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ABSTRACT

Mathematical Modeling of the Formation of Surface Nanostructures in Thin Solid Films

Margo S. Levine

The self-assembly of quantum dots (QDs) in thin solid films is an important area of

nanotechnology with many relevant applications. In the present thesis, three problems

related to the growth and self-assembly of QDs are investigated.

In Chapter 1, a new instability mechanism for the formation of QDs associated with

strong surface energy anisotropy coupled with wetting interactions between the film and

the substrate is proposed. A nonlinear anisotropic evolution equation describing the shape

of a thin solid film deposited on a solid substrate is derived and the stability analysis of

a planar film is performed. The wetting interactions are found to change the instability

spectrum from long-wave to short-wave, leading to the possibility of the formation of

stable regular arrays of QDs. Near the short-wave instability threshold, it is found that

the formation of stable hexagonal arrays of QDs is possible.

In Chapter 2, the effects of wetting interactions on another mechanism of QD formation

are investigated. This mechanism is associated with the Asaro-Tiller-Grinfeld instability

that releases epitaxial stress caused by the lattice mismatch between the film and the
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substrate. The elasticity problem in the long-wave approximation is solved and a nonlocal

integro-differential equation governing the evolution of the film surface is derived. It

is shown that wetting interactions can change instability spectrum from the spinodal

decomposition type to the Turing type leading to the possibility of pattern formation.

For typical semiconductor systems, hexagonal arrays of QDs are found to be unstable as

a result of a subcritical bifurcation. It is shown that the QDs coarsen after formation and

the coarsening dynamics are studied by numerical simulations.

In Chapter 3, the formation of an epitaxial film by molecular beam epitaxy (MBE),

which precedes the formation of QDs, is investigated. The Burton-Cabrera-Frank the-

ory for the growth of a stepped crystal surface is studied when the adatom diffusion

is anomalous (Lévy flights). The step-flow velocity is obtained as an eigenvalue of the

corresponding superdiffusion problem described by a fractional partial differential equa-

tion. The crystal surface growth rate is found as a function of the terrace length and the

anomalous diffusion exponent.
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CHAPTER 1

Introduction

The formation of quantum dots has received significant attention in recent years due to

their potential applications in a wide range of industrial processes from the fabrication of

biological dyes to the development of new solid-state lasers. One feature of quantum dots

is that they can form spontaneously, or self-assemble, as the result of an instability when a

thin film of one solid material is deposited onto a substrate of another solid material. The

main physical effects that govern this instability are elastic interactions, surface energy,

and wetting interactions between the film and the substrate. In this thesis, we investigate

two distinct instability mechanisms that may lead to the self-assembly of quantum dots.

In Chapter 2, we discuss a stress-free mechanism that is driven by strong surface-energy

anisotropy and wetting interactions between the film and the substrate. In Chapter 3, we

study the coupling of wetting interactions with epitaxial stress that occurs as a result of

lattice mismatch between the film and the substrate.

The self-assembly of quantum dots studied in Chapters 2 and 3 occurs in an initially

planar crystalline film. Chapter 4 is devoted to the investigation of the deposition process

itself, namely, to the growth of an epitaxial film. We study the step-flow growth of

a crystalline surface by molecular beam epitaxy (MBE) in the case when the surface

diffusion of adatoms is anomalously fast and described by Lévy flights. As a result, we

formulate a Lévy flight analog of the Burton, Cabrera, and Frank theory for step-flow

growth.
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CHAPTER 2

Faceting Instability in the Presence of Wetting Interactions: A

Mechanism for the Formation of Quantum Dots

2.1. Introduction

The formation of quantum dots in epitaxially grown thin solid films has been attracting

attention as a very promising area of nanotechnology that can lead to a new generation of

electronic devices. It is generally understood that the main mechanism of the formation

of quantum dots in thin solid films on solid substrates is the Asaro-Tiller-Grinfeld (ATG)

instability [1, 2] that releases epitaxial elastic stresses in the film caused by the crystal

lattice mismatch between the film and the substrate [3–8]. At the same time, other

mechanisms can also play an important role in the formation of surface structures during

epitaxial growth; two such mechanisms are faceting instability of a thermodynamically

unstable surface caused by strong surface-energy anisotropy and slope-dependent surface

currents caused by the Schwöbel effect [9–12].

The characteristic feature of these mechanisms is that they produce long-wave insta-

bilities of the film surface leading to the formation of mounds that usually coarsen in

time, with larger islands growing at the expense of smaller ones [13]. At the same time,

the formation of a system of islands with almost uniform size has been observed [14].

Several mechanisms have been identified that can terminate the coarsening process. One
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mechanism is a balance between the surface and elastic energies that can lead to the for-

mation of uniform-size islands as a preferred configuration having minimal energy [4,15].

Another dynamic mechanism is associated with the normal growth of the interface, e.g.,

by evaporation-condensation or due to the presence of a diffusion boundary layer typical

of chemical vapor deposition. The normal growth introduces convective effects in the

evolution of the interface that compete with the coarsening process by sustaining ridges

and corners of the faceted mounds [16–18]. However, when the growth stops, further

annealing will cause coarsening of the surface structures. Recently, an additional mech-

anism that can terminate coarsening of the surface structures has been identified. This

mechanism is based on wetting interactions between the film and the substrate [19,20].

It has been shown that wetting interactions can change the spectrum of the ATG insta-

bility [20–23], or surface instability cased by the Schwöbel effect [24], and lead to the

selection of a finite wavelength near the instability threshold and therefore to the possi-

bility of the formation of permanent spatially regular patterns [20]. In this case, spatially

regular arrays of dots (or pits) are formed as the result of the nonlinear dynamics near

the instability threshold, and the corresponding steady state can be considered as having

a local energy minimum. The formation of spatially regular arrays of dots has been inves-

tigated for the case of the ATG instability accompanied by wetting interactions between

the film and the substrate [19, 20]. The interplay between the film-substrate wetting

interactions and the faceting instability caused by anisotropic surface energy has not yet

been studied. In this chapter, we investigate this coupling and show that, even in the

absence of epitaxial stresses, wetting interactions can terminate coarsening and lead to
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the formation of permanent regular arrays of quantum dots, as well as spatially localized

dots, thus providing a new route for quantum-dot fabrication.

2.2. Problem Statement

Consider a thin solid film grown on a solid substrate where the lattice mismatch

between two materials is negligible, the surface energy γ is strongly anisotropic, the film

wets the substrate, and the film is thin enough for the wetting interaction energy to affect

the chemical potential of the film. Let us also assume that the substrate determines the

initial crystallographic orientation of the free surface of the growing film. We assume that

in the absence of the substrate, or when the film is thick enough so that it does not “feel”

the substrate, this orientation would be in the range of “forbidden orientations.” We

consider only high-symmetry orientations such as [001] and [111]. For these orientations,

the forbidden orientation of the growing surface implies that the surface stiffness tensor

[25,26],

(2.1) γ̃αβ = γδαβ +
∂2γ

∂θα∂θβ

is diagonal and has two equal negative components,

(2.2) γ̃11 = γ̃22 ≡ −σ < 0,

where θα,β are the surface angular coordinates and δαβ is the Kroneker delta. In the

absence of wetting interactions between the film and the substrate, such a surface is

thermodynamically unstable and exhibits spontaneous formation of pyramidal “faceted”

structures that coarsen in time [16,18]. The film would decompose into faceted islands
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and exhibit the Volmer-Weber growth, rather than the Stranski-Krastanov one. However,

as we will show, the presence of wetting interactions can suppress this instability, or

qualitatively change it, so that it would lead to the Stranski-Krastanov growth in the

form of spatially regular arrays of islands connected by a thin wetting layer.

The continuum evolution of the film free surface can be described by the classical

surface-diffusion equation

(2.3) vn = D∇2
sµ,

where vn is the normal surface velocity, D = DSS0Ω0V0/(RT ) (DS is the surface diffusivity,

S0 is the number of atoms per unit area on the surface Ω0 is the atomic volume, V0 is the

molar volume of lattice cites in the film, R is the universal gas constant, T is the absolute

temperature) [27] and

(2.4) µ =
δF
δh

is the chemical potential, the variational derivative of the free energy, F , with respect to

the shape of the film surface, h(x, y, t). The surface Laplace operator, ∇2
s, is given by

∇2
s =

1

1 + h2
x + h2

y

[
(1 + h2

y)∂
2
x − 2hxhy∂x∂y + (1 + h2

x)∂
2
y

]
(2.5)

− 1

(1 + h2
x + h2

y)
2

[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
y)hxx

]
(hx∂x + hy∂y),

where ∂x,y indicates partial differentiation with respect to x, y, and hx,y ≡ ∂x,yh.
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In the absence of elastic stresses and wetting interactions between the film and the

substrate, we have

(2.6) F =

∫ [
µ0h + I(hx, hy) +

1

2
ν(∆h)2

]
dx dy,

where µ0 is the volume part of the free energy (µ0 is the constant chemical potential of

a planar film), I = γ(hx, hy)
√

1 + (∇h)2 is the weighted anisotropic surface energy that

depends on the local surface slope, and ν is the regularization coefficient that measures

the energy of edges and corners [16, 28, 29] (for simplicity, we write this term in the

small-slope approximation that will be further employed in this chapter). The free energy

(2.6) gives the chemical potential

(2.7) µ = µ0 + µγ ≡ µ0 + γ̃αβCαβ + ν∆2h,

where Cαβ is the surface curvature tensor.

In the presence of wetting interactions between the film and the substrate, the film

chemical potential µ strongly depends on the film thickness h for h ∼ δw, where δw is the

characteristic wetting length, and µ → µ0 for h ≫ δw. In this case, the film free energy

can be written as

(2.8) F =

∫ [
f (h, hx, hy) +

1

2
ν(∆h)2

]
dxdy
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where f(h, hx, hy) → µ0h + I(hx, hy) for h ≫ δw. The wetting part of the free energy can

then be defined as

(2.9) Fw =

∫
[f (h, hx, hy) − µ0h − I(hx, hy)] dxdy.

We will consider the following two models for wetting interactions between the film

and the substrate. The first, a two-layer wetting model, where the wetting interactions

between the film and the substrate are described as a thickness-dependent surface energy

of the film, γ(h). This dependence is usually taken to be [30]

(2.10) γ(h) = γf + (γs − γf) exp(−h/δw),

where γs = const is the surface energy of the substrate in the absence of the film, γf is

the surface energy of the film free surface far from the substrate, and δw is the charac-

teristic wetting length. This model is consistent with ab initio calculations [31,32]. For

anisotropic film surface energy,

(2.11) γf = γ0
f [1 + ε(hx, hy)],

where γ0
f = const and ε(hx, hy) is the anisotropy function that depends on the orientation

of the film surface. Thus, in this model, the free energy density in (2.8) is f(h, hx, hy) =

γ(h, hx, hy)
√

1 + |∇h|2, and the chemical potential is computed as µ = µγ + W, where

µγ is defined by (2.7) and

(2.12) W =

∂γ
∂h

−
[

∂2γ
∂h∂hx

hx + ∂2γ
∂h∂hy

hy

]
(1 + |∇h|2)

√
1 + |∇h|2

.
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Note that in this case γ̃αβ in µγ depends on h. The second wetting model, a glued wetting-

layer model, considers isotropic wetting free energy, additive to the anisotropic surface

energy, yielding µ = µγ + W, with µγ defined by (2.7) and W being an exponentially

decaying function of h that has a singularity as h → 0:

(2.13) W = −w

(
h

δw

)−αw

exp(−h/δw).

Here, δw is the characteristic wetting length, w > 0 characterizes the “strength” of the

wetting interactions, and αw > 0 characterizes the singularity of the wetting potential as

h → 0. This singularity is a simple continuum phenomenological model of a very large

potential barrier for removal of an ultra-thin (possibly monolayer) wetting layer that

persists between surface mounds during Stranski-Krastanov growth process [24,33,34].

We are not aware of experimental studies in which the wetting interaction potential has

been measured, and the glued wetting-layer model is a reasonable approximation for the

purpose of our analysis.

Thus, in the small-slope approximation and for high-symmetry orientations, the sur-

face chemical potential in both of these wetting models have the same form

(2.14) µ = µ0
γ + W,

where µ0
γ = µγ(h0) is defined by (2.7) and evaluated at the initial film thickness h0, and

the part of the chemical potential due to wetting can be expanded as

(2.15) W = W0(h) + W2(h)(∇h)2 + W3(h)∇2h + . . . ,
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where W0,2,3(h) are smooth functions, rapidly (exponentially) decaying with increasing h,

W3(h0) = 0, and 2W2 = dW3/dh (due to Eq. (2.4)). In the small slope approximation,

and in the particular cases of high-symmetry orientations ([001] or [111]) of a crystal with

cubic symmetry, the evolution equation (2.3) for the film thickness can be written in the

following form:

(2.16)
∂h

∂t
= D∆

[
σ∆h + ν∆2h − Γijk[h] + W0(h) + W2(h)(∇h)2 + W3(h)∆h

]
,

where the functions W0,2,3(h) are determined by the type of wetting interactions model.

In Eq. (2.16), Γijk[h] is a nonlinear differential operator that depends on the orientation

of the film surface. To determine Γijk[h] for a particular surface, we write the general free

energy density

(2.17) Gijk = b1h
3
x + b2h

2
xhy + b3hxh

2
y + b4h

3
y + c1h

4
x + c2h

3
xhy + c3h

2
xh

2
y + c4hxh

3
y + c5h

4
y,

and apply the appropriate lattice symmetry conditions. For the [001] surface, Eq. (2.17)

must be invariant with respect to rotations by π/2, as well the transformations from

x → −x, y → −y, and x → y, from which we obtain

(2.18) G100 = b2h
2
xh

2
y + c1(h

4
x + h4

y).

