this does not scale well to large or complex prob-

lems. Choi et al. take the opposite approach and do not perform macroscale optimization

at all. For a given topology and its boundary conditions, they simply use the von Mises

stress field from one FEA solve as the target distribution [126]. Since their microstruc-

tures were each pre-optimized for specific stress cases, the macrostructure tiled with those

designs attains a weight, maximum displacement and maximum stress comparable to a

conventional TO result, but in a fraction of the time.
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Problems with target deformation or displacements typically also fall in the fixed

topology category. The Stage 1 macroscale problem can be formulated as minimizing the

error between the target and actual displacement fields, with the material properties of

each microstructure as the design variables [1, 65, 66]. Although these designs experience

large deformations, data-driven methods thus far have ignored the geometric non-linearity

in the interest of computational cost. For more accuracy, however, the non-linearity should

be considered; this is listed as a “future work” in many papers.

Parameterizing the design variables as the desired properties, e.g., Young’s modulus

and Poisson’s ratio, is also applicable to cases where the macroscale topology is allowed

to change. Since it offers an intuitive and direct relation to microstructures characterized

by their effective properties, this tactic is used by several works [65, 66, 133]. It is similar

to the conventional single-scale TO method, Free Material Optimization, which uses the

elasticity tensor as design variables and can therefore also find the property distribution

of the microstructures [147, 148].

5.2.1.2. Stage 2: Structure Assembly and Connectivity. After obtaining the tar-

get property distribution, the unit cells corresponding to the targets need to be selected

and tiled to assemble the macrostructure. The simplest way is to choose the unit cell that

matches the targets most closely without worrying about the connectivity. In these cases,

the boundary compatibility can be ensured by adding layer around regions of different

microstructures [126, 149], or by averaging the node locations at the boundaries for lattice

structures [65].

However, an appeal of data-driven methods is that, with a large-enough database,

several candidate unit cells can be chosen based on the distance of their properties to
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the target ones. From these candidates, the optimal set that minimizes the boundary

mismatches (e.g., the percentage of pixels/voxels that are different between neighboring

microstructures) can then be chosen. This problem has been solved with combinatorial

methods [38, 66], a Markov random field graph-based approach [1], and a greedy algorithm

using tensor-based error diffusion [129]. For greater efficiency, the NP-hard problem was

approximated by the alternating direction method of multipliers in Ref. [34]. In addition,

an additional physics-based boundary dissimilarity measure was implemented using the

force [34] and stress [1] discrepancies across microstructure boundaries.

In some works, if a unit cell meeting the targets or boundary constraints does not

exist, a new one will be directly optimized using the same design representation as was

used to generate the database [38, 65], interpolated from existing structures [34, 125, 128],

or generated from a deep-learned latent space [1]. This, of course, assumes that the new

unit cell is from the same class as those in the dataset.

5.2.2. Challenges and Gaps in Data-Driven Multiscale Design

Although the state-of-the-art shows promise, a challenge is that the efficacy of data-

driven methods relies highly on the size and coverage of the datasets. The search space of

global optimization methods can quickly explode when the number of unit cells increases.

Meanwhile, imbalanced datasets with skewed data distributions can reduce the chance of

meeting certain property or compatibility requirements, and hobble the performance of

ML models since they may not learn a less frequent property or shape as well [79]. To our

best knowledge, these risks have rarely been addressed in the general data-driven design

field, much less for metamaterials design. Therefore, due to the importance of the data on
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downstream design tasks, in this chapter we focus on the first step of data-driven design:

dataset selection.

As Chapter 4 illustrated, existing metamaterial datasets are often built using heuristics

or the designer’s intuition, with the assumption that the unit cells will offer sufficient

coverage for the desired application. Many employ TO to inversely design unit cells

that meet pre-specified target properties [34, 66, 124], and some expand the dataset by

morphing the shapes [34, 124] or randomly flipping pixels or voxels [66]. Alternatively,

Panetta et al. developed graph-based rules to create truss-like unit cells [65]. Although

these are more feasible than enumerating over all possibilities, bias toward particular

properties or shapes can be unintentionally introduced, deteriorating the performance of

the design algorithm or the design itself.

Moreover, the point at which to stop generating new unit cells has thus far been

heuristic with the same goal in mind: to cover a broad property space. The range of

this space is sometimes restricted for specific applications [126], or strict symmetry and

manufacturability constraints are implemented to limit the possible shapes [65]. More

often, the property space is allowed to grow at will, e.g., TO and shape perturbation

are repeated until the change in the density of the property space is less than a given

tolerance [66, 124]. While efficient, all of the works to date have only considered coverage

in the property space alone, which can produce similar shapes or overlook those that

might benefit the design with regards to boundary connectivity. In contrast, our work

explores coverage in both property and shape spaces.

Contrary to the dearth in the metamaterials field, improving imbalance arising from

data with multiple classes has been extensively researched in computer science. The most
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relevant to our application are the data preprocessing strategies such as undersampling to

remove data from majority classes, oversampling to replicate data from minority classes,

or combinations thereof [79, 143]. However, the former can accidentally remove samples

with important features, i.e., decrease the diversity, and the latter can lead to model

overfitting and increased training overhead [150]. Nor are they made to consider the

diversity of data with features that have drastically different representations, like shape

and property. The issue of downsampling a metamaterial database was addressed by

Chen et al. [132], who compressed the size of their database by selecting the samples

that are farthest from each other with respect to properties (not shape), allowing them

to more efficiently fit a property prediction model. As far as we know, there is currently

no method to assess or select a diverse set of unit cells that can simultaneously cover the

shape and property spaces.

A more intriguing computer science example is recommender systems, which rank di-

verse items such as online products to match users’ preferences. These are based on the

concept of diminishing marginal utility [151], wherein lower ranking items bestow less

additional value onto the users. In design, too, researchers have developed methods to

help designers sift through large sets of ideas by ranking them. In particular, to balance

diversity against quality of designs, Ahmed et al. introduced the idea of clustering items

into groups for subset selection [152] by employing submodular functions that follow the

property of diminishing marginal utility. Additionally, Ahmed et al. [153] showed the

application of Determinantal Point Processes (DPPs) [154], which model the likelihood

of selecting a subset of diverse items as the determinant of a kernel matrix, to the diverse

ranking task. The latter, in particular, are elegant probabilistic models that capture the
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trade-off between competing ideas like quality and diversity. While the goal of maximiz-

ing the determinant is similar to the optimality criterion used in generating D-optimal

designs [155] in design of experiments, DPPs are not restricted to linear kernels, and have

advantages in that calculating marginals, computing certain conditional probabilities and

sampling can all be done in polynomial time. This research task shows that DPPs can

also be used for coverage in multiple spaces defined over the shapes and properties of unit

cells.

5.3. Contributions

We propose METASET, an automated methodology that simultaneously considers the

diversity of shape and property to select subsets of unit cells from existing datasets. By

doing so, we can achieve scalable data-driven design of metamaterials using smaller yet

diverse subsets and eliminate bias in imbalanced datasets to improve any downstream task

in the data-driven framework. As a part of METASET, we introduce similarity metrics to

efficiently assess the diversity of the shapes and properties of 2D and 3D metamaterials.

We also propose that a weighted sum of Determinantal Point Process (DPP) kernels based

on the shape and property similarities can measure and allow the maximization of the

joint diversity of both spaces. For the first time in data-driven metamaterials design — to

our knowledge — we reveal through 2D case studies that diverse subsets can expedite

and even enhance the design performance and connectivity of aperiodic metamaterials.

Finally, applying METASET to 3D unit cells, we identify diverse families of isosurface

unit cells and discover that these extend beyond the ones commonly considered in the

design of functionally-graded structures [36, 134].
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The components of our methodology are detailed in Sec. 5.4. In our 2D case studies

(Sec. 5.5), we explore the effects of diversity and subset size on 2D metamaterial designs

with non-intuitive target displacement profiles. In a 3D example (Sec. 5.6), we compare

the impact of different shape similarity metrics on diverse unit cell families and demon-

strate that METASET can diversify datasets regardless of the chosen metric.

5.4. METASET: An Automated Algorithm for Diverse Subset Selection in

Multiple Spaces

The inner workings of METASET consist of three main steps: 1) Defining similarity

metrics for metamaterials that quantify the difference between pairs of 2D or 3D shapes

and mechanical properties (Sec. 5.4.1); 2) Using a DPP-based submodular objective func-

tion to measure the joint coverage of a set of unit cells in shape and property spaces via

pairwise similarity kernel matrices (Sec. 5.4.2); 3) Maximizing the joint diversity with an

efficient greedy algorithm while allowing trade-off in the two spaces to be tuned to suit

the desired application (Sec. 5.4.3). In this section, we describe these components and

summarize the methodology with Algorithm 10.

5.4.1. Similarity Metrics for Metamaterials

A diverse metamaterial dataset should ideally contain unit cells that are sufficiently dif-

ferent, i.e., dissimilar, such that they cover the shape and property spaces. To measure

the diversity of a set, then, the similarities between the shapes and properties of unit cells

first need to be quantified. We do so by defining metrics independently in each space,
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based on the observation that a set of unit cells dissimilar in shape space is not necessar-

ily also dissimilar in property space, and vice versa. This can be illustrated by a simple

example. Say we wish to distill diverse values from x and y, which we assume to be sets

of integers: x = {0, 1, 2, 4, 5} and y = {0, 2, 10, 20, 10}. We assume that y = x ∗ k, where

k = {3, 2, 5, 5, 2} is a transformation function. If we were to select three diverse values of

x, i.e., the values that most cover its space, we would select {0, 2, 5}. For y, however, we

would choose {0, 10, 20} rather than {0, 10, 10}, the ones corresponding to the diverse x

values. Hence, though some relationship between two spaces may exist, e.g., an intrinsic

function between shape and property, there is a need to model their coverage separately.

This observation is validated in our later design experiments (Sec. 5.5.2), where the corre-

lation coefficient between shape and property coverage shows that no link exists between

the two.

5.4.1.1. Property Similarity. Since mechanical properties are generally scalar values

that can be expressed as a vector, e.g., by flattening the elastic tensor, we can use any

similarity metric between vectors. In this work, we use the Euclidean distance. We note

that the properties do not need to be the tensor components; rather, they can be other

values of interest such as elastic or shear moduli, or Poisson’s ratios. Neither do they need

to be limited to scalar mechanical properties. For instance, dynamic acoustic dispersion

curves or bandgaps could be considered if the pairwise similarity can be quantified.

5.4.1.2. Shape Similarity. Shape similarity metrics are key in many computer vision

and graphics applications, e.g., facial recognition and object retrieval from databases. In

these methods, the shapes are usually first represented by structural descriptors extracted

from individual shapes [156], or by embedded features learned via data-driven methods
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such as clustering or deep learning [157, 158]. The distances between features can then be

measured in Euclidean [156] or Riemmanian space [159, 160]. Since Riemannian metrics

are based on geodesic distances, they are suitable if one needs invariance to deformation,

i.e., if one considers a shape to be the same after bending.

For metamaterials, however, we must rule out deformation and rotation invariant

metrics since any transformation of a unit cell impacts its properties. Additionally, we

seek techniques that are efficient but still able to discriminate fine details and form positive

semi-definite similarity matrices for the next step involving DPPs. Thus, we introduce

the following Euclidean metrics based on structural features: a descriptor-based distance

for 2D, and two point cloud-based metrics for 3D, namely, the Hausdorff distance and

embedded cosine similarity utilizing deep learning. While we elected for separate metrics

in 2D and 3D by bearing in mind their respective computational efficiencies, shape analysis

is a wide and ever-growing topic of research in computer science; many other metrics are

available. As we later show in Sec. 5.6.2, METASET selects diverse subsets regardless of

the metric used, as long as the requirements for DPPs are met.

2D Descriptor-Based Euclidean Distance: For 2D unit cells, which are typically

binary images resulting from TO, we propose using a descriptor-based approach by first

extracting division-point-based descriptors [161] to reduce the images into vectors that

capture salient features at different levels of granularity. This has been applied to the field

of optical character recognition [162, 163]. The binary image of a unit cell is recursively

divided into sub-regions that contain an equal number of solid pixels. The coordinates

of all division points, i.e., points at the intersection of two division lines between each

sub-region, are then obtained as descriptors of the unit cell. This process is repeated
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until the desired level of detail is captured, constructing a k -d tree of the distribution of

solid materials. In our 2D case study (Sec. 5.5), we obtain a sufficient amount of detail

by performing the division seven times for each unit cell, resulting in 62 division points

that constitute a 124-dimensional shape descriptor.

Using the above method, we can represent each 2D unit cell as a vector, then use

the Euclidean norm to find the distance between any pair. However, the input for a

DPP is a positive semi-definite similarity matrix, L, so we transform the distance to a

similarity metric through a radial basis function kernel with unit bandwidth, i.e., Li,j =

exp(−0.5 d(i, j)2), where d(i, j) is the distance between i-th and j-th unit cells. In practice,

the choice of an appropriate transformation is equivalent to choosing the right distance

metric between items. Our empirical study on other common transformations showed that

different choices mainly affect the distribution of similarity values but do not significantly

affect the final outcome or the key findings of our work.

3D Hausdorff Distance: As for 3D unit cells, mesh formats such as STL are com-

monly used so that the metamaterials can be manufactured through additive manufac-

turing. However, since performing analysis on 3D shapes is undoubtedly more computa-

tionally intense due to the curse of dimensionality, we suggest representing each unit cell

as points on the surface of the original mesh, i.e., point clouds, which are more efficient

for extracting and processing 3D features [164]. This extra conversion can take little com-

putation with well-established sampling methods, e.g., randomly sampling the surface of

a mesh with the probability of choosing a point weighted by the area of the triangular

faces.
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We then use a distance metric commonly utilized to measure the distance between

sets of points, the Hausdorff distance. In essence, it computes the difference between two

clouds as the maximum of the nearest neighbor distances of each point. This is expressed

as [165]:

(5.1) h(A,B) = max
a∈A

[
min
b∈B
∥·∥

]
,

where a is a point within cloud A and b is a point in the second cloud B. The notation ∥·∥

indicates that any distance can be used; for example, we can use the Euclidean norm or

the cosine distance between two points. In our implementation, we computed the nearest

neighbor Euclidean norms using a GPU-enabled code by Fan et al. [166]. Then, to obtain

a symmetric distance, we take the maximum as follows:

(5.2) dH(A,B) = dH(B,A) = max
[
h(A,B), h(B,A)

]
.

Finally, we convert the pairwise distances into a DPP similarity kernel, L, using the

following transformation: Lij =
1

1+d(i,j)
.

3D Embedded Cosine Similarity: Alternatively, the embedded features of the

unit cells in a given dataset can be extracted using deep learning models as simple as

an autoencoder, a dimension reduction technique that compresses, i.e., encodes, complex

shapes into vectors. Once such a model has been trained, an embedding-based shape

similarity metric can be defined as the similarity between the vector representations of

unit cells, much like the 2D descriptor-based distance earlier.

Here we also leverage point clouds, which are growing as a scalable and powerful

representation for 3D deep learning [167]. We utilize a point cloud autoencoder provided
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by Achlioptas et al. [158] with the Earth Mover’s distance as the reconstruction loss. Our

3D dataset (described in Sec. 5.6.1) is split into training, test and validation sets by 70%,

15%, and 15%, respectively, and a grid search is performed to decide the hyperparameters:

64-dimensional embedded vectors for each unit cell, a learning rate of 0.0005 and batch

size of 32. After training the model for 120 epochs, we can then take the cosine similarity

between the embedded vector representations of any two unit cells as the shape metric.

In our 3D experiment (Sec. 5.6.2), we compare the diverse subsets obtained using this

embedded feature approach against those using the Hausdorff distance.

5.4.2. Determinantal Point Processes for Joint Diversity in Two Spaces

With a similarity kernel matrix L, we can now measure the diversity of a dataset using

Determinantal Point Processes (DPPs), which are models of the likelihood of choosing

a diverse set of items. They have been used for set selection in ML, e.g., diverse pose

detection and information retrieval [154, 168], and recently in ranking design ideas based

on diversity and quality [153]. Viewed as joint distributions over the binary variables that

indicate item selection, DPPs capture negative correlations. This means that, intuitively,

the determinant of L is related to the volume that the set covers in a continuous space.

In other words, the larger the determinant, the more diverse the set.

To model our data, we construct DPPs through L-ensembles [169], using a positive

semi-definite matrix L to define a DPP. Hence, given the full unit cells dataset of size N ,

which we denote as ground set G, DPPs allow us to find the probability of selecting any
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possible subset M of unit cells as:

(5.3) P(M) =
det(LM)

det(L+ I)
,

where LM ≡ [Lij]ij∈M is the submatrix of L with entries indexed by elements of the

subset M , and I is a N × N identity matrix. The probability of a set containing two

items increases as the similarity between them decreases. Therefore, the most diverse

subset of any size has the maximum likelihood P(M), i.e., the largest determinant. For a

fixed subset size, the denominator can be ignored when maximizing the diversity via an

algorithm such as the one described in Sec. 5.4.3.

Unlike submodular clustering approaches, DPPs only require the similarity kernel

matrix L as an input, and do not explicitly need the data to be clustered or a function

that models diversity to be defined. This also makes them more flexible, since we only

need to provide a valid similarity kernel, rather than an underlying Euclidean space or

clusters.

For METASET, we calculate two different similarity values — one in shape space and

another in property space — between any two unit cells. Hence, for all the unit cells

combined, we have one kernel matrix corresponding to each of the two spaces. In order to

measure the joint coverage in both spaces, we take a weighted sum of the two matrices,

thus also allowing the trade-off between diversifying in shape or property space:

(5.4) L = (1− w) · LP + w · LS,

where L, LP and LS are, respectively, the joint, property and shape similarity kernels,

and w is a weight parameter can be varied between 0 and 1. By adding the two kernels,
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we assume that the total similarity between two unit cells is the weighted average of how

similar they are in the shape and property spaces.

While it is possible to combine two kernel matrices in many ways, we choose this

formulation for two reasons. First, the weighted sum of two positive semi-definite matrices

is also positive semi-definite, which is a pre-requisite for a DPP kernel. Second, it allows

us to control the amount of diversity in both spaces, as well as to frame the later subset

selection problem as multi-objective one, using a single tuning parameter w. We conducted

multiple experiments on simulated data with easy-to-verify coverage metrics and found

that this approach is effective in capturing diversity in both spaces. For brevity, we have

not included these experiments here but directly report and discuss the results using joint

kernels for metamaterials in Secs. 5.5.2 and 5.6.2.

5.4.3. Algorithm for Optimizing Diversity

Optimizing the diversity of a subsetM in two spaces is an inherently multi-objective prob-

lem that can be accomplished by maximizing the log determinant of the joint similarity

kernel, i.e., f = log[det(LM)]. Note that the log determinant of a positive semi-definite

matrix is monotonically non-decreasing and submodular. In general, finding the set of

items that maximizes a submodular diversity function is NP-Hard. When solving such

problems, a well-known limit due to Feige [170] is that any polynomial-time algorithm

can only approximate the solution up to 1− 1
e
≈ 67% of the optimal.

However, this is where choosing a submodular function f as the objective comes in

handy. It turns out that greedily maximizing this function is guaranteed to achieve

the optimality bound [170]. We use this property to substantially accelerate diversity
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optimization using a scalable greedy algorithm [171], which has theoretical approximation

guarantees and is widely used in practice. At each step, the algorithm picks an item, i.e.,

a unit cell, that provides the maximum marginal gain in the objective function (lines 5-8

in Algorithm 10 in Appendix ??). This makes greedy maximization of diversity the best

possible polynomial-time approximation to an otherwise NP-Hard problem.

5.5. METASET in Data-Driven 2D Metamaterials Design

Selecting a diverse and economical dataset prior to design can augment the perfor-

mance and results of any data-driven algorithm. In this section, we demonstrate that this

improvement can be achieved by adding METASET to existing data-driven frameworks

with little extra cost (Fig. 5.1) by designing 2D aperiodic mechanical metamaterials that

meet desired displacement profiles and constraints on the connectivity of neighboring mi-

crostructures. Given a 2D dataset of unit cells from our previous work (briefly described

in Sec. 5.5.1), we use METASET to select several subsets with differing sizes and diversity

scores (Sec. 5.5.2). By employing these subsets to assemble full structures, we study the

effects of subset size and diversity on the search process and final designs (Sec. 5.5.3).

To emphasize that our diverse selection methodology is an advantageous addendum to

any data-driven method, we perform the designs with two existing approaches — genetic

algorithm for an illustrative example, and a two-stage method for a more complex design

motivated by practical applications (Sec. 5.5.4).

The design settings, a classic MBB beam and a cantilever, along with the boundary

conditions and target displacement profiles (red curves) are shown in Fig. 5.2. The design

objective for both is to minimize the mean squared error (MSE) between the target



115

(a) Classic MBB beam
(Sec. 5.5.3) (b) Cantilever (Sec. 5.5.4)

Figure 5.2. Problem settings of the 2D examples, both of which should
achieve the target displacement profiles shown in red.

and achieved displacement profiles. These types of structures, which require spatially

varying elastic behavior and therefore benefit from aperiodic configurations and data-

driven methods, have been a growing focus in recent research, with applications such as

soft robotic grippers and biomedical devices [30, 34]. We deliberately choose these since

spatially varying properties are difficult to obtain using conventional methods, particularly

when the objective is dependent on the relative spatial distribution of properties rather

than an absolute performance value like compliance.

To support this claim, we attempted to benchmark the performance of a conventional

TO approach based on the Solid Isotropic Material with Penalization (SIMP) scheme [43]

for the MBB problem (Eq. 5.5), whose sensitivities can be derived using adjoint analysis.

Each unit cell is discretized into 50 × 50 quadrilateral finite elements, and the density

of each element is treated as a design variable, ρe ∈ [0, 1], where the goal is to converge

as close to 0 (void) or 1 (solid) as possible. To eliminate mesh dependency, a sensitivity

filter with a radius of 2 is applied. For combinations of different penalty factors, p ∈

{1, 3}, and volume fraction constraints, V ∈ {0.50, 0.75, 1.0}, we minimize the MSE

using the method of moving asymptotes (MMA) [122] and the same stopping criteria. All
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results are infeasible, however, with high MSE ranging from 4.69 to 6137.08 and numerous

intermediate densities (more than 95% of the elements). This underscores the need for

more advanced approaches like data-driven design, which have successfully achieved target

spatially varying behavior [34, 35, 66, 124]. We will leverage two such approaches in the

following sections, since the goal of this paper is not to propose new design methods but to

select diverse subsets which provide salient advantages to any existing data-driven design

framework.

5.5.1. Generation of 2D Unit Cells

In [124, 128], we previously proposed using a combination of TO and stochastic shape

perturbation to generate a large dataset of 2D unit cells. To initialize the dataset, we

ran density-based TO for each uniformly sampled target property, the components of

homogenized elastic tensors (with a constitutive material with Young’s modulus E = 1

and Poisson’s ratio ν = 0.3), and then iteratively perturbed the shape of the unit cells with

the most extreme or uncommon properties. By doing so, we created a dataset of 88,000

unit cells that covered a relatively large property space within reasonable computational

cost. Note that we did not build this dataset with geometry in mind, leading to many

similar shapes. Also, even though we aimed to fill the less populated regions of the

property space by perturbing unit cells in those locations, there is a higher concentration

of final unit cells with lower property values (the lower left corners in Fig. 5.4), indicating

that the dataset is somewhat imbalanced. For details, please see [124].

Before applying METASET, we preprocess the data by randomly sampling unit cells

from the original dataset that have a volume fraction greater than 0.70, resulting in 17,380
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unit cells. This fraction was chosen so that the chosen unit cells are less likely to have

very thin features, which makes them more feasible for manufacturing. Additionally, when

computing shape diversity, if unit cells occupy very different volume fractions, a diverse

subset is more likely to be dominated by flimsy, low density structures, whose shapes

have the least probability of overlap with other unit cells. However, as we will show

with the design examples, this preprocessing does not impede the chances of designing

well-connected structures that met the targets quite well.

5.5.2. Diverse 2D Unit Cells

For the dataset of 17,380 2D unit cells, which we now refer to as the full or ground set

G, we calculate the property and shape similarity matrices, LP and LS, respectively, as

described in Sec. 5.4.1. Taking their weighted sum forms the joint DPP kernel matrix L

(Sec. 5.4.2), whose determinant, det(LM), scores the diversity in both spaces. To explore

this, we rank several subsets using the greedy algorithm from Sec. 5.4.3 by varying their

sizes, NM , and kernel weights, w. From the results, we can make three observations:

(1) By increasing w, we shift from ranking a subset based on diversity in the property

space alone, to a mixture of both spaces, and to the shape space only. In essence,

the trade-off between shape and property diversity can be easily controlled.

(2) The correlation coefficient between the shape and property diversity scores of

1,000 random subsets of size five is 0.0047. Similar near-zero correlation is found

for other set sizes too. In addition, the correlation between the shape and prop-

erty similarity values of 100,000 random pairs of unit cells is −0.0024. Therefore,
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(a) Subset diverse in property space (w = 0)

(b) Subset diverse in shape and property spaces (w = 0.5)

(c) Subset diverse in shape space (w = 1)

Figure 5.3. Examples of 2D unit cells from the diverse subsets used in the
cantilever and MBB design problems.

our assumption that the joint similarity can be modeled as a weighted sum is

appropriate.

(3) By observing the joint diversity score of the subsets as more items, i.e. unit cells,

are added, we find that the gains in shape and property diversities saturate at

approximately NM = 20. Thus, a very small number of unit cells are sufficient

to cover both spaces.

