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Abstract

Body size is one of the most discernible ways in which animal species vary. The blue whale

(Balaenoptera musculus), the largest animal on earth, can reach up to 30 m in length and weigh

up to 200 tonnes. At the other extreme, a species of frog called Paedophryne amauensis is

among the smallest animals on earth with adults measuring just 8 mm in length, about the size of

a pea. Understanding how organisms grow to their characteristic sizes is a fundamental

biological question. Although a larger body size can increase an organism’s competitive

advantage, an increased body size also requires added time and nutrients to develop. As such,

organisms must have mechanisms to both sense and adjust growth during development. Studies

of single cells have revealed that growth regulation can be achieved using time or size sensing

control methods. In multicellular organisms, however, regulatory mechanisms must not only

control single cell growth but also integrate it across organs and tissues during development. In

this dissertation, I investigate growth control in the roundworm nematode Caenorhabditis

elegans. C. elegans is particularly suited for the study of growth control because of its rapid

development and genetic tractability. I first optimize a high-throughput phenotyping platform

that facilitates quantitative assessment of thousands of individuals at high precision. Using this

platform, I quantify changes in animal size and shape throughout development, and explore how

genetics and natural genetic variation contribute to differences in animal growth. The results of

this work lay the foundation for a mechanistic dissection of organismal growth control.
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1

1. INTRODUCTION

A fundamental objective in biology is to understand what makes individuals, populations, and

species different from one another. The observable characteristics of an organism, such as

morphology, development, and behavior, make up its phenotype. By contrast, genotype describes

the inheritable genetic material that is responsible for determining a given trait [1]. The

relationship between genotype and phenotype is often complex and multifaceted. Some traits can

be linked to single gene mutations [2]. Most traits, however, are influenced by a combination of

genetic and environmental factors. Investigating the variation in complex traits, provides deeper

insight into phenotypic diversity and its causes.

This introduction starts by providing an overview of phenotypic heterogeneity, focusing

on the genetic variation that can influence its emergence (Section 1.1). I discuss how quantitative

genetic mapping is used to study underlying variation in complex traits (Section 1.2). Next,

Caenorhabditis elegans is presented as an appropriate model system for the study of phenotypic

variation (Section 1.3). I discuss post-embryonic development and examine existing knowledge

of how the processes of growth and body size are controlled in the nematode. Finally, I review

principles of genetic mapping in C. elegans.
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1.1. PHENOTYPIC VARIATION

The field of quantitative genetics classically postulates that variation among phenotypes arises

from two major sources: genetics and environment [3,4]. Expressed as an equation, this

relationship can be written as,

(1-1)𝑉
푝
 =  𝑉

𝐺
 +  𝑉

𝐸

where VP represents variance in a phenotype, VG is genetic variation, and VE is variation in the

environment. The genetic component of variation arises from genetic variants within a

population [5]. Conversely, environmental variation arises when individuals of the same

genotype experience changes in environmental conditions (i.e., food availability, temperature)

and respond with multiple phenotypic differences [6]. Notably, genetic and environmental

components of phenotypic variation are rarely independent; many traits exhibit a genetic

component to plasticity. In this case, the observable change in a population’s phenotype due to

environmental differences is influenced by genetic variation. This form of variation indicates the

presence of genotype-by-environment (GxE) interaction. Given this interaction term, total

phenotypic variation is more appropriately expressed as,

(1-2)𝑉
𝑃
 =  𝑉

𝐺
 +  𝑉

𝐸
 + 𝑉

𝐺푥𝐸
 

where the contribution of genetic variance to plasticity is captured in the term, VGxE [7].

Another important source of phenotype variation is stochastic variation. For a given

environmental condition, random noise exists in the expression of the true phenotype. This

uncontrolled variation manifests as differences among individuals of the same genotype raised in

a common environment [8]. Two factors can drive this level of variation: randomness in the
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developmental process and small fluctuations in the environment. Stochastic fluctuations in both

the developmental process and an individual’s experienced environment contributes to total

variance in a population’s phenotypic response [9]. Accordingly, the total phenotypic variation of

a population should now be represented as,

(1-3)𝑉
푝
 =  𝑉

𝐺
 +  𝑉

𝐸
 +  𝑉

𝐺푥𝐸
 +  𝑉

𝑁표푖푠푒 
 

where VNoise represents intra-individual variation in response to an intrinsic factor. To address the

contribution of this variance, both the environment and background genotype must be

constrained. Measuring the variation of traits within an isogenic population increases the

sampled phenotypic space and allows for the isolation of incoming sources of variation.

Differences in genetically identical individuals reflect the intrinsic variance present [9]. For

species in which genetic clones are available or selfing is possible, such as C. elegans, this is

easily accomplished. Nonetheless, the interaction of the various sources of variation (

), combined with the sheer magnitude of the number of phenotypic traits,𝑉
𝐺

 ,  𝑉
𝐸

 ,  𝑉
𝐺푥𝐸

 , 𝑉
𝑁표푖푠푒 

makes the study of the phenotypic variation in a population strikingly complex.

1.1.1. From genotype to phenotype

In 1865, an Austrian monk by the name of Gregor Mendel published work investigating the

connection between genotype and phenotype. For eight years, he studied the pea plants that grew

in the garden of his monastery, observing patterns in their color, texture, and height from one

generation to the next [10]. Mendel’s experiments laid the foundation for our understanding of

genetic inheritance and the correlation between underlying genetic makeup and physically
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visible traits. More than 150 years later, scientists continue to study how genetic variation

contributes to phenotypic differences.

Recent advances in sequencing technologies have accelerated the generation of vast

amounts of genotype data [11–13] and enabled scientists to identify genetic perturbations

causally linked to disease traits. However, discerning the relationship between genotype and

phenotype remains a challenge. Although there is a strong correlation between the two,

phenotype is not solely determined by the genotype of a few trait-associated genes but rather is

the cumulative result of interactions among genetic and non-genetic factors over time [14]. This

is particularly apparent in the context of disease. The clinical symptoms that we observe in

affected individuals are the result of interactions between their genetic background, mutations,

and the environment over time. Disease phenotypes may follow Mendelian inheritance patterns

and thus be predominantly driven by a single gene mutation, but oftentimes involve multiple

genes along with additional environmental factors [15,16]. As the complexity of a trait increases,

it becomes increasingly more difficult to resolve the genotype to phenotype relationship.

However, the identification of genetic variants underlying phenotypes is key to understanding

how genotype influences complex traits associated with growth, health, and disease.

1.2. QUANTITATIVE TRAIT LOCI MAPPING

Quantitative trait loci (QTL) mapping is a method for identifying the genetic basis of complex

traits. With this technique, regions of the genome that contain loci that affect a measurable trait

can be identified. Mapping QTL allows scientists to study the underlying genetic architecture of
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complex traits. Many studies have mapped QTL that affect human disease and have uncovered

new loci providing insights into the biology of disease [17–19].

There are two main approaches to identify QTL: linkage mapping and genome-wide

association (GWA) mapping [20]. Both techniques rely on statistical methods to correlate genetic

variation with phenotypic variation. Simply, these methods determine whether the genotype at a

given position in the genome explains phenotypic differences among individuals. Linkage

mapping uses populations of recombinants generated from a cross between phenotypically and

genotypically diverse strains. In contrast, GWA mapping leverages the existing natural genetic

diversity among genetically distinct individuals [20].

Oftentimes, QTL span large genomic regions containing many genes. To narrow the

search space for potential genes contributing to phenotypic differences, the QTL region can be

isolated in a different genetic background in near-isogenic lines (NILs) [21,22]. The phenotypes

of these NILs can then be used to refine the QTL by determining whether the introgressed

genomic region recapitulates the QTL effect. Ultimately, in organisms with well annotated

genomes, causality can be tested using genome-editing tools [23–25].

1.3. CAENORHABDITIS ELEGANS

French biologist, Emile Maupas, first described isolating Rhabditis elegans (now Caenorhabditis

elegans) near the city of Algiers (Algeria) in 1900 [26]. He conducted some of the first

experiments on the nematode, elaborately detailing its anatomy and development. Several

decades later, C. elegans was again isolated for study by Victor Nigon and Ellsworth Dougherty.

These scientists worked to refine culture conditions and experimental methods for propagating
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animals in the laboratory [27]. However, it was not until Sydney Brenner published work on the

nematode in the 1970s that C. elegans became an established model organism [28]. Since that

time, research on the roundworm has expanded to explore diverse areas of modern biology and is

actively studied in over a thousand laboratories worldwide [29].

1.3.1. As a model organism

In 1963, well known bacterial geneticist, Sydney Brenner, decided to turn his research efforts

away from bacteria and towards an animal system. He sought an organism that could serve as a

genetic model to probe how mutations disrupt organismal development and behavior. After

considering a number of organisms, he ultimately settled on C. elegans for several reasons [30].

This free-living bacterivore grows rapidly on agar plates or in liquid culture, reaching an adult

length of approximately 1 mm in three days [31]. Its small size and transparent body make the

nematode an ideal organism for microscopic observation (Figure 1-1). As hermaphrodites, C.

elegans can produce up to 300 genetically identical progeny in a lifetime. These individuals can

be maintained nearly indefinitely through cryopreservation, providing a method for long-term

storage and safeguarding against the accumulation of mutations [31,32].
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Figure 1-1. Photomicrographs of C. elegans. Major major anatomical features of the C.

elegans adult hermaphrodite (top) and male (bottom) under brightfield illumination. Bar, 20 μm.

(From [31]).

Since Brenner’s first paper establishing C. elegans as a model organism, the animal has

become a powerful system for genetic and molecular analysis. Notably, by the 1980s, scientists

had documented the entire cell lineage of the nematode, from embryo to adult [33–36]. A decade

later, C. elegans became the first multicellular organism to have its genome sequenced [37]. This

100 Mb genome, though relatively small, comprises six chromosomes and approximately 20,000

protein-coding genes that are homologous to protein-coding genes found in other organisms,

including humans [38,39].



24
1.3.2. Post-embryonic development

C. elegans post-embryonic development consists of four larval stages (L1 - L4) that are

punctuated by distinct developmental events called molts where animals shed an exoskeleton

called the cuticle (Figure 1-2). Each larval stage begins with a period of active growth, and is

followed by a period of quiescence (lethargus) where feeding and movement is temporarily

halted [40]. During this time, a new cuticle is synthesized under the old. A molt is completed

when animals shed the old cuticle (ecdysis) and transition to the next stage [41].

Figure 1-2. Illustration of the C. elegans life cycle. Embryos hatch to the first larval stage and

proceed through four larval stages (L1 - L4) before becoming mature adults. Transitions between

larval stages are marked by molt events where the animal's outer collagen-rich cuticle is shed. An
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alternate developmental stage, dauer, occurs in response to unfavorable environmental

conditions. Created with Biorender.com.

The rate of larval development in C. elegans is strongly dependent on environmental conditions.

Dietary restriction has been shown to extend developmental progression up to ten-fold [42]. In

extreme conditions, such as absence of food or high population density, C. elegans are able to

halt development entirely by entering dauer, a long-lived morphologically distinct stage

optimized for survival [43,44]. The decision to enter dauer is one of many checkpoints regulating

developmental progression. Such checkpoints often occur early in the molting process and have

been identified in every larval stage [45,46]. The well coordinated timing of development is

essential to the completion of stage-specific processes, including cell-differentiation and tissue

morphogenesis [47,48], and underscores the importance of growth regulation during C. elegans

larval development.

1.3.3. Growth regulation

Organismal growth is regulated on a genetic level, as changes in gene expression patterns and

signaling dictate much of development. However, environmental conditions (e.g., nutrient

availability and temperature) also have strong impacts on growth. Therefore, it is important to

account for how the processes of growth and development are controlled genetically, and how

they can be influenced environmentally.

1.3.3.1. Genetic pathways regulate body size

The control of C. elegans developmental progression has been studied extensively on the genetic

level. The first body size mutants were isolated in genetic screens by Sydney Brenner [32].
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Subsequent screens for small (Sma) and long (Lon) mutants revealed a major regulator of growth

and body size: DBL-1 [49–52]. DBL-1 is a ligand in the transforming growth factor-β (TGF-β)

superfamily and homologous to members of the mammalian bone morphogenetic protein (BMP)

family [53]. Secreted by neurons and body-wall muscle, DBL-1 is necessary for body size

regulation, and other developmental and homeostatic processes [49]. Mutants deficient in dbl-1

have a marked reduction (40%) in both length and width compared to the wild type throughout

post-embryonic development [49,50]. In contrast, increased DBL-1 signaling causes animals to

be longer (25%) than the wild type [49,54].

1.3.3.2. Environmental factors modulate body size

As previously mentioned, nutrient restriction is known to decrease C. elegans growth rate or,

when extreme, induce complete developmental arrest [42,44,55]. Body size is also affected by

the quality of food. As bacterivores, C. elegans obtain their nutrients primarily from bacteria.

Historically, a strain of Escherichia coli, OP50, was chosen as the standard laboratory diet [56].

Although most experimental studies use OP50 as the primary food source, the number of

bacterial diets used to propagate C. elegans has expanded in recent years. Although these diets

support development, research has identified several phenotypic effects that are altered. For

example, when fed Comamonas DA1877 or E. coli HB101, animals develop faster and grow

larger than those fed E. coli OP50 [57–59].

Aside from diet, other environmental stimuli can also regulate C. elegans body size.

Standard wild-type animals used in most experiments grow larger when cultured at lower

temperatures [60]. Additionally, research has shown that the C. elegans nervous system plays a

key role in the regulation of body size by environmental stimuli. When raised in isolation, C.
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elegans exhibit decreased growth rates and reach smaller adult sizes compared to animals raised

in groups [61]. This result, however, is reversed with mechanosensory stimulation during

development, demonstrating a role for mechanosensory neurons in body size regulation.

Similarly, a number of mutations affecting ciliated sensory neurons through which C. elegans

perceive environmental stimuli are shown to be required for animals to grow to the proper size

[62,63]. This suggests that perception of environmental stimuli is crucial for the regulation of

body size in C. elegans.

1.3.3.3. Cuticle structure influences body size

The C. elegans cuticle is a complex, multi-layered structure primarily composed of collagens.

The major surface structures of the cuticle include the circumferential ridges (annuli) and troughs

(furrows) [64] (Figure 1-3). As animals progress through their life-cycle, the structure and

thickness of the cuticle change but its role in the maintenance of body morphology and integrity

remains. To date, 21 cuticle collagen mutants have been identified that cause a range of body

morphology defects [64]. Several of these mutants (dpy-2, 3, 7, 8, 10) lack annuli and exhibit a

disproportionate reduction in body size [65]. These dpy animals are noticeably shorter in length

and wider than the wild type, clearly demonstrating the importance of the physical structure of

the cuticle on growth.
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Figure 1-3. Illustration of the C. elegans cuticle. The hypodermis (hyp) comprises hypodermal

cells which secrete the cuticle (grey). Circumferential rings called annuli run the length of the

cuticle. The valleys between annuli are furrows, which form immediately above circumferential

bundles of actin (not shown) present in hypodermal cells during embryogenesis and molting.

Seam cells (orange) that run along the left and right sides. (From [66]).

1.3.4. Natural genetic variation

C. elegans present a scalable and tractable animal model to connect phenotypic differences to

genetic variants. C. elegans are easily propagated as clonal cultures, eliminating genetic variance

as a contributor to phenotypic variance in experimental studies. Additionally, hundreds of wild

strains have been collected worldwide, providing access to extensive genetic diversity [67,68].

Two heavily studied strains are the laboratory-adapted strain, N2, and a wild strain, CB4856. N2,

derived from an isolate found in Bristol, UK in 1951, is recognized as the canonical laboratory

wild-type strain with its genome serving as the reference [69]. Across the globe on the Hawaiian
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island of Oahu, CB4856 was isolated in 1972 [70]. Compared against the N2 reference, the

CB4856 genome is highly divergent [71,72]. This extensive genetic diversity likely underlies the

many phenotypic differences between the two strains, including social behavior, life-history

traits (body size, fecundity, lifespan), and gene expression [73–78].

1.3.5. Linkage mapping

The N2 and CB4856 strains can be studied to better understand how genetic variation contributes

to phenotypic differences. Crossing the N2 and CB4856 strains followed by crossing the progeny

of this cross for many generations produces individuals with unique variants derived from each

parental background. Performed at a large scale, these panels of recombinant inbred lines are a

powerful tool for identifying genomic regions that are correlated with phenotypic variation.

Linkage mapping is a popular genetic mapping approach used to identify functional

variants that contribute to phenotypic diversity. In C. elegans, linkage mapping leverages

recombinant line panels, correlating genotype and phenotype to identify QTL. The Andersen Lab

has developed an R package to facilitate such analyses [79]. By investigating the natural genetic

variation underlying phenotypic differences, researchers are able to uncover genetic pathways

involved in biological processes. Several studies have taken this approach to study the genetic

underpinnings of complex traits like body size, social behavior, and drug response (Figure 1-4)

[78,80–85].
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Figure 1-4. Overview of causal genes identified through QTL mapping approaches. The

colors represent the mapping technique(s) that were used for QTL mapping: bulk-segregant

analysis (BSA) (orange); linkage mapping (pink); genome-wide association (GWA) mapping

(green); linkage and GWA mapping (purple). (From [86])
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2. A potential role for cuticle elasticity
in developmental growth control

In the spring quarter of 2019, I decided to complete my final first-year rotation in the Andersen

Laboratory. At the time, I was coming off a rotation with Dr. Niall Mangan who was involved in

a relatively new collaboration with Dr. Erik Andersen as part of the NSF-Simons Center for

Quantitative Biology. The general goal of the project was to study the interplay between

organismal growth and environmental variables such as diet and temperature. Needing a little

extra experimental assistance, Erik recruited me to the team. Little did I know this project would

become the heart of my thesis. What ensued was a series of daunting, exhausting, and incredibly

rewarding time-course experiments. The following chapter highlights the results of just one of

these experiments, published in Cells and Development in 2022 [87].
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2.1. ABSTRACT

Growth control establishes organism size, requiring mechanisms to sense and adjust growth

during development. Studies of single cells revealed that size homeostasis uses distinct control

methods. In multicellular organisms, mechanisms that regulate single cell growth must integrate

control across organs and tissues during development to generate adult size and shape. We

leveraged the roundworm Caenorhabditis elegans as a scalable and tractable model to collect

precise growth measurements of thousands of individuals, measure feeding behavior, and

quantify changes in animal size and shape during a densely sampled developmental time course.

As animals transitioned from one developmental stage to the next, we observed changes in body

aspect ratio while body volume remained constant. Then, we modeled a physical mechanism by

which constraints on cuticle stretch could cause changes in C. elegans body shape. The

model-predicted shape changes are consistent with those observed in the data. Theoretically,

cuticle stretch could be sensed by the animal to initiate larval-stage transitions, providing a

means for physical constraints to influence developmental timing and growth rate in C. elegans.

2.2. INTRODUCTION

Growth is a complex process fundamental to development. Individual cells and whole animals

must reach an appropriate size to remain competitive in their environment. A larger body size

conveys many selective advantages to an organism, including increased success in predation,

defense against predation, success in mating, or successful intraspecific as well as interspecific

competition. Offsetting these advantages, larger organisms require more food resources to grow,

take longer to develop, and produce fewer offspring [88]. Therefore, it is critical for multicellular
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organisms to effectively coordinate the growth of both individual cells and the whole body.