The resulting chemical potential, after letting 2 b2 → b and 12 c1 → a, is

(2.19) Γ001 = (ah2
x + bh2

y)hxx + (bh2
x + ah2

y)hyy + 4bhxhyhxy.
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In a similar manner, Γijk[h] must be invariant with respect to rotations by 2π/3 as well

as the transformations y → −y, b → −b. Thus, we have

Γ111 = a(h2
xhxx + h2

yhyy + 2hxhyhxy) +
a

3

(
h2

yhxx + h2
xhyy − 2hxhyhxy

)
(2.20)

+ b[(hxx − hyy)hy + 2hxyhx].

Note that Eq. (2.16) with the nonlinear operators Γijk defined by (2.19) and (2.20)

can be written in the variational form

(2.21)
∂h

∂t
= D∇2

(
δF
δh

)
,

where F =
∫

Fdx dy, and

(2.22) F = −σ

2
(∇h)2 +

ν

2
(∆h)2 + Gijk +

∫
W0(h)dh − 1

2
W2(h)(∇h)2,

is the free energy density with

G001 =
a

12
(h4

x + h4
y) +

b

2
h2

xh
2
y,(2.23)

G111 =
a

12
(∇h)4 +

b

6
(3h2

xhy − h2
y).(2.24)

In the following sections, we investigate the stability and nonlinear dynamics of the solid-

film surface governed by Eq. (2.16).

2.3. Faceting Instability in the Presence of Wetting Interactions

We consider infinitesimal perturbations of a planar film surface, h = h0+h̃eik·x+ωt, and

linearize Eq. (2.16) to obtain the following dispersion relation between the perturbation
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growth rate ω and the wave vector k:

(2.25) ω = D(−W01k
2 + σk4 − νk6),

where k = |k| and

(2.26) W01 =

(
∂W0

∂h

)

h=h0

.

One can see that if the film wets the substrate, i.e., when W01 > 0, the wetting interactions

suppress the long-wave faceting instability caused by the surface-energy anisotropy. The

instability occurs only for

(2.27)
σ

4νW01

> 1,

i.e., if either the wetting interaction is less than the threshold value, W01 < W c
01 ≡

σ2/(4ν), or the surface stiffness is larger than the threshold value, σ > σc ≡ 2
√

W01ν.

At the instability threshold, the wavelength of the unstable perturbations λ is finite,

λ = λc = 2π/kc, where

(2.28) kc =

√
σ

2ν
.

Typical dispersion curves defined by Eq. (2.25) are schematically shown in Fig. 2.1. Note

that the critical wave number at the threshold does not depend on the wetting potential

and is determined only by the surface stiffness and the energy of edges and corners. For

the parameter values typical of semiconductors like Si or Ge, with the surface energy

γ ∼ 2.0 J m−2, surface stiffness σ ∼ 0.2 J m−2, the lattice spacing a0 ∼ 0.5 nm and the
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0

0

k

ω
b) 

c) 

a) 

Figure 2.1. Sketch of dispersion curves defined by Eq. (2.25) for (a)
σ2/(4νW01) > 1, (b) σ2/(4νW01) = 1, and (c) σ2/(4νW01) < 1.

regularization parameter ν ∼ γa2
0 ∼ 5.0 · 10−19 J, the wavelength of the structure at the

onset of instability is 14 nm.

Thus, in the presence of wetting interactions between the film and the substrate, the

faceting instability becomes short-wave. This is qualitatively different from the case of

faceting instability in the absence of wetting interactions. In the latter, the instability is

long-wave, i.e., all perturbations whose wavelengths are larger than a certain threshold

are unstable. In other words, wetting interactions with the substrate change the faceting

instability from the spinodal decomposition type [29, 35] to the Turing type [36], thus

leading to the possibility of changing the system evolution from Ostwald ripening (coars-

ening) to the formation of spatially regular patterns. The latter is studied in the next

sections.
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2.4. Formation of Surface Structures: 1+1 Case

In this section, we investigate the nonlinear evolution of surface structures resulting

from the faceting instability in the presence of wetting interactions with the substrate

in the 1+1 case of a two-dimensional film with a one-dimensional surface. In this case,

the evolution equation (2.16) for the shape of the film surface, after the rescaling x →

(ν/σ)1/2x, t → [ν2/(Dσ3)]t, h → (ν/a)1/2h, becomes

(2.29)
∂h

∂t
=
[
hxx + hxxxx − h2

xhxx + w0(h) + w2(h)h2
x + w3(h)hxx

]
xx

,

where w0,2,3(h) are the rescaled functions W0,2,3(h), respectively (w3(h0) = 0, 2w2 =

dw3/dh). In this scaling, the instability occurs for (∂w0/∂h)h=h0
≡ w01 < 1

4
at the wave

number kc =
√

2/2. We now investigate the evolution of structures near the instability

threshold by means of weakly nonlinear analysis.

Let us consider w01 = 1
4
− 2ǫ2, ǫ ≪ 1, introduce the long-scale coordinate X = ǫx and

the slow time T = ǫ2t, and expand

h̃ = h − h0 = ǫ
[
A(X, T )eikcx + c.c.

]
(2.30)

+ ǫ2
[
A2(X, T )e2ikcx + B(X, T ) + c.c.

]
+ · · · ,

w0(h) = w00 + w01h̃ + w02h̃
2 + w03h̃

3 + · · · ,(2.31)

w2(h) = w20 + w21h̃ + · · · ,(2.32)

w3(h) = w31h̃ + w32h̃
2 + · · · ,(2.33)
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where w31 = 2w20 and w32 = w21. We substitute (2.31)- (2.33) into Eq. (2.29) to obtain

the corresponding problems in successive orders of ǫ. From the problem at second order,

one finds

(2.34) A2 =
2

9
(3w20 − 2w02)A

2.

From the solvability condition at the third order, we obtain the evolution equation for

the complex amplitude of the unstable, spatially periodic mode, A(X, T ). The problem

at the fourth order yields the evolution equation for the real amplitude B(X, T ) of the

zero mode associated with conservation of mass. Together, the two equations form the

following system of coupled equations:

AT = A + AXX − λ0|A|2A + sAB,(2.35)

BT =
1

4
BXX − 2s

(
|A|2

)
XX

,

where

λ0 =
1

8
− 1

9
(3w20 − 2w02)

2 − 1

2
w21 +

3

2
w03,(2.36)

s =
1

2
w20 − w02.(2.37)

We now analyze the stability of the periodic stationary solution of system (2.35),

A0 = λ
−1/2
0 , B = 0, in the form of rolls. We let

A(X, T ) = A0 + A1(X, T )eσT+iqX + A2(X, T )eσ∗T−iqX ,(2.38)

B(X, T ) = B1(X, T )eσT+iqX + B∗

1(X, T )eσ∗T−iqX ,(2.39)
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where B∗

1(X, T ) and σ∗ denote the complex conjugates of B1(X, T ) and σ, respectively,

and linearize system (2.35) in A(X, T ) and B(X, T ). The linearization results in the

homogeneous system of equations for A1(X, T ), A∗

2(X, T ), and B1(X, T ),

(2.40)




σ + q2 + 1 1 −sA0

1 σ + q2 + 1 −sA0

sA0 sA0 −σ − 1
4
q2







A1

A∗

2

B1




=




0

0

0




,

with the solvability condition

(2.41) (σ + q2)
[
4σ2 + (8 + 5q2)σ + q4 + 2q2 − 8A2

0s
2
]

= 0.

The greatest disturbances occur when q → 0. Thus, the system of amplitude equations

(2.35) has a stable, stationary solution, A0 = λ
−1/2
0 , B = 0, corresponding to a spatially

periodic pattern (array of dots) if [20,37]

(2.42) λ0 > 8s2 = 2(w20 − 2w02)
2.

Condition (2.42) defines a region in the parameter space in which one can observe the

formation of stable periodic arrays of dots. First, consider a glued-layer wetting potential

defined by (2.13). From condition (2.27), one finds that the planar film surface becomes

unstable with respect to periodic structures for

(2.43) − σ2δw

wν
> 4(αw + ζ)ζ−(αw+1)e−ζ,
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where ζ = h0/δw. Since, for the glued-layer wetting potential, w2(h) = w3(h) ≡ 0, one

obtains from (2.42) and (2.43) that a near-threshold periodic surface structure is stable if

(2.44)
aδ2

w

ν
> f(ζ, αw),

where

f(ζ, αw) = [18ζ2(ζ + α)2]−1[10ζ3 + 40αwζ3(2.45)

+ αw(11 + 60αw)ζ2 + 2αw(20α2
w + 11α2 − 9)ζ

+ α2
w(1 − α2

w + 11αw + 1)].

Conditions (2.43) and (2.44) are shown in Fig. 2.2.

Now consider a two-layer wetting potential defined by (2.10) with

(2.46) γf = γ0
f [1 + ε cos 4(θ0 + θ)],

where θ = arctan(hx) and θ0 corresponds to the orientation of the planar surface of the

film, parallel to the substrate; for the high-symmetry orientations [01] and [10], θ0 =

0, π/4, respectively. It is convenient to introduce the following dimensionless parameters:

(2.47) Γ =
γf0

γs
(15ε − 1), ζ =

h0

δw
, ε̃1 =

ε + 1

15ε − 1
, ε̃2 =

95ε − 1

15ε − 1
.

The film wets the substrate if Γ < ε̃−1
1 or γs/γf0 > ε + 1. In this case, the nonlinear

anisotropy coefficient a in Eq. (2.16) is always positive. The faceting instability requires



27

0.5 1 1.5 2 2.5
0

1

2

3

4

h0/δ

σ2
δ/

(−
w

ν)

a)

1 2 3 40

5

10

15

20

25

h0/δ
a

δ2
/ν

b)

unstable film

α=6.

α=3.
α=1. 

stable 
periodic 
structures 

Figure 2.2. (a) Parameter regions where a planar film surface is unstable
(above the corresponding curves) for αw = 3.0 (solid line) and αw = 1.0
(dashed-dotted line). (b) Parameter regions where weakly nonlinear peri-
odic surface structures are stable (above corresponding curves) for different
values of αw.

a negative surface stiffness that can achieved if 15ε − 1 > 0, and

(2.48) ζ > ln(1 + Γ−1).

This instability threshold condition (2.27) gives

(2.49)
γsδ

2
w

ν
≥ 4eζ(1 − Γε̃1)

[Γ(eζ − 1) − 1]2
.

The analysis of conditions (2.48) and (2.49) shows that the short-wave instability of the

film surface that can lead to pattern formation can occur only if the film thickness is above

a threshold value determined by the surface-energy anisotropy and the wetting length,
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namely, for

(2.50) h0 > δw ln

[
16ε

15ε − 1

]
.

Using (2.42), one can show that the weakly nonlinear periodic structure is stable if

(2.51)
γsδ

2
w

ν
> f(ζ, Γ, ε),

where

(2.52) f =
2

27

Γ2(5e2ζ + 14eζ + 35) + 14Γ(eζ + 5) + 35

e−ζ[Γ(eζ − 1) − 1]2[ε̃2Γ(eζ − 1) − 1]

The conditions (2.48)-(2.51) allow one to determine regions in the (Γ, ζ) parameter plane

where spatially regular surface structures can occur as a result of the thermodynamic

instability of the film surface caused by strongly anisotropic surface tension in the pres-

ence of wetting interactions described by (2.10). Examples of these regions for different

values of the anisotropy parameter ε are shown in Fig. 2.3. The solid curves correspond

to condition (2.49), and the dashed curves correspond to condition (2.51). The film is

unstable in the regions above the solid curves, and stable periodic structures can form

in the region near the solid curve which lies above the dashed curve. One can see that

for given values of the surface-energy anisotropy, ε, and γsδw/ν, the formation of stable

periodic structures occurs if the ratio of the initial film thickness to the wetting length is

within a certain interval.

Numerical simulations of Eq. (2.29) were performed in [38] for the two types of

wetting potential. For both wetting potentials, the numerical solutions exhibited the
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Figure 2.3. (a) Parameter regions where a planar film surface is unstable
(above the solid curve) and where stable periodic structures can form near
the instability threshold (near the solid curve, above the dashed curve): (a)
ε = 0.1, γsδ

2
w/ν = 0.5, (b) ε = 0.1, γsδ

2
w/ν = 2.0, (c) ε = 0.2, γsδ

2
w/ν = 0.5

and (d) ε = 0.4, γsδ
2
w/ν = 0.5.

formation of stable periodic structures near the instability threshold in the parameter

regime where these structures are stable. Outside of these regimes, or further from the

instability threshold, the periodic structures become unstable and exhibit behavior that

depends on the type of wetting interactions. For the glued-layer potential, Fig 2.4 shows

the stationary solution of Eq. (2.29) as one moves away from the short-wave instability

threshold, and Fig 2.5 shows different stages of the coarsening process and the formation

of localized islands.
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Figure 2.4. Stationary numerical solutions of Eq. (2.29) with the wetting
potential (2.13) showing stationary surface structures for h0 = 3.0 nm,
(ζ = 2.0), a = 0.17 J m−2, and (a) w = 6.8 · 108 J m−3 (w01 = 0.24), (b)
w = 2.8 · 108 J m−3 (w01 = 0.1), (c) w = 2.8 · 107 J m−3 (w01 = 0.01).

2.5. Formation of Surface Structures: 2+1 Case

In this section, we investigate the nonlinear evolution of surface structures resulting

from the faceting instability of a three-dimensional film with a two-dimensional surface

(2 + 1 case) in the presence of wetting interactions with the substrate. We consider

high-symmetry orientations only, [001] and [111], described by Eq. (2.16).