Ten example unit cells from the subsets with w ∈ {0, 0.5, 1} are shown in Fig. 5.3,

where the subset optimized for only shape diversity (Fig. 5.3c) displays the most variety

of topologies compared to the subset diverse in only properties (Fig. 5.3a). Meanwhile,

the balanced subset contains a mixture of unit cells akin to both extreme sets (Fig. 5.3b).

This may be counter-intuitive since similar shapes should have similar mechanical prop-

erties. However, note that upon close inspection, the property diverse unit cells exhibit

tiny features that lead to low effective elastic property values. Such small details in the
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(a) Property diverse samples (b) Random samples (c) Shape diverse samples

Figure 5.4. The property space of the 2D unit cell subsets optimized for
property and shape diversity, and a randomly sampled set, plotted against
the full dataset. We observe that property diverse subsets cover the space
well, hence it is more likely to have unit cells near any target property
combination.

shape may lead to a larger change according to the physical simulations and the property

similarity metric, i.e., the Euclidean norm.

Comparing the properties of the unit cells in diverse subsets to the ground and ran-

domly sampled sets (Fig. 5.4), we can confirm that the property diverse subsets cover all

regions of the original property space, even the sparsely populated areas. As expected, the

shape diverse subset does not do as well, and the random subset contains tight clusters

in certain areas. Along with the observation that the diversity scores as well as the simi-

larity values in the shape and property spaces are essentially uncorrelated, these findings

confirm that the formulation of the joint kernel LM as a weighted linear sum (Eq. 5.4) is

effective for controlling the amount of diversity in either space.

Finally, the result that only 20 unit cells is needed to cover the shape and property

spaces is quite interesting since a main tenet of data-driven design thus far is that ”more is

better” — larger datasets provide more candidates from which we can choose compatible

unit cells. So, to explore the impact of the subset size on the data-driven approach, we
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selected the top 20 as well as top 100 ranking unit cells from each subset to move on to

the next step: full structure assembly.

5.5.3. Illustrative Study on the Effects of Size and Diversity

We begin by designing a relatively simple classical example from the TO field, the MBB

beam, such that its horizontal centerline conforms to the red curve when loaded with

a vertical force F (Fig. 5.2a). Due to the structural symmetry, we only need to design

the right half of the beam with 4 × 4 microstructures, outlined by the solid black lines.

The full structure can then be obtained by reflecting over the vertical centerline. Using

subsets of unit cells with varying sizes and levels of diversity for metamaterials design

using global optimization, we can elucidate 1) the effect of subset size on the search

algorithm’s efficiency, and 2) the impact of diversity on the final design performance as

well as the compatibility of neighboring microstructures. We choose the following diverse

subsets using METASET:

• P20: Property diverse subset of size 20

• SP20: Shape and property diverse subset of size 20

• S20: Shape diverse subset of size 20 diverse

• P100: Property diverse subset of size 100

• SP100: Shape and property diverse subset of size 100

• S100: Shape diverse subset of size 100.

In addition, we utilize these sets, which are not diverse and are not selected by our method,

as baselines:

• R20: Random subset of size 20
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• R100: Random subset of size 100

• G: Full dataset of size 17,380.

To design the MBB beam, we pass each of the datasets to a global optimization

method, which for this example is a single objective genetic algorithm. Although the

approach is simple, we chose it to focus on illustrating the effects of subset size and

diversity on the final results. It also allows us to restrict our design to the discrete

choice of unit cells in our subsets, whereas most gradient-based algorithms for data-

driven metamaterials design map continuous design variables to the nearest existing, or

interpolated, unit cell in dense databases [34, 66].

Specifically, the genetic algorithm is used to select the combination of unit cells from

each given dataset that minimizes the MSE between the achieved and target displacement

profiles. In addition, since detached neighbours are not desirable, we add a compatibility

constraint by requiring that the number of disconnected microstructures, Ndc, in the full

structure be equal to zero. The optimization problem is formulated as:

(5.5)

minimize
l

1

n
∥u(l)− ut∥22

subject to K(l)U = F ,

Ndc(l) = 0,

li ∈ {1, 2, · · · , NM}, i = 1, 2, . . . , Nf ,

where u is the displacement of n nodes located on the centerline of the structure, ut is

the discretized target displacements, K is the global stiffness matrix, and U and F are

global displacement and loading vectors, respectively. The number of unit cells in the
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Figure 5.5. The final objective values (MSE) and ratios of disconnectivity
(rdc) of 10 runs per subset. Lower values are better. The best overall MSE
is obtained by SP20 and S20, and the best rdc by S20 and SP20.

Table 5.1. Means of the final results for the MBB example, with the lowest
values in bold.

G R100 S100 SP100 P100 R20 S20 SP20 P20

MSE 1.3E+18 1.5341 0.4278 0.6454 1.6648 1.2395 0.2865 0.2017 0.4926
rdc 0.5184 0.4770 0.3406 0.3347 0.4653 0.4836 0.2488 0.2578 0.3996

given dataset is NM while the number in the full structure is Nf , and l = [l1, l2, . . . , lNf
]T

is a vector of the indices of the chosen unit cells.

Due to the stochasticity of genetic algorithms, we run the optimization ten times for

each dataset and report the MSE of the final topologies in Fig. 5.5. In addition, we

show a measure of the connectivity of the final structure: the mean ratio of disconnected

pixels on the boundaries of touching microstructures, rdc. Similar to Ndc in the constraint

(Eq. 5.5), a fully compatible structure should have rdc as zero. The averages of these

results are also disclosed in Table 5.1.
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When given the baseline full dataset, G, the genetic algorithm is overwhelmed and not

able to find any designs with satisfactory MSE (see the high values in Table 5.1), even

failing to meet the compatibility constraint in one run. This can be attributed to a vast

search space since the number of possible unit cell combinations grows exponentially as

the size of the dataset increases. A larger set may also contain more redundant shapes

or properties that contribute little to diversity, exacerbating the search challenge and

possibility of local optima. Conversely, every run using the 20- and 100-item subsets

satisfy the design requirements (Fig. 5.5 and Table 5.1). These include the baseline

random subsets selected without our method, which obtain reasonable performance and

connectivity due to the reduced search space. The values of MSE and rdc using random

subsets, however, vary widely. In fact, our results highlight that smaller yet diverse

subsets more consistently outperform all other sets under the same search algorithm and

termination criteria. Notably, the lowest mean MSE is reached by the small SP20 and

S20 sets. Moreover, the best connected structures, i.e., those with lowest rdc, result

from the diverse subsets that consider shape, i.e., S20 and SP20. We remark that our

optimization problem only constrains the number of disconnected microstructures and

does not explicitly minimize rdc. Therefore, the shape diverse results naturally attain

higher connectivity.

Fig. 5.6 shows the final topologies and optimal displacement profiles of the runs that

achieve the minimum MSE for two datasets. As expected from the worse performance

and compatibility, the designs using the full dataset G (not pictured) contain disconnected

and oddly matched microstructures. In a similar vein, the high rdc for property diverse

sets correspond to mediocre connectivity, as shown by the P20 result in Fig. 5.6a, where
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(a) Using property diverse subset of size 20 (P20), the microstructures
are connected, but by small features.

(b) Using shape diverse subset of size 20 (S20), we observe superior
connectivity between neighboring microstructures.

Figure 5.6. Final topologies and displacement profiles of the classic MBB
beam example with the lowest MSE out of 10 runs using 20-item diverse
sets. The full structure after symmetry is shown.

neighbors are linked by tiny features. This can be associated with the observation in

Sec. 5.5.2 that METASET tends to include unit cells with small features as it maximizes

property diversity, leading to subsets with less compatible unit cells. With shape diverse

subsets, however, the final designs possess excellent compatibility, such as in Fig. 5.6b,

further enforcing the advantages of shape diversity.

Although our constrained genetic algorithm provides satisfactory designs, we must

point out that our goal is not to introduce new design methods; this global method was

implemented to showcase the impact of subset size and diversity. While more elegant

optimization techniques would be better suited for practical applications, we nevertheless

believe that the insights gained from this study — that selecting diverse subsets can
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accelerate and benefit metamaterial design — can be generalized to other data-driven

methods, such as the one in the next section.

5.5.4. Additional Study with a Shape Morphing Metamaterial Structure

In the previous section, a simple example using genetic algorithm demonstrated that

data-driven metamaterials design can benefit from small and diverse subsets of unit cells.

To validate that this is also true for more sophisticated algorithms and designs, we now

test the same hypothesis by combining our diverse subsets with an advanced optimization

method we proposed in [124], which is described briefly below. Here we design a cantilever

composed of 4× 30 microstructures to achieve a sine-wave shape when a prescribed dis-

placement boundary condition is imposed (Fig. 5.2b). As opposed to the MBB beam, the

spatially varying behavior of the cantilever is designed to deform in opposite directions

in the left and right halves, and we expect that different regions in the structure will

require distinctly contrasting properties. The prescribed boundary instead of a point load

poses an additional challenge. The closest problem to this that has been addressed by

traditional TO methods is the compliant mechanism design, which aims to control the

ratios between output and input displacements or forces by minimizing the displacement

at a particular node. To obtain feasible mechanism designs, however, Deepak et al. found

in [172] that it is necessary to assume a force-displacement relationship, i.e., a spring, at

that output node. In contrast, our problem minimizes the MSE over all nodes along the

centerline. Since adding a spring at each of those would significantly deviate from our

problem setting, conventional design methods are not plausible.
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Due to the difficulty of this problem, or indeed any realistic metamaterials design,

searching over larger datasets to locate compatible unit cells while meeting the desired

performance is also expensive or even intractable. In our case, we are only able to use the

smaller diverse subsets S20, SP20 and P20 introduced earlier, as well as baseline random

subsets R20. Since there are 120 macro-elements in the cantilever, this still means that

there are 12020 possible combinations of unit cells for each subset.

For this example, we follow our two-stage optimization framework [124], wherein in-

verse TO is utilized in the first stage to determine the macroscale property distribution,

and combinatorial optimization based on weighted graphs is used in the second stage to

assemble unit cells that meet the target properties with compatible boundaries. Specifi-

cally, we define the following optimization problem for the first stage:

(5.6)

minimize
Ce

1

n
∥u(l)− ut∥22

subject to K(Ce)U = F ,

− ϕ(Ce) ≤ 0.

Compared to the problem solved via genetic algorithm in the previous section (Eq. 5.5),

this inverse property design directly uses the element stiffness matrix Ce as design vari-

ables, which are constrained by the signed L2 distance field ϕ of the property space of the

full subset G. This inverse problem can be efficiently solved with MMA [122].

After obtaining the optimized macro-property distribution, we construct a grid-like

weighted graph with each node representing an element in the macrostructure, and with

edges connecting neighbouring microstructures. We can then view the assembly problem

as selecting an index from the given subset to label each node in the graph. The Euclidean
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distance to the target property is assigned as the nodal weight during this process, and

the ratio of disconnectivity, rdc defined in the last section, is assigned as the edge weight

for each pair of neighboring nodes. With this graph, we can use a dual decomposition

Markov random field (DD-MRF) method [173] to efficiently find the optimal labels of the

graph with the lowest sum of nodal and edge weights, thereby designing a full structure

that meets the target properties and is well-connected.

Figure 5.7. Optimized structures using different subsets, and their associ-
ated displacement profiles, for the cantilever example.

Since the labeling problem for the graph is a complex combinatorial optimization

process where a large candidate set of unit cells equates to an immense search space, a

small subset is required for a higher efficiency. As aforementioned, we use three diverse

subsets, S20, SP20, P20, and five subsets randomly selected without METASET, R20, each

with 20 unit cells as the candidate sets for the second stage. The resulting full structures

and their respective MSE values and displacement profiles are shown in Fig. 5.7. We repeat
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the design using random subsets five times, then plot the mean displacement profile and

depict the fluctuation of the results with the shaded area.

By virtue of our weighted graph method, all optimized designs have compatible bound-

aries. However, the subsets which account for shape diversity, i.e., S20 and SP20, include

a wider variety of unit cells in the full structure. This can be credited to an observation

we made in the previous MBB beam example, that a shape diverse set can provide more

compatible pairs, rendering a larger feasible design space for the assembly problem. In

addition, we note that although some random subsets can achieve relatively low MSE,

this performance is not guaranteed; the mean MSE is still the worst overall. In contrast,

the shape and property diverse subset SP20 has the lowest MSE value. The reason is

that, even with small subsets, shape diversity provides better compatibility while prop-

erty diversity helps to achieve the target property distribution. This is again in line with

our findings that a small yet diverse subset considering shape and properties is a boon

for data-driven metamaterials design, and has exciting implications for future works.

5.6. METASET for Discovery of Diverse 3D Unit Cell Classes

Beyond selecting diverse subsets for direct use in design, another advantage of METASET

is eliminating inherent bias by optimizing the diversity of a dataset. We demonstrate

this with a 3D study, first introducing a new method based on periodic functions to

generate families of unit cells with the same underlying structure but varying densities,

which although fast creates a great number of overlapping shapes. Our goal in applying

METASET to this 3D data is to sift through the overlaps to discover diverse sets of unique
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isosurface families, which can subsequently be leveraged for data-driven design or ML of,

e.g., property prediction or generative models (Fig. 5.1).

Triply periodic isosurface unit cells, whose symmetries follow those of crystal struc-

tures [141], are often used in 3D mechanical metamaterials design due to excellent surface

area-to-performance ratios and manufacturability [36]. In addition, their representation

as level set functions allows the density of the unit cells to be easily manipulated for

functionally-graded structures [36, 134] and tailorable acoustic bandgaps [11]. A level set

function f(x, y, z) = t is an implicit representation of geometry where the t-isocontour,

i.e., the points where f = t, describes the surface of the structure, while the locations

where f < t are solid material, and void where f > t. Thus, by varying the isovalue t, an

entire family of isosurface unit cells with graded densities can be extracted from one level

set function.

The most prevalent type of isosurfaces used in metamaterials design is a special subset

known as Triply Periodic Minimal Surfaces (TPMS). However, only a few TPMS families

have been used since their functions are complex to derive [141]. For example, Maskery

et al. use six families in their design work [36], while Li et al. use four [134]. Moreover,

it has not been investigated whether these few families cover the gamut of shapes and

properties needed for design applications. Suppose a researcher wishes to design a new

functionally-graded 3D metamaterial by tuning the densities of isosurface functions, but

does not know beforehand which families would best suit their application. Due to the

computational expense of design in 3D, they may desire to select a smaller set of families

that can then be used in their optimization method. In this section, we present METASET

as a procedure to choose those families such that the resultant subset has large coverage
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over different properties and shapes. In doing so, we also demonstrate that METASET

removes bias in datasets by maximizing diversity.

5.6.1. Generation of 3D Unit Cell Families

Before selecting diverse families, we must first generate an initial pool to choose from.

Thus, to build a large 3D dataset, we propose a new method to create isosurface families

based on the level set functions of crystallographic structure factors, which describe how

particles are arranged in a crystal unit cell [174]. In contrast to most unit cell generation

methods, our approach here does not set targets in the property space or use TO, and

different from TPMS functions, a larger variety of shapes can be found without complex

derivations.

In crystallography, structures that are invariant under the same symmetry operations

belong to the same space group, of which there are 230 for 3D structures [174]. For the

(a) Family A229,(001)(X,Y, Z) ≤ t

(b) Family A229,(001)(X,Y, Z) ≥ t

(c) Family A2
229,(001)(X,Y, Z) ≤ t2

Figure 5.8. Examples of unit cells from isosurface families generated by the
structure factor for space group No. 229 and (hkl) = (001). The effect of
increasing t to create a family is shown from left to right.
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purposes of our work, we will focus on the 36 cubic groups, No. 195 through 230, to obtain

our level set functions. Experimentally, the space group of a crystal can be determined

through, e.g., X-ray techniques, by scattering radiation off a lattice plane denoted by

(hkl), and then observing the diffraction pattern. These symmetric patterns have been

analytically modeled as structure factors, which are periodic functions of the form:

(5.7) fgroup,(hkl)(X, Y, Z) = A+ iB,

where A = cos
(
hX + kY + lZ

)
, B = sin

(
hX + kY + lZ

)
, X = 2πx, Y = 2πy, and

Z = 2πz. The equations of these structure factors are listed in [174] for all space groups

and their allowable (hkl).

We can split each structure factor into six isosurface families by separating A and B

in Eq. 5.7 (inspired by [141]), and converting them into level set functions as follows:

(5.8)

Agroup,(hkl)(X, Y, Z) ≤ t,

Agroup,(hkl)(X, Y, Z) ≥ t,

A2
group,(hkl)(X, Y, Z) ≤ t2,

and similarly for Bgroup,(hkl). These, respectively, correspond to setting as solid material

the function values that are less than t (Fig. 5.8a), greater than t (Fig. 5.8b), and in

between −t and t (leading to a ”thin-walled” structure; Fig. 5.8c).

Thus, instead of using the limited TPMS functions, we can use the structure factors

of all 36 cubic space groups and their corresponding (hkl) to generate a greater number

of isosurface families for data-driven design. To ensure manufacturability, we also identify

the feasible density range of each family by prohibiting internal voids and disconnected



132

features, and eliminate families whose feasible range is ρmax− ρmin < 0.2. In this way, we

quickly created 294 families without performing property-driven optimization. Although

efficient, this method also causes an imbalance in geometry, since several structure factors

differ only by a coefficient and lead to overlapping families. For example, the equations

for space groups No. 195 and 196 listed in [174] are related as A195,(hkl) = 4 ·A196,(hkl), and

therefore generate the same structures. Next, we demonstrate the prowess of METASET

in systematically removing such overlaps when selecting diverse subsets.

5.6.2. Diverse 3D Classes and Comparison of Shape Similarity Metrics

While applying METASET to discover unique isosurface families, we also test the impact

of the two proposed 3D shape similarity metrics (Sec. 5.4.1.2): the Hausdorff distance

and the cosine similarity between deep learning-based embeddings. As the families are

comprised of a range of densities and thus shapes and properties, we need to capture

the similarities of individual unit cells while assessing the similarities between families.

Therefore, we generate 100 samples from each family covering the feasible range identified

in the previous section, giving 29,400 unit cells total. Each unit cell is represented as a

4096-dimensional point cloud by first converting its level set field into a triangle mesh [175],

and then sampling on the triangular faces [176]. We also remove any small disconnected

features during post-processing, and find the homogenized elastic tensors of each unit cell

using a code modified from [84].

To quantify the similarity between two families, we assume each family is a collection

of points, where each point corresponds to a unit cell. This reduces the problem of

finding similarity between two families to one between two point sets using the Hausdorff
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distance (Eq. 5.1). We calculate the similarity between families C and D in two steps:

first using one of the 3D metrics to calculate the distance between individual unit cells

c ∈ C and d ∈ D, and then substituting this into the Hausdorff distance to obtain the

inter-familial distance, h(C,D). Intuitively, this means that the shape similarity between

two families is the maximum of the similarities between closest-in-shape pairs of unit

cells. In property space, the similarity between families is related to the maximum of the

pairwise Euclidean distances between each unit cell’s properties. Therefore, rather than

simply averaging the features of each family, the inter-familial similarities also consider

the diversity of individuals within each family. In short, we apply METASET to our 3D

dataset using two approaches to measure shape similarity:

• H-H: Hausdorff distance between unit cells, followed by Hausdorff distance be-

tween families

• E-H: embedded cosine similarity between unit cells, followed by Hausdorff dis-

tance between families.

Utilizing both of our shape similarity metrics, along with the property metric, we find

diverse subsets of 10 isosurface families. In addition, we vary the joint diversity weight

w between 0 and 1 (Eq. 5.4). Some example subsets of diverse families are shown in

Figs. 5.9 and 5.10, where the median sample from each family are pictured. Like the 2D

diverse subsets (Sec. 5.5.2), the property-only and shape-only sets (Figs. 5.9a and 5.9c,

respectively) share very few of the same families. Intriguingly, the shape diverse sets

obtained from either metric contain families generated from the same space group and

(hkl), but different level set forms (Eq. 5.7). For example, with the H-H approach, the

fourth and fifth items in Fig. 5.9c have the equations A213,(011) ≥ t and A213,(011) ≤ t. The
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(a) Families diverse in property space (w = 0)

(b) Families diverse in shape and property spaces (w = 0.5)

(c) Families diverse in shape space (w = 1)

Figure 5.9. Examples of subsets of 3D isosurface families selected by
METASET using the H-H shape metric.

Figure 5.10. Shape diverse subset (w = 1) selected by METASET using the
embedding-based E-H shape metric.

same families appear with the E-H approach as the eighth and sixth items. One could

think of these as completely different shapes with almost no overlaps, which is further

validation of the shape diversity chosen by METASET.

Comparing the subsets obtained via either similarity metric (Figs. 5.9c and 5.10), we

observe that 6 out of 10 shape diverse families overlap, indicating that the choice of metric

does not drastically impact diversification. This is supported by a correlation coefficient

of 0.836 between the H-H and E-H shape similarity kernels, LS, of the shape diverse

families. Additionally, we cross-examine these results by applying the E-H approach to

score (det(LS)) the shape diverse subset chosen using H-H, and vice versa. As a baseline,

we also randomly sample 10,000 sets of 10 families without METASET and measure

their diversity with respect to each metric. The results are reported in Table 5.2, where
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Table 5.2. Shape diversity scores of subsets of 10 isosurface families, eval-
uated using either the Hausdorff (H-H) or embedded (E-H) shape metrics.
The first two columns are for shape diverse subsets selected by METASET;
the last shows the maximum of 10,000 random sets. The highest scores of
each row in bold indicate that METASET always maximizes the diversity
score with respect to the metric used during selection.

METASET (H-H) METASET (E-H) Random Sampling

Score (H-H) 1.0554E-04 6.3690E-05 2.8504E-05
Score (E-H) 1.6250E-13 6.4271E-12 5.4262E-14

the greatest (most diverse) scores across each row reveal that the greedy algorithm will

maximize the diversity score regardless of the similarity metric employed. Moreover, the

subsets chosen by METASET have higher diversity than the random ones no matter which

metric is used to evaluate the score.

The high diversity of our subsets can also be seen in Fig. 5.11, where their property

and shape scores using H-H are plotted against those of the 10,000 random subsets.

Here, 99.74% of the random sets (which are representative of the distribution of pairwise

similarity values for our dataset) still fall short of the optimized subset with the lowest

shape diversity score. This is compelling evidence that 1) the original dataset was severely

imbalanced, and 2) METASET is able to combat such bias and select more diverse subsets.

Fig. 5.11 additionally visualizes the trade-off between diversity in the shape and prop-

erty spaces. Although our greedy algorithm maximizes the joint diversity score, the

independent shape and property scores illustrate that, in general, the diversity in one

space drops as we select sets that are more diverse in the other. This trade-off might raise

a question as to whether a set of families that are quite diverse in property space can

have low diversity in shapes, even though similar shapes are expected to possess similar
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Figure 5.11. Trade-off between diversity in property vs. shape (using the
H-H approach) spaces. The minimum diversity in shape space for optimized
sets has a diversity score greater than 99.74% of random samples.

properties. Our previous observation emerges as an answer: the sets of families with

higher diversity in property space and seemingly “low” diversity in shape space actually

have larger shape scores than the majority of the random sets. Therefore, the highest

diversity in property space is achieved by a set of families which are also very diverse in

shape.

Finally, we note that our diversified sets include isosurface families beyond the common

TPMS used in existing metamaterials design, such as the Primitive, Gyroid and Diamond

(see [36, 134]). We provide the data of the METASET results publicly so that our diverse

families can be employed by any designer in their work as well. For example, these can be

directly utilized in existing functionally-graded design methods such as [134]. Data-driven

design with diverse isosurface families will be investigated in future works.



137

5.7. Discussion

Although we illustrated the benefits of METASET with several case studies, there

are nevertheless some topics worthy of examining in the future. From our design of

2D aperiodic structures, we saw that shape diverse subsets may increase the chance to

find compatible neighboring microstructures, while property diverse sets might enhance

problems that require a wider range of target properties at the cost of connectivity. This

dependence on shape vs. property diversity extends to ML tasks in the data-driven

design framework (Fig. 5.1) as well. To train property prediction models, one may need a

property diverse dataset, while for a deep generative model that learns geometric features,

a shape diverse set might be more appropriate. Along these lines, it would be interesting

to further validate the improved performance of design and ML tasks using our subsets

of diverse 3D unit cell families in a future work.

In the 2D examples, we also observed that smaller subsets led to designs with perfor-

mance closer to the targets; in fact, we found using METASET that only 20 unit cells

were enough to form a diverse subset. In most cases, the benefits of reducing the search

space, model training time, or storage requirement of the dataset could outweigh any loss

of data. However, certain applications such as ML may need large datasets. A key benefit

of using a METASET, even for large subset sizes, is that it reduces bias by rank ordering

all items in the dataset. The items with the highest redundancy in shape or property (like

duplicates) are pushed toward the end of the rank-ordered list, so that ML algorithms

trained on any subset will be less biased. While it is not difficult to increase the size

of the set, determining how much data is enough is more challenging since this too is

contingent on the application and any limits on computational cost. The effectiveness
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of size and diversity on specific tasks in metamaterials design is an important question

for future studies. Fortunately, the ease at which a subset’s size as well as the weight of

shape and property diversity can be explored is yet another advantage of METASET.

