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ABSTRACT

Assessing the Performance of Earthquake Hazard Maps

Edward M. Brooks

Despite advancing knowledge about the mechanics of earthquakes, earthquake predic-

tion remains, and will likely remain, an unsolved problem. Hence in order to reduce the

risk posed by earthquake shaking, seismologists have developed tools called earthquake

hazard maps. Earthquake hazard maps communicate expected future shaking scenarios,

and are used by engineers to develop building codes and build safer structures to mini-

mize their chance of failure or collapse in an eventual earthquake. However, recent large

earthquakes that caused great damage in areas predicted to be relatively safe illustrate

the importance of criteria that assess how well earthquake hazard maps forecast shaking.

This thesis defines metrics that measure the effects of over-prediction and under-

prediction by quantifying overall performance, making it easy and straightforward to

compare the performance of different maps. These metrics consider different aspects

of performance, including the probabilistic nature of some maps, and spatial variations

of predictions. Although no single metric alone fully characterizes map behavior, using

several metrics can provide useful insight for comparing and improving hazard maps.
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I use these metrics to explore the performance of earthquake hazard maps made around

the world. In Italy, I compare the performance of competing modeling procedures as a

demonstration of how maps can be directly compared via the metrics. In Japan, I address

criticisms of hazard mapping following the failure of the maps during the 2011 Tohoku

earthquake by exploring the performance of simple, synthetic maps that describe uniform

or randomized hazard. By the metric implicit in probabilistic seismic hazard assessment,

the primary form of map-making worldwide, uniform maps are found to perform better

than the original maps. This conclusion motivates additional research addressing over-

parameterization, which finds that map performance may be improved by smoothing the

predictions from the hazard models. In the United States, I assess the performance of one-

year hazard maps made to describe the hazard from induced seismicity. The performance

of the 2016 and 2017 maps prove to be better than any other map studied with the metrics

I have defined, justifying the procedure for making short-term maps. Finally, I define a

Monte Carlo simulation procedure to create artificial realizations of shaking scenarios and

expand the utility of the metrics, outlining how they can be used as absolute, rather than

relative, measures of performance.
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Thesis Overview
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1.1. Introduction

On March 11, 2011, a MW 9.1 earthquake struck the eastern coast of Japan. This event

was substantially larger than seismologists had thought was possible, because the region

off Tohoku’s shore was thought to have relatively low seismic hazard. Nonetheless, the

tsunami that followed the shaking resulted in nearly 20,000 casualties. This event was just

one of many in recent years that illustrate a systematic problem facing the seismological

community: despite widespread acceptance and usage, we don’t understand fully how well

earthquake hazard maps perform. Similar surprisingly large shaking events, resulting in

billions of dollars in damage and hundreds of thousands of casualties, have happened in

Wenchuan, China (2008), Haiti (2010), and Nepal (2015).

The idea behind modern earthquake hazard maps dates back to 1968. Cornell (1968)

outlined a procedure for probabilistically describing the shaking at a site within some

time span. This method, Probabilistic Seismic Hazard Analysis (PSHA), is now widely

used globally for inferring the seismic hazard posed to buildings and other structures, and

hence the level of anti-seismic engineering necessary to guarantee safety. The procedure

involves gathering as much information as possible about a number of earthquake sce-

narios, including magnitude, location, rate, and local site effects. Earthquake occurrence

over time is widely considered to be a Poissonian random variable, and while this may or

may not reflect reality, it is usually assumed in PSHA studies.

By combining all this information with a ground motion model that describes how

earthquakes of a given magnitude will yield specific levels of ground shaking as a function

of distance, seismologists develop hazard curves, which give the probability of shaking

exceeding a certain value within some window of time (frequently fifty years). Probabilistic
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hazard maps are an aggregation of these curves over many points, giving at each point

on a map a level of shaking thought to have a given probability of being exceeded during

the time window (Field, 2010).

By definition, PSHA allows for shaking larger than shown on a hazard map. Hence

when a large exceedance occurs, the question is whether it is consistent with the map,

or demonstrates an inaccuracy in the map. If an exceedance comes in the first year of

a map with a fifty-year lifetime, does it indicate that we will see less shaking in the

following forty-nine years? Map-makers, following these large events, tend to assume that

the map was flawed in some way, and update the parameters used to make it. But which

parameters need fixing? This is a complex question, further compounded by the sometimes

subjective decisions made in selecting parameter values (Stein et al., 2015a). Moreover,

beyond the subjectivity in parameter selection, uncertainties in these parameters are not

clearly communicated to the end-user, resulting in the confusion over how well a map

should be expected to work.

This research involves a series of studies addressing the question of how well an earth-

quake hazard map works. It begins by defining metrics that can be used to quantify differ-

ent aspects of map behaviors. The primary focus is on the probability of exceedance in the

PSHA methodology, but additional attention is given to other aspects of performance, as

well as the primary characteristics of the leading alternative to PSHA, Neo-Deterministic

Seismic Hazard Analysis (NDSHA). This method reduces the use of probability, and in-

stead seeks to describe the maximum possible shaking. Through this lens, a map’s success

or failure can be thought of more spatially than probabilistically. The difference between
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these metrics, and some of the considerations one must make when assessing a map, are

illustrated through an assessment of an Italian hazard map.

Following the development of metrics, this research explores a number of case studies,

quantifying the performance of maps for Japan and the United States. Different types

of data, including large-scale historic records, crowd-sourced shaking data, and computer

simulations, are used to assess their performance. This reflects a growing understanding

of both the metrics and how to use them, and lays the framework for how they could be

applied them in the future to investigate what type of hazard maps are most useful for

anticipating seismic hazard, and how they can be further improved.

1.2. Chapter 2: Metrics for Assessing the Performance of Earthquake

Hazard Maps

In Chapter 2, I define metrics to quantify the performance of earthquake hazard maps.

At the time of this work, there was no agreement as to how to answer the question of how

well hazard maps work, in part because of how complex the models are.

Inspired by a more familiar hazard prediction analogue, weather forecasts, parallels

can be drawn that illustrate how to assess how well a forecast predicts what occurs. This

leads to a series of metrics, with a primary focus on two: the Fractional Exceedance

Metric (M0) and the Squared Misfit Metric (M1).

I use these metrics in a case study to explore the performance of PSHA and NDSHA

maps in Italy. This is the first of many map comparisons, and demonstrates a way of

addressing a key question in the hazard mapping community: given multiple earthquake

hazard maps, which map is the best?
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This chapter has been published as Stein, S., Spencer, B. D., and Brooks, E. M. (2015).

Metrics for assessing earthquake-hazard map performance, Bulletin of the Seismological

Society of America, 105(4), 2160 - 2173.

1.3. Chapter 3: Comparing the Performance of Earthquake Hazard Maps to

Uniform and Randomized Maps

Chapter 3 is motivated by criticisms levied against the PSHA methodology following

the deadly 2011 Tohoku earthquake mentioned in the prior chapter. Tsunami counter-

measures were so substantially overwhelmed, due to the same assumptions that made

the map of predicted hazard so dramatically wrong. In a paper following the aftermath,

Geller (2011) declared “all of Japan is at risk from earthquakes, and the present state of

seismological science does not allow us to reliably differentiate the risk level in particu-

lar geographic areas.” If so, a map showing uniform hazard should be preferable to the

existing map.

Assessing a uniform map’s performance relative to the actual map is simple in practice,

using the ideas I discussed in Chapter 2. The hazard maps from Japan in 2008, were

compared to historic records of maximal shaking covering centuries before 2008, and

then appended with post-Tohoku data. I use “hindcasting,” comparing a map to data

gathered from before the map was made, for this comparison to overcome the fact that so

only a short time has elapsed since the map was made in comparison to its return period.

Ultimately, whether a uniform hazard map is preferable to the “true” maps being used is

“maybe,” depending on the metric used.
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This chapter has been published as Brooks, E. M., Stein, S., and Spencer, B. D.

(2016). Comparing the performance of Japan’s earthquake hazard maps to uniform and

randomized maps, Seismological Research Letters, 87(1), 90-102.

1.4. Chapter 4: The Effects of Smoothing on the Performance of Earthquake

Hazard Maps

Chapter 4 follows up the study in Chapter 3, where I explore maps between a uniform

map and the original map. Because a uniform map has been completely smoothed across

its entire surface area, I explore the performance of maps that have been smoothed over

smaller regions. This analysis finds that by one metric, improvements to the performance

of the Japanese National Hazard maps come if they are smoothed over ∼ 75 km. They

run the risk of being over-fitted in their current form.

This chapter is published as Brooks, E. M., Stein, S., and Spencer, B. D. (2017).

Investigating the effects of smoothing on the performance of earthquake hazard maps.

International Journal of Earthquake and Impact Engineering, 2(2), 121-134.

1.5. Chapter 5: Earthquake Hazard Map Performance for Natural and

Induced Seismicity

In Chapter 5, I apply the methods in Chapter 2 to a new data set and hazard map

for the central and eastern United States (CEUS). The map, the 2016 one-percent in one

year national seismic hazard map for natural and induced seismicity, was developed by

the US Geological Survey. It addresses the recent dramatic increase in seismicity due to

hydraulic fracturing (“fracking”) and waste water injection associated with unconventional

oil and natural gas production. Since 2008, these activities have increased the seismicity
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in previously almost-aseismic Oklahoma and the surrounding areas to levels similar to

that in California.

The shaking from induced earthquakes depends on human-driven actions, which can-

not be treated as stable over time like the recurrence rates of naturally occurring earth-

quake. Hence the hazard map is designed to be used for a short time span, one year,

rather than the traditional fifty years. This allows me to avoid using hindcasting for map

assessment. I began this study began in early 2017, after an entire year of seismic shaking

data had been gathered by the USGS “Did You Feel It?” (DYFI) system for the full time

window over which the map was intended to be used.

The results show that the 2016 USGS map is one of the more successful maps ana-

lyzed by the metrics approach. Both on the national scale, and zoomed in on the region

surrounding Oklahoma, the metrics suggest that this map performs better than any from

prior studies. Furthermore, an in-depth analysis of population, location, and earthquake

magnitude all agree that the map is unbiased, and quite successful in forecasting hazard.

This study was published as Brooks, E. M., Stein, S., Spencer, B. D., Salditch, L.,

Petersen, M. D., and McNamara, D. E. (2018). Assessing earthquake hazard map per-

formance for natural and induced seismicity in the central and eastern United States.

Seismological Research Letters, 89(1), 118-126.

1.6. Chapter 6: Assessing Map Performance Via Shaking Simulations

In the final chapter of this thesis, I explore future paths for better assessing hazard

map performance. This chapter examines the performance of the 2017 one-percent in

one year national seismic hazard map for natural and induced seismicity, the follow-up to
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the prior year’s map. The 2017 earthquake record differs substantially from the previous

year, featuring substantially fewer events, and hence less shaking. Because the shaking

is lessened, the response rate to DYFI also declines. The metrics used to assess map

performance indicate a weaker performance compared to the previous year, though still

better than the assessments from studies elsewhere discussed previous chapters.

The decrease in performance, and in responses in the DYFI data, prompt questions

about how the likelihood that the reduced seismicity and shaking are consistent with the

map. Could they, and thus the reduced performance, have occurred purely by chance?

Assuming the parameters selected by the USGS for their hazard map accurately describe

how the earth behaves, I explore how Monte Carlo simulation can be used to fill in the

gaps in responses, explore the effects of uncertainty in the model, and address the question

of how likely it is to observe the specific shaking scenario at occurred. This analysis finds

that the lower shaking from 2017 is highly unlikely to have occurred by chance, indicating

an issue in the selection of map parameters. The likely culprits, the decrease in fluid

injection volume and hence seismicity due to regulatory and economic pressures, suggest

important considerations to acknowledge and incorporate in future iterations of the map.

This approach also lays the groundwork for future improvements in the metrics used to

assess map performance by exploring how to assign scores to performance when there is

only one map and thus no other maps for comparison, as was the case in Chapters 2

through 4. This improvement, turning the metrics from relative assessments to absolute

assessments, is crucial for assessing whether an earthquake hazard map is “good.”

Chapter 6 will be submitted shortly to Seismological Research Letters as “Assessments

of the performance of the 2017 one-year seismic hazard forecast for the central and eastern
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United States via simulated earthquake shaking data”, by Brooks, E., M., Neely, J. S.,

Stein, S., Spencer, B. D., and Salditch, L.
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CHAPTER 2

Metrics for Assessing the Performance of Earthquake Hazard

Maps
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2.1. Summary

Recent large earthquakes that did great damage in areas predicted to be relatively safe

illustrate the importance of criteria to assess how well earthquake hazard maps used to

develop codes for earthquake-resistant construction are actually performing. At present,

there is no agreed way of assessing how well a map performed and thus whether one map

performed better than another. The fractional site exceedance metric implicit in current

maps, that during the chosen time interval the predicted ground motion will be exceeded

only at a specific fraction of the sites, is useful but permits maps to be nominally success-

ful although they significantly under-predict or over-predict shaking, or to be nominally

unsuccessful but do well in terms of predicting shaking. This chapter explores some pos-

sible metrics that better measure the effects of over-prediction and under-prediction and

can be weighted to reflect the two differently and to reflect differences in populations and

property at risk. Although no single metric alone fully characterizes map behavior, using

several metrics can provide useful insight for comparing and improving hazard maps. For

example, both probabilistic and deterministic hazard maps for Italy dramatically over-

predict the recorded shaking in a 2200-year-long historical intensity catalog, illustrating

problems in the data (most likely), models, or both.

2.2. Introduction

As Hurricane Irene threatened the U.S. East Coast in August 2011, meteorologist

Kerry Emanuel (2011) explained to the public that “We do not know for sure whether

Irene will make landfall in the Carolinas, on Long Island, or in New England, or stay far

enough offshore to deliver little more than a windy, rainy day to East Coast residents.
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Nor do we have better than a passing ability to forecast how strong Irene will get. In

spite of decades of research and greatly improved observations and computer models, our

skill in forecasting hurricane strength is little better than it was decades ago.”

This example illustrates that the performance of forecasts has multiple aspects - in

this case, a storm’s path and strength - each of which needs to be quantified. Metrics

are numerical measures that describe a property of a system, so its performance can be

quantified beyond terms like “good,” “fair,” or “bad.” For example, the performance

of medical diagnostic tests is assessed using two metrics: specificity, the lack of false

positives (type I errors), and sensitivity, lack of false negatives (type II errors). Similarly,

a statistical estimate may be biased with high precision or unbiased with low precision;

more generally its performance is described by a probability distribution for its error.

Metrics describe how a system behaves, but not why. A weather forecast or med-

ical test may perform poorly because of problems with the model, the input data, or

both. Similarly, although metrics measure relative performance, they do not themselves

tell whether the differences are explicable solely by chance, or instead are “statistically

significant.” Assessing whether one model is significantly “better” than another requires

assuming and applying a probability model to the data underlying the metric.

Metrics are crucial in assessing the past performance of forecasts. For example,

weather forecasts are routinely evaluated to assess how well their predictions matched

what actually occurred (Stephenson, 2000). This assessment involves adopting metrics.

Murphy (1993) notes that “it is difficult to establish well-defined goals for any project

designed to enhance forecasting performance without an unambiguous definition of what

constitutes a good forecast.”
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Figure 2.1. Comparison of the predicted probability of rain to that actu-
ally observed in National Weather Service and a local television station’s
forecasts (Silver, 2012).

Figure 2.1 shows an example comparing the predicted probability of rain to that ac-

tually observed. National Weather Service forecasts have only a slight “wet bias” toward

predicting rain more often than actually occurs. This bias is much greater for a local
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television station, whose forecasts are much less accurate. A metric describing the mis-

fit would quantify the difference, but would not tell us why the television forecasts do

worse. Silver (2012) suggests that television forecasters feel that viewers enjoy unexpect-

edly sunny weather but are annoyed by unexpected rain, and so prefer the biased forecast.

Other users, however, would likely prefer the less biased forecast. Similarly, the metric

does not quantify the possibility that the television station’s forecast is worse purely by

chance, which requires assuming and applying a probability model to the data. Infor-

mation about how a forecast performs is crucial in determining how best to use it. The

better a weather forecast has worked to date, the more we factor it into our daily plans.

Similar issues arise for earthquake hazard maps that are used to develop codes for

earthquake-resistant construction. These maps are derived by estimating a variety of

parameters for selected models that are used to forecast future seismicity and the resulting

shaking.

Recent destructive large earthquakes underscore the need for agreed metrics that mea-

sure how well earthquake hazard maps are actually performing. The 2011 MW 9.1 To-

hoku earthquake, and thus the resulting tsunami, was much larger than anticipated in the

Japanese national earthquake hazard map (Geller, 2011). The 2008 MW 7.9 Wenchuan,

China, and 2010 MW 7.1 Haiti earthquakes occurred on faults mapped as giving rise to

low hazard (Stein et al., 2012).