Additionally, growth at both of these scales must be coupled with developmental progression to

ensure the proper timing of irreversible developmental events.

In recent years, efforts have focused on understanding how organisms control growth to

achieve size homeostasis [89–91]. Many of these studies are motivated by the decades-long

debate about whether growth is linear or exponential; two separate models each having unique

implications for size regulation. In a linear model with constant growth rate, smaller organisms

must grow proportionally more than larger organisms to maintain size homeostasis. In this

paradigm, organism size can be controlled simply by specifying growth duration. Subsequently,

this method of growth control was named the “Timer” model [92,93]. Caulobacter vibrioides, a

bacterium whose cells divide after a certain amount of time, has been reported to follow a

“Timer” growth model [94]. Alternatively, organisms can instead monitor size and adjust

duration of growth to reach an optimal size. This method of control is referred to as the “Sizer”

model [95–97]. In an exponential model, growth rate is proportional to size. A time-based

control mechanism alone would fail to maintain size homeostasis because larger organisms

would grow proportionally more during a specified period of time. This difference in growth

requires a size-based control mechanism to ensure that growth is halted once a maximum size is

reached. Fission yeast, a rod-shaped eukaryote whose cells divide after growing to a certain size,

have been reported to follow a “Sizer” growth regime [98]. Although “Timer” and “Sizer” are

the most often proposed size-control models, other models have been suggested. The “Adder”

model proposes that a fixed volume is added to a cell or organism during growth [99,100],

whereas the “Folder” model specifies that an organism increases in volume by a fixed proportion
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in order to control growth [101]. It is not trivial to determine which model most accurately

describes growth of individual cells or whole organisms because quantitative measurements of

growth must be collected at high precision and throughput under tightly controlled experimental

conditions. In unicellular organisms, the development of high-throughput experimental

techniques in combination with theoretical models have advanced the understanding of size

control [102–106]. Progress has been slower for multicellular organisms because cell growth

within tissues and tissue growth within organisms often progress at different rates, suggesting

that they are likely not regulated in the same ways [107–109].

The nematode Caenorhabditis elegans presents both a scalable and tractable multicellular

animal model to study growth control. With an adult body length of approximately 1 mm,

hundreds of thousands of individuals are easily cultured in controlled laboratory conditions [30].

Moreover, C. elegans post-embryonic development is marked by several molts that provide clear

developmental milestones [64]. Each molt is initiated by a period of quiescence (lethargus) and

terminated once the animal successfully sheds its collagen-rich outer cuticle (ecdysis) [40]. Four

molts separate the C. elegans life cycle into five distinct stages: four larval stages (L1-L4) and

adult. The timing of these molts determines the completion of stage-specific development

[47,48] and underscores the importance of growth regulation during C. elegans larval

development.

A full description of an organism’s development includes the assessment of how growth

and body size are regulated. Initial studies of C. elegans development described whole-organism

growth as a sigmoidal curve characterized by continuous larval growth in length that reaches

saturation in adulthood [110]. These early studies hypothesized that molt events had little effect
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on continuous growth as the C. elegans cuticle allowed for stretch during larval stages. Later

work determined that larval progression was not continuous but rather piecewise in nature [111].

This study showed that C. elegans volumetric growth rate increased from stage to stage such that

L1 animals had the slowest rate of growth and L4 animals had the fastest. This finding suggests

that C. elegans have a mechanism for regulating growth rate, potentially at each molt. Next,

researchers using single-animal imaging strategies observed that animals did not advance to the

next developmental stage until a critical volume was reached [42]. This finding suggests that C.

elegans growth follows a “Sizer” model with each molt decision controlled by a volume

threshold and further implies that individual cells are able to communicate information about

body size to precisely regulate growth. Most recently, live imaging and characterization of body

volume heterogeneity revealed that with respect to the start of a larval stage, C. elegans relative

change in volume within a stage is nearly invariant thereby preventing rapid divergence in

volume between fast- and slow-growing animals [101]. A mechanism that maintains a constant

relative change in volume within each larval stage relies on the coupling between growth rate

and developmental timing. Notably, such coupling is consistent with recent observations of

temporal scaling in C. elegans development where despite inter-individual variability in the

absolute duration of a larval stage, relative timing of a stage is similar [112,113].

To understand C. elegans growth control at the whole-organism level, we used a

combination of quantitative measurements and mathematical modeling. We performed a

high-resolution longitudinal study of C. elegans larval progression and captured high-precision

details about animal length, width, volume, and feeding dynamics. By investigating C. elegans

feeding and growth in tandem for thousands of individual animals, we found decreases in
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feeding behavior associated with each larval transition that were also correlated in time with

changes in growth rate. We used our large-scale measurements of body shape to further analyze

the periods of time surrounding each larval transition. At each molt, we observed simultaneous

increases in length, decreases in width, and maintenance of volume. Based on the physical

characteristics of the cuticle, we propose a “Stretcher” mechanism whereby physical constraints

on cuticle stretch influence body shape. We find the Stretcher model-predicted shape changes are

consistent with observed data. Animals may be able to detect when the cuticle reaches its

maximum capacity for stretch providing a signal to initiate larval-stage transitions.

2.3. MATERIALS AND METHODS

2.3.1. Worm culture

The canonical laboratory strain N2 was obtained from the C. elegans Natural Diversity Resource

[114]. Animals were cultured at 20°C on 6 cm plates of modified nematode growth media

(NGMA), which contained 1% agar and 0.7% agarose seeded with E. coli OP50 bacteria [78].

2.3.2. Bacterial food

E. coli HB101 bacteria were prepared from cultures grown for 15 hours in Superbroth and then

pelleted by centrifugation. HB101 bacteria were diluted to OD100 in K medium (51 mM NaCl,

32 mM KCl, 3 mM CaCl2, and 3 mM MgSO4 in distilled water) and stored at -80°C. Bacteria

were thawed and fed to animals at a concentration sufficient to sustain population growth from

hatching to adulthood (OD20).
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2.3.3. Growth of the animals

Populations of animals were propagated on NGMA plates for two generations without starvation.

In the third generation, gravid adults were bleach-synchronized [115]. Embryos were

resuspended in K medium, aliquoted into a 500 mL flask at a concentration of one embryo per

µL, and allowed to hatch overnight. The following day, arrested L1s were fed HB101 bacteria at

a final concentration of OD20 in a final flask volume of 100 mL K medium and HB101 food.

Animals were grown for three days at 20°C with constant shaking. Following these three days,

adult animals were bleach-synchronized once more and embryos were aliquoted to seven

replicate 500 mL flasks at a concentration of one embryo per µL in 100 mL. The following

morning, six flasks were fed HB101 bacterial food at a final concentration of OD20 in a final

flask volume of 100 mL K medium and HB101 food. Two additional flasks were included to

control for L1 animal size and possible clumping of bacterial food: one flask contained L1 larvae

but did not have food added and one flask contained no larvae but the same concentration of

HB101 bacteria as the six flasks containing L1 larvae. All replicate flasks were kept in an

incubator at 20°C with shaking for the duration of the experiment. A small temperature gradient

of 1.25°C was recorded in the shaking incubator with the highest temperature readings on the

right side and lowest temperature readings on the left side. This slight variation in temperature

contributed to variation in developmental rate among replicates based on position within the

incubator (replicates were placed in numerical order with replicate 1 positioned on the far right

side of the incubator).
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2.3.4. High-throughput measurements of body size and fluorescence

Flasks were sampled each hour beginning one hour after feeding and continuing for 72

consecutive hours. At each hour, 500 µL was removed from each flask and transferred to a well

of a deep 96-well plate. Each flask was sampled at each time point. Fluorescent polychromatic

beads (Polysciences, 19507-5) with a 0.5 μm particle size were added to each well at a final

concentration of 3.64x108 beads/mL and incubated at 20°C for 10 minutes with shaking.

Following the bead incubation, 30 µL from each well of the deep 96-well plate was aliquoted to

a 96-well microtiter plate. The process was repeated 11 times to 11 separate wells of the same

microtiter plate with pipetting to mix the well contents from the deep 96-well plate. Animals

were then treated with sodium azide at a final concentration of 50 mM to paralyze and prevent

defecation of the ingested beads. The 96-well plate was imaged with an ImageXpress Nano

(Molecular Devices, SanJose, CA) using both 2x (Nikon MRD00025) and 10x (Nikon

MRH00101) objectives. The ImageXpress Nano acquires brightfield images using a 4.7

megaPixel CMOS camera. Images are stored in 16-bit TIFF format. Finally, animals were scored

using a large-particle flow cytometer (COPAS BIOSORT, Union Biometrica, Holliston MA).

The COPAS BIOSORT sheath flow rate was kept at a constant 10.3 ±0.1 mL per minute to

reduce variability in length measurements.

2.3.5. Image processing

Manual measurements of animal size were performed using the free Java image-processing

program ImageJ [116]. Well images for the six replicate flasks, excluding controls, were loaded

into ImageJ software. Length was measured from head to tail, and width was measured at the

widest point of the animal. Five animals were measured per well across thirty total wells for each
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hour. Measurements were repeated for all 72 time points in the assay. Body length and width

were used to estimate cross-sectional area (length*width). This metric was used to describe

animal area for the extent of the text. Volume was calculated from body length and width by

approximating the animal as a cylinder. Pixels were converted to µm using a conversion factor of

3.2937 µm/pixel.

2.3.6. Data processing

The COPAS BIOSORT was used to collect measurements of animal length (TOF), optical

extinction (EXT), and fluorescence for every animal in each well. These traits measure

properties of nematode development and, as such, increase as animals progress to adulthood

[117]. Optical extinction measurements correspond to the amount of light absorbed over the full

length of an animal as it passes through the instrument. An additional measurement (norm.EXT)

can be calculated by normalizing optical extinction by length. The raw data collected were

imported and processed using the easysorter R package [118].

The COPAS BIOSORT data were analyzed further using Gaussian finite mixture

modeling as implemented in the mclust R package [119]. These probabilistic models assume that

data are generated from a mixture of multivariate normal distributions and, therefore, can be used

to classify unstructured data into meaningful groups. Specifically, the mclust package fits a

mixture model to data and selects the optimal number of clusters using an

expectation-maximization algorithm and Bayes Information Criteria. For model-based clustering,

log transformed animal length (logTOF) and log transformed optical extinction (logEXT) were

used as inputs for the Mclust function. Data from each hour of the experiment was analyzed by

replicate and clusters that did not appear to include majority animal objects were identified and
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removed as described previously [120]. This processing removed non-animal objects such as

bacterial clumps, shed cuticles, and next generation larval animals from the time-course data.

We used a numpy polyfit regression of well median data from the COPAS BIOSORT and

image measurements to convert TOF and norm.EXT data to microns. Only the unit-corrected

BIOSORT data were used for further analysis.

2.3.7. Molt analysis

Fluorescence data obtained from the COPAS BIOSORT was used as a proxy for feeding

behavior to distinguish animals in a molt from growing animals. First, fluorescence was

normalized by EXT to account for the ability of larger animals to consume more food and beads.

Next, an analysis of variance statistical model was fit to the fluorescence data normalized by

EXT to determine the amount of variance contributed by replicate and well (Table S1). A local

kernel regression smoothing method was then applied to the residuals of the variance analysis

using the lokern R package [121]. Residuals were used to address only the differences over time

and ignore minor variation among replicates and wells. The local minima of the regression

function were found by solving for where the first derivative of this function equaled zero. The

time associated with each local minimum was used to represent the timing of each molt. Molts

occurred at 14, 25, 36, and 48 hours.

To identify periods of time that contained a majority of growing animals, the inflection

points of the regression function were calculated by solving for where the second derivative of

the function equaled zero. Time points between inflection points that did not contain a local

fluorescence minimum were considered as growth periods. These hours were 1-13, 17-22, 27-32,

and 39-45 corresponding to L1, L2, L3, and L4 growth periods.
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Each molt is initiated when animals enter quiescence: a behavioral state where animals

cease active feeding. To classify individual animals as in a molt or growing, we set a quiescence

threshold using fluorescence measurements at each local minimum. The fluorescence

measurement at each local minimum was as follows: 0.07, 0.06, 0.06, 0.06. The average of these

measurements (0.06) was used as the fluorescence threshold signifying quiescent behavior. Any

individual animals that fell below this threshold fluorescence value were designated as in a molt

and animals above this threshold value were classified as growing.

2.3.8. Comparison of model fits

To determine the volume growth model, we fit linear, exponential, and cubic functions to data

designated as growth periods for each larval stage. Both linear and nonlinear functions were

fitted using least-squares regression. Akaike’s information criterion (AIC) [122] and Bayesian

information criterion (BIC) [123] were goodness of fit criteria used to evaluate candidate models.

To assess the strength of evidence for each candidate model, we identified the model with the

smallest AIC or BIC value and assessed the difference between this value and the AIC or BIC of

the other two models. The magnitude of the difference was used to determine the level of support

for each candidate model as previously described [124,125]. All model fits and analysis were

performed using the stats R package.

2.3.9. Stretcher model analysis

To analyze shape dynamics, length and width data from growth time periods were extracted from

the full COPAS BIOSORT population data and analyzed from each replicate separately to avoid

issues with replicate variability. For replicate 2, the hours defining growth periods were 1-13,

16.37-22.39, and 26.93-32.96; corresponding to L1, L2, and L3. Hours defining larval stages
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were rounded as data was collected at exact hour increments. The L4 stage was excluded from

the analysis because of the high variability within the population. This occurs because small

changes in growth rate within each stage are amplified as the animals age. We applied a local

kernel regression, lokern R package [126], to smooth the population dynamics of length and

width. To calculate mean and standard deviation, the smoothed population measurements were

bootstrapped using 2,000 samples with replacement. To determine cuticle properties throughout

larval stages, we calculated the mean ratio of derivatives of regression width and length.

2.4. RESULTS

2.4.1. Quantitative measurements of C. elegans growth

We have optimized a quantitative growth assay that reliably measures small changes in C.

elegans body size throughout development (Figure 2-1). Our method provides both

high-throughput and high-precision assessment of developmental growth. In brief, populations of

100,000 animals were cultured in flasks. We cultured six replicate populations of C. elegans for a

total of 600,000 synchronized and growing animals. Every hour after feeding, a sample of the

population from each flask (~300 animals/flask) was collected to measure animal length, width,

and feeding rate. The ImageXpress system (Molecular Devices) was used to collect images of

sampled animals. Feeding rate, examined using ingestion of fluorescent microspheres as a proxy,

and body size were then measured using the COPAS BIOSORT (Union Biometrica). This

platform enabled further analysis of life stage and body size, contributing added precision to our

measurements.
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Figure 2-1. An overview of the quantitative growth assay. Synchronized animals were

cultured in flasks where six flasks contained replicate populations of nematodes, one flask had a

population of unfed animals, and one flask only contained bacterial food. At each hour of the

experiment, all eight flasks were sampled. In step 1, animals were transferred from each flask to

a single well of a 96-well microtiter plate. In step 2, fluorescent beads were added to each well.

Following a 10-minute incubation period, animals from each well of the deep-well plate were

transferred to several wells of a 96-well microtiter plate for step 3. In step 4, animals in each well

of the microtiter plate were imaged. In step 5, the same animals were measured using the COPAS

BIOSORT. This process was repeated every hour after feeding for 72 consecutive hours (see

Methods). Schematic of the experimental workflow was created with BioRender.com.

Two measurements of body size were collected from raw data taken from the COPAS

BIOSORT: time of flight (TOF) and optical extinction (EXT) (Figure S2-1). Time of flight is a

measurement of body length, and optical extinction corresponds to optical density, a

measurement influenced by body length, thickness, and composition [117,127]. We investigated
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whether optical extinction could be correlated to a different measure of body size using the

collection of manual size measurements obtained from images (see Methods). We calculated the

median length, width, area, and volume of animals in a subset of imaged wells from each hour of

the experiment. We then compared these values to median measurements of animals in each well

from the processed COPAS BIOSORT data. We found a strong correlation between manual

measurements of animal length from the image analysis and TOF measurements from the

COPAS BIOSORT (Figure S2-2). We also observed an equally strong correlation between

manual measurements of animal area and EXT as well as animal width and EXT normalized by

body length (norm.EXT). We then calculated animal volume using measurements from the

COPAS BIOSORT by using a cylindrical approximation for C. elegans shape (see Methods).

This result expanded the number of body size parameters that we were able to assess using the

COPAS BIOSORT data, allowing us to investigate growth dynamics in length, width, and

volume (Figure 2-2A-C). To disentangle nematode objects from non-animal objects (bacteria

clumps, detritus, shed cuticles), we employed model-based clustering to remove unwanted

objects and better examine growth of animals (Figure S2-3). Lastly, we converted unitless

COPAS BIOSORT measurements into microns (see Methods).
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Figure 2-2. Quantitative measurements of animal size. COPAS BIOSORT data of animal

length (A), width (B), and volume (C) after the removal of non-animal objects using

model-based clustering methods (see Methods).
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We report body length, width, and volume of animals at each hour of development from

L1 to adult (Figure S2-1 and Figure 2-2). Historically, growth of C. elegans has been shown as

a sigmoidal curve where exponential growth during larval stages reaches a maximum rate in

adulthood [110]. More recently, researchers have identified that growth curves are discontinuous

during development punctuated by larval transitions [42,111]. Using our quantitative growth

assay, we captured these small-scale discontinuities in larval growth rate as well as an apparent

growth maximum during early adulthood. We noticed that all size variables (length, width, and

volume) displayed these dynamics. Objects identified as animals appear to grow in size.

However, in particular time windows during development, growth dynamics visibly shift,

producing discontinuities in animal growth rate. With these data, we were able to further

investigate C. elegans growth and size control.

2.4.2. Fluorescence provides a quantitative measurement of animal feeding behavior and

developmental progression

In addition to body size and shape, the raw data from the quantitative growth assay included

measurements of fluorescence for each animal. To readily assess the thousands of measurements

acquired at each hour, we generated summary statistics of median well measurements (Table

S2-1). With these summarized data, we investigated the relationship between feeding behavior

and developmental stage. It is well established that temporary suspensions of C. elegans feeding

occur during each molt [43,110]. As such, active feeding is frequently used to distinguish

growing animals from individuals in a molt. We quantified feeding behavior by exposing animals

to fluorescent beads the approximate size of bacteria and measuring fluorescence of animals

[128]. Because larger animals are able to consume more food and therefore contain more
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ingested food, we normalized fluorescence by animal area to account for increases in body size

(Figure S2-4). The resulting fluorescence data showed a dynamic pattern (Figure 2-3A). At

approximately 15 hours, fluorescence steadily increased to a peak before decreasing back to

initial levels at approximately hour 27. This pattern, repeated three additional times, established

clear time windows of local minimal fluorescence. These local minima represent periods of time

where a large proportion of the population had reduced or ceased feeding and therefore suggests

time windows where a majority of animals were likely not feeding because they were in a molt.