Lastly, we remark that the capability of METASET depends on the choice of similarity

metrics as well as the definition of the joint similarity kernel, both of which are avenues

of further research. Our 3D study demonstrated that METASET will maximize diversity

regardless of the metric adopted. Although the results indicated that different shape

similarity metrics can be highly correlated and slightly change the diverse subsets, there

are a wealth of other choices that may provide different results. Extending METASET to

more complex properties, like dynamic ones, may necessitate new metrics. For the joint

DPP kernel, we chose a simple weighted sum to join the shape and property matrices,

thereby casting the greedy selection as a multi-objective problem. We found in Sec. 5.5.2

that this was a valid assumption, but other methods to combine kernels while preserving

submodularity are also possible. However, swapping these to best suit the application

is easily done since the input of the DPPs-based greedy algorithm in METASET is a

positive semi-definite similarity kernel that can be obtained from any appropriate metric

or definition.

5.8. Conclusions

In this chapter, we proposed a methodology, METASET, that incorporates joint di-

versity in the shape and property spaces into data selection to improve the downstream

tasks in data-driven design. As an enhancement to any existing data-driven framework,

METASET is efficient and flexible, allowing the emphasis on either shape or property to
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be easily traded by measuring and maximizing the joint diversity of subsets through a

weighted DPP similarity kernel. To calculate this kernel matrix, we introduced similarity

metrics that cater specifically to 2D and 3D metamaterials.

By way of our 2D aperiodic metamaterial design examples, we demonstrated that

small yet diverse subsets of unit cells can boost the scalability of search algorithms while

leading to designs with greater performance and enhanced boundary compatibility. This

revelation shakes a common belief in the field of data-driven mechanical metamaterials

design that a larger and denser dataset is required to design well-connected structures

while still meeting the target behavior. To our knowledge, this is the first time that such

a result has been studied and presented.

In our 3D case study, we not only proposed a new method to generate triply peri-

odic isosurface unit cells using crystallographic structure factors, but also verified that

METASET can effectively discover unique unit cell families in order to build diverse,

unbiased and economical datasets for design regardless of the shape similarity metric em-

ployed. Different from well-known TPMS unit cells, our dataset of families are optimized

for shape and property diversity rather than arbitrarily chosen. In future works, we will

explore the use these diverse families for data-driven metamaterials design and ML.

Although this paper focused on showcasing METASET through the design of mechani-

cal metamaterials, the methods we proposed are broadly applicable to other metamaterial

domains, or indeed any other design problems that need to balance design space against

some performance or quality space. In design ideation, our method can be used to select

ideas that are functionally different from each other while achieving different performance

goals. It can also be integrated with existing multi-objective optimization algorithms as a
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niching method. To contribute to the growth and capability of data-driven metamaterials

design methods and other fields, we have shared diversified subsets of 2D and 3D unit

cells, as well as the corresponding equations of isosurface families. These unit cells can

be directly plugged into the application of any metamaterials designer.
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Part 3

Data-Driven and Diversity-Enhanced Design

of Multiscale Structures
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CHAPTER 6

Data-Driven Topology Optimization of Functionally Graded

Structures with Multiclass Shape Blending

6.1. Introduction

Multiscale mechanical structures present exciting functionalities and unprecedented

performance ranging from global objectives like light-weighting, thermal conductivity

and energy absorption [2, 177–179] to targeted local behaviors such as shape morph-

ing or pattern reconfiguration for soft robots [30, 37] and active airfoils [28]. To design

such complex structures, multiscale topology optimization (TO) has risen to prominence

and flourished. While early research focused on periodic microstructures (also known as

unit cells or building blocks), two types of heterogeneous designs, in which neighboring

microstructural topologies differ from each other, now surpass them in terms of perfor-

mance: fully aperiodic systems [34, 65, 66] and functionally graded structures (FGS) [50].

The two approaches, which are reviewed in Sec. 6.2, compete in terms of design freedom

and efficiency.

In this work, we aim to bridge the freedom of aperiodic designs with the efficiency

and smooth interfaces of FGS. We propose to inherit the advantages of both through a

data-driven framework for multiclass functionally graded structures that mixes several

families, i.e., classes, of microstructure topologies to create spatially-varying designs with

guaranteed feasibility. The key is a new multiclass shape blending scheme that generates
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smoothly graded microstructures without requiring compatible classes or connectivity and

feasibility constraints. Moreover, it transforms the microscale problem into an efficient,

low-dimensional one without confining the design to predefined shapes. Compliance and

shape matching examples using common truss geometries and diversity-based freeform

topologies demonstrate the versatility of our framework, while studies on the effect of the

number and diversity of classes illustrate the effectiveness. The generality of the proposed

methods supports future extensions beyond the linear applications presented.

6.2. Literature Review

Considering heterogeneous microstructures in multiscale designs expands the realm

of possibilities in terms of design functionality. For example, structures can be designed

to deform in desired patterns, forming elastic joints [34] or soft robots [37]. Recent de-

sign methods in pursuit of these complex structures can be split into fully aperiodic

systems and FGS. Both typically follow a homogenization-based approach where the ma-

terial properties of each element in the macroscopic structure are replaced by the effective

properties of the microstructure at that location. This greatly expedites multiscale de-

sign as the performance can be evaluated at the macroscale, albeit with lowered accuracy

since heterogeneous structures break the assumption of infinite periodicity [180]. The two

approaches differ in that aperiodic systems can be composed of very different microstruc-

tures, whereas the change in the topologies and/or volume fractions of neighboring mi-

crostructures in FGS are deliberately designed to be continuous. In this section, we review

the existing methods for multiscale TO in general, then the methods for heterogeneous
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structures specifically, including a brief comparison between aperiodic and functionally

graded approaches.

6.2.1. General Multiscale Topology Optimization

The current major TO methods to computationally design metamaterials can be cate-

gorized into single-scale TO of the unit cell(s), which are then tiled into a predefined

macrostructure [32, 55–57], and hierarchical or concurrent multiscale TO that optimize

both the unit cell(s) and macrostructure [58, 59]. In hierarchical TO, the design do-

main are decomposed by the micro- and macro-scales [61, 181]. The unit cell within each

macro-element is optimized along with the global structure, which allows spatially varying

microstructures. Accordingly, the geometrical descriptors of all of the unit cells are the

design variables, which unfortunately can result in millions of design variables [80]. The

problem is solved in a two-level scheme, where the outer problem is TO of the global,

macro-structure, and the inner problems are the TO of all unit cells. Concurrent TO,

on the other hand, limits the number of unique unit cells to a finite number, and evolves

the macro- and micro-scale topologies simultaneously. The macro-scale problem can be

formulated as a multi-material problem where each “material” corresponds to a different

unit cell [115, 149, 182], or as a single-material problem with pre-specified zones for the

different unit cells [59]. The optimality of the concurrent method is subject to the human

choice of the number of distinct unit cells and, if applicable, the assigned zones.

Maintaining continuous boundaries is a key challenge when multiple unit cells are al-

lowed. Techniques such as varying the volume fraction or size of one unit cell (chosen
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manually by the designer) to match an optimized density field [134, 183], adding connec-

tivity constraints [59], subdomains [58] and substructuring [184] have been proposed. For

the most part, the methods compound the already computationally demanding TO, es-

pecially in 3D or high resolutions. Taking advantage of growing computational resources,

some have also explored using GPUs to optimize super high resolution unit cells [185],

and replacing expensive numerical homogenization with data-driven mesh coarsening [132]

and machine learning models [3, 71–73, 128, 186]. Another intriguing work uses deep rein-

forcement learning for shape optimization of spatially varying unit cells [187]. An “actor”

iteratively suggests the size parameters of unit cells and is rewarded based on the im-

provement in the macroscale compliance. However, it is also limited to unit cells whose

parameterizations must be chosen beforehand. Unfortunately, while these may allevi-

ate computational expenses, they are still subject to problems with local optimality and

connectivity.

On the other hand, the straightforward, classical density-based TO method without

density filters, i.e., allowing any density between 0 and 1, can be used to both design the

macroscale topology and decide the volume fraction [134] or size [183, 188] of each mi-

crostructure. If the scaling law – the relation of Young’s modulus to volume fraction – of

a microstructure class is known, the pseudo-densities can be replaced by the physical den-

sities to quickly obtain FGS [134, 189]. Although relatively straightforward to implement,

this approach will inevitably be subjected to the local optima problem of density-based

TO.
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6.2.2. Topology Optimization of Heterogeneous Structures

Although aperiodic structures allow immense design freedom – a different microstructure

at every location – they come at the cost of explosive problem sizes. Two avenues of data-

driven methods have emerged to counter this “curse of dimensionality”. One assembles

microstructures from pre-computed libraries via combinatorial optimization [34, 35, 65,

190], and the other accelerates gradient-based design by creating deep learning (DL)

models from massive datasets for dimension reduction and rapid property predictions [1,

72].

These approaches are powerful, but require large overhead costs to build the datasets

and models, and need careful strategies to select reasonably compatible neighboring mi-

crostructures. Even then, they may not achieve connectivity on par with FGS. Combined

with the use of the effective, homogenized properties, low connectivity can result in the

manufactured performance deviating greatly from the optimized design. These drawbacks

mean that, in their current state, data-driven methods are difficult to scale to large sys-

tems with heterogeneity and complex physics, e.g., nonlinear mechanics. Compared to

FGS, such approaches are less suitable when stress concentrations or expensive property

simulations must be avoided.

In contrast, some works have indicated that the continuous interfaces and more gradual

topological change in FGS may be able to mitigate the errors from homogenization [34,

50, 60]. Functional grading can be further categorized into three camps: continuously

varying volume fraction [134, 191–193], topology [63, 72], or a hybrid of both [3, 64].

While traditional FGS use the first, recent research is shifting towards the latter two,

which have demonstrated that expanding the design space to include multiple topology
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types can considerably improve the structural performance. Our work belongs to the

hybrid one, and to facilitate ease of discussion, we define a microstructure class as a family

of microstructures that possess the same overall topological concept but vary individually

by volume fraction. Hence, the works in the last two categories can be termed multiclass.

Within existing multiclass methods, the prevailing strategy is to treat FGS design

as a multi-material TO problem by allocating each class to its own region with distinct

boundaries. This assumes that the interfaces between classes are perfectly connected. As

a result, most approaches pre-define a few mutually compatible classes [3, 64] or fix their

connections [61, 62, 186], which reduces computational cost and complexity but can yield

suboptimal solutions.

Similar methods in the general multiscale TO field accomplish connected heteroge-

neous designs without the above simplifications by: (1) sharing finite elements and design

variables at interfaces [58], (2) adding connectivity constraints [59, 60], (3) controlling

the change in the properties of intermediate microstructures [194], (4) creating geometric

gradations during pre- or post-processing [63, 194, 195], and (5) interpolating random

field representations of microstructures [72]. Of these, only Refs. [58, 60, 63] concurrently

design the macrostructure as well as the distributions of multiple microstructures, and

just Ref. [64] also optimized the graded volume fractions. Moreover, many do not scale

well with the number of classes.

6.3. Contributions

Merging the advantages of the two heterogeneous approaches, we propose a general

TO framework for multiclass FGS that achieves smooth transitions between multiple
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microstructure classes without additional constraints, even if those classes are not com-

patible initially. The cornerstone of our approach is a novel multiclass shape blending

scheme that generates new microstructures from a small set of predefined basis classes

while guaranteeing certain aspects of feasibility. We define a design as feasible when the

microstructures are not only self-connected (i.e., have no disconnected features) but also

well-connected to their neighbors. In addition, we desire the microstructures to meet a

minimum feature size, as required in some manufacturing techniques.

Our framework departs from existing heterogeneous design methods in several ways:

• First, we create a continuous and low-dimensional microstructure representation

by using the parameters of our shape blending scheme as design variables. This

transforms the microscale problem into a parametric one without using costly,

geometry-based DL. While we do require predefined basis classes, this by no

means restricts our design, as we allow the regions for each class and the bound-

aries between them to be blurred so that the microstructures anywhere in the

FGS can be novel, i.e., not found in the initial basis classes.

• Second, our blending scheme integrates naturally into existing TO methods. In

this work, we incorporate it with discrete and gradient-based TO, along with a

new penalty that promotes diverse designs. These significantly reduce the cost

to concurrently optimize the macrostructure as well as the graded topologies,

volume fractions, and distributions of any number of microscale classes. Thus,

through blending, our framework features design freedom near that of aperiodic

methods while inheriting the efficiency of functionally graded design.
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• The blending parameters serve as effective inputs for feedforward neural networks

that predict the effective properties of new microstructures and can be re-used

in multiple applications, further accelerating design.

• Certain feasibility metrics (e.g., self-connectedness and minimum feature size)

can be built into the blending scheme so that they do not need to be included

explicitly in the TO problem. Furthermore, the flexibility of using basis classes

permits designers to incorporate expert knowledge and eliminates the frustration

of choosing compatible classes. If desired, manual selection can be removed

altogether by extracting classes from open-source databases, e.g., using diversity

metrics [196].

In this chapter, we introduce three crucial components in our approach: (1) multiclass

shape blending and global interpolation schemes (Sec. 6.4), (2) neural networks for prop-

erty prediction (Sec. 6.5), and (3) concurrent multiclass data-driven topology optimization

(TO), which ties all of the methods into one framework (Sec. 6.6). With compliance and

shape morphing examples, we demonstrate the efficiency and inherent ability of our ap-

proach in designing multiscale structures with continuous transitions. The benefits of

multiclass FGS are verified by utilizing both common truss-type and diverse freeform

(topology-optimized) basis classes, and by comparing our results to designs in literature.

6.4. Multiclass Shape Blending and Smooth Interpolation

6.4.1. Background

Our proposed shape blending scheme is heavily inspired by the computer graphics field,

where morphing one geometric model into another has long been studied and utilized in,
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e.g., animation films and video games [197, 198]. These methods have also supported ap-

plications like medical imaging [199] and metal-forming manufacturing simulations [200].

In fact, evolving geometries through surface representations [201] and partial differential

equations [202] is the foundation of the popular level set TO method [44], while com-

bining shapes using distance fields is the bedrock of TO algorithms that use geometry

projection [203] and Movable Morphing Components [204].

Most closely related to the interest of this paper are blending techniques that use

function representations (FReps) of shapes, which parameterize any geometric model as

a series of operations (e.g., unions, differences, and intersections) performed on a set of

primitives or basis geometries [205]. It is extremely flexible as it allows the bases to be

defined by any representation, e.g., meshes or voxels, and any resolution. In our case,

we represent our basis microstructure classes as continuous signed distance fields (SDFs),

which are implicit function representations similar to level sets. That is, the sign of the

field determines whether the material is solid or void at any arbitrary point (x, y) within

the microstructure domain, D, as follows:

(6.1)



Φ(x, y) > t (x, y) ∈ Ω

Φ(x, y) = t (x, y) ∈ Γ

Φ(x, y) < t (x, y) ∈ D/Ω

,

where Φ is the SDF, Ω is the solid region, and Γ is the boundary of the solid structure.

The isovalue t controls the isocontour of the field and therefore enables us to tune volume

fractions. With this powerful representation, we can not only generate an entire family of
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microstructures over a continuous range of volume fractions, but also combine multiple

SDFs to create novel classes.

Blending operations to mix SDFs have been studied for decades, beginning with the

simple set-theoretic operation for the union of the function representations of two shapes,

Φ1 and Φ2 [206]:

(6.2) Φunion = max(Φ1,Φ2).

Since then, many works have improved metamorphosis using function-based operations [205,

207], optimization [208], and DL-based interpolation [209, 210]. However, these can re-

quire intensive user-interaction and computational costs, and are, therefore, intractable

or unsuitable for multiscale design.

6.4.2. Multiclass Shape Blending Scheme

Rather than using complex formulations, our proposed multiclass shape blending scheme

is a combination of two simple techniques: (1) a weighted sum of basis classes based on

cross dissolving, and (2) an activated union with the lower feasible bounds of each basis.

The entire scheme is differentiable and efficient, which fits in well with gradient-based

optimization algorithms.

Crucial to our scheme are basis microstructure classes, which do not need to be mu-

tually compatible. We denote the SDF representations of arbitrary basis classes as ΦB
d

for d ∈ [1, . . . , D], where the shapes ΦB
d and total number of classes D can be defined by

the user.
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Step 1: Weighted Sum of Basis Classes

Step 2: Soft Union with Lower Bounds

(final)

Figure 6.1. Illustration of using multiclass shape blending scheme to gen-
erate a microstructure from truss basis classes. Outlined shapes represent
classes whose weights are zero. Step 1 (top row; Eq. 6.3) may cause broken
shapes, but Step 2 (bottom row; Eq. 6.4) ensures the final microstructure,
Φ, is feasible.

Figure 6.2. Examples of blending pairs of basis classes. The first and last
microstructures are from basis classes, and those in between are produced
by linearly interpolating the weights in the blending scheme. Between truss
classes (left column): (a) 1 and 5, (b) 2 and 4, and (c) 4 and 5. Between
freeform classes (right column): (d) 2 and 3, (e) 2 and 4, and (f) 4 and 5.
The classes themselves are depicted in Fig. 6.4.

Prior to blending, we normalize the D basis classes so that they can be mixed fairly,

and also find their lower feasible bounds. The following pre-processing steps only need to

be performed once per set of bases:
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(1) Choose a common volume fraction, v∗, and find the representative SDF for each

basis, Φ∗
d = ΦB

d + t∗d, such that it has v∗. We use the well-known bisection

algorithm.

(2) Find the SDF of the lower feasible bound of each basis, ΦL
d = ΦB

d + tLd , using any

desired feasibility metric. In this work, we set a minimum feature size of 4 pixels

for a 50× 50 microstructure.

After this one-time process, we can use Φ∗
d and ΦL

d repeatedly for our proposed mul-

ticlass blending. The first step of the scheme is based on cross dissolving [198], which

can be simply defined as a linear interpolation between the source and target geometries.

For example, between two SDFs, the blending operation is Φ = (1 − c)Φ∗
1 + cΦ∗

2, for

c ∈ [0, 1]. This can induce a double exposure effect where traces of both shapes co-exist

in the blended result for middling values of c. While that causes unnatural morphing

of, e.g., human faces, it organically achieves connected transitions between neighboring

microstructures.

We express multiclass interpolation as a weighted sum of the bases:

(6.3) Φ0 =
D∑
d

cdΦ
∗
d + t,

where cd ∈ [0, 1]. Although it effectively creates new classes of microstructures, this

interpolation is agnostic to important geometrical features and can lead to broken shapes

that have disconnected or thin features (see the top row of Fig. 6.1).

Therefore, to guarantee that the blended microstructures are sufficiently connected and

feasible, we propose an additional step that enforces a lower feasible bound on blending. It

also acts as an implicit constraint for simple manufacturing considerations, e.g., minimum
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feature sizes or volume fractions. This second step is an activated soft-max function, a

continuous and differentiable extension of the set-theoretic union above (Eq. 6.2):

(6.4) Φ =
1

β2

log
[
exp

(
β2Φ

0
)
+

D∑
d

ad exp
(
β2Φ

L
d

)]
,

where ad are the activated weight parameters using the Heaviside function:

(6.5) ad = H(cd, β2, η2) =
tanh (β2η2) + tanh (β2(cd − η2))

tanh (β2η2) + tanh (β2(1− η2))
.

By setting the threshold η2 > 0, the activation guarantees that the minimum feasible

bound of at least one – but not all, or else low volume fractions would be difficult to

attain – of the bases are present in each blended result. That is, in this step, only weights

that are greater than η2 are activated to equal one (shaded shapes in the second panel

of Fig. 6.1) while others are suppressed to zero (outlined shapes in Fig. 6.1). We find

that setting η2 to the 75th percentile of the weights, c, works quite well in promoting

connected transitions.

To further visualize blending between pairs of basis classes, we illustrate several exam-

ples in Fig. 6.2. In particular, we select pairs that do not appeared in our design results

later (Sec. 6.7). No matter how simple, complex or incompatible the basis classes, our

multiclass blending scheme is able to provide feasible, i.e., well-connected, intermediate

microstructures. This is the benefit of (1) the interpolation between the SDFs of basis

classes, and (2) the imposition of the lower feasible bounds of each basis through Eqs. 6.3

and 6.4.

With the two-step shape blending scheme, the representation of all possible blended

microstructures, including those in the original basis classes, can be compactly expressed
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as the weight parameters. We can, therefore, formulate the microscale design variables as

c(m) for m ∈ [1,M ] desired optimal classes, transforming the typically high-dimensional

optimization problem into a simple and efficient parametric one that can still generate a

wide range of microstructures.

A final note regarding microstructure design is that, in practice, Eq. 6.3 allows each

c
(m)
d ∈ [0, 1] and can lead to

∑D
d=1 c

(m)
d = 0, which results in completely solid microstruc-

tures and occasional numerical issues. Moreover, it causes redundancy in the design space

since taking Φ0 ≥ 0 to obtain the solid topology cancels out the least common denom-

inator of the weights. There are numerous ways to enforce the sum of c
(m)
d to be equal

to one, such as multi-material interpolation schemes in TO. We extend one such scheme

from our previous work [211] to normalize the basis class weights as follows:

(6.6) c̃(m) = z(1) +
D−1∑
j=1

[(
z(j+1) − z(j)

) j∏
k=1

c
(m)
k

]
,

where z(j) are constant one-hot encoded vectors for each basis such that z
(j)
i equals 1 for

i = j and 0 for all i ̸= j. Subsequently, cd in Eqs. 6.3 and 6.5 are replaced with c̃d.

While our shape blending and design methods work well without Eq. 6.6, for increased

stability in the optimization process, and the added bonus of reducing the microscale

design variables, c(m), to size [1×D − 1], we use it in the remaining discussions.

6.4.3. Integration with Multiscale Design

In the context of multiscale design, the subscript e is added to denote individual mi-

crostructures, which each resides in one macroscopic quadrilateral 4-node finite element.

Instead of directly optimizing D weights at each microstructure, we reduce the number
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of design variables by optimizing M new classes and interpolating them throughout the

global structure using the distribution fields ξ(p). An example with M = 2 is portrayed by

the red and blue classes in the middle panel of Fig. 6.3. For demonstration, we artificially

create the values of the macro- and micro-scale design variables in the middle panel, but

during design, these values are optimized concurrently.

Similar to multi-material TO (and Eq. 6.6), we require that the sum of the distributions

at each element equals one. Thus, to obtain each microstructure, e, we can globally

interpolate the optimal class weights, c̃(m), with:

(6.7) ĉe = c̃(1) +
M−1∑
j=1

[(
c̃(j+1) − c̃(j)

) j∏
k=1

ξ̂(k)e

]
,

where ξ̂ are the smoothed distribution fields after applying the radial filter commonly

found in TO methods [86] to encourage functional grading.

Therefore, combining Eqs. 6.3 through 6.7, our final multiclass shape blending scheme

for a microstructure at element e is:

(6.8) Φe =
1

β2

log
{
exp

[
β2

( D∑
d

ĉe·dΦ
∗
d + te

)]
+

D∑
d

ae·d exp
(
β2Φ

L
d

)}
,

where ae·d = H(ĉe·d) and te is found using the bisection algorithm to match a given or

optimized volume fraction, ve. This replaces Eq. 6.4 during optimization.

The process of blending and global interpolation to assemble a FGS is demonstrated

in Fig. 6.3. For this, we use five truss-type basis classes and artificially create M = 2

new classes, c̃(m), their distribution fields, ξ̂(m), and volume fractions, v. In practice,

these parameters would be optimized. For each microstructure, e, in the FGS, its globally
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Figure 6.3. Demonstration of the integration of multiclass shape blending
and global interpolation. The basis classes are defined (left). Examples of

M = 2 new classes, c̃(m), their distributions, ξ̂(m), and volume fractions, v,
are given (middle). Each microstructure in the FGS (right) is generated by
using Eq. 6.8.

interpolated weights, ĉe, are found via Eq. 6.7, and its SDF generated by the blending

scheme in Eq. 6.8.

6.5. Property Prediction with Neural Networks

The continuous and low-dimensional microstructure representation lends itself well

to one of the simplest deep learning (DL) techniques: regression with neural networks.

More specifically, we can create feedforward neural networks with three or fewer hidden

layers that predict the components of a microstructure’s effective stiffness tensor, CH
e ,
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given the scalar values of the blending weights and volume fraction as inputs. That is,

CH
e = NN(ĉe, v̂e), where ĉe and v̂e are the interpolated class and filtered (Sec. 6.6) volume

fraction design variables, respectively.

After each hidden layer, we use a tanh activation function. For training, we use the

mean squared error (MSE) loss and the Levenberg-Marquardt optimizer [212]. To include

all possible microstructures, such as those where only a few basis classes have non-zero

weights, we use an optimal sliced Latin hypercube method [213] to sample the weights cd,

first creating combinatorial “slices”, then 20 space-filling samples for each “slice”. To cover

volume fractions, we also sample 15 microstructures from each resulting SDF (i.e., each set

of weights) over t ∈ [−1, 1]. As an example, we obtain a total of 22, 575 microstructures

for D = 5 basis classes. The effective stiffness tensors of each are calculated using an

energy-based homogenization method [180]. We set aside 70%, 15%, 15% of the data for

training, validation and testing.

Once the model is trained, we can use backpropagation [214] to analytically derive the

gradients of CH
e with respect to the design variables, ĉe and v̂e. This, together with the

rapid predictions that bypass the cost of homogenization, allows the neural networks to

significantly boost the efficiency of design.

6.6. Concurrent Multiclass Data-Driven Topology Optimization

One challenge in creating a concurrent functionally graded design framework that

produces realistic results while remaining as general as possible is the different feasible

ranges of arbitrary microstructure classes. Consider the five truss basis classes we used

to demonstrate the blending scheme in Sec. 6.4. For a prescribed minimum feature size
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of 4 pixels, the first basis has a minimum feasible volume fraction of 0.2, while the second

has a minimum of 0.4. The question that arises is: when different vmin > 0 are possible

for each element e, how can we design the distribution of volume fractions while also

optimizing a clearly defined macrostructure where some microstructures are allowed to

be void (i.e., ve = 0)?