These events have catalyzed discussions among seismologists and earthquake engi-

neers about commonly used earthquake hazard mapping practices (Kerr, 2011; Stirling,

2012; Gulkan, 2013; Iervolinoa, 2013). The underlying question is the extent to which

the occurrence of low probability shaking indicates problems with the maps - either in
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the algorithm or the specific parameters used to generate them - or chance occurrences

consistent with the maps. Several explanations have been offered.

One explanation (Hanks et al., 2012; Frankel, 2013) is that these earthquakes are low-

probability events allowed by probabilistic seismic hazard maps, which use estimates of

the probability of future earthquakes and the resulting shaking to predict the maximum

shaking expected with a certain probability over a given time. The probabilistic algorithm

anticipates that in a specified number of cases, shaking exceeding that mapped should

occur (Cornell, 1968; Field, 2010). Hence it is important to assess whether such high

shaking events occur more or less often than anticipated.

However, the common practice of extensively remaking a map to show increased haz-

ards after “unexpected” events or shaking (Figure 2.2) is inconsistent with the interpreta-

tion that these were simply low-probability events consistent with the map. For example,

although the chance that a given lottery ticket is a winner is low, the probability that

some lottery ticket wins is high. Hence the odds of winning are only reassigned after

a winning ticket is picked when the operators think their prior model was wrong. The

revised maps thus reflect both what occurred in these earthquakes and other information

that was either unknown or not appreciated (e.g., Minoura et al. 2001; Manaker et al.,

2008; Sagiya, 2011) when the earlier map was made (Stein et al., 2012).

Choosing whether to remake the map in such cases is akin to deciding whether and

how much to revise your estimate of the probability that a coin will land heads after

it landed heads four times in a row (Stein et al., 2015). If, prior to the coin tosses,

you had confidence that the coin was fair - equally likely to land heads or tails - and

the person tossing it would not deliberately influence how it lands, you might regard
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Figure 2.2. (Top) Comparison of Japanese national seismic hazard maps
before and after the 2011 Tohoku earthquake. The predicted hazard has
been increased both along the east coast, where the 2011 earthquake oc-
curred, and on the west coast (J-SHIS, 2015). (Bottom) Comparison of
successive Italian hazard maps (Stein et al., 2013). The 1999 map was up-
dated to reflect the 2002 Molise earthquake, and the 2006 map will likely
be updated to include the 2012 Emilia earthquake.
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the four heads as an unlikely event consistent with your probability model, and so not

change it. But, if a magician was tossing the coin, your confidence in your prior model

would be lower and you would likely revise it. When and how to update forecasts as

additional information becomes available, depending on one’s confidence in the initial

model, is extensively discussed in the statistical literature (e.g., Siliva, 2006; Rice, 2007)

but beyond our scope here.

Another explanation that has been offered is that the probabilistic approach is flawed

(Klügel et al., 2006; Wang, 2011; Wang and Cobb, 2012) in that the expected value of

shaking in a given time period is a mathematical quantity not corresponding to any specific

earthquake that is inappropriate for designing earthquake-resistant structures, especially

for rare large events that critical facilities like nuclear power plants should withstand. In

this view, it is better to specify the largest earthquakes and resulting shaking that realisti-

cally could occur in a deterministic seismic hazard assessment (Peresan and Panza, 2012).

This approach avoids uncertainties from assumptions about earthquake probabilities, but

otherwise faces the same uncertainties as a probabilistic approach. In some applications,

probabilistic and deterministic approaches are combined.

In an intermediate view, both the probabilistic and deterministic algorithms are rea-

sonable in principle, but in many cases key required parameters, such as the maximum

earthquake magnitude, are poorly known, unknown, or unknowable (Stein et al., 2012;

Stein and Friedrich, 2014). This situation causes some maps to have large uncertainties,

which could allow presumed low probability events to occur more often than anticipated.

The importance of these issues is illustrated by Geller (2011), who noted that the

Tohoku earthquake and the others that caused 10 or more fatalities in Japan since 1979
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occurred in places assigned a relatively low probability. Hence, he argued that “all of

Japan is at risk from earthquakes, and the present state of seismological science does not

allow us to reliably differentiate the risk level in particular geographic areas,” so a map

showing uniform hazard would be preferable to the existing map.

Geller’s proposal raises the question of how to quantify how well an earthquake hazard

map is performing. Because the maps influence policy decisions involving high costs to

society, measuring how well they perform is important. At present, there are no generally

accepted metrics to assess performance. Hence there are no agreed ways of assessing how

well a map performs, to what extent it should be viewed as a success or failure, or whether

one map is better than another. Similarly, there is no agreed way of quantifying when

and how new maps should be produced and the improvements that they should provide.

In this chapter, I explore some possible metrics to address these issues. Although

no single metric can fully characterize map behavior, examining map performance using

several metrics can provide useful insight.

2.3. Hazard Maps

Conceptually, the issue is how to compare a map of predicted shaking to the maximum

shaking observed at sites within it over a suitably long period of time after the map was

made. There is increasing interest in this issue, and a variety of approaches have recently

been used (Stirling and Peterson, 2006; Albarello and D’Amico, 2008; Mucciarelli et

al., 2008; Miyazawa and Mori, 2009; Stirling and Gerstenberger, 2010; Kossobokov and

Nekrasova, 2012; Wyss et al., 2012; Nekrasova et al., 2014; Mak et al., 2014) and are

being developed under auspices of the Global Earthquake Model project.
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Figure 2.3. Schematic comparison of hazard map prediction to a map of
the maximum observed shaking.

The natural first way to do this is to compare the observations and predictions in map

view, as illustrated by the schematic maps in Figure 2.3, where for simplicity one can

assume the observation time well exceeds the return time. Such maps could represent

ground shaking as acceleration, velocity, or intensity.

In general, this map did reasonably well, in that it identified most of the areas that

were subsequently shaken. However, it over-predicted the shaking associated with the

north-south striking fault, and under-predicted that associated with the associated east-

west striking fault. It also did not predict the shaking caused by earthquakes on an

unrecognized smaller fault to the northeast.

Quantifying these statements requires going beyond the visual comparison, and de-

pends on how the map was made and what it seeks to predict. Most seismic hazard maps
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are made using probabilistic seismic hazard assessment (Cornell, 1968; Field, 2010), which

involves assuming the location and recurrence of earthquakes of various magnitudes and

forecasting how much shaking will result. Summing the probabilities of ground motions

exceeding a specific value yields an estimate of the combined hazard at a given point.

The resulting hazard curve (Figure 2.4a) shows the estimated probability that shaking

will exceed a specific value during a certain time interval.

The predicted hazard in probabilistic maps depends on the probability, or equivalently

the observation period τ and return period T , used. The Poisson (time-independent)

probability p that earthquake shaking at a site will exceed some value in τ years, assuming

this occurs on average every T years, is assumed to be

(2.1) p = 1− e−
τ
T ,

which is approximately τ/T for τ � T . This probability is small for τ/T small and

grows with time (Figure 5).

For a given return period, higher probabilities occur for longer observation periods.

For example, shaking with a 475-year return period should have about a 10% chance being

exceeded in 50 years, 41% in 250 years, 65% in 500 years, and 88% in 1000 years. Thus in

50 years there should be only a 10% probability of exceeding the mapped shaking, whereas

there is a 63% probability of doing so in an observation period equaling the return period.

The long times involved pose the major challenge for hazard map testing. The time

horizon for weather forecasts matches the observation period, so forecasts can be tested at

specific sites (Figure 2.1). In contrast, as discussed shortly, earthquake hazard maps are
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Figure 2.4. (a) Schematic hazard curves for two sites. Constant probability
hazard maps like (b) are made by sampling the hazard curves at a fixed
probability to predict that the largest shaking in each area will exceed a
specific value with a certain probability during a certain time (observation
period). Constant threshold maps like (c) are made by sampling the hazard
curves at a fixed shaking level to predict the probability that this shaking
level will be exceeded in a certain time.

tested by analysis of shaking across many areas to compensate for the short time periods

of data available (Ward, 1995).
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Figure 2.5. Assumed probability p that during a τ years long observation
period, shaking at a site will exceed a value that is expected on average
once in a T year return period, assuming equation 2.1, p = 1− e− τ

T .

Probabilistic hazard maps are developed by representing hazard curves for different

sites, which is done in two ways. In constant probability hazard maps the hazard curves

for areas are sampled at a fixed probability p to predict the largest anticipated shaking

in each area during a certain observation period. Thus the map shows the predicted

shaking levels si for a given probability p = P (xi > si) for all areas i. For example,

Figure 2.4b shows the shaking intensity on the Japan Meteorological Agency scale that is

anticipated to have only a 3% chance of exceedance in 30 years. This approach, termed

uniform hazard, is used in developing seismic design maps in the U.S. and Europe. An

alternative is to present constant threshold hazard maps like that in Figure 2.4c. In these,

the hazard curves are sampled at a fixed shaking level to estimate the probability that
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this shaking level will be exceeded. The resulting map shows the forecasted probabilities

pi = P (xi > s) for all sites. This representation is commonly used in Japan to show the

probability of shaking at or above a given intensity, in this case 6-lower on the Japan

Meteorological Agency scale (corresponding approximately to Modified Mercalli intensity

VIII) in 30 years. Such maps show how the probability that a structure will be shaken at

or above a certain threshold varies across locations.

2.4. Exceedance Metric, M0

Because maps can be made in various ways and thus predict different aspects of the

future shaking distribution, we can ask two questions:

(1) How well does the map predict the aspects of distribution of shaking that it was

made to predict?

(2) How well does the map predict other aspects of the distribution of shaking?

These are most easily explored for the commonly used constant probability maps.

These maps predict that ground shaking at any given site will exceed a threshold only

with probability p in a given time period. This prediction can be assessed by comparing

the actual fraction f of sites with shaking exceeding the threshold to p. This approach,

introduced by Ward (1995), considers a large number of sites to avoid the difficulty that

large motions at any given site are rare. For example, suppose a map correctly specifies

that for a given site there is a 2% chance of a given amount of shaking in a 50-year period,

corresponding to a 2475-year return period. If the observation period is 250 years, Figure

2.5 shows that there is a 10% chance that the maximum shaking is as large or larger than

predicted, and hence a 90% chance that it is less than predicted.
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The longer the observation time compared to the return period assumed in making the

map, the more information we have, and the better we can evaluate the map (Beauval et

al., 2008; 2010). For example, if in a 50-year period a large earthquake produced shaking

exceeding that predicted at 10% of the sites, this situation could imply that the map was

not performing well. However, if in the subsequent 200 years no higher shaking occurred

at the sites, the map would be performing as designed. The exceedance fraction can be

thought of as a random variable whose expected value is better estimated with longer

observation periods. As the length of the observation period as a fraction of the return

period increases, the more likely it is that a difference between the predicted and observed

exceedance fractions does not occur purely by chance, as discussed later.

This approach allows for the fact that both predictions and observations at nearby sites

are correlated. The expected value of the empirical fraction of sites with shaking exceeding

thresholds, E[f ], always equals the average true probability of exceedance, regardless of

any correlation between sites. This equality holds regardless of any correlation between

sites, because the expected value of a sum always equals the sum of the expected values,

provided the expected values are finite, as they are. However, as shown later, positive

spatial correlation decreases the information available for evaluating maps.

The difference between the observed and predicted probabilities of exceedance, f − p,

decomposes into a random component and a systematic component,

(2.2) f − p = [f − E[f ]]︸ ︷︷ ︸
random component

+ [E[f ]− p].︸ ︷︷ ︸
systematic component
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Figure 2.6. Comparison of the shaking predicted in various subregions of
hazard maps to the maximum-observed shaking. Each of the four maps
satisfies the fractional site exceedance criterion for p = 0.1, but (b)-(d)
have significant under-predictions or over-predictions.
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The systematic component is the difference between the average true probability

(which equals E[f ]) and the average predicted probability p of exceedance. If the map

parameters do reasonably well in describing earthquakes in the area, E[f ] will be close to

the average predicted probability of exceedance p, and the systematic error will be small.

The remaining random component depends on the probability distribution of shaking,

which includes both actual chance effects and unmodeled site effects that appear as ran-

dom scatter. The magnitude of the random component is affected by correlation across

sites, as shown in the example discussed later in the chapter.

Thus the implicit criterion of success, which can be called a fractional site exceedance

criterion, is that if the maximum observed shaking is plotted as a function of the predicted

shaking, only a fraction p (or percentage P ) of sites or averaged regions should plot above

a 45o line (Figure 2.6), aside from chance effects and unmodeled site effects.

How well a map satisfies the fractional site exceedance criterion can be measured

using a corresponding metric. A hazard map shows, for all N areas i within it, an

estimate of the probability that the maximum observed ground shaking xi in a time

period of length τ exceeds a shaking value si. This estimated probability can be written

pi = P (xi > si). For a sufficiently large number of areas, the fraction f of areas where

xi > si should be approximately equal to the average probability for the areas, or f ≈ p̄,

where p̄ = 1
N

∑N
i=1 pi. For the commonly used constant probability maps, p̄ = p.

Hence the simplest measure of how well such maps performed is to use a metric based

on the fractional site exceedance criterion used in making them. This fractional site

exceedance metric can be written as
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(2.3) M0 = |f − p|,

where f is the fraction of sites at which the predicted ground motion was exceeded

during a time period for which p is the appropriate probability (Figure 2.5). M0 ranges

from 0 to 1, with the ideal map having M0 = 0. If M0 > 0, then the map has either

positive fractional site exceedance, measured by

(2.4) M0+ =


|f − p| f > p

0 otherwise,

or negative fractional site exceedance, measured by

(2.5) M0− =


|f − p| f < p

0 otherwise.

For any map, either M0+ or M0− must equal zero, and hence M0 = M0+ +M0−.

2.4.1. Limitations of the Exceedance Metric

Although the exceedance metric is reasonable, it only reflects part of what one might

want a probabilistic hazard map to do. This issue is illustrated by the results from four

hypothetical probabilistic hazard maps (Figure 2.6), all of which satisfy the criterion that

the actual shaking exceeds that predicted for this observation period only at 10% of the
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sites. Thus all these maps have zero fractional site exceedance, or M0 = 0. However,

some of these maps would be more useful than others.

The map giving rise to the results in Figure 2.6a would be viewed as highly effective,

in that the maximum actual shaking plots close to that predicted. The map largely

avoided under-prediction, which would have exposed structures built using a building

code based on these predictions to greater-than-expected shaking. Similarly, it largely

avoided over-prediction, which would have caused structures to be over-designed and

thus waste resources.

Mathematically, largely avoiding under-prediction can be posed as saying that in

the fN areas where xi > si, the excess shaking xi − si should be modest. Similarly,

largely avoiding over-prediction means that in the (1 − f)N areas where xi < si, the

over-predictions should be modest. Maps can do well as measured by the fractional site

exceedance metric, but have significant over-predictions or under-predictions.

For example, the map giving rise to the results in Figure 2.6b exposed some areas

to much greater shaking than predicted. This situation could reflect faults that were

unrecognized or more active than assumed. Hence although the map satisfies the fractional

site exceedance metric that it was designed to achieve, we would not view this map as

very effective.

Conversely, the maps in Figures 2.6c and 2.6d over-predicted the shaking at most

sites, although they have zero fractional site exceedance. Figure 2.6c shows a systematic

bias toward higher-than-observed values, as could arise from using inaccurate equations

to predict ground motion. The map for Figure 2.6d over-predicted the shaking in that the
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Figure 2.7. Comparison of the results of two hazard maps. The example in
(a) is nominally successful, as measured by the fractional exceedance metric,
but significantly under-predicts the shaking at many sites and over-predicts
that at others. That in (b) is nominally unsuccessful, as measured by the
fractional site exceedance metric, but better predicts the shaking at most
sites.

actual shaking was everywhere less than a threshold value (dashed line), as could arise

from overestimating the magnitude of the largest earthquakes that occurred.

Hence the fractional site exceedance metric M0 measures only part of what we would

like a map to do, as illustrated in Figure 2.7 for hazard maps in which the predicted

shaking threshold for each site should be exceeded with probability 10% in the observation

period. The map in Figure 2.7a is nominally very successful as measured by M0 = 0,

but significantly under-predicts the shaking at many sites and over-predicts it at others.

Conversely, the map in Figure 7b is nominally unsuccessful as measured by M0 because

ground shaking at 20% of the sites exceeds that predicted, so f = 0.2, and M0 = 0.1.
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However, it does a reasonable job of predicting the shaking at most sites. Thus in many

ways, the nominally unsuccessful map is better than the nominally successful one.

In this formulation, a map would be considered to be doing poorly if M0 is much

greater than 0, i.e. the observed and predicted fractions of exceedances differ enough.

This situation could arise from a single very large event causing shaking much larger than

anticipated over a large portion of a map, but will generally reflect what occurs (or does

not occur) in many events in many places over time, as for the Italian maps discussed

later.