After the appropriate rescaling, Eq. (2.16) can be written as

(2.53)
∂h

∂t
= ∆

[
∆h + ∆2h − g[h] + w0(h) + w2(h)(∇h)2 + w3(h)∆h

]
,
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Figure 2.5. Different stages of coarsening of the initial periodic structure,
yielding the formation of localized dots divided by a thin wetting layer–the
numerical solution of Eq. (2.29) with the wetting potential (2.13) h0 = 1, 5
nm, w = 8.2 · 106 J m−3 (ζ = 1.0, w01 = 0.1), a = 0.22 J m−2.

where the nonlinear differential operator g[h] for the [001] orientation is

(2.54) g001 = (h2
x + ph2

y)hxx + (h2
y + ph2

x)hyy + 4phxhyhxy,

and for the [111] orientation

(2.55) g111 =

(
h2

x +
1

3
h2

y

)
hxx +

(
h2

y +
1

3
h2

x

)
hyy +

4

3
hxhyhxy +q[(hxx−hyy)hy +2hxyhx].

Equation (2.53) has a special structure in that the linear operator is isotropic, while the

nonlinear operator is anisotropic. The linear growth rate near the instability threshold,

thus, does not depend on the wave vector orientation and the resulting dispersion relation

is the same as in the 1+1 case, ω = −w01k
2+k4−k6, with the instability threshold w01 = 1

4
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at k = kc =
√

2/2. It is the nonlinear interaction between the modes that will determine

the symmetry of the emerging pattern. This situation is similar to the one considered

in Ref. [39] where the effect of surface-energy anisotropy on the formation of cellular

patterns with different symmetries at a crystal-melt interface caused by morphological

instability during directional solidification was studied. Below, we consider the weakly

nonlinear analysis near the instability threshold.

Since the linear operator in Eq. (2.53) is isotropic and the nonlinear operator in Eq.

(2.53) has a quadratic nonlinearity that breaks the h → −h symmetry, the preferred

pattern near the instability threshold will have a hexagonal symmetry. This hexagonal

symmetry is caused by the quadratic resonant interaction between three different modes

orientation at 120o with respect to one another and having the same linear growth rate.

The specific type of pattern in this case is determined by the phase locking of the three

resonant modes that depends on the quadratic resonant interaction coefficient. In order

to compute this coefficient, take w01 = 1
4
− 2γǫ, ǫ ≪ 1, introduce the slow time τ = ǫt,

and use the expansions (2.31)-(2.32), as well as the expansion

h = ǫ
3∑

n=1

An(τ)eikn·r + ǫ2
3∑

n=1

Bn(τ)eikn·r(2.56)

+ ǫ2

3∑

n=1

[
Bn,n(τ)e2ikn·r + Bn,n−1(τ)ei(kn−kn−1)·r

]
+ c.c. + O(ǫ3),

where An(τ), Bn(τ), Bn,n(τ) and Bn,n−1(τ) are complex amplitudes (the spatially uniform

mode Bn,−n(τ) is missing due to conservation of mass), r is a vector in the (x, y) plane,

kn =
√

2/2 and k1 + k2 + k3 = 0 (n = 0 and n = 3 correspond to the same mode with

the wave vector k3). Then, the solvability condition for the problem for Bn in the order
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ǫ2 yields the following three evolution equations for the amplitudes A1,2,3:

(2.57)
∂A1

∂τ
= γA1 + αA∗

2A
∗

3,

where the other two equations are obtained by the cyclic permutation of the indices in

Eq. (2.57). The resonant quadratic interaction coefficient is different for different surface

orientations:

α001 =
3

4
w20 − w02,(2.58)

α111 = α001 − i
q

4
√

2
sin(3φ0),(2.59)

where the angle φ0 characterizes the orientation of the resonant triad k1,k2,k3 in the

surface plane, k1 = (cos φ0, sin φ0). Thus, in the case of the [001] surface, the quadratic

mode interaction is isotropic, while in the case of the [111] surface, it depends on the

pattern orientation within the [111] plane.

For equilateral patterns, An = ρeiθn and using α = |α|eiδ, one obtains from (2.57) the

following system of equations for ρ and Θ = θ1 + θ2 + θ3:

∂ρ

∂τ
= γρ + |α|ρ2 cos(Θ − δ),(2.60)

∂Θ

∂τ
= −3ρ|α| sin(Θ − δ).(2.61)

Eq. (2.61) has two critical points: stable, Θ = δ, and unstable, Θ = π + δ. Thus, the

system (2.60) and (2.61) describes an unbounded growth of a pattern given by a function

(2.62) h = ρ[cos(k1 · x + θ1) + cos(k2 · x + θ2) + cos(k3 · x + θ3)],
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in which the phases are locked: θ1 + θ2 + θ3 = δ. If the resonant interaction coefficient

is real, then δ = 0(α > 0) or δ = π(α < 0), and the function (2.62) describes a spatially

regular array of hexagons with h > 0(h < 0) in the centers of the hexagons for α > 0(α <

0). Therefore, in the case of the [001] surface when α001 is real, one could observe the

growth of regular hexagonal arrays of dots for α001 > 0 or pits for α001 < 0. Note that for

the [001] orientation, the pattern type is determined purely by the details of the wetting

potential (the coefficients w02 and w20) since, in this case, the anisotropic surface energy

enters only through the quartic terms in the free energy functional yielding cubic nonlinear

terms in the evolution equation for the surface shape. For example, for a glued wetting

potential of type (2.13), w20 = 0, α001 = w02 > 0, and therefore only the formation of

hexagonal arrays of dots is possible; an array of pits cannot form.

The situation is different for the [111] orientation when the free-energy functional has

anisotropic cubic terms leading to anisotropic quadratic terms in the evolution equation

for the surface shape and the complex quadratic resonant interaction coefficient. In this

case, the imaginary part of the resonant interaction coefficient depends on the surface-

energy anisotropy coefficient, q, and the pattern orientation within the [111] plane (angle

φ0). As one can see from (2.60), the most rapidly growing pattern corresponds to the

maximum of |α| that is achieved for φ0 = π/6. In this case, one would observe the growth

of a pattern described by the function (2.62) with the phases locked at

(2.63) Θ = arctan

[
q/
√

2

4w02 − 3w20

]
.

Examples of patterns corresponding to different values of Θ are shown in Fig. 2.6 (see also

Ref. [39]). One can see that for intermediate values of Θ, the growing pattern consists
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Figure 2.6. Spatial patterns described by Eq. (2.62) with different values
of Θ = θ1 + θ2 + θ3.

of a regular hexagonal array of triangular pyramids. Notes that similar hexagonal arrays

of triangular pyramids were observed in experiments reported in Ref. [40]. Although the

physical mechanism of the formation of ordered arrays of triangular pyramids observed

in Ref. [40] was different (elastic interaction of multiple epitaxial layers), the nonlinear

mechanism based on the resonant quadratic interaction of unstable modes in the presence

of the anisotropy of the [111] is universal and may well be the same in the system studies

in Ref. [40].

The amplitude equations (2.57) cannot describe the nonlinear stabilization of a grow-

ing surface structure and cannot provide conditions for the formation of stable, spatially
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regular structures near the instability threshold. In order to obtain such conditions, higher

order cubic nonlinear terms in the amplitude equations need to be taken into account.

Letting w01 = 1
4
− 2γǫ2, ǫ ≪ 1, τ = ǫ2t, and using the previous expansions (2.31)-(2.32),

(2.56) yields the following evolution equations for the amplitudes An at order ǫ3:

(2.64)
∂An

∂τ
= γAn + αA∗

l A
∗

m − λ0|An|2An − λ(|Al|2 + |Am|2)An,

with the resonant interaction coefficient α in Eqs. (2.58) and (2.59). The other two

equations are obtained by the cyclic permutation of the indices in Eq. (2.64). The self-

interaction and cross-interaction Landau coefficients, λ0 and λ, in Eq. (2.64) are

λ001
0 =

3(1 + p)

32
− 1

9
(3w20 − 2w02)

2 +
3w03

2
− w21

2
− 3p − 1

32
cos(4φ0),(2.65)

λ001 =
3(1 + p)

32
+ 3w03 − w21 +

3p − 1

32
cos(4φ0) −

√
3(3p − 1)

32
sin(4φ0)(2.66)

− 1

8
(4w02 − 5w20)

2

and

λ111
0 =

1

8
− q2

36
(1 − cos(6φ0)) −

1

9
(3w20 − 2w02)

2 +
3w03

2
− w21

2
,(2.67)

λ111 =
1

8
+ 3w03 − w21 −

3q2

32
(1 + cos(6φ0)) −

1

8
(4w02 − 5w20)

2,(2.68)

for the respective [001] and [111] directions. In the presence of the resonant quadratic in-

teraction, the addition of these cubic terms in the amplitude equations near the instability

threshold is asymptotically rigorous only if the quadratic interaction coefficient is small,

|α| ∼ ǫ, which restricts the validity of the weakly nonlinear analysis to a narrow range
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of physical parameters. One can see that the Landau cubic interaction coefficients are

anisotropic and depend on the pattern orientation in the surface plane [39]. The system

(2.64) can be written in terms of the Lyapunov function U as

(2.69)
∂An

∂T
= − ∂U

∂A∗
n

, n = 1, 2, 3,

where

U(An, A∗

n) =
3∑

n=1

(
−γ|An|2 +

λ0

2
|An|4

)
− α(A1A2A3 + A∗

1A
∗

2A
∗

3)(2.70)

+ λ(|A1|2|A2|2 + |A1|2|A3|2 + |A2|2|A3|2).

For equilateral hexagonal patterns,

(2.71) ρ =
α ±

√
α2 + 4γ(λ0 + 2λ)

2(λ0 + 2λ)
,

and

(2.72) U(φ0) = −3γρ2 − 2αρ3 +

(
3λ0

2
+ 3λ

)
ρ4,

shown in Fig. 2.7 for [001] and [111] surfaces. Minimizing Eq. (2.72) with respect to φ0

gives the preferred orientation in the plane as φ0 ≈ 0.4629, 2.033 and φ0 = 0, π/3, 2π/3, π

for the respective [001] and [111] surfaces. For each orientation, the angles φ0 are indepen-

dent of the wetting parameters and have equal minimum values of U . Since the resonant

interaction coefficient α is real for the [001] direction, the φ0 correspond to the pattern

orientation in the plane. However for the [111] direction, the resonant interaction co-

efficient is complex with the most rapidly growing pattern at φ0 = π/6 leading to the



38

(a) (b)
U U

−1.04

−1.08

−1.0−.195

−.2

−.205

00 .5.5 11 1.51.5 22 2.52.5 33 φ0φ0

Figure 2.7. Lyapunov functions defined by Eq. 2.72 for (a) [001] and (b)
[111] surface orientations

previously discussed phase locking given by Eq. (2.63). Although the pattern will grow at

φ0 = π/6, the phase locking will change and the final state of the system will correspond

to the minima of U at φ0 = 0, π/3, 2π/3, π. The resonant interaction coefficient will be

real at these angles and will correspond to hexagonal arrays of either dots or pits.

Numerical simulations of Eq. (2.53) were performed in 2.13 for the [001] and [111]

orientations of the film surface with Γijk[h] defined by (2.19) and (2.20), and for the

glued-layer potential defined by (2.13). For sufficiently large surface energy anisotropy,

the numerical solutions for the [001] surface exhibited the formation of stable periodic

structures as shown in (Fig. 2.8). In the case of the [111] orientation of the film surface, the

formation of regular arrays of dots were not observed, even near the instability threshold

and for large surface energy anisotropy. Instead, the numerical solutions exhibited the

formation of hexagonal arrays of triangular pyramids that coarsened and evolved toward

localized pyramidal structures as shown in Fig. 2.9.
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Figure 2.8. Formation of spatially regular arrays of dots: numerical solu-
tions of Eq. (2.16) for [001] surface orientation. a) Stationary hexagonal
array of equal-size dots, h0=1.5 nm, w = 1.89 · 107 J m−3, a = 6.6 J m−2

(w01 = .23, ζ = 1.0). (b) Stationary square array of equal-size dots, h0=1.5
nm, w = 8.2 · 105 J m−3, a = 11.1 J m−2 (w01 = .01, ζ = 1.0). Other
parameters are the same as in Figs. 2.4 and 2.5 with b = 0.

2.6. Conclusions

We have found that, besides the stress-driven instability, there can be another mech-

anism for the formation of quantum dots in epitaxially grown thin solid films. By this

mechanism, the substrate determines that the film surface initially grows in a specific

crystallographic orientation. In the case of a thick film that does not readily “feel” the

substrate, this orientation would be forbidden (i.e., thermodynamically unstable), leading

to the formation of faceted structures. Wetting interactions between the film and the

substrate suppress the long-wave modes of this instability and change its spectrum from

the spinodal decomposition type to the Turing type. This spectrum change yields the

possibility of the self-organization of stable, spatially regular hexagonal or square arrays
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Figure 2.9. Formation of localized dots: numerical solutions of Eq. (2.16)
for [111] surface orientation showing different stages of coarsening of initial
regular hexagonal array of triangular pyramids for h0 = 1.5 nm, w = 8.2·106

J m−2 (w01 = 0.1, ζ = 1.0). Other parameters are the same as in Figs. 2.4
and 2.5 except that b = 0.44 J m−2.

of equal-sized dots. We have found the parameter regions in which, depending on the type

of wetting interactions, one can observe the formation of stable periodic arrays of dots.