We used a local kernel regression method to estimate a smooth curve and calculate the derivative

to identify the time associated with each local minimum (see Methods). We then assessed

images collected from the growth assay and found that periods of decreased feeding are

concurrent with the presence of shed cuticles, supporting that animals are undergoing a molt

during these periods of time (Figure S2-5). When we overlaid the timing of each local minimum

on the population size data, we were able to outline the start and end of each larval stage (Figure

2-3 B-D). Notably, local minima occurred approximately every ten hours, consistent with well

established observations of molt timing [110]. Furthermore, we observed a clear relationship

between changes in feeding behavior and growth dynamics where decreases in feeding occurred

simultaneously with discontinuous growth in length, width, and volume.
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Figure 2-3. Fluorescence dynamics outline larval stages. (A) Median normalized red

fluorescence (y-axis) over time (x-axis) is shown. The blue line represents the kernel regression
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fit to the data. The red vertical lines correspond to the local minima of the regression and

represent the transition between larval stages. Median length (B), median width (C), and median

log volume (D) are shown with larval-stage transitions as well. Upper and lower bounds of the

box plots correspond to the first and third quartiles. The upper and lower whiskers extend to 1.5

times the value of the interquartile range.

2.4.3. Changes in C. elegans body shape occur at larval-stage transitions

Adult body size is ultimately determined by the coordination of developmental progression and

rate of growth. To understand how C. elegans achieve final size, we must first examine how C.

elegans grow. Quantitative studies of C. elegans growth frequently assess changes in length or

volume over time; however, to fully characterize changes associated with growth, it is also

important to consider the dynamics of width. Two general models were proposed for C. elegans

growth in volume: linear and exponential [42,110,111]. Notably, these volume growth models

require different dynamics in length and width. To achieve linear volume growth, length and

width must increase at precise sublinear rates that together result in a linear increase in volume.

If animal length and width increased at a constant linear rate, then volume would increase at a

cubic rate. Alternatively, if both length and width grew exponentially, then volume would fit an

exponential model. We sought to identify which model best described C. elegans growth

behavior but were unable to consistently distinguish between linear, exponential, and cubic

models using statistical information criterion because of the similarity in the shapes of the

growth curves (Figure S2-6 and Table S2-2). This result is not surprising because computational

simulations have shown that increases in experimental noise, above 2% added noise, limit the

correct identification of growth models [129].
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Growth has important implications for how animals regulate size (length, width, or

volume). Size homeostasis requires that growth rate and developmental rate are coordinated.

Despite significant variation in individual growth rate, relative timing of C. elegans larval

transitions is highly similar across individuals [112,113], implying a control mechanism to

regulate developmental progression. Early work proposed a volume-based growth control model

in C. elegans [42], although recent work suggests that volume homeostasis is achieved through a

Folder mechanism [101]. To assess changes in body size and shape during a larval transition, we

examined the dynamics of animal length, width, and volume in the hours before, during, and

after each molt. We find that for each shape variable, larger animals enter molt first (Figure 2-4).

We also observe differences in the distributions of lengths during a larval transition compared to

widths and volumes. Measurements of animal width and volume remain unimodal throughout a

molt, but length does not. As larger animals begin to exit the molt, a rapid increase in body

length occurs that leads to the appearance of bimodality of lengths across the population.

Importantly, volume remains constant while length increases and width decreases, indicating a

change in body aspect ratio not size. Notably, the length increase occurs simultaneously with a

decrease in width across the population (Figure 2-4D). These changes in the physical

dimensions at each larval transition suggests that body shape may be involved in the control of

C. elegans growth.
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Figure 2-4. Changes in body shape occur during larval-stage transitions. Population density

curves of length (A), width (B) and volume (C) for the hours surrounding the L3 - L4 larval

transition (red horizontal line at 36 hours corresponds to the molt). Each distribution was divided

into five quantiles. The percentage of quiescent animals present within each quantile was

calculated (see Methods), and each quantile was colored to reflect this percentage. In all shape

variables, quantiles that contain the largest animals displayed an increase in quiescence earlier

than quantiles that contain the smallest animals. These dynamics were consistent across all

larval-stage transitions (Figure S2-7). (D) Median width vs. median length for experimental

hours 1 - 55. Red indicates measurements that fall above the quiescence threshold (see

Methods). Simultaneous changes in length and width occur during periods of increased

quiescence.

2.4.4. Modeling C. elegans cuticle stretch dynamics

2.4.4.1. Sensing of cuticle stretch as a trigger for larval-stage transitions

Previous studies theorized that the internal mechanism for sensing body size and triggering molts

in C. elegans is driven, in part, by the properties of the collagen-rich cuticle [42,101]. Many

cuticle collagen mutations cause morphological defects in nematode shape [130]. Some of these

mutants are shorter than the wild type but do not have differences in animal width, implying that

the cuticle affects length and width independently [32]. The C. elegans cuticle does not grow

through the addition of new material but rather stretches to accommodate increases in animal

body size. Cuticle stretch is likely limited by the material properties of the cuticle. The C.

elegans cuticle is primarily made of cross-linked collagens organized into lateral ridges and

circumferential bands [131]. Commonly found in many biological systems, collagen-based
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materials are fairly flexible under low stress conditions. However, as stress increases, collagen

fibrils become elongated and orient in the load bearing direction leading to a decrease in

elasticity [132]. Previous work using atomic force microscopy revealed a high level of

biomechanical stiffness at the circumferential bands [133], leading others to speculate that

mechanical strain on these structures is likely adjusted as internal body pressure changes [134].

Additionally, in nekl-3(sv3) molting mutants, the cuticle is not properly removed from the middle

part of their body, leaving the free head and tail to grow normally while the encased middle is

constricted by the old cuticle to pre-molt dimensions [135]. Given this body restriction, we

speculated that the old cuticle stretches beyond its tolerance, becomes stiff, and constricts the

center of the nematode relative to the growing head and tail size. To our knowledge, it is

unknown if the cuticle stretches enough during the course of normal development to become stiff

in either the length or width directions. If the cuticle does become stiff before a molt, C. elegans

may be able to sense the reduction of elasticity or "stretchiness,” and use this signal, along with

others, to determine when to initiate a molt. To detect possible changes in cuticle stretch during

normal development, we asked how changes in cuticle elasticity will impact body shape.

To understand the impact of cuticle elasticity on body shape, we developed a “Stretcher”

model independent of our measurements during development. We propose that the nematode

passes through three distinct regimes related to cuticle stretch: linear stretch dynamics, nonlinear

stretch dynamics, and the larval-stage transition (Figure 2-5). These regimes arise naturally from

the following biologically supported assumptions. The cuticle structure is anisotropic, possibly

leading to distinct stiffness properties in the length and width directions [136,137]. We

approximated the cuticle as a hollow cylinder of negligible thickness filled by the body of the



54
nematode. Growth was modeled as internal pressure evenly applied to the cuticle in all

directions. An anisotropic, elastic cuticle responds differently to pressure from growth during

linear stretch, nonlinear stretch, and post-molt relaxation, leading to differences in shape during

each stage of development.

Figure 2-5. Cuticle stretch dynamics guide larval-stage transitions. The Stretcher model

describes each larval stage as a cycle. Nematodes are modeled as a cylindrical object with a thin

cuticle epidermis. (Box 1) Linear Stretch Dynamics: uniform growth pressure stretches the

cuticle linearly in both length and width. (Box 2) Nonlinear Stretch Dynamics: the cuticle has

reached a stretch threshold in length, and under uniform growth pressure the length stretches less
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(sub-linear) and width stretches linearly. (Box 3) Larval Stage Transition: a new cuticle is formed

and the old cuticle is shed (ecdysis), removing constraints in length. The nematode body

“relaxes” in length, causing an increase in length, a decrease in width, and constant volume.

In the linear stretch regime (Figure 2-5), the cuticle would be linearly elastic in both the

length and width directions, stretching proportionally to the pressure exerted on the cuticle.

Previous work found evidence for a linearly elastic cuticle [138,139] in animals expanded in a

negative external pressure environment or after positive force was applied to the cuticle. Gilpin

et al. found evidence of linear elasticity in the nematode body. We conjecture that this linear

elasticity is caused by the constraints applied by the cuticle [138,139]. A linearly elastic cuticle

will have stretch in the length direction and stretch in the width direction, each related to∆𝐿 ∆𝑊

growth-applied pressure by∆푝

(1)∆𝐿 =  𝑎
𝐿
∆푝

. (2)∆𝑊 =  𝑎
𝑊

∆푝

The “stretch coefficients” in length, , and width, , measure the stiffness of the cuticle (File𝑎
𝐿

𝑎
𝑊

S5, Eq. S4-S13). Smaller values correspond to a stiffer material, which is less able to stretch in

response to pressure. The stretch coefficients are constant in the linearly elastic regime and are

determined by geometric constants and material properties. The ratio of the change in length (Eq.

1) and width (Eq. 2) produces a pressure-independent relationship that depends only on the ratio

of the geometric and material properties, which can be verified using measurements of length

and width (Figure 2-3). During the linearly elastic regime, the ratio of growth in width to growth

in length is constant throughout a larval stage where the cuticle properties are fixed as in
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(3)∆𝑊
∆𝐿  =  

𝑎
𝑊

𝑎
𝐿

=  푐표푛푠푡𝑎푛푡.

In the nonlinear stretch regime (Figure 2-5), growth continues to apply pressure to the cuticle

uniformly in all directions. As observed in nekl-3(sv3) mutants, the cuticle can restrict body

growth [135]. Once outside of the linearly elastic regime, the cuticle would hardly stretch, even

under large forces. We hypothesize that this shift from linear to nonlinear regimes can provide a

mechanism for size-sensing and cues the larval-stage transition (Figure 2-5). In principle, this

transition could occur in either the width or length directions. For simplicity, we illustrate a

transition from linear to nonlinear stretch in the length direction while linear stretch in the width

direction is maintained. In the nonlinear regime, the stretch in the length direction in response to

pressure becomes

(4)∆𝐿 ≈ 𝑎
~

𝐿
(푝) ∆푝.

The nonlinear “stretch coefficient,” is no longer constant and decreases with increasing𝑎
~

𝐿
(푝),

pressure. It is smaller than because the cuticle has become less elastic than in the linear𝑎
𝐿

regime. If the length-direction enters the nonlinear regime and has reduced stretch response and

width has the same constant stretch response, then we expect the / ratio to increase∆𝑊 ∆𝐿

(5)∆𝑊
∆𝐿 |

푛표푛−푙푖푛푒𝑎푟
 =  

𝑎
𝑊

𝑎
~

𝐿
(푝)

>  
𝑎

푤

𝑎
𝐿

= ∆𝑊
∆𝐿 |

푙푖푛푒𝑎푟
.

If the width-direction enters the nonlinear regime first, then the / would decrease. It is∆𝑊 ∆𝐿

possible that both length and width could enter the nonlinear regime at around the same time, in

which case the change in the / ratio would depend on the differences in the∆𝑊 ∆𝐿

pressure-dependent stretch coefficients. This prediction motivates an analysis of the / ratio∆𝑊 ∆𝐿
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of the shape data (Figure 2-4), to determine if any sign of a nonlinear stretch regime in either

direction is observed.

During the larval-stage transition (Figure 2-5), a new, larger cuticle is formed beneath the

old cuticle that is shed during ecdysis. Because the old cuticle constrained growth in length, we

predict a rapid increase in the length direction when the constraint is removed. Animal volume is

conserved as growth does not occur during this process. Therefore, the relaxation in length is

accompanied by a corresponding decrease in width.

2.4.4.2. Discontinuities in animal growth rate driven by limits on cuticle stretch

To test whether the shape dynamics predicted by the Stretcher model are consistent with the data,

we analyzed the relationship between measured nematode length and width over developmental

time. This analysis requires no model fitting or assumptions about which direction may enter a

nonlinear regime first, and it involves only calculating / . Although the shape relaxation for∆𝑊 ∆𝐿

an individual animal is expected to happen at a much shorter time scale than data collection

(seconds to minutes), the measured shape change within the population occurs on a larger time

scale (several hours). As such, we can observe the sudden shape change at transitions by

assessing changes in length and width of the population (Figure 2-6). Doing so, we detected all

three regimes predicted by the Stretcher model in the COPAS BIOSORT data: linear stretch,

nonlinear stretch, and relaxation (Figure 2-6A). In all larval stages, we observed an

approximately constant instantaneous / ratio, consistent with a linear stretch regime∆𝑊 ∆𝐿

(Figure 2-6B and Figure 2-6C). We also detected a large slope decrease during the L1 stage,

which could correspond in time to the metabolic decision for entry into the stress-resistant,

developmentally arrested dauer stage [140] divisions of the seam cells, a population of epidermal
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stem cells in C. elegans [33]. Although transitions in the slope ( / ratio) are difficult to∆𝑊 ∆𝐿

detect at all larval stages because of noise amplification and population effects (Figure S2-9), we

observed a sharp slope increase, consistent with a nonlinear stretch regime in length prior to

larval stage transitions (see end of L2 and L3 stages). Following the nonlinear stretch regime, we

noted a simultaneous increase in length and decrease in width at the transition between larval

stages, consistent with a length threshold in the Stretcher model (Figure 2-5D, Figure 2-6A, and

Figure S2-8). As a whole, the changes in animal shape are consistent with the hypothesis that the

cuticle reaches the nonlinear elastic regime before larval-stage transitions during normal

development. The ability to sense when a critical cuticle stiffness is reached would allow animals

to monitor relative changes in body growth within each larval stage, serving as a connection

between growth rate and developmental timing.
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Figure 2-6. Experimental data are consistent with a length threshold in cuticle stretch. (A)

A grayscale histogram of the width (y-axis) vs length (x-axis) of all sampled animals in replicate

2. The range of all bootstrap regressions is in gold. (B) Demonstration of calculating the ratio of

width-to-length stretch as the local slope using L3. Left panel is a repetition of L3 data from

Figure 2-6A. Right panel is a repetition of results from Figure 2-6C. (C) Within a larval stage,

the ratio of width to length stretch varies over time. The standard deviation captures population

variation (grey).
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2.5. DISCUSSION

Using an integrated image-based and flow-based phenotyping strategy to precisely evaluate

feeding, growth, and molt dynamics at high replication, we detected oscillations in feeding

behavior consistent with larval progressions and used these dynamics to define larval stages. We

observed changes in body shape at each larval-stage transition that can be driven by differences

in physical cuticle properties along length or width (anisotropy). These results suggest a

mechanism by which animals sense their size and control molt timing by detecting the physical

stretch of the cuticle, demonstrating how physical constraints can influence developmental

timing and growth rate.

2.5.1. A potential role for cuticle stretch in the timing of larval-stage transitions

Measurement of both animal length and width allowed us to observe changes in body shape as

well as body size. We propose a mechanism in which a stretch threshold along the body length

axis acts as a trigger to larval-stage transitions. Previously, a Folder mechanism for C. elegans

growth has been suggested [101]. Mechanical stretch sensing could provide organisms a way to

couple the rate of growth and development to maintain a constant relative change, or fold

change, in volume within a larval stage. In this way, smaller animals would reach a stretch limit

at a smaller size as the cuticle would only stretch by a percentage of its original size before

reaching a threshold. For cuticle stretch to trigger larval-stage transitions, animals must either

have the ability to measure the amount the cuticle has stretched or the stiffness of the cuticle.

Across biological systems, cells can respond to the stiffness of their environment using

mechanosensitive components [141,142], but few examples in tissues or whole-organisms are
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known. In C. elegans, it has been demonstrated that hemidesmosomes, which connect the cuticle

and the epidermis, are mechanosensitive during embryogenesis [143,144]. Additionally, dense

bodies, which connect the epidermis and muscles, are hypothesized to be mechanosensitive as

well [48,145–147]. Changes in cuticle composition, and presumably stiffness, have been shown

to also affect well known growth controlling pathways such as the BMP signaling pathway

[148]. These possible mechanosensitive components could monitor the stiffness of the cuticle

and be part of the signaling pathways that regulate the initiation of molts. Further experiments

are required to explicitly test whether these components control larval-stage transitions but

disentangling epistatic growth effects in mutants from specific mechanosensation effects might

be difficult. It is also important to note that evidence for a stretch-based mechanism for growth

control does not preclude the possibility of a developmental timer. It is likely that physical

constraint-based events are part of a larger regulatory system coordinating developmental

decisions.

Our analysis of / ratio changes over larval stages provides a first approximation of∆𝑊 ∆𝐿

the timing of cuticle stretch properties. The increase we observed in the / ratio, followed∆𝑊 ∆𝐿

by sudden relaxation to a longer thinner animal is consistent with a decrease in the elasticity of

the cuticle in the length direction before a molt. These observations of shape change also indicate

that C. elegans do not preempt the shape change by molting before they hit the “stretch limit”,

meaning that the decrease in elasticity could be detected by the animal and this stretch-based

physical constraint mechanism could play a role in developmental decisions. Interestingly, when

observing the L4 to adult transition, others have detected anisotropic constriction on the

transverse (width) axis followed by gradual relaxation driven by rearrangements in cortical actin
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networks [149]. Single-worm, high frequency measurements targeting hours surrounding the

sudden width-to-length ratio increase, are needed to better resolve cuticle shape dynamics.

Although analysis of the larval growth dynamics for C. elegans body shape mutants (dpy, lon, or

sma) may provide insights into / ratio variation, measurements of whole-animal length and∆𝑊 ∆𝐿

width only provide a total stiffness estimate, leaving us unable to distinguish the contributions of

cuticle stiffness from other tissues. For example, previous work has shown that bodies of

dpy-10(e128) mutants are twice as stiff as the wild type [150], and dpy-5(e61) mutants are softer

than wild-type animals [138]. Authors have speculated that this difference in stiffness is caused

by an increased internal glycerol concentration in dpy-10(e128) animals that is absent in

dpy-5(e61) animals [150]. Therefore, although these mutations impact body shape similarly, they

do not have the same effect on body stiffness, indicating that body shape alone does not predict

body stiffness. To assess cuticle properties independent of other nematode tissues and organs,

future experiments probing the stiffness of free cuticles are necessary.

Additionally, within the L1 stage, the relative stretch measured in width and length did

not follow the pattern observed in other larval stages. We observed a mid-stage dip in the

width-to-length ratio that is otherwise approximately constant throughout the L1 stage.

Experiments exploring the structural properties of cuticles at all larval stages might help to

determine where the L1 shape changes originate.
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2.5.2. Development comprises complex interactions of growth regulation across diverse

scales

Our results are consistent with a model in which C. elegans use physical constraints on animal

size, in tandem with other regulatory mechanisms, to control growth rate and determine

developmental transitions. This type of regulation could be applicable to organisms with stiff

cuticles or other physical barriers to growth, like many species of Ecdysozoa. The control of

whole-organism growth requires cells, tissues, and organs to orchestrate final size and cell

number. In C. elegans, cell number is precisely defined and invariant from animal to animal

[151], so the final adult size of an individual must come from cell size as opposed to number.