2.5. Alternative Metrics

Many other metrics could be used to provide additional information for quantifying

aspects of the observed vs. predicted graphs in Figures 2.6 and 2.7. As these additional

metrics numerically summarize aspects of the graphs, they account for the length of the

observation period. Consider four (Figure 2.8) that compare the maximum observed shak-

ing xi in each of the map’s N subregions over some time interval to the map’s predicted

shaking si. Like those in Figures 2.6 and 2.7. As these additional metrics numerically

summarize aspects of , the hazard maps represented were constructed so that the shak-

ing threshold for each site should be exceeded with probability 10% over the observation

period.

One metric is simply the squared misfit to the data

(2.6) M1(s, x) =
1

N

N∑
i=1

(xi − si)2
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Figure 2.8. Four metrics (M1 through M4) that provide additional infor-
mation beyond that from the fractional site exceedance metric.

which measures how well the predicted shaking compares to the highest observed.

Given the probabilistic nature of the ground motion prediction, scatter above and below
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the predicted value is expected (Beauval et al., 2010). Even so, smaller overall deviations

correspond to better-performing maps. Hence maps (a)-(d) in Figure 2.6 have M1 = 36,

69, 253, and 370.

Similarly, by this metric, the map in Figure 2.7b (M1 = 25) does better than that

in Figure 2.7a (M1 = 135). Hence from a purely seismological view, M1 seems an

appropriate metric that tells more than M0 about how well a map performed.

However, a hazard map’s goal is societal - to guide mitigation policies and thus reduce

losses in earthquakes. Hence one might also use metrics that weight different aspects of

the prediction differently. For example, because under-prediction does potentially more

harm than over-prediction, one solution could be to weight under-prediction more heavily.

One such asymmetric metric is

(2.7) M2(s, x) =
1

N

N∑
i=1

a[(xi − si)+]2 + b[(xi − si)−]2

where (xi − si)+ = max(0, xi − si), (xi − si)− = max(0, si − xi), and a > b ≥ 0.

A refinement would be to vary the asymmetric weights a and b so that they are larger

for the areas predicted to be the most hazardous, such that the map is judged most on

how it does there. In this metric

(2.8) M3(s, x) =
1

N

N∑
i=1

a(si)[(xi − si)+]2 + b(si)[(xi − si)−]2

where a(si) > b(si) ≥ 0 and both a and b increase with si.
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Another option is to vary the asymmetric weights a and b so that they are larger for

areas with the largest exposure of people and/or property, such that the map is judged

most on how it does there. Defining ei as a measure of exposure in the ith region yields

a metric

(2.9) M4(s, x) =
1

N

N∑
i=1

a(ei)[(xi − si)+]2 + b(ei)[(xi − si)−]2

where a(ei) > b(ei) ≥ 0 and both a and b increase with ei.

Although these metrics are discussed in terms of probabilistic hazard maps, they can

also be applied to deterministic maps.

2.6. Example

The examples here illustrate some of the many metrics that could be used to provide

more information about how well an earthquake hazard map performs than is provided

by the implicit fractional site exceedance metric. Ideally, these would be used to evaluate

how different maps of an area, made under different assumptions, actually performed.

One would then be in a position to compare the results of the different maps and identify

which aspects require improvement.

However, the short time since hazard maps began to be made poses a challenge for

assessing how well they work. Hence various studies examine how well maps describe

past shaking (Stirling and Peterson, 2006; Albarello and D’Amico, 2008; Stirling and

Gerstenberger, 2010; Kossobokov and Nekrasova, 2012; Nekrasova et al., 2014; Wyss et

al., 2012; Mak et al., 2014). Although such “hindcast” assessments are not true tests, in
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Figure 2.9. Comparison of (a) historical intensity data for Italy to (b) a
probabilistic hazard map and (c) a deterministic hazard map, both of which
over-predict the observed shaking, as shown in (d) and (e). Several points
are moved slightly for clarity.

that they compare the maps to data that were available when the map was made, they

give useful insight into the maps’ performance.

For example, Figure 2.9a compares historical intensity data for Italy from 217 B.C. to

2002 A.D., developed from a compilation by Gruppo di Lavoro (2004), to a probabilistic

map for 2% in 50 years and a deterministic map (Figures 2.9b and 2.9c) (Nekrasova et

al., 2014). As seen in Figure 2.5, this ∼2200-year observation time and 2475-year return
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period correspond to an exceedance probability p = 58.89%. Hence the observed shaking

at most sites should exceed that predicted.

However, the probabilistic map has only 2 sites out of 800 for which the observed

shaking exceeding exceeds the threshold value, for f = 0.25%. Comparing that with

p = 58.89% there is thus a large negative fractional site exceedance, with M0 = 0.5864.

For the deterministic map, the predicted threshold of ground motion was exceeded at

13 of the 800 sites, so f = 1.62%. The fractional exceedance metric for the deterministic

map cannot be computed, because the map does not provide a stated probability of

exceedance over a time period. In principle, one can use the past performance to crudely

calibrate the deterministic map, however. Thus, the empirical probability of exceedance

for sites in Italy was 1.62% over 2200 years, corresponding to 2% over 2713 years, or 0.037%

over 50 years. A similar approach has been used to calibrate deterministic scenario-based

population forecasts (Keyfitz, 1981; Alho and Spencer, 2005). However, as discussed

below, there are questions about the data so this example is purely illustrative.

Both hazard maps significantly over-predict the observed shaking, as shown by the

M1 metric. The deterministic map does better (M1 = 23.7) than the probabilistic map

(M1 = 27.2) because its overall over-prediction is somewhat less.

The large misfit between the data and probabilistic map shown by M0 is unlikely

to have occurred purely by chance, given the length of the historical catalog, which is

comparable to the map’s return period of 2475 years. The poor fit of both maps indicate

a problem with the data, maps, or both. The metrics illustrate the problem, but do not

indicate its cause.
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Figure 2.10. Schematic illustration of one way that variations in sampling
over time τ could underestimate earthquake shaking. If reports are available
only from grid cells including a reporting site (circle), the reported max-
imum shaking in some cells (lower row) is less than the actual maximum
(upper row).

It is possible that some of the assumptions in the hazard map making were biased

toward over-predictions. However, it is likely that much of the misfit results from catalog

being biased to too-low values. The historical catalog is thought to be incomplete (Stucchi

et al., 2004) and may underestimate the largest actual shaking in areas due to a space-

time sampling bias and/or difficulties with the historically inferred intensities. Figure

2.10 shows schematically how sampling bias could understate actual shaking, and Hough

(2013) shows that sampling bias can also overestimate actual shaking.
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This example also illustrates other complexities. The historical intensity data have a

long enough observation time for reliable comparison with the 2% map. However, they

have the difficulty that regions can have no reported shaking either because no shaking

large enough to be reported occurred, or because such shaking occurred but is not reflected

in the historical record. When the sites with no reported shaking are omitted, M1 values

for the probabilistic map drop from 27.2 to 10.4, and M1 values for the deterministic

map drop from 23.7 to 7.2. The difference in M1 values between the probabilistic and

deterministic maps stays about the same, ∼3. Because f is so small relative to p for the

probabilistic map, the M0 value just barely changes, decreasing from 0.5864 to 0.5857.

These issues would not arise for instrumentally recorded data for which low values can be

distinguished from missing values (no data).

Another complexity is that hazard maps predict average effects over some area for a

uniform site response, whereas actual ground shaking includes local site effects. Hence

ideally site effects would be included or removed if the structure were adequately known.

Otherwise, nearby sites could be averaged to reduce the effect of variations on a spatial

scale smaller than can be modeled with available information.

Most crucially, this analysis compared a set of observations to maps produced after

the earthquakes occurred. The metrics thus describe how well the maps fit data that

were used in making them. Such retrospective analysis has been the norm to date, given

that hazard mapping is a relatively new technology compared to the earthquake record.

Prospective testing will be needed to see how well maps predicted future shaking. By

examining how well a map described what happened (or happens) over its entire area,
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metrics like those discussed here have the benefit of requiring a much shorter time span

of data than would be required to assess how the map performed at individual sites.

2.7. The Effect of Random Error and Bias on Metrics

Although metrics measure how well the predicted shaking matches that observed,

assessing their statistical properties requires also assuming and applying a probability

model to the data underlying the metrics.

The situation is analogous to deciding if a diet is working. Using your weight as a

metric shows changes over time, but deciding whether these could have occurred purely

by chance or are significant requires assuming and applying a probability model for the

scale’s weight measurements. The probability model involves the properties of the scale:

different scales all measure weight, but with different precision and accuracy. Hence

statistical significance depends on the model assumed to describe the data.

Recall from Equation 2.2 that for the exceedance metric, M0 the difference f − p

between observed and forecasted is the sum of the chance component, f − [E]f , and

the bias [E]f − p. To interpret the difference, f − p, it’s important to know how large

the chance component might be, and then to assess whether the bias appears to be

appreciable. Statistical significance tests often are used for this purpose in analogous

applications.

Understanding the effect of chance and biases on numerical values of metrics requires

considering the sources of randomness and bias. Are the sites the whole population or a

sample, how was the sample chosen, how accurate are the measurements of shaking, and

what is the joint probability distribution of shaking?
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One also needs to consider how the map was developed. To the extent that past

shaking data were used in developing the hazard curves underlying the map, the numerical

values of the metrics applied to past data may not reflect their numerical values when

applied to future events. This is a potential problem, because the forecasts’ purpose is to

predict the future, not the past. Cross-validation methods may be useful, but the limited

number of sites and their correlations over space and time may pose difficulties.

For illustrative purposes, consider the probability distribution of f , the fraction of sites

whose shaking exceeded the specified thresholds, for the Italy data used in Figure 2.9.

Take the sites to be a population of interest, rather than a sample from a larger population.

Consider only randomness associated with ground motion at each site. Figure 2.9b is a

constant probability map, predicting that the probability is 2% that in 50 years shaking

at a given site exceeds a threshold value for the site, and thus that in 2200 years the

probability of exceedance is p = 58.89%.

It is of interest to test whether the difference between the observed number of ex-

ceedances and the expected number is greater than what would be likely to occur by

chance when the model is correct, i.e., whether the difference is “statistically significant”,

the known limitations of hypothesis testing notwithstanding (Marzocchi et al., 2012). For

each site i = 1, ..., N , define Xi = 1 if shaking exceeded the threshold and Xi = 0 other-

wise. Consistent with the model underlying the constant probability map, one can assume

each Xi has a Bernoulli distribution with parameter p, i.e., Xi = 1 with probability p and

Xi = 0 with probability 1−p. If the Xi’s are mutually independent, then the total number

of exceedances, Nf =
∑N

i=1Xi has a binomial distribution with parameters N and p.
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For N = 800 sites, the data show two exceedances, so Nf = 2, and thus f = 0.0025. In

contrast, for a binomial model with parameters 800 and 0.5889 (the probability specified

for the map) the expected number of exceedances is Np = 471.2, and the probability that

the observed count Nf is 2 or smaller or 798 or larger is astronomically small, 1.7×10−179.

This probability is vastly smaller than the conventional α = 0.05 level of significance,

indicating that the discrepancy between Nf and Np or equivalently between f and p is

statistically significant. If the assumed model is correct, there is almost no chance that

the observed number of exceedances would be so far from the expected number. Either

an incredibly unlikely small amount of exceedance occurred just by chance, or there are

problems with the model or data, as previously discussed.

Another possibility is that the model’s assumption of independence across sites could

be wrong, so exceedances at different sites are correlated. Although, as discussed earlier,

this correlation does not bias the metric, it would affect significance tests because it affects

the amount of chance variability in the number of exceedances. If the average correlation

is positive, the observations carry less information, so the evidence against p = 0.5889 is

weaker.

To see this, note that under the Bernoulli model, the co-variance of Xi and Xj for

sites i and j equals ρijp(1 − p) with the correlation ρij reflecting the spatial correlation.

The average correlation across different sites is ρ̄ =
∑

i 6=j
ρij

N(N−1)
. For example, if each

Xi has correlation ρ with exactly k other Xj’s and no correlation with all other Xj’s,

then ρ̄ = ρk
N−1

. To help interpret the correlation, consider ρij = ρ > 0 for all distinct

sites i and j. This implies ρ̄ = ρ. If there is independence, or more generally if ρ = 0,

the probability of non-exceedance at a given pair of sites equals (1 − p)2. But, if the
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correlation is ρ > 0 then the probability of non-exceedance at the pair of sites increases

by ρp(1− p). Using p = 0.589 and, purely for illustrative purposes, taking ρ = 0.36, one

sees that the probability of non-exceedance at the pair of sites increases from 0.169, the

probability under independence, to 0.256, a relatively large increase (52%).

In general, the variance of Nf is Np(1−p)[1+(N−1)ρ̄]. The term in square brackets

is an inflation factor for the binomial variance when ρ̄ > 0. Empirical estimation of ρ̄ is

beyond the scope of this chapter. Once ρ̄ has been specified, however, the significance

calculations can easily accommodate spatial correlation if the Gaussian approximation to

the binomial distribution is used. Under the independence assumption, a simple approx-

imation to the binomial distribution of Nf is based on treating z = Nf−Np+c√
Np(1−p)

as if it

were Gaussian with mean 0 and variance 1, where the “continuity correction” equals 1
2

if f < p, −1
2

if f > p, and 0 if f = p. With Np = 471.2, Nf = 2, and N = 800, one

can calculate z = −33.7, which as before (with the binomial model) corresponds to an

astronomically small probability. Now, suppose for illustrative purposes that ρ̄ = 0.38, as

discussed in the previous paragraph. To take correlation into account, divide the z-value

of -33.7 by
√
Np(1− p) = 16.99 to get an adjusted z-value of -1.98. This corresponds to

a two-tailed probability of 0.047, which is still smaller than the conventional significance

level of α = 0.05. If the correlation parameter ρ̄ were even larger, say 0.37, the adjusted

z-value would increase and the associated two-tailed probability would exceed α = 0.05.

In that case, the difference between Nf and Np would not be “statistically significant”

at the α = 0.05 level. It is clear that an assumption of independence can make a huge

difference in these calculations (Kruskal, 1988).
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Starting with the decomposition of f−p given earlier, squaring both sides, and taking

expected values, shows that the mean squared deviation between f and p equals the sum

of the variance in f and the squared bias in p, that is, E[f − p]2 = V (f) + Bias2.

When the variance V (f) is not too large, one may use the following estimator of the

squared bias in the specification of p,

(2.10) p̂ = (f − p)2 − V (f).

For example, for the 2%-in-50-years model with correlation, it is possible to estimate

V (f) = f(1−f)
N

[1 + (N − 1)ρ̄] = 0.0071, which does not assume that the specification of p

is correct. The estimate of squared bias is 0.337. The ratio of the square root of 0.337

to p is 0.99. According to this analysis, then, based on illustrative assumptions that may

not capture reality, the estimate of p is almost all systematic error (bias).

2.8. Map Comparison and Updating

The metrics discussed here can also be used to compare the maximum shaking observed

over the years in regions within a hazard map to that predicted by the map and by some

null hypotheses. This could be done via the skill score, a method used to assess forecasts

including weather forecasts

(2.11) SS(s, r, x) = 1− M(s, x)

M(r, x)
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where M is any of the metrics, x is the maximum shaking, s is the map prediction,

and r is the prediction of a reference map produced using a reference model (referred

to as a null hypothesis). The skill score would be positive if the map’s predictions did

better than those of the map made with the null hypothesis, and negative if they did

worse. With this information, it is then possible to assess how well maps have done after

a certain time, and whether successive generations of maps do better.

One simple null hypothesis is that of regionally uniformly distributed seismicity or

hazard. Geller (2011) suggests that the Japanese hazard map in use prior to the Tohoku

earthquake is performing worse than such a null hypothesis. Another null hypothesis is

to start with the assumption that all oceanic trenches have similar b-value curves (Kagan

and Jackson, 2012) and can be modeled as the same, including the possibility of an MW9

earthquake (there is about one every 20 years somewhere on a trench).

The idea that a map including the full detail of what is known about an area’s geology

and earthquake history may not perform as well as assuming seismicity or hazard are

uniform at first seems unlikely. However, it is not inconceivable. An analogy could be

describing a function of time composed of a linear term plus a random component. A

detailed polynomial fit to the past data describes them better than a simple linear fit,

but can be a worse predictor of the future than the linear trend. This effect is known as

over-parameterization or over-fitting (Silver, 2012). A way to investigate this possibility

would be to smooth hazard maps over progressively larger footprints. There may be an

optimal level of smoothing that produces better performing maps, because on a large

scale, regional differences are clearly important.
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Metrics for hazard maps can also be useful in dealing with the complex question of

when and how to update a map. A common response to “unexpected” earthquakes or

shaking is to remake a hazard map to show higher hazard in the affected areas (Figure

2.2). The revised map (e.g., Frankel et al., 2010) would have better described the effects of

past earthquakes, and is anticipated to better represent the effects of future earthquakes.

Maps are also remade when additional information, such as newly discovered faults or

improved ground motion prediction models, are recognized or become available.

Although remaking maps given new information makes sense, it is done without ex-

plicit assessment of how well the existing map has performed to date, or explicit criteria

for when a map should be remade. Similarly, this process provides no explicit way to

quantify what improvements are hoped for from the new map. These issues can be ex-

plored using metrics like those here. Statistical models, including Bayesian models, could

be used to simultaneously provide appropriate updating as new data become available

and to smooth the maps. Specification of such models will involve an interesting blending

of modern statistical modeling with advancing seismological knowledge.