Note that spatially regular stable arrays of dots caused by wetting interactions exist in

a rather narrow range of parameters, bounded by proximity to the instability threshold
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and by the stability interval determined by the interaction with the zero mode. There-

fore, experimental implementation of the conditions that may lead to the self-assembly of

spatially regular arrays of dots can be a challenge for experimentalists.
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CHAPTER 3

Self-Assembly of Quantum Dots in a Thin Epitaxial Film

Wetting an Elastic Substrate

3.1. Introduction

In the previous chapter, it was shown that, in the presence of a strong surface-energy

anisotropy, self-organization of regular QD arrays is possible without epitaxial stress,

solely as a result of coupling between wetting interactions and thermodynamic faceting

instability. However, as noted in Sec. 2.1, the principle mechanism that leads to the

formation of QDs in epitaxial films is associated with epitaxial stress that occurs in the

film due to lattice mismatch between the film and the substrate. The elastic energy that

accumulates in the film can be lowered by reconstruction of the film surface through

surface undulations. This results in the Asaro-Tiller-Grinfeld (ATG) instability [1, 2]

leading to the formation of nano-scale surface structures (islands), or QDs [5,6,27].

The theoretical investigation of self-assembly and evolution of quantum dots in thin

epitaxial films due to the ATG instability has received a great deal of attention. In [3,7,8],

the formation and coarsening of quantum dots caused by the ATG instability mechanism

was investigated by numerically solving a nonlinear evolution equation for the film surface

shape, and the resulting coarsening kinetics was in agreement with experimental observa-

tions [41]. Theoretical analysis of stability of a hexagonal array of cones on the surface of

an elastically-strained solid was performed in [42]. It was shown that elastic interaction
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between the cones can lead to array meta-stability. Elastic interactions can also stabilize

spatially-regular quantum dot arrays in multi-layer structures [43]; however, other sta-

bilization mechanisms are also possible [44]. Numerical simulations of self-assembly of

regular quantum dot arrays in multilayer structures were performed in [3].

Analysis of pattern formation in a thin epitaxial film caused by the interplay between

elastic and wetting interactions was performed in [20] for the case of a rigid substrate

in the long-wave limit; a possibility of the formation of stable, spatially-regular arrays of

quantum dots was demonstrated analytically and numerically. A combined effect of elastic

stress, surface-energy anisotropy and wetting interactions on the formation of quantum

dots in a thin epitaxial film was investigated in [19,45]. Numerical simulations performed

for 1+1 [45] and 2+1 interfaces [19] showed self-assembly of spatially-periodic arrays of

faceted pyramids.

Another important factor that affects the formation of quantum dots in epitaxial films

is elastic properties of the substrate. The substrate elasticity results in a non-analytic

spectrum of the ATG instability [5,27] and can substantially affect nonlinear dynamics

of quantum dot formation. The effect of the substrate elasticity on self-assembly of

quantum dots in the presence of wetting interactions was studied in [46]. A non-local,

integro-differential equation describing the evolution of the film surface was derived in

the long-wave limit, and the formation of a single localized island was investigated (see

also [47]). This analysis has recently been generalized in [48] to include certain nonlinear

elastic effects. It was claimed that the combined effect of nonlinear stress and wetting can

terminate the coarsening process and lead to the formation of irregular arrays of equal-

sized islands. Phase-field numerical simulations of island formation in the presence of
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wetting effects and elastic interaction between the film and the substrate were performed

in [49,50].

Despite the large number of theoretical investigations of self-assembly of quantum

dots in thin solid films, the question as to the conditions under which the quantum dot

coarsening ceases and a spatially-regular array of quantum dots can form still remains

open. Specifically, the fact that ordered quantum dot arrays have not been observed in

experiments on instability of thin epitaxial films needs to be understood. This problem

can be approached by means of weakly nonlinear stability analysis near the ATG insta-

bility threshold that would allow one to understand the nature of the bifurcation of a

regular pattern from a homogeneous state. Also, it can be shown that wetting interac-

tions between the film and the substrate yield an additional normal stress at the film free

surface that can be called a wetting stress. This stress originates from the dependence of

the wetting potential on the film thickness.

In this chapter, we investigate the formation of quantum dots driven by the ATG

instability and wetting interactions between the film and the substrate, accounting for the

substrate elasticity and wetting stress. We perform linear and weakly nonlinear analyses

to determine the possibility of the formation of spatially-regular quantum dot arrays. We

show that, in the case of two-layer and glued-layer wetting potentials, such arrays result

from a subcritical bifurcation and are therefore unstable. We also perform numerical

simulations of a nonlocal integro-differential equation describing the surface evolution in

the long-wave approximation and determine the coarsening kinetics.
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3.2. Problem Statement

Consider an epitaxially strained thin solid film that wets a solid, semi-infinite elastic

substrate. The film surface, z = h(x, t), evolves due to surface diffusion, described by [27]

(3.1)
∂h

∂t
= D(1 + |∇h|2)1/2∇2

s [E(h) − 2γK + W(h)] ,

where z is the coordinate normal to the substrate and x = (x, y) are the coordinates

in the plane parallel to the planar substrate-film interface, ∇2
s is the surface Laplace

operator defined by Eq. (2.5), E(h) is part of the surface chemical potential related to

the elastic energy in the film which is determined by the solution of the corresponding

elastic problem (see below), W(h) is part of the surface chemical potential due to wetting

interactions with the substrate (wetting potential), γ is the surface free energy, assumed

to be isotropic, i.e. independent of the surface orientation, 2K = [(1 + h2
x)hyy + (1 +

h2
y)hxx − 2hxhyhxy]/(1 + |∇h|2)3/2 is the mean surface curvature, and D = DSS0ΩV0/kBθ

(defined in the previous chapter).

As in Chapter 2, we consider two models for the wetting interactions: two-layer and

glued-layer. In the two-layer model, the surface energy is an exponentially decaying

function of the film thickness described by Eq. (2.10). Since the film surface energy, γf ,

is now assumed to be isotropic, the corresponding wetting potential (2.12) reduces to

(3.2) W(h) = (dγ/dh)/
√

1 + |∇h|2.

For the glued-layer wetting model, the wetting potential is given by Eq. (2.13) as in the

Chapter 2.
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In order to find the elastic energy E(h), we need to solve the elasticity problem in the

film and in the substrate. We choose a coordinate system such that z = 0 corresponds

to the planar film/substrate interface, z < 0 corresponds to the semi-infinite substrate,

and 0 < z < h(x, t) corresponds to the film; x = (x, y) is a position vector in the film

plane. We assume that mechanical equilibrium exists in the system at all times; therefore,

∂jσ
f,s
ij = 0, where σij is the stress tensor expressed in terms of the strain tensor Eij, ∂j

denotes partial differentiation with respect to the coordinate j = 1, 2, 3, corresponding to

the coordinates x, y, z, respectively, and the superscripts f and s refer to the film and the

substrate, respectively. The stress and strain tensors are related by the Hooke’s law [51],

(3.3) σij = 2µ

[(
ν

1 + ν

)
δijEkk + Eij

]
, Eij =

1

2
(∂jui + ∂iuj),

where ui is the ith Cartesian coordinate of the displacement vector, i = 1, 2, 3, µ is the

elastic shear modulus, ν is the Poisson’s ratio, δij is the Kronecker’s delta, and usual sum-

mation over repeated indices is assumed. Thus, the condition of mechanical equilibrium

is described by the Navier equation in the film and in the substrate [51],

(3.4) (1 − 2νf,s)∂2
ku

f,s
i + ∂i∂ku

f,s
k = 0.

The elastic energy in Eq. (3.1) is E(h) = 1
2
σijEij |z=h.

In the presence of wetting interactions, the boundary conditions that describe the

stress balance at the film free surface and at the film-substrate interface require special

consideration. In both wetting models, we assume that the wetting potential depends

on the film thickness. The latter can change by two mechanisms: (i) accumulation (or

redistribution) of material at the free surface and (ii) deformation of the film. If, as a
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result of the film deformation, the local displacements of the film free surface and the film-

substrate interface in the z-direction are δhf and δhs, respectively, then the film thickness

changes by δh = δhf − δhs, causing the film surface energy to change by (dγ/dh)δh. This

means that additional stresses in the z-direction, ∓dγ/dh, act on the film free surface

and the film-substrate interface, respectively. The work of these stresses causes this

energy change. Similarly, if wetting interactions between the film and the substrate are

described by the glued-layer wetting potential given by Eq. (2.13), then the additional

stresses acting on the film free surface and the film-substrate interface are ∓h dW/dh,

respectively. Thus, in the presence of wetting interactions, characterized by an additional

wetting energy that depends on the local film thickness, one should include a wetting

stress acting on the film free surface and on the film-substrate interface. This wetting

stress accounts for the change of the film energy due to the variation of the film thickness

caused by the film deformation, while the term W(h) in the surface diffusion equation

(3.1) accounts for the change of the film energy when the film thickness changes due to

the material redistribution. Note that this consideration is valid only in the long-wave

approximation, when wetting interactions can be described by a function that depends

on the local film thickness only.

In the following analysis, unless specified otherwise, we consider the two-layer wetting

model. Thus, the stress balance boundary conditions at the film free surface and at the

film/substrate interface read:

(3.5) σf
ijnj +

∂γ

∂h
δi3 = 0 on z = h(x, y, t),
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(3.6) σf
ijnj − σs

ijnj +
∂γ

∂h
δi3 = 0 on z = 0,

where nj is the unit normal to the film surface and ∂γ/∂h is the wetting stress.

At the film/substrate interface, continuity of displacement taking into account the

lattice mismatch between the film and the substrate holds,

(3.7) uf
i = us

i + ǫ




x

y

0




.

Here, ǫ is the misfit strain in the film, defined by

(3.8) ǫ =
as − af

af
,

where af and as are the lattice spacings of the film and the substrate, respectively; ǫ > 0

corresponds to tensile strain and ǫ < 0 to the compressive strain. Finally, we require the

strains in the substrate far away from the film to decay to zero,

(3.9) Es
ij → 0 as z → −∞.

3.3. Steady State Solution

The governing equations in Section 3.2 describe the stress state and surface evolution

of an epitaxially strained film. They have a basic state solution corresponding to a

completely relaxed, stress-free substrate,

ūs
i = 0, σ̄s

ij = 0, for i, j = 1, 2, 3,(3.10)
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and a planar film with spatially uniform stress and strain,

ūf
1 = ǫx, ūf

2 = ǫy, ūf
3 = − 1

1 − νf

[
2ǫνf +

1 − 2νf

2µf

∂γ

∂h

]
z,(3.11)

σ̄f
11 = σ̄f

22 =
1

1 − νf

[
2ǫµf(1 + νf ) − νf

∂γ

∂h

]
, σ̄f

33 = −∂γ

∂h
.(3.12)

Note that even in the absence of epitaxial strain, wetting interactions with the sub-

strate produce wetting strain and wetting stress in the film:

Ēw
33 = − 1 − 2νf

2µf(1 − νf)

∂γ

∂h
, σ̄w

11 = σ̄w
22 = − νf

1 − νf

∂γ

∂h
, σ̄w

33 = −∂γ

∂h
.(3.13)

In the presence of epitaxial strain, wetting interactions modify the strain in the film

as well as all components of the stress. It is interesting to note that the presence of

wetting stress breaks the symmetry between compressive and tensile epitaxial strains.

Indeed, as follows from Eq. (3.11), when the epitaxial strain is compressive (ǫ < 0), the

corresponding vertical strain has the same sign as the wetting strain, and the two strains

add to increase the total vertical strain. Alternatively, when the epitaxial strain is tensile

(ǫ > 0), the signs of the epitaxial and wetting strains in the vertical direction are opposite

which decreases the total vertical strain. The total elastic energy stored in the film due

to epitaxial and wetting stresses, however, is independent of the sign of ǫ and ∂γ/∂h:

(3.14) E0 =
1

2
σ̄f

ijĒ
f
ij = 2ǫ2µf

1 + νf

1 − νf
+

1

2µf

1 − 2νf

1 − νf

(
∂γ

∂h

)2

.

In the next section, we perform the linear stability analysis of this basic state of an

epitaxial film in the presence of epitaxial and wetting stresses.
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3.4. Linear Stability Analysis

In this section, we study the stability of a planar film in the basic state described

by Eqs. (3.10)-(3.12). The film dynamics is governed by equations (3.1),(3.4)-(3.9). We

consider infinitesimal perturbations of the planar film, h = h0 + ĥeωt+ik·x, and the dis-

placement vectors

(3.15) uf,s = u0
f,s + f̂f,s(z)eωt+ik·x,

and linearize the problem (3.1)-(3.9). The solvability condition for the linear problem

gives the dispersion relation between the perturbation growth rate ω and the wave vector

k. In the long-wave approximation, i.e. for 2π/k ≫ h̄, this dispersion relation reads

(3.16) D−1ω = −Ak2 + Bk3 − Ck4,

where k = |k| and

A =

[
1 +

βf

µfαf

γ′(h̄)

]
γ′′(h̄),(3.17)

B = 4
αs

α2
f

µ0(1 + νf)
{
2ǫ2(1 + νf)µs − ǫνf

[
γ′(h̄) + h0γ

′′(h̄)
]}

,(3.18)

C = γ +
2ǫh0

α3
f

(1 + νf )
(
4νfγ

′(h̄)C1 + h0γ
′′(h̄)C2

)
(3.19)

− 16ǫ2h0µs

α3
f

(1 + νf )
2(C1 − αf),
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where

αf,s = 2(1 − νf,s), βf,s = 1 − 2νf,s, µ0 = µf/µs,(3.20)

C1 = αf + αfβsµ0 − α2
sµ

2
0, C2 = 4αf + 3αfβsµ0 − 4α2

sµ
2
0.