Future studies should focus on how whole-organism size is determined by the integration of cell,

tissue, and organ size. By incorporating these different developmental scales, the Stretcher model

can be refined to completely describe how physical constraints on parts of the organism impact

the whole. C. elegans gives investigators a powerful system to investigate animal-to-animal

variation in developmental trajectories across each of these scales.
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2.7. SUPPLEMENT

Figure S2-1. Raw measurements of animal size. Raw COPAS BIOSORT data of animal length

(A), width (B), and volume (C) are shown here. After 60 hours, animals have developed to the

adult stage. Smaller objects observed after 65 hours were the next generation of newly hatched

L1 larvae laid by the animals that developed during the time course.
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Figure S2-2. Correlation analysis of body size measurements. Manual measurements of

animal length, width, and estimated area were compared to COPAS BIOSORT measurements of

TOF (time of flight), norm.EXT (extinction normalized by TOF), and EXT (extinction),

respectively. A Kendall correlation value is shown in each plot.
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Figure S2-3. Mixture modeling of COPAS BIOSORT data was used to prune data. Mixture

models of Gaussian distributions were fit to log transformed animal length (x-axis) and log

transformed optical extinction (y-axis). Data from each hour of the experiment was analyzed and

processed to remove clusters that did not include animal objects. All replicates were pruned

independently; a subset of data from replicate 2 is shown here. Panels indicate experimental

hours from which data were taken. Across the entire dataset, approximately 50% of objects were

identified as non-animal objects and removed for all further analysis.
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Figure S2-4. Fluorescence measurements normalized by body size. Red fluorescent beads

were fed to animals during experimentation and fluorescence data was collected by the COPAS

BIOSORT. Raw data were summarized by well to obtain median red fluorescence measurements

(A). Fluctuations in fluorescence indicate fluctuations in feeding behavior. Median red

fluorescence data was normalized by body size measurements (TOF - length in (B), EXT - area

in (C), and volume in (D)) to account for increases in body size. Dividing fluorescence by area

resulted in dynamics where local minima in fluorescence reached a baseline and therefore was

most successful in normalizing fluorescence dynamics to account for changes in animal size over

time.
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Figure S2-5. Cuticles identified during periods of decreased feeding. Images of wells

collected during the experiment were examined for evidence of shed cuticles. (A) Experimental

hours where cuticles were identified from images overlap with hours where population feeding

behavior is low. Cuticles shed from the L4-Adult molt persisted longer than previous larval stage

cuticle debri. (B) Example image of animal without visible cuticle during a period of elevated

feeding. (C) Example image of an animal with visible cuticle indicating completion of molt

during a period of decreased feeding. Scale bar, 263.5 µm.
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Figure S2-6. Volume growth data fit with linear, exponential, and cubic models. Volume data

of individuals in time points defined as growth periods are analyzed for each stage. L1 stage was

further separated into two periods to account for the volume dip that occurs mid-stage. Shapes of

the three growth curves all appear relatively similar due to the high relative noise in the data. The

coefficient of variation is between 15-16% over the course of the experiment. Computational

simulations have shown that increases in experimental noise limit the correct identification of

growth models [129].
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Figure S2-7. Density plots of population size dynamics across all larval transitions. Density
curves of length (A), width (B) and volume (C). Curves are divided into five quantiles and
colored by the percentage of quiescent animals present within that quantile. Molts are estimated
to occur at experimental hours 14, 25, 36, and 48 (see Methods).
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Figure S2-8. Animals in all replicates, measured from images. Animal length and width over

C. elegans development captured from image data. Higher noise levels in these measurements

preclude accurate regressions to individual larval stages. Length jumps and width dips are still

apparent. Compare with Fig 6.
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Figure S2-9. Stretcher model analysis of replicate 2 COPAS BIOSORT data for different

stage thresholding. Compare to Figure 2-5. Larval hours were defined by taking the ceiling of

the lower boundary and the floor of the upper boundary. This rounding method for larval stage

definition demonstrates the sensitivity of the analysis to edge effects. The unexpected step in the

L2 larval stage (Fig 6) was significantly reduced with this rounding method.
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Table S2-1. Results of analysis of variance models fit to COPAS BIOSORT data. Analysis of
variance tests were used to quantify the amount of variance in our data contributed by the
sampling technique. The sampling technique involved unbiased sampling of animals from six
replicate populations and subsequent distribution into multiple wells of a microtiter plate for
analysis. We quantified the amount of variance contributed by replicate and well. We find that
the variance explained by well is nearly negligible whereas replicate contributes minor variance
in some measurements. Given this information, we deem the generated summary statistics an
appropriate representation of the population. Df = degrees of freedom, Sum Sq = sum of squares,
Mean Sq = mean squares (or ), F value = F-statistic, Pr(>F) = p-value, % Var푠푢푚 표푓 푠푞푢𝑎푟푒푠 푒푟푟표푟

푑푒푔푟푒푒푠 표푓 푓푟푒푒푑표푚
Explained = percent variance explained.
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Table S2-2. Model fit criteria used to assess candidate growth models. To determine the level

of support for each model, the candidate model with the smallest raw AIC was identified and

compared to other AIC values. The same assessment was performed for BIC. The magnitude of

the or value was then used to determine the level of support for each candidate∆𝐴𝐼𝐶 ∆𝐵𝐼𝐶

model given previously established significance thresholds [124,125]. If the delta value was

greater than 6, the model with the smallest raw AIC or BIC value was denoted as the best model.

If the delta value was less than 6 but greater than 2, the model with the smallest AIC or BIC

value was determined to likely be the best model. If the delta value was less than 2, we are

unable to distinguish the model of best fit.
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3

3. Multiple genetic loci underlie
differences in C. elegans growth

The Andersen Lab is particularly adept at connecting phenotypic variation in a population to

unique genetic variants. As a follow-up to the work described in the previous chapter, I was

interested in leveraging this expertise to explore how natural genetic variation influenced growth

in C. elegans. This meant running another long time-course experiment (on my golden birthday

no less!), digging into a treasure trove of “throw-away” data collected in 2014, and working with

a few new strains other than our old friend, N2. The following chapter is based off of my work

on this project. It was submitted as a first-author manuscript to G3 in April 2022 [152].
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3.1. ABSTRACT

Growth rate and body size are complex traits that contribute to the fitness of organisms. The

identification of loci that underlie differences in these traits provides insights into the genetic

contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model

for quantitative genetics, we can identify genomic regions that underlie differences in growth.

We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild

strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we

identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are

associated with variation in body size. We further examined these size-associated QTL using

chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL.

Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes

could potentially contribute to differences in animal growth and should be evaluated in

subsequent studies. Our work reveals the genetic architecture underlying animal growth variation

and highlights the genetic complexity of body size in C. elegans natural populations.

3.2. INTRODUCTION

Precise regulation of final body size is essential to the development and fitness of organisms.

Although a larger body size can increase competitive advantages, it also requires added time and

nutrients to develop [88]. For this reason, mechanisms that control developmental growth rate

and ultimate body size are likely under strong natural selection.

The robustness and precision with which animal development is choreographed is still

not well understood. Developing systems coordinate the organization and interaction among
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cells, tissues, and organs at high reproducibility even in the presence of genetic and

environmental perturbations. The early developmental biologist C.H. Waddington coined the

term “canalization” to describe this biological robustness [153]. Developmental canalization has

been widely studied in human growth [154–156], and shown that to achieve an adult height

within normal range, shorter individuals tend to undergo accelerated growth whereas taller

individuals experience a decreased rate of growth [157]. In this way, the growth curves of

individuals, though variable, converge on a narrow range.

To study the phenomenon of organismal size uniformity, considerable precision and

throughput is needed, which can be a challenge when working with multicellular organisms. The

nematode Caenorhabditis elegans presents a powerful model organism to study developmental

growth. C. elegans has a quick generation time, produces large numbers of genetically identical

offspring, and is easily cultured in controlled laboratory conditions [30]. Furthermore, C. elegans

post-embryonic development is well characterized and marked by four larval-stage transitions

(molts) that separate the C. elegans life cycle into five distinct stages: four larval stages (L1-L4)

and adult [40]. The timing of these molts determines the completion of stage-specific

development [47,48], underscoring the importance of developmental growth regulation in C.

elegans.

We can leverage C. elegans natural genetic diversity [67,68,86,158,159] to connect

phenotypic differences to genetic variants. Two particular strains of interest are the

laboratory-adapted wild-type strain, N2, and a wild strain from Hawaii, CB4856. The genetic

diversity between these two strains was shown to underlie multiple phenotypic differences,

including aggregation behavior, life history traits, and gene expression [86]. Recombinant inbred
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lines constructed from crosses between the N2 and CB4856 strains each have unique variants

derived from each parental background. Performed at a large scale, these populations of

recombinant individuals are a powerful tool to identify genomic regions that are correlated with

phenotypic variation. Mapping the natural variation underlying phenotypic differences allows for

the dissection of genetic networks involved in important biological processes. Many others have

taken this approach to study the genetic underpinnings of complex traits [86,159].

To characterize the genetic basis for variation in body size and growth in C. elegans, we

first performed a longitudinal study of post-embryonic growth in N2 and CB4856 animals.

Although we observed similar patterns in overall growth dynamics, we also noticed small

differences in body size at individual time points across development. To study these differences

in size, we used linkage mapping to identify three distinct QTL that influence animal size

variation. We further assessed each QTL independently using chromosome substitution strains

and near-isogenic lines. Doing so, we validated the chromosome X QTL and identified

promising candidate genes that could contribute to the differences in size between the N2 and

CB4856 strains. Our work provides a framework for future studies to investigate the genetic

mechanisms controlling developmental growth and body size in natural populations of C.

elegans.

3.3. MATERIALS AND METHODS

3.3.1. Strains

Animals were grown at 20°C on 6 cm plates of modified nematode growth media (NGMA),

containing 1% agar and 0.7% agarose seeded with E. coli OP50 bacteria. Recombinant inbred

advanced intercross lines (RIAILs) used for linkage mapping were constructed previously [117].



79
The construction of chromosome substitution strains (CSSs) and near isogenic lines (NILs) used

for validation is detailed below. Strains are available upon request.

3.3.2. High-throughput growth assay

Measurements of body size and fluorescence were measured as previously described [87].

Briefly, the N2 and CB4856 strains were propagated for three generations, bleach-synchronized,

and titered at a concentration of 1 embryo per µL into six replicate 500 mL flasks for a final

volume of 25 mL. The following day, arrested L1s were fed HB101 food at a final concentration

of OD20 in a final flask volume of 100 mL K medium and HB101 food. Animals were then

grown at 20°C with constant shaking. Flasks were sampled each hour beginning one hour after

feeding and continuing for 51 consecutive hours. At each hour, animals were sampled from each

flask, treated with sodium azide, imaged with an ImageXpress Nano (Molecular Devices,

SanJose, CA) and scored using a large-particle flow cytometer (COPAS BIOSORT, Union

Biometrica, Holliston MA). The COPAS BIOSORT platform was used to collect measurements

of animal length (TOF) and optical extinction (EXT). Normalized optical extinction (norm.EXT)

was previously established as a proxy for animal width. The raw data collected were imported

and processed using the easysorter R package [118]. Processing removed non-animal objects

such as bacterial clumps, shed cuticles, and next generation larval animals from the time-course

data using the mclust R package [119].

3.3.3. High-throughput fitness assay for linkage mapping

For RIAIL phenotyping, we used a high-throughput fitness assay previously described [117]. In

brief, populations of each strain were propagated on NGMA plates for four generations after

which gravid adults were bleach-synchronized and embryos from each strain were aliquoted at a
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concentration of 25-50 embryos/μL into 96-well microtiter plates for a final volume of 50 μL K

medium. The next day, arrested L1s were fed HB101 bacterial lysate (Pennsylvania State

University Shared Fermentation Facility, State College, PA; [160]) at a final concentration of 5

mg/mL in K medium and grown to the L4 larval stage for 48 hours at 20°C with constant

shaking. Animals were then sorted using a COPAS BIOSORT platform during which time

animal length and width were collected. Measurements collected by the COPAS BIOSORT were

processed and analyzed using the easysorter R package [118]. Well populations of recombinant

strains that contained more than 100 or fewer than three individuals were removed from further

processing, resulting in an average of 25 independent replicate wells per strain. Differences

among strains tested on different days were controlled using a linear model (animal_size ~

experiment_date). In this way, we address only the differences among strains caused by growth

and the day-to-day experimental variance is controlled. These residual values are used for

plotting.

3.3.4. Linkage mapping

310 RIAILs (set 2 RIAILs) were phenotyped using the high-throughput assay described above.

Linkage mapping was performed for body size traits using the R package linkagemapping

(www.github.com/AndersenLab/linkagemapping) as previously described [81]. The genotypic

data and residual phenotypic data were merged using the merge_pheno function with the

argument set = 2. Quantitative trait loci (QTL) were detected using the fsearch function. This

function calculates the logarithm of the odds (LOD) scores for each genetic marker and each trait

as -n(ln(1-R^2)/2ln(10)) where R is the Pearson correlation coefficient between the RIAIL

genotypes at the marker and trait values [161]. A significance threshold based on a 5%
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genome-wide error rate was calculated by permuting the phenotypic values of each RIAIL 1000

times. QTL were identified as the marker with the highest LOD score above the significance

threshold. This marker was then integrated into the model as a cofactor and mapping was

repeated iteratively until no further significant QTL were identified. Finally, the annotate_lods

function was used to calculate the effect size of each QTL. 95% confidence intervals were

defined by a 1.5-LOD drop from the peak marker.

3.3.5. Generation of chromosome substitution strains (CSSs) and near-isogenic lines

(NILs)

CSSs were generated from a cross of the N2 and CB4856 strains. These strains were crossed and

heterozygous hermaphrodite progeny were mated to each parental genotype for four generations

followed by three generations of selfing to ensure homozygosity of the genome. For each cross,

PCR amplicons for insertion-deletions (indels) on the left and right sides of chromosomes IV and

V were used to confirm progeny genotypes and select non-recombinants within the introgressed

region (S1 Text). CSSs were whole-genome sequenced to confirm their genotypes.

NILs were generated as previously described [81,85,162,163] by either backcrossing a

selected RIAIL or NIL for six generations or de novo by crossing the parental strains N2 and

CB4856 to create a heterozygous individual that was then backcrossed for six generations. PCR

amplicons for indel variants were used to track the genomic interval (S1 Text). NILs were

whole-genome sequenced to verify introgressions.

3.3.6. Statistical analysis of CSS and NIL results

Growth dynamics for CSSs were tested using a modified version of the high-throughput fitness

assay for linkage mapping. Animals were propagated on NGMA plates for two generations
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before gravid adults were bleach-synchronized and embryos from each strain were aliquoted at a

concentration of 1 embryo/μL into 12-well, flat bottom culture plates. After three days, gravid

adults were bleach-synchronized and embryos were titered into 96-well microtiter plates at a

concentration of 50 embryos/μL for a final volume of 50 μL K medium. The next day, arrested

L1s were fed HB101 live bacterial food at a final concentration of OD20. Animals were grown

for 48 hours at 20°C with constant shaking and then scored using the COPAS BIOSORT

platform as before. The raw data collected were again imported and processed using the

easysorter R package [118]. Processing removed non-animal objects such as bacterial clumps,

shed cuticles, and next generation larval animals from the time-course data using the mclust R

package [119]. Complete pairwise strain comparisons were performed using the TukeyHSD

function [164] on an ANOVA model with the formula phenotype ~ strain. A p-value of p < 0.05

was used as a threshold for statistical significance. Recapitulation was defined by the

significance and direction of effect the CSS or NIL had compared to the parental strains.

3.4. RESULTS

3.4.1. Growth dynamics of the N2 and CB4856 strains

To precisely evaluate C. elegans growth dynamics, we previously developed a high-throughput

growth assay that integrates image-based and flow-based devices to quantify the growth of

thousands of animals over developmental time [87]. We used this assay to collect body size

measurements of N2 and CB4856 animals over the course of larval development from the L1

stage through the L4 stage. Briefly, populations of 100,000 animals were cultured in flasks in

triplicate for each strain. Every hour after feeding, we sampled the population from each flask
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(approximately 300 animals per flask), collected images, and measured length (TOF) and width

(norm.EXT) of sampled animals using the COPAS BIOSORT platform (Figure S3-1). From

these raw body size measurements, we removed non-animal objects using model-based

clustering and generated summary statistics to study population changes (Figures S3-2 and S3-3,

see Methods). Here, we report mean length and mean width of animals over 51 consecutive

developmental time points (Figure 3-1). Overall, we observed little divergence in growth

behavior between the two strains. As previously reported, we detected continuous growth

punctuated by periods of discontinuous growth rate, resulting in visible shifts in length and width

over time. Although growth behavior is consistent in both N2 and CB4856 animals, we capture

significant differences in animal length and width at individual time points, particularly early in

development (Figure S3-4). As animals age we identify fewer time points with significant

differences likely due to increased population variance. We find that across all instances where

there is a significant difference in animal length, N2 is consistently longer than CB4856.

However, this is not the case in animal width as we observe time points where CB4856 is wider

than N2 and others where it is thinner.
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Figure 3-1. Quantitative measurements of growth for N2 and CB4856 animals. Tukey

boxplots of mean length (A) and mean width (B) for the N2 (orange) and CB4856 (blue) strains

over developmental time. The horizontal line in the middle of the box is the median, and the box

denotes the 25th to 75th quantiles of the data. The vertical line represents the 1.5 interquartile

range. Inset plots magnify mean animal size measurements from hour 48. Each point

corresponds to the means length or mean width of a population of animals in each well.
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3.4.2. Identification of QTL underlying variation in growth

As a complex trait, developmental growth is likely influenced by many genes as well as the

interactions among them. To investigate the genetic basis of differences in growth, we assessed

the development of a panel of 310 RIAILs derived from a cross between the N2 and CB4856

strains (set 2 RIAILs, see Methods). In lieu of collecting measurements throughout

development, we used body size as a convenient proxy for developmental progression, where

fast growth corresponds to large size and slow growth corresponds to small size. After 48 hours

of growth, we collected measurements of length and width using a high-throughput fitness assay,

and removed wells containing more than 100 or fewer than three animals from downstream

processing (see Methods). Doing so, we observed a distribution of both length (Figure 3-2A)

and width (Figure 3-2D) among the RIAILs, indicating that growth rate varies in the strain

population. Next, we mapped body length and width separately and obtained three significant

QTL (Figure 3-2B,E). The length-associated QTL, spanning the center of chromosome IV, and

the width-associated QTL on the center of chromosome V independently explain approximately

5% of the phenotypic variation among the RIAILs. The third QTL on the right arm of

chromosome X explains slightly more variation at 8.6% (Table 3-1). Notably, not only did we

find distinct QTL for length and width, we also observed QTL with opposite effects on body

shape. Strains with the N2 allele on chromosome IV were longer than strains with the CB4856

allele at this location (Figure 3-2C). By contrast, strains with the CB4856 alleles on

chromosomes V and X were wider than strains with the N2 allele at these loci (Figure 3-2F).

The identification of distinct QTL for length vs. width indicates that body shape is influenced by

multiple genetic mechanisms. Additionally, we scanned the genome for interactions between
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pairs of genomic markers that could affect the phenotypic distribution of length or width in the

RIAILs and identified no significant interactions (Figures S3-5 and S3-6). These data suggest

that the three identified loci contain variants that uniquely influence growth rate along multiple

axes, where each locus independently affects the longitudinal or circumferential growth of

animals.