In summary, metrics like those discussed here can help seismologists assess how well

earthquake hazard maps actually perform, compare maps produced under various as-

sumptions and choices of parameters, and develop improved maps.
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CHAPTER 3

Comparing the Performance of Earthquake Hazard Maps to

Uniform and Randomized Maps
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3.1. Summary

The devastating 2011 Mw 9.1 Tohoku earthquake and the resulting shaking and

tsunami were much larger than anticipated in earthquake hazard maps. Geller (2011)

has thus argued that “all of Japan is at risk from earthquakes, and the present state

of seismological science does not allow us to reliably differentiate the risk level in par-

ticular geographic areas,” so a map showing uniform hazard would be preferable to the

existing map. Defenders of the maps countered by arguing that these earthquakes are

low-probability events allowed by the maps (Hanks et al., 2012), which predict the levels of

shaking that should expected with a certain probability over a given time (Cornell, 1968;

Field, 2010). Although such maps are used worldwide in making costly policy decisions

for earthquake-resistant construction, how well these maps actually perform is unknown.

I explore this hotly-contested issue (Kerr, 2011; Stein et al., 2012; Stirling, 2012; Gulkan,

2013; Marzocchi and Jordan, 2014; Wang, 2015) by comparing how well a 510-year-long

record of earthquake shaking in Japan (Miyazawa and Mori, 2009) is described by the

Japanese national hazard (JNH) maps, uniform maps, and randomized maps. Surpris-

ingly, as measured by the metric implicit in the JNH maps, i.e. that during the chosen

time interval the predicted ground motion should be exceeded only at a specific fraction of

the sites, both uniform and randomized maps do better than the actual maps. However,

using as a metric the squared misfit between maximum observed shaking and that pre-

dicted, the JNH maps do better than uniform or randomized maps. These results indicate

that the JNH maps are not performing as well as expected, that what factors control map

performance is complicated, and that learning more about how maps perform and why

would be valuable in making more effective policy.
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3.2. Introduction

Probabilistic seismic hazard maps (Figure 3.1) predict the maximum shaking that

should be exceeded only with a certain probability over a given time (Cornell, 1968;

Field, 2010). At a point on the map, the probability p that during τ years of observations

shaking will exceed a value that is expected once in a T year return period is assumed to

be described by Equation 2.1, a Poisson distribution

p = 1− e−
τ
T .

This probability is small for τ/T small and grows with observation time τ (Figure

3.2). For example, shaking with a 475-year return period has about a 10% chance being

exceeded in 50 years, 41% in 250 years, 65% in 500 years, and 88% in 1000 years.

The assumption that shaking values are described by a Poisson distribution is com-

monly used for maps in which the earthquake recurrence is assumed to be described by

a Poisson process, so the probability of an earthquake of a certain size on a fault is time

independent. In the Japanese maps, the probability of earthquake recurrence is modeled

on some of the faults as varying with time, whereas that for other faults is modeled as

time-independent. The shaking record reflects contributions from many faults, and when

the observation period starts and ends is independent of the histories of earthquakes on

these faults. Because just the number of exceedances within the observation window are

of interest, when within this window the earthquakes occurred has no effect on perfor-

mance measures. Hence it is straightforward to compare the observed shaking values to

those expected from the Poisson distribution.
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Figure 3.1. (a-d) The 2008 version of probabilistic seismic-hazard maps for
Japan, generated for different return periods (J-SHIS, 2015). (e) The largest
known shaking on the Japan Meteorological Agency (JMA) intensity scale
at each grid point for 510 yrs (Miyazawa and Mori, 2009).
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Figure 3.2. (Left) The assumed probability that, during a τ -year-long ob-
servation period, shaking at a site will exceed a value that is expected on
average once in a T -year-long return period. (Right) Predicted probabil-
ity of exceedance, and thus the expected fraction of sites with maximum
shaking above the mapped value, for data spanning a 510 year observa-
tion period and maps of different return period. The predicted probability
decreases for longer return periods. Squares denote values for the hazard
maps in Figure 3.1.

Maps are characterized by either their return period (e.g., 475 years) or probability in

an observation time (10% in 50 years). Maps are generated for different return periods

because greater shaking is anticipated from rarer but larger earthquakes. The different

maps are forecasts derived from a hazard model whose parameters describe the locations,

magnitudes, and probabilities of future earthquakes and the resulting shaking.

Although such maps are used worldwide in making costly policy decisions for earthquake-

resistant construction, how well they actually perform is unknown. A map can be assessed

by comparing the actual fraction f of sites where shaking exceeded the mapped threshold

at that site to p. This approach (Ward, 1995) considers many sites to avoid the diffi-

culty that large motions at any given site are rare. For example, a 10% chance that the
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maximum shaking at a site during the observation period will be as large or larger than

predicted corresponds to a 90% chance that it will be less.

The short time period since hazard maps began to be made poses a challenge for

assessing how well they work (Beauval et al., 2008; 2010). If, during ten years after a

10%-in-50 year map was made large earthquakes produced shaking at 40% of the sites

exceeding that predicted, the map may not performing well. However, if in the subsequent

240 years no higher shaking occurred at these sites, the map would be performing as de-

signed. Given this problem, various studies examine how well maps describe past shaking

(Stirling and Peterson, 2006; Albarello and D’Amico, 2008; Stirling and Gerstenberger,

2010; Kossobokov and Nekrasova, 2012; Nekrasova et al., 2014; Wyss et al., 2012; Mak et

al., 2014). Although such assessments are not true tests, in that they compare the maps

to data that were available when the map was made, they give useful insight into the

maps’ performance.

3.3. Japanese National Hazard Map Performance

To test hazard map performance, I draw a comparison between the 2008 version of

the Japanese National Hazard (JNH) maps to a catalog of shaking data for 1498-2007

(Miyazawa and Mori, 2009), giving the largest known shaking on the Japan Meteorolog-

ical Agency (JMA) instrumental intensity scale at each grid point in 510 years (Figure

3.1). The observed data and JNH maps cover essentially the same area, but with different

resolutions. The JNH maps have a 250 m × 250 m grid and the observed data had been

interpolated to roughly 1.7 km × 1.4 km (2−6 × 2−6 deg2) spacing (Miyazawa and Mori,

2009). Because the metrics call for an equal number of predictions and observations,
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Figure 3.3. (Left) The comparison of largest observed shaking at sites (Fig-
ure 3.1e) to predictions of Japanese National Hazard (JNH) map with the
475-year return period (Figure 3.1b). (Right) Actual and predicted frac-
tional exceedance for JNH maps and data in Figure 3.1, and corresponding
map performance metrics.

ArcGIS was used to spatially join the two, decimating the JNH data to match the dis-

tribution and spacing of the observation data. The effect of site conditions is included in

both the predictions and observations, making the two comparable. The observed shaking

data are effectively continuous, whereas the JNH maps are discrete to one decimal place,

resulting in the discretization seen in the left panel of Figure 3.3.

Although the JNH maps do not state how their performance should be evaluated,

assessment of their performance can be completed using two metrics I described in Chap-

ter 2. The first, the fractional exceedance metric, M0, is based on the probability of

exceedance equation that predicts the probability for any given observation and return

period. Figure 3.2 shows the predicted probability of exceedance, and thus the expected

fraction of sites with maximum shaking above the mapped value, for 510 years of ob-

servation for each of the JNH maps in Figure 3.1. The predicted probability decreases
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with longer return period, because progressively rarer levels of shaking are less likely to

occur. For example, p = 66% of the sites are expected to have shaking higher than that

predicted by the map with 475-year return period, whereas only 19% are expected to be

higher than predicted by the map with 2475-year return period.

However, as Figure 3.3 shows, only f = 27% of the sites plot above the 45o line

(showing a 1:1 observed : predicted ratio) for the JNH map with 475-year return period.

The remaining sites plot below the line, because the map predicted shaking higher than

observed (Miyazawa and Mori, 2009). Similar discrepancies appear for the other JNH

maps with return periods of 101, 975, and 2475 years, all of which yield f < p. This is

the effect characterized by the fractional exceedance metric, M0, described in Chapter 2

by Equation 2.3,

M0 = |f − p|.

As expected, both p and f decrease for longer return periods (Figure 3.3, right panel).

Their difference, M0, also decreases, showing that the map with the longest return period

best characterizes the actual exceedance fraction.

As discussed in Chapter 2, a limitation ofM0 is that a map with exceedances at exactly

as many sites as predicted (M0 = 0, Figure 2.6) could still significantly over-predict or

under-predict the magnitude of shaking. Thus, it is useful also consider a squared misfit

metric, described earlier by Equation 2.6,

M1(s, x) =
1

N

N∑
i=1

(xi − si)2
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where xi and si are the maximum observed shaking and predicted shaking at each

of the N sites. Graphically, M0 reflects the fraction of sites plotting above the 45o line,

whereas M1 reflects how close to the line sites plot.

For the Japanese data, M1 behaves differently from M0, in that it increases with

return period (Figure 3.3). M1 is smallest for the map with 101-year return period

(Figure 3.1a), consistent with the fact that this map is most visually similar to the data

(Figure 3.1e). Maps with longer return periods match the data less well, in part because

they predict higher shaking than observed along the Japan Trench (e.g., 34oN, 135oE).

This makes sense for the 975- and 2475-year maps, because the data span only 510 years,

too short for some of the predicted largest shaking to have occurred. This difference is

mapped in Figure 3.4.

Although, ideally, one might expect the map with return period of 475 years to best

match the 510 years of observation, that fact that it does not reflects the fact that the maps

were made by using other data and models to try to predict future earthquake shaking,

rather than by fitting the shaking data. In particular, the earthquake magnitudes assumed

in the maps were inferred from the fault lengths (Fujiwara et al., 2009a), rather than from

past intensity data. The maps were made with knowledge of past earthquakes, but were

not tuned by fitting past shaking. Because the hazard map parameters were not chosen to

specifically match the past intensity data, comparing the map and data can yield insight.
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Figure 3.4. The difference between maximum observed and predicted shak-
ing. The 475, 975, and 2475 year JNH maps tend to over-predict shaking,
as shown by the predominant red coverage.
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3.4. Uniform and Random Maps

Generating uniform hazard maps from each of the four JNH hazard maps is simply

done by assigning each site the median hazard predicted by that map (Figure 3.5). Sur-

prisingly, the uniform maps yield lower values of the exceedance metric M0, showing a

smaller difference between the predicted and observed exceedance fractions than for the

actual maps.

How this effect arises can be visualized by considering that a uniform map shifts all

points sideways to lie on the vertical median line, as shown in Figure 3.6. Most points

stay either above or below the 45o line, and thus do not change f , the fraction above the

line. However, sites in the two triangular regions between the horizontal median line and

the 45o line shift from being above to below or vice versa. Because more of these sites are

below the 45o line (blue region) than above it (red region), f increases and M0 decreases.

Similar results arise for randomized maps, also shown in Figure 3.5, in which site

predictions are chosen at random from the actual JNH map by giving an index to each

point on the JNH map, then shuffling the order of the indices, producing a randomized

map with the same median and other statistical properties but a different prediction at

each point.

Ten thousand randomizations for each map yielded tightly clustered values of M0 and

M1. For a randomized map, given a set of s predictions and x observations, define f

to be P (x > s). This is equivalent to observing a point lies above the schematic 45o

line. Randomizing a map is analogous to taking all (s, x) pairs, fixing x and randomly

assigning a new s from the set of all predictions. Solving for P (x > s) given totally
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Figure 3.5. (a) The uniform hazard map, with hazard at all sites set equal
to the median of the corresponding map from Figure 3.1. (b) Randomized
hazard map, with hazard at sites randomly chosen from values in the cor-
responding JNH map. (c,d) Performance metrics for applying the actual
JNH, uniform, and randomized versions of the maps.

undefined distributions is a challenging problem (Thompson, 1933). However, Figure 3.7

demonstrates that the data are roughly normal.
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Figure 3.6. Illustration of how using the median predicted value for all sites
can improve a hazard map’s performance, as measured by the exceedance
metric, if the map over-predicts the observed shaking.

This assumption makes calculating fpredicted for a randomized map much more straight-

forward. P (x > s) = P (x − s > 0), and given two normal distributions, this can be

calculated as

(3.1) P (x > s) = fpredicted = 1− Φ

(
µs − µx√
σ2
s + σ2

x

)

where each µ and σ2 correspond to the predicted or observed data, and Φ(z) is the

cumulative distribution function of the standard normal distribution N(0, 1), so Φ(z) =

1√
2π

∫ z
−∞ e

t2

2 dt.



71

Figure 3.7. Distribution of observation and expectation in each of the
Japanese maps from Figure 3.1. Distributions are roughly normal, and
are treated as such to predict exceedance for randomized maps.
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Table 3.1. Comparison of predicted and actual f for a randomized map,
based on the mean and standard deviation of the observed shaking record,
and JNH predictions (Figure 3.1). µx = 4.9612, σs = 0.6595.

Probability of Exceedance Return Period µs σs fpredicted f̄observed
39% in 50 Years 101 Years 4.8484 0.4266 0.2266 0.2185
10% in 50 Years 475 Years 5.2339 0.4399 0.2968 0.2956
5% in 50 Years 975 Years 5.3843 0.4506 0.3665 0.3733
2% in 50 Years 2475 Years 5.5503 0.4787 0.5551 0.5806

Thus it can be said that the fraction of sites exceeded for a randomly distributed map

follows a normal distribution, and there exists a formula to predict the fraction of sites

that will exceed observation.

Table 3.1 shows how these predictions compare to the actual, calculated fraction ex-

ceeded, and prove the usability of any one randomized map as a point of comparison to

the actual JNH maps. σf̄ for all maps is substantially smaller than each f̄ , σf̄ ≈ 0.0007.

The exceeded fraction formula shows that exceedance appears to be a function of the

mean observation, where a smaller mean correspond to larger f . The slight deviations be-

tween fpredicted and f̄observed can be explained by the deviations from true, prefect normalcy

seen in Figure 3.7, but the general similarities justify the normalcy assumption.

The median results for the randomized maps are similar to those for the uniform maps,

and thus generally better (lower M0) than the JNH maps. However, Figure 3.6 shows

that using the squared misfit metric, the JNH maps do better (lower M1) than uniform

or randomized maps. This occurs because the actual maps better capture the spatial

variations in the data than uniform or— even more so— randomized maps.
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Figure 3.8. (a) Observed shaking in the 2011 Tohoku earthquake. (b)
Historical shaking (1498-2007) map (Figure 3.1e) updated with Tohoku
data.

3.5. Incorporating Tohoku Data

To expand on the comparison between actual and synthetic maps, the observational

data set was expanded with shaking information following the 2011 Tohoku earthquake,

effectively increasing the observational window from 1498-2007 to 1498-2011. These data

were provided as 2,878 individual intensity measurements from different sites (Figure

3.8a). As with the rest of the data, ArcGIS was used to spatially join this data set to the

prior data set, creating two observation data sets, one for 1498-2007, and one of shaking

from 2011. Selecting the maximum shaking at each site from these two data sets yielded

an updated data set, shown in Figure 3.8b.

Adding these data dramatically increases the maximum observed shaking along the

east coast from about 35o- 38oN (Figure 3.8b). With this data set, repeated analyses for
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Figure 3.9. Performance metrics for applying uniform and randomized
versions of maps to updated data.

the updated JNH, uniform, and randomized maps yield new metric scores (Figure 3.9).

The exceedance metricM0 for each updated JNH map decreased due to the higher shaking

values but remained larger than for the uniform and randomized maps. Measured by the

squared misfit metric M1, the updated JNH maps still outperform uniform or randomized

maps. Adding the Tohoku data improves the fit of the JNH maps for the 975- and 2475-

year return periods, because the predicted shaking for these long return periods is similar

to that observed for Tohoku. Figure 3.10 is an updated version of Figure 3.5, showing the

smaller difference between observed and predicted shaking for the longer return-period

maps.

3.6. Implications

Table 3.2 summarizes the results from the previous metric calculations. The basic

finding is that the Japanese hazard maps are not performing as well as might be hoped.
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Figure 3.10. The difference between observed and predicted shaking with
2011 Tohoku earthquake data added. The increased shaking along the
eastern coast reduces the extent of over-prediction.
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Table 3.2. Summary table of metric calculations for JNH, uniform, and
randomized hazard maps, with and without Tohoku data for different return
periods T .