The dispersion relation (3.16) is the generalization of the dispersion relation obtained

in [27], for the case when wetting interactions between the film and the substrate are

present. It is valid only if the long-wave approximation holds, 2π/k∗ ≫ h0, where k∗ is

the wave number corresponding to the most rapidly growing mode. In the absence of

wetting, for γ′(h0) = γ′′(h0) = 0, A = 0 and Eq. (3.16) reduces to the long-wave limit of

the dispersion relation obtained in [27]. (Note that for γ′(h0) = γ′′(h0) = 0 the long-wave

expansion (3.16) is valid for h0µfǫ
2 ≪ γ. For typical values of h0 = 1nm, µs = 1012

erg/cm3, γ = 2 · 103 erg/cm2 and ǫ = 0.03 one obtains h0µfǫ
2/γ = 0.05 ≪ 1.)

When wetting interactions between the film and the substrate are present, γ′(h0) <

0, γ′′(h0) > 0, and the dispersion relation contains an additional term, −Ak2, which

becomes dominant for small wave-numbers. Had the wetting stress not been accounted for,

one would have obtained A = γ′′(h0) > 0 which would mean that the wetting interactions

always damp long-wave modes. However, this is not always so if the wetting stress is

taken into account. In this case, the long-wave modes are damped (A > 0) only if

|γ′(h0)| < µfαf/βf ≈ 2µf ; otherwise, the long-wave modes are destabilized by wetting

stress. This de-stabilization is even stronger than that produced by the epitaxial stress;

indeed, in this case the growth rate is proportional to k2, rather than to k3 in the absence

of wetting due to elastic energy accumulated in the film because of the wetting stress.
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Figure 3.1. (a) Sketch of dispersion curves defined by Eq. (3.16) for (1)
B2/(4AC) < 1, (2) B2/(4AC) = 1, (3) B2/(4AC) > 1 and (4) A = 0.
(b) Critical wave number kc as a function of the epitaxial strain for the
two-layer wetting potential with parameters typical of a Ge on Si system
(cgs units): µf = 1012, µ0 = 0.8, γf = 2 · 103, ∆γ = 2 · 102, νf =
0.198, νs = 0.217.

This effect, however, is probably not relevant to common semiconductor materials,

such as Ge or Si. Indeed, taking µf = 1012 erg/cm3, γs − γf ≡ ∆γ = 2 · 102 erg/cm2,

δw = 1 nm and h0 = 1 nm, one obtains γ′(h0) ≈ 109 erg/cm3 (which is in accordance

with ab-initio calculations performed in [31]) and γ′(h0) ≪ µf . Thus, in this case A > 0,

and the long-wave modes are always damped by the wetting interactions. However, for a

film made of a material much less stiff than a common semiconductor, this effect may be

important.

Typical dispersion curves for the case when wetting interactions damp the long-wave

modes are schematically shown in Fig. 3.1(a). The film becomes unstable for B2−4AC >

0. One can see that this damping changes the instability spectrum from the long-wave

(spinodal decomposition) type to short-wave (Turing) type, thus leading to the possibility

of changing the system evolution from Ostwald ripening to the formation of stable spatially

periodic patterns. Fig. 3.1(b) shows the wave number kc = B/2C, corresponding to the
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most rapidly growing mode, as a function of the lattice mismatch ǫ for typical values of

the parameters: µ0 = 0.8, γf = 2 · 103, ∆γ = 2 · 102, νf = 0.198, νs = 0.217. One can

see that the long wave approximation is valid.

Another interesting effect of wetting stress is associated with the sign of the coefficient

B in the dispersion relation (3.16). In the absence of wetting interactions, or if the wetting

stress is not taken into account, B ∼ µfǫ
2 > 0 which describes the destabilization effect of

the epitaxial stress. The presence of wetting stress can change the sign of this coefficient.

Indeed, γ′(h0) + h0γ
′′(h0) = (∆γ/δw)e−h0/δw(h0/δw − 1) ≡ γ̄′(h0) > 0 for h0 > δw and

γ̄′(h0) < 0 for h0 < δw. In the case of a compressive epitaxial strain, ǫ < 0, the coefficient

B is positive for γ̄′(h0) > 2ǫµs(1+ν−1
f ), and in the case of a tensile epitaxial strain, ǫ > 0,

the coefficient B is positive for γ̄′(h0) < 2ǫµs(1+ν−1
f ). This also shows that the presence of

the wetting stress breaks the symmetry between compressive and tensile epitaxial strains.

This effect is more pronounced for smaller epitaxial strain.

The stability analysis described above is illustrated in Figs. 3.2–3.6. Fig. 3.2 shows the

neutral stability boundaries in the (ǫ, ξ) parameter plane where ξ = h0/δw. One can see

that if the epitaxial strain is sufficiently large, then the film is always unstable. However,

if the epitaxial strain is small enough, then the film becomes unstable only if its thickness

exceeds a critical value, h0 > hc(ǫ). Fig. 3.3 shows that for some intervals of the epitaxial

strain and some parameter values there can be two critical values of the film thickness, h+
c

and h−

c , that bound the interval of the film stability. This corresponds to the boxed region

in Fig. 3.3(a), enlarged in Fig. 3.3(b). Here, the film is unstable for h0 > h+
c and h0 < h−

c .

The film instability for smaller thickness can be explained by the destabilizing effect of
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Figure 3.2. Stability regions for a planar epitaxial film with two-layer wet-
ting potential for parameters as in Fig. 3.1.

the wetting stress which is more pronounced for smaller thicknesses due to exponential

decay of wetting interactions.

Fig. 3.4 shows how the neutral stability boundaries change as the film stiffness (shear

modulus) varies relative to that of the substrate, which is characterized by the parameter

µ0. One can see that the stability region narrows as the film’s stiffness increases. Note

that the interval of epitaxial strains where the film is stable for h−

c < h0 < h+
c exists only

for sufficiently large µ0.

Fig. 3.5 shows how the neutral stability boundaries change as the wetting strength

varies, which is characterized by ∆γ = γs − γf in (2.10). One can see that as the wetting

interactions become stronger, the film stability region increases.
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Figure 3.3. (a) Stability regions for a planar epitaxial film with a two-layer
wetting potential for µ0 = 10. See Fig. 3.1 for other parameter values. (b)
Zoom of the boxed region in (a).

One can also see from Figs. 3.2–3.5 that for a film with a given thickness there exist

two critical values of epitaxial strain (positive and negative for tensile and compressive

strains, ǫ±c , respectively) above which the film becomes unstable. Fig. 3.6 shows these

critical values of the epitaxial strain as functions of ∆γ and µ0. In the left figure, one

can see ǫ±c (∆γ) for µ0 = 10.0 and different film thickness. In the right figure, one can

see ǫ±c (µ0) for ∆γ = 2 · 102 erg/cm2 and different thickness of the film. Note that ǫ±c

tend to constant values with the increase of µ0. Note also that the stability region for

ξ = 1.0 is larger than those for ξ = 0.0 and ξ = 2.0. This corresponds to the case shown

in Fig.3.3(b).
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Figure 3.4. Stability regions for a planar epitaxial film with a two-layer
wetting potential for: (a) µ0 = 0.01 (b) µ0 = 0.50, (c) µ0 = 10. See Fig. 3.1
for other parameter values.

3.5. Surface Evolution Equation in Long-Wave Approximation

In this section, we derive evolution equation for the shape of the film surface in the

long-wave approximation, using the general surface-diffusion equation (3.1). Here we

follow closely the derivation presented in [46]. We consider the long-wave approximation

valid for the case when the wavelength of surface undulations, l, is large relative to the

characteristic film thickness h0.

We introduce a small parameter, α = h0/l ≪ 1, rescale the variables: h → αlH, (x, y) →

l(x′, y′), z → αlz′, t → τt′, uf
1,2,3(x, y, z) → lUf

1,2,3(x
′, y′, z′), and consider the expan-

sions σij = σ
(0)
ij + ασ

(1)
ij + α2σ

(2)
ij + . . . ; Eij = E

(0)
ij + αE

(1)
ij + α2E

(2)
ij + . . . ; E =

E0 +αE1 +α2E2 + . . . , where E0 = 2ǫ2µf(1+νf )/(1−νf ). We also use the following scaling
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Figure 3.5. Stability regions for a planar epitaxial film with a two-layer
wetting potential (cgs units): (a) ∆γ = 102 and (b) ∆γ = 1. See Fig. 3.1
for other parameter values.
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Figure 3.6. Critical values ǫ±c as functions of ∆γ for µ0 = 10.0 (left) and µ0

for ∆γ = 2 · 102 (right) for different initial film thickness (for a two-layer
wetting potential). Other parameter values correspond to those in Fig. 3.1

for the wetting stress: ∂γ/∂h = αµfW̃(H). We choose the time scale τ = l4/(Dγf), and

the length scale l = γf/E0, and obtain from Eq. (3.1), in the order O(α), the following
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evolution equation in the long-wave approximation:

(3.21)
∂H

∂t
= ∇2[Ẽ1 −∇2H + W̃ ].

where Ẽ1 = E1/E0 and W̃ = (µf/E0)W̃, and we omit primes in the rescaled coordinates.

We determine Ẽ1 by solving the elasticity problem. First, we find the solution of the

elastic problem in the film and the substrate that satisfy the boundary condition (3.5)

and (3.6), respectively. We then use the boundary condition (3.7) in order to solve for

unknown coefficients of the elasticity problem solution in the film [46].

We begin by solving the elasticity problem in the film. Using the long-wave scalings

above, we expand the Navier equation (3.4) as

(1 − 2νf)

(
∂2Uf

1

∂X2
+

∂2Uf
1

∂Y 2
+

1

α2

∂2Uf
1

∂Z2

)
+

∂2Uf
1

∂X2
+

∂2Uf
2

∂X∂Y
+

1

α

∂2Uf
3

∂X∂Z
= 0,(3.22)

(1 − 2νf)

(
∂2Uf

2

∂X2
+

∂2Uf
2

∂Y 2
+

1

α2

∂2Uf
2

∂Z2

)
+

∂2Uf
1

∂X∂Y
+

∂2Uf
2

∂Y 2
+

1

α

∂2Uf
3

∂Y ∂Z
= 0,

(1 − 2νf)

(
∂2Uf

3

∂X2
+

∂2Uf
3

∂Y 2
+

1

α2

∂2Uf
3

∂Z2

)
+

1

α

∂2Uf
1

∂X∂Z
+

1

α

∂2Uf
2

∂Y ∂Z
+

1

α2

∂2Uf
3

∂Z2
= 0,
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and boundary condition at the film free surface (3.5) as

2

1 − 2νf

[
νf

(
∂Uf

2

∂Y
+

1

α

∂Uf
3

∂Z

)
+ (1 − νf )

∂Uf
1

∂X

]
αHX +

(
∂Uf

1

∂Y
+

∂Uf
2

∂X

)
αHY(3.23)

− 1

α

∂Uf
1

∂Z
− ∂Uf

3

∂X
= 0,

2

1 − 2νf

[
νf

(
∂Uf

1

∂X
+

1

α

∂Uf
3

∂Z

)
+ (1 − νf )

∂Uf
2

∂Y

]
αHY +

(
∂Uf

1

∂Y
+

∂Uf
2

∂X

)
αHX

− 1

α

∂Uf
2

∂Z
− ∂Uf

3

∂Y
= 0,

2

1 − 2νf

[
νf

(
∂Uf

1

∂X
+

∂Uf
2

∂Y

)
+

1

α
(1 − νf )

∂Uf
3

∂Z

]
−
(

1

α

∂Uf
1

∂Z
+

∂Uf
3

∂X

)
αHX

−
(

1

α

∂Uf
2

∂Z
+

∂Uf
3

∂Y

)
αHY + W̃ (H) = 0

on Z = H(X, Y, T ). We substitute the film displacements expansions,

(3.24) Uf
i = Uf

i0 + αUf
i1 + α2Uf

i2 + . . . ,

into (3.22) and (3.23), and collect the successive problems in orders of α. At O(1), we

have

(3.25) (1 − 2νf)
∂2Uf

i0

∂Z2
= 0

with the boundary conditions

(3.26)
∂Uf

i0

∂Z
= 0
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for i = 1, 2, 3 on Z = H(X, Y, T ) . Using the steady state solution in Sec. 3.3, we solve

Eq. (3.25) and (3.26) and find

Uf
10 = ǫX,(3.27)

Uf
20 = ǫY,

Uf
30 = 0.

At O(α), we have

(1 − 2νf)
∂2Uf

11

∂Z2
= − ∂2Uf

30

∂X∂Z
,(3.28)

(1 − 2νf)
∂2Uf

21

∂Z2
= − ∂2Uf

30

∂Y ∂Z
,

(2 − 2νf)
∂2Uf

31

∂Z2
= − ∂2Uf

10

∂X∂Z
− ∂2Uf

20

∂Y ∂Z
,

with the boundary conditions

∂Uf
11

∂Z
=

2νf

1 − 2νf

∂Uf
30

∂Z
HX − ∂Uf

30

∂X
,(3.29)

∂Uf
21

∂Z
=

2νf

1 − 2νf

∂Uf
30

∂Z
HY − ∂Uf

30

∂Y
,

∂Uf
31

∂Z
=

1 − 2νf

2(1 − νf )

(
∂Uf

10

∂Z
HX +

∂Uf
20

∂Z
HY − W̃ (H)

)

− νf

1 − νf

(
∂Uf

10

∂X
+

∂Uf
20

∂Y

)
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on Z = H(X, Y, T ). We use the O(1) solution in (3.28) and (3.29) to obtain

Uf
11 = A11(X, Y ),(3.30)

Uf
21 = A21(X, Y ),

Uf
31 = − 1

1 − νf

[
2ǫνf +

1 − 2νf

2
W̃ (H)

]
Z + A31(X, Y ).