Regarding this, most existing FGS research have either elected to ignore the macroscale

design altogether [134, 215], or adopted a hybridized method that splits the macro- and

micro-scale designs into two optimization problems [62, 186, 191, 193]. None of these

works incorporate multiclass designs where the basis topologies can be drastically different,

however.

We propose to overcome this hurdle by merging parametric and non-parametric meth-

ods in a framework that utilizes evolutionary TO (BESO [216]) to optimize the discrete

global structure, x, and gradient-based TO solved by the method of moving asymptotes

(MMA) [122] to concurrently design the coefficients of M new classes c, their distributions

ξ, and volume fractions v. The approach is similar to the latter group above, but unlike

many, we evolve the designs at both scales in the same iteration. This combination allows

arbitrary sets of basis microstructures to be used rather than strict constraints or careful

handpicking, and distinguishes our framework in terms of generality and efficiency.
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Thus, the general optimization problem can be formulated as:

(6.9)

minimize
c,v,ξ,x

f = fperf (c,v, ξ,x) + kfdiv(c),

subject to KU = F,

gj ≤ 0,

0 ≤ c
(m)
d ≤ 1,

0 ≤ vmin ≤ ve ≤ vmax,

0 ≤ ξ(p)e ≤ 1,

xe ∈ {xmin, 1},

j ∈ [1, Ncon], e ∈ [1, Nel],

m ∈ [1,M ], d ∈ [1, D − 1], p ∈ [1,M − 1],

where fperf is an application-dependent measure of design performance, fdiv is a penalty

on low class diversity (Sec. 6.6.1), Ncon is the number of constraints gj (if any), Nel is the

number of macroscopic elements or microstructures, andM and D are the numbers of new

(to be optimized) and basis (fixed) classes, respectively. A small number, xmin = 1e−9,

is used to indicate void microstructures to avoid numerical issues. The minimum volume

fraction, vmin, is dependent on the chosen set of basis classes, i.e., min(volume(ΦL
d )),

whereas the upper bound, vmax, is 0.95.

We employ the traditional radial averaging filter [86] on our global-level design vari-

ables to avoid mesh dependency, resulting in the smoothed fields v̂, ξ̂(p), and x̂. This
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additionally enforces the interface between optimal classes to be functionally graded, and

that the macrostructure has a minimum feature size of rmin.

To update the designs, we use the default algorithms for BESO [216] and MMA [122].

The only difference is that, to connect the two scales, the sensitivity number for BESO are

dependent on the predicted effective properties of the microstructures. The derivations

for this and all other sensitivities in our problem are shown in Sec. 6.6.3.

In total, then, our multiclass FGS design framework has (D − 1)M + (M + 1)Nel

variables, where M ≤ D ≪ Nel. For the M = 2 MBB beam example later (Fig. 6.5a),

our method has 1, 928 design variables. Perhaps the most comparable methods are the

multilattice approach [63] uses 3, 200 variables for the same problem without optimizing

the graded volume fractions, while the latent variable multiclass method [3], which uses

1, 920 variables and includes functionally graded volumes; both, however, require prede-

fined classes with manually defined connections. It is important to note that although it

is possible for other methods to contain less design variables, they make simplifications

that we do not.

6.6.1. Penalty to Encourage Convergence to Diverse Classes

Our method can enable high design freedom even with a low-dimensional microscale

representation since blending allows the basis classes to mix continuously at both scales.

Depending on the chosen optimizer, managing such complexity in two-scale design can

be a challenge, one that is also encountered by existing multiscale methods. However, we

propose that a cost-effective penalty on the objective function can aid the optimizer (in

our case, MMA) without resorting to user-defined restrictions on the design space.
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We introduce a penalty on low diversity between the M new classes, encouraging the

microscale design variables, c(m), to converge to values away from each other, so that the

FGS is more likely to include different basis classes:

(6.10) fdiv = − log
[
det(Lij(c

(i), c(j)))
]
,

where Lij = exp(−0.5 ∥c(i) − c(j)∥22) and i, j ∈ [1,M ].

This is based on determinantal point processes (DPPs), which measure the diversity

of a set of items (e.g., the classes c(m) here) using a similarity matrix Lij, where its

elements are the similarities between the i-th and j-th pairs of data. The diversity can

then be defined as the determinant of Lij. A larger determinant value indicates that a

set contains less similar items, spans a larger volume, and hence has greater diversity.

DPPs have been successfully applied to create or extract diverse metamaterials, ideation

sketches and airfoils from large datasets [152, 153, 196, 217]. More thorough coverage of

DPPs, as well as a deeper dive into the benefits of diversity for data-driven multiscale

design, can be found in the previous chapter (Chapter 5).

Here we apply the concept of diversity to penalize microstructure classes that are

similar to each other. Intuitively, minimizing fdiv is equivalent to maximizing the diversity

of the new classes. Since the value of fdiv approaches zero as classes become more diverse,

i.e., the values of c
(i)
d and c

(j)
d grow farther apart, diversity serves as a natural penalty

function. It needs only a weight k so that its value, typically within [0, 1] after the first

few iterations, can compete with the structural performance, fperf . Moreover, it acts

similarly to an L2 regularizer that smooths the objective function as k increases, which
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may avoid sensitivity to initializations and help find an optimum faster in some non-

convex or highly nonlinear problems. Indeed, we find in our case studies that adding the

penalty help our optimizers to find more optimal solutions (Sec. 6.7.2).

6.6.2. Volume Relaxation and Adaptive Target Volume

If any volume constraints are defined in the design problem, we must have a way to

obtain the continuous gradients of volume with respect to the parameters of the shape

blending scheme. To achieve this, we can approximate the filtered volume fraction of a

microstructure, v̂e, by transforming its SDF into a relaxed grayscale field, similar to that

of density-based TO, using the Sigmoid function

(6.11) S(Φ, β1) =
1

1 + exp (−β1Φ)
,

where β1 is a fixed parameter to control the strength of relaxation. Thereafter, the

approximate volume is

(6.12) v̂ae =
1

nel

nel∑
u=1

S(Φe·u, β1),

where nel is the number of elements in the discretized SDF, and the sensitivity of ∂VGlobal/∂ĉe

is straightforward to calculate (see Sec. 6.6.3).

In addition, low volumes are often a goal in multiscale design to take advantage of

the porosity of the microstructures. By immediately applying a strict volume fraction

constraint, however, it is possible to encounter infeasible and broken structures early

in the optimization process [218, 219]. To avoid this, and to ensure that our macro-

(BESO) and micro-scale (MMA) designs evolve at approximately the same rate, we use
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an adaptive scheme to lower the target volumes every 10 iterations. This is outlined in

Algorithm ??, and the pseudo-code of the complete concurrent optimization framework

is shown in Algorithm 3 (Appendix A).

6.6.3. Sensitivity Analysis

The derivations of the sensitivity analysis for gradient-based topology optimization (TO)

are detailed in this section. All gradients were verified using the finite difference method.

For the global multiclass shape blending scheme (Eq. 6.8), which is used to obtain the

microscale topology at e, the gradient is

(6.13)
∂Φe

∂ĉe·d
=

1

β2ΦI
d

[
β2 exp

(
β2Φ

0
e

)
⊙Φ∗

d +
∂H(ĉe·d, β2, η2)

∂ĉe·d
exp

(
β2Φ

L
d

)]
,

where

(6.14) ΦI
e = exp

(
β2Φ

0
e

)
+

D∑
d

ad exp
(
β2Φ

L
d

)
,

(6.15) Φ0
e =

D∑
d

ĉe·dΦ
∗
d + te,

(6.16)
∂H(ĉe·d, β2, η2)

∂ĉe·d
=

β2

[
1− tanh 2(β2(ĉe·d − η2))

]
tanh (β2η2) + tanh (β2(1− η2))

,

and ⊙ indicates element-wise multiplication.
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The sensitivity for the the class interpolation schemes (Eqs. 6.6 and 6.7) with respect

to the class design variables is as follows:

(6.17)
∂ĉe·d

∂c
(m)
d

=

{
∂c̃

(1)
d

∂c̃
(m)
d

+
M−1∑
j=1

[
∂
(
c̃
(j+1)
d − c̃

(j)
d

)
∂c̃

(m)
d

j∏
k=1

ξ̂(k)e

]}
∂c̃

(m)
d

∂c
(m)
d

,

where

(6.18)
∂c̃

(m)
d

∂c
(m)
d

=
D−1∑
j=d

[(
z
(j+1)
d − z

(j)
d

) j∏
k=1,k ̸=d

c
(m)
k

]
.

With respect to the macroscale distribution fields, it is:

(6.19)
∂ĉe·d

∂ξ
(m)
e

=
M−1∑
j=m

[(
c̃
(j+1)
d − c̃

(j)
d

) j∏
k=1,k ̸=m

ξ̂(k)e

]
ξ̂
(m)
e

ξ
(m)
e

.

We also need the sensitivities of the radial filters. This follows the traditional TO

methods closely [86], and are defined by

(6.20)

∂v̂e
∂ve

=
we∑
i∈Se

wi

,

∂ξ̂
(m)
e

∂ξ
(m)
e

=
we∑
i∈Se

wi

.

Se is the set of elements neighboring e, and the weighting function wi is

(6.21) wi = max(0, rmin − ∥(·)i − (·)e∥2),

where (·) is the appropriate variable, v or ξ(m), and rmin is the filter radius.

Using these, we can obtain the other sensitivities. For compliance (Eq. 6.34), the

adjoint method [43] and chain rule allow us to derive the following with respect to the
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design variables:

(6.22)
∂fc
∂ce·d

= −

[
Nel∑
n−1

uT
n

∂kn

∂ĉe·d
un

]
∂ĉe·d
∂ce·d

,

(6.23)
∂fc
∂ve

= −

[
Nel∑
n−1

uT
n

∂kn

∂v̂e
un

]
∂v̂e
∂ve

,

and

(6.24)
∂fc

∂ξ
(m)
e

= −

[
Nel∑
n−1

uT
n

∂kn

∂ξ̂
(m)
e

un

]
ξ̂
(m)
e

ξ
(m)
e

.

The derivatives of the element effective stiffness matrices are

(6.25)
∂ke

∂ĉe·d
=

∂ke

∂Ce

∂Ce

∂ĉe·d
,

(6.26)
∂ke

∂v̂e
=

∂ke

∂Ce

∂Ce

∂v̂e
,

and

(6.27)
∂ke

∂ξ̂
(m)
e

=
∂ke

∂Ce

[
D∑

d=1

∂Ce

∂ĉe·d

∂ĉe·d

∂ξ̂
(m)
e

]
.

Here, due to our data-driven framework, the gradients of the effective properties ∂Ce/∂ĉe·d

and ∂Ce/∂v̂e are obtained by backpropagating through the layers of the fully connected

neural network [214].
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To obtain the sensitivities of the global volume fraction constraint, we can use Eq. 6.13

and the Sigmoid function (Eq. 6.11 in Sec. 6.6.2), which gives us a continuous approxima-

tion of a volume fraction (v̂ae from Eq. 6.12). First, the derivative of the Sigmoid applied

to a microstructure’s SDF (Φe) is

(6.28)
∂S(Φe, β1)

∂Φe

= β1S(Φe, β1)
(
1− S(Φe, β1)

)
.

Therefore, the sensitivity of the global volume fraction can be decomposed as

(6.29)

∂VGlobal

∂ĉe·d
=

∂VGlobal

∂v̂ae

∂v̂ae
∂S

∂S

∂Φe

∂Φe

∂ĉe·d
,

=
xe

Nel

(
1

nel

nel∑
u=1

∂S

∂Φe

)
∂Φe

∂ĉe·d
,

and the sensitivities of the constraint itself with respect to the design variables are:

(6.30)
∂g1
∂ce·d

=
1

V ∗
Global

∂VGlobal

∂ĉe·d

∂ĉe·d
∂ce·d

,

(6.31)
∂g1
∂ve

=
1

V ∗
Global

,

and

(6.32)
∂g1

∂ξ
(m)
e

=
1

V ∗
Global

∂VGlobal

∂ĉe·d

∂ĉe·d

ξ
(m)
e

.

We note that these approximations of the microstructural volume fractions do intro-

duce some error into the sensitivities but, in our experience, are minor and not detrimental

to the designs.



168

Since we use the default algorithm for BESO developed by Ref. [216] to update x, the

filtering of the macroscale sensitivity numbers for the compliance problems can be found

in the original paper. The only difference is that, instead of the element stiffness for a

homogeneous material, we use the effective stiffness predicted by the data-driven models.

Thus, our sensitivity numbers are modified to be

(6.33) αe = uT
e k

H
e (ĉe, v̂e)ue.

For the low-diversity penalty function, the sensitivity can be derived using chain rule

by taking the gradient of the log-determinant [220], then of the Gaussian kernel and

Euclidean distance between the class design variables, c(m).

Finally, for the derivations of the first stage of the shape matching problem (Eq. 6.35),

in which the target properties for each unit cell are optimized, we refer the reader to [1].

For the second stage where the classes and their distributions are optimized to match

the target properties (Eq. 6.36), we do not write out the sensitivities here; however, their

derivations are straightforward to calculate by following the same steps above, substitut-

ing compliance for the mean squared error (MSE) between target and designed effective

properties.

6.7. Illustrative Examples

Through several linear elastic problems, we test the ability of our framework to achieve

functional grading that is both smooth and feasible. Namely, we design two compliance

and two target displacement, i.e., shape morphing, examples. For each case, we study

the effects of two sets of basis classes with different morphology types and initial mutual
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compatibility, as well as the number of new optimal classes, M . In all datasets and

problems, the constitutive material has a Young’s modulus of 1 and a Poisson’s ratio

of 0.3. The basis classes and their associated DL models are shown in Sec. 6.7.1, the

compliance studies in Sec. 6.7.2, and finally, the shape morphing examples in Sec. 6.7.3.

6.7.1. Basis Classes and Neural Networks

To illustrate the framework across a range of microstructure morphologies commonly

found in literature, we use two sets of basis classes: one consisting of truss-type mi-

crostructures, and one of topology-optimized freeform shapes. Moreover, to show that

human bias can be removed from the design without sacrificing much performance, we

compare handpicking the truss basis to automatically selecting the freeform basis using

diversity metrics.

6.7.1.1. Handpicked Simple Trusses. Some of the most popular microstructures in

the TO field belong to truss-type classes, which possess both simple definitions and satis-

factory performance [3, 64, 65, 211]. As such, they are fitting basis classes to validate the

proposed framework. For our examples, we choose a set of bases that can, when combined

in various ways, cover nearly all of the common truss morphologies in literature. Depart-

ing from other methods, we dial up the difficulty by defining the last two bases so that

they are broken; to obtain feasible designs, these classes need to be either well-connected

to their neighbors or blended with other bases that have self-connectedness. The five

classes have already been shown several times in Figs. 6.1-6.3, as well as in Fig. 6.4a

and b.
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Figure 6.4. (a) Truss basis classes represented as (b) SDFs (Φ∗
d), and (c)

the property space of 22,575 blended microstructures by sampling {c, v}.
(d) Freeform basis classes, (e) their SDFs, and (f) property space.

6.7.1.2. Shape and Property Diverse Freeform Subsets. We also assess the efficacy

of our blending and interpolation schemes under even more challenging circumstances by

defining a set of freeform basis classes with complex shapes derived from TO (Fig. 6.4d).

They present interesting and highly illustrative case studies as their compatibility with

each other is quite low. If used directly in design without our shape blending scheme, the

feasibility of the final design would be extremely challenging to guarantee.

We collect these freeform classes from a different perspective, one where a designer

has little prior knowledge and wishes to avoid using costly inverse optimization to find

the basis microstructures. Thus, the five freeform classes are chosen by leveraging the

open-source 2D metamaterials dataset [124] and the automated diverse subset selection

method [196] from our previous works. The method utilizes the DPPs introduced earlier
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(Sec. 6.6.1) to maximize the shape and property diversity of a subset of microstructures.

By automatically covering a wide range of shapes and properties, we hypothesize that

diverse basis classes can provide a high return on investment, attaining competent or even

superior performance across multiple applications with less effort during the selection of

bases.

We filter out any 50×50 microstructures with minimum feature sizes less than 4 pixels

prior to applying our subset selection method. This eliminates some of the most complex

shapes that provide little benefit for functional grading (e.g., microstructures with thin

features that would limit the range of feasible volume fractions). To convert the selected

binary microstructures into continuous SDF representations, we use the fast marching

method [221]. The shape and property diverse freeform basis classes shown in Fig. 6.4d

and e.

6.7.1.3. Property Prediction Models. As discussed in Sec. 6.5, we obtain training

datasets of 22, 575 microstructures using sliced Latin hypercube sampling for each set

of basis classes. The respective property spaces are depicted in Fig. 6.4c and f, where

samples generated from blending are in gray and those from the original basis classes are

denoted as different color crosses.

We observe that the blended microstructures are able to interpolate between – and in

some cases, extend slightly beyond – basis classes in order to cover the property space.

Although some sparse areas still exist due to the lower feasible bounds that we impose,

this shows that blending is a powerful technique to create a large design space even with

small sets of basis classes. It is also clear from these figures that the first basis (red)

from both sets possess the highest stiffness in diagonal directions and ratios of CH
21 to CH

11
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(equivalent to the effective Poisson’s ratio), as opposed to truss bases 4 (purple) and 5

(orange), and freeform basis 2 (blue), which are stiffest in uniaxial directions.

Table 6.1. Neural network architectures and accuracies.

nresp nnode Train R2 (MSE) Val. R2 (MSE) Test R2 (MSE)

Truss 6 {16,16,12} 0.9983 (2.34e-4) 0.9984 (2.80e-4) 0.9983 (2.46e-4)
Freeform 4 {12,12,6} 0.9991 (2.91e-4) 0.9990 (2.90e-4) 0.9991 (3.01e-4)

While the freeform classes are orthotropic, some of the truss classes are not. The

number of responses, nresp, in the neural networks of each set are adjusted accordingly,

i.e., 6 elastic tensor components for trusses and 4 for freeform. Table ?? lists the details

of the ML model architectures, where nnode indicates the neurons of each hidden layer,

and the R2 and MSE metrics of the trained models.

Since they only need to be built once, the same models are used for all examples

throughout the paper. The one-time expense of creating our data and models is reasonable

for our 2D problems. However, we note that our results show overlapping properties in

the dataset (Fig. 6.4c and f) and high R2 values above 0.99 and low MSE (Table ??),

suggesting that it may not have been necessary to use as many samples as we did. There

is great potential to develop adaptive sampling algorithms that better balance accuracy

and efficiency, particularly for 3D and complex applications. This direction is left for

future works.

6.7.2. Compliance Minimization

We begin with compliance minimization examples, the first of which is the classic MBB

beam. The boundary conditions are depicted in 6.5a, and we follow the same set-up as



173

in Refs. [80] and [3] in order to compare our results with those of existing methods. That

is, the MBB beam is discretized into 40 × 16 microstructures and an ambitious global

volume fraction limit is set as V ∗
Global = 0.36. For the second problem, we pursue a 60×30

bridge structure loaded in three places, as shown in Fig. 6.5b. Due to symmetry, we can

cut its size by half into 30× 30. The target global volume there is V ∗
Global = 0.50.

(a) MBB beam (40× 16)

(b) Bridge (30× 30)

Figure 6.5. Problem settings of the compliance minimization examples.

The two compliance problems can be formulated as:

(6.34)

minimize
c,v,ξ,x

f = fc + kfdiv(c),

subject to KU = F,

g1 = VGlobal/V
∗
Global − 1 ≤ 0,

g2 = VBESO/V
∗
BESO − 1 ≤ 0,

where fc =
∑Nel

e=1 u
T
e k

H
e (ĉe, v̂e)ue is the compliance with element displacements ue and

effective stiffness matrices kH
e , which are predicted via the DL models. The global and

macroscale volumes are VGlobal =
∑Nel

e=1 xev̂e/Nel and VBESO =
∑Nel

e=1 xe/Nel, respectively,
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and the bounds on the design variables are the same as described in Eq. 6.9. The sensi-

tivities of this optimization problem are detailed in Sec. 6.6.3.

For both examples, we initialize the volume constraints as V ∗
Global,0 = 0.95, V ∗

BESO,0 =√
V ∗
Global, the volumes v as 0.95, the class weights so that c̃(m) are the same, and all

distribution fields, ξ(p), so that the classes are distributed equally. The penalty parameter

(Sec. 6.6.1) is set so that kfdiv = 10 during later iterations. We find that keeping the

penalty around this value improves both convergence and design performance.

The fixed parameters in the shape blending scheme are β1 = 64 and β2 = 32. As we

suggested in Sec. 6.4.2, the threshold η2 is adapts to the design and is equal to the 75th-

percentile of the class weights. The radii of all filters on the design variables are the same,

rmin = 3.0, matching Ref. [80]. For BESO, the evolutionary rate is ER = 0.05 in both

problems. Otherwise, all other parameters are kept at the default values [122, 216]. Our

convergence criteria are when the change in design or the mean change in the objective

over 10 iterations are less than 0.01, or when the number of iterations reaches 200. We also

use early-stopping if the target V ∗
Global has been met but the objective has not improved

in 20 iterations.

In the following sections, we present our results in figures with the same layout: The

left sides illustrate how the optimized classes are created via blending by breaking them

down into the individual basis classes. For ease of interpretation, we show c̃
(m)
d from

Eq. 6.6, which correspond directly to the weights used during blending (Eq. 6.8), instead

of the design variables c
(m)
d . The right-most sides show the optimal multiclass FGS and

their final compliance.
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For fair comparison between our results and homogenization-based methods in liter-

ature, and between the two types of basis morphologies, all compliance values stated in

the main paper are calculated using numerical homogenization. For further validation,

Tables 6.5 and 6.6 in Sec. 6.7.2.4 also reports the compliance obtained from the neural

networks and fine mesh analysis.

Class 1

Class 2
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Figure 6.6. Truss MBB, 2-class result. (a) Optimal new classes each drawn
in a different color. Left of arrows: optimal weights listed under each basis.
Lighter colors indicate low weights while outlined shapes represent weights
that are zero. Right of arrows: representative topologies of new classes. (b)

ξ̂(1), ξ̂(2), v̂ from top to bottom, and (c) multiclass FGS.
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Figure 6.7. Freeform MBB, 2-class result: optimal (a) weights and repre-

sentatives of new classes, (b) ξ̂(1), ξ̂(2), v̂ from top to bottom, (c) multiclass
FGS.

6.7.2.1. 2-Class Results with Different Basis Classes. We first consider the results

using M = 2 new classes and both sets of basis classes. The optimal designs are shown

in Figs. 6.6 and 6.7 for the MBB beam with truss and freeform bases, respectively, and
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in Figs. 6.8 and 6.9 for the bridge. The interpretation of the figures is described in the

previous section.
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Figure 6.8. Truss bridge, 2-class result: optimal (a) weights and represen-

tatives of new classes, (b) ξ̂(1), ξ̂(2), v̂ from top to bottom, (c) multiclass
FGS reflected over the symmetry line.
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Figure 6.9. Freeform bridge, 2-class result: optimal (a) weights and repre-

sentatives of new classes, (b) ξ̂(1), ξ̂(2), v̂ from top to bottom, (c) multiclass
FGS reflected over the symmetry line.

From the 2-class compliance results, we can see several benefits of integrating multi-

class shape blending into FGS design:

(1) The combination of the blending scheme and the radial filters on the distribution

fields creates smooth transitions between classes. Topological functional grading

is guaranteed and does not depend on the mutual compatibility of the basis

classes. Although connections may not be ideal for our freeform bases, which have
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low initial connectivity and more complex features, neighboring microstructures

change continuously and are at least connected through the imposed lower feasible

bounds (Fig. 6.7).

(2) Because of the two-step blending scheme, the microstructures at the interfaces of

optimized classes are a union of the classes being mixed there, and the minimum

feature sizes of all microstructures match our prescribed lower limit of 4 pixels.

(3) The macroscale distributions, ξ̂(p), can be either dominated solely by one class

or contain mixtures of multiple classes. For example, the diagonal struts in the

truss MBB (Fig. 6.6a) consist predominantly of the second new class (blue), while

the horizontal bars contain both (red and blue), presumably to stiffen the design

at those locations. On the contrary, the two new classes in the freeform bridge

intermingle throughout nearly the entire structure (Fig. 6.9).

(4) Optimizing c
(m)
d can automatically determine if an existing basis class is sufficient

to achieve low compliance, or if a novel class needs to be created by fusing

several bases. For example, in the freeform MBB result (Fig. 6.7), the mixture

of the second and fifth bases stiffens the microstructures, improving the global

compliance of the FGS.

(5) Due to BESO, the global macrostructures are clearly defined and change based on

the basis classes and optimal microstructures, showing that the hybrid framework

works well.

Further observations can be made regarding the framework’s ability to adapt to

spatially-varying stress distributions. The first and fourth truss-type bases, and the first



178

and second for freeform, are the most popular classes by far, agreeing with our observa-

tion in Sec. 6.7.1.3 that these are among the strongest classes in diagonal and uniaxial

directions. In both beam and bridge examples, these classes are designed such that the

load-bearing features of the blended microstructures intuitively match the load paths.

In particular, our truss-type MBB beam result is akin to those in existing multi-

scale works with the same design domain. Ref. [80] performed an exhaustive two-scale

TO that optimized every microstructure, resulting in horizontal (uniaxial) and diago-

nal (anisotropic) features that are oriented with stress directions, and a compliance of

fc = 190. Meanwhile, Ref. [3] proposed a multiclass design with rectangular trusses

on the horizontal macro-bars, X’s on the diagonal macro-struts, and a compliance of

fc = 214.02. Our framework can be thought of as bridging these two methods. This is

indeed reflected in our 2-class truss result, which achieves a compliance value between the

two existing works, fc = 192.47, and has similar microstructures.