1498-2007 1498-2011

Maps T (Years) M0 M1 M0 M1
JNH 101 0.40 0.28 0.36 0.32

475 0.39 0.34 0.34 0.34
975 0.22 0.46 0.18 0.44
2475 0.07 0.63 0.03 0.68

Uniform 101 0.37 0.46 0.32 0.48
475 0.30 0.49 0.25 0.50
975 0.12 0.55 0.07 0.59
2475 0.003 0.73 0.03 0.74

Random 101 0.41 0.68 0.38 0.71
475 0.29 0.71 0.25 0.70
975 0.11 0.81 0.08 0.78
2475 0.03 0.97 0.06 0.91

Although this possibility was suggested by damaging earthquakes in areas mapped as low

hazard (Geller, 2011), the overall bias seems to be the other way. The mapped levels of

shaking occur at a much lower fraction of sites than predicted, indicating that the JNH

maps systematically over-predict shaking, and uniform or randomized maps do better

from this perspective. However, the JNH maps describe the observed shaking better than

uniform or randomized maps. This complicated behavior illustrates the value of different

metrics, in that M0 is more sensitive to average shaking levels, whereas M1 is more sen-

sitive to spatial variations. It seems that although the JNH maps are designed to predict

shaking levels that should be exceeded at a certain fraction of the sites, the process by
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which their parameters are chosen tends to make the mapped shaking more closely resem-

ble the maximum observed. That is to say that while the maps are intended to be judged

probabilistically, as done by M0, they can be described as successful deterministically, as

done by M1.

The observation that the JNH maps do worse than uniform or randomized maps by

one metric and better by another reflects the fact that a system’s performance has multiple

aspects. For example, how good a baseball player Babe Ruth was depends on the metric

used. In many seasons Ruth led the league in both home runs and in the number of times

he struck out. By one metric he did very well, and by another, very poorly.

More generally, how maps perform involves subtle effects. These results are for a

particular area, much of which has a high earthquake hazard, and a particular set of

maps and data. Although the misfit could be due to downward bias in the historical

intensity data (Miyazawa and Mori, 2009), the similar histograms for the observed and

predicted shaking values (Figure 3.7) argue against a major bias. Moreover, such data

are expected to be biased toward higher— not lower— values (Hough, 2013).

Another cause of mismatch could be that the JNH maps are partially time-dependent,

in that the probability of earthquake recurrence and hence hazard is modeled on some

of the faults as varying with time, whereas that for other faults is modeled as time-

independent. However, this should have little effect for evaluating maps for two reasons,

as shown schematically in Figure 3.11. First, the predicted hazard at a site is the sum

of contributions due to many different faults, which are assumed to be at different stages

in their seismic cycles, so the net effect of integrating forward (forecasting) or backwards

(hindcasting) will be similar. Second, the longer the data set and return period considered,
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Figure 3.11. The hazard at a site due to four different faults, each of which
is presumed to contribute a time-dependent hazard. Because the faults are
at different stages in their cycles, their net contribution is similar going
forward and backward in time, especially for longer return periods.

the more they average over entire seismic cycles. Hence it is justified, like Miyazawa and

Mori (2009), to compare the JNH maps to the 510-year historical data set.

The maps could be also biased upward due to assumptions about the earthquake

sources, the ground motion prediction equations, or conversions between the predicted
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Figure 3.12. Change in metrics as a result of applying a uniform shift to the
maps’ predictions. The 475, 975, and 2475-year maps all exhibit improve-
ments for both the fractional exceedance and squared misfit metrics when
predictions are decreased by a small amount. The 101-year map has very
low predictions and a high expected exceedance of 99.4%, which causes the
metrics to behave differently from the others when a shift is applied.
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shaking and intensity. Lowering the predicted shaking at all sites by a constant shift im-

proves both M0 and M1, as shown in Figure 3.12, although the actual misfit is spatially

variable, as shown in Figures 3.4 and 3.10. A similar improvement would result from

raising the observed intensity values. These results suggest that hazard maps should be

evaluated for consistency with what is known about past large earthquakes. Although

historic intensity data may have biases, hindcasts using them cover much longer time pe-

riods than will be practical for forecasts starting from the time a map is made. Situations

like this, in which the hindcast does poorly, suggest possible problems that should be

investigated.

Some of the Japanese results would likely apply to other areas, and some not. Presum-

ably the greater the hazard variation within an area, the less likely a uniform or random

map is to do better than a detailed map. Many questions need to be explored. Given

its length and quality, the 500-year long Japanese data set is the best known data set for

these purposes, but hopefully high-quality historical data sets can be developed for some

other areas with long historical records. Among the many questions, is whether better

results are best obtained via better choices of parameters in the probabilistic approach

(Stein and Friedrich, 2014) or by alternative deterministic approaches (Klügel et al, 2006;

Wang, 2011; Peresan and Panza, 2012; Wang and Cobb, 2012).

Most crucially, these results indicate the need to know much more than we do about

how well seismic hazard maps actually describe future shaking. Natural hazard forecasts

do not be perfect— or even that good— to be useful in making policy (Stein and Stein,

2013; Field, 2015). However, the more we know about how much confidence to place in

forecasts, the more effectively they can be used.



81

CHAPTER 4

The Effects of Smoothing on the Performance of Earthquake

Hazard Maps
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4.1. Summary

In recent years, it has become clear that the actual performance of earthquake hazard

maps often differs from that ideally expected, for reasons that are unclear. As a result,

this study explores map behavior to learn more about how they actually perform by taking

an empirical approach of asking what maps do, rather than what they should ideally do.

Here, I explore whether less detailed hazard maps might perform better by assessing how

smoothing Japan’s national earthquake hazard maps affects their fit to a 510-year record

of shaking. As measured by the fractional exceedance metric implicit in such probabilistic

hazard maps— that the predicted ground motion should be exceeded only at a specific

fraction of the sites— simple smoothing over progressively larger areas improves the maps’

performance such that in the limit a uniform map performs best. However, using the

squared misfit between maximum observed shaking and that predicted as a metric, map

performance improves up to a ∼75-150 km smoothing window, and then decreases with

further smoothing, such that a uniform map performs worse than the unsmoothed map.

Because the maps were made by using other data and models to try to predict future

earthquake shaking, rather than by fitting past shaking data, this result is probably not

an artifact of hindcasting rather than forecasting. It suggests that hazard models and

the resulting maps can be over-parameterized, in that including too high a level of detail

to describe past and future earthquakes may lower the maps’ ability to predict future

shaking. Hence to forecast future hazard, the goal should be not to build the most

detailed model, but instead one that is robust or stable in the sense that the forecast is

not unduly affected when the Earth does not behave exactly as expected.
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4.2. Introduction

This chapter, as was the case in the prior chapters, is motivated by the fact that

recent earthquakes that did great damage in areas shown by earthquake hazard maps as

relatively safe. This has generated interest in the question of how well these maps forecast

future shaking (Kerr, 2011; Reyners, 2011; Stein et. al, 2011, 2012; Peresan and Panza,

2012; Stirling, 2012; Gulkan, 2013; Marzocchi and Jordan, 2014; Wang, 2015). These

discussions have brought home the fact that although the maps are designed to achieve

certain goals, we know little about how well they actually perform.

Assessing how well maps describe actual shaking is challenging. Because the maps

forecast the shaking expected over periods of hundreds or thousands of years, the short

time period since they began to be made makes assessing how well they perform difficult

(Beauval et al., 2008; 2010). Hence maps can be assessed by comparing the fraction of sites

where shaking exceeded the mapped threshold at that site to probability of exceedance,

p. Discussed in prior chapters, this probability p = 1 − e− τ
T is Poissonian, and is small

when τ/T is small, and grows with observation time τ (Figure 3.2). Hence the shaking

predicted by a map with a T -year return period should have a 39% chance being exceeded

in τ = T/2 years, a 63% chance being exceeded in τ = T years, and 86% in τ = 2T years.

It should be reiterated that although such assessments are not true tests, in that they

compare the maps to data that were available when the map was made(i.e. forecasts

rather than hindcasts), they give useful insight into the maps’ performance.

In Chapter 3, I demonstrated that in some cases, one can argue in favor of a uni-

form hazard map for describing national hazard. By the metric implicit in the PSHA

methodology, the fractional exceedance metric M0, it was found that the 2008 Japan
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National Hazard (JNH) maps performed worse than a map where hazard was set to the

median of the JNH map’s predictions. Expanding on this, uniform map can be described

as smoothed (averaged) over the entire country, with all spatial details removed. Hence

these results lead to the question of what the effect of smoothing over a smaller area may

be. Is there some level of smoothing that preserves an intermediate level of detail that

better describes the shaking?

4.3. Smoothing Map Performance

I use the data set from the prior chapter, the observational catalog from Miyazawa and

Mori (2009), which gives the largest known shaking on the Japan Meteorological Agency

(JMA) instrumental intensity scale at each grid point in 510 years (1498-2007) to four

JNH maps for different return periods (J-SHIS, 2015).

I smoothed the JNH maps by placing a square composed of cells over each point on the

map, averaging the predictions within the square, and assigning that value to the central

cell. Given a prediction at some coordinate latitude/longitude, si,j, each smoothed map

consists of new measurements at each point

(4.1) s′i,j =
1

(2D + 1)2

j+D∑
j−D

i+D∑
i−D

si,j

where D is a parameter that describes the size of the smoothing grid.

Iterating over all points on the map using progressively larger values for D yielded

maps smoothed to greater degrees. For regions close to the coast, only values on land

in Japan were used, disregarding values from the surrounding ocean (null values). This
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procedure preserves the number of points in each map, so successive iterations can be

compared to the observed history of shaking via the two metrics. The smallest smoothing

square was 3 × 3 (D = 1), and each individual cell was ∼1.5 km on a side. This smoothing

procedure is quite simple, and improved variants that used shapes or Gaussian weights

other than squares might do even better. The optimal smoothing algorithm is beyond

the scope of this study, rather the goal here is to illustrate how even simplistic smoothing

algorithms may yield performance benefits.

Smoothing over a small area preserves many details of the hazard maps, suppressing

only the sharpest high and low hazard features. Progressively larger smoothing areas

suppress more of the details, shown in Figure 4.1. Figure 4.2 shows plots of the change in

map performance as a function of smoothing area, for each of the four maps using both

metrics.

The fractional exceedance metric M0 generally improves as the smoothing area in-

creases. Fluctuations are present for smaller smoothing areas, but performance increases

steadily for smoothing areas above D = 100 (300 km on a side) across. This reinforces

an earlier result, in that smoothing over all of Japan produces uniform maps, which was

found to perform better than the JNH maps as measured by M0.

In contrast, as measured by the squared misfit metric M1, map performance improves

somewhat up to a D = 25 to 50 (75-150 km) smoothing window, and then decreases with

further smoothing. This reinforces the earlier result that by this metric uniform maps

perform worse than the unsmoothed map. As discussed in the following subsection, the

effect of random error on M1 is quite small, so the improved fit is significant.
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Figure 4.1. Effects of smoothing the JNH map with 475-year return period
(a) over progressively larger areas (bd).
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Figure 4.2. Improvement in map performance described by the change in
fractional exceedance (a) squared misfit (b) metrics compared to the original
map, for different amounts of smoothing.

4.3.1. The Effects of Random Error on M0 and M1

The effect of random error on the metrics M0 and M1 depends on the stochastic model

assumed to describe the deviations xi − si. If the predictions are taken to be fixed and

not to depend on the observed shaking values, then the variance of the empirical fraction

of exceedances f may be estimated by f(1−f)
n

, with n denoting the equivalent number

of statistically independent sites after allowance for spatial correlations. This model is

overly simple, however, because at least some of the same observations that are used to

develop the earthquake hazard maps are also used to compute the deviations.

For large enough values of n (depending on how far the expected value of f is from 0

or 1), f will have an approximately Gaussian distribution. If the distribution of f were

exactly Gaussian, the expected value of M0 would be
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(4.2) E[M0] = µ
[
1− 2Φ

(
−µ
σ

)]
+ 2σϕ

(
−µ
σ

)
,

where µ = E[f − p], σ =
√

var(f − p), Φ(s) =
∫ s
−∞ ϕ(x)dx, and ϕ(x) = 1√

2π
e−

x2

2 . If

the bias µ is large relative to the standard deviation σ then E[M0] ≈ |µ|. On the other

hand, if E[f ] = p, so that µ = 0, then E[M0] = 2σϕ(0) ≈ 0.8σ, which tends to zero as n

increases.

4.3.1.1. Variance of M0. For the 475-year return period, the observed value of f was

0.27 compared to the specified probability of exceedance p of 0.66. For illustrative pur-

poses, suppose the equivalent number of independent sites is 500. Then the estimated

variance of the observed exceedance is (0.27)(0.73)/500 or 0.0004, and the estimated stan-

dard error is the square root of that, or 0.02. This is quite small relative to the value of

M0 of 0.39. In addition, the bias in M0 is negligible, due to the estimations Φ
(
−µ
σ

)
≈ 1

and ϕ
(
−µ
σ

)
≈ 0.

4.3.1.2. Variance of M1. Given xi − si, which has variance υ2 and kurtosis β, the

variance of M1 can be described by

(4.3) V (M1) =
(n− 1)2υ4

n3

[
n− 1

n
β − n− 3

n− 1

]
≈ υ4

n
[β − 1]

Consider the 475-year return period. Denote the deviations xi− si by di. The average

deviation across the sites is d̄ = −0.2722. The average of (di − d̄)2 is 0.2695 and the

average of (di − d̄)4 is 0.4557. For illustrative purposes, suppose again the equivalent

number of independent sites is 500. Then υ2 is estimated by 0.2695 and β, the kurtosis,
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is estimated by 0.4557
0.26952

= 6.274. Equation 4.3 hence estimates V (M1) by 0.000764 and the

standard error of the M1 statistic by 0.028. The estimate of M1 was 0.34 (Table 3.2),

and so the coefficient of variation or relative standard error was 8.1%.

4.3.1.3. Variance of Change in M1 Due to Smoothing. Consider the apparent im-

provement in M1 due to smoothing, again for the 475-year return period for a 66 km

smoothing area (bottom left of Figure 4.1). Denote the unsmoothed predictions by si

and the smoothed predictions by s′i. Denote the corresponding deviations by di = xi − si

and d′i = xi − s′i. The corresponding values of M1 will be denoted by M1unsmoothed

and M1smoothed. The variance of the change in M1 due to smoothing V (M1unsmoothed −

M1smoothed) = V (M1unsmoothed) + V (M1smoothed) − 2ρ
√
V (M1unsmoothed)V (M1smoothed),

with ρ denoting the correlation between M1smoothed and M1unsmoothed. To estimate this,

use the sample moments from the prior subsection. The average deviation for the smoothed

predictions across the sites is d̄′ = 0.2687. Define δi = di − d̄, and δ′i = d′i − d̄′. The av-

erages of δ2
i and δ4

i were found in the above subsection, δ̄2 = 0.2965 and δ̄4 = 0.4557.

δ̄′
2

= 0.2653 and δ̄′
4

= 0.4837. Applying Equation 4.3 to the smoothed data yields

V (M1smoothed) = 0.000827. ρ is approximated using ρ ≈
∑
i δ

2
i δ

′2
i√∑

i δ
4
i

∑
i δ

′4
i

. This yields

ρ = 0.9664. Thus, V (M1unsmoothed − M1smoothed) = 0.00006, which gives a standard

error of 0.0074, which is relatively small.

It is important to note that this variance calculation is subject to the various limita-

tions identified above. In addition, the variance as calculated does not take into account

the randomness due to searching for the optimal smoothing. One way to carry out more

realistic variance calculations would be to first model the spatial correlation structure and

then to use an appropriate bootstrap procedure (Efron and Tibshirani, 1993).
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4.4. Implications of Smoothing

These results suggest that including too high a level of detail to describe past or

future earthquakes may lower hazard maps’ ability to predict future shaking. Such an

effect seems plausible given the variability in space and time of earthquake recurrence,

so previous earthquakes do not completely show what will happen in the future. Longer

records including paleoseismic data, complemented with inferences from geological and

geodetic data about faults, are naturally better. However, even a very long record is

unlikely to fully capture the variability.

Hazard maps are not expected to perform perfectly. Aspects of future earthquake

behavior will differ from those of past earthquakes, the details of which are only partly

known. Some of the assumed details of future earthquake behavior will differ from what

actually occurs. Hazard maps require a wide range of assumptions about earthquake

source locations, recurrence, and magnitudes, along with models of the resulting ground

motion.

The classic resolution-stability trade-off (Parker, 1977) states that more detailed a

model, the more sensitive it is to uncertainty, and thus the more likely it is to perform

worse when assumptions fail. For example, prescribing a detailed rupture scenario will

make a map’s prediction for the future better if the earth does what is expected, but can

make it worse than a simpler model if the earth fails to do what was expected— as in the

Tohoku earthquake. Similarly a time-dependent rupture forecast will make a map better

than a simple time-independent model if the earth does what is expected, but can make

it worse otherwise. Hence the challenge is to seek an optimal level of detail.
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Figure 4.3. Example of the effect of over-parameterization on forecasting. A
high order polynomial fits past data better than linear or quadratic models,
but this more detailed model predicts the future worse than the simpler
models.

An analogous phenomenon is recognized in other applications and termed “over-

fitting” or “over-parameterization.” For example, given a set of observations at k dis-

tinct points in time, one can perfectly fit them with a curve based on k parameters, such

as a polynomial of degree k − 1. However, a perfect fit to past data need not yield a

good fit to future data. A variety of methods are available to trade off closeness of fit

to observed data against the complexity of the model, including cross-validation and the

Akaike information criterion (AIC) among others (Hastie et al., 2009).