Figure 3-2. Linkage mapping identifies three QTL associated with body size. Histogram of

normalized mean body length (A) and mean body width (D) of the RIAIL population. (B, E)

Linkage mapping results for mean body length or mean body width are shown with genomic

position (x-axis) plotted against the logarithm of the odds (LOD) score (y-axis). X-axis tick

marks denote every 5 Mb. Significant QTL are denoted by a red triangle at the peak marker, and

blue shading shows the 95% confidence interval around the peak marker. The percentage of the

total phenotypic variance in the RIAIL population that is explained by each QTL is shown above

the peak marker. (C, F) Tukey box plots show the normalized mean length or width (y-axis) of
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RIAILs split by genotype at the marker with the maximum LOD score (x-axis). Populations of

recombinant strains were grown in independent wells. Each point corresponds to the mean value

of all well means. Boxes for data from strains with the N2 allele are colored orange, and boxes

for data from strains with the CB4856 allele are shown in blue.

Table 3-1. Body size QTL

Trait Chromosome Interval (bp) Peak LOD Variance
explained (%)

Effect
size

Length IV 6,211,685 - 12,868,784 9,392,639 3.22 5.28 -0.229

Width V 5,371,124 - 12,112,105 11,806,498 4.54 5.59 0.236

Width X 12,565,734 - 13,173,080 12,750,794 5.25 8.63 0.293

3.4.3. Validation of loci associated with differences in animal size

To validate whether genetic variation between the N2 and CB4856 strains contributes to

differences in animal size, we generated chromosome substitution strains (CSSs) for

chromosomes IV and V in which the entire chromosome from the N2 strain was introgressed

into the CB4856 genetic background and vice versa. We also constructed reciprocal

near-isogenic lines (NILs) for chromosomes IV, V, and X. These NILs contain a small genomic

segment derived from one parent strain introgressed into the genetic background of the other

parent strain. We then measured the length and width of animals after 48 hours of growth and

calculated statistical significance in a pairwise manner for each strain (see Methods). For the

chromosomes IV and V QTL, we were unable to recapitulate the results observed in the linkage

mapping (Figures S3-7 and S3-8). These two QTL each explain only 5% of the total phenotypic

variation among the RIAILs and have the smallest effect sizes among the three detected QTL
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(Table 3-1). The inability to validate these QTL suggests a complex genetic architecture that

cannot be explained by isolating these loci using CSSs and NILs, or a lack of power to detect

differences driven by these QTL in the CSSs and NILs. By contrast, we successfully validated

the chromosome X QTL by observing that genotype significantly contributed to differences in

body width of NILs (Figure 3-3). The strain with the CB4856 allele on chromosome X crossed

into the N2 genetic background was significantly wider than the N2 strain (Tukey’s HSD,

p-value = 1.29e-10). Similarly, the strain with the N2 chromosome X region introgressed into the

CB4856 genetic background was significantly thinner than the CB4856 strain (Tukey’s HSD,

p-value = 1.29e-10). These results confirmed that genetic variation between the N2 and CB4856

strains on chromosome X contributes to the difference in body width between these strains.

Figure 3-3. NILs validated the chromosome X QTL. (A) Strain genotypes are displayed as

colored rectangles (N2: orange, CB4856: blue) for chromosome X (left) and in general for the

rest of the chromosomes (right). The solid vertical line represents the peak marker of the QTL.
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The dashed vertical lines represent the confidence interval. (B) Residual mean animal width

(x-axis) is plotted as Tukey box plots against strain (y-axis). Each point corresponds to the mean

width of a population of animals from each well. The boxes for the parental strains are colored:

N2, orange; CB4856, blue. Statistical significance was calculated by Tukey’s HSD (**** =

p-value < 0.0001).

3.4.4. Identification of candidate genes in the chromosome X QTL

To identify candidate genes that could underlie variation in body width, we investigated the

genes in the chromosome X interval in the N2 strain. We found 151 genes present in this interval

and eliminated 96 genes that had no genetic variation in the CB4856 strain (Table 3-2). Of the

remaining 55 genes, 18 have genetic variation in the amino-acid sequence of a protein

(protein-coding variation), and 34 have genetic variation that is not protein-coding (non-coding

variation). However, protein-coding variation is just one way in which genetic variation can

cause phenotypic variation. We also considered instances where genetic variation causes a

change in gene expression. Using an expression QTL (eQTL) dataset that mapped expression

differences in another panel of RIAILs (set 1) derived from N2 and CB4856 [82,165], we

identified five genes with eQTL that map to our region of interest. Additionally, we found 17

other genes outside this genomic interval with eQTL that map to this interval, resulting in a total

of 72 candidate genes, none of which are located within a hyper-divergent region [166].

To further narrow our list of genes, we inspected the functional descriptions and gene

ontology (GO) annotations for the remaining 72 candidate genes. When considering the 21 genes

with protein-coding variation and/or eQTL, one candidate (ppk-3) stood out. ppk-3, or

phosphatidylinositol phosphate kinase 3, is an ortholog of the mammalian PIKfyve. These
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kinases play important roles in cell communication and membrane trafficking [167]. Notably,

mutations in ppk-3 are responsible for a range of developmental defects, including embryonic

lethality, developmental arrest, and larval growth delay [168]. Investigating the sequence read

alignments of the N2 and CB4856 strains at the ppk-3 locus using the Variant Browser on

CeNDR [68], we observed a missense variant in the second exon predicted to encode a

serine-to-threonine substitution (S43T). Although this variant is not in a predicted functional

domain, it could alter protein function thereby contributing to the observed phenotypic

difference. Aside from ppk-3, we identified two additional candidate genes when assessing the

functional description for the 34 genes with non-coding genetic variation. The first, nhr-25,

encodes a nuclear hormone receptor orthologous to Ftz-F1 in Drosophila and is required for

proper molting and developmental control [169]. We observed a splice-site variant in the nhr-25

locus that could disrupt proper RNA splicing. Interestingly, disruption of nhr-25 often causes

embryonic arrest; however, mutants that survive hatching display a squat body stature (Dpy

phenotype), suggesting that nhr-25 could play a role in body size and shape [170]. The second,

bcat-1, encodes a branched-chain amino acid aminotransferase that, by RNAi screens, is shown

to be required for embryonic and larval development [171]. In the bcat-1 locus we observe a

variant in an intron and in the three prime untranslated region. Together, these results suggest

that one or more genes on chromosome X are candidates that need additional study to explain the

variation that we observe in animal growth.
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Table 3-2. Genes in QTL interval for chromosome X

No variationa Protein-coding variation
and/or eQTLb

Non-coding
variationc

Other eQTL that
map to intervald

Total

96 21 34 17 168
aGenes within genomic interval with no genetic variation
bGenes within genomic interval with protein-coding variation and/or an eQTL that maps to this interval
cGenes within genomic interval with non-coding variation and no eQTL that maps to this interval
dGenes outside genomic interval with eQTL that maps to this interval

3.5. DISCUSSION

Here, we investigated larval growth of N2 and CB4856 animals from the L1 stage to the L4

stage. Although we observed similarities in the dynamics of growth, we also saw differences in

the size of animals across developmental time. We used linkage mapping to investigate these

differences and identified three small-effect QTL associated with variation in body size. Two

QTL underlie variation in animal width, and a single non-overlapping QTL contributes to

differences in animal length. Using NILs, we validated the width-associated QTL on

chromosome X and identified candidate genes that could underlie variation in width. Taken

together, our results demonstrate the power of leveraging natural genetic variation to examine the

genetic architecture of complex traits such as body size and shape.

3.5.1. A complex genetic architecture underlies differences in body size

As a complex life history trait, developmental growth could be influenced by several loci [172].

In this study, we report three size-associated QTL. Strikingly, we find loci that decouple

components of body size, revealing a complex genetic system that influences growth along

different axes of the body. Evidence for genetically separate modules underlying distinct aspects

of a single trait has been observed in studies of C. elegans behavioral patterns where linkage
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mapping studies using a panel of RIAILs (set 1, [165]) identified distinct loci underlying

separate aspects of avoidance response to thermal stimuli [173]. Here, we identify distinct QTL

for length and width, suggesting that different genetic mechanisms control animal growth along

the length vs. width directions. This finding is particularly interesting given the differences in

general growth dynamics of length compared to width that we found here (Figure 3-1) and

previously [87] a simultaneous increase in length and decrease in width at the transition between

larval stages.

The results of the linkage mapping experiment identified two broad peaks on

chromosomes IV and V associated with length and width respectively, as well as a narrow peak

on chromosome X for width. Although we successfully validated the width-associated QTL on

chromosome X (Figure 3-3), we were unable to validate the other two QTL (Figures S3-6 and

S3-7). Our inability to recapitulate the results observed in the linkage mapping might be driven

by several factors. First, many loci spread across the genome could underlie variation in body

size. Under this polygenic model, any region can harbor variants driving our observed

phenotypic difference through additive and/or non-additive effects. The contribution of

polygenicity to phenotypic variance has previously been explored in C. elegans. Studies of

fertility and body size in the C. elegans multiparental experimental evolution (CeMEE) panel

found that a significant fraction of phenotypic variance, nearly 40% for fertility, can be explained

by polygenicity [174]. Second, the intervals could contain QTL of opposing effects, making it

difficult to recapitulate the results observed in the mapping using NILs. Notably, researchers

have observed patterns of polygeny and antagonistic-effect loci when investigating C. elegans

growth and reproduction in nickel stress [175]. Third, it is possible that the QTL effects are
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smaller than 5% and we are underpowered to detect differences driven by these QTL in the CSSs

and NILs.

3.5.2. Candidate genes for variation in body size

Genetic variants underlying complex traits are often elusive [86,176]. Ultimately, when

searching for QTL, we aim to identify genes contributing to the variation in phenotypes among

individuals. Here, we identified candidate genes located in the interval of the chromosome X

QTL (Table 3-2). However, complex traits, such as body size, are likely affected by many genes.

For example, recent studies of human genetic variation using data from 5.4 million individuals

report finding over 12,000 independent loci associated with height [177]. In the laboratory strain

of C. elegans, we know many loci that quantitatively affect body size and shape. Mutations in

these genes span various classes, including abnormal pharyngeal pumping (Eat), egg-laying

defective (Egl), uncoordinated (Unc), abnormal dauer formation (Daf), and several cuticle and

body shape classes (Dpy, Lon, Sma, Rol, Sqt) [58,130,178]. The polygenic nature of complex

traits is a recognized barrier in identifying the genes contributing to phenotypic variation in a

population [175,179]. However, we believe that molecular analysis of loci that underlie variation

in development-associated traits in natural populations of C. elegans is essential to deciphering

the evolutionary significance of developmental canalization.

3.5.3. Comparison with previous QTL studies of C. elegans growth

Our mapping results both recapitulate and expand upon previous QTL studies of growth in C.

elegans. Previously, median body length of mixed-stage animals was mapped using the same

panel of RIAILs (set 2) [117]. A single small-effect (5.7%) QTL in the center of chromosome IV
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was found, consistent with our findings. Also in this study, the authors mapped median body

width (norm.EXT) to three QTL on chromosomes III, IV, and X. We detected an overlapping

genomic region on chromosome X in our current study. Discrepancy in the other QTL is likely

caused by differences in the body size assay as the previous study measured mixed-stage animals

and we focused on synchronized L4 animals. Additionally, others have mapped variation in

animal length for a collection of introgression lines produced from the N2 and CB4856 strains at

48 hours after L1 arrest [180]. Here, investigators found five separate QTL on chromosome IV

affecting body size. This result suggests the presence of several independent loci on chromosome

IV each contributing to variation in length. Further investigation is necessary to determine

whether the overlapping genomic region detected in our current study is in fact separate loci that

independently contribute to variation in animal length. Most recently, a group using a C. elegans

RIL population identified 18 QTL influencing various body-size traits at a range of temperatures,

with the majority clustering on chromosome X [181]. This work not only demonstrates the

genetic complexity underlying body-size phenotypes, but also suggests the presence of

co-regulatory loci underlying plasticity. C. elegans gives investigators a powerful system to

better our understanding of the genetic mechanisms that shape growth and environmental

sensitivity in natural populations.
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3.7. SUPPLEMENT

Figure S3-1. Raw measurements of animal size.

Raw COPAS BIOSORT of animal length (A) and width (B) for N2 and CB4856 animals are

shown here.
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Figure S3-2. Mixture modeling of COPAS BIOSORT data was used to prune data.

Mixture models of Gaussian distributions were fit to log transformed animal length (x-axis) and

log transformed optical extinction (y-axis). Data from each hour of the experiment was analyzed

and processed to remove clusters that did not include animal objects. Panels indicate

experimental hours from which data were taken.



97

Figure S3-3. Pruned measurements of animal size.

COPAS BIOSORT data of animal length (A) and width (B) after the removal of non-animal

objects using model-based clustering methods.
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Figure S3-4. Comparison of means across developmental time points.

Tukey boxplots of mean length (A) and mean width (B) for N2 (orange) and CB4856 (blue) over

developmental time. The horizontal line in the middle of the box is the median, and the box

denotes the 25th to 75th quantiles of the data. The vertical line represents the 1.5 interquartile

range. Inset plots magnify mean animal size measurements from hour 48. Each point

corresponds to the mean of a population from each well. Statistical significance was calculated

using a Wilcoxon test (ns = non-significant (p-value > 0.05); *, **, ***, and **** = significant

(p-value < 0.05, 0.01, 0.001, or 0.0001, respectively).
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Figure S3-5. Two dimensional genome scan for mean animal length.

Log of the odds (LOD) scores are shown for each pairwise combination of loci, split by

chromosome. The upper-left triangle contains the epistasis LOD scores and the lower-right

triangle contains the LOD scores for the full model. LOD scores are colored, increasing from

purple to green to yellow. The LOD scores for the epistasis model are shown on the left of the

color scale and the LOD scores for the full model are shown on the right.
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Figure S3-6. Two dimensional genome scan for mean animal width.

Log of the odds (LOD) scores are shown for each pairwise combination of loci, split by

chromosome. The upper-left triangle contains the epistasis LOD scores and the lower-right

triangle contains the LOD scores for the full model. LOD scores are colored, increasing from

purple to green to yellow. The LOD scores for the epistasis model are shown on the left of the

color scale and the LOD scores for the full model are shown on the right.
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Figure S3-7. Validating the chromosome IV length-associated QTL.

Strain genotypes are displayed as colored rectangles (N2: orange, CB4856: blue) for

chromosome IV (left) and in general for the rest of the chromosomes (right). The solid vertical

line represents the peak marker of the QTL. The dashed vertical lines represent the confidence

interval. (B) Residual mean animal length (x-axis) is plotted as Tukey box plots against strain

(y-axis). Statistical significance was calculated by Tukey’s HSD (ns = non-significant, p-value >

0.05).
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Figure S3-8. Validating the chromosome V width-associated QTL.

Strain genotypes are displayed as colored rectangles (N2: orange, CB4856: blue) for

chromosome V (left) and in general for the rest of the chromosomes (right). The solid vertical

line represents the peak marker of the QTL. The dashed vertical lines represent the confidence

interval. (B) Residual mean animal width (x-axis) is plotted as Tukey box plots against strain

(y-axis). Statistical significance was calculated by Tukey’s HSD (ns = non-significant, p-value >

0.05; * and *** = significant, p-value < 0.05 or 0.001 respectively).
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S3-1 Text. Reagents used to generate CSSs and NILs.

List of RIAILs used:

Set 2:

QX115, QX123, QX134, QX144, QX160, QX161, QX175, QX226, QX227, QX231, QX240,
QX241, QX242, QX243, QX244, QX245, QX248, QX250, QX252, QX253, QX254, QX258,
QX261, QX263, QX264, QX265, QX266, QX267, QX268, QX269, QX270, QX271, QX272,
QX273, QX274, QX275, QX276, QX277, QX278, QX279, QX280, QX281, QX282, QX283,
QX284, QX285, QX286, QX287, QX288, QX289, QX290, QX291, QX293, QX294, QX295,
QX296, QX297, QX298, QX299, QX300, QX301, QX302, QX303, QX304, QX305, QX306,
QX307, QX309, QX310, QX311, QX314, QX315, QX316, QX318, QX319, QX320, QX321,
QX322, QX323, QX324, QX325, QX326, QX327, QX328, QX329, QX330, QX331, QX332,
QX333, QX334, QX335, QX336, QX337, QX338, QX339, QX340, QX341, QX343, QX345,
QX346, QX347, QX348, QX349, QX350, QX352, QX353, QX354, QX355, QX356, QX357,
QX358, QX359, QX360, QX361, QX362, QX363, QX364, QX365, QX366, QX367, QX368,
QX369, QX370, QX371, QX372, QX373, QX374, QX375, QX376, QX377, QX378, QX379,
QX380, QX381, QX382, QX383, QX384, QX385, QX386, QX387, QX390, QX391, QX392,
QX393, QX394, QX395, QX396, QX397, QX398, QX399, QX400, QX401, QX402, QX403,
QX404, QX405, QX406, QX407, QX408, QX409, QX410, QX411, QX412, QX413, QX414,
QX416, QX417, QX418, QX419, QX420, QX421, QX423, QX424, QX426, QX427, QX428,
QX429, QX430, QX431, QX432, QX433, QX434, QX435, QX436, QX437, QX438, QX439,
QX440, QX441, QX443, QX444, QX445, QX446, QX447, QX448, QX449, QX450, QX451,
QX452, QX453, QX454, QX455, QX456, QX457, QX458, QX459, QX460, QX461, QX463,
QX464, QX465, QX466, QX467, QX468, QX469, QX470, QX471, QX472, QX473, QX474,
QX475, QX476, QX477, QX478, QX479, QX480, QX481, QX482, QX483, QX484, QX485,
QX486, QX487, QX488, QX489, QX49, QX490, QX491, QX492, QX493, QX494, QX495,
QX496, QX497, QX498, QX500, QX501, QX503, QX506, QX508, QX511, QX512, QX513,
QX514, QX515, QX517, QX520, QX521, QX523, QX524, QX525, QX526, QX527, QX528,
QX529, QX530, QX531, QX533, QX534, QX538, QX539, QX540, QX542, QX545, QX549,
QX550, QX551, QX553, QX554, QX555, QX556, QX557, QX559, QX560, QX561, QX563,
QX564, QX565, QX570, QX572, QX573, QX574, QX579, QX580, QX583, QX585, QX587,
QX588, QX59, QX594, QX596, QX597, QX598, QX61, QX62, QX72, QX78, QX85,
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Reagents to generate CSSs and NILs:

Strain Genotype Constructed
from

Left primer Right primer

ECA232 eanIR152[V, CB4856>N2] QX450xN2 oECA799 &
oECA800

oECA745 &
oECA746

ECA575 eanIR324[IV, N2>CB4856] N2xCB4856 oECA1132 &
oECA1133

oECA1135 &
oECA1136

ECA597 eanIR330[IV, CB4856>N2] ECA231xN2 oECA781 &
oECA782

oECA857 &
oECA858

ECA599 eanIR332[IV, N2>CB4856] ECA598xCB4
856

oECA781 &
oECA782

oECA857 &
oECA858

ECA828 eanIR359[X, N2>CB4856] N2xCB4856 oECA1313 &
oECA1314

oECA1246 &
oECA1247

ECA929 eanIR411[X, CB4856>N2] N2xCB4856 oECA1313 &
oECA1314

oECA1246 &
oECA1247

ECA1058 eanIR433[V, N2 > CB4856] ECA1029xCB
4856

oECA1408 &
oECA1409

oECA1341 &
oECA1342

ECA1060 eanIR435[V, N2 > CB4856] ECA554xCB4
856

oECA745 &
oECA746

oECA763 &
oECA764

ECA1064 eanIR439[IV, CB4856>N2] N2xCB4856 oECA1131 &
oECA1132

oECA1135 &
oECA1136

ECA2006 eanIR446[V, CB4856>N2] N2xCB4856 oECA1141 &
oECA1142

oECA1147 &
oECA1148
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Primers:

Primer Genomic position Sequence

oECA745 V:13,110,045 tgcagaggtggagtaaccct

oECA746 V:13,110,045 ctcggtctctcccccactaa

oECA763 V:15,121,356 cgcacattctttatttctggcg

oECA764 V:15,121,356 atcggccgtttttcacctga

oECA781 IV:5,110,734 gagcactttggcgactttcg

oECA782 IV:5,110,734 tccgggcaaattagtgtggc

oECA799 V:7,862,556 ttctcgctactggaacacgc

oECA800 V:7,862,556 tcaagaagcgttgggaagtct

oECA1131 IV:1,039,851 tacccaccgcatcaaaacca

oECA1132 IV:1,039,851 acaggcgttcaaagacacca

oECA1135 IV:17,317,014 tttcagacaggaaagcgcct

oECA1136 IV:17,317,014 gttgagagatccggaccgac

oECA1141 V:144,547 ctcatgggagtaacctgggc

oECA1142 V:144,547 cggtgacaacggagaatcca

oECA1147 V:20,622,851 gtttagtaccagcggggcat

oECA1148 V:20,622,851 tgcattccgacccaagagac

oECA1246 X:11,696,902 tgcggtgggacttttcttgt

oECA1247 X:11,696,902 gtcccagcatgtaaccgtct

oECA1313 X:8,038,337 gctgtgcaggactggatgta

oECA1314 X:8,038,337 tgctttctgatctgtgccgt

oECA1341 V:7,104,674 cccatccccacaatgtttcg

oECA1342 V:7,104,674 aatcgacgagtggcacttgt

oECA1408 V:3,778,859 cacgtgcccttttgcaatga

oECA1409 V:3,778,859 gagctcccggaaaactcgaa
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4

4. easyXpress: An R package to analyze and
visualize C. elegans microscopy data

generated using CellProfiler

I feel that the project described in this chapter was the most rewarding of my doctoral research. I

joined the Andersen Lab with an introductory level of coding experience in Python and little

knowledge of R. Making quick study of the new programming language, I have since fallen head

over heels in love with it. Now, I use R to not only analyze data but also generate reports, build

websites, and even write this thesis (thank you, bookdown! [182]). This chapter describes the R

package I helped develop for handling high-throughput C. elegans microscopy data which was

published in PLoS ONE in 2021 [183]. I am beyond ecstatic to contribute to the open-source and

#rstats worlds and hope to continue to do so in my future.
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4.1. ABSTRACT

High-throughput imaging techniques have become widespread in many fields of biology. These

powerful platforms generate large quantities of data that can be difficult to process and visualize

efficiently using existing tools. We developed easyXpress to process and review C. elegans

high-throughput microscopy data in the R environment. The package provides a logical

workflow for the reading, analysis, and visualization of data generated using CellProfiler’s

WormToolbox. We equipped easyXpress with powerful functions to customize the filtering of

noise in data, specifically by identifying and removing objects that deviate from expected animal

measurements. This flexibility in data filtering allows users to optimize their analysis pipeline to

match their needs. In addition, easyXpress includes tools for generating detailed visualizations,

allowing the user to interactively compare summary statistics across wells and plates with ease.

Researchers studying C. elegans benefit from this streamlined and extensible package as it is

complementary to CellProfiler and leverages the R environment to rapidly process and analyze

large high-throughput imaging datasets.

4.2. INTRODUCTION

Developments in high-throughput imaging techniques have led to a rapid increase in these data.

Researchers are able to move away from the laborious manual collection of images that typically

limits large-scale analyses [184]. Furthermore, these advances have enabled scientists to collect

data of intact cells, tissues, and whole-organisms with increased temporal and spatial resolution

[185]. However, typical users require software methods for efficient handling, analysis, and

visualization to make the most of these extensive image datasets.
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C. elegans is a globally distributed, free-living roundworm nematode that is amenable to

many types of experimental biology. The C. elegans cell lineage is completely characterized

[33], and the C. elegans connectome is completely mapped [186], making these animals an

exemplary model for developmental biology and neurobiology. The species can also be rapidly

reared in large, genetically diverse populations in laboratory settings, providing unparalleled

statistical power for experimental biology compared to any other metazoan [187]. Furthermore,

metabolic and developmental pathways in C. elegans are conserved in humans [39].

High-throughput imaging technologies can improve C. elegans studies by increasing

experimental efficiency, scalability, and quality. Existing systems for automated image

acquisition, such as the Molecular Devices ImageXpress platforms generate images of

nematodes that can be analyzed with software like CellProfiler’s WormToolbox [188] to extract

nematode phenotype information. This software uses probabilistic nematode models trained on

user-selected animals to automate the segmentation of nematodes from the background of images

in high-throughput. As a result, CellProfiler’s WormToolbox is able to measure hundreds of

phenotypes related to animal shape, intensity, and texture. Implementing this software for

large-scale imaging experiments can generate large quantities of data that requires additional

analysis software for reliable and reproducible handling, processing, and visualization.

CellProfiler Analyst was developed to offer tools for the analysis of image-based datasets, but

this software is not integrated with modern statistical environments. We sought to design a

resource that facilitates the exploration of CellProfiler data in the R environment [189], where

this limitation can be eliminated. The R language provides extensive open-source statistical and

data visualization tools that are well supported by the user community. In leveraging R, we are
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able to create a flexible tool that can be rapidly integrated with other statistical R packages to suit

project-specific analysis needs.

We developed easyXpress, a software package for the R statistical programming

language, to assist in the processing, analysis, and visualization of C. elegans data generated

using CellProfiler. easyXpress provides tools for quality control, summarization, and

visualization of image-based C. elegans phenotype data. Built to be complementary to

CellProfiler, this package provides a streamlined workflow for the rapid quantitative analysis of

high-throughput imaging datasets.

4.3. MATERIALS AND METHODS

4.3.1. Preparation of animals for imaging

Bleach-synchronized animals were fed E. coli HB101 bacteria suspended and allowed to develop

at 20°C with continuous shaking. Animals in 96-well microtiter plates were titered to

approximately 30 animals per well. Prior to imaging, animals were treated with sodium azide (50

mM in 1X M9) for 10 minutes to paralyze and straighten their bodies.

4.3.2. Imaging

Animals in microtiter plates were imaged at 2X magnification with an ImageXpress Nano

(Molecular Devices, San Jose, CA). The ImageXpress Nano acquires brightfield images with a

4.7 megaPixel CMOS camera and are stored in 16-bit TIFF format. The images were processed

using CellProfiler software (for details see https://github.com/AndersenLab/CellProfiler).
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4.3.3. Paraquat dose response

A 1.5 M solution of paraquat (Methyl viologen dichloride, Sigma, 856177-1G) was prepared in

sterile water, aliquoted, and frozen at -20°C until used. Experimental animals were grown at

20°C and fed OP50 bacteria spotted on modified nematode growth medium, containing 1% agar

and 0.7% agarose to prevent animals from burrowing. After three generations of passaging,

animals were bleach-synchronized and embryos were transferred to the wells of 96-well

microplates. Each well contained approximately 30 embryos in 50 µL of K medium [190].

Microplates were incubated overnight at 20°C with continuous shaking. The following day,

arrested L1 animals were fed HB101 bacteria suspended in K medium. At the time of feeding,

the animals were also exposed to paraquat at one of six concentrations (0, 7.81, 31.25, 125, 500,

2000 µM) by serial dilution of a freshly thawed aliquot of 1.5 M paraquat solution. The final

volume in each well after dosing and feeding was 75 µL. The animals were then grown for 48

hours at 20°C with continuous shaking, afterwards the microplates were imaged to assess the

effects of paraquat exposure on nematode development.

4.3.4. Naming conventions

Several functions in the easyXpress package require specific naming conventions to work

properly. For full details regarding essential file naming and directory structure see the package

repository (https://github.com/AndersenLab/easyXpress). Importantly, when using the Metadata

module in CellProfiler to extract information describing your images, specific column names are

suggested (Table 1).
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Table 4-1. Suggested naming conventions for CellProfiler metadata.

Image_FileName_RawBF Image_PathName_RawBF
Metadata_

Date
Metadata_Exp

eriment
Metadata_

Plate
Metadata_Magni

fication Metadata_Well

20191119-growth-p05-m2X_C03.
TIF

/CellProfiler/example/raw_imag
es 20191119 growth p05 m2X C03

20191119-growth-p06-m2X_C09.
TIF

/CellProfiler/example/raw_imag
es 20191119 growth p06 m2X C09

20191119-growth-p09-m2X_C06.
TIF

/CellProfiler/example/raw_imag
es 20191119 growth p09 m2X C06

The naming of “Metadata_Plate” and “Metadata_Well” are essential to the setflags(),

viewPlate(), viewWell(), and viewDose() functions. Additionally, “Image_fileName_RawBF” and

“Image_PathName_RawBF” are necessary for the proper function of viewDose().

4.3.5. Data availability

The entirety of the easyXpress package is written in the R language and is free to install across

any system supporting R, including Linux, MacOSX, and Windows. The complete source code,

example data, extensive documentation, and installation details are available on GitHub. A

tutorial on the usage of easyXpress and the available functions, can be found at

https://rpubs.com/jnyaanga/765641. This package is open-source; for updates and to submit

comments, visit https://github.com/AndersenLab/easyXpress.

4.4. RESULTS

4.4.1. Design and implementation

The easyXpress package is designed to be simple and accessible to users familiar with the R

environment. The easyXpress package comprises nine functions for reading, processing, and

visualizing large high-throughput image-based datasets acquired from microplate-based assays

processed with CellProfiler (Figure 4-1). Because our software is built to handle CellProfiler
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data as input, we suggest users review the overview and applications of CellProfiler as a

prerequisite description of data generation [188]. Below, we describe the workflow for users to

analyze their image data with easyXpress.

Figure 4-1. easyXpress workflow. The suggested workflow for using the easyXpress package

starts with raw data generated from CellProfiler. For more information on implementing

CellProfiler to generate data, see https://github.com/AndersenLab/CellProfiler. Reading steps are

shown in blue, processing steps are shown in green, and visualization steps are shown in yellow.

4.4.2. Data import and model assignment

To read in CellProfiler data files, we provide readXpress(). Measurements calculated by

CellProfiler can be exported in a comma-separated value (csv) file and accessed using

readXpress(). For large-scale, high-throughput experiments, users can employ a computing

cluster for increased analysis speed (https://github.com/AndersenLab/CellProfiler). In this case,
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CellProfiler data stored in .RData format is accessed using readXpress(). Additionally, the

function can optionally import a design file created by the user containing experimental

treatments and conditions. This design file is joined to the CellProfiler data and output as a single

dataframe.

CellProfiler’s WormToolbox detects and measures the phenotypes of individual animals

based on user-calibrated models of variability in body size and shape [188]. To effectively detect

animals in a mixed-stage population, multiple worm models must be used. However, using

multiple worm models creates a one-to-many relationship between real animals and their

measured phenotype (Figure S4-1). We have included the function modelSelection() to annotate

this information for downstream analysis. In instances where multiple worm model objects are

assigned to a single primary object, modelSelection() will identify the best fitting model. Models

are first ranked by frequency in the dataset such that the smallest model is classified as the most

frequently occurring and the largest model is the least frequently occurring. In our experience,

the most frequently occuring model in the dataset has the smallest size because it is often

repeatedly assigned to a single primary object. Conversely, the least frequently occurring model

in the dataset has the largest size as it is able to define the entire size of an animal, and is thus

assigned to a primary object only once. The largest ranked model occuring within a single

primary object is then selected as the best fitting model for that primary object. If necessary,

modelSelection() will also specify whether the selected model object was repeatedly assigned to

the same primary object and flag this event as a cluster. This problem occurs in instances where a

model object is repeatedly assigned to a single primary object. If the largest model object is

found to occur repeatedly in a single primary object, this model will be selected and a cluster flag
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will be added (Figure S4-1C). The modelSelection() step is essential to resolve cases where

multiple instances of a selected model object are assigned to a single primary object, thus

contributing to inaccurate phenotype measurements.

4.4.3. Data pruning and summarization

Once the data are read into the R statistical environment, it is crucial to optimize data quality

before in-depth analysis. Uneven well illumination can hinder the performance of CellProfiler’s

object identification and phenotype extraction. Despite correcting for uneven illumination within

a well, discerning foreground objects from background can be especially challenging near the

periphery of the well and can add noise to nematode phenotype data (Figure S4-2). The function

edgeFlag() was written to identify and flag animals located near the edge of circular wells using

the centroid coordinates of the selected model object. By default, the function sets the radius of

even illumination from the image center to 825 pixels, but this parameter can be adjusted by the

user to serve project-specific analyses.

We also developed setFlags() in conjunction with edgeFlag() to further address data

points that deviate from the expected animal measurements. The function setFlags() takes the

output of edgeFlags() and detects outlier measurements among all measurements within a well

using Tukey’s fences [191]. By default, outlier calculations are performed by excluding data

identified by modelSelection() as part of a cluster as well as data in close proximity to the well

edge. However, setFlags() is customizable, allowing the user to specify which filters to include.

edgeFlag() and setFlags() were designed to allow for analysis-specific optimization when

handling various experimental datasets. This flexibility in data filtering makes easyXpress

extensible to many unique projects.
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Once data are adequately flagged, the function process() organizes the data into a list

containing four elements: raw data, processed data, and summaries for both datasets. The raw

data element is the CellProfiler data following modelSelection() and flag annotation. The

processed data are generated by default after subsequent removal of all cluster, edge, and outlier

flags. If a user includes data annotated as clusters or edge cases in setFlags(), cluster and edge

cases will be retained in the processed data output. Finally, it is often useful to summarize data

by well to interpret patterns specific to experimental variables. Alternatively, measurements may

be summarized by other experimental factors according to the individual experimenter’s plate

design. process() aids in the summarization of both the raw and processed data elements. This

function comprehensively calculates the means, variances, quantiles, minimum, and maximum

values of animal length for any experimental unit (e.g. well). We have also included the wrapper

function Xpress() to accelerate the import and processing of CellProfiler data. Xpress() will

perform the above functions with all default settings, but a user can alter input arguments to

better suit project specific needs.

4.4.4. Visualization

The easyXpress package provides several plotting functions to allow users to explore the data

through detailed and elegant visualizations. After data summarization, it is often useful to inspect

the values of the summary statistics in order to recognize patterns or identify potential outlier

data. We provide viewPlate() to assist with the visualization of mean animal length within each

well across a microtiter plate (Figure 4-2). This function accepts either raw or processed data to
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generate an interactive plot that allows users to scan across a plate to determine the number of

objects present within individual wells.

Figure 4-2. Example plot generated by viewPlate(). Well-wise plot of mean animal length

(μm) from the summarized processed data. Interactive feature enables the assessment of the

number of animals per well.

To complement the top-level data visualization provided by viewPlate(), we have

included viewWell() to allow users to deeply explore data within individual wells. This function

generates a plot of the well image following CellProfiler analysis with all objects annotated with

their assigned class (Figure 4-3). Additionally, viewWell() can optionally generate a boxplot of

the length values for each object. This plotting function is especially useful because it enables

rapid qualitative assessment of object classification performance. By overlaying the model object
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classifications on the well image, users can quickly determine whether CellProfiler classified

objects as expected or whether errors in model selection or data flags occurred.
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Figure 4-3. Example plots generated by viewWell(). The function viewWell() facilitates the

exploration of data within an individual well. Well images displaying easyXpress raw (A) and

processed (B) data are annotated with the location of each model object centroid (circles) and are

colored by object class in the legend (left). Animals are outlined in different colors to indicate the

model object(s) identified for each primary object (see Figure S4-1). The length of each object is

displayed as a boxplot (right). Well edge circumference defined by the function edgeFlag() is

shown in red.

Lastly, we have developed the function viewDose() to allow for the visualization of dose

response data. C. elegans are often used to study conserved responses to various compounds

[82,84,117,192,193]. viewDose() allows a user to visually examine the effect of a compound on

animal size and shape over a range of concentrations (Figure 4-4). By specifying the strain and

compound of interest, a plot of representative wells will be generated that includes labels for

each identified object.
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Figure 4-4. Example plots generated by viewDose(). The function viewDose() plots

representative raw (A) or processed (B) well images with objects annotated by model class for

each dose of a selected drug and strain. The length measurements of raw (C) and processed (D)

are also shown.
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4.4.5. Application to C. elegans growth data

We evaluated easyXpress using data collected from a C. elegans growth experiment [87].

Animals were imaged throughout the entire life cycle, beginning at the first larval (L1) stage and

continuing until adulthood. Images were then processed with CellProfiler’s WormToolbox and

analyzed using easyXpress. During the implementation of easyXpress, four unique worm models

representing C. elegans life stages were calibrated and applied: L1, L2/L3, L4, and Adult. These

worm models do not designate stage assignments but rather represent the approximate sizes of

animals that fall within the respective age groups (Figure S4-1). The function modelSelection()

assigned the appropriate model object to animals at each life stage, edgeFlag() and setFlags()

identified outlier data points, and viewWell() provided clear visualizations of both the processed

(Figure 4-5) and raw (Figure S4-3) data.
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Figure 4-5. easyXpress applied to C. elegans growth data. A subset of well images acquired

during C. elegans development displaying easyXpress processed data are shown here. Images

taken at (A) 9 hours indicating the L1 stage, (B) 28 hours indicating the L2/L3 stage, (C) 46

hours indicating the L4 stage, and (D) 63 hours indicating the adult stage were analyzed with

CellProfiler using four worm models. The easyXpress workflow was then used to process and

visualize the data. The length of each object identified after processing is shown in (E).

4.5. CONCLUSIONS

The easyXpress package presents an organized workflow for managing C. elegans phenotype

data generated using CellProfiler. This package provides tools for the reading, processing, and

visualization of these data in a simple and efficient way. By leveraging existing R infrastructure,

easyXpress enables reproducible analysis, integration with other statistical R packages, and

extensibility to many research projects using an open-source analysis pipeline.

4.6. CONTRIBUTIONS

This package was built by Joy Nyaanga and Drs. Timothy Crombie and Sam Widmayer. Erik

Andersen supervised the construction and development of the package.
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4.7. SUPPLEMENT

Figure S4-1. Multiple model objects assigned to a single primary object. When running

CellProfiler’s WormToolbox with multiple worm models, multiple model objects can be assigned

to a single primary object (real animal). Different colors are used to outline each worm model
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object. Here four unique models were used: L1, L2/L3, L4, and Adult. These worm models

represent the approximate sizes of animals at each life stage. For example, some mutant or

diverse wild genetic backgrounds might have differently sized adult animals as compared to the

laboratory-adapted N2 strain. We have included this “soft matching” to account for small

differences in the sizes of developmental stages across different genetic backgrounds,

laboratories, and environmental conditions. (A) An animal detected by CellProfiler as a primary

object has been assigned three unique worm models: two L1 model objects, one L2/L3 model

object, and one L4 model object. modelSelection() classifies this animal as an L4 model object.