In terms of performance, truss basis classes outshine the freeform basis in both prob-

lems. We theorize that our freeform bases do not perform as well for two reasons. (1)

They were automatically chosen to maximize diversity, i.e., coverage, in shapes and prop-

erties, which undoubtedly can skip microstructures with properties that are more optimal

for these specific problems. (2) They contain complex, thin features that force their lower

feasible bounds to have high volume fractions (vmin = 0.28), which clashes with the low

target volume of 0.36 in the MBB problem.

Despite these disadvantages, however, the compliance attained by using freeform basis

classes is decent across both examples and near those of existing works, confirming the

versatility of diverse bases and our design framework. A deeper look into the MBB
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Table 6.2. Single-class MBB beam results using one freeform basis class
each.

Basis 1 2 3 4 5

fc 476.26 247.57 384.89 399.29 290.75

example also reveals that the multiclass freeform FGS (Fig. 6.7) still surpasses single-

class designs that vary only in volume fraction (Table 6.2).
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Figure 6.10. Truss MBB, 3-class result: optimal (a) weights and represen-

tatives of new classes, (b) ξ̂(1), ξ̂(2), ξ̂(3), v̂ from top to bottom, (c) multiclass
FGS.
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Figure 6.11. Freeform MBB, 3-class result: optimal (a) weights and rep-

resentatives of new classes, (b) ξ̂(1), ξ̂(2), ξ̂(3), v̂ from top to bottom, (c)
multiclass FGS.
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6.7.2.2. Effect of the Number of New Classes. With the effectiveness of the pro-

posed framework established, we now study whether increasing the number of new classes

to M = 3 can impact the designs and their performances. The problem definitions remain

the same as before. For the MBB beam, the 3-class results are given in Figs. 6.10 and 6.11

with the truss and freeform bases, respectively. The bridge results for both sets of bases

are combined in Fig. 6.12, where they are shown in black-and-white and with zoomed-in

views of the functionally graded topologies and volume fractions.

Figure 6.12. Results of 3-class bridge in black-and-white. For truss bases:
(a) optimal classes, (b) FGS, and (c,d) zoom-in views. For freeform bases:
(e) optimal classes, (f) FGS, and (g,h) zoom-in views.

The most notable result is the 3-class truss MBB, which achieves a compliance even

lower than the fully optimized design of Xia et al. at fc = 188.85. More apparent than

in the 2-class result above, it exhibits directional load-bearing features (Fig. 6.10) such
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as the left-to-right diagonal microstructures (red) and the near-uniaxial microstructures

(blue). In addition, the X-shaped class (green) appears mainly in the middle macro-strut.

Overall, our result distinguishes itself from those in literature with the mix of isotropic

and anisotropic microstructures that are all well-connected. A similar blend of directional

and uniaxial classes can be found in our 3-class truss bridge (Fig. 6.12a-d).

With the exception of the truss-type MBB, however, all 3-class results could not over-

take the compliance of their 2-class counterparts. We suspect this is because, for simple

compliance problems, additional classes are not necessary to achieve optimal performance.

Our hypothesis is supported by the new classes of the M = 2 examples: for the most

part, they are each monopolized by just one basis class. This suggests that, in most cases,

only two basis classes are needed throughout the entire FGS; if more are required, they

can be incorporated into a single optimal class by adjusting the values of c(m) without in-

creasing M , like in the 2-class freeform MBB (Fig. 6.7). Another reason could be that we

force the third class to be different from the others through the penalty on low diversity,

which can lead to the addition of a sub-optimal class. This scenario may have occurred

in the 3-class freeform MBB, where the first new class (red) is hardly present in the FGS.

Nevertheless, the penalty does not significantly worsen the compliance and can, in some

cases improve it. An intriguing possibility that bears further investigation is whether a

larger variety of microstructures are needed in problems with finer discretization or more

complex objectives.

Finally, we compare the computational efficiency of our proposed framework against

others, with the caveat that each method was run on different computers. The 40 × 16

MBB design is reported to require 200 hours in [80], and 5 minutes in the data-driven
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Table 6.3. MBB beam results without penalty on low class diversity (k = 0).
The dominant weights of each new class, c̃m, are in bold.

Basis M c̃m fc VGlobal VBESO

Truss
2

c̃1 = [0.00,0.39, 0.00, 0.27, 0.33]
c̃2 = [0.00, 0.05, 0.11,0.84, 0.00]

205.77 0.36 0.50

3
c̃1 = [0.00,0.36, 0.22, 0.12, 0.30]
c̃2 = [0.12, 0.12, 0.09,0.66, 0.01]
c̃3 = [0.23, 0.08, 0.16,0.53, 0.01]

212.83 0.36 0.54

Freeform
2

c̃1 = [0.00, 0.09, 0.00, 0.00,0.91]
c̃2 = [0.04, 0.14, 0.39, 0.01,0.43]

252.02 0.36 0.51

3
c̃1 = [0.01, 0.00,0.53, 0.00, 0.46]
c̃2 = [0.00, 0.45, 0.00, 0.00,0.55]
c̃3 = [0.00, 0.00, 0.00, 0.00,1.00]

248.84 0.36 0.50

method of [3]. For our proposed method, the same design using M = 3 new classes

takes under 12 minutes. However, we note that the majority of this time is consumed

by the bisection algorithm (Sec. 6.4.2), which ensures that the microstructures have the

optimized volume fractions when converted from SDFs (Eq. 6.11). This aspect of our

blending scheme could be improved in future works.

6.7.2.3. Effect of the Low-Diversity Penalty. The function that penalizes new classes

with low diversity (Eq. 6.10, Sec. 6.10) can affect performance, although whether that ef-

fect is positive or negative depends on the problem or basis classes. In this section, we

show concrete examples why the penalty is still recommended by running the same com-

pliance problems without the penalty, i.e., by setting k = 0. The results are listed in

Tables 6.3 and 6.4. Immediately, we can see that although the truss basis classes can still

achieve satisfactory compliance values lower than the existing baselines [3, 80], none of

these can beat our results above.
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Table 6.4. Bridge results without penalty on low diversity (k = 0). The
dominant weights of each new class, c̃m, are in bold.

Basis M c̃m fc VGlobal VBESO

Truss
2

c̃1 = [0.00, 0.22, 0.00,0.73, 0.05]
c̃2 = [0.00, 0.41, 0.00, 0.09,0.51]

96.59 0.50 0.65

3
c̃1 = [0.00, 0.18, 0.00,0.82, 0.00]
c̃2 = [0.00, 0.28, 0.00, 0.21,0.51]
c̃3 = [0.00, 0.45, 0.00, 0.00,0.54]

96.34 0.50 0.65

Freeform
2

c̃1 = [0.00, 0.00, 0.13,0.87, 0.00]
c̃2 = [0.03, 0.00, 0.06,0.91, 0.00]

105.90 0.50 0.65

3
c̃1 = [0.00, 0.00, 0.10,0.90, 0.00]
c̃2 = [0.00, 0.00, 0.09,0.91, 0.00]
c̃3 = [0.02, 0.00, 0.02,0.96, 0.00]

105.46 0.50 0.65

In the tables, we write the highest weight values of each new class, c̃m, in bold. From

this, we observe that each result is often overshadowed by one basis class (see the bold

values in the same column). For the 3-class designs in particular, the second and third

new classes are always dominated by the same basis, confirming our earlier suspicion that

M = 2 is enough to produce optimal results. We also note that there are numerous

low values of c̃m, signifying that multiple basis classes are being blended into the FGS

without improving the design performance. These results additionally imply that greater

diversity amongst the microstructure classes improves performance. A more meticulous

study on the impact of diversity on the generality and performance of design methods is

an intriguing path for future works.

Furthermore, it takes significantly longer for the class design variables to converge

without penalization. In the 2-class truss bridge example without the penalty, they often

fluctuate and need more than 100 iterations to start converging, whereas they are already

converged in under 30 iterations with penalization. These studies validate the benefits that
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our proposed low-diversity penalty function supply to MMA, helping it to stabilize, escape

local minima, and find more optimal solutions. It is possible that another optimizer, such

as globally-convergent MMA [222], could alleviate these issues but such an investigation

is outside the current scope of this work.
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Figure 6.13. For the 3-class truss MBB example: Convergence plots of the
class design variables, objective and global volume fraction with the pro-
posed penalty (a,b) and without (c,d).
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Figure 6.14. For the 3-class freeform MBB example: Convergence plots of
the class design variables, objective and global volume fraction with the
proposed penalty (a,b) and without (c,d).

To demonstrate the effect of the low-diversity penalty (Sec. 6.6.1) on convergence,

we compare the 3-class MBB examples using both the freeform and truss basis classes

(Sec. 6.7.2.2). This problem had the most difficulty converging to low compliance values.

The histories of the class design variables (which are the only variables used to compute
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the penalty), as well as the compliance objective and global volume constraint, are plotted

in Figs. 6.13 and 6.14.

The penalty on low class diversity has a significant impact on the convergence behavior

of the class design variables. They confirm our statement above that applying the penalty

can help the weights of the class design variables to converge more quickly, as well as

alleviate possible local minima (e.g., compare Figs. 6.13a and c). For the objective values,

we first note that the fluctuations here are mainly due to our volume lowering scheme

and the use of BESO, which is known to exhibit this behavior [216]. From these plots, we

observe that the penalty does not greatly impact the convergence overall but does help

reach lower compliance values.

6.7.2.4. Compliance Validation. In the previous sections, we presented the compli-

ance as calculated by numerical homogenization to directly compare our results to those

in literature. In Tables 6.5 and 6.6, we additionally report the compliance of our designs

performed using: (1) neural networks (same as during design), (2) numerical homoge-

nization (as shown in the main paper), and (3) fine mesh analysis using the multigrid

method [223] (for validation).

For MBB in particular, the homogenization-based compliance agree reasonably well

with the fine mesh analysis. In general, the numerical homogenization-based results,

fc,Hom, are slightly closer to the fine analysis values, fc,F ine, than the ones using the

neural networks, fc,NN , which is expected. However, the differences between fc,NN and

fc,Hom are not large, validating the use of our predictive models to accelerate the design

process.
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Table 6.5. Comparison of the compliance of our MBB results in Sec. 6.7.2.1
calculated by: neural network models fc,NN , numerical homogenization
fc,Hom, fine mesh analysis fc,F ine. For the homogenization-based values,
we also report the percent error from fc,F ine in parentheses.

Basis M fc,NN fc,Hom fc,F ine

Truss
2 187.41 (-13.44%) 192.47 (-11.10%) 216.50

3 199.74 (-4.56%) 188.85 (-9.76%) 209.28

Freeform
2 210.52 (-20.64%) 223.13 (-15.89%) 265.28

3 212.68 (-22.55%) 229.15 (-16.55%) 274.60

Table 6.6. Compliance of our bridge results in Sec. 6.7.2.2 calculated three
different ways, including the percent error from fc,F ine in parentheses.

Basis M fc,NN fc,Hom fc,F ine

Truss
2 90.00 (-34.92%) 92.22 (-33.31%) 138.29

3 92.59 (-31.70%) 94.74 (-30.12%) 135.57

Freeform
2 95.65 (-33.58%) 100.15 (-30.46%) 144.01

3 93.12 (-36.51%) 102.24 (-30.29%) 146.66

6.7.3. Shape Matching

Heterogeneous structures show great potential for applications where a specific deforma-

tion pattern is desired upon actuation, e.g., in form-fitting wearables and soft robots [28,

30, 37]. Motivated by these applications, we optimize two shape matching structures: (1)

the target sine-wave deformation profile shown in Fig. 6.15a, and (2) the bump profile in

Fig. 6.15b. The first is a cantilever discretized into 30×4 microstructures, fixed at its left

side and loaded with displacement boundary conditions on the right – the same example

we tested in [196]. The second is similar, but discretized into 40× 8. Like the compliance

examples, we will also use the truss and freeform basis classes with M = {2, 3}.
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(a) Target sine wave (30× 4) (b) Target bump profile (40× 8)

Figure 6.15. Problem settings of the shape matching examples.

In Chapter 5 and past works [1, 196], we found that these target displacement prob-

lems are similar to compliant mechanism design and most effectively solved via a two-stage

“top-down” approach that first utilizes inverse TO to find the target effective properties

for each microstructure. Departing from previous works, we use the proposed multiclass

blending framework in the second stage to optimize the new classes, c(m), their distribu-

tions, ξ(p), and the volume fractions, v, until the target properties are matched.

To find the target properties, i.e., the effective stiffness matrices CH
t , that achieve a

desired displacement profile, the first stage follows the method in Ref. [124] with following

problem:

(6.35)

minimize
CH

t

1

n
∥u− ut∥22,

subject to KU = F,

− ϕ(CH
t ) ≤ 0,

where u is the displacement vector of n nodes located on the horizontal centerline of the

structure, ut is the vector of target displacements of the same nodes, K is the global

stiffness matrix, and U and F are global displacement and loading vectors, respectively.

This inverse problem uses the stiffness matrices of each microstructure as design vari-

ables. To ensure that these are within the bounds attainable by shape blending, they are



189

constrained by the signed L2 distance field ϕ of the properties of the training data for the

neural networks (Sec. 6.5 and Fig. 6.4c and f).

After this, the multiclass FGS is optimized to meet the effective property targets by

leveraging our proposed blending scheme. Since we do not aim for a target volume here,

there is no global volume constraint and the macrostructure defined by x remains fixed.

The second stage of optimization is thus:

(6.36)

minimize
c,v,ξ

1

Nel

∥CH(c,v, ξ)−CH
t ∥22 + kfdiv(c),

subject to KU = F,

where the bounds on the design variables are the same as in the previous examples.

Due to the omission of x, it can be solved with just MMA. For the 2-class examples,

the penalization parameter is set such that kfdiv = 4 in the final iterations, while it is

kfdiv = 9 for the 3-class studies. The filter radii are rmin = 1.2 and rmin = 2.5 for the

sine and bump problems, respectively. The volume fractions are initialized at v = 0.5 in

every case, and all other parameters are the same as in the compliance examples.

The final multiclass FGS and their achieved displacement profiles (solid blue) are

gathered in Fig. 6.16 for the sine wave and Fig. 6.17 for the bump problem. In the plots

of the displacements, we also show the initial target profile, ut, used in stage one in dashed

green lines, along with profile realized by the optimized properties (dashed red), which

serves as an indirect target profile in the second stage.

We performed the same sine wave study in Chapter 5, but with a combinatorial method

for aperiodic designs, i.e., without functional grading. There, the lowest MSE that we

achieved was 0.1146, which most of our proposed multiclass FGS surpass. Interestingly,
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Figure 6.16. Results of the target sine wave problem.
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Figure 6.17. Results of the target bump shape example.

the freeform basis classes perform considerably better than the truss-types. The freeform

designs are composed mostly of the first basis, which we noted in Sec. 6.7.1.3 has one of
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the greatest effective Poisson’s ratios, as well as the fifth freeform basis, which has both

high stiffness and medium Poisson’s ratio.

Conversely, the truss-type FGS match the target bump profile more closely than the

freeform ones by utilizing the fourth (horizontal) truss basis. By inspecting the target

properties for each problem, we find that the sine wave requires middling values of both

Poisson’s ratio and stiffness throughout the FGS, which the freeform classes provide more

easily, whereas the bump profile needs distinct regions of either large x-directional stiffness

or high Poisson’s ratio, which the first and fourth truss classes meet exceptionally well (see

Fig. 6.4c and f). This observation portends a possible extension of our work where the

most efficient basis classes can be chosen to match the distribution of principal macroscale

stresses for specific problems, similar to the clustering methods in Refs. [224, 225].

Another intriguing note is that, by blending the last two truss basis classes, we can

form square microstructures that are not found in the original set (Fig. 6.16b). Moreover,

combining those two with the ’X’ basis creates microstructures with star-shaped voids

that are not strictly trusses. These are direct results of the weighted sum of SDFs in our

proposed blending scheme (Eq. 6.3), which can non-intuitively morph the basis classes to

achieve optimal performance.

6.8. Discussion

Our examples exemplify the advantages that multiclass shape blending can bring to

functionally graded design, but there are some finer points of discussion to unravel. The

first is whether the blending scheme, as we have formulated it, is viable. In particular,

we address whether the first step of our scheme is justified, since it can lead to complex
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or broken microstructures, and whether the second step, which requires pre-processing

and could accumulate additional cost, is scalable to high numbers of basis classes, D, and

other feasibility metrics.

Regarding the first step (Eq. 6.3), it is undeniable that a naive weighted sum can

compound the complexity of the features in the blended microstructure, such as some low

quality features like jagged edges or small holes. In our experience, this can be avoided

in several ways. (1) Higher resolution can be employed at the microscale, which does not

affect the dimensionality of the blending parameters. We use a relatively low 50 × 50

pixels since this is the native resolution of the open-source freeform dataset [124]. (2)

The basis classes could be simplified to suit the user’s desires. This is also an advantage

afforded by defining fixed bases, so that they can be swapped as needed. (3) Alternatives

to the weighted sum are possible, and we have tested numerous. For example, the lower

bounds, ΦL
d , in the soft-max union (Eq. 6.4) can be replaced with the weighted SDFs,

c̃dΦ
∗
d. In fact, we found that the weighted soft-max generates clean microstructures that

better preserve the original morphologies of the basis classes, as it is essentially a union

rather than an interpolation. However, it reduces the achievable shape and property

spaces significantly. The simplicity, generality for different design problems, and ability

to produce more diverse microstructures is why we elected for the weighted sum presented

in this work; there is much room, however, to explore the benefits of alternatives in future

works.

During the second step (Eq. 6.4), any costs from obtaining the lower feasible bounds of

each basis class, which only needs to be done once, and performing the soft-max union are

minimal compared to evaluating the global performance. Therefore, the number of basis
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classes, D, does not impede efficiency. However, we do observe two bottlenecks in our

current implementation: estimating the isovalue, te, of each microstructure to match its

given volume fraction, ve, and generating training datasets. For the former, we theorize

that the mapping between isovalue and volume is simple enough [36] to be surrogated by

a data-driven model, e.g., incorporated into our neural networks as a response, [CH
e , te] =

NN(ĉe, v̂e). This challenge could also be avoided by optimizing the isovalue field, t,

instead of v. To answer the latter challenge of the scalability of ML with respect to D,

we plan to explore more efficient, adaptive data sampling techniques in the future, such

as a task-aware framework [226].

A final question is whether multiclass blending truly creates smooth interfaces be-

tween neighboring microstructures. With our current method, we focus on simplicity

and ease of use, and can guarantee connectivity but not perfect interfaces. This could

be mollified by employing our current framework to problems with fine discretization

(which is likely in realistic applications) so that larger radii can be used in the smooth-

ing filters (Sec. 6.6). This also raises an interesting application of our blending method:

upscaling a low-resolution design to a finer one. Moreover, there is great potential for

further improvement without drastically changing our methods, such as using alternative

smoothing filters, extending nonlinear interpolation schemes (to replace Eqs. 6.6 and 6.7),

or constraining the distribution fields to change gradually. Nevertheless, we believe that

the formulations proposed herein achieve a balance of simplicity, creativity in terms of

microstructure designs, and high performance, as validated by the illustrative examples.
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6.9. Conclusions

In this chapter, we proposed a novel multiclass shape blending scheme that provides

a low-dimensional representation of microstructures for both design and DL, and a data-

driven multiscale design method that utilizes a hybrid of TO algorithms along with a new

penalty on low diversity designs. By integrating these, we created a multiclass FGS de-

sign framework that encapsulates the freedom of fully aperiodic structures while featuring

efficiency greater than that of typical multiscale methods. The key is the ability of shape

blending to blur the lines between classes, creating graded designs with novel microstruc-

tures beyond the initial basis classes. Even with classes that are not mutually compatible

or have complex features, continuous transitions between neighboring microstructures are

guaranteed.

Furthermore, feasibility constraints are incorporated into the scheme to ensure that

they are naturally met. In this work, we use a simple measure – minimum feature size.

However, defining the lower feasible bounds of each basis class outside of the optimization

process means there is potential for future works to incorporate other feasibility – or even

quality – metrics, such as those without cheap or tractable gradients.

We demonstrated these advantages through compliance and shape matching exam-

ples, in which blending empowered our FGS to surpass designs in literature. Our results

revealed that truss-type classes consistently achieve low compliance, and that diverse

freeform classes reach satisfactory performance across multiple applications despite be-

ing automatically chosen without considering their compatibility. We also discovered that

more is not always better when it comes to classes. By encouraging the design to converge

to a smaller number of diverse classes, as few as two can be blended to obtain optimal



195

designs. This outcome merits deeper exploration in the future on how diversity metrics

can benefit structural design.

Our framework is general in that it is not tied to the specific DL and TO methods

shown in this work. It is also not limited to our 2D classes, since multiclass blending is

independent of the topology, representation, dimension and resolution of the basis shapes.

This modularity is an especially welcome feature as more advanced prediction models and

TO algorithms emerge to solve complex multiphysics and nonlinear mechanics problems,

including 3D ones. Beyond the examples presented, our framework can be extended to

sought-after functionalities like thermo-elasticity, fracture resistance and energy absorp-

tion, and adapted to applications such as customized user products and architectural

design. We believe these are all exciting avenues for future works enabled by multiclass

shape blending.
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CHAPTER 7

Generative Deep Learning with Diverse Multiclass Data as

Seeds for Novel Multiscale Structures

7.1. Introduction

The intersection of structural design, a high dimensional problem, and deep learning

(DL), a technology to create mappings between shapes and properties in low dimensional

spaces, has recently enticed a burst of data-driven design research. In particular, hetero-

geneous multiscale structures, which are composed of neighboring microstructures that

differ from one another (i.e., aperiodic), benefit highly from this paradigm shift. With

applications in light-weighting, thermal conductivity, energy absorption [2, 177–179], soft

robots [30, 37], active airfoils [28] and more, they are highly desirable. To design heteroge-

neous structures, however, conventional design approaches such as topology optimization

(TO) suffer from several fundamental limitations that impede their capability of scaling

up to two or more scales. These underlying challenges include: (a) the “curse of di-

mensionality” induced from the nested multiscale design space, (b) difficulties ensuring

manufacturability due to geometric frustration between disconnected neighboring unit

cells, and (c) tradeoffs between the accuracy of full-scale physics-based simulations and

the lower cost of homogenization in critical nonlinear applications.
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To meet the first challenge, data-driven approaches exploit large databases of unit

cells on which DL models can be trained to predict the homogenized properties near-

instantaneously (typically with models such as Gaussian processes [3] or multilayer per-

ceptrons [71–73]) and/or to learn lower dimensional latent design spaces through genera-

tive models like variational autoencoders (VAEs) [1] and generative adversarial networks

(GANs) [70]. Subsequently, design synthesis algorithms can assemble the full multiscale

structure by leveraging these models. During this step, expensive microscale simulations

can be replaced with the aforementioned predictive models, thereby reducing the mul-

tiscale design to an equivalent single-scale problem (the so-called homogenization-based

approach) and resolving the “curse of dimensionality”. The learned latent representa-

tions can further aid in accelerating the design by transforming the microscale design

into a parametric one. Recent works have demonstrated that DL models can empower

data-driven methods to quickly explore complex design spaces and synthesize novel mul-

tiscale systems [1, 3, 70, 72, 73], achieving designs otherwise intractable via traditional

approaches.

Regarding the second and third challenges, data-driven approaches split down two

paths. On one side are the “top-down” frameworks [1, 34, 65, 66, 70, 72, 73], which include

two steps: 1) optimize the macroscale topology and spatial distribution of homogenized

material properties, and 2) retrieve the unit cells from either the existing dataset or

generate new ones from a trained model. To ensure that the neighboring microstructures

are well connected, strategies such as combinatorial search algorithms with compatibility

constraints [1], affine unit cell transformations [72], or smoothed transition layers [70]

are necessary. Although top-down methods can have considerable design freedom and



198

efficiency when trained on huge, diverse datasets (as in Ref. [1]), they have thus far been

confined to the realm of linear elasticity since obtaining optimal properties in complex,

e.g., nonlinear, applications is not trivial.

The opposite is “bottom-up” frameworks, which are rooted in conventional TO and

directly uses the geometric parameters at both the unit cell and macroscale levels as design

variables [3, 227]. Thus, rather than designing the macro- and micro-scales sequentially,

the two can be concurrently optimized. These approaches show promise in mitigating the

hurdles that their top-down compatriots face when accommodating nonlinear behaviors.

However, they are not without their own challenges. More specifically, they are limited

by similar restrictions as traditional multiscale TO, which, as mentioned above, suffers

from high-dimensionality and geometric frustration. To alleviate these, the heterogeneous

design is often limited to only a few pre-defined unit cell types, which leads to sub-optimal

solutions. For a review of conventional TO of heterogeneous structures, we refer the reader

to Sec. 6.2. Nevertheless, data-driven bottom-up methods should theoretically be able to

break out of the computational bottleneck and exceed conventional TO by leveraging the

capability of DL models. Due to the low number of bottom-up works, however, their

potential has yet to be realized.

This work fills a gap in the bottom-up scene by presenting a data-driven framework for

3D heterogeneous multiscale structures that not only has remarkable design freedom but

also high efficiency. Enabling more general and efficient synthesis, we propose a bottom-

up framework that uses diverse and quality multiclass unit cell data as seeds for novel

and realistic designs. Our method integrates a generative model that learns a unified

design space and is capable of generating novel unit cells in between existing classes. By
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performing multiscale TO in this low-dimensional multiclass space, designs with smoothly

graded neighboring microstructures can be created, combining the advantages of multiple

classes by, for example, optimally placing trusses, isosurfaces, or hybrids of both. We

show that our graded hybrid multiclass designs can achieve not only lower compliance

but also lower stress concentrations in linear elastic problems. An extension to a stress-

constrained design, which our method solves with ease, highlights the potential of bottom-

up frameworks in even more advanced problems with nonlinearity or even multiphysics.