Figure 4.3 shows an example of using a model derived from past data to predict the

future evolution of a function. A linear model fits the past data and predicts the future

reasonably well, and a quadratic does both even better. However, an 8th order polynomial

that fits the past data perfectly does a poor job of predicting the future. The more detailed
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model seems better because it matches the past so well, but imposing that level of detail

makes the model predict the future worse.

This situation is common in both geophysical and other forecasting applications.

Hence to forecast the future, the goal should be not to build the most detailed model,

but instead one that is robust or stable in the sense that small changes in the uncertain

model parameters do not dramatically change the model’s forecasts (Parker, 1977; Box,

1979).

These findings showing that an improved fit results from smoothing do, however,

have other possible interpretations. First, the fact that the smoother models fit better

could result from some features of the historical shaking data set used. Second, this

approach involves comparing a time-dependent hazard model to past data (hindcasting)

rather than the more desirable comparison with future data (forecasting). As discussed

in Chapter 3, neither problem appears large enough to invalidate this approach. Most

crucially, the maps were made by using other data and models to try to predict future

earthquake shaking, rather than by fitting past shaking data. In particular, the earthquake

magnitudes assumed in the maps were inferred from the fault lengths (Fujiwara et al.,

2009b), rather than from past intensity data. Because the hazard map parameters were

not chosen to specifically match the past intensity data, comparing the map and data is

a useful comparison.

These results are for a particular area, much of which has a high earthquake hazard,

and a particular set of maps and data. However, these results, combined with the fact that

in many applications over-fitting past data leads to poorer future predictions, suggests

that similar effects could arise for earthquake hazard maps elsewhere. This approach
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involved smoothing maps resulting from a hazard model. Hence it has similarities to

the way certain hazard map input parameters are smoothed, which uses less detailed

models to produce maps that should be more stable. For example, seismicity catalogs

are often smoothed to compute seismicity rates (e.g., Cao et al., 1996; Montilla et al.,

2003). Essentially this approach smooths the net effect of all inputs. Whether for inputs

or outputs, it appears that smoothing may be valuable. It worthwhile exploring to find

an appropriate level of model complexity to forecast future hazard (Field, 2015) in a way

is robust or stable in the sense that the forecast is not unduly affected when the Earth

does not behave exactly as expected.
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CHAPTER 5

Earthquake Hazard Map Performance for Natural and Induced

Seismicity
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5.1. Summary

Seismicity in the central United States has dramatically increased since 2008 due to

the injection of waste water produced by oil and gas extraction. In response, the USGS

created a one-year probabilistic hazard model and map for 2016 to describe the increased

hazard posed to the central and eastern United States. Using the intensity of shaking

reported to the “Did You Feel It?” system during 2016, I assess the performance of this

model using a metric that compares the fraction of sites at which the maximum shaking

exceeded the mapped value to the fraction expected. These fractions are similar for both

the central and eastern United States as a whole, and for the region within it with the

highest amount of seismicity, Oklahoma and its surrounding area. The greatest mismatch

is observed in northern Texas, with hazard over-stated, presumably because lower oil

and gas prices and regulatory action reduced the water injection volume relative to the

previous year. I also assess the model using a misfit metric that compares the spatial

patterns of predicted and maximum observed shaking. This hazard map performs better

by both metrics than other hazard maps studied in prior chapters. These results imply

that such hazard maps can be valuable tools for policy makers and regulators in managing

the seismic risks associated with unconventional oil and gas production.

5.2. Introduction to Shaking in the Central and Eastern United States

Since 2008, seismicity in the central United States has increased dramatically, largely

due to the injection of waste water produced by unconventional oil and gas extraction

(Ellsworth, 2013; Keranen et al., 2013, 2014; Kim, 2013; Hough, 2014; Rubinstein and
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Figure 5.1. 2016 one-percent in one-year national seismic hazard map,
showing the hazard for the central and eastern United States from induced
and natural earthquakes (Petersen et al., 2016a).

Mahani, 2015; Weingarten et al., 2015). This increased seismic activity poses a higher haz-

ard than historically experienced in areas that are generally unprepared for the resulting

levels of shaking (Liu et al., 2014; Ellsworth et al., 2015).

The increased likelihood of damage necessitated reassessment of the seismic hazard

in the area. Accordingly, the USGS produced a new seismic hazard map for the central

and eastern U.S. (Petersen et al., 2016a, b), including the effects of both induced and
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natural seismicity (Figure 5.1). The largest change to the prior map (the 2014 U.S. na-

tional seismic hazard map), which did not incorporate induced earthquake effects, was the

significantly increased hazard predicted in the area covering southern Kansas, Oklahoma,

and northeast Texas (Petersen et al., 2015). Induced seismicity was incorporated into

the hazard map by defining zones where earthquakes do not appear natural, indicated

by a noticeable increase in seismicity near injection wells, both spatially and temporally.

Petersen et al. (2016a) defines separate logic trees for seismicity inside and outside these

zones, which differ largely in the parameters used to describe catalog duration, smoothing

distance, maximum magnitude, and ground motion models. Seismicity rates are inferred

from injection rates from the prior year, which are assumed to be unchanged for 2016.

The updated national map shows between 5-12% probability of shaking at or above MMI

VI in this area for the one-year time window in 2016, similar to the predicted hazard from

natural seismicity in historically much more active regions like California (Petersen et al.,

2016b).

The new model is a one-year forecast, showing the level of shaking that should have

a 1% chance of exceedance at any point on the map during the year. The model used

in making this map assumed that earthquake rates would remain relatively stationary

and could be used to forecast shaking during 2016. This approach includes the effects

of non-tectonic earthquakes, in contrast to the 2014 model that excluded non-tectonic

earthquakes.

Such one-year models are potentially valuable for policy makers and regulators dealing

with the complex question of how to address the hazard due to induced earthquakes.

To this end, this chapter investigates how well the model forecasted the shaking that
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actually occurred in 2016, and quantifies the performance of the map using two metrics

that summarize different aspects of the map’s performance.

As is the case in prior studies, the performance of earthquake hazard maps is assessed

using two metrics to numerically compare a map’s predictions to records of shaking. The

first, the fractional exceedance metric M0, is described by M0 = |f − p|, where f and p

are the fraction and predicted fraction of sites that are exceeded for some observational

time period τ . p is typically treated as a Poisson variable, so p = 1 − e− τ
T . While this

metric is implicit in PSHA methodology, it is also binary (“above” or “below”), so the

squared misfit metric, M1 = 1
N

∑N
i=1(xi − si)2, where xi and si are each site’s observed

and predicted shaking, can provide an alternative view on map performance. For the

purposes of this study, p = P (xi > si) = 1%.

5.3. Comparison to Observed Shaking

To assess the performance of the 2016 model, I use a record of observed shaking

captured after the map was made. The best and most extensive data available are from the

“Did You Feel It?” (DYFI) database (Wald et al., 1999; Atkinson and Wald, 2007). DYFI

is an online tool allowing anyone who experiences ground motion to report it. Responses

are compiled and geocoded by zip code to characterize the shaking distribution from an

earthquake. After a year of data is collected, the USGS compiles maps of the annual

maximum shaking at sites reported to the DYFI system, gridded at a 10 km resolution

(Quitoriano et al., 2017). Despite possible issues of quality and data completeness, DYFI

is considerably more complete than available instrumental data and proves to be one of

the most thorough and robust data sets available (Wald et al., 2012).
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Figure 5.2. Maximum reported shaking recorded from “Did You Feel It?”
(DYFI) in 2016 for the central and eastern United States.

The 2016 maximum DYFI response map (Figure 5.2) shows large areas of the central

and eastern United States with no responses, with clusters of responses in the seismically

most active regions. Absence of response can occur either because no shaking was felt,

or because no one responded to DYFI after an earthquake, perhaps due to low popula-

tion or “earthquake fatigue” following numerous events (Mak and Schorlemmer, 2016b).

Assuming that all regions without a response did not experience shaking is unrealistic,

especially given the low populations in portions of the study area. Furthermore, such

treatment would incorrectly imply that the map severely over-predicts shaking. Instead,
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Figure 5.3. Comparison plot of 2016 map predictions and 2016 DYFI ob-
servations for all points with a DYFI response in the central and eastern
United States.

it is better to treat regions lacking response as null or missing values and exclude them

in evaluating the metrics.

Across the entire central and eastern United States, roughly 10% (25,454 out of 236,578

points) of the map has a DYFI response. All these points are used, while recognizing

that spatial correlation among the shaking at these points vastly reduces the effective
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sample below the nominal 25,454 (See Sections 2.7 and 4.3.1). The comparison between

the predicted and observed maximum shaking is plotted in Figure 3. The fractional

exceedance metric, M0, compares the fraction of points f above the diagonal line— where

the largest observed shaking exceeds prediction— to the fraction p expected. About 1%

of all sites should be above this line, and the actual fraction is 1.73%, leading to a

fractional exceedance M0 = 0.0073. The squared misfit metric M1 is 4.62, reflecting the

visual similarity between the hazard map predictions and the map of maximum observed

shaking (Figures 5.1 and 5.2).

The difference between 1% and 1.73% site exceedances results from few hundred more

exceedances than expected. To see how large a mismatch this is, consider how much of

an increase in predicted shaking would make p = f = 0.01, and thus M0 = 0. This

would occur if the average predicted shaking were 0.24 MMI units, or 5% higher, than

that predicted. This would decrease the number of exceedances observed to exactly that

predicted.

5.4. The Greater Oklahoma Area

When considering these results, it is important to note that the data are sparse on a

national scale. Thus, it is also valuable to examine the most seismically active portion

of the mapped area. Figure 5.4 shows the predicted and maximum observed shaking for

this “greater Oklahoma” area. Here, data completeness is improved relative to the entire

region, with 45% (10,160 out of 22,560) of sites having DYFI responses.

Figure 5.5 shows the metrics for this smaller area. The fractional exceedance metric

M0 = 0.0069 shows that the fraction of sites in this area experiencing higher than expected
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Figure 5.4. a) 2016 One-year seismic hazard model for induced and natural
earthquakes for the greater Oklahoma region (Petersen et al., 2016). b)
Maximum reported shaking recorded from DYFI in 2016 for this region.

shaking is about the same as for the entire area, M0 = 0.0073. The squared misfit metric

increases slightly, from M1 = 4.62 to 5.01.

The only notable difference between observation and prediction occurs for the Dallas

area, where the map over-predicts the amount of shaking. Despite a maximum shaking

forecasted of intensity VII, enough for moderate damage, the highest shaking widely

reported is intensity III. This difference explains the increase in the squared misfit metric

relative to the map as a whole, because a larger percentage of the local map, which covers

roughly 15% of the greater Oklahoma region both in area and number of DYFI reports,

is misfit.

The mismatch in Dallas could be most easily explained in two different ways:
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Figure 5.5. Comparison of 2016 map predictions and DYFI observations for
all points with a DYFI response in the greater Oklahoma region.

(1) The DYFI data reflect the actual shaking that the map over-predicted.

(2) Fewer people in Dallas responded to DYFI, leading to under-reporting of the

maximum shaking.

However, investigation into the DYFI data refutes the latter explanation. As shown

in Figure 5.6, there appears to be a strong relationship between the number of reports
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Figure 5.6. Number of respondents who reported shaking when the maxi-
mum intensity DYFI event occurred. Stars denote major population cen-
ters.

contributing to the maximum observed shaking and population, but not the intensity of

the maximum shaking. The DYFI system seems to be well known enough to yield good

reporting from a large population, even without intense shaking (Mak and Schorlemmer,

2016b).

It thus appears that the mismatch between observation and prediction in the Dallas

region reflects a decrease in seismicity. The 2016 model assumed a constant level of human
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activity, i.e. waste water injection rates remaining unchanged. However, unconventional

oil development is tied closely to economic factors (Campbell and Laherrre, 1998; Murray,

2016). Perhaps due to changing oil prices, or in response to seismicity assumed to be

associated with waste water injection, injection rates in northern Texas diminished in

2016, rather than staying stable (Hornbach et al., 2016; Kuchment, 2017). As a result,

the model over-predicted the shaking in 2016. A similar but smaller decrease in seismicity

is also occurring in Oklahoma (Murray, 2016).

5.5. Supplementing Missing Data

The fact that DYFI only has responses from about half of the greater Oklahoma area

prompts the question of how the data set can be supplemented for a more thorough picture.

Null responses do not necessarily imply no shaking has occurred, and gaps between regions

with reports of high shaking where reports of shaking are low or missing are likely to reflect

low population rather than low shaking. One approach is to set non-reporting regions to

intensity I, which is “not felt” (Boatwright and Phillips, 2017). However, setting null

points to I is similar to setting them to 0, in that it also unfairly penalizes the map.

An alternative is to use models of expected shaking following known earthquakes to

fill in sites without reported DYFI intensities. The USGS ShakeMap program predicts

ground shaking following an earthquake, taking into account its magnitude, location, and

geologic setting (Wald et al., 2005). Although it is a model, rather than direct observations

like DYFI, ShakeMap provides reasonably accurate data augmentation in null regions and

regions where the reported shaking is surprisingly low given their locations (Wald et al.,

2012).
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Figure 5.7. a) Maximum shaking predicted by ShakeMap from 21 earth-
quakes greater than magnitude 4 in Oklahoma in 2016. b) Result of com-
bining ShakeMap predictions with existent DYFI data.

In 2016, 21 earthquakes with magnitude 4.0 or greater occurred in the greater Ok-

lahoma region. 4.0 was selected as the minimum magnitude to reduce the difficulty of

assembling a data set, given that the distribution of earthquakes across the region was

sufficiently spread out such that smaller events would not produce higher shaking than

from the larger events. Figure 5.7a shows the highest shaking modeled from the 21 earth-

quakes. ShakeMap predicts no exceedances relative to the hazard map, but the squared

misfit is reasonably close to the original reported value. Hence, there is no extreme bias

toward high or low values in the ShakeMap predictions, and treat the latter as minimum

estimates of the maximum shaking at points without data.

Figure 5.7b shows the result of combining the ShakeMap predictions and DYFI data.

In this combined data set, almost 60% of the sites have a shaking value (13,427 sites out of

22,560). Figure 5.8 shows the metrics based on this combined data set. While the number
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Figure 5.8. Plot comparing 2016 map predictions to combined DYFI obser-
vations and ShakeMap predictions for the greater Oklahoma region.

of exceedances remains constant, the number of sites increases, decreasing the fraction

of sites that exceed the predicted shaking. As a result, the fraction of sites exceeding

the map predictions is 1.28%, yielding M0 = 0.0028. The squared misfit decreases to

M1 = 4.31. These reductions suggest that the missing data, and anomalously low reports

in areas of high shaking made the map appear to perform less well than it actually did.
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5.6. Trends in the Data

In addition to calculating metrics, comparing the maximum observed and predicted

shaking (Figures 5.3, 5.5, and 5.8) can highlight trends in the data and show how the

map performance varies. The original DYFI data, in addition to maximum intensity and

number of respondents, also indicate the magnitude of the earthquake that caused the felt

shaking. Figure 5.9 shows the predicted-observed plot for the greater Oklahoma region

with this magnitude data added to the original DYFI data. Although the database of

shaking covers a wide range of magnitudes, the shaking reports are almost entirely dom-

inated by the MW 5.8 Pawnee earthquake, the largest recorded in the state of Oklahoma

(Yeck et al., 2017).

A few exceedances come from small events with M < 3.8. Of the 172 exceedances, 168

came from the Pawnee earthquake, and 4 came from other sources. The DYFI records only

note the magnitude, number of respondents, and number of events that drove responses,

so which small event prompted each of these exceedances is unknown.

Three earthquakes in Oklahoma in 2016 had M ≥ 5.0. Because each had a different

magnitude, the maximum DYFI reports associated with each magnitude can be given

a known epicenter, and an epicentral distance from the site to each can be calculated.

Figure 5.10 shows the predicted-observed plot as a function of distance for the sites where

epicentral distance is known (96% of all DYFI observations). Both the predicted and

observed shaking decrease with distance, as expected. Exceedances arise primarily where

the map predicts intensity IV-V shaking, and come from a range of distances with no

clear bias favoring one distance. A single exceedance for predicted intensity VIII appears

to have occurred very close to the source event.
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Figure 5.9. Plot comparing 2016 national seismic hazard map predictions to
maximum DYFI observations for points with DYFI responses in the greater
Oklahoma region, further broken down by magnitude.
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Figure 5.10. Plot comparing 2016 national seismic hazard map predictions
to maximum DYFI observations for points with DYFI responses in the
greater Oklahoma region, further broken down by distance from the earth-
quake epicenter.
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Figure 5.11. Count of exceedances in site groups. Nine of twenty-five site
groups have no exceedances, showing the limit of such a fine-scale break-
down.