At O(α2), the displacements in the film satisfy

(1 − 2νf)

(
∂2Uf

10

∂X2
+

∂2Uf
10

∂Y 2
+

∂2Uf
12

∂Z2

)
+

∂2Uf
10

∂X2
+

∂2Uf
20

∂X∂Y
+

∂2Uf
31

∂X∂Z
= 0,(3.31)

(1 − 2νf)

(
∂2Uf

20

∂X2
+

∂2Uf
20

∂Y 2
+

∂2Uf
22

∂Z2

)
+

∂2Uf
10

∂X∂Y
+

∂2Uf
20

∂Y 2
+

∂2Uf
31

∂Y ∂Z
= 0,

(1 − 2νf)

(
∂2Uf

30

∂X2
+

∂2Uf
30

∂Y 2
+

∂2Uf
32

∂Z2

)
+

∂2Uf
11

∂X∂Z
+

∂2Uf
21

∂Y ∂Z
+

∂2Uf
32

∂Z2
= 0,

with the boundary conditions

2νf

1 − 2νf

(
∂Uf

10

∂X
+

∂Uf
20

∂Y
+

∂Uf
31

∂Z

)
HX + 2

∂Uf
10

∂X
HX +

(
∂Uf

10

∂Y
+

∂Uf
20

∂X

)
HY(3.32)

−∂Uf
12

∂Z
− ∂Uf

31

∂X
= 0,

2νf

1 − 2νf

(
∂Uf

10

∂X
+

∂Uf
20

∂Y
+

∂Uf
31

∂Z

)
HY + 2

∂Uf
20

∂Y
HY +

(
∂Uf

10

∂Y
+

∂Uf
20

∂X

)
HX

−∂Uf
22

∂Z
− ∂Uf

31

∂Y
= 0,

2νf

1 − 2νf

(
∂Uf

11

∂X
+

∂Uf
21

∂Y
+

∂Uf
32

∂Z

)
+ 2

∂Uf
32

∂Z
−
(

∂Uf
11

∂Z
+

∂Uf
30

∂X

)
HX

−
(

∂Uf
21

∂Z
+

∂Uf
30

∂Y

)
HY = 0
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on Z = H(X, Y, T ). Substituting the solutions (3.30) and (3.27) into (3.31) and (3.32),

we obtain

Uf
12 =

1

2(1 − νf)

∂W̃

∂X

Z2

2
+ B12(X, Y )Z + A12(X, Y ),(3.33)

Uf
22 =

1

2(1 − νf)

∂W̃

∂Y

Z2

2
+ B22(X, Y )Z + A22(X, Y ),

Uf
32 = B32(X, Y )Z + A32(X, Y )

where

B12(X, Y ) = 2ǫ
1 + νf

1 − νf
HX − νf

1 − νf

∂

∂X
(HW̃ ) − ∂A31

∂X
,(3.34)

B22(X, Y ) = 2ǫ
1 + νf

1 − νf
HY − νf

1 − νf

∂

∂Y
(HW̃ ) − ∂A31

∂Y
,

B32(X, Y ) = − νf

1 − νf

(
∂A11

∂X
+

∂A21

∂Y

)
.

Using the above solutions for the film displacements, we compute the O(α) elastic energy

as

(3.35) E1 =
1

2

(
σ

(0)
ij E

(1)
ij + σ

(1)
ij E

(0)
ij

)
=

2ǫµf(1 + νf)

1 − νf

(
∂A11

∂X
+

∂A21

∂Y

)
.
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3.5.1. Elastic Response of the Substrate

We determine the unknown functions A11(X, Y ) and A21(X, Y ) in Eq. (3.35) by solving

the elasticity problem in the substrate. We let

(x, y, z) = l(X, Y Z̃),(3.36)

ui = lUs
i , i = 1, 2, 3,

With these scalings, the elasticity equation (3.4) and the far-field condition (3.9) become

(1 − 2ν)∂2
kU

s
i + ∂i∂kU

s
k = 0, in Z̃ < 0,(3.37)

Us
i → 0, as Z̃ → ∞.(3.38)

We define the Fourier transforms of Ĥ(kX , kY ), Ûs
i (kX , kY , Z̃), and Âij(X, Y ),

H =

∫
∞

−∞

∫
∞

−∞

Ĥe−i(kXX+kY Y )dkXdkY ,

Us
i =

∫
∞

−∞

∫
∞

−∞

Ûs
i e−i(kXX+kY Y )dkXdkY ,

Aij =

∫
∞

−∞

∫
∞

−∞

Âije
−i(kXX+kY Y )dkXdkY ,

Ĥ =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

Hei(kXX+kY Y )dXdY,

Ûs
i =

1

(2π)2

∫
∞

−∞

∫
∞

−∞

Us
i ei(kXX+kY Y )dXdY,

Âij =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

Aije
i(kXX+kY Y )dkXdkY ,

k =
√

k2
X + k2

Y ,
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expand the substrate displacements

(3.39) Us
i = Us

i0 + αUs
i1 + α2Us

i2 + . . . ,

where

(3.40) Us
ij =

∫
∞

−∞

∫
∞

−∞

Ûs
ije

−i(kXX+kY Y )dkXdkY ,

and express Eq. (3.37) as

(1 − 2ν)
(
∂2

Z̃
− k2

)
Ûs

1j + ikX

(
ikXÛs

1j + ikY Ûs
2j − ∂Z̃Ûs

3j

)
= 0,(3.41)

(1 − 2ν)
(
∂2

Z̃
− k2

)
Ûs

2j + ikY

(
ikX Ûs

1j + ikY Ûs
2j − ∂Z̃ Ûs

3j

)
= 0,

(1 − 2ν)
(
∂2

Z̃
− k2

)
Ûs

3j − ∂Z̃

(
ikX Ûs

1j + ikY Ûs
2j − ∂Z̃ Ûs

3j

)
= 0.

Eq. (3.41) has the solution

(3.42)




Ûs
1j

Ûs
2j

Ûs
3j




=




U
(j)
1

U
(j)
2

U
(j)
3




eaZ̃ +




kX

kY

k




δ
(j)
3 Z̃ekZ̃ ,

where

(3.43) δ
(j)
3 =

1

k(3 − 4ν)

(
kXU

(j)
1 + kY U

(j)
2 + ikU

(j)
3

)
,



65

and U
(j)
i are constants to determined by the boundary conditions at the film/substrate

interface. The misfit condition (3.7) gives

Us
i0 = 0,(3.44)

Uf
i1(Z = 0) = Us

i1(Z̃ = 0),

Uf
i2(Z = 0) = Us

i2(Z̃ = 0), i = 1, 2, 3,

which implies

Âi1 = U
(1)
i ,(3.45)

Âi2 = U
(2)
i .

At O(α), the stress condition (3.6) at the film/substrate interface,

(σf
31)1 = (σs

31)1 ,(3.46)

(σf
32)1 = (σs

21)2 ,

(σf
31)3 = (σs

31)3 ,

gives

−2ǫ0(1 + νf)

1 − νf

ikXĤ +
νf

1 − νf

ikX(HW̃ )k =
1

µ

(
kU

(1)
1 + kXδ

(1)
3 − ikXU

(1)
3

)
,(3.47)

−2ǫ0(1 + νf)

1 − νf

ikY Ĥ +
νf

1 − νf

ikY (HW̃ )k =
1

µ

(
kU

(1)
2 + kY δ

(1)
3 − ikY U

(1)
3

)
,(3.48)

νs

(
−ikXU

(1)
1 − ikY U

(1)
2

)
+ (1 − νs)

(
aU

(1)
3 + ikδ

(1)
3

)
= 0,(3.49)
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where µ = µf/µs. Solving equations (3.47)-(3.49), we obtain

Â11 =
ikXµ

[
(HW̃ )kνf − 2ǫHk(1 + νf)

]
(1 − νs)

k(1 − νf)
,(3.50)

Â21 =
ikY µ

[
(HW̃ )kνf − 2ǫHk(1 + νf)

]
(1 − νs)

k(1 − νf )
,(3.51)

Â31 =
ikY µ

[
(HW̃ )kνf − 2ǫHk(1 + νf)

]
(1 − 2νs)

2(1 − νf )
.(3.52)

Finally, we obtain

Ẽ1 =
1

4π2

∫
kẼ1ke

−ik·x d2k, Ẽ1k = E0

(
−Hk +

1

2ǫ

νf

1 + νf
(HW̃ )k

)
,(3.53)

where Hk and (HW̃ )k are the respective Fourier transforms of H and HW̃ and

(3.54) E0 =
2µf(1 + νf )(1 − νs)

µs(1 − νf )
.

Eqs. (3.21) and (3.53) are the generalization of the long-wave equation obtained in [46]

for the presence of wetting stress. However, as shown above, the effect of the wetting

stress is negligible for typical semiconductor systems; thus we omit the term (HW̃ )k in

(3.53) in the analysis that follows. After further rescaling, t → t/E2
0 , x → x/E0, Eq.

(3.21) has the following form:

(3.55)
∂H

∂t
= ∇2[E1[H ] −∇2H + W (H)],
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where W = W̃/E2
0 and

(3.56) E1[H ] =
1

4π2

∫
kHke

−ik·x d2k.

3.6. Formation of Surface Structures: Weakly Nonlinear Analysis

In this section, we investigate the nonlinear evolution of surface structures near the

short-wave instability threshold in order to determine if the formation of a spatially pe-

riodic array of dots is possible. We consider H = H0 + H̃, |H̃| ≪ H0 and expand

(3.57) W (H) = w0 + w1H̃ + w2H̃
2 + w3H̃

3 + . . .

Linearizing Eq. (3.55) for H̃ ∼ eωt+ik·x, one obtains

(3.58) ω = −w1k
2 + k3 − k4.

The onset of instability corresponds to w1 = w1c = 1/4 and k = kc = 1/2.

Now we consider the weakly nonlinear case corresponding to w1 = 1/4 − ε2σ, ε ≪

1. First consider quasi-one-dimensional structures (wires). We introduce the long scale

coordinate X = εx and the slow time T = ε2t, and consider the expansions

H̃ = ε(H1 + εH2 + . . .),(3.59)

E1 = E10 + εE11 + ε2E12 + . . .(3.60)

Here,

H1 = ε
[
A(X, T )eikcx + c.c

]
, H2 = ε2

[
B(X, T ) + A2(X, T )e2ikcx + c.c

]
,(3.61)
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where A(X, T ) is the complex amplitude of the spatially periodic, unstable mode, and

B(X, T ) is the real amplitude of the zero mode. The linear operator, E1, acts on a Fourier

mode A(X, T )eikx as

(3.62) E1[A(X, T )eikx] =
[
E10(k) + εE11(k, ∂X) + ε2E12(k, ∂X) + . . .

]
A(X, T )eikx,

where

(3.63) E10(k) = − |k| , E11(k, ∂X) = i sgn(k) ∂X , E12(k, ∂X) = −sgn(k) ∂XX .

Using these expansions, we obtain successive problems in orders of ε. At O(ε2), we find

A2 = −4w2A
2. Finally, the solvability conditions at O(ε3) and O(ε4) yield the system of

coupled amplitude equations:

AT =
1

4
σA +

1

2
AXX − λ |A|2 A + sAB,

BT =
1

4
BXX − 4s(|A|2)XX ,(3.64)

where

(3.65) λ =
3

4
w3 − 2w2

2, s = −1

2
w2.

The system of amplitude equations (3.64) has a stable, stationary solution, A =

(
σ
4λ

)1/2
, B = 0, corresponding to spatially periodic patterns if λ > 16s2 [52], [20] i.e.

if

(3.66) w3 > 8w2
2.
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Condition (3.66) defines a region in the parameter space in which one could observe the

formation of stable, periodic array of wires. First consider a glued-layer wetting potential

defined by Eq. (2.13). Translating (3.66) into physical parameters gives

(3.67)
eξ[α3 + ξ3 + 3α2(1 + ξ) + α(2 + 3ξ + 3ξ2)]ξ1+α

12(α + α2 + 2αξ + ξ2)2
>

wγf

δE2
0

.

Combining the instability onset condition w1 = 1/4,

(3.68)
wγf

δE2
0

=
ξαe−ξ

4

(
1 +

α

ξ

)−1

,

with (3.67) yields

(3.69)
eξ[α3 + ξ3 + 3α2(1 + ξ) + α(2 + 3ξ + 3ξ2)]ξ1+α

12(α + α2 + 2αξ + ξ2)2
− ξαe−ξ

4

(
1 +

α

ξ

)−1

> 0.

Eq. (3.69) is satisfied only for ξ ≪ 1, i.e. for the film thickness which is much smaller

than the characteristic wetting length δw, which is unrealistic. Thus, one concludes that

periodic arrays of wires are unstable in this case.

Now consider a two-layer wetting potential defined by Eq. (3.2). We expand (3.2)

around the initial film thickness and obtain

(3.70) w2 = −w1

2
, w3 =

w1

6
.

Thus, for w1 = w1c = 1/4, we have λ ≡ 0. In this case, system (3.64) fails to describe

periodic pattern with a constant amplitude A = const, B = 0 since there is no nonlinear

saturation; the latter appears in higher orders of ε. Thus we introduce a new slow time

scale, T = ε4t, and repeat the multiple-scale analysis described above. At O(ε5), we
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obtain (neglecting spatial modulations of A that decay on the faster time-scale, ε2t)

(3.71) AT =
1

4
σA − κ|A|4A,

where

(3.72) κ =
w1

4(3 + 4w1)
=

1

64

at w1 = w1c. Therefore, for the two-layer wetting model, the amplitude of 1D periodic

structures is of O(ε1/4).

We now consider the general case of two-dimensional structures. Due to quadratic

nonlinearity, a hexagonal pattern (hexagonal array of dots) will be preferable [36, 53].