Our work is a step toward bringing data-driven design of heterogeneous structures into

real-world applications.

7.2. Literature Review

Over the past few years, the engineering community has become more immersed in

using deep learning (DL) and computer vision techniques to accelerate design and dis-

covery. In data-driven topology optimization (TO) of multiscale structures specifically,

significant speedup to design has been achieved by training a regression model to replace

the costly homogenization analysis of unit cells [3, 71–73, 128, 186]. However, through

this alone, few have demonstrated that the data-driven approach can design structures that

conventional TO methods cannot when given enough computing power. Instead, recent

research have begun to harness pre-computed unit cell datasets in an emergent approach:

generative deep learning (DL). Generative models learn an approximate probability dis-

tribution of high dimensional real data in a low dimensional latent space, and a mapping

from said latent space back to the real data space. By sampling the probabilistic latent

space, new yet realistic data can be generated. For design, generative models proffer a
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double-edged sword: it can both reduce the dimension of the design space via the latent

variables and produce a wide variety of novel designs. These alluring neural network-

based models, e.g., multilayer perceptrons, VAEs and GANs [228–237], can be trained to

synthesize designs by learning from a dataset of shapes and have, understandably, caught

the attention of the TO community. To understand the state-of-the-art and challenges of

generative learning-based multiscale design, we provide a brief history of the rise data-

driven design in TO, from single-scale to multiscale methods, then review the gaps in the

status quo with regard to “bottom-up” design.

7.2.1. Deep Learning for Topology Optimization: A Brief History

DL for TO first appeared in 2017 in the work of Sosnovik and Oseledets. A 2D fully

convolutional neural network (CNN) was trained to skip the final iterations of conventional

TO, when the topology does not change by much [238]. In other words, it predicts the

converged solution of a partially optimized topology. It was extended to 3D not long

after [239]. Note that neither of these models are generative.

Unfortunately, this approach is quite impractical as TO must still be run for several

iterations before the DL model can be used; it merely reduces TO iterations by post-

processing an intermediate result. Also, each sample in the training dataset is obtained by

solving a traditional TO problem. In other words, generality is low since, when the design

objectives and boundary conditions change, the entire dataset needs to be regenerated and

the model re-trained. These generalization issues, along with physical and manufacturing

feasibility, are reoccurring challenges in DL for TO.
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In an attempt to increase the generality of the DL model, another early work included

the load and boundary conditions as inputs to their CNN encoder-decoder [240]. It also

added a conditional GAN (cGAN) that upscales the low resolution output of the CNN

to a higher resolution. Meanwhile, Li et al. trained a GAN to generate low resolution

solutions, then also used another GAN in the upscaling stage [241]. Rather than training

a secondary model to improve the quality of the solution, some works skip any post-

processing [242], or employ a threshold filter for binarization [243]. Unlike Sosnovik’s

method, no optimization is required to predict near-optimal solutions for any of these

works—hence the term “design without any iterations”. However, to produce a solution

for the design objective, e.g., compliance minimization, the training data are generated

by solving TO problems with the same objective. Furthermore, they suffer from solutions

with blurry or disconnected members that are neither physically feasible nor manufac-

turable.

Another problem that can arise in GAN-based methods is mode collapse, in which

the generator fails to generate diverse samples from all modes in the training dataset’s

probability distribution. This is due to the competition between the two networks that

are trained simultaneously, the discriminator and generator. Since the generator tries

to create synthetic samples that can fool the discriminator into thinking that they are

real, it can become focused on learning to generate very realistic data from one mode

while ignoring other modes. For example, in Ref. [244], the authors trained a cGAN

that was conditioned on the volume fraction, meaning that they should be able to gener-

ate structures with a chosen volume fraction. However, their model could only produce

structures with a volume fraction close to 0.4 no matter what value was requested. A



202

modified architecture and different training strategy was able to alleviate the mode col-

lapse challenge [243], but nevertheless, this work demonstrates the difficulty in training

GANs.

Even though the generative models above propose intriguing replacements to the tra-

ditional TO method, their practicality is difficult to prove since the models are limited to

one objective function and a small set of boundary conditions. They struggle to achieve

manufacturing feasible solutions even for simple problems such as compliance minimiza-

tion, which can be easily solved by TO without the overhead of generating a database.

While the early works above focus on single-scale TO, these challenges in generality, feasi-

bility, and mode collapse carry over to multiscale design as well. The framework proposed

in this chapter will addresses them through new data acquisition and design synthesis

techniques.

7.2.2. “Bottom-Up” Data-Driven Design: Optimization in Latent Space

Unlike the above, an arguably more reusable generative model, which can be trained only

once and applied to a broad array of problems, is one that is not restricted to a specific

objective. One promising avenue to achieve this is to perform design in a latent space

learned by a generative model, essentially turning TO into parametric optimization where

the design variables are an abstract representation of the shapes, i.e., the latent variables.

Of course, this assumes that a solution to new objectives or target properties can be found

and reconstructed from the latent space, and therefore depends on the coverage of the

generative model, which is in turn contingent on the diversity and quality of the training

data.
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A few works have touched upon this challenge in designing single-scale structures. For

example, in Ref. [245], data was collected by running a single objective TO for each sample,

similar to the works in the previous section. Instead of directly obtaining a solution, a

style transfer VAE was used to optimize multi-objective problems more complex than the

ones solved for data generation. However, the resolution and quality of the reconstructed

structures were less than appealing.

Rather than applying TO to generate training data, some works demonstrated far more

flexible and reusable generative models by populating the database using parametric or

stochastic shape variation without optimization, or by sourcing their data from online

repositories. Utilizing an open source dataset of real airfoils, Chen et al. trained a

modified version of InfoGANs that allowed them to maximize the lift-to-drag ratio [246].

Without new data or re-training, their generative models can be used again to optimize

airfoils for other objectives. Later, the authors extended their approach to include both

performance-based and shape diversity-based metrics in their GAN model’s loss function,

allowing them to generate high-performance, new airfoils outside of the space of the

training data [217]. In Ref. [247], training shapes were generated by randomly varying

the number, locations, and dimensions of holes. Doing so enabled the authors to use VAE

models to inversely design initial designs that can achieve the desired final shapes for

two different applications, diffusion-induced morphology changes in microfabrication and

mask synthesis in photolithography.

All of the works above, with the exception of Ref. [239] and the newer Refs. [69, 70,

248], are in 2D due to the drastic increase in cost of 3D problems. Besides these, one

of the first 3D generative model-based design methods is that of Zhang et al., who used
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airplane CAD models from the ModelNet40 database to train a variation shape learner

(VSL), a hierarchical VAE that learns latent variables which encode both global and local

features [249]. By leveraging the VSL, they designed 3D gliders that can hit a target when

launched at a given speed and angle. Moreover, the VSL-based optimization was able to

suggest a diverse set of generated designs that meet targets similar to the performance

of the training data. For targets outside of the performance of the training data, their

model was still able to generate designs that were close to the criteria, demonstrating the

potential of DL to explore beyond the original design space.

With respect to metamaterials, unit cells were inversely designed to meet target optical

responses in Ref. [68]. Their data was generated starting from three geometry classes

that are commonly used in the photonic field: cross, split ring and h-shapes. A diverse

dataset was created by randomly changing the length, width, offset and rotational angles

of the shapes, as well as by random shape distortion. In addition, a VAE and a semi-

supervised forward model that predicts the optical properties for latent variable inputs

were simultaneously trained. Most interestingly, for certain target optical responses, the

optimized shapes did not belong explicitly to any of the classes in the training set—rather,

they were either mixtures of the original classes or new shapes beyond those existing.

This result has momentous implications for the generative design and discovery of new

metamaterials.

Since Ma et al.’s work, attention on generative models in metamaterials and multiscale

structural design have risen anew. Notable new research are Refs. [1, 69, 70, 248]. Yet,

none of these are “bottom-up” frameworks that utilize the latent vectors of the trained

models as design variables. Rather, most use inverse (“top-down”) design methods to first
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identify the optimal mechanical properties of each microstructure, e.g., the homogenized

stiffness tensors, displacements, or volume fractions, then generate the microstructural

topologies that suit those targets. Such approaches are more flexible in terms of ensuring

the connectivity of designs, from restricting the training data to pre-defined, compati-

ble microstructures [248] and a few function-based isosurfaces [70], to using constrained

combinatorial search [1] and model-based post-processing [69].

We argue that “bottom-up” approaches are more promising in the long term for real-

world applications, where the problems are no longer linear and static but instead nonlin-

ear, and possibly dynamic or multiphysics. In such cases, it becomes a challenge to find

the optimal properties of each microstructure, whereas “bottom-up” can leverage well-

established methods in the conventional TO field, e.g., Refs. [80, 177, 250]. Moreover,

it has been suggested that gradual geometric changes may alleviate the error from the

homogenization assumption and improve manufacturability [50, 60]. Recent advances in

TO [60, 61, 63, 194, 195, 251] can be borrowed to control the connectivity of heterogeneous

structures more effectively than in the “top-down” approaches. However, integrating these

techniques in “bottom-up” generative model-based methods has, to our best knowledge,

not yet been addressed in literature. Therefore, it is critical to develop new methods

that can leverage the generative and efficient capabilities of deep learning models in a

“bottom-up” manner.

7.3. Contributions

In previous works, we showed that a smaller yet diverse subset of unit cells improves

the scalability of data-driven algorithms as well as the performance of heterogeneous
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designs (Chapter 5 [196]), and that multiclass, functionally graded structures provide

an advantageous trade-off betweeen design performance and efficiency (Chapter 6 [252]).

However, those core ideas have not yet been pushed to more challenging but necessary

goals: a) ensuring that the datasets contain unit cells that are beneficial to functional

grading in terms of geometry, b) increasing the applicability of the same DL models to

general design cases, and c) performing multiclass, functionally graded design synthesis

in 3D.

Figure 7.1. Concept of the proposed framework, which addresses challenges
in multiclass data acquisition, unit cell representation, and multiscale design
synthesis.

Our solution to the first challenge is to acquire a quality-augmented diverse subset by

extending our probabilistic selection algorithm, METASET (Chapter 5 [196]), to include

quality metrics on top of similarity metrics. The quality measures we devise can ease

the training of our generative model and increase the feasibility of the functionally graded

structures we achieve. To integrate morphology types that traditionally have very distinct

representations (e.g., bar-and-node trusses and level set function-based isosurfaces) into
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one data acquisition step, any unit cell can be converted into a signed distance field (SDF),

a discretized grid whose elements indicate the distance from that location to the nearest

surface, and the similarity between any two SDFs can be calculated based on, e.g., mean

absolute error, to form a class-agnostic diversity metric.

To address the last two challenges, multiple disjointed design representations are con-

solidated under our framework by creating a 3D multiclass dataset and training a genera-

tive DL model to create a unified latent design representation. Given the subset of diverse

and quality seed (i.e., basis) classes above, a large shape dataset of unit cell geometries

can be quickly created by using multiclass shape blending (Chapter 6 [252]), bridging the

truss and isosurface classes through continuous interpolation. This blended dataset allows

common generative models found in open source codes to be directly used to learn the

multiclass shape space. Leveraging the latent shape representation as design variables, a

neural network can be trained to predict the effective properties of newly synthesized unit

cells, and concurrent multiscale TO can be harnessed to design both the macrostructure

and heterogeneous microstructures.

With this framework, shown conceptually in Fig. 7.1, functional grading between

neighboring microstructures is guaranteed even when multiple morphology types are

present in the design. In volume- and stress-constrained compliance minimization case

studies, we discover that the typical strategy in literature to directly optimize the latent

variables of each microstructure is not sufficient to provide a smoothly graded design when

searching through an expansive, multiclass shape space. We therefore propose that the

multi-material interpolation scheme from Chapter 3 can be extended to be a multiclass
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scheme. It becomes a simple yet highly effective method to perform optimal multiclass in-

terpolation in latent space, not only speeding up the optimization runtime but also guiding

the shapes of neighboring microstructures to change continuously, even between disparate

classes. Furthermore, by guaranteeing superior connectivity, we can create designs with

lower maximum von Mises stress.

7.4. Creation of Multiclass Blended Dataset

To demonstrate our multiclass framework, we choose truss- and isosurface-type classes

because the former is popular in literature for high strength-to-weight ratio [253], while

the latter is well-known to exhibit high energy absorption due to their amenability to

functional grading [51]. Our approach is driven by a generative model that learns on

shape data only. However, it is critical that our training dataset includes unit cells that

are not only diverse in shapes and properties (to increase generality) but also high quality,

i.e., beneficial to the performance of the design (to decrease infeasible design regions

that waste resources). In addition, we wish to be able to generate new unit cells that

are interpolations of their neighboring microstructures, since this will facilitate smooth

grading. Therefore, our data acquisition strategy follows three stages. First, we focus on

efficiently collecting a large set of truss and isosurface shapes, which is accomplished by

leveraging crystallographic rules that have already enumerated all possible symmetries in

a cubic domain. Second, we extend our previous work, a probabilistic subset selection

algorithm called METASET (Chapter 5 [196]), to distill a high quality subset of 50 trusses

and isosurfaces that are also diverse in shapes and properties. Finally, we leverage a

multiclass shape blending scheme with guaranteed self-connectivity (Chapter 6 [252]),
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to quickly interpolate each pair of basis classes, acquiring a shape dataset of trusses,

isosurfaces, and hybrids of both. The unit cells of the final training dataset are represented

as 64 × 64 × 64 signed distance fields (SDFs), and all properties are evaluated assuming

a constitutive material with a Young’s modulus of 1 and a Poisson’s ratio of 0.3.

7.4.1. Acquisition of Isosurface Unit Cells

In Chapter 5 [196], we proposed that crystallographic structure factors, which describe

how particles are arranged in a crystal unit cell, can be leveraged to quickly gather

isosurface classes. These structure factors are similar, and in some cases, identical to the

classical triply periodic minimal surfaces (TPMS) found in many multiscale designs [36,

134, 141]. All possible arrangements of crystal structures can be described by these

equations, and have been derived in Ref. [174]. We generated a total of 294 cubic structure

factors; however, as we noted in our past work [196], this dataset is imbalanced and

contains many redundant shapes that, if used directly, could decrease the efficiency of

data-driven design. Hence, we wish to increase the diversity of isosurfaces in our final

dataset.

7.4.2. Acquisition of Truss Unit Cells

Similar to our work using crystallographic structure factors to derive isosurfaces, Lumpe

and Stankovic [253] generated thousands of truss unit cells by treating the bonds between

the atoms of a molecule as structural bars. Their collection of crystal-like trusses is

provided publicly as lists of nodal positions and bar connectivity. Since their dataset

contains all possible symmetry groups, e.g., triclinic, we extracted only the 3, 270 cubic
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ones. Many of these, however, are very intricate structures with hundreds of bars. Such

trusses add little value to our dataset in terms of both design (they are limited to a small

range of volume fractions, i.e., radii of their bars) and DL (complex geometries could

make our model harder to train well). For this reason, we need to ensure that only the

truss classes with high geometric quality are present in the final dataset.

7.4.3. Quality-Augmented METASET for Multiple Design Representations

Compiling the two initial isosurface and truss datasets above gives us an imbalanced, low

quality and relatively small training set for generative DL. We now seek to improve its

diversity, quality and size efficiently.

7.4.3.1. Measuring Similarity Between Unit Cells with Different Representa-

tions. Intuitively, a diverse set contains items that are not similar to each other; to select

a subset with maximum diversity, then, one can minimize the similarity between each pair

of items. This is the core concept of METASET, our approach to autonomously select

diverse subsets (more details to follow in Sec. 7.4.3.3).

Clearly, to perform subset selection, one first needs to quantify the similarity between

any two unit cells, which can be accomplished using:

(7.1) Sij = exp(−0.5 d(i, j)2),

where d(i, j) is the distance between the i-th and j-th unit cells.

The existing approach in Chapter 5 [196] calculated d(i, j) using the Haussdorff dis-

tance and the latent vectors of an autoencoder trained on the ground dataset in question.

However, Haussdorff distance is relatively expensive in 3D, and the autoencoder is out of
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the question here, since we cannot ensure its accuracy when trained on the initial, imbal-

anced, low-quality multiclass set. Nor do we want to add another model to train in this

pipeline. Rather, we propose a simple solution: convert all trusses and isosurfaces into

signed distance field (SDF) representations. We use geometry projection [203], which is

used in TO methods, to handle the conversion from truss bars and nodes to SDFs. Since

isosurfaces are already described as level set surfaces, there is no need to convert them.

However, we regularize the SDFs of all unit cells using the fast marching method [221]

and set their isovalues so that they all have volume fractions of v = 0.4, such that they

can be compared on equal footing.

Subsequently, our class-agnostic distance metric is the mean absolute error between

SDFs:

(7.2) d(i, j) =
N∑
n

|Φi −Φj|,

where Φi and Φj are the SDFs of the i-th and j-th unit cells, respectively, and N is the

total number of SDF values in each shape.

As for similarity in the property space, no special treatment is necessary since the ho-

mogenized stiffness tensor of all unit cells, regardless of their traditional representation,

can be calculated the same way. We use the energy-based homogenization method [88],

then take property similarity using Eq. 7.1 and the Euclidean distance between the vec-

torized stiffness tensors of the i-th and j-th unit cells. Note that we only calculate the

property once for each class for the unit cell with volume fraction equal to v = 0.4.

Following the approach in METASET, we measure the joint coverage in both spaces

by taking a weighted sum of the two similarity matrices, allowing the trade-off between
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diversifying in shape or property space to be tuned:

(7.3) S = (1− w) · SP + w · SS,

where S, SP and SS are the kernels for the joint, property and shape similarities, respec-

tively, and w ∈ [0, 1] is a weight parameter.

7.4.3.2. Quantifying Geometry-based Quality. To design successful heterogeneous

structures, we propose a few quality metrics based on geometry, which will later be in-

corporated into METASET (Sec. 7.4.3.3) to automate the selection of high quality unit

cell classes. We base these metrics on ease of calculation and quantifiable features that

will improve our target designs and 3D generative models, but could be applicable other

problems outside our studies.

For functionally graded structures, it is advantageous to incorporate unit cell classes

with a wide range of feasible volume fractions, which we define as the range over which a

unit cell is neither broken nor containing internal voids. Once represented as SDFs, it is

relatively straightforward to find a class’s feasible range by using the bisection algorithm.

In other words, we can find the range by evaluating whether the solid elements of a unit

cell Φ− t ≤ 0 is feasible or not over isovalues t between [0, 1]. The first quality metric is

then

(7.4) q
(1)
i = vfr,

where vfr is the feasible range of unit cell i.

To eliminate overly complex trusses, we penalize those with high number of bars,

Nbar. However, initial experiments indicated that some complexity is needed to cover
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wider property spaces. For example, unit cells with higher average connectivity index,

Za, which corresponds to the average number of bars connected to a node, have been

shown to be more rigid [253]. Therefore, we force these two measures (both provided

by the open source dataset) to compete during subset selection by introducing two more

quality metrics:

(7.5)
q
(2)
i = 1−Nbar/Nbar,max,

q
(3)
i = Za/Za,max.

For isosurface classes, only the first is used (qi = q
(1)
i ), while the mean of all three is used

for trusses (qi = (q
(1)
i + q

(2)
i + q

(3)
i )/3). The vector of these values for all unit cells will be

known as the quality vector.

7.4.3.3. METASET: Subset Selection Algorithm. With all of the classes converted

to SDFs, from which we can calculate the similarity kernels and quality vectors, we can

now down-select a smaller yet diverse and high quality subset. Briefly, we introduce how

to select subsets of unit cells based on diversity only using our prior work, METASET

(Chapter 5 [196]). Earlier, we mentioned that diversity measures the volume that a set

occupies in a continuous space. Determinantal Point Processes (DPPs) allow us to capture

this quantitatively by modeling the probability of selecting any subset of items, M , as

related to the determinant of a positive semi-definite similarity kernel matrix, S:

(7.6) P(M) =
det(SM)

det(S + I)
,
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where SM ≡ [Sij]ij∈M is the submatrix of S with entries indexed by elements of the subset

M , and I is an N×N identity matrix. Intuitively, then, a larger determinant of SM means

that the subset covers a larger volume and is hence more diverse.

Another benefit of using DPPs is that the log determinant of the positive semi-

definite matrix joint similarity kernel, i.e., f = log[det(SM)], is submodular. This means

that greedy algorithms such as the one used in METASET can optimize this objective

with the best possible polynomial-time efficiency. We encourage the reader to refer to

Refs. [153, 154, 196] for more theoretical details on DPPs, and Refs. [153, 196] for the

greedy algorithm.

This work extends METASET to include quality on top of diversity during subset

selection. The decomposition of a DPP kernel into diversity and quality parts can be

written as [154, 217]:

(7.7) Lij = Sij

(
qiqj

)γ
,

where Lij is the quality-augmented diversity kernel and γ ≥ 0 is a parameter that allows

the weight of quality to be tuned. At γ = 0, Lij is equivalent to including only the

similarity kernel, Sij, and at high values of γ, the algorithm will focus primarily on

selecting high quality data. Thus, by greedily maximizing f = log[det(LM)] using the

METASET algorithm, we can select a subset is that both diverse and high quality with

respect to the metrics we have defined.

7.4.3.4. Results: Diverse and Quality Multiclass Seeds. Starting with the ground

dataset of 294 isosurfaces and 3, 270 trusses, we utilize the quality-augmented METASET

algorithm to select subsets that will then serve as our seeds, or basis classes, for novel
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(d) γ = 2.0

Figure 7.2. Histograms of the geometric features of basis classes selected
by quality-augmented METASET. At γ = 0, the algorithm focuses only on
shape and property diversity. As γ increases, METASET selects more high
quality classes. This can be seen in the shift of the feasible volume fraction
ranges toward the right, while number of bars and Za move left.

multiclass designs. We investigate the effect of the tuning parameter on quality, γ. For all

experiments, we fix the parameter on joint diversity to be w = 0.5, which weights shape

and property equally. In Chapter 5 [196], we discovered that diversity in properties can

aid in design performance while shape diversity can lead to superior connectivity. We

also use subsets of 50 basis classes, since this large size both ensures that we will have
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many choices for the later design synthesis, i.e., large design freedom. It is also a size

that has never before been attempted in bottom-up data-driven approaches, and hence

will provide an appropriate litmus test for the capability of our proposed framework.

Fig. 7.2 validates that, as γ increases, METASET puts more and more emphasis on

selecting high quality classes, i.e., those with high quality metric values. We observe

that the feasible volume fraction ranges of both trusses and isosurfaces shift towards the

right, or higher ranges, which we defined as valuable. Meanwhile, the number of bars

and average nodal connectivity, Za, of trusses shift to the left, decreasing as desired. We

affirm this visually as well. In Fig. 7.3, we show the top 20 classes selected for different γ

values. Once again, as γ increases, complex trusses are pushed out of the top rankings,

while more isosurfaces, which tend to have higher feasible volume ranges, are included.

(a) γ = 0.0

(b) γ = 0.5

(c) γ = 1.0

(d) γ = 2.0

Figure 7.3. The top 20 unit cell classes chosen with different quality tuning
parameter, γ. Red are isosurfaces while blue are trusses.

In addition, we plot the tradeoff between diversity and quality as γ changes in Fig. 7.5.

We make an important note: although it appears that when γ > 0.5, the subsets seem to

be of high quality and low diversity, it is deceptive because we have chosen a large subset
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Figure 7.4. The final quality-augmented diverse subset of basis unit cell
classes (size 50, k = 0.5, γ = 1.0). Red are isosurfaces while blue are
trusses.
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Figure 7.5. The trade-off between the joint (k = 0.5) diversity and quality
scores as the tuning parameter γ is increased from 0.0 to 1.0 in equal in-
tervals. The scores are normalized by the maximum value over all subsets.
The number of items in each subset is 50.

size of 50, for which the diversity score is unavoidably low (it was found in Refs. [153, 196]

that diversity diminishes quickly as the number of items increases). However, this does
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not mean that the subsets have no diversity: see Figs. 7.3 and 7.4 for the shapes and

Fig. 7.11a later for the properties.

Given that high quality subsets with larger γ values are able to better suppress the

undesirable, complex trusses, we choose to use γ = 1.0 for the rest of our work. The final

subset of 50 truss and isosurface basis classes are illustrated in Fig. 7.4. Despite the fact

that we did not focus entirely on shape diversity (e.g., use k = 0, γ = 0), we can confirm

that there is still a satisfactory variety of shapes.

7.4.4. Dataset Expansion with Multiclass Shape Blending

Using the 50 basis classes, we can now expand the shape dataset into a large one suitable

for multiclass generative learning. To do this efficiently, we leverage the shape blend-

ing scheme from Chapter 6 [252]. The scheme performs a weighted union of multiple

SDFs, generating new unit cells while guaranteeing feasibility (i.e., self-connectedness)

and smooth grading between other unit cells with similar weights. It is modified slightly

for this work to blend only two classes at a time, and is written as:

(7.8) Φ =
1

β
log

{
exp

[
β
(
(1− c)Φ∗

i + cΦ∗
j

)]
+ (1− a) exp

(
βΦL

i

)
+ a exp

(
βΦL

j

)}
− t,

where {i, j} are any two pairs of basis classes, c is the weight parameter, Φ∗ is the SDF of

a class at volume fraction v = 0.4, ΦL is the SDF at the lower feasible bound of a class,

which is enforced to maintain the feasibility of the generated shapes, and t is the isovalue.