Finally, an analysis was completed the spatial distribution of exceedances. Sites in

the greater Oklahoma region were grouped into a coarse 1.2o × 1.4o grid, such that the

expected number of exceedances in each grid square was at least five. At this small scale,

exceedances cluster (Figure 5.11). Many regions have zero exceedances, leading to an

incalculable fractional exceedance metric. The lack of exceedances in the south shows the
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over-prediction in Dallas and north Texas. The high number in the northeast portion of

the map shows where predictions were lower than the observed shaking.

5.7. Conclusions

The 2016 one-year national seismic hazard map for the central and eastern United

States performed very well. It predicted the observed shaking well, both as measured by

the fractional exceedance metric, and spatially, as measured by the misfit metric. Because

hazard map assessment is a relatively new enterprise and only a few cases have so far

been assessed there is currently no threshold defined for a “good” score on M0 and M1

metrics. This, and the related question of how well a model could realistically be expected

to describe observations remain questions for future work. However, the M0 fractional

exceedance scores for the 2016 map are far lower than those for maps in the prior chapters.

The results of those studies are summarized in Table 5.1. By this view, M0 = 0.0073 on

the national level and 0.0069 for the greater Oklahoma region indicate strong performance.

The reduction to an even smaller M0 = 0.0028 when supplementing with ShakeMap data

further reinforces that with additional information and a more thorough coverage of data,

that the hazard map succeeds in what is trying to do. Furthermore, that this map succeeds

without using hindcasting is more evidence of the strength of its performance.

As noted earlier, a 5% increase in the average predicted shaking for the national

map would yield a perfect match between predicted and observed fractional exceedances.

Such a small difference could easily occur by chance due to which earthquakes occur in

the short time period sampled (Vanneste et al., 2017). The M1 squared misfit metric

also demonstrates strong spatial (and hence visual) similarity between the predicted and
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Table 5.1. Comparison of metric scores from studies in prior chapters. T
is return period, τ is catalog length. While M1 is unitless, it is not fair
to directly compare scores derived from different intensity units, and thus
M1Japan is excluded, as it was calculated using JMA intensity, not MMI.

Metric
Year Country T (years) τ (years) Hindcast M0 M1
2004 Italy 2475 2220 Yes 0.59 27.2
2008 Japan 475 510 Yes 0.39 —
2016 United States 100 1 No 0.0073 4.62

observed shaking maps. A map with a score of M0 = 0 may not be perfect, there can

easily be regions of over-prediction balanced by areas of under-prediction. However, both

metrics combined suggest strong performance, both in terms of fulfilling PSHA objectives

and spatial accuracy. The model benefited from the fact that the 2016 seismicity rates

across this region were generally similar in Oklahoma to those observed during 2015.

The largest misfit occurred in northeastern Texas, where shaking was substantially

over-predicted. This appears to reflect the limitations of the map’s assumption that

earthquake rates would remain relatively stationary, which would not be the case if water

injection rates change due to regulatory or economic forces. While this change highlights

a limitation of the model, it indicates the value of making hazard maps for such short

timescales in areas where induced seismicity is a major factor, because economic and

regulatory factors can change waste water injection rates rapidly (Petersen et al., 2017).

This situation differs from natural seismicity hazard maps, where any time-dependent

(earthquake cycle) effects occur on longer timescales.

Independently assessing successive one-year maps offers the prospect of improving the

models used to generate them, in that the factors contributing to the map’s performance
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(spatial variability, magnitude, ground motion prediction model, etc.) can be evaluated.

Similarly, as more is learned about the mechanisms of induced seismicity, this information

can be included in the modeling. If successive models continue to perform well— and

even improve— they can be valuable tools for policy makers in managing the seismic

risks associated with unconventional oil and gas productions.
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CHAPTER 6

Assessing Map Performance Via Shaking Simulations

6.1. Summary

As a result of waste water injection from non-conventional oil and gas production, the

central and eastern United States experienced a dramatic increase in seismicity. To better

characterize the resulting hazard, the U.S. Geological Survey began producing one-year

seismic hazard maps intended to capture both natural and induced seismicity as of 2016.

In its first year, I found that the map performed very well, demonstrating both a good

match between the observed and expected number of exceedances, and between observed

and predicted shaking. I repeat this analysis for the 2017 map, using “Did You Feel

It?” (DYFI) data to explore the map’s performance in different regions of the country. I

find that the 2017 model performed well, but not as well as the previous year’s model. I

explore the likelihood of observing the performance seen in 2017, by simulating earthquake

shaking realizations using the assumptions of the 2017 hazard model, including a- and b-

values, locations of induced earthquakes, and ground motion models. These simulations

indicate a low likelihood of this decrease in performance happening by chance if the

assumptions in the hazard model were appropriate. Hence, it is likely that the map’s

performance reflects a reduction in waste water injection rates, possibly due to regulatory

and economic pressures. Future maps could benefit from better modeling how seismic

rates may change year-to-year and improved ground motion models.
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6.2. Introduction

Increases in non-conventional oil and gas production in the central and eastern United

States (CEUS) since 2008 have resulted in significantly increased seismicity, most notably

in Oklahoma and the surrounding regions (Horton, 2012; Ellsworth, 2013; Keranen et al.,

2013, 2014). This region historically has not experienced high shaking and is generally

unprepared for the increased seismicity (Liu et al., 2014; Ellsworth et al., 2015).

The increased seismicity necessitated reassessment of the resulting hazard. For this

purpose, the USGS produced a series of hazard maps intended to be used for one year,

which focus on the hazard that results from human activity, namely waste-water injection

(Petersen et al., 2016, 2017, 2018a). Developing maps for one year of usage, versus a

longer window like 50 years as in other maps (Petersen et al., 2015), allows responses to

the changes that may happen in human activities, a non-steady state variable.

The USGS’s first one-year map (Petersen et al., 2016) accounted for the induced

seismicity by defining zones where earthquakes do not appear natural, indicated by a

noticeable increase in seismicity near injection wells, both spatially and temporally. They

defined separate logic trees for seismicity inside and outside these zones, which differ

largely in the parameters used to describe catalog duration, smoothing distance, maximum

magnitude, and ground motion models. Seismicity rates are inferred from injection rates

from the prior two years.

The one-year model has an advantage for assessing the resulting performance of the

map; the time necessary to gather data is not so long that one must resort to historic data

instead. While “hindcasting,” using historic data to assess hazard maps where catalogs

of subsequent shaking don’t exist, is useful (as discussed in Chapters 2-4), gathering data
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generated entirely after the map was made is preferable for assessing its performance as

it is a true test of a model’s forecast.

In the prior chapter, I found that the 2016 model performed better than previous maps

studied using “Did You Feel It?” (DYFI) data to compare seismic intensity observations

to the model’s predictions. Both within the entire CEUS, and in the area surrounding

Oklahoma where induced seismicity is most prevalent, the data were in good accord with

the model’s predictions. I thus concluded that the 2016 model was a very good model.

Subsequently, other studies have looked at the 2016 model and found general agreement

between observation and prediction using DYFI and instrumental data (White et al.,

2018; Mousavi and Beroza, 2018).

For the following year, another model for 2017 was developed (Figure 6.1). The

2017 model employs the same logic trees and ground motion models (GMMs) as the

2016 model, but uses an updated earthquake catalog for the additional year of seismicity

observed (Petersen et al., 2017). A second year of seismic intensity records from DYFI

allowed assessment of the 2017 model’s performance using the metrics employed in the

previous chapters.

The first metric, the fractional exceedance metric M0, is M0(f, p) = |f − p|, where

p is the predicted fraction of sites where the highest shaking is expected to exceed the

model’s predictions, and f is the observed fraction of sites where this actually occurs.

The probability p is derived from the fact that probabilistic hazard models seek to predict

a level of shaking that should be exceeded only with a certain probability in some time

window (Cornell, 1968; Field, 2010). At any point on the map, the probability of ex-

ceedance is given by an exponential distribution p = 1−e− τ
T . For one year of observation,
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Figure 6.1. 2017 One-Year Seismic Hazard Forecast for the CEUS (Petersen
et al., 2017). Shaking levels are communicated in Modified Mercalli Inten-
sity units (MMI).

τ = 1, and the model assumes a return period of T = 100 years. Hence, the probability

of exceedance p for the model is roughly p = 0.01.

The fractional exceedance metric is implicit in probabilistic seismic hazard analysis

(PSHA). This metric is binary, and only considers whether an observation is over or under

the map’s prediction. Thus, an alternative is the squared misfit metric M1: M1(s, x) =

1
N

∑N
i=1(xi − si)2, in which xi and si are the maximum observed shaking and predicted
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shaking at each of the sites i = 1, 2, . . . , N . While not the goal of PSHA, this metric

captures other important aspects of map performance, notably the spatial match between

prediction and observation. Because a map can be successful by M0, but less useful

overall as a map, it is better to consider both metrics to get a clearer understanding of

map behavior. For both metrics, a perfect match between prediction and observation will

yield a score of 0, hence higher scores reflect relatively weaker performance.

6.3. Seismicity in 2017

The 2017 model emphasizes the hazard most strongly in Oklahoma and surrounding

states, mainly Texas and Kansas. This emphasis was also present in 2016. To assess

the map’s performance, I use the shaking record from the DYFI database (Wald et al.,

1999; Atkinson and Wald, 2007). A number of studies have compared DYFI data to

predicted seismic hazard in recent years (Mak and Schorlemmer, 2016a; Cremen et al.,

2017; White et al., 2018), and noted DYFI’s utility for broad areal coverage (Atkinson

and Wald, 2007; Hough, 2012, Mak and Schorlemmer, 2016b). Reports for individual

events are geocoded by zip code, and annual summaries of maximum observed intensities

are compiled on a 10 km grid (Quitoriano et al., 2017). The DYFI database, specifically

the annual maximum data, is one of the most thorough and robust seismic intensity data

sets available, providing the most observations over the largest area.

Figure 6.2 shows the maximum shaking reported to DYFI for 2017. The map shows

17,391 sites on the one-year map where at least one report was made. Though the data are

sparse, there is a match, broadly speaking, between the expected shaking and the intensity

in the reports made, including the highest shaking congregated within Oklahoma. The
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Figure 6.2. Maximum “Did You Feel It?” (DYFI) responses in 2017 for
the CEUS. Gray regions indicate an absence of DYFI responses, but do not
necessarily imply a lack of shaking.

map also features many reports to the east in the Pennsylvania/Delaware/Jersey tri-state

area, and to the west in Montana. These reports are geographically consistent with the

location of the largest earthquakes observed in the CEUS in 2017, shown in Figure 6.3.

Figure 6.3 shows that despite the expected high seismicity in the greater Oklahoma

area, the largest earthquake in the CEUS in 2017 was a M 5.8 event near Lincoln, Montana

(McMahon et al., 2017). Similarly, the east coast experienced a M 4.1 earthquake in
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Figure 6.3. Occurrence of M4+ earthquakes near the central and eastern
United States in 2017. Earthquakes in Oklahoma, Montana, and Delaware
were the primary generators of DYFI responses.

December 2017, located in Dover, Delaware, where seismicity is expected to be low.

Conversely, Oklahoma experienced only a handful of large seismic events, especially in

comparison to the previous year, when it experienced a number of high-shaking events,

including the largest recorded in its history, the M 5.8 Pawnee event (Yeck et al., 2017).

While the distribution of these 2017 events differs from the previous year’s, where large

events occurred in Oklahoma and small events were located elsewhere, they provide an



122

opportunity to see how well a map performs when a number of “black swans,” rare and

unexpected scenarios, occur (Stein et al., 2012).

6.4. DYFI and Map Performance

Figure 6.4 illustrates the map’s overall performance. From the N = 17391responses,

we see that 501 sites reported shaking exceeding that predicted. This corresponds to

f = 0.0288, hence for p = 0.01, M0 = 0.0188. Furthermore, M1 = 5.39, a relatively low

score reflecting a reasonable spatial correlation between the maximum shaking at sites

that responded to DYFI and the predicted maximum shaking there. The prior chapter

found that for the 2016 model, the CEUS had M0 = 0.0073 and M1 = 4.62. While the

previous year’s lower scores indicate a slightly better performance overall, in general they

are similar. Although this is the first study focusing on successive iterations of maps,

prior studies (Chapters 2 through 4) have found maps that yield both M0 and M1 orders

of magnitude higher.

For areas where predicted intensity is high (e.g. intensity VII+), the range of observed

shaking spans intensity II to VIII. A similar trend is present for low-intensity predictions

(i.e. intensity III to V). However, between these two regions (e.g. intensity V to VII),

observed shaking levels are predominantly lower. As a result, most exceedances come

from sites where shaking was predicted to be relatively low. Most of those exceedances

cluster around the 45o line that marks a perfect match between observation and prediction,

suggesting that most exceedances are small. Roughly two dozen points are exceedances

where intensity is VII+. Further insight into spatial variations in map performance as a
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Figure 6.4. Comparison of predictions from the 2017 hazard map to maxi-
mum reported intensity for the entire central and eastern United States.

function of the DYFI data can be had by subdividing Figure 6.1 into smaller geographic

regions.

Figure 6.5 (top row) shows the predicted and observed shaking, and metric score for

the greater Oklahoma area, the region where induced seismicity in the US is the highest.

The greater Oklahoma region contains the majority of locations where observed shaking is

well below model predictions. There are only eight exceedances from 3,410 observations,

which leads to an observed exceedance fraction f = 0.0023 and M0 = 0.0077, similar
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Figure 6.5. Predicted (left column) and observed shaking maps (middle
column), and predicted-observed plots for the greater Oklahoma area (top
row), Montana (second row), and the east coast of the US (third row).
Fourth row shows observed-predicted plot for the entire CUES except the
greater Oklahoma area.
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to the 2016 model score. The 2016 model under-predicted shaking and the Oklahoma

region experienced more exceedances than expected. In 2017, the opposite occurred, and

shaking was over-predicted. With so few exceedances in the area, the significance of a

lower M0 score is lessened (discussed in section 5.6). In contrast to the similarities in

M0 between 2016 and 2017, 2017’s greater Oklahoma M1 = 10.46, substantially higher

than for the entire CEUS in 2017 and the CEUS and greater Oklahoma area M1 scores

for 2016 (in 2016, M1CEUS = 4.62, and M1OK = 5.01).

The effects of the low shaking reported in Oklahoma can be highlighted by examining

the CEUS metrics excluding the greater Oklahoma area. The bottom row of Figure 6.5

shows observed versus predicted shaking for the opposite of the top row, i.e. the entire

CEUS without the box in the top of Figure 6.5. The map lacks the exceedances that

occurred at higher predicted maximum intensities, because the areas with the highest

predicted shaking due to induced seismicity are removed from the map. Hence, there are

far more exceedances from areas with lower predicted intensities, largely the Montana

and Delaware earthquakes. Oklahoma shaking was heavily over-predicted, but the map

as a whole under-predicted shaking, so removing Oklahoma from the data set yields a

larger fraction of site exceedances. Hence M0 increases to 0.0253, a decrease in map

performance. However, the large mismatch in the intensity of the shaking predicted in

Oklahoma is reflected by the squared misfit M1, double the CEUS M1 score. Thus,

removing the greater Oklahoma area from the data improves the map performance by the

squared misfit metric, so M1 = 4.16.

Additional subdivisions illustrate other strengths and weaknesses of map performance.

Consider responses to the Montana earthquake in the northwest, shown in the second row
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of Figure 6.5. Because this was an unexpectedly large earthquake for the area, it led to a

high number of exceedances. Over 20% of sites reported shaking exceeding the predicted

levels, so M0 = 0.2063. However, this number may be artificially inflated by a lack of

distant responses in areas where shaking may not have exceeded predictions, perhaps due

to low population. The few reports from distant areas that do describe shaking are close

to the predicted values. As a result of this strong match, this region of the map scores

M1 = 1.98. This is notably lower than any other M1 scores generated for 2017, indicating

that the map generally succeeds at matching predictions to observations.

Finally, the third row of Figure 6.5 shows the eastern half of the CEUS map, where

the seismicity is largely non-induced. The region tends to be very aseismic, though there

is a history of events happening along the coast in the past (Hough, 2012; Wolin et al.,

2012). This portion of the map contains 40% of the data reported in the entire CEUS but

has M0 = 0.0177, similar to that of the entire region. The data lack large exceedances,

and while there are some instances of over-predicted shaking in Tennessee and the New

Madrid region, broadly speaking there is a good visual match between predictions and

observations. Hence, a low squared misfit arises, with M1 = 2.97.

The metric calculations indicate that data fit the 2017 map’s predictions reasonably

well, although not as closely as the 2016 data fit that map. This map performs better

than all previous studies conducted of hazard maps using the metrics approach, with

one exception: the 2016 one-year map. This difference opens questions of how much

variability to expect in performance from year to year, and whether the poorer perfor-

mance in 2017 is likely to have arisen by chance or instead reflects a meaningful change

in seismicity. Furthermore, the decrease in responses, which may be a function of lower
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Figure 6.6. Comparison between shaking reported to DYFI (left) and pre-
dictions from ShakeMap (right). Earthquakes in Oklahoma M 4+ are
marked with green circles on the left. They are excluded on the right
to not obscure contour changes, but are located at the center of each local
maxima in the ShakeMap predictions.

shaking, low population at the epicenters of events, or “earthquake fatigue” driving down

response rates— or a combination of all three— raises questions regarding data quality

and completeness (Mak and Schorlemmer, 2016b).