(B) An animal detected as a primary object has been assigned four unique worm models: three

L1 model objects, two L2/L3 model objects, one L4 model object, and one Adult model object.

Here, modelSelection() identifies the Adult model as the best fitting model object. (C) An animal

detected as a primary object has been assigned two unique worm models: three L1 model

objects, and two L2/L3 model objects. In this case, modelSelection() classifies this animal as an

L2/L3 model object and adds a cluster flag annotation to indicate the repeated assignment of the

selected model object to the primary object.
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Figure S4-2. Uneven illumination along well edge hinders CellProfiler’s ability to segment

animals from background. (A) Left is raw intensity values across well. (B) Right is with

background correction. Intensities of object illumination are displayed on each z-axis. Objects

near the edge of the well (y < 500 and y > 1500) have similar raw detected intensities (int) to

more medial objects (y ~ 1000) in (A) but lower corrected intensities in (B) because of uneven

background correction. Raw and background-corrected image segments are displayed in (C).

Notice animals on the edges of the well do not stand out from the background as much as

animals in the center of the well and therefore are more challenging to discern.
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Figure S4-3. Raw data from C. elegans growth experiment displayed by the function

viewWell(). Similar to Fig 5, well images taken at (A) 9 hours indicating the L1 stage, (B) 28

hours indicating the L2/L3 stage, (C) 46 hours indicating the L4 stage, and (D) 63 hours were

analyzed. Here, the raw data results are displayed. The length of each identified object identified

is shown in (E).
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5

5. DISCUSSION

Extensive phenotypic diversity exists in the animal kingdom. A goal of biological research is to

decipher the source of this diversity and study its impact on individuals, populations, and

species. Body size, in particular, is a trait that varies strikingly across animal phylogeny, and has

critical ramifications on an animal’s ability to survive and reproduce. For this reason, scientists

aim to understand how organisms grow to their characteristic sizes. Organismal development

comprises a sequence of genetically programmed and intricately linked events that follow precise

temporal and spatial ordering. Remarkably, despite variation in environmental conditions (e.g.,

temperature, nutrient availability, etc.), developing systems coordinate the organization and

interaction among cells, tissues, and organs with high reproducibility. My graduate research

focused on investigating mechanisms of growth regulation in developing Caenorhabditis

elegans. Here, I will elaborate on the implications of my data and provide insights that I hope

will propel future research.
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5.1. SUMMARY

This dissertation aimed to present mechanisms by which developmental growth may be

controlled using the roundworm nematode Caenorhabditis elegans. Studying C. elegans larval

development is relatively straightforward, however, doing so at high temporal resolution while

maintaining high precision and throughput can be a challenge. In Chapter 2, I introduced a

high-throughput phenotyping platform that I optimized to facilitate the quantitative assessment

of size and feeding behavior of thousands of individuals under tightly controlled environment

conditions. Using this platform to collect growth data over time, I find that as animals

transitioned from one developmental stage to the next, changes in body shape occurred. Given

this result, I worked with mathematical scientists to model a physical mechanism by which

constraints on cuticle elasticity could cause changes in C. elegans body shape, and found the

model-predicted shape changes to be consistent with those observed in the experimental data.

This work puts forth a novel “Stretcher” mechanism for how C. elegans could use physical

constraints (i.e., restriction of cuticle stretch) as a sensor for growth and as a means to regulate

developmental timing. Noting the importance of the cuticle in C. elegans growth, I further

examined the larval development of three strains with mutations in distinct cuticle collagen

proteins in Appendix A. Two of the three mutant strains exhibited delayed growth and

maintained a consistently shorter and wider shape when compared to wild type, emphasizing the

importance of cuticle structure in development. Importantly, all three strains exhibited dynamics

consistent with a “Stretcher” growth model.

The process of development is highly reproducible even in the presence of genetic and

environmental perturbations. In Chapter 3, I leveraged C. elegans natural genetic diversity to
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explore how genetic variation contributes to differences in animal growth. Using a quantitative

genetic mapping approach, I identified distinct genomic regions that separately explain variation

in animal length and width. This work highlights the complex genetic architecture of body size,

identifies promising candidate genes that may underlie variation in animal width, and provides a

framework for future studies to investigate genetic mechanisms controlling developmental

growth and body size in natural populations of C. elegans.

Like many high-throughput imaging techniques, the experimental platform introduced in

Chapter 2 generates large quantities of data that can be difficult to process and visualize

efficiently. In Chapter 4, I discuss the development of easyXpress: an R package that provides

tools for the reading, processing, and visualization of C. elegans microscopy data in a simple and

efficient way. This software package enables reproducible analysis, integration with other

statistical R packages, and extensibility to many research projects using an open-source analysis

pipeline.

5.2. THE FUTURE OF DEVELOPMENTAL GROWTH STUDIES

5.2.1. The C. elegans cuticle and its role in developmental timing

Molting is a unique characteristic that defines the life cycles of many animal species, including,

arthropods (insects, arachnids, crustaceans), nematodes (roundworms), and other members of the

Ecdysozoa group [194,195]. Despite its prevalence, the primary function of molting varies across

these different groups. Arthropods, covered by rigid chitin-based cuticles, require molting for

body size expansion [196,197]. By contrast, the nematode body is encased in a flexible
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collagen-based cuticle that allows for growth and expansion between molts [198,199], leaving

the question: Does the C. elegans cuticle play a role in developmental growth and molting?

Few longitudinal studies of C. elegans growth have been performed. Initial research

described C. elegans development as a sigmoidal curve characterized by continuous larval

growth [200,201]. These early studies reasoned that molt events had little effect on continuous

growth as the C. elegans flexible cuticle allowed for stretch during development. Later work

clarified that growth rate was not continuous but rather piecewise in nature and increased from

stage to stage, suggesting that C. elegans may contain a mechanism for regulating growth rate,

potentially through each molt event [111]. Next, researchers found that animals only advance to

the next developmental stage once a critical size is reached, implying that each molt decision is

controlled by a size threshold [42]. Recent work shows that C. elegans development is likely

controlled not by size-dependent regulation of growth but rather by relative change, or fold

change in body volume, suggesting that animals trigger molting events in ways that maintain a

constant fold change in body volume [101]. However, two questions remain: How do animals

sense their body size? And most importantly, how is this information disseminated to precisely

regulate growth?

In Chapter 2, I proposed a novel mechanism by which physical constraints can influence

developmental timing and growth rate in C. elegans. Although elasticity of the cuticle permits

growth during each larval stage, cuticle “stretchiness” is limited. By sensing the reduction of

cuticle elasticity, C. elegans could use this as a mechanical signal to trigger molting events. To

validate this proposed mechanism, one must first determine whether cuticle elasticity changes

during a larval stage. Previous atomic force microscopy (AFM) studies of C. elegans suggest that
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animals experience a loss of stiffness as they age [202], however no studies have been performed

on developing animals. Capturing AFM images of the cuticle over the course of a single larval

stage would be a potential method to investigate cuticle stiffness during growth. AFM

experiments, however, are limited in that they apply small highly localized indentation forces

that may not adequately represent the large stretching loads experienced during growth. To

confirm elasticity changes in the cuticle, direct measurements of the stiffness of isolated cuticles

is essential. Recently published work using microfluidic technology to stretch isolated cuticles

found significant increases in longitudinal stiffness at large stretching loads [203]. Performing

similar tests on isolated cuticles of animals preceding and following a molt in parallel with

measurements of total body stiffness could provide support for our hypothesis that molting

occurs as a result of decreased cuticle elasticity. Additionally, if we find that cuticle elasticity

changes during development, it could be interesting to collect growth measurements of animals

cultured under varying osmotic conditions. Given our stretch-based growth model, I would

expect to observe accelerated developmental timing in animals exposed to hypoosmotic

conditions because of the relatively high stretching loads on the cuticle throughout growth.

Identifying changes in cuticle elasticity during growth is just one part of understanding

the role the cuticle may play in molt timing. We must also consider how information originating

from the cuticle is sensed and propagated to the rest of the animal. In C. elegans, attachment

complexes called hemidesmosomes connect the cuticle to the epidermis and are shown to

respond to mechanical tension exerted by muscle contraction [144]. It is possible that C. elegans

hemidesmosomes act not only as an attachment structure but also as a mechanosensor that

responds to forces at the epidermis and at the cuticle. Additionally, motor neurons may serve as
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another potential mechanosensor. Mechanosensory neurons are typically used to regulate various

behaviors, including, locomotion, egg laying, pharyngeal pumping, and defecation [204].

Notably, many motor neurons extend along the longitudinal body axis and some also extend

circumferential axons [205], opening up the possibility that these neurons might provide signals

proportional to body length and width. Future studies of how perturbations of hemidesmosomes

and motor neurons influence C. elegans body size and developmental timing would be

worthwhile.

5.2.2. Identifying genetic factors that contribute to variation in growth and body size

Discerning how complex traits are genetically controlled is essential to understanding the

evolution of phenotypic diversity. Genetic regulators of trait variation can be mapped using QTL

analysis of RIAILs derived from genetically and phenotypically divergent strains. In my work, I

used linkage mapping to identify genetic loci underlying differences in C. elegans body size and

found three small-effect QTL explaining 5-8% of variation in the RIAIL phenotypes. Our ability

to detect and validate one of these QTL emphasizes the power of using C. elegans to correlate

small-effect genetic loci to quantitative phenotypes. In Chapter 3, I postulate that the inability to

recapitulate the other two QTL effects could be attributed to insufficient power or the presence of

additional undetected QTL with additive or non-additive effects. The CSSs and NILs I used for

validation experiments each contain a single region of introgression in a genetic background of

the opposite genotype. Future work should aim to construct double CSSs or multi-region NILs

where pairwise combinations of two genomic regions are introgressed in the opposite genotype.

Phenotyping these additional strains could reveal additional loci contributing to the chromosome

IV and V effects.
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5.2.2.1. Alternatives to classical linkage mapping

Genome-wide association (GWA) mapping

High levels of genotypic and phenotypic diversity exist in natural populations. In contrast to

linkage mapping where genetic diversity is limited to the two parental strains, GWA mapping

leverages the existing natural diversity found in a population. By correlating phenotypic

variation among wild strains with whole-genome data, GWA studies identify functional variants

that contribute to phenotypic diversity. In C. elegans, a growing collection of wild strains and

genome-wide variation data are readily available (CeNDR, [68]). Using this resource, association

mapping has led to the discovery of genes and variants that underlie variation in complex traits

(Figure 1-4) [86].

Recently, the Andersen Lab completed an extensive GWA experiment, collecting body

length measurements for 195 wild strains across 54 different drug conditions. Exploring these

data to identify size-associated QTL of animals exposed to the control condition (water or

DMSO), and comparing the results to the linkage mapping presented in Chapter 3, would be the

next step for subsequent investigations of genetic factors that underlie differences in C. elegans

growth and body size. With data from the linkage and association mappings, we could look for

QTL that overlap between the two methods. Overlapping QTL would suggest that a common

variant present in the CB4856 strain contributes to differences in body size of animals in both

mapping populations. Alternatively, non-overlapping QTL would suggest that the QTL identified

from linkage mapping is driven by a rare variant in the CB4856 strain, whereas the QTL

identified from association mapping is driven by a common variant not found in the CB4856
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strain. The combination of both association and linkage mapping provides an approach to both

narrow genomic intervals and generate refined lists of potential causal genes.

Bulk-segregant analysis

QTL mapping has been central to the identification of loci underlying complex traits in C.

elegans. However, QTL mapping typically requires the generation of large panels of cross

progeny that must be individually genotyped and phenotyped, a lengthy and often costly task. An

alternative to traditional QTL mapping is bulk-segregant analysis (BSA). In contrast to

constructing, sequencing, and phenotyping individuals for a RIL or RIAIL panel, the BSA

approach uses pools of recombinant individuals generated from genetically and phenotypically

divergent parents. Recombinant individuals are then selected based on the phenotype of interest

and allele frequencies are compared between the unselected and selected pools. Over recent

years, researchers have demonstrated the power of using BSA to connect phenotypic differences

to specific genes (Figure 1-4) [86]. Leveraging BSA to identify QTL associated with

developmental growth would be a worthwhile endeavor. Recombinant individuals from an

N2xCB4856 cross could be cultured as described in Chapter 2. Then, by selecting the tails of the

population distribution, the allele frequency changes of the “large-sized” and “small-sized”

individuals during the experiment can be compared. Repeating this over various stages during

development could potentially reveal unique QTL for independent larval stages. Alternatively,

one could make use of population-wide diversity by performing growth and selection on a pool

of wild strains. The application of a powerful mapping method like BSA to identify QTL will

expand our understanding of the molecular mechanisms underlying C. elegans growth and

development.
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5.2.3. Phenotypic plasticity and genotype-by-environment interaction

In my graduate work I study the growth and development of C. elegans under tightly controlled

environmental conditions. However, environmental factors in natural habitats are rarely constant,

and this variation can impact developmental progression and growth rate. Research has shown

that C. elegans rearing temperature, as well as both food quality and quantity alter the speed of

larval development [57,59,206]. The term phenotypic plasticity is used to describe this

phenomenon where an individual express multiple phenotypic differences based on external

conditions [207]. Notably, distinct genotypes of a single species can show unique patterns of

plasticity. Genotype-by-environment (GxE) interactions represent this contribution of genetic

variation to environmental sensitivity.

Reaction norms are often used to visually compare plasticity among different genotypes by

displaying phenotypic differences as a function of environmental change [208]. A phenotype

may be constant across genotypes and environments, or it may be affected in several ways. First,

phenotype could differ between genotypes, indicating genetic variation, but remain unaffected

across multiple environments. Displayed as horizontal lines between environmental parameters,

this case represents robustness to environmental perturbation (Figure 5-1A). Second, regardless

of genotype, there could be a general plastic response to environmental change. Here, diagonal

lines between environmental conditions reflect plasticity and the slope of the line represents the

magnitude of plasticity (Figure 5-1B). Third, the magnitude of plasticity for a given trait could

vary among genotypes, represented as non-parallel reaction norms (Figure 5-1C), indicating the

presence of GxE interaction. Although the occurrence of GxE interactions is well studied, the
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genomic regions involved are not because of the complex interaction between genetics and

environmental factors that drives plasticity [209–211].

Figure 5-1. Schematic representation of reaction norms, illustrating forms of plasticity.

In the last month, research was published that explored the genetic architecture of body-size

plasticity in C. elegans [181]. Researchers used 40 RILs derived from the N2 and CB4856

strains to investigate the effects of temperature and developmental stage on the reaction norms of

various body-size traits (animal length, width, and size of some internal organs). Not only did

they find clear evidence of GxE interactions, but they also noticed that the shape of the reaction

norm was affected by developmental stage, potentially stemming from differences in interaction

between stage-specific gene expression patterns and environmental temperature. The authors

also performed QTL mapping and found 18 loci underlying body-size traits and only five

plasticity loci. Interestingly, three plasticity QTL colocalized with body-size QTL, suggesting the

possibility of co-regulatory loci influencing both plasticity and the traits themselves. Future work

should build on these findings by collecting size measurements for wild C. elegans strains under

different environmental conditions. This research is vital to our understanding of the complex

interplay between genetic mechanisms and environmental forces that shape phenotypic variation

in natural populations.
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Appendix

I had the pleasure of collaborating with members of the Mangan group in the Engineering

Science and Applied Math department at Northwestern to investigate C. elegans growth using

mathematical models. The following are two manuscripts that came out of this collaboration and

directly relate to data and thoughts presented in Chapter 2 of this thesis. They are both currently

in preparation for submission to microPublication.
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A. Growth dynamics of C. elegans cuticle mutants

Characterization of larval growth in C. elegans cuticle mutants

Joy Nyaanga1,2, Sasha Shirman3, Niall M. Mangan3, and Erik C. Andersen1

1. Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA

2. Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA

3. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL

60208, USA

Abstract

In Caenorhabditis elegans, many genes involved in the formation of the cuticle are also known to

influence body size and shape. We assessed post-embryonic growth of both long and short C. elegans

body size mutants from the L1 to L4 stage. We found similar developmental trajectories of N2 and lon-3

animals. By contrast, we observed overall decreases in body length and increases in body width of tested

dpy mutants compared to N2, consistent with the Dpy phenotype. We further show that the dynamics of

animal shape in the mutant strains are consistent with a previously proposed “Stretcher” growth model.
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Figure A-1: Quantitative assessment of C. elegans larval growth.

(A) Representative images of strains used in this study taken at the L4 stage. Tukey boxplots for

median animal fluorescence normalized by area (B), median animal length (µM) (C), and

median animal width (µM) (D). The horizontal line in the middle of the box is the median, and
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the box denotes the 25th to 75th quantiles of the data. The vertical line represents the 1.5

interquartile range. Each point corresponds to the median value of a population of animals in

each well. (E) Median length (x-axis) plotted against median length (y-axis). (F) The ratio of the

change in width to length over time. Calculated from the local slope of data in panel (E). The

standard deviation captures population variation (grey).

Description

Body size largely influences an organism’s functional characteristics: growth, reproduction,

metabolism, lifespan. As a result, the determinant factors of organism size, particularly during

development, have been explored in many systems. Caenorhabditis elegans, a free-living

nematode, presents a versatile genetic model system to study how the processes of growth and

development are regulated. C. elegans matures to an adult after multiple molting events during

which time animals synthesize a new exoskeleton (cuticle) and expel their old one. The C.

elegans cuticle is a complex, multi-layered structure primarily composed of collagens. As

animals progress through their life-cycle, the structure and thickness of the cuticle changes but

its role in the maintenance of body morphology and integrity remains. To date, 21 cuticle

collagen mutants have been identified that cause a range of body morphology defects (Page and

Johnstone 2007). Some of these mutants exhibit a disproportionate reduction in body size, while

others are noticeably larger than wild type (Cho et al. 2021), clearly demonstrating the

importance of the physical structure of the cuticle on growth. Analyzing the characteristics of

size during development in various C. elegans body shape mutants is central to understanding

the role these genetic pathways have on body growth.
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We performed a high-resolution longitudinal study of growth in a selection of C. elegans

cuticle mutants. We selected mutants that were both reportedly shorter (dpy-1(e1), dpy-5(e61))

and longer (lon-3(e2175)) than wild type (Cho et al. 2021) (Figure A-1A). We then collected

high-precision measurements of animal fluorescence (Figure A-1B), length (Figure A-1C), and

width (Figure A-1D) from the L1 stage through the L4 stage. As we previously demonstrated

(Nyaanga et al. 2022), we can use oscillations in fluorescence as a proxy for feeding behavior to

characterize larval progression by associating periods of decreased feeding with molt events.