Both Φ∗ and ΦL have already been found earlier using the bisection algorithm. Since we

do not need the blending scheme to be differentiable (we will not use it directly during
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design synthesis), we set β to a high value of 128, and define a = (c ≥ 0.75) as a binary

parameter that “activates” the lower bounds of at least one class.

Figure 7.6. Random unit cells from the training dataset created by blending
the basis classes in the quality-augmented diverse subset.

We blend only pairs of basis classes {i, j} and sample the parameters of Eq. 7.8

relatively sparsely for two reasons. One is to create the training dataset as efficiently

as possible; therefore, we avoid sampling the entire combinatorial space of 50 classes.

Another is we assume that WGAN-GP should be able to fill in any gaps once it is trained.

For each pair, we sample just 5 equally spaced blending weights, c, between (0, 1), and for

each value of c we sample 10 values of t to obtain unit cells of different volume fractions.

With this process, we obtain a training set of 61, 700 multiclass blended unit cells covering

trusses, isosurfaces, and hybrids. Random shapes from this set are plotted in Fig. 7.6.
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7.5. Multiclass Generative Model

Following the creation of a large dataset of multiclass blended shapes, we use gen-

erative models to compress the shape design representation, and to allow the synthesis

of novel unit cells interpolated from the seed basis classes. We hypothesize that the

blended training data will guide the models to learn interpolated hybrids without much

time-consuming customization and tuning. In this work, we implement the Wasserstein

generative adversarial network with gradient penalty (WGAN-GP) [254], a stabler varia-

tion of GANs that can also aid in avoiding mode collapse. To underscore its generative

capability, we also compare it visually against a variational autoencoder (VAE). For both,

a latent dimension of 10-D are used, which decreases the design dimensionality consider-

ably compared to the combinatorial space of 50 basis classes.

7.5.1. Wasserstein Generative Adversarial Network with Gradient Penalty

The typical vanilla GAN [255] contains two networks. One is a generator G that generates

a sample X̃ ∈ RD when given a noise vector z ∈ Rdz drawn from a prior distribution

Pz. Therefore, X̃ = G(z). Second is a discriminator D, which is a classifier that discerns

whether any given samples are from the real distribution (i.e., training data) or generated

by G(z) (i.e., fake). Training of both components is performed as a minimax optimization,

where D minimizes the classification error and G maximizes the chance of tricking D into

thinking that a generated sample is real. The objective is written as

(7.9) min
G

max
D

V (D,G) = EX∼Pdata
[logD(X)] + Ez∼Pz [log(1−D(G(z)))],

where Pdata is the training data distribution.
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Over the course of training, the networks learn a highly nonlinear mapping from z to

X̃, which can also be considered nonlinear dimension reduction if the dimensionality of

z is much lower than that of D. A well-trained generator, G, can transform any random

latent (noise) vector z ∼ Pz to a new and realistic sample. Thus, the latent vector z can

serve as a compact representation of the generated shape, X̃, and can be leveraged as

design variables.

However, vanilla GAN’s training process is notoriously unstable since minimizing the

divergence between the training data’s and generated samples’ distributions is not con-

tinuous with respect to the generator’s parameters [254, 256]. To sidestep this problem,

we can utilize a Wassersterin GAN with gradient penalty (WGAN-GP) [254]. Instead

of a discriminator that classifies synthetic data as real or fake, WGAN-GP uses a critic,

which predicts the Earth Mover’s (Wasserstein-1) distance between the distributions of

the training and generated samples. Under mild assumptions, the Earth Mover’s distance

is continuous and differentiable almost everywhere, making the objective:

(7.10) min
G

max
D∈D

W (D,G) = EX∼Pdata
[D(X)]− Ez∼Pz [D(G(z))],

where D is the set of 1-Lipschitz functions. In order to satisfy 1-Lipschitz continuity,

the gradient should be less than or equal to one everywhere. This is accomplished in

WGAN-GP by constraining the gradient norm of the critic’s output with respect to its

input. The following gradient penalty term is added to the objective:

(7.11) R1(D) = EX̂∼PX̂

[(∥∥∥▽X̂D(X̂)
∥∥∥
2
− 1

)2
]
,
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where X̂ is sampled uniformly along straight lines between pairs of points sampled from

the data and generator distributions. The final objective of WGAN-GP is then:

(7.12) min
G

max
D

W (D,G)− λR1(D),

where λ is the weight of the gradient penalty term.

7.5.2. Architecture and Training Details

The architecture of our multiclass WGAN-GP is depicted in Fig. 7.9. The generator takes

in the 10-dimensional latent vector and, through several deconvolutional layers, scales it

up to a 64 × 64 × 64 SDF – a synthetic unit cell. Meanwhile, the critic passes a unit

cell SDF through convolutional layers. We use leaky ReLu activations as indicated in

Fig. 7.9, and each has a negative slope coefficient of 0.2. Each batch normalization has

a momentum of 0.9. The model was trained using TensorFlow for 50,000 iterations with

a batch size of 16 and an Adam optimizer with α = 1e-4, β1 = 0.5, and β2 = 0.999. We

keep the generator constant while updating the critic through the following schedule: in

each iteration, the generator is trained once while the critic is trained five times. This

allows the critic a chance to learn the generator’s “flaws”.

For comparison, we also train a VAE. In this case, the encoder has six convolutional

layers and one fully connected final layer, and the decoder contains two fully connected

layers followed by seven deconvolutional layers. Each leaky ReLu activation in the VAE

has a negative slope coefficient of 0.2, while each batch normalization has a momentum

of 0.9. The model was trained for 50,000 iterations with a batch size of 16. RMSProp

was used as the optimizer with a learning rate of 1e-3.
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(a) WGAN-GP (b) VAE

Figure 7.7. Random unit cells synthesized by two generative models: (a)
WGAN-GP and (b) VAE. WGAN-GP is more capable of generating unit
cells that resemble “real” shapes (i.e., training data).
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Figure 7.8. Binary cross entropy of recovered basis and unseen blended unit
cells. A value of around 1.0 or less is a great fit in our experiments.

7.5.3. Shape Space Coverage

Once both models are trained, we examine which one, WGAN-GP or VAE, can best

capture the multiclass space, i.e., generate realistic unit cells that most resemble the
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Figure 7.9. Architecture of the WGAN-GP model.
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training data. Fig. 7.7 compares random synthetic unit cells generated by each model.

It is quite clear that WGAN-GP is able to create a wider variety of unit cell geometries

over an array of different volume fractions, while VAE mainly sticks to two archetypes

with similar volume fractions. We can assume that VAE failed to learn the underlying

multi-modal distribution while WGAN-GP successfully escaped mode collapse. By a wide

margin, WGAN-GP is the best model to use in our design framework.

We also test the ability of WGAN-GP to recover the 50 basis classes, as well as 50

unseen blended unit cells, i.e., those that were not present in the training set. To do

this, we first generate 16, 000 random synthetic data by sampling z ∈ [0, 1] uniformly. A

random subset of these were shown in Fig. 7.7a. To create the unseen shapes, we use a

space-filling design of experiments method called optimal Latin hypercube [137] to sample

the indices of pairs of basis classes to blend, {i, j}, the blending weight c, and the isovalue

t. The values of c and t are different from those used for the training data.

For each of the basis and unseen shapes, we search through the 16, 000 synthetic

dataset to find the generated shape that minimizes the binary cross entropy, a metric

typically used in classification problems to predict the probability of a new shape being

the same as a target one. In our experiments, we found that an entropy value of around

1.0 indicates that the synthetic and target shapes match very well. The minimum entropy

values are plotted in Fig. 7.8, where we see that the majority of the basis classes are well

represented in the synthetic dataset, and that the unseen unit cells can also be recovered

faithfully. These results validate our earlier assumption that there is little mode collapse,

and that WGAN-GP can generate novel and realistic shapes beyond our training data.
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7.5.4. Post-Processing of Generated Unit Cells

Even with the generative capability of WGAN-GP, we note that it was trained in an unsu-

pervised manner on only shape information. As the model has no quantitative knowledge

of what is physically feasible, it does not know when its generated shapes are unreason-

able from a mechanics and design perspective. Two major issues are internal voids in

generated unit cells with high volume fractions, and broken or disconnected features in

those with low volumes. A few examples of this can be seen in Fig. 7.7a.

To alleviate this, we implement a post-processing scheme to “correct” these infeasibili-

ties. It is straightforward since our unit cells are SDFs and therefore trivial to manipulate.

For generated designs with interior voids (Fig. 7.5.4(a)), we locate the interior voids us-

ing the open-source Python function, skimage.measure.label, then fill in those regions

by setting the SDF values to be a low negative number (e.g., −64). To resolve broken

features (Fig. 7.5.4(b)), we raise the volume fraction of the unit cell by increasing the

isovalue t until it is connected. In total, 3, 143 out of the 16, 000 (19.6%) needed to be

post-processed, although most were minor adjustments where either only 10’s of voxels

were filled or the isovalue was increased by less than 0.02 (noting that the range of the

values of each SDF Φ is ±64).

7.6. Property Regressor

An essential component of bottom-up data-driven design frameworks is the surrogate

model of the microscale simulations. We detail here our neural network for the prediction

of unit cell properties. After post-processing the randomly generated synthetic dataset

(Sec. 7.5.3) to ensure all 16, 000 unit cells are feasible, we calculate their homogenized



227

(a) Interior Voids
WGAN-GP Post-Processed

(b) Broken Features
WGAN-GP Post-Processed

Figure 7.10. Demonstration of the post-processing scheme for two scenarios:
(a) unit cells with internal voids, and (b) broken features.

stiffness tensors using the energy-based method [88]. This dataset is able cover a wide

property space; a project view is depicted in Fig. 7.11b. The figure also plots the prop-

erties of the basis classes, which are shown more closely in Fig. 7.11a. Recalling that we

only calculated the properties of unit cells in the basis classes with v = 0.4, we observe

that our method to create multiclass blended data based only on shapes (Sec. 7.4.4) has

also expanded the properties to a large degree. We also note that, since we learn the prop-

erties of the processed shapes, we will also need to perform the post-processing scheme

(Sec. 7.5.4) after the design synthesis is finished.

Our neural network regressor, implemented in TensorFlow, contains seven fully con-

nected layers with 512 nodes, an L2 regularizer with scale 0.001 and a Relu activation

for each. The inputs are the latent vectors of a unit cell, which is also concatenated back

into in the fourth layer to improve the prediction accuracy. The final layer outputs the

components of the 3D homogenized stiffness tensor, as well as the volume fraction. In

other words, our property model is [Ce, ve] = NN(ze) for unit cell e.

We find that predicting only the orthotropic components of the homogenized tensors,

i.e., C11, C21, C31, C22, C32, C33, C44, C55, and C66, in addition to the volume fraction,
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ve, improves the accuracy of the network compared to regressing all 21 components. This

agrees with our observations that over 94% of the unit cells generated by WGAN-GP

have trivial values close to zero at the other tensor components. It also follows from the

fact that our truss and isosurface basis classes (Sec. 7.4) are orthotropic, indicating that

any fully anisotropic unit cells are due to small artifacts or noise in the predicted shapes.

The R-squared and mean squared errors (MSE) of the trained property regressor for each

prediction response are listed in Table 7.1, which indicate good fit.

Table 7.1. Accuracy metrics of the property regressor.

Property Train R2 (MSE) Test R2 (MSE)

C11 0.995 (7.54e-4) 0.960 (5.61e-3)
C21 0.994 (1.35e-4) 0.953 (1.03e-3)
C31 0.994 (1.41e-4) 0.954 (1.03e-3)
C22 0.995 (7.56e-4) 0.960 (5.59e-3)
C32 0.994 (1.40e-4) 0.953 (1.03e-3)
C33 0.995 (7.59e-4) 0.960 (5.59e-3)
C44 0.995 (6.50e-5) 0.961 (4.99e-4)
C55 0.995 (6.50e-5) 0.961 (4.97e-4)
C66 0.995 (6.60e-5) 0.961 (5.00e-4)
v 0.995 (4.19e-4) 0.955 (3.71e-3)

7.7. Deep Learning-Enabled Design of Multiclass Functionally Graded

Structures

Finally, we can integrate the latent variables, z, and the property regressor, NN , with

design synthesis. Our proposed bottom-up framework follows conventional TO methodol-

ogy except for one major exception: since the volume fractions of the unit cells, v, are out-

puts of the regressor, we cannot use them as design variables like in typical density-based

approaches. However, we can still indirectly control volume by optimizing z. Therefore,
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(a) Final quality-augmented diverse subset (red cir-
cles for isosurfaces, blue crosses for trusses). Ground
datasets are shown in smaller, gray markers.

(b) 16, 000 random unit cells from the
trained WGAN-GP model, covering
all possible volume fractions, v.

Figure 7.11. The projected property spaces of the quality-augmented di-
verse basis subset, and of WGAN-GP generated unit cells.

if we directly optimize the latent variables of each microstructure, we can formulate our

homogenization-based compliance minimization problem as:

(7.13)

minimize
z

f =
1

2

Nel∑
e=1

xeu
T
e k

H
e (ẑe)ue,

subject to K(ẑ)U = F,

g1 = VGlobal(ẑ)/V
∗
Global − 1 ≤ 0,

g2 = vksmax(ẑ)/v
∗
max − 1 ≤ 0,

0 ≤ z ≤ 1,

where Nel is the total number of microstructures, xe is an interpolated variable that allows

void microstructures (Eq. 7.14), ue are element displacements of unit cell e, and kH
e are

homogenized stiffness matrices obtained from the regressor. To encourage gradual changes
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in neighboring unit cell shapes, we apply a smoothing filters [86] with radius rmin on each

dimension of the latent variables to obtain ẑ. Since this is well-established in TO, we do

not spell it out here for brevity. Note that the inputs of the regressor become the filtered

variables, i.e., [Ce, ve] = NN(ẑe). This problem can be solved via the method of moving

asymptotes (MMA) [122].

The global volume fraction of the structure, including the macrostructure and mi-

crostructures, is VGlobal =
∑Nel

e=1 xeve(ẑe)/Nel. To simultaneously design the macrostruc-

ture, we include xe, a variable similar to the pseudo-density in SIMP-based methods [43].

The difference is that xe is not a design variable but rather a result of the following filter:

(7.14) xe(ẑe) =

[
tanh (β1v

∗
min) + tanh (β1(ve(ẑe)− v∗min))

tanh (β1v∗min) + tanh (β1(1− v∗min))

]p

,

where p is a penalty parameter, β1 controls the strength of the filter, and v∗min is the lower

bound on microstructure volume fractions. Those familiar with TO will recognize that

this is the agglomeration of an approximate Heaviside projection filter and the penalty

from SIMP. In short, Eq. 7.14 converts any microstructure with volume fraction, ve, less

than v∗min into an empty or void unit cell by pushing xe → 0. Due to linear elasticity, we

can also artificially force void unit cells to have low stiffness by using xek
H
e , as seen above

in Eq. 7.13.

An upper bound on the volume fractions of individual microstructures is enforced via

a constraint with KS aggregation so that it is differentiable. Hence,

(7.15) vksmax(ẑ) =
1

ks
ln

Nel∑
e

eksve(ẑe),

where ks is the aggregation parameter.
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Figure 7.12. The two proposed multiscale design synthesis approaches.
Here global interpolation refers to Eq. 7.16.

However, the direct optimization (DO) approach (top of Fig. 7.12) does not necessar-

ily guarantee that the structures are as functionally graded and well-connected as desired

since WGAN-GP does not regularize the latent space to be well-structured (i.e., similar

latent vectors may not correspond to similar shapes). To address this, we propose an-

other method for synthesis: M-latent interpolation (bottom of Fig. 7.12), wherein a small

number, M ≪ Nel, of sets of latent variables, z(m),m ∈ [1, · · · ,M ], are designed, then

interpolated globally into the macrostructure. The sets of distribution fields, ξ(m), are

added to optimize the mixture of the M sets of optimal latent variables.

We also introduce a function to map z(m) to the global structure. In previous works, we

proposed a multi-material interpolation scheme (Chapter 3 [211]), which was then success-

fully applied to interpolate multiple unit cells’ SDFs in Chapter 6 [252]. Differing slightly

from before, we will interpolate latent variables rather than the materials or shapes. The

scheme to obtain the globally interpolated latent vectors at each microstructure, e, is as
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follows:

(7.16) ẑe =
M∑
j=1

(
(z(j) − z(j−1))

j∏
k=1

ξ̂(k)e

)
.

In contrast to the DO approach above, the radial smoothing filter is only performed

on ξ̂(m), not z. Otherwise, the optimization problem is exactly the same as Eq. 7.13.

With this M -latent interpolation method, we can achieve much greater control over the

functional grading of microstructures by deriving each of their latent vectors, ẑe, as a

blend of their neighbors’ vectors.

To summarize, we propose two design synthesis approaches (Fig. 7.12): direct opti-

mization (DO) of the latent variable of every unit cell, and M -latent interpolation, which

designs a small set of latent variables that are then mapped into the global structure. The

former requires 10Nel design variables while multiclass design needs MNel + 10M , where

10 is the dimensionality of the latent space. Hence, the number of variables in multiclass

design only supersedes DO when M ≥ 10.

7.7.0.1. Sensitivity Analysis. Since our problem formulation follows traditional density-

based TO closely, the sensitivities for the compliance objective can be found using the

adjoint method [43]. The sensitivities of the radial filters and KS aggregation functions

are also well-known derivations. Examples can be found in Ref. [86] and Ref. [257], respec-

tively. Different from traditional methods, in our data-driven framework the gradients of

the homogenized stiffness matrices, (∂kH
e /∂Ce)(∂Ce/∂ẑe), and of the volume fractions,

∂ve/∂ẑe, are obtained from the neural network through automatic differentiation in Ten-

sorFlow.
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In the global interpolation approach, the additional sensitivities of Eq. 7.16 for m ∈

[1,M ] are as follows:

(7.17)
∂ẑe
∂z(m)

=
M∑
j=1

[
∂
(
z(j) − z(j−1)

)
∂z(m)

j∏
k=1

ξ̂(k)e

]
,

(7.18)
∂ẑe

∂ξ
(m)
e

=

{
M∑

j=m

[(
z(j) − z(j−1)

) j∏
k=1,k ̸=m

ξ̂(k)e

]}
∂ξ̂

(m)
e

∂ξ
(m)
e

,

where the term ∂ξ̂
(m)
e /∂ξ

(m)
e is the sensitivity of the radial filter [86].

7.8. Illustrative Examples

We use compliance minimization problems to benchmark and validate our framework.

First, we follow the small cantilever case study with 12× 6× 3 unit cells from Ref. [50],

where the compliance (i.e., strain energy) of different strategies for functional grading were

compared. Its boundary conditions are illustrated in Fig. 7.13a. We then perform the mid-

sized, 18× 6× 6, cantilever study in Ref. [134] (Fig. 7.13b). Finally, we demonstrate the

potential of our methods with a slightly more complex stress-constrained 4×5×20 actuator

design (Fig. 7.13c), inspired by Ref. [258]. As stated in Sec. 7.4, the constitutive material

has a unit Young’s modulus and a Poisson’s ratio of 0.3. We implement our synthesis

framework using the Python libraries, OpenMDAO [259] and ParOpt [260], and utilize the

method of moving asymptotes (MMA) [122] for gradient-based optimization. To evaluate

compliance, we modify the source codes from Ref. [257] to enable homogenization-based

analysis.
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60 mm 240 mm

120 mm

(a) Small cantilever
(12× 6× 3)

20 mm
60 mm

20 mm

(b) Mid-sized cantilever
(18× 6× 6)

4 mm

5 mm

20 mm

(c) Actuator
(4× 5× 20)

Figure 7.13. Boundary conditions of the design examples.

In each study, we apply our proposed synthesis methods, DO and M -latent interpola-

tion with M = {2, 3, 5, 10}. For each of these configurations, we also test different starting

solutions of the latent variables: one fixed start where all z = 0.5, and 10 random initial-

izations of z. For the small cantilever, V ∗
Global = 0.5 and rmin = 2.0, whereas they are 0.3

and 3.0 for the mid-size cantilever, and 0.6 and 3.0 for the actuator. For all problems,

other parameters, when applicable, are v∗min = 0.2, v∗max = 0.8, β1 = 32, ks = 40, and

p = 3.0.

7.8.1. Compliance Minimization Results

Since WGAN-GP generates unit cells as SDFs, it is straightforward to convert them into

smooth, triangulated meshes of the optimized designs for analysis and visualization. For

each of the DO and M -latent interpolation methods, we render six random results of

the small cantilever in Fig. 7.14, and three of the mid-sized cantilever in Fig. 7.17. The

rendered designs corroborate our earlier theory that the DO approach produces structures

that are not as smoothly graded as those from the M -interpolation approach. Although
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close inspection reveals that the neighboring microstructures in the DO results are indeed

connected to their immediate neighbors, the variation of morphology types across the

global structure can be abrupt. We believe this is due to: 1) the linear smoothing filter

being ineffective when used directly on latent variables, 2) the unregularized latent space

of WGAN-GP, as mentioned in Sec. 7.7, and 3) the huge design space encapsulated

by WGAN-GP, which allows the design to include too many types of geometries to its

detriment. Although the DO results are not quantitatively bad (in fact, their compliance

values are generally lower than those of M -interpolated designs), the larger geometric

changes from microstructure to microstructure does indicate that the design freedom

needs to be more restrained so that smoother functional grading can be achieved.

Our second approach, M -latent interpolation, solves this issue without significantly

limiting the achievable design performance. For the 11 total runs using each synthesis

approach, we plot the compliance, the post-processed global volume fractions, and the

actual maximum von Mises stresses (without KS aggregation, and using homogenization-

based analysis) in Figs. 7.15 and 7.16 for the small and mid-sized cantilever, respectively.

The average compliance over all initializations of the design variables decreases as M

increases, until the values approach or even surpass those of the DO method.

One of the most compelling findings is that, with the M -interpolated approach, the

optimized designs achieve not only more geometrically pleasing functional grading of the

microstructure shapes but also considerably lower maximum stresses, as seen in Figs. 7.15c

and 7.16c. Moreover, as M increases, the results of different initializations converge to a
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Figure 7.14. Select results of the small cantilever example using random
initializations of the latent variables, z. (a) Results from the DO approach,
which may cause abrupt geometric changes. (b-e) Results by M -latent in-
terpolation, which exhibit superior functional grading. As M increases, the
designs converge with respect to geometry, despite different initializations.

similar structure, which one may assume to be locally optimal. Hence, via globally inter-

polating (Eq. 7.16) M sets of latent variables, we can create designs with less geometric

variance than the DO method, even when M = 10.
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We also validate these observations by re-calculating the homogenized stiffness ten-

sors of each generated microstructure using analytical homogenization [88] rather than the

property regressor neural network, then performing homogenization-based finite element

analysis of the assembled designs. For each of the proposed design synthesis approaches

(DO and M -latent interpolation), six runs with different initializations of the latent de-

sign variables, z, are compared in Tables 7.2 and 7.3. Overall, the predicted compliance

and maximum von Mises stresses match well with the analytical values, ranging from

absolute errors of 0.5% to about 13%, indicating that the accuracy of the property re-

gressor is sufficient. We confirm the trend that, while the DO approach can reach lower

compliance values, the M -interpolation method achieves lower von Mises stresses since it

encourages more gradual changes in microstructure topologies. In future works, we plan to

expand this validation by also performing full-scale analysis without the homogenization

assumption.

Table 7.2. Validation of the compliance for the small cantilever using the
property regressor predictions versus analytical homogenization by compar-
ing 6 initializations from each synthesis approach. Predicted values agree
well with analytical results, and the DO synthesis approach tends to achieve
lower compliance than M -interpolation with M = 2.

Direct Optimization (DO) Latent Interpolation (M = 2)
Initialization Predicted Analytical % Error Predicted Analytical % Error

Fixed (z = 0.5) 0.7332 0.8072 9.2 0.7865 0.8724 9.9
Random 1 0.7420 0.7982 7.0 0.7838 0.8369 6.3
Random 2 0.7623 0.8505 10.4 0.8693 0.8596 1.1
Random 3 0.7623 0.8254 7.6 0.7731 0.7689 0.5
Random 4 0.7541 0.8189 7.9 0.7758 0.8826 12.1
Random 5 0.7742 0.8921 13.2 0.7713 0.8745 11.8

Mean 0.7547 0.8321 9.2 0.7933 0.8492 7.0
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Table 7.3. Validation of the maximum stress for the small cantilever using
the property regressor predictions versus analytical homogenization. Pre-
dicted and analytical values are close, and, as expected, theM -interpolation
approach (using M = 2) achieves lower stresses than the DO method.

Direct Optimization (DO) Latent Interpolation (M = 2)
Initialization Predicted Analytical % Error Predicted Analytical % Error

Fixed (z = 0.5) 1.68e-3 1.70e-3 1.6 1.56e-3 1.58e-3 1.6
Random 1 1.69e-3 1.75e-3 3.6 1.54e-3 1.53e-3 0.1
Random 2 1.74e-3 1.83e-3 4.7 1.67e-3 1.69e-3 1.5
Random 3 1.69e-3 1.77e-3 4.5 1.68e-3 1.63e-3 3.0
Random 4 1.68e-3 1.67e-3 0.5 1.58e-3 1.61e-3 2.1
Random 5 1.64e-3 1.82e-3 10.1 1.53e-3 1.55e-3 1.6

Mean 1.69e-3 1.76e-3 4.2 1.59e-3 1.60e-3 1.7

However, our framework does not have as much success meeting the low global volume

constraint of 0.3 in the mid-sized cantilever example. Fig. 7.16b shows that, although the

average volume fraction over the 11 runs with different initializations is around 0.31, the

25th percentiles (i.e., lower quantiles) are greater than than the constraint limit. This

could arise from a few sources, including: 1) it is possible that WGAN-GP does not

generate many feasible low volume fraction shapes, 2) our regressor (Sec. 7.6) is not as

accurate for those unit cells, and 3) it may be difficult to control both the macrostructure

and unit cell volumes when using the filter in Eq. 7.14. These areas need more detailed

investigation or improvements in future works.