We take X = εx, τ = εt and T = ε2t, ε << 1, use expansions (3.59), (3.57) and consider

H1 =

3∑

n=1

An(X, T )eikn·x,(3.73)

H2 = B(X, T ) +
3∑

n=1

Cn(X, T )e2ikn·x + D1(X, T )ei(k1−k2)·x

+ D2(X, T )ei(k1−k3)·x + D3(X, T )ei(k2−k3)·x + c.c. + . . . ,(3.74)

where k1 +k2 +k3 = 0, |k1,2,3| = kc. The linear operator E1 acting on a Fourier harmonic

A(X, T )eik·x is expanded similar to (3.62) as

(3.75) E10(k) = −|k|, E11(k,∇) =
i

|k|k · ∇, E12(k,∇) =
1

2|k|

(
∇2 − 1

|k|2 (k · ∇)2

)
,

and ∇ acts on the long-scale coordinates X. We substitute these expansions into Eq.

(3.21) and obtain the following set of amplitude equations at third and fourth orders of
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ε:

∂A1

∂T
=

1

4
σA1 + (k1 · ∇)2A1 −

1

2
w2A

∗

2A
∗

3 + 4iw2k1 · ∇(A∗

2A
∗

3)(3.76)

− λ1|A1|2A1 − λ2(|A2|2 + |A3|2)A1 + sA1B,

∂B

∂T
=

1

4
∇2B − 4s∇2(|A1|2 + |A2|2 + |A3|2),(3.77)

where

(3.78) s = −1

2
w2, λ1 =

3

4
w3 − 2w2

2, λ2 =
3

2
w3 −

2w2
2

2 −
√

3
,

and equations for A2 and A3 are obtained by cyclic permutation of the indices in Eq.

(3.76).

The solution of the system (3.76) corresponding to a spatially-periodic, hexagonal

array of dots is

(3.79) A =
−w2/2 − sign(w2)

√
w2

2/4 + σ(λ1 + 2λ2)

2(λ1 + 2λ2)
, B = 0.

Note that for w2 < 0 it describes the array of dots whereas for w2 > 0 it describes the

array of pits. For both the two-layer and glued-layer wetting models w2 < 0. The solution

(3.79) is stable for [52]

(3.80) λ1 + 2λ2 > 0 and w2
2 <

1

8
(λ1 + λ2).

The first inequality in (3.80) ensures that the hexagonal pattern results from the tran-

scritical bifurcation and the second condition follows from the interaction with the zero

mode that effectively renormalizes the Landau constants. It is easy to see that for the
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computed values of the Landau coefficients, λ1,2, the system (3.80) reduces to the first

condition, λ1 + 2λ > 0, or

(3.81) w3 >
8

9

(
5 +

1

2 −
√

3

)
w2

2 ≈ 7.76w2
2.

Thus, one can see that the necessary condition for the existence of stable hexagonal

arrays of dots is w3 > 0, i.e. ∂3W/∂h3 > 0. For the two-layer wetting potential defined

by (3.2), w1 = 1/4, w2 = −1/8, w3 = 1/24 and the condition (3.81) is not satisfied:

the hexagonal array of dots results from a subcritical bifurcation in this case and is

therefore unstable. For a glued-layer wetting model defined by (2.13) one can check that

the condition (3.81) can be satisfied only for ξ ≪ 1, which is unrealistic. Thus, neither

for a two-layer wetting model, nor for a glued-layer one, one can expect the formation

of stable, spatially-periodic hexagonal array of dots. This can explain the fact that the

formation of such arrays has never been observed in experiments. However, for some

other types of wetting potentials the condition (3.81) might be fulfilled and in this case

the self-assembly of stable, hexagonally-ordered arrays of QDs would be possible. It is

instructive, therefore, to rewrite (3.81) in terms of original physical parameters; it reads:

(3.82) ǫ4
µ2

f

γf

(
µf

µs

)2(
1 + νf

1 − νf

)4

(1 − νs)
2 ∂3W/∂h3

(∂2W/∂h2)2
>

1

12

(
5 +

1

2 −
√

3

)
≈ 0.73.

Also recall that for ∂2W/∂h2 < 0 one expects the formation of an array of dots whereas

for ∂2W/∂h2 > 0 a hexagonal array of pits will form instead.
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Figure 3.7. Localized QDs: numerical solution of Eq. (3.55) with a glued-
layer wetting potential at a particular moment of time for a film with initial
thickness h0 = 5 nm, δw = 2 nm, α = 2, and ǫ = 0.025. Other parameters
are (cgs units): µ0 = 0.8, w = 108, νf = 0.198, νs = 0.217.

3.7. Numerical Simulations

We have performed numerical simulations of Eq. (3.55) for the glued-layer wetting

potential, W (H) = w̄H−αwe−H , by means of a pseudo-spectral method with the time

integration in Fourier space using the Crank-Nicolson scheme for the linear operator

and the Adams-Bashforth scheme for the nonlinear operator. The simulations support

the main conclusion of the weakly nonlinear analysis: near the instability threshold, the

stationary, spatially-periodic structures are unstable as a result of a subcritical bifurcation

for H0 > 1. Fig. 3.7 shows the solution of Eq. (3.55) at a particular moment in time in a
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(a) (b)

(c) (d)

Figure 3.8. Solutions of Eq. (3.55) in real and Fourier spaces for dimension-
less times (a) t=200, (b) t=250, (c) t=350, and (d) t=450. The parameters
are the same as in Fig. 3.7.

relatively small domain, for small supercriticality. One can see the formation of spatially-

localized islands. We have found that this system of islands coarsens in time, with larger

islands growing at the expense of the smaller ones.

The formation and evolution of surface structures in a large domain is shown in Fig. 3.8

along with the corresponding Fourier spectra. In Fig. 3.8(a), one can see the formation of

the surface structure characterized by the preferred wavelength determined by the linear

stability analysis: the Fourier spectrum is a well-defined ring corresponding to the most

rapidly growing mode in the narrow interval of unstable modes near kc. Note that there

is no hexagonal ordering in this structure. At later stages (Figs. 3.8b,c,d) the structure

exhibits coarsening in that some dots grow in height at the expense of smaller dots and

the average distance between the dots increases. Thus the system of spatially-localized
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Figure 3.9. Coarsening of QDs: x-cross-section of a numerical solution of
Eq. (3.55) at different moments of time. Parameters are the same as in
Fig. 3.7.

dots form, with the average distance between the dots much larger than the localization

region (dot width). This is also seen in the corresponding Fourier spectra in Figs.8c,d.

It is interesting to note that the width of the islands remains almost constant as the

structure coarsens. This can be seen in Fig. 3.9. The mass from the shrinking islands is

redistributed into the height of the growing islands without contributing to their width.

The coarsening kinetics of QDs can be characterized by different parameters. Fig. 3.10a

shows the time dependence of the “root mean square” surface roughness 〈r〉 suggested

in [48] defined as 〈r〉 = N−1(
∑

m,n=1,N [hm,n − h0]
2)1/2, where hm,n is the value of h at

a discrete point (m, n), N = 5122 is the total number of points, h0 is the initial film
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Figure 3.10. Time dependence of (a) root mean square surface roughness,
(b) maximum height of surface structures, and (c) average distance between
dots.
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thickness (equal to the mean value 〈h〉 due to conservation of mass), and the result is

averaged over ten realizations corresponding to ten different random initial data. One

can see that < r >∼ tβ1 where β1 ≈ 2.88. Fig. 3.10b presents the time dependence of the

maximum height of the surface structures, 〈hmax〉 averaged over the realizations. Here,

one can see that at the late stages of coarsening 〈hmax〉(t) exhibits the power-law increase,

〈hmax〉 ∼ tβ2, where β2 ≈ 4.23. Fig. 3.10c shows the average distance between the dots,

〈d〉, as a function of time. Here, 〈d〉 is computed as 〈d〉 = (N/N+)1/2, where N+ is the

number of points for which h − h0 > 0. One can see that 〈d〉 ∼ tβ3, where β3 ≈ 1.45.

Thus, β1 ≈ 2β3 and β2 ≈ 3β3. The origin of the coarsening exponents β1, β2 and β3 and

relation between them is yet to be understood.

3.8. Conclusions

We have studied the evolution of the Asaro-Tiller-Grinfeld instability of an epitaxially

strained thin solid film on a solid substrate in the case when the film wets the substrate.

We have shown that generally, in the presence of wetting interactions, the stress-balance-

boundary conditions of the corresponding elasticity problem must include an additional

term that describes the wetting stress resulting from the dependence of the wetting poten-

tial on the film thickness change caused by elastic deformation. We have shown that the

wetting stress breaks the symmetry between the tensile and compressive epitaxial strains

in that the elastically-stressed state of the planar film and its stability boundaries are

different for the different types of epitaxial strain. We have concluded that this is a minor

effect for typical semiconductor systems, such as Ge on Si, however, it may be important

for hard solid films on relatively soft substrates.
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We have derived a non-local, integro-differential equation describing the evolution of

the film shape in the long-wave approximation in the general case with the wetting stress.

For a typical case when the latter can be neglected (for a typical semiconductor system) we

have performed a weakly nonlinear analysis near the instability threshold and have found

general conditions on the wetting potential for which self-assembly of spatially-regular

arrays of QDs can be observed. We have shown that these conditions are not met in the

case of a two-layer and glued-layer wetting potentials and, therefore, spatially-regular QD

arrays are unstable in these cases. This can explain the fact that spontaneous formation

of spatially regular QD arrays have not been observed in experiments.

We have performed numerical simulations of the derived evolution equation and in-

vestigated the formation and evolution of QDs in large domains. We have found that

after the structure with the wavelength corresponding to the most rapidly growing mode

is formed the system exhibits coarsening, with large islands growing at the expense of

the smaller ones. We have also observed that during the coarsening the width of the

localized dots remains almost unchanged while the height grows. We have found that the

coarsening rate obeys power law, with different characteristics, such as root mean square

roughness, maximum dot height and average distance between the dots having different

coarsening exponents: β1 = 2.88, β2 = 4.23 and β3 = 1.45, respectively.
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CHAPTER 4

Step Flow Growth with Anomalous Diffusion

4.1. Introduction

In Chapters 2 and 3, two instability mechanisms leading to the formation of QDs were

studied. These investigations assumed the previous formation of a planar epitaxial film.

A typical process of solid film growth is molecular beam epitaxy (MBE) in which atoms

are deposited onto a substrate by means of a molecular beam (add). The theory of MBE

growth a real crystalline surface has been developed extensively. In the seminal paper

by Burton, Cabrera, and Frank (BCF), a quantitative model for the growth of a stepped

crystal surface was proposed [54]. An infinite surface formed by high-symmetry terraces

of length l separated by monoatomic steps was considered. The step flow resulted from

adatom deposition onto the surface followed by their diffusion and subsequent incorpo-

ration into the step. Adatoms not captured by a step desorbed back into the gas phase

after a characteristic time τ . A schematic of this step-flow mechanism is shown in Fig 4.1

where F is the rate of adatom deposition. In the quasistationary approximation, analyt-

ical expressions for the adatom density between two terraces and the propagation of an

individual step edge perpendicular to the surface were determined. The adatom density

was found to vary as hyperbolic cosine with the maximum concentration at the center

of the terrace. The step flow velocity as a function of the terrace length was determined

to increase monotonically and saturate in the limit of an infinite terrace. One important
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Figure 4.1. Two-dimensional schematic of the growth and evaporation of a
stepped surface.

feature of this model is that adatoms that reach a step are assumed to attach to it with

equal probability, regardless of whether the adatom approaches the step edge from the

upper or lower terrace.

In the BCF model, the mechanism that governs the movement of adatoms on the

surface is normal diffusion, where the transport is a result of independent random nearest-

neighbor jumps that follows Gaussian statistics characterized by the time dependence,

< (∆r)2 >∼ t, where < (∆r)2 > is the mean-squared displacement of a randomly walking

adatom. However, in many systems, the particle transport deviates from this linear

dependence and instead obeys the power law, < (∆r)2 >∼ tα, where α 6= 1. This is known

as anomalous diffusion [55]. When 0 < α < 1, the diffusion is slower than normal and

called “subdiffusion;” when 1 < α < 2, the diffusion is faster and called “superdiffusion.”

Subdiffusion tends to arise in systems where there are spatial or temporal restraints that

force the particle to take long rests between jumps, with specific waiting time probability
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distribution. Such is the case for the diffusion in gels and porous media in which the

corresponding random walk is accompanied by a specific distribution of resting/binding

times between periods of free diffusive motion [56]. Superdiffusion typically arises in

systems where the particle makes frequent long jumps and occurs in surface diffusion and

turbulent or chaotic processes [57]. A special case of superdiffusive processes are Lévy

flights which have diverging mean squared displacements [55].

Due to the fractional power law relation described above, anomalous diffusion processes

can be described by non-local integro-differential equations. Lévy flights are governed by

the following equation

(4.1)
∂u

∂t
=

∂βu

∂|x|β ,

where the fractional derivative operator is defined through its Fourier transform as

(4.2) F [∂βu/∂|x|β ](k) = −|k|βF [u](k).