Doing so, we notice that lon-3(e2175) animals follow similar developmental trajectories to the

N2 wild type. By contrast, we detect a delay in the molt timing of both dpy mutant strains, with

dpy-1(e1) undergoing each larval transition later than all other tested strains. We also observe a

marked decrease in animal length and increase in animal width noticeable after the L1 stage in

both dpy strains, consistent with their characteristic dumpy phenotype. Interestingly, we note

little size divergence between lon-3(e2175) and N2 animals during our time course.

Measurements of both animal length and width allow us to assess changes in body shape

as well as size. Previously, motivated by changes in the body aspect ratio of animals we observed

at larval stage transitions, we modeled a physical mechanism by which constraints on cuticle

stretch could cause changes in C. elegans body shape (Nyaanga et al. 2022). We found that

model-predicted shape changes were consistent with those seen in our data of N2 animals. Given

this result, we proposed a “Stretcher” model for growth wherein C. elegans sense changes in

cuticle elasticity, in tandem with other regulatory mechanisms, to control growth rate and

determine developmental transitions. Given the structural impacts of dpy-1(e1), dpy-5(e61) and

lon-3(e2175) mutants, we sought to determine whether the shape dynamics predicted by the
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Stretcher model would be consistent with the mutant data. By analyzing the relationship between

measured animal length and width ( / ) over time, we are able to detect the linear and∆𝑊 ∆𝐿

nonlinear stretch regimes predicted by the Stretcher model (Figure 1F). In all strains, we observe

an approximately constant / ratio in all larval stages, consistent with a linear stretch∆𝑊 ∆𝐿

regime. Next, we observe a shape slope increase, consistent with a nonlinear stretch regime in

length preceding larval stage transitions.

Methods

Worm culture

The laboratory strain N2 was obtained from the C. elegans Natural Diversity Resource (Cook et

al. 2017). All other strains were provided by the CGC, which is funded by NIH Office of

Research Infrastructure Programs (P40 OD010440). Animals were cultured at 20°C on 6 cm

plates of modified nematode growth media (NGMA), which contained 1% agar and 0.7%

agarose seeded with E. coli OP50 bacteria.

High-throughput growth assay

Measurements of body size and fluorescence were measured as previously described (Nyaanga et

al. 2022). Briefly, strains were propagated for three generations, bleach-synchronized, and titered

at a concentration of 1 embryo per µL into 250 mL flasks. The following day, arrested L1s were

fed HB101 food at a final concentration of OD20 in a final flask volume of 100 mL K medium

and HB101 food. Animals were grown with constant shaking at 20°C. Flasks were sampled each

hour beginning one hour after feeding and continuing for 42 consecutive hours. At each hour,

800 µL was removed from each flask and incubated with fluorescent polychromatic beads
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(Polysciences, 19507-5) for 10 minutes with shaking. Following the bead incubation, animals

were transferred to a 96-well microtiter plate, treated with sodium azide, imaged with an

ImageXpress Nano (Molecular Devices, SanJose, CA), and scored using a large-particle flow

cytometer (COPAS BIOSORT, Union Biometrica, Holliston MA). COPAS BIOSORT was used

to collect measurements of animal length (TOF), optical extinction (EXT), and red fluorescence

for every animal in each well.

Data processing

COPAS BIOSORT data were processed as previously described (Nyaanga et al. 2022). To

remove non-animal objects such as bacterial clumps, shed cuticles, and next generation larval

animals from the time-course data. Data for each well was summarized to obtain median well

measurements. TOF and norm.EXT data were then converted to microns. Only the unit-corrected

data were used for further analysis. “Stretcher” model analysis of shape dynamics was performed

as previously described (Nyaanga et al. 2022).

Reagents
STRAIN GENOTYPE AVAILABLE FROM

N2 Caenorhabditis elegans CeNDR

CB1 dpy-1(e1) CGC

CB61 dpy-5(e61) CGC

CB4123 lon-3(e2175) CGC
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Figure B-1: Visualization and analysis of food intake and utilization models. (A) A single

cycle in which animals take up and transport food to the gut consists of four general steps. The

cycle begins with relaxed pharyngeal muscles and a closed pharyngeal lumen (step 1). The

animal opens the pharyngeal lumen so that fluid and food flow through the buccal cavity and into

the pharyngeal lumen (step 2). The animal relaxes the muscles that control the opening, stopping

the flow of fluid through the buccal cavity and trapping a volume of media approximately equal

to the maximum volume of the pharyngeal lumen (step 3). Finally, the pharynx closes, extruding

excess media and trapping bacteria and beads that are then ‘swallowed’ (step 4). (B) Product of

pumping frequency and pharyngeal lumen fraction. (C) Dynamics of volume growth rate. (D)

Dynamics of the estimated food utilization towards growth. (E) Dynamics of red fluorescence.

(F) Dynamics of food allocation breakdown. Food allocated toward maintenance is proportional

to animal size (pink). Food allocated toward growth is calculated from food intake (C) and

utilization (D) to produce low (dark green) and high (combined green) estimates. Food allocated

to other metabolic processes consists of remaining food resources (grey). In panels C-E, the solid

blue line represents the mean bootstrap regression. Standard deviation on the regression is

marked by the shaded blue region. In panels C-F, Vertical red lines mark molt times. Errors on

shaded regions are ±0.7 hours. These data are from replicate 2 and are representative of all

replicates.

Description

We have previously shown that changes in physical properties of the C. elegans cuticle might

serve as a cue for developmental timing (Nyaanga et al. 2021). C. elegans must have
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mechanisms to control growth throughout development, particularly in response to these cues.

Like most species, C. elegans do not increase their growth rate indefinitely in response to

increased food availability (Uppaluri and Brangwynne 2015). The animals could control growth

entirely using feeding rate, as they actively control the feeding rate (Fang-Yen et al. 2009) and

stop feeding at the initiation of a molt (Singh and Sulston 1978). In addition to this mechanical

control, they could use metabolic control to preemptively divert ingested resources toward or

away from growth. Metabolic processing of stored resources could be especially useful if

animals complete their molt and enter a food-limited environment. Using a quantitative feeding

model, we examine the C. elegans growth data (Nyaanga et al. 2021) to investigate the possible

mechanical control of feeding and the metabolic control of the allocation of ingested food toward

organismal growth and development.

C. elegans is a filter feeder that pumps its food through a cycle of pharyngeal muscle

contractions and relaxations that alternatively open and close the pharyngeal cavity. C. elegans

are capable of actively modulating the length of time used to contract or open a subset of the

pharyngeal muscles (Fang-Yen et al. 2009). Our feeding model describes how control of this

time length and thus the control of the overall pumping period, defined as the length of time of

one full pumping cycle, translates to changes in the rate of food uptake (Figure B-1A). The

results of our analysis show both an oscillation in pumping rates and a slow change in

pharyngeal lumen size throughout development (Figure B-1B). The minima of the product of

pumping frequency and pharynx fraction occurred during molt times, consistent with prior

knowledge (Singh and Sulston 1978; Byerly et al. 1976). The relative length of the pharynx to

animal length has been shown to decrease over development (Avery 2003) and a similar trend in
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the volume of the pharyngeal lumen could explain the slow decrease in the product of pumping

frequency and pharynx fraction.

To understand whether animals control growth rate primarily using the mechanical

feeding process or metabolic regulation, we describe how food is utilized once it is ingested by

C. elegans. We assumed three general categories of food utilization: maintenance, observed

volumetric growth, and all other processes. We assume that resources required for maintenance

are proportional to the volume of the animal. Other processes may include the development of

tissues and structures, such as reproductive components, within the worm which are resource

intensive, but are not detected during the measurements of the width, length, or volume. Food

intake rate (using red fluorescence as a proxy) and volume growth rate (numerically

differentiated from the volume regression) follow similar dynamics throughout much of C.

elegans development (Figure 1C and Figure 1E). Each larval stage consists of three types of

dynamics: steady growth during which food intake and growth rate are both increasing (green),

preparation for molt during which food intake and growth rate are both decreasing (red), and

transition regions where food intake and growth rate do not vary together (white). During steady

growth and molt initiation, mechanical food intake rate and allocation of food resources towards

observable growth have similar dynamics. At transition points the allocation of food resources

towards growth, reaches a local minimum or maximum. These local extrema in food utilization

at transition points likely indicate large changes in metabolic regulation (Figure 1D).

Our analysis of the relationship between growth rate and food intake rate quantified the

interplay of metabolic regulation and mechanical food intake (Figure 1F). Mechanical food

intake provides the upper bound of available food resources for growth, but metabolic regulation
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substantially changes how much of this available food is utilized for volumetric growth across

development. Local extrema in metabolic regulation dynamics coincide with the start of

transition times. Within the L2 and L3 stages we observed a decoupling between growth rate and

food intake dynamics (Figure 1F white region) twice. The first of these time periods corresponds

to the times at which the width-to-length ratio drastically changes and the second corresponds to

ecdysis. We estimated that throughout larval stages metabolic resources allocated to non-growth

processes varies much less than food resources required for growth and maintenance. The

oscillatory behavior of food utilization motivates the need for further metabolomic experiments

to probe metabolic regulatory dynamics particularly in around larval-stage transitions.

Methods

Worm culture

The canonical laboratory strain N2 was obtained from the C. elegans Natural Diversity Resource

(Cook et al. 2017) and animals were cultured at 20°C on 6 cm plates of modified nematode

growth media (NGMA), which contained 1% agar and 0.7% agarose seeded with E. coli OP50

bacteria.

High-throughput growth assay

Measurements of body size and fluorescence were measured as previously described (Nyaanga et

al. 2021). Briefly, strains were propagated for three generations, bleach-synchronized, and titered

at a concentration of 1 embryo per µL into six replicate 500 mL flasks. The following day,

arrested L1s were fed HB101 food at a final concentration of OD20 in a final flask volume of

100 mL K medium and HB101 food. Animals were allowed to grow at 20°C with constant
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shaking. Flasks were sampled each hour beginning one hour after feeding and continuing for 72

consecutive hours. At each hour, 500 µL was removed from each flask and incubated with

fluorescent polychromatic beads (Polysciences, 19507-5) for 10 minutes with shaking. Following

the bead incubation, animals were aliquoted to a 96-well microtiter plate, treated with sodium

azide, imaged with an ImageXpress Nano (Molecular Devices, SanJose, CA), and scored using a

large-particle flow cytometer (COPAS BIOSORT, Union Biometrica, Holliston MA). COPAS

BIOSORT was used to collect measurements of animal length (TOF), optical extinction (EXT),

and red fluorescence for every animal in each well.

Feeding model analysis

To analyze volumetric growth dynamics and feeding dynamics, volume regression was

calculated using a cylindrical approximation for animal shape and the same local kernel

regression previously described (Nyaanga et al. 2021) was applied to red fluorescence data.

Volume growth rate was calculated using the python numpy gradient function applied to the

volume regressions. An additional moving time window average (1.4 hours) was applied to

smooth numerical errors in the derivative when determining feeding and growth regime

transition points. Model derivations can be found in the Extended Data file.
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Extended Data

Derivation of eating modelChicagol

We express the volume of the pharyngeal lumen as a fraction, , of nematode volume,푔(푡)

. As the pumping period is much faster (ms in adults) than the𝑉
푙푢푚푒푛:푚𝑎푥

(푡) =  푔(푡)· 𝑉
푤표푟푚

(푡)

rate of measured growth (hours), we averaged the food intake rate over a single pumping period.

We begin by defining the instantaneous rate of food intake as a function of the flow rate of media

through the buccal cavity and the cross sectional area of the buccal cavity

(1)
푑𝑉

푓표표푑

푑푡 = 𝐴
푏푢푐푐𝑎푙

We then make the assumption that the uptake of media fills the pharynx cavity we have

(2)
푑𝑉

푓표표푑

푑푡 = 𝐶
푑𝑉

푝ℎ𝑎푟푦푛푥

푑푡

We average both sides of the equation under the assumption that the pumping period is

significantly shorter than the time scale of growth

(3)1
𝑇

0

𝑇

∫
푑𝑉

푓표표푑

푑푡 푑푡 = 1
𝑇

0

𝑇

∫ 𝐶𝐴
푏푢푐푐𝑎푙

The integral on the right hand side is the total food intake during a single pumping period.
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(4)1
𝑇

0

𝑇

∫
푑𝑉

푓표표푑

푑푡 푑푡 = 1
𝑇 ∆𝑉

푓표표푑

We then take into account that food is not transported to the gut in the same step as its uptake.

Thus the total food intake during a single pump can be calculated by the amount of food that fills

the fully opened pharynx

(5)1
𝑇

0

𝑇

∫
푑𝑉

푓표표푑

푑푡 푑푡 = 𝐶
𝑇 ∆𝑉

푝ℎ𝑎푟푦푛푥:푚𝑎푥

We then replace the average on the right hand side with the average food intake rate over the

pumping period. For simplicity and because we will deal entirely with the average food intake

rate, we do not use a different notation for this average rate.

(6)
푑𝑉

푓표표푑

푑푡 푑푡 = 𝐶
𝑇 ∆𝑉

푝ℎ𝑎푟푦푛푥:푚𝑎푥
= 𝐶푓(푡)𝑉

푝ℎ𝑎푟푦푛푥:푚𝑎푥

Here, is the concentration of bacteria in the culture where animals are grown and is the𝐶 푓(푡)

pumping frequency and the inverse of the period of a single pump. Both pumping frequency,

, and the fractional pharyngeal lumen size, , vary over the animal’s life cycle. Though푓(푡) 푔(푡)

any individual bacterium may take multiple pumps to travel down to the gut, we assume that,

once food has entered the pharyngeal lumen, it will eventually be metabolized. With this

assumption, we are only interested in the rate at which food enters so we do not model the

dynamics of food traveling through the gut.

Defecation analysis

We verify that red fluorescence (denoted as “ ”) can be treated as a proxy measurement for𝑅푒푑

food intake rate given defecation rates. We use the defecation results found in (Liu and Thomas
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1994) to determine if red fluorescent measurements can be used as a proxy for food intake rate as

opposed to the instantaneous food volume in the gut. Defecation in adults happens very

regularly, with a period of , with of their intestinal volume𝑇
푑

= 45 ± 3푠 ℎ
푑

= 43 ± 10%

being expelled each time. The volume expelled is well mixed. Defining as the current amount𝑉
푓

of food in the nematode gut. We can use conservation of mass to state that the rate of change in

the amount of food in the gut is equal to the rate of food intake through eating less the defecation

rate and the rate at which food volume is metabolized into cell products:

(7)
푑𝑉

푓

푑푡  =  
푑𝑉

푓

푑푡 |
푒𝑎푡푖푛푔

−  
푑𝑉

푓

푑푡 |
푑푒푓푒푐𝑎푡푖푛푔

−
푑𝑉

푓

푑푡 |
푚푒푡𝑎푏표푙푖푧푒푑

Using red fluorescence as a proxy for food intake we can ignore the metabolism term as the

fluorescent beads were not metabolized.

(8)
푑𝑉

푓

푑푡  =  
푑𝑉

푓

푑푡 |
푒𝑎푡푖푛푔

−  
푑𝑉

푓

푑푡 |
푑푒푓푒푐𝑎푡푖푛푔

The above equation states that the rate of change of the volume of fluorescent beads in the gut is

equal to the difference between the intake of red fluorescent beads minus the defecation rate of

red fluorescent beads. Using the results of (Liu and Thomas 1994) for the second term, and

defining as the volume of food in the gut just prior to defecation, as the fraction of𝑉
푓:푚𝑎푥

ℎ
푑

food expelled during a single defecation cycle, and as the period of defecation. We average𝑇
푑

Equation (S8) over short time periods to remove the pumping and defecation period oscillations.

(9)
푑𝑉

푟푒푑:푚𝑎푥

푑푡  =  
푑𝑉

푟푒푑

푑푡 |
푒𝑎푡푖푛푔

−  
𝑉

푟푒푑:푚𝑎푥
ℎ

푑

𝑇
푑

On the left hand side, the instantaneous rate of the gut red fluorescence in Equation (S8) is

replaced by the rate of change of the maximum or “full” gut fluorescence. The second term on
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the right hand side of Equation (S8) has been replaced by the average defecation rate over a

cycle calculated by multiplying the full gut fluorescence by the fraction expelled and dividing by

the defecation period. We solve Equation (S9) for the average eating rate.

(10)
푑𝑉

푟푒푑

푑푡 |
푒𝑎푡푖푛푔

=  
푑𝑉

푟푒푑:푚𝑎푥

푑푡 +
𝑉

푟푒푑:푚𝑎푥
ℎ

푑

𝑇
푑

We take the local regression of the red fluorescence to determine . This value is𝑉
푟푒푑:푚𝑎푥

(푡)

plugged into the second term on the right hand side of Equation (S10) and its derivative is used

to approximate the first term on the right hand side of Equation (S10). We take the adult values

of and (Liu and Thomas 1994) as a first approximation. Figure (S6) demonstrates aℎ
푑

𝑇
푑

comparison of the red fluorescence and the red intake rate with defecation taken into account at

the constant adult rates and quantities. We have scaled both the pink curve denoting red

fluorescence and the blue curve denoting red intake rate by their maximum. This scaling allows

us to see that the two curves are only a multiplicative factor apart up to error bars. This allows us

to use the red measurement as a proxy for both red and food intake rates.

We use red fluorescence and calculated volume as the product of pumping rate and

pharyngeal lumen fraction, , over time.푓(푡)푔(푡) ∝ 𝑅푒푑
𝑉

푤표푟푚

Derivation of food utilization model

The rate of food conversion to growth can be described by:

(11)
푑𝑉

푤표푟푚

푑푡 (푡) = η(푡)α(푡)
푑𝑉

푓표표푑

푑푡 (푡).

Here, is the instantaneous rate of food intake (averaged over a single pump), is the
푑𝑉

푓표표푑

푑푡 η(푡)

metabolic efficiency of converting food to growth, and is food utilization, meaning theα(푡)
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fraction of food used for volumetric growth as opposed to maintenance or other metabolic

processes. If both and are constant, then the equation predicts the rate of volumetricη(푡) α(푡)

growth is directly proportional to the rate of food consumption, which would be equivalent to

controlling growth through feeding with no changes in metabolic regulation (through enzyme

expression or other direction of flux between pathways). Efficiency captures the maximum

efficiency of metabolism, and we assume it does not vary significantly when the food source is

constant, . Therefore, utilization captures the dynamics of metabolic regulation. If theη(푡) = η

fraction of food utilized for growth is not constant, then volumetric growth rate is no longer

proportional to food consumption rate and metabolic control must play a role in driving the

growth rate.

We calculate the value of the product of metabolic efficiency and food utilization, ,α(푡) η

from the data by manipulating Eq. (11):

(12)α(푡) η =  
푑𝑉

푤표푟푚

푑푡 (푡)( )/ 
푑𝑉

푓표표푑

푑푡 (푡)( ).

By using the red fluorescence as a proxy for food intake rate in Eq. (12), we can estimate the

dynamical behavior up to scaling factors for the metabolic efficiency times food utilization,

. Because only utilization varies in time, it captures the dynamics ofα(푡) η ∝
푑𝑉

푤표푟푚

푑푡 (푡)( )/ 𝑅푒푑

metabolic regulation:

(13)α(푡) ∝  
푑𝑉

푤표푟푚

푑푡 (푡)( )/ 𝑅푒푑.
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