7.8.2. Stress-Constrained Actuator Design

In Ref. [258], a two-material soft actuator was designed out of bioprinted hydrogels by min-

imizing the compliance of a beam load as shown in Fig. 7.13c. The distributed load mimics

the pressure that the structure experiences on one face when electrically actuated [258].
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Figure 7.15. Comparison of the small cantilever results from 1 fixed and
10 random initializations. The volume constraint is V ∗

Global = 0.5. Us-
ing M -interpolation, compliance decreases as M increases, and stresses are
generally lower than those from the DO method.
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Figure 7.16. Comparison of the mid-sized cantilever results from 1 fixed
and 10 random initializations. The volume constraint is V ∗

Global = 0.3.

In the referenced work, the authors stated that the nonlinearity of stress-based design

could cause convergence issues and, therefore, they utilized volume-constrained compli-

ance minimization to optimize the actuator. In contrast, we show that stress constraints

can be included on top of several other volume constraints without difficulty.
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Figure 7.17. Random results of the mid-sized cantilever example using dif-
ferent initializations of the design variables. The M -latent interpolation
approach (b-e) achieves smoother geometrical grading than DO (a).
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Our stress-constrained compliance minimization problem is defined as:

(7.19)

minimize
z

f =
1

2

Nel∑
e=1

xeu
T
e k

H
e (ẑe)ue,

subject to K(ẑ)U = F,

g1 = VGlobal(ẑ)/V
∗
Global − 1 ≤ 0,

g2 = vksmax(ẑ)/v
∗
max − 1 ≤ 0,

g3 = 1− vksmin(ẑ)/v
∗
min ≤ 0,

g4 = σks
max(ẑ)/σ

∗
max − 1 ≤ 0,

0 ≤ z ≤ 1.

We fix the macrostructure of the actuator, hence neglecting xe and Eq. 7.14 while adding

a lower bound on the allowable volume fractions, v∗min, using KS aggregation, vksmin. The

stress constraint is g4, where σ
ks
max(ẑ) is the aggregated maximum von Mises stress (using

homogenization-based analysis), and σ∗
max is the stress upper limit. To calculate the

von Mises stresses and their sensitivities using homogenization-based analysis, we follow

Ref. [2].

Despite the additional complexity of a stress constraint, we see similar trends as in the

earlier compliance examples. In Fig. 7.18, we can also observe that compliance decreases

with greater numbers of sets of latent variables, M . With a higher value of V ∗
Global (0.6)

and without concurrent macroscale design, nearly all of the designs satisfy the volume

constraint. Furthermore, the actuator results underscore the importance of encouraging

smooth grading in heterogeneous structures: all structures using the DO method fail
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to meet the stress constraint, while the majority of the M -interpolated designs achieve

stresses below the allowable limit.
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Figure 7.18. Comparison of the stress-constrained actuator results from 1
fixed and 10 random initializations. The volume constraint is V ∗

Global = 0.6,
and the constraint on KS aggregated stress is σ∗

max = 0.4 (which corresponds
to the actual value of approximately 0.5 without KS aggregation, plotted).

In Fig. 7.20, we highlight an impressive advantage of our proposed multiclass frame-

work: by performing design in the multiclass latent space, we can discover optimal and

smooth interpolations between different morphological classes of microstructures. For this

actuator case study, our framework creates designs with low compliance and stresses by

placing trusses near the bottom of the structure and isosurfaces at the top. At interme-

diate locations, the WGAN-GP model generates new hybrids of the two classes such that

all neighboring microstructures are well-connected. This is achieved without any user

intervention, eliminating the biases of pre-defined microstructure classes while expanding

the freedom of functionally graded designs. It is also done without explicit connectivity

constraints.

Finally, we compare the computational cost of each synthesis method by averaging the

runtimes over 11 different initializations. On a PC desktop with an 8-core Intel i7-6900K

and one NVIDIA GeForce GTX 1050 Ti GPU, the stress-constrained design using the DO

method takes an average of 8.0 minutes. Meanwhile, the M -latent interpolation approach
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takes an average of 7.72 minutes (3.8% faster than DO) for M = 2, 7.95 for M = 3,

7.97 for M = 5, and 8.21 for M = 10 (2.4% slower than DO). Not surprisingly, using

M = 10 increases the cost over DO since it involves more design variables and slightly

more computations due to interpolation scheme (Eq. 7.16). However, for M < 10, we find

that the design process is slightly faster than DO while achieving similar compliance and

lower maximum stress (see Table 7.4). For a large-scale problem, we would expect the

multiclass design with global interpolation to be even more advantageous.

Table 7.4. For the actuator design, comparison of the mean compliance,
von Mises stress, and runtime using different synthesis approaches.

Mean Compliance Mean Max. Stress Mean Runtime (min)

DO 26.6 0.509 8.02
M = 2 27.3 0.497 7.72
M = 3 26.7 0.498 7.95
M = 5 26.7 0.497 7.97
M = 10 26.6 0.498 8.21

7.9. Discussion

Although our case studies are inspiring and illustrate the potential of the proposed

framework, we point to a few areas of improvement that could be addressed in future

works. One is the entangled latent space due to the fact that GANs do not regularize

the random distribution of the learned space. We noted that this could be a cause of

the coarseness of the grading in the DO results (Sec. 7.8.1). In Ref. [1], it was suggested

that training a VAE and a property regressor simultaneously can force the latent space

to be mechanically meaningful. However, as we showed in Sec. 7.5.3, a vanilla VAE

struggles to perform well on our multiclass dataset. To pursue this route, it may be



244

Figure 7.19. Random results of the actuator example using different ini-
tializations of the design variables. (a) Results using the DO synthesis
approach. (b-e) Results via the M -latent interpolation approach.
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Figure 7.20. Interpolation between trusses and isosurfaces occurs naturally
in the latent space of WGAN-GP to create multiclass, functionally graded
structures. This particular design was performed using the latent interpo-
lation synthesis approach with M = 5.

necessary to employ advanced forms of VAEs that can learn multimodal distributions,

such as Wasserstein autoencoders [261].

Second is the lack of physically meaningful constraints when generating our shapes,

leading to infeasible unit cells (Sec. 7.5.4) and a lack of synthesized shapes with low vol-

ume fractions (Sec. 7.8.1). It is possible to include physics-based constraints as diversity

or performance-based quality metrics during the training of GANs, like in Ref. [217].

These would require developing metrics based on the manufacturability of designs, e.g.,

overhang, minimum feature size, surface area, etc., or the anisotropy, stiffness, Poisson’s

ratio, etc., of a unit cell. Such quantities may be useful “flags” to steer the model into

generating unit cells that are both diverse and feasible. Another solution is to incorpo-

rate rigorous topological constraints, such as peristent homology [262], into the training
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of the generative model to guarantee the continuity of the generated unit cells. Alter-

natively, quality indicators could be integrated into design synthesis itself via methods

utilizing Bayesian approaches [55, 263] or reinforcement learning [187]. These venture

outside the realm of conventional TO and may have their own challenges when applied

to heterogeneous structures, but are worth future exploration.

Improving the concurrent design of the two scales, macro and micro, is also a valuable

direction for future works. In this work, we utilized the filter in Eq. 7.14, which removes

entire unit cells and results in dangling features and macrostructures with jagged edges.

TO methods that produce smooth contours, such as conformal mapping [57, 182], de-

homogenization with function-based mapping [251], approximate level set extraction [264]

and cut elements [219], could instead be integrated into our framework to achieve aes-

thetically pleasing designs.

7.10. Conclusions

To break through the low scalability and inadequate generality of designing heteroge-

neous multiscale structures via topology optimization methods, we proposed a data-driven

framework that merges diverse classes of unit cell geometries under a unified latent rep-

resentation, thus enabling efficient synthesis of novel, smoothly graded and multiclass

designs. Unlike existing works that are restricted to only one traditional class (e.g.,

trusses, isosurfaces, voxels, or level sets) and limited to a small, pre-defined set of unit

cells, our framework synthesizes novel microstructures that are hybrids of the initial seed

(i.e., basis) classes. Therefore, we can reach an unprecedented level of efficiency and design

freedom in functionally graded design. For example, compared to our own previous work
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in Chapter 6, we expanded the number of basis classes from 5 to 50, all while decreasing

the optimization runtime from 12 minutes for a 2D example with 40× 16 (640) unit cells

to less than 10 minutes for 3D mid-sized cantilever with 18× 6× 6 (648) microstructures.

This is accomplished by the three major components in our work: 1) quality-augmented

diverse subset selection and data expansion via multiclass blending, 2) generative deep

learning via a WGAN-GP, and 3) multiclass design synthesis with global mapping of small

sets of latent variables (M -latent interpolation).

A critical step in data-driven design is the acquisition of a dataset that is well-suited

to the desired design problems. However, creating a dataset that is both diverse and

high quality, so that it does not skew the later deep learning and design synthesis tasks, is

difficult under finite computational resources. For this, we presented a probabilistic subset

selection method that can automatically choose unit cells classes that cover diverse shapes

and properties while also being high quality in terms of their ability to aid deep learning

and functionally graded design. The method can simultaneously consider multiple classes

by first transforming the shapes into SDFs. We then proposed that a multiclass shape

blending scheme can quickly expand a subset of 50 seed classes into a large dataset

containing over 61k trusses, isosurfaces, and hybrids of both. Even though two major

morphology types, trusses and isosurfaces, were demonstrated here, the proposed methods

can easily accommodate a wide range of arbitrary unit cell classes, including those selected

by a designer’s expertise, once they are converted into SDFs.

For the generative learning in this work, we tested both VAE and a stabler form of

GAN, the WGAN-GP, and found that the latter is capable of generating highly realistic

truss and isosurface unit cells, as well as any interpolated hybrids between those two
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classes, hence avoiding mode collapse. Since WGAN-GP maps the high dimensional

unit cells into a 10-dimensional latent space, it provides a compact yet expressive design

representation that enables us to automate the choice of whether trusses, isosurfaces, or

hybrids should be used in structural design. This resolves one of the most overlooked

limitations of existing state-of-the-art: the resounding impact that a user’s a priori bias

or choice of initial seed designs can have on the final structure.

Finally, we introduced a multiscale design synthesis approach that optimizes multiple

sets of latent variables, i.e., a small number of microstructures, which are then interpo-

lated into the global structure. Compared to optimizing the latent variables of every mi-

crostructure, these interpolated designs achieve similar design performance while reducing

stress concentrations and requiring less computational cost. As verified by the compli-

ance minimization case studies, including an actuator design with stress constraints, the

proposed methods show promise for increasing the manufactuability and practicality of

data-driven design in real-world applications. Overall, our framework encompasses a wide

design space that merges multiple classes of unit cells and is capable of generating well-

connected heterogeneous structures with desirable performance while remaining highly

efficient.
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Part 4

Conclusions and Appendices
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CHAPTER 8

Conclusions

The paradigm shift from traditional optimization methods to large-scale, data-driven

frameworks in the heterogeneous metamaterials and multiscale topology optimization

(TO) fields have unlocked the possibility of impactful designs like strong-yet-light vehi-

cles, energy absorbing components, strain cloaking devices, soft robots, and more. Open

source data sharing communities like MaterialsMine are growing alongside them. Despite

the rise in interest, data-driven methods are, for the most part, still confined to linear elas-

tic problems, whereas real-world applications involve highly complex and computationally

intensive simulations with nonlinearities, dynamics or multiphysics. Before data-driven

approaches are viable in these scenarios, it is critical to improve their scalability and

generality.

Data-driven frameworks for heterogeneous structures share one major goal: to effi-

ciently assemble a design with high performance and connectivity. They are composed

of three main elements: data acquisition and representation, mechanistic-based learning,

and multiscale structure synthesis. The three are deeply interconnected – the quality

of a dataset influences the coverage of a generative model and the prediction accuracy

of a surrogate model, both of which then impact the effectiveness of the synthesis al-

gorithm. However, many existing methods focus on the last two steps without regard

for the compounding effect of the dataset itself. In addition, connectivity is enforced by
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either limiting the designs to a small set of pre-defined geometry classes or by using costly

combinatorial methods; these strategies are suboptimal or inefficient.

This dissertation addresses the challenges in the acquisition, representation, and syn-

thesis steps of data-driven design for multiscale heterogeneous structures. The funda-

mental hypothesis underpinning our work is that a diverse subset of unit cells can: 1)

alleviate the burden of search and optimization algorithms by eliminating redundant or

biased samples, hence increasing scalability, 2) still cover the largest possible space of both

shapes and properties, therefore heightening generality, and 3) serve as seeds for generat-

ing novel structure with enhanced design freedom and performance. The dissertation has

accomplished this through the contributions summarized below:

• In Chapter 3, we proposed a multi-material interpolation scheme, which general-

izes to a function that can map any continuous representation of unit cell classes

into a global macrostructure, i.e., perform multiclass interpolation.

• We shone a light on the pressing need to improve data acquisition in Chapter 4

by presenting two independent methods based on existing state-of-the-art. We

collected truss data via property-driven sampling, and isosurface data through a

shape-driven approach, which demonstrated how diversity in property space does

not guarantee diversity in shapes, and vice versa. Although these two acquisition

methods can be employed to collect data in other works, we strongly encourage

them to be supplemented by the contribution of the next task: diverse subset

selection in joint spaces.

• Given any existing dataset, we proposed METASET in Chapter 5, an automated

down-selection method to distill unit cell subsets that are diverse in both shapes
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and properties. Using probabilistic Determinantal Point Processes (DPPs), we

introduced diversity metrics that quantify the similarities between any continuous

representations of shapes or properties. For the first time in metamaterials design,

we showcase “top-down” data-driven design examples that affirm our hypothesis:

small yet diverse subsets significantly improve the scalability of design algorithms,

as well as the connectivity and performance of heterogeneous structures.

• By improving the diversity within our datasets, we are also able to increase the

generality of design representations and synthesis methods. In Chapter 6, we

presented a “bottom-up” data-driven framework that hinges on the idea that

functionally graded structures need not be restricted to a pre-defined set of basis

unit cell classes. Furthermore, these initial basis classes no longer need to be

mutually compatible. We achieved this through a new multiclass shape blend-

ing scheme, which allows the creation of novel microstructures beyond the basis

set while guaranteeing that they are feasible in terms of self-connectivity and a

minimum feature size. By integrating the blending scheme with the multiclass

interpolation function from Chapter 3, we are able to re-parameterize the unit

cells into the low-dimensional blending parameters, and to train simple property

prediction neural networks. All of these parts are integrated into a data-driven

multiscale TO framework that retains nearly the same efficiency as a single-scale

TO method. No additional constraints are necessary to guarantee that the op-

timal structures are functionally graded and well-connected. Moreover, we show

that generality can be linked to diversity: even a handful of diverse basis classes

can achieve high performance across a variety of problems. The framework of
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this particular chapter is recommended for applications that need lower overhead

cost (the neural network is simple and quick to train) at some loss of generality

(a small number of basis classes are linearly interpolated for design).

• Finally, all of the proposed methods above culminate in Chapter 7’s generative

learning-enabled framework. Our framework here aims to cover a design space

far larger than that of the previous task, or indeed any other functionally graded

design method, by merging different classes of unit cells into the same pipeline.

Towards this end, we first demonstrated that METASET from Chapter 5 can be

extended to include class-agnostic similarity metrics as well as geometric quality

metrics, such that a diverse and high quality set of 50 trusses and isosurfaces can

be simultaneously and autonomously selected. We proposed that a generative

model, WGAN-GP, can be trained to unify trusses, isosurfaces, and any hybrids

of the two, into the same latent space for functionally graded design. This can be

accomplished by rapidly collecting a large shape training dataset using the multi-

class shape blending scheme of Chapter 6. Thus, while our shape blending scheme

is directly utilized in the synthesis step of the previous chapter to linearly inter-

polate new microstructures, it is embedded into the data acquisition step here to

guide, but not restrict, the novel designs synthesized by the WGAN-GP model.

With the latent variables learned by WGAN-GP as design variables, we finally

propose a design synthesis method that achieves exceptionally smooth grading

between multiple classes – and, subsequently, lower stress concentrations – by

utilizing the multiclass interpolation scheme (Chapter 3) to map small sets of la-

tent variables into the global structure. This approach is highly general, efficient,
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and extensible to a wide variety of applications, including nonlinear ones, due to

its roots in conventional TO formulations and the inclusion of a large number

of diverse and high quality basis classes. By blurring the boundaries between

traditional geometric classes, our framework encompasses a wider design space

of heterogeneous multiscale structures with, to our knowledge, significantly lower

computational cost than the state-of-the-art.

8.1. Future Directions

The contributions of this dissertation have taken a step toward realizing the data-

driven design of heterogeneous structures for real-world applications. There is still much

room for future works to build upon this work, including:

• Adaptive data expansion with diversity metrics. Our work in Chapter 5,

METASET, is a down-sampling approach that requires a pre-existing ground

dataset that contains both shapes and properties. In applications where the

physics are, e.g., dynamic, this is often infeasible. Using the theoretical core of

METASET, the opposite can be achieved to intelligently build a diverse and high

quality dataset when starting from little or no property data. By integrating data

acquisition with model training, one could also answer the question: “How much

data is enough?”

• Improved quality metrics. In this thesis, relatively simple measures of feasi-

bility and quality are used, e.g., minimum feature size and volume fraction range.

There is a need to develop quality metrics that further improve the effectiveness

of synthesis as well as the feasibility or manufacturability of the designs. For
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manufacturing in particular, one could take inspiration from those used in TO,

such as the overhang constraints for additive manufacturing.

• Finer control over multiclass shape blending. An advantage of our shape

blending scheme is that it needs no constraints or inner optimization loops when

integrated into TO. It naturally creates feasible new unit cells and functional

grading by using a weighted sum and enforcing a lower feasible bound. However,

in some cases, close control over the blending might be desired. For example,

our method does not guarantee that the mechanical properties of neighboring

microstructures are also functionally graded. Future works may build upon our

work by developing constrained shape blending.

• Multiclass generative deep learning with physics-based and geometric

constraints. As a community governed by physics, it follows that our deep

learning models should be too. In our work, we proposed generative deep learn-

ing based on shapes only. However, we also showed some flaws to this approach:

namely that the generated designs may not be feasible from a geometric or me-

chanical perspective. By incorporating more rigorous definitions of “feasibility”

and encouraging the generative models to learn feasible designs, the effectiveness

of data-driven methods can be improved even further. To accomplish this, inno-

vative work at the intersection of computational design and computer science is

a necessary but highly promising future work.

• Integration of data-driven frameworks with state-of-the-art topology

optimization. TO methods are bounded by computational efficiency and the
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curse of dimensionality, while data-driven frameworks lie mostly stagnant in lin-

ear elastic problems. More effort needs to be undertaken to merge the advantages

of both through “bottom-up” data-driven frameworks. By holding hands, data-

driven techniques could take inspiration from TO methods that include geometric

and/or material nonlinearity, dynamic, or multiphysics formulations. Such a task

would also require the development of accurate physics-based neural networks

that can predict these complex physics, but could lift data-driven methods up as

an unmatched choice for realistic applications.

Emphasizing the impact of data diversity and quality on the scalability and gener-

ality of data-driven design, this dissertation has addressed pertinent challenges in data

acquisition, representation, and design synthesis. Through diverse subset selection, mul-

ticlass shape blending, and general synthesis frameworks, we have pushed the boundaries

of computational design for heterogeneous multiscale structures. However, we have also

raised critical new research questions to explore, and look forward to future works that

unleash the potential of our work to general and truly impactful, real-world applications.
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APPENDIX A

Algorithms

A.1. Chapter 5

Algorithm 1: METASET algorithm. After calculating the similarity kernels, a
polynomial-time greedy maximization of the gain on the weighted combination
of diversity in shape and property spaces is performed. The output is a subset
of unit cells such that the joint diversity is maximized.

Data: Ground set G of size N of all unit cells;
Result: Subset M of size NM ;

1 Calculate shape and property similarity kernels, LS and LP ;
2 Calculate joint similarity kernel L;
3 Find subset M ;
4 M ← ∅;
5 while |M | ̸= NM do
6 Pick an item Gi that maximizes δf(M ∪ i);
7 M = M ∪ {Gi};
8 G = G−Gi;
9 end while

10 return M ; ▷ Use as input to downstream task such as data-driven

design or machine learning
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A.2. Chapter 6

Algorithm 2: Adaptive scheme to decrease volume fraction limits during con-
current multiscale design. i denotes the number of the current iteraton.

Require: V ∗
Global,i−1, V

∗
BESO,i−1, VGlobal, VBESO;

1 if (i mod 10) = 0 and V ∗
Global,i−1 > V ∗

Global then
2 V ∗

Global,i ← min(VGlobal, V
∗
Global,i−1)− 0.025;

3 end if
4 if (i mod 10) = 0 and VBESO ≤ V ∗

BESO,i−1 then
5 V ∗

BESO,i ← V ∗
BESO,i−1 − 0.005;

6 end if
7 return V ∗

Global,i, V
∗
BESO,i; ▷ Updated volume constraints

Algorithm 3: Concurrent design framework for multiclass functionally graded
structures. If there are no volume constraints, ignore Line 9. If the macrostruc-
ture is fixed, ignore Line 11.

Initialize: design variables c,v, ξ,x;
volume constraints V ∗

Global,0, V
∗
BESO,0;

weight on low-diversity penalty k;
1 while change in design > tol do
2 i← i+ 1 ; ▷ Iteration counter

3 for each macro-element e do
4 obtain ĉe (Eqs. 6.6, 6.7);
5 find Φe and te so that microstructure has volume v̂e (Eq. 6.8);
6 approximate v̂ae (Eqs. 6.11, 6.12);

7 predict effective stiffness CH
e = NN(c̄e, v̂e) and obtain ke;

8 end for
9 update volume fraction constraint limits (Algorithm 2);

10 compute objective, constraints and sensitivities (Sec. 6.6.3);
11 update macroscale design x with BESO;
12 update other variables c,v, ξ with MMA;
13 end while
14 return optimal multiclass functionally graded design;
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APPENDIX B

Related Publications

Publications related to this dissertation have been published in journals and peer-

reviewed conferences. They are:

Chapter 3

• Shintani, K., Chan, Y.-C. and Chen, W., 2017, June. Robust multi-material

topology optimization for lattice structure under material uncertainties. In World

Congress of Structural and Multidisciplinary Optimisation (pp. 1110-1123).

• Chan, Y.-C., Shintani, K. and Chen, W., 2019. Robust topology optimization of

multi-material lattice structures under material and load uncertainties. Frontiers

of Mechanical Engineering, 14(2), pp.141-152.

Chapter 5

• Chan, Y.-C., Ahmed, F., Wang, L. and Chen, W., 2020, August. METASET: An

automated data selection method for scalable data-driven design of metamateri-

als. In International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (Vol. 84003, p. V11AT11A021).

• Chan, Y.-C., Ahmed, F., Wang, L. and Chen, W., 2021. METASET: Explor-

ing shape and property spaces for data-driven metamaterials design. Journal of

Mechanical Design, 143(3).

Chapter 6
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• Chan, Y.-C., Da, D., Wang, L. and Chen, W., 2022. Remixing functionally

graded structures: data-driven topology optimization with multiclass shape blend-

ing. Structural and Multidisciplinary Optimization, 65(5), pp.1-22.

Chapter 7

• In preparation.

Additional Related Works

• Bostanabad, R., Chan, Y.-C., Wang, L., Zhu, P. and Chen, W., 2019. Glob-

ally approximate gaussian processes for big data with application to data-driven

metamaterials design. Journal of Mechanical Design, 141(11).

• Wang, L., Chan, Y.-C., Liu, Z., Zhu, P. and Chen, W., 2020. Data-driven meta-

material design with Laplace-Beltrami spectrum as “shape-DNA”. Structural

and multidisciplinary optimization, 61(6), pp.2613-2628.

• Wang, L., Chan, Y.-C., Ahmed, F., Liu, Z., Zhu, P. and Chen, W., 2020. Deep

generative modeling for mechanistic-based learning and design of metamate-

rial systems. Computer Methods in Applied Mechanics and Engineering, 372,

p.113377.

• Da, D., Chan, Y.-C., Wang, L. and Chen, W., 2022. Data-driven and topological

design of structural metamaterials for fracture resistance. Extreme Mechanics

Letters, 50, p.101528.

• Lee, D., Chan, Y.-C., Wang, L., van Beek, A. and Chen, W., 2022. t-METASET:

Task-Aware Generation of Metamaterial Datasets by Diversity-Based Active Learn-

ing. In International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference (in print). preprint arXiv:2202.10565.
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Vranić. Feature-based similarity search in 3d object databases. ACM Computing

Surveys (CSUR), 37(4):345–387, 2005. doi: 10.1145/1118890.1118893.

[157] R. Rostami, F. S. Bashiri, B. Rostami, and Z. Yu. A survey on data-driven 3d

shape descriptors. Computer Graphics Forum, 38(1):356–393, 2018. doi: 10.1111/

cgf.13536.

[158] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learn-

ing representations and generative models for 3D point clouds. In Jennifer Dy

and Andreas Krause, editors, Proceedings of the 35th International Conference on

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
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