Focusing specifically on Oklahoma, between 2016 and 2017 the number of responses

catalogued in the maximum shaking felt per year in the DYFI system dropped by nearly

two thirds. 15% of the region had shaking reported in 2017, down from 40% in 2016. Fig-

ure 6.6 shows the absence of responses by comparing the DYFI map to what ShakeMap

predicted the intensity of shaking would be (Wald et al., 2005). I found in the study of
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the previous year’s map that, in absence of information, ShakeMap is a suitable approxi-

mation of a lower bound for reported shaking. While there are some regions where DYFI

shaking exceeds ShakeMap predictions, there are many more areas devoid of responses

that ShakeMap suggests should have felt shaking, particularly towards the western part

of Oklahoma. This is likely due to issues in population density compounding issues with

decreased response rate. This decrease in reports is also accompanied by a decrease in

the intensity of shaking reported. The median maximum annual shaking reported in 2017

is 2.9, down half an intensity unit from the median in 2016, 3.4.

6.5. Simulating Shaking

To address the questions of whether low responses are a function of low shaking levels

or low response rates, I use Monte Carlo simulation to characterize the variability of

possible shaking histories for the greater Oklahoma area in 2017. This approach is similar

to that of Vanneste et al. (2018). The simulations can address the likelihood of the

observed decrease in shaking occurring by chance, explore data incompleteness issues, and

give insight into how the metrics used for assessment describe the map’s performance. For

simplicity, the simulations use Oklahoma as the region of interest, and so did not need

to account for multiple zones of induced seismicity across CEUS, or the effect of natural

seismicity in areas like New Madrid region. Consider the four random processes that

define the maximum shaking experienced in a year:

(1) Where the earthquakes occur

(2) How many earthquakes occur

(3) The magnitude of an earthquake
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(4) Uncertainties in the ground motion models that describe shaking

The first three processes control the distribution of earthquakes in the region, and can

be described simply. Petersen et al. (2016) define regions where waste water injection is

expected to lead to induced seismicity. Consider this area to be uniformly susceptible to

induced earthquakes.

In the models, the rate of induced seismicity is defined for an upcoming year as a

weighted average of the past two years, with weights of .8 and .2 for the most recent

year and the previous year, respectively (Petersen et al., 2014; Petersen et al., 2017). For

2017, given a minimum magnitude of completeness of 2.7, we observe 162 independent

(e.g. declustered, with no aftershocks) earthquakes from 2016 and 152 earthquakes in 2015

for the Oklahoma induced zone (Petersen et al., 2018b). Hence the expected number of

earthquakes λ = 160. With this λ, it is simple to model the number of possible earthquakes

that can occur as a Poisson random variable.

Earthquake magnitudes are assigned based on the Gutenberg-Richter relationship,

assuming b = 1, as the 2017 model does (Petersen et al., 2017). Zhuang and Touati (2015)

define a method for assigning magnitudes, given a b-value and a minimum magnitude for

completeness, using inverse transform sampling. An event’s magnitude, m, is randomly

generated, assuming that

(6.1) m = − 1

b ln 10
lnU +m0,

where b is the model’s b-value (b = 1), U is a value obtained randomly from a uniform

distribution on [0, 1], and the minimum magnitude for completeness is m0 = 2.7.
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For a more accurate characterization of the 2017 earthquake record, this process of

simulating earthquake occurrence is repeated a second time, using λ = 4, to include

earthquakes that happened outside the defined box of induced seismicity.

Simulating these first three random processes generates many realizations of seismicity

in Oklahoma in 2017. To describe the resulting ground shaking, I use the GMMs used

by Petersen et al. (2017). Nine different models with varying weights (Petersen et al.,

2014) are used and then aggregated to describe ground shaking (Frankel et al., 1996;

Toro, 2002; Silva et al., 2002; Campbell, 2003; Tavakoli and Prezeshk, 2005; Atkinson

and Boore, 2006; Atkinson, 2008; Prezeshk et al., 2011; Atkinson, 2015). Because the

resulting shaking is given as PGA, and the model being assessed predicts shaking as MMI,

the same techniques used in Petersen et al. (2017) to convert PGA to MMI are employed

(Worden et al., 2012).

Each ground motion model, as well as the conversion from PGA to MMI, has an error

term in the form of a Gaussian random variable. The error terms for ground motion are

treated as uncorrelated at each site, and can be treated as representing the uncertainty

in each model, as well as the influence of site effects, directionality, or other modifiers to

shaking. The PGA to MMI conversion error is correlated, and assumed to be equal at

all sites. Using the GMMs, the shaking from each earthquake in a given realization is

calculated. After calculation for all events’ shaking, the maximum “observed” shaking at

each site, gridded on a 10 km scale, is selected and used to calculate the metrics for map

performance.

This procedure generated 10,000 simulations to explore the full range of outcomes,

and call this model which allows for full variance of all parameters “unconstrained.”
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Figure 6.7. Simulation outputs, illustrating shaking and metric results, for
nine different realizations of 2017. The shaking model is fully unconstrained,
with randomness in earthquake count, location, magnitude, and in the
GMMs. Intensity is reported in MMI.

Figure 6.7 shows nine of these realizations, and the metric calculations associated with

each. Intensity is calculated at each site within the greater Oklahoma region. Hence, the

metrics here show performance that would arise with a 100% response rate.

The metrics calculated for the 10,000 “unconstrained” simulations— where uncertain-

ties in earthquake count, location, magnitude, ground motion models, and PGA to MMI

conversion are allowed to vary— are shown in Figure 6.8. The results show generally

low M0 scores, reflecting a tendency for f ≈ p. A tail drops off for larger M0 scores,
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Figure 6.8. Heat map of distribution of metric scores for 10,000 realizations
of 2017 seismicity. The x-axis is the fractional exceedance metric, M0, and
the y-axis is the squared misfit metric, M1. Each axis has a histogram of
each metric’s distribution, independent of the other. Outliers, defined by
M0 > 0.02, are plotted in the bottom left.

showing the small possibility of achieving a very large score, indicative of scenarios where

f >> p. Counts of M0 > 0.02 decrease substantially, and are shown by an extra plot

beneath the heat map. Though the values reach as high as M0 = 0.8, most simulations

have M0 ≤ 0.02. 80% of the simulations fall below this cutoff, 95% of the simulations
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result in metrics where M0 ≤ 0.15. Generally speaking, this distribution agrees with the

2017 DYFI result (M0 = 0.0077). The squared misfit metric M1 is roughly characterized

by a normal curve centered around a mean M1 = 2.09, a very low score compared to the

2017 DYFI data (M1 = 10.46). The standard deviation for this curve is 0.41. There is an

inverse correlation between the fraction of sites that exceed predicted shaking and M1.

This can be observed by the two trend lines that grow out of the dense grouping of points

centered around (M0,M1) = (0, 2.09), which is where f = p = 0.01. The sharp upward

trend terminates at M0 = 0.01, the point where no exceedances are observed (f = 0).

The shallow downward trend continues for all M0 values in the heat map and outlier

plot. Hence, as f increases, the squared misfit decreases. While only the fractional ex-

ceedance metric is implicit in the definition this hazard map, this result suggests it should

be possible to minimize both metrics for a given set of predictions and expected number

of exceedances.

The metrics obtained with DYFI data for 2017 (M0 = 0.0077 and M1 = 10.46) do

not fall within the simulation’s distribution due to the high squared misfit metric, M1,

though they are in reasonable accord with the distribution of the fractional exceedance

metric, M0. However, the discrepancy between the metrics for DYFI and the simulations

may result from incompleteness in the DYFI data. Some of the largest earthquakes in

Oklahoma in 2017 have few DYFI responses (Figure 6.6), and some of the neighboring

responses report MMI II- intensities, which seem far too low for their proximity to some

events’ epicenters. It appears there is an issue with the response rate of the DYFI data,

resulting in many inconsistent and missing responses.
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It is not a fair comparison to compare the metrics for the DYFI data, given the low

response rate, to those for simulated data, where data coverage is perfect. In Chapter 5,

it was shown through the addition of ShakeMap data that an inverse relationship exists

between response rate and M1. Thus, while both DYFI and simulation can be used to

assess performance individually, it is unclear whether a comparison between the two is

useful for comparing aspects of map performance, or the relationship between M1 and

the number of responses.

Hence, to better address data discrepancies and generate a more consistent comparison

of map performance, the same simulation procedure is repeated, but with fixed earthquake

count, location, and magnitude to the values for declustered events that occurred in 2017,

considering only the uncertainties in ground motion and PGA to MMI conversion. By

repeating this analysis with these fixed parameters, a comparable data set of observations

to contextualize the results of the simulation is made. This approach is analogous to

using ShakeMap data, and approximates having DYFI data with a 100% response rate

for the earthquakes observed in 2017, but has the added benefit of also incorporating the

uncertainty in the ground motion models.

Figure 6.9 shows nine of the 5,000 shaking simulations calculated with the observed

earthquake catalog in Oklahoma in 2017. Half the number of simulations are made to

reduce computation time, as substantially smaller variance in the output is expected when

there are many fewer input variables. Whereas the original simulations model is termed

“unconstrained,” these new simulations are considered to be a “constrained” simulation

model. The variance in shaking output between simulations appears to be much smaller

because they simulate the same events so ground motion varies less between simulations.
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Figure 6.9. Sample of simulation outputs, illustrating shaking and metric
variability for the observed earthquake record in 2017. These constrained
simulations have randomness only due to the GMMs. Intensity is reported
in MMI.

Figure 6.10 shows the variability in the metrics for the constrained simulations, which

is due only to GMM uncertainty. M0 is tightly clustered between 0.008 and 0.01, dif-

fering strongly from the distribution of M0’s for the unconstrained model. 97% of the

simulations have M0 ≤ 0.02. M1 in the constrained simulation has a slightly larger

standard deviation than the unconstrained model, with a wider normal curve centered

at the mean M1 = 2.33. The standard deviation of the M1 distribution is 0.48. The
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Figure 6.10. Heat map of distribution of metric scores from for 5,000 real-
izations of 2017. The x-axis is the fractional exceedance metric, M0, and
the y-axis is the squared misfit metric, M1. Each axis shows a histogram
of each metric’s distribution, independent of the other. Outliers, defined by
M0 > 0.02, are plotted in the bottom left.

outliers, M0 > 0.02, are far fewer in number, because the lower shaking produces fewer

exceedances.

The results from both sets of simulations are superimposed in Figure 6.11. Counts

are normalized to show relative frequency, illustrating the likelihood of getting a specific
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Figure 6.11. Superposition of unconstrained (background heat map, blue
histogram) and constrained simulations (white contour lines, orange his-
togram). Contour lines represent where 50% and 80% of the data reside.
Histograms shows relative frequencies in the distribution of each metric.
Outliers (M0 > 0.02) are plotted on the bottom left.

metric result from the unconstrained and constrained simulations, and comparing the

distributions of the two. Through this comparison, we examine the likelihood that the

higher misfit observed in 2017 could be attributed to either bad luck, or a flawed assump-

tion in the underlying model (Stein et al., 2011). A model that can accurately forecast
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the shaking for a given year would be expected to have a metric score that falls within

the range of metric scores achieved from a fully unconstrained simulation. In essence,

we would expect what we observe to be one of the scenarios predicted by the uncon-

strained model. However, the contours of the constrained model, representing 50% and

80% bounds on the data, are displaced upward for both metrics, giving higher scores,

indicating weaker performance than what might be expected from a random scenario

from the unconstrained simulation. Though it is possible, based on the distribution of

the unconstrained simulation, to have an “expected” earthquake scenario result in poor

map performance (as indicated by the simulations that yielded very high metric scores,

indicative of even weaker performance), there is little overlap between the constrained

(contours) and the unconstrained (heat map) simulation results. Hence, from this com-

parison, it appears that the poorer performance of the 2017 map arises not from bad luck,

but a flawed assumption. Some physical aspect of shaking is not accurately described by

the model for the map, otherwise one might expect to see the constrained simulations

overlap with the unconstrained output. Specifically, the tight clustering of the fractional

exceedance metric around the predicted number of exceedances (p = 0.01) seems to sug-

gest that the earthquakes that occurred in 2017 were insufficient to generate shaking large

enough to cause exceedances. This lack of large shaking can also explain the upward shift

in the squared misfit metric, M1. There were too large events in 2017. Larger events

would generate lower scores for both M0 and M1. This conclusion is reinforced by the

issues in the DYFI data, which similarly suffers due to the lack of large shaking events

necessary to generate a broad response of quality reports.
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6.6. Conclusions

Comparison of shaking observed in 2017 to that predicted by the 2017 hazard model

shows an over-prediction of shaking. The shaking record for 2017 contained so little

shaking that it generated essentially no exceedances. This is in stark contrast with 2016,

which had many exceedances throughout the Greater Oklahoma Area, due to numerous

large events, specifically three M 5+ episodes, including the M 5.8 Pawnee earthquake.

These large events, and moderate to large shaking episodes in general, dominate the

maximum shaking record.

The greatest mismatch between prediction and observation for the 2016 model was in

northern Texas (Chapter 5). Substantial shaking in Dallas did not occur as predicted,

and maximum DYFI reports in the area were linked to distant larger earthquakes in Ok-

lahoma. Waste water injection has been found to be linked strongly with Texan seismicity

(Hornbach et al., 2016), and though earthquakes may persist after waste water injection

has halted, rates decline following the closure of an injection site (Ogwari et al., 2018).

I believe the change in seismicity that follows a reduction in waste water injection rates

cause an increase in metric scores.

A similar effect leading to a decrease in large events may be going on in Oklahoma.

Regulatory efforts have capped waste water injection rates in Oklahoma, leading to a

gradual decline in the number of larger earthquakes. Furthermore, oil prices and earth-

quake rates are correlated (Roach, 2018), so the sharp decline in prices since 2014 (Prest,

2018) may influence rates. Combined economic and regulatory pressures thus led to the

decrease in the maximum shaking observed in Oklahoma.
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It appears the parameters used to predict seismicity in the 2017 hazard model did not

fully account for these changes. B-values in induced zones may appear higher amid the

earthquake swarms that occur, which may be occurring presently (Goertz-Allman and

Wiemer, 2012). An increase of the b-value in this setting would decrease the likelihood

of observing higher magnitude events, a possible explanation for what was observed in

2017. Despite this, the b-value for the 2017 model, as well as prior years, was set to

b = 1. Further gains in performance can come from improving GMMs. The ground

motion models used for the 2017 map are derived for scenarios that may not apply to

the Oklahoma region, including non-induced seismicity and the tectonic setting of the

western United States. More localized ground motion models may reduce the very large

uncertainty that contributes to the misfit in model performance (Novakovic et al., 2018;

Moschetti et al., 2018).

While there is room for improvement in the hazard model, the resulting map is still

useful as a whole. The metric scores, as calculated with the DYFI data, tend to be

similar to the performance of the previous year’s model, with only slightly worse fractional

exceedance metrics than for the 2016 model. All regions except Oklahoma, where seismic

rates are assumed to be better known and stable, have consistently small squared misfit

metric values. As a whole, these results are better than many maps we have analyzed by

this approach (Chapters 2 through 4). Hence, despite weaker performance compared to

the 2016 map, I believe the 2017 model is a good map. This conclusion is reinforced by the

results of the seismicity simulation, which shows performance weaker than the previous

year’s map, but stronger than performance from our other studies. While the mismatch

in simulated metric distributions appears to reflect assumptions that could be improved,
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the model’s performance is still better, with a much smaller discrepancy between observed

and predicted shaking, than that of many of other maps for natural seismicity assessed

previously. For the purposes of mitigating risk and anticipating shaking in the future, the

2017 model can still inform users about the hazards posed by waste water injection and

other seismically inducing activities.

Beyond assessing the performance of this specific map, these results have implications

for the general issue of how to assess and improve earthquake hazard maps’ performance.

The simulations approach is useful for filling in gaps in data and exploring the uncertainty

in a map’s predictions. Furthermore, the metrics defined in Chapter 2 were intended to

be used as a comparative tool to assess the performance of different maps. Through work

on many maps, a general understanding of what constitutes high and low metric scores

may become apparent, though it is harder to assess a map’s performance with no basis

for a comparison. Simulation is a tool to address this problem, allowing for comparison of

many different shaking realizations. The simulations allow better understanding of map

performance if there are no comparisons to be made, and for a better understanding of

the likelihood of observing a single outcome (Vanneste et al., 2018). This is important for

better using metrics to assess map performance in that it will let researchers move from

measuring relative performance to measuring absolute performance. Further research on

these analyses can push how the metrics are used, so rather than asking if a map is

“better,” we can ask if a map is “good.” These advances will help researchers better

understand the performance of maps and thus how to better use them for earthquake

hazard mitigation.
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