In this chapter, we consider step-flow growth of a vicinal crystal surface in the case when

adatom transport along the terraces between the steps is governed by Lévy flights. We

develop the analog of the BCF theory for the case of Lévy flights and obtain the step-

flow velocity as an eigenvalue of the corresponding superdiffusion problem described by a

fractional partial differential equation. The resulting crystal surface growth rate is found

as a function of the terrace length and the anomalous diffusion exponent β.
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4.2. Problem Formulation

We consider the growth of a stepped crystal surface by molecular beam epitaxy (MBE)

in the case when the diffusion of adatoms on the surface is anomalous, in particular, su-

perdiffusive (Lévy flights). We assume that the surface consists of high-symmetry orienta-

tion terraces of equal width l separated from each other by parallel steps with monoatomic

height. A molecular beam deposits adatoms onto the surface at a rate F , and the adatoms

then perform Lévy flights along the terraces. After a characteristic time τ , some adatoms

desorb back into the gas phase while others eventually reach a step. The step attachment

kinetics is infinitely fast so that the adatom concentration in the neighborhood of each

step attains its equilibrium value ρ0; each step therefore acts as a perfect sink. We let

ρ(x, t) be the density of adatoms deposited between two steps, sufficiently low to avoid

the possible nucleation of new terraces between adjacent steps. The adatom density along

one terrace is described by the following boundary value problem:

∂ρ

∂t
−Ds

∂βρ

∂|x|β +
1

τ
ρ = F − M

∞∑

n=−∞

δ(x − n l − vt),(4.3)

ρ(n l + vt) = ρ0,

where x is the direction perpendicular to the steps, Ds is the (anomalous) surface diffusion

coefficient, M is the intensity of the step sinks, v is the step velocity, and ∂βρ/∂|x|β is

the fractional diffusion term defined by (4.2) where (1 < β < 2) where β = 2 corresponds

to normal diffusion. The model is similar to the standard BCF formulation with the

distinction that the normal diffusion term is replaced by an anomalous one. Physically

this accounts for the nonzero probability that a diffusing adatom makes a long jump that
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prevents it from reaching and attaching to the nearest step. As a result, the propagation of

an individual step depends globally on the adatom concentration on the terraces between

the other steps. The steps are represented in Eq. (4.4) as an infinite series of delta

functions separated by distance l corresponding to moving sinks.

We introduce the spatial and temporal scales, x̂ = (Dsτ)−1/βx, t̂ = t/τ and nondimen-

sionalize Eq. (4.3). Dropping the hats, we define u(x, t) = ρ(x, t) − τF, u0 = τF − ρ0,

and let u → u + u0. Eq. (4.3) then becomes

− ∂u

∂t
+

∂βu

∂|x|β − u = −u0 + J

∞∑

n=−∞

δ(x − nL − V t),(4.4)

u(nL + V t) = 0,

where J and V are the dimensionless sink intensity and step velocity, respectively. In the

moving frame, x → x + V t, the problem (4.4) reads

∂βu

∂|x|β + V
∂u

∂x
− u = −u0 + J

∞∑

n=−∞

δ(x − nL),(4.5)

u(nL) = 0.

The step speed V is determined by the total adatom flux into the sink, V = −[j], where

(4.6) j =
1

2π

∫ |k|β
ik

û(k) eikxdk

is the flux governed by Lévy flight,

(4.7) û(k) =

∫
∞

−∞

u(x)e−ikxdx
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is the Fourier transform of u(x) and [j] = j+ − j− denotes the jump across the step.

Integrating Eq. (4.6) across one step yields V = J .

4.3. Quasistationary Approximation

We begin by solving Eq. (4.5) in the quasistationary approximation, assuming that

the diffusion of atoms along the terrace is much faster than the step motion. Thus, we

neglect the convective term in Eq. (4.5). We transform Eq. (4.5) into Fourier space using

(4.7), solve for û(k), and invert back with

(4.8) u(x) =
1

2π

∫
∞

−∞

u(k)eikx dk

to obtain the adatom density

(4.9) u(x) = u0 −
J

2π

∞∑

n=−∞

∫
∞

−∞

eik(x−nL)

|k|β + 1
dk.

The sink intensity is found from the condition u(0) = 0 as

(4.10) J = 2πu0

(
∞∑

n=−∞

∫
∞

−∞

e−iknL

|k|β + 1
dk

)−1

.

Eq. (4.10) gives the expression for the step velocity V = J . The integrals in Eqs. (4.9)

and (4.10) can be evaluated using the Poisson summation formula which states that the

sum of a function u(x) over all integers is equal to the equivalent summation over its

continuous Fourier transform û(k) defined in Eq. (4.7); in our case, we have

(4.11)
∞∑

n=−∞

e−iknL =
2π

L

∞∑

n=−∞

δ

(
k − 2nπ

L

)
.
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Figure 4.2. Variation in the adatom density u between two steps for anoma-
lous diffusion exponents β = 1.25, β = 1.5, and β = 1.75, and for normal
diffusion exponent β = 2.0.

Thus, the solutions for the adatom density and step flow velocity, (4.9) and (4.10), reduce

to

u(x) = u0 −
J

L

(
1 + 2

∞∑

n=1

cos(λnx)

λβ
n + 1

)
,(4.12)

J = V = u0L

(
1 + 2

∞∑

n=1

1

λβ
n + 1

)−1

,(4.13)

where λn = 2nπ/L. Fig. 4.2 shows the adatom density given by Eq. (4.12) for vary-

ing Lévy exponents. One can see that smaller values of β result in more concentrated

density distributions with stronger concavity. The adatom density profiles suggest that,

for decreasing β, fewer adatoms attach to a step edge. This is reasonable since adatoms

that jump further have lower step attachment probabilities than those that perform only

nearest neighbor walks. More adatoms thus accumulate near the center of the terrace,
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Figure 4.3. Variation of the step velocity V with the terrace length L for
anomalous diffusion exponents β = 1.25, β = 1.5, and β = 1.75, and for
normal diffusion exponent β = 2.0.

providing a possible explanation for the wider and flatter maximums in the density pro-

files. Since fewer adatoms attach to a step, the propagation of a step must decrease for

smaller β. Fig. 4.3 shows the step flow as a function of the terrace length L for different

values of the diffusion exponent. One can see that the step flow decreases for smaller

diffusion exponents and that it saturates in the limit of an infinite terrace. To determine

the saturation velocity, we define ǫ ≡ 1/L, ǫ ≪ 1, and rewrite Eq. (4.13) as

(4.14) Vsat = u0

(
ǫ + 2

∞∑

n=1

ǫ

(2nπǫ)β + 1

)−1

.

Using the substitution x = 2 n πǫ we have, in the limit as ǫ → 0,

(4.15) Vsat = πu0

(∫
∞

0

xµ

x(1 + x)
dx

)−1

,
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Figure 4.4. Sketch of integration contour C in Eq. (4.16)

where µ = 1/β. The integral in Eq. (4.15) can be evaluated exactly by considering

(4.16) I =

∫

C

zµ

z(1 + z)
dz

in the complex plane where C is the closed contour shown in Fig. 4.4 consisting of the

circle CR of radius R centered at the origin, the segment Γ− : R ≥ x ≥ δ, δ << 1, of the

x-axis, the circle Cδ of radius δ centered at the origin and the segment Γ+ : δ ≤ x ≤ R

of the x-axis. The integrals on CR and Cδ go to zero as R → ∞ and ǫ → 0, respectively.

We then have

(4.17) (1 − e2πiµ)

∫
∞

0

xµ

x(1 + x)
dx = 2πi(−1)µ−1,
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Figure 4.5. Saturation velocity Vsat as a function of the diffusion exponent β.

where the right hand side is the contribution from the residue at z = −1. Thus we obtain

(4.18) Vsat = βu0 sin

(
π

β

)

as shown in Fig. 4.5.

4.4. Full Problem

We now determine the step flow velocity without making the quasistationary approx-

imation. Proceeding in a similar manner as in Section 4.3, we transform Eq. (4.5) into

Fourier space, solve for û(k), and invert back to real space. After applying the boundary
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approximation and the full problem for anomalous diffusion exponents β =
1.25, β = 1.5, and β = 1.75, and for normal diffusion exponent β = 2.0

.

conditions, we find the adatom density

u(x) = u0 −
J

2π

∞∑

n=−∞

∫
∞

−∞

eik(x−nL)

|k|β + 1 − ikV
dk,(4.19)

J = V = u0L

{
∞∑

n=−∞

∫
∞

−∞

e−iknL

|k|β + 1 − ikV
dk

}−1

.(4.20)

As in the quasistationary case, Eqs. (4.19) and (4.20) can be simplified using the

Poisson summation formula (4.11). Thus, we have

u(x) = u0 −
J

L

[
1 + 2

∞∑

n=1

(1 + λβ
n) cos(λnx) + λnV sin(λnx)

(1 + λβ
n)2 + (λnV )2

]
,(4.21)

J = V = u0L

[
1 + 2

∞∑

n=1

1 + λβ
n

(1 + λβ
n)2 + (λnV )2

]−1

.(4.22)
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Figure 4.7. Variation of the step velocity V with the terrace length L for
anomalous diffusion exponents β = 1.25, β = 1.5, and β = 1.75, and for
normal diffusion exponent β = 2.0.

Note that Eq. (4.22) is a transcendental equation for the step flow velocity V .

Fig. (4.6) shows the adatom densities given by Eq. (4.21) together with those from

the quasistationary approximation (4.12) for varying diffusion exponents. The dashed

and solid curves correspond to the quasistationary and full solutions, respectively. As

in the quasistationary approximation, one can see that smaller values of the diffusion

exponent β result in more concentrated atom density profiles. However in this case, the

atom density is no longer symmetric about the center of the terrace. The distribution

is instead skewed towards the right as compared with the quasistationary approximation

with lower and higher densities near the respective left and right sides of the terrace. As

the step propagates it captures atoms in its vicinity and incorporates them into the step;

thus the concentration of atoms on the terrace decreases in this region. The atoms move
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Figure 4.8. Saturation velocity Vsat as a function of the diffusion exponent β.

away from the advancing step which causes the density on the right side of the terrace to

increase.

Since the adatom density distribution is greater for Lévy flights than for normal diffu-

sion, the corresponding step flow velocity is slower. Fig. 4.7 shows the step flow velocity

as a function of terrace length for different values of β. One can see that the step velocity

saturates for 1 < β < 2 and becomes infinite as β → 2. We determine the saturation

velocity by introducing ǫ ≡ 1/L, making the substitution x = 2 n πǫ and letting ǫ → 0.

Eq. (4.22) then becomes

(4.23) Vsat = πu0

[∫
∞

0

1 + xβ

(1 + xβ)2 + (xVsat)2
d x

]−1

.

Eq. (4.23) is a transcendental equation for Vsat which we solve numerically. The solution

is shown in Fig. 4.8 as a function of β.
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4.5. Conclusions

We have studied the growth of a stepped crystalline surface by molecular beam epitaxy

in the case when the diffusion of adatoms on the surface is governed by Lévy flights.

For the quasistationary approximation and full problems, we have determined analytical

solutions for both the density of adatoms on a terrace and the step flow velocity. In both

cases, we have found that step flow governed by Lévy flights is slower than that of normal

diffusion due to fewer adatoms reaching the step.

We have also determined the step flow velocity asymptotically for large terrace length.

In the quasistationary approximation, we have found that the step flow saturates for all

values of the anomalous diffusion exponent. However, for the full problem, we have found

that the saturation velocity tends to infinity in the limit of normal diffusion.
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CHAPTER 5

Conclusions

In this thesis, we investigated two separate instability mechanisms that can lead to the

formation of quantum dots. The mechanism in Chapter 2 induced the instability of the

film free surface as a result of strong surface-energy anisotropy coupled with wetting inter-

actions between the film and the substrate. According to this mechanism, the substrate

determines the initial crystallographic orientation of the film surface which, due to large

surface-energy anisotropy, can be thermodynamically unstable in the absence of the sub-

strate. In this case, when the film grows sufficiently thick and no longer feels the presence

of the substrate, it undergoes faceting instability and decomposes into a system of faceted

pyramids. In the small-slope approximation, we derived a nonlinear partial differential

equation that governs the surface evolution. We showed that wetting interactions between

the film and the substrate can suppress the long-wave modes of the faceting instability

and change the spectrum from long-wave to short-wave, leading to the possibility of the

formation of stable regular arrays of quantum dots. We investigated this possibility both

analytically and numerically. We performed a weakly nonlinear analysis and derived a

system of amplitude equations describing the film evolution near the instability threshold.

We found that, near the instability threshold, the formation of stable hexagonal arrays of

quantum dots is possible.

In Chapter 3, we studied the Asaro-Tiller-Grinfeld instability in the presence of wetting

interactions. In this case, we showed that the stress balance boundary conditions of
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the corresponding elasticity problem must include an additional term that describes the

wetting stress. We determined the steady-state solution of the elasticity problem, studied

its stability, and found that the wetting stress breaks the symmetry between the tensile

and compressive epitaxial strains. We then solved the elasticity problem in the long-

wave approximation and derived a nonlocal integro-differential equation governing the

evolution of the film surface. To study the possibility of the formation of spatially-regular

dot arrays, we performed linear and weakly nonlinear analyses and showed that, in the

case of two-layer and glued-layer wetting potentials, such arrays result from a subcritical

bifurcation and are therefore unstable. We also performed numerical simulations of the

nonlocal integro-differential equation and studied the evolution of quantum dots. We

showed that, after formation, the dots undergo coarsening with larger islands growing

at the expense of smaller ones, and we characterized the coarsening kinetics by different

parameters.

Finally in Chapter 4, we investigated the dynamics of a crystalline surface growing

by step-flow governed by Lévy flights. We developed the analog of the Burton, Cabrera,

Frank theory for the case of Lévy flights. For the quasistationary and full problems,

we found analytical expressions for the adatom density between two steps as well as the

step flow velocity as a function of the terrace length. In both cases, as compared to

normal diffusion, Lévy flights resulted in denser adatom profiles with wider and flatter

maximums due to the lower probability of adatoms reaching a step. We also determined

the asymptotics of the step flow for large terrace length and found the saturation velocity

as a function of the anomalous diffusion exponent.
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